xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 151f4e2b)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include <linux/nvme-fc-driver.h>
43 
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
60 
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 	LPFC_UNKNOWN_IOCB,
64 	LPFC_UNSOL_IOCB,
65 	LPFC_SOL_IOCB,
66 	LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
68 
69 
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 				  uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 			      uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 							 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 				      struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 					  struct hbq_dmabuf *dmabuf);
81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
82 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 				       int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 				     struct lpfc_queue *eq,
87 				     struct lpfc_eqe *eqe);
88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
90 
91 static IOCB_t *
92 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
93 {
94 	return &iocbq->iocb;
95 }
96 
97 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
98 /**
99  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
100  * @srcp: Source memory pointer.
101  * @destp: Destination memory pointer.
102  * @cnt: Number of words required to be copied.
103  *       Must be a multiple of sizeof(uint64_t)
104  *
105  * This function is used for copying data between driver memory
106  * and the SLI WQ. This function also changes the endianness
107  * of each word if native endianness is different from SLI
108  * endianness. This function can be called with or without
109  * lock.
110  **/
111 void
112 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
113 {
114 	uint64_t *src = srcp;
115 	uint64_t *dest = destp;
116 	int i;
117 
118 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
119 		*dest++ = *src++;
120 }
121 #else
122 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
123 #endif
124 
125 /**
126  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
127  * @q: The Work Queue to operate on.
128  * @wqe: The work Queue Entry to put on the Work queue.
129  *
130  * This routine will copy the contents of @wqe to the next available entry on
131  * the @q. This function will then ring the Work Queue Doorbell to signal the
132  * HBA to start processing the Work Queue Entry. This function returns 0 if
133  * successful. If no entries are available on @q then this function will return
134  * -ENOMEM.
135  * The caller is expected to hold the hbalock when calling this routine.
136  **/
137 static int
138 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
139 {
140 	union lpfc_wqe *temp_wqe;
141 	struct lpfc_register doorbell;
142 	uint32_t host_index;
143 	uint32_t idx;
144 	uint32_t i = 0;
145 	uint8_t *tmp;
146 	u32 if_type;
147 
148 	/* sanity check on queue memory */
149 	if (unlikely(!q))
150 		return -ENOMEM;
151 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
152 
153 	/* If the host has not yet processed the next entry then we are done */
154 	idx = ((q->host_index + 1) % q->entry_count);
155 	if (idx == q->hba_index) {
156 		q->WQ_overflow++;
157 		return -EBUSY;
158 	}
159 	q->WQ_posted++;
160 	/* set consumption flag every once in a while */
161 	if (!((q->host_index + 1) % q->notify_interval))
162 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
163 	else
164 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
165 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
166 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
167 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
168 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
169 		/* write to DPP aperture taking advatage of Combined Writes */
170 		tmp = (uint8_t *)temp_wqe;
171 #ifdef __raw_writeq
172 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
173 			__raw_writeq(*((uint64_t *)(tmp + i)),
174 					q->dpp_regaddr + i);
175 #else
176 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
177 			__raw_writel(*((uint32_t *)(tmp + i)),
178 					q->dpp_regaddr + i);
179 #endif
180 	}
181 	/* ensure WQE bcopy and DPP flushed before doorbell write */
182 	wmb();
183 
184 	/* Update the host index before invoking device */
185 	host_index = q->host_index;
186 
187 	q->host_index = idx;
188 
189 	/* Ring Doorbell */
190 	doorbell.word0 = 0;
191 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
192 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
193 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
194 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
195 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
196 			    q->dpp_id);
197 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
198 			    q->queue_id);
199 		} else {
200 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
201 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
202 
203 			/* Leave bits <23:16> clear for if_type 6 dpp */
204 			if_type = bf_get(lpfc_sli_intf_if_type,
205 					 &q->phba->sli4_hba.sli_intf);
206 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
207 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
208 				       host_index);
209 		}
210 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
211 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
212 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
213 	} else {
214 		return -EINVAL;
215 	}
216 	writel(doorbell.word0, q->db_regaddr);
217 
218 	return 0;
219 }
220 
221 /**
222  * lpfc_sli4_wq_release - Updates internal hba index for WQ
223  * @q: The Work Queue to operate on.
224  * @index: The index to advance the hba index to.
225  *
226  * This routine will update the HBA index of a queue to reflect consumption of
227  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
228  * an entry the host calls this function to update the queue's internal
229  * pointers. This routine returns the number of entries that were consumed by
230  * the HBA.
231  **/
232 static uint32_t
233 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
234 {
235 	uint32_t released = 0;
236 
237 	/* sanity check on queue memory */
238 	if (unlikely(!q))
239 		return 0;
240 
241 	if (q->hba_index == index)
242 		return 0;
243 	do {
244 		q->hba_index = ((q->hba_index + 1) % q->entry_count);
245 		released++;
246 	} while (q->hba_index != index);
247 	return released;
248 }
249 
250 /**
251  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
252  * @q: The Mailbox Queue to operate on.
253  * @wqe: The Mailbox Queue Entry to put on the Work queue.
254  *
255  * This routine will copy the contents of @mqe to the next available entry on
256  * the @q. This function will then ring the Work Queue Doorbell to signal the
257  * HBA to start processing the Work Queue Entry. This function returns 0 if
258  * successful. If no entries are available on @q then this function will return
259  * -ENOMEM.
260  * The caller is expected to hold the hbalock when calling this routine.
261  **/
262 static uint32_t
263 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
264 {
265 	struct lpfc_mqe *temp_mqe;
266 	struct lpfc_register doorbell;
267 
268 	/* sanity check on queue memory */
269 	if (unlikely(!q))
270 		return -ENOMEM;
271 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
272 
273 	/* If the host has not yet processed the next entry then we are done */
274 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
275 		return -ENOMEM;
276 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
277 	/* Save off the mailbox pointer for completion */
278 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
279 
280 	/* Update the host index before invoking device */
281 	q->host_index = ((q->host_index + 1) % q->entry_count);
282 
283 	/* Ring Doorbell */
284 	doorbell.word0 = 0;
285 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
286 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
287 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
288 	return 0;
289 }
290 
291 /**
292  * lpfc_sli4_mq_release - Updates internal hba index for MQ
293  * @q: The Mailbox Queue to operate on.
294  *
295  * This routine will update the HBA index of a queue to reflect consumption of
296  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
297  * an entry the host calls this function to update the queue's internal
298  * pointers. This routine returns the number of entries that were consumed by
299  * the HBA.
300  **/
301 static uint32_t
302 lpfc_sli4_mq_release(struct lpfc_queue *q)
303 {
304 	/* sanity check on queue memory */
305 	if (unlikely(!q))
306 		return 0;
307 
308 	/* Clear the mailbox pointer for completion */
309 	q->phba->mbox = NULL;
310 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
311 	return 1;
312 }
313 
314 /**
315  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
316  * @q: The Event Queue to get the first valid EQE from
317  *
318  * This routine will get the first valid Event Queue Entry from @q, update
319  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
320  * the Queue (no more work to do), or the Queue is full of EQEs that have been
321  * processed, but not popped back to the HBA then this routine will return NULL.
322  **/
323 static struct lpfc_eqe *
324 lpfc_sli4_eq_get(struct lpfc_queue *q)
325 {
326 	struct lpfc_eqe *eqe;
327 
328 	/* sanity check on queue memory */
329 	if (unlikely(!q))
330 		return NULL;
331 	eqe = lpfc_sli4_qe(q, q->host_index);
332 
333 	/* If the next EQE is not valid then we are done */
334 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
335 		return NULL;
336 
337 	/*
338 	 * insert barrier for instruction interlock : data from the hardware
339 	 * must have the valid bit checked before it can be copied and acted
340 	 * upon. Speculative instructions were allowing a bcopy at the start
341 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
342 	 * after our return, to copy data before the valid bit check above
343 	 * was done. As such, some of the copied data was stale. The barrier
344 	 * ensures the check is before any data is copied.
345 	 */
346 	mb();
347 	return eqe;
348 }
349 
350 /**
351  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
352  * @q: The Event Queue to disable interrupts
353  *
354  **/
355 void
356 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
357 {
358 	struct lpfc_register doorbell;
359 
360 	doorbell.word0 = 0;
361 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
362 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
363 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
364 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
365 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
366 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
367 }
368 
369 /**
370  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
371  * @q: The Event Queue to disable interrupts
372  *
373  **/
374 void
375 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
376 {
377 	struct lpfc_register doorbell;
378 
379 	doorbell.word0 = 0;
380 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
381 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
382 }
383 
384 /**
385  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
386  * @phba: adapter with EQ
387  * @q: The Event Queue that the host has completed processing for.
388  * @count: Number of elements that have been consumed
389  * @arm: Indicates whether the host wants to arms this CQ.
390  *
391  * This routine will notify the HBA, by ringing the doorbell, that count
392  * number of EQEs have been processed. The @arm parameter indicates whether
393  * the queue should be rearmed when ringing the doorbell.
394  **/
395 void
396 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
397 		     uint32_t count, bool arm)
398 {
399 	struct lpfc_register doorbell;
400 
401 	/* sanity check on queue memory */
402 	if (unlikely(!q || (count == 0 && !arm)))
403 		return;
404 
405 	/* ring doorbell for number popped */
406 	doorbell.word0 = 0;
407 	if (arm) {
408 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
409 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
410 	}
411 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
412 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
413 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
414 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
415 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
416 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
417 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
418 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
419 		readl(q->phba->sli4_hba.EQDBregaddr);
420 }
421 
422 /**
423  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
424  * @phba: adapter with EQ
425  * @q: The Event Queue that the host has completed processing for.
426  * @count: Number of elements that have been consumed
427  * @arm: Indicates whether the host wants to arms this CQ.
428  *
429  * This routine will notify the HBA, by ringing the doorbell, that count
430  * number of EQEs have been processed. The @arm parameter indicates whether
431  * the queue should be rearmed when ringing the doorbell.
432  **/
433 void
434 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
435 			  uint32_t count, bool arm)
436 {
437 	struct lpfc_register doorbell;
438 
439 	/* sanity check on queue memory */
440 	if (unlikely(!q || (count == 0 && !arm)))
441 		return;
442 
443 	/* ring doorbell for number popped */
444 	doorbell.word0 = 0;
445 	if (arm)
446 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
447 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
448 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
449 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
450 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
451 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
452 		readl(q->phba->sli4_hba.EQDBregaddr);
453 }
454 
455 static void
456 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
457 			struct lpfc_eqe *eqe)
458 {
459 	if (!phba->sli4_hba.pc_sli4_params.eqav)
460 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
461 
462 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
463 
464 	/* if the index wrapped around, toggle the valid bit */
465 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
466 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
467 }
468 
469 static void
470 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
471 {
472 	struct lpfc_eqe *eqe;
473 	uint32_t count = 0;
474 
475 	/* walk all the EQ entries and drop on the floor */
476 	eqe = lpfc_sli4_eq_get(eq);
477 	while (eqe) {
478 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
479 		count++;
480 		eqe = lpfc_sli4_eq_get(eq);
481 	}
482 
483 	/* Clear and re-arm the EQ */
484 	phba->sli4_hba.sli4_write_eq_db(phba, eq, count, LPFC_QUEUE_REARM);
485 }
486 
487 static int
488 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq)
489 {
490 	struct lpfc_eqe *eqe;
491 	int count = 0, consumed = 0;
492 
493 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
494 		goto rearm_and_exit;
495 
496 	eqe = lpfc_sli4_eq_get(eq);
497 	while (eqe) {
498 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
499 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
500 
501 		consumed++;
502 		if (!(++count % eq->max_proc_limit))
503 			break;
504 
505 		if (!(count % eq->notify_interval)) {
506 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
507 							LPFC_QUEUE_NOARM);
508 			consumed = 0;
509 		}
510 
511 		eqe = lpfc_sli4_eq_get(eq);
512 	}
513 	eq->EQ_processed += count;
514 
515 	/* Track the max number of EQEs processed in 1 intr */
516 	if (count > eq->EQ_max_eqe)
517 		eq->EQ_max_eqe = count;
518 
519 	eq->queue_claimed = 0;
520 
521 rearm_and_exit:
522 	/* Always clear and re-arm the EQ */
523 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, LPFC_QUEUE_REARM);
524 
525 	return count;
526 }
527 
528 /**
529  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
530  * @q: The Completion Queue to get the first valid CQE from
531  *
532  * This routine will get the first valid Completion Queue Entry from @q, update
533  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
534  * the Queue (no more work to do), or the Queue is full of CQEs that have been
535  * processed, but not popped back to the HBA then this routine will return NULL.
536  **/
537 static struct lpfc_cqe *
538 lpfc_sli4_cq_get(struct lpfc_queue *q)
539 {
540 	struct lpfc_cqe *cqe;
541 
542 	/* sanity check on queue memory */
543 	if (unlikely(!q))
544 		return NULL;
545 	cqe = lpfc_sli4_qe(q, q->host_index);
546 
547 	/* If the next CQE is not valid then we are done */
548 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
549 		return NULL;
550 
551 	/*
552 	 * insert barrier for instruction interlock : data from the hardware
553 	 * must have the valid bit checked before it can be copied and acted
554 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
555 	 * instructions allowing action on content before valid bit checked,
556 	 * add barrier here as well. May not be needed as "content" is a
557 	 * single 32-bit entity here (vs multi word structure for cq's).
558 	 */
559 	mb();
560 	return cqe;
561 }
562 
563 static void
564 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
565 			struct lpfc_cqe *cqe)
566 {
567 	if (!phba->sli4_hba.pc_sli4_params.cqav)
568 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
569 
570 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
571 
572 	/* if the index wrapped around, toggle the valid bit */
573 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
574 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
575 }
576 
577 /**
578  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
579  * @phba: the adapter with the CQ
580  * @q: The Completion Queue that the host has completed processing for.
581  * @count: the number of elements that were consumed
582  * @arm: Indicates whether the host wants to arms this CQ.
583  *
584  * This routine will notify the HBA, by ringing the doorbell, that the
585  * CQEs have been processed. The @arm parameter specifies whether the
586  * queue should be rearmed when ringing the doorbell.
587  **/
588 void
589 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
590 		     uint32_t count, bool arm)
591 {
592 	struct lpfc_register doorbell;
593 
594 	/* sanity check on queue memory */
595 	if (unlikely(!q || (count == 0 && !arm)))
596 		return;
597 
598 	/* ring doorbell for number popped */
599 	doorbell.word0 = 0;
600 	if (arm)
601 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
602 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
603 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
604 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
605 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
606 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
607 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
608 }
609 
610 /**
611  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
612  * @phba: the adapter with the CQ
613  * @q: The Completion Queue that the host has completed processing for.
614  * @count: the number of elements that were consumed
615  * @arm: Indicates whether the host wants to arms this CQ.
616  *
617  * This routine will notify the HBA, by ringing the doorbell, that the
618  * CQEs have been processed. The @arm parameter specifies whether the
619  * queue should be rearmed when ringing the doorbell.
620  **/
621 void
622 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
623 			 uint32_t count, bool arm)
624 {
625 	struct lpfc_register doorbell;
626 
627 	/* sanity check on queue memory */
628 	if (unlikely(!q || (count == 0 && !arm)))
629 		return;
630 
631 	/* ring doorbell for number popped */
632 	doorbell.word0 = 0;
633 	if (arm)
634 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
635 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
636 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
637 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
638 }
639 
640 /**
641  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
642  * @q: The Header Receive Queue to operate on.
643  * @wqe: The Receive Queue Entry to put on the Receive queue.
644  *
645  * This routine will copy the contents of @wqe to the next available entry on
646  * the @q. This function will then ring the Receive Queue Doorbell to signal the
647  * HBA to start processing the Receive Queue Entry. This function returns the
648  * index that the rqe was copied to if successful. If no entries are available
649  * on @q then this function will return -ENOMEM.
650  * The caller is expected to hold the hbalock when calling this routine.
651  **/
652 int
653 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
654 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
655 {
656 	struct lpfc_rqe *temp_hrqe;
657 	struct lpfc_rqe *temp_drqe;
658 	struct lpfc_register doorbell;
659 	int hq_put_index;
660 	int dq_put_index;
661 
662 	/* sanity check on queue memory */
663 	if (unlikely(!hq) || unlikely(!dq))
664 		return -ENOMEM;
665 	hq_put_index = hq->host_index;
666 	dq_put_index = dq->host_index;
667 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
668 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
669 
670 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
671 		return -EINVAL;
672 	if (hq_put_index != dq_put_index)
673 		return -EINVAL;
674 	/* If the host has not yet processed the next entry then we are done */
675 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
676 		return -EBUSY;
677 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
678 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
679 
680 	/* Update the host index to point to the next slot */
681 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
682 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
683 	hq->RQ_buf_posted++;
684 
685 	/* Ring The Header Receive Queue Doorbell */
686 	if (!(hq->host_index % hq->notify_interval)) {
687 		doorbell.word0 = 0;
688 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
689 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
690 			       hq->notify_interval);
691 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
692 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
693 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
694 			       hq->notify_interval);
695 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
696 			       hq->host_index);
697 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
698 		} else {
699 			return -EINVAL;
700 		}
701 		writel(doorbell.word0, hq->db_regaddr);
702 	}
703 	return hq_put_index;
704 }
705 
706 /**
707  * lpfc_sli4_rq_release - Updates internal hba index for RQ
708  * @q: The Header Receive Queue to operate on.
709  *
710  * This routine will update the HBA index of a queue to reflect consumption of
711  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
712  * consumed an entry the host calls this function to update the queue's
713  * internal pointers. This routine returns the number of entries that were
714  * consumed by the HBA.
715  **/
716 static uint32_t
717 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
718 {
719 	/* sanity check on queue memory */
720 	if (unlikely(!hq) || unlikely(!dq))
721 		return 0;
722 
723 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
724 		return 0;
725 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
726 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
727 	return 1;
728 }
729 
730 /**
731  * lpfc_cmd_iocb - Get next command iocb entry in the ring
732  * @phba: Pointer to HBA context object.
733  * @pring: Pointer to driver SLI ring object.
734  *
735  * This function returns pointer to next command iocb entry
736  * in the command ring. The caller must hold hbalock to prevent
737  * other threads consume the next command iocb.
738  * SLI-2/SLI-3 provide different sized iocbs.
739  **/
740 static inline IOCB_t *
741 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
742 {
743 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
744 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
745 }
746 
747 /**
748  * lpfc_resp_iocb - Get next response iocb entry in the ring
749  * @phba: Pointer to HBA context object.
750  * @pring: Pointer to driver SLI ring object.
751  *
752  * This function returns pointer to next response iocb entry
753  * in the response ring. The caller must hold hbalock to make sure
754  * that no other thread consume the next response iocb.
755  * SLI-2/SLI-3 provide different sized iocbs.
756  **/
757 static inline IOCB_t *
758 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
759 {
760 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
761 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
762 }
763 
764 /**
765  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
766  * @phba: Pointer to HBA context object.
767  *
768  * This function is called with hbalock held. This function
769  * allocates a new driver iocb object from the iocb pool. If the
770  * allocation is successful, it returns pointer to the newly
771  * allocated iocb object else it returns NULL.
772  **/
773 struct lpfc_iocbq *
774 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
775 {
776 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
777 	struct lpfc_iocbq * iocbq = NULL;
778 
779 	lockdep_assert_held(&phba->hbalock);
780 
781 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
782 	if (iocbq)
783 		phba->iocb_cnt++;
784 	if (phba->iocb_cnt > phba->iocb_max)
785 		phba->iocb_max = phba->iocb_cnt;
786 	return iocbq;
787 }
788 
789 /**
790  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
791  * @phba: Pointer to HBA context object.
792  * @xritag: XRI value.
793  *
794  * This function clears the sglq pointer from the array of acive
795  * sglq's. The xritag that is passed in is used to index into the
796  * array. Before the xritag can be used it needs to be adjusted
797  * by subtracting the xribase.
798  *
799  * Returns sglq ponter = success, NULL = Failure.
800  **/
801 struct lpfc_sglq *
802 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
803 {
804 	struct lpfc_sglq *sglq;
805 
806 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
807 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
808 	return sglq;
809 }
810 
811 /**
812  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
813  * @phba: Pointer to HBA context object.
814  * @xritag: XRI value.
815  *
816  * This function returns the sglq pointer from the array of acive
817  * sglq's. The xritag that is passed in is used to index into the
818  * array. Before the xritag can be used it needs to be adjusted
819  * by subtracting the xribase.
820  *
821  * Returns sglq ponter = success, NULL = Failure.
822  **/
823 struct lpfc_sglq *
824 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
825 {
826 	struct lpfc_sglq *sglq;
827 
828 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
829 	return sglq;
830 }
831 
832 /**
833  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
834  * @phba: Pointer to HBA context object.
835  * @xritag: xri used in this exchange.
836  * @rrq: The RRQ to be cleared.
837  *
838  **/
839 void
840 lpfc_clr_rrq_active(struct lpfc_hba *phba,
841 		    uint16_t xritag,
842 		    struct lpfc_node_rrq *rrq)
843 {
844 	struct lpfc_nodelist *ndlp = NULL;
845 
846 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
847 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
848 
849 	/* The target DID could have been swapped (cable swap)
850 	 * we should use the ndlp from the findnode if it is
851 	 * available.
852 	 */
853 	if ((!ndlp) && rrq->ndlp)
854 		ndlp = rrq->ndlp;
855 
856 	if (!ndlp)
857 		goto out;
858 
859 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
860 		rrq->send_rrq = 0;
861 		rrq->xritag = 0;
862 		rrq->rrq_stop_time = 0;
863 	}
864 out:
865 	mempool_free(rrq, phba->rrq_pool);
866 }
867 
868 /**
869  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
870  * @phba: Pointer to HBA context object.
871  *
872  * This function is called with hbalock held. This function
873  * Checks if stop_time (ratov from setting rrq active) has
874  * been reached, if it has and the send_rrq flag is set then
875  * it will call lpfc_send_rrq. If the send_rrq flag is not set
876  * then it will just call the routine to clear the rrq and
877  * free the rrq resource.
878  * The timer is set to the next rrq that is going to expire before
879  * leaving the routine.
880  *
881  **/
882 void
883 lpfc_handle_rrq_active(struct lpfc_hba *phba)
884 {
885 	struct lpfc_node_rrq *rrq;
886 	struct lpfc_node_rrq *nextrrq;
887 	unsigned long next_time;
888 	unsigned long iflags;
889 	LIST_HEAD(send_rrq);
890 
891 	spin_lock_irqsave(&phba->hbalock, iflags);
892 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
893 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
894 	list_for_each_entry_safe(rrq, nextrrq,
895 				 &phba->active_rrq_list, list) {
896 		if (time_after(jiffies, rrq->rrq_stop_time))
897 			list_move(&rrq->list, &send_rrq);
898 		else if (time_before(rrq->rrq_stop_time, next_time))
899 			next_time = rrq->rrq_stop_time;
900 	}
901 	spin_unlock_irqrestore(&phba->hbalock, iflags);
902 	if ((!list_empty(&phba->active_rrq_list)) &&
903 	    (!(phba->pport->load_flag & FC_UNLOADING)))
904 		mod_timer(&phba->rrq_tmr, next_time);
905 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
906 		list_del(&rrq->list);
907 		if (!rrq->send_rrq) {
908 			/* this call will free the rrq */
909 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
910 		} else if (lpfc_send_rrq(phba, rrq)) {
911 			/* if we send the rrq then the completion handler
912 			*  will clear the bit in the xribitmap.
913 			*/
914 			lpfc_clr_rrq_active(phba, rrq->xritag,
915 					    rrq);
916 		}
917 	}
918 }
919 
920 /**
921  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
922  * @vport: Pointer to vport context object.
923  * @xri: The xri used in the exchange.
924  * @did: The targets DID for this exchange.
925  *
926  * returns NULL = rrq not found in the phba->active_rrq_list.
927  *         rrq = rrq for this xri and target.
928  **/
929 struct lpfc_node_rrq *
930 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
931 {
932 	struct lpfc_hba *phba = vport->phba;
933 	struct lpfc_node_rrq *rrq;
934 	struct lpfc_node_rrq *nextrrq;
935 	unsigned long iflags;
936 
937 	if (phba->sli_rev != LPFC_SLI_REV4)
938 		return NULL;
939 	spin_lock_irqsave(&phba->hbalock, iflags);
940 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
941 		if (rrq->vport == vport && rrq->xritag == xri &&
942 				rrq->nlp_DID == did){
943 			list_del(&rrq->list);
944 			spin_unlock_irqrestore(&phba->hbalock, iflags);
945 			return rrq;
946 		}
947 	}
948 	spin_unlock_irqrestore(&phba->hbalock, iflags);
949 	return NULL;
950 }
951 
952 /**
953  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
954  * @vport: Pointer to vport context object.
955  * @ndlp: Pointer to the lpfc_node_list structure.
956  * If ndlp is NULL Remove all active RRQs for this vport from the
957  * phba->active_rrq_list and clear the rrq.
958  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
959  **/
960 void
961 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
962 
963 {
964 	struct lpfc_hba *phba = vport->phba;
965 	struct lpfc_node_rrq *rrq;
966 	struct lpfc_node_rrq *nextrrq;
967 	unsigned long iflags;
968 	LIST_HEAD(rrq_list);
969 
970 	if (phba->sli_rev != LPFC_SLI_REV4)
971 		return;
972 	if (!ndlp) {
973 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
974 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
975 	}
976 	spin_lock_irqsave(&phba->hbalock, iflags);
977 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
978 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
979 			list_move(&rrq->list, &rrq_list);
980 	spin_unlock_irqrestore(&phba->hbalock, iflags);
981 
982 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
983 		list_del(&rrq->list);
984 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
985 	}
986 }
987 
988 /**
989  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
990  * @phba: Pointer to HBA context object.
991  * @ndlp: Targets nodelist pointer for this exchange.
992  * @xritag the xri in the bitmap to test.
993  *
994  * This function is called with hbalock held. This function
995  * returns 0 = rrq not active for this xri
996  *         1 = rrq is valid for this xri.
997  **/
998 int
999 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1000 			uint16_t  xritag)
1001 {
1002 	lockdep_assert_held(&phba->hbalock);
1003 	if (!ndlp)
1004 		return 0;
1005 	if (!ndlp->active_rrqs_xri_bitmap)
1006 		return 0;
1007 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1008 		return 1;
1009 	else
1010 		return 0;
1011 }
1012 
1013 /**
1014  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1015  * @phba: Pointer to HBA context object.
1016  * @ndlp: nodelist pointer for this target.
1017  * @xritag: xri used in this exchange.
1018  * @rxid: Remote Exchange ID.
1019  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1020  *
1021  * This function takes the hbalock.
1022  * The active bit is always set in the active rrq xri_bitmap even
1023  * if there is no slot avaiable for the other rrq information.
1024  *
1025  * returns 0 rrq actived for this xri
1026  *         < 0 No memory or invalid ndlp.
1027  **/
1028 int
1029 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1030 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1031 {
1032 	unsigned long iflags;
1033 	struct lpfc_node_rrq *rrq;
1034 	int empty;
1035 
1036 	if (!ndlp)
1037 		return -EINVAL;
1038 
1039 	if (!phba->cfg_enable_rrq)
1040 		return -EINVAL;
1041 
1042 	spin_lock_irqsave(&phba->hbalock, iflags);
1043 	if (phba->pport->load_flag & FC_UNLOADING) {
1044 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1045 		goto out;
1046 	}
1047 
1048 	/*
1049 	 * set the active bit even if there is no mem available.
1050 	 */
1051 	if (NLP_CHK_FREE_REQ(ndlp))
1052 		goto out;
1053 
1054 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1055 		goto out;
1056 
1057 	if (!ndlp->active_rrqs_xri_bitmap)
1058 		goto out;
1059 
1060 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1061 		goto out;
1062 
1063 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1064 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1065 	if (!rrq) {
1066 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1067 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1068 				" DID:0x%x Send:%d\n",
1069 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1070 		return -EINVAL;
1071 	}
1072 	if (phba->cfg_enable_rrq == 1)
1073 		rrq->send_rrq = send_rrq;
1074 	else
1075 		rrq->send_rrq = 0;
1076 	rrq->xritag = xritag;
1077 	rrq->rrq_stop_time = jiffies +
1078 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1079 	rrq->ndlp = ndlp;
1080 	rrq->nlp_DID = ndlp->nlp_DID;
1081 	rrq->vport = ndlp->vport;
1082 	rrq->rxid = rxid;
1083 	spin_lock_irqsave(&phba->hbalock, iflags);
1084 	empty = list_empty(&phba->active_rrq_list);
1085 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1086 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1087 	if (empty)
1088 		lpfc_worker_wake_up(phba);
1089 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1090 	return 0;
1091 out:
1092 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1093 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1094 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1095 			" DID:0x%x Send:%d\n",
1096 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1097 	return -EINVAL;
1098 }
1099 
1100 /**
1101  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1102  * @phba: Pointer to HBA context object.
1103  * @piocb: Pointer to the iocbq.
1104  *
1105  * This function is called with the ring lock held. This function
1106  * gets a new driver sglq object from the sglq list. If the
1107  * list is not empty then it is successful, it returns pointer to the newly
1108  * allocated sglq object else it returns NULL.
1109  **/
1110 static struct lpfc_sglq *
1111 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1112 {
1113 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1114 	struct lpfc_sglq *sglq = NULL;
1115 	struct lpfc_sglq *start_sglq = NULL;
1116 	struct lpfc_io_buf *lpfc_cmd;
1117 	struct lpfc_nodelist *ndlp;
1118 	int found = 0;
1119 
1120 	lockdep_assert_held(&phba->hbalock);
1121 
1122 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1123 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1124 		ndlp = lpfc_cmd->rdata->pnode;
1125 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1126 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1127 		ndlp = piocbq->context_un.ndlp;
1128 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1129 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1130 			ndlp = NULL;
1131 		else
1132 			ndlp = piocbq->context_un.ndlp;
1133 	} else {
1134 		ndlp = piocbq->context1;
1135 	}
1136 
1137 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1138 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1139 	start_sglq = sglq;
1140 	while (!found) {
1141 		if (!sglq)
1142 			break;
1143 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1144 		    test_bit(sglq->sli4_lxritag,
1145 		    ndlp->active_rrqs_xri_bitmap)) {
1146 			/* This xri has an rrq outstanding for this DID.
1147 			 * put it back in the list and get another xri.
1148 			 */
1149 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1150 			sglq = NULL;
1151 			list_remove_head(lpfc_els_sgl_list, sglq,
1152 						struct lpfc_sglq, list);
1153 			if (sglq == start_sglq) {
1154 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1155 				sglq = NULL;
1156 				break;
1157 			} else
1158 				continue;
1159 		}
1160 		sglq->ndlp = ndlp;
1161 		found = 1;
1162 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1163 		sglq->state = SGL_ALLOCATED;
1164 	}
1165 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1166 	return sglq;
1167 }
1168 
1169 /**
1170  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1171  * @phba: Pointer to HBA context object.
1172  * @piocb: Pointer to the iocbq.
1173  *
1174  * This function is called with the sgl_list lock held. This function
1175  * gets a new driver sglq object from the sglq list. If the
1176  * list is not empty then it is successful, it returns pointer to the newly
1177  * allocated sglq object else it returns NULL.
1178  **/
1179 struct lpfc_sglq *
1180 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1181 {
1182 	struct list_head *lpfc_nvmet_sgl_list;
1183 	struct lpfc_sglq *sglq = NULL;
1184 
1185 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1186 
1187 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1188 
1189 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1190 	if (!sglq)
1191 		return NULL;
1192 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1193 	sglq->state = SGL_ALLOCATED;
1194 	return sglq;
1195 }
1196 
1197 /**
1198  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1199  * @phba: Pointer to HBA context object.
1200  *
1201  * This function is called with no lock held. This function
1202  * allocates a new driver iocb object from the iocb pool. If the
1203  * allocation is successful, it returns pointer to the newly
1204  * allocated iocb object else it returns NULL.
1205  **/
1206 struct lpfc_iocbq *
1207 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1208 {
1209 	struct lpfc_iocbq * iocbq = NULL;
1210 	unsigned long iflags;
1211 
1212 	spin_lock_irqsave(&phba->hbalock, iflags);
1213 	iocbq = __lpfc_sli_get_iocbq(phba);
1214 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1215 	return iocbq;
1216 }
1217 
1218 /**
1219  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1220  * @phba: Pointer to HBA context object.
1221  * @iocbq: Pointer to driver iocb object.
1222  *
1223  * This function is called with hbalock held to release driver
1224  * iocb object to the iocb pool. The iotag in the iocb object
1225  * does not change for each use of the iocb object. This function
1226  * clears all other fields of the iocb object when it is freed.
1227  * The sqlq structure that holds the xritag and phys and virtual
1228  * mappings for the scatter gather list is retrieved from the
1229  * active array of sglq. The get of the sglq pointer also clears
1230  * the entry in the array. If the status of the IO indiactes that
1231  * this IO was aborted then the sglq entry it put on the
1232  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1233  * IO has good status or fails for any other reason then the sglq
1234  * entry is added to the free list (lpfc_els_sgl_list).
1235  **/
1236 static void
1237 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1238 {
1239 	struct lpfc_sglq *sglq;
1240 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1241 	unsigned long iflag = 0;
1242 	struct lpfc_sli_ring *pring;
1243 
1244 	lockdep_assert_held(&phba->hbalock);
1245 
1246 	if (iocbq->sli4_xritag == NO_XRI)
1247 		sglq = NULL;
1248 	else
1249 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1250 
1251 
1252 	if (sglq)  {
1253 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1254 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1255 					  iflag);
1256 			sglq->state = SGL_FREED;
1257 			sglq->ndlp = NULL;
1258 			list_add_tail(&sglq->list,
1259 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1260 			spin_unlock_irqrestore(
1261 				&phba->sli4_hba.sgl_list_lock, iflag);
1262 			goto out;
1263 		}
1264 
1265 		pring = phba->sli4_hba.els_wq->pring;
1266 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1267 			(sglq->state != SGL_XRI_ABORTED)) {
1268 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1269 					  iflag);
1270 			list_add(&sglq->list,
1271 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1272 			spin_unlock_irqrestore(
1273 				&phba->sli4_hba.sgl_list_lock, iflag);
1274 		} else {
1275 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1276 					  iflag);
1277 			sglq->state = SGL_FREED;
1278 			sglq->ndlp = NULL;
1279 			list_add_tail(&sglq->list,
1280 				      &phba->sli4_hba.lpfc_els_sgl_list);
1281 			spin_unlock_irqrestore(
1282 				&phba->sli4_hba.sgl_list_lock, iflag);
1283 
1284 			/* Check if TXQ queue needs to be serviced */
1285 			if (!list_empty(&pring->txq))
1286 				lpfc_worker_wake_up(phba);
1287 		}
1288 	}
1289 
1290 out:
1291 	/*
1292 	 * Clean all volatile data fields, preserve iotag and node struct.
1293 	 */
1294 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1295 	iocbq->sli4_lxritag = NO_XRI;
1296 	iocbq->sli4_xritag = NO_XRI;
1297 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1298 			      LPFC_IO_NVME_LS);
1299 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1300 }
1301 
1302 
1303 /**
1304  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1305  * @phba: Pointer to HBA context object.
1306  * @iocbq: Pointer to driver iocb object.
1307  *
1308  * This function is called with hbalock held to release driver
1309  * iocb object to the iocb pool. The iotag in the iocb object
1310  * does not change for each use of the iocb object. This function
1311  * clears all other fields of the iocb object when it is freed.
1312  **/
1313 static void
1314 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1315 {
1316 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1317 
1318 	lockdep_assert_held(&phba->hbalock);
1319 
1320 	/*
1321 	 * Clean all volatile data fields, preserve iotag and node struct.
1322 	 */
1323 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1324 	iocbq->sli4_xritag = NO_XRI;
1325 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1326 }
1327 
1328 /**
1329  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1330  * @phba: Pointer to HBA context object.
1331  * @iocbq: Pointer to driver iocb object.
1332  *
1333  * This function is called with hbalock held to release driver
1334  * iocb object to the iocb pool. The iotag in the iocb object
1335  * does not change for each use of the iocb object. This function
1336  * clears all other fields of the iocb object when it is freed.
1337  **/
1338 static void
1339 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1340 {
1341 	lockdep_assert_held(&phba->hbalock);
1342 
1343 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1344 	phba->iocb_cnt--;
1345 }
1346 
1347 /**
1348  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1349  * @phba: Pointer to HBA context object.
1350  * @iocbq: Pointer to driver iocb object.
1351  *
1352  * This function is called with no lock held to release the iocb to
1353  * iocb pool.
1354  **/
1355 void
1356 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1357 {
1358 	unsigned long iflags;
1359 
1360 	/*
1361 	 * Clean all volatile data fields, preserve iotag and node struct.
1362 	 */
1363 	spin_lock_irqsave(&phba->hbalock, iflags);
1364 	__lpfc_sli_release_iocbq(phba, iocbq);
1365 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1366 }
1367 
1368 /**
1369  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1370  * @phba: Pointer to HBA context object.
1371  * @iocblist: List of IOCBs.
1372  * @ulpstatus: ULP status in IOCB command field.
1373  * @ulpWord4: ULP word-4 in IOCB command field.
1374  *
1375  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1376  * on the list by invoking the complete callback function associated with the
1377  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1378  * fields.
1379  **/
1380 void
1381 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1382 		      uint32_t ulpstatus, uint32_t ulpWord4)
1383 {
1384 	struct lpfc_iocbq *piocb;
1385 
1386 	while (!list_empty(iocblist)) {
1387 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1388 		if (!piocb->iocb_cmpl)
1389 			lpfc_sli_release_iocbq(phba, piocb);
1390 		else {
1391 			piocb->iocb.ulpStatus = ulpstatus;
1392 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1393 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1394 		}
1395 	}
1396 	return;
1397 }
1398 
1399 /**
1400  * lpfc_sli_iocb_cmd_type - Get the iocb type
1401  * @iocb_cmnd: iocb command code.
1402  *
1403  * This function is called by ring event handler function to get the iocb type.
1404  * This function translates the iocb command to an iocb command type used to
1405  * decide the final disposition of each completed IOCB.
1406  * The function returns
1407  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1408  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1409  * LPFC_ABORT_IOCB   if it is an abort iocb
1410  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1411  *
1412  * The caller is not required to hold any lock.
1413  **/
1414 static lpfc_iocb_type
1415 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1416 {
1417 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1418 
1419 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1420 		return 0;
1421 
1422 	switch (iocb_cmnd) {
1423 	case CMD_XMIT_SEQUENCE_CR:
1424 	case CMD_XMIT_SEQUENCE_CX:
1425 	case CMD_XMIT_BCAST_CN:
1426 	case CMD_XMIT_BCAST_CX:
1427 	case CMD_ELS_REQUEST_CR:
1428 	case CMD_ELS_REQUEST_CX:
1429 	case CMD_CREATE_XRI_CR:
1430 	case CMD_CREATE_XRI_CX:
1431 	case CMD_GET_RPI_CN:
1432 	case CMD_XMIT_ELS_RSP_CX:
1433 	case CMD_GET_RPI_CR:
1434 	case CMD_FCP_IWRITE_CR:
1435 	case CMD_FCP_IWRITE_CX:
1436 	case CMD_FCP_IREAD_CR:
1437 	case CMD_FCP_IREAD_CX:
1438 	case CMD_FCP_ICMND_CR:
1439 	case CMD_FCP_ICMND_CX:
1440 	case CMD_FCP_TSEND_CX:
1441 	case CMD_FCP_TRSP_CX:
1442 	case CMD_FCP_TRECEIVE_CX:
1443 	case CMD_FCP_AUTO_TRSP_CX:
1444 	case CMD_ADAPTER_MSG:
1445 	case CMD_ADAPTER_DUMP:
1446 	case CMD_XMIT_SEQUENCE64_CR:
1447 	case CMD_XMIT_SEQUENCE64_CX:
1448 	case CMD_XMIT_BCAST64_CN:
1449 	case CMD_XMIT_BCAST64_CX:
1450 	case CMD_ELS_REQUEST64_CR:
1451 	case CMD_ELS_REQUEST64_CX:
1452 	case CMD_FCP_IWRITE64_CR:
1453 	case CMD_FCP_IWRITE64_CX:
1454 	case CMD_FCP_IREAD64_CR:
1455 	case CMD_FCP_IREAD64_CX:
1456 	case CMD_FCP_ICMND64_CR:
1457 	case CMD_FCP_ICMND64_CX:
1458 	case CMD_FCP_TSEND64_CX:
1459 	case CMD_FCP_TRSP64_CX:
1460 	case CMD_FCP_TRECEIVE64_CX:
1461 	case CMD_GEN_REQUEST64_CR:
1462 	case CMD_GEN_REQUEST64_CX:
1463 	case CMD_XMIT_ELS_RSP64_CX:
1464 	case DSSCMD_IWRITE64_CR:
1465 	case DSSCMD_IWRITE64_CX:
1466 	case DSSCMD_IREAD64_CR:
1467 	case DSSCMD_IREAD64_CX:
1468 		type = LPFC_SOL_IOCB;
1469 		break;
1470 	case CMD_ABORT_XRI_CN:
1471 	case CMD_ABORT_XRI_CX:
1472 	case CMD_CLOSE_XRI_CN:
1473 	case CMD_CLOSE_XRI_CX:
1474 	case CMD_XRI_ABORTED_CX:
1475 	case CMD_ABORT_MXRI64_CN:
1476 	case CMD_XMIT_BLS_RSP64_CX:
1477 		type = LPFC_ABORT_IOCB;
1478 		break;
1479 	case CMD_RCV_SEQUENCE_CX:
1480 	case CMD_RCV_ELS_REQ_CX:
1481 	case CMD_RCV_SEQUENCE64_CX:
1482 	case CMD_RCV_ELS_REQ64_CX:
1483 	case CMD_ASYNC_STATUS:
1484 	case CMD_IOCB_RCV_SEQ64_CX:
1485 	case CMD_IOCB_RCV_ELS64_CX:
1486 	case CMD_IOCB_RCV_CONT64_CX:
1487 	case CMD_IOCB_RET_XRI64_CX:
1488 		type = LPFC_UNSOL_IOCB;
1489 		break;
1490 	case CMD_IOCB_XMIT_MSEQ64_CR:
1491 	case CMD_IOCB_XMIT_MSEQ64_CX:
1492 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1493 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1494 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1495 	case CMD_IOCB_ABORT_EXTENDED_CN:
1496 	case CMD_IOCB_RET_HBQE64_CN:
1497 	case CMD_IOCB_FCP_IBIDIR64_CR:
1498 	case CMD_IOCB_FCP_IBIDIR64_CX:
1499 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1500 	case CMD_IOCB_LOGENTRY_CN:
1501 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1502 		printk("%s - Unhandled SLI-3 Command x%x\n",
1503 				__func__, iocb_cmnd);
1504 		type = LPFC_UNKNOWN_IOCB;
1505 		break;
1506 	default:
1507 		type = LPFC_UNKNOWN_IOCB;
1508 		break;
1509 	}
1510 
1511 	return type;
1512 }
1513 
1514 /**
1515  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1516  * @phba: Pointer to HBA context object.
1517  *
1518  * This function is called from SLI initialization code
1519  * to configure every ring of the HBA's SLI interface. The
1520  * caller is not required to hold any lock. This function issues
1521  * a config_ring mailbox command for each ring.
1522  * This function returns zero if successful else returns a negative
1523  * error code.
1524  **/
1525 static int
1526 lpfc_sli_ring_map(struct lpfc_hba *phba)
1527 {
1528 	struct lpfc_sli *psli = &phba->sli;
1529 	LPFC_MBOXQ_t *pmb;
1530 	MAILBOX_t *pmbox;
1531 	int i, rc, ret = 0;
1532 
1533 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1534 	if (!pmb)
1535 		return -ENOMEM;
1536 	pmbox = &pmb->u.mb;
1537 	phba->link_state = LPFC_INIT_MBX_CMDS;
1538 	for (i = 0; i < psli->num_rings; i++) {
1539 		lpfc_config_ring(phba, i, pmb);
1540 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1541 		if (rc != MBX_SUCCESS) {
1542 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1543 					"0446 Adapter failed to init (%d), "
1544 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1545 					"ring %d\n",
1546 					rc, pmbox->mbxCommand,
1547 					pmbox->mbxStatus, i);
1548 			phba->link_state = LPFC_HBA_ERROR;
1549 			ret = -ENXIO;
1550 			break;
1551 		}
1552 	}
1553 	mempool_free(pmb, phba->mbox_mem_pool);
1554 	return ret;
1555 }
1556 
1557 /**
1558  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1559  * @phba: Pointer to HBA context object.
1560  * @pring: Pointer to driver SLI ring object.
1561  * @piocb: Pointer to the driver iocb object.
1562  *
1563  * This function is called with hbalock held. The function adds the
1564  * new iocb to txcmplq of the given ring. This function always returns
1565  * 0. If this function is called for ELS ring, this function checks if
1566  * there is a vport associated with the ELS command. This function also
1567  * starts els_tmofunc timer if this is an ELS command.
1568  **/
1569 static int
1570 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1571 			struct lpfc_iocbq *piocb)
1572 {
1573 	lockdep_assert_held(&phba->hbalock);
1574 
1575 	BUG_ON(!piocb);
1576 
1577 	list_add_tail(&piocb->list, &pring->txcmplq);
1578 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1579 	pring->txcmplq_cnt++;
1580 
1581 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1582 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1583 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1584 		BUG_ON(!piocb->vport);
1585 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1586 			mod_timer(&piocb->vport->els_tmofunc,
1587 				  jiffies +
1588 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1589 	}
1590 
1591 	return 0;
1592 }
1593 
1594 /**
1595  * lpfc_sli_ringtx_get - Get first element of the txq
1596  * @phba: Pointer to HBA context object.
1597  * @pring: Pointer to driver SLI ring object.
1598  *
1599  * This function is called with hbalock held to get next
1600  * iocb in txq of the given ring. If there is any iocb in
1601  * the txq, the function returns first iocb in the list after
1602  * removing the iocb from the list, else it returns NULL.
1603  **/
1604 struct lpfc_iocbq *
1605 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1606 {
1607 	struct lpfc_iocbq *cmd_iocb;
1608 
1609 	lockdep_assert_held(&phba->hbalock);
1610 
1611 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1612 	return cmd_iocb;
1613 }
1614 
1615 /**
1616  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1617  * @phba: Pointer to HBA context object.
1618  * @pring: Pointer to driver SLI ring object.
1619  *
1620  * This function is called with hbalock held and the caller must post the
1621  * iocb without releasing the lock. If the caller releases the lock,
1622  * iocb slot returned by the function is not guaranteed to be available.
1623  * The function returns pointer to the next available iocb slot if there
1624  * is available slot in the ring, else it returns NULL.
1625  * If the get index of the ring is ahead of the put index, the function
1626  * will post an error attention event to the worker thread to take the
1627  * HBA to offline state.
1628  **/
1629 static IOCB_t *
1630 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1631 {
1632 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1633 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1634 
1635 	lockdep_assert_held(&phba->hbalock);
1636 
1637 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1638 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1639 		pring->sli.sli3.next_cmdidx = 0;
1640 
1641 	if (unlikely(pring->sli.sli3.local_getidx ==
1642 		pring->sli.sli3.next_cmdidx)) {
1643 
1644 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1645 
1646 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1647 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1648 					"0315 Ring %d issue: portCmdGet %d "
1649 					"is bigger than cmd ring %d\n",
1650 					pring->ringno,
1651 					pring->sli.sli3.local_getidx,
1652 					max_cmd_idx);
1653 
1654 			phba->link_state = LPFC_HBA_ERROR;
1655 			/*
1656 			 * All error attention handlers are posted to
1657 			 * worker thread
1658 			 */
1659 			phba->work_ha |= HA_ERATT;
1660 			phba->work_hs = HS_FFER3;
1661 
1662 			lpfc_worker_wake_up(phba);
1663 
1664 			return NULL;
1665 		}
1666 
1667 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1668 			return NULL;
1669 	}
1670 
1671 	return lpfc_cmd_iocb(phba, pring);
1672 }
1673 
1674 /**
1675  * lpfc_sli_next_iotag - Get an iotag for the iocb
1676  * @phba: Pointer to HBA context object.
1677  * @iocbq: Pointer to driver iocb object.
1678  *
1679  * This function gets an iotag for the iocb. If there is no unused iotag and
1680  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1681  * array and assigns a new iotag.
1682  * The function returns the allocated iotag if successful, else returns zero.
1683  * Zero is not a valid iotag.
1684  * The caller is not required to hold any lock.
1685  **/
1686 uint16_t
1687 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1688 {
1689 	struct lpfc_iocbq **new_arr;
1690 	struct lpfc_iocbq **old_arr;
1691 	size_t new_len;
1692 	struct lpfc_sli *psli = &phba->sli;
1693 	uint16_t iotag;
1694 
1695 	spin_lock_irq(&phba->hbalock);
1696 	iotag = psli->last_iotag;
1697 	if(++iotag < psli->iocbq_lookup_len) {
1698 		psli->last_iotag = iotag;
1699 		psli->iocbq_lookup[iotag] = iocbq;
1700 		spin_unlock_irq(&phba->hbalock);
1701 		iocbq->iotag = iotag;
1702 		return iotag;
1703 	} else if (psli->iocbq_lookup_len < (0xffff
1704 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1705 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1706 		spin_unlock_irq(&phba->hbalock);
1707 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1708 				  GFP_KERNEL);
1709 		if (new_arr) {
1710 			spin_lock_irq(&phba->hbalock);
1711 			old_arr = psli->iocbq_lookup;
1712 			if (new_len <= psli->iocbq_lookup_len) {
1713 				/* highly unprobable case */
1714 				kfree(new_arr);
1715 				iotag = psli->last_iotag;
1716 				if(++iotag < psli->iocbq_lookup_len) {
1717 					psli->last_iotag = iotag;
1718 					psli->iocbq_lookup[iotag] = iocbq;
1719 					spin_unlock_irq(&phba->hbalock);
1720 					iocbq->iotag = iotag;
1721 					return iotag;
1722 				}
1723 				spin_unlock_irq(&phba->hbalock);
1724 				return 0;
1725 			}
1726 			if (psli->iocbq_lookup)
1727 				memcpy(new_arr, old_arr,
1728 				       ((psli->last_iotag  + 1) *
1729 					sizeof (struct lpfc_iocbq *)));
1730 			psli->iocbq_lookup = new_arr;
1731 			psli->iocbq_lookup_len = new_len;
1732 			psli->last_iotag = iotag;
1733 			psli->iocbq_lookup[iotag] = iocbq;
1734 			spin_unlock_irq(&phba->hbalock);
1735 			iocbq->iotag = iotag;
1736 			kfree(old_arr);
1737 			return iotag;
1738 		}
1739 	} else
1740 		spin_unlock_irq(&phba->hbalock);
1741 
1742 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1743 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1744 			psli->last_iotag);
1745 
1746 	return 0;
1747 }
1748 
1749 /**
1750  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1751  * @phba: Pointer to HBA context object.
1752  * @pring: Pointer to driver SLI ring object.
1753  * @iocb: Pointer to iocb slot in the ring.
1754  * @nextiocb: Pointer to driver iocb object which need to be
1755  *            posted to firmware.
1756  *
1757  * This function is called with hbalock held to post a new iocb to
1758  * the firmware. This function copies the new iocb to ring iocb slot and
1759  * updates the ring pointers. It adds the new iocb to txcmplq if there is
1760  * a completion call back for this iocb else the function will free the
1761  * iocb object.
1762  **/
1763 static void
1764 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1765 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1766 {
1767 	lockdep_assert_held(&phba->hbalock);
1768 	/*
1769 	 * Set up an iotag
1770 	 */
1771 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1772 
1773 
1774 	if (pring->ringno == LPFC_ELS_RING) {
1775 		lpfc_debugfs_slow_ring_trc(phba,
1776 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1777 			*(((uint32_t *) &nextiocb->iocb) + 4),
1778 			*(((uint32_t *) &nextiocb->iocb) + 6),
1779 			*(((uint32_t *) &nextiocb->iocb) + 7));
1780 	}
1781 
1782 	/*
1783 	 * Issue iocb command to adapter
1784 	 */
1785 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1786 	wmb();
1787 	pring->stats.iocb_cmd++;
1788 
1789 	/*
1790 	 * If there is no completion routine to call, we can release the
1791 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1792 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1793 	 */
1794 	if (nextiocb->iocb_cmpl)
1795 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1796 	else
1797 		__lpfc_sli_release_iocbq(phba, nextiocb);
1798 
1799 	/*
1800 	 * Let the HBA know what IOCB slot will be the next one the
1801 	 * driver will put a command into.
1802 	 */
1803 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1804 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1805 }
1806 
1807 /**
1808  * lpfc_sli_update_full_ring - Update the chip attention register
1809  * @phba: Pointer to HBA context object.
1810  * @pring: Pointer to driver SLI ring object.
1811  *
1812  * The caller is not required to hold any lock for calling this function.
1813  * This function updates the chip attention bits for the ring to inform firmware
1814  * that there are pending work to be done for this ring and requests an
1815  * interrupt when there is space available in the ring. This function is
1816  * called when the driver is unable to post more iocbs to the ring due
1817  * to unavailability of space in the ring.
1818  **/
1819 static void
1820 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1821 {
1822 	int ringno = pring->ringno;
1823 
1824 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1825 
1826 	wmb();
1827 
1828 	/*
1829 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1830 	 * The HBA will tell us when an IOCB entry is available.
1831 	 */
1832 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1833 	readl(phba->CAregaddr); /* flush */
1834 
1835 	pring->stats.iocb_cmd_full++;
1836 }
1837 
1838 /**
1839  * lpfc_sli_update_ring - Update chip attention register
1840  * @phba: Pointer to HBA context object.
1841  * @pring: Pointer to driver SLI ring object.
1842  *
1843  * This function updates the chip attention register bit for the
1844  * given ring to inform HBA that there is more work to be done
1845  * in this ring. The caller is not required to hold any lock.
1846  **/
1847 static void
1848 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1849 {
1850 	int ringno = pring->ringno;
1851 
1852 	/*
1853 	 * Tell the HBA that there is work to do in this ring.
1854 	 */
1855 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1856 		wmb();
1857 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1858 		readl(phba->CAregaddr); /* flush */
1859 	}
1860 }
1861 
1862 /**
1863  * lpfc_sli_resume_iocb - Process iocbs in the txq
1864  * @phba: Pointer to HBA context object.
1865  * @pring: Pointer to driver SLI ring object.
1866  *
1867  * This function is called with hbalock held to post pending iocbs
1868  * in the txq to the firmware. This function is called when driver
1869  * detects space available in the ring.
1870  **/
1871 static void
1872 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1873 {
1874 	IOCB_t *iocb;
1875 	struct lpfc_iocbq *nextiocb;
1876 
1877 	lockdep_assert_held(&phba->hbalock);
1878 
1879 	/*
1880 	 * Check to see if:
1881 	 *  (a) there is anything on the txq to send
1882 	 *  (b) link is up
1883 	 *  (c) link attention events can be processed (fcp ring only)
1884 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1885 	 */
1886 
1887 	if (lpfc_is_link_up(phba) &&
1888 	    (!list_empty(&pring->txq)) &&
1889 	    (pring->ringno != LPFC_FCP_RING ||
1890 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1891 
1892 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1893 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1894 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1895 
1896 		if (iocb)
1897 			lpfc_sli_update_ring(phba, pring);
1898 		else
1899 			lpfc_sli_update_full_ring(phba, pring);
1900 	}
1901 
1902 	return;
1903 }
1904 
1905 /**
1906  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1907  * @phba: Pointer to HBA context object.
1908  * @hbqno: HBQ number.
1909  *
1910  * This function is called with hbalock held to get the next
1911  * available slot for the given HBQ. If there is free slot
1912  * available for the HBQ it will return pointer to the next available
1913  * HBQ entry else it will return NULL.
1914  **/
1915 static struct lpfc_hbq_entry *
1916 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1917 {
1918 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1919 
1920 	lockdep_assert_held(&phba->hbalock);
1921 
1922 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1923 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1924 		hbqp->next_hbqPutIdx = 0;
1925 
1926 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1927 		uint32_t raw_index = phba->hbq_get[hbqno];
1928 		uint32_t getidx = le32_to_cpu(raw_index);
1929 
1930 		hbqp->local_hbqGetIdx = getidx;
1931 
1932 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1933 			lpfc_printf_log(phba, KERN_ERR,
1934 					LOG_SLI | LOG_VPORT,
1935 					"1802 HBQ %d: local_hbqGetIdx "
1936 					"%u is > than hbqp->entry_count %u\n",
1937 					hbqno, hbqp->local_hbqGetIdx,
1938 					hbqp->entry_count);
1939 
1940 			phba->link_state = LPFC_HBA_ERROR;
1941 			return NULL;
1942 		}
1943 
1944 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1945 			return NULL;
1946 	}
1947 
1948 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1949 			hbqp->hbqPutIdx;
1950 }
1951 
1952 /**
1953  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1954  * @phba: Pointer to HBA context object.
1955  *
1956  * This function is called with no lock held to free all the
1957  * hbq buffers while uninitializing the SLI interface. It also
1958  * frees the HBQ buffers returned by the firmware but not yet
1959  * processed by the upper layers.
1960  **/
1961 void
1962 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1963 {
1964 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1965 	struct hbq_dmabuf *hbq_buf;
1966 	unsigned long flags;
1967 	int i, hbq_count;
1968 
1969 	hbq_count = lpfc_sli_hbq_count();
1970 	/* Return all memory used by all HBQs */
1971 	spin_lock_irqsave(&phba->hbalock, flags);
1972 	for (i = 0; i < hbq_count; ++i) {
1973 		list_for_each_entry_safe(dmabuf, next_dmabuf,
1974 				&phba->hbqs[i].hbq_buffer_list, list) {
1975 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1976 			list_del(&hbq_buf->dbuf.list);
1977 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1978 		}
1979 		phba->hbqs[i].buffer_count = 0;
1980 	}
1981 
1982 	/* Mark the HBQs not in use */
1983 	phba->hbq_in_use = 0;
1984 	spin_unlock_irqrestore(&phba->hbalock, flags);
1985 }
1986 
1987 /**
1988  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1989  * @phba: Pointer to HBA context object.
1990  * @hbqno: HBQ number.
1991  * @hbq_buf: Pointer to HBQ buffer.
1992  *
1993  * This function is called with the hbalock held to post a
1994  * hbq buffer to the firmware. If the function finds an empty
1995  * slot in the HBQ, it will post the buffer. The function will return
1996  * pointer to the hbq entry if it successfully post the buffer
1997  * else it will return NULL.
1998  **/
1999 static int
2000 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2001 			 struct hbq_dmabuf *hbq_buf)
2002 {
2003 	lockdep_assert_held(&phba->hbalock);
2004 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2005 }
2006 
2007 /**
2008  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2009  * @phba: Pointer to HBA context object.
2010  * @hbqno: HBQ number.
2011  * @hbq_buf: Pointer to HBQ buffer.
2012  *
2013  * This function is called with the hbalock held to post a hbq buffer to the
2014  * firmware. If the function finds an empty slot in the HBQ, it will post the
2015  * buffer and place it on the hbq_buffer_list. The function will return zero if
2016  * it successfully post the buffer else it will return an error.
2017  **/
2018 static int
2019 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2020 			    struct hbq_dmabuf *hbq_buf)
2021 {
2022 	struct lpfc_hbq_entry *hbqe;
2023 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2024 
2025 	lockdep_assert_held(&phba->hbalock);
2026 	/* Get next HBQ entry slot to use */
2027 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2028 	if (hbqe) {
2029 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2030 
2031 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2032 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2033 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2034 		hbqe->bde.tus.f.bdeFlags = 0;
2035 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2036 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2037 				/* Sync SLIM */
2038 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2039 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2040 				/* flush */
2041 		readl(phba->hbq_put + hbqno);
2042 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2043 		return 0;
2044 	} else
2045 		return -ENOMEM;
2046 }
2047 
2048 /**
2049  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2050  * @phba: Pointer to HBA context object.
2051  * @hbqno: HBQ number.
2052  * @hbq_buf: Pointer to HBQ buffer.
2053  *
2054  * This function is called with the hbalock held to post an RQE to the SLI4
2055  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2056  * the hbq_buffer_list and return zero, otherwise it will return an error.
2057  **/
2058 static int
2059 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2060 			    struct hbq_dmabuf *hbq_buf)
2061 {
2062 	int rc;
2063 	struct lpfc_rqe hrqe;
2064 	struct lpfc_rqe drqe;
2065 	struct lpfc_queue *hrq;
2066 	struct lpfc_queue *drq;
2067 
2068 	if (hbqno != LPFC_ELS_HBQ)
2069 		return 1;
2070 	hrq = phba->sli4_hba.hdr_rq;
2071 	drq = phba->sli4_hba.dat_rq;
2072 
2073 	lockdep_assert_held(&phba->hbalock);
2074 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2075 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2076 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2077 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2078 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2079 	if (rc < 0)
2080 		return rc;
2081 	hbq_buf->tag = (rc | (hbqno << 16));
2082 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2083 	return 0;
2084 }
2085 
2086 /* HBQ for ELS and CT traffic. */
2087 static struct lpfc_hbq_init lpfc_els_hbq = {
2088 	.rn = 1,
2089 	.entry_count = 256,
2090 	.mask_count = 0,
2091 	.profile = 0,
2092 	.ring_mask = (1 << LPFC_ELS_RING),
2093 	.buffer_count = 0,
2094 	.init_count = 40,
2095 	.add_count = 40,
2096 };
2097 
2098 /* Array of HBQs */
2099 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2100 	&lpfc_els_hbq,
2101 };
2102 
2103 /**
2104  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2105  * @phba: Pointer to HBA context object.
2106  * @hbqno: HBQ number.
2107  * @count: Number of HBQ buffers to be posted.
2108  *
2109  * This function is called with no lock held to post more hbq buffers to the
2110  * given HBQ. The function returns the number of HBQ buffers successfully
2111  * posted.
2112  **/
2113 static int
2114 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2115 {
2116 	uint32_t i, posted = 0;
2117 	unsigned long flags;
2118 	struct hbq_dmabuf *hbq_buffer;
2119 	LIST_HEAD(hbq_buf_list);
2120 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2121 		return 0;
2122 
2123 	if ((phba->hbqs[hbqno].buffer_count + count) >
2124 	    lpfc_hbq_defs[hbqno]->entry_count)
2125 		count = lpfc_hbq_defs[hbqno]->entry_count -
2126 					phba->hbqs[hbqno].buffer_count;
2127 	if (!count)
2128 		return 0;
2129 	/* Allocate HBQ entries */
2130 	for (i = 0; i < count; i++) {
2131 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2132 		if (!hbq_buffer)
2133 			break;
2134 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2135 	}
2136 	/* Check whether HBQ is still in use */
2137 	spin_lock_irqsave(&phba->hbalock, flags);
2138 	if (!phba->hbq_in_use)
2139 		goto err;
2140 	while (!list_empty(&hbq_buf_list)) {
2141 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2142 				 dbuf.list);
2143 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2144 				      (hbqno << 16));
2145 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2146 			phba->hbqs[hbqno].buffer_count++;
2147 			posted++;
2148 		} else
2149 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2150 	}
2151 	spin_unlock_irqrestore(&phba->hbalock, flags);
2152 	return posted;
2153 err:
2154 	spin_unlock_irqrestore(&phba->hbalock, flags);
2155 	while (!list_empty(&hbq_buf_list)) {
2156 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2157 				 dbuf.list);
2158 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2159 	}
2160 	return 0;
2161 }
2162 
2163 /**
2164  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2165  * @phba: Pointer to HBA context object.
2166  * @qno: HBQ number.
2167  *
2168  * This function posts more buffers to the HBQ. This function
2169  * is called with no lock held. The function returns the number of HBQ entries
2170  * successfully allocated.
2171  **/
2172 int
2173 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2174 {
2175 	if (phba->sli_rev == LPFC_SLI_REV4)
2176 		return 0;
2177 	else
2178 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2179 					 lpfc_hbq_defs[qno]->add_count);
2180 }
2181 
2182 /**
2183  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2184  * @phba: Pointer to HBA context object.
2185  * @qno:  HBQ queue number.
2186  *
2187  * This function is called from SLI initialization code path with
2188  * no lock held to post initial HBQ buffers to firmware. The
2189  * function returns the number of HBQ entries successfully allocated.
2190  **/
2191 static int
2192 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2193 {
2194 	if (phba->sli_rev == LPFC_SLI_REV4)
2195 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2196 					lpfc_hbq_defs[qno]->entry_count);
2197 	else
2198 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2199 					 lpfc_hbq_defs[qno]->init_count);
2200 }
2201 
2202 /**
2203  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2204  * @phba: Pointer to HBA context object.
2205  * @hbqno: HBQ number.
2206  *
2207  * This function removes the first hbq buffer on an hbq list and returns a
2208  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2209  **/
2210 static struct hbq_dmabuf *
2211 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2212 {
2213 	struct lpfc_dmabuf *d_buf;
2214 
2215 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2216 	if (!d_buf)
2217 		return NULL;
2218 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2219 }
2220 
2221 /**
2222  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2223  * @phba: Pointer to HBA context object.
2224  * @hbqno: HBQ number.
2225  *
2226  * This function removes the first RQ buffer on an RQ buffer list and returns a
2227  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2228  **/
2229 static struct rqb_dmabuf *
2230 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2231 {
2232 	struct lpfc_dmabuf *h_buf;
2233 	struct lpfc_rqb *rqbp;
2234 
2235 	rqbp = hrq->rqbp;
2236 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2237 			 struct lpfc_dmabuf, list);
2238 	if (!h_buf)
2239 		return NULL;
2240 	rqbp->buffer_count--;
2241 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2242 }
2243 
2244 /**
2245  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2246  * @phba: Pointer to HBA context object.
2247  * @tag: Tag of the hbq buffer.
2248  *
2249  * This function searches for the hbq buffer associated with the given tag in
2250  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2251  * otherwise it returns NULL.
2252  **/
2253 static struct hbq_dmabuf *
2254 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2255 {
2256 	struct lpfc_dmabuf *d_buf;
2257 	struct hbq_dmabuf *hbq_buf;
2258 	uint32_t hbqno;
2259 
2260 	hbqno = tag >> 16;
2261 	if (hbqno >= LPFC_MAX_HBQS)
2262 		return NULL;
2263 
2264 	spin_lock_irq(&phba->hbalock);
2265 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2266 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2267 		if (hbq_buf->tag == tag) {
2268 			spin_unlock_irq(&phba->hbalock);
2269 			return hbq_buf;
2270 		}
2271 	}
2272 	spin_unlock_irq(&phba->hbalock);
2273 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2274 			"1803 Bad hbq tag. Data: x%x x%x\n",
2275 			tag, phba->hbqs[tag >> 16].buffer_count);
2276 	return NULL;
2277 }
2278 
2279 /**
2280  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2281  * @phba: Pointer to HBA context object.
2282  * @hbq_buffer: Pointer to HBQ buffer.
2283  *
2284  * This function is called with hbalock. This function gives back
2285  * the hbq buffer to firmware. If the HBQ does not have space to
2286  * post the buffer, it will free the buffer.
2287  **/
2288 void
2289 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2290 {
2291 	uint32_t hbqno;
2292 
2293 	if (hbq_buffer) {
2294 		hbqno = hbq_buffer->tag >> 16;
2295 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2296 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2297 	}
2298 }
2299 
2300 /**
2301  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2302  * @mbxCommand: mailbox command code.
2303  *
2304  * This function is called by the mailbox event handler function to verify
2305  * that the completed mailbox command is a legitimate mailbox command. If the
2306  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2307  * and the mailbox event handler will take the HBA offline.
2308  **/
2309 static int
2310 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2311 {
2312 	uint8_t ret;
2313 
2314 	switch (mbxCommand) {
2315 	case MBX_LOAD_SM:
2316 	case MBX_READ_NV:
2317 	case MBX_WRITE_NV:
2318 	case MBX_WRITE_VPARMS:
2319 	case MBX_RUN_BIU_DIAG:
2320 	case MBX_INIT_LINK:
2321 	case MBX_DOWN_LINK:
2322 	case MBX_CONFIG_LINK:
2323 	case MBX_CONFIG_RING:
2324 	case MBX_RESET_RING:
2325 	case MBX_READ_CONFIG:
2326 	case MBX_READ_RCONFIG:
2327 	case MBX_READ_SPARM:
2328 	case MBX_READ_STATUS:
2329 	case MBX_READ_RPI:
2330 	case MBX_READ_XRI:
2331 	case MBX_READ_REV:
2332 	case MBX_READ_LNK_STAT:
2333 	case MBX_REG_LOGIN:
2334 	case MBX_UNREG_LOGIN:
2335 	case MBX_CLEAR_LA:
2336 	case MBX_DUMP_MEMORY:
2337 	case MBX_DUMP_CONTEXT:
2338 	case MBX_RUN_DIAGS:
2339 	case MBX_RESTART:
2340 	case MBX_UPDATE_CFG:
2341 	case MBX_DOWN_LOAD:
2342 	case MBX_DEL_LD_ENTRY:
2343 	case MBX_RUN_PROGRAM:
2344 	case MBX_SET_MASK:
2345 	case MBX_SET_VARIABLE:
2346 	case MBX_UNREG_D_ID:
2347 	case MBX_KILL_BOARD:
2348 	case MBX_CONFIG_FARP:
2349 	case MBX_BEACON:
2350 	case MBX_LOAD_AREA:
2351 	case MBX_RUN_BIU_DIAG64:
2352 	case MBX_CONFIG_PORT:
2353 	case MBX_READ_SPARM64:
2354 	case MBX_READ_RPI64:
2355 	case MBX_REG_LOGIN64:
2356 	case MBX_READ_TOPOLOGY:
2357 	case MBX_WRITE_WWN:
2358 	case MBX_SET_DEBUG:
2359 	case MBX_LOAD_EXP_ROM:
2360 	case MBX_ASYNCEVT_ENABLE:
2361 	case MBX_REG_VPI:
2362 	case MBX_UNREG_VPI:
2363 	case MBX_HEARTBEAT:
2364 	case MBX_PORT_CAPABILITIES:
2365 	case MBX_PORT_IOV_CONTROL:
2366 	case MBX_SLI4_CONFIG:
2367 	case MBX_SLI4_REQ_FTRS:
2368 	case MBX_REG_FCFI:
2369 	case MBX_UNREG_FCFI:
2370 	case MBX_REG_VFI:
2371 	case MBX_UNREG_VFI:
2372 	case MBX_INIT_VPI:
2373 	case MBX_INIT_VFI:
2374 	case MBX_RESUME_RPI:
2375 	case MBX_READ_EVENT_LOG_STATUS:
2376 	case MBX_READ_EVENT_LOG:
2377 	case MBX_SECURITY_MGMT:
2378 	case MBX_AUTH_PORT:
2379 	case MBX_ACCESS_VDATA:
2380 		ret = mbxCommand;
2381 		break;
2382 	default:
2383 		ret = MBX_SHUTDOWN;
2384 		break;
2385 	}
2386 	return ret;
2387 }
2388 
2389 /**
2390  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2391  * @phba: Pointer to HBA context object.
2392  * @pmboxq: Pointer to mailbox command.
2393  *
2394  * This is completion handler function for mailbox commands issued from
2395  * lpfc_sli_issue_mbox_wait function. This function is called by the
2396  * mailbox event handler function with no lock held. This function
2397  * will wake up thread waiting on the wait queue pointed by context1
2398  * of the mailbox.
2399  **/
2400 void
2401 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2402 {
2403 	unsigned long drvr_flag;
2404 	struct completion *pmbox_done;
2405 
2406 	/*
2407 	 * If pmbox_done is empty, the driver thread gave up waiting and
2408 	 * continued running.
2409 	 */
2410 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2411 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2412 	pmbox_done = (struct completion *)pmboxq->context3;
2413 	if (pmbox_done)
2414 		complete(pmbox_done);
2415 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2416 	return;
2417 }
2418 
2419 
2420 /**
2421  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2422  * @phba: Pointer to HBA context object.
2423  * @pmb: Pointer to mailbox object.
2424  *
2425  * This function is the default mailbox completion handler. It
2426  * frees the memory resources associated with the completed mailbox
2427  * command. If the completed command is a REG_LOGIN mailbox command,
2428  * this function will issue a UREG_LOGIN to re-claim the RPI.
2429  **/
2430 void
2431 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2432 {
2433 	struct lpfc_vport  *vport = pmb->vport;
2434 	struct lpfc_dmabuf *mp;
2435 	struct lpfc_nodelist *ndlp;
2436 	struct Scsi_Host *shost;
2437 	uint16_t rpi, vpi;
2438 	int rc;
2439 
2440 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2441 
2442 	if (mp) {
2443 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2444 		kfree(mp);
2445 	}
2446 
2447 	/*
2448 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2449 	 * is in re-discovery driver need to cleanup the RPI.
2450 	 */
2451 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2452 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2453 	    !pmb->u.mb.mbxStatus) {
2454 		rpi = pmb->u.mb.un.varWords[0];
2455 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2456 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2457 		pmb->vport = vport;
2458 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2459 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2460 		if (rc != MBX_NOT_FINISHED)
2461 			return;
2462 	}
2463 
2464 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2465 		!(phba->pport->load_flag & FC_UNLOADING) &&
2466 		!pmb->u.mb.mbxStatus) {
2467 		shost = lpfc_shost_from_vport(vport);
2468 		spin_lock_irq(shost->host_lock);
2469 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2470 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2471 		spin_unlock_irq(shost->host_lock);
2472 	}
2473 
2474 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2475 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2476 		lpfc_nlp_put(ndlp);
2477 		pmb->ctx_buf = NULL;
2478 		pmb->ctx_ndlp = NULL;
2479 	}
2480 
2481 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2482 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2483 
2484 		/* Check to see if there are any deferred events to process */
2485 		if (ndlp) {
2486 			lpfc_printf_vlog(
2487 				vport,
2488 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2489 				"1438 UNREG cmpl deferred mbox x%x "
2490 				"on NPort x%x Data: x%x x%x %p\n",
2491 				ndlp->nlp_rpi, ndlp->nlp_DID,
2492 				ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2493 
2494 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2495 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2496 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2497 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2498 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2499 			} else {
2500 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2501 			}
2502 			pmb->ctx_ndlp = NULL;
2503 		}
2504 	}
2505 
2506 	/* Check security permission status on INIT_LINK mailbox command */
2507 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2508 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2509 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2510 				"2860 SLI authentication is required "
2511 				"for INIT_LINK but has not done yet\n");
2512 
2513 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2514 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2515 	else
2516 		mempool_free(pmb, phba->mbox_mem_pool);
2517 }
2518  /**
2519  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2520  * @phba: Pointer to HBA context object.
2521  * @pmb: Pointer to mailbox object.
2522  *
2523  * This function is the unreg rpi mailbox completion handler. It
2524  * frees the memory resources associated with the completed mailbox
2525  * command. An additional refrenece is put on the ndlp to prevent
2526  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2527  * the unreg mailbox command completes, this routine puts the
2528  * reference back.
2529  *
2530  **/
2531 void
2532 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2533 {
2534 	struct lpfc_vport  *vport = pmb->vport;
2535 	struct lpfc_nodelist *ndlp;
2536 
2537 	ndlp = pmb->ctx_ndlp;
2538 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2539 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2540 		    (bf_get(lpfc_sli_intf_if_type,
2541 		     &phba->sli4_hba.sli_intf) >=
2542 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2543 			if (ndlp) {
2544 				lpfc_printf_vlog(
2545 					vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2546 					 "0010 UNREG_LOGIN vpi:%x "
2547 					 "rpi:%x DID:%x defer x%x flg x%x "
2548 					 "map:%x %p\n",
2549 					 vport->vpi, ndlp->nlp_rpi,
2550 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2551 					 ndlp->nlp_flag,
2552 					 ndlp->nlp_usg_map, ndlp);
2553 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2554 				lpfc_nlp_put(ndlp);
2555 
2556 				/* Check to see if there are any deferred
2557 				 * events to process
2558 				 */
2559 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2560 				    (ndlp->nlp_defer_did !=
2561 				    NLP_EVT_NOTHING_PENDING)) {
2562 					lpfc_printf_vlog(
2563 						vport, KERN_INFO, LOG_DISCOVERY,
2564 						"4111 UNREG cmpl deferred "
2565 						"clr x%x on "
2566 						"NPort x%x Data: x%x %p\n",
2567 						ndlp->nlp_rpi, ndlp->nlp_DID,
2568 						ndlp->nlp_defer_did, ndlp);
2569 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2570 					ndlp->nlp_defer_did =
2571 						NLP_EVT_NOTHING_PENDING;
2572 					lpfc_issue_els_plogi(
2573 						vport, ndlp->nlp_DID, 0);
2574 				} else {
2575 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2576 				}
2577 			}
2578 		}
2579 	}
2580 
2581 	mempool_free(pmb, phba->mbox_mem_pool);
2582 }
2583 
2584 /**
2585  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2586  * @phba: Pointer to HBA context object.
2587  *
2588  * This function is called with no lock held. This function processes all
2589  * the completed mailbox commands and gives it to upper layers. The interrupt
2590  * service routine processes mailbox completion interrupt and adds completed
2591  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2592  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2593  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2594  * function returns the mailbox commands to the upper layer by calling the
2595  * completion handler function of each mailbox.
2596  **/
2597 int
2598 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2599 {
2600 	MAILBOX_t *pmbox;
2601 	LPFC_MBOXQ_t *pmb;
2602 	int rc;
2603 	LIST_HEAD(cmplq);
2604 
2605 	phba->sli.slistat.mbox_event++;
2606 
2607 	/* Get all completed mailboxe buffers into the cmplq */
2608 	spin_lock_irq(&phba->hbalock);
2609 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2610 	spin_unlock_irq(&phba->hbalock);
2611 
2612 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2613 	do {
2614 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2615 		if (pmb == NULL)
2616 			break;
2617 
2618 		pmbox = &pmb->u.mb;
2619 
2620 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2621 			if (pmb->vport) {
2622 				lpfc_debugfs_disc_trc(pmb->vport,
2623 					LPFC_DISC_TRC_MBOX_VPORT,
2624 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2625 					(uint32_t)pmbox->mbxCommand,
2626 					pmbox->un.varWords[0],
2627 					pmbox->un.varWords[1]);
2628 			}
2629 			else {
2630 				lpfc_debugfs_disc_trc(phba->pport,
2631 					LPFC_DISC_TRC_MBOX,
2632 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2633 					(uint32_t)pmbox->mbxCommand,
2634 					pmbox->un.varWords[0],
2635 					pmbox->un.varWords[1]);
2636 			}
2637 		}
2638 
2639 		/*
2640 		 * It is a fatal error if unknown mbox command completion.
2641 		 */
2642 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2643 		    MBX_SHUTDOWN) {
2644 			/* Unknown mailbox command compl */
2645 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2646 					"(%d):0323 Unknown Mailbox command "
2647 					"x%x (x%x/x%x) Cmpl\n",
2648 					pmb->vport ? pmb->vport->vpi : 0,
2649 					pmbox->mbxCommand,
2650 					lpfc_sli_config_mbox_subsys_get(phba,
2651 									pmb),
2652 					lpfc_sli_config_mbox_opcode_get(phba,
2653 									pmb));
2654 			phba->link_state = LPFC_HBA_ERROR;
2655 			phba->work_hs = HS_FFER3;
2656 			lpfc_handle_eratt(phba);
2657 			continue;
2658 		}
2659 
2660 		if (pmbox->mbxStatus) {
2661 			phba->sli.slistat.mbox_stat_err++;
2662 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2663 				/* Mbox cmd cmpl error - RETRYing */
2664 				lpfc_printf_log(phba, KERN_INFO,
2665 					LOG_MBOX | LOG_SLI,
2666 					"(%d):0305 Mbox cmd cmpl "
2667 					"error - RETRYing Data: x%x "
2668 					"(x%x/x%x) x%x x%x x%x\n",
2669 					pmb->vport ? pmb->vport->vpi : 0,
2670 					pmbox->mbxCommand,
2671 					lpfc_sli_config_mbox_subsys_get(phba,
2672 									pmb),
2673 					lpfc_sli_config_mbox_opcode_get(phba,
2674 									pmb),
2675 					pmbox->mbxStatus,
2676 					pmbox->un.varWords[0],
2677 					pmb->vport->port_state);
2678 				pmbox->mbxStatus = 0;
2679 				pmbox->mbxOwner = OWN_HOST;
2680 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2681 				if (rc != MBX_NOT_FINISHED)
2682 					continue;
2683 			}
2684 		}
2685 
2686 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2687 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2688 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2689 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2690 				"x%x x%x x%x\n",
2691 				pmb->vport ? pmb->vport->vpi : 0,
2692 				pmbox->mbxCommand,
2693 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2694 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2695 				pmb->mbox_cmpl,
2696 				*((uint32_t *) pmbox),
2697 				pmbox->un.varWords[0],
2698 				pmbox->un.varWords[1],
2699 				pmbox->un.varWords[2],
2700 				pmbox->un.varWords[3],
2701 				pmbox->un.varWords[4],
2702 				pmbox->un.varWords[5],
2703 				pmbox->un.varWords[6],
2704 				pmbox->un.varWords[7],
2705 				pmbox->un.varWords[8],
2706 				pmbox->un.varWords[9],
2707 				pmbox->un.varWords[10]);
2708 
2709 		if (pmb->mbox_cmpl)
2710 			pmb->mbox_cmpl(phba,pmb);
2711 	} while (1);
2712 	return 0;
2713 }
2714 
2715 /**
2716  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2717  * @phba: Pointer to HBA context object.
2718  * @pring: Pointer to driver SLI ring object.
2719  * @tag: buffer tag.
2720  *
2721  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2722  * is set in the tag the buffer is posted for a particular exchange,
2723  * the function will return the buffer without replacing the buffer.
2724  * If the buffer is for unsolicited ELS or CT traffic, this function
2725  * returns the buffer and also posts another buffer to the firmware.
2726  **/
2727 static struct lpfc_dmabuf *
2728 lpfc_sli_get_buff(struct lpfc_hba *phba,
2729 		  struct lpfc_sli_ring *pring,
2730 		  uint32_t tag)
2731 {
2732 	struct hbq_dmabuf *hbq_entry;
2733 
2734 	if (tag & QUE_BUFTAG_BIT)
2735 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2736 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2737 	if (!hbq_entry)
2738 		return NULL;
2739 	return &hbq_entry->dbuf;
2740 }
2741 
2742 /**
2743  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2744  * @phba: Pointer to HBA context object.
2745  * @pring: Pointer to driver SLI ring object.
2746  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2747  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2748  * @fch_type: the type for the first frame of the sequence.
2749  *
2750  * This function is called with no lock held. This function uses the r_ctl and
2751  * type of the received sequence to find the correct callback function to call
2752  * to process the sequence.
2753  **/
2754 static int
2755 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2756 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2757 			 uint32_t fch_type)
2758 {
2759 	int i;
2760 
2761 	switch (fch_type) {
2762 	case FC_TYPE_NVME:
2763 		lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2764 		return 1;
2765 	default:
2766 		break;
2767 	}
2768 
2769 	/* unSolicited Responses */
2770 	if (pring->prt[0].profile) {
2771 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2772 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2773 									saveq);
2774 		return 1;
2775 	}
2776 	/* We must search, based on rctl / type
2777 	   for the right routine */
2778 	for (i = 0; i < pring->num_mask; i++) {
2779 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2780 		    (pring->prt[i].type == fch_type)) {
2781 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2782 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2783 						(phba, pring, saveq);
2784 			return 1;
2785 		}
2786 	}
2787 	return 0;
2788 }
2789 
2790 /**
2791  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2792  * @phba: Pointer to HBA context object.
2793  * @pring: Pointer to driver SLI ring object.
2794  * @saveq: Pointer to the unsolicited iocb.
2795  *
2796  * This function is called with no lock held by the ring event handler
2797  * when there is an unsolicited iocb posted to the response ring by the
2798  * firmware. This function gets the buffer associated with the iocbs
2799  * and calls the event handler for the ring. This function handles both
2800  * qring buffers and hbq buffers.
2801  * When the function returns 1 the caller can free the iocb object otherwise
2802  * upper layer functions will free the iocb objects.
2803  **/
2804 static int
2805 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2806 			    struct lpfc_iocbq *saveq)
2807 {
2808 	IOCB_t           * irsp;
2809 	WORD5            * w5p;
2810 	uint32_t           Rctl, Type;
2811 	struct lpfc_iocbq *iocbq;
2812 	struct lpfc_dmabuf *dmzbuf;
2813 
2814 	irsp = &(saveq->iocb);
2815 
2816 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2817 		if (pring->lpfc_sli_rcv_async_status)
2818 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2819 		else
2820 			lpfc_printf_log(phba,
2821 					KERN_WARNING,
2822 					LOG_SLI,
2823 					"0316 Ring %d handler: unexpected "
2824 					"ASYNC_STATUS iocb received evt_code "
2825 					"0x%x\n",
2826 					pring->ringno,
2827 					irsp->un.asyncstat.evt_code);
2828 		return 1;
2829 	}
2830 
2831 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2832 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2833 		if (irsp->ulpBdeCount > 0) {
2834 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2835 					irsp->un.ulpWord[3]);
2836 			lpfc_in_buf_free(phba, dmzbuf);
2837 		}
2838 
2839 		if (irsp->ulpBdeCount > 1) {
2840 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2841 					irsp->unsli3.sli3Words[3]);
2842 			lpfc_in_buf_free(phba, dmzbuf);
2843 		}
2844 
2845 		if (irsp->ulpBdeCount > 2) {
2846 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2847 				irsp->unsli3.sli3Words[7]);
2848 			lpfc_in_buf_free(phba, dmzbuf);
2849 		}
2850 
2851 		return 1;
2852 	}
2853 
2854 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2855 		if (irsp->ulpBdeCount != 0) {
2856 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
2857 						irsp->un.ulpWord[3]);
2858 			if (!saveq->context2)
2859 				lpfc_printf_log(phba,
2860 					KERN_ERR,
2861 					LOG_SLI,
2862 					"0341 Ring %d Cannot find buffer for "
2863 					"an unsolicited iocb. tag 0x%x\n",
2864 					pring->ringno,
2865 					irsp->un.ulpWord[3]);
2866 		}
2867 		if (irsp->ulpBdeCount == 2) {
2868 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
2869 						irsp->unsli3.sli3Words[7]);
2870 			if (!saveq->context3)
2871 				lpfc_printf_log(phba,
2872 					KERN_ERR,
2873 					LOG_SLI,
2874 					"0342 Ring %d Cannot find buffer for an"
2875 					" unsolicited iocb. tag 0x%x\n",
2876 					pring->ringno,
2877 					irsp->unsli3.sli3Words[7]);
2878 		}
2879 		list_for_each_entry(iocbq, &saveq->list, list) {
2880 			irsp = &(iocbq->iocb);
2881 			if (irsp->ulpBdeCount != 0) {
2882 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2883 							irsp->un.ulpWord[3]);
2884 				if (!iocbq->context2)
2885 					lpfc_printf_log(phba,
2886 						KERN_ERR,
2887 						LOG_SLI,
2888 						"0343 Ring %d Cannot find "
2889 						"buffer for an unsolicited iocb"
2890 						". tag 0x%x\n", pring->ringno,
2891 						irsp->un.ulpWord[3]);
2892 			}
2893 			if (irsp->ulpBdeCount == 2) {
2894 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2895 						irsp->unsli3.sli3Words[7]);
2896 				if (!iocbq->context3)
2897 					lpfc_printf_log(phba,
2898 						KERN_ERR,
2899 						LOG_SLI,
2900 						"0344 Ring %d Cannot find "
2901 						"buffer for an unsolicited "
2902 						"iocb. tag 0x%x\n",
2903 						pring->ringno,
2904 						irsp->unsli3.sli3Words[7]);
2905 			}
2906 		}
2907 	}
2908 	if (irsp->ulpBdeCount != 0 &&
2909 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2910 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2911 		int found = 0;
2912 
2913 		/* search continue save q for same XRI */
2914 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2915 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2916 				saveq->iocb.unsli3.rcvsli3.ox_id) {
2917 				list_add_tail(&saveq->list, &iocbq->list);
2918 				found = 1;
2919 				break;
2920 			}
2921 		}
2922 		if (!found)
2923 			list_add_tail(&saveq->clist,
2924 				      &pring->iocb_continue_saveq);
2925 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2926 			list_del_init(&iocbq->clist);
2927 			saveq = iocbq;
2928 			irsp = &(saveq->iocb);
2929 		} else
2930 			return 0;
2931 	}
2932 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2933 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2934 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2935 		Rctl = FC_RCTL_ELS_REQ;
2936 		Type = FC_TYPE_ELS;
2937 	} else {
2938 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2939 		Rctl = w5p->hcsw.Rctl;
2940 		Type = w5p->hcsw.Type;
2941 
2942 		/* Firmware Workaround */
2943 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2944 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2945 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2946 			Rctl = FC_RCTL_ELS_REQ;
2947 			Type = FC_TYPE_ELS;
2948 			w5p->hcsw.Rctl = Rctl;
2949 			w5p->hcsw.Type = Type;
2950 		}
2951 	}
2952 
2953 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2954 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2955 				"0313 Ring %d handler: unexpected Rctl x%x "
2956 				"Type x%x received\n",
2957 				pring->ringno, Rctl, Type);
2958 
2959 	return 1;
2960 }
2961 
2962 /**
2963  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2964  * @phba: Pointer to HBA context object.
2965  * @pring: Pointer to driver SLI ring object.
2966  * @prspiocb: Pointer to response iocb object.
2967  *
2968  * This function looks up the iocb_lookup table to get the command iocb
2969  * corresponding to the given response iocb using the iotag of the
2970  * response iocb. This function is called with the hbalock held
2971  * for sli3 devices or the ring_lock for sli4 devices.
2972  * This function returns the command iocb object if it finds the command
2973  * iocb else returns NULL.
2974  **/
2975 static struct lpfc_iocbq *
2976 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2977 		      struct lpfc_sli_ring *pring,
2978 		      struct lpfc_iocbq *prspiocb)
2979 {
2980 	struct lpfc_iocbq *cmd_iocb = NULL;
2981 	uint16_t iotag;
2982 	lockdep_assert_held(&phba->hbalock);
2983 
2984 	iotag = prspiocb->iocb.ulpIoTag;
2985 
2986 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2987 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
2988 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2989 			/* remove from txcmpl queue list */
2990 			list_del_init(&cmd_iocb->list);
2991 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2992 			pring->txcmplq_cnt--;
2993 			return cmd_iocb;
2994 		}
2995 	}
2996 
2997 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2998 			"0317 iotag x%x is out of "
2999 			"range: max iotag x%x wd0 x%x\n",
3000 			iotag, phba->sli.last_iotag,
3001 			*(((uint32_t *) &prspiocb->iocb) + 7));
3002 	return NULL;
3003 }
3004 
3005 /**
3006  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3007  * @phba: Pointer to HBA context object.
3008  * @pring: Pointer to driver SLI ring object.
3009  * @iotag: IOCB tag.
3010  *
3011  * This function looks up the iocb_lookup table to get the command iocb
3012  * corresponding to the given iotag. This function is called with the
3013  * hbalock held.
3014  * This function returns the command iocb object if it finds the command
3015  * iocb else returns NULL.
3016  **/
3017 static struct lpfc_iocbq *
3018 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3019 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3020 {
3021 	struct lpfc_iocbq *cmd_iocb = NULL;
3022 
3023 	lockdep_assert_held(&phba->hbalock);
3024 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3025 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3026 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3027 			/* remove from txcmpl queue list */
3028 			list_del_init(&cmd_iocb->list);
3029 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3030 			pring->txcmplq_cnt--;
3031 			return cmd_iocb;
3032 		}
3033 	}
3034 
3035 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3036 			"0372 iotag x%x lookup error: max iotag (x%x) "
3037 			"iocb_flag x%x\n",
3038 			iotag, phba->sli.last_iotag,
3039 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3040 	return NULL;
3041 }
3042 
3043 /**
3044  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3045  * @phba: Pointer to HBA context object.
3046  * @pring: Pointer to driver SLI ring object.
3047  * @saveq: Pointer to the response iocb to be processed.
3048  *
3049  * This function is called by the ring event handler for non-fcp
3050  * rings when there is a new response iocb in the response ring.
3051  * The caller is not required to hold any locks. This function
3052  * gets the command iocb associated with the response iocb and
3053  * calls the completion handler for the command iocb. If there
3054  * is no completion handler, the function will free the resources
3055  * associated with command iocb. If the response iocb is for
3056  * an already aborted command iocb, the status of the completion
3057  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3058  * This function always returns 1.
3059  **/
3060 static int
3061 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3062 			  struct lpfc_iocbq *saveq)
3063 {
3064 	struct lpfc_iocbq *cmdiocbp;
3065 	int rc = 1;
3066 	unsigned long iflag;
3067 
3068 	/* Based on the iotag field, get the cmd IOCB from the txcmplq */
3069 	if (phba->sli_rev == LPFC_SLI_REV4)
3070 		spin_lock_irqsave(&pring->ring_lock, iflag);
3071 	else
3072 		spin_lock_irqsave(&phba->hbalock, iflag);
3073 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3074 	if (phba->sli_rev == LPFC_SLI_REV4)
3075 		spin_unlock_irqrestore(&pring->ring_lock, iflag);
3076 	else
3077 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3078 
3079 	if (cmdiocbp) {
3080 		if (cmdiocbp->iocb_cmpl) {
3081 			/*
3082 			 * If an ELS command failed send an event to mgmt
3083 			 * application.
3084 			 */
3085 			if (saveq->iocb.ulpStatus &&
3086 			     (pring->ringno == LPFC_ELS_RING) &&
3087 			     (cmdiocbp->iocb.ulpCommand ==
3088 				CMD_ELS_REQUEST64_CR))
3089 				lpfc_send_els_failure_event(phba,
3090 					cmdiocbp, saveq);
3091 
3092 			/*
3093 			 * Post all ELS completions to the worker thread.
3094 			 * All other are passed to the completion callback.
3095 			 */
3096 			if (pring->ringno == LPFC_ELS_RING) {
3097 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3098 				    (cmdiocbp->iocb_flag &
3099 							LPFC_DRIVER_ABORTED)) {
3100 					spin_lock_irqsave(&phba->hbalock,
3101 							  iflag);
3102 					cmdiocbp->iocb_flag &=
3103 						~LPFC_DRIVER_ABORTED;
3104 					spin_unlock_irqrestore(&phba->hbalock,
3105 							       iflag);
3106 					saveq->iocb.ulpStatus =
3107 						IOSTAT_LOCAL_REJECT;
3108 					saveq->iocb.un.ulpWord[4] =
3109 						IOERR_SLI_ABORTED;
3110 
3111 					/* Firmware could still be in progress
3112 					 * of DMAing payload, so don't free data
3113 					 * buffer till after a hbeat.
3114 					 */
3115 					spin_lock_irqsave(&phba->hbalock,
3116 							  iflag);
3117 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3118 					spin_unlock_irqrestore(&phba->hbalock,
3119 							       iflag);
3120 				}
3121 				if (phba->sli_rev == LPFC_SLI_REV4) {
3122 					if (saveq->iocb_flag &
3123 					    LPFC_EXCHANGE_BUSY) {
3124 						/* Set cmdiocb flag for the
3125 						 * exchange busy so sgl (xri)
3126 						 * will not be released until
3127 						 * the abort xri is received
3128 						 * from hba.
3129 						 */
3130 						spin_lock_irqsave(
3131 							&phba->hbalock, iflag);
3132 						cmdiocbp->iocb_flag |=
3133 							LPFC_EXCHANGE_BUSY;
3134 						spin_unlock_irqrestore(
3135 							&phba->hbalock, iflag);
3136 					}
3137 					if (cmdiocbp->iocb_flag &
3138 					    LPFC_DRIVER_ABORTED) {
3139 						/*
3140 						 * Clear LPFC_DRIVER_ABORTED
3141 						 * bit in case it was driver
3142 						 * initiated abort.
3143 						 */
3144 						spin_lock_irqsave(
3145 							&phba->hbalock, iflag);
3146 						cmdiocbp->iocb_flag &=
3147 							~LPFC_DRIVER_ABORTED;
3148 						spin_unlock_irqrestore(
3149 							&phba->hbalock, iflag);
3150 						cmdiocbp->iocb.ulpStatus =
3151 							IOSTAT_LOCAL_REJECT;
3152 						cmdiocbp->iocb.un.ulpWord[4] =
3153 							IOERR_ABORT_REQUESTED;
3154 						/*
3155 						 * For SLI4, irsiocb contains
3156 						 * NO_XRI in sli_xritag, it
3157 						 * shall not affect releasing
3158 						 * sgl (xri) process.
3159 						 */
3160 						saveq->iocb.ulpStatus =
3161 							IOSTAT_LOCAL_REJECT;
3162 						saveq->iocb.un.ulpWord[4] =
3163 							IOERR_SLI_ABORTED;
3164 						spin_lock_irqsave(
3165 							&phba->hbalock, iflag);
3166 						saveq->iocb_flag |=
3167 							LPFC_DELAY_MEM_FREE;
3168 						spin_unlock_irqrestore(
3169 							&phba->hbalock, iflag);
3170 					}
3171 				}
3172 			}
3173 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3174 		} else
3175 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3176 	} else {
3177 		/*
3178 		 * Unknown initiating command based on the response iotag.
3179 		 * This could be the case on the ELS ring because of
3180 		 * lpfc_els_abort().
3181 		 */
3182 		if (pring->ringno != LPFC_ELS_RING) {
3183 			/*
3184 			 * Ring <ringno> handler: unexpected completion IoTag
3185 			 * <IoTag>
3186 			 */
3187 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3188 					 "0322 Ring %d handler: "
3189 					 "unexpected completion IoTag x%x "
3190 					 "Data: x%x x%x x%x x%x\n",
3191 					 pring->ringno,
3192 					 saveq->iocb.ulpIoTag,
3193 					 saveq->iocb.ulpStatus,
3194 					 saveq->iocb.un.ulpWord[4],
3195 					 saveq->iocb.ulpCommand,
3196 					 saveq->iocb.ulpContext);
3197 		}
3198 	}
3199 
3200 	return rc;
3201 }
3202 
3203 /**
3204  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3205  * @phba: Pointer to HBA context object.
3206  * @pring: Pointer to driver SLI ring object.
3207  *
3208  * This function is called from the iocb ring event handlers when
3209  * put pointer is ahead of the get pointer for a ring. This function signal
3210  * an error attention condition to the worker thread and the worker
3211  * thread will transition the HBA to offline state.
3212  **/
3213 static void
3214 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3215 {
3216 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3217 	/*
3218 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3219 	 * rsp ring <portRspMax>
3220 	 */
3221 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3222 			"0312 Ring %d handler: portRspPut %d "
3223 			"is bigger than rsp ring %d\n",
3224 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3225 			pring->sli.sli3.numRiocb);
3226 
3227 	phba->link_state = LPFC_HBA_ERROR;
3228 
3229 	/*
3230 	 * All error attention handlers are posted to
3231 	 * worker thread
3232 	 */
3233 	phba->work_ha |= HA_ERATT;
3234 	phba->work_hs = HS_FFER3;
3235 
3236 	lpfc_worker_wake_up(phba);
3237 
3238 	return;
3239 }
3240 
3241 /**
3242  * lpfc_poll_eratt - Error attention polling timer timeout handler
3243  * @ptr: Pointer to address of HBA context object.
3244  *
3245  * This function is invoked by the Error Attention polling timer when the
3246  * timer times out. It will check the SLI Error Attention register for
3247  * possible attention events. If so, it will post an Error Attention event
3248  * and wake up worker thread to process it. Otherwise, it will set up the
3249  * Error Attention polling timer for the next poll.
3250  **/
3251 void lpfc_poll_eratt(struct timer_list *t)
3252 {
3253 	struct lpfc_hba *phba;
3254 	uint32_t eratt = 0;
3255 	uint64_t sli_intr, cnt;
3256 
3257 	phba = from_timer(phba, t, eratt_poll);
3258 
3259 	/* Here we will also keep track of interrupts per sec of the hba */
3260 	sli_intr = phba->sli.slistat.sli_intr;
3261 
3262 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3263 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3264 			sli_intr);
3265 	else
3266 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3267 
3268 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3269 	do_div(cnt, phba->eratt_poll_interval);
3270 	phba->sli.slistat.sli_ips = cnt;
3271 
3272 	phba->sli.slistat.sli_prev_intr = sli_intr;
3273 
3274 	/* Check chip HA register for error event */
3275 	eratt = lpfc_sli_check_eratt(phba);
3276 
3277 	if (eratt)
3278 		/* Tell the worker thread there is work to do */
3279 		lpfc_worker_wake_up(phba);
3280 	else
3281 		/* Restart the timer for next eratt poll */
3282 		mod_timer(&phba->eratt_poll,
3283 			  jiffies +
3284 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3285 	return;
3286 }
3287 
3288 
3289 /**
3290  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3291  * @phba: Pointer to HBA context object.
3292  * @pring: Pointer to driver SLI ring object.
3293  * @mask: Host attention register mask for this ring.
3294  *
3295  * This function is called from the interrupt context when there is a ring
3296  * event for the fcp ring. The caller does not hold any lock.
3297  * The function processes each response iocb in the response ring until it
3298  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3299  * LE bit set. The function will call the completion handler of the command iocb
3300  * if the response iocb indicates a completion for a command iocb or it is
3301  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3302  * function if this is an unsolicited iocb.
3303  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3304  * to check it explicitly.
3305  */
3306 int
3307 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3308 				struct lpfc_sli_ring *pring, uint32_t mask)
3309 {
3310 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3311 	IOCB_t *irsp = NULL;
3312 	IOCB_t *entry = NULL;
3313 	struct lpfc_iocbq *cmdiocbq = NULL;
3314 	struct lpfc_iocbq rspiocbq;
3315 	uint32_t status;
3316 	uint32_t portRspPut, portRspMax;
3317 	int rc = 1;
3318 	lpfc_iocb_type type;
3319 	unsigned long iflag;
3320 	uint32_t rsp_cmpl = 0;
3321 
3322 	spin_lock_irqsave(&phba->hbalock, iflag);
3323 	pring->stats.iocb_event++;
3324 
3325 	/*
3326 	 * The next available response entry should never exceed the maximum
3327 	 * entries.  If it does, treat it as an adapter hardware error.
3328 	 */
3329 	portRspMax = pring->sli.sli3.numRiocb;
3330 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3331 	if (unlikely(portRspPut >= portRspMax)) {
3332 		lpfc_sli_rsp_pointers_error(phba, pring);
3333 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3334 		return 1;
3335 	}
3336 	if (phba->fcp_ring_in_use) {
3337 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3338 		return 1;
3339 	} else
3340 		phba->fcp_ring_in_use = 1;
3341 
3342 	rmb();
3343 	while (pring->sli.sli3.rspidx != portRspPut) {
3344 		/*
3345 		 * Fetch an entry off the ring and copy it into a local data
3346 		 * structure.  The copy involves a byte-swap since the
3347 		 * network byte order and pci byte orders are different.
3348 		 */
3349 		entry = lpfc_resp_iocb(phba, pring);
3350 		phba->last_completion_time = jiffies;
3351 
3352 		if (++pring->sli.sli3.rspidx >= portRspMax)
3353 			pring->sli.sli3.rspidx = 0;
3354 
3355 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3356 				      (uint32_t *) &rspiocbq.iocb,
3357 				      phba->iocb_rsp_size);
3358 		INIT_LIST_HEAD(&(rspiocbq.list));
3359 		irsp = &rspiocbq.iocb;
3360 
3361 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3362 		pring->stats.iocb_rsp++;
3363 		rsp_cmpl++;
3364 
3365 		if (unlikely(irsp->ulpStatus)) {
3366 			/*
3367 			 * If resource errors reported from HBA, reduce
3368 			 * queuedepths of the SCSI device.
3369 			 */
3370 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3371 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3372 			     IOERR_NO_RESOURCES)) {
3373 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3374 				phba->lpfc_rampdown_queue_depth(phba);
3375 				spin_lock_irqsave(&phba->hbalock, iflag);
3376 			}
3377 
3378 			/* Rsp ring <ringno> error: IOCB */
3379 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3380 					"0336 Rsp Ring %d error: IOCB Data: "
3381 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3382 					pring->ringno,
3383 					irsp->un.ulpWord[0],
3384 					irsp->un.ulpWord[1],
3385 					irsp->un.ulpWord[2],
3386 					irsp->un.ulpWord[3],
3387 					irsp->un.ulpWord[4],
3388 					irsp->un.ulpWord[5],
3389 					*(uint32_t *)&irsp->un1,
3390 					*((uint32_t *)&irsp->un1 + 1));
3391 		}
3392 
3393 		switch (type) {
3394 		case LPFC_ABORT_IOCB:
3395 		case LPFC_SOL_IOCB:
3396 			/*
3397 			 * Idle exchange closed via ABTS from port.  No iocb
3398 			 * resources need to be recovered.
3399 			 */
3400 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3401 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3402 						"0333 IOCB cmd 0x%x"
3403 						" processed. Skipping"
3404 						" completion\n",
3405 						irsp->ulpCommand);
3406 				break;
3407 			}
3408 
3409 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3410 							 &rspiocbq);
3411 			if (unlikely(!cmdiocbq))
3412 				break;
3413 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3414 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3415 			if (cmdiocbq->iocb_cmpl) {
3416 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3417 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3418 						      &rspiocbq);
3419 				spin_lock_irqsave(&phba->hbalock, iflag);
3420 			}
3421 			break;
3422 		case LPFC_UNSOL_IOCB:
3423 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3424 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3425 			spin_lock_irqsave(&phba->hbalock, iflag);
3426 			break;
3427 		default:
3428 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3429 				char adaptermsg[LPFC_MAX_ADPTMSG];
3430 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3431 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3432 				       MAX_MSG_DATA);
3433 				dev_warn(&((phba->pcidev)->dev),
3434 					 "lpfc%d: %s\n",
3435 					 phba->brd_no, adaptermsg);
3436 			} else {
3437 				/* Unknown IOCB command */
3438 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3439 						"0334 Unknown IOCB command "
3440 						"Data: x%x, x%x x%x x%x x%x\n",
3441 						type, irsp->ulpCommand,
3442 						irsp->ulpStatus,
3443 						irsp->ulpIoTag,
3444 						irsp->ulpContext);
3445 			}
3446 			break;
3447 		}
3448 
3449 		/*
3450 		 * The response IOCB has been processed.  Update the ring
3451 		 * pointer in SLIM.  If the port response put pointer has not
3452 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3453 		 * response put pointer.
3454 		 */
3455 		writel(pring->sli.sli3.rspidx,
3456 			&phba->host_gp[pring->ringno].rspGetInx);
3457 
3458 		if (pring->sli.sli3.rspidx == portRspPut)
3459 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3460 	}
3461 
3462 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3463 		pring->stats.iocb_rsp_full++;
3464 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3465 		writel(status, phba->CAregaddr);
3466 		readl(phba->CAregaddr);
3467 	}
3468 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3469 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3470 		pring->stats.iocb_cmd_empty++;
3471 
3472 		/* Force update of the local copy of cmdGetInx */
3473 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3474 		lpfc_sli_resume_iocb(phba, pring);
3475 
3476 		if ((pring->lpfc_sli_cmd_available))
3477 			(pring->lpfc_sli_cmd_available) (phba, pring);
3478 
3479 	}
3480 
3481 	phba->fcp_ring_in_use = 0;
3482 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3483 	return rc;
3484 }
3485 
3486 /**
3487  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3488  * @phba: Pointer to HBA context object.
3489  * @pring: Pointer to driver SLI ring object.
3490  * @rspiocbp: Pointer to driver response IOCB object.
3491  *
3492  * This function is called from the worker thread when there is a slow-path
3493  * response IOCB to process. This function chains all the response iocbs until
3494  * seeing the iocb with the LE bit set. The function will call
3495  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3496  * completion of a command iocb. The function will call the
3497  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3498  * The function frees the resources or calls the completion handler if this
3499  * iocb is an abort completion. The function returns NULL when the response
3500  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3501  * this function shall chain the iocb on to the iocb_continueq and return the
3502  * response iocb passed in.
3503  **/
3504 static struct lpfc_iocbq *
3505 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3506 			struct lpfc_iocbq *rspiocbp)
3507 {
3508 	struct lpfc_iocbq *saveq;
3509 	struct lpfc_iocbq *cmdiocbp;
3510 	struct lpfc_iocbq *next_iocb;
3511 	IOCB_t *irsp = NULL;
3512 	uint32_t free_saveq;
3513 	uint8_t iocb_cmd_type;
3514 	lpfc_iocb_type type;
3515 	unsigned long iflag;
3516 	int rc;
3517 
3518 	spin_lock_irqsave(&phba->hbalock, iflag);
3519 	/* First add the response iocb to the countinueq list */
3520 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3521 	pring->iocb_continueq_cnt++;
3522 
3523 	/* Now, determine whether the list is completed for processing */
3524 	irsp = &rspiocbp->iocb;
3525 	if (irsp->ulpLe) {
3526 		/*
3527 		 * By default, the driver expects to free all resources
3528 		 * associated with this iocb completion.
3529 		 */
3530 		free_saveq = 1;
3531 		saveq = list_get_first(&pring->iocb_continueq,
3532 				       struct lpfc_iocbq, list);
3533 		irsp = &(saveq->iocb);
3534 		list_del_init(&pring->iocb_continueq);
3535 		pring->iocb_continueq_cnt = 0;
3536 
3537 		pring->stats.iocb_rsp++;
3538 
3539 		/*
3540 		 * If resource errors reported from HBA, reduce
3541 		 * queuedepths of the SCSI device.
3542 		 */
3543 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3544 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3545 		     IOERR_NO_RESOURCES)) {
3546 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3547 			phba->lpfc_rampdown_queue_depth(phba);
3548 			spin_lock_irqsave(&phba->hbalock, iflag);
3549 		}
3550 
3551 		if (irsp->ulpStatus) {
3552 			/* Rsp ring <ringno> error: IOCB */
3553 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3554 					"0328 Rsp Ring %d error: "
3555 					"IOCB Data: "
3556 					"x%x x%x x%x x%x "
3557 					"x%x x%x x%x x%x "
3558 					"x%x x%x x%x x%x "
3559 					"x%x x%x x%x x%x\n",
3560 					pring->ringno,
3561 					irsp->un.ulpWord[0],
3562 					irsp->un.ulpWord[1],
3563 					irsp->un.ulpWord[2],
3564 					irsp->un.ulpWord[3],
3565 					irsp->un.ulpWord[4],
3566 					irsp->un.ulpWord[5],
3567 					*(((uint32_t *) irsp) + 6),
3568 					*(((uint32_t *) irsp) + 7),
3569 					*(((uint32_t *) irsp) + 8),
3570 					*(((uint32_t *) irsp) + 9),
3571 					*(((uint32_t *) irsp) + 10),
3572 					*(((uint32_t *) irsp) + 11),
3573 					*(((uint32_t *) irsp) + 12),
3574 					*(((uint32_t *) irsp) + 13),
3575 					*(((uint32_t *) irsp) + 14),
3576 					*(((uint32_t *) irsp) + 15));
3577 		}
3578 
3579 		/*
3580 		 * Fetch the IOCB command type and call the correct completion
3581 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3582 		 * get freed back to the lpfc_iocb_list by the discovery
3583 		 * kernel thread.
3584 		 */
3585 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3586 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3587 		switch (type) {
3588 		case LPFC_SOL_IOCB:
3589 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3590 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3591 			spin_lock_irqsave(&phba->hbalock, iflag);
3592 			break;
3593 
3594 		case LPFC_UNSOL_IOCB:
3595 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3596 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3597 			spin_lock_irqsave(&phba->hbalock, iflag);
3598 			if (!rc)
3599 				free_saveq = 0;
3600 			break;
3601 
3602 		case LPFC_ABORT_IOCB:
3603 			cmdiocbp = NULL;
3604 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3605 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3606 								 saveq);
3607 			if (cmdiocbp) {
3608 				/* Call the specified completion routine */
3609 				if (cmdiocbp->iocb_cmpl) {
3610 					spin_unlock_irqrestore(&phba->hbalock,
3611 							       iflag);
3612 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3613 							      saveq);
3614 					spin_lock_irqsave(&phba->hbalock,
3615 							  iflag);
3616 				} else
3617 					__lpfc_sli_release_iocbq(phba,
3618 								 cmdiocbp);
3619 			}
3620 			break;
3621 
3622 		case LPFC_UNKNOWN_IOCB:
3623 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3624 				char adaptermsg[LPFC_MAX_ADPTMSG];
3625 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3626 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3627 				       MAX_MSG_DATA);
3628 				dev_warn(&((phba->pcidev)->dev),
3629 					 "lpfc%d: %s\n",
3630 					 phba->brd_no, adaptermsg);
3631 			} else {
3632 				/* Unknown IOCB command */
3633 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3634 						"0335 Unknown IOCB "
3635 						"command Data: x%x "
3636 						"x%x x%x x%x\n",
3637 						irsp->ulpCommand,
3638 						irsp->ulpStatus,
3639 						irsp->ulpIoTag,
3640 						irsp->ulpContext);
3641 			}
3642 			break;
3643 		}
3644 
3645 		if (free_saveq) {
3646 			list_for_each_entry_safe(rspiocbp, next_iocb,
3647 						 &saveq->list, list) {
3648 				list_del_init(&rspiocbp->list);
3649 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3650 			}
3651 			__lpfc_sli_release_iocbq(phba, saveq);
3652 		}
3653 		rspiocbp = NULL;
3654 	}
3655 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3656 	return rspiocbp;
3657 }
3658 
3659 /**
3660  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3661  * @phba: Pointer to HBA context object.
3662  * @pring: Pointer to driver SLI ring object.
3663  * @mask: Host attention register mask for this ring.
3664  *
3665  * This routine wraps the actual slow_ring event process routine from the
3666  * API jump table function pointer from the lpfc_hba struct.
3667  **/
3668 void
3669 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3670 				struct lpfc_sli_ring *pring, uint32_t mask)
3671 {
3672 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3673 }
3674 
3675 /**
3676  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3677  * @phba: Pointer to HBA context object.
3678  * @pring: Pointer to driver SLI ring object.
3679  * @mask: Host attention register mask for this ring.
3680  *
3681  * This function is called from the worker thread when there is a ring event
3682  * for non-fcp rings. The caller does not hold any lock. The function will
3683  * remove each response iocb in the response ring and calls the handle
3684  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3685  **/
3686 static void
3687 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3688 				   struct lpfc_sli_ring *pring, uint32_t mask)
3689 {
3690 	struct lpfc_pgp *pgp;
3691 	IOCB_t *entry;
3692 	IOCB_t *irsp = NULL;
3693 	struct lpfc_iocbq *rspiocbp = NULL;
3694 	uint32_t portRspPut, portRspMax;
3695 	unsigned long iflag;
3696 	uint32_t status;
3697 
3698 	pgp = &phba->port_gp[pring->ringno];
3699 	spin_lock_irqsave(&phba->hbalock, iflag);
3700 	pring->stats.iocb_event++;
3701 
3702 	/*
3703 	 * The next available response entry should never exceed the maximum
3704 	 * entries.  If it does, treat it as an adapter hardware error.
3705 	 */
3706 	portRspMax = pring->sli.sli3.numRiocb;
3707 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3708 	if (portRspPut >= portRspMax) {
3709 		/*
3710 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3711 		 * rsp ring <portRspMax>
3712 		 */
3713 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3714 				"0303 Ring %d handler: portRspPut %d "
3715 				"is bigger than rsp ring %d\n",
3716 				pring->ringno, portRspPut, portRspMax);
3717 
3718 		phba->link_state = LPFC_HBA_ERROR;
3719 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3720 
3721 		phba->work_hs = HS_FFER3;
3722 		lpfc_handle_eratt(phba);
3723 
3724 		return;
3725 	}
3726 
3727 	rmb();
3728 	while (pring->sli.sli3.rspidx != portRspPut) {
3729 		/*
3730 		 * Build a completion list and call the appropriate handler.
3731 		 * The process is to get the next available response iocb, get
3732 		 * a free iocb from the list, copy the response data into the
3733 		 * free iocb, insert to the continuation list, and update the
3734 		 * next response index to slim.  This process makes response
3735 		 * iocb's in the ring available to DMA as fast as possible but
3736 		 * pays a penalty for a copy operation.  Since the iocb is
3737 		 * only 32 bytes, this penalty is considered small relative to
3738 		 * the PCI reads for register values and a slim write.  When
3739 		 * the ulpLe field is set, the entire Command has been
3740 		 * received.
3741 		 */
3742 		entry = lpfc_resp_iocb(phba, pring);
3743 
3744 		phba->last_completion_time = jiffies;
3745 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3746 		if (rspiocbp == NULL) {
3747 			printk(KERN_ERR "%s: out of buffers! Failing "
3748 			       "completion.\n", __func__);
3749 			break;
3750 		}
3751 
3752 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3753 				      phba->iocb_rsp_size);
3754 		irsp = &rspiocbp->iocb;
3755 
3756 		if (++pring->sli.sli3.rspidx >= portRspMax)
3757 			pring->sli.sli3.rspidx = 0;
3758 
3759 		if (pring->ringno == LPFC_ELS_RING) {
3760 			lpfc_debugfs_slow_ring_trc(phba,
3761 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3762 				*(((uint32_t *) irsp) + 4),
3763 				*(((uint32_t *) irsp) + 6),
3764 				*(((uint32_t *) irsp) + 7));
3765 		}
3766 
3767 		writel(pring->sli.sli3.rspidx,
3768 			&phba->host_gp[pring->ringno].rspGetInx);
3769 
3770 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3771 		/* Handle the response IOCB */
3772 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3773 		spin_lock_irqsave(&phba->hbalock, iflag);
3774 
3775 		/*
3776 		 * If the port response put pointer has not been updated, sync
3777 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3778 		 * response put pointer.
3779 		 */
3780 		if (pring->sli.sli3.rspidx == portRspPut) {
3781 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3782 		}
3783 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3784 
3785 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3786 		/* At least one response entry has been freed */
3787 		pring->stats.iocb_rsp_full++;
3788 		/* SET RxRE_RSP in Chip Att register */
3789 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3790 		writel(status, phba->CAregaddr);
3791 		readl(phba->CAregaddr); /* flush */
3792 	}
3793 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3794 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3795 		pring->stats.iocb_cmd_empty++;
3796 
3797 		/* Force update of the local copy of cmdGetInx */
3798 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3799 		lpfc_sli_resume_iocb(phba, pring);
3800 
3801 		if ((pring->lpfc_sli_cmd_available))
3802 			(pring->lpfc_sli_cmd_available) (phba, pring);
3803 
3804 	}
3805 
3806 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3807 	return;
3808 }
3809 
3810 /**
3811  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3812  * @phba: Pointer to HBA context object.
3813  * @pring: Pointer to driver SLI ring object.
3814  * @mask: Host attention register mask for this ring.
3815  *
3816  * This function is called from the worker thread when there is a pending
3817  * ELS response iocb on the driver internal slow-path response iocb worker
3818  * queue. The caller does not hold any lock. The function will remove each
3819  * response iocb from the response worker queue and calls the handle
3820  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3821  **/
3822 static void
3823 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3824 				   struct lpfc_sli_ring *pring, uint32_t mask)
3825 {
3826 	struct lpfc_iocbq *irspiocbq;
3827 	struct hbq_dmabuf *dmabuf;
3828 	struct lpfc_cq_event *cq_event;
3829 	unsigned long iflag;
3830 	int count = 0;
3831 
3832 	spin_lock_irqsave(&phba->hbalock, iflag);
3833 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3834 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3835 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3836 		/* Get the response iocb from the head of work queue */
3837 		spin_lock_irqsave(&phba->hbalock, iflag);
3838 		list_remove_head(&phba->sli4_hba.sp_queue_event,
3839 				 cq_event, struct lpfc_cq_event, list);
3840 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3841 
3842 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3843 		case CQE_CODE_COMPL_WQE:
3844 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3845 						 cq_event);
3846 			/* Translate ELS WCQE to response IOCBQ */
3847 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3848 								   irspiocbq);
3849 			if (irspiocbq)
3850 				lpfc_sli_sp_handle_rspiocb(phba, pring,
3851 							   irspiocbq);
3852 			count++;
3853 			break;
3854 		case CQE_CODE_RECEIVE:
3855 		case CQE_CODE_RECEIVE_V1:
3856 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
3857 					      cq_event);
3858 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
3859 			count++;
3860 			break;
3861 		default:
3862 			break;
3863 		}
3864 
3865 		/* Limit the number of events to 64 to avoid soft lockups */
3866 		if (count == 64)
3867 			break;
3868 	}
3869 }
3870 
3871 /**
3872  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3873  * @phba: Pointer to HBA context object.
3874  * @pring: Pointer to driver SLI ring object.
3875  *
3876  * This function aborts all iocbs in the given ring and frees all the iocb
3877  * objects in txq. This function issues an abort iocb for all the iocb commands
3878  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3879  * the return of this function. The caller is not required to hold any locks.
3880  **/
3881 void
3882 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3883 {
3884 	LIST_HEAD(completions);
3885 	struct lpfc_iocbq *iocb, *next_iocb;
3886 
3887 	if (pring->ringno == LPFC_ELS_RING) {
3888 		lpfc_fabric_abort_hba(phba);
3889 	}
3890 
3891 	/* Error everything on txq and txcmplq
3892 	 * First do the txq.
3893 	 */
3894 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3895 		spin_lock_irq(&pring->ring_lock);
3896 		list_splice_init(&pring->txq, &completions);
3897 		pring->txq_cnt = 0;
3898 		spin_unlock_irq(&pring->ring_lock);
3899 
3900 		spin_lock_irq(&phba->hbalock);
3901 		/* Next issue ABTS for everything on the txcmplq */
3902 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3903 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3904 		spin_unlock_irq(&phba->hbalock);
3905 	} else {
3906 		spin_lock_irq(&phba->hbalock);
3907 		list_splice_init(&pring->txq, &completions);
3908 		pring->txq_cnt = 0;
3909 
3910 		/* Next issue ABTS for everything on the txcmplq */
3911 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3912 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3913 		spin_unlock_irq(&phba->hbalock);
3914 	}
3915 
3916 	/* Cancel all the IOCBs from the completions list */
3917 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3918 			      IOERR_SLI_ABORTED);
3919 }
3920 
3921 /**
3922  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3923  * @phba: Pointer to HBA context object.
3924  * @pring: Pointer to driver SLI ring object.
3925  *
3926  * This function aborts all iocbs in FCP rings and frees all the iocb
3927  * objects in txq. This function issues an abort iocb for all the iocb commands
3928  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3929  * the return of this function. The caller is not required to hold any locks.
3930  **/
3931 void
3932 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3933 {
3934 	struct lpfc_sli *psli = &phba->sli;
3935 	struct lpfc_sli_ring  *pring;
3936 	uint32_t i;
3937 
3938 	/* Look on all the FCP Rings for the iotag */
3939 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3940 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
3941 			pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
3942 			lpfc_sli_abort_iocb_ring(phba, pring);
3943 		}
3944 	} else {
3945 		pring = &psli->sli3_ring[LPFC_FCP_RING];
3946 		lpfc_sli_abort_iocb_ring(phba, pring);
3947 	}
3948 }
3949 
3950 /**
3951  * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3952  * @phba: Pointer to HBA context object.
3953  *
3954  * This function flushes all iocbs in the fcp ring and frees all the iocb
3955  * objects in txq and txcmplq. This function will not issue abort iocbs
3956  * for all the iocb commands in txcmplq, they will just be returned with
3957  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3958  * slot has been permanently disabled.
3959  **/
3960 void
3961 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3962 {
3963 	LIST_HEAD(txq);
3964 	LIST_HEAD(txcmplq);
3965 	struct lpfc_sli *psli = &phba->sli;
3966 	struct lpfc_sli_ring  *pring;
3967 	uint32_t i;
3968 	struct lpfc_iocbq *piocb, *next_iocb;
3969 
3970 	spin_lock_irq(&phba->hbalock);
3971 	/* Indicate the I/O queues are flushed */
3972 	phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
3973 	spin_unlock_irq(&phba->hbalock);
3974 
3975 	/* Look on all the FCP Rings for the iotag */
3976 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3977 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
3978 			pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
3979 
3980 			spin_lock_irq(&pring->ring_lock);
3981 			/* Retrieve everything on txq */
3982 			list_splice_init(&pring->txq, &txq);
3983 			list_for_each_entry_safe(piocb, next_iocb,
3984 						 &pring->txcmplq, list)
3985 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3986 			/* Retrieve everything on the txcmplq */
3987 			list_splice_init(&pring->txcmplq, &txcmplq);
3988 			pring->txq_cnt = 0;
3989 			pring->txcmplq_cnt = 0;
3990 			spin_unlock_irq(&pring->ring_lock);
3991 
3992 			/* Flush the txq */
3993 			lpfc_sli_cancel_iocbs(phba, &txq,
3994 					      IOSTAT_LOCAL_REJECT,
3995 					      IOERR_SLI_DOWN);
3996 			/* Flush the txcmpq */
3997 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
3998 					      IOSTAT_LOCAL_REJECT,
3999 					      IOERR_SLI_DOWN);
4000 		}
4001 	} else {
4002 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4003 
4004 		spin_lock_irq(&phba->hbalock);
4005 		/* Retrieve everything on txq */
4006 		list_splice_init(&pring->txq, &txq);
4007 		list_for_each_entry_safe(piocb, next_iocb,
4008 					 &pring->txcmplq, list)
4009 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4010 		/* Retrieve everything on the txcmplq */
4011 		list_splice_init(&pring->txcmplq, &txcmplq);
4012 		pring->txq_cnt = 0;
4013 		pring->txcmplq_cnt = 0;
4014 		spin_unlock_irq(&phba->hbalock);
4015 
4016 		/* Flush the txq */
4017 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4018 				      IOERR_SLI_DOWN);
4019 		/* Flush the txcmpq */
4020 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4021 				      IOERR_SLI_DOWN);
4022 	}
4023 }
4024 
4025 /**
4026  * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings
4027  * @phba: Pointer to HBA context object.
4028  *
4029  * This function flushes all wqes in the nvme rings and frees all resources
4030  * in the txcmplq. This function does not issue abort wqes for the IO
4031  * commands in txcmplq, they will just be returned with
4032  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4033  * slot has been permanently disabled.
4034  **/
4035 void
4036 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba)
4037 {
4038 	LIST_HEAD(txcmplq);
4039 	struct lpfc_sli_ring  *pring;
4040 	uint32_t i;
4041 	struct lpfc_iocbq *piocb, *next_iocb;
4042 
4043 	if ((phba->sli_rev < LPFC_SLI_REV4) ||
4044 	    !(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
4045 		return;
4046 
4047 	/* Hint to other driver operations that a flush is in progress. */
4048 	spin_lock_irq(&phba->hbalock);
4049 	phba->hba_flag |= HBA_NVME_IOQ_FLUSH;
4050 	spin_unlock_irq(&phba->hbalock);
4051 
4052 	/* Cycle through all NVME rings and complete each IO with
4053 	 * a local driver reason code.  This is a flush so no
4054 	 * abort exchange to FW.
4055 	 */
4056 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
4057 		pring = phba->sli4_hba.hdwq[i].nvme_wq->pring;
4058 
4059 		spin_lock_irq(&pring->ring_lock);
4060 		list_for_each_entry_safe(piocb, next_iocb,
4061 					 &pring->txcmplq, list)
4062 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4063 		/* Retrieve everything on the txcmplq */
4064 		list_splice_init(&pring->txcmplq, &txcmplq);
4065 		pring->txcmplq_cnt = 0;
4066 		spin_unlock_irq(&pring->ring_lock);
4067 
4068 		/* Flush the txcmpq &&&PAE */
4069 		lpfc_sli_cancel_iocbs(phba, &txcmplq,
4070 				      IOSTAT_LOCAL_REJECT,
4071 				      IOERR_SLI_DOWN);
4072 	}
4073 }
4074 
4075 /**
4076  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4077  * @phba: Pointer to HBA context object.
4078  * @mask: Bit mask to be checked.
4079  *
4080  * This function reads the host status register and compares
4081  * with the provided bit mask to check if HBA completed
4082  * the restart. This function will wait in a loop for the
4083  * HBA to complete restart. If the HBA does not restart within
4084  * 15 iterations, the function will reset the HBA again. The
4085  * function returns 1 when HBA fail to restart otherwise returns
4086  * zero.
4087  **/
4088 static int
4089 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4090 {
4091 	uint32_t status;
4092 	int i = 0;
4093 	int retval = 0;
4094 
4095 	/* Read the HBA Host Status Register */
4096 	if (lpfc_readl(phba->HSregaddr, &status))
4097 		return 1;
4098 
4099 	/*
4100 	 * Check status register every 100ms for 5 retries, then every
4101 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4102 	 * every 2.5 sec for 4.
4103 	 * Break our of the loop if errors occurred during init.
4104 	 */
4105 	while (((status & mask) != mask) &&
4106 	       !(status & HS_FFERM) &&
4107 	       i++ < 20) {
4108 
4109 		if (i <= 5)
4110 			msleep(10);
4111 		else if (i <= 10)
4112 			msleep(500);
4113 		else
4114 			msleep(2500);
4115 
4116 		if (i == 15) {
4117 				/* Do post */
4118 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4119 			lpfc_sli_brdrestart(phba);
4120 		}
4121 		/* Read the HBA Host Status Register */
4122 		if (lpfc_readl(phba->HSregaddr, &status)) {
4123 			retval = 1;
4124 			break;
4125 		}
4126 	}
4127 
4128 	/* Check to see if any errors occurred during init */
4129 	if ((status & HS_FFERM) || (i >= 20)) {
4130 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4131 				"2751 Adapter failed to restart, "
4132 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4133 				status,
4134 				readl(phba->MBslimaddr + 0xa8),
4135 				readl(phba->MBslimaddr + 0xac));
4136 		phba->link_state = LPFC_HBA_ERROR;
4137 		retval = 1;
4138 	}
4139 
4140 	return retval;
4141 }
4142 
4143 /**
4144  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4145  * @phba: Pointer to HBA context object.
4146  * @mask: Bit mask to be checked.
4147  *
4148  * This function checks the host status register to check if HBA is
4149  * ready. This function will wait in a loop for the HBA to be ready
4150  * If the HBA is not ready , the function will will reset the HBA PCI
4151  * function again. The function returns 1 when HBA fail to be ready
4152  * otherwise returns zero.
4153  **/
4154 static int
4155 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4156 {
4157 	uint32_t status;
4158 	int retval = 0;
4159 
4160 	/* Read the HBA Host Status Register */
4161 	status = lpfc_sli4_post_status_check(phba);
4162 
4163 	if (status) {
4164 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4165 		lpfc_sli_brdrestart(phba);
4166 		status = lpfc_sli4_post_status_check(phba);
4167 	}
4168 
4169 	/* Check to see if any errors occurred during init */
4170 	if (status) {
4171 		phba->link_state = LPFC_HBA_ERROR;
4172 		retval = 1;
4173 	} else
4174 		phba->sli4_hba.intr_enable = 0;
4175 
4176 	return retval;
4177 }
4178 
4179 /**
4180  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4181  * @phba: Pointer to HBA context object.
4182  * @mask: Bit mask to be checked.
4183  *
4184  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4185  * from the API jump table function pointer from the lpfc_hba struct.
4186  **/
4187 int
4188 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4189 {
4190 	return phba->lpfc_sli_brdready(phba, mask);
4191 }
4192 
4193 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4194 
4195 /**
4196  * lpfc_reset_barrier - Make HBA ready for HBA reset
4197  * @phba: Pointer to HBA context object.
4198  *
4199  * This function is called before resetting an HBA. This function is called
4200  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4201  **/
4202 void lpfc_reset_barrier(struct lpfc_hba *phba)
4203 {
4204 	uint32_t __iomem *resp_buf;
4205 	uint32_t __iomem *mbox_buf;
4206 	volatile uint32_t mbox;
4207 	uint32_t hc_copy, ha_copy, resp_data;
4208 	int  i;
4209 	uint8_t hdrtype;
4210 
4211 	lockdep_assert_held(&phba->hbalock);
4212 
4213 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4214 	if (hdrtype != 0x80 ||
4215 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4216 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4217 		return;
4218 
4219 	/*
4220 	 * Tell the other part of the chip to suspend temporarily all
4221 	 * its DMA activity.
4222 	 */
4223 	resp_buf = phba->MBslimaddr;
4224 
4225 	/* Disable the error attention */
4226 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4227 		return;
4228 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4229 	readl(phba->HCregaddr); /* flush */
4230 	phba->link_flag |= LS_IGNORE_ERATT;
4231 
4232 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4233 		return;
4234 	if (ha_copy & HA_ERATT) {
4235 		/* Clear Chip error bit */
4236 		writel(HA_ERATT, phba->HAregaddr);
4237 		phba->pport->stopped = 1;
4238 	}
4239 
4240 	mbox = 0;
4241 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4242 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4243 
4244 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4245 	mbox_buf = phba->MBslimaddr;
4246 	writel(mbox, mbox_buf);
4247 
4248 	for (i = 0; i < 50; i++) {
4249 		if (lpfc_readl((resp_buf + 1), &resp_data))
4250 			return;
4251 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4252 			mdelay(1);
4253 		else
4254 			break;
4255 	}
4256 	resp_data = 0;
4257 	if (lpfc_readl((resp_buf + 1), &resp_data))
4258 		return;
4259 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4260 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4261 		    phba->pport->stopped)
4262 			goto restore_hc;
4263 		else
4264 			goto clear_errat;
4265 	}
4266 
4267 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4268 	resp_data = 0;
4269 	for (i = 0; i < 500; i++) {
4270 		if (lpfc_readl(resp_buf, &resp_data))
4271 			return;
4272 		if (resp_data != mbox)
4273 			mdelay(1);
4274 		else
4275 			break;
4276 	}
4277 
4278 clear_errat:
4279 
4280 	while (++i < 500) {
4281 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4282 			return;
4283 		if (!(ha_copy & HA_ERATT))
4284 			mdelay(1);
4285 		else
4286 			break;
4287 	}
4288 
4289 	if (readl(phba->HAregaddr) & HA_ERATT) {
4290 		writel(HA_ERATT, phba->HAregaddr);
4291 		phba->pport->stopped = 1;
4292 	}
4293 
4294 restore_hc:
4295 	phba->link_flag &= ~LS_IGNORE_ERATT;
4296 	writel(hc_copy, phba->HCregaddr);
4297 	readl(phba->HCregaddr); /* flush */
4298 }
4299 
4300 /**
4301  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4302  * @phba: Pointer to HBA context object.
4303  *
4304  * This function issues a kill_board mailbox command and waits for
4305  * the error attention interrupt. This function is called for stopping
4306  * the firmware processing. The caller is not required to hold any
4307  * locks. This function calls lpfc_hba_down_post function to free
4308  * any pending commands after the kill. The function will return 1 when it
4309  * fails to kill the board else will return 0.
4310  **/
4311 int
4312 lpfc_sli_brdkill(struct lpfc_hba *phba)
4313 {
4314 	struct lpfc_sli *psli;
4315 	LPFC_MBOXQ_t *pmb;
4316 	uint32_t status;
4317 	uint32_t ha_copy;
4318 	int retval;
4319 	int i = 0;
4320 
4321 	psli = &phba->sli;
4322 
4323 	/* Kill HBA */
4324 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4325 			"0329 Kill HBA Data: x%x x%x\n",
4326 			phba->pport->port_state, psli->sli_flag);
4327 
4328 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4329 	if (!pmb)
4330 		return 1;
4331 
4332 	/* Disable the error attention */
4333 	spin_lock_irq(&phba->hbalock);
4334 	if (lpfc_readl(phba->HCregaddr, &status)) {
4335 		spin_unlock_irq(&phba->hbalock);
4336 		mempool_free(pmb, phba->mbox_mem_pool);
4337 		return 1;
4338 	}
4339 	status &= ~HC_ERINT_ENA;
4340 	writel(status, phba->HCregaddr);
4341 	readl(phba->HCregaddr); /* flush */
4342 	phba->link_flag |= LS_IGNORE_ERATT;
4343 	spin_unlock_irq(&phba->hbalock);
4344 
4345 	lpfc_kill_board(phba, pmb);
4346 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4347 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4348 
4349 	if (retval != MBX_SUCCESS) {
4350 		if (retval != MBX_BUSY)
4351 			mempool_free(pmb, phba->mbox_mem_pool);
4352 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4353 				"2752 KILL_BOARD command failed retval %d\n",
4354 				retval);
4355 		spin_lock_irq(&phba->hbalock);
4356 		phba->link_flag &= ~LS_IGNORE_ERATT;
4357 		spin_unlock_irq(&phba->hbalock);
4358 		return 1;
4359 	}
4360 
4361 	spin_lock_irq(&phba->hbalock);
4362 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4363 	spin_unlock_irq(&phba->hbalock);
4364 
4365 	mempool_free(pmb, phba->mbox_mem_pool);
4366 
4367 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4368 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4369 	 * 3 seconds we still set HBA_ERROR state because the status of the
4370 	 * board is now undefined.
4371 	 */
4372 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4373 		return 1;
4374 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4375 		mdelay(100);
4376 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4377 			return 1;
4378 	}
4379 
4380 	del_timer_sync(&psli->mbox_tmo);
4381 	if (ha_copy & HA_ERATT) {
4382 		writel(HA_ERATT, phba->HAregaddr);
4383 		phba->pport->stopped = 1;
4384 	}
4385 	spin_lock_irq(&phba->hbalock);
4386 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4387 	psli->mbox_active = NULL;
4388 	phba->link_flag &= ~LS_IGNORE_ERATT;
4389 	spin_unlock_irq(&phba->hbalock);
4390 
4391 	lpfc_hba_down_post(phba);
4392 	phba->link_state = LPFC_HBA_ERROR;
4393 
4394 	return ha_copy & HA_ERATT ? 0 : 1;
4395 }
4396 
4397 /**
4398  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4399  * @phba: Pointer to HBA context object.
4400  *
4401  * This function resets the HBA by writing HC_INITFF to the control
4402  * register. After the HBA resets, this function resets all the iocb ring
4403  * indices. This function disables PCI layer parity checking during
4404  * the reset.
4405  * This function returns 0 always.
4406  * The caller is not required to hold any locks.
4407  **/
4408 int
4409 lpfc_sli_brdreset(struct lpfc_hba *phba)
4410 {
4411 	struct lpfc_sli *psli;
4412 	struct lpfc_sli_ring *pring;
4413 	uint16_t cfg_value;
4414 	int i;
4415 
4416 	psli = &phba->sli;
4417 
4418 	/* Reset HBA */
4419 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4420 			"0325 Reset HBA Data: x%x x%x\n",
4421 			(phba->pport) ? phba->pport->port_state : 0,
4422 			psli->sli_flag);
4423 
4424 	/* perform board reset */
4425 	phba->fc_eventTag = 0;
4426 	phba->link_events = 0;
4427 	if (phba->pport) {
4428 		phba->pport->fc_myDID = 0;
4429 		phba->pport->fc_prevDID = 0;
4430 	}
4431 
4432 	/* Turn off parity checking and serr during the physical reset */
4433 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4434 		return -EIO;
4435 
4436 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4437 			      (cfg_value &
4438 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4439 
4440 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4441 
4442 	/* Now toggle INITFF bit in the Host Control Register */
4443 	writel(HC_INITFF, phba->HCregaddr);
4444 	mdelay(1);
4445 	readl(phba->HCregaddr); /* flush */
4446 	writel(0, phba->HCregaddr);
4447 	readl(phba->HCregaddr); /* flush */
4448 
4449 	/* Restore PCI cmd register */
4450 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4451 
4452 	/* Initialize relevant SLI info */
4453 	for (i = 0; i < psli->num_rings; i++) {
4454 		pring = &psli->sli3_ring[i];
4455 		pring->flag = 0;
4456 		pring->sli.sli3.rspidx = 0;
4457 		pring->sli.sli3.next_cmdidx  = 0;
4458 		pring->sli.sli3.local_getidx = 0;
4459 		pring->sli.sli3.cmdidx = 0;
4460 		pring->missbufcnt = 0;
4461 	}
4462 
4463 	phba->link_state = LPFC_WARM_START;
4464 	return 0;
4465 }
4466 
4467 /**
4468  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4469  * @phba: Pointer to HBA context object.
4470  *
4471  * This function resets a SLI4 HBA. This function disables PCI layer parity
4472  * checking during resets the device. The caller is not required to hold
4473  * any locks.
4474  *
4475  * This function returns 0 always.
4476  **/
4477 int
4478 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4479 {
4480 	struct lpfc_sli *psli = &phba->sli;
4481 	uint16_t cfg_value;
4482 	int rc = 0;
4483 
4484 	/* Reset HBA */
4485 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4486 			"0295 Reset HBA Data: x%x x%x x%x\n",
4487 			phba->pport->port_state, psli->sli_flag,
4488 			phba->hba_flag);
4489 
4490 	/* perform board reset */
4491 	phba->fc_eventTag = 0;
4492 	phba->link_events = 0;
4493 	phba->pport->fc_myDID = 0;
4494 	phba->pport->fc_prevDID = 0;
4495 
4496 	spin_lock_irq(&phba->hbalock);
4497 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4498 	phba->fcf.fcf_flag = 0;
4499 	spin_unlock_irq(&phba->hbalock);
4500 
4501 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4502 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4503 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4504 		return rc;
4505 	}
4506 
4507 	/* Now physically reset the device */
4508 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4509 			"0389 Performing PCI function reset!\n");
4510 
4511 	/* Turn off parity checking and serr during the physical reset */
4512 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4513 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4514 				"3205 PCI read Config failed\n");
4515 		return -EIO;
4516 	}
4517 
4518 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4519 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4520 
4521 	/* Perform FCoE PCI function reset before freeing queue memory */
4522 	rc = lpfc_pci_function_reset(phba);
4523 
4524 	/* Restore PCI cmd register */
4525 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4526 
4527 	return rc;
4528 }
4529 
4530 /**
4531  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4532  * @phba: Pointer to HBA context object.
4533  *
4534  * This function is called in the SLI initialization code path to
4535  * restart the HBA. The caller is not required to hold any lock.
4536  * This function writes MBX_RESTART mailbox command to the SLIM and
4537  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4538  * function to free any pending commands. The function enables
4539  * POST only during the first initialization. The function returns zero.
4540  * The function does not guarantee completion of MBX_RESTART mailbox
4541  * command before the return of this function.
4542  **/
4543 static int
4544 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4545 {
4546 	MAILBOX_t *mb;
4547 	struct lpfc_sli *psli;
4548 	volatile uint32_t word0;
4549 	void __iomem *to_slim;
4550 	uint32_t hba_aer_enabled;
4551 
4552 	spin_lock_irq(&phba->hbalock);
4553 
4554 	/* Take PCIe device Advanced Error Reporting (AER) state */
4555 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4556 
4557 	psli = &phba->sli;
4558 
4559 	/* Restart HBA */
4560 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4561 			"0337 Restart HBA Data: x%x x%x\n",
4562 			(phba->pport) ? phba->pport->port_state : 0,
4563 			psli->sli_flag);
4564 
4565 	word0 = 0;
4566 	mb = (MAILBOX_t *) &word0;
4567 	mb->mbxCommand = MBX_RESTART;
4568 	mb->mbxHc = 1;
4569 
4570 	lpfc_reset_barrier(phba);
4571 
4572 	to_slim = phba->MBslimaddr;
4573 	writel(*(uint32_t *) mb, to_slim);
4574 	readl(to_slim); /* flush */
4575 
4576 	/* Only skip post after fc_ffinit is completed */
4577 	if (phba->pport && phba->pport->port_state)
4578 		word0 = 1;	/* This is really setting up word1 */
4579 	else
4580 		word0 = 0;	/* This is really setting up word1 */
4581 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4582 	writel(*(uint32_t *) mb, to_slim);
4583 	readl(to_slim); /* flush */
4584 
4585 	lpfc_sli_brdreset(phba);
4586 	if (phba->pport)
4587 		phba->pport->stopped = 0;
4588 	phba->link_state = LPFC_INIT_START;
4589 	phba->hba_flag = 0;
4590 	spin_unlock_irq(&phba->hbalock);
4591 
4592 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4593 	psli->stats_start = ktime_get_seconds();
4594 
4595 	/* Give the INITFF and Post time to settle. */
4596 	mdelay(100);
4597 
4598 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4599 	if (hba_aer_enabled)
4600 		pci_disable_pcie_error_reporting(phba->pcidev);
4601 
4602 	lpfc_hba_down_post(phba);
4603 
4604 	return 0;
4605 }
4606 
4607 /**
4608  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4609  * @phba: Pointer to HBA context object.
4610  *
4611  * This function is called in the SLI initialization code path to restart
4612  * a SLI4 HBA. The caller is not required to hold any lock.
4613  * At the end of the function, it calls lpfc_hba_down_post function to
4614  * free any pending commands.
4615  **/
4616 static int
4617 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4618 {
4619 	struct lpfc_sli *psli = &phba->sli;
4620 	uint32_t hba_aer_enabled;
4621 	int rc;
4622 
4623 	/* Restart HBA */
4624 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4625 			"0296 Restart HBA Data: x%x x%x\n",
4626 			phba->pport->port_state, psli->sli_flag);
4627 
4628 	/* Take PCIe device Advanced Error Reporting (AER) state */
4629 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4630 
4631 	rc = lpfc_sli4_brdreset(phba);
4632 	if (rc)
4633 		return rc;
4634 
4635 	spin_lock_irq(&phba->hbalock);
4636 	phba->pport->stopped = 0;
4637 	phba->link_state = LPFC_INIT_START;
4638 	phba->hba_flag = 0;
4639 	spin_unlock_irq(&phba->hbalock);
4640 
4641 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4642 	psli->stats_start = ktime_get_seconds();
4643 
4644 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4645 	if (hba_aer_enabled)
4646 		pci_disable_pcie_error_reporting(phba->pcidev);
4647 
4648 	lpfc_hba_down_post(phba);
4649 	lpfc_sli4_queue_destroy(phba);
4650 
4651 	return rc;
4652 }
4653 
4654 /**
4655  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4656  * @phba: Pointer to HBA context object.
4657  *
4658  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4659  * API jump table function pointer from the lpfc_hba struct.
4660 **/
4661 int
4662 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4663 {
4664 	return phba->lpfc_sli_brdrestart(phba);
4665 }
4666 
4667 /**
4668  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4669  * @phba: Pointer to HBA context object.
4670  *
4671  * This function is called after a HBA restart to wait for successful
4672  * restart of the HBA. Successful restart of the HBA is indicated by
4673  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4674  * iteration, the function will restart the HBA again. The function returns
4675  * zero if HBA successfully restarted else returns negative error code.
4676  **/
4677 int
4678 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4679 {
4680 	uint32_t status, i = 0;
4681 
4682 	/* Read the HBA Host Status Register */
4683 	if (lpfc_readl(phba->HSregaddr, &status))
4684 		return -EIO;
4685 
4686 	/* Check status register to see what current state is */
4687 	i = 0;
4688 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4689 
4690 		/* Check every 10ms for 10 retries, then every 100ms for 90
4691 		 * retries, then every 1 sec for 50 retires for a total of
4692 		 * ~60 seconds before reset the board again and check every
4693 		 * 1 sec for 50 retries. The up to 60 seconds before the
4694 		 * board ready is required by the Falcon FIPS zeroization
4695 		 * complete, and any reset the board in between shall cause
4696 		 * restart of zeroization, further delay the board ready.
4697 		 */
4698 		if (i++ >= 200) {
4699 			/* Adapter failed to init, timeout, status reg
4700 			   <status> */
4701 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4702 					"0436 Adapter failed to init, "
4703 					"timeout, status reg x%x, "
4704 					"FW Data: A8 x%x AC x%x\n", status,
4705 					readl(phba->MBslimaddr + 0xa8),
4706 					readl(phba->MBslimaddr + 0xac));
4707 			phba->link_state = LPFC_HBA_ERROR;
4708 			return -ETIMEDOUT;
4709 		}
4710 
4711 		/* Check to see if any errors occurred during init */
4712 		if (status & HS_FFERM) {
4713 			/* ERROR: During chipset initialization */
4714 			/* Adapter failed to init, chipset, status reg
4715 			   <status> */
4716 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4717 					"0437 Adapter failed to init, "
4718 					"chipset, status reg x%x, "
4719 					"FW Data: A8 x%x AC x%x\n", status,
4720 					readl(phba->MBslimaddr + 0xa8),
4721 					readl(phba->MBslimaddr + 0xac));
4722 			phba->link_state = LPFC_HBA_ERROR;
4723 			return -EIO;
4724 		}
4725 
4726 		if (i <= 10)
4727 			msleep(10);
4728 		else if (i <= 100)
4729 			msleep(100);
4730 		else
4731 			msleep(1000);
4732 
4733 		if (i == 150) {
4734 			/* Do post */
4735 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4736 			lpfc_sli_brdrestart(phba);
4737 		}
4738 		/* Read the HBA Host Status Register */
4739 		if (lpfc_readl(phba->HSregaddr, &status))
4740 			return -EIO;
4741 	}
4742 
4743 	/* Check to see if any errors occurred during init */
4744 	if (status & HS_FFERM) {
4745 		/* ERROR: During chipset initialization */
4746 		/* Adapter failed to init, chipset, status reg <status> */
4747 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4748 				"0438 Adapter failed to init, chipset, "
4749 				"status reg x%x, "
4750 				"FW Data: A8 x%x AC x%x\n", status,
4751 				readl(phba->MBslimaddr + 0xa8),
4752 				readl(phba->MBslimaddr + 0xac));
4753 		phba->link_state = LPFC_HBA_ERROR;
4754 		return -EIO;
4755 	}
4756 
4757 	/* Clear all interrupt enable conditions */
4758 	writel(0, phba->HCregaddr);
4759 	readl(phba->HCregaddr); /* flush */
4760 
4761 	/* setup host attn register */
4762 	writel(0xffffffff, phba->HAregaddr);
4763 	readl(phba->HAregaddr); /* flush */
4764 	return 0;
4765 }
4766 
4767 /**
4768  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4769  *
4770  * This function calculates and returns the number of HBQs required to be
4771  * configured.
4772  **/
4773 int
4774 lpfc_sli_hbq_count(void)
4775 {
4776 	return ARRAY_SIZE(lpfc_hbq_defs);
4777 }
4778 
4779 /**
4780  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4781  *
4782  * This function adds the number of hbq entries in every HBQ to get
4783  * the total number of hbq entries required for the HBA and returns
4784  * the total count.
4785  **/
4786 static int
4787 lpfc_sli_hbq_entry_count(void)
4788 {
4789 	int  hbq_count = lpfc_sli_hbq_count();
4790 	int  count = 0;
4791 	int  i;
4792 
4793 	for (i = 0; i < hbq_count; ++i)
4794 		count += lpfc_hbq_defs[i]->entry_count;
4795 	return count;
4796 }
4797 
4798 /**
4799  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4800  *
4801  * This function calculates amount of memory required for all hbq entries
4802  * to be configured and returns the total memory required.
4803  **/
4804 int
4805 lpfc_sli_hbq_size(void)
4806 {
4807 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4808 }
4809 
4810 /**
4811  * lpfc_sli_hbq_setup - configure and initialize HBQs
4812  * @phba: Pointer to HBA context object.
4813  *
4814  * This function is called during the SLI initialization to configure
4815  * all the HBQs and post buffers to the HBQ. The caller is not
4816  * required to hold any locks. This function will return zero if successful
4817  * else it will return negative error code.
4818  **/
4819 static int
4820 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4821 {
4822 	int  hbq_count = lpfc_sli_hbq_count();
4823 	LPFC_MBOXQ_t *pmb;
4824 	MAILBOX_t *pmbox;
4825 	uint32_t hbqno;
4826 	uint32_t hbq_entry_index;
4827 
4828 				/* Get a Mailbox buffer to setup mailbox
4829 				 * commands for HBA initialization
4830 				 */
4831 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4832 
4833 	if (!pmb)
4834 		return -ENOMEM;
4835 
4836 	pmbox = &pmb->u.mb;
4837 
4838 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4839 	phba->link_state = LPFC_INIT_MBX_CMDS;
4840 	phba->hbq_in_use = 1;
4841 
4842 	hbq_entry_index = 0;
4843 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4844 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4845 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4846 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4847 		phba->hbqs[hbqno].entry_count =
4848 			lpfc_hbq_defs[hbqno]->entry_count;
4849 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4850 			hbq_entry_index, pmb);
4851 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4852 
4853 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4854 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4855 			   mbxStatus <status>, ring <num> */
4856 
4857 			lpfc_printf_log(phba, KERN_ERR,
4858 					LOG_SLI | LOG_VPORT,
4859 					"1805 Adapter failed to init. "
4860 					"Data: x%x x%x x%x\n",
4861 					pmbox->mbxCommand,
4862 					pmbox->mbxStatus, hbqno);
4863 
4864 			phba->link_state = LPFC_HBA_ERROR;
4865 			mempool_free(pmb, phba->mbox_mem_pool);
4866 			return -ENXIO;
4867 		}
4868 	}
4869 	phba->hbq_count = hbq_count;
4870 
4871 	mempool_free(pmb, phba->mbox_mem_pool);
4872 
4873 	/* Initially populate or replenish the HBQs */
4874 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4875 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4876 	return 0;
4877 }
4878 
4879 /**
4880  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4881  * @phba: Pointer to HBA context object.
4882  *
4883  * This function is called during the SLI initialization to configure
4884  * all the HBQs and post buffers to the HBQ. The caller is not
4885  * required to hold any locks. This function will return zero if successful
4886  * else it will return negative error code.
4887  **/
4888 static int
4889 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4890 {
4891 	phba->hbq_in_use = 1;
4892 	phba->hbqs[LPFC_ELS_HBQ].entry_count =
4893 		lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4894 	phba->hbq_count = 1;
4895 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4896 	/* Initially populate or replenish the HBQs */
4897 	return 0;
4898 }
4899 
4900 /**
4901  * lpfc_sli_config_port - Issue config port mailbox command
4902  * @phba: Pointer to HBA context object.
4903  * @sli_mode: sli mode - 2/3
4904  *
4905  * This function is called by the sli initialization code path
4906  * to issue config_port mailbox command. This function restarts the
4907  * HBA firmware and issues a config_port mailbox command to configure
4908  * the SLI interface in the sli mode specified by sli_mode
4909  * variable. The caller is not required to hold any locks.
4910  * The function returns 0 if successful, else returns negative error
4911  * code.
4912  **/
4913 int
4914 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4915 {
4916 	LPFC_MBOXQ_t *pmb;
4917 	uint32_t resetcount = 0, rc = 0, done = 0;
4918 
4919 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4920 	if (!pmb) {
4921 		phba->link_state = LPFC_HBA_ERROR;
4922 		return -ENOMEM;
4923 	}
4924 
4925 	phba->sli_rev = sli_mode;
4926 	while (resetcount < 2 && !done) {
4927 		spin_lock_irq(&phba->hbalock);
4928 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4929 		spin_unlock_irq(&phba->hbalock);
4930 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4931 		lpfc_sli_brdrestart(phba);
4932 		rc = lpfc_sli_chipset_init(phba);
4933 		if (rc)
4934 			break;
4935 
4936 		spin_lock_irq(&phba->hbalock);
4937 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4938 		spin_unlock_irq(&phba->hbalock);
4939 		resetcount++;
4940 
4941 		/* Call pre CONFIG_PORT mailbox command initialization.  A
4942 		 * value of 0 means the call was successful.  Any other
4943 		 * nonzero value is a failure, but if ERESTART is returned,
4944 		 * the driver may reset the HBA and try again.
4945 		 */
4946 		rc = lpfc_config_port_prep(phba);
4947 		if (rc == -ERESTART) {
4948 			phba->link_state = LPFC_LINK_UNKNOWN;
4949 			continue;
4950 		} else if (rc)
4951 			break;
4952 
4953 		phba->link_state = LPFC_INIT_MBX_CMDS;
4954 		lpfc_config_port(phba, pmb);
4955 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4956 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4957 					LPFC_SLI3_HBQ_ENABLED |
4958 					LPFC_SLI3_CRP_ENABLED |
4959 					LPFC_SLI3_DSS_ENABLED);
4960 		if (rc != MBX_SUCCESS) {
4961 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4962 				"0442 Adapter failed to init, mbxCmd x%x "
4963 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4964 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4965 			spin_lock_irq(&phba->hbalock);
4966 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4967 			spin_unlock_irq(&phba->hbalock);
4968 			rc = -ENXIO;
4969 		} else {
4970 			/* Allow asynchronous mailbox command to go through */
4971 			spin_lock_irq(&phba->hbalock);
4972 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4973 			spin_unlock_irq(&phba->hbalock);
4974 			done = 1;
4975 
4976 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4977 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
4978 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4979 					"3110 Port did not grant ASABT\n");
4980 		}
4981 	}
4982 	if (!done) {
4983 		rc = -EINVAL;
4984 		goto do_prep_failed;
4985 	}
4986 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4987 		if (!pmb->u.mb.un.varCfgPort.cMA) {
4988 			rc = -ENXIO;
4989 			goto do_prep_failed;
4990 		}
4991 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
4992 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
4993 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
4994 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
4995 				phba->max_vpi : phba->max_vports;
4996 
4997 		} else
4998 			phba->max_vpi = 0;
4999 		phba->fips_level = 0;
5000 		phba->fips_spec_rev = 0;
5001 		if (pmb->u.mb.un.varCfgPort.gdss) {
5002 			phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
5003 			phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
5004 			phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
5005 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5006 					"2850 Security Crypto Active. FIPS x%d "
5007 					"(Spec Rev: x%d)",
5008 					phba->fips_level, phba->fips_spec_rev);
5009 		}
5010 		if (pmb->u.mb.un.varCfgPort.sec_err) {
5011 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5012 					"2856 Config Port Security Crypto "
5013 					"Error: x%x ",
5014 					pmb->u.mb.un.varCfgPort.sec_err);
5015 		}
5016 		if (pmb->u.mb.un.varCfgPort.gerbm)
5017 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5018 		if (pmb->u.mb.un.varCfgPort.gcrp)
5019 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5020 
5021 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5022 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5023 
5024 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5025 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5026 				phba->cfg_enable_bg = 0;
5027 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5028 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5029 						"0443 Adapter did not grant "
5030 						"BlockGuard\n");
5031 			}
5032 		}
5033 	} else {
5034 		phba->hbq_get = NULL;
5035 		phba->port_gp = phba->mbox->us.s2.port;
5036 		phba->max_vpi = 0;
5037 	}
5038 do_prep_failed:
5039 	mempool_free(pmb, phba->mbox_mem_pool);
5040 	return rc;
5041 }
5042 
5043 
5044 /**
5045  * lpfc_sli_hba_setup - SLI initialization function
5046  * @phba: Pointer to HBA context object.
5047  *
5048  * This function is the main SLI initialization function. This function
5049  * is called by the HBA initialization code, HBA reset code and HBA
5050  * error attention handler code. Caller is not required to hold any
5051  * locks. This function issues config_port mailbox command to configure
5052  * the SLI, setup iocb rings and HBQ rings. In the end the function
5053  * calls the config_port_post function to issue init_link mailbox
5054  * command and to start the discovery. The function will return zero
5055  * if successful, else it will return negative error code.
5056  **/
5057 int
5058 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5059 {
5060 	uint32_t rc;
5061 	int  mode = 3, i;
5062 	int longs;
5063 
5064 	switch (phba->cfg_sli_mode) {
5065 	case 2:
5066 		if (phba->cfg_enable_npiv) {
5067 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5068 				"1824 NPIV enabled: Override sli_mode "
5069 				"parameter (%d) to auto (0).\n",
5070 				phba->cfg_sli_mode);
5071 			break;
5072 		}
5073 		mode = 2;
5074 		break;
5075 	case 0:
5076 	case 3:
5077 		break;
5078 	default:
5079 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5080 				"1819 Unrecognized sli_mode parameter: %d.\n",
5081 				phba->cfg_sli_mode);
5082 
5083 		break;
5084 	}
5085 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5086 
5087 	rc = lpfc_sli_config_port(phba, mode);
5088 
5089 	if (rc && phba->cfg_sli_mode == 3)
5090 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5091 				"1820 Unable to select SLI-3.  "
5092 				"Not supported by adapter.\n");
5093 	if (rc && mode != 2)
5094 		rc = lpfc_sli_config_port(phba, 2);
5095 	else if (rc && mode == 2)
5096 		rc = lpfc_sli_config_port(phba, 3);
5097 	if (rc)
5098 		goto lpfc_sli_hba_setup_error;
5099 
5100 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5101 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5102 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5103 		if (!rc) {
5104 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5105 					"2709 This device supports "
5106 					"Advanced Error Reporting (AER)\n");
5107 			spin_lock_irq(&phba->hbalock);
5108 			phba->hba_flag |= HBA_AER_ENABLED;
5109 			spin_unlock_irq(&phba->hbalock);
5110 		} else {
5111 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5112 					"2708 This device does not support "
5113 					"Advanced Error Reporting (AER): %d\n",
5114 					rc);
5115 			phba->cfg_aer_support = 0;
5116 		}
5117 	}
5118 
5119 	if (phba->sli_rev == 3) {
5120 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5121 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5122 	} else {
5123 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5124 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5125 		phba->sli3_options = 0;
5126 	}
5127 
5128 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5129 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5130 			phba->sli_rev, phba->max_vpi);
5131 	rc = lpfc_sli_ring_map(phba);
5132 
5133 	if (rc)
5134 		goto lpfc_sli_hba_setup_error;
5135 
5136 	/* Initialize VPIs. */
5137 	if (phba->sli_rev == LPFC_SLI_REV3) {
5138 		/*
5139 		 * The VPI bitmask and physical ID array are allocated
5140 		 * and initialized once only - at driver load.  A port
5141 		 * reset doesn't need to reinitialize this memory.
5142 		 */
5143 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5144 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5145 			phba->vpi_bmask = kcalloc(longs,
5146 						  sizeof(unsigned long),
5147 						  GFP_KERNEL);
5148 			if (!phba->vpi_bmask) {
5149 				rc = -ENOMEM;
5150 				goto lpfc_sli_hba_setup_error;
5151 			}
5152 
5153 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5154 						sizeof(uint16_t),
5155 						GFP_KERNEL);
5156 			if (!phba->vpi_ids) {
5157 				kfree(phba->vpi_bmask);
5158 				rc = -ENOMEM;
5159 				goto lpfc_sli_hba_setup_error;
5160 			}
5161 			for (i = 0; i < phba->max_vpi; i++)
5162 				phba->vpi_ids[i] = i;
5163 		}
5164 	}
5165 
5166 	/* Init HBQs */
5167 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5168 		rc = lpfc_sli_hbq_setup(phba);
5169 		if (rc)
5170 			goto lpfc_sli_hba_setup_error;
5171 	}
5172 	spin_lock_irq(&phba->hbalock);
5173 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5174 	spin_unlock_irq(&phba->hbalock);
5175 
5176 	rc = lpfc_config_port_post(phba);
5177 	if (rc)
5178 		goto lpfc_sli_hba_setup_error;
5179 
5180 	return rc;
5181 
5182 lpfc_sli_hba_setup_error:
5183 	phba->link_state = LPFC_HBA_ERROR;
5184 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5185 			"0445 Firmware initialization failed\n");
5186 	return rc;
5187 }
5188 
5189 /**
5190  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5191  * @phba: Pointer to HBA context object.
5192  * @mboxq: mailbox pointer.
5193  * This function issue a dump mailbox command to read config region
5194  * 23 and parse the records in the region and populate driver
5195  * data structure.
5196  **/
5197 static int
5198 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5199 {
5200 	LPFC_MBOXQ_t *mboxq;
5201 	struct lpfc_dmabuf *mp;
5202 	struct lpfc_mqe *mqe;
5203 	uint32_t data_length;
5204 	int rc;
5205 
5206 	/* Program the default value of vlan_id and fc_map */
5207 	phba->valid_vlan = 0;
5208 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5209 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5210 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5211 
5212 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5213 	if (!mboxq)
5214 		return -ENOMEM;
5215 
5216 	mqe = &mboxq->u.mqe;
5217 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5218 		rc = -ENOMEM;
5219 		goto out_free_mboxq;
5220 	}
5221 
5222 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5223 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5224 
5225 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5226 			"(%d):2571 Mailbox cmd x%x Status x%x "
5227 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5228 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5229 			"CQ: x%x x%x x%x x%x\n",
5230 			mboxq->vport ? mboxq->vport->vpi : 0,
5231 			bf_get(lpfc_mqe_command, mqe),
5232 			bf_get(lpfc_mqe_status, mqe),
5233 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5234 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5235 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5236 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5237 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5238 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5239 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5240 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5241 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5242 			mboxq->mcqe.word0,
5243 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5244 			mboxq->mcqe.trailer);
5245 
5246 	if (rc) {
5247 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5248 		kfree(mp);
5249 		rc = -EIO;
5250 		goto out_free_mboxq;
5251 	}
5252 	data_length = mqe->un.mb_words[5];
5253 	if (data_length > DMP_RGN23_SIZE) {
5254 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5255 		kfree(mp);
5256 		rc = -EIO;
5257 		goto out_free_mboxq;
5258 	}
5259 
5260 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5261 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5262 	kfree(mp);
5263 	rc = 0;
5264 
5265 out_free_mboxq:
5266 	mempool_free(mboxq, phba->mbox_mem_pool);
5267 	return rc;
5268 }
5269 
5270 /**
5271  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5272  * @phba: pointer to lpfc hba data structure.
5273  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5274  * @vpd: pointer to the memory to hold resulting port vpd data.
5275  * @vpd_size: On input, the number of bytes allocated to @vpd.
5276  *	      On output, the number of data bytes in @vpd.
5277  *
5278  * This routine executes a READ_REV SLI4 mailbox command.  In
5279  * addition, this routine gets the port vpd data.
5280  *
5281  * Return codes
5282  * 	0 - successful
5283  * 	-ENOMEM - could not allocated memory.
5284  **/
5285 static int
5286 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5287 		    uint8_t *vpd, uint32_t *vpd_size)
5288 {
5289 	int rc = 0;
5290 	uint32_t dma_size;
5291 	struct lpfc_dmabuf *dmabuf;
5292 	struct lpfc_mqe *mqe;
5293 
5294 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5295 	if (!dmabuf)
5296 		return -ENOMEM;
5297 
5298 	/*
5299 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5300 	 * mailbox command.
5301 	 */
5302 	dma_size = *vpd_size;
5303 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5304 					  &dmabuf->phys, GFP_KERNEL);
5305 	if (!dmabuf->virt) {
5306 		kfree(dmabuf);
5307 		return -ENOMEM;
5308 	}
5309 
5310 	/*
5311 	 * The SLI4 implementation of READ_REV conflicts at word1,
5312 	 * bits 31:16 and SLI4 adds vpd functionality not present
5313 	 * in SLI3.  This code corrects the conflicts.
5314 	 */
5315 	lpfc_read_rev(phba, mboxq);
5316 	mqe = &mboxq->u.mqe;
5317 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5318 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5319 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5320 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5321 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5322 
5323 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5324 	if (rc) {
5325 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5326 				  dmabuf->virt, dmabuf->phys);
5327 		kfree(dmabuf);
5328 		return -EIO;
5329 	}
5330 
5331 	/*
5332 	 * The available vpd length cannot be bigger than the
5333 	 * DMA buffer passed to the port.  Catch the less than
5334 	 * case and update the caller's size.
5335 	 */
5336 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5337 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5338 
5339 	memcpy(vpd, dmabuf->virt, *vpd_size);
5340 
5341 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5342 			  dmabuf->virt, dmabuf->phys);
5343 	kfree(dmabuf);
5344 	return 0;
5345 }
5346 
5347 /**
5348  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5349  * @phba: pointer to lpfc hba data structure.
5350  *
5351  * This routine retrieves SLI4 device physical port name this PCI function
5352  * is attached to.
5353  *
5354  * Return codes
5355  *      0 - successful
5356  *      otherwise - failed to retrieve controller attributes
5357  **/
5358 static int
5359 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5360 {
5361 	LPFC_MBOXQ_t *mboxq;
5362 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5363 	struct lpfc_controller_attribute *cntl_attr;
5364 	void *virtaddr = NULL;
5365 	uint32_t alloclen, reqlen;
5366 	uint32_t shdr_status, shdr_add_status;
5367 	union lpfc_sli4_cfg_shdr *shdr;
5368 	int rc;
5369 
5370 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5371 	if (!mboxq)
5372 		return -ENOMEM;
5373 
5374 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5375 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5376 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5377 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5378 			LPFC_SLI4_MBX_NEMBED);
5379 
5380 	if (alloclen < reqlen) {
5381 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5382 				"3084 Allocated DMA memory size (%d) is "
5383 				"less than the requested DMA memory size "
5384 				"(%d)\n", alloclen, reqlen);
5385 		rc = -ENOMEM;
5386 		goto out_free_mboxq;
5387 	}
5388 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5389 	virtaddr = mboxq->sge_array->addr[0];
5390 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5391 	shdr = &mbx_cntl_attr->cfg_shdr;
5392 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5393 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5394 	if (shdr_status || shdr_add_status || rc) {
5395 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5396 				"3085 Mailbox x%x (x%x/x%x) failed, "
5397 				"rc:x%x, status:x%x, add_status:x%x\n",
5398 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5399 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5400 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5401 				rc, shdr_status, shdr_add_status);
5402 		rc = -ENXIO;
5403 		goto out_free_mboxq;
5404 	}
5405 
5406 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5407 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5408 	phba->sli4_hba.lnk_info.lnk_tp =
5409 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5410 	phba->sli4_hba.lnk_info.lnk_no =
5411 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5412 
5413 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5414 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5415 		sizeof(phba->BIOSVersion));
5416 
5417 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5418 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5419 			phba->sli4_hba.lnk_info.lnk_tp,
5420 			phba->sli4_hba.lnk_info.lnk_no,
5421 			phba->BIOSVersion);
5422 out_free_mboxq:
5423 	if (rc != MBX_TIMEOUT) {
5424 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5425 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5426 		else
5427 			mempool_free(mboxq, phba->mbox_mem_pool);
5428 	}
5429 	return rc;
5430 }
5431 
5432 /**
5433  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5434  * @phba: pointer to lpfc hba data structure.
5435  *
5436  * This routine retrieves SLI4 device physical port name this PCI function
5437  * is attached to.
5438  *
5439  * Return codes
5440  *      0 - successful
5441  *      otherwise - failed to retrieve physical port name
5442  **/
5443 static int
5444 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5445 {
5446 	LPFC_MBOXQ_t *mboxq;
5447 	struct lpfc_mbx_get_port_name *get_port_name;
5448 	uint32_t shdr_status, shdr_add_status;
5449 	union lpfc_sli4_cfg_shdr *shdr;
5450 	char cport_name = 0;
5451 	int rc;
5452 
5453 	/* We assume nothing at this point */
5454 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5455 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5456 
5457 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5458 	if (!mboxq)
5459 		return -ENOMEM;
5460 	/* obtain link type and link number via READ_CONFIG */
5461 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5462 	lpfc_sli4_read_config(phba);
5463 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5464 		goto retrieve_ppname;
5465 
5466 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5467 	rc = lpfc_sli4_get_ctl_attr(phba);
5468 	if (rc)
5469 		goto out_free_mboxq;
5470 
5471 retrieve_ppname:
5472 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5473 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5474 		sizeof(struct lpfc_mbx_get_port_name) -
5475 		sizeof(struct lpfc_sli4_cfg_mhdr),
5476 		LPFC_SLI4_MBX_EMBED);
5477 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5478 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5479 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5480 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5481 		phba->sli4_hba.lnk_info.lnk_tp);
5482 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5483 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5484 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5485 	if (shdr_status || shdr_add_status || rc) {
5486 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5487 				"3087 Mailbox x%x (x%x/x%x) failed: "
5488 				"rc:x%x, status:x%x, add_status:x%x\n",
5489 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5490 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5491 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5492 				rc, shdr_status, shdr_add_status);
5493 		rc = -ENXIO;
5494 		goto out_free_mboxq;
5495 	}
5496 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5497 	case LPFC_LINK_NUMBER_0:
5498 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5499 				&get_port_name->u.response);
5500 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5501 		break;
5502 	case LPFC_LINK_NUMBER_1:
5503 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5504 				&get_port_name->u.response);
5505 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5506 		break;
5507 	case LPFC_LINK_NUMBER_2:
5508 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5509 				&get_port_name->u.response);
5510 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5511 		break;
5512 	case LPFC_LINK_NUMBER_3:
5513 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5514 				&get_port_name->u.response);
5515 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5516 		break;
5517 	default:
5518 		break;
5519 	}
5520 
5521 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5522 		phba->Port[0] = cport_name;
5523 		phba->Port[1] = '\0';
5524 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5525 				"3091 SLI get port name: %s\n", phba->Port);
5526 	}
5527 
5528 out_free_mboxq:
5529 	if (rc != MBX_TIMEOUT) {
5530 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5531 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5532 		else
5533 			mempool_free(mboxq, phba->mbox_mem_pool);
5534 	}
5535 	return rc;
5536 }
5537 
5538 /**
5539  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5540  * @phba: pointer to lpfc hba data structure.
5541  *
5542  * This routine is called to explicitly arm the SLI4 device's completion and
5543  * event queues
5544  **/
5545 static void
5546 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5547 {
5548 	int qidx;
5549 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5550 	struct lpfc_sli4_hdw_queue *qp;
5551 
5552 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5553 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5554 	if (sli4_hba->nvmels_cq)
5555 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5556 					   LPFC_QUEUE_REARM);
5557 
5558 	qp = sli4_hba->hdwq;
5559 	if (sli4_hba->hdwq) {
5560 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5561 			sli4_hba->sli4_write_cq_db(phba, qp[qidx].fcp_cq, 0,
5562 						   LPFC_QUEUE_REARM);
5563 			sli4_hba->sli4_write_cq_db(phba, qp[qidx].nvme_cq, 0,
5564 						   LPFC_QUEUE_REARM);
5565 		}
5566 
5567 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++)
5568 			sli4_hba->sli4_write_eq_db(phba, qp[qidx].hba_eq,
5569 						0, LPFC_QUEUE_REARM);
5570 	}
5571 
5572 	if (phba->nvmet_support) {
5573 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5574 			sli4_hba->sli4_write_cq_db(phba,
5575 				sli4_hba->nvmet_cqset[qidx], 0,
5576 				LPFC_QUEUE_REARM);
5577 		}
5578 	}
5579 }
5580 
5581 /**
5582  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5583  * @phba: Pointer to HBA context object.
5584  * @type: The resource extent type.
5585  * @extnt_count: buffer to hold port available extent count.
5586  * @extnt_size: buffer to hold element count per extent.
5587  *
5588  * This function calls the port and retrievs the number of available
5589  * extents and their size for a particular extent type.
5590  *
5591  * Returns: 0 if successful.  Nonzero otherwise.
5592  **/
5593 int
5594 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5595 			       uint16_t *extnt_count, uint16_t *extnt_size)
5596 {
5597 	int rc = 0;
5598 	uint32_t length;
5599 	uint32_t mbox_tmo;
5600 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5601 	LPFC_MBOXQ_t *mbox;
5602 
5603 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5604 	if (!mbox)
5605 		return -ENOMEM;
5606 
5607 	/* Find out how many extents are available for this resource type */
5608 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5609 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5610 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5611 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5612 			 length, LPFC_SLI4_MBX_EMBED);
5613 
5614 	/* Send an extents count of 0 - the GET doesn't use it. */
5615 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5616 					LPFC_SLI4_MBX_EMBED);
5617 	if (unlikely(rc)) {
5618 		rc = -EIO;
5619 		goto err_exit;
5620 	}
5621 
5622 	if (!phba->sli4_hba.intr_enable)
5623 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5624 	else {
5625 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5626 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5627 	}
5628 	if (unlikely(rc)) {
5629 		rc = -EIO;
5630 		goto err_exit;
5631 	}
5632 
5633 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5634 	if (bf_get(lpfc_mbox_hdr_status,
5635 		   &rsrc_info->header.cfg_shdr.response)) {
5636 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5637 				"2930 Failed to get resource extents "
5638 				"Status 0x%x Add'l Status 0x%x\n",
5639 				bf_get(lpfc_mbox_hdr_status,
5640 				       &rsrc_info->header.cfg_shdr.response),
5641 				bf_get(lpfc_mbox_hdr_add_status,
5642 				       &rsrc_info->header.cfg_shdr.response));
5643 		rc = -EIO;
5644 		goto err_exit;
5645 	}
5646 
5647 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5648 			      &rsrc_info->u.rsp);
5649 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5650 			     &rsrc_info->u.rsp);
5651 
5652 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5653 			"3162 Retrieved extents type-%d from port: count:%d, "
5654 			"size:%d\n", type, *extnt_count, *extnt_size);
5655 
5656 err_exit:
5657 	mempool_free(mbox, phba->mbox_mem_pool);
5658 	return rc;
5659 }
5660 
5661 /**
5662  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5663  * @phba: Pointer to HBA context object.
5664  * @type: The extent type to check.
5665  *
5666  * This function reads the current available extents from the port and checks
5667  * if the extent count or extent size has changed since the last access.
5668  * Callers use this routine post port reset to understand if there is a
5669  * extent reprovisioning requirement.
5670  *
5671  * Returns:
5672  *   -Error: error indicates problem.
5673  *   1: Extent count or size has changed.
5674  *   0: No changes.
5675  **/
5676 static int
5677 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5678 {
5679 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5680 	uint16_t size_diff, rsrc_ext_size;
5681 	int rc = 0;
5682 	struct lpfc_rsrc_blks *rsrc_entry;
5683 	struct list_head *rsrc_blk_list = NULL;
5684 
5685 	size_diff = 0;
5686 	curr_ext_cnt = 0;
5687 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5688 					    &rsrc_ext_cnt,
5689 					    &rsrc_ext_size);
5690 	if (unlikely(rc))
5691 		return -EIO;
5692 
5693 	switch (type) {
5694 	case LPFC_RSC_TYPE_FCOE_RPI:
5695 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5696 		break;
5697 	case LPFC_RSC_TYPE_FCOE_VPI:
5698 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5699 		break;
5700 	case LPFC_RSC_TYPE_FCOE_XRI:
5701 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5702 		break;
5703 	case LPFC_RSC_TYPE_FCOE_VFI:
5704 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5705 		break;
5706 	default:
5707 		break;
5708 	}
5709 
5710 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5711 		curr_ext_cnt++;
5712 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5713 			size_diff++;
5714 	}
5715 
5716 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5717 		rc = 1;
5718 
5719 	return rc;
5720 }
5721 
5722 /**
5723  * lpfc_sli4_cfg_post_extnts -
5724  * @phba: Pointer to HBA context object.
5725  * @extnt_cnt - number of available extents.
5726  * @type - the extent type (rpi, xri, vfi, vpi).
5727  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5728  * @mbox - pointer to the caller's allocated mailbox structure.
5729  *
5730  * This function executes the extents allocation request.  It also
5731  * takes care of the amount of memory needed to allocate or get the
5732  * allocated extents. It is the caller's responsibility to evaluate
5733  * the response.
5734  *
5735  * Returns:
5736  *   -Error:  Error value describes the condition found.
5737  *   0: if successful
5738  **/
5739 static int
5740 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5741 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5742 {
5743 	int rc = 0;
5744 	uint32_t req_len;
5745 	uint32_t emb_len;
5746 	uint32_t alloc_len, mbox_tmo;
5747 
5748 	/* Calculate the total requested length of the dma memory */
5749 	req_len = extnt_cnt * sizeof(uint16_t);
5750 
5751 	/*
5752 	 * Calculate the size of an embedded mailbox.  The uint32_t
5753 	 * accounts for extents-specific word.
5754 	 */
5755 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5756 		sizeof(uint32_t);
5757 
5758 	/*
5759 	 * Presume the allocation and response will fit into an embedded
5760 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5761 	 */
5762 	*emb = LPFC_SLI4_MBX_EMBED;
5763 	if (req_len > emb_len) {
5764 		req_len = extnt_cnt * sizeof(uint16_t) +
5765 			sizeof(union lpfc_sli4_cfg_shdr) +
5766 			sizeof(uint32_t);
5767 		*emb = LPFC_SLI4_MBX_NEMBED;
5768 	}
5769 
5770 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5771 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5772 				     req_len, *emb);
5773 	if (alloc_len < req_len) {
5774 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5775 			"2982 Allocated DMA memory size (x%x) is "
5776 			"less than the requested DMA memory "
5777 			"size (x%x)\n", alloc_len, req_len);
5778 		return -ENOMEM;
5779 	}
5780 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5781 	if (unlikely(rc))
5782 		return -EIO;
5783 
5784 	if (!phba->sli4_hba.intr_enable)
5785 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5786 	else {
5787 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5788 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5789 	}
5790 
5791 	if (unlikely(rc))
5792 		rc = -EIO;
5793 	return rc;
5794 }
5795 
5796 /**
5797  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5798  * @phba: Pointer to HBA context object.
5799  * @type:  The resource extent type to allocate.
5800  *
5801  * This function allocates the number of elements for the specified
5802  * resource type.
5803  **/
5804 static int
5805 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5806 {
5807 	bool emb = false;
5808 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5809 	uint16_t rsrc_id, rsrc_start, j, k;
5810 	uint16_t *ids;
5811 	int i, rc;
5812 	unsigned long longs;
5813 	unsigned long *bmask;
5814 	struct lpfc_rsrc_blks *rsrc_blks;
5815 	LPFC_MBOXQ_t *mbox;
5816 	uint32_t length;
5817 	struct lpfc_id_range *id_array = NULL;
5818 	void *virtaddr = NULL;
5819 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5820 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5821 	struct list_head *ext_blk_list;
5822 
5823 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5824 					    &rsrc_cnt,
5825 					    &rsrc_size);
5826 	if (unlikely(rc))
5827 		return -EIO;
5828 
5829 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5830 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5831 			"3009 No available Resource Extents "
5832 			"for resource type 0x%x: Count: 0x%x, "
5833 			"Size 0x%x\n", type, rsrc_cnt,
5834 			rsrc_size);
5835 		return -ENOMEM;
5836 	}
5837 
5838 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5839 			"2903 Post resource extents type-0x%x: "
5840 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5841 
5842 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5843 	if (!mbox)
5844 		return -ENOMEM;
5845 
5846 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5847 	if (unlikely(rc)) {
5848 		rc = -EIO;
5849 		goto err_exit;
5850 	}
5851 
5852 	/*
5853 	 * Figure out where the response is located.  Then get local pointers
5854 	 * to the response data.  The port does not guarantee to respond to
5855 	 * all extents counts request so update the local variable with the
5856 	 * allocated count from the port.
5857 	 */
5858 	if (emb == LPFC_SLI4_MBX_EMBED) {
5859 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5860 		id_array = &rsrc_ext->u.rsp.id[0];
5861 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5862 	} else {
5863 		virtaddr = mbox->sge_array->addr[0];
5864 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5865 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5866 		id_array = &n_rsrc->id;
5867 	}
5868 
5869 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5870 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5871 
5872 	/*
5873 	 * Based on the resource size and count, correct the base and max
5874 	 * resource values.
5875 	 */
5876 	length = sizeof(struct lpfc_rsrc_blks);
5877 	switch (type) {
5878 	case LPFC_RSC_TYPE_FCOE_RPI:
5879 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
5880 						   sizeof(unsigned long),
5881 						   GFP_KERNEL);
5882 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5883 			rc = -ENOMEM;
5884 			goto err_exit;
5885 		}
5886 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5887 						 sizeof(uint16_t),
5888 						 GFP_KERNEL);
5889 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
5890 			kfree(phba->sli4_hba.rpi_bmask);
5891 			rc = -ENOMEM;
5892 			goto err_exit;
5893 		}
5894 
5895 		/*
5896 		 * The next_rpi was initialized with the maximum available
5897 		 * count but the port may allocate a smaller number.  Catch
5898 		 * that case and update the next_rpi.
5899 		 */
5900 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
5901 
5902 		/* Initialize local ptrs for common extent processing later. */
5903 		bmask = phba->sli4_hba.rpi_bmask;
5904 		ids = phba->sli4_hba.rpi_ids;
5905 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5906 		break;
5907 	case LPFC_RSC_TYPE_FCOE_VPI:
5908 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5909 					  GFP_KERNEL);
5910 		if (unlikely(!phba->vpi_bmask)) {
5911 			rc = -ENOMEM;
5912 			goto err_exit;
5913 		}
5914 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5915 					 GFP_KERNEL);
5916 		if (unlikely(!phba->vpi_ids)) {
5917 			kfree(phba->vpi_bmask);
5918 			rc = -ENOMEM;
5919 			goto err_exit;
5920 		}
5921 
5922 		/* Initialize local ptrs for common extent processing later. */
5923 		bmask = phba->vpi_bmask;
5924 		ids = phba->vpi_ids;
5925 		ext_blk_list = &phba->lpfc_vpi_blk_list;
5926 		break;
5927 	case LPFC_RSC_TYPE_FCOE_XRI:
5928 		phba->sli4_hba.xri_bmask = kcalloc(longs,
5929 						   sizeof(unsigned long),
5930 						   GFP_KERNEL);
5931 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
5932 			rc = -ENOMEM;
5933 			goto err_exit;
5934 		}
5935 		phba->sli4_hba.max_cfg_param.xri_used = 0;
5936 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5937 						 sizeof(uint16_t),
5938 						 GFP_KERNEL);
5939 		if (unlikely(!phba->sli4_hba.xri_ids)) {
5940 			kfree(phba->sli4_hba.xri_bmask);
5941 			rc = -ENOMEM;
5942 			goto err_exit;
5943 		}
5944 
5945 		/* Initialize local ptrs for common extent processing later. */
5946 		bmask = phba->sli4_hba.xri_bmask;
5947 		ids = phba->sli4_hba.xri_ids;
5948 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5949 		break;
5950 	case LPFC_RSC_TYPE_FCOE_VFI:
5951 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
5952 						   sizeof(unsigned long),
5953 						   GFP_KERNEL);
5954 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5955 			rc = -ENOMEM;
5956 			goto err_exit;
5957 		}
5958 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
5959 						 sizeof(uint16_t),
5960 						 GFP_KERNEL);
5961 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
5962 			kfree(phba->sli4_hba.vfi_bmask);
5963 			rc = -ENOMEM;
5964 			goto err_exit;
5965 		}
5966 
5967 		/* Initialize local ptrs for common extent processing later. */
5968 		bmask = phba->sli4_hba.vfi_bmask;
5969 		ids = phba->sli4_hba.vfi_ids;
5970 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5971 		break;
5972 	default:
5973 		/* Unsupported Opcode.  Fail call. */
5974 		id_array = NULL;
5975 		bmask = NULL;
5976 		ids = NULL;
5977 		ext_blk_list = NULL;
5978 		goto err_exit;
5979 	}
5980 
5981 	/*
5982 	 * Complete initializing the extent configuration with the
5983 	 * allocated ids assigned to this function.  The bitmask serves
5984 	 * as an index into the array and manages the available ids.  The
5985 	 * array just stores the ids communicated to the port via the wqes.
5986 	 */
5987 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5988 		if ((i % 2) == 0)
5989 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5990 					 &id_array[k]);
5991 		else
5992 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5993 					 &id_array[k]);
5994 
5995 		rsrc_blks = kzalloc(length, GFP_KERNEL);
5996 		if (unlikely(!rsrc_blks)) {
5997 			rc = -ENOMEM;
5998 			kfree(bmask);
5999 			kfree(ids);
6000 			goto err_exit;
6001 		}
6002 		rsrc_blks->rsrc_start = rsrc_id;
6003 		rsrc_blks->rsrc_size = rsrc_size;
6004 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6005 		rsrc_start = rsrc_id;
6006 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6007 			phba->sli4_hba.io_xri_start = rsrc_start +
6008 				lpfc_sli4_get_iocb_cnt(phba);
6009 		}
6010 
6011 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6012 			ids[j] = rsrc_id;
6013 			rsrc_id++;
6014 			j++;
6015 		}
6016 		/* Entire word processed.  Get next word.*/
6017 		if ((i % 2) == 1)
6018 			k++;
6019 	}
6020  err_exit:
6021 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6022 	return rc;
6023 }
6024 
6025 
6026 
6027 /**
6028  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6029  * @phba: Pointer to HBA context object.
6030  * @type: the extent's type.
6031  *
6032  * This function deallocates all extents of a particular resource type.
6033  * SLI4 does not allow for deallocating a particular extent range.  It
6034  * is the caller's responsibility to release all kernel memory resources.
6035  **/
6036 static int
6037 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6038 {
6039 	int rc;
6040 	uint32_t length, mbox_tmo = 0;
6041 	LPFC_MBOXQ_t *mbox;
6042 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6043 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6044 
6045 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6046 	if (!mbox)
6047 		return -ENOMEM;
6048 
6049 	/*
6050 	 * This function sends an embedded mailbox because it only sends the
6051 	 * the resource type.  All extents of this type are released by the
6052 	 * port.
6053 	 */
6054 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6055 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6056 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6057 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6058 			 length, LPFC_SLI4_MBX_EMBED);
6059 
6060 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6061 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6062 					LPFC_SLI4_MBX_EMBED);
6063 	if (unlikely(rc)) {
6064 		rc = -EIO;
6065 		goto out_free_mbox;
6066 	}
6067 	if (!phba->sli4_hba.intr_enable)
6068 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6069 	else {
6070 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6071 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6072 	}
6073 	if (unlikely(rc)) {
6074 		rc = -EIO;
6075 		goto out_free_mbox;
6076 	}
6077 
6078 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6079 	if (bf_get(lpfc_mbox_hdr_status,
6080 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6081 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6082 				"2919 Failed to release resource extents "
6083 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6084 				"Resource memory not released.\n",
6085 				type,
6086 				bf_get(lpfc_mbox_hdr_status,
6087 				    &dealloc_rsrc->header.cfg_shdr.response),
6088 				bf_get(lpfc_mbox_hdr_add_status,
6089 				    &dealloc_rsrc->header.cfg_shdr.response));
6090 		rc = -EIO;
6091 		goto out_free_mbox;
6092 	}
6093 
6094 	/* Release kernel memory resources for the specific type. */
6095 	switch (type) {
6096 	case LPFC_RSC_TYPE_FCOE_VPI:
6097 		kfree(phba->vpi_bmask);
6098 		kfree(phba->vpi_ids);
6099 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6100 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6101 				    &phba->lpfc_vpi_blk_list, list) {
6102 			list_del_init(&rsrc_blk->list);
6103 			kfree(rsrc_blk);
6104 		}
6105 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6106 		break;
6107 	case LPFC_RSC_TYPE_FCOE_XRI:
6108 		kfree(phba->sli4_hba.xri_bmask);
6109 		kfree(phba->sli4_hba.xri_ids);
6110 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6111 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6112 			list_del_init(&rsrc_blk->list);
6113 			kfree(rsrc_blk);
6114 		}
6115 		break;
6116 	case LPFC_RSC_TYPE_FCOE_VFI:
6117 		kfree(phba->sli4_hba.vfi_bmask);
6118 		kfree(phba->sli4_hba.vfi_ids);
6119 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6120 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6121 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6122 			list_del_init(&rsrc_blk->list);
6123 			kfree(rsrc_blk);
6124 		}
6125 		break;
6126 	case LPFC_RSC_TYPE_FCOE_RPI:
6127 		/* RPI bitmask and physical id array are cleaned up earlier. */
6128 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6129 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6130 			list_del_init(&rsrc_blk->list);
6131 			kfree(rsrc_blk);
6132 		}
6133 		break;
6134 	default:
6135 		break;
6136 	}
6137 
6138 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6139 
6140  out_free_mbox:
6141 	mempool_free(mbox, phba->mbox_mem_pool);
6142 	return rc;
6143 }
6144 
6145 static void
6146 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6147 		  uint32_t feature)
6148 {
6149 	uint32_t len;
6150 
6151 	len = sizeof(struct lpfc_mbx_set_feature) -
6152 		sizeof(struct lpfc_sli4_cfg_mhdr);
6153 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6154 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6155 			 LPFC_SLI4_MBX_EMBED);
6156 
6157 	switch (feature) {
6158 	case LPFC_SET_UE_RECOVERY:
6159 		bf_set(lpfc_mbx_set_feature_UER,
6160 		       &mbox->u.mqe.un.set_feature, 1);
6161 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6162 		mbox->u.mqe.un.set_feature.param_len = 8;
6163 		break;
6164 	case LPFC_SET_MDS_DIAGS:
6165 		bf_set(lpfc_mbx_set_feature_mds,
6166 		       &mbox->u.mqe.un.set_feature, 1);
6167 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6168 		       &mbox->u.mqe.un.set_feature, 1);
6169 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6170 		mbox->u.mqe.un.set_feature.param_len = 8;
6171 		break;
6172 	}
6173 
6174 	return;
6175 }
6176 
6177 /**
6178  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6179  * @phba: Pointer to HBA context object.
6180  *
6181  * Disable FW logging into host memory on the adapter. To
6182  * be done before reading logs from the host memory.
6183  **/
6184 void
6185 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6186 {
6187 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6188 
6189 	ras_fwlog->ras_active = false;
6190 
6191 	/* Disable FW logging to host memory */
6192 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6193 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6194 }
6195 
6196 /**
6197  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6198  * @phba: Pointer to HBA context object.
6199  *
6200  * This function is called to free memory allocated for RAS FW logging
6201  * support in the driver.
6202  **/
6203 void
6204 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6205 {
6206 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6207 	struct lpfc_dmabuf *dmabuf, *next;
6208 
6209 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6210 		list_for_each_entry_safe(dmabuf, next,
6211 				    &ras_fwlog->fwlog_buff_list,
6212 				    list) {
6213 			list_del(&dmabuf->list);
6214 			dma_free_coherent(&phba->pcidev->dev,
6215 					  LPFC_RAS_MAX_ENTRY_SIZE,
6216 					  dmabuf->virt, dmabuf->phys);
6217 			kfree(dmabuf);
6218 		}
6219 	}
6220 
6221 	if (ras_fwlog->lwpd.virt) {
6222 		dma_free_coherent(&phba->pcidev->dev,
6223 				  sizeof(uint32_t) * 2,
6224 				  ras_fwlog->lwpd.virt,
6225 				  ras_fwlog->lwpd.phys);
6226 		ras_fwlog->lwpd.virt = NULL;
6227 	}
6228 
6229 	ras_fwlog->ras_active = false;
6230 }
6231 
6232 /**
6233  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6234  * @phba: Pointer to HBA context object.
6235  * @fwlog_buff_count: Count of buffers to be created.
6236  *
6237  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6238  * to update FW log is posted to the adapter.
6239  * Buffer count is calculated based on module param ras_fwlog_buffsize
6240  * Size of each buffer posted to FW is 64K.
6241  **/
6242 
6243 static int
6244 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6245 			uint32_t fwlog_buff_count)
6246 {
6247 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6248 	struct lpfc_dmabuf *dmabuf;
6249 	int rc = 0, i = 0;
6250 
6251 	/* Initialize List */
6252 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6253 
6254 	/* Allocate memory for the LWPD */
6255 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6256 					    sizeof(uint32_t) * 2,
6257 					    &ras_fwlog->lwpd.phys,
6258 					    GFP_KERNEL);
6259 	if (!ras_fwlog->lwpd.virt) {
6260 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6261 				"6185 LWPD Memory Alloc Failed\n");
6262 
6263 		return -ENOMEM;
6264 	}
6265 
6266 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6267 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6268 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6269 				 GFP_KERNEL);
6270 		if (!dmabuf) {
6271 			rc = -ENOMEM;
6272 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6273 					"6186 Memory Alloc failed FW logging");
6274 			goto free_mem;
6275 		}
6276 
6277 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6278 						  LPFC_RAS_MAX_ENTRY_SIZE,
6279 						  &dmabuf->phys, GFP_KERNEL);
6280 		if (!dmabuf->virt) {
6281 			kfree(dmabuf);
6282 			rc = -ENOMEM;
6283 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6284 					"6187 DMA Alloc Failed FW logging");
6285 			goto free_mem;
6286 		}
6287 		dmabuf->buffer_tag = i;
6288 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6289 	}
6290 
6291 free_mem:
6292 	if (rc)
6293 		lpfc_sli4_ras_dma_free(phba);
6294 
6295 	return rc;
6296 }
6297 
6298 /**
6299  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6300  * @phba: pointer to lpfc hba data structure.
6301  * @pmboxq: pointer to the driver internal queue element for mailbox command.
6302  *
6303  * Completion handler for driver's RAS MBX command to the device.
6304  **/
6305 static void
6306 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6307 {
6308 	MAILBOX_t *mb;
6309 	union lpfc_sli4_cfg_shdr *shdr;
6310 	uint32_t shdr_status, shdr_add_status;
6311 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6312 
6313 	mb = &pmb->u.mb;
6314 
6315 	shdr = (union lpfc_sli4_cfg_shdr *)
6316 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6317 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6318 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6319 
6320 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6321 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6322 				"6188 FW LOG mailbox "
6323 				"completed with status x%x add_status x%x,"
6324 				" mbx status x%x\n",
6325 				shdr_status, shdr_add_status, mb->mbxStatus);
6326 
6327 		ras_fwlog->ras_hwsupport = false;
6328 		goto disable_ras;
6329 	}
6330 
6331 	ras_fwlog->ras_active = true;
6332 	mempool_free(pmb, phba->mbox_mem_pool);
6333 
6334 	return;
6335 
6336 disable_ras:
6337 	/* Free RAS DMA memory */
6338 	lpfc_sli4_ras_dma_free(phba);
6339 	mempool_free(pmb, phba->mbox_mem_pool);
6340 }
6341 
6342 /**
6343  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6344  * @phba: pointer to lpfc hba data structure.
6345  * @fwlog_level: Logging verbosity level.
6346  * @fwlog_enable: Enable/Disable logging.
6347  *
6348  * Initialize memory and post mailbox command to enable FW logging in host
6349  * memory.
6350  **/
6351 int
6352 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6353 			 uint32_t fwlog_level,
6354 			 uint32_t fwlog_enable)
6355 {
6356 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6357 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6358 	struct lpfc_dmabuf *dmabuf;
6359 	LPFC_MBOXQ_t *mbox;
6360 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6361 	int rc = 0;
6362 
6363 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6364 			  phba->cfg_ras_fwlog_buffsize);
6365 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6366 
6367 	/*
6368 	 * If re-enabling FW logging support use earlier allocated
6369 	 * DMA buffers while posting MBX command.
6370 	 **/
6371 	if (!ras_fwlog->lwpd.virt) {
6372 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6373 		if (rc) {
6374 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6375 					"6189 FW Log Memory Allocation Failed");
6376 			return rc;
6377 		}
6378 	}
6379 
6380 	/* Setup Mailbox command */
6381 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6382 	if (!mbox) {
6383 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6384 				"6190 RAS MBX Alloc Failed");
6385 		rc = -ENOMEM;
6386 		goto mem_free;
6387 	}
6388 
6389 	ras_fwlog->fw_loglevel = fwlog_level;
6390 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6391 		sizeof(struct lpfc_sli4_cfg_mhdr));
6392 
6393 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6394 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6395 			 len, LPFC_SLI4_MBX_EMBED);
6396 
6397 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6398 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6399 	       fwlog_enable);
6400 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6401 	       ras_fwlog->fw_loglevel);
6402 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6403 	       ras_fwlog->fw_buffcount);
6404 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6405 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6406 
6407 	/* Update DMA buffer address */
6408 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6409 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6410 
6411 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6412 			putPaddrLow(dmabuf->phys);
6413 
6414 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6415 			putPaddrHigh(dmabuf->phys);
6416 	}
6417 
6418 	/* Update LPWD address */
6419 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6420 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6421 
6422 	mbox->vport = phba->pport;
6423 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6424 
6425 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6426 
6427 	if (rc == MBX_NOT_FINISHED) {
6428 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6429 				"6191 FW-Log Mailbox failed. "
6430 				"status %d mbxStatus : x%x", rc,
6431 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6432 		mempool_free(mbox, phba->mbox_mem_pool);
6433 		rc = -EIO;
6434 		goto mem_free;
6435 	} else
6436 		rc = 0;
6437 mem_free:
6438 	if (rc)
6439 		lpfc_sli4_ras_dma_free(phba);
6440 
6441 	return rc;
6442 }
6443 
6444 /**
6445  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6446  * @phba: Pointer to HBA context object.
6447  *
6448  * Check if RAS is supported on the adapter and initialize it.
6449  **/
6450 void
6451 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6452 {
6453 	/* Check RAS FW Log needs to be enabled or not */
6454 	if (lpfc_check_fwlog_support(phba))
6455 		return;
6456 
6457 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6458 				 LPFC_RAS_ENABLE_LOGGING);
6459 }
6460 
6461 /**
6462  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6463  * @phba: Pointer to HBA context object.
6464  *
6465  * This function allocates all SLI4 resource identifiers.
6466  **/
6467 int
6468 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6469 {
6470 	int i, rc, error = 0;
6471 	uint16_t count, base;
6472 	unsigned long longs;
6473 
6474 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6475 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6476 	if (phba->sli4_hba.extents_in_use) {
6477 		/*
6478 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6479 		 * resource extent count must be read and allocated before
6480 		 * provisioning the resource id arrays.
6481 		 */
6482 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6483 		    LPFC_IDX_RSRC_RDY) {
6484 			/*
6485 			 * Extent-based resources are set - the driver could
6486 			 * be in a port reset. Figure out if any corrective
6487 			 * actions need to be taken.
6488 			 */
6489 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6490 						 LPFC_RSC_TYPE_FCOE_VFI);
6491 			if (rc != 0)
6492 				error++;
6493 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6494 						 LPFC_RSC_TYPE_FCOE_VPI);
6495 			if (rc != 0)
6496 				error++;
6497 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6498 						 LPFC_RSC_TYPE_FCOE_XRI);
6499 			if (rc != 0)
6500 				error++;
6501 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6502 						 LPFC_RSC_TYPE_FCOE_RPI);
6503 			if (rc != 0)
6504 				error++;
6505 
6506 			/*
6507 			 * It's possible that the number of resources
6508 			 * provided to this port instance changed between
6509 			 * resets.  Detect this condition and reallocate
6510 			 * resources.  Otherwise, there is no action.
6511 			 */
6512 			if (error) {
6513 				lpfc_printf_log(phba, KERN_INFO,
6514 						LOG_MBOX | LOG_INIT,
6515 						"2931 Detected extent resource "
6516 						"change.  Reallocating all "
6517 						"extents.\n");
6518 				rc = lpfc_sli4_dealloc_extent(phba,
6519 						 LPFC_RSC_TYPE_FCOE_VFI);
6520 				rc = lpfc_sli4_dealloc_extent(phba,
6521 						 LPFC_RSC_TYPE_FCOE_VPI);
6522 				rc = lpfc_sli4_dealloc_extent(phba,
6523 						 LPFC_RSC_TYPE_FCOE_XRI);
6524 				rc = lpfc_sli4_dealloc_extent(phba,
6525 						 LPFC_RSC_TYPE_FCOE_RPI);
6526 			} else
6527 				return 0;
6528 		}
6529 
6530 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6531 		if (unlikely(rc))
6532 			goto err_exit;
6533 
6534 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6535 		if (unlikely(rc))
6536 			goto err_exit;
6537 
6538 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6539 		if (unlikely(rc))
6540 			goto err_exit;
6541 
6542 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6543 		if (unlikely(rc))
6544 			goto err_exit;
6545 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6546 		       LPFC_IDX_RSRC_RDY);
6547 		return rc;
6548 	} else {
6549 		/*
6550 		 * The port does not support resource extents.  The XRI, VPI,
6551 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6552 		 * Just allocate the bitmasks and provision the resource id
6553 		 * arrays.  If a port reset is active, the resources don't
6554 		 * need any action - just exit.
6555 		 */
6556 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6557 		    LPFC_IDX_RSRC_RDY) {
6558 			lpfc_sli4_dealloc_resource_identifiers(phba);
6559 			lpfc_sli4_remove_rpis(phba);
6560 		}
6561 		/* RPIs. */
6562 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6563 		if (count <= 0) {
6564 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6565 					"3279 Invalid provisioning of "
6566 					"rpi:%d\n", count);
6567 			rc = -EINVAL;
6568 			goto err_exit;
6569 		}
6570 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6571 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6572 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6573 						   sizeof(unsigned long),
6574 						   GFP_KERNEL);
6575 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6576 			rc = -ENOMEM;
6577 			goto err_exit;
6578 		}
6579 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6580 						 GFP_KERNEL);
6581 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6582 			rc = -ENOMEM;
6583 			goto free_rpi_bmask;
6584 		}
6585 
6586 		for (i = 0; i < count; i++)
6587 			phba->sli4_hba.rpi_ids[i] = base + i;
6588 
6589 		/* VPIs. */
6590 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6591 		if (count <= 0) {
6592 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6593 					"3280 Invalid provisioning of "
6594 					"vpi:%d\n", count);
6595 			rc = -EINVAL;
6596 			goto free_rpi_ids;
6597 		}
6598 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6599 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6600 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6601 					  GFP_KERNEL);
6602 		if (unlikely(!phba->vpi_bmask)) {
6603 			rc = -ENOMEM;
6604 			goto free_rpi_ids;
6605 		}
6606 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6607 					GFP_KERNEL);
6608 		if (unlikely(!phba->vpi_ids)) {
6609 			rc = -ENOMEM;
6610 			goto free_vpi_bmask;
6611 		}
6612 
6613 		for (i = 0; i < count; i++)
6614 			phba->vpi_ids[i] = base + i;
6615 
6616 		/* XRIs. */
6617 		count = phba->sli4_hba.max_cfg_param.max_xri;
6618 		if (count <= 0) {
6619 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6620 					"3281 Invalid provisioning of "
6621 					"xri:%d\n", count);
6622 			rc = -EINVAL;
6623 			goto free_vpi_ids;
6624 		}
6625 		base = phba->sli4_hba.max_cfg_param.xri_base;
6626 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6627 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6628 						   sizeof(unsigned long),
6629 						   GFP_KERNEL);
6630 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6631 			rc = -ENOMEM;
6632 			goto free_vpi_ids;
6633 		}
6634 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6635 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6636 						 GFP_KERNEL);
6637 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6638 			rc = -ENOMEM;
6639 			goto free_xri_bmask;
6640 		}
6641 
6642 		for (i = 0; i < count; i++)
6643 			phba->sli4_hba.xri_ids[i] = base + i;
6644 
6645 		/* VFIs. */
6646 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6647 		if (count <= 0) {
6648 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6649 					"3282 Invalid provisioning of "
6650 					"vfi:%d\n", count);
6651 			rc = -EINVAL;
6652 			goto free_xri_ids;
6653 		}
6654 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6655 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6656 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6657 						   sizeof(unsigned long),
6658 						   GFP_KERNEL);
6659 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6660 			rc = -ENOMEM;
6661 			goto free_xri_ids;
6662 		}
6663 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6664 						 GFP_KERNEL);
6665 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6666 			rc = -ENOMEM;
6667 			goto free_vfi_bmask;
6668 		}
6669 
6670 		for (i = 0; i < count; i++)
6671 			phba->sli4_hba.vfi_ids[i] = base + i;
6672 
6673 		/*
6674 		 * Mark all resources ready.  An HBA reset doesn't need
6675 		 * to reset the initialization.
6676 		 */
6677 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6678 		       LPFC_IDX_RSRC_RDY);
6679 		return 0;
6680 	}
6681 
6682  free_vfi_bmask:
6683 	kfree(phba->sli4_hba.vfi_bmask);
6684 	phba->sli4_hba.vfi_bmask = NULL;
6685  free_xri_ids:
6686 	kfree(phba->sli4_hba.xri_ids);
6687 	phba->sli4_hba.xri_ids = NULL;
6688  free_xri_bmask:
6689 	kfree(phba->sli4_hba.xri_bmask);
6690 	phba->sli4_hba.xri_bmask = NULL;
6691  free_vpi_ids:
6692 	kfree(phba->vpi_ids);
6693 	phba->vpi_ids = NULL;
6694  free_vpi_bmask:
6695 	kfree(phba->vpi_bmask);
6696 	phba->vpi_bmask = NULL;
6697  free_rpi_ids:
6698 	kfree(phba->sli4_hba.rpi_ids);
6699 	phba->sli4_hba.rpi_ids = NULL;
6700  free_rpi_bmask:
6701 	kfree(phba->sli4_hba.rpi_bmask);
6702 	phba->sli4_hba.rpi_bmask = NULL;
6703  err_exit:
6704 	return rc;
6705 }
6706 
6707 /**
6708  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6709  * @phba: Pointer to HBA context object.
6710  *
6711  * This function allocates the number of elements for the specified
6712  * resource type.
6713  **/
6714 int
6715 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6716 {
6717 	if (phba->sli4_hba.extents_in_use) {
6718 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6719 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6720 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6721 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6722 	} else {
6723 		kfree(phba->vpi_bmask);
6724 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6725 		kfree(phba->vpi_ids);
6726 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6727 		kfree(phba->sli4_hba.xri_bmask);
6728 		kfree(phba->sli4_hba.xri_ids);
6729 		kfree(phba->sli4_hba.vfi_bmask);
6730 		kfree(phba->sli4_hba.vfi_ids);
6731 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6732 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6733 	}
6734 
6735 	return 0;
6736 }
6737 
6738 /**
6739  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6740  * @phba: Pointer to HBA context object.
6741  * @type: The resource extent type.
6742  * @extnt_count: buffer to hold port extent count response
6743  * @extnt_size: buffer to hold port extent size response.
6744  *
6745  * This function calls the port to read the host allocated extents
6746  * for a particular type.
6747  **/
6748 int
6749 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6750 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6751 {
6752 	bool emb;
6753 	int rc = 0;
6754 	uint16_t curr_blks = 0;
6755 	uint32_t req_len, emb_len;
6756 	uint32_t alloc_len, mbox_tmo;
6757 	struct list_head *blk_list_head;
6758 	struct lpfc_rsrc_blks *rsrc_blk;
6759 	LPFC_MBOXQ_t *mbox;
6760 	void *virtaddr = NULL;
6761 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6762 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6763 	union  lpfc_sli4_cfg_shdr *shdr;
6764 
6765 	switch (type) {
6766 	case LPFC_RSC_TYPE_FCOE_VPI:
6767 		blk_list_head = &phba->lpfc_vpi_blk_list;
6768 		break;
6769 	case LPFC_RSC_TYPE_FCOE_XRI:
6770 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6771 		break;
6772 	case LPFC_RSC_TYPE_FCOE_VFI:
6773 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6774 		break;
6775 	case LPFC_RSC_TYPE_FCOE_RPI:
6776 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6777 		break;
6778 	default:
6779 		return -EIO;
6780 	}
6781 
6782 	/* Count the number of extents currently allocatd for this type. */
6783 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6784 		if (curr_blks == 0) {
6785 			/*
6786 			 * The GET_ALLOCATED mailbox does not return the size,
6787 			 * just the count.  The size should be just the size
6788 			 * stored in the current allocated block and all sizes
6789 			 * for an extent type are the same so set the return
6790 			 * value now.
6791 			 */
6792 			*extnt_size = rsrc_blk->rsrc_size;
6793 		}
6794 		curr_blks++;
6795 	}
6796 
6797 	/*
6798 	 * Calculate the size of an embedded mailbox.  The uint32_t
6799 	 * accounts for extents-specific word.
6800 	 */
6801 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6802 		sizeof(uint32_t);
6803 
6804 	/*
6805 	 * Presume the allocation and response will fit into an embedded
6806 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6807 	 */
6808 	emb = LPFC_SLI4_MBX_EMBED;
6809 	req_len = emb_len;
6810 	if (req_len > emb_len) {
6811 		req_len = curr_blks * sizeof(uint16_t) +
6812 			sizeof(union lpfc_sli4_cfg_shdr) +
6813 			sizeof(uint32_t);
6814 		emb = LPFC_SLI4_MBX_NEMBED;
6815 	}
6816 
6817 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6818 	if (!mbox)
6819 		return -ENOMEM;
6820 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6821 
6822 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6823 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6824 				     req_len, emb);
6825 	if (alloc_len < req_len) {
6826 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6827 			"2983 Allocated DMA memory size (x%x) is "
6828 			"less than the requested DMA memory "
6829 			"size (x%x)\n", alloc_len, req_len);
6830 		rc = -ENOMEM;
6831 		goto err_exit;
6832 	}
6833 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6834 	if (unlikely(rc)) {
6835 		rc = -EIO;
6836 		goto err_exit;
6837 	}
6838 
6839 	if (!phba->sli4_hba.intr_enable)
6840 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6841 	else {
6842 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6843 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6844 	}
6845 
6846 	if (unlikely(rc)) {
6847 		rc = -EIO;
6848 		goto err_exit;
6849 	}
6850 
6851 	/*
6852 	 * Figure out where the response is located.  Then get local pointers
6853 	 * to the response data.  The port does not guarantee to respond to
6854 	 * all extents counts request so update the local variable with the
6855 	 * allocated count from the port.
6856 	 */
6857 	if (emb == LPFC_SLI4_MBX_EMBED) {
6858 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6859 		shdr = &rsrc_ext->header.cfg_shdr;
6860 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6861 	} else {
6862 		virtaddr = mbox->sge_array->addr[0];
6863 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6864 		shdr = &n_rsrc->cfg_shdr;
6865 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6866 	}
6867 
6868 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6869 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6870 			"2984 Failed to read allocated resources "
6871 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
6872 			type,
6873 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
6874 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6875 		rc = -EIO;
6876 		goto err_exit;
6877 	}
6878  err_exit:
6879 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6880 	return rc;
6881 }
6882 
6883 /**
6884  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6885  * @phba: pointer to lpfc hba data structure.
6886  * @pring: Pointer to driver SLI ring object.
6887  * @sgl_list: linked link of sgl buffers to post
6888  * @cnt: number of linked list buffers
6889  *
6890  * This routine walks the list of buffers that have been allocated and
6891  * repost them to the port by using SGL block post. This is needed after a
6892  * pci_function_reset/warm_start or start. It attempts to construct blocks
6893  * of buffer sgls which contains contiguous xris and uses the non-embedded
6894  * SGL block post mailbox commands to post them to the port. For single
6895  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6896  * mailbox command for posting.
6897  *
6898  * Returns: 0 = success, non-zero failure.
6899  **/
6900 static int
6901 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6902 			  struct list_head *sgl_list, int cnt)
6903 {
6904 	struct lpfc_sglq *sglq_entry = NULL;
6905 	struct lpfc_sglq *sglq_entry_next = NULL;
6906 	struct lpfc_sglq *sglq_entry_first = NULL;
6907 	int status, total_cnt;
6908 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
6909 	int last_xritag = NO_XRI;
6910 	LIST_HEAD(prep_sgl_list);
6911 	LIST_HEAD(blck_sgl_list);
6912 	LIST_HEAD(allc_sgl_list);
6913 	LIST_HEAD(post_sgl_list);
6914 	LIST_HEAD(free_sgl_list);
6915 
6916 	spin_lock_irq(&phba->hbalock);
6917 	spin_lock(&phba->sli4_hba.sgl_list_lock);
6918 	list_splice_init(sgl_list, &allc_sgl_list);
6919 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
6920 	spin_unlock_irq(&phba->hbalock);
6921 
6922 	total_cnt = cnt;
6923 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6924 				 &allc_sgl_list, list) {
6925 		list_del_init(&sglq_entry->list);
6926 		block_cnt++;
6927 		if ((last_xritag != NO_XRI) &&
6928 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
6929 			/* a hole in xri block, form a sgl posting block */
6930 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
6931 			post_cnt = block_cnt - 1;
6932 			/* prepare list for next posting block */
6933 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6934 			block_cnt = 1;
6935 		} else {
6936 			/* prepare list for next posting block */
6937 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6938 			/* enough sgls for non-embed sgl mbox command */
6939 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6940 				list_splice_init(&prep_sgl_list,
6941 						 &blck_sgl_list);
6942 				post_cnt = block_cnt;
6943 				block_cnt = 0;
6944 			}
6945 		}
6946 		num_posted++;
6947 
6948 		/* keep track of last sgl's xritag */
6949 		last_xritag = sglq_entry->sli4_xritag;
6950 
6951 		/* end of repost sgl list condition for buffers */
6952 		if (num_posted == total_cnt) {
6953 			if (post_cnt == 0) {
6954 				list_splice_init(&prep_sgl_list,
6955 						 &blck_sgl_list);
6956 				post_cnt = block_cnt;
6957 			} else if (block_cnt == 1) {
6958 				status = lpfc_sli4_post_sgl(phba,
6959 						sglq_entry->phys, 0,
6960 						sglq_entry->sli4_xritag);
6961 				if (!status) {
6962 					/* successful, put sgl to posted list */
6963 					list_add_tail(&sglq_entry->list,
6964 						      &post_sgl_list);
6965 				} else {
6966 					/* Failure, put sgl to free list */
6967 					lpfc_printf_log(phba, KERN_WARNING,
6968 						LOG_SLI,
6969 						"3159 Failed to post "
6970 						"sgl, xritag:x%x\n",
6971 						sglq_entry->sli4_xritag);
6972 					list_add_tail(&sglq_entry->list,
6973 						      &free_sgl_list);
6974 					total_cnt--;
6975 				}
6976 			}
6977 		}
6978 
6979 		/* continue until a nembed page worth of sgls */
6980 		if (post_cnt == 0)
6981 			continue;
6982 
6983 		/* post the buffer list sgls as a block */
6984 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
6985 						 post_cnt);
6986 
6987 		if (!status) {
6988 			/* success, put sgl list to posted sgl list */
6989 			list_splice_init(&blck_sgl_list, &post_sgl_list);
6990 		} else {
6991 			/* Failure, put sgl list to free sgl list */
6992 			sglq_entry_first = list_first_entry(&blck_sgl_list,
6993 							    struct lpfc_sglq,
6994 							    list);
6995 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6996 					"3160 Failed to post sgl-list, "
6997 					"xritag:x%x-x%x\n",
6998 					sglq_entry_first->sli4_xritag,
6999 					(sglq_entry_first->sli4_xritag +
7000 					 post_cnt - 1));
7001 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7002 			total_cnt -= post_cnt;
7003 		}
7004 
7005 		/* don't reset xirtag due to hole in xri block */
7006 		if (block_cnt == 0)
7007 			last_xritag = NO_XRI;
7008 
7009 		/* reset sgl post count for next round of posting */
7010 		post_cnt = 0;
7011 	}
7012 
7013 	/* free the sgls failed to post */
7014 	lpfc_free_sgl_list(phba, &free_sgl_list);
7015 
7016 	/* push sgls posted to the available list */
7017 	if (!list_empty(&post_sgl_list)) {
7018 		spin_lock_irq(&phba->hbalock);
7019 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7020 		list_splice_init(&post_sgl_list, sgl_list);
7021 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7022 		spin_unlock_irq(&phba->hbalock);
7023 	} else {
7024 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7025 				"3161 Failure to post sgl to port.\n");
7026 		return -EIO;
7027 	}
7028 
7029 	/* return the number of XRIs actually posted */
7030 	return total_cnt;
7031 }
7032 
7033 /**
7034  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7035  * @phba: pointer to lpfc hba data structure.
7036  *
7037  * This routine walks the list of nvme buffers that have been allocated and
7038  * repost them to the port by using SGL block post. This is needed after a
7039  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7040  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7041  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7042  *
7043  * Returns: 0 = success, non-zero failure.
7044  **/
7045 static int
7046 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7047 {
7048 	LIST_HEAD(post_nblist);
7049 	int num_posted, rc = 0;
7050 
7051 	/* get all NVME buffers need to repost to a local list */
7052 	lpfc_io_buf_flush(phba, &post_nblist);
7053 
7054 	/* post the list of nvme buffer sgls to port if available */
7055 	if (!list_empty(&post_nblist)) {
7056 		num_posted = lpfc_sli4_post_io_sgl_list(
7057 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7058 		/* failed to post any nvme buffer, return error */
7059 		if (num_posted == 0)
7060 			rc = -EIO;
7061 	}
7062 	return rc;
7063 }
7064 
7065 static void
7066 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7067 {
7068 	uint32_t len;
7069 
7070 	len = sizeof(struct lpfc_mbx_set_host_data) -
7071 		sizeof(struct lpfc_sli4_cfg_mhdr);
7072 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7073 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7074 			 LPFC_SLI4_MBX_EMBED);
7075 
7076 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7077 	mbox->u.mqe.un.set_host_data.param_len =
7078 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7079 	snprintf(mbox->u.mqe.un.set_host_data.data,
7080 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7081 		 "Linux %s v"LPFC_DRIVER_VERSION,
7082 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7083 }
7084 
7085 int
7086 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7087 		    struct lpfc_queue *drq, int count, int idx)
7088 {
7089 	int rc, i;
7090 	struct lpfc_rqe hrqe;
7091 	struct lpfc_rqe drqe;
7092 	struct lpfc_rqb *rqbp;
7093 	unsigned long flags;
7094 	struct rqb_dmabuf *rqb_buffer;
7095 	LIST_HEAD(rqb_buf_list);
7096 
7097 	spin_lock_irqsave(&phba->hbalock, flags);
7098 	rqbp = hrq->rqbp;
7099 	for (i = 0; i < count; i++) {
7100 		/* IF RQ is already full, don't bother */
7101 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7102 			break;
7103 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7104 		if (!rqb_buffer)
7105 			break;
7106 		rqb_buffer->hrq = hrq;
7107 		rqb_buffer->drq = drq;
7108 		rqb_buffer->idx = idx;
7109 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7110 	}
7111 	while (!list_empty(&rqb_buf_list)) {
7112 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7113 				 hbuf.list);
7114 
7115 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7116 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7117 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7118 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7119 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7120 		if (rc < 0) {
7121 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7122 					"6421 Cannot post to HRQ %d: %x %x %x "
7123 					"DRQ %x %x\n",
7124 					hrq->queue_id,
7125 					hrq->host_index,
7126 					hrq->hba_index,
7127 					hrq->entry_count,
7128 					drq->host_index,
7129 					drq->hba_index);
7130 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7131 		} else {
7132 			list_add_tail(&rqb_buffer->hbuf.list,
7133 				      &rqbp->rqb_buffer_list);
7134 			rqbp->buffer_count++;
7135 		}
7136 	}
7137 	spin_unlock_irqrestore(&phba->hbalock, flags);
7138 	return 1;
7139 }
7140 
7141 /**
7142  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7143  * @phba: Pointer to HBA context object.
7144  *
7145  * This function is the main SLI4 device initialization PCI function. This
7146  * function is called by the HBA initialization code, HBA reset code and
7147  * HBA error attention handler code. Caller is not required to hold any
7148  * locks.
7149  **/
7150 int
7151 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7152 {
7153 	int rc, i, cnt, len;
7154 	LPFC_MBOXQ_t *mboxq;
7155 	struct lpfc_mqe *mqe;
7156 	uint8_t *vpd;
7157 	uint32_t vpd_size;
7158 	uint32_t ftr_rsp = 0;
7159 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7160 	struct lpfc_vport *vport = phba->pport;
7161 	struct lpfc_dmabuf *mp;
7162 	struct lpfc_rqb *rqbp;
7163 
7164 	/* Perform a PCI function reset to start from clean */
7165 	rc = lpfc_pci_function_reset(phba);
7166 	if (unlikely(rc))
7167 		return -ENODEV;
7168 
7169 	/* Check the HBA Host Status Register for readyness */
7170 	rc = lpfc_sli4_post_status_check(phba);
7171 	if (unlikely(rc))
7172 		return -ENODEV;
7173 	else {
7174 		spin_lock_irq(&phba->hbalock);
7175 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7176 		spin_unlock_irq(&phba->hbalock);
7177 	}
7178 
7179 	/*
7180 	 * Allocate a single mailbox container for initializing the
7181 	 * port.
7182 	 */
7183 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7184 	if (!mboxq)
7185 		return -ENOMEM;
7186 
7187 	/* Issue READ_REV to collect vpd and FW information. */
7188 	vpd_size = SLI4_PAGE_SIZE;
7189 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7190 	if (!vpd) {
7191 		rc = -ENOMEM;
7192 		goto out_free_mbox;
7193 	}
7194 
7195 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7196 	if (unlikely(rc)) {
7197 		kfree(vpd);
7198 		goto out_free_mbox;
7199 	}
7200 
7201 	mqe = &mboxq->u.mqe;
7202 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7203 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7204 		phba->hba_flag |= HBA_FCOE_MODE;
7205 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7206 	} else {
7207 		phba->hba_flag &= ~HBA_FCOE_MODE;
7208 	}
7209 
7210 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7211 		LPFC_DCBX_CEE_MODE)
7212 		phba->hba_flag |= HBA_FIP_SUPPORT;
7213 	else
7214 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7215 
7216 	phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
7217 
7218 	if (phba->sli_rev != LPFC_SLI_REV4) {
7219 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7220 			"0376 READ_REV Error. SLI Level %d "
7221 			"FCoE enabled %d\n",
7222 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7223 		rc = -EIO;
7224 		kfree(vpd);
7225 		goto out_free_mbox;
7226 	}
7227 
7228 	/*
7229 	 * Continue initialization with default values even if driver failed
7230 	 * to read FCoE param config regions, only read parameters if the
7231 	 * board is FCoE
7232 	 */
7233 	if (phba->hba_flag & HBA_FCOE_MODE &&
7234 	    lpfc_sli4_read_fcoe_params(phba))
7235 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7236 			"2570 Failed to read FCoE parameters\n");
7237 
7238 	/*
7239 	 * Retrieve sli4 device physical port name, failure of doing it
7240 	 * is considered as non-fatal.
7241 	 */
7242 	rc = lpfc_sli4_retrieve_pport_name(phba);
7243 	if (!rc)
7244 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7245 				"3080 Successful retrieving SLI4 device "
7246 				"physical port name: %s.\n", phba->Port);
7247 
7248 	rc = lpfc_sli4_get_ctl_attr(phba);
7249 	if (!rc)
7250 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7251 				"8351 Successful retrieving SLI4 device "
7252 				"CTL ATTR\n");
7253 
7254 	/*
7255 	 * Evaluate the read rev and vpd data. Populate the driver
7256 	 * state with the results. If this routine fails, the failure
7257 	 * is not fatal as the driver will use generic values.
7258 	 */
7259 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7260 	if (unlikely(!rc)) {
7261 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7262 				"0377 Error %d parsing vpd. "
7263 				"Using defaults.\n", rc);
7264 		rc = 0;
7265 	}
7266 	kfree(vpd);
7267 
7268 	/* Save information as VPD data */
7269 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7270 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7271 
7272 	/*
7273 	 * This is because first G7 ASIC doesn't support the standard
7274 	 * 0x5a NVME cmd descriptor type/subtype
7275 	 */
7276 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7277 			LPFC_SLI_INTF_IF_TYPE_6) &&
7278 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7279 	    (phba->vpd.rev.smRev == 0) &&
7280 	    (phba->cfg_nvme_embed_cmd == 1))
7281 		phba->cfg_nvme_embed_cmd = 0;
7282 
7283 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7284 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7285 					 &mqe->un.read_rev);
7286 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7287 				       &mqe->un.read_rev);
7288 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7289 					    &mqe->un.read_rev);
7290 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7291 					   &mqe->un.read_rev);
7292 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7293 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7294 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7295 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7296 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7297 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7298 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7299 			"(%d):0380 READ_REV Status x%x "
7300 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7301 			mboxq->vport ? mboxq->vport->vpi : 0,
7302 			bf_get(lpfc_mqe_status, mqe),
7303 			phba->vpd.rev.opFwName,
7304 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7305 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7306 
7307 	/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3)  */
7308 	rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7309 	if (phba->pport->cfg_lun_queue_depth > rc) {
7310 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7311 				"3362 LUN queue depth changed from %d to %d\n",
7312 				phba->pport->cfg_lun_queue_depth, rc);
7313 		phba->pport->cfg_lun_queue_depth = rc;
7314 	}
7315 
7316 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7317 	    LPFC_SLI_INTF_IF_TYPE_0) {
7318 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7319 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7320 		if (rc == MBX_SUCCESS) {
7321 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7322 			/* Set 1Sec interval to detect UE */
7323 			phba->eratt_poll_interval = 1;
7324 			phba->sli4_hba.ue_to_sr = bf_get(
7325 					lpfc_mbx_set_feature_UESR,
7326 					&mboxq->u.mqe.un.set_feature);
7327 			phba->sli4_hba.ue_to_rp = bf_get(
7328 					lpfc_mbx_set_feature_UERP,
7329 					&mboxq->u.mqe.un.set_feature);
7330 		}
7331 	}
7332 
7333 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7334 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7335 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7336 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7337 		if (rc != MBX_SUCCESS)
7338 			phba->mds_diags_support = 0;
7339 	}
7340 
7341 	/*
7342 	 * Discover the port's supported feature set and match it against the
7343 	 * hosts requests.
7344 	 */
7345 	lpfc_request_features(phba, mboxq);
7346 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7347 	if (unlikely(rc)) {
7348 		rc = -EIO;
7349 		goto out_free_mbox;
7350 	}
7351 
7352 	/*
7353 	 * The port must support FCP initiator mode as this is the
7354 	 * only mode running in the host.
7355 	 */
7356 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7357 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7358 				"0378 No support for fcpi mode.\n");
7359 		ftr_rsp++;
7360 	}
7361 
7362 	/* Performance Hints are ONLY for FCoE */
7363 	if (phba->hba_flag & HBA_FCOE_MODE) {
7364 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7365 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7366 		else
7367 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7368 	}
7369 
7370 	/*
7371 	 * If the port cannot support the host's requested features
7372 	 * then turn off the global config parameters to disable the
7373 	 * feature in the driver.  This is not a fatal error.
7374 	 */
7375 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7376 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7377 			phba->cfg_enable_bg = 0;
7378 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7379 			ftr_rsp++;
7380 		}
7381 	}
7382 
7383 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7384 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7385 		ftr_rsp++;
7386 
7387 	if (ftr_rsp) {
7388 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7389 				"0379 Feature Mismatch Data: x%08x %08x "
7390 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7391 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7392 				phba->cfg_enable_npiv, phba->max_vpi);
7393 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7394 			phba->cfg_enable_bg = 0;
7395 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7396 			phba->cfg_enable_npiv = 0;
7397 	}
7398 
7399 	/* These SLI3 features are assumed in SLI4 */
7400 	spin_lock_irq(&phba->hbalock);
7401 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7402 	spin_unlock_irq(&phba->hbalock);
7403 
7404 	/*
7405 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7406 	 * calls depends on these resources to complete port setup.
7407 	 */
7408 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7409 	if (rc) {
7410 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7411 				"2920 Failed to alloc Resource IDs "
7412 				"rc = x%x\n", rc);
7413 		goto out_free_mbox;
7414 	}
7415 
7416 	lpfc_set_host_data(phba, mboxq);
7417 
7418 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7419 	if (rc) {
7420 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7421 				"2134 Failed to set host os driver version %x",
7422 				rc);
7423 	}
7424 
7425 	/* Read the port's service parameters. */
7426 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7427 	if (rc) {
7428 		phba->link_state = LPFC_HBA_ERROR;
7429 		rc = -ENOMEM;
7430 		goto out_free_mbox;
7431 	}
7432 
7433 	mboxq->vport = vport;
7434 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7435 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7436 	if (rc == MBX_SUCCESS) {
7437 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7438 		rc = 0;
7439 	}
7440 
7441 	/*
7442 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7443 	 * it to the mbuf pool.
7444 	 */
7445 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7446 	kfree(mp);
7447 	mboxq->ctx_buf = NULL;
7448 	if (unlikely(rc)) {
7449 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7450 				"0382 READ_SPARAM command failed "
7451 				"status %d, mbxStatus x%x\n",
7452 				rc, bf_get(lpfc_mqe_status, mqe));
7453 		phba->link_state = LPFC_HBA_ERROR;
7454 		rc = -EIO;
7455 		goto out_free_mbox;
7456 	}
7457 
7458 	lpfc_update_vport_wwn(vport);
7459 
7460 	/* Update the fc_host data structures with new wwn. */
7461 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7462 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7463 
7464 	/* Create all the SLI4 queues */
7465 	rc = lpfc_sli4_queue_create(phba);
7466 	if (rc) {
7467 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7468 				"3089 Failed to allocate queues\n");
7469 		rc = -ENODEV;
7470 		goto out_free_mbox;
7471 	}
7472 	/* Set up all the queues to the device */
7473 	rc = lpfc_sli4_queue_setup(phba);
7474 	if (unlikely(rc)) {
7475 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7476 				"0381 Error %d during queue setup.\n ", rc);
7477 		goto out_stop_timers;
7478 	}
7479 	/* Initialize the driver internal SLI layer lists. */
7480 	lpfc_sli4_setup(phba);
7481 	lpfc_sli4_queue_init(phba);
7482 
7483 	/* update host els xri-sgl sizes and mappings */
7484 	rc = lpfc_sli4_els_sgl_update(phba);
7485 	if (unlikely(rc)) {
7486 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7487 				"1400 Failed to update xri-sgl size and "
7488 				"mapping: %d\n", rc);
7489 		goto out_destroy_queue;
7490 	}
7491 
7492 	/* register the els sgl pool to the port */
7493 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7494 				       phba->sli4_hba.els_xri_cnt);
7495 	if (unlikely(rc < 0)) {
7496 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7497 				"0582 Error %d during els sgl post "
7498 				"operation\n", rc);
7499 		rc = -ENODEV;
7500 		goto out_destroy_queue;
7501 	}
7502 	phba->sli4_hba.els_xri_cnt = rc;
7503 
7504 	if (phba->nvmet_support) {
7505 		/* update host nvmet xri-sgl sizes and mappings */
7506 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7507 		if (unlikely(rc)) {
7508 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7509 					"6308 Failed to update nvmet-sgl size "
7510 					"and mapping: %d\n", rc);
7511 			goto out_destroy_queue;
7512 		}
7513 
7514 		/* register the nvmet sgl pool to the port */
7515 		rc = lpfc_sli4_repost_sgl_list(
7516 			phba,
7517 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7518 			phba->sli4_hba.nvmet_xri_cnt);
7519 		if (unlikely(rc < 0)) {
7520 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7521 					"3117 Error %d during nvmet "
7522 					"sgl post\n", rc);
7523 			rc = -ENODEV;
7524 			goto out_destroy_queue;
7525 		}
7526 		phba->sli4_hba.nvmet_xri_cnt = rc;
7527 
7528 		cnt = phba->cfg_iocb_cnt * 1024;
7529 		/* We need 1 iocbq for every SGL, for IO processing */
7530 		cnt += phba->sli4_hba.nvmet_xri_cnt;
7531 	} else {
7532 		/* update host common xri-sgl sizes and mappings */
7533 		rc = lpfc_sli4_io_sgl_update(phba);
7534 		if (unlikely(rc)) {
7535 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7536 					"6082 Failed to update nvme-sgl size "
7537 					"and mapping: %d\n", rc);
7538 			goto out_destroy_queue;
7539 		}
7540 
7541 		/* register the allocated common sgl pool to the port */
7542 		rc = lpfc_sli4_repost_io_sgl_list(phba);
7543 		if (unlikely(rc)) {
7544 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7545 					"6116 Error %d during nvme sgl post "
7546 					"operation\n", rc);
7547 			/* Some NVME buffers were moved to abort nvme list */
7548 			/* A pci function reset will repost them */
7549 			rc = -ENODEV;
7550 			goto out_destroy_queue;
7551 		}
7552 		cnt = phba->cfg_iocb_cnt * 1024;
7553 	}
7554 
7555 	if (!phba->sli.iocbq_lookup) {
7556 		/* Initialize and populate the iocb list per host */
7557 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7558 				"2821 initialize iocb list %d total %d\n",
7559 				phba->cfg_iocb_cnt, cnt);
7560 		rc = lpfc_init_iocb_list(phba, cnt);
7561 		if (rc) {
7562 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7563 					"1413 Failed to init iocb list.\n");
7564 			goto out_destroy_queue;
7565 		}
7566 	}
7567 
7568 	if (phba->nvmet_support)
7569 		lpfc_nvmet_create_targetport(phba);
7570 
7571 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7572 		/* Post initial buffers to all RQs created */
7573 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7574 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7575 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7576 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7577 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7578 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7579 			rqbp->buffer_count = 0;
7580 
7581 			lpfc_post_rq_buffer(
7582 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7583 				phba->sli4_hba.nvmet_mrq_data[i],
7584 				phba->cfg_nvmet_mrq_post, i);
7585 		}
7586 	}
7587 
7588 	/* Post the rpi header region to the device. */
7589 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7590 	if (unlikely(rc)) {
7591 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7592 				"0393 Error %d during rpi post operation\n",
7593 				rc);
7594 		rc = -ENODEV;
7595 		goto out_destroy_queue;
7596 	}
7597 	lpfc_sli4_node_prep(phba);
7598 
7599 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7600 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7601 			/*
7602 			 * The FC Port needs to register FCFI (index 0)
7603 			 */
7604 			lpfc_reg_fcfi(phba, mboxq);
7605 			mboxq->vport = phba->pport;
7606 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7607 			if (rc != MBX_SUCCESS)
7608 				goto out_unset_queue;
7609 			rc = 0;
7610 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7611 						&mboxq->u.mqe.un.reg_fcfi);
7612 		} else {
7613 			/* We are a NVME Target mode with MRQ > 1 */
7614 
7615 			/* First register the FCFI */
7616 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7617 			mboxq->vport = phba->pport;
7618 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7619 			if (rc != MBX_SUCCESS)
7620 				goto out_unset_queue;
7621 			rc = 0;
7622 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7623 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7624 
7625 			/* Next register the MRQs */
7626 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7627 			mboxq->vport = phba->pport;
7628 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7629 			if (rc != MBX_SUCCESS)
7630 				goto out_unset_queue;
7631 			rc = 0;
7632 		}
7633 		/* Check if the port is configured to be disabled */
7634 		lpfc_sli_read_link_ste(phba);
7635 	}
7636 
7637 	/* Don't post more new bufs if repost already recovered
7638 	 * the nvme sgls.
7639 	 */
7640 	if (phba->nvmet_support == 0) {
7641 		if (phba->sli4_hba.io_xri_cnt == 0) {
7642 			len = lpfc_new_io_buf(
7643 					      phba, phba->sli4_hba.io_xri_max);
7644 			if (len == 0) {
7645 				rc = -ENOMEM;
7646 				goto out_unset_queue;
7647 			}
7648 
7649 			if (phba->cfg_xri_rebalancing)
7650 				lpfc_create_multixri_pools(phba);
7651 		}
7652 	} else {
7653 		phba->cfg_xri_rebalancing = 0;
7654 	}
7655 
7656 	/* Allow asynchronous mailbox command to go through */
7657 	spin_lock_irq(&phba->hbalock);
7658 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7659 	spin_unlock_irq(&phba->hbalock);
7660 
7661 	/* Post receive buffers to the device */
7662 	lpfc_sli4_rb_setup(phba);
7663 
7664 	/* Reset HBA FCF states after HBA reset */
7665 	phba->fcf.fcf_flag = 0;
7666 	phba->fcf.current_rec.flag = 0;
7667 
7668 	/* Start the ELS watchdog timer */
7669 	mod_timer(&vport->els_tmofunc,
7670 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7671 
7672 	/* Start heart beat timer */
7673 	mod_timer(&phba->hb_tmofunc,
7674 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7675 	phba->hb_outstanding = 0;
7676 	phba->last_completion_time = jiffies;
7677 
7678 	/* start eq_delay heartbeat */
7679 	if (phba->cfg_auto_imax)
7680 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
7681 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7682 
7683 	/* Start error attention (ERATT) polling timer */
7684 	mod_timer(&phba->eratt_poll,
7685 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7686 
7687 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7688 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7689 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7690 		if (!rc) {
7691 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7692 					"2829 This device supports "
7693 					"Advanced Error Reporting (AER)\n");
7694 			spin_lock_irq(&phba->hbalock);
7695 			phba->hba_flag |= HBA_AER_ENABLED;
7696 			spin_unlock_irq(&phba->hbalock);
7697 		} else {
7698 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7699 					"2830 This device does not support "
7700 					"Advanced Error Reporting (AER)\n");
7701 			phba->cfg_aer_support = 0;
7702 		}
7703 		rc = 0;
7704 	}
7705 
7706 	/*
7707 	 * The port is ready, set the host's link state to LINK_DOWN
7708 	 * in preparation for link interrupts.
7709 	 */
7710 	spin_lock_irq(&phba->hbalock);
7711 	phba->link_state = LPFC_LINK_DOWN;
7712 
7713 	/* Check if physical ports are trunked */
7714 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7715 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7716 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7717 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7718 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7719 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7720 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7721 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7722 	spin_unlock_irq(&phba->hbalock);
7723 
7724 	/* Arm the CQs and then EQs on device */
7725 	lpfc_sli4_arm_cqeq_intr(phba);
7726 
7727 	/* Indicate device interrupt mode */
7728 	phba->sli4_hba.intr_enable = 1;
7729 
7730 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7731 	    (phba->hba_flag & LINK_DISABLED)) {
7732 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7733 				"3103 Adapter Link is disabled.\n");
7734 		lpfc_down_link(phba, mboxq);
7735 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7736 		if (rc != MBX_SUCCESS) {
7737 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7738 					"3104 Adapter failed to issue "
7739 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7740 			goto out_io_buff_free;
7741 		}
7742 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7743 		/* don't perform init_link on SLI4 FC port loopback test */
7744 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7745 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7746 			if (rc)
7747 				goto out_io_buff_free;
7748 		}
7749 	}
7750 	mempool_free(mboxq, phba->mbox_mem_pool);
7751 	return rc;
7752 out_io_buff_free:
7753 	/* Free allocated IO Buffers */
7754 	lpfc_io_free(phba);
7755 out_unset_queue:
7756 	/* Unset all the queues set up in this routine when error out */
7757 	lpfc_sli4_queue_unset(phba);
7758 out_destroy_queue:
7759 	lpfc_free_iocb_list(phba);
7760 	lpfc_sli4_queue_destroy(phba);
7761 out_stop_timers:
7762 	lpfc_stop_hba_timers(phba);
7763 out_free_mbox:
7764 	mempool_free(mboxq, phba->mbox_mem_pool);
7765 	return rc;
7766 }
7767 
7768 /**
7769  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7770  * @ptr: context object - pointer to hba structure.
7771  *
7772  * This is the callback function for mailbox timer. The mailbox
7773  * timer is armed when a new mailbox command is issued and the timer
7774  * is deleted when the mailbox complete. The function is called by
7775  * the kernel timer code when a mailbox does not complete within
7776  * expected time. This function wakes up the worker thread to
7777  * process the mailbox timeout and returns. All the processing is
7778  * done by the worker thread function lpfc_mbox_timeout_handler.
7779  **/
7780 void
7781 lpfc_mbox_timeout(struct timer_list *t)
7782 {
7783 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
7784 	unsigned long iflag;
7785 	uint32_t tmo_posted;
7786 
7787 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7788 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7789 	if (!tmo_posted)
7790 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7791 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7792 
7793 	if (!tmo_posted)
7794 		lpfc_worker_wake_up(phba);
7795 	return;
7796 }
7797 
7798 /**
7799  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7800  *                                    are pending
7801  * @phba: Pointer to HBA context object.
7802  *
7803  * This function checks if any mailbox completions are present on the mailbox
7804  * completion queue.
7805  **/
7806 static bool
7807 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7808 {
7809 
7810 	uint32_t idx;
7811 	struct lpfc_queue *mcq;
7812 	struct lpfc_mcqe *mcqe;
7813 	bool pending_completions = false;
7814 	uint8_t	qe_valid;
7815 
7816 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7817 		return false;
7818 
7819 	/* Check for completions on mailbox completion queue */
7820 
7821 	mcq = phba->sli4_hba.mbx_cq;
7822 	idx = mcq->hba_index;
7823 	qe_valid = mcq->qe_valid;
7824 	while (bf_get_le32(lpfc_cqe_valid,
7825 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
7826 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
7827 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7828 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7829 			pending_completions = true;
7830 			break;
7831 		}
7832 		idx = (idx + 1) % mcq->entry_count;
7833 		if (mcq->hba_index == idx)
7834 			break;
7835 
7836 		/* if the index wrapped around, toggle the valid bit */
7837 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7838 			qe_valid = (qe_valid) ? 0 : 1;
7839 	}
7840 	return pending_completions;
7841 
7842 }
7843 
7844 /**
7845  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7846  *					      that were missed.
7847  * @phba: Pointer to HBA context object.
7848  *
7849  * For sli4, it is possible to miss an interrupt. As such mbox completions
7850  * maybe missed causing erroneous mailbox timeouts to occur. This function
7851  * checks to see if mbox completions are on the mailbox completion queue
7852  * and will process all the completions associated with the eq for the
7853  * mailbox completion queue.
7854  **/
7855 bool
7856 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7857 {
7858 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7859 	uint32_t eqidx;
7860 	struct lpfc_queue *fpeq = NULL;
7861 	bool mbox_pending;
7862 
7863 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7864 		return false;
7865 
7866 	/* Find the eq associated with the mcq */
7867 
7868 	if (sli4_hba->hdwq)
7869 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++)
7870 			if (sli4_hba->hdwq[eqidx].hba_eq->queue_id ==
7871 			    sli4_hba->mbx_cq->assoc_qid) {
7872 				fpeq = sli4_hba->hdwq[eqidx].hba_eq;
7873 				break;
7874 			}
7875 	if (!fpeq)
7876 		return false;
7877 
7878 	/* Turn off interrupts from this EQ */
7879 
7880 	sli4_hba->sli4_eq_clr_intr(fpeq);
7881 
7882 	/* Check to see if a mbox completion is pending */
7883 
7884 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7885 
7886 	/*
7887 	 * If a mbox completion is pending, process all the events on EQ
7888 	 * associated with the mbox completion queue (this could include
7889 	 * mailbox commands, async events, els commands, receive queue data
7890 	 * and fcp commands)
7891 	 */
7892 
7893 	if (mbox_pending)
7894 		/* process and rearm the EQ */
7895 		lpfc_sli4_process_eq(phba, fpeq);
7896 	else
7897 		/* Always clear and re-arm the EQ */
7898 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
7899 
7900 	return mbox_pending;
7901 
7902 }
7903 
7904 /**
7905  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7906  * @phba: Pointer to HBA context object.
7907  *
7908  * This function is called from worker thread when a mailbox command times out.
7909  * The caller is not required to hold any locks. This function will reset the
7910  * HBA and recover all the pending commands.
7911  **/
7912 void
7913 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7914 {
7915 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7916 	MAILBOX_t *mb = NULL;
7917 
7918 	struct lpfc_sli *psli = &phba->sli;
7919 
7920 	/* If the mailbox completed, process the completion and return */
7921 	if (lpfc_sli4_process_missed_mbox_completions(phba))
7922 		return;
7923 
7924 	if (pmbox != NULL)
7925 		mb = &pmbox->u.mb;
7926 	/* Check the pmbox pointer first.  There is a race condition
7927 	 * between the mbox timeout handler getting executed in the
7928 	 * worklist and the mailbox actually completing. When this
7929 	 * race condition occurs, the mbox_active will be NULL.
7930 	 */
7931 	spin_lock_irq(&phba->hbalock);
7932 	if (pmbox == NULL) {
7933 		lpfc_printf_log(phba, KERN_WARNING,
7934 				LOG_MBOX | LOG_SLI,
7935 				"0353 Active Mailbox cleared - mailbox timeout "
7936 				"exiting\n");
7937 		spin_unlock_irq(&phba->hbalock);
7938 		return;
7939 	}
7940 
7941 	/* Mbox cmd <mbxCommand> timeout */
7942 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7943 			"0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
7944 			mb->mbxCommand,
7945 			phba->pport->port_state,
7946 			phba->sli.sli_flag,
7947 			phba->sli.mbox_active);
7948 	spin_unlock_irq(&phba->hbalock);
7949 
7950 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
7951 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7952 	 * it to fail all outstanding SCSI IO.
7953 	 */
7954 	spin_lock_irq(&phba->pport->work_port_lock);
7955 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7956 	spin_unlock_irq(&phba->pport->work_port_lock);
7957 	spin_lock_irq(&phba->hbalock);
7958 	phba->link_state = LPFC_LINK_UNKNOWN;
7959 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7960 	spin_unlock_irq(&phba->hbalock);
7961 
7962 	lpfc_sli_abort_fcp_rings(phba);
7963 
7964 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7965 			"0345 Resetting board due to mailbox timeout\n");
7966 
7967 	/* Reset the HBA device */
7968 	lpfc_reset_hba(phba);
7969 }
7970 
7971 /**
7972  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7973  * @phba: Pointer to HBA context object.
7974  * @pmbox: Pointer to mailbox object.
7975  * @flag: Flag indicating how the mailbox need to be processed.
7976  *
7977  * This function is called by discovery code and HBA management code
7978  * to submit a mailbox command to firmware with SLI-3 interface spec. This
7979  * function gets the hbalock to protect the data structures.
7980  * The mailbox command can be submitted in polling mode, in which case
7981  * this function will wait in a polling loop for the completion of the
7982  * mailbox.
7983  * If the mailbox is submitted in no_wait mode (not polling) the
7984  * function will submit the command and returns immediately without waiting
7985  * for the mailbox completion. The no_wait is supported only when HBA
7986  * is in SLI2/SLI3 mode - interrupts are enabled.
7987  * The SLI interface allows only one mailbox pending at a time. If the
7988  * mailbox is issued in polling mode and there is already a mailbox
7989  * pending, then the function will return an error. If the mailbox is issued
7990  * in NO_WAIT mode and there is a mailbox pending already, the function
7991  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7992  * The sli layer owns the mailbox object until the completion of mailbox
7993  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7994  * return codes the caller owns the mailbox command after the return of
7995  * the function.
7996  **/
7997 static int
7998 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7999 		       uint32_t flag)
8000 {
8001 	MAILBOX_t *mbx;
8002 	struct lpfc_sli *psli = &phba->sli;
8003 	uint32_t status, evtctr;
8004 	uint32_t ha_copy, hc_copy;
8005 	int i;
8006 	unsigned long timeout;
8007 	unsigned long drvr_flag = 0;
8008 	uint32_t word0, ldata;
8009 	void __iomem *to_slim;
8010 	int processing_queue = 0;
8011 
8012 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8013 	if (!pmbox) {
8014 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8015 		/* processing mbox queue from intr_handler */
8016 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8017 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8018 			return MBX_SUCCESS;
8019 		}
8020 		processing_queue = 1;
8021 		pmbox = lpfc_mbox_get(phba);
8022 		if (!pmbox) {
8023 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8024 			return MBX_SUCCESS;
8025 		}
8026 	}
8027 
8028 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8029 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8030 		if(!pmbox->vport) {
8031 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8032 			lpfc_printf_log(phba, KERN_ERR,
8033 					LOG_MBOX | LOG_VPORT,
8034 					"1806 Mbox x%x failed. No vport\n",
8035 					pmbox->u.mb.mbxCommand);
8036 			dump_stack();
8037 			goto out_not_finished;
8038 		}
8039 	}
8040 
8041 	/* If the PCI channel is in offline state, do not post mbox. */
8042 	if (unlikely(pci_channel_offline(phba->pcidev))) {
8043 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8044 		goto out_not_finished;
8045 	}
8046 
8047 	/* If HBA has a deferred error attention, fail the iocb. */
8048 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8049 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8050 		goto out_not_finished;
8051 	}
8052 
8053 	psli = &phba->sli;
8054 
8055 	mbx = &pmbox->u.mb;
8056 	status = MBX_SUCCESS;
8057 
8058 	if (phba->link_state == LPFC_HBA_ERROR) {
8059 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8060 
8061 		/* Mbox command <mbxCommand> cannot issue */
8062 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8063 				"(%d):0311 Mailbox command x%x cannot "
8064 				"issue Data: x%x x%x\n",
8065 				pmbox->vport ? pmbox->vport->vpi : 0,
8066 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8067 		goto out_not_finished;
8068 	}
8069 
8070 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8071 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8072 			!(hc_copy & HC_MBINT_ENA)) {
8073 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8074 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8075 				"(%d):2528 Mailbox command x%x cannot "
8076 				"issue Data: x%x x%x\n",
8077 				pmbox->vport ? pmbox->vport->vpi : 0,
8078 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8079 			goto out_not_finished;
8080 		}
8081 	}
8082 
8083 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8084 		/* Polling for a mbox command when another one is already active
8085 		 * is not allowed in SLI. Also, the driver must have established
8086 		 * SLI2 mode to queue and process multiple mbox commands.
8087 		 */
8088 
8089 		if (flag & MBX_POLL) {
8090 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8091 
8092 			/* Mbox command <mbxCommand> cannot issue */
8093 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8094 					"(%d):2529 Mailbox command x%x "
8095 					"cannot issue Data: x%x x%x\n",
8096 					pmbox->vport ? pmbox->vport->vpi : 0,
8097 					pmbox->u.mb.mbxCommand,
8098 					psli->sli_flag, flag);
8099 			goto out_not_finished;
8100 		}
8101 
8102 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8103 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8104 			/* Mbox command <mbxCommand> cannot issue */
8105 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8106 					"(%d):2530 Mailbox command x%x "
8107 					"cannot issue Data: x%x x%x\n",
8108 					pmbox->vport ? pmbox->vport->vpi : 0,
8109 					pmbox->u.mb.mbxCommand,
8110 					psli->sli_flag, flag);
8111 			goto out_not_finished;
8112 		}
8113 
8114 		/* Another mailbox command is still being processed, queue this
8115 		 * command to be processed later.
8116 		 */
8117 		lpfc_mbox_put(phba, pmbox);
8118 
8119 		/* Mbox cmd issue - BUSY */
8120 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8121 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8122 				"x%x x%x x%x x%x\n",
8123 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8124 				mbx->mbxCommand,
8125 				phba->pport ? phba->pport->port_state : 0xff,
8126 				psli->sli_flag, flag);
8127 
8128 		psli->slistat.mbox_busy++;
8129 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8130 
8131 		if (pmbox->vport) {
8132 			lpfc_debugfs_disc_trc(pmbox->vport,
8133 				LPFC_DISC_TRC_MBOX_VPORT,
8134 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8135 				(uint32_t)mbx->mbxCommand,
8136 				mbx->un.varWords[0], mbx->un.varWords[1]);
8137 		}
8138 		else {
8139 			lpfc_debugfs_disc_trc(phba->pport,
8140 				LPFC_DISC_TRC_MBOX,
8141 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8142 				(uint32_t)mbx->mbxCommand,
8143 				mbx->un.varWords[0], mbx->un.varWords[1]);
8144 		}
8145 
8146 		return MBX_BUSY;
8147 	}
8148 
8149 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8150 
8151 	/* If we are not polling, we MUST be in SLI2 mode */
8152 	if (flag != MBX_POLL) {
8153 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8154 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8155 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8156 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8157 			/* Mbox command <mbxCommand> cannot issue */
8158 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8159 					"(%d):2531 Mailbox command x%x "
8160 					"cannot issue Data: x%x x%x\n",
8161 					pmbox->vport ? pmbox->vport->vpi : 0,
8162 					pmbox->u.mb.mbxCommand,
8163 					psli->sli_flag, flag);
8164 			goto out_not_finished;
8165 		}
8166 		/* timeout active mbox command */
8167 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8168 					   1000);
8169 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8170 	}
8171 
8172 	/* Mailbox cmd <cmd> issue */
8173 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8174 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8175 			"x%x\n",
8176 			pmbox->vport ? pmbox->vport->vpi : 0,
8177 			mbx->mbxCommand,
8178 			phba->pport ? phba->pport->port_state : 0xff,
8179 			psli->sli_flag, flag);
8180 
8181 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8182 		if (pmbox->vport) {
8183 			lpfc_debugfs_disc_trc(pmbox->vport,
8184 				LPFC_DISC_TRC_MBOX_VPORT,
8185 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8186 				(uint32_t)mbx->mbxCommand,
8187 				mbx->un.varWords[0], mbx->un.varWords[1]);
8188 		}
8189 		else {
8190 			lpfc_debugfs_disc_trc(phba->pport,
8191 				LPFC_DISC_TRC_MBOX,
8192 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8193 				(uint32_t)mbx->mbxCommand,
8194 				mbx->un.varWords[0], mbx->un.varWords[1]);
8195 		}
8196 	}
8197 
8198 	psli->slistat.mbox_cmd++;
8199 	evtctr = psli->slistat.mbox_event;
8200 
8201 	/* next set own bit for the adapter and copy over command word */
8202 	mbx->mbxOwner = OWN_CHIP;
8203 
8204 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8205 		/* Populate mbox extension offset word. */
8206 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8207 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8208 				= (uint8_t *)phba->mbox_ext
8209 				  - (uint8_t *)phba->mbox;
8210 		}
8211 
8212 		/* Copy the mailbox extension data */
8213 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8214 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8215 					      (uint8_t *)phba->mbox_ext,
8216 					      pmbox->in_ext_byte_len);
8217 		}
8218 		/* Copy command data to host SLIM area */
8219 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8220 	} else {
8221 		/* Populate mbox extension offset word. */
8222 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8223 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8224 				= MAILBOX_HBA_EXT_OFFSET;
8225 
8226 		/* Copy the mailbox extension data */
8227 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8228 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8229 				MAILBOX_HBA_EXT_OFFSET,
8230 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8231 
8232 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8233 			/* copy command data into host mbox for cmpl */
8234 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8235 					      MAILBOX_CMD_SIZE);
8236 
8237 		/* First copy mbox command data to HBA SLIM, skip past first
8238 		   word */
8239 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8240 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8241 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8242 
8243 		/* Next copy over first word, with mbxOwner set */
8244 		ldata = *((uint32_t *)mbx);
8245 		to_slim = phba->MBslimaddr;
8246 		writel(ldata, to_slim);
8247 		readl(to_slim); /* flush */
8248 
8249 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8250 			/* switch over to host mailbox */
8251 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8252 	}
8253 
8254 	wmb();
8255 
8256 	switch (flag) {
8257 	case MBX_NOWAIT:
8258 		/* Set up reference to mailbox command */
8259 		psli->mbox_active = pmbox;
8260 		/* Interrupt board to do it */
8261 		writel(CA_MBATT, phba->CAregaddr);
8262 		readl(phba->CAregaddr); /* flush */
8263 		/* Don't wait for it to finish, just return */
8264 		break;
8265 
8266 	case MBX_POLL:
8267 		/* Set up null reference to mailbox command */
8268 		psli->mbox_active = NULL;
8269 		/* Interrupt board to do it */
8270 		writel(CA_MBATT, phba->CAregaddr);
8271 		readl(phba->CAregaddr); /* flush */
8272 
8273 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8274 			/* First read mbox status word */
8275 			word0 = *((uint32_t *)phba->mbox);
8276 			word0 = le32_to_cpu(word0);
8277 		} else {
8278 			/* First read mbox status word */
8279 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8280 				spin_unlock_irqrestore(&phba->hbalock,
8281 						       drvr_flag);
8282 				goto out_not_finished;
8283 			}
8284 		}
8285 
8286 		/* Read the HBA Host Attention Register */
8287 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8288 			spin_unlock_irqrestore(&phba->hbalock,
8289 						       drvr_flag);
8290 			goto out_not_finished;
8291 		}
8292 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8293 							1000) + jiffies;
8294 		i = 0;
8295 		/* Wait for command to complete */
8296 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8297 		       (!(ha_copy & HA_MBATT) &&
8298 			(phba->link_state > LPFC_WARM_START))) {
8299 			if (time_after(jiffies, timeout)) {
8300 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8301 				spin_unlock_irqrestore(&phba->hbalock,
8302 						       drvr_flag);
8303 				goto out_not_finished;
8304 			}
8305 
8306 			/* Check if we took a mbox interrupt while we were
8307 			   polling */
8308 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8309 			    && (evtctr != psli->slistat.mbox_event))
8310 				break;
8311 
8312 			if (i++ > 10) {
8313 				spin_unlock_irqrestore(&phba->hbalock,
8314 						       drvr_flag);
8315 				msleep(1);
8316 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8317 			}
8318 
8319 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8320 				/* First copy command data */
8321 				word0 = *((uint32_t *)phba->mbox);
8322 				word0 = le32_to_cpu(word0);
8323 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8324 					MAILBOX_t *slimmb;
8325 					uint32_t slimword0;
8326 					/* Check real SLIM for any errors */
8327 					slimword0 = readl(phba->MBslimaddr);
8328 					slimmb = (MAILBOX_t *) & slimword0;
8329 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8330 					    && slimmb->mbxStatus) {
8331 						psli->sli_flag &=
8332 						    ~LPFC_SLI_ACTIVE;
8333 						word0 = slimword0;
8334 					}
8335 				}
8336 			} else {
8337 				/* First copy command data */
8338 				word0 = readl(phba->MBslimaddr);
8339 			}
8340 			/* Read the HBA Host Attention Register */
8341 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8342 				spin_unlock_irqrestore(&phba->hbalock,
8343 						       drvr_flag);
8344 				goto out_not_finished;
8345 			}
8346 		}
8347 
8348 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8349 			/* copy results back to user */
8350 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8351 						MAILBOX_CMD_SIZE);
8352 			/* Copy the mailbox extension data */
8353 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8354 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8355 						      pmbox->ctx_buf,
8356 						      pmbox->out_ext_byte_len);
8357 			}
8358 		} else {
8359 			/* First copy command data */
8360 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8361 						MAILBOX_CMD_SIZE);
8362 			/* Copy the mailbox extension data */
8363 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8364 				lpfc_memcpy_from_slim(
8365 					pmbox->ctx_buf,
8366 					phba->MBslimaddr +
8367 					MAILBOX_HBA_EXT_OFFSET,
8368 					pmbox->out_ext_byte_len);
8369 			}
8370 		}
8371 
8372 		writel(HA_MBATT, phba->HAregaddr);
8373 		readl(phba->HAregaddr); /* flush */
8374 
8375 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8376 		status = mbx->mbxStatus;
8377 	}
8378 
8379 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8380 	return status;
8381 
8382 out_not_finished:
8383 	if (processing_queue) {
8384 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8385 		lpfc_mbox_cmpl_put(phba, pmbox);
8386 	}
8387 	return MBX_NOT_FINISHED;
8388 }
8389 
8390 /**
8391  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8392  * @phba: Pointer to HBA context object.
8393  *
8394  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8395  * the driver internal pending mailbox queue. It will then try to wait out the
8396  * possible outstanding mailbox command before return.
8397  *
8398  * Returns:
8399  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8400  * 	the outstanding mailbox command timed out.
8401  **/
8402 static int
8403 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8404 {
8405 	struct lpfc_sli *psli = &phba->sli;
8406 	int rc = 0;
8407 	unsigned long timeout = 0;
8408 
8409 	/* Mark the asynchronous mailbox command posting as blocked */
8410 	spin_lock_irq(&phba->hbalock);
8411 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8412 	/* Determine how long we might wait for the active mailbox
8413 	 * command to be gracefully completed by firmware.
8414 	 */
8415 	if (phba->sli.mbox_active)
8416 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8417 						phba->sli.mbox_active) *
8418 						1000) + jiffies;
8419 	spin_unlock_irq(&phba->hbalock);
8420 
8421 	/* Make sure the mailbox is really active */
8422 	if (timeout)
8423 		lpfc_sli4_process_missed_mbox_completions(phba);
8424 
8425 	/* Wait for the outstnading mailbox command to complete */
8426 	while (phba->sli.mbox_active) {
8427 		/* Check active mailbox complete status every 2ms */
8428 		msleep(2);
8429 		if (time_after(jiffies, timeout)) {
8430 			/* Timeout, marked the outstanding cmd not complete */
8431 			rc = 1;
8432 			break;
8433 		}
8434 	}
8435 
8436 	/* Can not cleanly block async mailbox command, fails it */
8437 	if (rc) {
8438 		spin_lock_irq(&phba->hbalock);
8439 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8440 		spin_unlock_irq(&phba->hbalock);
8441 	}
8442 	return rc;
8443 }
8444 
8445 /**
8446  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8447  * @phba: Pointer to HBA context object.
8448  *
8449  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8450  * commands from the driver internal pending mailbox queue. It makes sure
8451  * that there is no outstanding mailbox command before resuming posting
8452  * asynchronous mailbox commands. If, for any reason, there is outstanding
8453  * mailbox command, it will try to wait it out before resuming asynchronous
8454  * mailbox command posting.
8455  **/
8456 static void
8457 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8458 {
8459 	struct lpfc_sli *psli = &phba->sli;
8460 
8461 	spin_lock_irq(&phba->hbalock);
8462 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8463 		/* Asynchronous mailbox posting is not blocked, do nothing */
8464 		spin_unlock_irq(&phba->hbalock);
8465 		return;
8466 	}
8467 
8468 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8469 	 * successful or timeout, after timing-out the outstanding mailbox
8470 	 * command shall always be removed, so just unblock posting async
8471 	 * mailbox command and resume
8472 	 */
8473 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8474 	spin_unlock_irq(&phba->hbalock);
8475 
8476 	/* wake up worker thread to post asynchronlous mailbox command */
8477 	lpfc_worker_wake_up(phba);
8478 }
8479 
8480 /**
8481  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8482  * @phba: Pointer to HBA context object.
8483  * @mboxq: Pointer to mailbox object.
8484  *
8485  * The function waits for the bootstrap mailbox register ready bit from
8486  * port for twice the regular mailbox command timeout value.
8487  *
8488  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8489  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8490  **/
8491 static int
8492 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8493 {
8494 	uint32_t db_ready;
8495 	unsigned long timeout;
8496 	struct lpfc_register bmbx_reg;
8497 
8498 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8499 				   * 1000) + jiffies;
8500 
8501 	do {
8502 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8503 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8504 		if (!db_ready)
8505 			mdelay(2);
8506 
8507 		if (time_after(jiffies, timeout))
8508 			return MBXERR_ERROR;
8509 	} while (!db_ready);
8510 
8511 	return 0;
8512 }
8513 
8514 /**
8515  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8516  * @phba: Pointer to HBA context object.
8517  * @mboxq: Pointer to mailbox object.
8518  *
8519  * The function posts a mailbox to the port.  The mailbox is expected
8520  * to be comletely filled in and ready for the port to operate on it.
8521  * This routine executes a synchronous completion operation on the
8522  * mailbox by polling for its completion.
8523  *
8524  * The caller must not be holding any locks when calling this routine.
8525  *
8526  * Returns:
8527  *	MBX_SUCCESS - mailbox posted successfully
8528  *	Any of the MBX error values.
8529  **/
8530 static int
8531 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8532 {
8533 	int rc = MBX_SUCCESS;
8534 	unsigned long iflag;
8535 	uint32_t mcqe_status;
8536 	uint32_t mbx_cmnd;
8537 	struct lpfc_sli *psli = &phba->sli;
8538 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8539 	struct lpfc_bmbx_create *mbox_rgn;
8540 	struct dma_address *dma_address;
8541 
8542 	/*
8543 	 * Only one mailbox can be active to the bootstrap mailbox region
8544 	 * at a time and there is no queueing provided.
8545 	 */
8546 	spin_lock_irqsave(&phba->hbalock, iflag);
8547 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8548 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8549 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8550 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8551 				"cannot issue Data: x%x x%x\n",
8552 				mboxq->vport ? mboxq->vport->vpi : 0,
8553 				mboxq->u.mb.mbxCommand,
8554 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8555 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8556 				psli->sli_flag, MBX_POLL);
8557 		return MBXERR_ERROR;
8558 	}
8559 	/* The server grabs the token and owns it until release */
8560 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8561 	phba->sli.mbox_active = mboxq;
8562 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8563 
8564 	/* wait for bootstrap mbox register for readyness */
8565 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8566 	if (rc)
8567 		goto exit;
8568 	/*
8569 	 * Initialize the bootstrap memory region to avoid stale data areas
8570 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8571 	 * the bmbx mailbox region.
8572 	 */
8573 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8574 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8575 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8576 			       sizeof(struct lpfc_mqe));
8577 
8578 	/* Post the high mailbox dma address to the port and wait for ready. */
8579 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8580 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8581 
8582 	/* wait for bootstrap mbox register for hi-address write done */
8583 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8584 	if (rc)
8585 		goto exit;
8586 
8587 	/* Post the low mailbox dma address to the port. */
8588 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8589 
8590 	/* wait for bootstrap mbox register for low address write done */
8591 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8592 	if (rc)
8593 		goto exit;
8594 
8595 	/*
8596 	 * Read the CQ to ensure the mailbox has completed.
8597 	 * If so, update the mailbox status so that the upper layers
8598 	 * can complete the request normally.
8599 	 */
8600 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8601 			       sizeof(struct lpfc_mqe));
8602 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8603 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8604 			       sizeof(struct lpfc_mcqe));
8605 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8606 	/*
8607 	 * When the CQE status indicates a failure and the mailbox status
8608 	 * indicates success then copy the CQE status into the mailbox status
8609 	 * (and prefix it with x4000).
8610 	 */
8611 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8612 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8613 			bf_set(lpfc_mqe_status, mb,
8614 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8615 		rc = MBXERR_ERROR;
8616 	} else
8617 		lpfc_sli4_swap_str(phba, mboxq);
8618 
8619 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8620 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8621 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8622 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8623 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8624 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8625 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8626 			bf_get(lpfc_mqe_status, mb),
8627 			mb->un.mb_words[0], mb->un.mb_words[1],
8628 			mb->un.mb_words[2], mb->un.mb_words[3],
8629 			mb->un.mb_words[4], mb->un.mb_words[5],
8630 			mb->un.mb_words[6], mb->un.mb_words[7],
8631 			mb->un.mb_words[8], mb->un.mb_words[9],
8632 			mb->un.mb_words[10], mb->un.mb_words[11],
8633 			mb->un.mb_words[12], mboxq->mcqe.word0,
8634 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8635 			mboxq->mcqe.trailer);
8636 exit:
8637 	/* We are holding the token, no needed for lock when release */
8638 	spin_lock_irqsave(&phba->hbalock, iflag);
8639 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8640 	phba->sli.mbox_active = NULL;
8641 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8642 	return rc;
8643 }
8644 
8645 /**
8646  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8647  * @phba: Pointer to HBA context object.
8648  * @pmbox: Pointer to mailbox object.
8649  * @flag: Flag indicating how the mailbox need to be processed.
8650  *
8651  * This function is called by discovery code and HBA management code to submit
8652  * a mailbox command to firmware with SLI-4 interface spec.
8653  *
8654  * Return codes the caller owns the mailbox command after the return of the
8655  * function.
8656  **/
8657 static int
8658 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8659 		       uint32_t flag)
8660 {
8661 	struct lpfc_sli *psli = &phba->sli;
8662 	unsigned long iflags;
8663 	int rc;
8664 
8665 	/* dump from issue mailbox command if setup */
8666 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8667 
8668 	rc = lpfc_mbox_dev_check(phba);
8669 	if (unlikely(rc)) {
8670 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8671 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8672 				"cannot issue Data: x%x x%x\n",
8673 				mboxq->vport ? mboxq->vport->vpi : 0,
8674 				mboxq->u.mb.mbxCommand,
8675 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8676 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8677 				psli->sli_flag, flag);
8678 		goto out_not_finished;
8679 	}
8680 
8681 	/* Detect polling mode and jump to a handler */
8682 	if (!phba->sli4_hba.intr_enable) {
8683 		if (flag == MBX_POLL)
8684 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8685 		else
8686 			rc = -EIO;
8687 		if (rc != MBX_SUCCESS)
8688 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8689 					"(%d):2541 Mailbox command x%x "
8690 					"(x%x/x%x) failure: "
8691 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8692 					"Data: x%x x%x\n,",
8693 					mboxq->vport ? mboxq->vport->vpi : 0,
8694 					mboxq->u.mb.mbxCommand,
8695 					lpfc_sli_config_mbox_subsys_get(phba,
8696 									mboxq),
8697 					lpfc_sli_config_mbox_opcode_get(phba,
8698 									mboxq),
8699 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8700 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8701 					bf_get(lpfc_mcqe_ext_status,
8702 					       &mboxq->mcqe),
8703 					psli->sli_flag, flag);
8704 		return rc;
8705 	} else if (flag == MBX_POLL) {
8706 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8707 				"(%d):2542 Try to issue mailbox command "
8708 				"x%x (x%x/x%x) synchronously ahead of async "
8709 				"mailbox command queue: x%x x%x\n",
8710 				mboxq->vport ? mboxq->vport->vpi : 0,
8711 				mboxq->u.mb.mbxCommand,
8712 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8713 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8714 				psli->sli_flag, flag);
8715 		/* Try to block the asynchronous mailbox posting */
8716 		rc = lpfc_sli4_async_mbox_block(phba);
8717 		if (!rc) {
8718 			/* Successfully blocked, now issue sync mbox cmd */
8719 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8720 			if (rc != MBX_SUCCESS)
8721 				lpfc_printf_log(phba, KERN_WARNING,
8722 					LOG_MBOX | LOG_SLI,
8723 					"(%d):2597 Sync Mailbox command "
8724 					"x%x (x%x/x%x) failure: "
8725 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8726 					"Data: x%x x%x\n,",
8727 					mboxq->vport ? mboxq->vport->vpi : 0,
8728 					mboxq->u.mb.mbxCommand,
8729 					lpfc_sli_config_mbox_subsys_get(phba,
8730 									mboxq),
8731 					lpfc_sli_config_mbox_opcode_get(phba,
8732 									mboxq),
8733 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8734 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8735 					bf_get(lpfc_mcqe_ext_status,
8736 					       &mboxq->mcqe),
8737 					psli->sli_flag, flag);
8738 			/* Unblock the async mailbox posting afterward */
8739 			lpfc_sli4_async_mbox_unblock(phba);
8740 		}
8741 		return rc;
8742 	}
8743 
8744 	/* Now, interrupt mode asynchrous mailbox command */
8745 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8746 	if (rc) {
8747 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8748 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8749 				"cannot issue Data: x%x x%x\n",
8750 				mboxq->vport ? mboxq->vport->vpi : 0,
8751 				mboxq->u.mb.mbxCommand,
8752 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8753 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8754 				psli->sli_flag, flag);
8755 		goto out_not_finished;
8756 	}
8757 
8758 	/* Put the mailbox command to the driver internal FIFO */
8759 	psli->slistat.mbox_busy++;
8760 	spin_lock_irqsave(&phba->hbalock, iflags);
8761 	lpfc_mbox_put(phba, mboxq);
8762 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8763 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8764 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8765 			"x%x (x%x/x%x) x%x x%x x%x\n",
8766 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8767 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8768 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8769 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8770 			phba->pport->port_state,
8771 			psli->sli_flag, MBX_NOWAIT);
8772 	/* Wake up worker thread to transport mailbox command from head */
8773 	lpfc_worker_wake_up(phba);
8774 
8775 	return MBX_BUSY;
8776 
8777 out_not_finished:
8778 	return MBX_NOT_FINISHED;
8779 }
8780 
8781 /**
8782  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8783  * @phba: Pointer to HBA context object.
8784  *
8785  * This function is called by worker thread to send a mailbox command to
8786  * SLI4 HBA firmware.
8787  *
8788  **/
8789 int
8790 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8791 {
8792 	struct lpfc_sli *psli = &phba->sli;
8793 	LPFC_MBOXQ_t *mboxq;
8794 	int rc = MBX_SUCCESS;
8795 	unsigned long iflags;
8796 	struct lpfc_mqe *mqe;
8797 	uint32_t mbx_cmnd;
8798 
8799 	/* Check interrupt mode before post async mailbox command */
8800 	if (unlikely(!phba->sli4_hba.intr_enable))
8801 		return MBX_NOT_FINISHED;
8802 
8803 	/* Check for mailbox command service token */
8804 	spin_lock_irqsave(&phba->hbalock, iflags);
8805 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8806 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8807 		return MBX_NOT_FINISHED;
8808 	}
8809 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8810 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8811 		return MBX_NOT_FINISHED;
8812 	}
8813 	if (unlikely(phba->sli.mbox_active)) {
8814 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8815 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8816 				"0384 There is pending active mailbox cmd\n");
8817 		return MBX_NOT_FINISHED;
8818 	}
8819 	/* Take the mailbox command service token */
8820 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8821 
8822 	/* Get the next mailbox command from head of queue */
8823 	mboxq = lpfc_mbox_get(phba);
8824 
8825 	/* If no more mailbox command waiting for post, we're done */
8826 	if (!mboxq) {
8827 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8828 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8829 		return MBX_SUCCESS;
8830 	}
8831 	phba->sli.mbox_active = mboxq;
8832 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8833 
8834 	/* Check device readiness for posting mailbox command */
8835 	rc = lpfc_mbox_dev_check(phba);
8836 	if (unlikely(rc))
8837 		/* Driver clean routine will clean up pending mailbox */
8838 		goto out_not_finished;
8839 
8840 	/* Prepare the mbox command to be posted */
8841 	mqe = &mboxq->u.mqe;
8842 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8843 
8844 	/* Start timer for the mbox_tmo and log some mailbox post messages */
8845 	mod_timer(&psli->mbox_tmo, (jiffies +
8846 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8847 
8848 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8849 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8850 			"x%x x%x\n",
8851 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8852 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8853 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8854 			phba->pport->port_state, psli->sli_flag);
8855 
8856 	if (mbx_cmnd != MBX_HEARTBEAT) {
8857 		if (mboxq->vport) {
8858 			lpfc_debugfs_disc_trc(mboxq->vport,
8859 				LPFC_DISC_TRC_MBOX_VPORT,
8860 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8861 				mbx_cmnd, mqe->un.mb_words[0],
8862 				mqe->un.mb_words[1]);
8863 		} else {
8864 			lpfc_debugfs_disc_trc(phba->pport,
8865 				LPFC_DISC_TRC_MBOX,
8866 				"MBOX Send: cmd:x%x mb:x%x x%x",
8867 				mbx_cmnd, mqe->un.mb_words[0],
8868 				mqe->un.mb_words[1]);
8869 		}
8870 	}
8871 	psli->slistat.mbox_cmd++;
8872 
8873 	/* Post the mailbox command to the port */
8874 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8875 	if (rc != MBX_SUCCESS) {
8876 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8877 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
8878 				"cannot issue Data: x%x x%x\n",
8879 				mboxq->vport ? mboxq->vport->vpi : 0,
8880 				mboxq->u.mb.mbxCommand,
8881 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8882 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8883 				psli->sli_flag, MBX_NOWAIT);
8884 		goto out_not_finished;
8885 	}
8886 
8887 	return rc;
8888 
8889 out_not_finished:
8890 	spin_lock_irqsave(&phba->hbalock, iflags);
8891 	if (phba->sli.mbox_active) {
8892 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8893 		__lpfc_mbox_cmpl_put(phba, mboxq);
8894 		/* Release the token */
8895 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8896 		phba->sli.mbox_active = NULL;
8897 	}
8898 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8899 
8900 	return MBX_NOT_FINISHED;
8901 }
8902 
8903 /**
8904  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8905  * @phba: Pointer to HBA context object.
8906  * @pmbox: Pointer to mailbox object.
8907  * @flag: Flag indicating how the mailbox need to be processed.
8908  *
8909  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8910  * the API jump table function pointer from the lpfc_hba struct.
8911  *
8912  * Return codes the caller owns the mailbox command after the return of the
8913  * function.
8914  **/
8915 int
8916 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8917 {
8918 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8919 }
8920 
8921 /**
8922  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8923  * @phba: The hba struct for which this call is being executed.
8924  * @dev_grp: The HBA PCI-Device group number.
8925  *
8926  * This routine sets up the mbox interface API function jump table in @phba
8927  * struct.
8928  * Returns: 0 - success, -ENODEV - failure.
8929  **/
8930 int
8931 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8932 {
8933 
8934 	switch (dev_grp) {
8935 	case LPFC_PCI_DEV_LP:
8936 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8937 		phba->lpfc_sli_handle_slow_ring_event =
8938 				lpfc_sli_handle_slow_ring_event_s3;
8939 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8940 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8941 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8942 		break;
8943 	case LPFC_PCI_DEV_OC:
8944 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8945 		phba->lpfc_sli_handle_slow_ring_event =
8946 				lpfc_sli_handle_slow_ring_event_s4;
8947 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8948 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8949 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8950 		break;
8951 	default:
8952 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8953 				"1420 Invalid HBA PCI-device group: 0x%x\n",
8954 				dev_grp);
8955 		return -ENODEV;
8956 		break;
8957 	}
8958 	return 0;
8959 }
8960 
8961 /**
8962  * __lpfc_sli_ringtx_put - Add an iocb to the txq
8963  * @phba: Pointer to HBA context object.
8964  * @pring: Pointer to driver SLI ring object.
8965  * @piocb: Pointer to address of newly added command iocb.
8966  *
8967  * This function is called with hbalock held to add a command
8968  * iocb to the txq when SLI layer cannot submit the command iocb
8969  * to the ring.
8970  **/
8971 void
8972 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8973 		    struct lpfc_iocbq *piocb)
8974 {
8975 	lockdep_assert_held(&phba->hbalock);
8976 	/* Insert the caller's iocb in the txq tail for later processing. */
8977 	list_add_tail(&piocb->list, &pring->txq);
8978 }
8979 
8980 /**
8981  * lpfc_sli_next_iocb - Get the next iocb in the txq
8982  * @phba: Pointer to HBA context object.
8983  * @pring: Pointer to driver SLI ring object.
8984  * @piocb: Pointer to address of newly added command iocb.
8985  *
8986  * This function is called with hbalock held before a new
8987  * iocb is submitted to the firmware. This function checks
8988  * txq to flush the iocbs in txq to Firmware before
8989  * submitting new iocbs to the Firmware.
8990  * If there are iocbs in the txq which need to be submitted
8991  * to firmware, lpfc_sli_next_iocb returns the first element
8992  * of the txq after dequeuing it from txq.
8993  * If there is no iocb in the txq then the function will return
8994  * *piocb and *piocb is set to NULL. Caller needs to check
8995  * *piocb to find if there are more commands in the txq.
8996  **/
8997 static struct lpfc_iocbq *
8998 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8999 		   struct lpfc_iocbq **piocb)
9000 {
9001 	struct lpfc_iocbq * nextiocb;
9002 
9003 	lockdep_assert_held(&phba->hbalock);
9004 
9005 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9006 	if (!nextiocb) {
9007 		nextiocb = *piocb;
9008 		*piocb = NULL;
9009 	}
9010 
9011 	return nextiocb;
9012 }
9013 
9014 /**
9015  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9016  * @phba: Pointer to HBA context object.
9017  * @ring_number: SLI ring number to issue iocb on.
9018  * @piocb: Pointer to command iocb.
9019  * @flag: Flag indicating if this command can be put into txq.
9020  *
9021  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9022  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9023  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9024  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9025  * this function allows only iocbs for posting buffers. This function finds
9026  * next available slot in the command ring and posts the command to the
9027  * available slot and writes the port attention register to request HBA start
9028  * processing new iocb. If there is no slot available in the ring and
9029  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9030  * the function returns IOCB_BUSY.
9031  *
9032  * This function is called with hbalock held. The function will return success
9033  * after it successfully submit the iocb to firmware or after adding to the
9034  * txq.
9035  **/
9036 static int
9037 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9038 		    struct lpfc_iocbq *piocb, uint32_t flag)
9039 {
9040 	struct lpfc_iocbq *nextiocb;
9041 	IOCB_t *iocb;
9042 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9043 
9044 	lockdep_assert_held(&phba->hbalock);
9045 
9046 	if (piocb->iocb_cmpl && (!piocb->vport) &&
9047 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9048 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9049 		lpfc_printf_log(phba, KERN_ERR,
9050 				LOG_SLI | LOG_VPORT,
9051 				"1807 IOCB x%x failed. No vport\n",
9052 				piocb->iocb.ulpCommand);
9053 		dump_stack();
9054 		return IOCB_ERROR;
9055 	}
9056 
9057 
9058 	/* If the PCI channel is in offline state, do not post iocbs. */
9059 	if (unlikely(pci_channel_offline(phba->pcidev)))
9060 		return IOCB_ERROR;
9061 
9062 	/* If HBA has a deferred error attention, fail the iocb. */
9063 	if (unlikely(phba->hba_flag & DEFER_ERATT))
9064 		return IOCB_ERROR;
9065 
9066 	/*
9067 	 * We should never get an IOCB if we are in a < LINK_DOWN state
9068 	 */
9069 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9070 		return IOCB_ERROR;
9071 
9072 	/*
9073 	 * Check to see if we are blocking IOCB processing because of a
9074 	 * outstanding event.
9075 	 */
9076 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9077 		goto iocb_busy;
9078 
9079 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9080 		/*
9081 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9082 		 * can be issued if the link is not up.
9083 		 */
9084 		switch (piocb->iocb.ulpCommand) {
9085 		case CMD_GEN_REQUEST64_CR:
9086 		case CMD_GEN_REQUEST64_CX:
9087 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9088 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9089 					FC_RCTL_DD_UNSOL_CMD) ||
9090 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9091 					MENLO_TRANSPORT_TYPE))
9092 
9093 				goto iocb_busy;
9094 			break;
9095 		case CMD_QUE_RING_BUF_CN:
9096 		case CMD_QUE_RING_BUF64_CN:
9097 			/*
9098 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9099 			 * completion, iocb_cmpl MUST be 0.
9100 			 */
9101 			if (piocb->iocb_cmpl)
9102 				piocb->iocb_cmpl = NULL;
9103 			/*FALLTHROUGH*/
9104 		case CMD_CREATE_XRI_CR:
9105 		case CMD_CLOSE_XRI_CN:
9106 		case CMD_CLOSE_XRI_CX:
9107 			break;
9108 		default:
9109 			goto iocb_busy;
9110 		}
9111 
9112 	/*
9113 	 * For FCP commands, we must be in a state where we can process link
9114 	 * attention events.
9115 	 */
9116 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9117 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9118 		goto iocb_busy;
9119 	}
9120 
9121 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9122 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9123 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9124 
9125 	if (iocb)
9126 		lpfc_sli_update_ring(phba, pring);
9127 	else
9128 		lpfc_sli_update_full_ring(phba, pring);
9129 
9130 	if (!piocb)
9131 		return IOCB_SUCCESS;
9132 
9133 	goto out_busy;
9134 
9135  iocb_busy:
9136 	pring->stats.iocb_cmd_delay++;
9137 
9138  out_busy:
9139 
9140 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9141 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9142 		return IOCB_SUCCESS;
9143 	}
9144 
9145 	return IOCB_BUSY;
9146 }
9147 
9148 /**
9149  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9150  * @phba: Pointer to HBA context object.
9151  * @piocb: Pointer to command iocb.
9152  * @sglq: Pointer to the scatter gather queue object.
9153  *
9154  * This routine converts the bpl or bde that is in the IOCB
9155  * to a sgl list for the sli4 hardware. The physical address
9156  * of the bpl/bde is converted back to a virtual address.
9157  * If the IOCB contains a BPL then the list of BDE's is
9158  * converted to sli4_sge's. If the IOCB contains a single
9159  * BDE then it is converted to a single sli_sge.
9160  * The IOCB is still in cpu endianess so the contents of
9161  * the bpl can be used without byte swapping.
9162  *
9163  * Returns valid XRI = Success, NO_XRI = Failure.
9164 **/
9165 static uint16_t
9166 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9167 		struct lpfc_sglq *sglq)
9168 {
9169 	uint16_t xritag = NO_XRI;
9170 	struct ulp_bde64 *bpl = NULL;
9171 	struct ulp_bde64 bde;
9172 	struct sli4_sge *sgl  = NULL;
9173 	struct lpfc_dmabuf *dmabuf;
9174 	IOCB_t *icmd;
9175 	int numBdes = 0;
9176 	int i = 0;
9177 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9178 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9179 
9180 	if (!piocbq || !sglq)
9181 		return xritag;
9182 
9183 	sgl  = (struct sli4_sge *)sglq->sgl;
9184 	icmd = &piocbq->iocb;
9185 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9186 		return sglq->sli4_xritag;
9187 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9188 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9189 				sizeof(struct ulp_bde64);
9190 		/* The addrHigh and addrLow fields within the IOCB
9191 		 * have not been byteswapped yet so there is no
9192 		 * need to swap them back.
9193 		 */
9194 		if (piocbq->context3)
9195 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9196 		else
9197 			return xritag;
9198 
9199 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9200 		if (!bpl)
9201 			return xritag;
9202 
9203 		for (i = 0; i < numBdes; i++) {
9204 			/* Should already be byte swapped. */
9205 			sgl->addr_hi = bpl->addrHigh;
9206 			sgl->addr_lo = bpl->addrLow;
9207 
9208 			sgl->word2 = le32_to_cpu(sgl->word2);
9209 			if ((i+1) == numBdes)
9210 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9211 			else
9212 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9213 			/* swap the size field back to the cpu so we
9214 			 * can assign it to the sgl.
9215 			 */
9216 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9217 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9218 			/* The offsets in the sgl need to be accumulated
9219 			 * separately for the request and reply lists.
9220 			 * The request is always first, the reply follows.
9221 			 */
9222 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9223 				/* add up the reply sg entries */
9224 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9225 					inbound++;
9226 				/* first inbound? reset the offset */
9227 				if (inbound == 1)
9228 					offset = 0;
9229 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9230 				bf_set(lpfc_sli4_sge_type, sgl,
9231 					LPFC_SGE_TYPE_DATA);
9232 				offset += bde.tus.f.bdeSize;
9233 			}
9234 			sgl->word2 = cpu_to_le32(sgl->word2);
9235 			bpl++;
9236 			sgl++;
9237 		}
9238 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9239 			/* The addrHigh and addrLow fields of the BDE have not
9240 			 * been byteswapped yet so they need to be swapped
9241 			 * before putting them in the sgl.
9242 			 */
9243 			sgl->addr_hi =
9244 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9245 			sgl->addr_lo =
9246 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9247 			sgl->word2 = le32_to_cpu(sgl->word2);
9248 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9249 			sgl->word2 = cpu_to_le32(sgl->word2);
9250 			sgl->sge_len =
9251 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9252 	}
9253 	return sglq->sli4_xritag;
9254 }
9255 
9256 /**
9257  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9258  * @phba: Pointer to HBA context object.
9259  * @piocb: Pointer to command iocb.
9260  * @wqe: Pointer to the work queue entry.
9261  *
9262  * This routine converts the iocb command to its Work Queue Entry
9263  * equivalent. The wqe pointer should not have any fields set when
9264  * this routine is called because it will memcpy over them.
9265  * This routine does not set the CQ_ID or the WQEC bits in the
9266  * wqe.
9267  *
9268  * Returns: 0 = Success, IOCB_ERROR = Failure.
9269  **/
9270 static int
9271 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9272 		union lpfc_wqe128 *wqe)
9273 {
9274 	uint32_t xmit_len = 0, total_len = 0;
9275 	uint8_t ct = 0;
9276 	uint32_t fip;
9277 	uint32_t abort_tag;
9278 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9279 	uint8_t cmnd;
9280 	uint16_t xritag;
9281 	uint16_t abrt_iotag;
9282 	struct lpfc_iocbq *abrtiocbq;
9283 	struct ulp_bde64 *bpl = NULL;
9284 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9285 	int numBdes, i;
9286 	struct ulp_bde64 bde;
9287 	struct lpfc_nodelist *ndlp;
9288 	uint32_t *pcmd;
9289 	uint32_t if_type;
9290 
9291 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9292 	/* The fcp commands will set command type */
9293 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9294 		command_type = FCP_COMMAND;
9295 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9296 		command_type = ELS_COMMAND_FIP;
9297 	else
9298 		command_type = ELS_COMMAND_NON_FIP;
9299 
9300 	if (phba->fcp_embed_io)
9301 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9302 	/* Some of the fields are in the right position already */
9303 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9304 	if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) {
9305 		/* The ct field has moved so reset */
9306 		wqe->generic.wqe_com.word7 = 0;
9307 		wqe->generic.wqe_com.word10 = 0;
9308 	}
9309 
9310 	abort_tag = (uint32_t) iocbq->iotag;
9311 	xritag = iocbq->sli4_xritag;
9312 	/* words0-2 bpl convert bde */
9313 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9314 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9315 				sizeof(struct ulp_bde64);
9316 		bpl  = (struct ulp_bde64 *)
9317 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9318 		if (!bpl)
9319 			return IOCB_ERROR;
9320 
9321 		/* Should already be byte swapped. */
9322 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9323 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9324 		/* swap the size field back to the cpu so we
9325 		 * can assign it to the sgl.
9326 		 */
9327 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9328 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9329 		total_len = 0;
9330 		for (i = 0; i < numBdes; i++) {
9331 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9332 			total_len += bde.tus.f.bdeSize;
9333 		}
9334 	} else
9335 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9336 
9337 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9338 	cmnd = iocbq->iocb.ulpCommand;
9339 
9340 	switch (iocbq->iocb.ulpCommand) {
9341 	case CMD_ELS_REQUEST64_CR:
9342 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9343 			ndlp = iocbq->context_un.ndlp;
9344 		else
9345 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9346 		if (!iocbq->iocb.ulpLe) {
9347 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9348 				"2007 Only Limited Edition cmd Format"
9349 				" supported 0x%x\n",
9350 				iocbq->iocb.ulpCommand);
9351 			return IOCB_ERROR;
9352 		}
9353 
9354 		wqe->els_req.payload_len = xmit_len;
9355 		/* Els_reguest64 has a TMO */
9356 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9357 			iocbq->iocb.ulpTimeout);
9358 		/* Need a VF for word 4 set the vf bit*/
9359 		bf_set(els_req64_vf, &wqe->els_req, 0);
9360 		/* And a VFID for word 12 */
9361 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9362 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9363 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9364 		       iocbq->iocb.ulpContext);
9365 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9366 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9367 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9368 		if (command_type == ELS_COMMAND_FIP)
9369 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9370 					>> LPFC_FIP_ELS_ID_SHIFT);
9371 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9372 					iocbq->context2)->virt);
9373 		if_type = bf_get(lpfc_sli_intf_if_type,
9374 					&phba->sli4_hba.sli_intf);
9375 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9376 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9377 				*pcmd == ELS_CMD_SCR ||
9378 				*pcmd == ELS_CMD_FDISC ||
9379 				*pcmd == ELS_CMD_LOGO ||
9380 				*pcmd == ELS_CMD_PLOGI)) {
9381 				bf_set(els_req64_sp, &wqe->els_req, 1);
9382 				bf_set(els_req64_sid, &wqe->els_req,
9383 					iocbq->vport->fc_myDID);
9384 				if ((*pcmd == ELS_CMD_FLOGI) &&
9385 					!(phba->fc_topology ==
9386 						LPFC_TOPOLOGY_LOOP))
9387 					bf_set(els_req64_sid, &wqe->els_req, 0);
9388 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9389 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9390 					phba->vpi_ids[iocbq->vport->vpi]);
9391 			} else if (pcmd && iocbq->context1) {
9392 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9393 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9394 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9395 			}
9396 		}
9397 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9398 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9399 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9400 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9401 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9402 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9403 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9404 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9405 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9406 		break;
9407 	case CMD_XMIT_SEQUENCE64_CX:
9408 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9409 		       iocbq->iocb.un.ulpWord[3]);
9410 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9411 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9412 		/* The entire sequence is transmitted for this IOCB */
9413 		xmit_len = total_len;
9414 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9415 		if (phba->link_flag & LS_LOOPBACK_MODE)
9416 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9417 		/* fall through */
9418 	case CMD_XMIT_SEQUENCE64_CR:
9419 		/* word3 iocb=io_tag32 wqe=reserved */
9420 		wqe->xmit_sequence.rsvd3 = 0;
9421 		/* word4 relative_offset memcpy */
9422 		/* word5 r_ctl/df_ctl memcpy */
9423 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9424 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9425 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9426 		       LPFC_WQE_IOD_WRITE);
9427 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9428 		       LPFC_WQE_LENLOC_WORD12);
9429 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9430 		wqe->xmit_sequence.xmit_len = xmit_len;
9431 		command_type = OTHER_COMMAND;
9432 		break;
9433 	case CMD_XMIT_BCAST64_CN:
9434 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9435 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9436 		/* word4 iocb=rsvd wqe=rsvd */
9437 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9438 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9439 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9440 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9441 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9442 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9443 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9444 		       LPFC_WQE_LENLOC_WORD3);
9445 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9446 		break;
9447 	case CMD_FCP_IWRITE64_CR:
9448 		command_type = FCP_COMMAND_DATA_OUT;
9449 		/* word3 iocb=iotag wqe=payload_offset_len */
9450 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9451 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9452 		       xmit_len + sizeof(struct fcp_rsp));
9453 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9454 		       0);
9455 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9456 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9457 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9458 		       iocbq->iocb.ulpFCP2Rcvy);
9459 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9460 		/* Always open the exchange */
9461 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9462 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9463 		       LPFC_WQE_LENLOC_WORD4);
9464 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9465 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9466 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9467 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9468 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9469 			if (iocbq->priority) {
9470 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9471 				       (iocbq->priority << 1));
9472 			} else {
9473 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9474 				       (phba->cfg_XLanePriority << 1));
9475 			}
9476 		}
9477 		/* Note, word 10 is already initialized to 0 */
9478 
9479 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9480 		if (phba->cfg_enable_pbde)
9481 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9482 		else
9483 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9484 
9485 		if (phba->fcp_embed_io) {
9486 			struct lpfc_io_buf *lpfc_cmd;
9487 			struct sli4_sge *sgl;
9488 			struct fcp_cmnd *fcp_cmnd;
9489 			uint32_t *ptr;
9490 
9491 			/* 128 byte wqe support here */
9492 
9493 			lpfc_cmd = iocbq->context1;
9494 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9495 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9496 
9497 			/* Word 0-2 - FCP_CMND */
9498 			wqe->generic.bde.tus.f.bdeFlags =
9499 				BUFF_TYPE_BDE_IMMED;
9500 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9501 			wqe->generic.bde.addrHigh = 0;
9502 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9503 
9504 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9505 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9506 
9507 			/* Word 22-29  FCP CMND Payload */
9508 			ptr = &wqe->words[22];
9509 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9510 		}
9511 		break;
9512 	case CMD_FCP_IREAD64_CR:
9513 		/* word3 iocb=iotag wqe=payload_offset_len */
9514 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9515 		bf_set(payload_offset_len, &wqe->fcp_iread,
9516 		       xmit_len + sizeof(struct fcp_rsp));
9517 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9518 		       0);
9519 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9520 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9521 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9522 		       iocbq->iocb.ulpFCP2Rcvy);
9523 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9524 		/* Always open the exchange */
9525 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9526 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9527 		       LPFC_WQE_LENLOC_WORD4);
9528 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9529 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9530 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9531 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9532 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9533 			if (iocbq->priority) {
9534 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9535 				       (iocbq->priority << 1));
9536 			} else {
9537 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9538 				       (phba->cfg_XLanePriority << 1));
9539 			}
9540 		}
9541 		/* Note, word 10 is already initialized to 0 */
9542 
9543 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9544 		if (phba->cfg_enable_pbde)
9545 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9546 		else
9547 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9548 
9549 		if (phba->fcp_embed_io) {
9550 			struct lpfc_io_buf *lpfc_cmd;
9551 			struct sli4_sge *sgl;
9552 			struct fcp_cmnd *fcp_cmnd;
9553 			uint32_t *ptr;
9554 
9555 			/* 128 byte wqe support here */
9556 
9557 			lpfc_cmd = iocbq->context1;
9558 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9559 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9560 
9561 			/* Word 0-2 - FCP_CMND */
9562 			wqe->generic.bde.tus.f.bdeFlags =
9563 				BUFF_TYPE_BDE_IMMED;
9564 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9565 			wqe->generic.bde.addrHigh = 0;
9566 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9567 
9568 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9569 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9570 
9571 			/* Word 22-29  FCP CMND Payload */
9572 			ptr = &wqe->words[22];
9573 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9574 		}
9575 		break;
9576 	case CMD_FCP_ICMND64_CR:
9577 		/* word3 iocb=iotag wqe=payload_offset_len */
9578 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9579 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9580 		       xmit_len + sizeof(struct fcp_rsp));
9581 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9582 		       0);
9583 		/* word3 iocb=IO_TAG wqe=reserved */
9584 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9585 		/* Always open the exchange */
9586 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9587 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9588 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9589 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9590 		       LPFC_WQE_LENLOC_NONE);
9591 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9592 		       iocbq->iocb.ulpFCP2Rcvy);
9593 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9594 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9595 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9596 			if (iocbq->priority) {
9597 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9598 				       (iocbq->priority << 1));
9599 			} else {
9600 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9601 				       (phba->cfg_XLanePriority << 1));
9602 			}
9603 		}
9604 		/* Note, word 10 is already initialized to 0 */
9605 
9606 		if (phba->fcp_embed_io) {
9607 			struct lpfc_io_buf *lpfc_cmd;
9608 			struct sli4_sge *sgl;
9609 			struct fcp_cmnd *fcp_cmnd;
9610 			uint32_t *ptr;
9611 
9612 			/* 128 byte wqe support here */
9613 
9614 			lpfc_cmd = iocbq->context1;
9615 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9616 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9617 
9618 			/* Word 0-2 - FCP_CMND */
9619 			wqe->generic.bde.tus.f.bdeFlags =
9620 				BUFF_TYPE_BDE_IMMED;
9621 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9622 			wqe->generic.bde.addrHigh = 0;
9623 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9624 
9625 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9626 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9627 
9628 			/* Word 22-29  FCP CMND Payload */
9629 			ptr = &wqe->words[22];
9630 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9631 		}
9632 		break;
9633 	case CMD_GEN_REQUEST64_CR:
9634 		/* For this command calculate the xmit length of the
9635 		 * request bde.
9636 		 */
9637 		xmit_len = 0;
9638 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9639 			sizeof(struct ulp_bde64);
9640 		for (i = 0; i < numBdes; i++) {
9641 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9642 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9643 				break;
9644 			xmit_len += bde.tus.f.bdeSize;
9645 		}
9646 		/* word3 iocb=IO_TAG wqe=request_payload_len */
9647 		wqe->gen_req.request_payload_len = xmit_len;
9648 		/* word4 iocb=parameter wqe=relative_offset memcpy */
9649 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9650 		/* word6 context tag copied in memcpy */
9651 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9652 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9653 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9654 				"2015 Invalid CT %x command 0x%x\n",
9655 				ct, iocbq->iocb.ulpCommand);
9656 			return IOCB_ERROR;
9657 		}
9658 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9659 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9660 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9661 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9662 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9663 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9664 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9665 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9666 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9667 		command_type = OTHER_COMMAND;
9668 		break;
9669 	case CMD_XMIT_ELS_RSP64_CX:
9670 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9671 		/* words0-2 BDE memcpy */
9672 		/* word3 iocb=iotag32 wqe=response_payload_len */
9673 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9674 		/* word4 */
9675 		wqe->xmit_els_rsp.word4 = 0;
9676 		/* word5 iocb=rsvd wge=did */
9677 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9678 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9679 
9680 		if_type = bf_get(lpfc_sli_intf_if_type,
9681 					&phba->sli4_hba.sli_intf);
9682 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9683 			if (iocbq->vport->fc_flag & FC_PT2PT) {
9684 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9685 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9686 					iocbq->vport->fc_myDID);
9687 				if (iocbq->vport->fc_myDID == Fabric_DID) {
9688 					bf_set(wqe_els_did,
9689 						&wqe->xmit_els_rsp.wqe_dest, 0);
9690 				}
9691 			}
9692 		}
9693 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9694 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9695 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9696 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9697 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9698 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9699 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9700 			       phba->vpi_ids[iocbq->vport->vpi]);
9701 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9702 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9703 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9704 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9705 		       LPFC_WQE_LENLOC_WORD3);
9706 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9707 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9708 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9709 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9710 					iocbq->context2)->virt);
9711 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9712 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9713 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9714 					iocbq->vport->fc_myDID);
9715 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9716 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9717 					phba->vpi_ids[phba->pport->vpi]);
9718 		}
9719 		command_type = OTHER_COMMAND;
9720 		break;
9721 	case CMD_CLOSE_XRI_CN:
9722 	case CMD_ABORT_XRI_CN:
9723 	case CMD_ABORT_XRI_CX:
9724 		/* words 0-2 memcpy should be 0 rserved */
9725 		/* port will send abts */
9726 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9727 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9728 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9729 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9730 		} else
9731 			fip = 0;
9732 
9733 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9734 			/*
9735 			 * The link is down, or the command was ELS_FIP
9736 			 * so the fw does not need to send abts
9737 			 * on the wire.
9738 			 */
9739 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9740 		else
9741 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9742 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9743 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9744 		wqe->abort_cmd.rsrvd5 = 0;
9745 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9746 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9747 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9748 		/*
9749 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9750 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9751 		 */
9752 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9753 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9754 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9755 		       LPFC_WQE_LENLOC_NONE);
9756 		cmnd = CMD_ABORT_XRI_CX;
9757 		command_type = OTHER_COMMAND;
9758 		xritag = 0;
9759 		break;
9760 	case CMD_XMIT_BLS_RSP64_CX:
9761 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9762 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9763 		 * we re-construct this WQE here based on information in
9764 		 * iocbq from scratch.
9765 		 */
9766 		memset(wqe, 0, sizeof(union lpfc_wqe));
9767 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9768 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9769 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9770 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9771 		    LPFC_ABTS_UNSOL_INT) {
9772 			/* ABTS sent by initiator to CT exchange, the
9773 			 * RX_ID field will be filled with the newly
9774 			 * allocated responder XRI.
9775 			 */
9776 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9777 			       iocbq->sli4_xritag);
9778 		} else {
9779 			/* ABTS sent by responder to CT exchange, the
9780 			 * RX_ID field will be filled with the responder
9781 			 * RX_ID from ABTS.
9782 			 */
9783 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9784 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9785 		}
9786 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9787 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9788 
9789 		/* Use CT=VPI */
9790 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9791 			ndlp->nlp_DID);
9792 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9793 			iocbq->iocb.ulpContext);
9794 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9795 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9796 			phba->vpi_ids[phba->pport->vpi]);
9797 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9798 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9799 		       LPFC_WQE_LENLOC_NONE);
9800 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9801 		command_type = OTHER_COMMAND;
9802 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9803 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9804 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9805 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9806 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9807 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9808 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9809 		}
9810 
9811 		break;
9812 	case CMD_SEND_FRAME:
9813 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9814 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9815 		return 0;
9816 	case CMD_XRI_ABORTED_CX:
9817 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9818 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9819 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9820 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9821 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9822 	default:
9823 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9824 				"2014 Invalid command 0x%x\n",
9825 				iocbq->iocb.ulpCommand);
9826 		return IOCB_ERROR;
9827 		break;
9828 	}
9829 
9830 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9831 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9832 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9833 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9834 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9835 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9836 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9837 			      LPFC_IO_DIF_INSERT);
9838 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9839 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9840 	wqe->generic.wqe_com.abort_tag = abort_tag;
9841 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9842 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9843 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9844 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9845 	return 0;
9846 }
9847 
9848 /**
9849  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9850  * @phba: Pointer to HBA context object.
9851  * @ring_number: SLI ring number to issue iocb on.
9852  * @piocb: Pointer to command iocb.
9853  * @flag: Flag indicating if this command can be put into txq.
9854  *
9855  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9856  * an iocb command to an HBA with SLI-4 interface spec.
9857  *
9858  * This function is called with hbalock held. The function will return success
9859  * after it successfully submit the iocb to firmware or after adding to the
9860  * txq.
9861  **/
9862 static int
9863 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9864 			 struct lpfc_iocbq *piocb, uint32_t flag)
9865 {
9866 	struct lpfc_sglq *sglq;
9867 	union lpfc_wqe128 wqe;
9868 	struct lpfc_queue *wq;
9869 	struct lpfc_sli_ring *pring;
9870 
9871 	/* Get the WQ */
9872 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9873 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9874 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].fcp_wq;
9875 	} else {
9876 		wq = phba->sli4_hba.els_wq;
9877 	}
9878 
9879 	/* Get corresponding ring */
9880 	pring = wq->pring;
9881 
9882 	/*
9883 	 * The WQE can be either 64 or 128 bytes,
9884 	 */
9885 
9886 	lockdep_assert_held(&pring->ring_lock);
9887 
9888 	if (piocb->sli4_xritag == NO_XRI) {
9889 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9890 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9891 			sglq = NULL;
9892 		else {
9893 			if (!list_empty(&pring->txq)) {
9894 				if (!(flag & SLI_IOCB_RET_IOCB)) {
9895 					__lpfc_sli_ringtx_put(phba,
9896 						pring, piocb);
9897 					return IOCB_SUCCESS;
9898 				} else {
9899 					return IOCB_BUSY;
9900 				}
9901 			} else {
9902 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9903 				if (!sglq) {
9904 					if (!(flag & SLI_IOCB_RET_IOCB)) {
9905 						__lpfc_sli_ringtx_put(phba,
9906 								pring,
9907 								piocb);
9908 						return IOCB_SUCCESS;
9909 					} else
9910 						return IOCB_BUSY;
9911 				}
9912 			}
9913 		}
9914 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
9915 		/* These IO's already have an XRI and a mapped sgl. */
9916 		sglq = NULL;
9917 	else {
9918 		/*
9919 		 * This is a continuation of a commandi,(CX) so this
9920 		 * sglq is on the active list
9921 		 */
9922 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9923 		if (!sglq)
9924 			return IOCB_ERROR;
9925 	}
9926 
9927 	if (sglq) {
9928 		piocb->sli4_lxritag = sglq->sli4_lxritag;
9929 		piocb->sli4_xritag = sglq->sli4_xritag;
9930 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9931 			return IOCB_ERROR;
9932 	}
9933 
9934 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
9935 		return IOCB_ERROR;
9936 
9937 	if (lpfc_sli4_wq_put(wq, &wqe))
9938 		return IOCB_ERROR;
9939 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9940 
9941 	return 0;
9942 }
9943 
9944 /**
9945  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9946  *
9947  * This routine wraps the actual lockless version for issusing IOCB function
9948  * pointer from the lpfc_hba struct.
9949  *
9950  * Return codes:
9951  * IOCB_ERROR - Error
9952  * IOCB_SUCCESS - Success
9953  * IOCB_BUSY - Busy
9954  **/
9955 int
9956 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9957 		struct lpfc_iocbq *piocb, uint32_t flag)
9958 {
9959 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9960 }
9961 
9962 /**
9963  * lpfc_sli_api_table_setup - Set up sli api function jump table
9964  * @phba: The hba struct for which this call is being executed.
9965  * @dev_grp: The HBA PCI-Device group number.
9966  *
9967  * This routine sets up the SLI interface API function jump table in @phba
9968  * struct.
9969  * Returns: 0 - success, -ENODEV - failure.
9970  **/
9971 int
9972 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9973 {
9974 
9975 	switch (dev_grp) {
9976 	case LPFC_PCI_DEV_LP:
9977 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9978 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9979 		break;
9980 	case LPFC_PCI_DEV_OC:
9981 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9982 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9983 		break;
9984 	default:
9985 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9986 				"1419 Invalid HBA PCI-device group: 0x%x\n",
9987 				dev_grp);
9988 		return -ENODEV;
9989 		break;
9990 	}
9991 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
9992 	return 0;
9993 }
9994 
9995 /**
9996  * lpfc_sli4_calc_ring - Calculates which ring to use
9997  * @phba: Pointer to HBA context object.
9998  * @piocb: Pointer to command iocb.
9999  *
10000  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10001  * hba_wqidx, thus we need to calculate the corresponding ring.
10002  * Since ABORTS must go on the same WQ of the command they are
10003  * aborting, we use command's hba_wqidx.
10004  */
10005 struct lpfc_sli_ring *
10006 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10007 {
10008 	struct lpfc_io_buf *lpfc_cmd;
10009 
10010 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10011 		if (unlikely(!phba->sli4_hba.hdwq))
10012 			return NULL;
10013 		/*
10014 		 * for abort iocb hba_wqidx should already
10015 		 * be setup based on what work queue we used.
10016 		 */
10017 		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10018 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10019 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10020 		}
10021 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].fcp_wq->pring;
10022 	} else {
10023 		if (unlikely(!phba->sli4_hba.els_wq))
10024 			return NULL;
10025 		piocb->hba_wqidx = 0;
10026 		return phba->sli4_hba.els_wq->pring;
10027 	}
10028 }
10029 
10030 /**
10031  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10032  * @phba: Pointer to HBA context object.
10033  * @pring: Pointer to driver SLI ring object.
10034  * @piocb: Pointer to command iocb.
10035  * @flag: Flag indicating if this command can be put into txq.
10036  *
10037  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10038  * function. This function gets the hbalock and calls
10039  * __lpfc_sli_issue_iocb function and will return the error returned
10040  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10041  * functions which do not hold hbalock.
10042  **/
10043 int
10044 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10045 		    struct lpfc_iocbq *piocb, uint32_t flag)
10046 {
10047 	struct lpfc_sli_ring *pring;
10048 	unsigned long iflags;
10049 	int rc;
10050 
10051 	if (phba->sli_rev == LPFC_SLI_REV4) {
10052 		pring = lpfc_sli4_calc_ring(phba, piocb);
10053 		if (unlikely(pring == NULL))
10054 			return IOCB_ERROR;
10055 
10056 		spin_lock_irqsave(&pring->ring_lock, iflags);
10057 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10058 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10059 	} else {
10060 		/* For now, SLI2/3 will still use hbalock */
10061 		spin_lock_irqsave(&phba->hbalock, iflags);
10062 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10063 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10064 	}
10065 	return rc;
10066 }
10067 
10068 /**
10069  * lpfc_extra_ring_setup - Extra ring setup function
10070  * @phba: Pointer to HBA context object.
10071  *
10072  * This function is called while driver attaches with the
10073  * HBA to setup the extra ring. The extra ring is used
10074  * only when driver needs to support target mode functionality
10075  * or IP over FC functionalities.
10076  *
10077  * This function is called with no lock held. SLI3 only.
10078  **/
10079 static int
10080 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10081 {
10082 	struct lpfc_sli *psli;
10083 	struct lpfc_sli_ring *pring;
10084 
10085 	psli = &phba->sli;
10086 
10087 	/* Adjust cmd/rsp ring iocb entries more evenly */
10088 
10089 	/* Take some away from the FCP ring */
10090 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10091 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10092 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10093 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10094 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10095 
10096 	/* and give them to the extra ring */
10097 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10098 
10099 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10100 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10101 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10102 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10103 
10104 	/* Setup default profile for this ring */
10105 	pring->iotag_max = 4096;
10106 	pring->num_mask = 1;
10107 	pring->prt[0].profile = 0;      /* Mask 0 */
10108 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10109 	pring->prt[0].type = phba->cfg_multi_ring_type;
10110 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10111 	return 0;
10112 }
10113 
10114 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10115  * @phba: Pointer to HBA context object.
10116  * @iocbq: Pointer to iocb object.
10117  *
10118  * The async_event handler calls this routine when it receives
10119  * an ASYNC_STATUS_CN event from the port.  The port generates
10120  * this event when an Abort Sequence request to an rport fails
10121  * twice in succession.  The abort could be originated by the
10122  * driver or by the port.  The ABTS could have been for an ELS
10123  * or FCP IO.  The port only generates this event when an ABTS
10124  * fails to complete after one retry.
10125  */
10126 static void
10127 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10128 			  struct lpfc_iocbq *iocbq)
10129 {
10130 	struct lpfc_nodelist *ndlp = NULL;
10131 	uint16_t rpi = 0, vpi = 0;
10132 	struct lpfc_vport *vport = NULL;
10133 
10134 	/* The rpi in the ulpContext is vport-sensitive. */
10135 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10136 	rpi = iocbq->iocb.ulpContext;
10137 
10138 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10139 			"3092 Port generated ABTS async event "
10140 			"on vpi %d rpi %d status 0x%x\n",
10141 			vpi, rpi, iocbq->iocb.ulpStatus);
10142 
10143 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10144 	if (!vport)
10145 		goto err_exit;
10146 	ndlp = lpfc_findnode_rpi(vport, rpi);
10147 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10148 		goto err_exit;
10149 
10150 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10151 		lpfc_sli_abts_recover_port(vport, ndlp);
10152 	return;
10153 
10154  err_exit:
10155 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10156 			"3095 Event Context not found, no "
10157 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10158 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10159 			vpi, rpi);
10160 }
10161 
10162 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10163  * @phba: pointer to HBA context object.
10164  * @ndlp: nodelist pointer for the impacted rport.
10165  * @axri: pointer to the wcqe containing the failed exchange.
10166  *
10167  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10168  * port.  The port generates this event when an abort exchange request to an
10169  * rport fails twice in succession with no reply.  The abort could be originated
10170  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10171  */
10172 void
10173 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10174 			   struct lpfc_nodelist *ndlp,
10175 			   struct sli4_wcqe_xri_aborted *axri)
10176 {
10177 	struct lpfc_vport *vport;
10178 	uint32_t ext_status = 0;
10179 
10180 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10181 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10182 				"3115 Node Context not found, driver "
10183 				"ignoring abts err event\n");
10184 		return;
10185 	}
10186 
10187 	vport = ndlp->vport;
10188 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10189 			"3116 Port generated FCP XRI ABORT event on "
10190 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10191 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10192 			bf_get(lpfc_wcqe_xa_xri, axri),
10193 			bf_get(lpfc_wcqe_xa_status, axri),
10194 			axri->parameter);
10195 
10196 	/*
10197 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10198 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10199 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10200 	 */
10201 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10202 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10203 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10204 		lpfc_sli_abts_recover_port(vport, ndlp);
10205 }
10206 
10207 /**
10208  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10209  * @phba: Pointer to HBA context object.
10210  * @pring: Pointer to driver SLI ring object.
10211  * @iocbq: Pointer to iocb object.
10212  *
10213  * This function is called by the slow ring event handler
10214  * function when there is an ASYNC event iocb in the ring.
10215  * This function is called with no lock held.
10216  * Currently this function handles only temperature related
10217  * ASYNC events. The function decodes the temperature sensor
10218  * event message and posts events for the management applications.
10219  **/
10220 static void
10221 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10222 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10223 {
10224 	IOCB_t *icmd;
10225 	uint16_t evt_code;
10226 	struct temp_event temp_event_data;
10227 	struct Scsi_Host *shost;
10228 	uint32_t *iocb_w;
10229 
10230 	icmd = &iocbq->iocb;
10231 	evt_code = icmd->un.asyncstat.evt_code;
10232 
10233 	switch (evt_code) {
10234 	case ASYNC_TEMP_WARN:
10235 	case ASYNC_TEMP_SAFE:
10236 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10237 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10238 		if (evt_code == ASYNC_TEMP_WARN) {
10239 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10240 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10241 				"0347 Adapter is very hot, please take "
10242 				"corrective action. temperature : %d Celsius\n",
10243 				(uint32_t) icmd->ulpContext);
10244 		} else {
10245 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10246 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10247 				"0340 Adapter temperature is OK now. "
10248 				"temperature : %d Celsius\n",
10249 				(uint32_t) icmd->ulpContext);
10250 		}
10251 
10252 		/* Send temperature change event to applications */
10253 		shost = lpfc_shost_from_vport(phba->pport);
10254 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10255 			sizeof(temp_event_data), (char *) &temp_event_data,
10256 			LPFC_NL_VENDOR_ID);
10257 		break;
10258 	case ASYNC_STATUS_CN:
10259 		lpfc_sli_abts_err_handler(phba, iocbq);
10260 		break;
10261 	default:
10262 		iocb_w = (uint32_t *) icmd;
10263 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10264 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10265 			" evt_code 0x%x\n"
10266 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10267 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10268 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10269 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10270 			pring->ringno, icmd->un.asyncstat.evt_code,
10271 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10272 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10273 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10274 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10275 
10276 		break;
10277 	}
10278 }
10279 
10280 
10281 /**
10282  * lpfc_sli4_setup - SLI ring setup function
10283  * @phba: Pointer to HBA context object.
10284  *
10285  * lpfc_sli_setup sets up rings of the SLI interface with
10286  * number of iocbs per ring and iotags. This function is
10287  * called while driver attach to the HBA and before the
10288  * interrupts are enabled. So there is no need for locking.
10289  *
10290  * This function always returns 0.
10291  **/
10292 int
10293 lpfc_sli4_setup(struct lpfc_hba *phba)
10294 {
10295 	struct lpfc_sli_ring *pring;
10296 
10297 	pring = phba->sli4_hba.els_wq->pring;
10298 	pring->num_mask = LPFC_MAX_RING_MASK;
10299 	pring->prt[0].profile = 0;	/* Mask 0 */
10300 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10301 	pring->prt[0].type = FC_TYPE_ELS;
10302 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10303 	    lpfc_els_unsol_event;
10304 	pring->prt[1].profile = 0;	/* Mask 1 */
10305 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10306 	pring->prt[1].type = FC_TYPE_ELS;
10307 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10308 	    lpfc_els_unsol_event;
10309 	pring->prt[2].profile = 0;	/* Mask 2 */
10310 	/* NameServer Inquiry */
10311 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10312 	/* NameServer */
10313 	pring->prt[2].type = FC_TYPE_CT;
10314 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10315 	    lpfc_ct_unsol_event;
10316 	pring->prt[3].profile = 0;	/* Mask 3 */
10317 	/* NameServer response */
10318 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10319 	/* NameServer */
10320 	pring->prt[3].type = FC_TYPE_CT;
10321 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10322 	    lpfc_ct_unsol_event;
10323 	return 0;
10324 }
10325 
10326 /**
10327  * lpfc_sli_setup - SLI ring setup function
10328  * @phba: Pointer to HBA context object.
10329  *
10330  * lpfc_sli_setup sets up rings of the SLI interface with
10331  * number of iocbs per ring and iotags. This function is
10332  * called while driver attach to the HBA and before the
10333  * interrupts are enabled. So there is no need for locking.
10334  *
10335  * This function always returns 0. SLI3 only.
10336  **/
10337 int
10338 lpfc_sli_setup(struct lpfc_hba *phba)
10339 {
10340 	int i, totiocbsize = 0;
10341 	struct lpfc_sli *psli = &phba->sli;
10342 	struct lpfc_sli_ring *pring;
10343 
10344 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10345 	psli->sli_flag = 0;
10346 
10347 	psli->iocbq_lookup = NULL;
10348 	psli->iocbq_lookup_len = 0;
10349 	psli->last_iotag = 0;
10350 
10351 	for (i = 0; i < psli->num_rings; i++) {
10352 		pring = &psli->sli3_ring[i];
10353 		switch (i) {
10354 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10355 			/* numCiocb and numRiocb are used in config_port */
10356 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10357 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10358 			pring->sli.sli3.numCiocb +=
10359 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10360 			pring->sli.sli3.numRiocb +=
10361 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10362 			pring->sli.sli3.numCiocb +=
10363 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10364 			pring->sli.sli3.numRiocb +=
10365 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10366 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10367 							SLI3_IOCB_CMD_SIZE :
10368 							SLI2_IOCB_CMD_SIZE;
10369 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10370 							SLI3_IOCB_RSP_SIZE :
10371 							SLI2_IOCB_RSP_SIZE;
10372 			pring->iotag_ctr = 0;
10373 			pring->iotag_max =
10374 			    (phba->cfg_hba_queue_depth * 2);
10375 			pring->fast_iotag = pring->iotag_max;
10376 			pring->num_mask = 0;
10377 			break;
10378 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10379 			/* numCiocb and numRiocb are used in config_port */
10380 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10381 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10382 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10383 							SLI3_IOCB_CMD_SIZE :
10384 							SLI2_IOCB_CMD_SIZE;
10385 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10386 							SLI3_IOCB_RSP_SIZE :
10387 							SLI2_IOCB_RSP_SIZE;
10388 			pring->iotag_max = phba->cfg_hba_queue_depth;
10389 			pring->num_mask = 0;
10390 			break;
10391 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10392 			/* numCiocb and numRiocb are used in config_port */
10393 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10394 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10395 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10396 							SLI3_IOCB_CMD_SIZE :
10397 							SLI2_IOCB_CMD_SIZE;
10398 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10399 							SLI3_IOCB_RSP_SIZE :
10400 							SLI2_IOCB_RSP_SIZE;
10401 			pring->fast_iotag = 0;
10402 			pring->iotag_ctr = 0;
10403 			pring->iotag_max = 4096;
10404 			pring->lpfc_sli_rcv_async_status =
10405 				lpfc_sli_async_event_handler;
10406 			pring->num_mask = LPFC_MAX_RING_MASK;
10407 			pring->prt[0].profile = 0;	/* Mask 0 */
10408 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10409 			pring->prt[0].type = FC_TYPE_ELS;
10410 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10411 			    lpfc_els_unsol_event;
10412 			pring->prt[1].profile = 0;	/* Mask 1 */
10413 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10414 			pring->prt[1].type = FC_TYPE_ELS;
10415 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10416 			    lpfc_els_unsol_event;
10417 			pring->prt[2].profile = 0;	/* Mask 2 */
10418 			/* NameServer Inquiry */
10419 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10420 			/* NameServer */
10421 			pring->prt[2].type = FC_TYPE_CT;
10422 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10423 			    lpfc_ct_unsol_event;
10424 			pring->prt[3].profile = 0;	/* Mask 3 */
10425 			/* NameServer response */
10426 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10427 			/* NameServer */
10428 			pring->prt[3].type = FC_TYPE_CT;
10429 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10430 			    lpfc_ct_unsol_event;
10431 			break;
10432 		}
10433 		totiocbsize += (pring->sli.sli3.numCiocb *
10434 			pring->sli.sli3.sizeCiocb) +
10435 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10436 	}
10437 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10438 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10439 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10440 		       "SLI2 SLIM Data: x%x x%lx\n",
10441 		       phba->brd_no, totiocbsize,
10442 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10443 	}
10444 	if (phba->cfg_multi_ring_support == 2)
10445 		lpfc_extra_ring_setup(phba);
10446 
10447 	return 0;
10448 }
10449 
10450 /**
10451  * lpfc_sli4_queue_init - Queue initialization function
10452  * @phba: Pointer to HBA context object.
10453  *
10454  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10455  * ring. This function also initializes ring indices of each ring.
10456  * This function is called during the initialization of the SLI
10457  * interface of an HBA.
10458  * This function is called with no lock held and always returns
10459  * 1.
10460  **/
10461 void
10462 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10463 {
10464 	struct lpfc_sli *psli;
10465 	struct lpfc_sli_ring *pring;
10466 	int i;
10467 
10468 	psli = &phba->sli;
10469 	spin_lock_irq(&phba->hbalock);
10470 	INIT_LIST_HEAD(&psli->mboxq);
10471 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10472 	/* Initialize list headers for txq and txcmplq as double linked lists */
10473 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
10474 		pring = phba->sli4_hba.hdwq[i].fcp_wq->pring;
10475 		pring->flag = 0;
10476 		pring->ringno = LPFC_FCP_RING;
10477 		pring->txcmplq_cnt = 0;
10478 		INIT_LIST_HEAD(&pring->txq);
10479 		INIT_LIST_HEAD(&pring->txcmplq);
10480 		INIT_LIST_HEAD(&pring->iocb_continueq);
10481 		spin_lock_init(&pring->ring_lock);
10482 	}
10483 	pring = phba->sli4_hba.els_wq->pring;
10484 	pring->flag = 0;
10485 	pring->ringno = LPFC_ELS_RING;
10486 	pring->txcmplq_cnt = 0;
10487 	INIT_LIST_HEAD(&pring->txq);
10488 	INIT_LIST_HEAD(&pring->txcmplq);
10489 	INIT_LIST_HEAD(&pring->iocb_continueq);
10490 	spin_lock_init(&pring->ring_lock);
10491 
10492 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10493 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
10494 			pring = phba->sli4_hba.hdwq[i].nvme_wq->pring;
10495 			pring->flag = 0;
10496 			pring->ringno = LPFC_FCP_RING;
10497 			pring->txcmplq_cnt = 0;
10498 			INIT_LIST_HEAD(&pring->txq);
10499 			INIT_LIST_HEAD(&pring->txcmplq);
10500 			INIT_LIST_HEAD(&pring->iocb_continueq);
10501 			spin_lock_init(&pring->ring_lock);
10502 		}
10503 		pring = phba->sli4_hba.nvmels_wq->pring;
10504 		pring->flag = 0;
10505 		pring->ringno = LPFC_ELS_RING;
10506 		pring->txcmplq_cnt = 0;
10507 		INIT_LIST_HEAD(&pring->txq);
10508 		INIT_LIST_HEAD(&pring->txcmplq);
10509 		INIT_LIST_HEAD(&pring->iocb_continueq);
10510 		spin_lock_init(&pring->ring_lock);
10511 	}
10512 
10513 	spin_unlock_irq(&phba->hbalock);
10514 }
10515 
10516 /**
10517  * lpfc_sli_queue_init - Queue initialization function
10518  * @phba: Pointer to HBA context object.
10519  *
10520  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10521  * ring. This function also initializes ring indices of each ring.
10522  * This function is called during the initialization of the SLI
10523  * interface of an HBA.
10524  * This function is called with no lock held and always returns
10525  * 1.
10526  **/
10527 void
10528 lpfc_sli_queue_init(struct lpfc_hba *phba)
10529 {
10530 	struct lpfc_sli *psli;
10531 	struct lpfc_sli_ring *pring;
10532 	int i;
10533 
10534 	psli = &phba->sli;
10535 	spin_lock_irq(&phba->hbalock);
10536 	INIT_LIST_HEAD(&psli->mboxq);
10537 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10538 	/* Initialize list headers for txq and txcmplq as double linked lists */
10539 	for (i = 0; i < psli->num_rings; i++) {
10540 		pring = &psli->sli3_ring[i];
10541 		pring->ringno = i;
10542 		pring->sli.sli3.next_cmdidx  = 0;
10543 		pring->sli.sli3.local_getidx = 0;
10544 		pring->sli.sli3.cmdidx = 0;
10545 		INIT_LIST_HEAD(&pring->iocb_continueq);
10546 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10547 		INIT_LIST_HEAD(&pring->postbufq);
10548 		pring->flag = 0;
10549 		INIT_LIST_HEAD(&pring->txq);
10550 		INIT_LIST_HEAD(&pring->txcmplq);
10551 		spin_lock_init(&pring->ring_lock);
10552 	}
10553 	spin_unlock_irq(&phba->hbalock);
10554 }
10555 
10556 /**
10557  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10558  * @phba: Pointer to HBA context object.
10559  *
10560  * This routine flushes the mailbox command subsystem. It will unconditionally
10561  * flush all the mailbox commands in the three possible stages in the mailbox
10562  * command sub-system: pending mailbox command queue; the outstanding mailbox
10563  * command; and completed mailbox command queue. It is caller's responsibility
10564  * to make sure that the driver is in the proper state to flush the mailbox
10565  * command sub-system. Namely, the posting of mailbox commands into the
10566  * pending mailbox command queue from the various clients must be stopped;
10567  * either the HBA is in a state that it will never works on the outstanding
10568  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10569  * mailbox command has been completed.
10570  **/
10571 static void
10572 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10573 {
10574 	LIST_HEAD(completions);
10575 	struct lpfc_sli *psli = &phba->sli;
10576 	LPFC_MBOXQ_t *pmb;
10577 	unsigned long iflag;
10578 
10579 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10580 	local_bh_disable();
10581 
10582 	/* Flush all the mailbox commands in the mbox system */
10583 	spin_lock_irqsave(&phba->hbalock, iflag);
10584 
10585 	/* The pending mailbox command queue */
10586 	list_splice_init(&phba->sli.mboxq, &completions);
10587 	/* The outstanding active mailbox command */
10588 	if (psli->mbox_active) {
10589 		list_add_tail(&psli->mbox_active->list, &completions);
10590 		psli->mbox_active = NULL;
10591 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10592 	}
10593 	/* The completed mailbox command queue */
10594 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10595 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10596 
10597 	/* Enable softirqs again, done with phba->hbalock */
10598 	local_bh_enable();
10599 
10600 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10601 	while (!list_empty(&completions)) {
10602 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10603 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10604 		if (pmb->mbox_cmpl)
10605 			pmb->mbox_cmpl(phba, pmb);
10606 	}
10607 }
10608 
10609 /**
10610  * lpfc_sli_host_down - Vport cleanup function
10611  * @vport: Pointer to virtual port object.
10612  *
10613  * lpfc_sli_host_down is called to clean up the resources
10614  * associated with a vport before destroying virtual
10615  * port data structures.
10616  * This function does following operations:
10617  * - Free discovery resources associated with this virtual
10618  *   port.
10619  * - Free iocbs associated with this virtual port in
10620  *   the txq.
10621  * - Send abort for all iocb commands associated with this
10622  *   vport in txcmplq.
10623  *
10624  * This function is called with no lock held and always returns 1.
10625  **/
10626 int
10627 lpfc_sli_host_down(struct lpfc_vport *vport)
10628 {
10629 	LIST_HEAD(completions);
10630 	struct lpfc_hba *phba = vport->phba;
10631 	struct lpfc_sli *psli = &phba->sli;
10632 	struct lpfc_queue *qp = NULL;
10633 	struct lpfc_sli_ring *pring;
10634 	struct lpfc_iocbq *iocb, *next_iocb;
10635 	int i;
10636 	unsigned long flags = 0;
10637 	uint16_t prev_pring_flag;
10638 
10639 	lpfc_cleanup_discovery_resources(vport);
10640 
10641 	spin_lock_irqsave(&phba->hbalock, flags);
10642 
10643 	/*
10644 	 * Error everything on the txq since these iocbs
10645 	 * have not been given to the FW yet.
10646 	 * Also issue ABTS for everything on the txcmplq
10647 	 */
10648 	if (phba->sli_rev != LPFC_SLI_REV4) {
10649 		for (i = 0; i < psli->num_rings; i++) {
10650 			pring = &psli->sli3_ring[i];
10651 			prev_pring_flag = pring->flag;
10652 			/* Only slow rings */
10653 			if (pring->ringno == LPFC_ELS_RING) {
10654 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10655 				/* Set the lpfc data pending flag */
10656 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10657 			}
10658 			list_for_each_entry_safe(iocb, next_iocb,
10659 						 &pring->txq, list) {
10660 				if (iocb->vport != vport)
10661 					continue;
10662 				list_move_tail(&iocb->list, &completions);
10663 			}
10664 			list_for_each_entry_safe(iocb, next_iocb,
10665 						 &pring->txcmplq, list) {
10666 				if (iocb->vport != vport)
10667 					continue;
10668 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10669 			}
10670 			pring->flag = prev_pring_flag;
10671 		}
10672 	} else {
10673 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10674 			pring = qp->pring;
10675 			if (!pring)
10676 				continue;
10677 			if (pring == phba->sli4_hba.els_wq->pring) {
10678 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10679 				/* Set the lpfc data pending flag */
10680 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10681 			}
10682 			prev_pring_flag = pring->flag;
10683 			spin_lock_irq(&pring->ring_lock);
10684 			list_for_each_entry_safe(iocb, next_iocb,
10685 						 &pring->txq, list) {
10686 				if (iocb->vport != vport)
10687 					continue;
10688 				list_move_tail(&iocb->list, &completions);
10689 			}
10690 			spin_unlock_irq(&pring->ring_lock);
10691 			list_for_each_entry_safe(iocb, next_iocb,
10692 						 &pring->txcmplq, list) {
10693 				if (iocb->vport != vport)
10694 					continue;
10695 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10696 			}
10697 			pring->flag = prev_pring_flag;
10698 		}
10699 	}
10700 	spin_unlock_irqrestore(&phba->hbalock, flags);
10701 
10702 	/* Cancel all the IOCBs from the completions list */
10703 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10704 			      IOERR_SLI_DOWN);
10705 	return 1;
10706 }
10707 
10708 /**
10709  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10710  * @phba: Pointer to HBA context object.
10711  *
10712  * This function cleans up all iocb, buffers, mailbox commands
10713  * while shutting down the HBA. This function is called with no
10714  * lock held and always returns 1.
10715  * This function does the following to cleanup driver resources:
10716  * - Free discovery resources for each virtual port
10717  * - Cleanup any pending fabric iocbs
10718  * - Iterate through the iocb txq and free each entry
10719  *   in the list.
10720  * - Free up any buffer posted to the HBA
10721  * - Free mailbox commands in the mailbox queue.
10722  **/
10723 int
10724 lpfc_sli_hba_down(struct lpfc_hba *phba)
10725 {
10726 	LIST_HEAD(completions);
10727 	struct lpfc_sli *psli = &phba->sli;
10728 	struct lpfc_queue *qp = NULL;
10729 	struct lpfc_sli_ring *pring;
10730 	struct lpfc_dmabuf *buf_ptr;
10731 	unsigned long flags = 0;
10732 	int i;
10733 
10734 	/* Shutdown the mailbox command sub-system */
10735 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10736 
10737 	lpfc_hba_down_prep(phba);
10738 
10739 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10740 	local_bh_disable();
10741 
10742 	lpfc_fabric_abort_hba(phba);
10743 
10744 	spin_lock_irqsave(&phba->hbalock, flags);
10745 
10746 	/*
10747 	 * Error everything on the txq since these iocbs
10748 	 * have not been given to the FW yet.
10749 	 */
10750 	if (phba->sli_rev != LPFC_SLI_REV4) {
10751 		for (i = 0; i < psli->num_rings; i++) {
10752 			pring = &psli->sli3_ring[i];
10753 			/* Only slow rings */
10754 			if (pring->ringno == LPFC_ELS_RING) {
10755 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10756 				/* Set the lpfc data pending flag */
10757 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10758 			}
10759 			list_splice_init(&pring->txq, &completions);
10760 		}
10761 	} else {
10762 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10763 			pring = qp->pring;
10764 			if (!pring)
10765 				continue;
10766 			spin_lock_irq(&pring->ring_lock);
10767 			list_splice_init(&pring->txq, &completions);
10768 			spin_unlock_irq(&pring->ring_lock);
10769 			if (pring == phba->sli4_hba.els_wq->pring) {
10770 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10771 				/* Set the lpfc data pending flag */
10772 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10773 			}
10774 		}
10775 	}
10776 	spin_unlock_irqrestore(&phba->hbalock, flags);
10777 
10778 	/* Cancel all the IOCBs from the completions list */
10779 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10780 			      IOERR_SLI_DOWN);
10781 
10782 	spin_lock_irqsave(&phba->hbalock, flags);
10783 	list_splice_init(&phba->elsbuf, &completions);
10784 	phba->elsbuf_cnt = 0;
10785 	phba->elsbuf_prev_cnt = 0;
10786 	spin_unlock_irqrestore(&phba->hbalock, flags);
10787 
10788 	while (!list_empty(&completions)) {
10789 		list_remove_head(&completions, buf_ptr,
10790 			struct lpfc_dmabuf, list);
10791 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10792 		kfree(buf_ptr);
10793 	}
10794 
10795 	/* Enable softirqs again, done with phba->hbalock */
10796 	local_bh_enable();
10797 
10798 	/* Return any active mbox cmds */
10799 	del_timer_sync(&psli->mbox_tmo);
10800 
10801 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10802 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10803 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10804 
10805 	return 1;
10806 }
10807 
10808 /**
10809  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10810  * @srcp: Source memory pointer.
10811  * @destp: Destination memory pointer.
10812  * @cnt: Number of words required to be copied.
10813  *
10814  * This function is used for copying data between driver memory
10815  * and the SLI memory. This function also changes the endianness
10816  * of each word if native endianness is different from SLI
10817  * endianness. This function can be called with or without
10818  * lock.
10819  **/
10820 void
10821 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10822 {
10823 	uint32_t *src = srcp;
10824 	uint32_t *dest = destp;
10825 	uint32_t ldata;
10826 	int i;
10827 
10828 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10829 		ldata = *src;
10830 		ldata = le32_to_cpu(ldata);
10831 		*dest = ldata;
10832 		src++;
10833 		dest++;
10834 	}
10835 }
10836 
10837 
10838 /**
10839  * lpfc_sli_bemem_bcopy - SLI memory copy function
10840  * @srcp: Source memory pointer.
10841  * @destp: Destination memory pointer.
10842  * @cnt: Number of words required to be copied.
10843  *
10844  * This function is used for copying data between a data structure
10845  * with big endian representation to local endianness.
10846  * This function can be called with or without lock.
10847  **/
10848 void
10849 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10850 {
10851 	uint32_t *src = srcp;
10852 	uint32_t *dest = destp;
10853 	uint32_t ldata;
10854 	int i;
10855 
10856 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10857 		ldata = *src;
10858 		ldata = be32_to_cpu(ldata);
10859 		*dest = ldata;
10860 		src++;
10861 		dest++;
10862 	}
10863 }
10864 
10865 /**
10866  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10867  * @phba: Pointer to HBA context object.
10868  * @pring: Pointer to driver SLI ring object.
10869  * @mp: Pointer to driver buffer object.
10870  *
10871  * This function is called with no lock held.
10872  * It always return zero after adding the buffer to the postbufq
10873  * buffer list.
10874  **/
10875 int
10876 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10877 			 struct lpfc_dmabuf *mp)
10878 {
10879 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10880 	   later */
10881 	spin_lock_irq(&phba->hbalock);
10882 	list_add_tail(&mp->list, &pring->postbufq);
10883 	pring->postbufq_cnt++;
10884 	spin_unlock_irq(&phba->hbalock);
10885 	return 0;
10886 }
10887 
10888 /**
10889  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10890  * @phba: Pointer to HBA context object.
10891  *
10892  * When HBQ is enabled, buffers are searched based on tags. This function
10893  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10894  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10895  * does not conflict with tags of buffer posted for unsolicited events.
10896  * The function returns the allocated tag. The function is called with
10897  * no locks held.
10898  **/
10899 uint32_t
10900 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10901 {
10902 	spin_lock_irq(&phba->hbalock);
10903 	phba->buffer_tag_count++;
10904 	/*
10905 	 * Always set the QUE_BUFTAG_BIT to distiguish between
10906 	 * a tag assigned by HBQ.
10907 	 */
10908 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10909 	spin_unlock_irq(&phba->hbalock);
10910 	return phba->buffer_tag_count;
10911 }
10912 
10913 /**
10914  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10915  * @phba: Pointer to HBA context object.
10916  * @pring: Pointer to driver SLI ring object.
10917  * @tag: Buffer tag.
10918  *
10919  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10920  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10921  * iocb is posted to the response ring with the tag of the buffer.
10922  * This function searches the pring->postbufq list using the tag
10923  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10924  * iocb. If the buffer is found then lpfc_dmabuf object of the
10925  * buffer is returned to the caller else NULL is returned.
10926  * This function is called with no lock held.
10927  **/
10928 struct lpfc_dmabuf *
10929 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10930 			uint32_t tag)
10931 {
10932 	struct lpfc_dmabuf *mp, *next_mp;
10933 	struct list_head *slp = &pring->postbufq;
10934 
10935 	/* Search postbufq, from the beginning, looking for a match on tag */
10936 	spin_lock_irq(&phba->hbalock);
10937 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10938 		if (mp->buffer_tag == tag) {
10939 			list_del_init(&mp->list);
10940 			pring->postbufq_cnt--;
10941 			spin_unlock_irq(&phba->hbalock);
10942 			return mp;
10943 		}
10944 	}
10945 
10946 	spin_unlock_irq(&phba->hbalock);
10947 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10948 			"0402 Cannot find virtual addr for buffer tag on "
10949 			"ring %d Data x%lx x%p x%p x%x\n",
10950 			pring->ringno, (unsigned long) tag,
10951 			slp->next, slp->prev, pring->postbufq_cnt);
10952 
10953 	return NULL;
10954 }
10955 
10956 /**
10957  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10958  * @phba: Pointer to HBA context object.
10959  * @pring: Pointer to driver SLI ring object.
10960  * @phys: DMA address of the buffer.
10961  *
10962  * This function searches the buffer list using the dma_address
10963  * of unsolicited event to find the driver's lpfc_dmabuf object
10964  * corresponding to the dma_address. The function returns the
10965  * lpfc_dmabuf object if a buffer is found else it returns NULL.
10966  * This function is called by the ct and els unsolicited event
10967  * handlers to get the buffer associated with the unsolicited
10968  * event.
10969  *
10970  * This function is called with no lock held.
10971  **/
10972 struct lpfc_dmabuf *
10973 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10974 			 dma_addr_t phys)
10975 {
10976 	struct lpfc_dmabuf *mp, *next_mp;
10977 	struct list_head *slp = &pring->postbufq;
10978 
10979 	/* Search postbufq, from the beginning, looking for a match on phys */
10980 	spin_lock_irq(&phba->hbalock);
10981 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10982 		if (mp->phys == phys) {
10983 			list_del_init(&mp->list);
10984 			pring->postbufq_cnt--;
10985 			spin_unlock_irq(&phba->hbalock);
10986 			return mp;
10987 		}
10988 	}
10989 
10990 	spin_unlock_irq(&phba->hbalock);
10991 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10992 			"0410 Cannot find virtual addr for mapped buf on "
10993 			"ring %d Data x%llx x%p x%p x%x\n",
10994 			pring->ringno, (unsigned long long)phys,
10995 			slp->next, slp->prev, pring->postbufq_cnt);
10996 	return NULL;
10997 }
10998 
10999 /**
11000  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11001  * @phba: Pointer to HBA context object.
11002  * @cmdiocb: Pointer to driver command iocb object.
11003  * @rspiocb: Pointer to driver response iocb object.
11004  *
11005  * This function is the completion handler for the abort iocbs for
11006  * ELS commands. This function is called from the ELS ring event
11007  * handler with no lock held. This function frees memory resources
11008  * associated with the abort iocb.
11009  **/
11010 static void
11011 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11012 			struct lpfc_iocbq *rspiocb)
11013 {
11014 	IOCB_t *irsp = &rspiocb->iocb;
11015 	uint16_t abort_iotag, abort_context;
11016 	struct lpfc_iocbq *abort_iocb = NULL;
11017 
11018 	if (irsp->ulpStatus) {
11019 
11020 		/*
11021 		 * Assume that the port already completed and returned, or
11022 		 * will return the iocb. Just Log the message.
11023 		 */
11024 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11025 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11026 
11027 		spin_lock_irq(&phba->hbalock);
11028 		if (phba->sli_rev < LPFC_SLI_REV4) {
11029 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11030 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11031 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11032 				spin_unlock_irq(&phba->hbalock);
11033 				goto release_iocb;
11034 			}
11035 			if (abort_iotag != 0 &&
11036 				abort_iotag <= phba->sli.last_iotag)
11037 				abort_iocb =
11038 					phba->sli.iocbq_lookup[abort_iotag];
11039 		} else
11040 			/* For sli4 the abort_tag is the XRI,
11041 			 * so the abort routine puts the iotag  of the iocb
11042 			 * being aborted in the context field of the abort
11043 			 * IOCB.
11044 			 */
11045 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11046 
11047 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11048 				"0327 Cannot abort els iocb %p "
11049 				"with tag %x context %x, abort status %x, "
11050 				"abort code %x\n",
11051 				abort_iocb, abort_iotag, abort_context,
11052 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11053 
11054 		spin_unlock_irq(&phba->hbalock);
11055 	}
11056 release_iocb:
11057 	lpfc_sli_release_iocbq(phba, cmdiocb);
11058 	return;
11059 }
11060 
11061 /**
11062  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11063  * @phba: Pointer to HBA context object.
11064  * @cmdiocb: Pointer to driver command iocb object.
11065  * @rspiocb: Pointer to driver response iocb object.
11066  *
11067  * The function is called from SLI ring event handler with no
11068  * lock held. This function is the completion handler for ELS commands
11069  * which are aborted. The function frees memory resources used for
11070  * the aborted ELS commands.
11071  **/
11072 static void
11073 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11074 		     struct lpfc_iocbq *rspiocb)
11075 {
11076 	IOCB_t *irsp = &rspiocb->iocb;
11077 
11078 	/* ELS cmd tag <ulpIoTag> completes */
11079 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11080 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11081 			"x%x x%x x%x\n",
11082 			irsp->ulpIoTag, irsp->ulpStatus,
11083 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11084 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11085 		lpfc_ct_free_iocb(phba, cmdiocb);
11086 	else
11087 		lpfc_els_free_iocb(phba, cmdiocb);
11088 	return;
11089 }
11090 
11091 /**
11092  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11093  * @phba: Pointer to HBA context object.
11094  * @pring: Pointer to driver SLI ring object.
11095  * @cmdiocb: Pointer to driver command iocb object.
11096  *
11097  * This function issues an abort iocb for the provided command iocb down to
11098  * the port. Other than the case the outstanding command iocb is an abort
11099  * request, this function issues abort out unconditionally. This function is
11100  * called with hbalock held. The function returns 0 when it fails due to
11101  * memory allocation failure or when the command iocb is an abort request.
11102  **/
11103 static int
11104 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11105 			   struct lpfc_iocbq *cmdiocb)
11106 {
11107 	struct lpfc_vport *vport = cmdiocb->vport;
11108 	struct lpfc_iocbq *abtsiocbp;
11109 	IOCB_t *icmd = NULL;
11110 	IOCB_t *iabt = NULL;
11111 	int retval;
11112 	unsigned long iflags;
11113 	struct lpfc_nodelist *ndlp;
11114 
11115 	lockdep_assert_held(&phba->hbalock);
11116 
11117 	/*
11118 	 * There are certain command types we don't want to abort.  And we
11119 	 * don't want to abort commands that are already in the process of
11120 	 * being aborted.
11121 	 */
11122 	icmd = &cmdiocb->iocb;
11123 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11124 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11125 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11126 		return 0;
11127 
11128 	/* issue ABTS for this IOCB based on iotag */
11129 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11130 	if (abtsiocbp == NULL)
11131 		return 0;
11132 
11133 	/* This signals the response to set the correct status
11134 	 * before calling the completion handler
11135 	 */
11136 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11137 
11138 	iabt = &abtsiocbp->iocb;
11139 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11140 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11141 	if (phba->sli_rev == LPFC_SLI_REV4) {
11142 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11143 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11144 	} else {
11145 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11146 		if (pring->ringno == LPFC_ELS_RING) {
11147 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11148 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11149 		}
11150 	}
11151 	iabt->ulpLe = 1;
11152 	iabt->ulpClass = icmd->ulpClass;
11153 
11154 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11155 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11156 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11157 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11158 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11159 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11160 
11161 	if (phba->link_state >= LPFC_LINK_UP)
11162 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11163 	else
11164 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11165 
11166 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11167 	abtsiocbp->vport = vport;
11168 
11169 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11170 			 "0339 Abort xri x%x, original iotag x%x, "
11171 			 "abort cmd iotag x%x\n",
11172 			 iabt->un.acxri.abortIoTag,
11173 			 iabt->un.acxri.abortContextTag,
11174 			 abtsiocbp->iotag);
11175 
11176 	if (phba->sli_rev == LPFC_SLI_REV4) {
11177 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11178 		if (unlikely(pring == NULL))
11179 			return 0;
11180 		/* Note: both hbalock and ring_lock need to be set here */
11181 		spin_lock_irqsave(&pring->ring_lock, iflags);
11182 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11183 			abtsiocbp, 0);
11184 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11185 	} else {
11186 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11187 			abtsiocbp, 0);
11188 	}
11189 
11190 	if (retval)
11191 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11192 
11193 	/*
11194 	 * Caller to this routine should check for IOCB_ERROR
11195 	 * and handle it properly.  This routine no longer removes
11196 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11197 	 */
11198 	return retval;
11199 }
11200 
11201 /**
11202  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11203  * @phba: Pointer to HBA context object.
11204  * @pring: Pointer to driver SLI ring object.
11205  * @cmdiocb: Pointer to driver command iocb object.
11206  *
11207  * This function issues an abort iocb for the provided command iocb. In case
11208  * of unloading, the abort iocb will not be issued to commands on the ELS
11209  * ring. Instead, the callback function shall be changed to those commands
11210  * so that nothing happens when them finishes. This function is called with
11211  * hbalock held. The function returns 0 when the command iocb is an abort
11212  * request.
11213  **/
11214 int
11215 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11216 			   struct lpfc_iocbq *cmdiocb)
11217 {
11218 	struct lpfc_vport *vport = cmdiocb->vport;
11219 	int retval = IOCB_ERROR;
11220 	IOCB_t *icmd = NULL;
11221 
11222 	lockdep_assert_held(&phba->hbalock);
11223 
11224 	/*
11225 	 * There are certain command types we don't want to abort.  And we
11226 	 * don't want to abort commands that are already in the process of
11227 	 * being aborted.
11228 	 */
11229 	icmd = &cmdiocb->iocb;
11230 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11231 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11232 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11233 		return 0;
11234 
11235 	if (!pring) {
11236 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11237 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11238 		else
11239 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11240 		goto abort_iotag_exit;
11241 	}
11242 
11243 	/*
11244 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11245 	 * the callback so that nothing happens when it finishes.
11246 	 */
11247 	if ((vport->load_flag & FC_UNLOADING) &&
11248 	    (pring->ringno == LPFC_ELS_RING)) {
11249 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11250 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11251 		else
11252 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11253 		goto abort_iotag_exit;
11254 	}
11255 
11256 	/* Now, we try to issue the abort to the cmdiocb out */
11257 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11258 
11259 abort_iotag_exit:
11260 	/*
11261 	 * Caller to this routine should check for IOCB_ERROR
11262 	 * and handle it properly.  This routine no longer removes
11263 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11264 	 */
11265 	return retval;
11266 }
11267 
11268 /**
11269  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11270  * @phba: pointer to lpfc HBA data structure.
11271  *
11272  * This routine will abort all pending and outstanding iocbs to an HBA.
11273  **/
11274 void
11275 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11276 {
11277 	struct lpfc_sli *psli = &phba->sli;
11278 	struct lpfc_sli_ring *pring;
11279 	struct lpfc_queue *qp = NULL;
11280 	int i;
11281 
11282 	if (phba->sli_rev != LPFC_SLI_REV4) {
11283 		for (i = 0; i < psli->num_rings; i++) {
11284 			pring = &psli->sli3_ring[i];
11285 			lpfc_sli_abort_iocb_ring(phba, pring);
11286 		}
11287 		return;
11288 	}
11289 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11290 		pring = qp->pring;
11291 		if (!pring)
11292 			continue;
11293 		lpfc_sli_abort_iocb_ring(phba, pring);
11294 	}
11295 }
11296 
11297 /**
11298  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11299  * @iocbq: Pointer to driver iocb object.
11300  * @vport: Pointer to driver virtual port object.
11301  * @tgt_id: SCSI ID of the target.
11302  * @lun_id: LUN ID of the scsi device.
11303  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11304  *
11305  * This function acts as an iocb filter for functions which abort or count
11306  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11307  * 0 if the filtering criteria is met for the given iocb and will return
11308  * 1 if the filtering criteria is not met.
11309  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11310  * given iocb is for the SCSI device specified by vport, tgt_id and
11311  * lun_id parameter.
11312  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11313  * given iocb is for the SCSI target specified by vport and tgt_id
11314  * parameters.
11315  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11316  * given iocb is for the SCSI host associated with the given vport.
11317  * This function is called with no locks held.
11318  **/
11319 static int
11320 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11321 			   uint16_t tgt_id, uint64_t lun_id,
11322 			   lpfc_ctx_cmd ctx_cmd)
11323 {
11324 	struct lpfc_io_buf *lpfc_cmd;
11325 	int rc = 1;
11326 
11327 	if (iocbq->vport != vport)
11328 		return rc;
11329 
11330 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11331 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11332 		return rc;
11333 
11334 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11335 
11336 	if (lpfc_cmd->pCmd == NULL)
11337 		return rc;
11338 
11339 	switch (ctx_cmd) {
11340 	case LPFC_CTX_LUN:
11341 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11342 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11343 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11344 			rc = 0;
11345 		break;
11346 	case LPFC_CTX_TGT:
11347 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11348 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11349 			rc = 0;
11350 		break;
11351 	case LPFC_CTX_HOST:
11352 		rc = 0;
11353 		break;
11354 	default:
11355 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11356 			__func__, ctx_cmd);
11357 		break;
11358 	}
11359 
11360 	return rc;
11361 }
11362 
11363 /**
11364  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11365  * @vport: Pointer to virtual port.
11366  * @tgt_id: SCSI ID of the target.
11367  * @lun_id: LUN ID of the scsi device.
11368  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11369  *
11370  * This function returns number of FCP commands pending for the vport.
11371  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11372  * commands pending on the vport associated with SCSI device specified
11373  * by tgt_id and lun_id parameters.
11374  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11375  * commands pending on the vport associated with SCSI target specified
11376  * by tgt_id parameter.
11377  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11378  * commands pending on the vport.
11379  * This function returns the number of iocbs which satisfy the filter.
11380  * This function is called without any lock held.
11381  **/
11382 int
11383 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11384 		  lpfc_ctx_cmd ctx_cmd)
11385 {
11386 	struct lpfc_hba *phba = vport->phba;
11387 	struct lpfc_iocbq *iocbq;
11388 	int sum, i;
11389 
11390 	spin_lock_irq(&phba->hbalock);
11391 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11392 		iocbq = phba->sli.iocbq_lookup[i];
11393 
11394 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11395 						ctx_cmd) == 0)
11396 			sum++;
11397 	}
11398 	spin_unlock_irq(&phba->hbalock);
11399 
11400 	return sum;
11401 }
11402 
11403 /**
11404  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11405  * @phba: Pointer to HBA context object
11406  * @cmdiocb: Pointer to command iocb object.
11407  * @rspiocb: Pointer to response iocb object.
11408  *
11409  * This function is called when an aborted FCP iocb completes. This
11410  * function is called by the ring event handler with no lock held.
11411  * This function frees the iocb.
11412  **/
11413 void
11414 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11415 			struct lpfc_iocbq *rspiocb)
11416 {
11417 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11418 			"3096 ABORT_XRI_CN completing on rpi x%x "
11419 			"original iotag x%x, abort cmd iotag x%x "
11420 			"status 0x%x, reason 0x%x\n",
11421 			cmdiocb->iocb.un.acxri.abortContextTag,
11422 			cmdiocb->iocb.un.acxri.abortIoTag,
11423 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11424 			rspiocb->iocb.un.ulpWord[4]);
11425 	lpfc_sli_release_iocbq(phba, cmdiocb);
11426 	return;
11427 }
11428 
11429 /**
11430  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11431  * @vport: Pointer to virtual port.
11432  * @pring: Pointer to driver SLI ring object.
11433  * @tgt_id: SCSI ID of the target.
11434  * @lun_id: LUN ID of the scsi device.
11435  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11436  *
11437  * This function sends an abort command for every SCSI command
11438  * associated with the given virtual port pending on the ring
11439  * filtered by lpfc_sli_validate_fcp_iocb function.
11440  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11441  * FCP iocbs associated with lun specified by tgt_id and lun_id
11442  * parameters
11443  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11444  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11445  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11446  * FCP iocbs associated with virtual port.
11447  * This function returns number of iocbs it failed to abort.
11448  * This function is called with no locks held.
11449  **/
11450 int
11451 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11452 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11453 {
11454 	struct lpfc_hba *phba = vport->phba;
11455 	struct lpfc_iocbq *iocbq;
11456 	struct lpfc_iocbq *abtsiocb;
11457 	struct lpfc_sli_ring *pring_s4;
11458 	IOCB_t *cmd = NULL;
11459 	int errcnt = 0, ret_val = 0;
11460 	int i;
11461 
11462 	/* all I/Os are in process of being flushed */
11463 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH)
11464 		return errcnt;
11465 
11466 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11467 		iocbq = phba->sli.iocbq_lookup[i];
11468 
11469 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11470 					       abort_cmd) != 0)
11471 			continue;
11472 
11473 		/*
11474 		 * If the iocbq is already being aborted, don't take a second
11475 		 * action, but do count it.
11476 		 */
11477 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11478 			continue;
11479 
11480 		/* issue ABTS for this IOCB based on iotag */
11481 		abtsiocb = lpfc_sli_get_iocbq(phba);
11482 		if (abtsiocb == NULL) {
11483 			errcnt++;
11484 			continue;
11485 		}
11486 
11487 		/* indicate the IO is being aborted by the driver. */
11488 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11489 
11490 		cmd = &iocbq->iocb;
11491 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11492 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11493 		if (phba->sli_rev == LPFC_SLI_REV4)
11494 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11495 		else
11496 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11497 		abtsiocb->iocb.ulpLe = 1;
11498 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11499 		abtsiocb->vport = vport;
11500 
11501 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11502 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11503 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11504 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11505 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11506 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11507 
11508 		if (lpfc_is_link_up(phba))
11509 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11510 		else
11511 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11512 
11513 		/* Setup callback routine and issue the command. */
11514 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11515 		if (phba->sli_rev == LPFC_SLI_REV4) {
11516 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11517 			if (!pring_s4)
11518 				continue;
11519 			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11520 						      abtsiocb, 0);
11521 		} else
11522 			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11523 						      abtsiocb, 0);
11524 		if (ret_val == IOCB_ERROR) {
11525 			lpfc_sli_release_iocbq(phba, abtsiocb);
11526 			errcnt++;
11527 			continue;
11528 		}
11529 	}
11530 
11531 	return errcnt;
11532 }
11533 
11534 /**
11535  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11536  * @vport: Pointer to virtual port.
11537  * @pring: Pointer to driver SLI ring object.
11538  * @tgt_id: SCSI ID of the target.
11539  * @lun_id: LUN ID of the scsi device.
11540  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11541  *
11542  * This function sends an abort command for every SCSI command
11543  * associated with the given virtual port pending on the ring
11544  * filtered by lpfc_sli_validate_fcp_iocb function.
11545  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11546  * FCP iocbs associated with lun specified by tgt_id and lun_id
11547  * parameters
11548  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11549  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11550  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11551  * FCP iocbs associated with virtual port.
11552  * This function returns number of iocbs it aborted .
11553  * This function is called with no locks held right after a taskmgmt
11554  * command is sent.
11555  **/
11556 int
11557 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11558 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11559 {
11560 	struct lpfc_hba *phba = vport->phba;
11561 	struct lpfc_io_buf *lpfc_cmd;
11562 	struct lpfc_iocbq *abtsiocbq;
11563 	struct lpfc_nodelist *ndlp;
11564 	struct lpfc_iocbq *iocbq;
11565 	IOCB_t *icmd;
11566 	int sum, i, ret_val;
11567 	unsigned long iflags;
11568 	struct lpfc_sli_ring *pring_s4 = NULL;
11569 
11570 	spin_lock_irqsave(&phba->hbalock, iflags);
11571 
11572 	/* all I/Os are in process of being flushed */
11573 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
11574 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11575 		return 0;
11576 	}
11577 	sum = 0;
11578 
11579 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11580 		iocbq = phba->sli.iocbq_lookup[i];
11581 
11582 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11583 					       cmd) != 0)
11584 			continue;
11585 
11586 		/* Guard against IO completion being called at same time */
11587 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11588 		spin_lock(&lpfc_cmd->buf_lock);
11589 
11590 		if (!lpfc_cmd->pCmd) {
11591 			spin_unlock(&lpfc_cmd->buf_lock);
11592 			continue;
11593 		}
11594 
11595 		if (phba->sli_rev == LPFC_SLI_REV4) {
11596 			pring_s4 =
11597 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].fcp_wq->pring;
11598 			if (!pring_s4) {
11599 				spin_unlock(&lpfc_cmd->buf_lock);
11600 				continue;
11601 			}
11602 			/* Note: both hbalock and ring_lock must be set here */
11603 			spin_lock(&pring_s4->ring_lock);
11604 		}
11605 
11606 		/*
11607 		 * If the iocbq is already being aborted, don't take a second
11608 		 * action, but do count it.
11609 		 */
11610 		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11611 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11612 			if (phba->sli_rev == LPFC_SLI_REV4)
11613 				spin_unlock(&pring_s4->ring_lock);
11614 			spin_unlock(&lpfc_cmd->buf_lock);
11615 			continue;
11616 		}
11617 
11618 		/* issue ABTS for this IOCB based on iotag */
11619 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11620 		if (!abtsiocbq) {
11621 			if (phba->sli_rev == LPFC_SLI_REV4)
11622 				spin_unlock(&pring_s4->ring_lock);
11623 			spin_unlock(&lpfc_cmd->buf_lock);
11624 			continue;
11625 		}
11626 
11627 		icmd = &iocbq->iocb;
11628 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11629 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11630 		if (phba->sli_rev == LPFC_SLI_REV4)
11631 			abtsiocbq->iocb.un.acxri.abortIoTag =
11632 							 iocbq->sli4_xritag;
11633 		else
11634 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11635 		abtsiocbq->iocb.ulpLe = 1;
11636 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11637 		abtsiocbq->vport = vport;
11638 
11639 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11640 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11641 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11642 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11643 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11644 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11645 
11646 		ndlp = lpfc_cmd->rdata->pnode;
11647 
11648 		if (lpfc_is_link_up(phba) &&
11649 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11650 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11651 		else
11652 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11653 
11654 		/* Setup callback routine and issue the command. */
11655 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11656 
11657 		/*
11658 		 * Indicate the IO is being aborted by the driver and set
11659 		 * the caller's flag into the aborted IO.
11660 		 */
11661 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11662 
11663 		if (phba->sli_rev == LPFC_SLI_REV4) {
11664 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11665 							abtsiocbq, 0);
11666 			spin_unlock(&pring_s4->ring_lock);
11667 		} else {
11668 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11669 							abtsiocbq, 0);
11670 		}
11671 
11672 		spin_unlock(&lpfc_cmd->buf_lock);
11673 
11674 		if (ret_val == IOCB_ERROR)
11675 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11676 		else
11677 			sum++;
11678 	}
11679 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11680 	return sum;
11681 }
11682 
11683 /**
11684  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11685  * @phba: Pointer to HBA context object.
11686  * @cmdiocbq: Pointer to command iocb.
11687  * @rspiocbq: Pointer to response iocb.
11688  *
11689  * This function is the completion handler for iocbs issued using
11690  * lpfc_sli_issue_iocb_wait function. This function is called by the
11691  * ring event handler function without any lock held. This function
11692  * can be called from both worker thread context and interrupt
11693  * context. This function also can be called from other thread which
11694  * cleans up the SLI layer objects.
11695  * This function copy the contents of the response iocb to the
11696  * response iocb memory object provided by the caller of
11697  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11698  * sleeps for the iocb completion.
11699  **/
11700 static void
11701 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11702 			struct lpfc_iocbq *cmdiocbq,
11703 			struct lpfc_iocbq *rspiocbq)
11704 {
11705 	wait_queue_head_t *pdone_q;
11706 	unsigned long iflags;
11707 	struct lpfc_io_buf *lpfc_cmd;
11708 
11709 	spin_lock_irqsave(&phba->hbalock, iflags);
11710 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11711 
11712 		/*
11713 		 * A time out has occurred for the iocb.  If a time out
11714 		 * completion handler has been supplied, call it.  Otherwise,
11715 		 * just free the iocbq.
11716 		 */
11717 
11718 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11719 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11720 		cmdiocbq->wait_iocb_cmpl = NULL;
11721 		if (cmdiocbq->iocb_cmpl)
11722 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11723 		else
11724 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11725 		return;
11726 	}
11727 
11728 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11729 	if (cmdiocbq->context2 && rspiocbq)
11730 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11731 		       &rspiocbq->iocb, sizeof(IOCB_t));
11732 
11733 	/* Set the exchange busy flag for task management commands */
11734 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11735 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11736 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11737 			cur_iocbq);
11738 		lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11739 	}
11740 
11741 	pdone_q = cmdiocbq->context_un.wait_queue;
11742 	if (pdone_q)
11743 		wake_up(pdone_q);
11744 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11745 	return;
11746 }
11747 
11748 /**
11749  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11750  * @phba: Pointer to HBA context object..
11751  * @piocbq: Pointer to command iocb.
11752  * @flag: Flag to test.
11753  *
11754  * This routine grabs the hbalock and then test the iocb_flag to
11755  * see if the passed in flag is set.
11756  * Returns:
11757  * 1 if flag is set.
11758  * 0 if flag is not set.
11759  **/
11760 static int
11761 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11762 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11763 {
11764 	unsigned long iflags;
11765 	int ret;
11766 
11767 	spin_lock_irqsave(&phba->hbalock, iflags);
11768 	ret = piocbq->iocb_flag & flag;
11769 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11770 	return ret;
11771 
11772 }
11773 
11774 /**
11775  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11776  * @phba: Pointer to HBA context object..
11777  * @pring: Pointer to sli ring.
11778  * @piocb: Pointer to command iocb.
11779  * @prspiocbq: Pointer to response iocb.
11780  * @timeout: Timeout in number of seconds.
11781  *
11782  * This function issues the iocb to firmware and waits for the
11783  * iocb to complete. The iocb_cmpl field of the shall be used
11784  * to handle iocbs which time out. If the field is NULL, the
11785  * function shall free the iocbq structure.  If more clean up is
11786  * needed, the caller is expected to provide a completion function
11787  * that will provide the needed clean up.  If the iocb command is
11788  * not completed within timeout seconds, the function will either
11789  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11790  * completion function set in the iocb_cmpl field and then return
11791  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11792  * resources if this function returns IOCB_TIMEDOUT.
11793  * The function waits for the iocb completion using an
11794  * non-interruptible wait.
11795  * This function will sleep while waiting for iocb completion.
11796  * So, this function should not be called from any context which
11797  * does not allow sleeping. Due to the same reason, this function
11798  * cannot be called with interrupt disabled.
11799  * This function assumes that the iocb completions occur while
11800  * this function sleep. So, this function cannot be called from
11801  * the thread which process iocb completion for this ring.
11802  * This function clears the iocb_flag of the iocb object before
11803  * issuing the iocb and the iocb completion handler sets this
11804  * flag and wakes this thread when the iocb completes.
11805  * The contents of the response iocb will be copied to prspiocbq
11806  * by the completion handler when the command completes.
11807  * This function returns IOCB_SUCCESS when success.
11808  * This function is called with no lock held.
11809  **/
11810 int
11811 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11812 			 uint32_t ring_number,
11813 			 struct lpfc_iocbq *piocb,
11814 			 struct lpfc_iocbq *prspiocbq,
11815 			 uint32_t timeout)
11816 {
11817 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11818 	long timeleft, timeout_req = 0;
11819 	int retval = IOCB_SUCCESS;
11820 	uint32_t creg_val;
11821 	struct lpfc_iocbq *iocb;
11822 	int txq_cnt = 0;
11823 	int txcmplq_cnt = 0;
11824 	struct lpfc_sli_ring *pring;
11825 	unsigned long iflags;
11826 	bool iocb_completed = true;
11827 
11828 	if (phba->sli_rev >= LPFC_SLI_REV4)
11829 		pring = lpfc_sli4_calc_ring(phba, piocb);
11830 	else
11831 		pring = &phba->sli.sli3_ring[ring_number];
11832 	/*
11833 	 * If the caller has provided a response iocbq buffer, then context2
11834 	 * is NULL or its an error.
11835 	 */
11836 	if (prspiocbq) {
11837 		if (piocb->context2)
11838 			return IOCB_ERROR;
11839 		piocb->context2 = prspiocbq;
11840 	}
11841 
11842 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11843 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11844 	piocb->context_un.wait_queue = &done_q;
11845 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11846 
11847 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11848 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11849 			return IOCB_ERROR;
11850 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11851 		writel(creg_val, phba->HCregaddr);
11852 		readl(phba->HCregaddr); /* flush */
11853 	}
11854 
11855 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11856 				     SLI_IOCB_RET_IOCB);
11857 	if (retval == IOCB_SUCCESS) {
11858 		timeout_req = msecs_to_jiffies(timeout * 1000);
11859 		timeleft = wait_event_timeout(done_q,
11860 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11861 				timeout_req);
11862 		spin_lock_irqsave(&phba->hbalock, iflags);
11863 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11864 
11865 			/*
11866 			 * IOCB timed out.  Inform the wake iocb wait
11867 			 * completion function and set local status
11868 			 */
11869 
11870 			iocb_completed = false;
11871 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11872 		}
11873 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11874 		if (iocb_completed) {
11875 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11876 					"0331 IOCB wake signaled\n");
11877 			/* Note: we are not indicating if the IOCB has a success
11878 			 * status or not - that's for the caller to check.
11879 			 * IOCB_SUCCESS means just that the command was sent and
11880 			 * completed. Not that it completed successfully.
11881 			 * */
11882 		} else if (timeleft == 0) {
11883 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11884 					"0338 IOCB wait timeout error - no "
11885 					"wake response Data x%x\n", timeout);
11886 			retval = IOCB_TIMEDOUT;
11887 		} else {
11888 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11889 					"0330 IOCB wake NOT set, "
11890 					"Data x%x x%lx\n",
11891 					timeout, (timeleft / jiffies));
11892 			retval = IOCB_TIMEDOUT;
11893 		}
11894 	} else if (retval == IOCB_BUSY) {
11895 		if (phba->cfg_log_verbose & LOG_SLI) {
11896 			list_for_each_entry(iocb, &pring->txq, list) {
11897 				txq_cnt++;
11898 			}
11899 			list_for_each_entry(iocb, &pring->txcmplq, list) {
11900 				txcmplq_cnt++;
11901 			}
11902 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11903 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11904 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11905 		}
11906 		return retval;
11907 	} else {
11908 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11909 				"0332 IOCB wait issue failed, Data x%x\n",
11910 				retval);
11911 		retval = IOCB_ERROR;
11912 	}
11913 
11914 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11915 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11916 			return IOCB_ERROR;
11917 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
11918 		writel(creg_val, phba->HCregaddr);
11919 		readl(phba->HCregaddr); /* flush */
11920 	}
11921 
11922 	if (prspiocbq)
11923 		piocb->context2 = NULL;
11924 
11925 	piocb->context_un.wait_queue = NULL;
11926 	piocb->iocb_cmpl = NULL;
11927 	return retval;
11928 }
11929 
11930 /**
11931  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
11932  * @phba: Pointer to HBA context object.
11933  * @pmboxq: Pointer to driver mailbox object.
11934  * @timeout: Timeout in number of seconds.
11935  *
11936  * This function issues the mailbox to firmware and waits for the
11937  * mailbox command to complete. If the mailbox command is not
11938  * completed within timeout seconds, it returns MBX_TIMEOUT.
11939  * The function waits for the mailbox completion using an
11940  * interruptible wait. If the thread is woken up due to a
11941  * signal, MBX_TIMEOUT error is returned to the caller. Caller
11942  * should not free the mailbox resources, if this function returns
11943  * MBX_TIMEOUT.
11944  * This function will sleep while waiting for mailbox completion.
11945  * So, this function should not be called from any context which
11946  * does not allow sleeping. Due to the same reason, this function
11947  * cannot be called with interrupt disabled.
11948  * This function assumes that the mailbox completion occurs while
11949  * this function sleep. So, this function cannot be called from
11950  * the worker thread which processes mailbox completion.
11951  * This function is called in the context of HBA management
11952  * applications.
11953  * This function returns MBX_SUCCESS when successful.
11954  * This function is called with no lock held.
11955  **/
11956 int
11957 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
11958 			 uint32_t timeout)
11959 {
11960 	struct completion mbox_done;
11961 	int retval;
11962 	unsigned long flag;
11963 
11964 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
11965 	/* setup wake call as IOCB callback */
11966 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
11967 
11968 	/* setup context3 field to pass wait_queue pointer to wake function  */
11969 	init_completion(&mbox_done);
11970 	pmboxq->context3 = &mbox_done;
11971 	/* now issue the command */
11972 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
11973 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
11974 		wait_for_completion_timeout(&mbox_done,
11975 					    msecs_to_jiffies(timeout * 1000));
11976 
11977 		spin_lock_irqsave(&phba->hbalock, flag);
11978 		pmboxq->context3 = NULL;
11979 		/*
11980 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
11981 		 * else do not free the resources.
11982 		 */
11983 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
11984 			retval = MBX_SUCCESS;
11985 		} else {
11986 			retval = MBX_TIMEOUT;
11987 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
11988 		}
11989 		spin_unlock_irqrestore(&phba->hbalock, flag);
11990 	}
11991 	return retval;
11992 }
11993 
11994 /**
11995  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
11996  * @phba: Pointer to HBA context.
11997  *
11998  * This function is called to shutdown the driver's mailbox sub-system.
11999  * It first marks the mailbox sub-system is in a block state to prevent
12000  * the asynchronous mailbox command from issued off the pending mailbox
12001  * command queue. If the mailbox command sub-system shutdown is due to
12002  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12003  * the mailbox sub-system flush routine to forcefully bring down the
12004  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12005  * as with offline or HBA function reset), this routine will wait for the
12006  * outstanding mailbox command to complete before invoking the mailbox
12007  * sub-system flush routine to gracefully bring down mailbox sub-system.
12008  **/
12009 void
12010 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12011 {
12012 	struct lpfc_sli *psli = &phba->sli;
12013 	unsigned long timeout;
12014 
12015 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12016 		/* delay 100ms for port state */
12017 		msleep(100);
12018 		lpfc_sli_mbox_sys_flush(phba);
12019 		return;
12020 	}
12021 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12022 
12023 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12024 	local_bh_disable();
12025 
12026 	spin_lock_irq(&phba->hbalock);
12027 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12028 
12029 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12030 		/* Determine how long we might wait for the active mailbox
12031 		 * command to be gracefully completed by firmware.
12032 		 */
12033 		if (phba->sli.mbox_active)
12034 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12035 						phba->sli.mbox_active) *
12036 						1000) + jiffies;
12037 		spin_unlock_irq(&phba->hbalock);
12038 
12039 		/* Enable softirqs again, done with phba->hbalock */
12040 		local_bh_enable();
12041 
12042 		while (phba->sli.mbox_active) {
12043 			/* Check active mailbox complete status every 2ms */
12044 			msleep(2);
12045 			if (time_after(jiffies, timeout))
12046 				/* Timeout, let the mailbox flush routine to
12047 				 * forcefully release active mailbox command
12048 				 */
12049 				break;
12050 		}
12051 	} else {
12052 		spin_unlock_irq(&phba->hbalock);
12053 
12054 		/* Enable softirqs again, done with phba->hbalock */
12055 		local_bh_enable();
12056 	}
12057 
12058 	lpfc_sli_mbox_sys_flush(phba);
12059 }
12060 
12061 /**
12062  * lpfc_sli_eratt_read - read sli-3 error attention events
12063  * @phba: Pointer to HBA context.
12064  *
12065  * This function is called to read the SLI3 device error attention registers
12066  * for possible error attention events. The caller must hold the hostlock
12067  * with spin_lock_irq().
12068  *
12069  * This function returns 1 when there is Error Attention in the Host Attention
12070  * Register and returns 0 otherwise.
12071  **/
12072 static int
12073 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12074 {
12075 	uint32_t ha_copy;
12076 
12077 	/* Read chip Host Attention (HA) register */
12078 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12079 		goto unplug_err;
12080 
12081 	if (ha_copy & HA_ERATT) {
12082 		/* Read host status register to retrieve error event */
12083 		if (lpfc_sli_read_hs(phba))
12084 			goto unplug_err;
12085 
12086 		/* Check if there is a deferred error condition is active */
12087 		if ((HS_FFER1 & phba->work_hs) &&
12088 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12089 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12090 			phba->hba_flag |= DEFER_ERATT;
12091 			/* Clear all interrupt enable conditions */
12092 			writel(0, phba->HCregaddr);
12093 			readl(phba->HCregaddr);
12094 		}
12095 
12096 		/* Set the driver HA work bitmap */
12097 		phba->work_ha |= HA_ERATT;
12098 		/* Indicate polling handles this ERATT */
12099 		phba->hba_flag |= HBA_ERATT_HANDLED;
12100 		return 1;
12101 	}
12102 	return 0;
12103 
12104 unplug_err:
12105 	/* Set the driver HS work bitmap */
12106 	phba->work_hs |= UNPLUG_ERR;
12107 	/* Set the driver HA work bitmap */
12108 	phba->work_ha |= HA_ERATT;
12109 	/* Indicate polling handles this ERATT */
12110 	phba->hba_flag |= HBA_ERATT_HANDLED;
12111 	return 1;
12112 }
12113 
12114 /**
12115  * lpfc_sli4_eratt_read - read sli-4 error attention events
12116  * @phba: Pointer to HBA context.
12117  *
12118  * This function is called to read the SLI4 device error attention registers
12119  * for possible error attention events. The caller must hold the hostlock
12120  * with spin_lock_irq().
12121  *
12122  * This function returns 1 when there is Error Attention in the Host Attention
12123  * Register and returns 0 otherwise.
12124  **/
12125 static int
12126 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12127 {
12128 	uint32_t uerr_sta_hi, uerr_sta_lo;
12129 	uint32_t if_type, portsmphr;
12130 	struct lpfc_register portstat_reg;
12131 
12132 	/*
12133 	 * For now, use the SLI4 device internal unrecoverable error
12134 	 * registers for error attention. This can be changed later.
12135 	 */
12136 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12137 	switch (if_type) {
12138 	case LPFC_SLI_INTF_IF_TYPE_0:
12139 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12140 			&uerr_sta_lo) ||
12141 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12142 			&uerr_sta_hi)) {
12143 			phba->work_hs |= UNPLUG_ERR;
12144 			phba->work_ha |= HA_ERATT;
12145 			phba->hba_flag |= HBA_ERATT_HANDLED;
12146 			return 1;
12147 		}
12148 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12149 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12150 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12151 					"1423 HBA Unrecoverable error: "
12152 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12153 					"ue_mask_lo_reg=0x%x, "
12154 					"ue_mask_hi_reg=0x%x\n",
12155 					uerr_sta_lo, uerr_sta_hi,
12156 					phba->sli4_hba.ue_mask_lo,
12157 					phba->sli4_hba.ue_mask_hi);
12158 			phba->work_status[0] = uerr_sta_lo;
12159 			phba->work_status[1] = uerr_sta_hi;
12160 			phba->work_ha |= HA_ERATT;
12161 			phba->hba_flag |= HBA_ERATT_HANDLED;
12162 			return 1;
12163 		}
12164 		break;
12165 	case LPFC_SLI_INTF_IF_TYPE_2:
12166 	case LPFC_SLI_INTF_IF_TYPE_6:
12167 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12168 			&portstat_reg.word0) ||
12169 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12170 			&portsmphr)){
12171 			phba->work_hs |= UNPLUG_ERR;
12172 			phba->work_ha |= HA_ERATT;
12173 			phba->hba_flag |= HBA_ERATT_HANDLED;
12174 			return 1;
12175 		}
12176 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12177 			phba->work_status[0] =
12178 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12179 			phba->work_status[1] =
12180 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12181 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12182 					"2885 Port Status Event: "
12183 					"port status reg 0x%x, "
12184 					"port smphr reg 0x%x, "
12185 					"error 1=0x%x, error 2=0x%x\n",
12186 					portstat_reg.word0,
12187 					portsmphr,
12188 					phba->work_status[0],
12189 					phba->work_status[1]);
12190 			phba->work_ha |= HA_ERATT;
12191 			phba->hba_flag |= HBA_ERATT_HANDLED;
12192 			return 1;
12193 		}
12194 		break;
12195 	case LPFC_SLI_INTF_IF_TYPE_1:
12196 	default:
12197 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12198 				"2886 HBA Error Attention on unsupported "
12199 				"if type %d.", if_type);
12200 		return 1;
12201 	}
12202 
12203 	return 0;
12204 }
12205 
12206 /**
12207  * lpfc_sli_check_eratt - check error attention events
12208  * @phba: Pointer to HBA context.
12209  *
12210  * This function is called from timer soft interrupt context to check HBA's
12211  * error attention register bit for error attention events.
12212  *
12213  * This function returns 1 when there is Error Attention in the Host Attention
12214  * Register and returns 0 otherwise.
12215  **/
12216 int
12217 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12218 {
12219 	uint32_t ha_copy;
12220 
12221 	/* If somebody is waiting to handle an eratt, don't process it
12222 	 * here. The brdkill function will do this.
12223 	 */
12224 	if (phba->link_flag & LS_IGNORE_ERATT)
12225 		return 0;
12226 
12227 	/* Check if interrupt handler handles this ERATT */
12228 	spin_lock_irq(&phba->hbalock);
12229 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12230 		/* Interrupt handler has handled ERATT */
12231 		spin_unlock_irq(&phba->hbalock);
12232 		return 0;
12233 	}
12234 
12235 	/*
12236 	 * If there is deferred error attention, do not check for error
12237 	 * attention
12238 	 */
12239 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12240 		spin_unlock_irq(&phba->hbalock);
12241 		return 0;
12242 	}
12243 
12244 	/* If PCI channel is offline, don't process it */
12245 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12246 		spin_unlock_irq(&phba->hbalock);
12247 		return 0;
12248 	}
12249 
12250 	switch (phba->sli_rev) {
12251 	case LPFC_SLI_REV2:
12252 	case LPFC_SLI_REV3:
12253 		/* Read chip Host Attention (HA) register */
12254 		ha_copy = lpfc_sli_eratt_read(phba);
12255 		break;
12256 	case LPFC_SLI_REV4:
12257 		/* Read device Uncoverable Error (UERR) registers */
12258 		ha_copy = lpfc_sli4_eratt_read(phba);
12259 		break;
12260 	default:
12261 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12262 				"0299 Invalid SLI revision (%d)\n",
12263 				phba->sli_rev);
12264 		ha_copy = 0;
12265 		break;
12266 	}
12267 	spin_unlock_irq(&phba->hbalock);
12268 
12269 	return ha_copy;
12270 }
12271 
12272 /**
12273  * lpfc_intr_state_check - Check device state for interrupt handling
12274  * @phba: Pointer to HBA context.
12275  *
12276  * This inline routine checks whether a device or its PCI slot is in a state
12277  * that the interrupt should be handled.
12278  *
12279  * This function returns 0 if the device or the PCI slot is in a state that
12280  * interrupt should be handled, otherwise -EIO.
12281  */
12282 static inline int
12283 lpfc_intr_state_check(struct lpfc_hba *phba)
12284 {
12285 	/* If the pci channel is offline, ignore all the interrupts */
12286 	if (unlikely(pci_channel_offline(phba->pcidev)))
12287 		return -EIO;
12288 
12289 	/* Update device level interrupt statistics */
12290 	phba->sli.slistat.sli_intr++;
12291 
12292 	/* Ignore all interrupts during initialization. */
12293 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12294 		return -EIO;
12295 
12296 	return 0;
12297 }
12298 
12299 /**
12300  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12301  * @irq: Interrupt number.
12302  * @dev_id: The device context pointer.
12303  *
12304  * This function is directly called from the PCI layer as an interrupt
12305  * service routine when device with SLI-3 interface spec is enabled with
12306  * MSI-X multi-message interrupt mode and there are slow-path events in
12307  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12308  * interrupt mode, this function is called as part of the device-level
12309  * interrupt handler. When the PCI slot is in error recovery or the HBA
12310  * is undergoing initialization, the interrupt handler will not process
12311  * the interrupt. The link attention and ELS ring attention events are
12312  * handled by the worker thread. The interrupt handler signals the worker
12313  * thread and returns for these events. This function is called without
12314  * any lock held. It gets the hbalock to access and update SLI data
12315  * structures.
12316  *
12317  * This function returns IRQ_HANDLED when interrupt is handled else it
12318  * returns IRQ_NONE.
12319  **/
12320 irqreturn_t
12321 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12322 {
12323 	struct lpfc_hba  *phba;
12324 	uint32_t ha_copy, hc_copy;
12325 	uint32_t work_ha_copy;
12326 	unsigned long status;
12327 	unsigned long iflag;
12328 	uint32_t control;
12329 
12330 	MAILBOX_t *mbox, *pmbox;
12331 	struct lpfc_vport *vport;
12332 	struct lpfc_nodelist *ndlp;
12333 	struct lpfc_dmabuf *mp;
12334 	LPFC_MBOXQ_t *pmb;
12335 	int rc;
12336 
12337 	/*
12338 	 * Get the driver's phba structure from the dev_id and
12339 	 * assume the HBA is not interrupting.
12340 	 */
12341 	phba = (struct lpfc_hba *)dev_id;
12342 
12343 	if (unlikely(!phba))
12344 		return IRQ_NONE;
12345 
12346 	/*
12347 	 * Stuff needs to be attented to when this function is invoked as an
12348 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12349 	 */
12350 	if (phba->intr_type == MSIX) {
12351 		/* Check device state for handling interrupt */
12352 		if (lpfc_intr_state_check(phba))
12353 			return IRQ_NONE;
12354 		/* Need to read HA REG for slow-path events */
12355 		spin_lock_irqsave(&phba->hbalock, iflag);
12356 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12357 			goto unplug_error;
12358 		/* If somebody is waiting to handle an eratt don't process it
12359 		 * here. The brdkill function will do this.
12360 		 */
12361 		if (phba->link_flag & LS_IGNORE_ERATT)
12362 			ha_copy &= ~HA_ERATT;
12363 		/* Check the need for handling ERATT in interrupt handler */
12364 		if (ha_copy & HA_ERATT) {
12365 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12366 				/* ERATT polling has handled ERATT */
12367 				ha_copy &= ~HA_ERATT;
12368 			else
12369 				/* Indicate interrupt handler handles ERATT */
12370 				phba->hba_flag |= HBA_ERATT_HANDLED;
12371 		}
12372 
12373 		/*
12374 		 * If there is deferred error attention, do not check for any
12375 		 * interrupt.
12376 		 */
12377 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12378 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12379 			return IRQ_NONE;
12380 		}
12381 
12382 		/* Clear up only attention source related to slow-path */
12383 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12384 			goto unplug_error;
12385 
12386 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12387 			HC_LAINT_ENA | HC_ERINT_ENA),
12388 			phba->HCregaddr);
12389 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12390 			phba->HAregaddr);
12391 		writel(hc_copy, phba->HCregaddr);
12392 		readl(phba->HAregaddr); /* flush */
12393 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12394 	} else
12395 		ha_copy = phba->ha_copy;
12396 
12397 	work_ha_copy = ha_copy & phba->work_ha_mask;
12398 
12399 	if (work_ha_copy) {
12400 		if (work_ha_copy & HA_LATT) {
12401 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12402 				/*
12403 				 * Turn off Link Attention interrupts
12404 				 * until CLEAR_LA done
12405 				 */
12406 				spin_lock_irqsave(&phba->hbalock, iflag);
12407 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12408 				if (lpfc_readl(phba->HCregaddr, &control))
12409 					goto unplug_error;
12410 				control &= ~HC_LAINT_ENA;
12411 				writel(control, phba->HCregaddr);
12412 				readl(phba->HCregaddr); /* flush */
12413 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12414 			}
12415 			else
12416 				work_ha_copy &= ~HA_LATT;
12417 		}
12418 
12419 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12420 			/*
12421 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12422 			 * the only slow ring.
12423 			 */
12424 			status = (work_ha_copy &
12425 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12426 			status >>= (4*LPFC_ELS_RING);
12427 			if (status & HA_RXMASK) {
12428 				spin_lock_irqsave(&phba->hbalock, iflag);
12429 				if (lpfc_readl(phba->HCregaddr, &control))
12430 					goto unplug_error;
12431 
12432 				lpfc_debugfs_slow_ring_trc(phba,
12433 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12434 				control, status,
12435 				(uint32_t)phba->sli.slistat.sli_intr);
12436 
12437 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12438 					lpfc_debugfs_slow_ring_trc(phba,
12439 						"ISR Disable ring:"
12440 						"pwork:x%x hawork:x%x wait:x%x",
12441 						phba->work_ha, work_ha_copy,
12442 						(uint32_t)((unsigned long)
12443 						&phba->work_waitq));
12444 
12445 					control &=
12446 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12447 					writel(control, phba->HCregaddr);
12448 					readl(phba->HCregaddr); /* flush */
12449 				}
12450 				else {
12451 					lpfc_debugfs_slow_ring_trc(phba,
12452 						"ISR slow ring:   pwork:"
12453 						"x%x hawork:x%x wait:x%x",
12454 						phba->work_ha, work_ha_copy,
12455 						(uint32_t)((unsigned long)
12456 						&phba->work_waitq));
12457 				}
12458 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12459 			}
12460 		}
12461 		spin_lock_irqsave(&phba->hbalock, iflag);
12462 		if (work_ha_copy & HA_ERATT) {
12463 			if (lpfc_sli_read_hs(phba))
12464 				goto unplug_error;
12465 			/*
12466 			 * Check if there is a deferred error condition
12467 			 * is active
12468 			 */
12469 			if ((HS_FFER1 & phba->work_hs) &&
12470 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12471 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12472 				  phba->work_hs)) {
12473 				phba->hba_flag |= DEFER_ERATT;
12474 				/* Clear all interrupt enable conditions */
12475 				writel(0, phba->HCregaddr);
12476 				readl(phba->HCregaddr);
12477 			}
12478 		}
12479 
12480 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12481 			pmb = phba->sli.mbox_active;
12482 			pmbox = &pmb->u.mb;
12483 			mbox = phba->mbox;
12484 			vport = pmb->vport;
12485 
12486 			/* First check out the status word */
12487 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12488 			if (pmbox->mbxOwner != OWN_HOST) {
12489 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12490 				/*
12491 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12492 				 * mbxStatus <status>
12493 				 */
12494 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12495 						LOG_SLI,
12496 						"(%d):0304 Stray Mailbox "
12497 						"Interrupt mbxCommand x%x "
12498 						"mbxStatus x%x\n",
12499 						(vport ? vport->vpi : 0),
12500 						pmbox->mbxCommand,
12501 						pmbox->mbxStatus);
12502 				/* clear mailbox attention bit */
12503 				work_ha_copy &= ~HA_MBATT;
12504 			} else {
12505 				phba->sli.mbox_active = NULL;
12506 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12507 				phba->last_completion_time = jiffies;
12508 				del_timer(&phba->sli.mbox_tmo);
12509 				if (pmb->mbox_cmpl) {
12510 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12511 							MAILBOX_CMD_SIZE);
12512 					if (pmb->out_ext_byte_len &&
12513 						pmb->ctx_buf)
12514 						lpfc_sli_pcimem_bcopy(
12515 						phba->mbox_ext,
12516 						pmb->ctx_buf,
12517 						pmb->out_ext_byte_len);
12518 				}
12519 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12520 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12521 
12522 					lpfc_debugfs_disc_trc(vport,
12523 						LPFC_DISC_TRC_MBOX_VPORT,
12524 						"MBOX dflt rpi: : "
12525 						"status:x%x rpi:x%x",
12526 						(uint32_t)pmbox->mbxStatus,
12527 						pmbox->un.varWords[0], 0);
12528 
12529 					if (!pmbox->mbxStatus) {
12530 						mp = (struct lpfc_dmabuf *)
12531 							(pmb->ctx_buf);
12532 						ndlp = (struct lpfc_nodelist *)
12533 							pmb->ctx_ndlp;
12534 
12535 						/* Reg_LOGIN of dflt RPI was
12536 						 * successful. new lets get
12537 						 * rid of the RPI using the
12538 						 * same mbox buffer.
12539 						 */
12540 						lpfc_unreg_login(phba,
12541 							vport->vpi,
12542 							pmbox->un.varWords[0],
12543 							pmb);
12544 						pmb->mbox_cmpl =
12545 							lpfc_mbx_cmpl_dflt_rpi;
12546 						pmb->ctx_buf = mp;
12547 						pmb->ctx_ndlp = ndlp;
12548 						pmb->vport = vport;
12549 						rc = lpfc_sli_issue_mbox(phba,
12550 								pmb,
12551 								MBX_NOWAIT);
12552 						if (rc != MBX_BUSY)
12553 							lpfc_printf_log(phba,
12554 							KERN_ERR,
12555 							LOG_MBOX | LOG_SLI,
12556 							"0350 rc should have"
12557 							"been MBX_BUSY\n");
12558 						if (rc != MBX_NOT_FINISHED)
12559 							goto send_current_mbox;
12560 					}
12561 				}
12562 				spin_lock_irqsave(
12563 						&phba->pport->work_port_lock,
12564 						iflag);
12565 				phba->pport->work_port_events &=
12566 					~WORKER_MBOX_TMO;
12567 				spin_unlock_irqrestore(
12568 						&phba->pport->work_port_lock,
12569 						iflag);
12570 				lpfc_mbox_cmpl_put(phba, pmb);
12571 			}
12572 		} else
12573 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12574 
12575 		if ((work_ha_copy & HA_MBATT) &&
12576 		    (phba->sli.mbox_active == NULL)) {
12577 send_current_mbox:
12578 			/* Process next mailbox command if there is one */
12579 			do {
12580 				rc = lpfc_sli_issue_mbox(phba, NULL,
12581 							 MBX_NOWAIT);
12582 			} while (rc == MBX_NOT_FINISHED);
12583 			if (rc != MBX_SUCCESS)
12584 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12585 						LOG_SLI, "0349 rc should be "
12586 						"MBX_SUCCESS\n");
12587 		}
12588 
12589 		spin_lock_irqsave(&phba->hbalock, iflag);
12590 		phba->work_ha |= work_ha_copy;
12591 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12592 		lpfc_worker_wake_up(phba);
12593 	}
12594 	return IRQ_HANDLED;
12595 unplug_error:
12596 	spin_unlock_irqrestore(&phba->hbalock, iflag);
12597 	return IRQ_HANDLED;
12598 
12599 } /* lpfc_sli_sp_intr_handler */
12600 
12601 /**
12602  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12603  * @irq: Interrupt number.
12604  * @dev_id: The device context pointer.
12605  *
12606  * This function is directly called from the PCI layer as an interrupt
12607  * service routine when device with SLI-3 interface spec is enabled with
12608  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12609  * ring event in the HBA. However, when the device is enabled with either
12610  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12611  * device-level interrupt handler. When the PCI slot is in error recovery
12612  * or the HBA is undergoing initialization, the interrupt handler will not
12613  * process the interrupt. The SCSI FCP fast-path ring event are handled in
12614  * the intrrupt context. This function is called without any lock held.
12615  * It gets the hbalock to access and update SLI data structures.
12616  *
12617  * This function returns IRQ_HANDLED when interrupt is handled else it
12618  * returns IRQ_NONE.
12619  **/
12620 irqreturn_t
12621 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12622 {
12623 	struct lpfc_hba  *phba;
12624 	uint32_t ha_copy;
12625 	unsigned long status;
12626 	unsigned long iflag;
12627 	struct lpfc_sli_ring *pring;
12628 
12629 	/* Get the driver's phba structure from the dev_id and
12630 	 * assume the HBA is not interrupting.
12631 	 */
12632 	phba = (struct lpfc_hba *) dev_id;
12633 
12634 	if (unlikely(!phba))
12635 		return IRQ_NONE;
12636 
12637 	/*
12638 	 * Stuff needs to be attented to when this function is invoked as an
12639 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12640 	 */
12641 	if (phba->intr_type == MSIX) {
12642 		/* Check device state for handling interrupt */
12643 		if (lpfc_intr_state_check(phba))
12644 			return IRQ_NONE;
12645 		/* Need to read HA REG for FCP ring and other ring events */
12646 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12647 			return IRQ_HANDLED;
12648 		/* Clear up only attention source related to fast-path */
12649 		spin_lock_irqsave(&phba->hbalock, iflag);
12650 		/*
12651 		 * If there is deferred error attention, do not check for
12652 		 * any interrupt.
12653 		 */
12654 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12655 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12656 			return IRQ_NONE;
12657 		}
12658 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12659 			phba->HAregaddr);
12660 		readl(phba->HAregaddr); /* flush */
12661 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12662 	} else
12663 		ha_copy = phba->ha_copy;
12664 
12665 	/*
12666 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12667 	 */
12668 	ha_copy &= ~(phba->work_ha_mask);
12669 
12670 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12671 	status >>= (4*LPFC_FCP_RING);
12672 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12673 	if (status & HA_RXMASK)
12674 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12675 
12676 	if (phba->cfg_multi_ring_support == 2) {
12677 		/*
12678 		 * Process all events on extra ring. Take the optimized path
12679 		 * for extra ring IO.
12680 		 */
12681 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12682 		status >>= (4*LPFC_EXTRA_RING);
12683 		if (status & HA_RXMASK) {
12684 			lpfc_sli_handle_fast_ring_event(phba,
12685 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12686 					status);
12687 		}
12688 	}
12689 	return IRQ_HANDLED;
12690 }  /* lpfc_sli_fp_intr_handler */
12691 
12692 /**
12693  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12694  * @irq: Interrupt number.
12695  * @dev_id: The device context pointer.
12696  *
12697  * This function is the HBA device-level interrupt handler to device with
12698  * SLI-3 interface spec, called from the PCI layer when either MSI or
12699  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12700  * requires driver attention. This function invokes the slow-path interrupt
12701  * attention handling function and fast-path interrupt attention handling
12702  * function in turn to process the relevant HBA attention events. This
12703  * function is called without any lock held. It gets the hbalock to access
12704  * and update SLI data structures.
12705  *
12706  * This function returns IRQ_HANDLED when interrupt is handled, else it
12707  * returns IRQ_NONE.
12708  **/
12709 irqreturn_t
12710 lpfc_sli_intr_handler(int irq, void *dev_id)
12711 {
12712 	struct lpfc_hba  *phba;
12713 	irqreturn_t sp_irq_rc, fp_irq_rc;
12714 	unsigned long status1, status2;
12715 	uint32_t hc_copy;
12716 
12717 	/*
12718 	 * Get the driver's phba structure from the dev_id and
12719 	 * assume the HBA is not interrupting.
12720 	 */
12721 	phba = (struct lpfc_hba *) dev_id;
12722 
12723 	if (unlikely(!phba))
12724 		return IRQ_NONE;
12725 
12726 	/* Check device state for handling interrupt */
12727 	if (lpfc_intr_state_check(phba))
12728 		return IRQ_NONE;
12729 
12730 	spin_lock(&phba->hbalock);
12731 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12732 		spin_unlock(&phba->hbalock);
12733 		return IRQ_HANDLED;
12734 	}
12735 
12736 	if (unlikely(!phba->ha_copy)) {
12737 		spin_unlock(&phba->hbalock);
12738 		return IRQ_NONE;
12739 	} else if (phba->ha_copy & HA_ERATT) {
12740 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12741 			/* ERATT polling has handled ERATT */
12742 			phba->ha_copy &= ~HA_ERATT;
12743 		else
12744 			/* Indicate interrupt handler handles ERATT */
12745 			phba->hba_flag |= HBA_ERATT_HANDLED;
12746 	}
12747 
12748 	/*
12749 	 * If there is deferred error attention, do not check for any interrupt.
12750 	 */
12751 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12752 		spin_unlock(&phba->hbalock);
12753 		return IRQ_NONE;
12754 	}
12755 
12756 	/* Clear attention sources except link and error attentions */
12757 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12758 		spin_unlock(&phba->hbalock);
12759 		return IRQ_HANDLED;
12760 	}
12761 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12762 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12763 		phba->HCregaddr);
12764 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12765 	writel(hc_copy, phba->HCregaddr);
12766 	readl(phba->HAregaddr); /* flush */
12767 	spin_unlock(&phba->hbalock);
12768 
12769 	/*
12770 	 * Invokes slow-path host attention interrupt handling as appropriate.
12771 	 */
12772 
12773 	/* status of events with mailbox and link attention */
12774 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12775 
12776 	/* status of events with ELS ring */
12777 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12778 	status2 >>= (4*LPFC_ELS_RING);
12779 
12780 	if (status1 || (status2 & HA_RXMASK))
12781 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12782 	else
12783 		sp_irq_rc = IRQ_NONE;
12784 
12785 	/*
12786 	 * Invoke fast-path host attention interrupt handling as appropriate.
12787 	 */
12788 
12789 	/* status of events with FCP ring */
12790 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12791 	status1 >>= (4*LPFC_FCP_RING);
12792 
12793 	/* status of events with extra ring */
12794 	if (phba->cfg_multi_ring_support == 2) {
12795 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12796 		status2 >>= (4*LPFC_EXTRA_RING);
12797 	} else
12798 		status2 = 0;
12799 
12800 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12801 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12802 	else
12803 		fp_irq_rc = IRQ_NONE;
12804 
12805 	/* Return device-level interrupt handling status */
12806 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12807 }  /* lpfc_sli_intr_handler */
12808 
12809 /**
12810  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12811  * @phba: pointer to lpfc hba data structure.
12812  *
12813  * This routine is invoked by the worker thread to process all the pending
12814  * SLI4 els abort xri events.
12815  **/
12816 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12817 {
12818 	struct lpfc_cq_event *cq_event;
12819 
12820 	/* First, declare the els xri abort event has been handled */
12821 	spin_lock_irq(&phba->hbalock);
12822 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12823 	spin_unlock_irq(&phba->hbalock);
12824 	/* Now, handle all the els xri abort events */
12825 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12826 		/* Get the first event from the head of the event queue */
12827 		spin_lock_irq(&phba->hbalock);
12828 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12829 				 cq_event, struct lpfc_cq_event, list);
12830 		spin_unlock_irq(&phba->hbalock);
12831 		/* Notify aborted XRI for ELS work queue */
12832 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12833 		/* Free the event processed back to the free pool */
12834 		lpfc_sli4_cq_event_release(phba, cq_event);
12835 	}
12836 }
12837 
12838 /**
12839  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12840  * @phba: pointer to lpfc hba data structure
12841  * @pIocbIn: pointer to the rspiocbq
12842  * @pIocbOut: pointer to the cmdiocbq
12843  * @wcqe: pointer to the complete wcqe
12844  *
12845  * This routine transfers the fields of a command iocbq to a response iocbq
12846  * by copying all the IOCB fields from command iocbq and transferring the
12847  * completion status information from the complete wcqe.
12848  **/
12849 static void
12850 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12851 			      struct lpfc_iocbq *pIocbIn,
12852 			      struct lpfc_iocbq *pIocbOut,
12853 			      struct lpfc_wcqe_complete *wcqe)
12854 {
12855 	int numBdes, i;
12856 	unsigned long iflags;
12857 	uint32_t status, max_response;
12858 	struct lpfc_dmabuf *dmabuf;
12859 	struct ulp_bde64 *bpl, bde;
12860 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
12861 
12862 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12863 	       sizeof(struct lpfc_iocbq) - offset);
12864 	/* Map WCQE parameters into irspiocb parameters */
12865 	status = bf_get(lpfc_wcqe_c_status, wcqe);
12866 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12867 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12868 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12869 			pIocbIn->iocb.un.fcpi.fcpi_parm =
12870 					pIocbOut->iocb.un.fcpi.fcpi_parm -
12871 					wcqe->total_data_placed;
12872 		else
12873 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12874 	else {
12875 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12876 		switch (pIocbOut->iocb.ulpCommand) {
12877 		case CMD_ELS_REQUEST64_CR:
12878 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12879 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
12880 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12881 			max_response = bde.tus.f.bdeSize;
12882 			break;
12883 		case CMD_GEN_REQUEST64_CR:
12884 			max_response = 0;
12885 			if (!pIocbOut->context3)
12886 				break;
12887 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12888 					sizeof(struct ulp_bde64);
12889 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12890 			bpl = (struct ulp_bde64 *)dmabuf->virt;
12891 			for (i = 0; i < numBdes; i++) {
12892 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12893 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12894 					max_response += bde.tus.f.bdeSize;
12895 			}
12896 			break;
12897 		default:
12898 			max_response = wcqe->total_data_placed;
12899 			break;
12900 		}
12901 		if (max_response < wcqe->total_data_placed)
12902 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12903 		else
12904 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12905 				wcqe->total_data_placed;
12906 	}
12907 
12908 	/* Convert BG errors for completion status */
12909 	if (status == CQE_STATUS_DI_ERROR) {
12910 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
12911 
12912 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
12913 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
12914 		else
12915 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
12916 
12917 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
12918 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
12919 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12920 				BGS_GUARD_ERR_MASK;
12921 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
12922 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12923 				BGS_APPTAG_ERR_MASK;
12924 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
12925 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12926 				BGS_REFTAG_ERR_MASK;
12927 
12928 		/* Check to see if there was any good data before the error */
12929 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
12930 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12931 				BGS_HI_WATER_MARK_PRESENT_MASK;
12932 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
12933 				wcqe->total_data_placed;
12934 		}
12935 
12936 		/*
12937 		* Set ALL the error bits to indicate we don't know what
12938 		* type of error it is.
12939 		*/
12940 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
12941 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12942 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
12943 				BGS_GUARD_ERR_MASK);
12944 	}
12945 
12946 	/* Pick up HBA exchange busy condition */
12947 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
12948 		spin_lock_irqsave(&phba->hbalock, iflags);
12949 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
12950 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12951 	}
12952 }
12953 
12954 /**
12955  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
12956  * @phba: Pointer to HBA context object.
12957  * @wcqe: Pointer to work-queue completion queue entry.
12958  *
12959  * This routine handles an ELS work-queue completion event and construct
12960  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
12961  * discovery engine to handle.
12962  *
12963  * Return: Pointer to the receive IOCBQ, NULL otherwise.
12964  **/
12965 static struct lpfc_iocbq *
12966 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
12967 			       struct lpfc_iocbq *irspiocbq)
12968 {
12969 	struct lpfc_sli_ring *pring;
12970 	struct lpfc_iocbq *cmdiocbq;
12971 	struct lpfc_wcqe_complete *wcqe;
12972 	unsigned long iflags;
12973 
12974 	pring = lpfc_phba_elsring(phba);
12975 	if (unlikely(!pring))
12976 		return NULL;
12977 
12978 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
12979 	spin_lock_irqsave(&pring->ring_lock, iflags);
12980 	pring->stats.iocb_event++;
12981 	/* Look up the ELS command IOCB and create pseudo response IOCB */
12982 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
12983 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
12984 	if (unlikely(!cmdiocbq)) {
12985 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
12986 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12987 				"0386 ELS complete with no corresponding "
12988 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
12989 				wcqe->word0, wcqe->total_data_placed,
12990 				wcqe->parameter, wcqe->word3);
12991 		lpfc_sli_release_iocbq(phba, irspiocbq);
12992 		return NULL;
12993 	}
12994 
12995 	/* Put the iocb back on the txcmplq */
12996 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
12997 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
12998 
12999 	/* Fake the irspiocbq and copy necessary response information */
13000 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13001 
13002 	return irspiocbq;
13003 }
13004 
13005 inline struct lpfc_cq_event *
13006 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13007 {
13008 	struct lpfc_cq_event *cq_event;
13009 
13010 	/* Allocate a new internal CQ_EVENT entry */
13011 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13012 	if (!cq_event) {
13013 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13014 				"0602 Failed to alloc CQ_EVENT entry\n");
13015 		return NULL;
13016 	}
13017 
13018 	/* Move the CQE into the event */
13019 	memcpy(&cq_event->cqe, entry, size);
13020 	return cq_event;
13021 }
13022 
13023 /**
13024  * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
13025  * @phba: Pointer to HBA context object.
13026  * @cqe: Pointer to mailbox completion queue entry.
13027  *
13028  * This routine process a mailbox completion queue entry with asynchrous
13029  * event.
13030  *
13031  * Return: true if work posted to worker thread, otherwise false.
13032  **/
13033 static bool
13034 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13035 {
13036 	struct lpfc_cq_event *cq_event;
13037 	unsigned long iflags;
13038 
13039 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13040 			"0392 Async Event: word0:x%x, word1:x%x, "
13041 			"word2:x%x, word3:x%x\n", mcqe->word0,
13042 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13043 
13044 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13045 	if (!cq_event)
13046 		return false;
13047 	spin_lock_irqsave(&phba->hbalock, iflags);
13048 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13049 	/* Set the async event flag */
13050 	phba->hba_flag |= ASYNC_EVENT;
13051 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13052 
13053 	return true;
13054 }
13055 
13056 /**
13057  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13058  * @phba: Pointer to HBA context object.
13059  * @cqe: Pointer to mailbox completion queue entry.
13060  *
13061  * This routine process a mailbox completion queue entry with mailbox
13062  * completion event.
13063  *
13064  * Return: true if work posted to worker thread, otherwise false.
13065  **/
13066 static bool
13067 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13068 {
13069 	uint32_t mcqe_status;
13070 	MAILBOX_t *mbox, *pmbox;
13071 	struct lpfc_mqe *mqe;
13072 	struct lpfc_vport *vport;
13073 	struct lpfc_nodelist *ndlp;
13074 	struct lpfc_dmabuf *mp;
13075 	unsigned long iflags;
13076 	LPFC_MBOXQ_t *pmb;
13077 	bool workposted = false;
13078 	int rc;
13079 
13080 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13081 	if (!bf_get(lpfc_trailer_completed, mcqe))
13082 		goto out_no_mqe_complete;
13083 
13084 	/* Get the reference to the active mbox command */
13085 	spin_lock_irqsave(&phba->hbalock, iflags);
13086 	pmb = phba->sli.mbox_active;
13087 	if (unlikely(!pmb)) {
13088 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13089 				"1832 No pending MBOX command to handle\n");
13090 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13091 		goto out_no_mqe_complete;
13092 	}
13093 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13094 	mqe = &pmb->u.mqe;
13095 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13096 	mbox = phba->mbox;
13097 	vport = pmb->vport;
13098 
13099 	/* Reset heartbeat timer */
13100 	phba->last_completion_time = jiffies;
13101 	del_timer(&phba->sli.mbox_tmo);
13102 
13103 	/* Move mbox data to caller's mailbox region, do endian swapping */
13104 	if (pmb->mbox_cmpl && mbox)
13105 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13106 
13107 	/*
13108 	 * For mcqe errors, conditionally move a modified error code to
13109 	 * the mbox so that the error will not be missed.
13110 	 */
13111 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13112 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13113 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13114 			bf_set(lpfc_mqe_status, mqe,
13115 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13116 	}
13117 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13118 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13119 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13120 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13121 				      mcqe_status,
13122 				      pmbox->un.varWords[0], 0);
13123 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13124 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13125 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13126 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13127 			 * RID of the PPI using the same mbox buffer.
13128 			 */
13129 			lpfc_unreg_login(phba, vport->vpi,
13130 					 pmbox->un.varWords[0], pmb);
13131 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13132 			pmb->ctx_buf = mp;
13133 			pmb->ctx_ndlp = ndlp;
13134 			pmb->vport = vport;
13135 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13136 			if (rc != MBX_BUSY)
13137 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13138 						LOG_SLI, "0385 rc should "
13139 						"have been MBX_BUSY\n");
13140 			if (rc != MBX_NOT_FINISHED)
13141 				goto send_current_mbox;
13142 		}
13143 	}
13144 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13145 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13146 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13147 
13148 	/* There is mailbox completion work to do */
13149 	spin_lock_irqsave(&phba->hbalock, iflags);
13150 	__lpfc_mbox_cmpl_put(phba, pmb);
13151 	phba->work_ha |= HA_MBATT;
13152 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13153 	workposted = true;
13154 
13155 send_current_mbox:
13156 	spin_lock_irqsave(&phba->hbalock, iflags);
13157 	/* Release the mailbox command posting token */
13158 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13159 	/* Setting active mailbox pointer need to be in sync to flag clear */
13160 	phba->sli.mbox_active = NULL;
13161 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13162 	/* Wake up worker thread to post the next pending mailbox command */
13163 	lpfc_worker_wake_up(phba);
13164 out_no_mqe_complete:
13165 	if (bf_get(lpfc_trailer_consumed, mcqe))
13166 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13167 	return workposted;
13168 }
13169 
13170 /**
13171  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13172  * @phba: Pointer to HBA context object.
13173  * @cqe: Pointer to mailbox completion queue entry.
13174  *
13175  * This routine process a mailbox completion queue entry, it invokes the
13176  * proper mailbox complete handling or asynchrous event handling routine
13177  * according to the MCQE's async bit.
13178  *
13179  * Return: true if work posted to worker thread, otherwise false.
13180  **/
13181 static bool
13182 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13183 			 struct lpfc_cqe *cqe)
13184 {
13185 	struct lpfc_mcqe mcqe;
13186 	bool workposted;
13187 
13188 	cq->CQ_mbox++;
13189 
13190 	/* Copy the mailbox MCQE and convert endian order as needed */
13191 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13192 
13193 	/* Invoke the proper event handling routine */
13194 	if (!bf_get(lpfc_trailer_async, &mcqe))
13195 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13196 	else
13197 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13198 	return workposted;
13199 }
13200 
13201 /**
13202  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13203  * @phba: Pointer to HBA context object.
13204  * @cq: Pointer to associated CQ
13205  * @wcqe: Pointer to work-queue completion queue entry.
13206  *
13207  * This routine handles an ELS work-queue completion event.
13208  *
13209  * Return: true if work posted to worker thread, otherwise false.
13210  **/
13211 static bool
13212 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13213 			     struct lpfc_wcqe_complete *wcqe)
13214 {
13215 	struct lpfc_iocbq *irspiocbq;
13216 	unsigned long iflags;
13217 	struct lpfc_sli_ring *pring = cq->pring;
13218 	int txq_cnt = 0;
13219 	int txcmplq_cnt = 0;
13220 	int fcp_txcmplq_cnt = 0;
13221 
13222 	/* Check for response status */
13223 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13224 		/* Log the error status */
13225 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13226 				"0357 ELS CQE error: status=x%x: "
13227 				"CQE: %08x %08x %08x %08x\n",
13228 				bf_get(lpfc_wcqe_c_status, wcqe),
13229 				wcqe->word0, wcqe->total_data_placed,
13230 				wcqe->parameter, wcqe->word3);
13231 	}
13232 
13233 	/* Get an irspiocbq for later ELS response processing use */
13234 	irspiocbq = lpfc_sli_get_iocbq(phba);
13235 	if (!irspiocbq) {
13236 		if (!list_empty(&pring->txq))
13237 			txq_cnt++;
13238 		if (!list_empty(&pring->txcmplq))
13239 			txcmplq_cnt++;
13240 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13241 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13242 			"fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
13243 			txq_cnt, phba->iocb_cnt,
13244 			fcp_txcmplq_cnt,
13245 			txcmplq_cnt);
13246 		return false;
13247 	}
13248 
13249 	/* Save off the slow-path queue event for work thread to process */
13250 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13251 	spin_lock_irqsave(&phba->hbalock, iflags);
13252 	list_add_tail(&irspiocbq->cq_event.list,
13253 		      &phba->sli4_hba.sp_queue_event);
13254 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13255 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13256 
13257 	return true;
13258 }
13259 
13260 /**
13261  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13262  * @phba: Pointer to HBA context object.
13263  * @wcqe: Pointer to work-queue completion queue entry.
13264  *
13265  * This routine handles slow-path WQ entry consumed event by invoking the
13266  * proper WQ release routine to the slow-path WQ.
13267  **/
13268 static void
13269 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13270 			     struct lpfc_wcqe_release *wcqe)
13271 {
13272 	/* sanity check on queue memory */
13273 	if (unlikely(!phba->sli4_hba.els_wq))
13274 		return;
13275 	/* Check for the slow-path ELS work queue */
13276 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13277 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13278 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13279 	else
13280 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13281 				"2579 Slow-path wqe consume event carries "
13282 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13283 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13284 				phba->sli4_hba.els_wq->queue_id);
13285 }
13286 
13287 /**
13288  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13289  * @phba: Pointer to HBA context object.
13290  * @cq: Pointer to a WQ completion queue.
13291  * @wcqe: Pointer to work-queue completion queue entry.
13292  *
13293  * This routine handles an XRI abort event.
13294  *
13295  * Return: true if work posted to worker thread, otherwise false.
13296  **/
13297 static bool
13298 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13299 				   struct lpfc_queue *cq,
13300 				   struct sli4_wcqe_xri_aborted *wcqe)
13301 {
13302 	bool workposted = false;
13303 	struct lpfc_cq_event *cq_event;
13304 	unsigned long iflags;
13305 
13306 	switch (cq->subtype) {
13307 	case LPFC_FCP:
13308 		lpfc_sli4_fcp_xri_aborted(phba, wcqe, cq->hdwq);
13309 		workposted = false;
13310 		break;
13311 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13312 	case LPFC_ELS:
13313 		cq_event = lpfc_cq_event_setup(
13314 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13315 		if (!cq_event)
13316 			return false;
13317 		cq_event->hdwq = cq->hdwq;
13318 		spin_lock_irqsave(&phba->hbalock, iflags);
13319 		list_add_tail(&cq_event->list,
13320 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13321 		/* Set the els xri abort event flag */
13322 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13323 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13324 		workposted = true;
13325 		break;
13326 	case LPFC_NVME:
13327 		/* Notify aborted XRI for NVME work queue */
13328 		if (phba->nvmet_support)
13329 			lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13330 		else
13331 			lpfc_sli4_nvme_xri_aborted(phba, wcqe, cq->hdwq);
13332 
13333 		workposted = false;
13334 		break;
13335 	default:
13336 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13337 				"0603 Invalid CQ subtype %d: "
13338 				"%08x %08x %08x %08x\n",
13339 				cq->subtype, wcqe->word0, wcqe->parameter,
13340 				wcqe->word2, wcqe->word3);
13341 		workposted = false;
13342 		break;
13343 	}
13344 	return workposted;
13345 }
13346 
13347 #define FC_RCTL_MDS_DIAGS	0xF4
13348 
13349 /**
13350  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13351  * @phba: Pointer to HBA context object.
13352  * @rcqe: Pointer to receive-queue completion queue entry.
13353  *
13354  * This routine process a receive-queue completion queue entry.
13355  *
13356  * Return: true if work posted to worker thread, otherwise false.
13357  **/
13358 static bool
13359 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13360 {
13361 	bool workposted = false;
13362 	struct fc_frame_header *fc_hdr;
13363 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13364 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13365 	struct lpfc_nvmet_tgtport *tgtp;
13366 	struct hbq_dmabuf *dma_buf;
13367 	uint32_t status, rq_id;
13368 	unsigned long iflags;
13369 
13370 	/* sanity check on queue memory */
13371 	if (unlikely(!hrq) || unlikely(!drq))
13372 		return workposted;
13373 
13374 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13375 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13376 	else
13377 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13378 	if (rq_id != hrq->queue_id)
13379 		goto out;
13380 
13381 	status = bf_get(lpfc_rcqe_status, rcqe);
13382 	switch (status) {
13383 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13384 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13385 				"2537 Receive Frame Truncated!!\n");
13386 		/* fall through */
13387 	case FC_STATUS_RQ_SUCCESS:
13388 		spin_lock_irqsave(&phba->hbalock, iflags);
13389 		lpfc_sli4_rq_release(hrq, drq);
13390 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13391 		if (!dma_buf) {
13392 			hrq->RQ_no_buf_found++;
13393 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13394 			goto out;
13395 		}
13396 		hrq->RQ_rcv_buf++;
13397 		hrq->RQ_buf_posted--;
13398 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13399 
13400 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13401 
13402 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13403 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13404 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13405 			/* Handle MDS Loopback frames */
13406 			lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13407 			break;
13408 		}
13409 
13410 		/* save off the frame for the work thread to process */
13411 		list_add_tail(&dma_buf->cq_event.list,
13412 			      &phba->sli4_hba.sp_queue_event);
13413 		/* Frame received */
13414 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13415 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13416 		workposted = true;
13417 		break;
13418 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13419 		if (phba->nvmet_support) {
13420 			tgtp = phba->targetport->private;
13421 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13422 					"6402 RQE Error x%x, posted %d err_cnt "
13423 					"%d: %x %x %x\n",
13424 					status, hrq->RQ_buf_posted,
13425 					hrq->RQ_no_posted_buf,
13426 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13427 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13428 					atomic_read(&tgtp->xmt_fcp_release));
13429 		}
13430 		/* fallthrough */
13431 
13432 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13433 		hrq->RQ_no_posted_buf++;
13434 		/* Post more buffers if possible */
13435 		spin_lock_irqsave(&phba->hbalock, iflags);
13436 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13437 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13438 		workposted = true;
13439 		break;
13440 	}
13441 out:
13442 	return workposted;
13443 }
13444 
13445 /**
13446  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13447  * @phba: Pointer to HBA context object.
13448  * @cq: Pointer to the completion queue.
13449  * @cqe: Pointer to a completion queue entry.
13450  *
13451  * This routine process a slow-path work-queue or receive queue completion queue
13452  * entry.
13453  *
13454  * Return: true if work posted to worker thread, otherwise false.
13455  **/
13456 static bool
13457 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13458 			 struct lpfc_cqe *cqe)
13459 {
13460 	struct lpfc_cqe cqevt;
13461 	bool workposted = false;
13462 
13463 	/* Copy the work queue CQE and convert endian order if needed */
13464 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13465 
13466 	/* Check and process for different type of WCQE and dispatch */
13467 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13468 	case CQE_CODE_COMPL_WQE:
13469 		/* Process the WQ/RQ complete event */
13470 		phba->last_completion_time = jiffies;
13471 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13472 				(struct lpfc_wcqe_complete *)&cqevt);
13473 		break;
13474 	case CQE_CODE_RELEASE_WQE:
13475 		/* Process the WQ release event */
13476 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13477 				(struct lpfc_wcqe_release *)&cqevt);
13478 		break;
13479 	case CQE_CODE_XRI_ABORTED:
13480 		/* Process the WQ XRI abort event */
13481 		phba->last_completion_time = jiffies;
13482 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13483 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13484 		break;
13485 	case CQE_CODE_RECEIVE:
13486 	case CQE_CODE_RECEIVE_V1:
13487 		/* Process the RQ event */
13488 		phba->last_completion_time = jiffies;
13489 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13490 				(struct lpfc_rcqe *)&cqevt);
13491 		break;
13492 	default:
13493 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13494 				"0388 Not a valid WCQE code: x%x\n",
13495 				bf_get(lpfc_cqe_code, &cqevt));
13496 		break;
13497 	}
13498 	return workposted;
13499 }
13500 
13501 /**
13502  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13503  * @phba: Pointer to HBA context object.
13504  * @eqe: Pointer to fast-path event queue entry.
13505  *
13506  * This routine process a event queue entry from the slow-path event queue.
13507  * It will check the MajorCode and MinorCode to determine this is for a
13508  * completion event on a completion queue, if not, an error shall be logged
13509  * and just return. Otherwise, it will get to the corresponding completion
13510  * queue and process all the entries on that completion queue, rearm the
13511  * completion queue, and then return.
13512  *
13513  **/
13514 static void
13515 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13516 	struct lpfc_queue *speq)
13517 {
13518 	struct lpfc_queue *cq = NULL, *childq;
13519 	uint16_t cqid;
13520 
13521 	/* Get the reference to the corresponding CQ */
13522 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13523 
13524 	list_for_each_entry(childq, &speq->child_list, list) {
13525 		if (childq->queue_id == cqid) {
13526 			cq = childq;
13527 			break;
13528 		}
13529 	}
13530 	if (unlikely(!cq)) {
13531 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13532 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13533 					"0365 Slow-path CQ identifier "
13534 					"(%d) does not exist\n", cqid);
13535 		return;
13536 	}
13537 
13538 	/* Save EQ associated with this CQ */
13539 	cq->assoc_qp = speq;
13540 
13541 	if (!queue_work_on(cq->chann, phba->wq, &cq->spwork))
13542 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13543 				"0390 Cannot schedule soft IRQ "
13544 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13545 				cqid, cq->queue_id, raw_smp_processor_id());
13546 }
13547 
13548 /**
13549  * __lpfc_sli4_process_cq - Process elements of a CQ
13550  * @phba: Pointer to HBA context object.
13551  * @cq: Pointer to CQ to be processed
13552  * @handler: Routine to process each cqe
13553  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13554  *
13555  * This routine processes completion queue entries in a CQ. While a valid
13556  * queue element is found, the handler is called. During processing checks
13557  * are made for periodic doorbell writes to let the hardware know of
13558  * element consumption.
13559  *
13560  * If the max limit on cqes to process is hit, or there are no more valid
13561  * entries, the loop stops. If we processed a sufficient number of elements,
13562  * meaning there is sufficient load, rather than rearming and generating
13563  * another interrupt, a cq rescheduling delay will be set. A delay of 0
13564  * indicates no rescheduling.
13565  *
13566  * Returns True if work scheduled, False otherwise.
13567  **/
13568 static bool
13569 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13570 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13571 			struct lpfc_cqe *), unsigned long *delay)
13572 {
13573 	struct lpfc_cqe *cqe;
13574 	bool workposted = false;
13575 	int count = 0, consumed = 0;
13576 	bool arm = true;
13577 
13578 	/* default - no reschedule */
13579 	*delay = 0;
13580 
13581 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13582 		goto rearm_and_exit;
13583 
13584 	/* Process all the entries to the CQ */
13585 	cqe = lpfc_sli4_cq_get(cq);
13586 	while (cqe) {
13587 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) && defined(BUILD_NVME)
13588 		if (phba->ktime_on)
13589 			cq->isr_timestamp = ktime_get_ns();
13590 		else
13591 			cq->isr_timestamp = 0;
13592 #endif
13593 		workposted |= handler(phba, cq, cqe);
13594 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
13595 
13596 		consumed++;
13597 		if (!(++count % cq->max_proc_limit))
13598 			break;
13599 
13600 		if (!(count % cq->notify_interval)) {
13601 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13602 						LPFC_QUEUE_NOARM);
13603 			consumed = 0;
13604 		}
13605 
13606 		cqe = lpfc_sli4_cq_get(cq);
13607 	}
13608 	if (count >= phba->cfg_cq_poll_threshold) {
13609 		*delay = 1;
13610 		arm = false;
13611 	}
13612 
13613 	/* Track the max number of CQEs processed in 1 EQ */
13614 	if (count > cq->CQ_max_cqe)
13615 		cq->CQ_max_cqe = count;
13616 
13617 	cq->assoc_qp->EQ_cqe_cnt += count;
13618 
13619 	/* Catch the no cq entry condition */
13620 	if (unlikely(count == 0))
13621 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13622 				"0369 No entry from completion queue "
13623 				"qid=%d\n", cq->queue_id);
13624 
13625 	cq->queue_claimed = 0;
13626 
13627 rearm_and_exit:
13628 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13629 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13630 
13631 	return workposted;
13632 }
13633 
13634 /**
13635  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13636  * @cq: pointer to CQ to process
13637  *
13638  * This routine calls the cq processing routine with a handler specific
13639  * to the type of queue bound to it.
13640  *
13641  * The CQ routine returns two values: the first is the calling status,
13642  * which indicates whether work was queued to the  background discovery
13643  * thread. If true, the routine should wakeup the discovery thread;
13644  * the second is the delay parameter. If non-zero, rather than rearming
13645  * the CQ and yet another interrupt, the CQ handler should be queued so
13646  * that it is processed in a subsequent polling action. The value of
13647  * the delay indicates when to reschedule it.
13648  **/
13649 static void
13650 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13651 {
13652 	struct lpfc_hba *phba = cq->phba;
13653 	unsigned long delay;
13654 	bool workposted = false;
13655 
13656 	/* Process and rearm the CQ */
13657 	switch (cq->type) {
13658 	case LPFC_MCQ:
13659 		workposted |= __lpfc_sli4_process_cq(phba, cq,
13660 						lpfc_sli4_sp_handle_mcqe,
13661 						&delay);
13662 		break;
13663 	case LPFC_WCQ:
13664 		if (cq->subtype == LPFC_FCP || cq->subtype == LPFC_NVME)
13665 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13666 						lpfc_sli4_fp_handle_cqe,
13667 						&delay);
13668 		else
13669 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13670 						lpfc_sli4_sp_handle_cqe,
13671 						&delay);
13672 		break;
13673 	default:
13674 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13675 				"0370 Invalid completion queue type (%d)\n",
13676 				cq->type);
13677 		return;
13678 	}
13679 
13680 	if (delay) {
13681 		if (!queue_delayed_work_on(cq->chann, phba->wq,
13682 					   &cq->sched_spwork, delay))
13683 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13684 				"0394 Cannot schedule soft IRQ "
13685 				"for cqid=%d on CPU %d\n",
13686 				cq->queue_id, cq->chann);
13687 	}
13688 
13689 	/* wake up worker thread if there are works to be done */
13690 	if (workposted)
13691 		lpfc_worker_wake_up(phba);
13692 }
13693 
13694 /**
13695  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13696  *   interrupt
13697  * @work: pointer to work element
13698  *
13699  * translates from the work handler and calls the slow-path handler.
13700  **/
13701 static void
13702 lpfc_sli4_sp_process_cq(struct work_struct *work)
13703 {
13704 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13705 
13706 	__lpfc_sli4_sp_process_cq(cq);
13707 }
13708 
13709 /**
13710  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13711  * @work: pointer to work element
13712  *
13713  * translates from the work handler and calls the slow-path handler.
13714  **/
13715 static void
13716 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13717 {
13718 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
13719 					struct lpfc_queue, sched_spwork);
13720 
13721 	__lpfc_sli4_sp_process_cq(cq);
13722 }
13723 
13724 /**
13725  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13726  * @phba: Pointer to HBA context object.
13727  * @cq: Pointer to associated CQ
13728  * @wcqe: Pointer to work-queue completion queue entry.
13729  *
13730  * This routine process a fast-path work queue completion entry from fast-path
13731  * event queue for FCP command response completion.
13732  **/
13733 static void
13734 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13735 			     struct lpfc_wcqe_complete *wcqe)
13736 {
13737 	struct lpfc_sli_ring *pring = cq->pring;
13738 	struct lpfc_iocbq *cmdiocbq;
13739 	struct lpfc_iocbq irspiocbq;
13740 	unsigned long iflags;
13741 
13742 	/* Check for response status */
13743 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13744 		/* If resource errors reported from HBA, reduce queue
13745 		 * depth of the SCSI device.
13746 		 */
13747 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13748 		     IOSTAT_LOCAL_REJECT)) &&
13749 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13750 		     IOERR_NO_RESOURCES))
13751 			phba->lpfc_rampdown_queue_depth(phba);
13752 
13753 		/* Log the error status */
13754 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13755 				"0373 FCP CQE error: status=x%x: "
13756 				"CQE: %08x %08x %08x %08x\n",
13757 				bf_get(lpfc_wcqe_c_status, wcqe),
13758 				wcqe->word0, wcqe->total_data_placed,
13759 				wcqe->parameter, wcqe->word3);
13760 	}
13761 
13762 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13763 	spin_lock_irqsave(&pring->ring_lock, iflags);
13764 	pring->stats.iocb_event++;
13765 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13766 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13767 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13768 	if (unlikely(!cmdiocbq)) {
13769 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13770 				"0374 FCP complete with no corresponding "
13771 				"cmdiocb: iotag (%d)\n",
13772 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13773 		return;
13774 	}
13775 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13776 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
13777 #endif
13778 	if (cmdiocbq->iocb_cmpl == NULL) {
13779 		if (cmdiocbq->wqe_cmpl) {
13780 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13781 				spin_lock_irqsave(&phba->hbalock, iflags);
13782 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13783 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13784 			}
13785 
13786 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13787 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13788 			return;
13789 		}
13790 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13791 				"0375 FCP cmdiocb not callback function "
13792 				"iotag: (%d)\n",
13793 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13794 		return;
13795 	}
13796 
13797 	/* Fake the irspiocb and copy necessary response information */
13798 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13799 
13800 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13801 		spin_lock_irqsave(&phba->hbalock, iflags);
13802 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13803 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13804 	}
13805 
13806 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13807 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13808 }
13809 
13810 /**
13811  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13812  * @phba: Pointer to HBA context object.
13813  * @cq: Pointer to completion queue.
13814  * @wcqe: Pointer to work-queue completion queue entry.
13815  *
13816  * This routine handles an fast-path WQ entry consumed event by invoking the
13817  * proper WQ release routine to the slow-path WQ.
13818  **/
13819 static void
13820 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13821 			     struct lpfc_wcqe_release *wcqe)
13822 {
13823 	struct lpfc_queue *childwq;
13824 	bool wqid_matched = false;
13825 	uint16_t hba_wqid;
13826 
13827 	/* Check for fast-path FCP work queue release */
13828 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13829 	list_for_each_entry(childwq, &cq->child_list, list) {
13830 		if (childwq->queue_id == hba_wqid) {
13831 			lpfc_sli4_wq_release(childwq,
13832 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13833 			if (childwq->q_flag & HBA_NVMET_WQFULL)
13834 				lpfc_nvmet_wqfull_process(phba, childwq);
13835 			wqid_matched = true;
13836 			break;
13837 		}
13838 	}
13839 	/* Report warning log message if no match found */
13840 	if (wqid_matched != true)
13841 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13842 				"2580 Fast-path wqe consume event carries "
13843 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13844 }
13845 
13846 /**
13847  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13848  * @phba: Pointer to HBA context object.
13849  * @rcqe: Pointer to receive-queue completion queue entry.
13850  *
13851  * This routine process a receive-queue completion queue entry.
13852  *
13853  * Return: true if work posted to worker thread, otherwise false.
13854  **/
13855 static bool
13856 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13857 			    struct lpfc_rcqe *rcqe)
13858 {
13859 	bool workposted = false;
13860 	struct lpfc_queue *hrq;
13861 	struct lpfc_queue *drq;
13862 	struct rqb_dmabuf *dma_buf;
13863 	struct fc_frame_header *fc_hdr;
13864 	struct lpfc_nvmet_tgtport *tgtp;
13865 	uint32_t status, rq_id;
13866 	unsigned long iflags;
13867 	uint32_t fctl, idx;
13868 
13869 	if ((phba->nvmet_support == 0) ||
13870 	    (phba->sli4_hba.nvmet_cqset == NULL))
13871 		return workposted;
13872 
13873 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13874 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13875 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
13876 
13877 	/* sanity check on queue memory */
13878 	if (unlikely(!hrq) || unlikely(!drq))
13879 		return workposted;
13880 
13881 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13882 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13883 	else
13884 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13885 
13886 	if ((phba->nvmet_support == 0) ||
13887 	    (rq_id != hrq->queue_id))
13888 		return workposted;
13889 
13890 	status = bf_get(lpfc_rcqe_status, rcqe);
13891 	switch (status) {
13892 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13893 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13894 				"6126 Receive Frame Truncated!!\n");
13895 		/* fall through */
13896 	case FC_STATUS_RQ_SUCCESS:
13897 		spin_lock_irqsave(&phba->hbalock, iflags);
13898 		lpfc_sli4_rq_release(hrq, drq);
13899 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13900 		if (!dma_buf) {
13901 			hrq->RQ_no_buf_found++;
13902 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13903 			goto out;
13904 		}
13905 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13906 		hrq->RQ_rcv_buf++;
13907 		hrq->RQ_buf_posted--;
13908 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13909 
13910 		/* Just some basic sanity checks on FCP Command frame */
13911 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13912 		fc_hdr->fh_f_ctl[1] << 8 |
13913 		fc_hdr->fh_f_ctl[2]);
13914 		if (((fctl &
13915 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13916 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13917 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13918 			goto drop;
13919 
13920 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
13921 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length,  rcqe);
13922 			lpfc_nvmet_unsol_fcp_event(
13923 				phba, idx, dma_buf,
13924 				cq->isr_timestamp);
13925 			return false;
13926 		}
13927 drop:
13928 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
13929 		break;
13930 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13931 		if (phba->nvmet_support) {
13932 			tgtp = phba->targetport->private;
13933 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13934 					"6401 RQE Error x%x, posted %d err_cnt "
13935 					"%d: %x %x %x\n",
13936 					status, hrq->RQ_buf_posted,
13937 					hrq->RQ_no_posted_buf,
13938 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13939 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13940 					atomic_read(&tgtp->xmt_fcp_release));
13941 		}
13942 		/* fallthrough */
13943 
13944 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13945 		hrq->RQ_no_posted_buf++;
13946 		/* Post more buffers if possible */
13947 		break;
13948 	}
13949 out:
13950 	return workposted;
13951 }
13952 
13953 /**
13954  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
13955  * @phba: adapter with cq
13956  * @cq: Pointer to the completion queue.
13957  * @eqe: Pointer to fast-path completion queue entry.
13958  *
13959  * This routine process a fast-path work queue completion entry from fast-path
13960  * event queue for FCP command response completion.
13961  *
13962  * Return: true if work posted to worker thread, otherwise false.
13963  **/
13964 static bool
13965 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13966 			 struct lpfc_cqe *cqe)
13967 {
13968 	struct lpfc_wcqe_release wcqe;
13969 	bool workposted = false;
13970 
13971 	/* Copy the work queue CQE and convert endian order if needed */
13972 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
13973 
13974 	/* Check and process for different type of WCQE and dispatch */
13975 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
13976 	case CQE_CODE_COMPL_WQE:
13977 	case CQE_CODE_NVME_ERSP:
13978 		cq->CQ_wq++;
13979 		/* Process the WQ complete event */
13980 		phba->last_completion_time = jiffies;
13981 		if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME))
13982 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13983 				(struct lpfc_wcqe_complete *)&wcqe);
13984 		if (cq->subtype == LPFC_NVME_LS)
13985 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13986 				(struct lpfc_wcqe_complete *)&wcqe);
13987 		break;
13988 	case CQE_CODE_RELEASE_WQE:
13989 		cq->CQ_release_wqe++;
13990 		/* Process the WQ release event */
13991 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
13992 				(struct lpfc_wcqe_release *)&wcqe);
13993 		break;
13994 	case CQE_CODE_XRI_ABORTED:
13995 		cq->CQ_xri_aborted++;
13996 		/* Process the WQ XRI abort event */
13997 		phba->last_completion_time = jiffies;
13998 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13999 				(struct sli4_wcqe_xri_aborted *)&wcqe);
14000 		break;
14001 	case CQE_CODE_RECEIVE_V1:
14002 	case CQE_CODE_RECEIVE:
14003 		phba->last_completion_time = jiffies;
14004 		if (cq->subtype == LPFC_NVMET) {
14005 			workposted = lpfc_sli4_nvmet_handle_rcqe(
14006 				phba, cq, (struct lpfc_rcqe *)&wcqe);
14007 		}
14008 		break;
14009 	default:
14010 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14011 				"0144 Not a valid CQE code: x%x\n",
14012 				bf_get(lpfc_wcqe_c_code, &wcqe));
14013 		break;
14014 	}
14015 	return workposted;
14016 }
14017 
14018 /**
14019  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14020  * @phba: Pointer to HBA context object.
14021  * @eqe: Pointer to fast-path event queue entry.
14022  *
14023  * This routine process a event queue entry from the fast-path event queue.
14024  * It will check the MajorCode and MinorCode to determine this is for a
14025  * completion event on a completion queue, if not, an error shall be logged
14026  * and just return. Otherwise, it will get to the corresponding completion
14027  * queue and process all the entries on the completion queue, rearm the
14028  * completion queue, and then return.
14029  **/
14030 static void
14031 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14032 			 struct lpfc_eqe *eqe)
14033 {
14034 	struct lpfc_queue *cq = NULL;
14035 	uint32_t qidx = eq->hdwq;
14036 	uint16_t cqid, id;
14037 
14038 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14039 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14040 				"0366 Not a valid completion "
14041 				"event: majorcode=x%x, minorcode=x%x\n",
14042 				bf_get_le32(lpfc_eqe_major_code, eqe),
14043 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14044 		return;
14045 	}
14046 
14047 	/* Get the reference to the corresponding CQ */
14048 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14049 
14050 	/* Use the fast lookup method first */
14051 	if (cqid <= phba->sli4_hba.cq_max) {
14052 		cq = phba->sli4_hba.cq_lookup[cqid];
14053 		if (cq)
14054 			goto  work_cq;
14055 	}
14056 
14057 	/* Next check for NVMET completion */
14058 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14059 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14060 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14061 			/* Process NVMET unsol rcv */
14062 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14063 			goto  process_cq;
14064 		}
14065 	}
14066 
14067 	if (phba->sli4_hba.nvmels_cq &&
14068 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14069 		/* Process NVME unsol rcv */
14070 		cq = phba->sli4_hba.nvmels_cq;
14071 	}
14072 
14073 	/* Otherwise this is a Slow path event */
14074 	if (cq == NULL) {
14075 		lpfc_sli4_sp_handle_eqe(phba, eqe,
14076 					phba->sli4_hba.hdwq[qidx].hba_eq);
14077 		return;
14078 	}
14079 
14080 process_cq:
14081 	if (unlikely(cqid != cq->queue_id)) {
14082 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14083 				"0368 Miss-matched fast-path completion "
14084 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14085 				cqid, cq->queue_id);
14086 		return;
14087 	}
14088 
14089 work_cq:
14090 	if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork))
14091 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14092 				"0363 Cannot schedule soft IRQ "
14093 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14094 				cqid, cq->queue_id, raw_smp_processor_id());
14095 }
14096 
14097 /**
14098  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14099  * @cq: Pointer to CQ to be processed
14100  *
14101  * This routine calls the cq processing routine with the handler for
14102  * fast path CQEs.
14103  *
14104  * The CQ routine returns two values: the first is the calling status,
14105  * which indicates whether work was queued to the  background discovery
14106  * thread. If true, the routine should wakeup the discovery thread;
14107  * the second is the delay parameter. If non-zero, rather than rearming
14108  * the CQ and yet another interrupt, the CQ handler should be queued so
14109  * that it is processed in a subsequent polling action. The value of
14110  * the delay indicates when to reschedule it.
14111  **/
14112 static void
14113 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
14114 {
14115 	struct lpfc_hba *phba = cq->phba;
14116 	unsigned long delay;
14117 	bool workposted = false;
14118 
14119 	/* process and rearm the CQ */
14120 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14121 					     &delay);
14122 
14123 	if (delay) {
14124 		if (!queue_delayed_work_on(cq->chann, phba->wq,
14125 					   &cq->sched_irqwork, delay))
14126 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14127 				"0367 Cannot schedule soft IRQ "
14128 				"for cqid=%d on CPU %d\n",
14129 				cq->queue_id, cq->chann);
14130 	}
14131 
14132 	/* wake up worker thread if there are works to be done */
14133 	if (workposted)
14134 		lpfc_worker_wake_up(phba);
14135 }
14136 
14137 /**
14138  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14139  *   interrupt
14140  * @work: pointer to work element
14141  *
14142  * translates from the work handler and calls the fast-path handler.
14143  **/
14144 static void
14145 lpfc_sli4_hba_process_cq(struct work_struct *work)
14146 {
14147 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14148 
14149 	__lpfc_sli4_hba_process_cq(cq);
14150 }
14151 
14152 /**
14153  * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14154  * @work: pointer to work element
14155  *
14156  * translates from the work handler and calls the fast-path handler.
14157  **/
14158 static void
14159 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14160 {
14161 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14162 					struct lpfc_queue, sched_irqwork);
14163 
14164 	__lpfc_sli4_hba_process_cq(cq);
14165 }
14166 
14167 /**
14168  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14169  * @irq: Interrupt number.
14170  * @dev_id: The device context pointer.
14171  *
14172  * This function is directly called from the PCI layer as an interrupt
14173  * service routine when device with SLI-4 interface spec is enabled with
14174  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14175  * ring event in the HBA. However, when the device is enabled with either
14176  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14177  * device-level interrupt handler. When the PCI slot is in error recovery
14178  * or the HBA is undergoing initialization, the interrupt handler will not
14179  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14180  * the intrrupt context. This function is called without any lock held.
14181  * It gets the hbalock to access and update SLI data structures. Note that,
14182  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14183  * equal to that of FCP CQ index.
14184  *
14185  * The link attention and ELS ring attention events are handled
14186  * by the worker thread. The interrupt handler signals the worker thread
14187  * and returns for these events. This function is called without any lock
14188  * held. It gets the hbalock to access and update SLI data structures.
14189  *
14190  * This function returns IRQ_HANDLED when interrupt is handled else it
14191  * returns IRQ_NONE.
14192  **/
14193 irqreturn_t
14194 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14195 {
14196 	struct lpfc_hba *phba;
14197 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14198 	struct lpfc_queue *fpeq;
14199 	unsigned long iflag;
14200 	int ecount = 0;
14201 	int hba_eqidx;
14202 	struct lpfc_eq_intr_info *eqi;
14203 	uint32_t icnt;
14204 
14205 	/* Get the driver's phba structure from the dev_id */
14206 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14207 	phba = hba_eq_hdl->phba;
14208 	hba_eqidx = hba_eq_hdl->idx;
14209 
14210 	if (unlikely(!phba))
14211 		return IRQ_NONE;
14212 	if (unlikely(!phba->sli4_hba.hdwq))
14213 		return IRQ_NONE;
14214 
14215 	/* Get to the EQ struct associated with this vector */
14216 	fpeq = phba->sli4_hba.hdwq[hba_eqidx].hba_eq;
14217 	if (unlikely(!fpeq))
14218 		return IRQ_NONE;
14219 
14220 	/* Check device state for handling interrupt */
14221 	if (unlikely(lpfc_intr_state_check(phba))) {
14222 		/* Check again for link_state with lock held */
14223 		spin_lock_irqsave(&phba->hbalock, iflag);
14224 		if (phba->link_state < LPFC_LINK_DOWN)
14225 			/* Flush, clear interrupt, and rearm the EQ */
14226 			lpfc_sli4_eq_flush(phba, fpeq);
14227 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14228 		return IRQ_NONE;
14229 	}
14230 
14231 	eqi = phba->sli4_hba.eq_info;
14232 	icnt = this_cpu_inc_return(eqi->icnt);
14233 	fpeq->last_cpu = raw_smp_processor_id();
14234 
14235 	if (icnt > LPFC_EQD_ISR_TRIGGER &&
14236 	    phba->cfg_irq_chann == 1 &&
14237 	    phba->cfg_auto_imax &&
14238 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14239 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14240 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14241 
14242 	/* process and rearm the EQ */
14243 	ecount = lpfc_sli4_process_eq(phba, fpeq);
14244 
14245 	if (unlikely(ecount == 0)) {
14246 		fpeq->EQ_no_entry++;
14247 		if (phba->intr_type == MSIX)
14248 			/* MSI-X treated interrupt served as no EQ share INT */
14249 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14250 					"0358 MSI-X interrupt with no EQE\n");
14251 		else
14252 			/* Non MSI-X treated on interrupt as EQ share INT */
14253 			return IRQ_NONE;
14254 	}
14255 
14256 	return IRQ_HANDLED;
14257 } /* lpfc_sli4_fp_intr_handler */
14258 
14259 /**
14260  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14261  * @irq: Interrupt number.
14262  * @dev_id: The device context pointer.
14263  *
14264  * This function is the device-level interrupt handler to device with SLI-4
14265  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14266  * interrupt mode is enabled and there is an event in the HBA which requires
14267  * driver attention. This function invokes the slow-path interrupt attention
14268  * handling function and fast-path interrupt attention handling function in
14269  * turn to process the relevant HBA attention events. This function is called
14270  * without any lock held. It gets the hbalock to access and update SLI data
14271  * structures.
14272  *
14273  * This function returns IRQ_HANDLED when interrupt is handled, else it
14274  * returns IRQ_NONE.
14275  **/
14276 irqreturn_t
14277 lpfc_sli4_intr_handler(int irq, void *dev_id)
14278 {
14279 	struct lpfc_hba  *phba;
14280 	irqreturn_t hba_irq_rc;
14281 	bool hba_handled = false;
14282 	int qidx;
14283 
14284 	/* Get the driver's phba structure from the dev_id */
14285 	phba = (struct lpfc_hba *)dev_id;
14286 
14287 	if (unlikely(!phba))
14288 		return IRQ_NONE;
14289 
14290 	/*
14291 	 * Invoke fast-path host attention interrupt handling as appropriate.
14292 	 */
14293 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14294 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14295 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14296 		if (hba_irq_rc == IRQ_HANDLED)
14297 			hba_handled |= true;
14298 	}
14299 
14300 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14301 } /* lpfc_sli4_intr_handler */
14302 
14303 /**
14304  * lpfc_sli4_queue_free - free a queue structure and associated memory
14305  * @queue: The queue structure to free.
14306  *
14307  * This function frees a queue structure and the DMAable memory used for
14308  * the host resident queue. This function must be called after destroying the
14309  * queue on the HBA.
14310  **/
14311 void
14312 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14313 {
14314 	struct lpfc_dmabuf *dmabuf;
14315 
14316 	if (!queue)
14317 		return;
14318 
14319 	if (!list_empty(&queue->wq_list))
14320 		list_del(&queue->wq_list);
14321 
14322 	while (!list_empty(&queue->page_list)) {
14323 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14324 				 list);
14325 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14326 				  dmabuf->virt, dmabuf->phys);
14327 		kfree(dmabuf);
14328 	}
14329 	if (queue->rqbp) {
14330 		lpfc_free_rq_buffer(queue->phba, queue);
14331 		kfree(queue->rqbp);
14332 	}
14333 
14334 	if (!list_empty(&queue->cpu_list))
14335 		list_del(&queue->cpu_list);
14336 
14337 	kfree(queue);
14338 	return;
14339 }
14340 
14341 /**
14342  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14343  * @phba: The HBA that this queue is being created on.
14344  * @page_size: The size of a queue page
14345  * @entry_size: The size of each queue entry for this queue.
14346  * @entry count: The number of entries that this queue will handle.
14347  * @cpu: The cpu that will primarily utilize this queue.
14348  *
14349  * This function allocates a queue structure and the DMAable memory used for
14350  * the host resident queue. This function must be called before creating the
14351  * queue on the HBA.
14352  **/
14353 struct lpfc_queue *
14354 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14355 		      uint32_t entry_size, uint32_t entry_count, int cpu)
14356 {
14357 	struct lpfc_queue *queue;
14358 	struct lpfc_dmabuf *dmabuf;
14359 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14360 	uint16_t x, pgcnt;
14361 
14362 	if (!phba->sli4_hba.pc_sli4_params.supported)
14363 		hw_page_size = page_size;
14364 
14365 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14366 
14367 	/* If needed, Adjust page count to match the max the adapter supports */
14368 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14369 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14370 
14371 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14372 			     GFP_KERNEL, cpu_to_node(cpu));
14373 	if (!queue)
14374 		return NULL;
14375 
14376 	INIT_LIST_HEAD(&queue->list);
14377 	INIT_LIST_HEAD(&queue->wq_list);
14378 	INIT_LIST_HEAD(&queue->wqfull_list);
14379 	INIT_LIST_HEAD(&queue->page_list);
14380 	INIT_LIST_HEAD(&queue->child_list);
14381 	INIT_LIST_HEAD(&queue->cpu_list);
14382 
14383 	/* Set queue parameters now.  If the system cannot provide memory
14384 	 * resources, the free routine needs to know what was allocated.
14385 	 */
14386 	queue->page_count = pgcnt;
14387 	queue->q_pgs = (void **)&queue[1];
14388 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
14389 	queue->entry_size = entry_size;
14390 	queue->entry_count = entry_count;
14391 	queue->page_size = hw_page_size;
14392 	queue->phba = phba;
14393 
14394 	for (x = 0; x < queue->page_count; x++) {
14395 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14396 				      dev_to_node(&phba->pcidev->dev));
14397 		if (!dmabuf)
14398 			goto out_fail;
14399 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14400 						  hw_page_size, &dmabuf->phys,
14401 						  GFP_KERNEL);
14402 		if (!dmabuf->virt) {
14403 			kfree(dmabuf);
14404 			goto out_fail;
14405 		}
14406 		dmabuf->buffer_tag = x;
14407 		list_add_tail(&dmabuf->list, &queue->page_list);
14408 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
14409 		queue->q_pgs[x] = dmabuf->virt;
14410 	}
14411 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14412 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14413 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14414 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14415 
14416 	/* notify_interval will be set during q creation */
14417 
14418 	return queue;
14419 out_fail:
14420 	lpfc_sli4_queue_free(queue);
14421 	return NULL;
14422 }
14423 
14424 /**
14425  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14426  * @phba: HBA structure that indicates port to create a queue on.
14427  * @pci_barset: PCI BAR set flag.
14428  *
14429  * This function shall perform iomap of the specified PCI BAR address to host
14430  * memory address if not already done so and return it. The returned host
14431  * memory address can be NULL.
14432  */
14433 static void __iomem *
14434 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14435 {
14436 	if (!phba->pcidev)
14437 		return NULL;
14438 
14439 	switch (pci_barset) {
14440 	case WQ_PCI_BAR_0_AND_1:
14441 		return phba->pci_bar0_memmap_p;
14442 	case WQ_PCI_BAR_2_AND_3:
14443 		return phba->pci_bar2_memmap_p;
14444 	case WQ_PCI_BAR_4_AND_5:
14445 		return phba->pci_bar4_memmap_p;
14446 	default:
14447 		break;
14448 	}
14449 	return NULL;
14450 }
14451 
14452 /**
14453  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14454  * @phba: HBA structure that EQs are on.
14455  * @startq: The starting EQ index to modify
14456  * @numq: The number of EQs (consecutive indexes) to modify
14457  * @usdelay: amount of delay
14458  *
14459  * This function revises the EQ delay on 1 or more EQs. The EQ delay
14460  * is set either by writing to a register (if supported by the SLI Port)
14461  * or by mailbox command. The mailbox command allows several EQs to be
14462  * updated at once.
14463  *
14464  * The @phba struct is used to send a mailbox command to HBA. The @startq
14465  * is used to get the starting EQ index to change. The @numq value is
14466  * used to specify how many consecutive EQ indexes, starting at EQ index,
14467  * are to be changed. This function is asynchronous and will wait for any
14468  * mailbox commands to finish before returning.
14469  *
14470  * On success this function will return a zero. If unable to allocate
14471  * enough memory this function will return -ENOMEM. If a mailbox command
14472  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14473  * have had their delay multipler changed.
14474  **/
14475 void
14476 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14477 			 uint32_t numq, uint32_t usdelay)
14478 {
14479 	struct lpfc_mbx_modify_eq_delay *eq_delay;
14480 	LPFC_MBOXQ_t *mbox;
14481 	struct lpfc_queue *eq;
14482 	int cnt = 0, rc, length;
14483 	uint32_t shdr_status, shdr_add_status;
14484 	uint32_t dmult;
14485 	int qidx;
14486 	union lpfc_sli4_cfg_shdr *shdr;
14487 
14488 	if (startq >= phba->cfg_irq_chann)
14489 		return;
14490 
14491 	if (usdelay > 0xFFFF) {
14492 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14493 				"6429 usdelay %d too large. Scaled down to "
14494 				"0xFFFF.\n", usdelay);
14495 		usdelay = 0xFFFF;
14496 	}
14497 
14498 	/* set values by EQ_DELAY register if supported */
14499 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14500 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14501 			eq = phba->sli4_hba.hdwq[qidx].hba_eq;
14502 			if (!eq)
14503 				continue;
14504 
14505 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14506 
14507 			if (++cnt >= numq)
14508 				break;
14509 		}
14510 
14511 		return;
14512 	}
14513 
14514 	/* Otherwise, set values by mailbox cmd */
14515 
14516 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14517 	if (!mbox) {
14518 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME,
14519 				"6428 Failed allocating mailbox cmd buffer."
14520 				" EQ delay was not set.\n");
14521 		return;
14522 	}
14523 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14524 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14525 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14526 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14527 			 length, LPFC_SLI4_MBX_EMBED);
14528 	eq_delay = &mbox->u.mqe.un.eq_delay;
14529 
14530 	/* Calculate delay multiper from maximum interrupt per second */
14531 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14532 	if (dmult)
14533 		dmult--;
14534 	if (dmult > LPFC_DMULT_MAX)
14535 		dmult = LPFC_DMULT_MAX;
14536 
14537 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14538 		eq = phba->sli4_hba.hdwq[qidx].hba_eq;
14539 		if (!eq)
14540 			continue;
14541 		eq->q_mode = usdelay;
14542 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14543 		eq_delay->u.request.eq[cnt].phase = 0;
14544 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
14545 
14546 		if (++cnt >= numq)
14547 			break;
14548 	}
14549 	eq_delay->u.request.num_eq = cnt;
14550 
14551 	mbox->vport = phba->pport;
14552 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14553 	mbox->ctx_buf = NULL;
14554 	mbox->ctx_ndlp = NULL;
14555 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14556 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14557 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14558 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14559 	if (shdr_status || shdr_add_status || rc) {
14560 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14561 				"2512 MODIFY_EQ_DELAY mailbox failed with "
14562 				"status x%x add_status x%x, mbx status x%x\n",
14563 				shdr_status, shdr_add_status, rc);
14564 	}
14565 	mempool_free(mbox, phba->mbox_mem_pool);
14566 	return;
14567 }
14568 
14569 /**
14570  * lpfc_eq_create - Create an Event Queue on the HBA
14571  * @phba: HBA structure that indicates port to create a queue on.
14572  * @eq: The queue structure to use to create the event queue.
14573  * @imax: The maximum interrupt per second limit.
14574  *
14575  * This function creates an event queue, as detailed in @eq, on a port,
14576  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14577  *
14578  * The @phba struct is used to send mailbox command to HBA. The @eq struct
14579  * is used to get the entry count and entry size that are necessary to
14580  * determine the number of pages to allocate and use for this queue. This
14581  * function will send the EQ_CREATE mailbox command to the HBA to setup the
14582  * event queue. This function is asynchronous and will wait for the mailbox
14583  * command to finish before continuing.
14584  *
14585  * On success this function will return a zero. If unable to allocate enough
14586  * memory this function will return -ENOMEM. If the queue create mailbox command
14587  * fails this function will return -ENXIO.
14588  **/
14589 int
14590 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14591 {
14592 	struct lpfc_mbx_eq_create *eq_create;
14593 	LPFC_MBOXQ_t *mbox;
14594 	int rc, length, status = 0;
14595 	struct lpfc_dmabuf *dmabuf;
14596 	uint32_t shdr_status, shdr_add_status;
14597 	union lpfc_sli4_cfg_shdr *shdr;
14598 	uint16_t dmult;
14599 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14600 
14601 	/* sanity check on queue memory */
14602 	if (!eq)
14603 		return -ENODEV;
14604 	if (!phba->sli4_hba.pc_sli4_params.supported)
14605 		hw_page_size = SLI4_PAGE_SIZE;
14606 
14607 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14608 	if (!mbox)
14609 		return -ENOMEM;
14610 	length = (sizeof(struct lpfc_mbx_eq_create) -
14611 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14612 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14613 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14614 			 length, LPFC_SLI4_MBX_EMBED);
14615 	eq_create = &mbox->u.mqe.un.eq_create;
14616 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14617 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14618 	       eq->page_count);
14619 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14620 	       LPFC_EQE_SIZE);
14621 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14622 
14623 	/* Use version 2 of CREATE_EQ if eqav is set */
14624 	if (phba->sli4_hba.pc_sli4_params.eqav) {
14625 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14626 		       LPFC_Q_CREATE_VERSION_2);
14627 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14628 		       phba->sli4_hba.pc_sli4_params.eqav);
14629 	}
14630 
14631 	/* don't setup delay multiplier using EQ_CREATE */
14632 	dmult = 0;
14633 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14634 	       dmult);
14635 	switch (eq->entry_count) {
14636 	default:
14637 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14638 				"0360 Unsupported EQ count. (%d)\n",
14639 				eq->entry_count);
14640 		if (eq->entry_count < 256)
14641 			return -EINVAL;
14642 		/* fall through - otherwise default to smallest count */
14643 	case 256:
14644 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14645 		       LPFC_EQ_CNT_256);
14646 		break;
14647 	case 512:
14648 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14649 		       LPFC_EQ_CNT_512);
14650 		break;
14651 	case 1024:
14652 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14653 		       LPFC_EQ_CNT_1024);
14654 		break;
14655 	case 2048:
14656 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14657 		       LPFC_EQ_CNT_2048);
14658 		break;
14659 	case 4096:
14660 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14661 		       LPFC_EQ_CNT_4096);
14662 		break;
14663 	}
14664 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14665 		memset(dmabuf->virt, 0, hw_page_size);
14666 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14667 					putPaddrLow(dmabuf->phys);
14668 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14669 					putPaddrHigh(dmabuf->phys);
14670 	}
14671 	mbox->vport = phba->pport;
14672 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14673 	mbox->ctx_buf = NULL;
14674 	mbox->ctx_ndlp = NULL;
14675 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14676 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14677 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14678 	if (shdr_status || shdr_add_status || rc) {
14679 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14680 				"2500 EQ_CREATE mailbox failed with "
14681 				"status x%x add_status x%x, mbx status x%x\n",
14682 				shdr_status, shdr_add_status, rc);
14683 		status = -ENXIO;
14684 	}
14685 	eq->type = LPFC_EQ;
14686 	eq->subtype = LPFC_NONE;
14687 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14688 	if (eq->queue_id == 0xFFFF)
14689 		status = -ENXIO;
14690 	eq->host_index = 0;
14691 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
14692 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
14693 
14694 	mempool_free(mbox, phba->mbox_mem_pool);
14695 	return status;
14696 }
14697 
14698 /**
14699  * lpfc_cq_create - Create a Completion Queue on the HBA
14700  * @phba: HBA structure that indicates port to create a queue on.
14701  * @cq: The queue structure to use to create the completion queue.
14702  * @eq: The event queue to bind this completion queue to.
14703  *
14704  * This function creates a completion queue, as detailed in @wq, on a port,
14705  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14706  *
14707  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14708  * is used to get the entry count and entry size that are necessary to
14709  * determine the number of pages to allocate and use for this queue. The @eq
14710  * is used to indicate which event queue to bind this completion queue to. This
14711  * function will send the CQ_CREATE mailbox command to the HBA to setup the
14712  * completion queue. This function is asynchronous and will wait for the mailbox
14713  * command to finish before continuing.
14714  *
14715  * On success this function will return a zero. If unable to allocate enough
14716  * memory this function will return -ENOMEM. If the queue create mailbox command
14717  * fails this function will return -ENXIO.
14718  **/
14719 int
14720 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14721 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14722 {
14723 	struct lpfc_mbx_cq_create *cq_create;
14724 	struct lpfc_dmabuf *dmabuf;
14725 	LPFC_MBOXQ_t *mbox;
14726 	int rc, length, status = 0;
14727 	uint32_t shdr_status, shdr_add_status;
14728 	union lpfc_sli4_cfg_shdr *shdr;
14729 
14730 	/* sanity check on queue memory */
14731 	if (!cq || !eq)
14732 		return -ENODEV;
14733 
14734 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14735 	if (!mbox)
14736 		return -ENOMEM;
14737 	length = (sizeof(struct lpfc_mbx_cq_create) -
14738 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14739 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14740 			 LPFC_MBOX_OPCODE_CQ_CREATE,
14741 			 length, LPFC_SLI4_MBX_EMBED);
14742 	cq_create = &mbox->u.mqe.un.cq_create;
14743 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14744 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14745 		    cq->page_count);
14746 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14747 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14748 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14749 	       phba->sli4_hba.pc_sli4_params.cqv);
14750 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14751 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14752 		       (cq->page_size / SLI4_PAGE_SIZE));
14753 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14754 		       eq->queue_id);
14755 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
14756 		       phba->sli4_hba.pc_sli4_params.cqav);
14757 	} else {
14758 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14759 		       eq->queue_id);
14760 	}
14761 	switch (cq->entry_count) {
14762 	case 2048:
14763 	case 4096:
14764 		if (phba->sli4_hba.pc_sli4_params.cqv ==
14765 		    LPFC_Q_CREATE_VERSION_2) {
14766 			cq_create->u.request.context.lpfc_cq_context_count =
14767 				cq->entry_count;
14768 			bf_set(lpfc_cq_context_count,
14769 			       &cq_create->u.request.context,
14770 			       LPFC_CQ_CNT_WORD7);
14771 			break;
14772 		}
14773 		/* fall through */
14774 	default:
14775 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14776 				"0361 Unsupported CQ count: "
14777 				"entry cnt %d sz %d pg cnt %d\n",
14778 				cq->entry_count, cq->entry_size,
14779 				cq->page_count);
14780 		if (cq->entry_count < 256) {
14781 			status = -EINVAL;
14782 			goto out;
14783 		}
14784 		/* fall through - otherwise default to smallest count */
14785 	case 256:
14786 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14787 		       LPFC_CQ_CNT_256);
14788 		break;
14789 	case 512:
14790 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14791 		       LPFC_CQ_CNT_512);
14792 		break;
14793 	case 1024:
14794 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14795 		       LPFC_CQ_CNT_1024);
14796 		break;
14797 	}
14798 	list_for_each_entry(dmabuf, &cq->page_list, list) {
14799 		memset(dmabuf->virt, 0, cq->page_size);
14800 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14801 					putPaddrLow(dmabuf->phys);
14802 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14803 					putPaddrHigh(dmabuf->phys);
14804 	}
14805 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14806 
14807 	/* The IOCTL status is embedded in the mailbox subheader. */
14808 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14809 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14810 	if (shdr_status || shdr_add_status || rc) {
14811 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14812 				"2501 CQ_CREATE mailbox failed with "
14813 				"status x%x add_status x%x, mbx status x%x\n",
14814 				shdr_status, shdr_add_status, rc);
14815 		status = -ENXIO;
14816 		goto out;
14817 	}
14818 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14819 	if (cq->queue_id == 0xFFFF) {
14820 		status = -ENXIO;
14821 		goto out;
14822 	}
14823 	/* link the cq onto the parent eq child list */
14824 	list_add_tail(&cq->list, &eq->child_list);
14825 	/* Set up completion queue's type and subtype */
14826 	cq->type = type;
14827 	cq->subtype = subtype;
14828 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14829 	cq->assoc_qid = eq->queue_id;
14830 	cq->assoc_qp = eq;
14831 	cq->host_index = 0;
14832 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
14833 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
14834 
14835 	if (cq->queue_id > phba->sli4_hba.cq_max)
14836 		phba->sli4_hba.cq_max = cq->queue_id;
14837 out:
14838 	mempool_free(mbox, phba->mbox_mem_pool);
14839 	return status;
14840 }
14841 
14842 /**
14843  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14844  * @phba: HBA structure that indicates port to create a queue on.
14845  * @cqp: The queue structure array to use to create the completion queues.
14846  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
14847  *
14848  * This function creates a set of  completion queue, s to support MRQ
14849  * as detailed in @cqp, on a port,
14850  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14851  *
14852  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14853  * is used to get the entry count and entry size that are necessary to
14854  * determine the number of pages to allocate and use for this queue. The @eq
14855  * is used to indicate which event queue to bind this completion queue to. This
14856  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14857  * completion queue. This function is asynchronous and will wait for the mailbox
14858  * command to finish before continuing.
14859  *
14860  * On success this function will return a zero. If unable to allocate enough
14861  * memory this function will return -ENOMEM. If the queue create mailbox command
14862  * fails this function will return -ENXIO.
14863  **/
14864 int
14865 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14866 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
14867 		   uint32_t subtype)
14868 {
14869 	struct lpfc_queue *cq;
14870 	struct lpfc_queue *eq;
14871 	struct lpfc_mbx_cq_create_set *cq_set;
14872 	struct lpfc_dmabuf *dmabuf;
14873 	LPFC_MBOXQ_t *mbox;
14874 	int rc, length, alloclen, status = 0;
14875 	int cnt, idx, numcq, page_idx = 0;
14876 	uint32_t shdr_status, shdr_add_status;
14877 	union lpfc_sli4_cfg_shdr *shdr;
14878 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14879 
14880 	/* sanity check on queue memory */
14881 	numcq = phba->cfg_nvmet_mrq;
14882 	if (!cqp || !hdwq || !numcq)
14883 		return -ENODEV;
14884 
14885 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14886 	if (!mbox)
14887 		return -ENOMEM;
14888 
14889 	length = sizeof(struct lpfc_mbx_cq_create_set);
14890 	length += ((numcq * cqp[0]->page_count) *
14891 		   sizeof(struct dma_address));
14892 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14893 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
14894 			LPFC_SLI4_MBX_NEMBED);
14895 	if (alloclen < length) {
14896 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14897 				"3098 Allocated DMA memory size (%d) is "
14898 				"less than the requested DMA memory size "
14899 				"(%d)\n", alloclen, length);
14900 		status = -ENOMEM;
14901 		goto out;
14902 	}
14903 	cq_set = mbox->sge_array->addr[0];
14904 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
14905 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
14906 
14907 	for (idx = 0; idx < numcq; idx++) {
14908 		cq = cqp[idx];
14909 		eq = hdwq[idx].hba_eq;
14910 		if (!cq || !eq) {
14911 			status = -ENOMEM;
14912 			goto out;
14913 		}
14914 		if (!phba->sli4_hba.pc_sli4_params.supported)
14915 			hw_page_size = cq->page_size;
14916 
14917 		switch (idx) {
14918 		case 0:
14919 			bf_set(lpfc_mbx_cq_create_set_page_size,
14920 			       &cq_set->u.request,
14921 			       (hw_page_size / SLI4_PAGE_SIZE));
14922 			bf_set(lpfc_mbx_cq_create_set_num_pages,
14923 			       &cq_set->u.request, cq->page_count);
14924 			bf_set(lpfc_mbx_cq_create_set_evt,
14925 			       &cq_set->u.request, 1);
14926 			bf_set(lpfc_mbx_cq_create_set_valid,
14927 			       &cq_set->u.request, 1);
14928 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
14929 			       &cq_set->u.request, 0);
14930 			bf_set(lpfc_mbx_cq_create_set_num_cq,
14931 			       &cq_set->u.request, numcq);
14932 			bf_set(lpfc_mbx_cq_create_set_autovalid,
14933 			       &cq_set->u.request,
14934 			       phba->sli4_hba.pc_sli4_params.cqav);
14935 			switch (cq->entry_count) {
14936 			case 2048:
14937 			case 4096:
14938 				if (phba->sli4_hba.pc_sli4_params.cqv ==
14939 				    LPFC_Q_CREATE_VERSION_2) {
14940 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14941 					       &cq_set->u.request,
14942 						cq->entry_count);
14943 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14944 					       &cq_set->u.request,
14945 					       LPFC_CQ_CNT_WORD7);
14946 					break;
14947 				}
14948 				/* fall through */
14949 			default:
14950 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14951 						"3118 Bad CQ count. (%d)\n",
14952 						cq->entry_count);
14953 				if (cq->entry_count < 256) {
14954 					status = -EINVAL;
14955 					goto out;
14956 				}
14957 				/* fall through - otherwise default to smallest */
14958 			case 256:
14959 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14960 				       &cq_set->u.request, LPFC_CQ_CNT_256);
14961 				break;
14962 			case 512:
14963 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14964 				       &cq_set->u.request, LPFC_CQ_CNT_512);
14965 				break;
14966 			case 1024:
14967 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14968 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
14969 				break;
14970 			}
14971 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
14972 			       &cq_set->u.request, eq->queue_id);
14973 			break;
14974 		case 1:
14975 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
14976 			       &cq_set->u.request, eq->queue_id);
14977 			break;
14978 		case 2:
14979 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
14980 			       &cq_set->u.request, eq->queue_id);
14981 			break;
14982 		case 3:
14983 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
14984 			       &cq_set->u.request, eq->queue_id);
14985 			break;
14986 		case 4:
14987 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
14988 			       &cq_set->u.request, eq->queue_id);
14989 			break;
14990 		case 5:
14991 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
14992 			       &cq_set->u.request, eq->queue_id);
14993 			break;
14994 		case 6:
14995 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
14996 			       &cq_set->u.request, eq->queue_id);
14997 			break;
14998 		case 7:
14999 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15000 			       &cq_set->u.request, eq->queue_id);
15001 			break;
15002 		case 8:
15003 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15004 			       &cq_set->u.request, eq->queue_id);
15005 			break;
15006 		case 9:
15007 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15008 			       &cq_set->u.request, eq->queue_id);
15009 			break;
15010 		case 10:
15011 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15012 			       &cq_set->u.request, eq->queue_id);
15013 			break;
15014 		case 11:
15015 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15016 			       &cq_set->u.request, eq->queue_id);
15017 			break;
15018 		case 12:
15019 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15020 			       &cq_set->u.request, eq->queue_id);
15021 			break;
15022 		case 13:
15023 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15024 			       &cq_set->u.request, eq->queue_id);
15025 			break;
15026 		case 14:
15027 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15028 			       &cq_set->u.request, eq->queue_id);
15029 			break;
15030 		case 15:
15031 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15032 			       &cq_set->u.request, eq->queue_id);
15033 			break;
15034 		}
15035 
15036 		/* link the cq onto the parent eq child list */
15037 		list_add_tail(&cq->list, &eq->child_list);
15038 		/* Set up completion queue's type and subtype */
15039 		cq->type = type;
15040 		cq->subtype = subtype;
15041 		cq->assoc_qid = eq->queue_id;
15042 		cq->assoc_qp = eq;
15043 		cq->host_index = 0;
15044 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15045 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15046 					 cq->entry_count);
15047 		cq->chann = idx;
15048 
15049 		rc = 0;
15050 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15051 			memset(dmabuf->virt, 0, hw_page_size);
15052 			cnt = page_idx + dmabuf->buffer_tag;
15053 			cq_set->u.request.page[cnt].addr_lo =
15054 					putPaddrLow(dmabuf->phys);
15055 			cq_set->u.request.page[cnt].addr_hi =
15056 					putPaddrHigh(dmabuf->phys);
15057 			rc++;
15058 		}
15059 		page_idx += rc;
15060 	}
15061 
15062 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15063 
15064 	/* The IOCTL status is embedded in the mailbox subheader. */
15065 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15066 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15067 	if (shdr_status || shdr_add_status || rc) {
15068 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15069 				"3119 CQ_CREATE_SET mailbox failed with "
15070 				"status x%x add_status x%x, mbx status x%x\n",
15071 				shdr_status, shdr_add_status, rc);
15072 		status = -ENXIO;
15073 		goto out;
15074 	}
15075 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15076 	if (rc == 0xFFFF) {
15077 		status = -ENXIO;
15078 		goto out;
15079 	}
15080 
15081 	for (idx = 0; idx < numcq; idx++) {
15082 		cq = cqp[idx];
15083 		cq->queue_id = rc + idx;
15084 		if (cq->queue_id > phba->sli4_hba.cq_max)
15085 			phba->sli4_hba.cq_max = cq->queue_id;
15086 	}
15087 
15088 out:
15089 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15090 	return status;
15091 }
15092 
15093 /**
15094  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15095  * @phba: HBA structure that indicates port to create a queue on.
15096  * @mq: The queue structure to use to create the mailbox queue.
15097  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15098  * @cq: The completion queue to associate with this cq.
15099  *
15100  * This function provides failback (fb) functionality when the
15101  * mq_create_ext fails on older FW generations.  It's purpose is identical
15102  * to mq_create_ext otherwise.
15103  *
15104  * This routine cannot fail as all attributes were previously accessed and
15105  * initialized in mq_create_ext.
15106  **/
15107 static void
15108 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15109 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15110 {
15111 	struct lpfc_mbx_mq_create *mq_create;
15112 	struct lpfc_dmabuf *dmabuf;
15113 	int length;
15114 
15115 	length = (sizeof(struct lpfc_mbx_mq_create) -
15116 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15117 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15118 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15119 			 length, LPFC_SLI4_MBX_EMBED);
15120 	mq_create = &mbox->u.mqe.un.mq_create;
15121 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15122 	       mq->page_count);
15123 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15124 	       cq->queue_id);
15125 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15126 	switch (mq->entry_count) {
15127 	case 16:
15128 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15129 		       LPFC_MQ_RING_SIZE_16);
15130 		break;
15131 	case 32:
15132 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15133 		       LPFC_MQ_RING_SIZE_32);
15134 		break;
15135 	case 64:
15136 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15137 		       LPFC_MQ_RING_SIZE_64);
15138 		break;
15139 	case 128:
15140 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15141 		       LPFC_MQ_RING_SIZE_128);
15142 		break;
15143 	}
15144 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15145 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15146 			putPaddrLow(dmabuf->phys);
15147 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15148 			putPaddrHigh(dmabuf->phys);
15149 	}
15150 }
15151 
15152 /**
15153  * lpfc_mq_create - Create a mailbox Queue on the HBA
15154  * @phba: HBA structure that indicates port to create a queue on.
15155  * @mq: The queue structure to use to create the mailbox queue.
15156  * @cq: The completion queue to associate with this cq.
15157  * @subtype: The queue's subtype.
15158  *
15159  * This function creates a mailbox queue, as detailed in @mq, on a port,
15160  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15161  *
15162  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15163  * is used to get the entry count and entry size that are necessary to
15164  * determine the number of pages to allocate and use for this queue. This
15165  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15166  * mailbox queue. This function is asynchronous and will wait for the mailbox
15167  * command to finish before continuing.
15168  *
15169  * On success this function will return a zero. If unable to allocate enough
15170  * memory this function will return -ENOMEM. If the queue create mailbox command
15171  * fails this function will return -ENXIO.
15172  **/
15173 int32_t
15174 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15175 	       struct lpfc_queue *cq, uint32_t subtype)
15176 {
15177 	struct lpfc_mbx_mq_create *mq_create;
15178 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15179 	struct lpfc_dmabuf *dmabuf;
15180 	LPFC_MBOXQ_t *mbox;
15181 	int rc, length, status = 0;
15182 	uint32_t shdr_status, shdr_add_status;
15183 	union lpfc_sli4_cfg_shdr *shdr;
15184 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15185 
15186 	/* sanity check on queue memory */
15187 	if (!mq || !cq)
15188 		return -ENODEV;
15189 	if (!phba->sli4_hba.pc_sli4_params.supported)
15190 		hw_page_size = SLI4_PAGE_SIZE;
15191 
15192 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15193 	if (!mbox)
15194 		return -ENOMEM;
15195 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15196 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15197 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15198 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15199 			 length, LPFC_SLI4_MBX_EMBED);
15200 
15201 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15202 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15203 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15204 	       &mq_create_ext->u.request, mq->page_count);
15205 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15206 	       &mq_create_ext->u.request, 1);
15207 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15208 	       &mq_create_ext->u.request, 1);
15209 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15210 	       &mq_create_ext->u.request, 1);
15211 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15212 	       &mq_create_ext->u.request, 1);
15213 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15214 	       &mq_create_ext->u.request, 1);
15215 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15216 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15217 	       phba->sli4_hba.pc_sli4_params.mqv);
15218 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15219 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15220 		       cq->queue_id);
15221 	else
15222 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15223 		       cq->queue_id);
15224 	switch (mq->entry_count) {
15225 	default:
15226 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15227 				"0362 Unsupported MQ count. (%d)\n",
15228 				mq->entry_count);
15229 		if (mq->entry_count < 16) {
15230 			status = -EINVAL;
15231 			goto out;
15232 		}
15233 		/* fall through - otherwise default to smallest count */
15234 	case 16:
15235 		bf_set(lpfc_mq_context_ring_size,
15236 		       &mq_create_ext->u.request.context,
15237 		       LPFC_MQ_RING_SIZE_16);
15238 		break;
15239 	case 32:
15240 		bf_set(lpfc_mq_context_ring_size,
15241 		       &mq_create_ext->u.request.context,
15242 		       LPFC_MQ_RING_SIZE_32);
15243 		break;
15244 	case 64:
15245 		bf_set(lpfc_mq_context_ring_size,
15246 		       &mq_create_ext->u.request.context,
15247 		       LPFC_MQ_RING_SIZE_64);
15248 		break;
15249 	case 128:
15250 		bf_set(lpfc_mq_context_ring_size,
15251 		       &mq_create_ext->u.request.context,
15252 		       LPFC_MQ_RING_SIZE_128);
15253 		break;
15254 	}
15255 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15256 		memset(dmabuf->virt, 0, hw_page_size);
15257 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15258 					putPaddrLow(dmabuf->phys);
15259 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15260 					putPaddrHigh(dmabuf->phys);
15261 	}
15262 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15263 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15264 			      &mq_create_ext->u.response);
15265 	if (rc != MBX_SUCCESS) {
15266 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15267 				"2795 MQ_CREATE_EXT failed with "
15268 				"status x%x. Failback to MQ_CREATE.\n",
15269 				rc);
15270 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15271 		mq_create = &mbox->u.mqe.un.mq_create;
15272 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15273 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15274 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15275 				      &mq_create->u.response);
15276 	}
15277 
15278 	/* The IOCTL status is embedded in the mailbox subheader. */
15279 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15280 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15281 	if (shdr_status || shdr_add_status || rc) {
15282 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15283 				"2502 MQ_CREATE mailbox failed with "
15284 				"status x%x add_status x%x, mbx status x%x\n",
15285 				shdr_status, shdr_add_status, rc);
15286 		status = -ENXIO;
15287 		goto out;
15288 	}
15289 	if (mq->queue_id == 0xFFFF) {
15290 		status = -ENXIO;
15291 		goto out;
15292 	}
15293 	mq->type = LPFC_MQ;
15294 	mq->assoc_qid = cq->queue_id;
15295 	mq->subtype = subtype;
15296 	mq->host_index = 0;
15297 	mq->hba_index = 0;
15298 
15299 	/* link the mq onto the parent cq child list */
15300 	list_add_tail(&mq->list, &cq->child_list);
15301 out:
15302 	mempool_free(mbox, phba->mbox_mem_pool);
15303 	return status;
15304 }
15305 
15306 /**
15307  * lpfc_wq_create - Create a Work Queue on the HBA
15308  * @phba: HBA structure that indicates port to create a queue on.
15309  * @wq: The queue structure to use to create the work queue.
15310  * @cq: The completion queue to bind this work queue to.
15311  * @subtype: The subtype of the work queue indicating its functionality.
15312  *
15313  * This function creates a work queue, as detailed in @wq, on a port, described
15314  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15315  *
15316  * The @phba struct is used to send mailbox command to HBA. The @wq struct
15317  * is used to get the entry count and entry size that are necessary to
15318  * determine the number of pages to allocate and use for this queue. The @cq
15319  * is used to indicate which completion queue to bind this work queue to. This
15320  * function will send the WQ_CREATE mailbox command to the HBA to setup the
15321  * work queue. This function is asynchronous and will wait for the mailbox
15322  * command to finish before continuing.
15323  *
15324  * On success this function will return a zero. If unable to allocate enough
15325  * memory this function will return -ENOMEM. If the queue create mailbox command
15326  * fails this function will return -ENXIO.
15327  **/
15328 int
15329 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15330 	       struct lpfc_queue *cq, uint32_t subtype)
15331 {
15332 	struct lpfc_mbx_wq_create *wq_create;
15333 	struct lpfc_dmabuf *dmabuf;
15334 	LPFC_MBOXQ_t *mbox;
15335 	int rc, length, status = 0;
15336 	uint32_t shdr_status, shdr_add_status;
15337 	union lpfc_sli4_cfg_shdr *shdr;
15338 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15339 	struct dma_address *page;
15340 	void __iomem *bar_memmap_p;
15341 	uint32_t db_offset;
15342 	uint16_t pci_barset;
15343 	uint8_t dpp_barset;
15344 	uint32_t dpp_offset;
15345 	unsigned long pg_addr;
15346 	uint8_t wq_create_version;
15347 
15348 	/* sanity check on queue memory */
15349 	if (!wq || !cq)
15350 		return -ENODEV;
15351 	if (!phba->sli4_hba.pc_sli4_params.supported)
15352 		hw_page_size = wq->page_size;
15353 
15354 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15355 	if (!mbox)
15356 		return -ENOMEM;
15357 	length = (sizeof(struct lpfc_mbx_wq_create) -
15358 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15359 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15360 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15361 			 length, LPFC_SLI4_MBX_EMBED);
15362 	wq_create = &mbox->u.mqe.un.wq_create;
15363 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15364 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15365 		    wq->page_count);
15366 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15367 		    cq->queue_id);
15368 
15369 	/* wqv is the earliest version supported, NOT the latest */
15370 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15371 	       phba->sli4_hba.pc_sli4_params.wqv);
15372 
15373 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15374 	    (wq->page_size > SLI4_PAGE_SIZE))
15375 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15376 	else
15377 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15378 
15379 
15380 	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15381 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15382 	else
15383 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15384 
15385 	switch (wq_create_version) {
15386 	case LPFC_Q_CREATE_VERSION_1:
15387 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15388 		       wq->entry_count);
15389 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15390 		       LPFC_Q_CREATE_VERSION_1);
15391 
15392 		switch (wq->entry_size) {
15393 		default:
15394 		case 64:
15395 			bf_set(lpfc_mbx_wq_create_wqe_size,
15396 			       &wq_create->u.request_1,
15397 			       LPFC_WQ_WQE_SIZE_64);
15398 			break;
15399 		case 128:
15400 			bf_set(lpfc_mbx_wq_create_wqe_size,
15401 			       &wq_create->u.request_1,
15402 			       LPFC_WQ_WQE_SIZE_128);
15403 			break;
15404 		}
15405 		/* Request DPP by default */
15406 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15407 		bf_set(lpfc_mbx_wq_create_page_size,
15408 		       &wq_create->u.request_1,
15409 		       (wq->page_size / SLI4_PAGE_SIZE));
15410 		page = wq_create->u.request_1.page;
15411 		break;
15412 	default:
15413 		page = wq_create->u.request.page;
15414 		break;
15415 	}
15416 
15417 	list_for_each_entry(dmabuf, &wq->page_list, list) {
15418 		memset(dmabuf->virt, 0, hw_page_size);
15419 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15420 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15421 	}
15422 
15423 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15424 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15425 
15426 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15427 	/* The IOCTL status is embedded in the mailbox subheader. */
15428 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15429 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15430 	if (shdr_status || shdr_add_status || rc) {
15431 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15432 				"2503 WQ_CREATE mailbox failed with "
15433 				"status x%x add_status x%x, mbx status x%x\n",
15434 				shdr_status, shdr_add_status, rc);
15435 		status = -ENXIO;
15436 		goto out;
15437 	}
15438 
15439 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15440 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15441 					&wq_create->u.response);
15442 	else
15443 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15444 					&wq_create->u.response_1);
15445 
15446 	if (wq->queue_id == 0xFFFF) {
15447 		status = -ENXIO;
15448 		goto out;
15449 	}
15450 
15451 	wq->db_format = LPFC_DB_LIST_FORMAT;
15452 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15453 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15454 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15455 					       &wq_create->u.response);
15456 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15457 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15458 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15459 						"3265 WQ[%d] doorbell format "
15460 						"not supported: x%x\n",
15461 						wq->queue_id, wq->db_format);
15462 				status = -EINVAL;
15463 				goto out;
15464 			}
15465 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15466 					    &wq_create->u.response);
15467 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15468 								   pci_barset);
15469 			if (!bar_memmap_p) {
15470 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15471 						"3263 WQ[%d] failed to memmap "
15472 						"pci barset:x%x\n",
15473 						wq->queue_id, pci_barset);
15474 				status = -ENOMEM;
15475 				goto out;
15476 			}
15477 			db_offset = wq_create->u.response.doorbell_offset;
15478 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15479 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15480 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15481 						"3252 WQ[%d] doorbell offset "
15482 						"not supported: x%x\n",
15483 						wq->queue_id, db_offset);
15484 				status = -EINVAL;
15485 				goto out;
15486 			}
15487 			wq->db_regaddr = bar_memmap_p + db_offset;
15488 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15489 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
15490 					"format:x%x\n", wq->queue_id,
15491 					pci_barset, db_offset, wq->db_format);
15492 		} else
15493 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15494 	} else {
15495 		/* Check if DPP was honored by the firmware */
15496 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15497 				    &wq_create->u.response_1);
15498 		if (wq->dpp_enable) {
15499 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15500 					    &wq_create->u.response_1);
15501 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15502 								   pci_barset);
15503 			if (!bar_memmap_p) {
15504 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15505 						"3267 WQ[%d] failed to memmap "
15506 						"pci barset:x%x\n",
15507 						wq->queue_id, pci_barset);
15508 				status = -ENOMEM;
15509 				goto out;
15510 			}
15511 			db_offset = wq_create->u.response_1.doorbell_offset;
15512 			wq->db_regaddr = bar_memmap_p + db_offset;
15513 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15514 					    &wq_create->u.response_1);
15515 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15516 					    &wq_create->u.response_1);
15517 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15518 								   dpp_barset);
15519 			if (!bar_memmap_p) {
15520 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15521 						"3268 WQ[%d] failed to memmap "
15522 						"pci barset:x%x\n",
15523 						wq->queue_id, dpp_barset);
15524 				status = -ENOMEM;
15525 				goto out;
15526 			}
15527 			dpp_offset = wq_create->u.response_1.dpp_offset;
15528 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15529 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15530 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
15531 					"dpp_id:x%x dpp_barset:x%x "
15532 					"dpp_offset:x%x\n",
15533 					wq->queue_id, pci_barset, db_offset,
15534 					wq->dpp_id, dpp_barset, dpp_offset);
15535 
15536 			/* Enable combined writes for DPP aperture */
15537 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15538 #ifdef CONFIG_X86
15539 			rc = set_memory_wc(pg_addr, 1);
15540 			if (rc) {
15541 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15542 					"3272 Cannot setup Combined "
15543 					"Write on WQ[%d] - disable DPP\n",
15544 					wq->queue_id);
15545 				phba->cfg_enable_dpp = 0;
15546 			}
15547 #else
15548 			phba->cfg_enable_dpp = 0;
15549 #endif
15550 		} else
15551 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15552 	}
15553 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15554 	if (wq->pring == NULL) {
15555 		status = -ENOMEM;
15556 		goto out;
15557 	}
15558 	wq->type = LPFC_WQ;
15559 	wq->assoc_qid = cq->queue_id;
15560 	wq->subtype = subtype;
15561 	wq->host_index = 0;
15562 	wq->hba_index = 0;
15563 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
15564 
15565 	/* link the wq onto the parent cq child list */
15566 	list_add_tail(&wq->list, &cq->child_list);
15567 out:
15568 	mempool_free(mbox, phba->mbox_mem_pool);
15569 	return status;
15570 }
15571 
15572 /**
15573  * lpfc_rq_create - Create a Receive Queue on the HBA
15574  * @phba: HBA structure that indicates port to create a queue on.
15575  * @hrq: The queue structure to use to create the header receive queue.
15576  * @drq: The queue structure to use to create the data receive queue.
15577  * @cq: The completion queue to bind this work queue to.
15578  *
15579  * This function creates a receive buffer queue pair , as detailed in @hrq and
15580  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15581  * to the HBA.
15582  *
15583  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15584  * struct is used to get the entry count that is necessary to determine the
15585  * number of pages to use for this queue. The @cq is used to indicate which
15586  * completion queue to bind received buffers that are posted to these queues to.
15587  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15588  * receive queue pair. This function is asynchronous and will wait for the
15589  * mailbox command to finish before continuing.
15590  *
15591  * On success this function will return a zero. If unable to allocate enough
15592  * memory this function will return -ENOMEM. If the queue create mailbox command
15593  * fails this function will return -ENXIO.
15594  **/
15595 int
15596 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15597 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15598 {
15599 	struct lpfc_mbx_rq_create *rq_create;
15600 	struct lpfc_dmabuf *dmabuf;
15601 	LPFC_MBOXQ_t *mbox;
15602 	int rc, length, status = 0;
15603 	uint32_t shdr_status, shdr_add_status;
15604 	union lpfc_sli4_cfg_shdr *shdr;
15605 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15606 	void __iomem *bar_memmap_p;
15607 	uint32_t db_offset;
15608 	uint16_t pci_barset;
15609 
15610 	/* sanity check on queue memory */
15611 	if (!hrq || !drq || !cq)
15612 		return -ENODEV;
15613 	if (!phba->sli4_hba.pc_sli4_params.supported)
15614 		hw_page_size = SLI4_PAGE_SIZE;
15615 
15616 	if (hrq->entry_count != drq->entry_count)
15617 		return -EINVAL;
15618 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15619 	if (!mbox)
15620 		return -ENOMEM;
15621 	length = (sizeof(struct lpfc_mbx_rq_create) -
15622 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15623 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15624 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15625 			 length, LPFC_SLI4_MBX_EMBED);
15626 	rq_create = &mbox->u.mqe.un.rq_create;
15627 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15628 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15629 	       phba->sli4_hba.pc_sli4_params.rqv);
15630 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15631 		bf_set(lpfc_rq_context_rqe_count_1,
15632 		       &rq_create->u.request.context,
15633 		       hrq->entry_count);
15634 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15635 		bf_set(lpfc_rq_context_rqe_size,
15636 		       &rq_create->u.request.context,
15637 		       LPFC_RQE_SIZE_8);
15638 		bf_set(lpfc_rq_context_page_size,
15639 		       &rq_create->u.request.context,
15640 		       LPFC_RQ_PAGE_SIZE_4096);
15641 	} else {
15642 		switch (hrq->entry_count) {
15643 		default:
15644 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15645 					"2535 Unsupported RQ count. (%d)\n",
15646 					hrq->entry_count);
15647 			if (hrq->entry_count < 512) {
15648 				status = -EINVAL;
15649 				goto out;
15650 			}
15651 			/* fall through - otherwise default to smallest count */
15652 		case 512:
15653 			bf_set(lpfc_rq_context_rqe_count,
15654 			       &rq_create->u.request.context,
15655 			       LPFC_RQ_RING_SIZE_512);
15656 			break;
15657 		case 1024:
15658 			bf_set(lpfc_rq_context_rqe_count,
15659 			       &rq_create->u.request.context,
15660 			       LPFC_RQ_RING_SIZE_1024);
15661 			break;
15662 		case 2048:
15663 			bf_set(lpfc_rq_context_rqe_count,
15664 			       &rq_create->u.request.context,
15665 			       LPFC_RQ_RING_SIZE_2048);
15666 			break;
15667 		case 4096:
15668 			bf_set(lpfc_rq_context_rqe_count,
15669 			       &rq_create->u.request.context,
15670 			       LPFC_RQ_RING_SIZE_4096);
15671 			break;
15672 		}
15673 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15674 		       LPFC_HDR_BUF_SIZE);
15675 	}
15676 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15677 	       cq->queue_id);
15678 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15679 	       hrq->page_count);
15680 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
15681 		memset(dmabuf->virt, 0, hw_page_size);
15682 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15683 					putPaddrLow(dmabuf->phys);
15684 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15685 					putPaddrHigh(dmabuf->phys);
15686 	}
15687 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15688 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15689 
15690 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15691 	/* The IOCTL status is embedded in the mailbox subheader. */
15692 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15693 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15694 	if (shdr_status || shdr_add_status || rc) {
15695 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15696 				"2504 RQ_CREATE mailbox failed with "
15697 				"status x%x add_status x%x, mbx status x%x\n",
15698 				shdr_status, shdr_add_status, rc);
15699 		status = -ENXIO;
15700 		goto out;
15701 	}
15702 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15703 	if (hrq->queue_id == 0xFFFF) {
15704 		status = -ENXIO;
15705 		goto out;
15706 	}
15707 
15708 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15709 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15710 					&rq_create->u.response);
15711 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15712 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15713 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15714 					"3262 RQ [%d] doorbell format not "
15715 					"supported: x%x\n", hrq->queue_id,
15716 					hrq->db_format);
15717 			status = -EINVAL;
15718 			goto out;
15719 		}
15720 
15721 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15722 				    &rq_create->u.response);
15723 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15724 		if (!bar_memmap_p) {
15725 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15726 					"3269 RQ[%d] failed to memmap pci "
15727 					"barset:x%x\n", hrq->queue_id,
15728 					pci_barset);
15729 			status = -ENOMEM;
15730 			goto out;
15731 		}
15732 
15733 		db_offset = rq_create->u.response.doorbell_offset;
15734 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15735 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15736 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15737 					"3270 RQ[%d] doorbell offset not "
15738 					"supported: x%x\n", hrq->queue_id,
15739 					db_offset);
15740 			status = -EINVAL;
15741 			goto out;
15742 		}
15743 		hrq->db_regaddr = bar_memmap_p + db_offset;
15744 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15745 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15746 				"format:x%x\n", hrq->queue_id, pci_barset,
15747 				db_offset, hrq->db_format);
15748 	} else {
15749 		hrq->db_format = LPFC_DB_RING_FORMAT;
15750 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15751 	}
15752 	hrq->type = LPFC_HRQ;
15753 	hrq->assoc_qid = cq->queue_id;
15754 	hrq->subtype = subtype;
15755 	hrq->host_index = 0;
15756 	hrq->hba_index = 0;
15757 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15758 
15759 	/* now create the data queue */
15760 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15761 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15762 			 length, LPFC_SLI4_MBX_EMBED);
15763 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15764 	       phba->sli4_hba.pc_sli4_params.rqv);
15765 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15766 		bf_set(lpfc_rq_context_rqe_count_1,
15767 		       &rq_create->u.request.context, hrq->entry_count);
15768 		if (subtype == LPFC_NVMET)
15769 			rq_create->u.request.context.buffer_size =
15770 				LPFC_NVMET_DATA_BUF_SIZE;
15771 		else
15772 			rq_create->u.request.context.buffer_size =
15773 				LPFC_DATA_BUF_SIZE;
15774 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15775 		       LPFC_RQE_SIZE_8);
15776 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15777 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
15778 	} else {
15779 		switch (drq->entry_count) {
15780 		default:
15781 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15782 					"2536 Unsupported RQ count. (%d)\n",
15783 					drq->entry_count);
15784 			if (drq->entry_count < 512) {
15785 				status = -EINVAL;
15786 				goto out;
15787 			}
15788 			/* fall through - otherwise default to smallest count */
15789 		case 512:
15790 			bf_set(lpfc_rq_context_rqe_count,
15791 			       &rq_create->u.request.context,
15792 			       LPFC_RQ_RING_SIZE_512);
15793 			break;
15794 		case 1024:
15795 			bf_set(lpfc_rq_context_rqe_count,
15796 			       &rq_create->u.request.context,
15797 			       LPFC_RQ_RING_SIZE_1024);
15798 			break;
15799 		case 2048:
15800 			bf_set(lpfc_rq_context_rqe_count,
15801 			       &rq_create->u.request.context,
15802 			       LPFC_RQ_RING_SIZE_2048);
15803 			break;
15804 		case 4096:
15805 			bf_set(lpfc_rq_context_rqe_count,
15806 			       &rq_create->u.request.context,
15807 			       LPFC_RQ_RING_SIZE_4096);
15808 			break;
15809 		}
15810 		if (subtype == LPFC_NVMET)
15811 			bf_set(lpfc_rq_context_buf_size,
15812 			       &rq_create->u.request.context,
15813 			       LPFC_NVMET_DATA_BUF_SIZE);
15814 		else
15815 			bf_set(lpfc_rq_context_buf_size,
15816 			       &rq_create->u.request.context,
15817 			       LPFC_DATA_BUF_SIZE);
15818 	}
15819 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15820 	       cq->queue_id);
15821 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15822 	       drq->page_count);
15823 	list_for_each_entry(dmabuf, &drq->page_list, list) {
15824 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15825 					putPaddrLow(dmabuf->phys);
15826 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15827 					putPaddrHigh(dmabuf->phys);
15828 	}
15829 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15830 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15831 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15832 	/* The IOCTL status is embedded in the mailbox subheader. */
15833 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15834 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15835 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15836 	if (shdr_status || shdr_add_status || rc) {
15837 		status = -ENXIO;
15838 		goto out;
15839 	}
15840 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15841 	if (drq->queue_id == 0xFFFF) {
15842 		status = -ENXIO;
15843 		goto out;
15844 	}
15845 	drq->type = LPFC_DRQ;
15846 	drq->assoc_qid = cq->queue_id;
15847 	drq->subtype = subtype;
15848 	drq->host_index = 0;
15849 	drq->hba_index = 0;
15850 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15851 
15852 	/* link the header and data RQs onto the parent cq child list */
15853 	list_add_tail(&hrq->list, &cq->child_list);
15854 	list_add_tail(&drq->list, &cq->child_list);
15855 
15856 out:
15857 	mempool_free(mbox, phba->mbox_mem_pool);
15858 	return status;
15859 }
15860 
15861 /**
15862  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15863  * @phba: HBA structure that indicates port to create a queue on.
15864  * @hrqp: The queue structure array to use to create the header receive queues.
15865  * @drqp: The queue structure array to use to create the data receive queues.
15866  * @cqp: The completion queue array to bind these receive queues to.
15867  *
15868  * This function creates a receive buffer queue pair , as detailed in @hrq and
15869  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15870  * to the HBA.
15871  *
15872  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15873  * struct is used to get the entry count that is necessary to determine the
15874  * number of pages to use for this queue. The @cq is used to indicate which
15875  * completion queue to bind received buffers that are posted to these queues to.
15876  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15877  * receive queue pair. This function is asynchronous and will wait for the
15878  * mailbox command to finish before continuing.
15879  *
15880  * On success this function will return a zero. If unable to allocate enough
15881  * memory this function will return -ENOMEM. If the queue create mailbox command
15882  * fails this function will return -ENXIO.
15883  **/
15884 int
15885 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15886 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15887 		uint32_t subtype)
15888 {
15889 	struct lpfc_queue *hrq, *drq, *cq;
15890 	struct lpfc_mbx_rq_create_v2 *rq_create;
15891 	struct lpfc_dmabuf *dmabuf;
15892 	LPFC_MBOXQ_t *mbox;
15893 	int rc, length, alloclen, status = 0;
15894 	int cnt, idx, numrq, page_idx = 0;
15895 	uint32_t shdr_status, shdr_add_status;
15896 	union lpfc_sli4_cfg_shdr *shdr;
15897 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15898 
15899 	numrq = phba->cfg_nvmet_mrq;
15900 	/* sanity check on array memory */
15901 	if (!hrqp || !drqp || !cqp || !numrq)
15902 		return -ENODEV;
15903 	if (!phba->sli4_hba.pc_sli4_params.supported)
15904 		hw_page_size = SLI4_PAGE_SIZE;
15905 
15906 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15907 	if (!mbox)
15908 		return -ENOMEM;
15909 
15910 	length = sizeof(struct lpfc_mbx_rq_create_v2);
15911 	length += ((2 * numrq * hrqp[0]->page_count) *
15912 		   sizeof(struct dma_address));
15913 
15914 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15915 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
15916 				    LPFC_SLI4_MBX_NEMBED);
15917 	if (alloclen < length) {
15918 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15919 				"3099 Allocated DMA memory size (%d) is "
15920 				"less than the requested DMA memory size "
15921 				"(%d)\n", alloclen, length);
15922 		status = -ENOMEM;
15923 		goto out;
15924 	}
15925 
15926 
15927 
15928 	rq_create = mbox->sge_array->addr[0];
15929 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
15930 
15931 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
15932 	cnt = 0;
15933 
15934 	for (idx = 0; idx < numrq; idx++) {
15935 		hrq = hrqp[idx];
15936 		drq = drqp[idx];
15937 		cq  = cqp[idx];
15938 
15939 		/* sanity check on queue memory */
15940 		if (!hrq || !drq || !cq) {
15941 			status = -ENODEV;
15942 			goto out;
15943 		}
15944 
15945 		if (hrq->entry_count != drq->entry_count) {
15946 			status = -EINVAL;
15947 			goto out;
15948 		}
15949 
15950 		if (idx == 0) {
15951 			bf_set(lpfc_mbx_rq_create_num_pages,
15952 			       &rq_create->u.request,
15953 			       hrq->page_count);
15954 			bf_set(lpfc_mbx_rq_create_rq_cnt,
15955 			       &rq_create->u.request, (numrq * 2));
15956 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
15957 			       1);
15958 			bf_set(lpfc_rq_context_base_cq,
15959 			       &rq_create->u.request.context,
15960 			       cq->queue_id);
15961 			bf_set(lpfc_rq_context_data_size,
15962 			       &rq_create->u.request.context,
15963 			       LPFC_NVMET_DATA_BUF_SIZE);
15964 			bf_set(lpfc_rq_context_hdr_size,
15965 			       &rq_create->u.request.context,
15966 			       LPFC_HDR_BUF_SIZE);
15967 			bf_set(lpfc_rq_context_rqe_count_1,
15968 			       &rq_create->u.request.context,
15969 			       hrq->entry_count);
15970 			bf_set(lpfc_rq_context_rqe_size,
15971 			       &rq_create->u.request.context,
15972 			       LPFC_RQE_SIZE_8);
15973 			bf_set(lpfc_rq_context_page_size,
15974 			       &rq_create->u.request.context,
15975 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
15976 		}
15977 		rc = 0;
15978 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
15979 			memset(dmabuf->virt, 0, hw_page_size);
15980 			cnt = page_idx + dmabuf->buffer_tag;
15981 			rq_create->u.request.page[cnt].addr_lo =
15982 					putPaddrLow(dmabuf->phys);
15983 			rq_create->u.request.page[cnt].addr_hi =
15984 					putPaddrHigh(dmabuf->phys);
15985 			rc++;
15986 		}
15987 		page_idx += rc;
15988 
15989 		rc = 0;
15990 		list_for_each_entry(dmabuf, &drq->page_list, list) {
15991 			memset(dmabuf->virt, 0, hw_page_size);
15992 			cnt = page_idx + dmabuf->buffer_tag;
15993 			rq_create->u.request.page[cnt].addr_lo =
15994 					putPaddrLow(dmabuf->phys);
15995 			rq_create->u.request.page[cnt].addr_hi =
15996 					putPaddrHigh(dmabuf->phys);
15997 			rc++;
15998 		}
15999 		page_idx += rc;
16000 
16001 		hrq->db_format = LPFC_DB_RING_FORMAT;
16002 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16003 		hrq->type = LPFC_HRQ;
16004 		hrq->assoc_qid = cq->queue_id;
16005 		hrq->subtype = subtype;
16006 		hrq->host_index = 0;
16007 		hrq->hba_index = 0;
16008 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16009 
16010 		drq->db_format = LPFC_DB_RING_FORMAT;
16011 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16012 		drq->type = LPFC_DRQ;
16013 		drq->assoc_qid = cq->queue_id;
16014 		drq->subtype = subtype;
16015 		drq->host_index = 0;
16016 		drq->hba_index = 0;
16017 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16018 
16019 		list_add_tail(&hrq->list, &cq->child_list);
16020 		list_add_tail(&drq->list, &cq->child_list);
16021 	}
16022 
16023 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16024 	/* The IOCTL status is embedded in the mailbox subheader. */
16025 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16026 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16027 	if (shdr_status || shdr_add_status || rc) {
16028 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16029 				"3120 RQ_CREATE mailbox failed with "
16030 				"status x%x add_status x%x, mbx status x%x\n",
16031 				shdr_status, shdr_add_status, rc);
16032 		status = -ENXIO;
16033 		goto out;
16034 	}
16035 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16036 	if (rc == 0xFFFF) {
16037 		status = -ENXIO;
16038 		goto out;
16039 	}
16040 
16041 	/* Initialize all RQs with associated queue id */
16042 	for (idx = 0; idx < numrq; idx++) {
16043 		hrq = hrqp[idx];
16044 		hrq->queue_id = rc + (2 * idx);
16045 		drq = drqp[idx];
16046 		drq->queue_id = rc + (2 * idx) + 1;
16047 	}
16048 
16049 out:
16050 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16051 	return status;
16052 }
16053 
16054 /**
16055  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16056  * @eq: The queue structure associated with the queue to destroy.
16057  *
16058  * This function destroys a queue, as detailed in @eq by sending an mailbox
16059  * command, specific to the type of queue, to the HBA.
16060  *
16061  * The @eq struct is used to get the queue ID of the queue to destroy.
16062  *
16063  * On success this function will return a zero. If the queue destroy mailbox
16064  * command fails this function will return -ENXIO.
16065  **/
16066 int
16067 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16068 {
16069 	LPFC_MBOXQ_t *mbox;
16070 	int rc, length, status = 0;
16071 	uint32_t shdr_status, shdr_add_status;
16072 	union lpfc_sli4_cfg_shdr *shdr;
16073 
16074 	/* sanity check on queue memory */
16075 	if (!eq)
16076 		return -ENODEV;
16077 
16078 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16079 	if (!mbox)
16080 		return -ENOMEM;
16081 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16082 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16083 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16084 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16085 			 length, LPFC_SLI4_MBX_EMBED);
16086 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16087 	       eq->queue_id);
16088 	mbox->vport = eq->phba->pport;
16089 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16090 
16091 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16092 	/* The IOCTL status is embedded in the mailbox subheader. */
16093 	shdr = (union lpfc_sli4_cfg_shdr *)
16094 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16095 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16096 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16097 	if (shdr_status || shdr_add_status || rc) {
16098 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16099 				"2505 EQ_DESTROY mailbox failed with "
16100 				"status x%x add_status x%x, mbx status x%x\n",
16101 				shdr_status, shdr_add_status, rc);
16102 		status = -ENXIO;
16103 	}
16104 
16105 	/* Remove eq from any list */
16106 	list_del_init(&eq->list);
16107 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16108 	return status;
16109 }
16110 
16111 /**
16112  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16113  * @cq: The queue structure associated with the queue to destroy.
16114  *
16115  * This function destroys a queue, as detailed in @cq by sending an mailbox
16116  * command, specific to the type of queue, to the HBA.
16117  *
16118  * The @cq struct is used to get the queue ID of the queue to destroy.
16119  *
16120  * On success this function will return a zero. If the queue destroy mailbox
16121  * command fails this function will return -ENXIO.
16122  **/
16123 int
16124 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16125 {
16126 	LPFC_MBOXQ_t *mbox;
16127 	int rc, length, status = 0;
16128 	uint32_t shdr_status, shdr_add_status;
16129 	union lpfc_sli4_cfg_shdr *shdr;
16130 
16131 	/* sanity check on queue memory */
16132 	if (!cq)
16133 		return -ENODEV;
16134 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16135 	if (!mbox)
16136 		return -ENOMEM;
16137 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16138 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16139 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16140 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16141 			 length, LPFC_SLI4_MBX_EMBED);
16142 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16143 	       cq->queue_id);
16144 	mbox->vport = cq->phba->pport;
16145 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16146 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16147 	/* The IOCTL status is embedded in the mailbox subheader. */
16148 	shdr = (union lpfc_sli4_cfg_shdr *)
16149 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16150 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16151 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16152 	if (shdr_status || shdr_add_status || rc) {
16153 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16154 				"2506 CQ_DESTROY mailbox failed with "
16155 				"status x%x add_status x%x, mbx status x%x\n",
16156 				shdr_status, shdr_add_status, rc);
16157 		status = -ENXIO;
16158 	}
16159 	/* Remove cq from any list */
16160 	list_del_init(&cq->list);
16161 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16162 	return status;
16163 }
16164 
16165 /**
16166  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16167  * @qm: The queue structure associated with the queue to destroy.
16168  *
16169  * This function destroys a queue, as detailed in @mq by sending an mailbox
16170  * command, specific to the type of queue, to the HBA.
16171  *
16172  * The @mq struct is used to get the queue ID of the queue to destroy.
16173  *
16174  * On success this function will return a zero. If the queue destroy mailbox
16175  * command fails this function will return -ENXIO.
16176  **/
16177 int
16178 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16179 {
16180 	LPFC_MBOXQ_t *mbox;
16181 	int rc, length, status = 0;
16182 	uint32_t shdr_status, shdr_add_status;
16183 	union lpfc_sli4_cfg_shdr *shdr;
16184 
16185 	/* sanity check on queue memory */
16186 	if (!mq)
16187 		return -ENODEV;
16188 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16189 	if (!mbox)
16190 		return -ENOMEM;
16191 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16192 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16193 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16194 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16195 			 length, LPFC_SLI4_MBX_EMBED);
16196 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16197 	       mq->queue_id);
16198 	mbox->vport = mq->phba->pport;
16199 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16200 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16201 	/* The IOCTL status is embedded in the mailbox subheader. */
16202 	shdr = (union lpfc_sli4_cfg_shdr *)
16203 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16204 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16205 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16206 	if (shdr_status || shdr_add_status || rc) {
16207 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16208 				"2507 MQ_DESTROY mailbox failed with "
16209 				"status x%x add_status x%x, mbx status x%x\n",
16210 				shdr_status, shdr_add_status, rc);
16211 		status = -ENXIO;
16212 	}
16213 	/* Remove mq from any list */
16214 	list_del_init(&mq->list);
16215 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16216 	return status;
16217 }
16218 
16219 /**
16220  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16221  * @wq: The queue structure associated with the queue to destroy.
16222  *
16223  * This function destroys a queue, as detailed in @wq by sending an mailbox
16224  * command, specific to the type of queue, to the HBA.
16225  *
16226  * The @wq struct is used to get the queue ID of the queue to destroy.
16227  *
16228  * On success this function will return a zero. If the queue destroy mailbox
16229  * command fails this function will return -ENXIO.
16230  **/
16231 int
16232 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16233 {
16234 	LPFC_MBOXQ_t *mbox;
16235 	int rc, length, status = 0;
16236 	uint32_t shdr_status, shdr_add_status;
16237 	union lpfc_sli4_cfg_shdr *shdr;
16238 
16239 	/* sanity check on queue memory */
16240 	if (!wq)
16241 		return -ENODEV;
16242 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16243 	if (!mbox)
16244 		return -ENOMEM;
16245 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16246 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16247 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16248 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16249 			 length, LPFC_SLI4_MBX_EMBED);
16250 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16251 	       wq->queue_id);
16252 	mbox->vport = wq->phba->pport;
16253 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16254 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16255 	shdr = (union lpfc_sli4_cfg_shdr *)
16256 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16257 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16258 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16259 	if (shdr_status || shdr_add_status || rc) {
16260 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16261 				"2508 WQ_DESTROY mailbox failed with "
16262 				"status x%x add_status x%x, mbx status x%x\n",
16263 				shdr_status, shdr_add_status, rc);
16264 		status = -ENXIO;
16265 	}
16266 	/* Remove wq from any list */
16267 	list_del_init(&wq->list);
16268 	kfree(wq->pring);
16269 	wq->pring = NULL;
16270 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16271 	return status;
16272 }
16273 
16274 /**
16275  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16276  * @rq: The queue structure associated with the queue to destroy.
16277  *
16278  * This function destroys a queue, as detailed in @rq by sending an mailbox
16279  * command, specific to the type of queue, to the HBA.
16280  *
16281  * The @rq struct is used to get the queue ID of the queue to destroy.
16282  *
16283  * On success this function will return a zero. If the queue destroy mailbox
16284  * command fails this function will return -ENXIO.
16285  **/
16286 int
16287 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16288 		struct lpfc_queue *drq)
16289 {
16290 	LPFC_MBOXQ_t *mbox;
16291 	int rc, length, status = 0;
16292 	uint32_t shdr_status, shdr_add_status;
16293 	union lpfc_sli4_cfg_shdr *shdr;
16294 
16295 	/* sanity check on queue memory */
16296 	if (!hrq || !drq)
16297 		return -ENODEV;
16298 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16299 	if (!mbox)
16300 		return -ENOMEM;
16301 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16302 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16303 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16304 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16305 			 length, LPFC_SLI4_MBX_EMBED);
16306 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16307 	       hrq->queue_id);
16308 	mbox->vport = hrq->phba->pport;
16309 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16310 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16311 	/* The IOCTL status is embedded in the mailbox subheader. */
16312 	shdr = (union lpfc_sli4_cfg_shdr *)
16313 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16314 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16315 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16316 	if (shdr_status || shdr_add_status || rc) {
16317 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16318 				"2509 RQ_DESTROY mailbox failed with "
16319 				"status x%x add_status x%x, mbx status x%x\n",
16320 				shdr_status, shdr_add_status, rc);
16321 		if (rc != MBX_TIMEOUT)
16322 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
16323 		return -ENXIO;
16324 	}
16325 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16326 	       drq->queue_id);
16327 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16328 	shdr = (union lpfc_sli4_cfg_shdr *)
16329 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16330 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16331 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16332 	if (shdr_status || shdr_add_status || rc) {
16333 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16334 				"2510 RQ_DESTROY mailbox failed with "
16335 				"status x%x add_status x%x, mbx status x%x\n",
16336 				shdr_status, shdr_add_status, rc);
16337 		status = -ENXIO;
16338 	}
16339 	list_del_init(&hrq->list);
16340 	list_del_init(&drq->list);
16341 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16342 	return status;
16343 }
16344 
16345 /**
16346  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16347  * @phba: The virtual port for which this call being executed.
16348  * @pdma_phys_addr0: Physical address of the 1st SGL page.
16349  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16350  * @xritag: the xritag that ties this io to the SGL pages.
16351  *
16352  * This routine will post the sgl pages for the IO that has the xritag
16353  * that is in the iocbq structure. The xritag is assigned during iocbq
16354  * creation and persists for as long as the driver is loaded.
16355  * if the caller has fewer than 256 scatter gather segments to map then
16356  * pdma_phys_addr1 should be 0.
16357  * If the caller needs to map more than 256 scatter gather segment then
16358  * pdma_phys_addr1 should be a valid physical address.
16359  * physical address for SGLs must be 64 byte aligned.
16360  * If you are going to map 2 SGL's then the first one must have 256 entries
16361  * the second sgl can have between 1 and 256 entries.
16362  *
16363  * Return codes:
16364  * 	0 - Success
16365  * 	-ENXIO, -ENOMEM - Failure
16366  **/
16367 int
16368 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16369 		dma_addr_t pdma_phys_addr0,
16370 		dma_addr_t pdma_phys_addr1,
16371 		uint16_t xritag)
16372 {
16373 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16374 	LPFC_MBOXQ_t *mbox;
16375 	int rc;
16376 	uint32_t shdr_status, shdr_add_status;
16377 	uint32_t mbox_tmo;
16378 	union lpfc_sli4_cfg_shdr *shdr;
16379 
16380 	if (xritag == NO_XRI) {
16381 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16382 				"0364 Invalid param:\n");
16383 		return -EINVAL;
16384 	}
16385 
16386 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16387 	if (!mbox)
16388 		return -ENOMEM;
16389 
16390 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16391 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16392 			sizeof(struct lpfc_mbx_post_sgl_pages) -
16393 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16394 
16395 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16396 				&mbox->u.mqe.un.post_sgl_pages;
16397 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16398 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16399 
16400 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16401 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16402 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16403 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16404 
16405 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16406 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16407 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16408 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16409 	if (!phba->sli4_hba.intr_enable)
16410 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16411 	else {
16412 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16413 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16414 	}
16415 	/* The IOCTL status is embedded in the mailbox subheader. */
16416 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16417 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16418 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16419 	if (rc != MBX_TIMEOUT)
16420 		mempool_free(mbox, phba->mbox_mem_pool);
16421 	if (shdr_status || shdr_add_status || rc) {
16422 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16423 				"2511 POST_SGL mailbox failed with "
16424 				"status x%x add_status x%x, mbx status x%x\n",
16425 				shdr_status, shdr_add_status, rc);
16426 	}
16427 	return 0;
16428 }
16429 
16430 /**
16431  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16432  * @phba: pointer to lpfc hba data structure.
16433  *
16434  * This routine is invoked to post rpi header templates to the
16435  * HBA consistent with the SLI-4 interface spec.  This routine
16436  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16437  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16438  *
16439  * Returns
16440  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16441  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16442  **/
16443 static uint16_t
16444 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16445 {
16446 	unsigned long xri;
16447 
16448 	/*
16449 	 * Fetch the next logical xri.  Because this index is logical,
16450 	 * the driver starts at 0 each time.
16451 	 */
16452 	spin_lock_irq(&phba->hbalock);
16453 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16454 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16455 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16456 		spin_unlock_irq(&phba->hbalock);
16457 		return NO_XRI;
16458 	} else {
16459 		set_bit(xri, phba->sli4_hba.xri_bmask);
16460 		phba->sli4_hba.max_cfg_param.xri_used++;
16461 	}
16462 	spin_unlock_irq(&phba->hbalock);
16463 	return xri;
16464 }
16465 
16466 /**
16467  * lpfc_sli4_free_xri - Release an xri for reuse.
16468  * @phba: pointer to lpfc hba data structure.
16469  *
16470  * This routine is invoked to release an xri to the pool of
16471  * available rpis maintained by the driver.
16472  **/
16473 static void
16474 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16475 {
16476 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16477 		phba->sli4_hba.max_cfg_param.xri_used--;
16478 	}
16479 }
16480 
16481 /**
16482  * lpfc_sli4_free_xri - Release an xri for reuse.
16483  * @phba: pointer to lpfc hba data structure.
16484  *
16485  * This routine is invoked to release an xri to the pool of
16486  * available rpis maintained by the driver.
16487  **/
16488 void
16489 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16490 {
16491 	spin_lock_irq(&phba->hbalock);
16492 	__lpfc_sli4_free_xri(phba, xri);
16493 	spin_unlock_irq(&phba->hbalock);
16494 }
16495 
16496 /**
16497  * lpfc_sli4_next_xritag - Get an xritag for the io
16498  * @phba: Pointer to HBA context object.
16499  *
16500  * This function gets an xritag for the iocb. If there is no unused xritag
16501  * it will return 0xffff.
16502  * The function returns the allocated xritag if successful, else returns zero.
16503  * Zero is not a valid xritag.
16504  * The caller is not required to hold any lock.
16505  **/
16506 uint16_t
16507 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16508 {
16509 	uint16_t xri_index;
16510 
16511 	xri_index = lpfc_sli4_alloc_xri(phba);
16512 	if (xri_index == NO_XRI)
16513 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16514 				"2004 Failed to allocate XRI.last XRITAG is %d"
16515 				" Max XRI is %d, Used XRI is %d\n",
16516 				xri_index,
16517 				phba->sli4_hba.max_cfg_param.max_xri,
16518 				phba->sli4_hba.max_cfg_param.xri_used);
16519 	return xri_index;
16520 }
16521 
16522 /**
16523  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16524  * @phba: pointer to lpfc hba data structure.
16525  * @post_sgl_list: pointer to els sgl entry list.
16526  * @count: number of els sgl entries on the list.
16527  *
16528  * This routine is invoked to post a block of driver's sgl pages to the
16529  * HBA using non-embedded mailbox command. No Lock is held. This routine
16530  * is only called when the driver is loading and after all IO has been
16531  * stopped.
16532  **/
16533 static int
16534 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16535 			    struct list_head *post_sgl_list,
16536 			    int post_cnt)
16537 {
16538 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16539 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16540 	struct sgl_page_pairs *sgl_pg_pairs;
16541 	void *viraddr;
16542 	LPFC_MBOXQ_t *mbox;
16543 	uint32_t reqlen, alloclen, pg_pairs;
16544 	uint32_t mbox_tmo;
16545 	uint16_t xritag_start = 0;
16546 	int rc = 0;
16547 	uint32_t shdr_status, shdr_add_status;
16548 	union lpfc_sli4_cfg_shdr *shdr;
16549 
16550 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16551 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16552 	if (reqlen > SLI4_PAGE_SIZE) {
16553 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16554 				"2559 Block sgl registration required DMA "
16555 				"size (%d) great than a page\n", reqlen);
16556 		return -ENOMEM;
16557 	}
16558 
16559 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16560 	if (!mbox)
16561 		return -ENOMEM;
16562 
16563 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16564 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16565 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16566 			 LPFC_SLI4_MBX_NEMBED);
16567 
16568 	if (alloclen < reqlen) {
16569 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16570 				"0285 Allocated DMA memory size (%d) is "
16571 				"less than the requested DMA memory "
16572 				"size (%d)\n", alloclen, reqlen);
16573 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16574 		return -ENOMEM;
16575 	}
16576 	/* Set up the SGL pages in the non-embedded DMA pages */
16577 	viraddr = mbox->sge_array->addr[0];
16578 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16579 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16580 
16581 	pg_pairs = 0;
16582 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16583 		/* Set up the sge entry */
16584 		sgl_pg_pairs->sgl_pg0_addr_lo =
16585 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
16586 		sgl_pg_pairs->sgl_pg0_addr_hi =
16587 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16588 		sgl_pg_pairs->sgl_pg1_addr_lo =
16589 				cpu_to_le32(putPaddrLow(0));
16590 		sgl_pg_pairs->sgl_pg1_addr_hi =
16591 				cpu_to_le32(putPaddrHigh(0));
16592 
16593 		/* Keep the first xritag on the list */
16594 		if (pg_pairs == 0)
16595 			xritag_start = sglq_entry->sli4_xritag;
16596 		sgl_pg_pairs++;
16597 		pg_pairs++;
16598 	}
16599 
16600 	/* Complete initialization and perform endian conversion. */
16601 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16602 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16603 	sgl->word0 = cpu_to_le32(sgl->word0);
16604 
16605 	if (!phba->sli4_hba.intr_enable)
16606 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16607 	else {
16608 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16609 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16610 	}
16611 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16612 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16613 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16614 	if (rc != MBX_TIMEOUT)
16615 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16616 	if (shdr_status || shdr_add_status || rc) {
16617 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16618 				"2513 POST_SGL_BLOCK mailbox command failed "
16619 				"status x%x add_status x%x mbx status x%x\n",
16620 				shdr_status, shdr_add_status, rc);
16621 		rc = -ENXIO;
16622 	}
16623 	return rc;
16624 }
16625 
16626 /**
16627  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
16628  * @phba: pointer to lpfc hba data structure.
16629  * @nblist: pointer to nvme buffer list.
16630  * @count: number of scsi buffers on the list.
16631  *
16632  * This routine is invoked to post a block of @count scsi sgl pages from a
16633  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
16634  * No Lock is held.
16635  *
16636  **/
16637 static int
16638 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
16639 			    int count)
16640 {
16641 	struct lpfc_io_buf *lpfc_ncmd;
16642 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16643 	struct sgl_page_pairs *sgl_pg_pairs;
16644 	void *viraddr;
16645 	LPFC_MBOXQ_t *mbox;
16646 	uint32_t reqlen, alloclen, pg_pairs;
16647 	uint32_t mbox_tmo;
16648 	uint16_t xritag_start = 0;
16649 	int rc = 0;
16650 	uint32_t shdr_status, shdr_add_status;
16651 	dma_addr_t pdma_phys_bpl1;
16652 	union lpfc_sli4_cfg_shdr *shdr;
16653 
16654 	/* Calculate the requested length of the dma memory */
16655 	reqlen = count * sizeof(struct sgl_page_pairs) +
16656 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16657 	if (reqlen > SLI4_PAGE_SIZE) {
16658 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16659 				"6118 Block sgl registration required DMA "
16660 				"size (%d) great than a page\n", reqlen);
16661 		return -ENOMEM;
16662 	}
16663 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16664 	if (!mbox) {
16665 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16666 				"6119 Failed to allocate mbox cmd memory\n");
16667 		return -ENOMEM;
16668 	}
16669 
16670 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16671 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16672 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16673 				    reqlen, LPFC_SLI4_MBX_NEMBED);
16674 
16675 	if (alloclen < reqlen) {
16676 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16677 				"6120 Allocated DMA memory size (%d) is "
16678 				"less than the requested DMA memory "
16679 				"size (%d)\n", alloclen, reqlen);
16680 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16681 		return -ENOMEM;
16682 	}
16683 
16684 	/* Get the first SGE entry from the non-embedded DMA memory */
16685 	viraddr = mbox->sge_array->addr[0];
16686 
16687 	/* Set up the SGL pages in the non-embedded DMA pages */
16688 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16689 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16690 
16691 	pg_pairs = 0;
16692 	list_for_each_entry(lpfc_ncmd, nblist, list) {
16693 		/* Set up the sge entry */
16694 		sgl_pg_pairs->sgl_pg0_addr_lo =
16695 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
16696 		sgl_pg_pairs->sgl_pg0_addr_hi =
16697 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
16698 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16699 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
16700 						SGL_PAGE_SIZE;
16701 		else
16702 			pdma_phys_bpl1 = 0;
16703 		sgl_pg_pairs->sgl_pg1_addr_lo =
16704 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16705 		sgl_pg_pairs->sgl_pg1_addr_hi =
16706 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16707 		/* Keep the first xritag on the list */
16708 		if (pg_pairs == 0)
16709 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
16710 		sgl_pg_pairs++;
16711 		pg_pairs++;
16712 	}
16713 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16714 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16715 	/* Perform endian conversion if necessary */
16716 	sgl->word0 = cpu_to_le32(sgl->word0);
16717 
16718 	if (!phba->sli4_hba.intr_enable) {
16719 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16720 	} else {
16721 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16722 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16723 	}
16724 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
16725 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16726 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16727 	if (rc != MBX_TIMEOUT)
16728 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16729 	if (shdr_status || shdr_add_status || rc) {
16730 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16731 				"6125 POST_SGL_BLOCK mailbox command failed "
16732 				"status x%x add_status x%x mbx status x%x\n",
16733 				shdr_status, shdr_add_status, rc);
16734 		rc = -ENXIO;
16735 	}
16736 	return rc;
16737 }
16738 
16739 /**
16740  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
16741  * @phba: pointer to lpfc hba data structure.
16742  * @post_nblist: pointer to the nvme buffer list.
16743  *
16744  * This routine walks a list of nvme buffers that was passed in. It attempts
16745  * to construct blocks of nvme buffer sgls which contains contiguous xris and
16746  * uses the non-embedded SGL block post mailbox commands to post to the port.
16747  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
16748  * embedded SGL post mailbox command for posting. The @post_nblist passed in
16749  * must be local list, thus no lock is needed when manipulate the list.
16750  *
16751  * Returns: 0 = failure, non-zero number of successfully posted buffers.
16752  **/
16753 int
16754 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
16755 			   struct list_head *post_nblist, int sb_count)
16756 {
16757 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
16758 	int status, sgl_size;
16759 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
16760 	dma_addr_t pdma_phys_sgl1;
16761 	int last_xritag = NO_XRI;
16762 	int cur_xritag;
16763 	LIST_HEAD(prep_nblist);
16764 	LIST_HEAD(blck_nblist);
16765 	LIST_HEAD(nvme_nblist);
16766 
16767 	/* sanity check */
16768 	if (sb_count <= 0)
16769 		return -EINVAL;
16770 
16771 	sgl_size = phba->cfg_sg_dma_buf_size;
16772 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
16773 		list_del_init(&lpfc_ncmd->list);
16774 		block_cnt++;
16775 		if ((last_xritag != NO_XRI) &&
16776 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
16777 			/* a hole in xri block, form a sgl posting block */
16778 			list_splice_init(&prep_nblist, &blck_nblist);
16779 			post_cnt = block_cnt - 1;
16780 			/* prepare list for next posting block */
16781 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16782 			block_cnt = 1;
16783 		} else {
16784 			/* prepare list for next posting block */
16785 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16786 			/* enough sgls for non-embed sgl mbox command */
16787 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
16788 				list_splice_init(&prep_nblist, &blck_nblist);
16789 				post_cnt = block_cnt;
16790 				block_cnt = 0;
16791 			}
16792 		}
16793 		num_posting++;
16794 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16795 
16796 		/* end of repost sgl list condition for NVME buffers */
16797 		if (num_posting == sb_count) {
16798 			if (post_cnt == 0) {
16799 				/* last sgl posting block */
16800 				list_splice_init(&prep_nblist, &blck_nblist);
16801 				post_cnt = block_cnt;
16802 			} else if (block_cnt == 1) {
16803 				/* last single sgl with non-contiguous xri */
16804 				if (sgl_size > SGL_PAGE_SIZE)
16805 					pdma_phys_sgl1 =
16806 						lpfc_ncmd->dma_phys_sgl +
16807 						SGL_PAGE_SIZE;
16808 				else
16809 					pdma_phys_sgl1 = 0;
16810 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16811 				status = lpfc_sli4_post_sgl(
16812 						phba, lpfc_ncmd->dma_phys_sgl,
16813 						pdma_phys_sgl1, cur_xritag);
16814 				if (status) {
16815 					/* Post error.  Buffer unavailable. */
16816 					lpfc_ncmd->flags |=
16817 						LPFC_SBUF_NOT_POSTED;
16818 				} else {
16819 					/* Post success. Bffer available. */
16820 					lpfc_ncmd->flags &=
16821 						~LPFC_SBUF_NOT_POSTED;
16822 					lpfc_ncmd->status = IOSTAT_SUCCESS;
16823 					num_posted++;
16824 				}
16825 				/* success, put on NVME buffer sgl list */
16826 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16827 			}
16828 		}
16829 
16830 		/* continue until a nembed page worth of sgls */
16831 		if (post_cnt == 0)
16832 			continue;
16833 
16834 		/* post block of NVME buffer list sgls */
16835 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
16836 						     post_cnt);
16837 
16838 		/* don't reset xirtag due to hole in xri block */
16839 		if (block_cnt == 0)
16840 			last_xritag = NO_XRI;
16841 
16842 		/* reset NVME buffer post count for next round of posting */
16843 		post_cnt = 0;
16844 
16845 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
16846 		while (!list_empty(&blck_nblist)) {
16847 			list_remove_head(&blck_nblist, lpfc_ncmd,
16848 					 struct lpfc_io_buf, list);
16849 			if (status) {
16850 				/* Post error.  Mark buffer unavailable. */
16851 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
16852 			} else {
16853 				/* Post success, Mark buffer available. */
16854 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
16855 				lpfc_ncmd->status = IOSTAT_SUCCESS;
16856 				num_posted++;
16857 			}
16858 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16859 		}
16860 	}
16861 	/* Push NVME buffers with sgl posted to the available list */
16862 	lpfc_io_buf_replenish(phba, &nvme_nblist);
16863 
16864 	return num_posted;
16865 }
16866 
16867 /**
16868  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16869  * @phba: pointer to lpfc_hba struct that the frame was received on
16870  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16871  *
16872  * This function checks the fields in the @fc_hdr to see if the FC frame is a
16873  * valid type of frame that the LPFC driver will handle. This function will
16874  * return a zero if the frame is a valid frame or a non zero value when the
16875  * frame does not pass the check.
16876  **/
16877 static int
16878 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16879 {
16880 	/*  make rctl_names static to save stack space */
16881 	struct fc_vft_header *fc_vft_hdr;
16882 	uint32_t *header = (uint32_t *) fc_hdr;
16883 
16884 	switch (fc_hdr->fh_r_ctl) {
16885 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
16886 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
16887 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
16888 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
16889 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
16890 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
16891 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
16892 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
16893 	case FC_RCTL_ELS_REQ:	/* extended link services request */
16894 	case FC_RCTL_ELS_REP:	/* extended link services reply */
16895 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
16896 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
16897 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
16898 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
16899 	case FC_RCTL_BA_RMC: 	/* remove connection */
16900 	case FC_RCTL_BA_ACC:	/* basic accept */
16901 	case FC_RCTL_BA_RJT:	/* basic reject */
16902 	case FC_RCTL_BA_PRMT:
16903 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
16904 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
16905 	case FC_RCTL_P_RJT:	/* port reject */
16906 	case FC_RCTL_F_RJT:	/* fabric reject */
16907 	case FC_RCTL_P_BSY:	/* port busy */
16908 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
16909 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
16910 	case FC_RCTL_LCR:	/* link credit reset */
16911 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
16912 	case FC_RCTL_END:	/* end */
16913 		break;
16914 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
16915 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16916 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16917 		return lpfc_fc_frame_check(phba, fc_hdr);
16918 	default:
16919 		goto drop;
16920 	}
16921 
16922 	switch (fc_hdr->fh_type) {
16923 	case FC_TYPE_BLS:
16924 	case FC_TYPE_ELS:
16925 	case FC_TYPE_FCP:
16926 	case FC_TYPE_CT:
16927 	case FC_TYPE_NVME:
16928 		break;
16929 	case FC_TYPE_IP:
16930 	case FC_TYPE_ILS:
16931 	default:
16932 		goto drop;
16933 	}
16934 
16935 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
16936 			"2538 Received frame rctl:x%x, type:x%x, "
16937 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
16938 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
16939 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
16940 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
16941 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
16942 			be32_to_cpu(header[6]));
16943 	return 0;
16944 drop:
16945 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
16946 			"2539 Dropped frame rctl:x%x type:x%x\n",
16947 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16948 	return 1;
16949 }
16950 
16951 /**
16952  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
16953  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16954  *
16955  * This function processes the FC header to retrieve the VFI from the VF
16956  * header, if one exists. This function will return the VFI if one exists
16957  * or 0 if no VSAN Header exists.
16958  **/
16959 static uint32_t
16960 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
16961 {
16962 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16963 
16964 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
16965 		return 0;
16966 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
16967 }
16968 
16969 /**
16970  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
16971  * @phba: Pointer to the HBA structure to search for the vport on
16972  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16973  * @fcfi: The FC Fabric ID that the frame came from
16974  *
16975  * This function searches the @phba for a vport that matches the content of the
16976  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
16977  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
16978  * returns the matching vport pointer or NULL if unable to match frame to a
16979  * vport.
16980  **/
16981 static struct lpfc_vport *
16982 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
16983 		       uint16_t fcfi, uint32_t did)
16984 {
16985 	struct lpfc_vport **vports;
16986 	struct lpfc_vport *vport = NULL;
16987 	int i;
16988 
16989 	if (did == Fabric_DID)
16990 		return phba->pport;
16991 	if ((phba->pport->fc_flag & FC_PT2PT) &&
16992 		!(phba->link_state == LPFC_HBA_READY))
16993 		return phba->pport;
16994 
16995 	vports = lpfc_create_vport_work_array(phba);
16996 	if (vports != NULL) {
16997 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
16998 			if (phba->fcf.fcfi == fcfi &&
16999 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17000 			    vports[i]->fc_myDID == did) {
17001 				vport = vports[i];
17002 				break;
17003 			}
17004 		}
17005 	}
17006 	lpfc_destroy_vport_work_array(phba, vports);
17007 	return vport;
17008 }
17009 
17010 /**
17011  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17012  * @vport: The vport to work on.
17013  *
17014  * This function updates the receive sequence time stamp for this vport. The
17015  * receive sequence time stamp indicates the time that the last frame of the
17016  * the sequence that has been idle for the longest amount of time was received.
17017  * the driver uses this time stamp to indicate if any received sequences have
17018  * timed out.
17019  **/
17020 static void
17021 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17022 {
17023 	struct lpfc_dmabuf *h_buf;
17024 	struct hbq_dmabuf *dmabuf = NULL;
17025 
17026 	/* get the oldest sequence on the rcv list */
17027 	h_buf = list_get_first(&vport->rcv_buffer_list,
17028 			       struct lpfc_dmabuf, list);
17029 	if (!h_buf)
17030 		return;
17031 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17032 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17033 }
17034 
17035 /**
17036  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17037  * @vport: The vport that the received sequences were sent to.
17038  *
17039  * This function cleans up all outstanding received sequences. This is called
17040  * by the driver when a link event or user action invalidates all the received
17041  * sequences.
17042  **/
17043 void
17044 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17045 {
17046 	struct lpfc_dmabuf *h_buf, *hnext;
17047 	struct lpfc_dmabuf *d_buf, *dnext;
17048 	struct hbq_dmabuf *dmabuf = NULL;
17049 
17050 	/* start with the oldest sequence on the rcv list */
17051 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17052 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17053 		list_del_init(&dmabuf->hbuf.list);
17054 		list_for_each_entry_safe(d_buf, dnext,
17055 					 &dmabuf->dbuf.list, list) {
17056 			list_del_init(&d_buf->list);
17057 			lpfc_in_buf_free(vport->phba, d_buf);
17058 		}
17059 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17060 	}
17061 }
17062 
17063 /**
17064  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17065  * @vport: The vport that the received sequences were sent to.
17066  *
17067  * This function determines whether any received sequences have timed out by
17068  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17069  * indicates that there is at least one timed out sequence this routine will
17070  * go through the received sequences one at a time from most inactive to most
17071  * active to determine which ones need to be cleaned up. Once it has determined
17072  * that a sequence needs to be cleaned up it will simply free up the resources
17073  * without sending an abort.
17074  **/
17075 void
17076 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17077 {
17078 	struct lpfc_dmabuf *h_buf, *hnext;
17079 	struct lpfc_dmabuf *d_buf, *dnext;
17080 	struct hbq_dmabuf *dmabuf = NULL;
17081 	unsigned long timeout;
17082 	int abort_count = 0;
17083 
17084 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17085 		   vport->rcv_buffer_time_stamp);
17086 	if (list_empty(&vport->rcv_buffer_list) ||
17087 	    time_before(jiffies, timeout))
17088 		return;
17089 	/* start with the oldest sequence on the rcv list */
17090 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17091 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17092 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17093 			   dmabuf->time_stamp);
17094 		if (time_before(jiffies, timeout))
17095 			break;
17096 		abort_count++;
17097 		list_del_init(&dmabuf->hbuf.list);
17098 		list_for_each_entry_safe(d_buf, dnext,
17099 					 &dmabuf->dbuf.list, list) {
17100 			list_del_init(&d_buf->list);
17101 			lpfc_in_buf_free(vport->phba, d_buf);
17102 		}
17103 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17104 	}
17105 	if (abort_count)
17106 		lpfc_update_rcv_time_stamp(vport);
17107 }
17108 
17109 /**
17110  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17111  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17112  *
17113  * This function searches through the existing incomplete sequences that have
17114  * been sent to this @vport. If the frame matches one of the incomplete
17115  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17116  * make up that sequence. If no sequence is found that matches this frame then
17117  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17118  * This function returns a pointer to the first dmabuf in the sequence list that
17119  * the frame was linked to.
17120  **/
17121 static struct hbq_dmabuf *
17122 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17123 {
17124 	struct fc_frame_header *new_hdr;
17125 	struct fc_frame_header *temp_hdr;
17126 	struct lpfc_dmabuf *d_buf;
17127 	struct lpfc_dmabuf *h_buf;
17128 	struct hbq_dmabuf *seq_dmabuf = NULL;
17129 	struct hbq_dmabuf *temp_dmabuf = NULL;
17130 	uint8_t	found = 0;
17131 
17132 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17133 	dmabuf->time_stamp = jiffies;
17134 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17135 
17136 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17137 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17138 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17139 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17140 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17141 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17142 			continue;
17143 		/* found a pending sequence that matches this frame */
17144 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17145 		break;
17146 	}
17147 	if (!seq_dmabuf) {
17148 		/*
17149 		 * This indicates first frame received for this sequence.
17150 		 * Queue the buffer on the vport's rcv_buffer_list.
17151 		 */
17152 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17153 		lpfc_update_rcv_time_stamp(vport);
17154 		return dmabuf;
17155 	}
17156 	temp_hdr = seq_dmabuf->hbuf.virt;
17157 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17158 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17159 		list_del_init(&seq_dmabuf->hbuf.list);
17160 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17161 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17162 		lpfc_update_rcv_time_stamp(vport);
17163 		return dmabuf;
17164 	}
17165 	/* move this sequence to the tail to indicate a young sequence */
17166 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17167 	seq_dmabuf->time_stamp = jiffies;
17168 	lpfc_update_rcv_time_stamp(vport);
17169 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17170 		temp_hdr = dmabuf->hbuf.virt;
17171 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17172 		return seq_dmabuf;
17173 	}
17174 	/* find the correct place in the sequence to insert this frame */
17175 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17176 	while (!found) {
17177 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17178 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17179 		/*
17180 		 * If the frame's sequence count is greater than the frame on
17181 		 * the list then insert the frame right after this frame
17182 		 */
17183 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17184 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17185 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17186 			found = 1;
17187 			break;
17188 		}
17189 
17190 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17191 			break;
17192 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17193 	}
17194 
17195 	if (found)
17196 		return seq_dmabuf;
17197 	return NULL;
17198 }
17199 
17200 /**
17201  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17202  * @vport: pointer to a vitural port
17203  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17204  *
17205  * This function tries to abort from the partially assembed sequence, described
17206  * by the information from basic abbort @dmabuf. It checks to see whether such
17207  * partially assembled sequence held by the driver. If so, it shall free up all
17208  * the frames from the partially assembled sequence.
17209  *
17210  * Return
17211  * true  -- if there is matching partially assembled sequence present and all
17212  *          the frames freed with the sequence;
17213  * false -- if there is no matching partially assembled sequence present so
17214  *          nothing got aborted in the lower layer driver
17215  **/
17216 static bool
17217 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17218 			    struct hbq_dmabuf *dmabuf)
17219 {
17220 	struct fc_frame_header *new_hdr;
17221 	struct fc_frame_header *temp_hdr;
17222 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17223 	struct hbq_dmabuf *seq_dmabuf = NULL;
17224 
17225 	/* Use the hdr_buf to find the sequence that matches this frame */
17226 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17227 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17228 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17229 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17230 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17231 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17232 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17233 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17234 			continue;
17235 		/* found a pending sequence that matches this frame */
17236 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17237 		break;
17238 	}
17239 
17240 	/* Free up all the frames from the partially assembled sequence */
17241 	if (seq_dmabuf) {
17242 		list_for_each_entry_safe(d_buf, n_buf,
17243 					 &seq_dmabuf->dbuf.list, list) {
17244 			list_del_init(&d_buf->list);
17245 			lpfc_in_buf_free(vport->phba, d_buf);
17246 		}
17247 		return true;
17248 	}
17249 	return false;
17250 }
17251 
17252 /**
17253  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17254  * @vport: pointer to a vitural port
17255  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17256  *
17257  * This function tries to abort from the assembed sequence from upper level
17258  * protocol, described by the information from basic abbort @dmabuf. It
17259  * checks to see whether such pending context exists at upper level protocol.
17260  * If so, it shall clean up the pending context.
17261  *
17262  * Return
17263  * true  -- if there is matching pending context of the sequence cleaned
17264  *          at ulp;
17265  * false -- if there is no matching pending context of the sequence present
17266  *          at ulp.
17267  **/
17268 static bool
17269 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17270 {
17271 	struct lpfc_hba *phba = vport->phba;
17272 	int handled;
17273 
17274 	/* Accepting abort at ulp with SLI4 only */
17275 	if (phba->sli_rev < LPFC_SLI_REV4)
17276 		return false;
17277 
17278 	/* Register all caring upper level protocols to attend abort */
17279 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17280 	if (handled)
17281 		return true;
17282 
17283 	return false;
17284 }
17285 
17286 /**
17287  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17288  * @phba: Pointer to HBA context object.
17289  * @cmd_iocbq: pointer to the command iocbq structure.
17290  * @rsp_iocbq: pointer to the response iocbq structure.
17291  *
17292  * This function handles the sequence abort response iocb command complete
17293  * event. It properly releases the memory allocated to the sequence abort
17294  * accept iocb.
17295  **/
17296 static void
17297 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17298 			     struct lpfc_iocbq *cmd_iocbq,
17299 			     struct lpfc_iocbq *rsp_iocbq)
17300 {
17301 	struct lpfc_nodelist *ndlp;
17302 
17303 	if (cmd_iocbq) {
17304 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17305 		lpfc_nlp_put(ndlp);
17306 		lpfc_nlp_not_used(ndlp);
17307 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17308 	}
17309 
17310 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17311 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17312 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17313 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17314 			rsp_iocbq->iocb.ulpStatus,
17315 			rsp_iocbq->iocb.un.ulpWord[4]);
17316 }
17317 
17318 /**
17319  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17320  * @phba: Pointer to HBA context object.
17321  * @xri: xri id in transaction.
17322  *
17323  * This function validates the xri maps to the known range of XRIs allocated an
17324  * used by the driver.
17325  **/
17326 uint16_t
17327 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17328 		      uint16_t xri)
17329 {
17330 	uint16_t i;
17331 
17332 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17333 		if (xri == phba->sli4_hba.xri_ids[i])
17334 			return i;
17335 	}
17336 	return NO_XRI;
17337 }
17338 
17339 /**
17340  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17341  * @phba: Pointer to HBA context object.
17342  * @fc_hdr: pointer to a FC frame header.
17343  *
17344  * This function sends a basic response to a previous unsol sequence abort
17345  * event after aborting the sequence handling.
17346  **/
17347 void
17348 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17349 			struct fc_frame_header *fc_hdr, bool aborted)
17350 {
17351 	struct lpfc_hba *phba = vport->phba;
17352 	struct lpfc_iocbq *ctiocb = NULL;
17353 	struct lpfc_nodelist *ndlp;
17354 	uint16_t oxid, rxid, xri, lxri;
17355 	uint32_t sid, fctl;
17356 	IOCB_t *icmd;
17357 	int rc;
17358 
17359 	if (!lpfc_is_link_up(phba))
17360 		return;
17361 
17362 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17363 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17364 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17365 
17366 	ndlp = lpfc_findnode_did(vport, sid);
17367 	if (!ndlp) {
17368 		ndlp = lpfc_nlp_init(vport, sid);
17369 		if (!ndlp) {
17370 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17371 					 "1268 Failed to allocate ndlp for "
17372 					 "oxid:x%x SID:x%x\n", oxid, sid);
17373 			return;
17374 		}
17375 		/* Put ndlp onto pport node list */
17376 		lpfc_enqueue_node(vport, ndlp);
17377 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17378 		/* re-setup ndlp without removing from node list */
17379 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17380 		if (!ndlp) {
17381 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17382 					 "3275 Failed to active ndlp found "
17383 					 "for oxid:x%x SID:x%x\n", oxid, sid);
17384 			return;
17385 		}
17386 	}
17387 
17388 	/* Allocate buffer for rsp iocb */
17389 	ctiocb = lpfc_sli_get_iocbq(phba);
17390 	if (!ctiocb)
17391 		return;
17392 
17393 	/* Extract the F_CTL field from FC_HDR */
17394 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17395 
17396 	icmd = &ctiocb->iocb;
17397 	icmd->un.xseq64.bdl.bdeSize = 0;
17398 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17399 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17400 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17401 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17402 
17403 	/* Fill in the rest of iocb fields */
17404 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17405 	icmd->ulpBdeCount = 0;
17406 	icmd->ulpLe = 1;
17407 	icmd->ulpClass = CLASS3;
17408 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17409 	ctiocb->context1 = lpfc_nlp_get(ndlp);
17410 
17411 	ctiocb->iocb_cmpl = NULL;
17412 	ctiocb->vport = phba->pport;
17413 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17414 	ctiocb->sli4_lxritag = NO_XRI;
17415 	ctiocb->sli4_xritag = NO_XRI;
17416 
17417 	if (fctl & FC_FC_EX_CTX)
17418 		/* Exchange responder sent the abort so we
17419 		 * own the oxid.
17420 		 */
17421 		xri = oxid;
17422 	else
17423 		xri = rxid;
17424 	lxri = lpfc_sli4_xri_inrange(phba, xri);
17425 	if (lxri != NO_XRI)
17426 		lpfc_set_rrq_active(phba, ndlp, lxri,
17427 			(xri == oxid) ? rxid : oxid, 0);
17428 	/* For BA_ABTS from exchange responder, if the logical xri with
17429 	 * the oxid maps to the FCP XRI range, the port no longer has
17430 	 * that exchange context, send a BLS_RJT. Override the IOCB for
17431 	 * a BA_RJT.
17432 	 */
17433 	if ((fctl & FC_FC_EX_CTX) &&
17434 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17435 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17436 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17437 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17438 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17439 	}
17440 
17441 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17442 	 * the driver no longer has that exchange, send a BLS_RJT. Override
17443 	 * the IOCB for a BA_RJT.
17444 	 */
17445 	if (aborted == false) {
17446 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17447 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17448 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17449 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17450 	}
17451 
17452 	if (fctl & FC_FC_EX_CTX) {
17453 		/* ABTS sent by responder to CT exchange, construction
17454 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17455 		 * field and RX_ID from ABTS for RX_ID field.
17456 		 */
17457 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17458 	} else {
17459 		/* ABTS sent by initiator to CT exchange, construction
17460 		 * of BA_ACC will need to allocate a new XRI as for the
17461 		 * XRI_TAG field.
17462 		 */
17463 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17464 	}
17465 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17466 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17467 
17468 	/* Xmit CT abts response on exchange <xid> */
17469 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17470 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17471 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17472 
17473 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17474 	if (rc == IOCB_ERROR) {
17475 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17476 				 "2925 Failed to issue CT ABTS RSP x%x on "
17477 				 "xri x%x, Data x%x\n",
17478 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17479 				 phba->link_state);
17480 		lpfc_nlp_put(ndlp);
17481 		ctiocb->context1 = NULL;
17482 		lpfc_sli_release_iocbq(phba, ctiocb);
17483 	}
17484 }
17485 
17486 /**
17487  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17488  * @vport: Pointer to the vport on which this sequence was received
17489  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17490  *
17491  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17492  * receive sequence is only partially assembed by the driver, it shall abort
17493  * the partially assembled frames for the sequence. Otherwise, if the
17494  * unsolicited receive sequence has been completely assembled and passed to
17495  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17496  * unsolicited sequence has been aborted. After that, it will issue a basic
17497  * accept to accept the abort.
17498  **/
17499 static void
17500 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17501 			     struct hbq_dmabuf *dmabuf)
17502 {
17503 	struct lpfc_hba *phba = vport->phba;
17504 	struct fc_frame_header fc_hdr;
17505 	uint32_t fctl;
17506 	bool aborted;
17507 
17508 	/* Make a copy of fc_hdr before the dmabuf being released */
17509 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17510 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17511 
17512 	if (fctl & FC_FC_EX_CTX) {
17513 		/* ABTS by responder to exchange, no cleanup needed */
17514 		aborted = true;
17515 	} else {
17516 		/* ABTS by initiator to exchange, need to do cleanup */
17517 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17518 		if (aborted == false)
17519 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17520 	}
17521 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17522 
17523 	if (phba->nvmet_support) {
17524 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17525 		return;
17526 	}
17527 
17528 	/* Respond with BA_ACC or BA_RJT accordingly */
17529 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17530 }
17531 
17532 /**
17533  * lpfc_seq_complete - Indicates if a sequence is complete
17534  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17535  *
17536  * This function checks the sequence, starting with the frame described by
17537  * @dmabuf, to see if all the frames associated with this sequence are present.
17538  * the frames associated with this sequence are linked to the @dmabuf using the
17539  * dbuf list. This function looks for two major things. 1) That the first frame
17540  * has a sequence count of zero. 2) There is a frame with last frame of sequence
17541  * set. 3) That there are no holes in the sequence count. The function will
17542  * return 1 when the sequence is complete, otherwise it will return 0.
17543  **/
17544 static int
17545 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17546 {
17547 	struct fc_frame_header *hdr;
17548 	struct lpfc_dmabuf *d_buf;
17549 	struct hbq_dmabuf *seq_dmabuf;
17550 	uint32_t fctl;
17551 	int seq_count = 0;
17552 
17553 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17554 	/* make sure first fame of sequence has a sequence count of zero */
17555 	if (hdr->fh_seq_cnt != seq_count)
17556 		return 0;
17557 	fctl = (hdr->fh_f_ctl[0] << 16 |
17558 		hdr->fh_f_ctl[1] << 8 |
17559 		hdr->fh_f_ctl[2]);
17560 	/* If last frame of sequence we can return success. */
17561 	if (fctl & FC_FC_END_SEQ)
17562 		return 1;
17563 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17564 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17565 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17566 		/* If there is a hole in the sequence count then fail. */
17567 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17568 			return 0;
17569 		fctl = (hdr->fh_f_ctl[0] << 16 |
17570 			hdr->fh_f_ctl[1] << 8 |
17571 			hdr->fh_f_ctl[2]);
17572 		/* If last frame of sequence we can return success. */
17573 		if (fctl & FC_FC_END_SEQ)
17574 			return 1;
17575 	}
17576 	return 0;
17577 }
17578 
17579 /**
17580  * lpfc_prep_seq - Prep sequence for ULP processing
17581  * @vport: Pointer to the vport on which this sequence was received
17582  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17583  *
17584  * This function takes a sequence, described by a list of frames, and creates
17585  * a list of iocbq structures to describe the sequence. This iocbq list will be
17586  * used to issue to the generic unsolicited sequence handler. This routine
17587  * returns a pointer to the first iocbq in the list. If the function is unable
17588  * to allocate an iocbq then it throw out the received frames that were not
17589  * able to be described and return a pointer to the first iocbq. If unable to
17590  * allocate any iocbqs (including the first) this function will return NULL.
17591  **/
17592 static struct lpfc_iocbq *
17593 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17594 {
17595 	struct hbq_dmabuf *hbq_buf;
17596 	struct lpfc_dmabuf *d_buf, *n_buf;
17597 	struct lpfc_iocbq *first_iocbq, *iocbq;
17598 	struct fc_frame_header *fc_hdr;
17599 	uint32_t sid;
17600 	uint32_t len, tot_len;
17601 	struct ulp_bde64 *pbde;
17602 
17603 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17604 	/* remove from receive buffer list */
17605 	list_del_init(&seq_dmabuf->hbuf.list);
17606 	lpfc_update_rcv_time_stamp(vport);
17607 	/* get the Remote Port's SID */
17608 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17609 	tot_len = 0;
17610 	/* Get an iocbq struct to fill in. */
17611 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17612 	if (first_iocbq) {
17613 		/* Initialize the first IOCB. */
17614 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17615 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17616 		first_iocbq->vport = vport;
17617 
17618 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
17619 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17620 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17621 			first_iocbq->iocb.un.rcvels.parmRo =
17622 				sli4_did_from_fc_hdr(fc_hdr);
17623 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17624 		} else
17625 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17626 		first_iocbq->iocb.ulpContext = NO_XRI;
17627 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17628 			be16_to_cpu(fc_hdr->fh_ox_id);
17629 		/* iocbq is prepped for internal consumption.  Physical vpi. */
17630 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
17631 			vport->phba->vpi_ids[vport->vpi];
17632 		/* put the first buffer into the first IOCBq */
17633 		tot_len = bf_get(lpfc_rcqe_length,
17634 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17635 
17636 		first_iocbq->context2 = &seq_dmabuf->dbuf;
17637 		first_iocbq->context3 = NULL;
17638 		first_iocbq->iocb.ulpBdeCount = 1;
17639 		if (tot_len > LPFC_DATA_BUF_SIZE)
17640 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17641 							LPFC_DATA_BUF_SIZE;
17642 		else
17643 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17644 
17645 		first_iocbq->iocb.un.rcvels.remoteID = sid;
17646 
17647 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17648 	}
17649 	iocbq = first_iocbq;
17650 	/*
17651 	 * Each IOCBq can have two Buffers assigned, so go through the list
17652 	 * of buffers for this sequence and save two buffers in each IOCBq
17653 	 */
17654 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17655 		if (!iocbq) {
17656 			lpfc_in_buf_free(vport->phba, d_buf);
17657 			continue;
17658 		}
17659 		if (!iocbq->context3) {
17660 			iocbq->context3 = d_buf;
17661 			iocbq->iocb.ulpBdeCount++;
17662 			/* We need to get the size out of the right CQE */
17663 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17664 			len = bf_get(lpfc_rcqe_length,
17665 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17666 			pbde = (struct ulp_bde64 *)
17667 					&iocbq->iocb.unsli3.sli3Words[4];
17668 			if (len > LPFC_DATA_BUF_SIZE)
17669 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17670 			else
17671 				pbde->tus.f.bdeSize = len;
17672 
17673 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17674 			tot_len += len;
17675 		} else {
17676 			iocbq = lpfc_sli_get_iocbq(vport->phba);
17677 			if (!iocbq) {
17678 				if (first_iocbq) {
17679 					first_iocbq->iocb.ulpStatus =
17680 							IOSTAT_FCP_RSP_ERROR;
17681 					first_iocbq->iocb.un.ulpWord[4] =
17682 							IOERR_NO_RESOURCES;
17683 				}
17684 				lpfc_in_buf_free(vport->phba, d_buf);
17685 				continue;
17686 			}
17687 			/* We need to get the size out of the right CQE */
17688 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17689 			len = bf_get(lpfc_rcqe_length,
17690 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17691 			iocbq->context2 = d_buf;
17692 			iocbq->context3 = NULL;
17693 			iocbq->iocb.ulpBdeCount = 1;
17694 			if (len > LPFC_DATA_BUF_SIZE)
17695 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17696 							LPFC_DATA_BUF_SIZE;
17697 			else
17698 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17699 
17700 			tot_len += len;
17701 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17702 
17703 			iocbq->iocb.un.rcvels.remoteID = sid;
17704 			list_add_tail(&iocbq->list, &first_iocbq->list);
17705 		}
17706 	}
17707 	return first_iocbq;
17708 }
17709 
17710 static void
17711 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17712 			  struct hbq_dmabuf *seq_dmabuf)
17713 {
17714 	struct fc_frame_header *fc_hdr;
17715 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17716 	struct lpfc_hba *phba = vport->phba;
17717 
17718 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17719 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17720 	if (!iocbq) {
17721 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17722 				"2707 Ring %d handler: Failed to allocate "
17723 				"iocb Rctl x%x Type x%x received\n",
17724 				LPFC_ELS_RING,
17725 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17726 		return;
17727 	}
17728 	if (!lpfc_complete_unsol_iocb(phba,
17729 				      phba->sli4_hba.els_wq->pring,
17730 				      iocbq, fc_hdr->fh_r_ctl,
17731 				      fc_hdr->fh_type))
17732 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17733 				"2540 Ring %d handler: unexpected Rctl "
17734 				"x%x Type x%x received\n",
17735 				LPFC_ELS_RING,
17736 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17737 
17738 	/* Free iocb created in lpfc_prep_seq */
17739 	list_for_each_entry_safe(curr_iocb, next_iocb,
17740 		&iocbq->list, list) {
17741 		list_del_init(&curr_iocb->list);
17742 		lpfc_sli_release_iocbq(phba, curr_iocb);
17743 	}
17744 	lpfc_sli_release_iocbq(phba, iocbq);
17745 }
17746 
17747 static void
17748 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17749 			    struct lpfc_iocbq *rspiocb)
17750 {
17751 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17752 
17753 	if (pcmd && pcmd->virt)
17754 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17755 	kfree(pcmd);
17756 	lpfc_sli_release_iocbq(phba, cmdiocb);
17757 	lpfc_drain_txq(phba);
17758 }
17759 
17760 static void
17761 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17762 			      struct hbq_dmabuf *dmabuf)
17763 {
17764 	struct fc_frame_header *fc_hdr;
17765 	struct lpfc_hba *phba = vport->phba;
17766 	struct lpfc_iocbq *iocbq = NULL;
17767 	union  lpfc_wqe *wqe;
17768 	struct lpfc_dmabuf *pcmd = NULL;
17769 	uint32_t frame_len;
17770 	int rc;
17771 	unsigned long iflags;
17772 
17773 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17774 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
17775 
17776 	/* Send the received frame back */
17777 	iocbq = lpfc_sli_get_iocbq(phba);
17778 	if (!iocbq) {
17779 		/* Queue cq event and wakeup worker thread to process it */
17780 		spin_lock_irqsave(&phba->hbalock, iflags);
17781 		list_add_tail(&dmabuf->cq_event.list,
17782 			      &phba->sli4_hba.sp_queue_event);
17783 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
17784 		spin_unlock_irqrestore(&phba->hbalock, iflags);
17785 		lpfc_worker_wake_up(phba);
17786 		return;
17787 	}
17788 
17789 	/* Allocate buffer for command payload */
17790 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
17791 	if (pcmd)
17792 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
17793 					    &pcmd->phys);
17794 	if (!pcmd || !pcmd->virt)
17795 		goto exit;
17796 
17797 	INIT_LIST_HEAD(&pcmd->list);
17798 
17799 	/* copyin the payload */
17800 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
17801 
17802 	/* fill in BDE's for command */
17803 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
17804 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
17805 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
17806 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
17807 
17808 	iocbq->context2 = pcmd;
17809 	iocbq->vport = vport;
17810 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
17811 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
17812 
17813 	/*
17814 	 * Setup rest of the iocb as though it were a WQE
17815 	 * Build the SEND_FRAME WQE
17816 	 */
17817 	wqe = (union lpfc_wqe *)&iocbq->iocb;
17818 
17819 	wqe->send_frame.frame_len = frame_len;
17820 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
17821 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
17822 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
17823 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
17824 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
17825 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
17826 
17827 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
17828 	iocbq->iocb.ulpLe = 1;
17829 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
17830 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
17831 	if (rc == IOCB_ERROR)
17832 		goto exit;
17833 
17834 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17835 	return;
17836 
17837 exit:
17838 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17839 			"2023 Unable to process MDS loopback frame\n");
17840 	if (pcmd && pcmd->virt)
17841 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17842 	kfree(pcmd);
17843 	if (iocbq)
17844 		lpfc_sli_release_iocbq(phba, iocbq);
17845 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17846 }
17847 
17848 /**
17849  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
17850  * @phba: Pointer to HBA context object.
17851  *
17852  * This function is called with no lock held. This function processes all
17853  * the received buffers and gives it to upper layers when a received buffer
17854  * indicates that it is the final frame in the sequence. The interrupt
17855  * service routine processes received buffers at interrupt contexts.
17856  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
17857  * appropriate receive function when the final frame in a sequence is received.
17858  **/
17859 void
17860 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
17861 				 struct hbq_dmabuf *dmabuf)
17862 {
17863 	struct hbq_dmabuf *seq_dmabuf;
17864 	struct fc_frame_header *fc_hdr;
17865 	struct lpfc_vport *vport;
17866 	uint32_t fcfi;
17867 	uint32_t did;
17868 
17869 	/* Process each received buffer */
17870 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17871 
17872 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
17873 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
17874 		vport = phba->pport;
17875 		/* Handle MDS Loopback frames */
17876 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17877 		return;
17878 	}
17879 
17880 	/* check to see if this a valid type of frame */
17881 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
17882 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17883 		return;
17884 	}
17885 
17886 	if ((bf_get(lpfc_cqe_code,
17887 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
17888 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
17889 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17890 	else
17891 		fcfi = bf_get(lpfc_rcqe_fcf_id,
17892 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17893 
17894 	/* d_id this frame is directed to */
17895 	did = sli4_did_from_fc_hdr(fc_hdr);
17896 
17897 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
17898 	if (!vport) {
17899 		/* throw out the frame */
17900 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17901 		return;
17902 	}
17903 
17904 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
17905 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
17906 		(did != Fabric_DID)) {
17907 		/*
17908 		 * Throw out the frame if we are not pt2pt.
17909 		 * The pt2pt protocol allows for discovery frames
17910 		 * to be received without a registered VPI.
17911 		 */
17912 		if (!(vport->fc_flag & FC_PT2PT) ||
17913 			(phba->link_state == LPFC_HBA_READY)) {
17914 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
17915 			return;
17916 		}
17917 	}
17918 
17919 	/* Handle the basic abort sequence (BA_ABTS) event */
17920 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
17921 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
17922 		return;
17923 	}
17924 
17925 	/* Link this frame */
17926 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
17927 	if (!seq_dmabuf) {
17928 		/* unable to add frame to vport - throw it out */
17929 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17930 		return;
17931 	}
17932 	/* If not last frame in sequence continue processing frames. */
17933 	if (!lpfc_seq_complete(seq_dmabuf))
17934 		return;
17935 
17936 	/* Send the complete sequence to the upper layer protocol */
17937 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
17938 }
17939 
17940 /**
17941  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
17942  * @phba: pointer to lpfc hba data structure.
17943  *
17944  * This routine is invoked to post rpi header templates to the
17945  * HBA consistent with the SLI-4 interface spec.  This routine
17946  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17947  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17948  *
17949  * This routine does not require any locks.  It's usage is expected
17950  * to be driver load or reset recovery when the driver is
17951  * sequential.
17952  *
17953  * Return codes
17954  * 	0 - successful
17955  *      -EIO - The mailbox failed to complete successfully.
17956  * 	When this error occurs, the driver is not guaranteed
17957  *	to have any rpi regions posted to the device and
17958  *	must either attempt to repost the regions or take a
17959  *	fatal error.
17960  **/
17961 int
17962 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
17963 {
17964 	struct lpfc_rpi_hdr *rpi_page;
17965 	uint32_t rc = 0;
17966 	uint16_t lrpi = 0;
17967 
17968 	/* SLI4 ports that support extents do not require RPI headers. */
17969 	if (!phba->sli4_hba.rpi_hdrs_in_use)
17970 		goto exit;
17971 	if (phba->sli4_hba.extents_in_use)
17972 		return -EIO;
17973 
17974 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
17975 		/*
17976 		 * Assign the rpi headers a physical rpi only if the driver
17977 		 * has not initialized those resources.  A port reset only
17978 		 * needs the headers posted.
17979 		 */
17980 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
17981 		    LPFC_RPI_RSRC_RDY)
17982 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17983 
17984 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
17985 		if (rc != MBX_SUCCESS) {
17986 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17987 					"2008 Error %d posting all rpi "
17988 					"headers\n", rc);
17989 			rc = -EIO;
17990 			break;
17991 		}
17992 	}
17993 
17994  exit:
17995 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
17996 	       LPFC_RPI_RSRC_RDY);
17997 	return rc;
17998 }
17999 
18000 /**
18001  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18002  * @phba: pointer to lpfc hba data structure.
18003  * @rpi_page:  pointer to the rpi memory region.
18004  *
18005  * This routine is invoked to post a single rpi header to the
18006  * HBA consistent with the SLI-4 interface spec.  This memory region
18007  * maps up to 64 rpi context regions.
18008  *
18009  * Return codes
18010  * 	0 - successful
18011  * 	-ENOMEM - No available memory
18012  *      -EIO - The mailbox failed to complete successfully.
18013  **/
18014 int
18015 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18016 {
18017 	LPFC_MBOXQ_t *mboxq;
18018 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18019 	uint32_t rc = 0;
18020 	uint32_t shdr_status, shdr_add_status;
18021 	union lpfc_sli4_cfg_shdr *shdr;
18022 
18023 	/* SLI4 ports that support extents do not require RPI headers. */
18024 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18025 		return rc;
18026 	if (phba->sli4_hba.extents_in_use)
18027 		return -EIO;
18028 
18029 	/* The port is notified of the header region via a mailbox command. */
18030 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18031 	if (!mboxq) {
18032 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18033 				"2001 Unable to allocate memory for issuing "
18034 				"SLI_CONFIG_SPECIAL mailbox command\n");
18035 		return -ENOMEM;
18036 	}
18037 
18038 	/* Post all rpi memory regions to the port. */
18039 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18040 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18041 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18042 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18043 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18044 			 LPFC_SLI4_MBX_EMBED);
18045 
18046 
18047 	/* Post the physical rpi to the port for this rpi header. */
18048 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18049 	       rpi_page->start_rpi);
18050 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18051 	       hdr_tmpl, rpi_page->page_count);
18052 
18053 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18054 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18055 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18056 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18057 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18058 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18059 	if (rc != MBX_TIMEOUT)
18060 		mempool_free(mboxq, phba->mbox_mem_pool);
18061 	if (shdr_status || shdr_add_status || rc) {
18062 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18063 				"2514 POST_RPI_HDR mailbox failed with "
18064 				"status x%x add_status x%x, mbx status x%x\n",
18065 				shdr_status, shdr_add_status, rc);
18066 		rc = -ENXIO;
18067 	} else {
18068 		/*
18069 		 * The next_rpi stores the next logical module-64 rpi value used
18070 		 * to post physical rpis in subsequent rpi postings.
18071 		 */
18072 		spin_lock_irq(&phba->hbalock);
18073 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18074 		spin_unlock_irq(&phba->hbalock);
18075 	}
18076 	return rc;
18077 }
18078 
18079 /**
18080  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18081  * @phba: pointer to lpfc hba data structure.
18082  *
18083  * This routine is invoked to post rpi header templates to the
18084  * HBA consistent with the SLI-4 interface spec.  This routine
18085  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18086  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18087  *
18088  * Returns
18089  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18090  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18091  **/
18092 int
18093 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18094 {
18095 	unsigned long rpi;
18096 	uint16_t max_rpi, rpi_limit;
18097 	uint16_t rpi_remaining, lrpi = 0;
18098 	struct lpfc_rpi_hdr *rpi_hdr;
18099 	unsigned long iflag;
18100 
18101 	/*
18102 	 * Fetch the next logical rpi.  Because this index is logical,
18103 	 * the  driver starts at 0 each time.
18104 	 */
18105 	spin_lock_irqsave(&phba->hbalock, iflag);
18106 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18107 	rpi_limit = phba->sli4_hba.next_rpi;
18108 
18109 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18110 	if (rpi >= rpi_limit)
18111 		rpi = LPFC_RPI_ALLOC_ERROR;
18112 	else {
18113 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18114 		phba->sli4_hba.max_cfg_param.rpi_used++;
18115 		phba->sli4_hba.rpi_count++;
18116 	}
18117 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18118 			"0001 rpi:%x max:%x lim:%x\n",
18119 			(int) rpi, max_rpi, rpi_limit);
18120 
18121 	/*
18122 	 * Don't try to allocate more rpi header regions if the device limit
18123 	 * has been exhausted.
18124 	 */
18125 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18126 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18127 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18128 		return rpi;
18129 	}
18130 
18131 	/*
18132 	 * RPI header postings are not required for SLI4 ports capable of
18133 	 * extents.
18134 	 */
18135 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18136 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18137 		return rpi;
18138 	}
18139 
18140 	/*
18141 	 * If the driver is running low on rpi resources, allocate another
18142 	 * page now.  Note that the next_rpi value is used because
18143 	 * it represents how many are actually in use whereas max_rpi notes
18144 	 * how many are supported max by the device.
18145 	 */
18146 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18147 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18148 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18149 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18150 		if (!rpi_hdr) {
18151 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18152 					"2002 Error Could not grow rpi "
18153 					"count\n");
18154 		} else {
18155 			lrpi = rpi_hdr->start_rpi;
18156 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18157 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18158 		}
18159 	}
18160 
18161 	return rpi;
18162 }
18163 
18164 /**
18165  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18166  * @phba: pointer to lpfc hba data structure.
18167  *
18168  * This routine is invoked to release an rpi to the pool of
18169  * available rpis maintained by the driver.
18170  **/
18171 static void
18172 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18173 {
18174 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18175 		phba->sli4_hba.rpi_count--;
18176 		phba->sli4_hba.max_cfg_param.rpi_used--;
18177 	}
18178 }
18179 
18180 /**
18181  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18182  * @phba: pointer to lpfc hba data structure.
18183  *
18184  * This routine is invoked to release an rpi to the pool of
18185  * available rpis maintained by the driver.
18186  **/
18187 void
18188 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18189 {
18190 	spin_lock_irq(&phba->hbalock);
18191 	__lpfc_sli4_free_rpi(phba, rpi);
18192 	spin_unlock_irq(&phba->hbalock);
18193 }
18194 
18195 /**
18196  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18197  * @phba: pointer to lpfc hba data structure.
18198  *
18199  * This routine is invoked to remove the memory region that
18200  * provided rpi via a bitmask.
18201  **/
18202 void
18203 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18204 {
18205 	kfree(phba->sli4_hba.rpi_bmask);
18206 	kfree(phba->sli4_hba.rpi_ids);
18207 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18208 }
18209 
18210 /**
18211  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18212  * @phba: pointer to lpfc hba data structure.
18213  *
18214  * This routine is invoked to remove the memory region that
18215  * provided rpi via a bitmask.
18216  **/
18217 int
18218 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18219 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18220 {
18221 	LPFC_MBOXQ_t *mboxq;
18222 	struct lpfc_hba *phba = ndlp->phba;
18223 	int rc;
18224 
18225 	/* The port is notified of the header region via a mailbox command. */
18226 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18227 	if (!mboxq)
18228 		return -ENOMEM;
18229 
18230 	/* Post all rpi memory regions to the port. */
18231 	lpfc_resume_rpi(mboxq, ndlp);
18232 	if (cmpl) {
18233 		mboxq->mbox_cmpl = cmpl;
18234 		mboxq->ctx_buf = arg;
18235 		mboxq->ctx_ndlp = ndlp;
18236 	} else
18237 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18238 	mboxq->vport = ndlp->vport;
18239 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18240 	if (rc == MBX_NOT_FINISHED) {
18241 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18242 				"2010 Resume RPI Mailbox failed "
18243 				"status %d, mbxStatus x%x\n", rc,
18244 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18245 		mempool_free(mboxq, phba->mbox_mem_pool);
18246 		return -EIO;
18247 	}
18248 	return 0;
18249 }
18250 
18251 /**
18252  * lpfc_sli4_init_vpi - Initialize a vpi with the port
18253  * @vport: Pointer to the vport for which the vpi is being initialized
18254  *
18255  * This routine is invoked to activate a vpi with the port.
18256  *
18257  * Returns:
18258  *    0 success
18259  *    -Evalue otherwise
18260  **/
18261 int
18262 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18263 {
18264 	LPFC_MBOXQ_t *mboxq;
18265 	int rc = 0;
18266 	int retval = MBX_SUCCESS;
18267 	uint32_t mbox_tmo;
18268 	struct lpfc_hba *phba = vport->phba;
18269 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18270 	if (!mboxq)
18271 		return -ENOMEM;
18272 	lpfc_init_vpi(phba, mboxq, vport->vpi);
18273 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18274 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18275 	if (rc != MBX_SUCCESS) {
18276 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18277 				"2022 INIT VPI Mailbox failed "
18278 				"status %d, mbxStatus x%x\n", rc,
18279 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18280 		retval = -EIO;
18281 	}
18282 	if (rc != MBX_TIMEOUT)
18283 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18284 
18285 	return retval;
18286 }
18287 
18288 /**
18289  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18290  * @phba: pointer to lpfc hba data structure.
18291  * @mboxq: Pointer to mailbox object.
18292  *
18293  * This routine is invoked to manually add a single FCF record. The caller
18294  * must pass a completely initialized FCF_Record.  This routine takes
18295  * care of the nonembedded mailbox operations.
18296  **/
18297 static void
18298 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18299 {
18300 	void *virt_addr;
18301 	union lpfc_sli4_cfg_shdr *shdr;
18302 	uint32_t shdr_status, shdr_add_status;
18303 
18304 	virt_addr = mboxq->sge_array->addr[0];
18305 	/* The IOCTL status is embedded in the mailbox subheader. */
18306 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18307 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18308 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18309 
18310 	if ((shdr_status || shdr_add_status) &&
18311 		(shdr_status != STATUS_FCF_IN_USE))
18312 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18313 			"2558 ADD_FCF_RECORD mailbox failed with "
18314 			"status x%x add_status x%x\n",
18315 			shdr_status, shdr_add_status);
18316 
18317 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18318 }
18319 
18320 /**
18321  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18322  * @phba: pointer to lpfc hba data structure.
18323  * @fcf_record:  pointer to the initialized fcf record to add.
18324  *
18325  * This routine is invoked to manually add a single FCF record. The caller
18326  * must pass a completely initialized FCF_Record.  This routine takes
18327  * care of the nonembedded mailbox operations.
18328  **/
18329 int
18330 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18331 {
18332 	int rc = 0;
18333 	LPFC_MBOXQ_t *mboxq;
18334 	uint8_t *bytep;
18335 	void *virt_addr;
18336 	struct lpfc_mbx_sge sge;
18337 	uint32_t alloc_len, req_len;
18338 	uint32_t fcfindex;
18339 
18340 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18341 	if (!mboxq) {
18342 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18343 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18344 		return -ENOMEM;
18345 	}
18346 
18347 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18348 		  sizeof(uint32_t);
18349 
18350 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18351 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18352 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18353 				     req_len, LPFC_SLI4_MBX_NEMBED);
18354 	if (alloc_len < req_len) {
18355 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18356 			"2523 Allocated DMA memory size (x%x) is "
18357 			"less than the requested DMA memory "
18358 			"size (x%x)\n", alloc_len, req_len);
18359 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18360 		return -ENOMEM;
18361 	}
18362 
18363 	/*
18364 	 * Get the first SGE entry from the non-embedded DMA memory.  This
18365 	 * routine only uses a single SGE.
18366 	 */
18367 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18368 	virt_addr = mboxq->sge_array->addr[0];
18369 	/*
18370 	 * Configure the FCF record for FCFI 0.  This is the driver's
18371 	 * hardcoded default and gets used in nonFIP mode.
18372 	 */
18373 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18374 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18375 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18376 
18377 	/*
18378 	 * Copy the fcf_index and the FCF Record Data. The data starts after
18379 	 * the FCoE header plus word10. The data copy needs to be endian
18380 	 * correct.
18381 	 */
18382 	bytep += sizeof(uint32_t);
18383 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18384 	mboxq->vport = phba->pport;
18385 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18386 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18387 	if (rc == MBX_NOT_FINISHED) {
18388 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18389 			"2515 ADD_FCF_RECORD mailbox failed with "
18390 			"status 0x%x\n", rc);
18391 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18392 		rc = -EIO;
18393 	} else
18394 		rc = 0;
18395 
18396 	return rc;
18397 }
18398 
18399 /**
18400  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18401  * @phba: pointer to lpfc hba data structure.
18402  * @fcf_record:  pointer to the fcf record to write the default data.
18403  * @fcf_index: FCF table entry index.
18404  *
18405  * This routine is invoked to build the driver's default FCF record.  The
18406  * values used are hardcoded.  This routine handles memory initialization.
18407  *
18408  **/
18409 void
18410 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18411 				struct fcf_record *fcf_record,
18412 				uint16_t fcf_index)
18413 {
18414 	memset(fcf_record, 0, sizeof(struct fcf_record));
18415 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18416 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18417 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18418 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18419 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18420 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18421 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18422 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18423 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18424 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18425 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18426 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18427 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18428 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18429 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18430 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18431 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18432 	/* Set the VLAN bit map */
18433 	if (phba->valid_vlan) {
18434 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
18435 			= 1 << (phba->vlan_id % 8);
18436 	}
18437 }
18438 
18439 /**
18440  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18441  * @phba: pointer to lpfc hba data structure.
18442  * @fcf_index: FCF table entry offset.
18443  *
18444  * This routine is invoked to scan the entire FCF table by reading FCF
18445  * record and processing it one at a time starting from the @fcf_index
18446  * for initial FCF discovery or fast FCF failover rediscovery.
18447  *
18448  * Return 0 if the mailbox command is submitted successfully, none 0
18449  * otherwise.
18450  **/
18451 int
18452 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18453 {
18454 	int rc = 0, error;
18455 	LPFC_MBOXQ_t *mboxq;
18456 
18457 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18458 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18459 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18460 	if (!mboxq) {
18461 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18462 				"2000 Failed to allocate mbox for "
18463 				"READ_FCF cmd\n");
18464 		error = -ENOMEM;
18465 		goto fail_fcf_scan;
18466 	}
18467 	/* Construct the read FCF record mailbox command */
18468 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18469 	if (rc) {
18470 		error = -EINVAL;
18471 		goto fail_fcf_scan;
18472 	}
18473 	/* Issue the mailbox command asynchronously */
18474 	mboxq->vport = phba->pport;
18475 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18476 
18477 	spin_lock_irq(&phba->hbalock);
18478 	phba->hba_flag |= FCF_TS_INPROG;
18479 	spin_unlock_irq(&phba->hbalock);
18480 
18481 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18482 	if (rc == MBX_NOT_FINISHED)
18483 		error = -EIO;
18484 	else {
18485 		/* Reset eligible FCF count for new scan */
18486 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18487 			phba->fcf.eligible_fcf_cnt = 0;
18488 		error = 0;
18489 	}
18490 fail_fcf_scan:
18491 	if (error) {
18492 		if (mboxq)
18493 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
18494 		/* FCF scan failed, clear FCF_TS_INPROG flag */
18495 		spin_lock_irq(&phba->hbalock);
18496 		phba->hba_flag &= ~FCF_TS_INPROG;
18497 		spin_unlock_irq(&phba->hbalock);
18498 	}
18499 	return error;
18500 }
18501 
18502 /**
18503  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18504  * @phba: pointer to lpfc hba data structure.
18505  * @fcf_index: FCF table entry offset.
18506  *
18507  * This routine is invoked to read an FCF record indicated by @fcf_index
18508  * and to use it for FLOGI roundrobin FCF failover.
18509  *
18510  * Return 0 if the mailbox command is submitted successfully, none 0
18511  * otherwise.
18512  **/
18513 int
18514 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18515 {
18516 	int rc = 0, error;
18517 	LPFC_MBOXQ_t *mboxq;
18518 
18519 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18520 	if (!mboxq) {
18521 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18522 				"2763 Failed to allocate mbox for "
18523 				"READ_FCF cmd\n");
18524 		error = -ENOMEM;
18525 		goto fail_fcf_read;
18526 	}
18527 	/* Construct the read FCF record mailbox command */
18528 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18529 	if (rc) {
18530 		error = -EINVAL;
18531 		goto fail_fcf_read;
18532 	}
18533 	/* Issue the mailbox command asynchronously */
18534 	mboxq->vport = phba->pport;
18535 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18536 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18537 	if (rc == MBX_NOT_FINISHED)
18538 		error = -EIO;
18539 	else
18540 		error = 0;
18541 
18542 fail_fcf_read:
18543 	if (error && mboxq)
18544 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18545 	return error;
18546 }
18547 
18548 /**
18549  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18550  * @phba: pointer to lpfc hba data structure.
18551  * @fcf_index: FCF table entry offset.
18552  *
18553  * This routine is invoked to read an FCF record indicated by @fcf_index to
18554  * determine whether it's eligible for FLOGI roundrobin failover list.
18555  *
18556  * Return 0 if the mailbox command is submitted successfully, none 0
18557  * otherwise.
18558  **/
18559 int
18560 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18561 {
18562 	int rc = 0, error;
18563 	LPFC_MBOXQ_t *mboxq;
18564 
18565 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18566 	if (!mboxq) {
18567 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18568 				"2758 Failed to allocate mbox for "
18569 				"READ_FCF cmd\n");
18570 				error = -ENOMEM;
18571 				goto fail_fcf_read;
18572 	}
18573 	/* Construct the read FCF record mailbox command */
18574 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18575 	if (rc) {
18576 		error = -EINVAL;
18577 		goto fail_fcf_read;
18578 	}
18579 	/* Issue the mailbox command asynchronously */
18580 	mboxq->vport = phba->pport;
18581 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18582 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18583 	if (rc == MBX_NOT_FINISHED)
18584 		error = -EIO;
18585 	else
18586 		error = 0;
18587 
18588 fail_fcf_read:
18589 	if (error && mboxq)
18590 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18591 	return error;
18592 }
18593 
18594 /**
18595  * lpfc_check_next_fcf_pri_level
18596  * phba pointer to the lpfc_hba struct for this port.
18597  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18598  * routine when the rr_bmask is empty. The FCF indecies are put into the
18599  * rr_bmask based on their priority level. Starting from the highest priority
18600  * to the lowest. The most likely FCF candidate will be in the highest
18601  * priority group. When this routine is called it searches the fcf_pri list for
18602  * next lowest priority group and repopulates the rr_bmask with only those
18603  * fcf_indexes.
18604  * returns:
18605  * 1=success 0=failure
18606  **/
18607 static int
18608 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18609 {
18610 	uint16_t next_fcf_pri;
18611 	uint16_t last_index;
18612 	struct lpfc_fcf_pri *fcf_pri;
18613 	int rc;
18614 	int ret = 0;
18615 
18616 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18617 			LPFC_SLI4_FCF_TBL_INDX_MAX);
18618 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18619 			"3060 Last IDX %d\n", last_index);
18620 
18621 	/* Verify the priority list has 2 or more entries */
18622 	spin_lock_irq(&phba->hbalock);
18623 	if (list_empty(&phba->fcf.fcf_pri_list) ||
18624 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
18625 		spin_unlock_irq(&phba->hbalock);
18626 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18627 			"3061 Last IDX %d\n", last_index);
18628 		return 0; /* Empty rr list */
18629 	}
18630 	spin_unlock_irq(&phba->hbalock);
18631 
18632 	next_fcf_pri = 0;
18633 	/*
18634 	 * Clear the rr_bmask and set all of the bits that are at this
18635 	 * priority.
18636 	 */
18637 	memset(phba->fcf.fcf_rr_bmask, 0,
18638 			sizeof(*phba->fcf.fcf_rr_bmask));
18639 	spin_lock_irq(&phba->hbalock);
18640 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18641 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18642 			continue;
18643 		/*
18644 		 * the 1st priority that has not FLOGI failed
18645 		 * will be the highest.
18646 		 */
18647 		if (!next_fcf_pri)
18648 			next_fcf_pri = fcf_pri->fcf_rec.priority;
18649 		spin_unlock_irq(&phba->hbalock);
18650 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18651 			rc = lpfc_sli4_fcf_rr_index_set(phba,
18652 						fcf_pri->fcf_rec.fcf_index);
18653 			if (rc)
18654 				return 0;
18655 		}
18656 		spin_lock_irq(&phba->hbalock);
18657 	}
18658 	/*
18659 	 * if next_fcf_pri was not set above and the list is not empty then
18660 	 * we have failed flogis on all of them. So reset flogi failed
18661 	 * and start at the beginning.
18662 	 */
18663 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18664 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18665 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18666 			/*
18667 			 * the 1st priority that has not FLOGI failed
18668 			 * will be the highest.
18669 			 */
18670 			if (!next_fcf_pri)
18671 				next_fcf_pri = fcf_pri->fcf_rec.priority;
18672 			spin_unlock_irq(&phba->hbalock);
18673 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18674 				rc = lpfc_sli4_fcf_rr_index_set(phba,
18675 						fcf_pri->fcf_rec.fcf_index);
18676 				if (rc)
18677 					return 0;
18678 			}
18679 			spin_lock_irq(&phba->hbalock);
18680 		}
18681 	} else
18682 		ret = 1;
18683 	spin_unlock_irq(&phba->hbalock);
18684 
18685 	return ret;
18686 }
18687 /**
18688  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18689  * @phba: pointer to lpfc hba data structure.
18690  *
18691  * This routine is to get the next eligible FCF record index in a round
18692  * robin fashion. If the next eligible FCF record index equals to the
18693  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18694  * shall be returned, otherwise, the next eligible FCF record's index
18695  * shall be returned.
18696  **/
18697 uint16_t
18698 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18699 {
18700 	uint16_t next_fcf_index;
18701 
18702 initial_priority:
18703 	/* Search start from next bit of currently registered FCF index */
18704 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
18705 
18706 next_priority:
18707 	/* Determine the next fcf index to check */
18708 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18709 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18710 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
18711 				       next_fcf_index);
18712 
18713 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
18714 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18715 		/*
18716 		 * If we have wrapped then we need to clear the bits that
18717 		 * have been tested so that we can detect when we should
18718 		 * change the priority level.
18719 		 */
18720 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18721 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18722 	}
18723 
18724 
18725 	/* Check roundrobin failover list empty condition */
18726 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18727 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18728 		/*
18729 		 * If next fcf index is not found check if there are lower
18730 		 * Priority level fcf's in the fcf_priority list.
18731 		 * Set up the rr_bmask with all of the avaiable fcf bits
18732 		 * at that level and continue the selection process.
18733 		 */
18734 		if (lpfc_check_next_fcf_pri_level(phba))
18735 			goto initial_priority;
18736 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18737 				"2844 No roundrobin failover FCF available\n");
18738 
18739 		return LPFC_FCOE_FCF_NEXT_NONE;
18740 	}
18741 
18742 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
18743 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
18744 		LPFC_FCF_FLOGI_FAILED) {
18745 		if (list_is_singular(&phba->fcf.fcf_pri_list))
18746 			return LPFC_FCOE_FCF_NEXT_NONE;
18747 
18748 		goto next_priority;
18749 	}
18750 
18751 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18752 			"2845 Get next roundrobin failover FCF (x%x)\n",
18753 			next_fcf_index);
18754 
18755 	return next_fcf_index;
18756 }
18757 
18758 /**
18759  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
18760  * @phba: pointer to lpfc hba data structure.
18761  *
18762  * This routine sets the FCF record index in to the eligible bmask for
18763  * roundrobin failover search. It checks to make sure that the index
18764  * does not go beyond the range of the driver allocated bmask dimension
18765  * before setting the bit.
18766  *
18767  * Returns 0 if the index bit successfully set, otherwise, it returns
18768  * -EINVAL.
18769  **/
18770 int
18771 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
18772 {
18773 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18774 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18775 				"2610 FCF (x%x) reached driver's book "
18776 				"keeping dimension:x%x\n",
18777 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18778 		return -EINVAL;
18779 	}
18780 	/* Set the eligible FCF record index bmask */
18781 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18782 
18783 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18784 			"2790 Set FCF (x%x) to roundrobin FCF failover "
18785 			"bmask\n", fcf_index);
18786 
18787 	return 0;
18788 }
18789 
18790 /**
18791  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
18792  * @phba: pointer to lpfc hba data structure.
18793  *
18794  * This routine clears the FCF record index from the eligible bmask for
18795  * roundrobin failover search. It checks to make sure that the index
18796  * does not go beyond the range of the driver allocated bmask dimension
18797  * before clearing the bit.
18798  **/
18799 void
18800 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
18801 {
18802 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
18803 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18804 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18805 				"2762 FCF (x%x) reached driver's book "
18806 				"keeping dimension:x%x\n",
18807 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18808 		return;
18809 	}
18810 	/* Clear the eligible FCF record index bmask */
18811 	spin_lock_irq(&phba->hbalock);
18812 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
18813 				 list) {
18814 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
18815 			list_del_init(&fcf_pri->list);
18816 			break;
18817 		}
18818 	}
18819 	spin_unlock_irq(&phba->hbalock);
18820 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18821 
18822 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18823 			"2791 Clear FCF (x%x) from roundrobin failover "
18824 			"bmask\n", fcf_index);
18825 }
18826 
18827 /**
18828  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
18829  * @phba: pointer to lpfc hba data structure.
18830  *
18831  * This routine is the completion routine for the rediscover FCF table mailbox
18832  * command. If the mailbox command returned failure, it will try to stop the
18833  * FCF rediscover wait timer.
18834  **/
18835 static void
18836 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
18837 {
18838 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18839 	uint32_t shdr_status, shdr_add_status;
18840 
18841 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18842 
18843 	shdr_status = bf_get(lpfc_mbox_hdr_status,
18844 			     &redisc_fcf->header.cfg_shdr.response);
18845 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
18846 			     &redisc_fcf->header.cfg_shdr.response);
18847 	if (shdr_status || shdr_add_status) {
18848 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18849 				"2746 Requesting for FCF rediscovery failed "
18850 				"status x%x add_status x%x\n",
18851 				shdr_status, shdr_add_status);
18852 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
18853 			spin_lock_irq(&phba->hbalock);
18854 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
18855 			spin_unlock_irq(&phba->hbalock);
18856 			/*
18857 			 * CVL event triggered FCF rediscover request failed,
18858 			 * last resort to re-try current registered FCF entry.
18859 			 */
18860 			lpfc_retry_pport_discovery(phba);
18861 		} else {
18862 			spin_lock_irq(&phba->hbalock);
18863 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
18864 			spin_unlock_irq(&phba->hbalock);
18865 			/*
18866 			 * DEAD FCF event triggered FCF rediscover request
18867 			 * failed, last resort to fail over as a link down
18868 			 * to FCF registration.
18869 			 */
18870 			lpfc_sli4_fcf_dead_failthrough(phba);
18871 		}
18872 	} else {
18873 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18874 				"2775 Start FCF rediscover quiescent timer\n");
18875 		/*
18876 		 * Start FCF rediscovery wait timer for pending FCF
18877 		 * before rescan FCF record table.
18878 		 */
18879 		lpfc_fcf_redisc_wait_start_timer(phba);
18880 	}
18881 
18882 	mempool_free(mbox, phba->mbox_mem_pool);
18883 }
18884 
18885 /**
18886  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
18887  * @phba: pointer to lpfc hba data structure.
18888  *
18889  * This routine is invoked to request for rediscovery of the entire FCF table
18890  * by the port.
18891  **/
18892 int
18893 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
18894 {
18895 	LPFC_MBOXQ_t *mbox;
18896 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18897 	int rc, length;
18898 
18899 	/* Cancel retry delay timers to all vports before FCF rediscover */
18900 	lpfc_cancel_all_vport_retry_delay_timer(phba);
18901 
18902 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18903 	if (!mbox) {
18904 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18905 				"2745 Failed to allocate mbox for "
18906 				"requesting FCF rediscover.\n");
18907 		return -ENOMEM;
18908 	}
18909 
18910 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
18911 		  sizeof(struct lpfc_sli4_cfg_mhdr));
18912 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18913 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
18914 			 length, LPFC_SLI4_MBX_EMBED);
18915 
18916 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18917 	/* Set count to 0 for invalidating the entire FCF database */
18918 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
18919 
18920 	/* Issue the mailbox command asynchronously */
18921 	mbox->vport = phba->pport;
18922 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
18923 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
18924 
18925 	if (rc == MBX_NOT_FINISHED) {
18926 		mempool_free(mbox, phba->mbox_mem_pool);
18927 		return -EIO;
18928 	}
18929 	return 0;
18930 }
18931 
18932 /**
18933  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
18934  * @phba: pointer to lpfc hba data structure.
18935  *
18936  * This function is the failover routine as a last resort to the FCF DEAD
18937  * event when driver failed to perform fast FCF failover.
18938  **/
18939 void
18940 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
18941 {
18942 	uint32_t link_state;
18943 
18944 	/*
18945 	 * Last resort as FCF DEAD event failover will treat this as
18946 	 * a link down, but save the link state because we don't want
18947 	 * it to be changed to Link Down unless it is already down.
18948 	 */
18949 	link_state = phba->link_state;
18950 	lpfc_linkdown(phba);
18951 	phba->link_state = link_state;
18952 
18953 	/* Unregister FCF if no devices connected to it */
18954 	lpfc_unregister_unused_fcf(phba);
18955 }
18956 
18957 /**
18958  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
18959  * @phba: pointer to lpfc hba data structure.
18960  * @rgn23_data: pointer to configure region 23 data.
18961  *
18962  * This function gets SLI3 port configure region 23 data through memory dump
18963  * mailbox command. When it successfully retrieves data, the size of the data
18964  * will be returned, otherwise, 0 will be returned.
18965  **/
18966 static uint32_t
18967 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18968 {
18969 	LPFC_MBOXQ_t *pmb = NULL;
18970 	MAILBOX_t *mb;
18971 	uint32_t offset = 0;
18972 	int rc;
18973 
18974 	if (!rgn23_data)
18975 		return 0;
18976 
18977 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18978 	if (!pmb) {
18979 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18980 				"2600 failed to allocate mailbox memory\n");
18981 		return 0;
18982 	}
18983 	mb = &pmb->u.mb;
18984 
18985 	do {
18986 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
18987 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
18988 
18989 		if (rc != MBX_SUCCESS) {
18990 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
18991 					"2601 failed to read config "
18992 					"region 23, rc 0x%x Status 0x%x\n",
18993 					rc, mb->mbxStatus);
18994 			mb->un.varDmp.word_cnt = 0;
18995 		}
18996 		/*
18997 		 * dump mem may return a zero when finished or we got a
18998 		 * mailbox error, either way we are done.
18999 		 */
19000 		if (mb->un.varDmp.word_cnt == 0)
19001 			break;
19002 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19003 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19004 
19005 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19006 				       rgn23_data + offset,
19007 				       mb->un.varDmp.word_cnt);
19008 		offset += mb->un.varDmp.word_cnt;
19009 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19010 
19011 	mempool_free(pmb, phba->mbox_mem_pool);
19012 	return offset;
19013 }
19014 
19015 /**
19016  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19017  * @phba: pointer to lpfc hba data structure.
19018  * @rgn23_data: pointer to configure region 23 data.
19019  *
19020  * This function gets SLI4 port configure region 23 data through memory dump
19021  * mailbox command. When it successfully retrieves data, the size of the data
19022  * will be returned, otherwise, 0 will be returned.
19023  **/
19024 static uint32_t
19025 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19026 {
19027 	LPFC_MBOXQ_t *mboxq = NULL;
19028 	struct lpfc_dmabuf *mp = NULL;
19029 	struct lpfc_mqe *mqe;
19030 	uint32_t data_length = 0;
19031 	int rc;
19032 
19033 	if (!rgn23_data)
19034 		return 0;
19035 
19036 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19037 	if (!mboxq) {
19038 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19039 				"3105 failed to allocate mailbox memory\n");
19040 		return 0;
19041 	}
19042 
19043 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19044 		goto out;
19045 	mqe = &mboxq->u.mqe;
19046 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19047 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19048 	if (rc)
19049 		goto out;
19050 	data_length = mqe->un.mb_words[5];
19051 	if (data_length == 0)
19052 		goto out;
19053 	if (data_length > DMP_RGN23_SIZE) {
19054 		data_length = 0;
19055 		goto out;
19056 	}
19057 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19058 out:
19059 	mempool_free(mboxq, phba->mbox_mem_pool);
19060 	if (mp) {
19061 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19062 		kfree(mp);
19063 	}
19064 	return data_length;
19065 }
19066 
19067 /**
19068  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19069  * @phba: pointer to lpfc hba data structure.
19070  *
19071  * This function read region 23 and parse TLV for port status to
19072  * decide if the user disaled the port. If the TLV indicates the
19073  * port is disabled, the hba_flag is set accordingly.
19074  **/
19075 void
19076 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19077 {
19078 	uint8_t *rgn23_data = NULL;
19079 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19080 	uint32_t offset = 0;
19081 
19082 	/* Get adapter Region 23 data */
19083 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19084 	if (!rgn23_data)
19085 		goto out;
19086 
19087 	if (phba->sli_rev < LPFC_SLI_REV4)
19088 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19089 	else {
19090 		if_type = bf_get(lpfc_sli_intf_if_type,
19091 				 &phba->sli4_hba.sli_intf);
19092 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19093 			goto out;
19094 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19095 	}
19096 
19097 	if (!data_size)
19098 		goto out;
19099 
19100 	/* Check the region signature first */
19101 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19102 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19103 			"2619 Config region 23 has bad signature\n");
19104 			goto out;
19105 	}
19106 	offset += 4;
19107 
19108 	/* Check the data structure version */
19109 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19110 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19111 			"2620 Config region 23 has bad version\n");
19112 		goto out;
19113 	}
19114 	offset += 4;
19115 
19116 	/* Parse TLV entries in the region */
19117 	while (offset < data_size) {
19118 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19119 			break;
19120 		/*
19121 		 * If the TLV is not driver specific TLV or driver id is
19122 		 * not linux driver id, skip the record.
19123 		 */
19124 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19125 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19126 		    (rgn23_data[offset + 3] != 0)) {
19127 			offset += rgn23_data[offset + 1] * 4 + 4;
19128 			continue;
19129 		}
19130 
19131 		/* Driver found a driver specific TLV in the config region */
19132 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19133 		offset += 4;
19134 		tlv_offset = 0;
19135 
19136 		/*
19137 		 * Search for configured port state sub-TLV.
19138 		 */
19139 		while ((offset < data_size) &&
19140 			(tlv_offset < sub_tlv_len)) {
19141 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19142 				offset += 4;
19143 				tlv_offset += 4;
19144 				break;
19145 			}
19146 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19147 				offset += rgn23_data[offset + 1] * 4 + 4;
19148 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19149 				continue;
19150 			}
19151 
19152 			/* This HBA contains PORT_STE configured */
19153 			if (!rgn23_data[offset + 2])
19154 				phba->hba_flag |= LINK_DISABLED;
19155 
19156 			goto out;
19157 		}
19158 	}
19159 
19160 out:
19161 	kfree(rgn23_data);
19162 	return;
19163 }
19164 
19165 /**
19166  * lpfc_wr_object - write an object to the firmware
19167  * @phba: HBA structure that indicates port to create a queue on.
19168  * @dmabuf_list: list of dmabufs to write to the port.
19169  * @size: the total byte value of the objects to write to the port.
19170  * @offset: the current offset to be used to start the transfer.
19171  *
19172  * This routine will create a wr_object mailbox command to send to the port.
19173  * the mailbox command will be constructed using the dma buffers described in
19174  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19175  * BDEs that the imbedded mailbox can support. The @offset variable will be
19176  * used to indicate the starting offset of the transfer and will also return
19177  * the offset after the write object mailbox has completed. @size is used to
19178  * determine the end of the object and whether the eof bit should be set.
19179  *
19180  * Return 0 is successful and offset will contain the the new offset to use
19181  * for the next write.
19182  * Return negative value for error cases.
19183  **/
19184 int
19185 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19186 	       uint32_t size, uint32_t *offset)
19187 {
19188 	struct lpfc_mbx_wr_object *wr_object;
19189 	LPFC_MBOXQ_t *mbox;
19190 	int rc = 0, i = 0;
19191 	uint32_t shdr_status, shdr_add_status, shdr_change_status;
19192 	uint32_t mbox_tmo;
19193 	struct lpfc_dmabuf *dmabuf;
19194 	uint32_t written = 0;
19195 	bool check_change_status = false;
19196 
19197 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19198 	if (!mbox)
19199 		return -ENOMEM;
19200 
19201 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19202 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19203 			sizeof(struct lpfc_mbx_wr_object) -
19204 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19205 
19206 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19207 	wr_object->u.request.write_offset = *offset;
19208 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19209 	wr_object->u.request.object_name[0] =
19210 		cpu_to_le32(wr_object->u.request.object_name[0]);
19211 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19212 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19213 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19214 			break;
19215 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19216 		wr_object->u.request.bde[i].addrHigh =
19217 			putPaddrHigh(dmabuf->phys);
19218 		if (written + SLI4_PAGE_SIZE >= size) {
19219 			wr_object->u.request.bde[i].tus.f.bdeSize =
19220 				(size - written);
19221 			written += (size - written);
19222 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19223 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19224 			check_change_status = true;
19225 		} else {
19226 			wr_object->u.request.bde[i].tus.f.bdeSize =
19227 				SLI4_PAGE_SIZE;
19228 			written += SLI4_PAGE_SIZE;
19229 		}
19230 		i++;
19231 	}
19232 	wr_object->u.request.bde_count = i;
19233 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19234 	if (!phba->sli4_hba.intr_enable)
19235 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19236 	else {
19237 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19238 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19239 	}
19240 	/* The IOCTL status is embedded in the mailbox subheader. */
19241 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19242 			     &wr_object->header.cfg_shdr.response);
19243 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19244 				 &wr_object->header.cfg_shdr.response);
19245 	if (check_change_status) {
19246 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
19247 					    &wr_object->u.response);
19248 		switch (shdr_change_status) {
19249 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19250 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19251 					"3198 Firmware write complete: System "
19252 					"reboot required to instantiate\n");
19253 			break;
19254 		case (LPFC_CHANGE_STATUS_FW_RESET):
19255 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19256 					"3199 Firmware write complete: Firmware"
19257 					" reset required to instantiate\n");
19258 			break;
19259 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19260 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19261 					"3200 Firmware write complete: Port "
19262 					"Migration or PCI Reset required to "
19263 					"instantiate\n");
19264 			break;
19265 		case (LPFC_CHANGE_STATUS_PCI_RESET):
19266 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19267 					"3201 Firmware write complete: PCI "
19268 					"Reset required to instantiate\n");
19269 			break;
19270 		default:
19271 			break;
19272 		}
19273 	}
19274 	if (rc != MBX_TIMEOUT)
19275 		mempool_free(mbox, phba->mbox_mem_pool);
19276 	if (shdr_status || shdr_add_status || rc) {
19277 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19278 				"3025 Write Object mailbox failed with "
19279 				"status x%x add_status x%x, mbx status x%x\n",
19280 				shdr_status, shdr_add_status, rc);
19281 		rc = -ENXIO;
19282 		*offset = shdr_add_status;
19283 	} else
19284 		*offset += wr_object->u.response.actual_write_length;
19285 	return rc;
19286 }
19287 
19288 /**
19289  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19290  * @vport: pointer to vport data structure.
19291  *
19292  * This function iterate through the mailboxq and clean up all REG_LOGIN
19293  * and REG_VPI mailbox commands associated with the vport. This function
19294  * is called when driver want to restart discovery of the vport due to
19295  * a Clear Virtual Link event.
19296  **/
19297 void
19298 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19299 {
19300 	struct lpfc_hba *phba = vport->phba;
19301 	LPFC_MBOXQ_t *mb, *nextmb;
19302 	struct lpfc_dmabuf *mp;
19303 	struct lpfc_nodelist *ndlp;
19304 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19305 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19306 	LIST_HEAD(mbox_cmd_list);
19307 	uint8_t restart_loop;
19308 
19309 	/* Clean up internally queued mailbox commands with the vport */
19310 	spin_lock_irq(&phba->hbalock);
19311 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19312 		if (mb->vport != vport)
19313 			continue;
19314 
19315 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19316 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19317 			continue;
19318 
19319 		list_del(&mb->list);
19320 		list_add_tail(&mb->list, &mbox_cmd_list);
19321 	}
19322 	/* Clean up active mailbox command with the vport */
19323 	mb = phba->sli.mbox_active;
19324 	if (mb && (mb->vport == vport)) {
19325 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19326 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19327 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19328 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19329 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19330 			/* Put reference count for delayed processing */
19331 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19332 			/* Unregister the RPI when mailbox complete */
19333 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19334 		}
19335 	}
19336 	/* Cleanup any mailbox completions which are not yet processed */
19337 	do {
19338 		restart_loop = 0;
19339 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19340 			/*
19341 			 * If this mailox is already processed or it is
19342 			 * for another vport ignore it.
19343 			 */
19344 			if ((mb->vport != vport) ||
19345 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19346 				continue;
19347 
19348 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19349 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19350 				continue;
19351 
19352 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19353 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19354 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19355 				/* Unregister the RPI when mailbox complete */
19356 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19357 				restart_loop = 1;
19358 				spin_unlock_irq(&phba->hbalock);
19359 				spin_lock(shost->host_lock);
19360 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19361 				spin_unlock(shost->host_lock);
19362 				spin_lock_irq(&phba->hbalock);
19363 				break;
19364 			}
19365 		}
19366 	} while (restart_loop);
19367 
19368 	spin_unlock_irq(&phba->hbalock);
19369 
19370 	/* Release the cleaned-up mailbox commands */
19371 	while (!list_empty(&mbox_cmd_list)) {
19372 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19373 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19374 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19375 			if (mp) {
19376 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19377 				kfree(mp);
19378 			}
19379 			mb->ctx_buf = NULL;
19380 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19381 			mb->ctx_ndlp = NULL;
19382 			if (ndlp) {
19383 				spin_lock(shost->host_lock);
19384 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19385 				spin_unlock(shost->host_lock);
19386 				lpfc_nlp_put(ndlp);
19387 			}
19388 		}
19389 		mempool_free(mb, phba->mbox_mem_pool);
19390 	}
19391 
19392 	/* Release the ndlp with the cleaned-up active mailbox command */
19393 	if (act_mbx_ndlp) {
19394 		spin_lock(shost->host_lock);
19395 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19396 		spin_unlock(shost->host_lock);
19397 		lpfc_nlp_put(act_mbx_ndlp);
19398 	}
19399 }
19400 
19401 /**
19402  * lpfc_drain_txq - Drain the txq
19403  * @phba: Pointer to HBA context object.
19404  *
19405  * This function attempt to submit IOCBs on the txq
19406  * to the adapter.  For SLI4 adapters, the txq contains
19407  * ELS IOCBs that have been deferred because the there
19408  * are no SGLs.  This congestion can occur with large
19409  * vport counts during node discovery.
19410  **/
19411 
19412 uint32_t
19413 lpfc_drain_txq(struct lpfc_hba *phba)
19414 {
19415 	LIST_HEAD(completions);
19416 	struct lpfc_sli_ring *pring;
19417 	struct lpfc_iocbq *piocbq = NULL;
19418 	unsigned long iflags = 0;
19419 	char *fail_msg = NULL;
19420 	struct lpfc_sglq *sglq;
19421 	union lpfc_wqe128 wqe;
19422 	uint32_t txq_cnt = 0;
19423 	struct lpfc_queue *wq;
19424 
19425 	if (phba->link_flag & LS_MDS_LOOPBACK) {
19426 		/* MDS WQE are posted only to first WQ*/
19427 		wq = phba->sli4_hba.hdwq[0].fcp_wq;
19428 		if (unlikely(!wq))
19429 			return 0;
19430 		pring = wq->pring;
19431 	} else {
19432 		wq = phba->sli4_hba.els_wq;
19433 		if (unlikely(!wq))
19434 			return 0;
19435 		pring = lpfc_phba_elsring(phba);
19436 	}
19437 
19438 	if (unlikely(!pring) || list_empty(&pring->txq))
19439 		return 0;
19440 
19441 	spin_lock_irqsave(&pring->ring_lock, iflags);
19442 	list_for_each_entry(piocbq, &pring->txq, list) {
19443 		txq_cnt++;
19444 	}
19445 
19446 	if (txq_cnt > pring->txq_max)
19447 		pring->txq_max = txq_cnt;
19448 
19449 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
19450 
19451 	while (!list_empty(&pring->txq)) {
19452 		spin_lock_irqsave(&pring->ring_lock, iflags);
19453 
19454 		piocbq = lpfc_sli_ringtx_get(phba, pring);
19455 		if (!piocbq) {
19456 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19457 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19458 				"2823 txq empty and txq_cnt is %d\n ",
19459 				txq_cnt);
19460 			break;
19461 		}
19462 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19463 		if (!sglq) {
19464 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
19465 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19466 			break;
19467 		}
19468 		txq_cnt--;
19469 
19470 		/* The xri and iocb resources secured,
19471 		 * attempt to issue request
19472 		 */
19473 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
19474 		piocbq->sli4_xritag = sglq->sli4_xritag;
19475 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19476 			fail_msg = "to convert bpl to sgl";
19477 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19478 			fail_msg = "to convert iocb to wqe";
19479 		else if (lpfc_sli4_wq_put(wq, &wqe))
19480 			fail_msg = " - Wq is full";
19481 		else
19482 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19483 
19484 		if (fail_msg) {
19485 			/* Failed means we can't issue and need to cancel */
19486 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19487 					"2822 IOCB failed %s iotag 0x%x "
19488 					"xri 0x%x\n",
19489 					fail_msg,
19490 					piocbq->iotag, piocbq->sli4_xritag);
19491 			list_add_tail(&piocbq->list, &completions);
19492 		}
19493 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19494 	}
19495 
19496 	/* Cancel all the IOCBs that cannot be issued */
19497 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19498 				IOERR_SLI_ABORTED);
19499 
19500 	return txq_cnt;
19501 }
19502 
19503 /**
19504  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19505  * @phba: Pointer to HBA context object.
19506  * @pwqe: Pointer to command WQE.
19507  * @sglq: Pointer to the scatter gather queue object.
19508  *
19509  * This routine converts the bpl or bde that is in the WQE
19510  * to a sgl list for the sli4 hardware. The physical address
19511  * of the bpl/bde is converted back to a virtual address.
19512  * If the WQE contains a BPL then the list of BDE's is
19513  * converted to sli4_sge's. If the WQE contains a single
19514  * BDE then it is converted to a single sli_sge.
19515  * The WQE is still in cpu endianness so the contents of
19516  * the bpl can be used without byte swapping.
19517  *
19518  * Returns valid XRI = Success, NO_XRI = Failure.
19519  */
19520 static uint16_t
19521 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19522 		 struct lpfc_sglq *sglq)
19523 {
19524 	uint16_t xritag = NO_XRI;
19525 	struct ulp_bde64 *bpl = NULL;
19526 	struct ulp_bde64 bde;
19527 	struct sli4_sge *sgl  = NULL;
19528 	struct lpfc_dmabuf *dmabuf;
19529 	union lpfc_wqe128 *wqe;
19530 	int numBdes = 0;
19531 	int i = 0;
19532 	uint32_t offset = 0; /* accumulated offset in the sg request list */
19533 	int inbound = 0; /* number of sg reply entries inbound from firmware */
19534 	uint32_t cmd;
19535 
19536 	if (!pwqeq || !sglq)
19537 		return xritag;
19538 
19539 	sgl  = (struct sli4_sge *)sglq->sgl;
19540 	wqe = &pwqeq->wqe;
19541 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19542 
19543 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19544 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19545 		return sglq->sli4_xritag;
19546 	numBdes = pwqeq->rsvd2;
19547 	if (numBdes) {
19548 		/* The addrHigh and addrLow fields within the WQE
19549 		 * have not been byteswapped yet so there is no
19550 		 * need to swap them back.
19551 		 */
19552 		if (pwqeq->context3)
19553 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19554 		else
19555 			return xritag;
19556 
19557 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
19558 		if (!bpl)
19559 			return xritag;
19560 
19561 		for (i = 0; i < numBdes; i++) {
19562 			/* Should already be byte swapped. */
19563 			sgl->addr_hi = bpl->addrHigh;
19564 			sgl->addr_lo = bpl->addrLow;
19565 
19566 			sgl->word2 = le32_to_cpu(sgl->word2);
19567 			if ((i+1) == numBdes)
19568 				bf_set(lpfc_sli4_sge_last, sgl, 1);
19569 			else
19570 				bf_set(lpfc_sli4_sge_last, sgl, 0);
19571 			/* swap the size field back to the cpu so we
19572 			 * can assign it to the sgl.
19573 			 */
19574 			bde.tus.w = le32_to_cpu(bpl->tus.w);
19575 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19576 			/* The offsets in the sgl need to be accumulated
19577 			 * separately for the request and reply lists.
19578 			 * The request is always first, the reply follows.
19579 			 */
19580 			switch (cmd) {
19581 			case CMD_GEN_REQUEST64_WQE:
19582 				/* add up the reply sg entries */
19583 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19584 					inbound++;
19585 				/* first inbound? reset the offset */
19586 				if (inbound == 1)
19587 					offset = 0;
19588 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19589 				bf_set(lpfc_sli4_sge_type, sgl,
19590 					LPFC_SGE_TYPE_DATA);
19591 				offset += bde.tus.f.bdeSize;
19592 				break;
19593 			case CMD_FCP_TRSP64_WQE:
19594 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
19595 				bf_set(lpfc_sli4_sge_type, sgl,
19596 					LPFC_SGE_TYPE_DATA);
19597 				break;
19598 			case CMD_FCP_TSEND64_WQE:
19599 			case CMD_FCP_TRECEIVE64_WQE:
19600 				bf_set(lpfc_sli4_sge_type, sgl,
19601 					bpl->tus.f.bdeFlags);
19602 				if (i < 3)
19603 					offset = 0;
19604 				else
19605 					offset += bde.tus.f.bdeSize;
19606 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19607 				break;
19608 			}
19609 			sgl->word2 = cpu_to_le32(sgl->word2);
19610 			bpl++;
19611 			sgl++;
19612 		}
19613 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19614 		/* The addrHigh and addrLow fields of the BDE have not
19615 		 * been byteswapped yet so they need to be swapped
19616 		 * before putting them in the sgl.
19617 		 */
19618 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19619 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19620 		sgl->word2 = le32_to_cpu(sgl->word2);
19621 		bf_set(lpfc_sli4_sge_last, sgl, 1);
19622 		sgl->word2 = cpu_to_le32(sgl->word2);
19623 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19624 	}
19625 	return sglq->sli4_xritag;
19626 }
19627 
19628 /**
19629  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19630  * @phba: Pointer to HBA context object.
19631  * @ring_number: Base sli ring number
19632  * @pwqe: Pointer to command WQE.
19633  **/
19634 int
19635 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19636 		    struct lpfc_iocbq *pwqe)
19637 {
19638 	union lpfc_wqe128 *wqe = &pwqe->wqe;
19639 	struct lpfc_nvmet_rcv_ctx *ctxp;
19640 	struct lpfc_queue *wq;
19641 	struct lpfc_sglq *sglq;
19642 	struct lpfc_sli_ring *pring;
19643 	unsigned long iflags;
19644 	uint32_t ret = 0;
19645 
19646 	/* NVME_LS and NVME_LS ABTS requests. */
19647 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19648 		pring =  phba->sli4_hba.nvmels_wq->pring;
19649 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19650 					  qp, wq_access);
19651 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19652 		if (!sglq) {
19653 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19654 			return WQE_BUSY;
19655 		}
19656 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
19657 		pwqe->sli4_xritag = sglq->sli4_xritag;
19658 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19659 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19660 			return WQE_ERROR;
19661 		}
19662 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19663 		       pwqe->sli4_xritag);
19664 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19665 		if (ret) {
19666 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19667 			return ret;
19668 		}
19669 
19670 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19671 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19672 		return 0;
19673 	}
19674 
19675 	/* NVME_FCREQ and NVME_ABTS requests */
19676 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
19677 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19678 		wq = qp->nvme_wq;
19679 		pring = wq->pring;
19680 
19681 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->nvme_cq_map);
19682 
19683 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19684 					  qp, wq_access);
19685 		ret = lpfc_sli4_wq_put(wq, wqe);
19686 		if (ret) {
19687 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19688 			return ret;
19689 		}
19690 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19691 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19692 		return 0;
19693 	}
19694 
19695 	/* NVMET requests */
19696 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19697 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19698 		wq = qp->nvme_wq;
19699 		pring = wq->pring;
19700 
19701 		ctxp = pwqe->context2;
19702 		sglq = ctxp->ctxbuf->sglq;
19703 		if (pwqe->sli4_xritag ==  NO_XRI) {
19704 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
19705 			pwqe->sli4_xritag = sglq->sli4_xritag;
19706 		}
19707 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19708 		       pwqe->sli4_xritag);
19709 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->nvme_cq_map);
19710 
19711 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19712 					  qp, wq_access);
19713 		ret = lpfc_sli4_wq_put(wq, wqe);
19714 		if (ret) {
19715 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19716 			return ret;
19717 		}
19718 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19719 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19720 		return 0;
19721 	}
19722 	return WQE_ERROR;
19723 }
19724 
19725 #ifdef LPFC_MXP_STAT
19726 /**
19727  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
19728  * @phba: pointer to lpfc hba data structure.
19729  * @hwqid: belong to which HWQ.
19730  *
19731  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
19732  * 15 seconds after a test case is running.
19733  *
19734  * The user should call lpfc_debugfs_multixripools_write before running a test
19735  * case to clear stat_snapshot_taken. Then the user starts a test case. During
19736  * test case is running, stat_snapshot_taken is incremented by 1 every time when
19737  * this routine is called from heartbeat timer. When stat_snapshot_taken is
19738  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
19739  **/
19740 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
19741 {
19742 	struct lpfc_sli4_hdw_queue *qp;
19743 	struct lpfc_multixri_pool *multixri_pool;
19744 	struct lpfc_pvt_pool *pvt_pool;
19745 	struct lpfc_pbl_pool *pbl_pool;
19746 	u32 txcmplq_cnt;
19747 
19748 	qp = &phba->sli4_hba.hdwq[hwqid];
19749 	multixri_pool = qp->p_multixri_pool;
19750 	if (!multixri_pool)
19751 		return;
19752 
19753 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
19754 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
19755 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
19756 		txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
19757 		if (qp->nvme_wq)
19758 			txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
19759 
19760 		multixri_pool->stat_pbl_count = pbl_pool->count;
19761 		multixri_pool->stat_pvt_count = pvt_pool->count;
19762 		multixri_pool->stat_busy_count = txcmplq_cnt;
19763 	}
19764 
19765 	multixri_pool->stat_snapshot_taken++;
19766 }
19767 #endif
19768 
19769 /**
19770  * lpfc_adjust_pvt_pool_count - Adjust private pool count
19771  * @phba: pointer to lpfc hba data structure.
19772  * @hwqid: belong to which HWQ.
19773  *
19774  * This routine moves some XRIs from private to public pool when private pool
19775  * is not busy.
19776  **/
19777 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
19778 {
19779 	struct lpfc_multixri_pool *multixri_pool;
19780 	u32 io_req_count;
19781 	u32 prev_io_req_count;
19782 
19783 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
19784 	if (!multixri_pool)
19785 		return;
19786 	io_req_count = multixri_pool->io_req_count;
19787 	prev_io_req_count = multixri_pool->prev_io_req_count;
19788 
19789 	if (prev_io_req_count != io_req_count) {
19790 		/* Private pool is busy */
19791 		multixri_pool->prev_io_req_count = io_req_count;
19792 	} else {
19793 		/* Private pool is not busy.
19794 		 * Move XRIs from private to public pool.
19795 		 */
19796 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
19797 	}
19798 }
19799 
19800 /**
19801  * lpfc_adjust_high_watermark - Adjust high watermark
19802  * @phba: pointer to lpfc hba data structure.
19803  * @hwqid: belong to which HWQ.
19804  *
19805  * This routine sets high watermark as number of outstanding XRIs,
19806  * but make sure the new value is between xri_limit/2 and xri_limit.
19807  **/
19808 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
19809 {
19810 	u32 new_watermark;
19811 	u32 watermark_max;
19812 	u32 watermark_min;
19813 	u32 xri_limit;
19814 	u32 txcmplq_cnt;
19815 	u32 abts_io_bufs;
19816 	struct lpfc_multixri_pool *multixri_pool;
19817 	struct lpfc_sli4_hdw_queue *qp;
19818 
19819 	qp = &phba->sli4_hba.hdwq[hwqid];
19820 	multixri_pool = qp->p_multixri_pool;
19821 	if (!multixri_pool)
19822 		return;
19823 	xri_limit = multixri_pool->xri_limit;
19824 
19825 	watermark_max = xri_limit;
19826 	watermark_min = xri_limit / 2;
19827 
19828 	txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
19829 	abts_io_bufs = qp->abts_scsi_io_bufs;
19830 	if (qp->nvme_wq) {
19831 		txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
19832 		abts_io_bufs += qp->abts_nvme_io_bufs;
19833 	}
19834 
19835 	new_watermark = txcmplq_cnt + abts_io_bufs;
19836 	new_watermark = min(watermark_max, new_watermark);
19837 	new_watermark = max(watermark_min, new_watermark);
19838 	multixri_pool->pvt_pool.high_watermark = new_watermark;
19839 
19840 #ifdef LPFC_MXP_STAT
19841 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
19842 					  new_watermark);
19843 #endif
19844 }
19845 
19846 /**
19847  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
19848  * @phba: pointer to lpfc hba data structure.
19849  * @hwqid: belong to which HWQ.
19850  *
19851  * This routine is called from hearbeat timer when pvt_pool is idle.
19852  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
19853  * The first step moves (all - low_watermark) amount of XRIs.
19854  * The second step moves the rest of XRIs.
19855  **/
19856 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
19857 {
19858 	struct lpfc_pbl_pool *pbl_pool;
19859 	struct lpfc_pvt_pool *pvt_pool;
19860 	struct lpfc_sli4_hdw_queue *qp;
19861 	struct lpfc_io_buf *lpfc_ncmd;
19862 	struct lpfc_io_buf *lpfc_ncmd_next;
19863 	unsigned long iflag;
19864 	struct list_head tmp_list;
19865 	u32 tmp_count;
19866 
19867 	qp = &phba->sli4_hba.hdwq[hwqid];
19868 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
19869 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
19870 	tmp_count = 0;
19871 
19872 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
19873 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
19874 
19875 	if (pvt_pool->count > pvt_pool->low_watermark) {
19876 		/* Step 1: move (all - low_watermark) from pvt_pool
19877 		 * to pbl_pool
19878 		 */
19879 
19880 		/* Move low watermark of bufs from pvt_pool to tmp_list */
19881 		INIT_LIST_HEAD(&tmp_list);
19882 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
19883 					 &pvt_pool->list, list) {
19884 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
19885 			tmp_count++;
19886 			if (tmp_count >= pvt_pool->low_watermark)
19887 				break;
19888 		}
19889 
19890 		/* Move all bufs from pvt_pool to pbl_pool */
19891 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
19892 
19893 		/* Move all bufs from tmp_list to pvt_pool */
19894 		list_splice(&tmp_list, &pvt_pool->list);
19895 
19896 		pbl_pool->count += (pvt_pool->count - tmp_count);
19897 		pvt_pool->count = tmp_count;
19898 	} else {
19899 		/* Step 2: move the rest from pvt_pool to pbl_pool */
19900 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
19901 		pbl_pool->count += pvt_pool->count;
19902 		pvt_pool->count = 0;
19903 	}
19904 
19905 	spin_unlock(&pvt_pool->lock);
19906 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19907 }
19908 
19909 /**
19910  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
19911  * @phba: pointer to lpfc hba data structure
19912  * @pbl_pool: specified public free XRI pool
19913  * @pvt_pool: specified private free XRI pool
19914  * @count: number of XRIs to move
19915  *
19916  * This routine tries to move some free common bufs from the specified pbl_pool
19917  * to the specified pvt_pool. It might move less than count XRIs if there's not
19918  * enough in public pool.
19919  *
19920  * Return:
19921  *   true - if XRIs are successfully moved from the specified pbl_pool to the
19922  *          specified pvt_pool
19923  *   false - if the specified pbl_pool is empty or locked by someone else
19924  **/
19925 static bool
19926 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19927 			  struct lpfc_pbl_pool *pbl_pool,
19928 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
19929 {
19930 	struct lpfc_io_buf *lpfc_ncmd;
19931 	struct lpfc_io_buf *lpfc_ncmd_next;
19932 	unsigned long iflag;
19933 	int ret;
19934 
19935 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
19936 	if (ret) {
19937 		if (pbl_pool->count) {
19938 			/* Move a batch of XRIs from public to private pool */
19939 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
19940 			list_for_each_entry_safe(lpfc_ncmd,
19941 						 lpfc_ncmd_next,
19942 						 &pbl_pool->list,
19943 						 list) {
19944 				list_move_tail(&lpfc_ncmd->list,
19945 					       &pvt_pool->list);
19946 				pvt_pool->count++;
19947 				pbl_pool->count--;
19948 				count--;
19949 				if (count == 0)
19950 					break;
19951 			}
19952 
19953 			spin_unlock(&pvt_pool->lock);
19954 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19955 			return true;
19956 		}
19957 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19958 	}
19959 
19960 	return false;
19961 }
19962 
19963 /**
19964  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
19965  * @phba: pointer to lpfc hba data structure.
19966  * @hwqid: belong to which HWQ.
19967  * @count: number of XRIs to move
19968  *
19969  * This routine tries to find some free common bufs in one of public pools with
19970  * Round Robin method. The search always starts from local hwqid, then the next
19971  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
19972  * a batch of free common bufs are moved to private pool on hwqid.
19973  * It might move less than count XRIs if there's not enough in public pool.
19974  **/
19975 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
19976 {
19977 	struct lpfc_multixri_pool *multixri_pool;
19978 	struct lpfc_multixri_pool *next_multixri_pool;
19979 	struct lpfc_pvt_pool *pvt_pool;
19980 	struct lpfc_pbl_pool *pbl_pool;
19981 	struct lpfc_sli4_hdw_queue *qp;
19982 	u32 next_hwqid;
19983 	u32 hwq_count;
19984 	int ret;
19985 
19986 	qp = &phba->sli4_hba.hdwq[hwqid];
19987 	multixri_pool = qp->p_multixri_pool;
19988 	pvt_pool = &multixri_pool->pvt_pool;
19989 	pbl_pool = &multixri_pool->pbl_pool;
19990 
19991 	/* Check if local pbl_pool is available */
19992 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
19993 	if (ret) {
19994 #ifdef LPFC_MXP_STAT
19995 		multixri_pool->local_pbl_hit_count++;
19996 #endif
19997 		return;
19998 	}
19999 
20000 	hwq_count = phba->cfg_hdw_queue;
20001 
20002 	/* Get the next hwqid which was found last time */
20003 	next_hwqid = multixri_pool->rrb_next_hwqid;
20004 
20005 	do {
20006 		/* Go to next hwq */
20007 		next_hwqid = (next_hwqid + 1) % hwq_count;
20008 
20009 		next_multixri_pool =
20010 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20011 		pbl_pool = &next_multixri_pool->pbl_pool;
20012 
20013 		/* Check if the public free xri pool is available */
20014 		ret = _lpfc_move_xri_pbl_to_pvt(
20015 			phba, qp, pbl_pool, pvt_pool, count);
20016 
20017 		/* Exit while-loop if success or all hwqid are checked */
20018 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20019 
20020 	/* Starting point for the next time */
20021 	multixri_pool->rrb_next_hwqid = next_hwqid;
20022 
20023 	if (!ret) {
20024 		/* stats: all public pools are empty*/
20025 		multixri_pool->pbl_empty_count++;
20026 	}
20027 
20028 #ifdef LPFC_MXP_STAT
20029 	if (ret) {
20030 		if (next_hwqid == hwqid)
20031 			multixri_pool->local_pbl_hit_count++;
20032 		else
20033 			multixri_pool->other_pbl_hit_count++;
20034 	}
20035 #endif
20036 }
20037 
20038 /**
20039  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20040  * @phba: pointer to lpfc hba data structure.
20041  * @qp: belong to which HWQ.
20042  *
20043  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20044  * low watermark.
20045  **/
20046 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20047 {
20048 	struct lpfc_multixri_pool *multixri_pool;
20049 	struct lpfc_pvt_pool *pvt_pool;
20050 
20051 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20052 	pvt_pool = &multixri_pool->pvt_pool;
20053 
20054 	if (pvt_pool->count < pvt_pool->low_watermark)
20055 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20056 }
20057 
20058 /**
20059  * lpfc_release_io_buf - Return one IO buf back to free pool
20060  * @phba: pointer to lpfc hba data structure.
20061  * @lpfc_ncmd: IO buf to be returned.
20062  * @qp: belong to which HWQ.
20063  *
20064  * This routine returns one IO buf back to free pool. If this is an urgent IO,
20065  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20066  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20067  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
20068  * lpfc_io_buf_list_put.
20069  **/
20070 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20071 			 struct lpfc_sli4_hdw_queue *qp)
20072 {
20073 	unsigned long iflag;
20074 	struct lpfc_pbl_pool *pbl_pool;
20075 	struct lpfc_pvt_pool *pvt_pool;
20076 	struct lpfc_epd_pool *epd_pool;
20077 	u32 txcmplq_cnt;
20078 	u32 xri_owned;
20079 	u32 xri_limit;
20080 	u32 abts_io_bufs;
20081 
20082 	/* MUST zero fields if buffer is reused by another protocol */
20083 	lpfc_ncmd->nvmeCmd = NULL;
20084 	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20085 	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20086 
20087 	if (phba->cfg_xri_rebalancing) {
20088 		if (lpfc_ncmd->expedite) {
20089 			/* Return to expedite pool */
20090 			epd_pool = &phba->epd_pool;
20091 			spin_lock_irqsave(&epd_pool->lock, iflag);
20092 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20093 			epd_pool->count++;
20094 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
20095 			return;
20096 		}
20097 
20098 		/* Avoid invalid access if an IO sneaks in and is being rejected
20099 		 * just _after_ xri pools are destroyed in lpfc_offline.
20100 		 * Nothing much can be done at this point.
20101 		 */
20102 		if (!qp->p_multixri_pool)
20103 			return;
20104 
20105 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20106 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20107 
20108 		txcmplq_cnt = qp->fcp_wq->pring->txcmplq_cnt;
20109 		abts_io_bufs = qp->abts_scsi_io_bufs;
20110 		if (qp->nvme_wq) {
20111 			txcmplq_cnt += qp->nvme_wq->pring->txcmplq_cnt;
20112 			abts_io_bufs += qp->abts_nvme_io_bufs;
20113 		}
20114 
20115 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20116 		xri_limit = qp->p_multixri_pool->xri_limit;
20117 
20118 #ifdef LPFC_MXP_STAT
20119 		if (xri_owned <= xri_limit)
20120 			qp->p_multixri_pool->below_limit_count++;
20121 		else
20122 			qp->p_multixri_pool->above_limit_count++;
20123 #endif
20124 
20125 		/* XRI goes to either public or private free xri pool
20126 		 *     based on watermark and xri_limit
20127 		 */
20128 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
20129 		    (xri_owned < xri_limit &&
20130 		     pvt_pool->count < pvt_pool->high_watermark)) {
20131 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20132 						  qp, free_pvt_pool);
20133 			list_add_tail(&lpfc_ncmd->list,
20134 				      &pvt_pool->list);
20135 			pvt_pool->count++;
20136 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20137 		} else {
20138 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20139 						  qp, free_pub_pool);
20140 			list_add_tail(&lpfc_ncmd->list,
20141 				      &pbl_pool->list);
20142 			pbl_pool->count++;
20143 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20144 		}
20145 	} else {
20146 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20147 					  qp, free_xri);
20148 		list_add_tail(&lpfc_ncmd->list,
20149 			      &qp->lpfc_io_buf_list_put);
20150 		qp->put_io_bufs++;
20151 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20152 				       iflag);
20153 	}
20154 }
20155 
20156 /**
20157  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20158  * @phba: pointer to lpfc hba data structure.
20159  * @pvt_pool: pointer to private pool data structure.
20160  * @ndlp: pointer to lpfc nodelist data structure.
20161  *
20162  * This routine tries to get one free IO buf from private pool.
20163  *
20164  * Return:
20165  *   pointer to one free IO buf - if private pool is not empty
20166  *   NULL - if private pool is empty
20167  **/
20168 static struct lpfc_io_buf *
20169 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20170 				  struct lpfc_sli4_hdw_queue *qp,
20171 				  struct lpfc_pvt_pool *pvt_pool,
20172 				  struct lpfc_nodelist *ndlp)
20173 {
20174 	struct lpfc_io_buf *lpfc_ncmd;
20175 	struct lpfc_io_buf *lpfc_ncmd_next;
20176 	unsigned long iflag;
20177 
20178 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20179 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20180 				 &pvt_pool->list, list) {
20181 		if (lpfc_test_rrq_active(
20182 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20183 			continue;
20184 		list_del(&lpfc_ncmd->list);
20185 		pvt_pool->count--;
20186 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20187 		return lpfc_ncmd;
20188 	}
20189 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20190 
20191 	return NULL;
20192 }
20193 
20194 /**
20195  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20196  * @phba: pointer to lpfc hba data structure.
20197  *
20198  * This routine tries to get one free IO buf from expedite pool.
20199  *
20200  * Return:
20201  *   pointer to one free IO buf - if expedite pool is not empty
20202  *   NULL - if expedite pool is empty
20203  **/
20204 static struct lpfc_io_buf *
20205 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20206 {
20207 	struct lpfc_io_buf *lpfc_ncmd;
20208 	struct lpfc_io_buf *lpfc_ncmd_next;
20209 	unsigned long iflag;
20210 	struct lpfc_epd_pool *epd_pool;
20211 
20212 	epd_pool = &phba->epd_pool;
20213 	lpfc_ncmd = NULL;
20214 
20215 	spin_lock_irqsave(&epd_pool->lock, iflag);
20216 	if (epd_pool->count > 0) {
20217 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20218 					 &epd_pool->list, list) {
20219 			list_del(&lpfc_ncmd->list);
20220 			epd_pool->count--;
20221 			break;
20222 		}
20223 	}
20224 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
20225 
20226 	return lpfc_ncmd;
20227 }
20228 
20229 /**
20230  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20231  * @phba: pointer to lpfc hba data structure.
20232  * @ndlp: pointer to lpfc nodelist data structure.
20233  * @hwqid: belong to which HWQ
20234  * @expedite: 1 means this request is urgent.
20235  *
20236  * This routine will do the following actions and then return a pointer to
20237  * one free IO buf.
20238  *
20239  * 1. If private free xri count is empty, move some XRIs from public to
20240  *    private pool.
20241  * 2. Get one XRI from private free xri pool.
20242  * 3. If we fail to get one from pvt_pool and this is an expedite request,
20243  *    get one free xri from expedite pool.
20244  *
20245  * Note: ndlp is only used on SCSI side for RRQ testing.
20246  *       The caller should pass NULL for ndlp on NVME side.
20247  *
20248  * Return:
20249  *   pointer to one free IO buf - if private pool is not empty
20250  *   NULL - if private pool is empty
20251  **/
20252 static struct lpfc_io_buf *
20253 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20254 				    struct lpfc_nodelist *ndlp,
20255 				    int hwqid, int expedite)
20256 {
20257 	struct lpfc_sli4_hdw_queue *qp;
20258 	struct lpfc_multixri_pool *multixri_pool;
20259 	struct lpfc_pvt_pool *pvt_pool;
20260 	struct lpfc_io_buf *lpfc_ncmd;
20261 
20262 	qp = &phba->sli4_hba.hdwq[hwqid];
20263 	lpfc_ncmd = NULL;
20264 	multixri_pool = qp->p_multixri_pool;
20265 	pvt_pool = &multixri_pool->pvt_pool;
20266 	multixri_pool->io_req_count++;
20267 
20268 	/* If pvt_pool is empty, move some XRIs from public to private pool */
20269 	if (pvt_pool->count == 0)
20270 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20271 
20272 	/* Get one XRI from private free xri pool */
20273 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20274 
20275 	if (lpfc_ncmd) {
20276 		lpfc_ncmd->hdwq = qp;
20277 		lpfc_ncmd->hdwq_no = hwqid;
20278 	} else if (expedite) {
20279 		/* If we fail to get one from pvt_pool and this is an expedite
20280 		 * request, get one free xri from expedite pool.
20281 		 */
20282 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20283 	}
20284 
20285 	return lpfc_ncmd;
20286 }
20287 
20288 static inline struct lpfc_io_buf *
20289 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20290 {
20291 	struct lpfc_sli4_hdw_queue *qp;
20292 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20293 
20294 	qp = &phba->sli4_hba.hdwq[idx];
20295 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20296 				 &qp->lpfc_io_buf_list_get, list) {
20297 		if (lpfc_test_rrq_active(phba, ndlp,
20298 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
20299 			continue;
20300 
20301 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20302 			continue;
20303 
20304 		list_del_init(&lpfc_cmd->list);
20305 		qp->get_io_bufs--;
20306 		lpfc_cmd->hdwq = qp;
20307 		lpfc_cmd->hdwq_no = idx;
20308 		return lpfc_cmd;
20309 	}
20310 	return NULL;
20311 }
20312 
20313 /**
20314  * lpfc_get_io_buf - Get one IO buffer from free pool
20315  * @phba: The HBA for which this call is being executed.
20316  * @ndlp: pointer to lpfc nodelist data structure.
20317  * @hwqid: belong to which HWQ
20318  * @expedite: 1 means this request is urgent.
20319  *
20320  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20321  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20322  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20323  *
20324  * Note: ndlp is only used on SCSI side for RRQ testing.
20325  *       The caller should pass NULL for ndlp on NVME side.
20326  *
20327  * Return codes:
20328  *   NULL - Error
20329  *   Pointer to lpfc_io_buf - Success
20330  **/
20331 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20332 				    struct lpfc_nodelist *ndlp,
20333 				    u32 hwqid, int expedite)
20334 {
20335 	struct lpfc_sli4_hdw_queue *qp;
20336 	unsigned long iflag;
20337 	struct lpfc_io_buf *lpfc_cmd;
20338 
20339 	qp = &phba->sli4_hba.hdwq[hwqid];
20340 	lpfc_cmd = NULL;
20341 
20342 	if (phba->cfg_xri_rebalancing)
20343 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20344 			phba, ndlp, hwqid, expedite);
20345 	else {
20346 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20347 					  qp, alloc_xri_get);
20348 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20349 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20350 		if (!lpfc_cmd) {
20351 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20352 					  qp, alloc_xri_put);
20353 			list_splice(&qp->lpfc_io_buf_list_put,
20354 				    &qp->lpfc_io_buf_list_get);
20355 			qp->get_io_bufs += qp->put_io_bufs;
20356 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20357 			qp->put_io_bufs = 0;
20358 			spin_unlock(&qp->io_buf_list_put_lock);
20359 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20360 			    expedite)
20361 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20362 		}
20363 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20364 	}
20365 
20366 	return lpfc_cmd;
20367 }
20368