1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 if (empty) 1221 lpfc_worker_wake_up(phba); 1222 spin_unlock_irqrestore(&phba->hbalock, iflags); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = piocbq->io_buf; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->ndlp; 1268 } else { 1269 ndlp = piocbq->ndlp; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 unsigned long iflag = 0; 1377 struct lpfc_sli_ring *pring; 1378 1379 if (iocbq->sli4_xritag == NO_XRI) 1380 sglq = NULL; 1381 else 1382 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1383 1384 1385 if (sglq) { 1386 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1387 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1388 iflag); 1389 sglq->state = SGL_FREED; 1390 sglq->ndlp = NULL; 1391 list_add_tail(&sglq->list, 1392 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1393 spin_unlock_irqrestore( 1394 &phba->sli4_hba.sgl_list_lock, iflag); 1395 goto out; 1396 } 1397 1398 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1399 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1400 sglq->state != SGL_XRI_ABORTED) { 1401 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1402 iflag); 1403 1404 /* Check if we can get a reference on ndlp */ 1405 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1406 sglq->ndlp = NULL; 1407 1408 list_add(&sglq->list, 1409 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1410 spin_unlock_irqrestore( 1411 &phba->sli4_hba.sgl_list_lock, iflag); 1412 } else { 1413 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1414 iflag); 1415 sglq->state = SGL_FREED; 1416 sglq->ndlp = NULL; 1417 list_add_tail(&sglq->list, 1418 &phba->sli4_hba.lpfc_els_sgl_list); 1419 spin_unlock_irqrestore( 1420 &phba->sli4_hba.sgl_list_lock, iflag); 1421 pring = lpfc_phba_elsring(phba); 1422 /* Check if TXQ queue needs to be serviced */ 1423 if (pring && (!list_empty(&pring->txq))) 1424 lpfc_worker_wake_up(phba); 1425 } 1426 } 1427 1428 out: 1429 /* 1430 * Clean all volatile data fields, preserve iotag and node struct. 1431 */ 1432 memset_startat(iocbq, 0, wqe); 1433 iocbq->sli4_lxritag = NO_XRI; 1434 iocbq->sli4_xritag = NO_XRI; 1435 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1436 LPFC_IO_NVME_LS); 1437 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1438 } 1439 1440 1441 /** 1442 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1443 * @phba: Pointer to HBA context object. 1444 * @iocbq: Pointer to driver iocb object. 1445 * 1446 * This function is called to release the driver iocb object to the 1447 * iocb pool. The iotag in the iocb object does not change for each 1448 * use of the iocb object. This function clears all other fields of 1449 * the iocb object when it is freed. The hbalock is asserted held in 1450 * the code path calling this routine. 1451 **/ 1452 static void 1453 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1454 { 1455 1456 /* 1457 * Clean all volatile data fields, preserve iotag and node struct. 1458 */ 1459 memset_startat(iocbq, 0, iocb); 1460 iocbq->sli4_xritag = NO_XRI; 1461 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1462 } 1463 1464 /** 1465 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1466 * @phba: Pointer to HBA context object. 1467 * @iocbq: Pointer to driver iocb object. 1468 * 1469 * This function is called with hbalock held to release driver 1470 * iocb object to the iocb pool. The iotag in the iocb object 1471 * does not change for each use of the iocb object. This function 1472 * clears all other fields of the iocb object when it is freed. 1473 **/ 1474 static void 1475 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1476 { 1477 lockdep_assert_held(&phba->hbalock); 1478 1479 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1480 phba->iocb_cnt--; 1481 } 1482 1483 /** 1484 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1485 * @phba: Pointer to HBA context object. 1486 * @iocbq: Pointer to driver iocb object. 1487 * 1488 * This function is called with no lock held to release the iocb to 1489 * iocb pool. 1490 **/ 1491 void 1492 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1493 { 1494 unsigned long iflags; 1495 1496 /* 1497 * Clean all volatile data fields, preserve iotag and node struct. 1498 */ 1499 spin_lock_irqsave(&phba->hbalock, iflags); 1500 __lpfc_sli_release_iocbq(phba, iocbq); 1501 spin_unlock_irqrestore(&phba->hbalock, iflags); 1502 } 1503 1504 /** 1505 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1506 * @phba: Pointer to HBA context object. 1507 * @iocblist: List of IOCBs. 1508 * @ulpstatus: ULP status in IOCB command field. 1509 * @ulpWord4: ULP word-4 in IOCB command field. 1510 * 1511 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1512 * on the list by invoking the complete callback function associated with the 1513 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1514 * fields. 1515 **/ 1516 void 1517 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1518 uint32_t ulpstatus, uint32_t ulpWord4) 1519 { 1520 struct lpfc_iocbq *piocb; 1521 1522 while (!list_empty(iocblist)) { 1523 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1524 if (piocb->cmd_cmpl) { 1525 if (piocb->cmd_flag & LPFC_IO_NVME) { 1526 lpfc_nvme_cancel_iocb(phba, piocb, 1527 ulpstatus, ulpWord4); 1528 } else { 1529 if (phba->sli_rev == LPFC_SLI_REV4) { 1530 bf_set(lpfc_wcqe_c_status, 1531 &piocb->wcqe_cmpl, ulpstatus); 1532 piocb->wcqe_cmpl.parameter = ulpWord4; 1533 } else { 1534 piocb->iocb.ulpStatus = ulpstatus; 1535 piocb->iocb.un.ulpWord[4] = ulpWord4; 1536 } 1537 (piocb->cmd_cmpl) (phba, piocb, piocb); 1538 } 1539 } else { 1540 lpfc_sli_release_iocbq(phba, piocb); 1541 } 1542 } 1543 return; 1544 } 1545 1546 /** 1547 * lpfc_sli_iocb_cmd_type - Get the iocb type 1548 * @iocb_cmnd: iocb command code. 1549 * 1550 * This function is called by ring event handler function to get the iocb type. 1551 * This function translates the iocb command to an iocb command type used to 1552 * decide the final disposition of each completed IOCB. 1553 * The function returns 1554 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1555 * LPFC_SOL_IOCB if it is a solicited iocb completion 1556 * LPFC_ABORT_IOCB if it is an abort iocb 1557 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1558 * 1559 * The caller is not required to hold any lock. 1560 **/ 1561 static lpfc_iocb_type 1562 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1563 { 1564 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1565 1566 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1567 return 0; 1568 1569 switch (iocb_cmnd) { 1570 case CMD_XMIT_SEQUENCE_CR: 1571 case CMD_XMIT_SEQUENCE_CX: 1572 case CMD_XMIT_BCAST_CN: 1573 case CMD_XMIT_BCAST_CX: 1574 case CMD_ELS_REQUEST_CR: 1575 case CMD_ELS_REQUEST_CX: 1576 case CMD_CREATE_XRI_CR: 1577 case CMD_CREATE_XRI_CX: 1578 case CMD_GET_RPI_CN: 1579 case CMD_XMIT_ELS_RSP_CX: 1580 case CMD_GET_RPI_CR: 1581 case CMD_FCP_IWRITE_CR: 1582 case CMD_FCP_IWRITE_CX: 1583 case CMD_FCP_IREAD_CR: 1584 case CMD_FCP_IREAD_CX: 1585 case CMD_FCP_ICMND_CR: 1586 case CMD_FCP_ICMND_CX: 1587 case CMD_FCP_TSEND_CX: 1588 case CMD_FCP_TRSP_CX: 1589 case CMD_FCP_TRECEIVE_CX: 1590 case CMD_FCP_AUTO_TRSP_CX: 1591 case CMD_ADAPTER_MSG: 1592 case CMD_ADAPTER_DUMP: 1593 case CMD_XMIT_SEQUENCE64_CR: 1594 case CMD_XMIT_SEQUENCE64_CX: 1595 case CMD_XMIT_BCAST64_CN: 1596 case CMD_XMIT_BCAST64_CX: 1597 case CMD_ELS_REQUEST64_CR: 1598 case CMD_ELS_REQUEST64_CX: 1599 case CMD_FCP_IWRITE64_CR: 1600 case CMD_FCP_IWRITE64_CX: 1601 case CMD_FCP_IREAD64_CR: 1602 case CMD_FCP_IREAD64_CX: 1603 case CMD_FCP_ICMND64_CR: 1604 case CMD_FCP_ICMND64_CX: 1605 case CMD_FCP_TSEND64_CX: 1606 case CMD_FCP_TRSP64_CX: 1607 case CMD_FCP_TRECEIVE64_CX: 1608 case CMD_GEN_REQUEST64_CR: 1609 case CMD_GEN_REQUEST64_CX: 1610 case CMD_XMIT_ELS_RSP64_CX: 1611 case DSSCMD_IWRITE64_CR: 1612 case DSSCMD_IWRITE64_CX: 1613 case DSSCMD_IREAD64_CR: 1614 case DSSCMD_IREAD64_CX: 1615 case CMD_SEND_FRAME: 1616 type = LPFC_SOL_IOCB; 1617 break; 1618 case CMD_ABORT_XRI_CN: 1619 case CMD_ABORT_XRI_CX: 1620 case CMD_CLOSE_XRI_CN: 1621 case CMD_CLOSE_XRI_CX: 1622 case CMD_XRI_ABORTED_CX: 1623 case CMD_ABORT_MXRI64_CN: 1624 case CMD_XMIT_BLS_RSP64_CX: 1625 type = LPFC_ABORT_IOCB; 1626 break; 1627 case CMD_RCV_SEQUENCE_CX: 1628 case CMD_RCV_ELS_REQ_CX: 1629 case CMD_RCV_SEQUENCE64_CX: 1630 case CMD_RCV_ELS_REQ64_CX: 1631 case CMD_ASYNC_STATUS: 1632 case CMD_IOCB_RCV_SEQ64_CX: 1633 case CMD_IOCB_RCV_ELS64_CX: 1634 case CMD_IOCB_RCV_CONT64_CX: 1635 case CMD_IOCB_RET_XRI64_CX: 1636 type = LPFC_UNSOL_IOCB; 1637 break; 1638 case CMD_IOCB_XMIT_MSEQ64_CR: 1639 case CMD_IOCB_XMIT_MSEQ64_CX: 1640 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1641 case CMD_IOCB_RCV_ELS_LIST64_CX: 1642 case CMD_IOCB_CLOSE_EXTENDED_CN: 1643 case CMD_IOCB_ABORT_EXTENDED_CN: 1644 case CMD_IOCB_RET_HBQE64_CN: 1645 case CMD_IOCB_FCP_IBIDIR64_CR: 1646 case CMD_IOCB_FCP_IBIDIR64_CX: 1647 case CMD_IOCB_FCP_ITASKMGT64_CX: 1648 case CMD_IOCB_LOGENTRY_CN: 1649 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1650 printk("%s - Unhandled SLI-3 Command x%x\n", 1651 __func__, iocb_cmnd); 1652 type = LPFC_UNKNOWN_IOCB; 1653 break; 1654 default: 1655 type = LPFC_UNKNOWN_IOCB; 1656 break; 1657 } 1658 1659 return type; 1660 } 1661 1662 /** 1663 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1664 * @phba: Pointer to HBA context object. 1665 * 1666 * This function is called from SLI initialization code 1667 * to configure every ring of the HBA's SLI interface. The 1668 * caller is not required to hold any lock. This function issues 1669 * a config_ring mailbox command for each ring. 1670 * This function returns zero if successful else returns a negative 1671 * error code. 1672 **/ 1673 static int 1674 lpfc_sli_ring_map(struct lpfc_hba *phba) 1675 { 1676 struct lpfc_sli *psli = &phba->sli; 1677 LPFC_MBOXQ_t *pmb; 1678 MAILBOX_t *pmbox; 1679 int i, rc, ret = 0; 1680 1681 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1682 if (!pmb) 1683 return -ENOMEM; 1684 pmbox = &pmb->u.mb; 1685 phba->link_state = LPFC_INIT_MBX_CMDS; 1686 for (i = 0; i < psli->num_rings; i++) { 1687 lpfc_config_ring(phba, i, pmb); 1688 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1689 if (rc != MBX_SUCCESS) { 1690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1691 "0446 Adapter failed to init (%d), " 1692 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1693 "ring %d\n", 1694 rc, pmbox->mbxCommand, 1695 pmbox->mbxStatus, i); 1696 phba->link_state = LPFC_HBA_ERROR; 1697 ret = -ENXIO; 1698 break; 1699 } 1700 } 1701 mempool_free(pmb, phba->mbox_mem_pool); 1702 return ret; 1703 } 1704 1705 /** 1706 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1707 * @phba: Pointer to HBA context object. 1708 * @pring: Pointer to driver SLI ring object. 1709 * @piocb: Pointer to the driver iocb object. 1710 * 1711 * The driver calls this function with the hbalock held for SLI3 ports or 1712 * the ring lock held for SLI4 ports. The function adds the 1713 * new iocb to txcmplq of the given ring. This function always returns 1714 * 0. If this function is called for ELS ring, this function checks if 1715 * there is a vport associated with the ELS command. This function also 1716 * starts els_tmofunc timer if this is an ELS command. 1717 **/ 1718 static int 1719 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1720 struct lpfc_iocbq *piocb) 1721 { 1722 u32 ulp_command = 0; 1723 1724 BUG_ON(!piocb); 1725 ulp_command = get_job_cmnd(phba, piocb); 1726 1727 list_add_tail(&piocb->list, &pring->txcmplq); 1728 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1729 pring->txcmplq_cnt++; 1730 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1731 (ulp_command != CMD_ABORT_XRI_WQE) && 1732 (ulp_command != CMD_ABORT_XRI_CN) && 1733 (ulp_command != CMD_CLOSE_XRI_CN)) { 1734 BUG_ON(!piocb->vport); 1735 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1736 mod_timer(&piocb->vport->els_tmofunc, 1737 jiffies + 1738 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1739 } 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * lpfc_sli_ringtx_get - Get first element of the txq 1746 * @phba: Pointer to HBA context object. 1747 * @pring: Pointer to driver SLI ring object. 1748 * 1749 * This function is called with hbalock held to get next 1750 * iocb in txq of the given ring. If there is any iocb in 1751 * the txq, the function returns first iocb in the list after 1752 * removing the iocb from the list, else it returns NULL. 1753 **/ 1754 struct lpfc_iocbq * 1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1756 { 1757 struct lpfc_iocbq *cmd_iocb; 1758 1759 lockdep_assert_held(&phba->hbalock); 1760 1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1762 return cmd_iocb; 1763 } 1764 1765 /** 1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1767 * @phba: Pointer to HBA context object. 1768 * @cmdiocb: Pointer to driver command iocb object. 1769 * @rspiocb: Pointer to driver response iocb object. 1770 * 1771 * This routine will inform the driver of any BW adjustments we need 1772 * to make. These changes will be picked up during the next CMF 1773 * timer interrupt. In addition, any BW changes will be logged 1774 * with LOG_CGN_MGMT. 1775 **/ 1776 static void 1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1778 struct lpfc_iocbq *rspiocb) 1779 { 1780 union lpfc_wqe128 *wqe; 1781 uint32_t status, info; 1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1783 uint64_t bw, bwdif, slop; 1784 uint64_t pcent, bwpcent; 1785 int asig, afpin, sigcnt, fpincnt; 1786 int wsigmax, wfpinmax, cg, tdp; 1787 char *s; 1788 1789 /* First check for error */ 1790 status = bf_get(lpfc_wcqe_c_status, wcqe); 1791 if (status) { 1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1793 "6211 CMF_SYNC_WQE Error " 1794 "req_tag x%x status x%x hwstatus x%x " 1795 "tdatap x%x parm x%x\n", 1796 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1797 bf_get(lpfc_wcqe_c_status, wcqe), 1798 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1799 wcqe->total_data_placed, 1800 wcqe->parameter); 1801 goto out; 1802 } 1803 1804 /* Gather congestion information on a successful cmpl */ 1805 info = wcqe->parameter; 1806 phba->cmf_active_info = info; 1807 1808 /* See if firmware info count is valid or has changed */ 1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1810 info = 0; 1811 else 1812 phba->cmf_info_per_interval = info; 1813 1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1816 1817 /* Get BW requirement from firmware */ 1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1819 if (!bw) { 1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1822 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1823 goto out; 1824 } 1825 1826 /* Gather information needed for logging if a BW change is required */ 1827 wqe = &cmdiocb->wqe; 1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1832 if (phba->cmf_max_bytes_per_interval != bw || 1833 (asig || afpin || sigcnt || fpincnt)) { 1834 /* Are we increasing or decreasing BW */ 1835 if (phba->cmf_max_bytes_per_interval < bw) { 1836 bwdif = bw - phba->cmf_max_bytes_per_interval; 1837 s = "Increase"; 1838 } else { 1839 bwdif = phba->cmf_max_bytes_per_interval - bw; 1840 s = "Decrease"; 1841 } 1842 1843 /* What is the change percentage */ 1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1845 pcent = div64_u64(bwdif * 100 + slop, 1846 phba->cmf_link_byte_count); 1847 bwpcent = div64_u64(bw * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 /* Because of bytes adjustment due to shorter timer in 1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1851 * may seem like BW is above 100%. 1852 */ 1853 if (bwpcent > 100) 1854 bwpcent = 100; 1855 1856 if (phba->cmf_max_bytes_per_interval < bw && 1857 bwpcent > 95) 1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1859 "6208 Congestion bandwidth " 1860 "limits removed\n"); 1861 else if ((phba->cmf_max_bytes_per_interval > bw) && 1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6209 Congestion bandwidth " 1865 "limits in effect\n"); 1866 1867 if (asig) { 1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1869 "6237 BW Threshold %lld%% (%lld): " 1870 "%lld%% %s: Signal Alarm: cg:%d " 1871 "Info:%u\n", 1872 bwpcent, bw, pcent, s, cg, 1873 phba->cmf_active_info); 1874 } else if (afpin) { 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6238 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Alarm: cg:%d " 1878 "Info:%u\n", 1879 bwpcent, bw, pcent, s, cg, 1880 phba->cmf_active_info); 1881 } else if (sigcnt) { 1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1884 "6239 BW Threshold %lld%% (%lld): " 1885 "%lld%% %s: Signal Warning: " 1886 "Cnt %d Max %d: cg:%d Info:%u\n", 1887 bwpcent, bw, pcent, s, sigcnt, 1888 wsigmax, cg, phba->cmf_active_info); 1889 } else if (fpincnt) { 1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1892 "6240 BW Threshold %lld%% (%lld): " 1893 "%lld%% %s: FPIN Warning: " 1894 "Cnt %d Max %d: cg:%d Info:%u\n", 1895 bwpcent, bw, pcent, s, fpincnt, 1896 wfpinmax, cg, phba->cmf_active_info); 1897 } else { 1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1899 "6241 BW Threshold %lld%% (%lld): " 1900 "CMF %lld%% %s: cg:%d Info:%u\n", 1901 bwpcent, bw, pcent, s, cg, 1902 phba->cmf_active_info); 1903 } 1904 } else if (info) { 1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1906 "6246 Info Threshold %u\n", info); 1907 } 1908 1909 /* Save BW change to be picked up during next timer interrupt */ 1910 phba->cmf_last_sync_bw = bw; 1911 out: 1912 lpfc_sli_release_iocbq(phba, cmdiocb); 1913 } 1914 1915 /** 1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1917 * @phba: Pointer to HBA context object. 1918 * @ms: ms to set in WQE interval, 0 means use init op 1919 * @total: Total rcv bytes for this interval 1920 * 1921 * This routine is called every CMF timer interrupt. Its purpose is 1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1923 * that may indicate we have congestion (FPINs or Signals). Upon 1924 * completion, the firmware will indicate any BW restrictions the 1925 * driver may need to take. 1926 **/ 1927 int 1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1929 { 1930 union lpfc_wqe128 *wqe; 1931 struct lpfc_iocbq *sync_buf; 1932 unsigned long iflags; 1933 u32 ret_val; 1934 u32 atot, wtot, max; 1935 u8 warn_sync_period = 0; 1936 1937 /* First address any alarm / warning activity */ 1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1940 1941 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1942 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1943 phba->link_state == LPFC_LINK_DOWN) 1944 return 0; 1945 1946 spin_lock_irqsave(&phba->hbalock, iflags); 1947 sync_buf = __lpfc_sli_get_iocbq(phba); 1948 if (!sync_buf) { 1949 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1950 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1951 ret_val = ENOMEM; 1952 goto out_unlock; 1953 } 1954 1955 wqe = &sync_buf->wqe; 1956 1957 /* WQEs are reused. Clear stale data and set key fields to zero */ 1958 memset(wqe, 0, sizeof(*wqe)); 1959 1960 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1961 if (!ms) { 1962 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1963 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1964 phba->fc_eventTag); 1965 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1966 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1967 goto initpath; 1968 } 1969 1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1972 1973 /* Check for alarms / warnings */ 1974 if (atot) { 1975 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1976 /* We hit an Signal alarm condition */ 1977 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1978 } else { 1979 /* We hit a FPIN alarm condition */ 1980 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1981 } 1982 } else if (wtot) { 1983 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1984 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1985 /* We hit an Signal warning condition */ 1986 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1987 lpfc_acqe_cgn_frequency; 1988 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1989 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1990 warn_sync_period = lpfc_acqe_cgn_frequency; 1991 } else { 1992 /* We hit a FPIN warning condition */ 1993 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1994 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1995 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1996 warn_sync_period = 1997 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 1998 } 1999 } 2000 2001 /* Update total read blocks during previous timer interval */ 2002 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2003 2004 initpath: 2005 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2006 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2007 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2008 2009 /* Setup reqtag to match the wqe completion. */ 2010 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2011 2012 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2013 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2014 2015 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2016 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2017 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2018 2019 sync_buf->vport = phba->pport; 2020 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2021 sync_buf->cmd_dmabuf = NULL; 2022 sync_buf->rsp_dmabuf = NULL; 2023 sync_buf->bpl_dmabuf = NULL; 2024 sync_buf->sli4_xritag = NO_XRI; 2025 2026 sync_buf->cmd_flag |= LPFC_IO_CMF; 2027 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2028 if (ret_val) { 2029 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2030 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2031 ret_val); 2032 __lpfc_sli_release_iocbq(phba, sync_buf); 2033 } 2034 out_unlock: 2035 spin_unlock_irqrestore(&phba->hbalock, iflags); 2036 return ret_val; 2037 } 2038 2039 /** 2040 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2041 * @phba: Pointer to HBA context object. 2042 * @pring: Pointer to driver SLI ring object. 2043 * 2044 * This function is called with hbalock held and the caller must post the 2045 * iocb without releasing the lock. If the caller releases the lock, 2046 * iocb slot returned by the function is not guaranteed to be available. 2047 * The function returns pointer to the next available iocb slot if there 2048 * is available slot in the ring, else it returns NULL. 2049 * If the get index of the ring is ahead of the put index, the function 2050 * will post an error attention event to the worker thread to take the 2051 * HBA to offline state. 2052 **/ 2053 static IOCB_t * 2054 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2055 { 2056 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2057 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2058 2059 lockdep_assert_held(&phba->hbalock); 2060 2061 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2062 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2063 pring->sli.sli3.next_cmdidx = 0; 2064 2065 if (unlikely(pring->sli.sli3.local_getidx == 2066 pring->sli.sli3.next_cmdidx)) { 2067 2068 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2069 2070 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2072 "0315 Ring %d issue: portCmdGet %d " 2073 "is bigger than cmd ring %d\n", 2074 pring->ringno, 2075 pring->sli.sli3.local_getidx, 2076 max_cmd_idx); 2077 2078 phba->link_state = LPFC_HBA_ERROR; 2079 /* 2080 * All error attention handlers are posted to 2081 * worker thread 2082 */ 2083 phba->work_ha |= HA_ERATT; 2084 phba->work_hs = HS_FFER3; 2085 2086 lpfc_worker_wake_up(phba); 2087 2088 return NULL; 2089 } 2090 2091 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2092 return NULL; 2093 } 2094 2095 return lpfc_cmd_iocb(phba, pring); 2096 } 2097 2098 /** 2099 * lpfc_sli_next_iotag - Get an iotag for the iocb 2100 * @phba: Pointer to HBA context object. 2101 * @iocbq: Pointer to driver iocb object. 2102 * 2103 * This function gets an iotag for the iocb. If there is no unused iotag and 2104 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2105 * array and assigns a new iotag. 2106 * The function returns the allocated iotag if successful, else returns zero. 2107 * Zero is not a valid iotag. 2108 * The caller is not required to hold any lock. 2109 **/ 2110 uint16_t 2111 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2112 { 2113 struct lpfc_iocbq **new_arr; 2114 struct lpfc_iocbq **old_arr; 2115 size_t new_len; 2116 struct lpfc_sli *psli = &phba->sli; 2117 uint16_t iotag; 2118 2119 spin_lock_irq(&phba->hbalock); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } else if (psli->iocbq_lookup_len < (0xffff 2128 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2129 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2130 spin_unlock_irq(&phba->hbalock); 2131 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2132 GFP_KERNEL); 2133 if (new_arr) { 2134 spin_lock_irq(&phba->hbalock); 2135 old_arr = psli->iocbq_lookup; 2136 if (new_len <= psli->iocbq_lookup_len) { 2137 /* highly unprobable case */ 2138 kfree(new_arr); 2139 iotag = psli->last_iotag; 2140 if(++iotag < psli->iocbq_lookup_len) { 2141 psli->last_iotag = iotag; 2142 psli->iocbq_lookup[iotag] = iocbq; 2143 spin_unlock_irq(&phba->hbalock); 2144 iocbq->iotag = iotag; 2145 return iotag; 2146 } 2147 spin_unlock_irq(&phba->hbalock); 2148 return 0; 2149 } 2150 if (psli->iocbq_lookup) 2151 memcpy(new_arr, old_arr, 2152 ((psli->last_iotag + 1) * 2153 sizeof (struct lpfc_iocbq *))); 2154 psli->iocbq_lookup = new_arr; 2155 psli->iocbq_lookup_len = new_len; 2156 psli->last_iotag = iotag; 2157 psli->iocbq_lookup[iotag] = iocbq; 2158 spin_unlock_irq(&phba->hbalock); 2159 iocbq->iotag = iotag; 2160 kfree(old_arr); 2161 return iotag; 2162 } 2163 } else 2164 spin_unlock_irq(&phba->hbalock); 2165 2166 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2167 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2168 psli->last_iotag); 2169 2170 return 0; 2171 } 2172 2173 /** 2174 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2175 * @phba: Pointer to HBA context object. 2176 * @pring: Pointer to driver SLI ring object. 2177 * @iocb: Pointer to iocb slot in the ring. 2178 * @nextiocb: Pointer to driver iocb object which need to be 2179 * posted to firmware. 2180 * 2181 * This function is called to post a new iocb to the firmware. This 2182 * function copies the new iocb to ring iocb slot and updates the 2183 * ring pointers. It adds the new iocb to txcmplq if there is 2184 * a completion call back for this iocb else the function will free the 2185 * iocb object. The hbalock is asserted held in the code path calling 2186 * this routine. 2187 **/ 2188 static void 2189 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2190 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2191 { 2192 /* 2193 * Set up an iotag 2194 */ 2195 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2196 2197 2198 if (pring->ringno == LPFC_ELS_RING) { 2199 lpfc_debugfs_slow_ring_trc(phba, 2200 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2201 *(((uint32_t *) &nextiocb->iocb) + 4), 2202 *(((uint32_t *) &nextiocb->iocb) + 6), 2203 *(((uint32_t *) &nextiocb->iocb) + 7)); 2204 } 2205 2206 /* 2207 * Issue iocb command to adapter 2208 */ 2209 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2210 wmb(); 2211 pring->stats.iocb_cmd++; 2212 2213 /* 2214 * If there is no completion routine to call, we can release the 2215 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2216 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2217 */ 2218 if (nextiocb->cmd_cmpl) 2219 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2220 else 2221 __lpfc_sli_release_iocbq(phba, nextiocb); 2222 2223 /* 2224 * Let the HBA know what IOCB slot will be the next one the 2225 * driver will put a command into. 2226 */ 2227 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2228 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2229 } 2230 2231 /** 2232 * lpfc_sli_update_full_ring - Update the chip attention register 2233 * @phba: Pointer to HBA context object. 2234 * @pring: Pointer to driver SLI ring object. 2235 * 2236 * The caller is not required to hold any lock for calling this function. 2237 * This function updates the chip attention bits for the ring to inform firmware 2238 * that there are pending work to be done for this ring and requests an 2239 * interrupt when there is space available in the ring. This function is 2240 * called when the driver is unable to post more iocbs to the ring due 2241 * to unavailability of space in the ring. 2242 **/ 2243 static void 2244 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2245 { 2246 int ringno = pring->ringno; 2247 2248 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2249 2250 wmb(); 2251 2252 /* 2253 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2254 * The HBA will tell us when an IOCB entry is available. 2255 */ 2256 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2257 readl(phba->CAregaddr); /* flush */ 2258 2259 pring->stats.iocb_cmd_full++; 2260 } 2261 2262 /** 2263 * lpfc_sli_update_ring - Update chip attention register 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function updates the chip attention register bit for the 2268 * given ring to inform HBA that there is more work to be done 2269 * in this ring. The caller is not required to hold any lock. 2270 **/ 2271 static void 2272 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 int ringno = pring->ringno; 2275 2276 /* 2277 * Tell the HBA that there is work to do in this ring. 2278 */ 2279 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2280 wmb(); 2281 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2282 readl(phba->CAregaddr); /* flush */ 2283 } 2284 } 2285 2286 /** 2287 * lpfc_sli_resume_iocb - Process iocbs in the txq 2288 * @phba: Pointer to HBA context object. 2289 * @pring: Pointer to driver SLI ring object. 2290 * 2291 * This function is called with hbalock held to post pending iocbs 2292 * in the txq to the firmware. This function is called when driver 2293 * detects space available in the ring. 2294 **/ 2295 static void 2296 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2297 { 2298 IOCB_t *iocb; 2299 struct lpfc_iocbq *nextiocb; 2300 2301 lockdep_assert_held(&phba->hbalock); 2302 2303 /* 2304 * Check to see if: 2305 * (a) there is anything on the txq to send 2306 * (b) link is up 2307 * (c) link attention events can be processed (fcp ring only) 2308 * (d) IOCB processing is not blocked by the outstanding mbox command. 2309 */ 2310 2311 if (lpfc_is_link_up(phba) && 2312 (!list_empty(&pring->txq)) && 2313 (pring->ringno != LPFC_FCP_RING || 2314 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2315 2316 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2317 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2318 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2319 2320 if (iocb) 2321 lpfc_sli_update_ring(phba, pring); 2322 else 2323 lpfc_sli_update_full_ring(phba, pring); 2324 } 2325 2326 return; 2327 } 2328 2329 /** 2330 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2331 * @phba: Pointer to HBA context object. 2332 * @hbqno: HBQ number. 2333 * 2334 * This function is called with hbalock held to get the next 2335 * available slot for the given HBQ. If there is free slot 2336 * available for the HBQ it will return pointer to the next available 2337 * HBQ entry else it will return NULL. 2338 **/ 2339 static struct lpfc_hbq_entry * 2340 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2341 { 2342 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2343 2344 lockdep_assert_held(&phba->hbalock); 2345 2346 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2347 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2348 hbqp->next_hbqPutIdx = 0; 2349 2350 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2351 uint32_t raw_index = phba->hbq_get[hbqno]; 2352 uint32_t getidx = le32_to_cpu(raw_index); 2353 2354 hbqp->local_hbqGetIdx = getidx; 2355 2356 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2357 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2358 "1802 HBQ %d: local_hbqGetIdx " 2359 "%u is > than hbqp->entry_count %u\n", 2360 hbqno, hbqp->local_hbqGetIdx, 2361 hbqp->entry_count); 2362 2363 phba->link_state = LPFC_HBA_ERROR; 2364 return NULL; 2365 } 2366 2367 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2368 return NULL; 2369 } 2370 2371 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2372 hbqp->hbqPutIdx; 2373 } 2374 2375 /** 2376 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2377 * @phba: Pointer to HBA context object. 2378 * 2379 * This function is called with no lock held to free all the 2380 * hbq buffers while uninitializing the SLI interface. It also 2381 * frees the HBQ buffers returned by the firmware but not yet 2382 * processed by the upper layers. 2383 **/ 2384 void 2385 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2386 { 2387 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2388 struct hbq_dmabuf *hbq_buf; 2389 unsigned long flags; 2390 int i, hbq_count; 2391 2392 hbq_count = lpfc_sli_hbq_count(); 2393 /* Return all memory used by all HBQs */ 2394 spin_lock_irqsave(&phba->hbalock, flags); 2395 for (i = 0; i < hbq_count; ++i) { 2396 list_for_each_entry_safe(dmabuf, next_dmabuf, 2397 &phba->hbqs[i].hbq_buffer_list, list) { 2398 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2399 list_del(&hbq_buf->dbuf.list); 2400 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2401 } 2402 phba->hbqs[i].buffer_count = 0; 2403 } 2404 2405 /* Mark the HBQs not in use */ 2406 phba->hbq_in_use = 0; 2407 spin_unlock_irqrestore(&phba->hbalock, flags); 2408 } 2409 2410 /** 2411 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2412 * @phba: Pointer to HBA context object. 2413 * @hbqno: HBQ number. 2414 * @hbq_buf: Pointer to HBQ buffer. 2415 * 2416 * This function is called with the hbalock held to post a 2417 * hbq buffer to the firmware. If the function finds an empty 2418 * slot in the HBQ, it will post the buffer. The function will return 2419 * pointer to the hbq entry if it successfully post the buffer 2420 * else it will return NULL. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 lockdep_assert_held(&phba->hbalock); 2427 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2428 } 2429 2430 /** 2431 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2432 * @phba: Pointer to HBA context object. 2433 * @hbqno: HBQ number. 2434 * @hbq_buf: Pointer to HBQ buffer. 2435 * 2436 * This function is called with the hbalock held to post a hbq buffer to the 2437 * firmware. If the function finds an empty slot in the HBQ, it will post the 2438 * buffer and place it on the hbq_buffer_list. The function will return zero if 2439 * it successfully post the buffer else it will return an error. 2440 **/ 2441 static int 2442 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2443 struct hbq_dmabuf *hbq_buf) 2444 { 2445 struct lpfc_hbq_entry *hbqe; 2446 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2447 2448 lockdep_assert_held(&phba->hbalock); 2449 /* Get next HBQ entry slot to use */ 2450 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2451 if (hbqe) { 2452 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2453 2454 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2455 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2456 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2457 hbqe->bde.tus.f.bdeFlags = 0; 2458 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2459 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2460 /* Sync SLIM */ 2461 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2462 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2463 /* flush */ 2464 readl(phba->hbq_put + hbqno); 2465 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2466 return 0; 2467 } else 2468 return -ENOMEM; 2469 } 2470 2471 /** 2472 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2473 * @phba: Pointer to HBA context object. 2474 * @hbqno: HBQ number. 2475 * @hbq_buf: Pointer to HBQ buffer. 2476 * 2477 * This function is called with the hbalock held to post an RQE to the SLI4 2478 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2479 * the hbq_buffer_list and return zero, otherwise it will return an error. 2480 **/ 2481 static int 2482 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2483 struct hbq_dmabuf *hbq_buf) 2484 { 2485 int rc; 2486 struct lpfc_rqe hrqe; 2487 struct lpfc_rqe drqe; 2488 struct lpfc_queue *hrq; 2489 struct lpfc_queue *drq; 2490 2491 if (hbqno != LPFC_ELS_HBQ) 2492 return 1; 2493 hrq = phba->sli4_hba.hdr_rq; 2494 drq = phba->sli4_hba.dat_rq; 2495 2496 lockdep_assert_held(&phba->hbalock); 2497 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2498 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2499 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2500 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2501 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2502 if (rc < 0) 2503 return rc; 2504 hbq_buf->tag = (rc | (hbqno << 16)); 2505 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2506 return 0; 2507 } 2508 2509 /* HBQ for ELS and CT traffic. */ 2510 static struct lpfc_hbq_init lpfc_els_hbq = { 2511 .rn = 1, 2512 .entry_count = 256, 2513 .mask_count = 0, 2514 .profile = 0, 2515 .ring_mask = (1 << LPFC_ELS_RING), 2516 .buffer_count = 0, 2517 .init_count = 40, 2518 .add_count = 40, 2519 }; 2520 2521 /* Array of HBQs */ 2522 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2523 &lpfc_els_hbq, 2524 }; 2525 2526 /** 2527 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2528 * @phba: Pointer to HBA context object. 2529 * @hbqno: HBQ number. 2530 * @count: Number of HBQ buffers to be posted. 2531 * 2532 * This function is called with no lock held to post more hbq buffers to the 2533 * given HBQ. The function returns the number of HBQ buffers successfully 2534 * posted. 2535 **/ 2536 static int 2537 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2538 { 2539 uint32_t i, posted = 0; 2540 unsigned long flags; 2541 struct hbq_dmabuf *hbq_buffer; 2542 LIST_HEAD(hbq_buf_list); 2543 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2544 return 0; 2545 2546 if ((phba->hbqs[hbqno].buffer_count + count) > 2547 lpfc_hbq_defs[hbqno]->entry_count) 2548 count = lpfc_hbq_defs[hbqno]->entry_count - 2549 phba->hbqs[hbqno].buffer_count; 2550 if (!count) 2551 return 0; 2552 /* Allocate HBQ entries */ 2553 for (i = 0; i < count; i++) { 2554 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2555 if (!hbq_buffer) 2556 break; 2557 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2558 } 2559 /* Check whether HBQ is still in use */ 2560 spin_lock_irqsave(&phba->hbalock, flags); 2561 if (!phba->hbq_in_use) 2562 goto err; 2563 while (!list_empty(&hbq_buf_list)) { 2564 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2565 dbuf.list); 2566 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2567 (hbqno << 16)); 2568 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2569 phba->hbqs[hbqno].buffer_count++; 2570 posted++; 2571 } else 2572 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2573 } 2574 spin_unlock_irqrestore(&phba->hbalock, flags); 2575 return posted; 2576 err: 2577 spin_unlock_irqrestore(&phba->hbalock, flags); 2578 while (!list_empty(&hbq_buf_list)) { 2579 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2580 dbuf.list); 2581 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2582 } 2583 return 0; 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ number. 2590 * 2591 * This function posts more buffers to the HBQ. This function 2592 * is called with no lock held. The function returns the number of HBQ entries 2593 * successfully allocated. 2594 **/ 2595 int 2596 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return 0; 2600 else 2601 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2602 lpfc_hbq_defs[qno]->add_count); 2603 } 2604 2605 /** 2606 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2607 * @phba: Pointer to HBA context object. 2608 * @qno: HBQ queue number. 2609 * 2610 * This function is called from SLI initialization code path with 2611 * no lock held to post initial HBQ buffers to firmware. The 2612 * function returns the number of HBQ entries successfully allocated. 2613 **/ 2614 static int 2615 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2616 { 2617 if (phba->sli_rev == LPFC_SLI_REV4) 2618 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2619 lpfc_hbq_defs[qno]->entry_count); 2620 else 2621 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2622 lpfc_hbq_defs[qno]->init_count); 2623 } 2624 2625 /* 2626 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2627 * 2628 * This function removes the first hbq buffer on an hbq list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct hbq_dmabuf * 2632 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2633 { 2634 struct lpfc_dmabuf *d_buf; 2635 2636 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2637 if (!d_buf) 2638 return NULL; 2639 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2640 } 2641 2642 /** 2643 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2644 * @phba: Pointer to HBA context object. 2645 * @hrq: HBQ number. 2646 * 2647 * This function removes the first RQ buffer on an RQ buffer list and returns a 2648 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2649 **/ 2650 static struct rqb_dmabuf * 2651 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2652 { 2653 struct lpfc_dmabuf *h_buf; 2654 struct lpfc_rqb *rqbp; 2655 2656 rqbp = hrq->rqbp; 2657 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2658 struct lpfc_dmabuf, list); 2659 if (!h_buf) 2660 return NULL; 2661 rqbp->buffer_count--; 2662 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2663 } 2664 2665 /** 2666 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2667 * @phba: Pointer to HBA context object. 2668 * @tag: Tag of the hbq buffer. 2669 * 2670 * This function searches for the hbq buffer associated with the given tag in 2671 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2672 * otherwise it returns NULL. 2673 **/ 2674 static struct hbq_dmabuf * 2675 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2676 { 2677 struct lpfc_dmabuf *d_buf; 2678 struct hbq_dmabuf *hbq_buf; 2679 uint32_t hbqno; 2680 2681 hbqno = tag >> 16; 2682 if (hbqno >= LPFC_MAX_HBQS) 2683 return NULL; 2684 2685 spin_lock_irq(&phba->hbalock); 2686 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2687 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2688 if (hbq_buf->tag == tag) { 2689 spin_unlock_irq(&phba->hbalock); 2690 return hbq_buf; 2691 } 2692 } 2693 spin_unlock_irq(&phba->hbalock); 2694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2695 "1803 Bad hbq tag. Data: x%x x%x\n", 2696 tag, phba->hbqs[tag >> 16].buffer_count); 2697 return NULL; 2698 } 2699 2700 /** 2701 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2702 * @phba: Pointer to HBA context object. 2703 * @hbq_buffer: Pointer to HBQ buffer. 2704 * 2705 * This function is called with hbalock. This function gives back 2706 * the hbq buffer to firmware. If the HBQ does not have space to 2707 * post the buffer, it will free the buffer. 2708 **/ 2709 void 2710 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2711 { 2712 uint32_t hbqno; 2713 2714 if (hbq_buffer) { 2715 hbqno = hbq_buffer->tag >> 16; 2716 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2717 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2718 } 2719 } 2720 2721 /** 2722 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2723 * @mbxCommand: mailbox command code. 2724 * 2725 * This function is called by the mailbox event handler function to verify 2726 * that the completed mailbox command is a legitimate mailbox command. If the 2727 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2728 * and the mailbox event handler will take the HBA offline. 2729 **/ 2730 static int 2731 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2732 { 2733 uint8_t ret; 2734 2735 switch (mbxCommand) { 2736 case MBX_LOAD_SM: 2737 case MBX_READ_NV: 2738 case MBX_WRITE_NV: 2739 case MBX_WRITE_VPARMS: 2740 case MBX_RUN_BIU_DIAG: 2741 case MBX_INIT_LINK: 2742 case MBX_DOWN_LINK: 2743 case MBX_CONFIG_LINK: 2744 case MBX_CONFIG_RING: 2745 case MBX_RESET_RING: 2746 case MBX_READ_CONFIG: 2747 case MBX_READ_RCONFIG: 2748 case MBX_READ_SPARM: 2749 case MBX_READ_STATUS: 2750 case MBX_READ_RPI: 2751 case MBX_READ_XRI: 2752 case MBX_READ_REV: 2753 case MBX_READ_LNK_STAT: 2754 case MBX_REG_LOGIN: 2755 case MBX_UNREG_LOGIN: 2756 case MBX_CLEAR_LA: 2757 case MBX_DUMP_MEMORY: 2758 case MBX_DUMP_CONTEXT: 2759 case MBX_RUN_DIAGS: 2760 case MBX_RESTART: 2761 case MBX_UPDATE_CFG: 2762 case MBX_DOWN_LOAD: 2763 case MBX_DEL_LD_ENTRY: 2764 case MBX_RUN_PROGRAM: 2765 case MBX_SET_MASK: 2766 case MBX_SET_VARIABLE: 2767 case MBX_UNREG_D_ID: 2768 case MBX_KILL_BOARD: 2769 case MBX_CONFIG_FARP: 2770 case MBX_BEACON: 2771 case MBX_LOAD_AREA: 2772 case MBX_RUN_BIU_DIAG64: 2773 case MBX_CONFIG_PORT: 2774 case MBX_READ_SPARM64: 2775 case MBX_READ_RPI64: 2776 case MBX_REG_LOGIN64: 2777 case MBX_READ_TOPOLOGY: 2778 case MBX_WRITE_WWN: 2779 case MBX_SET_DEBUG: 2780 case MBX_LOAD_EXP_ROM: 2781 case MBX_ASYNCEVT_ENABLE: 2782 case MBX_REG_VPI: 2783 case MBX_UNREG_VPI: 2784 case MBX_HEARTBEAT: 2785 case MBX_PORT_CAPABILITIES: 2786 case MBX_PORT_IOV_CONTROL: 2787 case MBX_SLI4_CONFIG: 2788 case MBX_SLI4_REQ_FTRS: 2789 case MBX_REG_FCFI: 2790 case MBX_UNREG_FCFI: 2791 case MBX_REG_VFI: 2792 case MBX_UNREG_VFI: 2793 case MBX_INIT_VPI: 2794 case MBX_INIT_VFI: 2795 case MBX_RESUME_RPI: 2796 case MBX_READ_EVENT_LOG_STATUS: 2797 case MBX_READ_EVENT_LOG: 2798 case MBX_SECURITY_MGMT: 2799 case MBX_AUTH_PORT: 2800 case MBX_ACCESS_VDATA: 2801 ret = mbxCommand; 2802 break; 2803 default: 2804 ret = MBX_SHUTDOWN; 2805 break; 2806 } 2807 return ret; 2808 } 2809 2810 /** 2811 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2812 * @phba: Pointer to HBA context object. 2813 * @pmboxq: Pointer to mailbox command. 2814 * 2815 * This is completion handler function for mailbox commands issued from 2816 * lpfc_sli_issue_mbox_wait function. This function is called by the 2817 * mailbox event handler function with no lock held. This function 2818 * will wake up thread waiting on the wait queue pointed by context1 2819 * of the mailbox. 2820 **/ 2821 void 2822 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2823 { 2824 unsigned long drvr_flag; 2825 struct completion *pmbox_done; 2826 2827 /* 2828 * If pmbox_done is empty, the driver thread gave up waiting and 2829 * continued running. 2830 */ 2831 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2832 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2833 pmbox_done = (struct completion *)pmboxq->context3; 2834 if (pmbox_done) 2835 complete(pmbox_done); 2836 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2837 return; 2838 } 2839 2840 static void 2841 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2842 { 2843 unsigned long iflags; 2844 2845 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2846 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2847 spin_lock_irqsave(&ndlp->lock, iflags); 2848 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2849 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2850 spin_unlock_irqrestore(&ndlp->lock, iflags); 2851 } 2852 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2853 } 2854 2855 void 2856 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2857 { 2858 __lpfc_sli_rpi_release(vport, ndlp); 2859 } 2860 2861 /** 2862 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2863 * @phba: Pointer to HBA context object. 2864 * @pmb: Pointer to mailbox object. 2865 * 2866 * This function is the default mailbox completion handler. It 2867 * frees the memory resources associated with the completed mailbox 2868 * command. If the completed command is a REG_LOGIN mailbox command, 2869 * this function will issue a UREG_LOGIN to re-claim the RPI. 2870 **/ 2871 void 2872 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2873 { 2874 struct lpfc_vport *vport = pmb->vport; 2875 struct lpfc_dmabuf *mp; 2876 struct lpfc_nodelist *ndlp; 2877 struct Scsi_Host *shost; 2878 uint16_t rpi, vpi; 2879 int rc; 2880 2881 /* 2882 * If a REG_LOGIN succeeded after node is destroyed or node 2883 * is in re-discovery driver need to cleanup the RPI. 2884 */ 2885 if (!(phba->pport->load_flag & FC_UNLOADING) && 2886 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2887 !pmb->u.mb.mbxStatus) { 2888 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 2889 if (mp) { 2890 pmb->ctx_buf = NULL; 2891 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2892 kfree(mp); 2893 } 2894 rpi = pmb->u.mb.un.varWords[0]; 2895 vpi = pmb->u.mb.un.varRegLogin.vpi; 2896 if (phba->sli_rev == LPFC_SLI_REV4) 2897 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2898 lpfc_unreg_login(phba, vpi, rpi, pmb); 2899 pmb->vport = vport; 2900 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2901 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2902 if (rc != MBX_NOT_FINISHED) 2903 return; 2904 } 2905 2906 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2907 !(phba->pport->load_flag & FC_UNLOADING) && 2908 !pmb->u.mb.mbxStatus) { 2909 shost = lpfc_shost_from_vport(vport); 2910 spin_lock_irq(shost->host_lock); 2911 vport->vpi_state |= LPFC_VPI_REGISTERED; 2912 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2913 spin_unlock_irq(shost->host_lock); 2914 } 2915 2916 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2917 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2918 lpfc_nlp_put(ndlp); 2919 } 2920 2921 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2922 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2923 2924 /* Check to see if there are any deferred events to process */ 2925 if (ndlp) { 2926 lpfc_printf_vlog( 2927 vport, 2928 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2929 "1438 UNREG cmpl deferred mbox x%x " 2930 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2931 ndlp->nlp_rpi, ndlp->nlp_DID, 2932 ndlp->nlp_flag, ndlp->nlp_defer_did, 2933 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2934 2935 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2936 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2937 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2938 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2939 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2940 } else { 2941 __lpfc_sli_rpi_release(vport, ndlp); 2942 } 2943 2944 /* The unreg_login mailbox is complete and had a 2945 * reference that has to be released. The PLOGI 2946 * got its own ref. 2947 */ 2948 lpfc_nlp_put(ndlp); 2949 pmb->ctx_ndlp = NULL; 2950 } 2951 } 2952 2953 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2954 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2955 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2956 lpfc_nlp_put(ndlp); 2957 } 2958 2959 /* Check security permission status on INIT_LINK mailbox command */ 2960 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2961 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2963 "2860 SLI authentication is required " 2964 "for INIT_LINK but has not done yet\n"); 2965 2966 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2967 lpfc_sli4_mbox_cmd_free(phba, pmb); 2968 else 2969 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2970 } 2971 /** 2972 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2973 * @phba: Pointer to HBA context object. 2974 * @pmb: Pointer to mailbox object. 2975 * 2976 * This function is the unreg rpi mailbox completion handler. It 2977 * frees the memory resources associated with the completed mailbox 2978 * command. An additional reference is put on the ndlp to prevent 2979 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2980 * the unreg mailbox command completes, this routine puts the 2981 * reference back. 2982 * 2983 **/ 2984 void 2985 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2986 { 2987 struct lpfc_vport *vport = pmb->vport; 2988 struct lpfc_nodelist *ndlp; 2989 2990 ndlp = pmb->ctx_ndlp; 2991 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2992 if (phba->sli_rev == LPFC_SLI_REV4 && 2993 (bf_get(lpfc_sli_intf_if_type, 2994 &phba->sli4_hba.sli_intf) >= 2995 LPFC_SLI_INTF_IF_TYPE_2)) { 2996 if (ndlp) { 2997 lpfc_printf_vlog( 2998 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2999 "0010 UNREG_LOGIN vpi:%x " 3000 "rpi:%x DID:%x defer x%x flg x%x " 3001 "x%px\n", 3002 vport->vpi, ndlp->nlp_rpi, 3003 ndlp->nlp_DID, ndlp->nlp_defer_did, 3004 ndlp->nlp_flag, 3005 ndlp); 3006 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3007 3008 /* Check to see if there are any deferred 3009 * events to process 3010 */ 3011 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3012 (ndlp->nlp_defer_did != 3013 NLP_EVT_NOTHING_PENDING)) { 3014 lpfc_printf_vlog( 3015 vport, KERN_INFO, LOG_DISCOVERY, 3016 "4111 UNREG cmpl deferred " 3017 "clr x%x on " 3018 "NPort x%x Data: x%x x%px\n", 3019 ndlp->nlp_rpi, ndlp->nlp_DID, 3020 ndlp->nlp_defer_did, ndlp); 3021 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3022 ndlp->nlp_defer_did = 3023 NLP_EVT_NOTHING_PENDING; 3024 lpfc_issue_els_plogi( 3025 vport, ndlp->nlp_DID, 0); 3026 } else { 3027 __lpfc_sli_rpi_release(vport, ndlp); 3028 } 3029 lpfc_nlp_put(ndlp); 3030 } 3031 } 3032 } 3033 3034 mempool_free(pmb, phba->mbox_mem_pool); 3035 } 3036 3037 /** 3038 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3039 * @phba: Pointer to HBA context object. 3040 * 3041 * This function is called with no lock held. This function processes all 3042 * the completed mailbox commands and gives it to upper layers. The interrupt 3043 * service routine processes mailbox completion interrupt and adds completed 3044 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3045 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3046 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3047 * function returns the mailbox commands to the upper layer by calling the 3048 * completion handler function of each mailbox. 3049 **/ 3050 int 3051 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3052 { 3053 MAILBOX_t *pmbox; 3054 LPFC_MBOXQ_t *pmb; 3055 int rc; 3056 LIST_HEAD(cmplq); 3057 3058 phba->sli.slistat.mbox_event++; 3059 3060 /* Get all completed mailboxe buffers into the cmplq */ 3061 spin_lock_irq(&phba->hbalock); 3062 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3063 spin_unlock_irq(&phba->hbalock); 3064 3065 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3066 do { 3067 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3068 if (pmb == NULL) 3069 break; 3070 3071 pmbox = &pmb->u.mb; 3072 3073 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3074 if (pmb->vport) { 3075 lpfc_debugfs_disc_trc(pmb->vport, 3076 LPFC_DISC_TRC_MBOX_VPORT, 3077 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3078 (uint32_t)pmbox->mbxCommand, 3079 pmbox->un.varWords[0], 3080 pmbox->un.varWords[1]); 3081 } 3082 else { 3083 lpfc_debugfs_disc_trc(phba->pport, 3084 LPFC_DISC_TRC_MBOX, 3085 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3086 (uint32_t)pmbox->mbxCommand, 3087 pmbox->un.varWords[0], 3088 pmbox->un.varWords[1]); 3089 } 3090 } 3091 3092 /* 3093 * It is a fatal error if unknown mbox command completion. 3094 */ 3095 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3096 MBX_SHUTDOWN) { 3097 /* Unknown mailbox command compl */ 3098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3099 "(%d):0323 Unknown Mailbox command " 3100 "x%x (x%x/x%x) Cmpl\n", 3101 pmb->vport ? pmb->vport->vpi : 3102 LPFC_VPORT_UNKNOWN, 3103 pmbox->mbxCommand, 3104 lpfc_sli_config_mbox_subsys_get(phba, 3105 pmb), 3106 lpfc_sli_config_mbox_opcode_get(phba, 3107 pmb)); 3108 phba->link_state = LPFC_HBA_ERROR; 3109 phba->work_hs = HS_FFER3; 3110 lpfc_handle_eratt(phba); 3111 continue; 3112 } 3113 3114 if (pmbox->mbxStatus) { 3115 phba->sli.slistat.mbox_stat_err++; 3116 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3117 /* Mbox cmd cmpl error - RETRYing */ 3118 lpfc_printf_log(phba, KERN_INFO, 3119 LOG_MBOX | LOG_SLI, 3120 "(%d):0305 Mbox cmd cmpl " 3121 "error - RETRYing Data: x%x " 3122 "(x%x/x%x) x%x x%x x%x\n", 3123 pmb->vport ? pmb->vport->vpi : 3124 LPFC_VPORT_UNKNOWN, 3125 pmbox->mbxCommand, 3126 lpfc_sli_config_mbox_subsys_get(phba, 3127 pmb), 3128 lpfc_sli_config_mbox_opcode_get(phba, 3129 pmb), 3130 pmbox->mbxStatus, 3131 pmbox->un.varWords[0], 3132 pmb->vport ? pmb->vport->port_state : 3133 LPFC_VPORT_UNKNOWN); 3134 pmbox->mbxStatus = 0; 3135 pmbox->mbxOwner = OWN_HOST; 3136 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3137 if (rc != MBX_NOT_FINISHED) 3138 continue; 3139 } 3140 } 3141 3142 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3143 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3144 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3145 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3146 "x%x x%x x%x\n", 3147 pmb->vport ? pmb->vport->vpi : 0, 3148 pmbox->mbxCommand, 3149 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3150 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3151 pmb->mbox_cmpl, 3152 *((uint32_t *) pmbox), 3153 pmbox->un.varWords[0], 3154 pmbox->un.varWords[1], 3155 pmbox->un.varWords[2], 3156 pmbox->un.varWords[3], 3157 pmbox->un.varWords[4], 3158 pmbox->un.varWords[5], 3159 pmbox->un.varWords[6], 3160 pmbox->un.varWords[7], 3161 pmbox->un.varWords[8], 3162 pmbox->un.varWords[9], 3163 pmbox->un.varWords[10]); 3164 3165 if (pmb->mbox_cmpl) 3166 pmb->mbox_cmpl(phba,pmb); 3167 } while (1); 3168 return 0; 3169 } 3170 3171 /** 3172 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3173 * @phba: Pointer to HBA context object. 3174 * @pring: Pointer to driver SLI ring object. 3175 * @tag: buffer tag. 3176 * 3177 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3178 * is set in the tag the buffer is posted for a particular exchange, 3179 * the function will return the buffer without replacing the buffer. 3180 * If the buffer is for unsolicited ELS or CT traffic, this function 3181 * returns the buffer and also posts another buffer to the firmware. 3182 **/ 3183 static struct lpfc_dmabuf * 3184 lpfc_sli_get_buff(struct lpfc_hba *phba, 3185 struct lpfc_sli_ring *pring, 3186 uint32_t tag) 3187 { 3188 struct hbq_dmabuf *hbq_entry; 3189 3190 if (tag & QUE_BUFTAG_BIT) 3191 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3192 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3193 if (!hbq_entry) 3194 return NULL; 3195 return &hbq_entry->dbuf; 3196 } 3197 3198 /** 3199 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3200 * containing a NVME LS request. 3201 * @phba: pointer to lpfc hba data structure. 3202 * @piocb: pointer to the iocbq struct representing the sequence starting 3203 * frame. 3204 * 3205 * This routine initially validates the NVME LS, validates there is a login 3206 * with the port that sent the LS, and then calls the appropriate nvme host 3207 * or target LS request handler. 3208 **/ 3209 static void 3210 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3211 { 3212 struct lpfc_nodelist *ndlp; 3213 struct lpfc_dmabuf *d_buf; 3214 struct hbq_dmabuf *nvmebuf; 3215 struct fc_frame_header *fc_hdr; 3216 struct lpfc_async_xchg_ctx *axchg = NULL; 3217 char *failwhy = NULL; 3218 uint32_t oxid, sid, did, fctl, size; 3219 int ret = 1; 3220 3221 d_buf = piocb->cmd_dmabuf; 3222 3223 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3224 fc_hdr = nvmebuf->hbuf.virt; 3225 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3226 sid = sli4_sid_from_fc_hdr(fc_hdr); 3227 did = sli4_did_from_fc_hdr(fc_hdr); 3228 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3229 fc_hdr->fh_f_ctl[1] << 8 | 3230 fc_hdr->fh_f_ctl[2]); 3231 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3232 3233 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3234 oxid, size, sid); 3235 3236 if (phba->pport->load_flag & FC_UNLOADING) { 3237 failwhy = "Driver Unloading"; 3238 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3239 failwhy = "NVME FC4 Disabled"; 3240 } else if (!phba->nvmet_support && !phba->pport->localport) { 3241 failwhy = "No Localport"; 3242 } else if (phba->nvmet_support && !phba->targetport) { 3243 failwhy = "No Targetport"; 3244 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3245 failwhy = "Bad NVME LS R_CTL"; 3246 } else if (unlikely((fctl & 0x00FF0000) != 3247 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3248 failwhy = "Bad NVME LS F_CTL"; 3249 } else { 3250 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3251 if (!axchg) 3252 failwhy = "No CTX memory"; 3253 } 3254 3255 if (unlikely(failwhy)) { 3256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3257 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3258 sid, oxid, failwhy); 3259 goto out_fail; 3260 } 3261 3262 /* validate the source of the LS is logged in */ 3263 ndlp = lpfc_findnode_did(phba->pport, sid); 3264 if (!ndlp || 3265 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3266 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3267 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3268 "6216 NVME Unsol rcv: No ndlp: " 3269 "NPort_ID x%x oxid x%x\n", 3270 sid, oxid); 3271 goto out_fail; 3272 } 3273 3274 axchg->phba = phba; 3275 axchg->ndlp = ndlp; 3276 axchg->size = size; 3277 axchg->oxid = oxid; 3278 axchg->sid = sid; 3279 axchg->wqeq = NULL; 3280 axchg->state = LPFC_NVME_STE_LS_RCV; 3281 axchg->entry_cnt = 1; 3282 axchg->rqb_buffer = (void *)nvmebuf; 3283 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3284 axchg->payload = nvmebuf->dbuf.virt; 3285 INIT_LIST_HEAD(&axchg->list); 3286 3287 if (phba->nvmet_support) { 3288 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3289 spin_lock_irq(&ndlp->lock); 3290 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3291 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3292 spin_unlock_irq(&ndlp->lock); 3293 3294 /* This reference is a single occurrence to hold the 3295 * node valid until the nvmet transport calls 3296 * host_release. 3297 */ 3298 if (!lpfc_nlp_get(ndlp)) 3299 goto out_fail; 3300 3301 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3302 "6206 NVMET unsol ls_req ndlp x%px " 3303 "DID x%x xflags x%x refcnt %d\n", 3304 ndlp, ndlp->nlp_DID, 3305 ndlp->fc4_xpt_flags, 3306 kref_read(&ndlp->kref)); 3307 } else { 3308 spin_unlock_irq(&ndlp->lock); 3309 } 3310 } else { 3311 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3312 } 3313 3314 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3315 if (!ret) 3316 return; 3317 3318 out_fail: 3319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3320 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3321 "NVMe%s handler failed %d\n", 3322 did, sid, oxid, 3323 (phba->nvmet_support) ? "T" : "I", ret); 3324 3325 /* recycle receive buffer */ 3326 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3327 3328 /* If start of new exchange, abort it */ 3329 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3330 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3331 3332 if (ret) 3333 kfree(axchg); 3334 } 3335 3336 /** 3337 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3338 * @phba: Pointer to HBA context object. 3339 * @pring: Pointer to driver SLI ring object. 3340 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3341 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3342 * @fch_type: the type for the first frame of the sequence. 3343 * 3344 * This function is called with no lock held. This function uses the r_ctl and 3345 * type of the received sequence to find the correct callback function to call 3346 * to process the sequence. 3347 **/ 3348 static int 3349 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3350 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3351 uint32_t fch_type) 3352 { 3353 int i; 3354 3355 switch (fch_type) { 3356 case FC_TYPE_NVME: 3357 lpfc_nvme_unsol_ls_handler(phba, saveq); 3358 return 1; 3359 default: 3360 break; 3361 } 3362 3363 /* unSolicited Responses */ 3364 if (pring->prt[0].profile) { 3365 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3366 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3367 saveq); 3368 return 1; 3369 } 3370 /* We must search, based on rctl / type 3371 for the right routine */ 3372 for (i = 0; i < pring->num_mask; i++) { 3373 if ((pring->prt[i].rctl == fch_r_ctl) && 3374 (pring->prt[i].type == fch_type)) { 3375 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3376 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3377 (phba, pring, saveq); 3378 return 1; 3379 } 3380 } 3381 return 0; 3382 } 3383 3384 static void 3385 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3386 struct lpfc_iocbq *saveq) 3387 { 3388 IOCB_t *irsp; 3389 union lpfc_wqe128 *wqe; 3390 u16 i = 0; 3391 3392 irsp = &saveq->iocb; 3393 wqe = &saveq->wqe; 3394 3395 /* Fill wcqe with the IOCB status fields */ 3396 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3397 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3398 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3399 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3400 3401 /* Source ID */ 3402 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3403 3404 /* rx-id of the response frame */ 3405 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3406 3407 /* ox-id of the frame */ 3408 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3409 irsp->unsli3.rcvsli3.ox_id); 3410 3411 /* DID */ 3412 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3413 irsp->un.rcvels.remoteID); 3414 3415 /* unsol data len */ 3416 for (i = 0; i < irsp->ulpBdeCount; i++) { 3417 struct lpfc_hbq_entry *hbqe = NULL; 3418 3419 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3420 if (i == 0) { 3421 hbqe = (struct lpfc_hbq_entry *) 3422 &irsp->un.ulpWord[0]; 3423 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3424 hbqe->bde.tus.f.bdeSize; 3425 } else if (i == 1) { 3426 hbqe = (struct lpfc_hbq_entry *) 3427 &irsp->unsli3.sli3Words[4]; 3428 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3429 } 3430 } 3431 } 3432 } 3433 3434 /** 3435 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3436 * @phba: Pointer to HBA context object. 3437 * @pring: Pointer to driver SLI ring object. 3438 * @saveq: Pointer to the unsolicited iocb. 3439 * 3440 * This function is called with no lock held by the ring event handler 3441 * when there is an unsolicited iocb posted to the response ring by the 3442 * firmware. This function gets the buffer associated with the iocbs 3443 * and calls the event handler for the ring. This function handles both 3444 * qring buffers and hbq buffers. 3445 * When the function returns 1 the caller can free the iocb object otherwise 3446 * upper layer functions will free the iocb objects. 3447 **/ 3448 static int 3449 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3450 struct lpfc_iocbq *saveq) 3451 { 3452 IOCB_t * irsp; 3453 WORD5 * w5p; 3454 dma_addr_t paddr; 3455 uint32_t Rctl, Type; 3456 struct lpfc_iocbq *iocbq; 3457 struct lpfc_dmabuf *dmzbuf; 3458 3459 irsp = &saveq->iocb; 3460 saveq->vport = phba->pport; 3461 3462 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3463 if (pring->lpfc_sli_rcv_async_status) 3464 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3465 else 3466 lpfc_printf_log(phba, 3467 KERN_WARNING, 3468 LOG_SLI, 3469 "0316 Ring %d handler: unexpected " 3470 "ASYNC_STATUS iocb received evt_code " 3471 "0x%x\n", 3472 pring->ringno, 3473 irsp->un.asyncstat.evt_code); 3474 return 1; 3475 } 3476 3477 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3478 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3479 if (irsp->ulpBdeCount > 0) { 3480 dmzbuf = lpfc_sli_get_buff(phba, pring, 3481 irsp->un.ulpWord[3]); 3482 lpfc_in_buf_free(phba, dmzbuf); 3483 } 3484 3485 if (irsp->ulpBdeCount > 1) { 3486 dmzbuf = lpfc_sli_get_buff(phba, pring, 3487 irsp->unsli3.sli3Words[3]); 3488 lpfc_in_buf_free(phba, dmzbuf); 3489 } 3490 3491 if (irsp->ulpBdeCount > 2) { 3492 dmzbuf = lpfc_sli_get_buff(phba, pring, 3493 irsp->unsli3.sli3Words[7]); 3494 lpfc_in_buf_free(phba, dmzbuf); 3495 } 3496 3497 return 1; 3498 } 3499 3500 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3501 if (irsp->ulpBdeCount != 0) { 3502 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3503 irsp->un.ulpWord[3]); 3504 if (!saveq->cmd_dmabuf) 3505 lpfc_printf_log(phba, 3506 KERN_ERR, 3507 LOG_SLI, 3508 "0341 Ring %d Cannot find buffer for " 3509 "an unsolicited iocb. tag 0x%x\n", 3510 pring->ringno, 3511 irsp->un.ulpWord[3]); 3512 } 3513 if (irsp->ulpBdeCount == 2) { 3514 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3515 irsp->unsli3.sli3Words[7]); 3516 if (!saveq->bpl_dmabuf) 3517 lpfc_printf_log(phba, 3518 KERN_ERR, 3519 LOG_SLI, 3520 "0342 Ring %d Cannot find buffer for an" 3521 " unsolicited iocb. tag 0x%x\n", 3522 pring->ringno, 3523 irsp->unsli3.sli3Words[7]); 3524 } 3525 list_for_each_entry(iocbq, &saveq->list, list) { 3526 irsp = &iocbq->iocb; 3527 if (irsp->ulpBdeCount != 0) { 3528 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3529 pring, 3530 irsp->un.ulpWord[3]); 3531 if (!iocbq->cmd_dmabuf) 3532 lpfc_printf_log(phba, 3533 KERN_ERR, 3534 LOG_SLI, 3535 "0343 Ring %d Cannot find " 3536 "buffer for an unsolicited iocb" 3537 ". tag 0x%x\n", pring->ringno, 3538 irsp->un.ulpWord[3]); 3539 } 3540 if (irsp->ulpBdeCount == 2) { 3541 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3542 pring, 3543 irsp->unsli3.sli3Words[7]); 3544 if (!iocbq->bpl_dmabuf) 3545 lpfc_printf_log(phba, 3546 KERN_ERR, 3547 LOG_SLI, 3548 "0344 Ring %d Cannot find " 3549 "buffer for an unsolicited " 3550 "iocb. tag 0x%x\n", 3551 pring->ringno, 3552 irsp->unsli3.sli3Words[7]); 3553 } 3554 } 3555 } else { 3556 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3557 irsp->un.cont64[0].addrLow); 3558 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3559 paddr); 3560 if (irsp->ulpBdeCount == 2) { 3561 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3562 irsp->un.cont64[1].addrLow); 3563 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3564 pring, 3565 paddr); 3566 } 3567 } 3568 3569 if (irsp->ulpBdeCount != 0 && 3570 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3571 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3572 int found = 0; 3573 3574 /* search continue save q for same XRI */ 3575 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3576 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3577 saveq->iocb.unsli3.rcvsli3.ox_id) { 3578 list_add_tail(&saveq->list, &iocbq->list); 3579 found = 1; 3580 break; 3581 } 3582 } 3583 if (!found) 3584 list_add_tail(&saveq->clist, 3585 &pring->iocb_continue_saveq); 3586 3587 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3588 list_del_init(&iocbq->clist); 3589 saveq = iocbq; 3590 irsp = &saveq->iocb; 3591 } else { 3592 return 0; 3593 } 3594 } 3595 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3596 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3597 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3598 Rctl = FC_RCTL_ELS_REQ; 3599 Type = FC_TYPE_ELS; 3600 } else { 3601 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3602 Rctl = w5p->hcsw.Rctl; 3603 Type = w5p->hcsw.Type; 3604 3605 /* Firmware Workaround */ 3606 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3607 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3608 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3609 Rctl = FC_RCTL_ELS_REQ; 3610 Type = FC_TYPE_ELS; 3611 w5p->hcsw.Rctl = Rctl; 3612 w5p->hcsw.Type = Type; 3613 } 3614 } 3615 3616 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3617 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3618 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3619 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3620 saveq->vport = phba->pport; 3621 else 3622 saveq->vport = lpfc_find_vport_by_vpid(phba, 3623 irsp->unsli3.rcvsli3.vpi); 3624 } 3625 3626 /* Prepare WQE with Unsol frame */ 3627 lpfc_sli_prep_unsol_wqe(phba, saveq); 3628 3629 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3630 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3631 "0313 Ring %d handler: unexpected Rctl x%x " 3632 "Type x%x received\n", 3633 pring->ringno, Rctl, Type); 3634 3635 return 1; 3636 } 3637 3638 /** 3639 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3640 * @phba: Pointer to HBA context object. 3641 * @pring: Pointer to driver SLI ring object. 3642 * @prspiocb: Pointer to response iocb object. 3643 * 3644 * This function looks up the iocb_lookup table to get the command iocb 3645 * corresponding to the given response iocb using the iotag of the 3646 * response iocb. The driver calls this function with the hbalock held 3647 * for SLI3 ports or the ring lock held for SLI4 ports. 3648 * This function returns the command iocb object if it finds the command 3649 * iocb else returns NULL. 3650 **/ 3651 static struct lpfc_iocbq * 3652 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3653 struct lpfc_sli_ring *pring, 3654 struct lpfc_iocbq *prspiocb) 3655 { 3656 struct lpfc_iocbq *cmd_iocb = NULL; 3657 u16 iotag; 3658 3659 if (phba->sli_rev == LPFC_SLI_REV4) 3660 iotag = get_wqe_reqtag(prspiocb); 3661 else 3662 iotag = prspiocb->iocb.ulpIoTag; 3663 3664 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3665 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3666 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3667 /* remove from txcmpl queue list */ 3668 list_del_init(&cmd_iocb->list); 3669 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3670 pring->txcmplq_cnt--; 3671 return cmd_iocb; 3672 } 3673 } 3674 3675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3676 "0317 iotag x%x is out of " 3677 "range: max iotag x%x\n", 3678 iotag, phba->sli.last_iotag); 3679 return NULL; 3680 } 3681 3682 /** 3683 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3684 * @phba: Pointer to HBA context object. 3685 * @pring: Pointer to driver SLI ring object. 3686 * @iotag: IOCB tag. 3687 * 3688 * This function looks up the iocb_lookup table to get the command iocb 3689 * corresponding to the given iotag. The driver calls this function with 3690 * the ring lock held because this function is an SLI4 port only helper. 3691 * This function returns the command iocb object if it finds the command 3692 * iocb else returns NULL. 3693 **/ 3694 static struct lpfc_iocbq * 3695 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3696 struct lpfc_sli_ring *pring, uint16_t iotag) 3697 { 3698 struct lpfc_iocbq *cmd_iocb = NULL; 3699 3700 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3701 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3702 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3703 /* remove from txcmpl queue list */ 3704 list_del_init(&cmd_iocb->list); 3705 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3706 pring->txcmplq_cnt--; 3707 return cmd_iocb; 3708 } 3709 } 3710 3711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3712 "0372 iotag x%x lookup error: max iotag (x%x) " 3713 "cmd_flag x%x\n", 3714 iotag, phba->sli.last_iotag, 3715 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3716 return NULL; 3717 } 3718 3719 /** 3720 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3721 * @phba: Pointer to HBA context object. 3722 * @pring: Pointer to driver SLI ring object. 3723 * @saveq: Pointer to the response iocb to be processed. 3724 * 3725 * This function is called by the ring event handler for non-fcp 3726 * rings when there is a new response iocb in the response ring. 3727 * The caller is not required to hold any locks. This function 3728 * gets the command iocb associated with the response iocb and 3729 * calls the completion handler for the command iocb. If there 3730 * is no completion handler, the function will free the resources 3731 * associated with command iocb. If the response iocb is for 3732 * an already aborted command iocb, the status of the completion 3733 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3734 * This function always returns 1. 3735 **/ 3736 static int 3737 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3738 struct lpfc_iocbq *saveq) 3739 { 3740 struct lpfc_iocbq *cmdiocbp; 3741 unsigned long iflag; 3742 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3743 3744 if (phba->sli_rev == LPFC_SLI_REV4) 3745 spin_lock_irqsave(&pring->ring_lock, iflag); 3746 else 3747 spin_lock_irqsave(&phba->hbalock, iflag); 3748 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3749 if (phba->sli_rev == LPFC_SLI_REV4) 3750 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3751 else 3752 spin_unlock_irqrestore(&phba->hbalock, iflag); 3753 3754 ulp_command = get_job_cmnd(phba, saveq); 3755 ulp_status = get_job_ulpstatus(phba, saveq); 3756 ulp_word4 = get_job_word4(phba, saveq); 3757 ulp_context = get_job_ulpcontext(phba, saveq); 3758 if (phba->sli_rev == LPFC_SLI_REV4) 3759 iotag = get_wqe_reqtag(saveq); 3760 else 3761 iotag = saveq->iocb.ulpIoTag; 3762 3763 if (cmdiocbp) { 3764 ulp_command = get_job_cmnd(phba, cmdiocbp); 3765 if (cmdiocbp->cmd_cmpl) { 3766 /* 3767 * If an ELS command failed send an event to mgmt 3768 * application. 3769 */ 3770 if (ulp_status && 3771 (pring->ringno == LPFC_ELS_RING) && 3772 (ulp_command == CMD_ELS_REQUEST64_CR)) 3773 lpfc_send_els_failure_event(phba, 3774 cmdiocbp, saveq); 3775 3776 /* 3777 * Post all ELS completions to the worker thread. 3778 * All other are passed to the completion callback. 3779 */ 3780 if (pring->ringno == LPFC_ELS_RING) { 3781 if ((phba->sli_rev < LPFC_SLI_REV4) && 3782 (cmdiocbp->cmd_flag & 3783 LPFC_DRIVER_ABORTED)) { 3784 spin_lock_irqsave(&phba->hbalock, 3785 iflag); 3786 cmdiocbp->cmd_flag &= 3787 ~LPFC_DRIVER_ABORTED; 3788 spin_unlock_irqrestore(&phba->hbalock, 3789 iflag); 3790 saveq->iocb.ulpStatus = 3791 IOSTAT_LOCAL_REJECT; 3792 saveq->iocb.un.ulpWord[4] = 3793 IOERR_SLI_ABORTED; 3794 3795 /* Firmware could still be in progress 3796 * of DMAing payload, so don't free data 3797 * buffer till after a hbeat. 3798 */ 3799 spin_lock_irqsave(&phba->hbalock, 3800 iflag); 3801 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3802 spin_unlock_irqrestore(&phba->hbalock, 3803 iflag); 3804 } 3805 if (phba->sli_rev == LPFC_SLI_REV4) { 3806 if (saveq->cmd_flag & 3807 LPFC_EXCHANGE_BUSY) { 3808 /* Set cmdiocb flag for the 3809 * exchange busy so sgl (xri) 3810 * will not be released until 3811 * the abort xri is received 3812 * from hba. 3813 */ 3814 spin_lock_irqsave( 3815 &phba->hbalock, iflag); 3816 cmdiocbp->cmd_flag |= 3817 LPFC_EXCHANGE_BUSY; 3818 spin_unlock_irqrestore( 3819 &phba->hbalock, iflag); 3820 } 3821 if (cmdiocbp->cmd_flag & 3822 LPFC_DRIVER_ABORTED) { 3823 /* 3824 * Clear LPFC_DRIVER_ABORTED 3825 * bit in case it was driver 3826 * initiated abort. 3827 */ 3828 spin_lock_irqsave( 3829 &phba->hbalock, iflag); 3830 cmdiocbp->cmd_flag &= 3831 ~LPFC_DRIVER_ABORTED; 3832 spin_unlock_irqrestore( 3833 &phba->hbalock, iflag); 3834 set_job_ulpstatus(cmdiocbp, 3835 IOSTAT_LOCAL_REJECT); 3836 set_job_ulpword4(cmdiocbp, 3837 IOERR_ABORT_REQUESTED); 3838 /* 3839 * For SLI4, irspiocb contains 3840 * NO_XRI in sli_xritag, it 3841 * shall not affect releasing 3842 * sgl (xri) process. 3843 */ 3844 set_job_ulpstatus(saveq, 3845 IOSTAT_LOCAL_REJECT); 3846 set_job_ulpword4(saveq, 3847 IOERR_SLI_ABORTED); 3848 spin_lock_irqsave( 3849 &phba->hbalock, iflag); 3850 saveq->cmd_flag |= 3851 LPFC_DELAY_MEM_FREE; 3852 spin_unlock_irqrestore( 3853 &phba->hbalock, iflag); 3854 } 3855 } 3856 } 3857 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3858 } else 3859 lpfc_sli_release_iocbq(phba, cmdiocbp); 3860 } else { 3861 /* 3862 * Unknown initiating command based on the response iotag. 3863 * This could be the case on the ELS ring because of 3864 * lpfc_els_abort(). 3865 */ 3866 if (pring->ringno != LPFC_ELS_RING) { 3867 /* 3868 * Ring <ringno> handler: unexpected completion IoTag 3869 * <IoTag> 3870 */ 3871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3872 "0322 Ring %d handler: " 3873 "unexpected completion IoTag x%x " 3874 "Data: x%x x%x x%x x%x\n", 3875 pring->ringno, iotag, ulp_status, 3876 ulp_word4, ulp_command, ulp_context); 3877 } 3878 } 3879 3880 return 1; 3881 } 3882 3883 /** 3884 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3885 * @phba: Pointer to HBA context object. 3886 * @pring: Pointer to driver SLI ring object. 3887 * 3888 * This function is called from the iocb ring event handlers when 3889 * put pointer is ahead of the get pointer for a ring. This function signal 3890 * an error attention condition to the worker thread and the worker 3891 * thread will transition the HBA to offline state. 3892 **/ 3893 static void 3894 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3895 { 3896 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3897 /* 3898 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3899 * rsp ring <portRspMax> 3900 */ 3901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3902 "0312 Ring %d handler: portRspPut %d " 3903 "is bigger than rsp ring %d\n", 3904 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3905 pring->sli.sli3.numRiocb); 3906 3907 phba->link_state = LPFC_HBA_ERROR; 3908 3909 /* 3910 * All error attention handlers are posted to 3911 * worker thread 3912 */ 3913 phba->work_ha |= HA_ERATT; 3914 phba->work_hs = HS_FFER3; 3915 3916 lpfc_worker_wake_up(phba); 3917 3918 return; 3919 } 3920 3921 /** 3922 * lpfc_poll_eratt - Error attention polling timer timeout handler 3923 * @t: Context to fetch pointer to address of HBA context object from. 3924 * 3925 * This function is invoked by the Error Attention polling timer when the 3926 * timer times out. It will check the SLI Error Attention register for 3927 * possible attention events. If so, it will post an Error Attention event 3928 * and wake up worker thread to process it. Otherwise, it will set up the 3929 * Error Attention polling timer for the next poll. 3930 **/ 3931 void lpfc_poll_eratt(struct timer_list *t) 3932 { 3933 struct lpfc_hba *phba; 3934 uint32_t eratt = 0; 3935 uint64_t sli_intr, cnt; 3936 3937 phba = from_timer(phba, t, eratt_poll); 3938 3939 /* Here we will also keep track of interrupts per sec of the hba */ 3940 sli_intr = phba->sli.slistat.sli_intr; 3941 3942 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3943 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3944 sli_intr); 3945 else 3946 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3947 3948 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3949 do_div(cnt, phba->eratt_poll_interval); 3950 phba->sli.slistat.sli_ips = cnt; 3951 3952 phba->sli.slistat.sli_prev_intr = sli_intr; 3953 3954 /* Check chip HA register for error event */ 3955 eratt = lpfc_sli_check_eratt(phba); 3956 3957 if (eratt) 3958 /* Tell the worker thread there is work to do */ 3959 lpfc_worker_wake_up(phba); 3960 else 3961 /* Restart the timer for next eratt poll */ 3962 mod_timer(&phba->eratt_poll, 3963 jiffies + 3964 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3965 return; 3966 } 3967 3968 3969 /** 3970 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3971 * @phba: Pointer to HBA context object. 3972 * @pring: Pointer to driver SLI ring object. 3973 * @mask: Host attention register mask for this ring. 3974 * 3975 * This function is called from the interrupt context when there is a ring 3976 * event for the fcp ring. The caller does not hold any lock. 3977 * The function processes each response iocb in the response ring until it 3978 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3979 * LE bit set. The function will call the completion handler of the command iocb 3980 * if the response iocb indicates a completion for a command iocb or it is 3981 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3982 * function if this is an unsolicited iocb. 3983 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3984 * to check it explicitly. 3985 */ 3986 int 3987 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3988 struct lpfc_sli_ring *pring, uint32_t mask) 3989 { 3990 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3991 IOCB_t *irsp = NULL; 3992 IOCB_t *entry = NULL; 3993 struct lpfc_iocbq *cmdiocbq = NULL; 3994 struct lpfc_iocbq rspiocbq; 3995 uint32_t status; 3996 uint32_t portRspPut, portRspMax; 3997 int rc = 1; 3998 lpfc_iocb_type type; 3999 unsigned long iflag; 4000 uint32_t rsp_cmpl = 0; 4001 4002 spin_lock_irqsave(&phba->hbalock, iflag); 4003 pring->stats.iocb_event++; 4004 4005 /* 4006 * The next available response entry should never exceed the maximum 4007 * entries. If it does, treat it as an adapter hardware error. 4008 */ 4009 portRspMax = pring->sli.sli3.numRiocb; 4010 portRspPut = le32_to_cpu(pgp->rspPutInx); 4011 if (unlikely(portRspPut >= portRspMax)) { 4012 lpfc_sli_rsp_pointers_error(phba, pring); 4013 spin_unlock_irqrestore(&phba->hbalock, iflag); 4014 return 1; 4015 } 4016 if (phba->fcp_ring_in_use) { 4017 spin_unlock_irqrestore(&phba->hbalock, iflag); 4018 return 1; 4019 } else 4020 phba->fcp_ring_in_use = 1; 4021 4022 rmb(); 4023 while (pring->sli.sli3.rspidx != portRspPut) { 4024 /* 4025 * Fetch an entry off the ring and copy it into a local data 4026 * structure. The copy involves a byte-swap since the 4027 * network byte order and pci byte orders are different. 4028 */ 4029 entry = lpfc_resp_iocb(phba, pring); 4030 phba->last_completion_time = jiffies; 4031 4032 if (++pring->sli.sli3.rspidx >= portRspMax) 4033 pring->sli.sli3.rspidx = 0; 4034 4035 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4036 (uint32_t *) &rspiocbq.iocb, 4037 phba->iocb_rsp_size); 4038 INIT_LIST_HEAD(&(rspiocbq.list)); 4039 irsp = &rspiocbq.iocb; 4040 4041 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4042 pring->stats.iocb_rsp++; 4043 rsp_cmpl++; 4044 4045 if (unlikely(irsp->ulpStatus)) { 4046 /* 4047 * If resource errors reported from HBA, reduce 4048 * queuedepths of the SCSI device. 4049 */ 4050 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4051 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4052 IOERR_NO_RESOURCES)) { 4053 spin_unlock_irqrestore(&phba->hbalock, iflag); 4054 phba->lpfc_rampdown_queue_depth(phba); 4055 spin_lock_irqsave(&phba->hbalock, iflag); 4056 } 4057 4058 /* Rsp ring <ringno> error: IOCB */ 4059 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4060 "0336 Rsp Ring %d error: IOCB Data: " 4061 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4062 pring->ringno, 4063 irsp->un.ulpWord[0], 4064 irsp->un.ulpWord[1], 4065 irsp->un.ulpWord[2], 4066 irsp->un.ulpWord[3], 4067 irsp->un.ulpWord[4], 4068 irsp->un.ulpWord[5], 4069 *(uint32_t *)&irsp->un1, 4070 *((uint32_t *)&irsp->un1 + 1)); 4071 } 4072 4073 switch (type) { 4074 case LPFC_ABORT_IOCB: 4075 case LPFC_SOL_IOCB: 4076 /* 4077 * Idle exchange closed via ABTS from port. No iocb 4078 * resources need to be recovered. 4079 */ 4080 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4081 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4082 "0333 IOCB cmd 0x%x" 4083 " processed. Skipping" 4084 " completion\n", 4085 irsp->ulpCommand); 4086 break; 4087 } 4088 4089 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4090 &rspiocbq); 4091 if (unlikely(!cmdiocbq)) 4092 break; 4093 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4094 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4095 if (cmdiocbq->cmd_cmpl) { 4096 spin_unlock_irqrestore(&phba->hbalock, iflag); 4097 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4098 spin_lock_irqsave(&phba->hbalock, iflag); 4099 } 4100 break; 4101 case LPFC_UNSOL_IOCB: 4102 spin_unlock_irqrestore(&phba->hbalock, iflag); 4103 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4104 spin_lock_irqsave(&phba->hbalock, iflag); 4105 break; 4106 default: 4107 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4108 char adaptermsg[LPFC_MAX_ADPTMSG]; 4109 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4110 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4111 MAX_MSG_DATA); 4112 dev_warn(&((phba->pcidev)->dev), 4113 "lpfc%d: %s\n", 4114 phba->brd_no, adaptermsg); 4115 } else { 4116 /* Unknown IOCB command */ 4117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4118 "0334 Unknown IOCB command " 4119 "Data: x%x, x%x x%x x%x x%x\n", 4120 type, irsp->ulpCommand, 4121 irsp->ulpStatus, 4122 irsp->ulpIoTag, 4123 irsp->ulpContext); 4124 } 4125 break; 4126 } 4127 4128 /* 4129 * The response IOCB has been processed. Update the ring 4130 * pointer in SLIM. If the port response put pointer has not 4131 * been updated, sync the pgp->rspPutInx and fetch the new port 4132 * response put pointer. 4133 */ 4134 writel(pring->sli.sli3.rspidx, 4135 &phba->host_gp[pring->ringno].rspGetInx); 4136 4137 if (pring->sli.sli3.rspidx == portRspPut) 4138 portRspPut = le32_to_cpu(pgp->rspPutInx); 4139 } 4140 4141 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4142 pring->stats.iocb_rsp_full++; 4143 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4144 writel(status, phba->CAregaddr); 4145 readl(phba->CAregaddr); 4146 } 4147 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4148 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4149 pring->stats.iocb_cmd_empty++; 4150 4151 /* Force update of the local copy of cmdGetInx */ 4152 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4153 lpfc_sli_resume_iocb(phba, pring); 4154 4155 if ((pring->lpfc_sli_cmd_available)) 4156 (pring->lpfc_sli_cmd_available) (phba, pring); 4157 4158 } 4159 4160 phba->fcp_ring_in_use = 0; 4161 spin_unlock_irqrestore(&phba->hbalock, iflag); 4162 return rc; 4163 } 4164 4165 /** 4166 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4167 * @phba: Pointer to HBA context object. 4168 * @pring: Pointer to driver SLI ring object. 4169 * @rspiocbp: Pointer to driver response IOCB object. 4170 * 4171 * This function is called from the worker thread when there is a slow-path 4172 * response IOCB to process. This function chains all the response iocbs until 4173 * seeing the iocb with the LE bit set. The function will call 4174 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4175 * completion of a command iocb. The function will call the 4176 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4177 * The function frees the resources or calls the completion handler if this 4178 * iocb is an abort completion. The function returns NULL when the response 4179 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4180 * this function shall chain the iocb on to the iocb_continueq and return the 4181 * response iocb passed in. 4182 **/ 4183 static struct lpfc_iocbq * 4184 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4185 struct lpfc_iocbq *rspiocbp) 4186 { 4187 struct lpfc_iocbq *saveq; 4188 struct lpfc_iocbq *cmdiocb; 4189 struct lpfc_iocbq *next_iocb; 4190 IOCB_t *irsp; 4191 uint32_t free_saveq; 4192 u8 cmd_type; 4193 lpfc_iocb_type type; 4194 unsigned long iflag; 4195 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4196 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4197 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4198 int rc; 4199 4200 spin_lock_irqsave(&phba->hbalock, iflag); 4201 /* First add the response iocb to the countinueq list */ 4202 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4203 pring->iocb_continueq_cnt++; 4204 4205 /* 4206 * By default, the driver expects to free all resources 4207 * associated with this iocb completion. 4208 */ 4209 free_saveq = 1; 4210 saveq = list_get_first(&pring->iocb_continueq, 4211 struct lpfc_iocbq, list); 4212 list_del_init(&pring->iocb_continueq); 4213 pring->iocb_continueq_cnt = 0; 4214 4215 pring->stats.iocb_rsp++; 4216 4217 /* 4218 * If resource errors reported from HBA, reduce 4219 * queuedepths of the SCSI device. 4220 */ 4221 if (ulp_status == IOSTAT_LOCAL_REJECT && 4222 ((ulp_word4 & IOERR_PARAM_MASK) == 4223 IOERR_NO_RESOURCES)) { 4224 spin_unlock_irqrestore(&phba->hbalock, iflag); 4225 phba->lpfc_rampdown_queue_depth(phba); 4226 spin_lock_irqsave(&phba->hbalock, iflag); 4227 } 4228 4229 if (ulp_status) { 4230 /* Rsp ring <ringno> error: IOCB */ 4231 if (phba->sli_rev < LPFC_SLI_REV4) { 4232 irsp = &rspiocbp->iocb; 4233 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4234 "0328 Rsp Ring %d error: ulp_status x%x " 4235 "IOCB Data: " 4236 "x%08x x%08x x%08x x%08x " 4237 "x%08x x%08x x%08x x%08x " 4238 "x%08x x%08x x%08x x%08x " 4239 "x%08x x%08x x%08x x%08x\n", 4240 pring->ringno, ulp_status, 4241 get_job_ulpword(rspiocbp, 0), 4242 get_job_ulpword(rspiocbp, 1), 4243 get_job_ulpword(rspiocbp, 2), 4244 get_job_ulpword(rspiocbp, 3), 4245 get_job_ulpword(rspiocbp, 4), 4246 get_job_ulpword(rspiocbp, 5), 4247 *(((uint32_t *)irsp) + 6), 4248 *(((uint32_t *)irsp) + 7), 4249 *(((uint32_t *)irsp) + 8), 4250 *(((uint32_t *)irsp) + 9), 4251 *(((uint32_t *)irsp) + 10), 4252 *(((uint32_t *)irsp) + 11), 4253 *(((uint32_t *)irsp) + 12), 4254 *(((uint32_t *)irsp) + 13), 4255 *(((uint32_t *)irsp) + 14), 4256 *(((uint32_t *)irsp) + 15)); 4257 } else { 4258 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4259 "0321 Rsp Ring %d error: " 4260 "IOCB Data: " 4261 "x%x x%x x%x x%x\n", 4262 pring->ringno, 4263 rspiocbp->wcqe_cmpl.word0, 4264 rspiocbp->wcqe_cmpl.total_data_placed, 4265 rspiocbp->wcqe_cmpl.parameter, 4266 rspiocbp->wcqe_cmpl.word3); 4267 } 4268 } 4269 4270 4271 /* 4272 * Fetch the iocb command type and call the correct completion 4273 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4274 * get freed back to the lpfc_iocb_list by the discovery 4275 * kernel thread. 4276 */ 4277 cmd_type = ulp_command & CMD_IOCB_MASK; 4278 type = lpfc_sli_iocb_cmd_type(cmd_type); 4279 switch (type) { 4280 case LPFC_SOL_IOCB: 4281 spin_unlock_irqrestore(&phba->hbalock, iflag); 4282 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4283 spin_lock_irqsave(&phba->hbalock, iflag); 4284 break; 4285 case LPFC_UNSOL_IOCB: 4286 spin_unlock_irqrestore(&phba->hbalock, iflag); 4287 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4288 spin_lock_irqsave(&phba->hbalock, iflag); 4289 if (!rc) 4290 free_saveq = 0; 4291 break; 4292 case LPFC_ABORT_IOCB: 4293 cmdiocb = NULL; 4294 if (ulp_command != CMD_XRI_ABORTED_CX) 4295 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4296 saveq); 4297 if (cmdiocb) { 4298 /* Call the specified completion routine */ 4299 if (cmdiocb->cmd_cmpl) { 4300 spin_unlock_irqrestore(&phba->hbalock, iflag); 4301 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4302 spin_lock_irqsave(&phba->hbalock, iflag); 4303 } else { 4304 __lpfc_sli_release_iocbq(phba, cmdiocb); 4305 } 4306 } 4307 break; 4308 case LPFC_UNKNOWN_IOCB: 4309 if (ulp_command == CMD_ADAPTER_MSG) { 4310 char adaptermsg[LPFC_MAX_ADPTMSG]; 4311 4312 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4313 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4314 MAX_MSG_DATA); 4315 dev_warn(&((phba->pcidev)->dev), 4316 "lpfc%d: %s\n", 4317 phba->brd_no, adaptermsg); 4318 } else { 4319 /* Unknown command */ 4320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4321 "0335 Unknown IOCB " 4322 "command Data: x%x " 4323 "x%x x%x x%x\n", 4324 ulp_command, 4325 ulp_status, 4326 get_wqe_reqtag(rspiocbp), 4327 get_job_ulpcontext(phba, rspiocbp)); 4328 } 4329 break; 4330 } 4331 4332 if (free_saveq) { 4333 list_for_each_entry_safe(rspiocbp, next_iocb, 4334 &saveq->list, list) { 4335 list_del_init(&rspiocbp->list); 4336 __lpfc_sli_release_iocbq(phba, rspiocbp); 4337 } 4338 __lpfc_sli_release_iocbq(phba, saveq); 4339 } 4340 rspiocbp = NULL; 4341 spin_unlock_irqrestore(&phba->hbalock, iflag); 4342 return rspiocbp; 4343 } 4344 4345 /** 4346 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4347 * @phba: Pointer to HBA context object. 4348 * @pring: Pointer to driver SLI ring object. 4349 * @mask: Host attention register mask for this ring. 4350 * 4351 * This routine wraps the actual slow_ring event process routine from the 4352 * API jump table function pointer from the lpfc_hba struct. 4353 **/ 4354 void 4355 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4356 struct lpfc_sli_ring *pring, uint32_t mask) 4357 { 4358 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4359 } 4360 4361 /** 4362 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4363 * @phba: Pointer to HBA context object. 4364 * @pring: Pointer to driver SLI ring object. 4365 * @mask: Host attention register mask for this ring. 4366 * 4367 * This function is called from the worker thread when there is a ring event 4368 * for non-fcp rings. The caller does not hold any lock. The function will 4369 * remove each response iocb in the response ring and calls the handle 4370 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4371 **/ 4372 static void 4373 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4374 struct lpfc_sli_ring *pring, uint32_t mask) 4375 { 4376 struct lpfc_pgp *pgp; 4377 IOCB_t *entry; 4378 IOCB_t *irsp = NULL; 4379 struct lpfc_iocbq *rspiocbp = NULL; 4380 uint32_t portRspPut, portRspMax; 4381 unsigned long iflag; 4382 uint32_t status; 4383 4384 pgp = &phba->port_gp[pring->ringno]; 4385 spin_lock_irqsave(&phba->hbalock, iflag); 4386 pring->stats.iocb_event++; 4387 4388 /* 4389 * The next available response entry should never exceed the maximum 4390 * entries. If it does, treat it as an adapter hardware error. 4391 */ 4392 portRspMax = pring->sli.sli3.numRiocb; 4393 portRspPut = le32_to_cpu(pgp->rspPutInx); 4394 if (portRspPut >= portRspMax) { 4395 /* 4396 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4397 * rsp ring <portRspMax> 4398 */ 4399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4400 "0303 Ring %d handler: portRspPut %d " 4401 "is bigger than rsp ring %d\n", 4402 pring->ringno, portRspPut, portRspMax); 4403 4404 phba->link_state = LPFC_HBA_ERROR; 4405 spin_unlock_irqrestore(&phba->hbalock, iflag); 4406 4407 phba->work_hs = HS_FFER3; 4408 lpfc_handle_eratt(phba); 4409 4410 return; 4411 } 4412 4413 rmb(); 4414 while (pring->sli.sli3.rspidx != portRspPut) { 4415 /* 4416 * Build a completion list and call the appropriate handler. 4417 * The process is to get the next available response iocb, get 4418 * a free iocb from the list, copy the response data into the 4419 * free iocb, insert to the continuation list, and update the 4420 * next response index to slim. This process makes response 4421 * iocb's in the ring available to DMA as fast as possible but 4422 * pays a penalty for a copy operation. Since the iocb is 4423 * only 32 bytes, this penalty is considered small relative to 4424 * the PCI reads for register values and a slim write. When 4425 * the ulpLe field is set, the entire Command has been 4426 * received. 4427 */ 4428 entry = lpfc_resp_iocb(phba, pring); 4429 4430 phba->last_completion_time = jiffies; 4431 rspiocbp = __lpfc_sli_get_iocbq(phba); 4432 if (rspiocbp == NULL) { 4433 printk(KERN_ERR "%s: out of buffers! Failing " 4434 "completion.\n", __func__); 4435 break; 4436 } 4437 4438 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4439 phba->iocb_rsp_size); 4440 irsp = &rspiocbp->iocb; 4441 4442 if (++pring->sli.sli3.rspidx >= portRspMax) 4443 pring->sli.sli3.rspidx = 0; 4444 4445 if (pring->ringno == LPFC_ELS_RING) { 4446 lpfc_debugfs_slow_ring_trc(phba, 4447 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4448 *(((uint32_t *) irsp) + 4), 4449 *(((uint32_t *) irsp) + 6), 4450 *(((uint32_t *) irsp) + 7)); 4451 } 4452 4453 writel(pring->sli.sli3.rspidx, 4454 &phba->host_gp[pring->ringno].rspGetInx); 4455 4456 spin_unlock_irqrestore(&phba->hbalock, iflag); 4457 /* Handle the response IOCB */ 4458 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4459 spin_lock_irqsave(&phba->hbalock, iflag); 4460 4461 /* 4462 * If the port response put pointer has not been updated, sync 4463 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4464 * response put pointer. 4465 */ 4466 if (pring->sli.sli3.rspidx == portRspPut) { 4467 portRspPut = le32_to_cpu(pgp->rspPutInx); 4468 } 4469 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4470 4471 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4472 /* At least one response entry has been freed */ 4473 pring->stats.iocb_rsp_full++; 4474 /* SET RxRE_RSP in Chip Att register */ 4475 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4476 writel(status, phba->CAregaddr); 4477 readl(phba->CAregaddr); /* flush */ 4478 } 4479 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4480 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4481 pring->stats.iocb_cmd_empty++; 4482 4483 /* Force update of the local copy of cmdGetInx */ 4484 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4485 lpfc_sli_resume_iocb(phba, pring); 4486 4487 if ((pring->lpfc_sli_cmd_available)) 4488 (pring->lpfc_sli_cmd_available) (phba, pring); 4489 4490 } 4491 4492 spin_unlock_irqrestore(&phba->hbalock, iflag); 4493 return; 4494 } 4495 4496 /** 4497 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4498 * @phba: Pointer to HBA context object. 4499 * @pring: Pointer to driver SLI ring object. 4500 * @mask: Host attention register mask for this ring. 4501 * 4502 * This function is called from the worker thread when there is a pending 4503 * ELS response iocb on the driver internal slow-path response iocb worker 4504 * queue. The caller does not hold any lock. The function will remove each 4505 * response iocb from the response worker queue and calls the handle 4506 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4507 **/ 4508 static void 4509 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4510 struct lpfc_sli_ring *pring, uint32_t mask) 4511 { 4512 struct lpfc_iocbq *irspiocbq; 4513 struct hbq_dmabuf *dmabuf; 4514 struct lpfc_cq_event *cq_event; 4515 unsigned long iflag; 4516 int count = 0; 4517 4518 spin_lock_irqsave(&phba->hbalock, iflag); 4519 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4520 spin_unlock_irqrestore(&phba->hbalock, iflag); 4521 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4522 /* Get the response iocb from the head of work queue */ 4523 spin_lock_irqsave(&phba->hbalock, iflag); 4524 list_remove_head(&phba->sli4_hba.sp_queue_event, 4525 cq_event, struct lpfc_cq_event, list); 4526 spin_unlock_irqrestore(&phba->hbalock, iflag); 4527 4528 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4529 case CQE_CODE_COMPL_WQE: 4530 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4531 cq_event); 4532 /* Translate ELS WCQE to response IOCBQ */ 4533 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4534 irspiocbq); 4535 if (irspiocbq) 4536 lpfc_sli_sp_handle_rspiocb(phba, pring, 4537 irspiocbq); 4538 count++; 4539 break; 4540 case CQE_CODE_RECEIVE: 4541 case CQE_CODE_RECEIVE_V1: 4542 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4543 cq_event); 4544 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4545 count++; 4546 break; 4547 default: 4548 break; 4549 } 4550 4551 /* Limit the number of events to 64 to avoid soft lockups */ 4552 if (count == 64) 4553 break; 4554 } 4555 } 4556 4557 /** 4558 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4559 * @phba: Pointer to HBA context object. 4560 * @pring: Pointer to driver SLI ring object. 4561 * 4562 * This function aborts all iocbs in the given ring and frees all the iocb 4563 * objects in txq. This function issues an abort iocb for all the iocb commands 4564 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4565 * the return of this function. The caller is not required to hold any locks. 4566 **/ 4567 void 4568 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4569 { 4570 LIST_HEAD(tx_completions); 4571 LIST_HEAD(txcmplq_completions); 4572 struct lpfc_iocbq *iocb, *next_iocb; 4573 int offline; 4574 4575 if (pring->ringno == LPFC_ELS_RING) { 4576 lpfc_fabric_abort_hba(phba); 4577 } 4578 offline = pci_channel_offline(phba->pcidev); 4579 4580 /* Error everything on txq and txcmplq 4581 * First do the txq. 4582 */ 4583 if (phba->sli_rev >= LPFC_SLI_REV4) { 4584 spin_lock_irq(&pring->ring_lock); 4585 list_splice_init(&pring->txq, &tx_completions); 4586 pring->txq_cnt = 0; 4587 4588 if (offline) { 4589 list_splice_init(&pring->txcmplq, 4590 &txcmplq_completions); 4591 } else { 4592 /* Next issue ABTS for everything on the txcmplq */ 4593 list_for_each_entry_safe(iocb, next_iocb, 4594 &pring->txcmplq, list) 4595 lpfc_sli_issue_abort_iotag(phba, pring, 4596 iocb, NULL); 4597 } 4598 spin_unlock_irq(&pring->ring_lock); 4599 } else { 4600 spin_lock_irq(&phba->hbalock); 4601 list_splice_init(&pring->txq, &tx_completions); 4602 pring->txq_cnt = 0; 4603 4604 if (offline) { 4605 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4606 } else { 4607 /* Next issue ABTS for everything on the txcmplq */ 4608 list_for_each_entry_safe(iocb, next_iocb, 4609 &pring->txcmplq, list) 4610 lpfc_sli_issue_abort_iotag(phba, pring, 4611 iocb, NULL); 4612 } 4613 spin_unlock_irq(&phba->hbalock); 4614 } 4615 4616 if (offline) { 4617 /* Cancel all the IOCBs from the completions list */ 4618 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4619 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4620 } else { 4621 /* Make sure HBA is alive */ 4622 lpfc_issue_hb_tmo(phba); 4623 } 4624 /* Cancel all the IOCBs from the completions list */ 4625 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4626 IOERR_SLI_ABORTED); 4627 } 4628 4629 /** 4630 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4631 * @phba: Pointer to HBA context object. 4632 * 4633 * This function aborts all iocbs in FCP rings and frees all the iocb 4634 * objects in txq. This function issues an abort iocb for all the iocb commands 4635 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4636 * the return of this function. The caller is not required to hold any locks. 4637 **/ 4638 void 4639 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4640 { 4641 struct lpfc_sli *psli = &phba->sli; 4642 struct lpfc_sli_ring *pring; 4643 uint32_t i; 4644 4645 /* Look on all the FCP Rings for the iotag */ 4646 if (phba->sli_rev >= LPFC_SLI_REV4) { 4647 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4648 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4649 lpfc_sli_abort_iocb_ring(phba, pring); 4650 } 4651 } else { 4652 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4653 lpfc_sli_abort_iocb_ring(phba, pring); 4654 } 4655 } 4656 4657 /** 4658 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4659 * @phba: Pointer to HBA context object. 4660 * 4661 * This function flushes all iocbs in the IO ring and frees all the iocb 4662 * objects in txq and txcmplq. This function will not issue abort iocbs 4663 * for all the iocb commands in txcmplq, they will just be returned with 4664 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4665 * slot has been permanently disabled. 4666 **/ 4667 void 4668 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4669 { 4670 LIST_HEAD(txq); 4671 LIST_HEAD(txcmplq); 4672 struct lpfc_sli *psli = &phba->sli; 4673 struct lpfc_sli_ring *pring; 4674 uint32_t i; 4675 struct lpfc_iocbq *piocb, *next_iocb; 4676 4677 spin_lock_irq(&phba->hbalock); 4678 /* Indicate the I/O queues are flushed */ 4679 phba->hba_flag |= HBA_IOQ_FLUSH; 4680 spin_unlock_irq(&phba->hbalock); 4681 4682 /* Look on all the FCP Rings for the iotag */ 4683 if (phba->sli_rev >= LPFC_SLI_REV4) { 4684 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4685 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4686 4687 spin_lock_irq(&pring->ring_lock); 4688 /* Retrieve everything on txq */ 4689 list_splice_init(&pring->txq, &txq); 4690 list_for_each_entry_safe(piocb, next_iocb, 4691 &pring->txcmplq, list) 4692 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4693 /* Retrieve everything on the txcmplq */ 4694 list_splice_init(&pring->txcmplq, &txcmplq); 4695 pring->txq_cnt = 0; 4696 pring->txcmplq_cnt = 0; 4697 spin_unlock_irq(&pring->ring_lock); 4698 4699 /* Flush the txq */ 4700 lpfc_sli_cancel_iocbs(phba, &txq, 4701 IOSTAT_LOCAL_REJECT, 4702 IOERR_SLI_DOWN); 4703 /* Flush the txcmplq */ 4704 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4705 IOSTAT_LOCAL_REJECT, 4706 IOERR_SLI_DOWN); 4707 if (unlikely(pci_channel_offline(phba->pcidev))) 4708 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4709 } 4710 } else { 4711 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4712 4713 spin_lock_irq(&phba->hbalock); 4714 /* Retrieve everything on txq */ 4715 list_splice_init(&pring->txq, &txq); 4716 list_for_each_entry_safe(piocb, next_iocb, 4717 &pring->txcmplq, list) 4718 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4719 /* Retrieve everything on the txcmplq */ 4720 list_splice_init(&pring->txcmplq, &txcmplq); 4721 pring->txq_cnt = 0; 4722 pring->txcmplq_cnt = 0; 4723 spin_unlock_irq(&phba->hbalock); 4724 4725 /* Flush the txq */ 4726 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4727 IOERR_SLI_DOWN); 4728 /* Flush the txcmpq */ 4729 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4730 IOERR_SLI_DOWN); 4731 } 4732 } 4733 4734 /** 4735 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4736 * @phba: Pointer to HBA context object. 4737 * @mask: Bit mask to be checked. 4738 * 4739 * This function reads the host status register and compares 4740 * with the provided bit mask to check if HBA completed 4741 * the restart. This function will wait in a loop for the 4742 * HBA to complete restart. If the HBA does not restart within 4743 * 15 iterations, the function will reset the HBA again. The 4744 * function returns 1 when HBA fail to restart otherwise returns 4745 * zero. 4746 **/ 4747 static int 4748 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4749 { 4750 uint32_t status; 4751 int i = 0; 4752 int retval = 0; 4753 4754 /* Read the HBA Host Status Register */ 4755 if (lpfc_readl(phba->HSregaddr, &status)) 4756 return 1; 4757 4758 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4759 4760 /* 4761 * Check status register every 100ms for 5 retries, then every 4762 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4763 * every 2.5 sec for 4. 4764 * Break our of the loop if errors occurred during init. 4765 */ 4766 while (((status & mask) != mask) && 4767 !(status & HS_FFERM) && 4768 i++ < 20) { 4769 4770 if (i <= 5) 4771 msleep(10); 4772 else if (i <= 10) 4773 msleep(500); 4774 else 4775 msleep(2500); 4776 4777 if (i == 15) { 4778 /* Do post */ 4779 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4780 lpfc_sli_brdrestart(phba); 4781 } 4782 /* Read the HBA Host Status Register */ 4783 if (lpfc_readl(phba->HSregaddr, &status)) { 4784 retval = 1; 4785 break; 4786 } 4787 } 4788 4789 /* Check to see if any errors occurred during init */ 4790 if ((status & HS_FFERM) || (i >= 20)) { 4791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4792 "2751 Adapter failed to restart, " 4793 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4794 status, 4795 readl(phba->MBslimaddr + 0xa8), 4796 readl(phba->MBslimaddr + 0xac)); 4797 phba->link_state = LPFC_HBA_ERROR; 4798 retval = 1; 4799 } 4800 4801 return retval; 4802 } 4803 4804 /** 4805 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4806 * @phba: Pointer to HBA context object. 4807 * @mask: Bit mask to be checked. 4808 * 4809 * This function checks the host status register to check if HBA is 4810 * ready. This function will wait in a loop for the HBA to be ready 4811 * If the HBA is not ready , the function will will reset the HBA PCI 4812 * function again. The function returns 1 when HBA fail to be ready 4813 * otherwise returns zero. 4814 **/ 4815 static int 4816 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4817 { 4818 uint32_t status; 4819 int retval = 0; 4820 4821 /* Read the HBA Host Status Register */ 4822 status = lpfc_sli4_post_status_check(phba); 4823 4824 if (status) { 4825 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4826 lpfc_sli_brdrestart(phba); 4827 status = lpfc_sli4_post_status_check(phba); 4828 } 4829 4830 /* Check to see if any errors occurred during init */ 4831 if (status) { 4832 phba->link_state = LPFC_HBA_ERROR; 4833 retval = 1; 4834 } else 4835 phba->sli4_hba.intr_enable = 0; 4836 4837 phba->hba_flag &= ~HBA_SETUP; 4838 return retval; 4839 } 4840 4841 /** 4842 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4843 * @phba: Pointer to HBA context object. 4844 * @mask: Bit mask to be checked. 4845 * 4846 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4847 * from the API jump table function pointer from the lpfc_hba struct. 4848 **/ 4849 int 4850 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4851 { 4852 return phba->lpfc_sli_brdready(phba, mask); 4853 } 4854 4855 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4856 4857 /** 4858 * lpfc_reset_barrier - Make HBA ready for HBA reset 4859 * @phba: Pointer to HBA context object. 4860 * 4861 * This function is called before resetting an HBA. This function is called 4862 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4863 **/ 4864 void lpfc_reset_barrier(struct lpfc_hba *phba) 4865 { 4866 uint32_t __iomem *resp_buf; 4867 uint32_t __iomem *mbox_buf; 4868 volatile struct MAILBOX_word0 mbox; 4869 uint32_t hc_copy, ha_copy, resp_data; 4870 int i; 4871 uint8_t hdrtype; 4872 4873 lockdep_assert_held(&phba->hbalock); 4874 4875 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4876 if (hdrtype != 0x80 || 4877 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4878 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4879 return; 4880 4881 /* 4882 * Tell the other part of the chip to suspend temporarily all 4883 * its DMA activity. 4884 */ 4885 resp_buf = phba->MBslimaddr; 4886 4887 /* Disable the error attention */ 4888 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4889 return; 4890 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4891 readl(phba->HCregaddr); /* flush */ 4892 phba->link_flag |= LS_IGNORE_ERATT; 4893 4894 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4895 return; 4896 if (ha_copy & HA_ERATT) { 4897 /* Clear Chip error bit */ 4898 writel(HA_ERATT, phba->HAregaddr); 4899 phba->pport->stopped = 1; 4900 } 4901 4902 mbox.word0 = 0; 4903 mbox.mbxCommand = MBX_KILL_BOARD; 4904 mbox.mbxOwner = OWN_CHIP; 4905 4906 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4907 mbox_buf = phba->MBslimaddr; 4908 writel(mbox.word0, mbox_buf); 4909 4910 for (i = 0; i < 50; i++) { 4911 if (lpfc_readl((resp_buf + 1), &resp_data)) 4912 return; 4913 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4914 mdelay(1); 4915 else 4916 break; 4917 } 4918 resp_data = 0; 4919 if (lpfc_readl((resp_buf + 1), &resp_data)) 4920 return; 4921 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4922 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4923 phba->pport->stopped) 4924 goto restore_hc; 4925 else 4926 goto clear_errat; 4927 } 4928 4929 mbox.mbxOwner = OWN_HOST; 4930 resp_data = 0; 4931 for (i = 0; i < 500; i++) { 4932 if (lpfc_readl(resp_buf, &resp_data)) 4933 return; 4934 if (resp_data != mbox.word0) 4935 mdelay(1); 4936 else 4937 break; 4938 } 4939 4940 clear_errat: 4941 4942 while (++i < 500) { 4943 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4944 return; 4945 if (!(ha_copy & HA_ERATT)) 4946 mdelay(1); 4947 else 4948 break; 4949 } 4950 4951 if (readl(phba->HAregaddr) & HA_ERATT) { 4952 writel(HA_ERATT, phba->HAregaddr); 4953 phba->pport->stopped = 1; 4954 } 4955 4956 restore_hc: 4957 phba->link_flag &= ~LS_IGNORE_ERATT; 4958 writel(hc_copy, phba->HCregaddr); 4959 readl(phba->HCregaddr); /* flush */ 4960 } 4961 4962 /** 4963 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4964 * @phba: Pointer to HBA context object. 4965 * 4966 * This function issues a kill_board mailbox command and waits for 4967 * the error attention interrupt. This function is called for stopping 4968 * the firmware processing. The caller is not required to hold any 4969 * locks. This function calls lpfc_hba_down_post function to free 4970 * any pending commands after the kill. The function will return 1 when it 4971 * fails to kill the board else will return 0. 4972 **/ 4973 int 4974 lpfc_sli_brdkill(struct lpfc_hba *phba) 4975 { 4976 struct lpfc_sli *psli; 4977 LPFC_MBOXQ_t *pmb; 4978 uint32_t status; 4979 uint32_t ha_copy; 4980 int retval; 4981 int i = 0; 4982 4983 psli = &phba->sli; 4984 4985 /* Kill HBA */ 4986 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4987 "0329 Kill HBA Data: x%x x%x\n", 4988 phba->pport->port_state, psli->sli_flag); 4989 4990 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4991 if (!pmb) 4992 return 1; 4993 4994 /* Disable the error attention */ 4995 spin_lock_irq(&phba->hbalock); 4996 if (lpfc_readl(phba->HCregaddr, &status)) { 4997 spin_unlock_irq(&phba->hbalock); 4998 mempool_free(pmb, phba->mbox_mem_pool); 4999 return 1; 5000 } 5001 status &= ~HC_ERINT_ENA; 5002 writel(status, phba->HCregaddr); 5003 readl(phba->HCregaddr); /* flush */ 5004 phba->link_flag |= LS_IGNORE_ERATT; 5005 spin_unlock_irq(&phba->hbalock); 5006 5007 lpfc_kill_board(phba, pmb); 5008 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5009 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5010 5011 if (retval != MBX_SUCCESS) { 5012 if (retval != MBX_BUSY) 5013 mempool_free(pmb, phba->mbox_mem_pool); 5014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5015 "2752 KILL_BOARD command failed retval %d\n", 5016 retval); 5017 spin_lock_irq(&phba->hbalock); 5018 phba->link_flag &= ~LS_IGNORE_ERATT; 5019 spin_unlock_irq(&phba->hbalock); 5020 return 1; 5021 } 5022 5023 spin_lock_irq(&phba->hbalock); 5024 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5025 spin_unlock_irq(&phba->hbalock); 5026 5027 mempool_free(pmb, phba->mbox_mem_pool); 5028 5029 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5030 * attention every 100ms for 3 seconds. If we don't get ERATT after 5031 * 3 seconds we still set HBA_ERROR state because the status of the 5032 * board is now undefined. 5033 */ 5034 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5035 return 1; 5036 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5037 mdelay(100); 5038 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5039 return 1; 5040 } 5041 5042 del_timer_sync(&psli->mbox_tmo); 5043 if (ha_copy & HA_ERATT) { 5044 writel(HA_ERATT, phba->HAregaddr); 5045 phba->pport->stopped = 1; 5046 } 5047 spin_lock_irq(&phba->hbalock); 5048 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5049 psli->mbox_active = NULL; 5050 phba->link_flag &= ~LS_IGNORE_ERATT; 5051 spin_unlock_irq(&phba->hbalock); 5052 5053 lpfc_hba_down_post(phba); 5054 phba->link_state = LPFC_HBA_ERROR; 5055 5056 return ha_copy & HA_ERATT ? 0 : 1; 5057 } 5058 5059 /** 5060 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5061 * @phba: Pointer to HBA context object. 5062 * 5063 * This function resets the HBA by writing HC_INITFF to the control 5064 * register. After the HBA resets, this function resets all the iocb ring 5065 * indices. This function disables PCI layer parity checking during 5066 * the reset. 5067 * This function returns 0 always. 5068 * The caller is not required to hold any locks. 5069 **/ 5070 int 5071 lpfc_sli_brdreset(struct lpfc_hba *phba) 5072 { 5073 struct lpfc_sli *psli; 5074 struct lpfc_sli_ring *pring; 5075 uint16_t cfg_value; 5076 int i; 5077 5078 psli = &phba->sli; 5079 5080 /* Reset HBA */ 5081 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5082 "0325 Reset HBA Data: x%x x%x\n", 5083 (phba->pport) ? phba->pport->port_state : 0, 5084 psli->sli_flag); 5085 5086 /* perform board reset */ 5087 phba->fc_eventTag = 0; 5088 phba->link_events = 0; 5089 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5090 if (phba->pport) { 5091 phba->pport->fc_myDID = 0; 5092 phba->pport->fc_prevDID = 0; 5093 } 5094 5095 /* Turn off parity checking and serr during the physical reset */ 5096 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5097 return -EIO; 5098 5099 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5100 (cfg_value & 5101 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5102 5103 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5104 5105 /* Now toggle INITFF bit in the Host Control Register */ 5106 writel(HC_INITFF, phba->HCregaddr); 5107 mdelay(1); 5108 readl(phba->HCregaddr); /* flush */ 5109 writel(0, phba->HCregaddr); 5110 readl(phba->HCregaddr); /* flush */ 5111 5112 /* Restore PCI cmd register */ 5113 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5114 5115 /* Initialize relevant SLI info */ 5116 for (i = 0; i < psli->num_rings; i++) { 5117 pring = &psli->sli3_ring[i]; 5118 pring->flag = 0; 5119 pring->sli.sli3.rspidx = 0; 5120 pring->sli.sli3.next_cmdidx = 0; 5121 pring->sli.sli3.local_getidx = 0; 5122 pring->sli.sli3.cmdidx = 0; 5123 pring->missbufcnt = 0; 5124 } 5125 5126 phba->link_state = LPFC_WARM_START; 5127 return 0; 5128 } 5129 5130 /** 5131 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5132 * @phba: Pointer to HBA context object. 5133 * 5134 * This function resets a SLI4 HBA. This function disables PCI layer parity 5135 * checking during resets the device. The caller is not required to hold 5136 * any locks. 5137 * 5138 * This function returns 0 on success else returns negative error code. 5139 **/ 5140 int 5141 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5142 { 5143 struct lpfc_sli *psli = &phba->sli; 5144 uint16_t cfg_value; 5145 int rc = 0; 5146 5147 /* Reset HBA */ 5148 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5149 "0295 Reset HBA Data: x%x x%x x%x\n", 5150 phba->pport->port_state, psli->sli_flag, 5151 phba->hba_flag); 5152 5153 /* perform board reset */ 5154 phba->fc_eventTag = 0; 5155 phba->link_events = 0; 5156 phba->pport->fc_myDID = 0; 5157 phba->pport->fc_prevDID = 0; 5158 phba->hba_flag &= ~HBA_SETUP; 5159 5160 spin_lock_irq(&phba->hbalock); 5161 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5162 phba->fcf.fcf_flag = 0; 5163 spin_unlock_irq(&phba->hbalock); 5164 5165 /* Now physically reset the device */ 5166 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5167 "0389 Performing PCI function reset!\n"); 5168 5169 /* Turn off parity checking and serr during the physical reset */ 5170 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5171 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5172 "3205 PCI read Config failed\n"); 5173 return -EIO; 5174 } 5175 5176 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5177 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5178 5179 /* Perform FCoE PCI function reset before freeing queue memory */ 5180 rc = lpfc_pci_function_reset(phba); 5181 5182 /* Restore PCI cmd register */ 5183 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5184 5185 return rc; 5186 } 5187 5188 /** 5189 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5190 * @phba: Pointer to HBA context object. 5191 * 5192 * This function is called in the SLI initialization code path to 5193 * restart the HBA. The caller is not required to hold any lock. 5194 * This function writes MBX_RESTART mailbox command to the SLIM and 5195 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5196 * function to free any pending commands. The function enables 5197 * POST only during the first initialization. The function returns zero. 5198 * The function does not guarantee completion of MBX_RESTART mailbox 5199 * command before the return of this function. 5200 **/ 5201 static int 5202 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5203 { 5204 volatile struct MAILBOX_word0 mb; 5205 struct lpfc_sli *psli; 5206 void __iomem *to_slim; 5207 5208 spin_lock_irq(&phba->hbalock); 5209 5210 psli = &phba->sli; 5211 5212 /* Restart HBA */ 5213 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5214 "0337 Restart HBA Data: x%x x%x\n", 5215 (phba->pport) ? phba->pport->port_state : 0, 5216 psli->sli_flag); 5217 5218 mb.word0 = 0; 5219 mb.mbxCommand = MBX_RESTART; 5220 mb.mbxHc = 1; 5221 5222 lpfc_reset_barrier(phba); 5223 5224 to_slim = phba->MBslimaddr; 5225 writel(mb.word0, to_slim); 5226 readl(to_slim); /* flush */ 5227 5228 /* Only skip post after fc_ffinit is completed */ 5229 if (phba->pport && phba->pport->port_state) 5230 mb.word0 = 1; /* This is really setting up word1 */ 5231 else 5232 mb.word0 = 0; /* This is really setting up word1 */ 5233 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5234 writel(mb.word0, to_slim); 5235 readl(to_slim); /* flush */ 5236 5237 lpfc_sli_brdreset(phba); 5238 if (phba->pport) 5239 phba->pport->stopped = 0; 5240 phba->link_state = LPFC_INIT_START; 5241 phba->hba_flag = 0; 5242 spin_unlock_irq(&phba->hbalock); 5243 5244 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5245 psli->stats_start = ktime_get_seconds(); 5246 5247 /* Give the INITFF and Post time to settle. */ 5248 mdelay(100); 5249 5250 lpfc_hba_down_post(phba); 5251 5252 return 0; 5253 } 5254 5255 /** 5256 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5257 * @phba: Pointer to HBA context object. 5258 * 5259 * This function is called in the SLI initialization code path to restart 5260 * a SLI4 HBA. The caller is not required to hold any lock. 5261 * At the end of the function, it calls lpfc_hba_down_post function to 5262 * free any pending commands. 5263 **/ 5264 static int 5265 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5266 { 5267 struct lpfc_sli *psli = &phba->sli; 5268 int rc; 5269 5270 /* Restart HBA */ 5271 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5272 "0296 Restart HBA Data: x%x x%x\n", 5273 phba->pport->port_state, psli->sli_flag); 5274 5275 rc = lpfc_sli4_brdreset(phba); 5276 if (rc) { 5277 phba->link_state = LPFC_HBA_ERROR; 5278 goto hba_down_queue; 5279 } 5280 5281 spin_lock_irq(&phba->hbalock); 5282 phba->pport->stopped = 0; 5283 phba->link_state = LPFC_INIT_START; 5284 phba->hba_flag = 0; 5285 /* Preserve FA-PWWN expectation */ 5286 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5287 spin_unlock_irq(&phba->hbalock); 5288 5289 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5290 psli->stats_start = ktime_get_seconds(); 5291 5292 hba_down_queue: 5293 lpfc_hba_down_post(phba); 5294 lpfc_sli4_queue_destroy(phba); 5295 5296 return rc; 5297 } 5298 5299 /** 5300 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5301 * @phba: Pointer to HBA context object. 5302 * 5303 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5304 * API jump table function pointer from the lpfc_hba struct. 5305 **/ 5306 int 5307 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5308 { 5309 return phba->lpfc_sli_brdrestart(phba); 5310 } 5311 5312 /** 5313 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5314 * @phba: Pointer to HBA context object. 5315 * 5316 * This function is called after a HBA restart to wait for successful 5317 * restart of the HBA. Successful restart of the HBA is indicated by 5318 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5319 * iteration, the function will restart the HBA again. The function returns 5320 * zero if HBA successfully restarted else returns negative error code. 5321 **/ 5322 int 5323 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5324 { 5325 uint32_t status, i = 0; 5326 5327 /* Read the HBA Host Status Register */ 5328 if (lpfc_readl(phba->HSregaddr, &status)) 5329 return -EIO; 5330 5331 /* Check status register to see what current state is */ 5332 i = 0; 5333 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5334 5335 /* Check every 10ms for 10 retries, then every 100ms for 90 5336 * retries, then every 1 sec for 50 retires for a total of 5337 * ~60 seconds before reset the board again and check every 5338 * 1 sec for 50 retries. The up to 60 seconds before the 5339 * board ready is required by the Falcon FIPS zeroization 5340 * complete, and any reset the board in between shall cause 5341 * restart of zeroization, further delay the board ready. 5342 */ 5343 if (i++ >= 200) { 5344 /* Adapter failed to init, timeout, status reg 5345 <status> */ 5346 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5347 "0436 Adapter failed to init, " 5348 "timeout, status reg x%x, " 5349 "FW Data: A8 x%x AC x%x\n", status, 5350 readl(phba->MBslimaddr + 0xa8), 5351 readl(phba->MBslimaddr + 0xac)); 5352 phba->link_state = LPFC_HBA_ERROR; 5353 return -ETIMEDOUT; 5354 } 5355 5356 /* Check to see if any errors occurred during init */ 5357 if (status & HS_FFERM) { 5358 /* ERROR: During chipset initialization */ 5359 /* Adapter failed to init, chipset, status reg 5360 <status> */ 5361 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5362 "0437 Adapter failed to init, " 5363 "chipset, status reg x%x, " 5364 "FW Data: A8 x%x AC x%x\n", status, 5365 readl(phba->MBslimaddr + 0xa8), 5366 readl(phba->MBslimaddr + 0xac)); 5367 phba->link_state = LPFC_HBA_ERROR; 5368 return -EIO; 5369 } 5370 5371 if (i <= 10) 5372 msleep(10); 5373 else if (i <= 100) 5374 msleep(100); 5375 else 5376 msleep(1000); 5377 5378 if (i == 150) { 5379 /* Do post */ 5380 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5381 lpfc_sli_brdrestart(phba); 5382 } 5383 /* Read the HBA Host Status Register */ 5384 if (lpfc_readl(phba->HSregaddr, &status)) 5385 return -EIO; 5386 } 5387 5388 /* Check to see if any errors occurred during init */ 5389 if (status & HS_FFERM) { 5390 /* ERROR: During chipset initialization */ 5391 /* Adapter failed to init, chipset, status reg <status> */ 5392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5393 "0438 Adapter failed to init, chipset, " 5394 "status reg x%x, " 5395 "FW Data: A8 x%x AC x%x\n", status, 5396 readl(phba->MBslimaddr + 0xa8), 5397 readl(phba->MBslimaddr + 0xac)); 5398 phba->link_state = LPFC_HBA_ERROR; 5399 return -EIO; 5400 } 5401 5402 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5403 5404 /* Clear all interrupt enable conditions */ 5405 writel(0, phba->HCregaddr); 5406 readl(phba->HCregaddr); /* flush */ 5407 5408 /* setup host attn register */ 5409 writel(0xffffffff, phba->HAregaddr); 5410 readl(phba->HAregaddr); /* flush */ 5411 return 0; 5412 } 5413 5414 /** 5415 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5416 * 5417 * This function calculates and returns the number of HBQs required to be 5418 * configured. 5419 **/ 5420 int 5421 lpfc_sli_hbq_count(void) 5422 { 5423 return ARRAY_SIZE(lpfc_hbq_defs); 5424 } 5425 5426 /** 5427 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5428 * 5429 * This function adds the number of hbq entries in every HBQ to get 5430 * the total number of hbq entries required for the HBA and returns 5431 * the total count. 5432 **/ 5433 static int 5434 lpfc_sli_hbq_entry_count(void) 5435 { 5436 int hbq_count = lpfc_sli_hbq_count(); 5437 int count = 0; 5438 int i; 5439 5440 for (i = 0; i < hbq_count; ++i) 5441 count += lpfc_hbq_defs[i]->entry_count; 5442 return count; 5443 } 5444 5445 /** 5446 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5447 * 5448 * This function calculates amount of memory required for all hbq entries 5449 * to be configured and returns the total memory required. 5450 **/ 5451 int 5452 lpfc_sli_hbq_size(void) 5453 { 5454 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5455 } 5456 5457 /** 5458 * lpfc_sli_hbq_setup - configure and initialize HBQs 5459 * @phba: Pointer to HBA context object. 5460 * 5461 * This function is called during the SLI initialization to configure 5462 * all the HBQs and post buffers to the HBQ. The caller is not 5463 * required to hold any locks. This function will return zero if successful 5464 * else it will return negative error code. 5465 **/ 5466 static int 5467 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5468 { 5469 int hbq_count = lpfc_sli_hbq_count(); 5470 LPFC_MBOXQ_t *pmb; 5471 MAILBOX_t *pmbox; 5472 uint32_t hbqno; 5473 uint32_t hbq_entry_index; 5474 5475 /* Get a Mailbox buffer to setup mailbox 5476 * commands for HBA initialization 5477 */ 5478 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5479 5480 if (!pmb) 5481 return -ENOMEM; 5482 5483 pmbox = &pmb->u.mb; 5484 5485 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5486 phba->link_state = LPFC_INIT_MBX_CMDS; 5487 phba->hbq_in_use = 1; 5488 5489 hbq_entry_index = 0; 5490 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5491 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5492 phba->hbqs[hbqno].hbqPutIdx = 0; 5493 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5494 phba->hbqs[hbqno].entry_count = 5495 lpfc_hbq_defs[hbqno]->entry_count; 5496 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5497 hbq_entry_index, pmb); 5498 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5499 5500 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5501 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5502 mbxStatus <status>, ring <num> */ 5503 5504 lpfc_printf_log(phba, KERN_ERR, 5505 LOG_SLI | LOG_VPORT, 5506 "1805 Adapter failed to init. " 5507 "Data: x%x x%x x%x\n", 5508 pmbox->mbxCommand, 5509 pmbox->mbxStatus, hbqno); 5510 5511 phba->link_state = LPFC_HBA_ERROR; 5512 mempool_free(pmb, phba->mbox_mem_pool); 5513 return -ENXIO; 5514 } 5515 } 5516 phba->hbq_count = hbq_count; 5517 5518 mempool_free(pmb, phba->mbox_mem_pool); 5519 5520 /* Initially populate or replenish the HBQs */ 5521 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5522 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5523 return 0; 5524 } 5525 5526 /** 5527 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5528 * @phba: Pointer to HBA context object. 5529 * 5530 * This function is called during the SLI initialization to configure 5531 * all the HBQs and post buffers to the HBQ. The caller is not 5532 * required to hold any locks. This function will return zero if successful 5533 * else it will return negative error code. 5534 **/ 5535 static int 5536 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5537 { 5538 phba->hbq_in_use = 1; 5539 /** 5540 * Specific case when the MDS diagnostics is enabled and supported. 5541 * The receive buffer count is truncated to manage the incoming 5542 * traffic. 5543 **/ 5544 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5545 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5546 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5547 else 5548 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5549 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5550 phba->hbq_count = 1; 5551 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5552 /* Initially populate or replenish the HBQs */ 5553 return 0; 5554 } 5555 5556 /** 5557 * lpfc_sli_config_port - Issue config port mailbox command 5558 * @phba: Pointer to HBA context object. 5559 * @sli_mode: sli mode - 2/3 5560 * 5561 * This function is called by the sli initialization code path 5562 * to issue config_port mailbox command. This function restarts the 5563 * HBA firmware and issues a config_port mailbox command to configure 5564 * the SLI interface in the sli mode specified by sli_mode 5565 * variable. The caller is not required to hold any locks. 5566 * The function returns 0 if successful, else returns negative error 5567 * code. 5568 **/ 5569 int 5570 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5571 { 5572 LPFC_MBOXQ_t *pmb; 5573 uint32_t resetcount = 0, rc = 0, done = 0; 5574 5575 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5576 if (!pmb) { 5577 phba->link_state = LPFC_HBA_ERROR; 5578 return -ENOMEM; 5579 } 5580 5581 phba->sli_rev = sli_mode; 5582 while (resetcount < 2 && !done) { 5583 spin_lock_irq(&phba->hbalock); 5584 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5585 spin_unlock_irq(&phba->hbalock); 5586 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5587 lpfc_sli_brdrestart(phba); 5588 rc = lpfc_sli_chipset_init(phba); 5589 if (rc) 5590 break; 5591 5592 spin_lock_irq(&phba->hbalock); 5593 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5594 spin_unlock_irq(&phba->hbalock); 5595 resetcount++; 5596 5597 /* Call pre CONFIG_PORT mailbox command initialization. A 5598 * value of 0 means the call was successful. Any other 5599 * nonzero value is a failure, but if ERESTART is returned, 5600 * the driver may reset the HBA and try again. 5601 */ 5602 rc = lpfc_config_port_prep(phba); 5603 if (rc == -ERESTART) { 5604 phba->link_state = LPFC_LINK_UNKNOWN; 5605 continue; 5606 } else if (rc) 5607 break; 5608 5609 phba->link_state = LPFC_INIT_MBX_CMDS; 5610 lpfc_config_port(phba, pmb); 5611 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5612 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5613 LPFC_SLI3_HBQ_ENABLED | 5614 LPFC_SLI3_CRP_ENABLED | 5615 LPFC_SLI3_DSS_ENABLED); 5616 if (rc != MBX_SUCCESS) { 5617 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5618 "0442 Adapter failed to init, mbxCmd x%x " 5619 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5620 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5621 spin_lock_irq(&phba->hbalock); 5622 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5623 spin_unlock_irq(&phba->hbalock); 5624 rc = -ENXIO; 5625 } else { 5626 /* Allow asynchronous mailbox command to go through */ 5627 spin_lock_irq(&phba->hbalock); 5628 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5629 spin_unlock_irq(&phba->hbalock); 5630 done = 1; 5631 5632 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5633 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5634 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5635 "3110 Port did not grant ASABT\n"); 5636 } 5637 } 5638 if (!done) { 5639 rc = -EINVAL; 5640 goto do_prep_failed; 5641 } 5642 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5643 if (!pmb->u.mb.un.varCfgPort.cMA) { 5644 rc = -ENXIO; 5645 goto do_prep_failed; 5646 } 5647 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5648 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5649 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5650 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5651 phba->max_vpi : phba->max_vports; 5652 5653 } else 5654 phba->max_vpi = 0; 5655 if (pmb->u.mb.un.varCfgPort.gerbm) 5656 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5657 if (pmb->u.mb.un.varCfgPort.gcrp) 5658 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5659 5660 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5661 phba->port_gp = phba->mbox->us.s3_pgp.port; 5662 5663 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5664 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5665 phba->cfg_enable_bg = 0; 5666 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5667 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5668 "0443 Adapter did not grant " 5669 "BlockGuard\n"); 5670 } 5671 } 5672 } else { 5673 phba->hbq_get = NULL; 5674 phba->port_gp = phba->mbox->us.s2.port; 5675 phba->max_vpi = 0; 5676 } 5677 do_prep_failed: 5678 mempool_free(pmb, phba->mbox_mem_pool); 5679 return rc; 5680 } 5681 5682 5683 /** 5684 * lpfc_sli_hba_setup - SLI initialization function 5685 * @phba: Pointer to HBA context object. 5686 * 5687 * This function is the main SLI initialization function. This function 5688 * is called by the HBA initialization code, HBA reset code and HBA 5689 * error attention handler code. Caller is not required to hold any 5690 * locks. This function issues config_port mailbox command to configure 5691 * the SLI, setup iocb rings and HBQ rings. In the end the function 5692 * calls the config_port_post function to issue init_link mailbox 5693 * command and to start the discovery. The function will return zero 5694 * if successful, else it will return negative error code. 5695 **/ 5696 int 5697 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5698 { 5699 uint32_t rc; 5700 int i; 5701 int longs; 5702 5703 /* Enable ISR already does config_port because of config_msi mbx */ 5704 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5705 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5706 if (rc) 5707 return -EIO; 5708 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5709 } 5710 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5711 5712 if (phba->sli_rev == 3) { 5713 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5714 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5715 } else { 5716 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5717 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5718 phba->sli3_options = 0; 5719 } 5720 5721 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5722 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5723 phba->sli_rev, phba->max_vpi); 5724 rc = lpfc_sli_ring_map(phba); 5725 5726 if (rc) 5727 goto lpfc_sli_hba_setup_error; 5728 5729 /* Initialize VPIs. */ 5730 if (phba->sli_rev == LPFC_SLI_REV3) { 5731 /* 5732 * The VPI bitmask and physical ID array are allocated 5733 * and initialized once only - at driver load. A port 5734 * reset doesn't need to reinitialize this memory. 5735 */ 5736 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5737 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5738 phba->vpi_bmask = kcalloc(longs, 5739 sizeof(unsigned long), 5740 GFP_KERNEL); 5741 if (!phba->vpi_bmask) { 5742 rc = -ENOMEM; 5743 goto lpfc_sli_hba_setup_error; 5744 } 5745 5746 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5747 sizeof(uint16_t), 5748 GFP_KERNEL); 5749 if (!phba->vpi_ids) { 5750 kfree(phba->vpi_bmask); 5751 rc = -ENOMEM; 5752 goto lpfc_sli_hba_setup_error; 5753 } 5754 for (i = 0; i < phba->max_vpi; i++) 5755 phba->vpi_ids[i] = i; 5756 } 5757 } 5758 5759 /* Init HBQs */ 5760 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5761 rc = lpfc_sli_hbq_setup(phba); 5762 if (rc) 5763 goto lpfc_sli_hba_setup_error; 5764 } 5765 spin_lock_irq(&phba->hbalock); 5766 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5767 spin_unlock_irq(&phba->hbalock); 5768 5769 rc = lpfc_config_port_post(phba); 5770 if (rc) 5771 goto lpfc_sli_hba_setup_error; 5772 5773 return rc; 5774 5775 lpfc_sli_hba_setup_error: 5776 phba->link_state = LPFC_HBA_ERROR; 5777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5778 "0445 Firmware initialization failed\n"); 5779 return rc; 5780 } 5781 5782 /** 5783 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5784 * @phba: Pointer to HBA context object. 5785 * 5786 * This function issue a dump mailbox command to read config region 5787 * 23 and parse the records in the region and populate driver 5788 * data structure. 5789 **/ 5790 static int 5791 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5792 { 5793 LPFC_MBOXQ_t *mboxq; 5794 struct lpfc_dmabuf *mp; 5795 struct lpfc_mqe *mqe; 5796 uint32_t data_length; 5797 int rc; 5798 5799 /* Program the default value of vlan_id and fc_map */ 5800 phba->valid_vlan = 0; 5801 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5802 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5803 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5804 5805 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5806 if (!mboxq) 5807 return -ENOMEM; 5808 5809 mqe = &mboxq->u.mqe; 5810 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5811 rc = -ENOMEM; 5812 goto out_free_mboxq; 5813 } 5814 5815 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5816 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5817 5818 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5819 "(%d):2571 Mailbox cmd x%x Status x%x " 5820 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5821 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5822 "CQ: x%x x%x x%x x%x\n", 5823 mboxq->vport ? mboxq->vport->vpi : 0, 5824 bf_get(lpfc_mqe_command, mqe), 5825 bf_get(lpfc_mqe_status, mqe), 5826 mqe->un.mb_words[0], mqe->un.mb_words[1], 5827 mqe->un.mb_words[2], mqe->un.mb_words[3], 5828 mqe->un.mb_words[4], mqe->un.mb_words[5], 5829 mqe->un.mb_words[6], mqe->un.mb_words[7], 5830 mqe->un.mb_words[8], mqe->un.mb_words[9], 5831 mqe->un.mb_words[10], mqe->un.mb_words[11], 5832 mqe->un.mb_words[12], mqe->un.mb_words[13], 5833 mqe->un.mb_words[14], mqe->un.mb_words[15], 5834 mqe->un.mb_words[16], mqe->un.mb_words[50], 5835 mboxq->mcqe.word0, 5836 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5837 mboxq->mcqe.trailer); 5838 5839 if (rc) { 5840 rc = -EIO; 5841 goto out_free_mboxq; 5842 } 5843 data_length = mqe->un.mb_words[5]; 5844 if (data_length > DMP_RGN23_SIZE) { 5845 rc = -EIO; 5846 goto out_free_mboxq; 5847 } 5848 5849 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5850 rc = 0; 5851 5852 out_free_mboxq: 5853 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5854 return rc; 5855 } 5856 5857 /** 5858 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5859 * @phba: pointer to lpfc hba data structure. 5860 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5861 * @vpd: pointer to the memory to hold resulting port vpd data. 5862 * @vpd_size: On input, the number of bytes allocated to @vpd. 5863 * On output, the number of data bytes in @vpd. 5864 * 5865 * This routine executes a READ_REV SLI4 mailbox command. In 5866 * addition, this routine gets the port vpd data. 5867 * 5868 * Return codes 5869 * 0 - successful 5870 * -ENOMEM - could not allocated memory. 5871 **/ 5872 static int 5873 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5874 uint8_t *vpd, uint32_t *vpd_size) 5875 { 5876 int rc = 0; 5877 uint32_t dma_size; 5878 struct lpfc_dmabuf *dmabuf; 5879 struct lpfc_mqe *mqe; 5880 5881 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5882 if (!dmabuf) 5883 return -ENOMEM; 5884 5885 /* 5886 * Get a DMA buffer for the vpd data resulting from the READ_REV 5887 * mailbox command. 5888 */ 5889 dma_size = *vpd_size; 5890 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5891 &dmabuf->phys, GFP_KERNEL); 5892 if (!dmabuf->virt) { 5893 kfree(dmabuf); 5894 return -ENOMEM; 5895 } 5896 5897 /* 5898 * The SLI4 implementation of READ_REV conflicts at word1, 5899 * bits 31:16 and SLI4 adds vpd functionality not present 5900 * in SLI3. This code corrects the conflicts. 5901 */ 5902 lpfc_read_rev(phba, mboxq); 5903 mqe = &mboxq->u.mqe; 5904 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5905 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5906 mqe->un.read_rev.word1 &= 0x0000FFFF; 5907 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5908 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5909 5910 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5911 if (rc) { 5912 dma_free_coherent(&phba->pcidev->dev, dma_size, 5913 dmabuf->virt, dmabuf->phys); 5914 kfree(dmabuf); 5915 return -EIO; 5916 } 5917 5918 /* 5919 * The available vpd length cannot be bigger than the 5920 * DMA buffer passed to the port. Catch the less than 5921 * case and update the caller's size. 5922 */ 5923 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5924 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5925 5926 memcpy(vpd, dmabuf->virt, *vpd_size); 5927 5928 dma_free_coherent(&phba->pcidev->dev, dma_size, 5929 dmabuf->virt, dmabuf->phys); 5930 kfree(dmabuf); 5931 return 0; 5932 } 5933 5934 /** 5935 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5936 * @phba: pointer to lpfc hba data structure. 5937 * 5938 * This routine retrieves SLI4 device physical port name this PCI function 5939 * is attached to. 5940 * 5941 * Return codes 5942 * 0 - successful 5943 * otherwise - failed to retrieve controller attributes 5944 **/ 5945 static int 5946 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5947 { 5948 LPFC_MBOXQ_t *mboxq; 5949 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5950 struct lpfc_controller_attribute *cntl_attr; 5951 void *virtaddr = NULL; 5952 uint32_t alloclen, reqlen; 5953 uint32_t shdr_status, shdr_add_status; 5954 union lpfc_sli4_cfg_shdr *shdr; 5955 int rc; 5956 5957 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5958 if (!mboxq) 5959 return -ENOMEM; 5960 5961 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5962 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5963 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5964 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5965 LPFC_SLI4_MBX_NEMBED); 5966 5967 if (alloclen < reqlen) { 5968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5969 "3084 Allocated DMA memory size (%d) is " 5970 "less than the requested DMA memory size " 5971 "(%d)\n", alloclen, reqlen); 5972 rc = -ENOMEM; 5973 goto out_free_mboxq; 5974 } 5975 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5976 virtaddr = mboxq->sge_array->addr[0]; 5977 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5978 shdr = &mbx_cntl_attr->cfg_shdr; 5979 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5980 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5981 if (shdr_status || shdr_add_status || rc) { 5982 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5983 "3085 Mailbox x%x (x%x/x%x) failed, " 5984 "rc:x%x, status:x%x, add_status:x%x\n", 5985 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5986 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5987 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5988 rc, shdr_status, shdr_add_status); 5989 rc = -ENXIO; 5990 goto out_free_mboxq; 5991 } 5992 5993 cntl_attr = &mbx_cntl_attr->cntl_attr; 5994 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5995 phba->sli4_hba.lnk_info.lnk_tp = 5996 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5997 phba->sli4_hba.lnk_info.lnk_no = 5998 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5999 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6000 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6001 6002 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6003 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6004 sizeof(phba->BIOSVersion)); 6005 6006 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6007 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6008 "flash_id: x%02x, asic_rev: x%02x\n", 6009 phba->sli4_hba.lnk_info.lnk_tp, 6010 phba->sli4_hba.lnk_info.lnk_no, 6011 phba->BIOSVersion, phba->sli4_hba.flash_id, 6012 phba->sli4_hba.asic_rev); 6013 out_free_mboxq: 6014 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6015 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6016 else 6017 mempool_free(mboxq, phba->mbox_mem_pool); 6018 return rc; 6019 } 6020 6021 /** 6022 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6023 * @phba: pointer to lpfc hba data structure. 6024 * 6025 * This routine retrieves SLI4 device physical port name this PCI function 6026 * is attached to. 6027 * 6028 * Return codes 6029 * 0 - successful 6030 * otherwise - failed to retrieve physical port name 6031 **/ 6032 static int 6033 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6034 { 6035 LPFC_MBOXQ_t *mboxq; 6036 struct lpfc_mbx_get_port_name *get_port_name; 6037 uint32_t shdr_status, shdr_add_status; 6038 union lpfc_sli4_cfg_shdr *shdr; 6039 char cport_name = 0; 6040 int rc; 6041 6042 /* We assume nothing at this point */ 6043 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6044 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6045 6046 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6047 if (!mboxq) 6048 return -ENOMEM; 6049 /* obtain link type and link number via READ_CONFIG */ 6050 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6051 lpfc_sli4_read_config(phba); 6052 6053 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6054 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6055 6056 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6057 goto retrieve_ppname; 6058 6059 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6060 rc = lpfc_sli4_get_ctl_attr(phba); 6061 if (rc) 6062 goto out_free_mboxq; 6063 6064 retrieve_ppname: 6065 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6066 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6067 sizeof(struct lpfc_mbx_get_port_name) - 6068 sizeof(struct lpfc_sli4_cfg_mhdr), 6069 LPFC_SLI4_MBX_EMBED); 6070 get_port_name = &mboxq->u.mqe.un.get_port_name; 6071 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6072 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6073 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6074 phba->sli4_hba.lnk_info.lnk_tp); 6075 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6076 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6077 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6078 if (shdr_status || shdr_add_status || rc) { 6079 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6080 "3087 Mailbox x%x (x%x/x%x) failed: " 6081 "rc:x%x, status:x%x, add_status:x%x\n", 6082 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6083 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6084 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6085 rc, shdr_status, shdr_add_status); 6086 rc = -ENXIO; 6087 goto out_free_mboxq; 6088 } 6089 switch (phba->sli4_hba.lnk_info.lnk_no) { 6090 case LPFC_LINK_NUMBER_0: 6091 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6092 &get_port_name->u.response); 6093 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6094 break; 6095 case LPFC_LINK_NUMBER_1: 6096 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6097 &get_port_name->u.response); 6098 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6099 break; 6100 case LPFC_LINK_NUMBER_2: 6101 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6102 &get_port_name->u.response); 6103 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6104 break; 6105 case LPFC_LINK_NUMBER_3: 6106 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6107 &get_port_name->u.response); 6108 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6109 break; 6110 default: 6111 break; 6112 } 6113 6114 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6115 phba->Port[0] = cport_name; 6116 phba->Port[1] = '\0'; 6117 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6118 "3091 SLI get port name: %s\n", phba->Port); 6119 } 6120 6121 out_free_mboxq: 6122 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6123 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6124 else 6125 mempool_free(mboxq, phba->mbox_mem_pool); 6126 return rc; 6127 } 6128 6129 /** 6130 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6131 * @phba: pointer to lpfc hba data structure. 6132 * 6133 * This routine is called to explicitly arm the SLI4 device's completion and 6134 * event queues 6135 **/ 6136 static void 6137 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6138 { 6139 int qidx; 6140 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6141 struct lpfc_sli4_hdw_queue *qp; 6142 struct lpfc_queue *eq; 6143 6144 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6145 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6146 if (sli4_hba->nvmels_cq) 6147 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6148 LPFC_QUEUE_REARM); 6149 6150 if (sli4_hba->hdwq) { 6151 /* Loop thru all Hardware Queues */ 6152 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6153 qp = &sli4_hba->hdwq[qidx]; 6154 /* ARM the corresponding CQ */ 6155 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6156 LPFC_QUEUE_REARM); 6157 } 6158 6159 /* Loop thru all IRQ vectors */ 6160 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6161 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6162 /* ARM the corresponding EQ */ 6163 sli4_hba->sli4_write_eq_db(phba, eq, 6164 0, LPFC_QUEUE_REARM); 6165 } 6166 } 6167 6168 if (phba->nvmet_support) { 6169 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6170 sli4_hba->sli4_write_cq_db(phba, 6171 sli4_hba->nvmet_cqset[qidx], 0, 6172 LPFC_QUEUE_REARM); 6173 } 6174 } 6175 } 6176 6177 /** 6178 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6179 * @phba: Pointer to HBA context object. 6180 * @type: The resource extent type. 6181 * @extnt_count: buffer to hold port available extent count. 6182 * @extnt_size: buffer to hold element count per extent. 6183 * 6184 * This function calls the port and retrievs the number of available 6185 * extents and their size for a particular extent type. 6186 * 6187 * Returns: 0 if successful. Nonzero otherwise. 6188 **/ 6189 int 6190 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6191 uint16_t *extnt_count, uint16_t *extnt_size) 6192 { 6193 int rc = 0; 6194 uint32_t length; 6195 uint32_t mbox_tmo; 6196 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6197 LPFC_MBOXQ_t *mbox; 6198 6199 *extnt_count = 0; 6200 *extnt_size = 0; 6201 6202 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6203 if (!mbox) 6204 return -ENOMEM; 6205 6206 /* Find out how many extents are available for this resource type */ 6207 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6208 sizeof(struct lpfc_sli4_cfg_mhdr)); 6209 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6210 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6211 length, LPFC_SLI4_MBX_EMBED); 6212 6213 /* Send an extents count of 0 - the GET doesn't use it. */ 6214 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6215 LPFC_SLI4_MBX_EMBED); 6216 if (unlikely(rc)) { 6217 rc = -EIO; 6218 goto err_exit; 6219 } 6220 6221 if (!phba->sli4_hba.intr_enable) 6222 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6223 else { 6224 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6225 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6226 } 6227 if (unlikely(rc)) { 6228 rc = -EIO; 6229 goto err_exit; 6230 } 6231 6232 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6233 if (bf_get(lpfc_mbox_hdr_status, 6234 &rsrc_info->header.cfg_shdr.response)) { 6235 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6236 "2930 Failed to get resource extents " 6237 "Status 0x%x Add'l Status 0x%x\n", 6238 bf_get(lpfc_mbox_hdr_status, 6239 &rsrc_info->header.cfg_shdr.response), 6240 bf_get(lpfc_mbox_hdr_add_status, 6241 &rsrc_info->header.cfg_shdr.response)); 6242 rc = -EIO; 6243 goto err_exit; 6244 } 6245 6246 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6247 &rsrc_info->u.rsp); 6248 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6249 &rsrc_info->u.rsp); 6250 6251 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6252 "3162 Retrieved extents type-%d from port: count:%d, " 6253 "size:%d\n", type, *extnt_count, *extnt_size); 6254 6255 err_exit: 6256 mempool_free(mbox, phba->mbox_mem_pool); 6257 return rc; 6258 } 6259 6260 /** 6261 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6262 * @phba: Pointer to HBA context object. 6263 * @type: The extent type to check. 6264 * 6265 * This function reads the current available extents from the port and checks 6266 * if the extent count or extent size has changed since the last access. 6267 * Callers use this routine post port reset to understand if there is a 6268 * extent reprovisioning requirement. 6269 * 6270 * Returns: 6271 * -Error: error indicates problem. 6272 * 1: Extent count or size has changed. 6273 * 0: No changes. 6274 **/ 6275 static int 6276 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6277 { 6278 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6279 uint16_t size_diff, rsrc_ext_size; 6280 int rc = 0; 6281 struct lpfc_rsrc_blks *rsrc_entry; 6282 struct list_head *rsrc_blk_list = NULL; 6283 6284 size_diff = 0; 6285 curr_ext_cnt = 0; 6286 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6287 &rsrc_ext_cnt, 6288 &rsrc_ext_size); 6289 if (unlikely(rc)) 6290 return -EIO; 6291 6292 switch (type) { 6293 case LPFC_RSC_TYPE_FCOE_RPI: 6294 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6295 break; 6296 case LPFC_RSC_TYPE_FCOE_VPI: 6297 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6298 break; 6299 case LPFC_RSC_TYPE_FCOE_XRI: 6300 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6301 break; 6302 case LPFC_RSC_TYPE_FCOE_VFI: 6303 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6304 break; 6305 default: 6306 break; 6307 } 6308 6309 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6310 curr_ext_cnt++; 6311 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6312 size_diff++; 6313 } 6314 6315 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6316 rc = 1; 6317 6318 return rc; 6319 } 6320 6321 /** 6322 * lpfc_sli4_cfg_post_extnts - 6323 * @phba: Pointer to HBA context object. 6324 * @extnt_cnt: number of available extents. 6325 * @type: the extent type (rpi, xri, vfi, vpi). 6326 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6327 * @mbox: pointer to the caller's allocated mailbox structure. 6328 * 6329 * This function executes the extents allocation request. It also 6330 * takes care of the amount of memory needed to allocate or get the 6331 * allocated extents. It is the caller's responsibility to evaluate 6332 * the response. 6333 * 6334 * Returns: 6335 * -Error: Error value describes the condition found. 6336 * 0: if successful 6337 **/ 6338 static int 6339 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6340 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6341 { 6342 int rc = 0; 6343 uint32_t req_len; 6344 uint32_t emb_len; 6345 uint32_t alloc_len, mbox_tmo; 6346 6347 /* Calculate the total requested length of the dma memory */ 6348 req_len = extnt_cnt * sizeof(uint16_t); 6349 6350 /* 6351 * Calculate the size of an embedded mailbox. The uint32_t 6352 * accounts for extents-specific word. 6353 */ 6354 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6355 sizeof(uint32_t); 6356 6357 /* 6358 * Presume the allocation and response will fit into an embedded 6359 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6360 */ 6361 *emb = LPFC_SLI4_MBX_EMBED; 6362 if (req_len > emb_len) { 6363 req_len = extnt_cnt * sizeof(uint16_t) + 6364 sizeof(union lpfc_sli4_cfg_shdr) + 6365 sizeof(uint32_t); 6366 *emb = LPFC_SLI4_MBX_NEMBED; 6367 } 6368 6369 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6370 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6371 req_len, *emb); 6372 if (alloc_len < req_len) { 6373 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6374 "2982 Allocated DMA memory size (x%x) is " 6375 "less than the requested DMA memory " 6376 "size (x%x)\n", alloc_len, req_len); 6377 return -ENOMEM; 6378 } 6379 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6380 if (unlikely(rc)) 6381 return -EIO; 6382 6383 if (!phba->sli4_hba.intr_enable) 6384 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6385 else { 6386 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6387 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6388 } 6389 6390 if (unlikely(rc)) 6391 rc = -EIO; 6392 return rc; 6393 } 6394 6395 /** 6396 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6397 * @phba: Pointer to HBA context object. 6398 * @type: The resource extent type to allocate. 6399 * 6400 * This function allocates the number of elements for the specified 6401 * resource type. 6402 **/ 6403 static int 6404 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6405 { 6406 bool emb = false; 6407 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6408 uint16_t rsrc_id, rsrc_start, j, k; 6409 uint16_t *ids; 6410 int i, rc; 6411 unsigned long longs; 6412 unsigned long *bmask; 6413 struct lpfc_rsrc_blks *rsrc_blks; 6414 LPFC_MBOXQ_t *mbox; 6415 uint32_t length; 6416 struct lpfc_id_range *id_array = NULL; 6417 void *virtaddr = NULL; 6418 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6419 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6420 struct list_head *ext_blk_list; 6421 6422 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6423 &rsrc_cnt, 6424 &rsrc_size); 6425 if (unlikely(rc)) 6426 return -EIO; 6427 6428 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6429 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6430 "3009 No available Resource Extents " 6431 "for resource type 0x%x: Count: 0x%x, " 6432 "Size 0x%x\n", type, rsrc_cnt, 6433 rsrc_size); 6434 return -ENOMEM; 6435 } 6436 6437 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6438 "2903 Post resource extents type-0x%x: " 6439 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6440 6441 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6442 if (!mbox) 6443 return -ENOMEM; 6444 6445 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6446 if (unlikely(rc)) { 6447 rc = -EIO; 6448 goto err_exit; 6449 } 6450 6451 /* 6452 * Figure out where the response is located. Then get local pointers 6453 * to the response data. The port does not guarantee to respond to 6454 * all extents counts request so update the local variable with the 6455 * allocated count from the port. 6456 */ 6457 if (emb == LPFC_SLI4_MBX_EMBED) { 6458 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6459 id_array = &rsrc_ext->u.rsp.id[0]; 6460 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6461 } else { 6462 virtaddr = mbox->sge_array->addr[0]; 6463 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6464 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6465 id_array = &n_rsrc->id; 6466 } 6467 6468 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6469 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6470 6471 /* 6472 * Based on the resource size and count, correct the base and max 6473 * resource values. 6474 */ 6475 length = sizeof(struct lpfc_rsrc_blks); 6476 switch (type) { 6477 case LPFC_RSC_TYPE_FCOE_RPI: 6478 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6479 sizeof(unsigned long), 6480 GFP_KERNEL); 6481 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6482 rc = -ENOMEM; 6483 goto err_exit; 6484 } 6485 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6486 sizeof(uint16_t), 6487 GFP_KERNEL); 6488 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6489 kfree(phba->sli4_hba.rpi_bmask); 6490 rc = -ENOMEM; 6491 goto err_exit; 6492 } 6493 6494 /* 6495 * The next_rpi was initialized with the maximum available 6496 * count but the port may allocate a smaller number. Catch 6497 * that case and update the next_rpi. 6498 */ 6499 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6500 6501 /* Initialize local ptrs for common extent processing later. */ 6502 bmask = phba->sli4_hba.rpi_bmask; 6503 ids = phba->sli4_hba.rpi_ids; 6504 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6505 break; 6506 case LPFC_RSC_TYPE_FCOE_VPI: 6507 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6508 GFP_KERNEL); 6509 if (unlikely(!phba->vpi_bmask)) { 6510 rc = -ENOMEM; 6511 goto err_exit; 6512 } 6513 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6514 GFP_KERNEL); 6515 if (unlikely(!phba->vpi_ids)) { 6516 kfree(phba->vpi_bmask); 6517 rc = -ENOMEM; 6518 goto err_exit; 6519 } 6520 6521 /* Initialize local ptrs for common extent processing later. */ 6522 bmask = phba->vpi_bmask; 6523 ids = phba->vpi_ids; 6524 ext_blk_list = &phba->lpfc_vpi_blk_list; 6525 break; 6526 case LPFC_RSC_TYPE_FCOE_XRI: 6527 phba->sli4_hba.xri_bmask = kcalloc(longs, 6528 sizeof(unsigned long), 6529 GFP_KERNEL); 6530 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6531 rc = -ENOMEM; 6532 goto err_exit; 6533 } 6534 phba->sli4_hba.max_cfg_param.xri_used = 0; 6535 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6536 sizeof(uint16_t), 6537 GFP_KERNEL); 6538 if (unlikely(!phba->sli4_hba.xri_ids)) { 6539 kfree(phba->sli4_hba.xri_bmask); 6540 rc = -ENOMEM; 6541 goto err_exit; 6542 } 6543 6544 /* Initialize local ptrs for common extent processing later. */ 6545 bmask = phba->sli4_hba.xri_bmask; 6546 ids = phba->sli4_hba.xri_ids; 6547 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6548 break; 6549 case LPFC_RSC_TYPE_FCOE_VFI: 6550 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6551 sizeof(unsigned long), 6552 GFP_KERNEL); 6553 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6554 rc = -ENOMEM; 6555 goto err_exit; 6556 } 6557 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6558 sizeof(uint16_t), 6559 GFP_KERNEL); 6560 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6561 kfree(phba->sli4_hba.vfi_bmask); 6562 rc = -ENOMEM; 6563 goto err_exit; 6564 } 6565 6566 /* Initialize local ptrs for common extent processing later. */ 6567 bmask = phba->sli4_hba.vfi_bmask; 6568 ids = phba->sli4_hba.vfi_ids; 6569 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6570 break; 6571 default: 6572 /* Unsupported Opcode. Fail call. */ 6573 id_array = NULL; 6574 bmask = NULL; 6575 ids = NULL; 6576 ext_blk_list = NULL; 6577 goto err_exit; 6578 } 6579 6580 /* 6581 * Complete initializing the extent configuration with the 6582 * allocated ids assigned to this function. The bitmask serves 6583 * as an index into the array and manages the available ids. The 6584 * array just stores the ids communicated to the port via the wqes. 6585 */ 6586 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6587 if ((i % 2) == 0) 6588 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6589 &id_array[k]); 6590 else 6591 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6592 &id_array[k]); 6593 6594 rsrc_blks = kzalloc(length, GFP_KERNEL); 6595 if (unlikely(!rsrc_blks)) { 6596 rc = -ENOMEM; 6597 kfree(bmask); 6598 kfree(ids); 6599 goto err_exit; 6600 } 6601 rsrc_blks->rsrc_start = rsrc_id; 6602 rsrc_blks->rsrc_size = rsrc_size; 6603 list_add_tail(&rsrc_blks->list, ext_blk_list); 6604 rsrc_start = rsrc_id; 6605 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6606 phba->sli4_hba.io_xri_start = rsrc_start + 6607 lpfc_sli4_get_iocb_cnt(phba); 6608 } 6609 6610 while (rsrc_id < (rsrc_start + rsrc_size)) { 6611 ids[j] = rsrc_id; 6612 rsrc_id++; 6613 j++; 6614 } 6615 /* Entire word processed. Get next word.*/ 6616 if ((i % 2) == 1) 6617 k++; 6618 } 6619 err_exit: 6620 lpfc_sli4_mbox_cmd_free(phba, mbox); 6621 return rc; 6622 } 6623 6624 6625 6626 /** 6627 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6628 * @phba: Pointer to HBA context object. 6629 * @type: the extent's type. 6630 * 6631 * This function deallocates all extents of a particular resource type. 6632 * SLI4 does not allow for deallocating a particular extent range. It 6633 * is the caller's responsibility to release all kernel memory resources. 6634 **/ 6635 static int 6636 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6637 { 6638 int rc; 6639 uint32_t length, mbox_tmo = 0; 6640 LPFC_MBOXQ_t *mbox; 6641 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6642 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6643 6644 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6645 if (!mbox) 6646 return -ENOMEM; 6647 6648 /* 6649 * This function sends an embedded mailbox because it only sends the 6650 * the resource type. All extents of this type are released by the 6651 * port. 6652 */ 6653 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6654 sizeof(struct lpfc_sli4_cfg_mhdr)); 6655 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6656 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6657 length, LPFC_SLI4_MBX_EMBED); 6658 6659 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6660 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6661 LPFC_SLI4_MBX_EMBED); 6662 if (unlikely(rc)) { 6663 rc = -EIO; 6664 goto out_free_mbox; 6665 } 6666 if (!phba->sli4_hba.intr_enable) 6667 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6668 else { 6669 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6670 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6671 } 6672 if (unlikely(rc)) { 6673 rc = -EIO; 6674 goto out_free_mbox; 6675 } 6676 6677 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6678 if (bf_get(lpfc_mbox_hdr_status, 6679 &dealloc_rsrc->header.cfg_shdr.response)) { 6680 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6681 "2919 Failed to release resource extents " 6682 "for type %d - Status 0x%x Add'l Status 0x%x. " 6683 "Resource memory not released.\n", 6684 type, 6685 bf_get(lpfc_mbox_hdr_status, 6686 &dealloc_rsrc->header.cfg_shdr.response), 6687 bf_get(lpfc_mbox_hdr_add_status, 6688 &dealloc_rsrc->header.cfg_shdr.response)); 6689 rc = -EIO; 6690 goto out_free_mbox; 6691 } 6692 6693 /* Release kernel memory resources for the specific type. */ 6694 switch (type) { 6695 case LPFC_RSC_TYPE_FCOE_VPI: 6696 kfree(phba->vpi_bmask); 6697 kfree(phba->vpi_ids); 6698 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6699 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6700 &phba->lpfc_vpi_blk_list, list) { 6701 list_del_init(&rsrc_blk->list); 6702 kfree(rsrc_blk); 6703 } 6704 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6705 break; 6706 case LPFC_RSC_TYPE_FCOE_XRI: 6707 kfree(phba->sli4_hba.xri_bmask); 6708 kfree(phba->sli4_hba.xri_ids); 6709 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6710 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6711 list_del_init(&rsrc_blk->list); 6712 kfree(rsrc_blk); 6713 } 6714 break; 6715 case LPFC_RSC_TYPE_FCOE_VFI: 6716 kfree(phba->sli4_hba.vfi_bmask); 6717 kfree(phba->sli4_hba.vfi_ids); 6718 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6719 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6720 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6721 list_del_init(&rsrc_blk->list); 6722 kfree(rsrc_blk); 6723 } 6724 break; 6725 case LPFC_RSC_TYPE_FCOE_RPI: 6726 /* RPI bitmask and physical id array are cleaned up earlier. */ 6727 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6728 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6729 list_del_init(&rsrc_blk->list); 6730 kfree(rsrc_blk); 6731 } 6732 break; 6733 default: 6734 break; 6735 } 6736 6737 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6738 6739 out_free_mbox: 6740 mempool_free(mbox, phba->mbox_mem_pool); 6741 return rc; 6742 } 6743 6744 static void 6745 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6746 uint32_t feature) 6747 { 6748 uint32_t len; 6749 u32 sig_freq = 0; 6750 6751 len = sizeof(struct lpfc_mbx_set_feature) - 6752 sizeof(struct lpfc_sli4_cfg_mhdr); 6753 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6754 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6755 LPFC_SLI4_MBX_EMBED); 6756 6757 switch (feature) { 6758 case LPFC_SET_UE_RECOVERY: 6759 bf_set(lpfc_mbx_set_feature_UER, 6760 &mbox->u.mqe.un.set_feature, 1); 6761 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6762 mbox->u.mqe.un.set_feature.param_len = 8; 6763 break; 6764 case LPFC_SET_MDS_DIAGS: 6765 bf_set(lpfc_mbx_set_feature_mds, 6766 &mbox->u.mqe.un.set_feature, 1); 6767 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6768 &mbox->u.mqe.un.set_feature, 1); 6769 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6770 mbox->u.mqe.un.set_feature.param_len = 8; 6771 break; 6772 case LPFC_SET_CGN_SIGNAL: 6773 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6774 sig_freq = 0; 6775 else 6776 sig_freq = phba->cgn_sig_freq; 6777 6778 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6779 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6780 &mbox->u.mqe.un.set_feature, sig_freq); 6781 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6782 &mbox->u.mqe.un.set_feature, sig_freq); 6783 } 6784 6785 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6786 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6787 &mbox->u.mqe.un.set_feature, sig_freq); 6788 6789 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6790 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6791 sig_freq = 0; 6792 else 6793 sig_freq = lpfc_acqe_cgn_frequency; 6794 6795 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6796 &mbox->u.mqe.un.set_feature, sig_freq); 6797 6798 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6799 mbox->u.mqe.un.set_feature.param_len = 12; 6800 break; 6801 case LPFC_SET_DUAL_DUMP: 6802 bf_set(lpfc_mbx_set_feature_dd, 6803 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6804 bf_set(lpfc_mbx_set_feature_ddquery, 6805 &mbox->u.mqe.un.set_feature, 0); 6806 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6807 mbox->u.mqe.un.set_feature.param_len = 4; 6808 break; 6809 case LPFC_SET_ENABLE_MI: 6810 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6811 mbox->u.mqe.un.set_feature.param_len = 4; 6812 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6813 phba->pport->cfg_lun_queue_depth); 6814 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6815 phba->sli4_hba.pc_sli4_params.mi_ver); 6816 break; 6817 case LPFC_SET_LD_SIGNAL: 6818 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6819 mbox->u.mqe.un.set_feature.param_len = 16; 6820 bf_set(lpfc_mbx_set_feature_lds_qry, 6821 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6822 break; 6823 case LPFC_SET_ENABLE_CMF: 6824 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6825 mbox->u.mqe.un.set_feature.param_len = 4; 6826 bf_set(lpfc_mbx_set_feature_cmf, 6827 &mbox->u.mqe.un.set_feature, 1); 6828 break; 6829 } 6830 return; 6831 } 6832 6833 /** 6834 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6835 * @phba: Pointer to HBA context object. 6836 * 6837 * Disable FW logging into host memory on the adapter. To 6838 * be done before reading logs from the host memory. 6839 **/ 6840 void 6841 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6842 { 6843 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6844 6845 spin_lock_irq(&phba->hbalock); 6846 ras_fwlog->state = INACTIVE; 6847 spin_unlock_irq(&phba->hbalock); 6848 6849 /* Disable FW logging to host memory */ 6850 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6851 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6852 6853 /* Wait 10ms for firmware to stop using DMA buffer */ 6854 usleep_range(10 * 1000, 20 * 1000); 6855 } 6856 6857 /** 6858 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6859 * @phba: Pointer to HBA context object. 6860 * 6861 * This function is called to free memory allocated for RAS FW logging 6862 * support in the driver. 6863 **/ 6864 void 6865 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6866 { 6867 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6868 struct lpfc_dmabuf *dmabuf, *next; 6869 6870 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6871 list_for_each_entry_safe(dmabuf, next, 6872 &ras_fwlog->fwlog_buff_list, 6873 list) { 6874 list_del(&dmabuf->list); 6875 dma_free_coherent(&phba->pcidev->dev, 6876 LPFC_RAS_MAX_ENTRY_SIZE, 6877 dmabuf->virt, dmabuf->phys); 6878 kfree(dmabuf); 6879 } 6880 } 6881 6882 if (ras_fwlog->lwpd.virt) { 6883 dma_free_coherent(&phba->pcidev->dev, 6884 sizeof(uint32_t) * 2, 6885 ras_fwlog->lwpd.virt, 6886 ras_fwlog->lwpd.phys); 6887 ras_fwlog->lwpd.virt = NULL; 6888 } 6889 6890 spin_lock_irq(&phba->hbalock); 6891 ras_fwlog->state = INACTIVE; 6892 spin_unlock_irq(&phba->hbalock); 6893 } 6894 6895 /** 6896 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6897 * @phba: Pointer to HBA context object. 6898 * @fwlog_buff_count: Count of buffers to be created. 6899 * 6900 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6901 * to update FW log is posted to the adapter. 6902 * Buffer count is calculated based on module param ras_fwlog_buffsize 6903 * Size of each buffer posted to FW is 64K. 6904 **/ 6905 6906 static int 6907 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6908 uint32_t fwlog_buff_count) 6909 { 6910 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6911 struct lpfc_dmabuf *dmabuf; 6912 int rc = 0, i = 0; 6913 6914 /* Initialize List */ 6915 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6916 6917 /* Allocate memory for the LWPD */ 6918 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6919 sizeof(uint32_t) * 2, 6920 &ras_fwlog->lwpd.phys, 6921 GFP_KERNEL); 6922 if (!ras_fwlog->lwpd.virt) { 6923 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6924 "6185 LWPD Memory Alloc Failed\n"); 6925 6926 return -ENOMEM; 6927 } 6928 6929 ras_fwlog->fw_buffcount = fwlog_buff_count; 6930 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6931 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6932 GFP_KERNEL); 6933 if (!dmabuf) { 6934 rc = -ENOMEM; 6935 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6936 "6186 Memory Alloc failed FW logging"); 6937 goto free_mem; 6938 } 6939 6940 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6941 LPFC_RAS_MAX_ENTRY_SIZE, 6942 &dmabuf->phys, GFP_KERNEL); 6943 if (!dmabuf->virt) { 6944 kfree(dmabuf); 6945 rc = -ENOMEM; 6946 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6947 "6187 DMA Alloc Failed FW logging"); 6948 goto free_mem; 6949 } 6950 dmabuf->buffer_tag = i; 6951 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6952 } 6953 6954 free_mem: 6955 if (rc) 6956 lpfc_sli4_ras_dma_free(phba); 6957 6958 return rc; 6959 } 6960 6961 /** 6962 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6963 * @phba: pointer to lpfc hba data structure. 6964 * @pmb: pointer to the driver internal queue element for mailbox command. 6965 * 6966 * Completion handler for driver's RAS MBX command to the device. 6967 **/ 6968 static void 6969 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6970 { 6971 MAILBOX_t *mb; 6972 union lpfc_sli4_cfg_shdr *shdr; 6973 uint32_t shdr_status, shdr_add_status; 6974 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6975 6976 mb = &pmb->u.mb; 6977 6978 shdr = (union lpfc_sli4_cfg_shdr *) 6979 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6980 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6981 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6982 6983 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6984 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6985 "6188 FW LOG mailbox " 6986 "completed with status x%x add_status x%x," 6987 " mbx status x%x\n", 6988 shdr_status, shdr_add_status, mb->mbxStatus); 6989 6990 ras_fwlog->ras_hwsupport = false; 6991 goto disable_ras; 6992 } 6993 6994 spin_lock_irq(&phba->hbalock); 6995 ras_fwlog->state = ACTIVE; 6996 spin_unlock_irq(&phba->hbalock); 6997 mempool_free(pmb, phba->mbox_mem_pool); 6998 6999 return; 7000 7001 disable_ras: 7002 /* Free RAS DMA memory */ 7003 lpfc_sli4_ras_dma_free(phba); 7004 mempool_free(pmb, phba->mbox_mem_pool); 7005 } 7006 7007 /** 7008 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7009 * @phba: pointer to lpfc hba data structure. 7010 * @fwlog_level: Logging verbosity level. 7011 * @fwlog_enable: Enable/Disable logging. 7012 * 7013 * Initialize memory and post mailbox command to enable FW logging in host 7014 * memory. 7015 **/ 7016 int 7017 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7018 uint32_t fwlog_level, 7019 uint32_t fwlog_enable) 7020 { 7021 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7022 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7023 struct lpfc_dmabuf *dmabuf; 7024 LPFC_MBOXQ_t *mbox; 7025 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7026 int rc = 0; 7027 7028 spin_lock_irq(&phba->hbalock); 7029 ras_fwlog->state = INACTIVE; 7030 spin_unlock_irq(&phba->hbalock); 7031 7032 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7033 phba->cfg_ras_fwlog_buffsize); 7034 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7035 7036 /* 7037 * If re-enabling FW logging support use earlier allocated 7038 * DMA buffers while posting MBX command. 7039 **/ 7040 if (!ras_fwlog->lwpd.virt) { 7041 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7042 if (rc) { 7043 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7044 "6189 FW Log Memory Allocation Failed"); 7045 return rc; 7046 } 7047 } 7048 7049 /* Setup Mailbox command */ 7050 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7051 if (!mbox) { 7052 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7053 "6190 RAS MBX Alloc Failed"); 7054 rc = -ENOMEM; 7055 goto mem_free; 7056 } 7057 7058 ras_fwlog->fw_loglevel = fwlog_level; 7059 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7060 sizeof(struct lpfc_sli4_cfg_mhdr)); 7061 7062 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7063 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7064 len, LPFC_SLI4_MBX_EMBED); 7065 7066 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7067 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7068 fwlog_enable); 7069 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7070 ras_fwlog->fw_loglevel); 7071 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7072 ras_fwlog->fw_buffcount); 7073 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7074 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7075 7076 /* Update DMA buffer address */ 7077 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7078 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7079 7080 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7081 putPaddrLow(dmabuf->phys); 7082 7083 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7084 putPaddrHigh(dmabuf->phys); 7085 } 7086 7087 /* Update LPWD address */ 7088 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7089 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7090 7091 spin_lock_irq(&phba->hbalock); 7092 ras_fwlog->state = REG_INPROGRESS; 7093 spin_unlock_irq(&phba->hbalock); 7094 mbox->vport = phba->pport; 7095 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7096 7097 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7098 7099 if (rc == MBX_NOT_FINISHED) { 7100 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7101 "6191 FW-Log Mailbox failed. " 7102 "status %d mbxStatus : x%x", rc, 7103 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7104 mempool_free(mbox, phba->mbox_mem_pool); 7105 rc = -EIO; 7106 goto mem_free; 7107 } else 7108 rc = 0; 7109 mem_free: 7110 if (rc) 7111 lpfc_sli4_ras_dma_free(phba); 7112 7113 return rc; 7114 } 7115 7116 /** 7117 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7118 * @phba: Pointer to HBA context object. 7119 * 7120 * Check if RAS is supported on the adapter and initialize it. 7121 **/ 7122 void 7123 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7124 { 7125 /* Check RAS FW Log needs to be enabled or not */ 7126 if (lpfc_check_fwlog_support(phba)) 7127 return; 7128 7129 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7130 LPFC_RAS_ENABLE_LOGGING); 7131 } 7132 7133 /** 7134 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7135 * @phba: Pointer to HBA context object. 7136 * 7137 * This function allocates all SLI4 resource identifiers. 7138 **/ 7139 int 7140 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7141 { 7142 int i, rc, error = 0; 7143 uint16_t count, base; 7144 unsigned long longs; 7145 7146 if (!phba->sli4_hba.rpi_hdrs_in_use) 7147 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7148 if (phba->sli4_hba.extents_in_use) { 7149 /* 7150 * The port supports resource extents. The XRI, VPI, VFI, RPI 7151 * resource extent count must be read and allocated before 7152 * provisioning the resource id arrays. 7153 */ 7154 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7155 LPFC_IDX_RSRC_RDY) { 7156 /* 7157 * Extent-based resources are set - the driver could 7158 * be in a port reset. Figure out if any corrective 7159 * actions need to be taken. 7160 */ 7161 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7162 LPFC_RSC_TYPE_FCOE_VFI); 7163 if (rc != 0) 7164 error++; 7165 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7166 LPFC_RSC_TYPE_FCOE_VPI); 7167 if (rc != 0) 7168 error++; 7169 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7170 LPFC_RSC_TYPE_FCOE_XRI); 7171 if (rc != 0) 7172 error++; 7173 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7174 LPFC_RSC_TYPE_FCOE_RPI); 7175 if (rc != 0) 7176 error++; 7177 7178 /* 7179 * It's possible that the number of resources 7180 * provided to this port instance changed between 7181 * resets. Detect this condition and reallocate 7182 * resources. Otherwise, there is no action. 7183 */ 7184 if (error) { 7185 lpfc_printf_log(phba, KERN_INFO, 7186 LOG_MBOX | LOG_INIT, 7187 "2931 Detected extent resource " 7188 "change. Reallocating all " 7189 "extents.\n"); 7190 rc = lpfc_sli4_dealloc_extent(phba, 7191 LPFC_RSC_TYPE_FCOE_VFI); 7192 rc = lpfc_sli4_dealloc_extent(phba, 7193 LPFC_RSC_TYPE_FCOE_VPI); 7194 rc = lpfc_sli4_dealloc_extent(phba, 7195 LPFC_RSC_TYPE_FCOE_XRI); 7196 rc = lpfc_sli4_dealloc_extent(phba, 7197 LPFC_RSC_TYPE_FCOE_RPI); 7198 } else 7199 return 0; 7200 } 7201 7202 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7203 if (unlikely(rc)) 7204 goto err_exit; 7205 7206 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7207 if (unlikely(rc)) 7208 goto err_exit; 7209 7210 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7211 if (unlikely(rc)) 7212 goto err_exit; 7213 7214 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7215 if (unlikely(rc)) 7216 goto err_exit; 7217 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7218 LPFC_IDX_RSRC_RDY); 7219 return rc; 7220 } else { 7221 /* 7222 * The port does not support resource extents. The XRI, VPI, 7223 * VFI, RPI resource ids were determined from READ_CONFIG. 7224 * Just allocate the bitmasks and provision the resource id 7225 * arrays. If a port reset is active, the resources don't 7226 * need any action - just exit. 7227 */ 7228 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7229 LPFC_IDX_RSRC_RDY) { 7230 lpfc_sli4_dealloc_resource_identifiers(phba); 7231 lpfc_sli4_remove_rpis(phba); 7232 } 7233 /* RPIs. */ 7234 count = phba->sli4_hba.max_cfg_param.max_rpi; 7235 if (count <= 0) { 7236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7237 "3279 Invalid provisioning of " 7238 "rpi:%d\n", count); 7239 rc = -EINVAL; 7240 goto err_exit; 7241 } 7242 base = phba->sli4_hba.max_cfg_param.rpi_base; 7243 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7244 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7245 sizeof(unsigned long), 7246 GFP_KERNEL); 7247 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7248 rc = -ENOMEM; 7249 goto err_exit; 7250 } 7251 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7252 GFP_KERNEL); 7253 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7254 rc = -ENOMEM; 7255 goto free_rpi_bmask; 7256 } 7257 7258 for (i = 0; i < count; i++) 7259 phba->sli4_hba.rpi_ids[i] = base + i; 7260 7261 /* VPIs. */ 7262 count = phba->sli4_hba.max_cfg_param.max_vpi; 7263 if (count <= 0) { 7264 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7265 "3280 Invalid provisioning of " 7266 "vpi:%d\n", count); 7267 rc = -EINVAL; 7268 goto free_rpi_ids; 7269 } 7270 base = phba->sli4_hba.max_cfg_param.vpi_base; 7271 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7272 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7273 GFP_KERNEL); 7274 if (unlikely(!phba->vpi_bmask)) { 7275 rc = -ENOMEM; 7276 goto free_rpi_ids; 7277 } 7278 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7279 GFP_KERNEL); 7280 if (unlikely(!phba->vpi_ids)) { 7281 rc = -ENOMEM; 7282 goto free_vpi_bmask; 7283 } 7284 7285 for (i = 0; i < count; i++) 7286 phba->vpi_ids[i] = base + i; 7287 7288 /* XRIs. */ 7289 count = phba->sli4_hba.max_cfg_param.max_xri; 7290 if (count <= 0) { 7291 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7292 "3281 Invalid provisioning of " 7293 "xri:%d\n", count); 7294 rc = -EINVAL; 7295 goto free_vpi_ids; 7296 } 7297 base = phba->sli4_hba.max_cfg_param.xri_base; 7298 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7299 phba->sli4_hba.xri_bmask = kcalloc(longs, 7300 sizeof(unsigned long), 7301 GFP_KERNEL); 7302 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7303 rc = -ENOMEM; 7304 goto free_vpi_ids; 7305 } 7306 phba->sli4_hba.max_cfg_param.xri_used = 0; 7307 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7308 GFP_KERNEL); 7309 if (unlikely(!phba->sli4_hba.xri_ids)) { 7310 rc = -ENOMEM; 7311 goto free_xri_bmask; 7312 } 7313 7314 for (i = 0; i < count; i++) 7315 phba->sli4_hba.xri_ids[i] = base + i; 7316 7317 /* VFIs. */ 7318 count = phba->sli4_hba.max_cfg_param.max_vfi; 7319 if (count <= 0) { 7320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7321 "3282 Invalid provisioning of " 7322 "vfi:%d\n", count); 7323 rc = -EINVAL; 7324 goto free_xri_ids; 7325 } 7326 base = phba->sli4_hba.max_cfg_param.vfi_base; 7327 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7328 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7329 sizeof(unsigned long), 7330 GFP_KERNEL); 7331 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7332 rc = -ENOMEM; 7333 goto free_xri_ids; 7334 } 7335 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7336 GFP_KERNEL); 7337 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7338 rc = -ENOMEM; 7339 goto free_vfi_bmask; 7340 } 7341 7342 for (i = 0; i < count; i++) 7343 phba->sli4_hba.vfi_ids[i] = base + i; 7344 7345 /* 7346 * Mark all resources ready. An HBA reset doesn't need 7347 * to reset the initialization. 7348 */ 7349 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7350 LPFC_IDX_RSRC_RDY); 7351 return 0; 7352 } 7353 7354 free_vfi_bmask: 7355 kfree(phba->sli4_hba.vfi_bmask); 7356 phba->sli4_hba.vfi_bmask = NULL; 7357 free_xri_ids: 7358 kfree(phba->sli4_hba.xri_ids); 7359 phba->sli4_hba.xri_ids = NULL; 7360 free_xri_bmask: 7361 kfree(phba->sli4_hba.xri_bmask); 7362 phba->sli4_hba.xri_bmask = NULL; 7363 free_vpi_ids: 7364 kfree(phba->vpi_ids); 7365 phba->vpi_ids = NULL; 7366 free_vpi_bmask: 7367 kfree(phba->vpi_bmask); 7368 phba->vpi_bmask = NULL; 7369 free_rpi_ids: 7370 kfree(phba->sli4_hba.rpi_ids); 7371 phba->sli4_hba.rpi_ids = NULL; 7372 free_rpi_bmask: 7373 kfree(phba->sli4_hba.rpi_bmask); 7374 phba->sli4_hba.rpi_bmask = NULL; 7375 err_exit: 7376 return rc; 7377 } 7378 7379 /** 7380 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7381 * @phba: Pointer to HBA context object. 7382 * 7383 * This function allocates the number of elements for the specified 7384 * resource type. 7385 **/ 7386 int 7387 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7388 { 7389 if (phba->sli4_hba.extents_in_use) { 7390 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7391 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7392 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7393 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7394 } else { 7395 kfree(phba->vpi_bmask); 7396 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7397 kfree(phba->vpi_ids); 7398 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7399 kfree(phba->sli4_hba.xri_bmask); 7400 kfree(phba->sli4_hba.xri_ids); 7401 kfree(phba->sli4_hba.vfi_bmask); 7402 kfree(phba->sli4_hba.vfi_ids); 7403 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7404 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7405 } 7406 7407 return 0; 7408 } 7409 7410 /** 7411 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7412 * @phba: Pointer to HBA context object. 7413 * @type: The resource extent type. 7414 * @extnt_cnt: buffer to hold port extent count response 7415 * @extnt_size: buffer to hold port extent size response. 7416 * 7417 * This function calls the port to read the host allocated extents 7418 * for a particular type. 7419 **/ 7420 int 7421 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7422 uint16_t *extnt_cnt, uint16_t *extnt_size) 7423 { 7424 bool emb; 7425 int rc = 0; 7426 uint16_t curr_blks = 0; 7427 uint32_t req_len, emb_len; 7428 uint32_t alloc_len, mbox_tmo; 7429 struct list_head *blk_list_head; 7430 struct lpfc_rsrc_blks *rsrc_blk; 7431 LPFC_MBOXQ_t *mbox; 7432 void *virtaddr = NULL; 7433 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7434 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7435 union lpfc_sli4_cfg_shdr *shdr; 7436 7437 switch (type) { 7438 case LPFC_RSC_TYPE_FCOE_VPI: 7439 blk_list_head = &phba->lpfc_vpi_blk_list; 7440 break; 7441 case LPFC_RSC_TYPE_FCOE_XRI: 7442 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7443 break; 7444 case LPFC_RSC_TYPE_FCOE_VFI: 7445 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7446 break; 7447 case LPFC_RSC_TYPE_FCOE_RPI: 7448 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7449 break; 7450 default: 7451 return -EIO; 7452 } 7453 7454 /* Count the number of extents currently allocatd for this type. */ 7455 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7456 if (curr_blks == 0) { 7457 /* 7458 * The GET_ALLOCATED mailbox does not return the size, 7459 * just the count. The size should be just the size 7460 * stored in the current allocated block and all sizes 7461 * for an extent type are the same so set the return 7462 * value now. 7463 */ 7464 *extnt_size = rsrc_blk->rsrc_size; 7465 } 7466 curr_blks++; 7467 } 7468 7469 /* 7470 * Calculate the size of an embedded mailbox. The uint32_t 7471 * accounts for extents-specific word. 7472 */ 7473 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7474 sizeof(uint32_t); 7475 7476 /* 7477 * Presume the allocation and response will fit into an embedded 7478 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7479 */ 7480 emb = LPFC_SLI4_MBX_EMBED; 7481 req_len = emb_len; 7482 if (req_len > emb_len) { 7483 req_len = curr_blks * sizeof(uint16_t) + 7484 sizeof(union lpfc_sli4_cfg_shdr) + 7485 sizeof(uint32_t); 7486 emb = LPFC_SLI4_MBX_NEMBED; 7487 } 7488 7489 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7490 if (!mbox) 7491 return -ENOMEM; 7492 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7493 7494 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7495 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7496 req_len, emb); 7497 if (alloc_len < req_len) { 7498 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7499 "2983 Allocated DMA memory size (x%x) is " 7500 "less than the requested DMA memory " 7501 "size (x%x)\n", alloc_len, req_len); 7502 rc = -ENOMEM; 7503 goto err_exit; 7504 } 7505 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7506 if (unlikely(rc)) { 7507 rc = -EIO; 7508 goto err_exit; 7509 } 7510 7511 if (!phba->sli4_hba.intr_enable) 7512 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7513 else { 7514 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7515 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7516 } 7517 7518 if (unlikely(rc)) { 7519 rc = -EIO; 7520 goto err_exit; 7521 } 7522 7523 /* 7524 * Figure out where the response is located. Then get local pointers 7525 * to the response data. The port does not guarantee to respond to 7526 * all extents counts request so update the local variable with the 7527 * allocated count from the port. 7528 */ 7529 if (emb == LPFC_SLI4_MBX_EMBED) { 7530 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7531 shdr = &rsrc_ext->header.cfg_shdr; 7532 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7533 } else { 7534 virtaddr = mbox->sge_array->addr[0]; 7535 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7536 shdr = &n_rsrc->cfg_shdr; 7537 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7538 } 7539 7540 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7542 "2984 Failed to read allocated resources " 7543 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7544 type, 7545 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7546 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7547 rc = -EIO; 7548 goto err_exit; 7549 } 7550 err_exit: 7551 lpfc_sli4_mbox_cmd_free(phba, mbox); 7552 return rc; 7553 } 7554 7555 /** 7556 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7557 * @phba: pointer to lpfc hba data structure. 7558 * @sgl_list: linked link of sgl buffers to post 7559 * @cnt: number of linked list buffers 7560 * 7561 * This routine walks the list of buffers that have been allocated and 7562 * repost them to the port by using SGL block post. This is needed after a 7563 * pci_function_reset/warm_start or start. It attempts to construct blocks 7564 * of buffer sgls which contains contiguous xris and uses the non-embedded 7565 * SGL block post mailbox commands to post them to the port. For single 7566 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7567 * mailbox command for posting. 7568 * 7569 * Returns: 0 = success, non-zero failure. 7570 **/ 7571 static int 7572 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7573 struct list_head *sgl_list, int cnt) 7574 { 7575 struct lpfc_sglq *sglq_entry = NULL; 7576 struct lpfc_sglq *sglq_entry_next = NULL; 7577 struct lpfc_sglq *sglq_entry_first = NULL; 7578 int status, total_cnt; 7579 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7580 int last_xritag = NO_XRI; 7581 LIST_HEAD(prep_sgl_list); 7582 LIST_HEAD(blck_sgl_list); 7583 LIST_HEAD(allc_sgl_list); 7584 LIST_HEAD(post_sgl_list); 7585 LIST_HEAD(free_sgl_list); 7586 7587 spin_lock_irq(&phba->hbalock); 7588 spin_lock(&phba->sli4_hba.sgl_list_lock); 7589 list_splice_init(sgl_list, &allc_sgl_list); 7590 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7591 spin_unlock_irq(&phba->hbalock); 7592 7593 total_cnt = cnt; 7594 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7595 &allc_sgl_list, list) { 7596 list_del_init(&sglq_entry->list); 7597 block_cnt++; 7598 if ((last_xritag != NO_XRI) && 7599 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7600 /* a hole in xri block, form a sgl posting block */ 7601 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7602 post_cnt = block_cnt - 1; 7603 /* prepare list for next posting block */ 7604 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7605 block_cnt = 1; 7606 } else { 7607 /* prepare list for next posting block */ 7608 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7609 /* enough sgls for non-embed sgl mbox command */ 7610 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7611 list_splice_init(&prep_sgl_list, 7612 &blck_sgl_list); 7613 post_cnt = block_cnt; 7614 block_cnt = 0; 7615 } 7616 } 7617 num_posted++; 7618 7619 /* keep track of last sgl's xritag */ 7620 last_xritag = sglq_entry->sli4_xritag; 7621 7622 /* end of repost sgl list condition for buffers */ 7623 if (num_posted == total_cnt) { 7624 if (post_cnt == 0) { 7625 list_splice_init(&prep_sgl_list, 7626 &blck_sgl_list); 7627 post_cnt = block_cnt; 7628 } else if (block_cnt == 1) { 7629 status = lpfc_sli4_post_sgl(phba, 7630 sglq_entry->phys, 0, 7631 sglq_entry->sli4_xritag); 7632 if (!status) { 7633 /* successful, put sgl to posted list */ 7634 list_add_tail(&sglq_entry->list, 7635 &post_sgl_list); 7636 } else { 7637 /* Failure, put sgl to free list */ 7638 lpfc_printf_log(phba, KERN_WARNING, 7639 LOG_SLI, 7640 "3159 Failed to post " 7641 "sgl, xritag:x%x\n", 7642 sglq_entry->sli4_xritag); 7643 list_add_tail(&sglq_entry->list, 7644 &free_sgl_list); 7645 total_cnt--; 7646 } 7647 } 7648 } 7649 7650 /* continue until a nembed page worth of sgls */ 7651 if (post_cnt == 0) 7652 continue; 7653 7654 /* post the buffer list sgls as a block */ 7655 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7656 post_cnt); 7657 7658 if (!status) { 7659 /* success, put sgl list to posted sgl list */ 7660 list_splice_init(&blck_sgl_list, &post_sgl_list); 7661 } else { 7662 /* Failure, put sgl list to free sgl list */ 7663 sglq_entry_first = list_first_entry(&blck_sgl_list, 7664 struct lpfc_sglq, 7665 list); 7666 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7667 "3160 Failed to post sgl-list, " 7668 "xritag:x%x-x%x\n", 7669 sglq_entry_first->sli4_xritag, 7670 (sglq_entry_first->sli4_xritag + 7671 post_cnt - 1)); 7672 list_splice_init(&blck_sgl_list, &free_sgl_list); 7673 total_cnt -= post_cnt; 7674 } 7675 7676 /* don't reset xirtag due to hole in xri block */ 7677 if (block_cnt == 0) 7678 last_xritag = NO_XRI; 7679 7680 /* reset sgl post count for next round of posting */ 7681 post_cnt = 0; 7682 } 7683 7684 /* free the sgls failed to post */ 7685 lpfc_free_sgl_list(phba, &free_sgl_list); 7686 7687 /* push sgls posted to the available list */ 7688 if (!list_empty(&post_sgl_list)) { 7689 spin_lock_irq(&phba->hbalock); 7690 spin_lock(&phba->sli4_hba.sgl_list_lock); 7691 list_splice_init(&post_sgl_list, sgl_list); 7692 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7693 spin_unlock_irq(&phba->hbalock); 7694 } else { 7695 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7696 "3161 Failure to post sgl to port.\n"); 7697 return -EIO; 7698 } 7699 7700 /* return the number of XRIs actually posted */ 7701 return total_cnt; 7702 } 7703 7704 /** 7705 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7706 * @phba: pointer to lpfc hba data structure. 7707 * 7708 * This routine walks the list of nvme buffers that have been allocated and 7709 * repost them to the port by using SGL block post. This is needed after a 7710 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7711 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7712 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7713 * 7714 * Returns: 0 = success, non-zero failure. 7715 **/ 7716 static int 7717 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7718 { 7719 LIST_HEAD(post_nblist); 7720 int num_posted, rc = 0; 7721 7722 /* get all NVME buffers need to repost to a local list */ 7723 lpfc_io_buf_flush(phba, &post_nblist); 7724 7725 /* post the list of nvme buffer sgls to port if available */ 7726 if (!list_empty(&post_nblist)) { 7727 num_posted = lpfc_sli4_post_io_sgl_list( 7728 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7729 /* failed to post any nvme buffer, return error */ 7730 if (num_posted == 0) 7731 rc = -EIO; 7732 } 7733 return rc; 7734 } 7735 7736 static void 7737 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7738 { 7739 uint32_t len; 7740 7741 len = sizeof(struct lpfc_mbx_set_host_data) - 7742 sizeof(struct lpfc_sli4_cfg_mhdr); 7743 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7744 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7745 LPFC_SLI4_MBX_EMBED); 7746 7747 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7748 mbox->u.mqe.un.set_host_data.param_len = 7749 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7750 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7751 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7752 "Linux %s v"LPFC_DRIVER_VERSION, 7753 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7754 } 7755 7756 int 7757 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7758 struct lpfc_queue *drq, int count, int idx) 7759 { 7760 int rc, i; 7761 struct lpfc_rqe hrqe; 7762 struct lpfc_rqe drqe; 7763 struct lpfc_rqb *rqbp; 7764 unsigned long flags; 7765 struct rqb_dmabuf *rqb_buffer; 7766 LIST_HEAD(rqb_buf_list); 7767 7768 rqbp = hrq->rqbp; 7769 for (i = 0; i < count; i++) { 7770 spin_lock_irqsave(&phba->hbalock, flags); 7771 /* IF RQ is already full, don't bother */ 7772 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7773 spin_unlock_irqrestore(&phba->hbalock, flags); 7774 break; 7775 } 7776 spin_unlock_irqrestore(&phba->hbalock, flags); 7777 7778 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7779 if (!rqb_buffer) 7780 break; 7781 rqb_buffer->hrq = hrq; 7782 rqb_buffer->drq = drq; 7783 rqb_buffer->idx = idx; 7784 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7785 } 7786 7787 spin_lock_irqsave(&phba->hbalock, flags); 7788 while (!list_empty(&rqb_buf_list)) { 7789 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7790 hbuf.list); 7791 7792 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7793 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7794 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7795 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7796 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7797 if (rc < 0) { 7798 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7799 "6421 Cannot post to HRQ %d: %x %x %x " 7800 "DRQ %x %x\n", 7801 hrq->queue_id, 7802 hrq->host_index, 7803 hrq->hba_index, 7804 hrq->entry_count, 7805 drq->host_index, 7806 drq->hba_index); 7807 rqbp->rqb_free_buffer(phba, rqb_buffer); 7808 } else { 7809 list_add_tail(&rqb_buffer->hbuf.list, 7810 &rqbp->rqb_buffer_list); 7811 rqbp->buffer_count++; 7812 } 7813 } 7814 spin_unlock_irqrestore(&phba->hbalock, flags); 7815 return 1; 7816 } 7817 7818 static void 7819 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7820 { 7821 union lpfc_sli4_cfg_shdr *shdr; 7822 u32 shdr_status, shdr_add_status; 7823 7824 shdr = (union lpfc_sli4_cfg_shdr *) 7825 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7826 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7827 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7828 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7829 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7830 "4622 SET_FEATURE (x%x) mbox failed, " 7831 "status x%x add_status x%x, mbx status x%x\n", 7832 LPFC_SET_LD_SIGNAL, shdr_status, 7833 shdr_add_status, pmb->u.mb.mbxStatus); 7834 phba->degrade_activate_threshold = 0; 7835 phba->degrade_deactivate_threshold = 0; 7836 phba->fec_degrade_interval = 0; 7837 goto out; 7838 } 7839 7840 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7841 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7842 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7843 7844 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7845 "4624 Success: da x%x dd x%x interval x%x\n", 7846 phba->degrade_activate_threshold, 7847 phba->degrade_deactivate_threshold, 7848 phba->fec_degrade_interval); 7849 out: 7850 mempool_free(pmb, phba->mbox_mem_pool); 7851 } 7852 7853 int 7854 lpfc_read_lds_params(struct lpfc_hba *phba) 7855 { 7856 LPFC_MBOXQ_t *mboxq; 7857 int rc; 7858 7859 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7860 if (!mboxq) 7861 return -ENOMEM; 7862 7863 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7864 mboxq->vport = phba->pport; 7865 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7866 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7867 if (rc == MBX_NOT_FINISHED) { 7868 mempool_free(mboxq, phba->mbox_mem_pool); 7869 return -EIO; 7870 } 7871 return 0; 7872 } 7873 7874 static void 7875 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7876 { 7877 struct lpfc_vport *vport = pmb->vport; 7878 union lpfc_sli4_cfg_shdr *shdr; 7879 u32 shdr_status, shdr_add_status; 7880 u32 sig, acqe; 7881 7882 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7883 * is done. (2) Mailbox failed and send FPIN support only. 7884 */ 7885 shdr = (union lpfc_sli4_cfg_shdr *) 7886 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7887 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7888 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7889 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7890 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7891 "2516 CGN SET_FEATURE mbox failed with " 7892 "status x%x add_status x%x, mbx status x%x " 7893 "Reset Congestion to FPINs only\n", 7894 shdr_status, shdr_add_status, 7895 pmb->u.mb.mbxStatus); 7896 /* If there is a mbox error, move on to RDF */ 7897 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7898 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7899 goto out; 7900 } 7901 7902 /* Zero out Congestion Signal ACQE counter */ 7903 phba->cgn_acqe_cnt = 0; 7904 7905 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7906 &pmb->u.mqe.un.set_feature); 7907 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7908 &pmb->u.mqe.un.set_feature); 7909 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7910 "4620 SET_FEATURES Success: Freq: %ds %dms " 7911 " Reg: x%x x%x\n", acqe, sig, 7912 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7913 out: 7914 mempool_free(pmb, phba->mbox_mem_pool); 7915 7916 /* Register for FPIN events from the fabric now that the 7917 * EDC common_set_features has completed. 7918 */ 7919 lpfc_issue_els_rdf(vport, 0); 7920 } 7921 7922 int 7923 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7924 { 7925 LPFC_MBOXQ_t *mboxq; 7926 u32 rc; 7927 7928 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7929 if (!mboxq) 7930 goto out_rdf; 7931 7932 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7933 mboxq->vport = phba->pport; 7934 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7935 7936 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7937 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7938 "Reg: x%x x%x\n", 7939 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7940 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7941 7942 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7943 if (rc == MBX_NOT_FINISHED) 7944 goto out; 7945 return 0; 7946 7947 out: 7948 mempool_free(mboxq, phba->mbox_mem_pool); 7949 out_rdf: 7950 /* If there is a mbox error, move on to RDF */ 7951 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7952 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7953 lpfc_issue_els_rdf(phba->pport, 0); 7954 return -EIO; 7955 } 7956 7957 /** 7958 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7959 * @phba: pointer to lpfc hba data structure. 7960 * 7961 * This routine initializes the per-eq idle_stat to dynamically dictate 7962 * polling decisions. 7963 * 7964 * Return codes: 7965 * None 7966 **/ 7967 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7968 { 7969 int i; 7970 struct lpfc_sli4_hdw_queue *hdwq; 7971 struct lpfc_queue *eq; 7972 struct lpfc_idle_stat *idle_stat; 7973 u64 wall; 7974 7975 for_each_present_cpu(i) { 7976 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7977 eq = hdwq->hba_eq; 7978 7979 /* Skip if we've already handled this eq's primary CPU */ 7980 if (eq->chann != i) 7981 continue; 7982 7983 idle_stat = &phba->sli4_hba.idle_stat[i]; 7984 7985 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7986 idle_stat->prev_wall = wall; 7987 7988 if (phba->nvmet_support || 7989 phba->cmf_active_mode != LPFC_CFG_OFF || 7990 phba->intr_type != MSIX) 7991 eq->poll_mode = LPFC_QUEUE_WORK; 7992 else 7993 eq->poll_mode = LPFC_THREADED_IRQ; 7994 } 7995 7996 if (!phba->nvmet_support && phba->intr_type == MSIX) 7997 schedule_delayed_work(&phba->idle_stat_delay_work, 7998 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7999 } 8000 8001 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8002 { 8003 uint32_t if_type; 8004 8005 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8006 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8007 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8008 struct lpfc_register reg_data; 8009 8010 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8011 ®_data.word0)) 8012 return; 8013 8014 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8015 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8016 "2904 Firmware Dump Image Present" 8017 " on Adapter"); 8018 } 8019 } 8020 8021 /** 8022 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8023 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8024 * @entries: Number of rx_info_entry objects to allocate in ring 8025 * 8026 * Return: 8027 * 0 - Success 8028 * ENOMEM - Failure to kmalloc 8029 **/ 8030 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8031 u32 entries) 8032 { 8033 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8034 GFP_KERNEL); 8035 if (!rx_monitor->ring) 8036 return -ENOMEM; 8037 8038 rx_monitor->head_idx = 0; 8039 rx_monitor->tail_idx = 0; 8040 spin_lock_init(&rx_monitor->lock); 8041 rx_monitor->entries = entries; 8042 8043 return 0; 8044 } 8045 8046 /** 8047 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8048 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8049 * 8050 * Called after cancellation of cmf_timer. 8051 **/ 8052 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8053 { 8054 kfree(rx_monitor->ring); 8055 rx_monitor->ring = NULL; 8056 rx_monitor->entries = 0; 8057 rx_monitor->head_idx = 0; 8058 rx_monitor->tail_idx = 0; 8059 } 8060 8061 /** 8062 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8063 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8064 * @entry: Pointer to rx_info_entry 8065 * 8066 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8067 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8068 * 8069 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8070 * 8071 * In cases of old data overflow, we do a best effort of FIFO order. 8072 **/ 8073 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8074 struct rx_info_entry *entry) 8075 { 8076 struct rx_info_entry *ring = rx_monitor->ring; 8077 u32 *head_idx = &rx_monitor->head_idx; 8078 u32 *tail_idx = &rx_monitor->tail_idx; 8079 spinlock_t *ring_lock = &rx_monitor->lock; 8080 u32 ring_size = rx_monitor->entries; 8081 8082 spin_lock(ring_lock); 8083 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8084 *tail_idx = (*tail_idx + 1) % ring_size; 8085 8086 /* Best effort of FIFO saved data */ 8087 if (*tail_idx == *head_idx) 8088 *head_idx = (*head_idx + 1) % ring_size; 8089 8090 spin_unlock(ring_lock); 8091 } 8092 8093 /** 8094 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8095 * @phba: Pointer to lpfc_hba object 8096 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8097 * @buf: Pointer to char buffer that will contain rx monitor info data 8098 * @buf_len: Length buf including null char 8099 * @max_read_entries: Maximum number of entries to read out of ring 8100 * 8101 * Used to dump/read what's in rx_monitor's ring buffer. 8102 * 8103 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8104 * information to kmsg instead of filling out buf. 8105 * 8106 * Return: 8107 * Number of entries read out of the ring 8108 **/ 8109 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8110 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8111 u32 buf_len, u32 max_read_entries) 8112 { 8113 struct rx_info_entry *ring = rx_monitor->ring; 8114 struct rx_info_entry *entry; 8115 u32 *head_idx = &rx_monitor->head_idx; 8116 u32 *tail_idx = &rx_monitor->tail_idx; 8117 spinlock_t *ring_lock = &rx_monitor->lock; 8118 u32 ring_size = rx_monitor->entries; 8119 u32 cnt = 0; 8120 char tmp[DBG_LOG_STR_SZ] = {0}; 8121 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8122 8123 if (!log_to_kmsg) { 8124 /* clear the buffer to be sure */ 8125 memset(buf, 0, buf_len); 8126 8127 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8128 "%-8s%-8s%-8s%-16s\n", 8129 "MaxBPI", "Tot_Data_CMF", 8130 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8131 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8132 "IO_cnt", "Info", "BWutil(ms)"); 8133 } 8134 8135 /* Needs to be _irq because record is called from timer interrupt 8136 * context 8137 */ 8138 spin_lock_irq(ring_lock); 8139 while (*head_idx != *tail_idx) { 8140 entry = &ring[*head_idx]; 8141 8142 /* Read out this entry's data. */ 8143 if (!log_to_kmsg) { 8144 /* If !log_to_kmsg, then store to buf. */ 8145 scnprintf(tmp, sizeof(tmp), 8146 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8147 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8148 *head_idx, entry->max_bytes_per_interval, 8149 entry->cmf_bytes, entry->total_bytes, 8150 entry->rcv_bytes, entry->avg_io_latency, 8151 entry->avg_io_size, entry->max_read_cnt, 8152 entry->cmf_busy, entry->io_cnt, 8153 entry->cmf_info, entry->timer_utilization, 8154 entry->timer_interval); 8155 8156 /* Check for buffer overflow */ 8157 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8158 break; 8159 8160 /* Append entry's data to buffer */ 8161 strlcat(buf, tmp, buf_len); 8162 } else { 8163 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8164 "4410 %02u: MBPI %llu Xmit %llu " 8165 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8166 "BWUtil %u Int %u slot %u\n", 8167 cnt, entry->max_bytes_per_interval, 8168 entry->total_bytes, entry->rcv_bytes, 8169 entry->avg_io_latency, 8170 entry->avg_io_size, entry->cmf_info, 8171 entry->timer_utilization, 8172 entry->timer_interval, *head_idx); 8173 } 8174 8175 *head_idx = (*head_idx + 1) % ring_size; 8176 8177 /* Don't feed more than max_read_entries */ 8178 cnt++; 8179 if (cnt >= max_read_entries) 8180 break; 8181 } 8182 spin_unlock_irq(ring_lock); 8183 8184 return cnt; 8185 } 8186 8187 /** 8188 * lpfc_cmf_setup - Initialize idle_stat tracking 8189 * @phba: Pointer to HBA context object. 8190 * 8191 * This is called from HBA setup during driver load or when the HBA 8192 * comes online. this does all the initialization to support CMF and MI. 8193 **/ 8194 static int 8195 lpfc_cmf_setup(struct lpfc_hba *phba) 8196 { 8197 LPFC_MBOXQ_t *mboxq; 8198 struct lpfc_dmabuf *mp; 8199 struct lpfc_pc_sli4_params *sli4_params; 8200 int rc, cmf, mi_ver; 8201 8202 rc = lpfc_sli4_refresh_params(phba); 8203 if (unlikely(rc)) 8204 return rc; 8205 8206 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8207 if (!mboxq) 8208 return -ENOMEM; 8209 8210 sli4_params = &phba->sli4_hba.pc_sli4_params; 8211 8212 /* Always try to enable MI feature if we can */ 8213 if (sli4_params->mi_ver) { 8214 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8215 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8216 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8217 &mboxq->u.mqe.un.set_feature); 8218 8219 if (rc == MBX_SUCCESS) { 8220 if (mi_ver) { 8221 lpfc_printf_log(phba, 8222 KERN_WARNING, LOG_CGN_MGMT, 8223 "6215 MI is enabled\n"); 8224 sli4_params->mi_ver = mi_ver; 8225 } else { 8226 lpfc_printf_log(phba, 8227 KERN_WARNING, LOG_CGN_MGMT, 8228 "6338 MI is disabled\n"); 8229 sli4_params->mi_ver = 0; 8230 } 8231 } else { 8232 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8233 lpfc_printf_log(phba, KERN_INFO, 8234 LOG_CGN_MGMT | LOG_INIT, 8235 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8236 "failed, rc:x%x mi:x%x\n", 8237 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8238 lpfc_sli_config_mbox_subsys_get 8239 (phba, mboxq), 8240 lpfc_sli_config_mbox_opcode_get 8241 (phba, mboxq), 8242 rc, sli4_params->mi_ver); 8243 } 8244 } else { 8245 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8246 "6217 MI is disabled\n"); 8247 } 8248 8249 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8250 if (sli4_params->mi_ver) 8251 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8252 8253 /* Always try to enable CMF feature if we can */ 8254 if (sli4_params->cmf) { 8255 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8256 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8257 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8258 &mboxq->u.mqe.un.set_feature); 8259 if (rc == MBX_SUCCESS && cmf) { 8260 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8261 "6218 CMF is enabled: mode %d\n", 8262 phba->cmf_active_mode); 8263 } else { 8264 lpfc_printf_log(phba, KERN_WARNING, 8265 LOG_CGN_MGMT | LOG_INIT, 8266 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8267 "failed, rc:x%x dd:x%x\n", 8268 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8269 lpfc_sli_config_mbox_subsys_get 8270 (phba, mboxq), 8271 lpfc_sli_config_mbox_opcode_get 8272 (phba, mboxq), 8273 rc, cmf); 8274 sli4_params->cmf = 0; 8275 phba->cmf_active_mode = LPFC_CFG_OFF; 8276 goto no_cmf; 8277 } 8278 8279 /* Allocate Congestion Information Buffer */ 8280 if (!phba->cgn_i) { 8281 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8282 if (mp) 8283 mp->virt = dma_alloc_coherent 8284 (&phba->pcidev->dev, 8285 sizeof(struct lpfc_cgn_info), 8286 &mp->phys, GFP_KERNEL); 8287 if (!mp || !mp->virt) { 8288 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8289 "2640 Failed to alloc memory " 8290 "for Congestion Info\n"); 8291 kfree(mp); 8292 sli4_params->cmf = 0; 8293 phba->cmf_active_mode = LPFC_CFG_OFF; 8294 goto no_cmf; 8295 } 8296 phba->cgn_i = mp; 8297 8298 /* initialize congestion buffer info */ 8299 lpfc_init_congestion_buf(phba); 8300 lpfc_init_congestion_stat(phba); 8301 8302 /* Zero out Congestion Signal counters */ 8303 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8304 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8305 } 8306 8307 rc = lpfc_sli4_cgn_params_read(phba); 8308 if (rc < 0) { 8309 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8310 "6242 Error reading Cgn Params (%d)\n", 8311 rc); 8312 /* Ensure CGN Mode is off */ 8313 sli4_params->cmf = 0; 8314 } else if (!rc) { 8315 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8316 "6243 CGN Event empty object.\n"); 8317 /* Ensure CGN Mode is off */ 8318 sli4_params->cmf = 0; 8319 } 8320 } else { 8321 no_cmf: 8322 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8323 "6220 CMF is disabled\n"); 8324 } 8325 8326 /* Only register congestion buffer with firmware if BOTH 8327 * CMF and E2E are enabled. 8328 */ 8329 if (sli4_params->cmf && sli4_params->mi_ver) { 8330 rc = lpfc_reg_congestion_buf(phba); 8331 if (rc) { 8332 dma_free_coherent(&phba->pcidev->dev, 8333 sizeof(struct lpfc_cgn_info), 8334 phba->cgn_i->virt, phba->cgn_i->phys); 8335 kfree(phba->cgn_i); 8336 phba->cgn_i = NULL; 8337 /* Ensure CGN Mode is off */ 8338 phba->cmf_active_mode = LPFC_CFG_OFF; 8339 sli4_params->cmf = 0; 8340 return 0; 8341 } 8342 } 8343 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8344 "6470 Setup MI version %d CMF %d mode %d\n", 8345 sli4_params->mi_ver, sli4_params->cmf, 8346 phba->cmf_active_mode); 8347 8348 mempool_free(mboxq, phba->mbox_mem_pool); 8349 8350 /* Initialize atomic counters */ 8351 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8352 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8353 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8354 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8355 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8356 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8357 atomic64_set(&phba->cgn_latency_evt, 0); 8358 8359 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8360 8361 /* Allocate RX Monitor Buffer */ 8362 if (!phba->rx_monitor) { 8363 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8364 GFP_KERNEL); 8365 8366 if (!phba->rx_monitor) { 8367 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8368 "2644 Failed to alloc memory " 8369 "for RX Monitor Buffer\n"); 8370 return -ENOMEM; 8371 } 8372 8373 /* Instruct the rx_monitor object to instantiate its ring */ 8374 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8375 LPFC_MAX_RXMONITOR_ENTRY)) { 8376 kfree(phba->rx_monitor); 8377 phba->rx_monitor = NULL; 8378 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8379 "2645 Failed to alloc memory " 8380 "for RX Monitor's Ring\n"); 8381 return -ENOMEM; 8382 } 8383 } 8384 8385 return 0; 8386 } 8387 8388 static int 8389 lpfc_set_host_tm(struct lpfc_hba *phba) 8390 { 8391 LPFC_MBOXQ_t *mboxq; 8392 uint32_t len, rc; 8393 struct timespec64 cur_time; 8394 struct tm broken; 8395 uint32_t month, day, year; 8396 uint32_t hour, minute, second; 8397 struct lpfc_mbx_set_host_date_time *tm; 8398 8399 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8400 if (!mboxq) 8401 return -ENOMEM; 8402 8403 len = sizeof(struct lpfc_mbx_set_host_data) - 8404 sizeof(struct lpfc_sli4_cfg_mhdr); 8405 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8406 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8407 LPFC_SLI4_MBX_EMBED); 8408 8409 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8410 mboxq->u.mqe.un.set_host_data.param_len = 8411 sizeof(struct lpfc_mbx_set_host_date_time); 8412 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8413 ktime_get_real_ts64(&cur_time); 8414 time64_to_tm(cur_time.tv_sec, 0, &broken); 8415 month = broken.tm_mon + 1; 8416 day = broken.tm_mday; 8417 year = broken.tm_year - 100; 8418 hour = broken.tm_hour; 8419 minute = broken.tm_min; 8420 second = broken.tm_sec; 8421 bf_set(lpfc_mbx_set_host_month, tm, month); 8422 bf_set(lpfc_mbx_set_host_day, tm, day); 8423 bf_set(lpfc_mbx_set_host_year, tm, year); 8424 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8425 bf_set(lpfc_mbx_set_host_min, tm, minute); 8426 bf_set(lpfc_mbx_set_host_sec, tm, second); 8427 8428 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8429 mempool_free(mboxq, phba->mbox_mem_pool); 8430 return rc; 8431 } 8432 8433 /** 8434 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8435 * @phba: Pointer to HBA context object. 8436 * 8437 * This function is the main SLI4 device initialization PCI function. This 8438 * function is called by the HBA initialization code, HBA reset code and 8439 * HBA error attention handler code. Caller is not required to hold any 8440 * locks. 8441 **/ 8442 int 8443 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8444 { 8445 int rc, i, cnt, len, dd; 8446 LPFC_MBOXQ_t *mboxq; 8447 struct lpfc_mqe *mqe; 8448 uint8_t *vpd; 8449 uint32_t vpd_size; 8450 uint32_t ftr_rsp = 0; 8451 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8452 struct lpfc_vport *vport = phba->pport; 8453 struct lpfc_dmabuf *mp; 8454 struct lpfc_rqb *rqbp; 8455 u32 flg; 8456 8457 /* Perform a PCI function reset to start from clean */ 8458 rc = lpfc_pci_function_reset(phba); 8459 if (unlikely(rc)) 8460 return -ENODEV; 8461 8462 /* Check the HBA Host Status Register for readyness */ 8463 rc = lpfc_sli4_post_status_check(phba); 8464 if (unlikely(rc)) 8465 return -ENODEV; 8466 else { 8467 spin_lock_irq(&phba->hbalock); 8468 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8469 flg = phba->sli.sli_flag; 8470 spin_unlock_irq(&phba->hbalock); 8471 /* Allow a little time after setting SLI_ACTIVE for any polled 8472 * MBX commands to complete via BSG. 8473 */ 8474 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8475 msleep(20); 8476 spin_lock_irq(&phba->hbalock); 8477 flg = phba->sli.sli_flag; 8478 spin_unlock_irq(&phba->hbalock); 8479 } 8480 } 8481 8482 lpfc_sli4_dip(phba); 8483 8484 /* 8485 * Allocate a single mailbox container for initializing the 8486 * port. 8487 */ 8488 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8489 if (!mboxq) 8490 return -ENOMEM; 8491 8492 /* Issue READ_REV to collect vpd and FW information. */ 8493 vpd_size = SLI4_PAGE_SIZE; 8494 vpd = kzalloc(vpd_size, GFP_KERNEL); 8495 if (!vpd) { 8496 rc = -ENOMEM; 8497 goto out_free_mbox; 8498 } 8499 8500 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8501 if (unlikely(rc)) { 8502 kfree(vpd); 8503 goto out_free_mbox; 8504 } 8505 8506 mqe = &mboxq->u.mqe; 8507 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8508 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8509 phba->hba_flag |= HBA_FCOE_MODE; 8510 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8511 } else { 8512 phba->hba_flag &= ~HBA_FCOE_MODE; 8513 } 8514 8515 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8516 LPFC_DCBX_CEE_MODE) 8517 phba->hba_flag |= HBA_FIP_SUPPORT; 8518 else 8519 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8520 8521 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8522 8523 if (phba->sli_rev != LPFC_SLI_REV4) { 8524 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8525 "0376 READ_REV Error. SLI Level %d " 8526 "FCoE enabled %d\n", 8527 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8528 rc = -EIO; 8529 kfree(vpd); 8530 goto out_free_mbox; 8531 } 8532 8533 rc = lpfc_set_host_tm(phba); 8534 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8535 "6468 Set host date / time: Status x%x:\n", rc); 8536 8537 /* 8538 * Continue initialization with default values even if driver failed 8539 * to read FCoE param config regions, only read parameters if the 8540 * board is FCoE 8541 */ 8542 if (phba->hba_flag & HBA_FCOE_MODE && 8543 lpfc_sli4_read_fcoe_params(phba)) 8544 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8545 "2570 Failed to read FCoE parameters\n"); 8546 8547 /* 8548 * Retrieve sli4 device physical port name, failure of doing it 8549 * is considered as non-fatal. 8550 */ 8551 rc = lpfc_sli4_retrieve_pport_name(phba); 8552 if (!rc) 8553 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8554 "3080 Successful retrieving SLI4 device " 8555 "physical port name: %s.\n", phba->Port); 8556 8557 rc = lpfc_sli4_get_ctl_attr(phba); 8558 if (!rc) 8559 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8560 "8351 Successful retrieving SLI4 device " 8561 "CTL ATTR\n"); 8562 8563 /* 8564 * Evaluate the read rev and vpd data. Populate the driver 8565 * state with the results. If this routine fails, the failure 8566 * is not fatal as the driver will use generic values. 8567 */ 8568 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8569 if (unlikely(!rc)) { 8570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8571 "0377 Error %d parsing vpd. " 8572 "Using defaults.\n", rc); 8573 rc = 0; 8574 } 8575 kfree(vpd); 8576 8577 /* Save information as VPD data */ 8578 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8579 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8580 8581 /* 8582 * This is because first G7 ASIC doesn't support the standard 8583 * 0x5a NVME cmd descriptor type/subtype 8584 */ 8585 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8586 LPFC_SLI_INTF_IF_TYPE_6) && 8587 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8588 (phba->vpd.rev.smRev == 0) && 8589 (phba->cfg_nvme_embed_cmd == 1)) 8590 phba->cfg_nvme_embed_cmd = 0; 8591 8592 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8593 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8594 &mqe->un.read_rev); 8595 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8596 &mqe->un.read_rev); 8597 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8598 &mqe->un.read_rev); 8599 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8600 &mqe->un.read_rev); 8601 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8602 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8603 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8604 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8605 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8606 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8607 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8608 "(%d):0380 READ_REV Status x%x " 8609 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8610 mboxq->vport ? mboxq->vport->vpi : 0, 8611 bf_get(lpfc_mqe_status, mqe), 8612 phba->vpd.rev.opFwName, 8613 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8614 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8615 8616 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8617 LPFC_SLI_INTF_IF_TYPE_0) { 8618 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8619 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8620 if (rc == MBX_SUCCESS) { 8621 phba->hba_flag |= HBA_RECOVERABLE_UE; 8622 /* Set 1Sec interval to detect UE */ 8623 phba->eratt_poll_interval = 1; 8624 phba->sli4_hba.ue_to_sr = bf_get( 8625 lpfc_mbx_set_feature_UESR, 8626 &mboxq->u.mqe.un.set_feature); 8627 phba->sli4_hba.ue_to_rp = bf_get( 8628 lpfc_mbx_set_feature_UERP, 8629 &mboxq->u.mqe.un.set_feature); 8630 } 8631 } 8632 8633 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8634 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8635 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8636 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8637 if (rc != MBX_SUCCESS) 8638 phba->mds_diags_support = 0; 8639 } 8640 8641 /* 8642 * Discover the port's supported feature set and match it against the 8643 * hosts requests. 8644 */ 8645 lpfc_request_features(phba, mboxq); 8646 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8647 if (unlikely(rc)) { 8648 rc = -EIO; 8649 goto out_free_mbox; 8650 } 8651 8652 /* Disable VMID if app header is not supported */ 8653 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8654 &mqe->un.req_ftrs))) { 8655 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8656 phba->cfg_vmid_app_header = 0; 8657 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8658 "1242 vmid feature not supported\n"); 8659 } 8660 8661 /* 8662 * The port must support FCP initiator mode as this is the 8663 * only mode running in the host. 8664 */ 8665 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8666 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8667 "0378 No support for fcpi mode.\n"); 8668 ftr_rsp++; 8669 } 8670 8671 /* Performance Hints are ONLY for FCoE */ 8672 if (phba->hba_flag & HBA_FCOE_MODE) { 8673 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8674 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8675 else 8676 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8677 } 8678 8679 /* 8680 * If the port cannot support the host's requested features 8681 * then turn off the global config parameters to disable the 8682 * feature in the driver. This is not a fatal error. 8683 */ 8684 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8685 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8686 phba->cfg_enable_bg = 0; 8687 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8688 ftr_rsp++; 8689 } 8690 } 8691 8692 if (phba->max_vpi && phba->cfg_enable_npiv && 8693 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8694 ftr_rsp++; 8695 8696 if (ftr_rsp) { 8697 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8698 "0379 Feature Mismatch Data: x%08x %08x " 8699 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8700 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8701 phba->cfg_enable_npiv, phba->max_vpi); 8702 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8703 phba->cfg_enable_bg = 0; 8704 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8705 phba->cfg_enable_npiv = 0; 8706 } 8707 8708 /* These SLI3 features are assumed in SLI4 */ 8709 spin_lock_irq(&phba->hbalock); 8710 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8711 spin_unlock_irq(&phba->hbalock); 8712 8713 /* Always try to enable dual dump feature if we can */ 8714 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8715 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8716 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8717 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8718 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8719 "6448 Dual Dump is enabled\n"); 8720 else 8721 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8722 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8723 "rc:x%x dd:x%x\n", 8724 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8725 lpfc_sli_config_mbox_subsys_get( 8726 phba, mboxq), 8727 lpfc_sli_config_mbox_opcode_get( 8728 phba, mboxq), 8729 rc, dd); 8730 /* 8731 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8732 * calls depends on these resources to complete port setup. 8733 */ 8734 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8735 if (rc) { 8736 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8737 "2920 Failed to alloc Resource IDs " 8738 "rc = x%x\n", rc); 8739 goto out_free_mbox; 8740 } 8741 8742 lpfc_set_host_data(phba, mboxq); 8743 8744 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8745 if (rc) { 8746 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8747 "2134 Failed to set host os driver version %x", 8748 rc); 8749 } 8750 8751 /* Read the port's service parameters. */ 8752 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8753 if (rc) { 8754 phba->link_state = LPFC_HBA_ERROR; 8755 rc = -ENOMEM; 8756 goto out_free_mbox; 8757 } 8758 8759 mboxq->vport = vport; 8760 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8761 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8762 if (rc == MBX_SUCCESS) { 8763 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8764 rc = 0; 8765 } 8766 8767 /* 8768 * This memory was allocated by the lpfc_read_sparam routine but is 8769 * no longer needed. It is released and ctx_buf NULLed to prevent 8770 * unintended pointer access as the mbox is reused. 8771 */ 8772 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8773 kfree(mp); 8774 mboxq->ctx_buf = NULL; 8775 if (unlikely(rc)) { 8776 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8777 "0382 READ_SPARAM command failed " 8778 "status %d, mbxStatus x%x\n", 8779 rc, bf_get(lpfc_mqe_status, mqe)); 8780 phba->link_state = LPFC_HBA_ERROR; 8781 rc = -EIO; 8782 goto out_free_mbox; 8783 } 8784 8785 lpfc_update_vport_wwn(vport); 8786 8787 /* Update the fc_host data structures with new wwn. */ 8788 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8789 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8790 8791 /* Create all the SLI4 queues */ 8792 rc = lpfc_sli4_queue_create(phba); 8793 if (rc) { 8794 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8795 "3089 Failed to allocate queues\n"); 8796 rc = -ENODEV; 8797 goto out_free_mbox; 8798 } 8799 /* Set up all the queues to the device */ 8800 rc = lpfc_sli4_queue_setup(phba); 8801 if (unlikely(rc)) { 8802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8803 "0381 Error %d during queue setup.\n ", rc); 8804 goto out_stop_timers; 8805 } 8806 /* Initialize the driver internal SLI layer lists. */ 8807 lpfc_sli4_setup(phba); 8808 lpfc_sli4_queue_init(phba); 8809 8810 /* update host els xri-sgl sizes and mappings */ 8811 rc = lpfc_sli4_els_sgl_update(phba); 8812 if (unlikely(rc)) { 8813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8814 "1400 Failed to update xri-sgl size and " 8815 "mapping: %d\n", rc); 8816 goto out_destroy_queue; 8817 } 8818 8819 /* register the els sgl pool to the port */ 8820 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8821 phba->sli4_hba.els_xri_cnt); 8822 if (unlikely(rc < 0)) { 8823 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8824 "0582 Error %d during els sgl post " 8825 "operation\n", rc); 8826 rc = -ENODEV; 8827 goto out_destroy_queue; 8828 } 8829 phba->sli4_hba.els_xri_cnt = rc; 8830 8831 if (phba->nvmet_support) { 8832 /* update host nvmet xri-sgl sizes and mappings */ 8833 rc = lpfc_sli4_nvmet_sgl_update(phba); 8834 if (unlikely(rc)) { 8835 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8836 "6308 Failed to update nvmet-sgl size " 8837 "and mapping: %d\n", rc); 8838 goto out_destroy_queue; 8839 } 8840 8841 /* register the nvmet sgl pool to the port */ 8842 rc = lpfc_sli4_repost_sgl_list( 8843 phba, 8844 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8845 phba->sli4_hba.nvmet_xri_cnt); 8846 if (unlikely(rc < 0)) { 8847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8848 "3117 Error %d during nvmet " 8849 "sgl post\n", rc); 8850 rc = -ENODEV; 8851 goto out_destroy_queue; 8852 } 8853 phba->sli4_hba.nvmet_xri_cnt = rc; 8854 8855 /* We allocate an iocbq for every receive context SGL. 8856 * The additional allocation is for abort and ls handling. 8857 */ 8858 cnt = phba->sli4_hba.nvmet_xri_cnt + 8859 phba->sli4_hba.max_cfg_param.max_xri; 8860 } else { 8861 /* update host common xri-sgl sizes and mappings */ 8862 rc = lpfc_sli4_io_sgl_update(phba); 8863 if (unlikely(rc)) { 8864 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8865 "6082 Failed to update nvme-sgl size " 8866 "and mapping: %d\n", rc); 8867 goto out_destroy_queue; 8868 } 8869 8870 /* register the allocated common sgl pool to the port */ 8871 rc = lpfc_sli4_repost_io_sgl_list(phba); 8872 if (unlikely(rc)) { 8873 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8874 "6116 Error %d during nvme sgl post " 8875 "operation\n", rc); 8876 /* Some NVME buffers were moved to abort nvme list */ 8877 /* A pci function reset will repost them */ 8878 rc = -ENODEV; 8879 goto out_destroy_queue; 8880 } 8881 /* Each lpfc_io_buf job structure has an iocbq element. 8882 * This cnt provides for abort, els, ct and ls requests. 8883 */ 8884 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8885 } 8886 8887 if (!phba->sli.iocbq_lookup) { 8888 /* Initialize and populate the iocb list per host */ 8889 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8890 "2821 initialize iocb list with %d entries\n", 8891 cnt); 8892 rc = lpfc_init_iocb_list(phba, cnt); 8893 if (rc) { 8894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8895 "1413 Failed to init iocb list.\n"); 8896 goto out_destroy_queue; 8897 } 8898 } 8899 8900 if (phba->nvmet_support) 8901 lpfc_nvmet_create_targetport(phba); 8902 8903 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8904 /* Post initial buffers to all RQs created */ 8905 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8906 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8907 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8908 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8909 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8910 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8911 rqbp->buffer_count = 0; 8912 8913 lpfc_post_rq_buffer( 8914 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8915 phba->sli4_hba.nvmet_mrq_data[i], 8916 phba->cfg_nvmet_mrq_post, i); 8917 } 8918 } 8919 8920 /* Post the rpi header region to the device. */ 8921 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8922 if (unlikely(rc)) { 8923 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8924 "0393 Error %d during rpi post operation\n", 8925 rc); 8926 rc = -ENODEV; 8927 goto out_free_iocblist; 8928 } 8929 lpfc_sli4_node_prep(phba); 8930 8931 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8932 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8933 /* 8934 * The FC Port needs to register FCFI (index 0) 8935 */ 8936 lpfc_reg_fcfi(phba, mboxq); 8937 mboxq->vport = phba->pport; 8938 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8939 if (rc != MBX_SUCCESS) 8940 goto out_unset_queue; 8941 rc = 0; 8942 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8943 &mboxq->u.mqe.un.reg_fcfi); 8944 } else { 8945 /* We are a NVME Target mode with MRQ > 1 */ 8946 8947 /* First register the FCFI */ 8948 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8949 mboxq->vport = phba->pport; 8950 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8951 if (rc != MBX_SUCCESS) 8952 goto out_unset_queue; 8953 rc = 0; 8954 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8955 &mboxq->u.mqe.un.reg_fcfi_mrq); 8956 8957 /* Next register the MRQs */ 8958 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8959 mboxq->vport = phba->pport; 8960 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8961 if (rc != MBX_SUCCESS) 8962 goto out_unset_queue; 8963 rc = 0; 8964 } 8965 /* Check if the port is configured to be disabled */ 8966 lpfc_sli_read_link_ste(phba); 8967 } 8968 8969 /* Don't post more new bufs if repost already recovered 8970 * the nvme sgls. 8971 */ 8972 if (phba->nvmet_support == 0) { 8973 if (phba->sli4_hba.io_xri_cnt == 0) { 8974 len = lpfc_new_io_buf( 8975 phba, phba->sli4_hba.io_xri_max); 8976 if (len == 0) { 8977 rc = -ENOMEM; 8978 goto out_unset_queue; 8979 } 8980 8981 if (phba->cfg_xri_rebalancing) 8982 lpfc_create_multixri_pools(phba); 8983 } 8984 } else { 8985 phba->cfg_xri_rebalancing = 0; 8986 } 8987 8988 /* Allow asynchronous mailbox command to go through */ 8989 spin_lock_irq(&phba->hbalock); 8990 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8991 spin_unlock_irq(&phba->hbalock); 8992 8993 /* Post receive buffers to the device */ 8994 lpfc_sli4_rb_setup(phba); 8995 8996 /* Reset HBA FCF states after HBA reset */ 8997 phba->fcf.fcf_flag = 0; 8998 phba->fcf.current_rec.flag = 0; 8999 9000 /* Start the ELS watchdog timer */ 9001 mod_timer(&vport->els_tmofunc, 9002 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9003 9004 /* Start heart beat timer */ 9005 mod_timer(&phba->hb_tmofunc, 9006 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9007 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 9008 phba->last_completion_time = jiffies; 9009 9010 /* start eq_delay heartbeat */ 9011 if (phba->cfg_auto_imax) 9012 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9013 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9014 9015 /* start per phba idle_stat_delay heartbeat */ 9016 lpfc_init_idle_stat_hb(phba); 9017 9018 /* Start error attention (ERATT) polling timer */ 9019 mod_timer(&phba->eratt_poll, 9020 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9021 9022 /* 9023 * The port is ready, set the host's link state to LINK_DOWN 9024 * in preparation for link interrupts. 9025 */ 9026 spin_lock_irq(&phba->hbalock); 9027 phba->link_state = LPFC_LINK_DOWN; 9028 9029 /* Check if physical ports are trunked */ 9030 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9031 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9032 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9033 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9034 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9035 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9036 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9037 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9038 spin_unlock_irq(&phba->hbalock); 9039 9040 /* Arm the CQs and then EQs on device */ 9041 lpfc_sli4_arm_cqeq_intr(phba); 9042 9043 /* Indicate device interrupt mode */ 9044 phba->sli4_hba.intr_enable = 1; 9045 9046 /* Setup CMF after HBA is initialized */ 9047 lpfc_cmf_setup(phba); 9048 9049 if (!(phba->hba_flag & HBA_FCOE_MODE) && 9050 (phba->hba_flag & LINK_DISABLED)) { 9051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9052 "3103 Adapter Link is disabled.\n"); 9053 lpfc_down_link(phba, mboxq); 9054 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9055 if (rc != MBX_SUCCESS) { 9056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9057 "3104 Adapter failed to issue " 9058 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9059 goto out_io_buff_free; 9060 } 9061 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9062 /* don't perform init_link on SLI4 FC port loopback test */ 9063 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9064 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9065 if (rc) 9066 goto out_io_buff_free; 9067 } 9068 } 9069 mempool_free(mboxq, phba->mbox_mem_pool); 9070 9071 /* Enable RAS FW log support */ 9072 lpfc_sli4_ras_setup(phba); 9073 9074 phba->hba_flag |= HBA_SETUP; 9075 return rc; 9076 9077 out_io_buff_free: 9078 /* Free allocated IO Buffers */ 9079 lpfc_io_free(phba); 9080 out_unset_queue: 9081 /* Unset all the queues set up in this routine when error out */ 9082 lpfc_sli4_queue_unset(phba); 9083 out_free_iocblist: 9084 lpfc_free_iocb_list(phba); 9085 out_destroy_queue: 9086 lpfc_sli4_queue_destroy(phba); 9087 out_stop_timers: 9088 lpfc_stop_hba_timers(phba); 9089 out_free_mbox: 9090 mempool_free(mboxq, phba->mbox_mem_pool); 9091 return rc; 9092 } 9093 9094 /** 9095 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9096 * @t: Context to fetch pointer to hba structure from. 9097 * 9098 * This is the callback function for mailbox timer. The mailbox 9099 * timer is armed when a new mailbox command is issued and the timer 9100 * is deleted when the mailbox complete. The function is called by 9101 * the kernel timer code when a mailbox does not complete within 9102 * expected time. This function wakes up the worker thread to 9103 * process the mailbox timeout and returns. All the processing is 9104 * done by the worker thread function lpfc_mbox_timeout_handler. 9105 **/ 9106 void 9107 lpfc_mbox_timeout(struct timer_list *t) 9108 { 9109 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9110 unsigned long iflag; 9111 uint32_t tmo_posted; 9112 9113 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9114 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9115 if (!tmo_posted) 9116 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9117 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9118 9119 if (!tmo_posted) 9120 lpfc_worker_wake_up(phba); 9121 return; 9122 } 9123 9124 /** 9125 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9126 * are pending 9127 * @phba: Pointer to HBA context object. 9128 * 9129 * This function checks if any mailbox completions are present on the mailbox 9130 * completion queue. 9131 **/ 9132 static bool 9133 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9134 { 9135 9136 uint32_t idx; 9137 struct lpfc_queue *mcq; 9138 struct lpfc_mcqe *mcqe; 9139 bool pending_completions = false; 9140 uint8_t qe_valid; 9141 9142 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9143 return false; 9144 9145 /* Check for completions on mailbox completion queue */ 9146 9147 mcq = phba->sli4_hba.mbx_cq; 9148 idx = mcq->hba_index; 9149 qe_valid = mcq->qe_valid; 9150 while (bf_get_le32(lpfc_cqe_valid, 9151 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9152 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9153 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9154 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9155 pending_completions = true; 9156 break; 9157 } 9158 idx = (idx + 1) % mcq->entry_count; 9159 if (mcq->hba_index == idx) 9160 break; 9161 9162 /* if the index wrapped around, toggle the valid bit */ 9163 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9164 qe_valid = (qe_valid) ? 0 : 1; 9165 } 9166 return pending_completions; 9167 9168 } 9169 9170 /** 9171 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9172 * that were missed. 9173 * @phba: Pointer to HBA context object. 9174 * 9175 * For sli4, it is possible to miss an interrupt. As such mbox completions 9176 * maybe missed causing erroneous mailbox timeouts to occur. This function 9177 * checks to see if mbox completions are on the mailbox completion queue 9178 * and will process all the completions associated with the eq for the 9179 * mailbox completion queue. 9180 **/ 9181 static bool 9182 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9183 { 9184 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9185 uint32_t eqidx; 9186 struct lpfc_queue *fpeq = NULL; 9187 struct lpfc_queue *eq; 9188 bool mbox_pending; 9189 9190 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9191 return false; 9192 9193 /* Find the EQ associated with the mbox CQ */ 9194 if (sli4_hba->hdwq) { 9195 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9196 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9197 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9198 fpeq = eq; 9199 break; 9200 } 9201 } 9202 } 9203 if (!fpeq) 9204 return false; 9205 9206 /* Turn off interrupts from this EQ */ 9207 9208 sli4_hba->sli4_eq_clr_intr(fpeq); 9209 9210 /* Check to see if a mbox completion is pending */ 9211 9212 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9213 9214 /* 9215 * If a mbox completion is pending, process all the events on EQ 9216 * associated with the mbox completion queue (this could include 9217 * mailbox commands, async events, els commands, receive queue data 9218 * and fcp commands) 9219 */ 9220 9221 if (mbox_pending) 9222 /* process and rearm the EQ */ 9223 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9224 LPFC_QUEUE_WORK); 9225 else 9226 /* Always clear and re-arm the EQ */ 9227 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9228 9229 return mbox_pending; 9230 9231 } 9232 9233 /** 9234 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9235 * @phba: Pointer to HBA context object. 9236 * 9237 * This function is called from worker thread when a mailbox command times out. 9238 * The caller is not required to hold any locks. This function will reset the 9239 * HBA and recover all the pending commands. 9240 **/ 9241 void 9242 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9243 { 9244 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9245 MAILBOX_t *mb = NULL; 9246 9247 struct lpfc_sli *psli = &phba->sli; 9248 9249 /* If the mailbox completed, process the completion */ 9250 lpfc_sli4_process_missed_mbox_completions(phba); 9251 9252 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9253 return; 9254 9255 if (pmbox != NULL) 9256 mb = &pmbox->u.mb; 9257 /* Check the pmbox pointer first. There is a race condition 9258 * between the mbox timeout handler getting executed in the 9259 * worklist and the mailbox actually completing. When this 9260 * race condition occurs, the mbox_active will be NULL. 9261 */ 9262 spin_lock_irq(&phba->hbalock); 9263 if (pmbox == NULL) { 9264 lpfc_printf_log(phba, KERN_WARNING, 9265 LOG_MBOX | LOG_SLI, 9266 "0353 Active Mailbox cleared - mailbox timeout " 9267 "exiting\n"); 9268 spin_unlock_irq(&phba->hbalock); 9269 return; 9270 } 9271 9272 /* Mbox cmd <mbxCommand> timeout */ 9273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9274 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9275 mb->mbxCommand, 9276 phba->pport->port_state, 9277 phba->sli.sli_flag, 9278 phba->sli.mbox_active); 9279 spin_unlock_irq(&phba->hbalock); 9280 9281 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9282 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9283 * it to fail all outstanding SCSI IO. 9284 */ 9285 spin_lock_irq(&phba->pport->work_port_lock); 9286 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9287 spin_unlock_irq(&phba->pport->work_port_lock); 9288 spin_lock_irq(&phba->hbalock); 9289 phba->link_state = LPFC_LINK_UNKNOWN; 9290 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9291 spin_unlock_irq(&phba->hbalock); 9292 9293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9294 "0345 Resetting board due to mailbox timeout\n"); 9295 9296 /* Reset the HBA device */ 9297 lpfc_reset_hba(phba); 9298 } 9299 9300 /** 9301 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9302 * @phba: Pointer to HBA context object. 9303 * @pmbox: Pointer to mailbox object. 9304 * @flag: Flag indicating how the mailbox need to be processed. 9305 * 9306 * This function is called by discovery code and HBA management code 9307 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9308 * function gets the hbalock to protect the data structures. 9309 * The mailbox command can be submitted in polling mode, in which case 9310 * this function will wait in a polling loop for the completion of the 9311 * mailbox. 9312 * If the mailbox is submitted in no_wait mode (not polling) the 9313 * function will submit the command and returns immediately without waiting 9314 * for the mailbox completion. The no_wait is supported only when HBA 9315 * is in SLI2/SLI3 mode - interrupts are enabled. 9316 * The SLI interface allows only one mailbox pending at a time. If the 9317 * mailbox is issued in polling mode and there is already a mailbox 9318 * pending, then the function will return an error. If the mailbox is issued 9319 * in NO_WAIT mode and there is a mailbox pending already, the function 9320 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9321 * The sli layer owns the mailbox object until the completion of mailbox 9322 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9323 * return codes the caller owns the mailbox command after the return of 9324 * the function. 9325 **/ 9326 static int 9327 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9328 uint32_t flag) 9329 { 9330 MAILBOX_t *mbx; 9331 struct lpfc_sli *psli = &phba->sli; 9332 uint32_t status, evtctr; 9333 uint32_t ha_copy, hc_copy; 9334 int i; 9335 unsigned long timeout; 9336 unsigned long drvr_flag = 0; 9337 uint32_t word0, ldata; 9338 void __iomem *to_slim; 9339 int processing_queue = 0; 9340 9341 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9342 if (!pmbox) { 9343 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9344 /* processing mbox queue from intr_handler */ 9345 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9346 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9347 return MBX_SUCCESS; 9348 } 9349 processing_queue = 1; 9350 pmbox = lpfc_mbox_get(phba); 9351 if (!pmbox) { 9352 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9353 return MBX_SUCCESS; 9354 } 9355 } 9356 9357 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9358 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9359 if(!pmbox->vport) { 9360 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9361 lpfc_printf_log(phba, KERN_ERR, 9362 LOG_MBOX | LOG_VPORT, 9363 "1806 Mbox x%x failed. No vport\n", 9364 pmbox->u.mb.mbxCommand); 9365 dump_stack(); 9366 goto out_not_finished; 9367 } 9368 } 9369 9370 /* If the PCI channel is in offline state, do not post mbox. */ 9371 if (unlikely(pci_channel_offline(phba->pcidev))) { 9372 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9373 goto out_not_finished; 9374 } 9375 9376 /* If HBA has a deferred error attention, fail the iocb. */ 9377 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9378 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9379 goto out_not_finished; 9380 } 9381 9382 psli = &phba->sli; 9383 9384 mbx = &pmbox->u.mb; 9385 status = MBX_SUCCESS; 9386 9387 if (phba->link_state == LPFC_HBA_ERROR) { 9388 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9389 9390 /* Mbox command <mbxCommand> cannot issue */ 9391 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9392 "(%d):0311 Mailbox command x%x cannot " 9393 "issue Data: x%x x%x\n", 9394 pmbox->vport ? pmbox->vport->vpi : 0, 9395 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9396 goto out_not_finished; 9397 } 9398 9399 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9400 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9401 !(hc_copy & HC_MBINT_ENA)) { 9402 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9403 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9404 "(%d):2528 Mailbox command x%x cannot " 9405 "issue Data: x%x x%x\n", 9406 pmbox->vport ? pmbox->vport->vpi : 0, 9407 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9408 goto out_not_finished; 9409 } 9410 } 9411 9412 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9413 /* Polling for a mbox command when another one is already active 9414 * is not allowed in SLI. Also, the driver must have established 9415 * SLI2 mode to queue and process multiple mbox commands. 9416 */ 9417 9418 if (flag & MBX_POLL) { 9419 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9420 9421 /* Mbox command <mbxCommand> cannot issue */ 9422 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9423 "(%d):2529 Mailbox command x%x " 9424 "cannot issue Data: x%x x%x\n", 9425 pmbox->vport ? pmbox->vport->vpi : 0, 9426 pmbox->u.mb.mbxCommand, 9427 psli->sli_flag, flag); 9428 goto out_not_finished; 9429 } 9430 9431 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9432 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9433 /* Mbox command <mbxCommand> cannot issue */ 9434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9435 "(%d):2530 Mailbox command x%x " 9436 "cannot issue Data: x%x x%x\n", 9437 pmbox->vport ? pmbox->vport->vpi : 0, 9438 pmbox->u.mb.mbxCommand, 9439 psli->sli_flag, flag); 9440 goto out_not_finished; 9441 } 9442 9443 /* Another mailbox command is still being processed, queue this 9444 * command to be processed later. 9445 */ 9446 lpfc_mbox_put(phba, pmbox); 9447 9448 /* Mbox cmd issue - BUSY */ 9449 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9450 "(%d):0308 Mbox cmd issue - BUSY Data: " 9451 "x%x x%x x%x x%x\n", 9452 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9453 mbx->mbxCommand, 9454 phba->pport ? phba->pport->port_state : 0xff, 9455 psli->sli_flag, flag); 9456 9457 psli->slistat.mbox_busy++; 9458 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9459 9460 if (pmbox->vport) { 9461 lpfc_debugfs_disc_trc(pmbox->vport, 9462 LPFC_DISC_TRC_MBOX_VPORT, 9463 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9464 (uint32_t)mbx->mbxCommand, 9465 mbx->un.varWords[0], mbx->un.varWords[1]); 9466 } 9467 else { 9468 lpfc_debugfs_disc_trc(phba->pport, 9469 LPFC_DISC_TRC_MBOX, 9470 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9471 (uint32_t)mbx->mbxCommand, 9472 mbx->un.varWords[0], mbx->un.varWords[1]); 9473 } 9474 9475 return MBX_BUSY; 9476 } 9477 9478 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9479 9480 /* If we are not polling, we MUST be in SLI2 mode */ 9481 if (flag != MBX_POLL) { 9482 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9483 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9484 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9485 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9486 /* Mbox command <mbxCommand> cannot issue */ 9487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9488 "(%d):2531 Mailbox command x%x " 9489 "cannot issue Data: x%x x%x\n", 9490 pmbox->vport ? pmbox->vport->vpi : 0, 9491 pmbox->u.mb.mbxCommand, 9492 psli->sli_flag, flag); 9493 goto out_not_finished; 9494 } 9495 /* timeout active mbox command */ 9496 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9497 1000); 9498 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9499 } 9500 9501 /* Mailbox cmd <cmd> issue */ 9502 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9503 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9504 "x%x\n", 9505 pmbox->vport ? pmbox->vport->vpi : 0, 9506 mbx->mbxCommand, 9507 phba->pport ? phba->pport->port_state : 0xff, 9508 psli->sli_flag, flag); 9509 9510 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9511 if (pmbox->vport) { 9512 lpfc_debugfs_disc_trc(pmbox->vport, 9513 LPFC_DISC_TRC_MBOX_VPORT, 9514 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9515 (uint32_t)mbx->mbxCommand, 9516 mbx->un.varWords[0], mbx->un.varWords[1]); 9517 } 9518 else { 9519 lpfc_debugfs_disc_trc(phba->pport, 9520 LPFC_DISC_TRC_MBOX, 9521 "MBOX Send: cmd:x%x mb:x%x x%x", 9522 (uint32_t)mbx->mbxCommand, 9523 mbx->un.varWords[0], mbx->un.varWords[1]); 9524 } 9525 } 9526 9527 psli->slistat.mbox_cmd++; 9528 evtctr = psli->slistat.mbox_event; 9529 9530 /* next set own bit for the adapter and copy over command word */ 9531 mbx->mbxOwner = OWN_CHIP; 9532 9533 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9534 /* Populate mbox extension offset word. */ 9535 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9536 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9537 = (uint8_t *)phba->mbox_ext 9538 - (uint8_t *)phba->mbox; 9539 } 9540 9541 /* Copy the mailbox extension data */ 9542 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9543 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9544 (uint8_t *)phba->mbox_ext, 9545 pmbox->in_ext_byte_len); 9546 } 9547 /* Copy command data to host SLIM area */ 9548 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9549 } else { 9550 /* Populate mbox extension offset word. */ 9551 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9552 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9553 = MAILBOX_HBA_EXT_OFFSET; 9554 9555 /* Copy the mailbox extension data */ 9556 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9557 lpfc_memcpy_to_slim(phba->MBslimaddr + 9558 MAILBOX_HBA_EXT_OFFSET, 9559 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9560 9561 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9562 /* copy command data into host mbox for cmpl */ 9563 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9564 MAILBOX_CMD_SIZE); 9565 9566 /* First copy mbox command data to HBA SLIM, skip past first 9567 word */ 9568 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9569 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9570 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9571 9572 /* Next copy over first word, with mbxOwner set */ 9573 ldata = *((uint32_t *)mbx); 9574 to_slim = phba->MBslimaddr; 9575 writel(ldata, to_slim); 9576 readl(to_slim); /* flush */ 9577 9578 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9579 /* switch over to host mailbox */ 9580 psli->sli_flag |= LPFC_SLI_ACTIVE; 9581 } 9582 9583 wmb(); 9584 9585 switch (flag) { 9586 case MBX_NOWAIT: 9587 /* Set up reference to mailbox command */ 9588 psli->mbox_active = pmbox; 9589 /* Interrupt board to do it */ 9590 writel(CA_MBATT, phba->CAregaddr); 9591 readl(phba->CAregaddr); /* flush */ 9592 /* Don't wait for it to finish, just return */ 9593 break; 9594 9595 case MBX_POLL: 9596 /* Set up null reference to mailbox command */ 9597 psli->mbox_active = NULL; 9598 /* Interrupt board to do it */ 9599 writel(CA_MBATT, phba->CAregaddr); 9600 readl(phba->CAregaddr); /* flush */ 9601 9602 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9603 /* First read mbox status word */ 9604 word0 = *((uint32_t *)phba->mbox); 9605 word0 = le32_to_cpu(word0); 9606 } else { 9607 /* First read mbox status word */ 9608 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9609 spin_unlock_irqrestore(&phba->hbalock, 9610 drvr_flag); 9611 goto out_not_finished; 9612 } 9613 } 9614 9615 /* Read the HBA Host Attention Register */ 9616 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9617 spin_unlock_irqrestore(&phba->hbalock, 9618 drvr_flag); 9619 goto out_not_finished; 9620 } 9621 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9622 1000) + jiffies; 9623 i = 0; 9624 /* Wait for command to complete */ 9625 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9626 (!(ha_copy & HA_MBATT) && 9627 (phba->link_state > LPFC_WARM_START))) { 9628 if (time_after(jiffies, timeout)) { 9629 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9630 spin_unlock_irqrestore(&phba->hbalock, 9631 drvr_flag); 9632 goto out_not_finished; 9633 } 9634 9635 /* Check if we took a mbox interrupt while we were 9636 polling */ 9637 if (((word0 & OWN_CHIP) != OWN_CHIP) 9638 && (evtctr != psli->slistat.mbox_event)) 9639 break; 9640 9641 if (i++ > 10) { 9642 spin_unlock_irqrestore(&phba->hbalock, 9643 drvr_flag); 9644 msleep(1); 9645 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9646 } 9647 9648 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9649 /* First copy command data */ 9650 word0 = *((uint32_t *)phba->mbox); 9651 word0 = le32_to_cpu(word0); 9652 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9653 MAILBOX_t *slimmb; 9654 uint32_t slimword0; 9655 /* Check real SLIM for any errors */ 9656 slimword0 = readl(phba->MBslimaddr); 9657 slimmb = (MAILBOX_t *) & slimword0; 9658 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9659 && slimmb->mbxStatus) { 9660 psli->sli_flag &= 9661 ~LPFC_SLI_ACTIVE; 9662 word0 = slimword0; 9663 } 9664 } 9665 } else { 9666 /* First copy command data */ 9667 word0 = readl(phba->MBslimaddr); 9668 } 9669 /* Read the HBA Host Attention Register */ 9670 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9671 spin_unlock_irqrestore(&phba->hbalock, 9672 drvr_flag); 9673 goto out_not_finished; 9674 } 9675 } 9676 9677 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9678 /* copy results back to user */ 9679 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9680 MAILBOX_CMD_SIZE); 9681 /* Copy the mailbox extension data */ 9682 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9683 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9684 pmbox->ctx_buf, 9685 pmbox->out_ext_byte_len); 9686 } 9687 } else { 9688 /* First copy command data */ 9689 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9690 MAILBOX_CMD_SIZE); 9691 /* Copy the mailbox extension data */ 9692 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9693 lpfc_memcpy_from_slim( 9694 pmbox->ctx_buf, 9695 phba->MBslimaddr + 9696 MAILBOX_HBA_EXT_OFFSET, 9697 pmbox->out_ext_byte_len); 9698 } 9699 } 9700 9701 writel(HA_MBATT, phba->HAregaddr); 9702 readl(phba->HAregaddr); /* flush */ 9703 9704 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9705 status = mbx->mbxStatus; 9706 } 9707 9708 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9709 return status; 9710 9711 out_not_finished: 9712 if (processing_queue) { 9713 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9714 lpfc_mbox_cmpl_put(phba, pmbox); 9715 } 9716 return MBX_NOT_FINISHED; 9717 } 9718 9719 /** 9720 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9721 * @phba: Pointer to HBA context object. 9722 * 9723 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9724 * the driver internal pending mailbox queue. It will then try to wait out the 9725 * possible outstanding mailbox command before return. 9726 * 9727 * Returns: 9728 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9729 * the outstanding mailbox command timed out. 9730 **/ 9731 static int 9732 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9733 { 9734 struct lpfc_sli *psli = &phba->sli; 9735 LPFC_MBOXQ_t *mboxq; 9736 int rc = 0; 9737 unsigned long timeout = 0; 9738 u32 sli_flag; 9739 u8 cmd, subsys, opcode; 9740 9741 /* Mark the asynchronous mailbox command posting as blocked */ 9742 spin_lock_irq(&phba->hbalock); 9743 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9744 /* Determine how long we might wait for the active mailbox 9745 * command to be gracefully completed by firmware. 9746 */ 9747 if (phba->sli.mbox_active) 9748 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9749 phba->sli.mbox_active) * 9750 1000) + jiffies; 9751 spin_unlock_irq(&phba->hbalock); 9752 9753 /* Make sure the mailbox is really active */ 9754 if (timeout) 9755 lpfc_sli4_process_missed_mbox_completions(phba); 9756 9757 /* Wait for the outstanding mailbox command to complete */ 9758 while (phba->sli.mbox_active) { 9759 /* Check active mailbox complete status every 2ms */ 9760 msleep(2); 9761 if (time_after(jiffies, timeout)) { 9762 /* Timeout, mark the outstanding cmd not complete */ 9763 9764 /* Sanity check sli.mbox_active has not completed or 9765 * cancelled from another context during last 2ms sleep, 9766 * so take hbalock to be sure before logging. 9767 */ 9768 spin_lock_irq(&phba->hbalock); 9769 if (phba->sli.mbox_active) { 9770 mboxq = phba->sli.mbox_active; 9771 cmd = mboxq->u.mb.mbxCommand; 9772 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9773 mboxq); 9774 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9775 mboxq); 9776 sli_flag = psli->sli_flag; 9777 spin_unlock_irq(&phba->hbalock); 9778 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9779 "2352 Mailbox command x%x " 9780 "(x%x/x%x) sli_flag x%x could " 9781 "not complete\n", 9782 cmd, subsys, opcode, 9783 sli_flag); 9784 } else { 9785 spin_unlock_irq(&phba->hbalock); 9786 } 9787 9788 rc = 1; 9789 break; 9790 } 9791 } 9792 9793 /* Can not cleanly block async mailbox command, fails it */ 9794 if (rc) { 9795 spin_lock_irq(&phba->hbalock); 9796 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9797 spin_unlock_irq(&phba->hbalock); 9798 } 9799 return rc; 9800 } 9801 9802 /** 9803 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9804 * @phba: Pointer to HBA context object. 9805 * 9806 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9807 * commands from the driver internal pending mailbox queue. It makes sure 9808 * that there is no outstanding mailbox command before resuming posting 9809 * asynchronous mailbox commands. If, for any reason, there is outstanding 9810 * mailbox command, it will try to wait it out before resuming asynchronous 9811 * mailbox command posting. 9812 **/ 9813 static void 9814 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9815 { 9816 struct lpfc_sli *psli = &phba->sli; 9817 9818 spin_lock_irq(&phba->hbalock); 9819 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9820 /* Asynchronous mailbox posting is not blocked, do nothing */ 9821 spin_unlock_irq(&phba->hbalock); 9822 return; 9823 } 9824 9825 /* Outstanding synchronous mailbox command is guaranteed to be done, 9826 * successful or timeout, after timing-out the outstanding mailbox 9827 * command shall always be removed, so just unblock posting async 9828 * mailbox command and resume 9829 */ 9830 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9831 spin_unlock_irq(&phba->hbalock); 9832 9833 /* wake up worker thread to post asynchronous mailbox command */ 9834 lpfc_worker_wake_up(phba); 9835 } 9836 9837 /** 9838 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9839 * @phba: Pointer to HBA context object. 9840 * @mboxq: Pointer to mailbox object. 9841 * 9842 * The function waits for the bootstrap mailbox register ready bit from 9843 * port for twice the regular mailbox command timeout value. 9844 * 9845 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9846 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9847 * is in an unrecoverable state. 9848 **/ 9849 static int 9850 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9851 { 9852 uint32_t db_ready; 9853 unsigned long timeout; 9854 struct lpfc_register bmbx_reg; 9855 struct lpfc_register portstat_reg = {-1}; 9856 9857 /* Sanity check - there is no point to wait if the port is in an 9858 * unrecoverable state. 9859 */ 9860 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9861 LPFC_SLI_INTF_IF_TYPE_2) { 9862 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9863 &portstat_reg.word0) || 9864 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9865 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9866 "3858 Skipping bmbx ready because " 9867 "Port Status x%x\n", 9868 portstat_reg.word0); 9869 return MBXERR_ERROR; 9870 } 9871 } 9872 9873 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9874 * 1000) + jiffies; 9875 9876 do { 9877 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9878 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9879 if (!db_ready) 9880 mdelay(2); 9881 9882 if (time_after(jiffies, timeout)) 9883 return MBXERR_ERROR; 9884 } while (!db_ready); 9885 9886 return 0; 9887 } 9888 9889 /** 9890 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9891 * @phba: Pointer to HBA context object. 9892 * @mboxq: Pointer to mailbox object. 9893 * 9894 * The function posts a mailbox to the port. The mailbox is expected 9895 * to be comletely filled in and ready for the port to operate on it. 9896 * This routine executes a synchronous completion operation on the 9897 * mailbox by polling for its completion. 9898 * 9899 * The caller must not be holding any locks when calling this routine. 9900 * 9901 * Returns: 9902 * MBX_SUCCESS - mailbox posted successfully 9903 * Any of the MBX error values. 9904 **/ 9905 static int 9906 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9907 { 9908 int rc = MBX_SUCCESS; 9909 unsigned long iflag; 9910 uint32_t mcqe_status; 9911 uint32_t mbx_cmnd; 9912 struct lpfc_sli *psli = &phba->sli; 9913 struct lpfc_mqe *mb = &mboxq->u.mqe; 9914 struct lpfc_bmbx_create *mbox_rgn; 9915 struct dma_address *dma_address; 9916 9917 /* 9918 * Only one mailbox can be active to the bootstrap mailbox region 9919 * at a time and there is no queueing provided. 9920 */ 9921 spin_lock_irqsave(&phba->hbalock, iflag); 9922 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9923 spin_unlock_irqrestore(&phba->hbalock, iflag); 9924 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9925 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9926 "cannot issue Data: x%x x%x\n", 9927 mboxq->vport ? mboxq->vport->vpi : 0, 9928 mboxq->u.mb.mbxCommand, 9929 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9930 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9931 psli->sli_flag, MBX_POLL); 9932 return MBXERR_ERROR; 9933 } 9934 /* The server grabs the token and owns it until release */ 9935 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9936 phba->sli.mbox_active = mboxq; 9937 spin_unlock_irqrestore(&phba->hbalock, iflag); 9938 9939 /* wait for bootstrap mbox register for readyness */ 9940 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9941 if (rc) 9942 goto exit; 9943 /* 9944 * Initialize the bootstrap memory region to avoid stale data areas 9945 * in the mailbox post. Then copy the caller's mailbox contents to 9946 * the bmbx mailbox region. 9947 */ 9948 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9949 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9950 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9951 sizeof(struct lpfc_mqe)); 9952 9953 /* Post the high mailbox dma address to the port and wait for ready. */ 9954 dma_address = &phba->sli4_hba.bmbx.dma_address; 9955 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9956 9957 /* wait for bootstrap mbox register for hi-address write done */ 9958 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9959 if (rc) 9960 goto exit; 9961 9962 /* Post the low mailbox dma address to the port. */ 9963 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9964 9965 /* wait for bootstrap mbox register for low address write done */ 9966 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9967 if (rc) 9968 goto exit; 9969 9970 /* 9971 * Read the CQ to ensure the mailbox has completed. 9972 * If so, update the mailbox status so that the upper layers 9973 * can complete the request normally. 9974 */ 9975 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9976 sizeof(struct lpfc_mqe)); 9977 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9978 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9979 sizeof(struct lpfc_mcqe)); 9980 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9981 /* 9982 * When the CQE status indicates a failure and the mailbox status 9983 * indicates success then copy the CQE status into the mailbox status 9984 * (and prefix it with x4000). 9985 */ 9986 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9987 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9988 bf_set(lpfc_mqe_status, mb, 9989 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9990 rc = MBXERR_ERROR; 9991 } else 9992 lpfc_sli4_swap_str(phba, mboxq); 9993 9994 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9995 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9996 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9997 " x%x x%x CQ: x%x x%x x%x x%x\n", 9998 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9999 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10000 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10001 bf_get(lpfc_mqe_status, mb), 10002 mb->un.mb_words[0], mb->un.mb_words[1], 10003 mb->un.mb_words[2], mb->un.mb_words[3], 10004 mb->un.mb_words[4], mb->un.mb_words[5], 10005 mb->un.mb_words[6], mb->un.mb_words[7], 10006 mb->un.mb_words[8], mb->un.mb_words[9], 10007 mb->un.mb_words[10], mb->un.mb_words[11], 10008 mb->un.mb_words[12], mboxq->mcqe.word0, 10009 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10010 mboxq->mcqe.trailer); 10011 exit: 10012 /* We are holding the token, no needed for lock when release */ 10013 spin_lock_irqsave(&phba->hbalock, iflag); 10014 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10015 phba->sli.mbox_active = NULL; 10016 spin_unlock_irqrestore(&phba->hbalock, iflag); 10017 return rc; 10018 } 10019 10020 /** 10021 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10022 * @phba: Pointer to HBA context object. 10023 * @mboxq: Pointer to mailbox object. 10024 * @flag: Flag indicating how the mailbox need to be processed. 10025 * 10026 * This function is called by discovery code and HBA management code to submit 10027 * a mailbox command to firmware with SLI-4 interface spec. 10028 * 10029 * Return codes the caller owns the mailbox command after the return of the 10030 * function. 10031 **/ 10032 static int 10033 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10034 uint32_t flag) 10035 { 10036 struct lpfc_sli *psli = &phba->sli; 10037 unsigned long iflags; 10038 int rc; 10039 10040 /* dump from issue mailbox command if setup */ 10041 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10042 10043 rc = lpfc_mbox_dev_check(phba); 10044 if (unlikely(rc)) { 10045 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10046 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10047 "cannot issue Data: x%x x%x\n", 10048 mboxq->vport ? mboxq->vport->vpi : 0, 10049 mboxq->u.mb.mbxCommand, 10050 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10051 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10052 psli->sli_flag, flag); 10053 goto out_not_finished; 10054 } 10055 10056 /* Detect polling mode and jump to a handler */ 10057 if (!phba->sli4_hba.intr_enable) { 10058 if (flag == MBX_POLL) 10059 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10060 else 10061 rc = -EIO; 10062 if (rc != MBX_SUCCESS) 10063 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10064 "(%d):2541 Mailbox command x%x " 10065 "(x%x/x%x) failure: " 10066 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10067 "Data: x%x x%x\n", 10068 mboxq->vport ? mboxq->vport->vpi : 0, 10069 mboxq->u.mb.mbxCommand, 10070 lpfc_sli_config_mbox_subsys_get(phba, 10071 mboxq), 10072 lpfc_sli_config_mbox_opcode_get(phba, 10073 mboxq), 10074 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10075 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10076 bf_get(lpfc_mcqe_ext_status, 10077 &mboxq->mcqe), 10078 psli->sli_flag, flag); 10079 return rc; 10080 } else if (flag == MBX_POLL) { 10081 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10082 "(%d):2542 Try to issue mailbox command " 10083 "x%x (x%x/x%x) synchronously ahead of async " 10084 "mailbox command queue: x%x x%x\n", 10085 mboxq->vport ? mboxq->vport->vpi : 0, 10086 mboxq->u.mb.mbxCommand, 10087 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10088 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10089 psli->sli_flag, flag); 10090 /* Try to block the asynchronous mailbox posting */ 10091 rc = lpfc_sli4_async_mbox_block(phba); 10092 if (!rc) { 10093 /* Successfully blocked, now issue sync mbox cmd */ 10094 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10095 if (rc != MBX_SUCCESS) 10096 lpfc_printf_log(phba, KERN_WARNING, 10097 LOG_MBOX | LOG_SLI, 10098 "(%d):2597 Sync Mailbox command " 10099 "x%x (x%x/x%x) failure: " 10100 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10101 "Data: x%x x%x\n", 10102 mboxq->vport ? mboxq->vport->vpi : 0, 10103 mboxq->u.mb.mbxCommand, 10104 lpfc_sli_config_mbox_subsys_get(phba, 10105 mboxq), 10106 lpfc_sli_config_mbox_opcode_get(phba, 10107 mboxq), 10108 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10109 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10110 bf_get(lpfc_mcqe_ext_status, 10111 &mboxq->mcqe), 10112 psli->sli_flag, flag); 10113 /* Unblock the async mailbox posting afterward */ 10114 lpfc_sli4_async_mbox_unblock(phba); 10115 } 10116 return rc; 10117 } 10118 10119 /* Now, interrupt mode asynchronous mailbox command */ 10120 rc = lpfc_mbox_cmd_check(phba, mboxq); 10121 if (rc) { 10122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10123 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10124 "cannot issue Data: x%x x%x\n", 10125 mboxq->vport ? mboxq->vport->vpi : 0, 10126 mboxq->u.mb.mbxCommand, 10127 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10128 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10129 psli->sli_flag, flag); 10130 goto out_not_finished; 10131 } 10132 10133 /* Put the mailbox command to the driver internal FIFO */ 10134 psli->slistat.mbox_busy++; 10135 spin_lock_irqsave(&phba->hbalock, iflags); 10136 lpfc_mbox_put(phba, mboxq); 10137 spin_unlock_irqrestore(&phba->hbalock, iflags); 10138 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10139 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10140 "x%x (x%x/x%x) x%x x%x x%x\n", 10141 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10142 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10143 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10144 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10145 phba->pport->port_state, 10146 psli->sli_flag, MBX_NOWAIT); 10147 /* Wake up worker thread to transport mailbox command from head */ 10148 lpfc_worker_wake_up(phba); 10149 10150 return MBX_BUSY; 10151 10152 out_not_finished: 10153 return MBX_NOT_FINISHED; 10154 } 10155 10156 /** 10157 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10158 * @phba: Pointer to HBA context object. 10159 * 10160 * This function is called by worker thread to send a mailbox command to 10161 * SLI4 HBA firmware. 10162 * 10163 **/ 10164 int 10165 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10166 { 10167 struct lpfc_sli *psli = &phba->sli; 10168 LPFC_MBOXQ_t *mboxq; 10169 int rc = MBX_SUCCESS; 10170 unsigned long iflags; 10171 struct lpfc_mqe *mqe; 10172 uint32_t mbx_cmnd; 10173 10174 /* Check interrupt mode before post async mailbox command */ 10175 if (unlikely(!phba->sli4_hba.intr_enable)) 10176 return MBX_NOT_FINISHED; 10177 10178 /* Check for mailbox command service token */ 10179 spin_lock_irqsave(&phba->hbalock, iflags); 10180 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10181 spin_unlock_irqrestore(&phba->hbalock, iflags); 10182 return MBX_NOT_FINISHED; 10183 } 10184 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10185 spin_unlock_irqrestore(&phba->hbalock, iflags); 10186 return MBX_NOT_FINISHED; 10187 } 10188 if (unlikely(phba->sli.mbox_active)) { 10189 spin_unlock_irqrestore(&phba->hbalock, iflags); 10190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10191 "0384 There is pending active mailbox cmd\n"); 10192 return MBX_NOT_FINISHED; 10193 } 10194 /* Take the mailbox command service token */ 10195 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10196 10197 /* Get the next mailbox command from head of queue */ 10198 mboxq = lpfc_mbox_get(phba); 10199 10200 /* If no more mailbox command waiting for post, we're done */ 10201 if (!mboxq) { 10202 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10203 spin_unlock_irqrestore(&phba->hbalock, iflags); 10204 return MBX_SUCCESS; 10205 } 10206 phba->sli.mbox_active = mboxq; 10207 spin_unlock_irqrestore(&phba->hbalock, iflags); 10208 10209 /* Check device readiness for posting mailbox command */ 10210 rc = lpfc_mbox_dev_check(phba); 10211 if (unlikely(rc)) 10212 /* Driver clean routine will clean up pending mailbox */ 10213 goto out_not_finished; 10214 10215 /* Prepare the mbox command to be posted */ 10216 mqe = &mboxq->u.mqe; 10217 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10218 10219 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10220 mod_timer(&psli->mbox_tmo, (jiffies + 10221 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10222 10223 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10224 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10225 "x%x x%x\n", 10226 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10227 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10228 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10229 phba->pport->port_state, psli->sli_flag); 10230 10231 if (mbx_cmnd != MBX_HEARTBEAT) { 10232 if (mboxq->vport) { 10233 lpfc_debugfs_disc_trc(mboxq->vport, 10234 LPFC_DISC_TRC_MBOX_VPORT, 10235 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10236 mbx_cmnd, mqe->un.mb_words[0], 10237 mqe->un.mb_words[1]); 10238 } else { 10239 lpfc_debugfs_disc_trc(phba->pport, 10240 LPFC_DISC_TRC_MBOX, 10241 "MBOX Send: cmd:x%x mb:x%x x%x", 10242 mbx_cmnd, mqe->un.mb_words[0], 10243 mqe->un.mb_words[1]); 10244 } 10245 } 10246 psli->slistat.mbox_cmd++; 10247 10248 /* Post the mailbox command to the port */ 10249 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10250 if (rc != MBX_SUCCESS) { 10251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10252 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10253 "cannot issue Data: x%x x%x\n", 10254 mboxq->vport ? mboxq->vport->vpi : 0, 10255 mboxq->u.mb.mbxCommand, 10256 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10257 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10258 psli->sli_flag, MBX_NOWAIT); 10259 goto out_not_finished; 10260 } 10261 10262 return rc; 10263 10264 out_not_finished: 10265 spin_lock_irqsave(&phba->hbalock, iflags); 10266 if (phba->sli.mbox_active) { 10267 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10268 __lpfc_mbox_cmpl_put(phba, mboxq); 10269 /* Release the token */ 10270 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10271 phba->sli.mbox_active = NULL; 10272 } 10273 spin_unlock_irqrestore(&phba->hbalock, iflags); 10274 10275 return MBX_NOT_FINISHED; 10276 } 10277 10278 /** 10279 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10280 * @phba: Pointer to HBA context object. 10281 * @pmbox: Pointer to mailbox object. 10282 * @flag: Flag indicating how the mailbox need to be processed. 10283 * 10284 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10285 * the API jump table function pointer from the lpfc_hba struct. 10286 * 10287 * Return codes the caller owns the mailbox command after the return of the 10288 * function. 10289 **/ 10290 int 10291 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10292 { 10293 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10294 } 10295 10296 /** 10297 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10298 * @phba: The hba struct for which this call is being executed. 10299 * @dev_grp: The HBA PCI-Device group number. 10300 * 10301 * This routine sets up the mbox interface API function jump table in @phba 10302 * struct. 10303 * Returns: 0 - success, -ENODEV - failure. 10304 **/ 10305 int 10306 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10307 { 10308 10309 switch (dev_grp) { 10310 case LPFC_PCI_DEV_LP: 10311 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10312 phba->lpfc_sli_handle_slow_ring_event = 10313 lpfc_sli_handle_slow_ring_event_s3; 10314 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10315 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10316 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10317 break; 10318 case LPFC_PCI_DEV_OC: 10319 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10320 phba->lpfc_sli_handle_slow_ring_event = 10321 lpfc_sli_handle_slow_ring_event_s4; 10322 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10323 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10324 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10325 break; 10326 default: 10327 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10328 "1420 Invalid HBA PCI-device group: 0x%x\n", 10329 dev_grp); 10330 return -ENODEV; 10331 } 10332 return 0; 10333 } 10334 10335 /** 10336 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10337 * @phba: Pointer to HBA context object. 10338 * @pring: Pointer to driver SLI ring object. 10339 * @piocb: Pointer to address of newly added command iocb. 10340 * 10341 * This function is called with hbalock held for SLI3 ports or 10342 * the ring lock held for SLI4 ports to add a command 10343 * iocb to the txq when SLI layer cannot submit the command iocb 10344 * to the ring. 10345 **/ 10346 void 10347 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10348 struct lpfc_iocbq *piocb) 10349 { 10350 if (phba->sli_rev == LPFC_SLI_REV4) 10351 lockdep_assert_held(&pring->ring_lock); 10352 else 10353 lockdep_assert_held(&phba->hbalock); 10354 /* Insert the caller's iocb in the txq tail for later processing. */ 10355 list_add_tail(&piocb->list, &pring->txq); 10356 } 10357 10358 /** 10359 * lpfc_sli_next_iocb - Get the next iocb in the txq 10360 * @phba: Pointer to HBA context object. 10361 * @pring: Pointer to driver SLI ring object. 10362 * @piocb: Pointer to address of newly added command iocb. 10363 * 10364 * This function is called with hbalock held before a new 10365 * iocb is submitted to the firmware. This function checks 10366 * txq to flush the iocbs in txq to Firmware before 10367 * submitting new iocbs to the Firmware. 10368 * If there are iocbs in the txq which need to be submitted 10369 * to firmware, lpfc_sli_next_iocb returns the first element 10370 * of the txq after dequeuing it from txq. 10371 * If there is no iocb in the txq then the function will return 10372 * *piocb and *piocb is set to NULL. Caller needs to check 10373 * *piocb to find if there are more commands in the txq. 10374 **/ 10375 static struct lpfc_iocbq * 10376 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10377 struct lpfc_iocbq **piocb) 10378 { 10379 struct lpfc_iocbq * nextiocb; 10380 10381 lockdep_assert_held(&phba->hbalock); 10382 10383 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10384 if (!nextiocb) { 10385 nextiocb = *piocb; 10386 *piocb = NULL; 10387 } 10388 10389 return nextiocb; 10390 } 10391 10392 /** 10393 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10394 * @phba: Pointer to HBA context object. 10395 * @ring_number: SLI ring number to issue iocb on. 10396 * @piocb: Pointer to command iocb. 10397 * @flag: Flag indicating if this command can be put into txq. 10398 * 10399 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10400 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10401 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10402 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10403 * this function allows only iocbs for posting buffers. This function finds 10404 * next available slot in the command ring and posts the command to the 10405 * available slot and writes the port attention register to request HBA start 10406 * processing new iocb. If there is no slot available in the ring and 10407 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10408 * the function returns IOCB_BUSY. 10409 * 10410 * This function is called with hbalock held. The function will return success 10411 * after it successfully submit the iocb to firmware or after adding to the 10412 * txq. 10413 **/ 10414 static int 10415 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10416 struct lpfc_iocbq *piocb, uint32_t flag) 10417 { 10418 struct lpfc_iocbq *nextiocb; 10419 IOCB_t *iocb; 10420 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10421 10422 lockdep_assert_held(&phba->hbalock); 10423 10424 if (piocb->cmd_cmpl && (!piocb->vport) && 10425 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10426 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10427 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10428 "1807 IOCB x%x failed. No vport\n", 10429 piocb->iocb.ulpCommand); 10430 dump_stack(); 10431 return IOCB_ERROR; 10432 } 10433 10434 10435 /* If the PCI channel is in offline state, do not post iocbs. */ 10436 if (unlikely(pci_channel_offline(phba->pcidev))) 10437 return IOCB_ERROR; 10438 10439 /* If HBA has a deferred error attention, fail the iocb. */ 10440 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10441 return IOCB_ERROR; 10442 10443 /* 10444 * We should never get an IOCB if we are in a < LINK_DOWN state 10445 */ 10446 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10447 return IOCB_ERROR; 10448 10449 /* 10450 * Check to see if we are blocking IOCB processing because of a 10451 * outstanding event. 10452 */ 10453 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10454 goto iocb_busy; 10455 10456 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10457 /* 10458 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10459 * can be issued if the link is not up. 10460 */ 10461 switch (piocb->iocb.ulpCommand) { 10462 case CMD_QUE_RING_BUF_CN: 10463 case CMD_QUE_RING_BUF64_CN: 10464 /* 10465 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10466 * completion, cmd_cmpl MUST be 0. 10467 */ 10468 if (piocb->cmd_cmpl) 10469 piocb->cmd_cmpl = NULL; 10470 fallthrough; 10471 case CMD_CREATE_XRI_CR: 10472 case CMD_CLOSE_XRI_CN: 10473 case CMD_CLOSE_XRI_CX: 10474 break; 10475 default: 10476 goto iocb_busy; 10477 } 10478 10479 /* 10480 * For FCP commands, we must be in a state where we can process link 10481 * attention events. 10482 */ 10483 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10484 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10485 goto iocb_busy; 10486 } 10487 10488 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10489 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10490 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10491 10492 if (iocb) 10493 lpfc_sli_update_ring(phba, pring); 10494 else 10495 lpfc_sli_update_full_ring(phba, pring); 10496 10497 if (!piocb) 10498 return IOCB_SUCCESS; 10499 10500 goto out_busy; 10501 10502 iocb_busy: 10503 pring->stats.iocb_cmd_delay++; 10504 10505 out_busy: 10506 10507 if (!(flag & SLI_IOCB_RET_IOCB)) { 10508 __lpfc_sli_ringtx_put(phba, pring, piocb); 10509 return IOCB_SUCCESS; 10510 } 10511 10512 return IOCB_BUSY; 10513 } 10514 10515 /** 10516 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10517 * @phba: Pointer to HBA context object. 10518 * @ring_number: SLI ring number to issue wqe on. 10519 * @piocb: Pointer to command iocb. 10520 * @flag: Flag indicating if this command can be put into txq. 10521 * 10522 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10523 * send an iocb command to an HBA with SLI-3 interface spec. 10524 * 10525 * This function takes the hbalock before invoking the lockless version. 10526 * The function will return success after it successfully submit the wqe to 10527 * firmware or after adding to the txq. 10528 **/ 10529 static int 10530 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10531 struct lpfc_iocbq *piocb, uint32_t flag) 10532 { 10533 unsigned long iflags; 10534 int rc; 10535 10536 spin_lock_irqsave(&phba->hbalock, iflags); 10537 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10538 spin_unlock_irqrestore(&phba->hbalock, iflags); 10539 10540 return rc; 10541 } 10542 10543 /** 10544 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10545 * @phba: Pointer to HBA context object. 10546 * @ring_number: SLI ring number to issue wqe on. 10547 * @piocb: Pointer to command iocb. 10548 * @flag: Flag indicating if this command can be put into txq. 10549 * 10550 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10551 * an wqe command to an HBA with SLI-4 interface spec. 10552 * 10553 * This function is a lockless version. The function will return success 10554 * after it successfully submit the wqe to firmware or after adding to the 10555 * txq. 10556 **/ 10557 static int 10558 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10559 struct lpfc_iocbq *piocb, uint32_t flag) 10560 { 10561 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10562 10563 lpfc_prep_embed_io(phba, lpfc_cmd); 10564 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10565 } 10566 10567 void 10568 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10569 { 10570 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10571 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10572 struct sli4_sge *sgl; 10573 10574 /* 128 byte wqe support here */ 10575 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10576 10577 if (phba->fcp_embed_io) { 10578 struct fcp_cmnd *fcp_cmnd; 10579 u32 *ptr; 10580 10581 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10582 10583 /* Word 0-2 - FCP_CMND */ 10584 wqe->generic.bde.tus.f.bdeFlags = 10585 BUFF_TYPE_BDE_IMMED; 10586 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10587 wqe->generic.bde.addrHigh = 0; 10588 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10589 10590 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10591 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10592 10593 /* Word 22-29 FCP CMND Payload */ 10594 ptr = &wqe->words[22]; 10595 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10596 } else { 10597 /* Word 0-2 - Inline BDE */ 10598 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10599 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10600 wqe->generic.bde.addrHigh = sgl->addr_hi; 10601 wqe->generic.bde.addrLow = sgl->addr_lo; 10602 10603 /* Word 10 */ 10604 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10605 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10606 } 10607 10608 /* add the VMID tags as per switch response */ 10609 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10610 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10611 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10612 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10613 (piocb->vmid_tag.cs_ctl_vmid)); 10614 } else if (phba->cfg_vmid_app_header) { 10615 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10616 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10617 wqe->words[31] = piocb->vmid_tag.app_id; 10618 } 10619 } 10620 } 10621 10622 /** 10623 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10624 * @phba: Pointer to HBA context object. 10625 * @ring_number: SLI ring number to issue iocb on. 10626 * @piocb: Pointer to command iocb. 10627 * @flag: Flag indicating if this command can be put into txq. 10628 * 10629 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10630 * an iocb command to an HBA with SLI-4 interface spec. 10631 * 10632 * This function is called with ringlock held. The function will return success 10633 * after it successfully submit the iocb to firmware or after adding to the 10634 * txq. 10635 **/ 10636 static int 10637 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10638 struct lpfc_iocbq *piocb, uint32_t flag) 10639 { 10640 struct lpfc_sglq *sglq; 10641 union lpfc_wqe128 *wqe; 10642 struct lpfc_queue *wq; 10643 struct lpfc_sli_ring *pring; 10644 u32 ulp_command = get_job_cmnd(phba, piocb); 10645 10646 /* Get the WQ */ 10647 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10648 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10649 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10650 } else { 10651 wq = phba->sli4_hba.els_wq; 10652 } 10653 10654 /* Get corresponding ring */ 10655 pring = wq->pring; 10656 10657 /* 10658 * The WQE can be either 64 or 128 bytes, 10659 */ 10660 10661 lockdep_assert_held(&pring->ring_lock); 10662 wqe = &piocb->wqe; 10663 if (piocb->sli4_xritag == NO_XRI) { 10664 if (ulp_command == CMD_ABORT_XRI_CX) 10665 sglq = NULL; 10666 else { 10667 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10668 if (!sglq) { 10669 if (!(flag & SLI_IOCB_RET_IOCB)) { 10670 __lpfc_sli_ringtx_put(phba, 10671 pring, 10672 piocb); 10673 return IOCB_SUCCESS; 10674 } else { 10675 return IOCB_BUSY; 10676 } 10677 } 10678 } 10679 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10680 /* These IO's already have an XRI and a mapped sgl. */ 10681 sglq = NULL; 10682 } 10683 else { 10684 /* 10685 * This is a continuation of a commandi,(CX) so this 10686 * sglq is on the active list 10687 */ 10688 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10689 if (!sglq) 10690 return IOCB_ERROR; 10691 } 10692 10693 if (sglq) { 10694 piocb->sli4_lxritag = sglq->sli4_lxritag; 10695 piocb->sli4_xritag = sglq->sli4_xritag; 10696 10697 /* ABTS sent by initiator to CT exchange, the 10698 * RX_ID field will be filled with the newly 10699 * allocated responder XRI. 10700 */ 10701 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10702 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10703 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10704 piocb->sli4_xritag); 10705 10706 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10707 piocb->sli4_xritag); 10708 10709 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10710 return IOCB_ERROR; 10711 } 10712 10713 if (lpfc_sli4_wq_put(wq, wqe)) 10714 return IOCB_ERROR; 10715 10716 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10717 10718 return 0; 10719 } 10720 10721 /* 10722 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10723 * 10724 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10725 * or IOCB for sli-3 function. 10726 * pointer from the lpfc_hba struct. 10727 * 10728 * Return codes: 10729 * IOCB_ERROR - Error 10730 * IOCB_SUCCESS - Success 10731 * IOCB_BUSY - Busy 10732 **/ 10733 int 10734 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10735 struct lpfc_iocbq *piocb, uint32_t flag) 10736 { 10737 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10738 } 10739 10740 /* 10741 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10742 * 10743 * This routine wraps the actual lockless version for issusing IOCB function 10744 * pointer from the lpfc_hba struct. 10745 * 10746 * Return codes: 10747 * IOCB_ERROR - Error 10748 * IOCB_SUCCESS - Success 10749 * IOCB_BUSY - Busy 10750 **/ 10751 int 10752 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10753 struct lpfc_iocbq *piocb, uint32_t flag) 10754 { 10755 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10756 } 10757 10758 static void 10759 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10760 struct lpfc_vport *vport, 10761 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10762 u32 elscmd, u8 tmo, u8 expect_rsp) 10763 { 10764 struct lpfc_hba *phba = vport->phba; 10765 IOCB_t *cmd; 10766 10767 cmd = &cmdiocbq->iocb; 10768 memset(cmd, 0, sizeof(*cmd)); 10769 10770 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10771 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10772 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10773 10774 if (expect_rsp) { 10775 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10776 cmd->un.elsreq64.remoteID = did; /* DID */ 10777 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10778 cmd->ulpTimeout = tmo; 10779 } else { 10780 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10781 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10782 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10783 cmd->ulpPU = PARM_NPIV_DID; 10784 } 10785 cmd->ulpBdeCount = 1; 10786 cmd->ulpLe = 1; 10787 cmd->ulpClass = CLASS3; 10788 10789 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10790 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10791 if (expect_rsp) { 10792 cmd->un.elsreq64.myID = vport->fc_myDID; 10793 10794 /* For ELS_REQUEST64_CR, use the VPI by default */ 10795 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10796 } 10797 10798 cmd->ulpCt_h = 0; 10799 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10800 if (elscmd == ELS_CMD_ECHO) 10801 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10802 else 10803 cmd->ulpCt_l = 1; /* context = VPI */ 10804 } 10805 } 10806 10807 static void 10808 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10809 struct lpfc_vport *vport, 10810 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10811 u32 elscmd, u8 tmo, u8 expect_rsp) 10812 { 10813 struct lpfc_hba *phba = vport->phba; 10814 union lpfc_wqe128 *wqe; 10815 struct ulp_bde64_le *bde; 10816 u8 els_id; 10817 10818 wqe = &cmdiocbq->wqe; 10819 memset(wqe, 0, sizeof(*wqe)); 10820 10821 /* Word 0 - 2 BDE */ 10822 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10823 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10824 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10825 bde->type_size = cpu_to_le32(cmd_size); 10826 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10827 10828 if (expect_rsp) { 10829 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10830 10831 /* Transfer length */ 10832 wqe->els_req.payload_len = cmd_size; 10833 wqe->els_req.max_response_payload_len = FCELSSIZE; 10834 10835 /* DID */ 10836 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10837 10838 /* Word 11 - ELS_ID */ 10839 switch (elscmd) { 10840 case ELS_CMD_PLOGI: 10841 els_id = LPFC_ELS_ID_PLOGI; 10842 break; 10843 case ELS_CMD_FLOGI: 10844 els_id = LPFC_ELS_ID_FLOGI; 10845 break; 10846 case ELS_CMD_LOGO: 10847 els_id = LPFC_ELS_ID_LOGO; 10848 break; 10849 case ELS_CMD_FDISC: 10850 if (!vport->fc_myDID) { 10851 els_id = LPFC_ELS_ID_FDISC; 10852 break; 10853 } 10854 fallthrough; 10855 default: 10856 els_id = LPFC_ELS_ID_DEFAULT; 10857 break; 10858 } 10859 10860 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10861 } else { 10862 /* DID */ 10863 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10864 10865 /* Transfer length */ 10866 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10867 10868 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10869 CMD_XMIT_ELS_RSP64_WQE); 10870 } 10871 10872 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10873 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10874 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10875 10876 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10877 * For SLI4, since the driver controls VPIs we also want to include 10878 * all ELS pt2pt protocol traffic as well. 10879 */ 10880 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10881 (vport->fc_flag & FC_PT2PT)) { 10882 if (expect_rsp) { 10883 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10884 10885 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10886 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10887 phba->vpi_ids[vport->vpi]); 10888 } 10889 10890 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10891 if (elscmd == ELS_CMD_ECHO) 10892 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10893 else 10894 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10895 } 10896 } 10897 10898 void 10899 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10900 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10901 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10902 u8 expect_rsp) 10903 { 10904 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10905 elscmd, tmo, expect_rsp); 10906 } 10907 10908 static void 10909 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10910 u16 rpi, u32 num_entry, u8 tmo) 10911 { 10912 IOCB_t *cmd; 10913 10914 cmd = &cmdiocbq->iocb; 10915 memset(cmd, 0, sizeof(*cmd)); 10916 10917 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10918 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10919 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10920 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10921 10922 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10923 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10924 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10925 10926 cmd->ulpContext = rpi; 10927 cmd->ulpClass = CLASS3; 10928 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10929 cmd->ulpBdeCount = 1; 10930 cmd->ulpLe = 1; 10931 cmd->ulpOwner = OWN_CHIP; 10932 cmd->ulpTimeout = tmo; 10933 } 10934 10935 static void 10936 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10937 u16 rpi, u32 num_entry, u8 tmo) 10938 { 10939 union lpfc_wqe128 *cmdwqe; 10940 struct ulp_bde64_le *bde, *bpl; 10941 u32 xmit_len = 0, total_len = 0, size, type, i; 10942 10943 cmdwqe = &cmdiocbq->wqe; 10944 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10945 10946 /* Calculate total_len and xmit_len */ 10947 bpl = (struct ulp_bde64_le *)bmp->virt; 10948 for (i = 0; i < num_entry; i++) { 10949 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10950 total_len += size; 10951 } 10952 for (i = 0; i < num_entry; i++) { 10953 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10954 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10955 if (type != ULP_BDE64_TYPE_BDE_64) 10956 break; 10957 xmit_len += size; 10958 } 10959 10960 /* Words 0 - 2 */ 10961 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10962 bde->addr_low = bpl->addr_low; 10963 bde->addr_high = bpl->addr_high; 10964 bde->type_size = cpu_to_le32(xmit_len); 10965 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10966 10967 /* Word 3 */ 10968 cmdwqe->gen_req.request_payload_len = xmit_len; 10969 10970 /* Word 5 */ 10971 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10972 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10973 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10974 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10975 10976 /* Word 6 */ 10977 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10978 10979 /* Word 7 */ 10980 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10981 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10982 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10983 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10984 10985 /* Word 12 */ 10986 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10987 } 10988 10989 void 10990 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10991 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 10992 { 10993 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 10994 } 10995 10996 static void 10997 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 10998 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10999 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11000 { 11001 IOCB_t *icmd; 11002 11003 icmd = &cmdiocbq->iocb; 11004 memset(icmd, 0, sizeof(*icmd)); 11005 11006 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11007 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11008 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11009 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11010 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11011 if (last_seq) 11012 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11013 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11014 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11015 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11016 11017 icmd->ulpBdeCount = 1; 11018 icmd->ulpLe = 1; 11019 icmd->ulpClass = CLASS3; 11020 11021 switch (cr_cx_cmd) { 11022 case CMD_XMIT_SEQUENCE64_CR: 11023 icmd->ulpContext = rpi; 11024 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11025 break; 11026 case CMD_XMIT_SEQUENCE64_CX: 11027 icmd->ulpContext = ox_id; 11028 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11029 break; 11030 default: 11031 break; 11032 } 11033 } 11034 11035 static void 11036 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11037 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11038 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11039 { 11040 union lpfc_wqe128 *wqe; 11041 struct ulp_bde64 *bpl; 11042 11043 wqe = &cmdiocbq->wqe; 11044 memset(wqe, 0, sizeof(*wqe)); 11045 11046 /* Words 0 - 2 */ 11047 bpl = (struct ulp_bde64 *)bmp->virt; 11048 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11049 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11050 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11051 11052 /* Word 5 */ 11053 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11054 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11055 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11056 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11057 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11058 11059 /* Word 6 */ 11060 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11061 11062 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11063 CMD_XMIT_SEQUENCE64_WQE); 11064 11065 /* Word 7 */ 11066 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11067 11068 /* Word 9 */ 11069 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11070 11071 /* Word 12 */ 11072 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11073 wqe->xmit_sequence.xmit_len = full_size; 11074 else 11075 wqe->xmit_sequence.xmit_len = 11076 wqe->xmit_sequence.bde.tus.f.bdeSize; 11077 } 11078 11079 void 11080 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11081 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11082 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11083 { 11084 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11085 rctl, last_seq, cr_cx_cmd); 11086 } 11087 11088 static void 11089 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11090 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11091 bool wqec) 11092 { 11093 IOCB_t *icmd = NULL; 11094 11095 icmd = &cmdiocbq->iocb; 11096 memset(icmd, 0, sizeof(*icmd)); 11097 11098 /* Word 5 */ 11099 icmd->un.acxri.abortContextTag = ulp_context; 11100 icmd->un.acxri.abortIoTag = iotag; 11101 11102 if (ia) { 11103 /* Word 7 */ 11104 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11105 } else { 11106 /* Word 3 */ 11107 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11108 11109 /* Word 7 */ 11110 icmd->ulpClass = ulp_class; 11111 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11112 } 11113 11114 /* Word 7 */ 11115 icmd->ulpLe = 1; 11116 } 11117 11118 static void 11119 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11120 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11121 bool wqec) 11122 { 11123 union lpfc_wqe128 *wqe; 11124 11125 wqe = &cmdiocbq->wqe; 11126 memset(wqe, 0, sizeof(*wqe)); 11127 11128 /* Word 3 */ 11129 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11130 if (ia) 11131 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11132 else 11133 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11134 11135 /* Word 7 */ 11136 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11137 11138 /* Word 8 */ 11139 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11140 11141 /* Word 9 */ 11142 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11143 11144 /* Word 10 */ 11145 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11146 11147 /* Word 11 */ 11148 if (wqec) 11149 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11150 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11151 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11152 } 11153 11154 void 11155 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11156 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11157 bool ia, bool wqec) 11158 { 11159 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11160 cqid, ia, wqec); 11161 } 11162 11163 /** 11164 * lpfc_sli_api_table_setup - Set up sli api function jump table 11165 * @phba: The hba struct for which this call is being executed. 11166 * @dev_grp: The HBA PCI-Device group number. 11167 * 11168 * This routine sets up the SLI interface API function jump table in @phba 11169 * struct. 11170 * Returns: 0 - success, -ENODEV - failure. 11171 **/ 11172 int 11173 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11174 { 11175 11176 switch (dev_grp) { 11177 case LPFC_PCI_DEV_LP: 11178 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11179 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11180 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11181 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11182 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11183 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11184 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11185 break; 11186 case LPFC_PCI_DEV_OC: 11187 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11188 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11189 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11190 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11191 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11192 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11193 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11194 break; 11195 default: 11196 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11197 "1419 Invalid HBA PCI-device group: 0x%x\n", 11198 dev_grp); 11199 return -ENODEV; 11200 } 11201 return 0; 11202 } 11203 11204 /** 11205 * lpfc_sli4_calc_ring - Calculates which ring to use 11206 * @phba: Pointer to HBA context object. 11207 * @piocb: Pointer to command iocb. 11208 * 11209 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11210 * hba_wqidx, thus we need to calculate the corresponding ring. 11211 * Since ABORTS must go on the same WQ of the command they are 11212 * aborting, we use command's hba_wqidx. 11213 */ 11214 struct lpfc_sli_ring * 11215 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11216 { 11217 struct lpfc_io_buf *lpfc_cmd; 11218 11219 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11220 if (unlikely(!phba->sli4_hba.hdwq)) 11221 return NULL; 11222 /* 11223 * for abort iocb hba_wqidx should already 11224 * be setup based on what work queue we used. 11225 */ 11226 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11227 lpfc_cmd = piocb->io_buf; 11228 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11229 } 11230 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11231 } else { 11232 if (unlikely(!phba->sli4_hba.els_wq)) 11233 return NULL; 11234 piocb->hba_wqidx = 0; 11235 return phba->sli4_hba.els_wq->pring; 11236 } 11237 } 11238 11239 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11240 { 11241 struct lpfc_hba *phba = eq->phba; 11242 11243 /* 11244 * Unlocking an irq is one of the entry point to check 11245 * for re-schedule, but we are good for io submission 11246 * path as midlayer does a get_cpu to glue us in. Flush 11247 * out the invalidate queue so we can see the updated 11248 * value for flag. 11249 */ 11250 smp_rmb(); 11251 11252 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11253 /* We will not likely get the completion for the caller 11254 * during this iteration but i guess that's fine. 11255 * Future io's coming on this eq should be able to 11256 * pick it up. As for the case of single io's, they 11257 * will be handled through a sched from polling timer 11258 * function which is currently triggered every 1msec. 11259 */ 11260 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11261 LPFC_QUEUE_WORK); 11262 } 11263 11264 /** 11265 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11266 * @phba: Pointer to HBA context object. 11267 * @ring_number: Ring number 11268 * @piocb: Pointer to command iocb. 11269 * @flag: Flag indicating if this command can be put into txq. 11270 * 11271 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11272 * function. This function gets the hbalock and calls 11273 * __lpfc_sli_issue_iocb function and will return the error returned 11274 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11275 * functions which do not hold hbalock. 11276 **/ 11277 int 11278 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11279 struct lpfc_iocbq *piocb, uint32_t flag) 11280 { 11281 struct lpfc_sli_ring *pring; 11282 struct lpfc_queue *eq; 11283 unsigned long iflags; 11284 int rc; 11285 11286 /* If the PCI channel is in offline state, do not post iocbs. */ 11287 if (unlikely(pci_channel_offline(phba->pcidev))) 11288 return IOCB_ERROR; 11289 11290 if (phba->sli_rev == LPFC_SLI_REV4) { 11291 lpfc_sli_prep_wqe(phba, piocb); 11292 11293 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11294 11295 pring = lpfc_sli4_calc_ring(phba, piocb); 11296 if (unlikely(pring == NULL)) 11297 return IOCB_ERROR; 11298 11299 spin_lock_irqsave(&pring->ring_lock, iflags); 11300 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11301 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11302 11303 lpfc_sli4_poll_eq(eq); 11304 } else { 11305 /* For now, SLI2/3 will still use hbalock */ 11306 spin_lock_irqsave(&phba->hbalock, iflags); 11307 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11308 spin_unlock_irqrestore(&phba->hbalock, iflags); 11309 } 11310 return rc; 11311 } 11312 11313 /** 11314 * lpfc_extra_ring_setup - Extra ring setup function 11315 * @phba: Pointer to HBA context object. 11316 * 11317 * This function is called while driver attaches with the 11318 * HBA to setup the extra ring. The extra ring is used 11319 * only when driver needs to support target mode functionality 11320 * or IP over FC functionalities. 11321 * 11322 * This function is called with no lock held. SLI3 only. 11323 **/ 11324 static int 11325 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11326 { 11327 struct lpfc_sli *psli; 11328 struct lpfc_sli_ring *pring; 11329 11330 psli = &phba->sli; 11331 11332 /* Adjust cmd/rsp ring iocb entries more evenly */ 11333 11334 /* Take some away from the FCP ring */ 11335 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11336 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11337 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11338 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11339 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11340 11341 /* and give them to the extra ring */ 11342 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11343 11344 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11345 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11346 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11347 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11348 11349 /* Setup default profile for this ring */ 11350 pring->iotag_max = 4096; 11351 pring->num_mask = 1; 11352 pring->prt[0].profile = 0; /* Mask 0 */ 11353 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11354 pring->prt[0].type = phba->cfg_multi_ring_type; 11355 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11356 return 0; 11357 } 11358 11359 static void 11360 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11361 struct lpfc_nodelist *ndlp) 11362 { 11363 unsigned long iflags; 11364 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11365 11366 spin_lock_irqsave(&phba->hbalock, iflags); 11367 if (!list_empty(&evtp->evt_listp)) { 11368 spin_unlock_irqrestore(&phba->hbalock, iflags); 11369 return; 11370 } 11371 11372 /* Incrementing the reference count until the queued work is done. */ 11373 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11374 if (!evtp->evt_arg1) { 11375 spin_unlock_irqrestore(&phba->hbalock, iflags); 11376 return; 11377 } 11378 evtp->evt = LPFC_EVT_RECOVER_PORT; 11379 list_add_tail(&evtp->evt_listp, &phba->work_list); 11380 spin_unlock_irqrestore(&phba->hbalock, iflags); 11381 11382 lpfc_worker_wake_up(phba); 11383 } 11384 11385 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11386 * @phba: Pointer to HBA context object. 11387 * @iocbq: Pointer to iocb object. 11388 * 11389 * The async_event handler calls this routine when it receives 11390 * an ASYNC_STATUS_CN event from the port. The port generates 11391 * this event when an Abort Sequence request to an rport fails 11392 * twice in succession. The abort could be originated by the 11393 * driver or by the port. The ABTS could have been for an ELS 11394 * or FCP IO. The port only generates this event when an ABTS 11395 * fails to complete after one retry. 11396 */ 11397 static void 11398 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11399 struct lpfc_iocbq *iocbq) 11400 { 11401 struct lpfc_nodelist *ndlp = NULL; 11402 uint16_t rpi = 0, vpi = 0; 11403 struct lpfc_vport *vport = NULL; 11404 11405 /* The rpi in the ulpContext is vport-sensitive. */ 11406 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11407 rpi = iocbq->iocb.ulpContext; 11408 11409 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11410 "3092 Port generated ABTS async event " 11411 "on vpi %d rpi %d status 0x%x\n", 11412 vpi, rpi, iocbq->iocb.ulpStatus); 11413 11414 vport = lpfc_find_vport_by_vpid(phba, vpi); 11415 if (!vport) 11416 goto err_exit; 11417 ndlp = lpfc_findnode_rpi(vport, rpi); 11418 if (!ndlp) 11419 goto err_exit; 11420 11421 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11422 lpfc_sli_abts_recover_port(vport, ndlp); 11423 return; 11424 11425 err_exit: 11426 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11427 "3095 Event Context not found, no " 11428 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11429 vpi, rpi, iocbq->iocb.ulpStatus, 11430 iocbq->iocb.ulpContext); 11431 } 11432 11433 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11434 * @phba: pointer to HBA context object. 11435 * @ndlp: nodelist pointer for the impacted rport. 11436 * @axri: pointer to the wcqe containing the failed exchange. 11437 * 11438 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11439 * port. The port generates this event when an abort exchange request to an 11440 * rport fails twice in succession with no reply. The abort could be originated 11441 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11442 */ 11443 void 11444 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11445 struct lpfc_nodelist *ndlp, 11446 struct sli4_wcqe_xri_aborted *axri) 11447 { 11448 uint32_t ext_status = 0; 11449 11450 if (!ndlp) { 11451 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11452 "3115 Node Context not found, driver " 11453 "ignoring abts err event\n"); 11454 return; 11455 } 11456 11457 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11458 "3116 Port generated FCP XRI ABORT event on " 11459 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11460 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11461 bf_get(lpfc_wcqe_xa_xri, axri), 11462 bf_get(lpfc_wcqe_xa_status, axri), 11463 axri->parameter); 11464 11465 /* 11466 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11467 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11468 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11469 */ 11470 ext_status = axri->parameter & IOERR_PARAM_MASK; 11471 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11472 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11473 lpfc_sli_post_recovery_event(phba, ndlp); 11474 } 11475 11476 /** 11477 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11478 * @phba: Pointer to HBA context object. 11479 * @pring: Pointer to driver SLI ring object. 11480 * @iocbq: Pointer to iocb object. 11481 * 11482 * This function is called by the slow ring event handler 11483 * function when there is an ASYNC event iocb in the ring. 11484 * This function is called with no lock held. 11485 * Currently this function handles only temperature related 11486 * ASYNC events. The function decodes the temperature sensor 11487 * event message and posts events for the management applications. 11488 **/ 11489 static void 11490 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11491 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11492 { 11493 IOCB_t *icmd; 11494 uint16_t evt_code; 11495 struct temp_event temp_event_data; 11496 struct Scsi_Host *shost; 11497 uint32_t *iocb_w; 11498 11499 icmd = &iocbq->iocb; 11500 evt_code = icmd->un.asyncstat.evt_code; 11501 11502 switch (evt_code) { 11503 case ASYNC_TEMP_WARN: 11504 case ASYNC_TEMP_SAFE: 11505 temp_event_data.data = (uint32_t) icmd->ulpContext; 11506 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11507 if (evt_code == ASYNC_TEMP_WARN) { 11508 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11509 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11510 "0347 Adapter is very hot, please take " 11511 "corrective action. temperature : %d Celsius\n", 11512 (uint32_t) icmd->ulpContext); 11513 } else { 11514 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11515 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11516 "0340 Adapter temperature is OK now. " 11517 "temperature : %d Celsius\n", 11518 (uint32_t) icmd->ulpContext); 11519 } 11520 11521 /* Send temperature change event to applications */ 11522 shost = lpfc_shost_from_vport(phba->pport); 11523 fc_host_post_vendor_event(shost, fc_get_event_number(), 11524 sizeof(temp_event_data), (char *) &temp_event_data, 11525 LPFC_NL_VENDOR_ID); 11526 break; 11527 case ASYNC_STATUS_CN: 11528 lpfc_sli_abts_err_handler(phba, iocbq); 11529 break; 11530 default: 11531 iocb_w = (uint32_t *) icmd; 11532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11533 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11534 " evt_code 0x%x\n" 11535 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11536 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11537 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11538 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11539 pring->ringno, icmd->un.asyncstat.evt_code, 11540 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11541 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11542 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11543 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11544 11545 break; 11546 } 11547 } 11548 11549 11550 /** 11551 * lpfc_sli4_setup - SLI ring setup function 11552 * @phba: Pointer to HBA context object. 11553 * 11554 * lpfc_sli_setup sets up rings of the SLI interface with 11555 * number of iocbs per ring and iotags. This function is 11556 * called while driver attach to the HBA and before the 11557 * interrupts are enabled. So there is no need for locking. 11558 * 11559 * This function always returns 0. 11560 **/ 11561 int 11562 lpfc_sli4_setup(struct lpfc_hba *phba) 11563 { 11564 struct lpfc_sli_ring *pring; 11565 11566 pring = phba->sli4_hba.els_wq->pring; 11567 pring->num_mask = LPFC_MAX_RING_MASK; 11568 pring->prt[0].profile = 0; /* Mask 0 */ 11569 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11570 pring->prt[0].type = FC_TYPE_ELS; 11571 pring->prt[0].lpfc_sli_rcv_unsol_event = 11572 lpfc_els_unsol_event; 11573 pring->prt[1].profile = 0; /* Mask 1 */ 11574 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11575 pring->prt[1].type = FC_TYPE_ELS; 11576 pring->prt[1].lpfc_sli_rcv_unsol_event = 11577 lpfc_els_unsol_event; 11578 pring->prt[2].profile = 0; /* Mask 2 */ 11579 /* NameServer Inquiry */ 11580 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11581 /* NameServer */ 11582 pring->prt[2].type = FC_TYPE_CT; 11583 pring->prt[2].lpfc_sli_rcv_unsol_event = 11584 lpfc_ct_unsol_event; 11585 pring->prt[3].profile = 0; /* Mask 3 */ 11586 /* NameServer response */ 11587 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11588 /* NameServer */ 11589 pring->prt[3].type = FC_TYPE_CT; 11590 pring->prt[3].lpfc_sli_rcv_unsol_event = 11591 lpfc_ct_unsol_event; 11592 return 0; 11593 } 11594 11595 /** 11596 * lpfc_sli_setup - SLI ring setup function 11597 * @phba: Pointer to HBA context object. 11598 * 11599 * lpfc_sli_setup sets up rings of the SLI interface with 11600 * number of iocbs per ring and iotags. This function is 11601 * called while driver attach to the HBA and before the 11602 * interrupts are enabled. So there is no need for locking. 11603 * 11604 * This function always returns 0. SLI3 only. 11605 **/ 11606 int 11607 lpfc_sli_setup(struct lpfc_hba *phba) 11608 { 11609 int i, totiocbsize = 0; 11610 struct lpfc_sli *psli = &phba->sli; 11611 struct lpfc_sli_ring *pring; 11612 11613 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11614 psli->sli_flag = 0; 11615 11616 psli->iocbq_lookup = NULL; 11617 psli->iocbq_lookup_len = 0; 11618 psli->last_iotag = 0; 11619 11620 for (i = 0; i < psli->num_rings; i++) { 11621 pring = &psli->sli3_ring[i]; 11622 switch (i) { 11623 case LPFC_FCP_RING: /* ring 0 - FCP */ 11624 /* numCiocb and numRiocb are used in config_port */ 11625 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11626 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11627 pring->sli.sli3.numCiocb += 11628 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11629 pring->sli.sli3.numRiocb += 11630 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11631 pring->sli.sli3.numCiocb += 11632 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11633 pring->sli.sli3.numRiocb += 11634 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11635 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11636 SLI3_IOCB_CMD_SIZE : 11637 SLI2_IOCB_CMD_SIZE; 11638 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11639 SLI3_IOCB_RSP_SIZE : 11640 SLI2_IOCB_RSP_SIZE; 11641 pring->iotag_ctr = 0; 11642 pring->iotag_max = 11643 (phba->cfg_hba_queue_depth * 2); 11644 pring->fast_iotag = pring->iotag_max; 11645 pring->num_mask = 0; 11646 break; 11647 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11648 /* numCiocb and numRiocb are used in config_port */ 11649 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11650 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11651 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11652 SLI3_IOCB_CMD_SIZE : 11653 SLI2_IOCB_CMD_SIZE; 11654 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11655 SLI3_IOCB_RSP_SIZE : 11656 SLI2_IOCB_RSP_SIZE; 11657 pring->iotag_max = phba->cfg_hba_queue_depth; 11658 pring->num_mask = 0; 11659 break; 11660 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11661 /* numCiocb and numRiocb are used in config_port */ 11662 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11663 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11664 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11665 SLI3_IOCB_CMD_SIZE : 11666 SLI2_IOCB_CMD_SIZE; 11667 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11668 SLI3_IOCB_RSP_SIZE : 11669 SLI2_IOCB_RSP_SIZE; 11670 pring->fast_iotag = 0; 11671 pring->iotag_ctr = 0; 11672 pring->iotag_max = 4096; 11673 pring->lpfc_sli_rcv_async_status = 11674 lpfc_sli_async_event_handler; 11675 pring->num_mask = LPFC_MAX_RING_MASK; 11676 pring->prt[0].profile = 0; /* Mask 0 */ 11677 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11678 pring->prt[0].type = FC_TYPE_ELS; 11679 pring->prt[0].lpfc_sli_rcv_unsol_event = 11680 lpfc_els_unsol_event; 11681 pring->prt[1].profile = 0; /* Mask 1 */ 11682 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11683 pring->prt[1].type = FC_TYPE_ELS; 11684 pring->prt[1].lpfc_sli_rcv_unsol_event = 11685 lpfc_els_unsol_event; 11686 pring->prt[2].profile = 0; /* Mask 2 */ 11687 /* NameServer Inquiry */ 11688 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11689 /* NameServer */ 11690 pring->prt[2].type = FC_TYPE_CT; 11691 pring->prt[2].lpfc_sli_rcv_unsol_event = 11692 lpfc_ct_unsol_event; 11693 pring->prt[3].profile = 0; /* Mask 3 */ 11694 /* NameServer response */ 11695 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11696 /* NameServer */ 11697 pring->prt[3].type = FC_TYPE_CT; 11698 pring->prt[3].lpfc_sli_rcv_unsol_event = 11699 lpfc_ct_unsol_event; 11700 break; 11701 } 11702 totiocbsize += (pring->sli.sli3.numCiocb * 11703 pring->sli.sli3.sizeCiocb) + 11704 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11705 } 11706 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11707 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11708 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11709 "SLI2 SLIM Data: x%x x%lx\n", 11710 phba->brd_no, totiocbsize, 11711 (unsigned long) MAX_SLIM_IOCB_SIZE); 11712 } 11713 if (phba->cfg_multi_ring_support == 2) 11714 lpfc_extra_ring_setup(phba); 11715 11716 return 0; 11717 } 11718 11719 /** 11720 * lpfc_sli4_queue_init - Queue initialization function 11721 * @phba: Pointer to HBA context object. 11722 * 11723 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11724 * ring. This function also initializes ring indices of each ring. 11725 * This function is called during the initialization of the SLI 11726 * interface of an HBA. 11727 * This function is called with no lock held and always returns 11728 * 1. 11729 **/ 11730 void 11731 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11732 { 11733 struct lpfc_sli *psli; 11734 struct lpfc_sli_ring *pring; 11735 int i; 11736 11737 psli = &phba->sli; 11738 spin_lock_irq(&phba->hbalock); 11739 INIT_LIST_HEAD(&psli->mboxq); 11740 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11741 /* Initialize list headers for txq and txcmplq as double linked lists */ 11742 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11743 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11744 pring->flag = 0; 11745 pring->ringno = LPFC_FCP_RING; 11746 pring->txcmplq_cnt = 0; 11747 INIT_LIST_HEAD(&pring->txq); 11748 INIT_LIST_HEAD(&pring->txcmplq); 11749 INIT_LIST_HEAD(&pring->iocb_continueq); 11750 spin_lock_init(&pring->ring_lock); 11751 } 11752 pring = phba->sli4_hba.els_wq->pring; 11753 pring->flag = 0; 11754 pring->ringno = LPFC_ELS_RING; 11755 pring->txcmplq_cnt = 0; 11756 INIT_LIST_HEAD(&pring->txq); 11757 INIT_LIST_HEAD(&pring->txcmplq); 11758 INIT_LIST_HEAD(&pring->iocb_continueq); 11759 spin_lock_init(&pring->ring_lock); 11760 11761 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11762 pring = phba->sli4_hba.nvmels_wq->pring; 11763 pring->flag = 0; 11764 pring->ringno = LPFC_ELS_RING; 11765 pring->txcmplq_cnt = 0; 11766 INIT_LIST_HEAD(&pring->txq); 11767 INIT_LIST_HEAD(&pring->txcmplq); 11768 INIT_LIST_HEAD(&pring->iocb_continueq); 11769 spin_lock_init(&pring->ring_lock); 11770 } 11771 11772 spin_unlock_irq(&phba->hbalock); 11773 } 11774 11775 /** 11776 * lpfc_sli_queue_init - Queue initialization function 11777 * @phba: Pointer to HBA context object. 11778 * 11779 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11780 * ring. This function also initializes ring indices of each ring. 11781 * This function is called during the initialization of the SLI 11782 * interface of an HBA. 11783 * This function is called with no lock held and always returns 11784 * 1. 11785 **/ 11786 void 11787 lpfc_sli_queue_init(struct lpfc_hba *phba) 11788 { 11789 struct lpfc_sli *psli; 11790 struct lpfc_sli_ring *pring; 11791 int i; 11792 11793 psli = &phba->sli; 11794 spin_lock_irq(&phba->hbalock); 11795 INIT_LIST_HEAD(&psli->mboxq); 11796 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11797 /* Initialize list headers for txq and txcmplq as double linked lists */ 11798 for (i = 0; i < psli->num_rings; i++) { 11799 pring = &psli->sli3_ring[i]; 11800 pring->ringno = i; 11801 pring->sli.sli3.next_cmdidx = 0; 11802 pring->sli.sli3.local_getidx = 0; 11803 pring->sli.sli3.cmdidx = 0; 11804 INIT_LIST_HEAD(&pring->iocb_continueq); 11805 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11806 INIT_LIST_HEAD(&pring->postbufq); 11807 pring->flag = 0; 11808 INIT_LIST_HEAD(&pring->txq); 11809 INIT_LIST_HEAD(&pring->txcmplq); 11810 spin_lock_init(&pring->ring_lock); 11811 } 11812 spin_unlock_irq(&phba->hbalock); 11813 } 11814 11815 /** 11816 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11817 * @phba: Pointer to HBA context object. 11818 * 11819 * This routine flushes the mailbox command subsystem. It will unconditionally 11820 * flush all the mailbox commands in the three possible stages in the mailbox 11821 * command sub-system: pending mailbox command queue; the outstanding mailbox 11822 * command; and completed mailbox command queue. It is caller's responsibility 11823 * to make sure that the driver is in the proper state to flush the mailbox 11824 * command sub-system. Namely, the posting of mailbox commands into the 11825 * pending mailbox command queue from the various clients must be stopped; 11826 * either the HBA is in a state that it will never works on the outstanding 11827 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11828 * mailbox command has been completed. 11829 **/ 11830 static void 11831 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11832 { 11833 LIST_HEAD(completions); 11834 struct lpfc_sli *psli = &phba->sli; 11835 LPFC_MBOXQ_t *pmb; 11836 unsigned long iflag; 11837 11838 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11839 local_bh_disable(); 11840 11841 /* Flush all the mailbox commands in the mbox system */ 11842 spin_lock_irqsave(&phba->hbalock, iflag); 11843 11844 /* The pending mailbox command queue */ 11845 list_splice_init(&phba->sli.mboxq, &completions); 11846 /* The outstanding active mailbox command */ 11847 if (psli->mbox_active) { 11848 list_add_tail(&psli->mbox_active->list, &completions); 11849 psli->mbox_active = NULL; 11850 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11851 } 11852 /* The completed mailbox command queue */ 11853 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11854 spin_unlock_irqrestore(&phba->hbalock, iflag); 11855 11856 /* Enable softirqs again, done with phba->hbalock */ 11857 local_bh_enable(); 11858 11859 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11860 while (!list_empty(&completions)) { 11861 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11862 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11863 if (pmb->mbox_cmpl) 11864 pmb->mbox_cmpl(phba, pmb); 11865 } 11866 } 11867 11868 /** 11869 * lpfc_sli_host_down - Vport cleanup function 11870 * @vport: Pointer to virtual port object. 11871 * 11872 * lpfc_sli_host_down is called to clean up the resources 11873 * associated with a vport before destroying virtual 11874 * port data structures. 11875 * This function does following operations: 11876 * - Free discovery resources associated with this virtual 11877 * port. 11878 * - Free iocbs associated with this virtual port in 11879 * the txq. 11880 * - Send abort for all iocb commands associated with this 11881 * vport in txcmplq. 11882 * 11883 * This function is called with no lock held and always returns 1. 11884 **/ 11885 int 11886 lpfc_sli_host_down(struct lpfc_vport *vport) 11887 { 11888 LIST_HEAD(completions); 11889 struct lpfc_hba *phba = vport->phba; 11890 struct lpfc_sli *psli = &phba->sli; 11891 struct lpfc_queue *qp = NULL; 11892 struct lpfc_sli_ring *pring; 11893 struct lpfc_iocbq *iocb, *next_iocb; 11894 int i; 11895 unsigned long flags = 0; 11896 uint16_t prev_pring_flag; 11897 11898 lpfc_cleanup_discovery_resources(vport); 11899 11900 spin_lock_irqsave(&phba->hbalock, flags); 11901 11902 /* 11903 * Error everything on the txq since these iocbs 11904 * have not been given to the FW yet. 11905 * Also issue ABTS for everything on the txcmplq 11906 */ 11907 if (phba->sli_rev != LPFC_SLI_REV4) { 11908 for (i = 0; i < psli->num_rings; i++) { 11909 pring = &psli->sli3_ring[i]; 11910 prev_pring_flag = pring->flag; 11911 /* Only slow rings */ 11912 if (pring->ringno == LPFC_ELS_RING) { 11913 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11914 /* Set the lpfc data pending flag */ 11915 set_bit(LPFC_DATA_READY, &phba->data_flags); 11916 } 11917 list_for_each_entry_safe(iocb, next_iocb, 11918 &pring->txq, list) { 11919 if (iocb->vport != vport) 11920 continue; 11921 list_move_tail(&iocb->list, &completions); 11922 } 11923 list_for_each_entry_safe(iocb, next_iocb, 11924 &pring->txcmplq, list) { 11925 if (iocb->vport != vport) 11926 continue; 11927 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11928 NULL); 11929 } 11930 pring->flag = prev_pring_flag; 11931 } 11932 } else { 11933 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11934 pring = qp->pring; 11935 if (!pring) 11936 continue; 11937 if (pring == phba->sli4_hba.els_wq->pring) { 11938 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11939 /* Set the lpfc data pending flag */ 11940 set_bit(LPFC_DATA_READY, &phba->data_flags); 11941 } 11942 prev_pring_flag = pring->flag; 11943 spin_lock(&pring->ring_lock); 11944 list_for_each_entry_safe(iocb, next_iocb, 11945 &pring->txq, list) { 11946 if (iocb->vport != vport) 11947 continue; 11948 list_move_tail(&iocb->list, &completions); 11949 } 11950 spin_unlock(&pring->ring_lock); 11951 list_for_each_entry_safe(iocb, next_iocb, 11952 &pring->txcmplq, list) { 11953 if (iocb->vport != vport) 11954 continue; 11955 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11956 NULL); 11957 } 11958 pring->flag = prev_pring_flag; 11959 } 11960 } 11961 spin_unlock_irqrestore(&phba->hbalock, flags); 11962 11963 /* Make sure HBA is alive */ 11964 lpfc_issue_hb_tmo(phba); 11965 11966 /* Cancel all the IOCBs from the completions list */ 11967 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11968 IOERR_SLI_DOWN); 11969 return 1; 11970 } 11971 11972 /** 11973 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11974 * @phba: Pointer to HBA context object. 11975 * 11976 * This function cleans up all iocb, buffers, mailbox commands 11977 * while shutting down the HBA. This function is called with no 11978 * lock held and always returns 1. 11979 * This function does the following to cleanup driver resources: 11980 * - Free discovery resources for each virtual port 11981 * - Cleanup any pending fabric iocbs 11982 * - Iterate through the iocb txq and free each entry 11983 * in the list. 11984 * - Free up any buffer posted to the HBA 11985 * - Free mailbox commands in the mailbox queue. 11986 **/ 11987 int 11988 lpfc_sli_hba_down(struct lpfc_hba *phba) 11989 { 11990 LIST_HEAD(completions); 11991 struct lpfc_sli *psli = &phba->sli; 11992 struct lpfc_queue *qp = NULL; 11993 struct lpfc_sli_ring *pring; 11994 struct lpfc_dmabuf *buf_ptr; 11995 unsigned long flags = 0; 11996 int i; 11997 11998 /* Shutdown the mailbox command sub-system */ 11999 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12000 12001 lpfc_hba_down_prep(phba); 12002 12003 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12004 local_bh_disable(); 12005 12006 lpfc_fabric_abort_hba(phba); 12007 12008 spin_lock_irqsave(&phba->hbalock, flags); 12009 12010 /* 12011 * Error everything on the txq since these iocbs 12012 * have not been given to the FW yet. 12013 */ 12014 if (phba->sli_rev != LPFC_SLI_REV4) { 12015 for (i = 0; i < psli->num_rings; i++) { 12016 pring = &psli->sli3_ring[i]; 12017 /* Only slow rings */ 12018 if (pring->ringno == LPFC_ELS_RING) { 12019 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12020 /* Set the lpfc data pending flag */ 12021 set_bit(LPFC_DATA_READY, &phba->data_flags); 12022 } 12023 list_splice_init(&pring->txq, &completions); 12024 } 12025 } else { 12026 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12027 pring = qp->pring; 12028 if (!pring) 12029 continue; 12030 spin_lock(&pring->ring_lock); 12031 list_splice_init(&pring->txq, &completions); 12032 spin_unlock(&pring->ring_lock); 12033 if (pring == phba->sli4_hba.els_wq->pring) { 12034 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12035 /* Set the lpfc data pending flag */ 12036 set_bit(LPFC_DATA_READY, &phba->data_flags); 12037 } 12038 } 12039 } 12040 spin_unlock_irqrestore(&phba->hbalock, flags); 12041 12042 /* Cancel all the IOCBs from the completions list */ 12043 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12044 IOERR_SLI_DOWN); 12045 12046 spin_lock_irqsave(&phba->hbalock, flags); 12047 list_splice_init(&phba->elsbuf, &completions); 12048 phba->elsbuf_cnt = 0; 12049 phba->elsbuf_prev_cnt = 0; 12050 spin_unlock_irqrestore(&phba->hbalock, flags); 12051 12052 while (!list_empty(&completions)) { 12053 list_remove_head(&completions, buf_ptr, 12054 struct lpfc_dmabuf, list); 12055 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12056 kfree(buf_ptr); 12057 } 12058 12059 /* Enable softirqs again, done with phba->hbalock */ 12060 local_bh_enable(); 12061 12062 /* Return any active mbox cmds */ 12063 del_timer_sync(&psli->mbox_tmo); 12064 12065 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12066 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12067 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12068 12069 return 1; 12070 } 12071 12072 /** 12073 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12074 * @srcp: Source memory pointer. 12075 * @destp: Destination memory pointer. 12076 * @cnt: Number of words required to be copied. 12077 * 12078 * This function is used for copying data between driver memory 12079 * and the SLI memory. This function also changes the endianness 12080 * of each word if native endianness is different from SLI 12081 * endianness. This function can be called with or without 12082 * lock. 12083 **/ 12084 void 12085 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12086 { 12087 uint32_t *src = srcp; 12088 uint32_t *dest = destp; 12089 uint32_t ldata; 12090 int i; 12091 12092 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12093 ldata = *src; 12094 ldata = le32_to_cpu(ldata); 12095 *dest = ldata; 12096 src++; 12097 dest++; 12098 } 12099 } 12100 12101 12102 /** 12103 * lpfc_sli_bemem_bcopy - SLI memory copy function 12104 * @srcp: Source memory pointer. 12105 * @destp: Destination memory pointer. 12106 * @cnt: Number of words required to be copied. 12107 * 12108 * This function is used for copying data between a data structure 12109 * with big endian representation to local endianness. 12110 * This function can be called with or without lock. 12111 **/ 12112 void 12113 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12114 { 12115 uint32_t *src = srcp; 12116 uint32_t *dest = destp; 12117 uint32_t ldata; 12118 int i; 12119 12120 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12121 ldata = *src; 12122 ldata = be32_to_cpu(ldata); 12123 *dest = ldata; 12124 src++; 12125 dest++; 12126 } 12127 } 12128 12129 /** 12130 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12131 * @phba: Pointer to HBA context object. 12132 * @pring: Pointer to driver SLI ring object. 12133 * @mp: Pointer to driver buffer object. 12134 * 12135 * This function is called with no lock held. 12136 * It always return zero after adding the buffer to the postbufq 12137 * buffer list. 12138 **/ 12139 int 12140 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12141 struct lpfc_dmabuf *mp) 12142 { 12143 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12144 later */ 12145 spin_lock_irq(&phba->hbalock); 12146 list_add_tail(&mp->list, &pring->postbufq); 12147 pring->postbufq_cnt++; 12148 spin_unlock_irq(&phba->hbalock); 12149 return 0; 12150 } 12151 12152 /** 12153 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12154 * @phba: Pointer to HBA context object. 12155 * 12156 * When HBQ is enabled, buffers are searched based on tags. This function 12157 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12158 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12159 * does not conflict with tags of buffer posted for unsolicited events. 12160 * The function returns the allocated tag. The function is called with 12161 * no locks held. 12162 **/ 12163 uint32_t 12164 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12165 { 12166 spin_lock_irq(&phba->hbalock); 12167 phba->buffer_tag_count++; 12168 /* 12169 * Always set the QUE_BUFTAG_BIT to distiguish between 12170 * a tag assigned by HBQ. 12171 */ 12172 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12173 spin_unlock_irq(&phba->hbalock); 12174 return phba->buffer_tag_count; 12175 } 12176 12177 /** 12178 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12179 * @phba: Pointer to HBA context object. 12180 * @pring: Pointer to driver SLI ring object. 12181 * @tag: Buffer tag. 12182 * 12183 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12184 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12185 * iocb is posted to the response ring with the tag of the buffer. 12186 * This function searches the pring->postbufq list using the tag 12187 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12188 * iocb. If the buffer is found then lpfc_dmabuf object of the 12189 * buffer is returned to the caller else NULL is returned. 12190 * This function is called with no lock held. 12191 **/ 12192 struct lpfc_dmabuf * 12193 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12194 uint32_t tag) 12195 { 12196 struct lpfc_dmabuf *mp, *next_mp; 12197 struct list_head *slp = &pring->postbufq; 12198 12199 /* Search postbufq, from the beginning, looking for a match on tag */ 12200 spin_lock_irq(&phba->hbalock); 12201 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12202 if (mp->buffer_tag == tag) { 12203 list_del_init(&mp->list); 12204 pring->postbufq_cnt--; 12205 spin_unlock_irq(&phba->hbalock); 12206 return mp; 12207 } 12208 } 12209 12210 spin_unlock_irq(&phba->hbalock); 12211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12212 "0402 Cannot find virtual addr for buffer tag on " 12213 "ring %d Data x%lx x%px x%px x%x\n", 12214 pring->ringno, (unsigned long) tag, 12215 slp->next, slp->prev, pring->postbufq_cnt); 12216 12217 return NULL; 12218 } 12219 12220 /** 12221 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12222 * @phba: Pointer to HBA context object. 12223 * @pring: Pointer to driver SLI ring object. 12224 * @phys: DMA address of the buffer. 12225 * 12226 * This function searches the buffer list using the dma_address 12227 * of unsolicited event to find the driver's lpfc_dmabuf object 12228 * corresponding to the dma_address. The function returns the 12229 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12230 * This function is called by the ct and els unsolicited event 12231 * handlers to get the buffer associated with the unsolicited 12232 * event. 12233 * 12234 * This function is called with no lock held. 12235 **/ 12236 struct lpfc_dmabuf * 12237 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12238 dma_addr_t phys) 12239 { 12240 struct lpfc_dmabuf *mp, *next_mp; 12241 struct list_head *slp = &pring->postbufq; 12242 12243 /* Search postbufq, from the beginning, looking for a match on phys */ 12244 spin_lock_irq(&phba->hbalock); 12245 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12246 if (mp->phys == phys) { 12247 list_del_init(&mp->list); 12248 pring->postbufq_cnt--; 12249 spin_unlock_irq(&phba->hbalock); 12250 return mp; 12251 } 12252 } 12253 12254 spin_unlock_irq(&phba->hbalock); 12255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12256 "0410 Cannot find virtual addr for mapped buf on " 12257 "ring %d Data x%llx x%px x%px x%x\n", 12258 pring->ringno, (unsigned long long)phys, 12259 slp->next, slp->prev, pring->postbufq_cnt); 12260 return NULL; 12261 } 12262 12263 /** 12264 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12265 * @phba: Pointer to HBA context object. 12266 * @cmdiocb: Pointer to driver command iocb object. 12267 * @rspiocb: Pointer to driver response iocb object. 12268 * 12269 * This function is the completion handler for the abort iocbs for 12270 * ELS commands. This function is called from the ELS ring event 12271 * handler with no lock held. This function frees memory resources 12272 * associated with the abort iocb. 12273 **/ 12274 static void 12275 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12276 struct lpfc_iocbq *rspiocb) 12277 { 12278 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12279 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12280 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12281 12282 if (ulp_status) { 12283 /* 12284 * Assume that the port already completed and returned, or 12285 * will return the iocb. Just Log the message. 12286 */ 12287 if (phba->sli_rev < LPFC_SLI_REV4) { 12288 if (cmnd == CMD_ABORT_XRI_CX && 12289 ulp_status == IOSTAT_LOCAL_REJECT && 12290 ulp_word4 == IOERR_ABORT_REQUESTED) { 12291 goto release_iocb; 12292 } 12293 } 12294 12295 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12296 "0327 Cannot abort els iocb x%px " 12297 "with io cmd xri %x abort tag : x%x, " 12298 "abort status %x abort code %x\n", 12299 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12300 (phba->sli_rev == LPFC_SLI_REV4) ? 12301 get_wqe_reqtag(cmdiocb) : 12302 cmdiocb->iocb.un.acxri.abortContextTag, 12303 ulp_status, ulp_word4); 12304 12305 } 12306 release_iocb: 12307 lpfc_sli_release_iocbq(phba, cmdiocb); 12308 return; 12309 } 12310 12311 /** 12312 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12313 * @phba: Pointer to HBA context object. 12314 * @cmdiocb: Pointer to driver command iocb object. 12315 * @rspiocb: Pointer to driver response iocb object. 12316 * 12317 * The function is called from SLI ring event handler with no 12318 * lock held. This function is the completion handler for ELS commands 12319 * which are aborted. The function frees memory resources used for 12320 * the aborted ELS commands. 12321 **/ 12322 void 12323 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12324 struct lpfc_iocbq *rspiocb) 12325 { 12326 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12327 IOCB_t *irsp; 12328 LPFC_MBOXQ_t *mbox; 12329 u32 ulp_command, ulp_status, ulp_word4, iotag; 12330 12331 ulp_command = get_job_cmnd(phba, cmdiocb); 12332 ulp_status = get_job_ulpstatus(phba, rspiocb); 12333 ulp_word4 = get_job_word4(phba, rspiocb); 12334 12335 if (phba->sli_rev == LPFC_SLI_REV4) { 12336 iotag = get_wqe_reqtag(cmdiocb); 12337 } else { 12338 irsp = &rspiocb->iocb; 12339 iotag = irsp->ulpIoTag; 12340 12341 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12342 * The MBX_REG_LOGIN64 mbox command is freed back to the 12343 * mbox_mem_pool here. 12344 */ 12345 if (cmdiocb->context_un.mbox) { 12346 mbox = cmdiocb->context_un.mbox; 12347 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12348 cmdiocb->context_un.mbox = NULL; 12349 } 12350 } 12351 12352 /* ELS cmd tag <ulpIoTag> completes */ 12353 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12354 "0139 Ignoring ELS cmd code x%x completion Data: " 12355 "x%x x%x x%x x%px\n", 12356 ulp_command, ulp_status, ulp_word4, iotag, 12357 cmdiocb->ndlp); 12358 /* 12359 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12360 * if exchange is busy. 12361 */ 12362 if (ulp_command == CMD_GEN_REQUEST64_CR) 12363 lpfc_ct_free_iocb(phba, cmdiocb); 12364 else 12365 lpfc_els_free_iocb(phba, cmdiocb); 12366 12367 lpfc_nlp_put(ndlp); 12368 } 12369 12370 /** 12371 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12372 * @phba: Pointer to HBA context object. 12373 * @pring: Pointer to driver SLI ring object. 12374 * @cmdiocb: Pointer to driver command iocb object. 12375 * @cmpl: completion function. 12376 * 12377 * This function issues an abort iocb for the provided command iocb. In case 12378 * of unloading, the abort iocb will not be issued to commands on the ELS 12379 * ring. Instead, the callback function shall be changed to those commands 12380 * so that nothing happens when them finishes. This function is called with 12381 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12382 * when the command iocb is an abort request. 12383 * 12384 **/ 12385 int 12386 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12387 struct lpfc_iocbq *cmdiocb, void *cmpl) 12388 { 12389 struct lpfc_vport *vport = cmdiocb->vport; 12390 struct lpfc_iocbq *abtsiocbp; 12391 int retval = IOCB_ERROR; 12392 unsigned long iflags; 12393 struct lpfc_nodelist *ndlp = NULL; 12394 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12395 u16 ulp_context, iotag; 12396 bool ia; 12397 12398 /* 12399 * There are certain command types we don't want to abort. And we 12400 * don't want to abort commands that are already in the process of 12401 * being aborted. 12402 */ 12403 if (ulp_command == CMD_ABORT_XRI_WQE || 12404 ulp_command == CMD_ABORT_XRI_CN || 12405 ulp_command == CMD_CLOSE_XRI_CN || 12406 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12407 return IOCB_ABORTING; 12408 12409 if (!pring) { 12410 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12411 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12412 else 12413 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12414 return retval; 12415 } 12416 12417 /* 12418 * If we're unloading, don't abort iocb on the ELS ring, but change 12419 * the callback so that nothing happens when it finishes. 12420 */ 12421 if ((vport->load_flag & FC_UNLOADING) && 12422 pring->ringno == LPFC_ELS_RING) { 12423 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12424 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12425 else 12426 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12427 return retval; 12428 } 12429 12430 /* issue ABTS for this IOCB based on iotag */ 12431 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12432 if (abtsiocbp == NULL) 12433 return IOCB_NORESOURCE; 12434 12435 /* This signals the response to set the correct status 12436 * before calling the completion handler 12437 */ 12438 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12439 12440 if (phba->sli_rev == LPFC_SLI_REV4) { 12441 ulp_context = cmdiocb->sli4_xritag; 12442 iotag = abtsiocbp->iotag; 12443 } else { 12444 iotag = cmdiocb->iocb.ulpIoTag; 12445 if (pring->ringno == LPFC_ELS_RING) { 12446 ndlp = cmdiocb->ndlp; 12447 ulp_context = ndlp->nlp_rpi; 12448 } else { 12449 ulp_context = cmdiocb->iocb.ulpContext; 12450 } 12451 } 12452 12453 if (phba->link_state < LPFC_LINK_UP || 12454 (phba->sli_rev == LPFC_SLI_REV4 && 12455 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12456 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12457 ia = true; 12458 else 12459 ia = false; 12460 12461 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12462 cmdiocb->iocb.ulpClass, 12463 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12464 12465 abtsiocbp->vport = vport; 12466 12467 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12468 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12469 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12470 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12471 12472 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12473 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12474 12475 if (cmpl) 12476 abtsiocbp->cmd_cmpl = cmpl; 12477 else 12478 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12479 abtsiocbp->vport = vport; 12480 12481 if (phba->sli_rev == LPFC_SLI_REV4) { 12482 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12483 if (unlikely(pring == NULL)) 12484 goto abort_iotag_exit; 12485 /* Note: both hbalock and ring_lock need to be set here */ 12486 spin_lock_irqsave(&pring->ring_lock, iflags); 12487 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12488 abtsiocbp, 0); 12489 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12490 } else { 12491 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12492 abtsiocbp, 0); 12493 } 12494 12495 abort_iotag_exit: 12496 12497 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12498 "0339 Abort IO XRI x%x, Original iotag x%x, " 12499 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12500 "retval x%x\n", 12501 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12502 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12503 retval); 12504 if (retval) { 12505 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12506 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12507 } 12508 12509 /* 12510 * Caller to this routine should check for IOCB_ERROR 12511 * and handle it properly. This routine no longer removes 12512 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12513 */ 12514 return retval; 12515 } 12516 12517 /** 12518 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12519 * @phba: pointer to lpfc HBA data structure. 12520 * 12521 * This routine will abort all pending and outstanding iocbs to an HBA. 12522 **/ 12523 void 12524 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12525 { 12526 struct lpfc_sli *psli = &phba->sli; 12527 struct lpfc_sli_ring *pring; 12528 struct lpfc_queue *qp = NULL; 12529 int i; 12530 12531 if (phba->sli_rev != LPFC_SLI_REV4) { 12532 for (i = 0; i < psli->num_rings; i++) { 12533 pring = &psli->sli3_ring[i]; 12534 lpfc_sli_abort_iocb_ring(phba, pring); 12535 } 12536 return; 12537 } 12538 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12539 pring = qp->pring; 12540 if (!pring) 12541 continue; 12542 lpfc_sli_abort_iocb_ring(phba, pring); 12543 } 12544 } 12545 12546 /** 12547 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12548 * @iocbq: Pointer to iocb object. 12549 * @vport: Pointer to driver virtual port object. 12550 * 12551 * This function acts as an iocb filter for functions which abort FCP iocbs. 12552 * 12553 * Return values 12554 * -ENODEV, if a null iocb or vport ptr is encountered 12555 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12556 * driver already started the abort process, or is an abort iocb itself 12557 * 0, passes criteria for aborting the FCP I/O iocb 12558 **/ 12559 static int 12560 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12561 struct lpfc_vport *vport) 12562 { 12563 u8 ulp_command; 12564 12565 /* No null ptr vports */ 12566 if (!iocbq || iocbq->vport != vport) 12567 return -ENODEV; 12568 12569 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12570 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12571 */ 12572 ulp_command = get_job_cmnd(vport->phba, iocbq); 12573 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12574 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12575 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12576 (ulp_command == CMD_ABORT_XRI_CN || 12577 ulp_command == CMD_CLOSE_XRI_CN || 12578 ulp_command == CMD_ABORT_XRI_WQE)) 12579 return -EINVAL; 12580 12581 return 0; 12582 } 12583 12584 /** 12585 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12586 * @iocbq: Pointer to driver iocb object. 12587 * @vport: Pointer to driver virtual port object. 12588 * @tgt_id: SCSI ID of the target. 12589 * @lun_id: LUN ID of the scsi device. 12590 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12591 * 12592 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12593 * host. 12594 * 12595 * It will return 12596 * 0 if the filtering criteria is met for the given iocb and will return 12597 * 1 if the filtering criteria is not met. 12598 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12599 * given iocb is for the SCSI device specified by vport, tgt_id and 12600 * lun_id parameter. 12601 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12602 * given iocb is for the SCSI target specified by vport and tgt_id 12603 * parameters. 12604 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12605 * given iocb is for the SCSI host associated with the given vport. 12606 * This function is called with no locks held. 12607 **/ 12608 static int 12609 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12610 uint16_t tgt_id, uint64_t lun_id, 12611 lpfc_ctx_cmd ctx_cmd) 12612 { 12613 struct lpfc_io_buf *lpfc_cmd; 12614 int rc = 1; 12615 12616 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12617 12618 if (lpfc_cmd->pCmd == NULL) 12619 return rc; 12620 12621 switch (ctx_cmd) { 12622 case LPFC_CTX_LUN: 12623 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12624 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12625 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12626 rc = 0; 12627 break; 12628 case LPFC_CTX_TGT: 12629 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12630 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12631 rc = 0; 12632 break; 12633 case LPFC_CTX_HOST: 12634 rc = 0; 12635 break; 12636 default: 12637 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12638 __func__, ctx_cmd); 12639 break; 12640 } 12641 12642 return rc; 12643 } 12644 12645 /** 12646 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12647 * @vport: Pointer to virtual port. 12648 * @tgt_id: SCSI ID of the target. 12649 * @lun_id: LUN ID of the scsi device. 12650 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12651 * 12652 * This function returns number of FCP commands pending for the vport. 12653 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12654 * commands pending on the vport associated with SCSI device specified 12655 * by tgt_id and lun_id parameters. 12656 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12657 * commands pending on the vport associated with SCSI target specified 12658 * by tgt_id parameter. 12659 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12660 * commands pending on the vport. 12661 * This function returns the number of iocbs which satisfy the filter. 12662 * This function is called without any lock held. 12663 **/ 12664 int 12665 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12666 lpfc_ctx_cmd ctx_cmd) 12667 { 12668 struct lpfc_hba *phba = vport->phba; 12669 struct lpfc_iocbq *iocbq; 12670 int sum, i; 12671 unsigned long iflags; 12672 u8 ulp_command; 12673 12674 spin_lock_irqsave(&phba->hbalock, iflags); 12675 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12676 iocbq = phba->sli.iocbq_lookup[i]; 12677 12678 if (!iocbq || iocbq->vport != vport) 12679 continue; 12680 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12681 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12682 continue; 12683 12684 /* Include counting outstanding aborts */ 12685 ulp_command = get_job_cmnd(phba, iocbq); 12686 if (ulp_command == CMD_ABORT_XRI_CN || 12687 ulp_command == CMD_CLOSE_XRI_CN || 12688 ulp_command == CMD_ABORT_XRI_WQE) { 12689 sum++; 12690 continue; 12691 } 12692 12693 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12694 ctx_cmd) == 0) 12695 sum++; 12696 } 12697 spin_unlock_irqrestore(&phba->hbalock, iflags); 12698 12699 return sum; 12700 } 12701 12702 /** 12703 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12704 * @phba: Pointer to HBA context object 12705 * @cmdiocb: Pointer to command iocb object. 12706 * @rspiocb: Pointer to response iocb object. 12707 * 12708 * This function is called when an aborted FCP iocb completes. This 12709 * function is called by the ring event handler with no lock held. 12710 * This function frees the iocb. 12711 **/ 12712 void 12713 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12714 struct lpfc_iocbq *rspiocb) 12715 { 12716 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12717 "3096 ABORT_XRI_CX completing on rpi x%x " 12718 "original iotag x%x, abort cmd iotag x%x " 12719 "status 0x%x, reason 0x%x\n", 12720 (phba->sli_rev == LPFC_SLI_REV4) ? 12721 cmdiocb->sli4_xritag : 12722 cmdiocb->iocb.un.acxri.abortContextTag, 12723 get_job_abtsiotag(phba, cmdiocb), 12724 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12725 get_job_word4(phba, rspiocb)); 12726 lpfc_sli_release_iocbq(phba, cmdiocb); 12727 return; 12728 } 12729 12730 /** 12731 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12732 * @vport: Pointer to virtual port. 12733 * @tgt_id: SCSI ID of the target. 12734 * @lun_id: LUN ID of the scsi device. 12735 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12736 * 12737 * This function sends an abort command for every SCSI command 12738 * associated with the given virtual port pending on the ring 12739 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12740 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12741 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12742 * followed by lpfc_sli_validate_fcp_iocb. 12743 * 12744 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12745 * FCP iocbs associated with lun specified by tgt_id and lun_id 12746 * parameters 12747 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12748 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12749 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12750 * FCP iocbs associated with virtual port. 12751 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12752 * lpfc_sli4_calc_ring is used. 12753 * This function returns number of iocbs it failed to abort. 12754 * This function is called with no locks held. 12755 **/ 12756 int 12757 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12758 lpfc_ctx_cmd abort_cmd) 12759 { 12760 struct lpfc_hba *phba = vport->phba; 12761 struct lpfc_sli_ring *pring = NULL; 12762 struct lpfc_iocbq *iocbq; 12763 int errcnt = 0, ret_val = 0; 12764 unsigned long iflags; 12765 int i; 12766 12767 /* all I/Os are in process of being flushed */ 12768 if (phba->hba_flag & HBA_IOQ_FLUSH) 12769 return errcnt; 12770 12771 for (i = 1; i <= phba->sli.last_iotag; i++) { 12772 iocbq = phba->sli.iocbq_lookup[i]; 12773 12774 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12775 continue; 12776 12777 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12778 abort_cmd) != 0) 12779 continue; 12780 12781 spin_lock_irqsave(&phba->hbalock, iflags); 12782 if (phba->sli_rev == LPFC_SLI_REV3) { 12783 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12784 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12785 pring = lpfc_sli4_calc_ring(phba, iocbq); 12786 } 12787 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12788 lpfc_sli_abort_fcp_cmpl); 12789 spin_unlock_irqrestore(&phba->hbalock, iflags); 12790 if (ret_val != IOCB_SUCCESS) 12791 errcnt++; 12792 } 12793 12794 return errcnt; 12795 } 12796 12797 /** 12798 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12799 * @vport: Pointer to virtual port. 12800 * @pring: Pointer to driver SLI ring object. 12801 * @tgt_id: SCSI ID of the target. 12802 * @lun_id: LUN ID of the scsi device. 12803 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12804 * 12805 * This function sends an abort command for every SCSI command 12806 * associated with the given virtual port pending on the ring 12807 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12808 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12809 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12810 * followed by lpfc_sli_validate_fcp_iocb. 12811 * 12812 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12813 * FCP iocbs associated with lun specified by tgt_id and lun_id 12814 * parameters 12815 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12816 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12817 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12818 * FCP iocbs associated with virtual port. 12819 * This function returns number of iocbs it aborted . 12820 * This function is called with no locks held right after a taskmgmt 12821 * command is sent. 12822 **/ 12823 int 12824 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12825 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12826 { 12827 struct lpfc_hba *phba = vport->phba; 12828 struct lpfc_io_buf *lpfc_cmd; 12829 struct lpfc_iocbq *abtsiocbq; 12830 struct lpfc_nodelist *ndlp = NULL; 12831 struct lpfc_iocbq *iocbq; 12832 int sum, i, ret_val; 12833 unsigned long iflags; 12834 struct lpfc_sli_ring *pring_s4 = NULL; 12835 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12836 bool ia; 12837 12838 spin_lock_irqsave(&phba->hbalock, iflags); 12839 12840 /* all I/Os are in process of being flushed */ 12841 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12842 spin_unlock_irqrestore(&phba->hbalock, iflags); 12843 return 0; 12844 } 12845 sum = 0; 12846 12847 for (i = 1; i <= phba->sli.last_iotag; i++) { 12848 iocbq = phba->sli.iocbq_lookup[i]; 12849 12850 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12851 continue; 12852 12853 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12854 cmd) != 0) 12855 continue; 12856 12857 /* Guard against IO completion being called at same time */ 12858 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12859 spin_lock(&lpfc_cmd->buf_lock); 12860 12861 if (!lpfc_cmd->pCmd) { 12862 spin_unlock(&lpfc_cmd->buf_lock); 12863 continue; 12864 } 12865 12866 if (phba->sli_rev == LPFC_SLI_REV4) { 12867 pring_s4 = 12868 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12869 if (!pring_s4) { 12870 spin_unlock(&lpfc_cmd->buf_lock); 12871 continue; 12872 } 12873 /* Note: both hbalock and ring_lock must be set here */ 12874 spin_lock(&pring_s4->ring_lock); 12875 } 12876 12877 /* 12878 * If the iocbq is already being aborted, don't take a second 12879 * action, but do count it. 12880 */ 12881 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12882 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12883 if (phba->sli_rev == LPFC_SLI_REV4) 12884 spin_unlock(&pring_s4->ring_lock); 12885 spin_unlock(&lpfc_cmd->buf_lock); 12886 continue; 12887 } 12888 12889 /* issue ABTS for this IOCB based on iotag */ 12890 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12891 if (!abtsiocbq) { 12892 if (phba->sli_rev == LPFC_SLI_REV4) 12893 spin_unlock(&pring_s4->ring_lock); 12894 spin_unlock(&lpfc_cmd->buf_lock); 12895 continue; 12896 } 12897 12898 if (phba->sli_rev == LPFC_SLI_REV4) { 12899 iotag = abtsiocbq->iotag; 12900 ulp_context = iocbq->sli4_xritag; 12901 cqid = lpfc_cmd->hdwq->io_cq_map; 12902 } else { 12903 iotag = iocbq->iocb.ulpIoTag; 12904 if (pring->ringno == LPFC_ELS_RING) { 12905 ndlp = iocbq->ndlp; 12906 ulp_context = ndlp->nlp_rpi; 12907 } else { 12908 ulp_context = iocbq->iocb.ulpContext; 12909 } 12910 } 12911 12912 ndlp = lpfc_cmd->rdata->pnode; 12913 12914 if (lpfc_is_link_up(phba) && 12915 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12916 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12917 ia = false; 12918 else 12919 ia = true; 12920 12921 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12922 iocbq->iocb.ulpClass, cqid, 12923 ia, false); 12924 12925 abtsiocbq->vport = vport; 12926 12927 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12928 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12929 if (iocbq->cmd_flag & LPFC_IO_FCP) 12930 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12931 if (iocbq->cmd_flag & LPFC_IO_FOF) 12932 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12933 12934 /* Setup callback routine and issue the command. */ 12935 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12936 12937 /* 12938 * Indicate the IO is being aborted by the driver and set 12939 * the caller's flag into the aborted IO. 12940 */ 12941 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12942 12943 if (phba->sli_rev == LPFC_SLI_REV4) { 12944 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12945 abtsiocbq, 0); 12946 spin_unlock(&pring_s4->ring_lock); 12947 } else { 12948 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12949 abtsiocbq, 0); 12950 } 12951 12952 spin_unlock(&lpfc_cmd->buf_lock); 12953 12954 if (ret_val == IOCB_ERROR) 12955 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12956 else 12957 sum++; 12958 } 12959 spin_unlock_irqrestore(&phba->hbalock, iflags); 12960 return sum; 12961 } 12962 12963 /** 12964 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12965 * @phba: Pointer to HBA context object. 12966 * @cmdiocbq: Pointer to command iocb. 12967 * @rspiocbq: Pointer to response iocb. 12968 * 12969 * This function is the completion handler for iocbs issued using 12970 * lpfc_sli_issue_iocb_wait function. This function is called by the 12971 * ring event handler function without any lock held. This function 12972 * can be called from both worker thread context and interrupt 12973 * context. This function also can be called from other thread which 12974 * cleans up the SLI layer objects. 12975 * This function copy the contents of the response iocb to the 12976 * response iocb memory object provided by the caller of 12977 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12978 * sleeps for the iocb completion. 12979 **/ 12980 static void 12981 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12982 struct lpfc_iocbq *cmdiocbq, 12983 struct lpfc_iocbq *rspiocbq) 12984 { 12985 wait_queue_head_t *pdone_q; 12986 unsigned long iflags; 12987 struct lpfc_io_buf *lpfc_cmd; 12988 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12989 12990 spin_lock_irqsave(&phba->hbalock, iflags); 12991 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 12992 12993 /* 12994 * A time out has occurred for the iocb. If a time out 12995 * completion handler has been supplied, call it. Otherwise, 12996 * just free the iocbq. 12997 */ 12998 12999 spin_unlock_irqrestore(&phba->hbalock, iflags); 13000 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13001 cmdiocbq->wait_cmd_cmpl = NULL; 13002 if (cmdiocbq->cmd_cmpl) 13003 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13004 else 13005 lpfc_sli_release_iocbq(phba, cmdiocbq); 13006 return; 13007 } 13008 13009 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13010 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13011 if (cmdiocbq->rsp_iocb && rspiocbq) 13012 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13013 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13014 13015 /* Set the exchange busy flag for task management commands */ 13016 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13017 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13018 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13019 cur_iocbq); 13020 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13021 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13022 else 13023 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13024 } 13025 13026 pdone_q = cmdiocbq->context_un.wait_queue; 13027 if (pdone_q) 13028 wake_up(pdone_q); 13029 spin_unlock_irqrestore(&phba->hbalock, iflags); 13030 return; 13031 } 13032 13033 /** 13034 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13035 * @phba: Pointer to HBA context object.. 13036 * @piocbq: Pointer to command iocb. 13037 * @flag: Flag to test. 13038 * 13039 * This routine grabs the hbalock and then test the cmd_flag to 13040 * see if the passed in flag is set. 13041 * Returns: 13042 * 1 if flag is set. 13043 * 0 if flag is not set. 13044 **/ 13045 static int 13046 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13047 struct lpfc_iocbq *piocbq, uint32_t flag) 13048 { 13049 unsigned long iflags; 13050 int ret; 13051 13052 spin_lock_irqsave(&phba->hbalock, iflags); 13053 ret = piocbq->cmd_flag & flag; 13054 spin_unlock_irqrestore(&phba->hbalock, iflags); 13055 return ret; 13056 13057 } 13058 13059 /** 13060 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13061 * @phba: Pointer to HBA context object.. 13062 * @ring_number: Ring number 13063 * @piocb: Pointer to command iocb. 13064 * @prspiocbq: Pointer to response iocb. 13065 * @timeout: Timeout in number of seconds. 13066 * 13067 * This function issues the iocb to firmware and waits for the 13068 * iocb to complete. The cmd_cmpl field of the shall be used 13069 * to handle iocbs which time out. If the field is NULL, the 13070 * function shall free the iocbq structure. If more clean up is 13071 * needed, the caller is expected to provide a completion function 13072 * that will provide the needed clean up. If the iocb command is 13073 * not completed within timeout seconds, the function will either 13074 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13075 * completion function set in the cmd_cmpl field and then return 13076 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13077 * resources if this function returns IOCB_TIMEDOUT. 13078 * The function waits for the iocb completion using an 13079 * non-interruptible wait. 13080 * This function will sleep while waiting for iocb completion. 13081 * So, this function should not be called from any context which 13082 * does not allow sleeping. Due to the same reason, this function 13083 * cannot be called with interrupt disabled. 13084 * This function assumes that the iocb completions occur while 13085 * this function sleep. So, this function cannot be called from 13086 * the thread which process iocb completion for this ring. 13087 * This function clears the cmd_flag of the iocb object before 13088 * issuing the iocb and the iocb completion handler sets this 13089 * flag and wakes this thread when the iocb completes. 13090 * The contents of the response iocb will be copied to prspiocbq 13091 * by the completion handler when the command completes. 13092 * This function returns IOCB_SUCCESS when success. 13093 * This function is called with no lock held. 13094 **/ 13095 int 13096 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13097 uint32_t ring_number, 13098 struct lpfc_iocbq *piocb, 13099 struct lpfc_iocbq *prspiocbq, 13100 uint32_t timeout) 13101 { 13102 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13103 long timeleft, timeout_req = 0; 13104 int retval = IOCB_SUCCESS; 13105 uint32_t creg_val; 13106 struct lpfc_iocbq *iocb; 13107 int txq_cnt = 0; 13108 int txcmplq_cnt = 0; 13109 struct lpfc_sli_ring *pring; 13110 unsigned long iflags; 13111 bool iocb_completed = true; 13112 13113 if (phba->sli_rev >= LPFC_SLI_REV4) { 13114 lpfc_sli_prep_wqe(phba, piocb); 13115 13116 pring = lpfc_sli4_calc_ring(phba, piocb); 13117 } else 13118 pring = &phba->sli.sli3_ring[ring_number]; 13119 /* 13120 * If the caller has provided a response iocbq buffer, then rsp_iocb 13121 * is NULL or its an error. 13122 */ 13123 if (prspiocbq) { 13124 if (piocb->rsp_iocb) 13125 return IOCB_ERROR; 13126 piocb->rsp_iocb = prspiocbq; 13127 } 13128 13129 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13130 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13131 piocb->context_un.wait_queue = &done_q; 13132 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13133 13134 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13135 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13136 return IOCB_ERROR; 13137 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13138 writel(creg_val, phba->HCregaddr); 13139 readl(phba->HCregaddr); /* flush */ 13140 } 13141 13142 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13143 SLI_IOCB_RET_IOCB); 13144 if (retval == IOCB_SUCCESS) { 13145 timeout_req = msecs_to_jiffies(timeout * 1000); 13146 timeleft = wait_event_timeout(done_q, 13147 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13148 timeout_req); 13149 spin_lock_irqsave(&phba->hbalock, iflags); 13150 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13151 13152 /* 13153 * IOCB timed out. Inform the wake iocb wait 13154 * completion function and set local status 13155 */ 13156 13157 iocb_completed = false; 13158 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13159 } 13160 spin_unlock_irqrestore(&phba->hbalock, iflags); 13161 if (iocb_completed) { 13162 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13163 "0331 IOCB wake signaled\n"); 13164 /* Note: we are not indicating if the IOCB has a success 13165 * status or not - that's for the caller to check. 13166 * IOCB_SUCCESS means just that the command was sent and 13167 * completed. Not that it completed successfully. 13168 * */ 13169 } else if (timeleft == 0) { 13170 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13171 "0338 IOCB wait timeout error - no " 13172 "wake response Data x%x\n", timeout); 13173 retval = IOCB_TIMEDOUT; 13174 } else { 13175 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13176 "0330 IOCB wake NOT set, " 13177 "Data x%x x%lx\n", 13178 timeout, (timeleft / jiffies)); 13179 retval = IOCB_TIMEDOUT; 13180 } 13181 } else if (retval == IOCB_BUSY) { 13182 if (phba->cfg_log_verbose & LOG_SLI) { 13183 list_for_each_entry(iocb, &pring->txq, list) { 13184 txq_cnt++; 13185 } 13186 list_for_each_entry(iocb, &pring->txcmplq, list) { 13187 txcmplq_cnt++; 13188 } 13189 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13190 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13191 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13192 } 13193 return retval; 13194 } else { 13195 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13196 "0332 IOCB wait issue failed, Data x%x\n", 13197 retval); 13198 retval = IOCB_ERROR; 13199 } 13200 13201 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13202 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13203 return IOCB_ERROR; 13204 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13205 writel(creg_val, phba->HCregaddr); 13206 readl(phba->HCregaddr); /* flush */ 13207 } 13208 13209 if (prspiocbq) 13210 piocb->rsp_iocb = NULL; 13211 13212 piocb->context_un.wait_queue = NULL; 13213 piocb->cmd_cmpl = NULL; 13214 return retval; 13215 } 13216 13217 /** 13218 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13219 * @phba: Pointer to HBA context object. 13220 * @pmboxq: Pointer to driver mailbox object. 13221 * @timeout: Timeout in number of seconds. 13222 * 13223 * This function issues the mailbox to firmware and waits for the 13224 * mailbox command to complete. If the mailbox command is not 13225 * completed within timeout seconds, it returns MBX_TIMEOUT. 13226 * The function waits for the mailbox completion using an 13227 * interruptible wait. If the thread is woken up due to a 13228 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13229 * should not free the mailbox resources, if this function returns 13230 * MBX_TIMEOUT. 13231 * This function will sleep while waiting for mailbox completion. 13232 * So, this function should not be called from any context which 13233 * does not allow sleeping. Due to the same reason, this function 13234 * cannot be called with interrupt disabled. 13235 * This function assumes that the mailbox completion occurs while 13236 * this function sleep. So, this function cannot be called from 13237 * the worker thread which processes mailbox completion. 13238 * This function is called in the context of HBA management 13239 * applications. 13240 * This function returns MBX_SUCCESS when successful. 13241 * This function is called with no lock held. 13242 **/ 13243 int 13244 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13245 uint32_t timeout) 13246 { 13247 struct completion mbox_done; 13248 int retval; 13249 unsigned long flag; 13250 13251 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13252 /* setup wake call as IOCB callback */ 13253 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13254 13255 /* setup context3 field to pass wait_queue pointer to wake function */ 13256 init_completion(&mbox_done); 13257 pmboxq->context3 = &mbox_done; 13258 /* now issue the command */ 13259 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13260 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13261 wait_for_completion_timeout(&mbox_done, 13262 msecs_to_jiffies(timeout * 1000)); 13263 13264 spin_lock_irqsave(&phba->hbalock, flag); 13265 pmboxq->context3 = NULL; 13266 /* 13267 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13268 * else do not free the resources. 13269 */ 13270 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13271 retval = MBX_SUCCESS; 13272 } else { 13273 retval = MBX_TIMEOUT; 13274 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13275 } 13276 spin_unlock_irqrestore(&phba->hbalock, flag); 13277 } 13278 return retval; 13279 } 13280 13281 /** 13282 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13283 * @phba: Pointer to HBA context. 13284 * @mbx_action: Mailbox shutdown options. 13285 * 13286 * This function is called to shutdown the driver's mailbox sub-system. 13287 * It first marks the mailbox sub-system is in a block state to prevent 13288 * the asynchronous mailbox command from issued off the pending mailbox 13289 * command queue. If the mailbox command sub-system shutdown is due to 13290 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13291 * the mailbox sub-system flush routine to forcefully bring down the 13292 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13293 * as with offline or HBA function reset), this routine will wait for the 13294 * outstanding mailbox command to complete before invoking the mailbox 13295 * sub-system flush routine to gracefully bring down mailbox sub-system. 13296 **/ 13297 void 13298 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13299 { 13300 struct lpfc_sli *psli = &phba->sli; 13301 unsigned long timeout; 13302 13303 if (mbx_action == LPFC_MBX_NO_WAIT) { 13304 /* delay 100ms for port state */ 13305 msleep(100); 13306 lpfc_sli_mbox_sys_flush(phba); 13307 return; 13308 } 13309 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13310 13311 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13312 local_bh_disable(); 13313 13314 spin_lock_irq(&phba->hbalock); 13315 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13316 13317 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13318 /* Determine how long we might wait for the active mailbox 13319 * command to be gracefully completed by firmware. 13320 */ 13321 if (phba->sli.mbox_active) 13322 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13323 phba->sli.mbox_active) * 13324 1000) + jiffies; 13325 spin_unlock_irq(&phba->hbalock); 13326 13327 /* Enable softirqs again, done with phba->hbalock */ 13328 local_bh_enable(); 13329 13330 while (phba->sli.mbox_active) { 13331 /* Check active mailbox complete status every 2ms */ 13332 msleep(2); 13333 if (time_after(jiffies, timeout)) 13334 /* Timeout, let the mailbox flush routine to 13335 * forcefully release active mailbox command 13336 */ 13337 break; 13338 } 13339 } else { 13340 spin_unlock_irq(&phba->hbalock); 13341 13342 /* Enable softirqs again, done with phba->hbalock */ 13343 local_bh_enable(); 13344 } 13345 13346 lpfc_sli_mbox_sys_flush(phba); 13347 } 13348 13349 /** 13350 * lpfc_sli_eratt_read - read sli-3 error attention events 13351 * @phba: Pointer to HBA context. 13352 * 13353 * This function is called to read the SLI3 device error attention registers 13354 * for possible error attention events. The caller must hold the hostlock 13355 * with spin_lock_irq(). 13356 * 13357 * This function returns 1 when there is Error Attention in the Host Attention 13358 * Register and returns 0 otherwise. 13359 **/ 13360 static int 13361 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13362 { 13363 uint32_t ha_copy; 13364 13365 /* Read chip Host Attention (HA) register */ 13366 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13367 goto unplug_err; 13368 13369 if (ha_copy & HA_ERATT) { 13370 /* Read host status register to retrieve error event */ 13371 if (lpfc_sli_read_hs(phba)) 13372 goto unplug_err; 13373 13374 /* Check if there is a deferred error condition is active */ 13375 if ((HS_FFER1 & phba->work_hs) && 13376 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13377 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13378 phba->hba_flag |= DEFER_ERATT; 13379 /* Clear all interrupt enable conditions */ 13380 writel(0, phba->HCregaddr); 13381 readl(phba->HCregaddr); 13382 } 13383 13384 /* Set the driver HA work bitmap */ 13385 phba->work_ha |= HA_ERATT; 13386 /* Indicate polling handles this ERATT */ 13387 phba->hba_flag |= HBA_ERATT_HANDLED; 13388 return 1; 13389 } 13390 return 0; 13391 13392 unplug_err: 13393 /* Set the driver HS work bitmap */ 13394 phba->work_hs |= UNPLUG_ERR; 13395 /* Set the driver HA work bitmap */ 13396 phba->work_ha |= HA_ERATT; 13397 /* Indicate polling handles this ERATT */ 13398 phba->hba_flag |= HBA_ERATT_HANDLED; 13399 return 1; 13400 } 13401 13402 /** 13403 * lpfc_sli4_eratt_read - read sli-4 error attention events 13404 * @phba: Pointer to HBA context. 13405 * 13406 * This function is called to read the SLI4 device error attention registers 13407 * for possible error attention events. The caller must hold the hostlock 13408 * with spin_lock_irq(). 13409 * 13410 * This function returns 1 when there is Error Attention in the Host Attention 13411 * Register and returns 0 otherwise. 13412 **/ 13413 static int 13414 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13415 { 13416 uint32_t uerr_sta_hi, uerr_sta_lo; 13417 uint32_t if_type, portsmphr; 13418 struct lpfc_register portstat_reg; 13419 u32 logmask; 13420 13421 /* 13422 * For now, use the SLI4 device internal unrecoverable error 13423 * registers for error attention. This can be changed later. 13424 */ 13425 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13426 switch (if_type) { 13427 case LPFC_SLI_INTF_IF_TYPE_0: 13428 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13429 &uerr_sta_lo) || 13430 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13431 &uerr_sta_hi)) { 13432 phba->work_hs |= UNPLUG_ERR; 13433 phba->work_ha |= HA_ERATT; 13434 phba->hba_flag |= HBA_ERATT_HANDLED; 13435 return 1; 13436 } 13437 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13438 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13439 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13440 "1423 HBA Unrecoverable error: " 13441 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13442 "ue_mask_lo_reg=0x%x, " 13443 "ue_mask_hi_reg=0x%x\n", 13444 uerr_sta_lo, uerr_sta_hi, 13445 phba->sli4_hba.ue_mask_lo, 13446 phba->sli4_hba.ue_mask_hi); 13447 phba->work_status[0] = uerr_sta_lo; 13448 phba->work_status[1] = uerr_sta_hi; 13449 phba->work_ha |= HA_ERATT; 13450 phba->hba_flag |= HBA_ERATT_HANDLED; 13451 return 1; 13452 } 13453 break; 13454 case LPFC_SLI_INTF_IF_TYPE_2: 13455 case LPFC_SLI_INTF_IF_TYPE_6: 13456 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13457 &portstat_reg.word0) || 13458 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13459 &portsmphr)){ 13460 phba->work_hs |= UNPLUG_ERR; 13461 phba->work_ha |= HA_ERATT; 13462 phba->hba_flag |= HBA_ERATT_HANDLED; 13463 return 1; 13464 } 13465 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13466 phba->work_status[0] = 13467 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13468 phba->work_status[1] = 13469 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13470 logmask = LOG_TRACE_EVENT; 13471 if (phba->work_status[0] == 13472 SLIPORT_ERR1_REG_ERR_CODE_2 && 13473 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13474 logmask = LOG_SLI; 13475 lpfc_printf_log(phba, KERN_ERR, logmask, 13476 "2885 Port Status Event: " 13477 "port status reg 0x%x, " 13478 "port smphr reg 0x%x, " 13479 "error 1=0x%x, error 2=0x%x\n", 13480 portstat_reg.word0, 13481 portsmphr, 13482 phba->work_status[0], 13483 phba->work_status[1]); 13484 phba->work_ha |= HA_ERATT; 13485 phba->hba_flag |= HBA_ERATT_HANDLED; 13486 return 1; 13487 } 13488 break; 13489 case LPFC_SLI_INTF_IF_TYPE_1: 13490 default: 13491 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13492 "2886 HBA Error Attention on unsupported " 13493 "if type %d.", if_type); 13494 return 1; 13495 } 13496 13497 return 0; 13498 } 13499 13500 /** 13501 * lpfc_sli_check_eratt - check error attention events 13502 * @phba: Pointer to HBA context. 13503 * 13504 * This function is called from timer soft interrupt context to check HBA's 13505 * error attention register bit for error attention events. 13506 * 13507 * This function returns 1 when there is Error Attention in the Host Attention 13508 * Register and returns 0 otherwise. 13509 **/ 13510 int 13511 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13512 { 13513 uint32_t ha_copy; 13514 13515 /* If somebody is waiting to handle an eratt, don't process it 13516 * here. The brdkill function will do this. 13517 */ 13518 if (phba->link_flag & LS_IGNORE_ERATT) 13519 return 0; 13520 13521 /* Check if interrupt handler handles this ERATT */ 13522 spin_lock_irq(&phba->hbalock); 13523 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13524 /* Interrupt handler has handled ERATT */ 13525 spin_unlock_irq(&phba->hbalock); 13526 return 0; 13527 } 13528 13529 /* 13530 * If there is deferred error attention, do not check for error 13531 * attention 13532 */ 13533 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13534 spin_unlock_irq(&phba->hbalock); 13535 return 0; 13536 } 13537 13538 /* If PCI channel is offline, don't process it */ 13539 if (unlikely(pci_channel_offline(phba->pcidev))) { 13540 spin_unlock_irq(&phba->hbalock); 13541 return 0; 13542 } 13543 13544 switch (phba->sli_rev) { 13545 case LPFC_SLI_REV2: 13546 case LPFC_SLI_REV3: 13547 /* Read chip Host Attention (HA) register */ 13548 ha_copy = lpfc_sli_eratt_read(phba); 13549 break; 13550 case LPFC_SLI_REV4: 13551 /* Read device Uncoverable Error (UERR) registers */ 13552 ha_copy = lpfc_sli4_eratt_read(phba); 13553 break; 13554 default: 13555 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13556 "0299 Invalid SLI revision (%d)\n", 13557 phba->sli_rev); 13558 ha_copy = 0; 13559 break; 13560 } 13561 spin_unlock_irq(&phba->hbalock); 13562 13563 return ha_copy; 13564 } 13565 13566 /** 13567 * lpfc_intr_state_check - Check device state for interrupt handling 13568 * @phba: Pointer to HBA context. 13569 * 13570 * This inline routine checks whether a device or its PCI slot is in a state 13571 * that the interrupt should be handled. 13572 * 13573 * This function returns 0 if the device or the PCI slot is in a state that 13574 * interrupt should be handled, otherwise -EIO. 13575 */ 13576 static inline int 13577 lpfc_intr_state_check(struct lpfc_hba *phba) 13578 { 13579 /* If the pci channel is offline, ignore all the interrupts */ 13580 if (unlikely(pci_channel_offline(phba->pcidev))) 13581 return -EIO; 13582 13583 /* Update device level interrupt statistics */ 13584 phba->sli.slistat.sli_intr++; 13585 13586 /* Ignore all interrupts during initialization. */ 13587 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13588 return -EIO; 13589 13590 return 0; 13591 } 13592 13593 /** 13594 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13595 * @irq: Interrupt number. 13596 * @dev_id: The device context pointer. 13597 * 13598 * This function is directly called from the PCI layer as an interrupt 13599 * service routine when device with SLI-3 interface spec is enabled with 13600 * MSI-X multi-message interrupt mode and there are slow-path events in 13601 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13602 * interrupt mode, this function is called as part of the device-level 13603 * interrupt handler. When the PCI slot is in error recovery or the HBA 13604 * is undergoing initialization, the interrupt handler will not process 13605 * the interrupt. The link attention and ELS ring attention events are 13606 * handled by the worker thread. The interrupt handler signals the worker 13607 * thread and returns for these events. This function is called without 13608 * any lock held. It gets the hbalock to access and update SLI data 13609 * structures. 13610 * 13611 * This function returns IRQ_HANDLED when interrupt is handled else it 13612 * returns IRQ_NONE. 13613 **/ 13614 irqreturn_t 13615 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13616 { 13617 struct lpfc_hba *phba; 13618 uint32_t ha_copy, hc_copy; 13619 uint32_t work_ha_copy; 13620 unsigned long status; 13621 unsigned long iflag; 13622 uint32_t control; 13623 13624 MAILBOX_t *mbox, *pmbox; 13625 struct lpfc_vport *vport; 13626 struct lpfc_nodelist *ndlp; 13627 struct lpfc_dmabuf *mp; 13628 LPFC_MBOXQ_t *pmb; 13629 int rc; 13630 13631 /* 13632 * Get the driver's phba structure from the dev_id and 13633 * assume the HBA is not interrupting. 13634 */ 13635 phba = (struct lpfc_hba *)dev_id; 13636 13637 if (unlikely(!phba)) 13638 return IRQ_NONE; 13639 13640 /* 13641 * Stuff needs to be attented to when this function is invoked as an 13642 * individual interrupt handler in MSI-X multi-message interrupt mode 13643 */ 13644 if (phba->intr_type == MSIX) { 13645 /* Check device state for handling interrupt */ 13646 if (lpfc_intr_state_check(phba)) 13647 return IRQ_NONE; 13648 /* Need to read HA REG for slow-path events */ 13649 spin_lock_irqsave(&phba->hbalock, iflag); 13650 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13651 goto unplug_error; 13652 /* If somebody is waiting to handle an eratt don't process it 13653 * here. The brdkill function will do this. 13654 */ 13655 if (phba->link_flag & LS_IGNORE_ERATT) 13656 ha_copy &= ~HA_ERATT; 13657 /* Check the need for handling ERATT in interrupt handler */ 13658 if (ha_copy & HA_ERATT) { 13659 if (phba->hba_flag & HBA_ERATT_HANDLED) 13660 /* ERATT polling has handled ERATT */ 13661 ha_copy &= ~HA_ERATT; 13662 else 13663 /* Indicate interrupt handler handles ERATT */ 13664 phba->hba_flag |= HBA_ERATT_HANDLED; 13665 } 13666 13667 /* 13668 * If there is deferred error attention, do not check for any 13669 * interrupt. 13670 */ 13671 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13672 spin_unlock_irqrestore(&phba->hbalock, iflag); 13673 return IRQ_NONE; 13674 } 13675 13676 /* Clear up only attention source related to slow-path */ 13677 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13678 goto unplug_error; 13679 13680 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13681 HC_LAINT_ENA | HC_ERINT_ENA), 13682 phba->HCregaddr); 13683 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13684 phba->HAregaddr); 13685 writel(hc_copy, phba->HCregaddr); 13686 readl(phba->HAregaddr); /* flush */ 13687 spin_unlock_irqrestore(&phba->hbalock, iflag); 13688 } else 13689 ha_copy = phba->ha_copy; 13690 13691 work_ha_copy = ha_copy & phba->work_ha_mask; 13692 13693 if (work_ha_copy) { 13694 if (work_ha_copy & HA_LATT) { 13695 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13696 /* 13697 * Turn off Link Attention interrupts 13698 * until CLEAR_LA done 13699 */ 13700 spin_lock_irqsave(&phba->hbalock, iflag); 13701 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13702 if (lpfc_readl(phba->HCregaddr, &control)) 13703 goto unplug_error; 13704 control &= ~HC_LAINT_ENA; 13705 writel(control, phba->HCregaddr); 13706 readl(phba->HCregaddr); /* flush */ 13707 spin_unlock_irqrestore(&phba->hbalock, iflag); 13708 } 13709 else 13710 work_ha_copy &= ~HA_LATT; 13711 } 13712 13713 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13714 /* 13715 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13716 * the only slow ring. 13717 */ 13718 status = (work_ha_copy & 13719 (HA_RXMASK << (4*LPFC_ELS_RING))); 13720 status >>= (4*LPFC_ELS_RING); 13721 if (status & HA_RXMASK) { 13722 spin_lock_irqsave(&phba->hbalock, iflag); 13723 if (lpfc_readl(phba->HCregaddr, &control)) 13724 goto unplug_error; 13725 13726 lpfc_debugfs_slow_ring_trc(phba, 13727 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13728 control, status, 13729 (uint32_t)phba->sli.slistat.sli_intr); 13730 13731 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13732 lpfc_debugfs_slow_ring_trc(phba, 13733 "ISR Disable ring:" 13734 "pwork:x%x hawork:x%x wait:x%x", 13735 phba->work_ha, work_ha_copy, 13736 (uint32_t)((unsigned long) 13737 &phba->work_waitq)); 13738 13739 control &= 13740 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13741 writel(control, phba->HCregaddr); 13742 readl(phba->HCregaddr); /* flush */ 13743 } 13744 else { 13745 lpfc_debugfs_slow_ring_trc(phba, 13746 "ISR slow ring: pwork:" 13747 "x%x hawork:x%x wait:x%x", 13748 phba->work_ha, work_ha_copy, 13749 (uint32_t)((unsigned long) 13750 &phba->work_waitq)); 13751 } 13752 spin_unlock_irqrestore(&phba->hbalock, iflag); 13753 } 13754 } 13755 spin_lock_irqsave(&phba->hbalock, iflag); 13756 if (work_ha_copy & HA_ERATT) { 13757 if (lpfc_sli_read_hs(phba)) 13758 goto unplug_error; 13759 /* 13760 * Check if there is a deferred error condition 13761 * is active 13762 */ 13763 if ((HS_FFER1 & phba->work_hs) && 13764 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13765 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13766 phba->work_hs)) { 13767 phba->hba_flag |= DEFER_ERATT; 13768 /* Clear all interrupt enable conditions */ 13769 writel(0, phba->HCregaddr); 13770 readl(phba->HCregaddr); 13771 } 13772 } 13773 13774 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13775 pmb = phba->sli.mbox_active; 13776 pmbox = &pmb->u.mb; 13777 mbox = phba->mbox; 13778 vport = pmb->vport; 13779 13780 /* First check out the status word */ 13781 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13782 if (pmbox->mbxOwner != OWN_HOST) { 13783 spin_unlock_irqrestore(&phba->hbalock, iflag); 13784 /* 13785 * Stray Mailbox Interrupt, mbxCommand <cmd> 13786 * mbxStatus <status> 13787 */ 13788 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13789 "(%d):0304 Stray Mailbox " 13790 "Interrupt mbxCommand x%x " 13791 "mbxStatus x%x\n", 13792 (vport ? vport->vpi : 0), 13793 pmbox->mbxCommand, 13794 pmbox->mbxStatus); 13795 /* clear mailbox attention bit */ 13796 work_ha_copy &= ~HA_MBATT; 13797 } else { 13798 phba->sli.mbox_active = NULL; 13799 spin_unlock_irqrestore(&phba->hbalock, iflag); 13800 phba->last_completion_time = jiffies; 13801 del_timer(&phba->sli.mbox_tmo); 13802 if (pmb->mbox_cmpl) { 13803 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13804 MAILBOX_CMD_SIZE); 13805 if (pmb->out_ext_byte_len && 13806 pmb->ctx_buf) 13807 lpfc_sli_pcimem_bcopy( 13808 phba->mbox_ext, 13809 pmb->ctx_buf, 13810 pmb->out_ext_byte_len); 13811 } 13812 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13813 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13814 13815 lpfc_debugfs_disc_trc(vport, 13816 LPFC_DISC_TRC_MBOX_VPORT, 13817 "MBOX dflt rpi: : " 13818 "status:x%x rpi:x%x", 13819 (uint32_t)pmbox->mbxStatus, 13820 pmbox->un.varWords[0], 0); 13821 13822 if (!pmbox->mbxStatus) { 13823 mp = (struct lpfc_dmabuf *) 13824 (pmb->ctx_buf); 13825 ndlp = (struct lpfc_nodelist *) 13826 pmb->ctx_ndlp; 13827 13828 /* Reg_LOGIN of dflt RPI was 13829 * successful. new lets get 13830 * rid of the RPI using the 13831 * same mbox buffer. 13832 */ 13833 lpfc_unreg_login(phba, 13834 vport->vpi, 13835 pmbox->un.varWords[0], 13836 pmb); 13837 pmb->mbox_cmpl = 13838 lpfc_mbx_cmpl_dflt_rpi; 13839 pmb->ctx_buf = mp; 13840 pmb->ctx_ndlp = ndlp; 13841 pmb->vport = vport; 13842 rc = lpfc_sli_issue_mbox(phba, 13843 pmb, 13844 MBX_NOWAIT); 13845 if (rc != MBX_BUSY) 13846 lpfc_printf_log(phba, 13847 KERN_ERR, 13848 LOG_TRACE_EVENT, 13849 "0350 rc should have" 13850 "been MBX_BUSY\n"); 13851 if (rc != MBX_NOT_FINISHED) 13852 goto send_current_mbox; 13853 } 13854 } 13855 spin_lock_irqsave( 13856 &phba->pport->work_port_lock, 13857 iflag); 13858 phba->pport->work_port_events &= 13859 ~WORKER_MBOX_TMO; 13860 spin_unlock_irqrestore( 13861 &phba->pport->work_port_lock, 13862 iflag); 13863 13864 /* Do NOT queue MBX_HEARTBEAT to the worker 13865 * thread for processing. 13866 */ 13867 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13868 /* Process mbox now */ 13869 phba->sli.mbox_active = NULL; 13870 phba->sli.sli_flag &= 13871 ~LPFC_SLI_MBOX_ACTIVE; 13872 if (pmb->mbox_cmpl) 13873 pmb->mbox_cmpl(phba, pmb); 13874 } else { 13875 /* Queue to worker thread to process */ 13876 lpfc_mbox_cmpl_put(phba, pmb); 13877 } 13878 } 13879 } else 13880 spin_unlock_irqrestore(&phba->hbalock, iflag); 13881 13882 if ((work_ha_copy & HA_MBATT) && 13883 (phba->sli.mbox_active == NULL)) { 13884 send_current_mbox: 13885 /* Process next mailbox command if there is one */ 13886 do { 13887 rc = lpfc_sli_issue_mbox(phba, NULL, 13888 MBX_NOWAIT); 13889 } while (rc == MBX_NOT_FINISHED); 13890 if (rc != MBX_SUCCESS) 13891 lpfc_printf_log(phba, KERN_ERR, 13892 LOG_TRACE_EVENT, 13893 "0349 rc should be " 13894 "MBX_SUCCESS\n"); 13895 } 13896 13897 spin_lock_irqsave(&phba->hbalock, iflag); 13898 phba->work_ha |= work_ha_copy; 13899 spin_unlock_irqrestore(&phba->hbalock, iflag); 13900 lpfc_worker_wake_up(phba); 13901 } 13902 return IRQ_HANDLED; 13903 unplug_error: 13904 spin_unlock_irqrestore(&phba->hbalock, iflag); 13905 return IRQ_HANDLED; 13906 13907 } /* lpfc_sli_sp_intr_handler */ 13908 13909 /** 13910 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13911 * @irq: Interrupt number. 13912 * @dev_id: The device context pointer. 13913 * 13914 * This function is directly called from the PCI layer as an interrupt 13915 * service routine when device with SLI-3 interface spec is enabled with 13916 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13917 * ring event in the HBA. However, when the device is enabled with either 13918 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13919 * device-level interrupt handler. When the PCI slot is in error recovery 13920 * or the HBA is undergoing initialization, the interrupt handler will not 13921 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13922 * the intrrupt context. This function is called without any lock held. 13923 * It gets the hbalock to access and update SLI data structures. 13924 * 13925 * This function returns IRQ_HANDLED when interrupt is handled else it 13926 * returns IRQ_NONE. 13927 **/ 13928 irqreturn_t 13929 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13930 { 13931 struct lpfc_hba *phba; 13932 uint32_t ha_copy; 13933 unsigned long status; 13934 unsigned long iflag; 13935 struct lpfc_sli_ring *pring; 13936 13937 /* Get the driver's phba structure from the dev_id and 13938 * assume the HBA is not interrupting. 13939 */ 13940 phba = (struct lpfc_hba *) dev_id; 13941 13942 if (unlikely(!phba)) 13943 return IRQ_NONE; 13944 13945 /* 13946 * Stuff needs to be attented to when this function is invoked as an 13947 * individual interrupt handler in MSI-X multi-message interrupt mode 13948 */ 13949 if (phba->intr_type == MSIX) { 13950 /* Check device state for handling interrupt */ 13951 if (lpfc_intr_state_check(phba)) 13952 return IRQ_NONE; 13953 /* Need to read HA REG for FCP ring and other ring events */ 13954 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13955 return IRQ_HANDLED; 13956 /* Clear up only attention source related to fast-path */ 13957 spin_lock_irqsave(&phba->hbalock, iflag); 13958 /* 13959 * If there is deferred error attention, do not check for 13960 * any interrupt. 13961 */ 13962 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13963 spin_unlock_irqrestore(&phba->hbalock, iflag); 13964 return IRQ_NONE; 13965 } 13966 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13967 phba->HAregaddr); 13968 readl(phba->HAregaddr); /* flush */ 13969 spin_unlock_irqrestore(&phba->hbalock, iflag); 13970 } else 13971 ha_copy = phba->ha_copy; 13972 13973 /* 13974 * Process all events on FCP ring. Take the optimized path for FCP IO. 13975 */ 13976 ha_copy &= ~(phba->work_ha_mask); 13977 13978 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13979 status >>= (4*LPFC_FCP_RING); 13980 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13981 if (status & HA_RXMASK) 13982 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13983 13984 if (phba->cfg_multi_ring_support == 2) { 13985 /* 13986 * Process all events on extra ring. Take the optimized path 13987 * for extra ring IO. 13988 */ 13989 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13990 status >>= (4*LPFC_EXTRA_RING); 13991 if (status & HA_RXMASK) { 13992 lpfc_sli_handle_fast_ring_event(phba, 13993 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13994 status); 13995 } 13996 } 13997 return IRQ_HANDLED; 13998 } /* lpfc_sli_fp_intr_handler */ 13999 14000 /** 14001 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14002 * @irq: Interrupt number. 14003 * @dev_id: The device context pointer. 14004 * 14005 * This function is the HBA device-level interrupt handler to device with 14006 * SLI-3 interface spec, called from the PCI layer when either MSI or 14007 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14008 * requires driver attention. This function invokes the slow-path interrupt 14009 * attention handling function and fast-path interrupt attention handling 14010 * function in turn to process the relevant HBA attention events. This 14011 * function is called without any lock held. It gets the hbalock to access 14012 * and update SLI data structures. 14013 * 14014 * This function returns IRQ_HANDLED when interrupt is handled, else it 14015 * returns IRQ_NONE. 14016 **/ 14017 irqreturn_t 14018 lpfc_sli_intr_handler(int irq, void *dev_id) 14019 { 14020 struct lpfc_hba *phba; 14021 irqreturn_t sp_irq_rc, fp_irq_rc; 14022 unsigned long status1, status2; 14023 uint32_t hc_copy; 14024 14025 /* 14026 * Get the driver's phba structure from the dev_id and 14027 * assume the HBA is not interrupting. 14028 */ 14029 phba = (struct lpfc_hba *) dev_id; 14030 14031 if (unlikely(!phba)) 14032 return IRQ_NONE; 14033 14034 /* Check device state for handling interrupt */ 14035 if (lpfc_intr_state_check(phba)) 14036 return IRQ_NONE; 14037 14038 spin_lock(&phba->hbalock); 14039 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14040 spin_unlock(&phba->hbalock); 14041 return IRQ_HANDLED; 14042 } 14043 14044 if (unlikely(!phba->ha_copy)) { 14045 spin_unlock(&phba->hbalock); 14046 return IRQ_NONE; 14047 } else if (phba->ha_copy & HA_ERATT) { 14048 if (phba->hba_flag & HBA_ERATT_HANDLED) 14049 /* ERATT polling has handled ERATT */ 14050 phba->ha_copy &= ~HA_ERATT; 14051 else 14052 /* Indicate interrupt handler handles ERATT */ 14053 phba->hba_flag |= HBA_ERATT_HANDLED; 14054 } 14055 14056 /* 14057 * If there is deferred error attention, do not check for any interrupt. 14058 */ 14059 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14060 spin_unlock(&phba->hbalock); 14061 return IRQ_NONE; 14062 } 14063 14064 /* Clear attention sources except link and error attentions */ 14065 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14066 spin_unlock(&phba->hbalock); 14067 return IRQ_HANDLED; 14068 } 14069 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14070 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14071 phba->HCregaddr); 14072 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14073 writel(hc_copy, phba->HCregaddr); 14074 readl(phba->HAregaddr); /* flush */ 14075 spin_unlock(&phba->hbalock); 14076 14077 /* 14078 * Invokes slow-path host attention interrupt handling as appropriate. 14079 */ 14080 14081 /* status of events with mailbox and link attention */ 14082 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14083 14084 /* status of events with ELS ring */ 14085 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14086 status2 >>= (4*LPFC_ELS_RING); 14087 14088 if (status1 || (status2 & HA_RXMASK)) 14089 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14090 else 14091 sp_irq_rc = IRQ_NONE; 14092 14093 /* 14094 * Invoke fast-path host attention interrupt handling as appropriate. 14095 */ 14096 14097 /* status of events with FCP ring */ 14098 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14099 status1 >>= (4*LPFC_FCP_RING); 14100 14101 /* status of events with extra ring */ 14102 if (phba->cfg_multi_ring_support == 2) { 14103 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14104 status2 >>= (4*LPFC_EXTRA_RING); 14105 } else 14106 status2 = 0; 14107 14108 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14109 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14110 else 14111 fp_irq_rc = IRQ_NONE; 14112 14113 /* Return device-level interrupt handling status */ 14114 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14115 } /* lpfc_sli_intr_handler */ 14116 14117 /** 14118 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14119 * @phba: pointer to lpfc hba data structure. 14120 * 14121 * This routine is invoked by the worker thread to process all the pending 14122 * SLI4 els abort xri events. 14123 **/ 14124 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14125 { 14126 struct lpfc_cq_event *cq_event; 14127 unsigned long iflags; 14128 14129 /* First, declare the els xri abort event has been handled */ 14130 spin_lock_irqsave(&phba->hbalock, iflags); 14131 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14132 spin_unlock_irqrestore(&phba->hbalock, iflags); 14133 14134 /* Now, handle all the els xri abort events */ 14135 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14136 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14137 /* Get the first event from the head of the event queue */ 14138 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14139 cq_event, struct lpfc_cq_event, list); 14140 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14141 iflags); 14142 /* Notify aborted XRI for ELS work queue */ 14143 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14144 14145 /* Free the event processed back to the free pool */ 14146 lpfc_sli4_cq_event_release(phba, cq_event); 14147 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14148 iflags); 14149 } 14150 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14151 } 14152 14153 /** 14154 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14155 * @phba: Pointer to HBA context object. 14156 * @irspiocbq: Pointer to work-queue completion queue entry. 14157 * 14158 * This routine handles an ELS work-queue completion event and construct 14159 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14160 * discovery engine to handle. 14161 * 14162 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14163 **/ 14164 static struct lpfc_iocbq * 14165 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14166 struct lpfc_iocbq *irspiocbq) 14167 { 14168 struct lpfc_sli_ring *pring; 14169 struct lpfc_iocbq *cmdiocbq; 14170 struct lpfc_wcqe_complete *wcqe; 14171 unsigned long iflags; 14172 14173 pring = lpfc_phba_elsring(phba); 14174 if (unlikely(!pring)) 14175 return NULL; 14176 14177 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14178 spin_lock_irqsave(&pring->ring_lock, iflags); 14179 pring->stats.iocb_event++; 14180 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14181 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14182 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14183 if (unlikely(!cmdiocbq)) { 14184 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14185 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14186 "0386 ELS complete with no corresponding " 14187 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14188 wcqe->word0, wcqe->total_data_placed, 14189 wcqe->parameter, wcqe->word3); 14190 lpfc_sli_release_iocbq(phba, irspiocbq); 14191 return NULL; 14192 } 14193 14194 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14195 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14196 14197 /* Put the iocb back on the txcmplq */ 14198 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14199 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14200 14201 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14202 spin_lock_irqsave(&phba->hbalock, iflags); 14203 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14204 spin_unlock_irqrestore(&phba->hbalock, iflags); 14205 } 14206 14207 return irspiocbq; 14208 } 14209 14210 inline struct lpfc_cq_event * 14211 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14212 { 14213 struct lpfc_cq_event *cq_event; 14214 14215 /* Allocate a new internal CQ_EVENT entry */ 14216 cq_event = lpfc_sli4_cq_event_alloc(phba); 14217 if (!cq_event) { 14218 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14219 "0602 Failed to alloc CQ_EVENT entry\n"); 14220 return NULL; 14221 } 14222 14223 /* Move the CQE into the event */ 14224 memcpy(&cq_event->cqe, entry, size); 14225 return cq_event; 14226 } 14227 14228 /** 14229 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14230 * @phba: Pointer to HBA context object. 14231 * @mcqe: Pointer to mailbox completion queue entry. 14232 * 14233 * This routine process a mailbox completion queue entry with asynchronous 14234 * event. 14235 * 14236 * Return: true if work posted to worker thread, otherwise false. 14237 **/ 14238 static bool 14239 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14240 { 14241 struct lpfc_cq_event *cq_event; 14242 unsigned long iflags; 14243 14244 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14245 "0392 Async Event: word0:x%x, word1:x%x, " 14246 "word2:x%x, word3:x%x\n", mcqe->word0, 14247 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14248 14249 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14250 if (!cq_event) 14251 return false; 14252 14253 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14254 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14255 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14256 14257 /* Set the async event flag */ 14258 spin_lock_irqsave(&phba->hbalock, iflags); 14259 phba->hba_flag |= ASYNC_EVENT; 14260 spin_unlock_irqrestore(&phba->hbalock, iflags); 14261 14262 return true; 14263 } 14264 14265 /** 14266 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14267 * @phba: Pointer to HBA context object. 14268 * @mcqe: Pointer to mailbox completion queue entry. 14269 * 14270 * This routine process a mailbox completion queue entry with mailbox 14271 * completion event. 14272 * 14273 * Return: true if work posted to worker thread, otherwise false. 14274 **/ 14275 static bool 14276 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14277 { 14278 uint32_t mcqe_status; 14279 MAILBOX_t *mbox, *pmbox; 14280 struct lpfc_mqe *mqe; 14281 struct lpfc_vport *vport; 14282 struct lpfc_nodelist *ndlp; 14283 struct lpfc_dmabuf *mp; 14284 unsigned long iflags; 14285 LPFC_MBOXQ_t *pmb; 14286 bool workposted = false; 14287 int rc; 14288 14289 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14290 if (!bf_get(lpfc_trailer_completed, mcqe)) 14291 goto out_no_mqe_complete; 14292 14293 /* Get the reference to the active mbox command */ 14294 spin_lock_irqsave(&phba->hbalock, iflags); 14295 pmb = phba->sli.mbox_active; 14296 if (unlikely(!pmb)) { 14297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14298 "1832 No pending MBOX command to handle\n"); 14299 spin_unlock_irqrestore(&phba->hbalock, iflags); 14300 goto out_no_mqe_complete; 14301 } 14302 spin_unlock_irqrestore(&phba->hbalock, iflags); 14303 mqe = &pmb->u.mqe; 14304 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14305 mbox = phba->mbox; 14306 vport = pmb->vport; 14307 14308 /* Reset heartbeat timer */ 14309 phba->last_completion_time = jiffies; 14310 del_timer(&phba->sli.mbox_tmo); 14311 14312 /* Move mbox data to caller's mailbox region, do endian swapping */ 14313 if (pmb->mbox_cmpl && mbox) 14314 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14315 14316 /* 14317 * For mcqe errors, conditionally move a modified error code to 14318 * the mbox so that the error will not be missed. 14319 */ 14320 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14321 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14322 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14323 bf_set(lpfc_mqe_status, mqe, 14324 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14325 } 14326 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14327 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14328 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14329 "MBOX dflt rpi: status:x%x rpi:x%x", 14330 mcqe_status, 14331 pmbox->un.varWords[0], 0); 14332 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14333 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14334 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14335 14336 /* Reg_LOGIN of dflt RPI was successful. Mark the 14337 * node as having an UNREG_LOGIN in progress to stop 14338 * an unsolicited PLOGI from the same NPortId from 14339 * starting another mailbox transaction. 14340 */ 14341 spin_lock_irqsave(&ndlp->lock, iflags); 14342 ndlp->nlp_flag |= NLP_UNREG_INP; 14343 spin_unlock_irqrestore(&ndlp->lock, iflags); 14344 lpfc_unreg_login(phba, vport->vpi, 14345 pmbox->un.varWords[0], pmb); 14346 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14347 pmb->ctx_buf = mp; 14348 14349 /* No reference taken here. This is a default 14350 * RPI reg/immediate unreg cycle. The reference was 14351 * taken in the reg rpi path and is released when 14352 * this mailbox completes. 14353 */ 14354 pmb->ctx_ndlp = ndlp; 14355 pmb->vport = vport; 14356 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14357 if (rc != MBX_BUSY) 14358 lpfc_printf_log(phba, KERN_ERR, 14359 LOG_TRACE_EVENT, 14360 "0385 rc should " 14361 "have been MBX_BUSY\n"); 14362 if (rc != MBX_NOT_FINISHED) 14363 goto send_current_mbox; 14364 } 14365 } 14366 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14367 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14368 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14369 14370 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14371 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14372 spin_lock_irqsave(&phba->hbalock, iflags); 14373 /* Release the mailbox command posting token */ 14374 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14375 phba->sli.mbox_active = NULL; 14376 if (bf_get(lpfc_trailer_consumed, mcqe)) 14377 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14378 spin_unlock_irqrestore(&phba->hbalock, iflags); 14379 14380 /* Post the next mbox command, if there is one */ 14381 lpfc_sli4_post_async_mbox(phba); 14382 14383 /* Process cmpl now */ 14384 if (pmb->mbox_cmpl) 14385 pmb->mbox_cmpl(phba, pmb); 14386 return false; 14387 } 14388 14389 /* There is mailbox completion work to queue to the worker thread */ 14390 spin_lock_irqsave(&phba->hbalock, iflags); 14391 __lpfc_mbox_cmpl_put(phba, pmb); 14392 phba->work_ha |= HA_MBATT; 14393 spin_unlock_irqrestore(&phba->hbalock, iflags); 14394 workposted = true; 14395 14396 send_current_mbox: 14397 spin_lock_irqsave(&phba->hbalock, iflags); 14398 /* Release the mailbox command posting token */ 14399 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14400 /* Setting active mailbox pointer need to be in sync to flag clear */ 14401 phba->sli.mbox_active = NULL; 14402 if (bf_get(lpfc_trailer_consumed, mcqe)) 14403 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14404 spin_unlock_irqrestore(&phba->hbalock, iflags); 14405 /* Wake up worker thread to post the next pending mailbox command */ 14406 lpfc_worker_wake_up(phba); 14407 return workposted; 14408 14409 out_no_mqe_complete: 14410 spin_lock_irqsave(&phba->hbalock, iflags); 14411 if (bf_get(lpfc_trailer_consumed, mcqe)) 14412 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14413 spin_unlock_irqrestore(&phba->hbalock, iflags); 14414 return false; 14415 } 14416 14417 /** 14418 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14419 * @phba: Pointer to HBA context object. 14420 * @cq: Pointer to associated CQ 14421 * @cqe: Pointer to mailbox completion queue entry. 14422 * 14423 * This routine process a mailbox completion queue entry, it invokes the 14424 * proper mailbox complete handling or asynchronous event handling routine 14425 * according to the MCQE's async bit. 14426 * 14427 * Return: true if work posted to worker thread, otherwise false. 14428 **/ 14429 static bool 14430 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14431 struct lpfc_cqe *cqe) 14432 { 14433 struct lpfc_mcqe mcqe; 14434 bool workposted; 14435 14436 cq->CQ_mbox++; 14437 14438 /* Copy the mailbox MCQE and convert endian order as needed */ 14439 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14440 14441 /* Invoke the proper event handling routine */ 14442 if (!bf_get(lpfc_trailer_async, &mcqe)) 14443 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14444 else 14445 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14446 return workposted; 14447 } 14448 14449 /** 14450 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14451 * @phba: Pointer to HBA context object. 14452 * @cq: Pointer to associated CQ 14453 * @wcqe: Pointer to work-queue completion queue entry. 14454 * 14455 * This routine handles an ELS work-queue completion event. 14456 * 14457 * Return: true if work posted to worker thread, otherwise false. 14458 **/ 14459 static bool 14460 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14461 struct lpfc_wcqe_complete *wcqe) 14462 { 14463 struct lpfc_iocbq *irspiocbq; 14464 unsigned long iflags; 14465 struct lpfc_sli_ring *pring = cq->pring; 14466 int txq_cnt = 0; 14467 int txcmplq_cnt = 0; 14468 14469 /* Check for response status */ 14470 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14471 /* Log the error status */ 14472 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14473 "0357 ELS CQE error: status=x%x: " 14474 "CQE: %08x %08x %08x %08x\n", 14475 bf_get(lpfc_wcqe_c_status, wcqe), 14476 wcqe->word0, wcqe->total_data_placed, 14477 wcqe->parameter, wcqe->word3); 14478 } 14479 14480 /* Get an irspiocbq for later ELS response processing use */ 14481 irspiocbq = lpfc_sli_get_iocbq(phba); 14482 if (!irspiocbq) { 14483 if (!list_empty(&pring->txq)) 14484 txq_cnt++; 14485 if (!list_empty(&pring->txcmplq)) 14486 txcmplq_cnt++; 14487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14488 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14489 "els_txcmplq_cnt=%d\n", 14490 txq_cnt, phba->iocb_cnt, 14491 txcmplq_cnt); 14492 return false; 14493 } 14494 14495 /* Save off the slow-path queue event for work thread to process */ 14496 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14497 spin_lock_irqsave(&phba->hbalock, iflags); 14498 list_add_tail(&irspiocbq->cq_event.list, 14499 &phba->sli4_hba.sp_queue_event); 14500 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14501 spin_unlock_irqrestore(&phba->hbalock, iflags); 14502 14503 return true; 14504 } 14505 14506 /** 14507 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14508 * @phba: Pointer to HBA context object. 14509 * @wcqe: Pointer to work-queue completion queue entry. 14510 * 14511 * This routine handles slow-path WQ entry consumed event by invoking the 14512 * proper WQ release routine to the slow-path WQ. 14513 **/ 14514 static void 14515 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14516 struct lpfc_wcqe_release *wcqe) 14517 { 14518 /* sanity check on queue memory */ 14519 if (unlikely(!phba->sli4_hba.els_wq)) 14520 return; 14521 /* Check for the slow-path ELS work queue */ 14522 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14523 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14524 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14525 else 14526 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14527 "2579 Slow-path wqe consume event carries " 14528 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14529 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14530 phba->sli4_hba.els_wq->queue_id); 14531 } 14532 14533 /** 14534 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14535 * @phba: Pointer to HBA context object. 14536 * @cq: Pointer to a WQ completion queue. 14537 * @wcqe: Pointer to work-queue completion queue entry. 14538 * 14539 * This routine handles an XRI abort event. 14540 * 14541 * Return: true if work posted to worker thread, otherwise false. 14542 **/ 14543 static bool 14544 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14545 struct lpfc_queue *cq, 14546 struct sli4_wcqe_xri_aborted *wcqe) 14547 { 14548 bool workposted = false; 14549 struct lpfc_cq_event *cq_event; 14550 unsigned long iflags; 14551 14552 switch (cq->subtype) { 14553 case LPFC_IO: 14554 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14555 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14556 /* Notify aborted XRI for NVME work queue */ 14557 if (phba->nvmet_support) 14558 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14559 } 14560 workposted = false; 14561 break; 14562 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14563 case LPFC_ELS: 14564 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14565 if (!cq_event) { 14566 workposted = false; 14567 break; 14568 } 14569 cq_event->hdwq = cq->hdwq; 14570 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14571 iflags); 14572 list_add_tail(&cq_event->list, 14573 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14574 /* Set the els xri abort event flag */ 14575 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14576 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14577 iflags); 14578 workposted = true; 14579 break; 14580 default: 14581 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14582 "0603 Invalid CQ subtype %d: " 14583 "%08x %08x %08x %08x\n", 14584 cq->subtype, wcqe->word0, wcqe->parameter, 14585 wcqe->word2, wcqe->word3); 14586 workposted = false; 14587 break; 14588 } 14589 return workposted; 14590 } 14591 14592 #define FC_RCTL_MDS_DIAGS 0xF4 14593 14594 /** 14595 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14596 * @phba: Pointer to HBA context object. 14597 * @rcqe: Pointer to receive-queue completion queue entry. 14598 * 14599 * This routine process a receive-queue completion queue entry. 14600 * 14601 * Return: true if work posted to worker thread, otherwise false. 14602 **/ 14603 static bool 14604 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14605 { 14606 bool workposted = false; 14607 struct fc_frame_header *fc_hdr; 14608 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14609 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14610 struct lpfc_nvmet_tgtport *tgtp; 14611 struct hbq_dmabuf *dma_buf; 14612 uint32_t status, rq_id; 14613 unsigned long iflags; 14614 14615 /* sanity check on queue memory */ 14616 if (unlikely(!hrq) || unlikely(!drq)) 14617 return workposted; 14618 14619 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14620 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14621 else 14622 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14623 if (rq_id != hrq->queue_id) 14624 goto out; 14625 14626 status = bf_get(lpfc_rcqe_status, rcqe); 14627 switch (status) { 14628 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14629 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14630 "2537 Receive Frame Truncated!!\n"); 14631 fallthrough; 14632 case FC_STATUS_RQ_SUCCESS: 14633 spin_lock_irqsave(&phba->hbalock, iflags); 14634 lpfc_sli4_rq_release(hrq, drq); 14635 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14636 if (!dma_buf) { 14637 hrq->RQ_no_buf_found++; 14638 spin_unlock_irqrestore(&phba->hbalock, iflags); 14639 goto out; 14640 } 14641 hrq->RQ_rcv_buf++; 14642 hrq->RQ_buf_posted--; 14643 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14644 14645 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14646 14647 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14648 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14649 spin_unlock_irqrestore(&phba->hbalock, iflags); 14650 /* Handle MDS Loopback frames */ 14651 if (!(phba->pport->load_flag & FC_UNLOADING)) 14652 lpfc_sli4_handle_mds_loopback(phba->pport, 14653 dma_buf); 14654 else 14655 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14656 break; 14657 } 14658 14659 /* save off the frame for the work thread to process */ 14660 list_add_tail(&dma_buf->cq_event.list, 14661 &phba->sli4_hba.sp_queue_event); 14662 /* Frame received */ 14663 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14664 spin_unlock_irqrestore(&phba->hbalock, iflags); 14665 workposted = true; 14666 break; 14667 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14668 if (phba->nvmet_support) { 14669 tgtp = phba->targetport->private; 14670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14671 "6402 RQE Error x%x, posted %d err_cnt " 14672 "%d: %x %x %x\n", 14673 status, hrq->RQ_buf_posted, 14674 hrq->RQ_no_posted_buf, 14675 atomic_read(&tgtp->rcv_fcp_cmd_in), 14676 atomic_read(&tgtp->rcv_fcp_cmd_out), 14677 atomic_read(&tgtp->xmt_fcp_release)); 14678 } 14679 fallthrough; 14680 14681 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14682 hrq->RQ_no_posted_buf++; 14683 /* Post more buffers if possible */ 14684 spin_lock_irqsave(&phba->hbalock, iflags); 14685 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14686 spin_unlock_irqrestore(&phba->hbalock, iflags); 14687 workposted = true; 14688 break; 14689 case FC_STATUS_RQ_DMA_FAILURE: 14690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14691 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14692 "x%08x\n", 14693 status, rcqe->word0, rcqe->word1, 14694 rcqe->word2, rcqe->word3); 14695 14696 /* If IV set, no further recovery */ 14697 if (bf_get(lpfc_rcqe_iv, rcqe)) 14698 break; 14699 14700 /* recycle consumed resource */ 14701 spin_lock_irqsave(&phba->hbalock, iflags); 14702 lpfc_sli4_rq_release(hrq, drq); 14703 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14704 if (!dma_buf) { 14705 hrq->RQ_no_buf_found++; 14706 spin_unlock_irqrestore(&phba->hbalock, iflags); 14707 break; 14708 } 14709 hrq->RQ_rcv_buf++; 14710 hrq->RQ_buf_posted--; 14711 spin_unlock_irqrestore(&phba->hbalock, iflags); 14712 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14713 break; 14714 default: 14715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14716 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14717 "x%08x x%08x x%08x\n", 14718 status, rcqe->word0, rcqe->word1, 14719 rcqe->word2, rcqe->word3); 14720 break; 14721 } 14722 out: 14723 return workposted; 14724 } 14725 14726 /** 14727 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14728 * @phba: Pointer to HBA context object. 14729 * @cq: Pointer to the completion queue. 14730 * @cqe: Pointer to a completion queue entry. 14731 * 14732 * This routine process a slow-path work-queue or receive queue completion queue 14733 * entry. 14734 * 14735 * Return: true if work posted to worker thread, otherwise false. 14736 **/ 14737 static bool 14738 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14739 struct lpfc_cqe *cqe) 14740 { 14741 struct lpfc_cqe cqevt; 14742 bool workposted = false; 14743 14744 /* Copy the work queue CQE and convert endian order if needed */ 14745 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14746 14747 /* Check and process for different type of WCQE and dispatch */ 14748 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14749 case CQE_CODE_COMPL_WQE: 14750 /* Process the WQ/RQ complete event */ 14751 phba->last_completion_time = jiffies; 14752 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14753 (struct lpfc_wcqe_complete *)&cqevt); 14754 break; 14755 case CQE_CODE_RELEASE_WQE: 14756 /* Process the WQ release event */ 14757 lpfc_sli4_sp_handle_rel_wcqe(phba, 14758 (struct lpfc_wcqe_release *)&cqevt); 14759 break; 14760 case CQE_CODE_XRI_ABORTED: 14761 /* Process the WQ XRI abort event */ 14762 phba->last_completion_time = jiffies; 14763 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14764 (struct sli4_wcqe_xri_aborted *)&cqevt); 14765 break; 14766 case CQE_CODE_RECEIVE: 14767 case CQE_CODE_RECEIVE_V1: 14768 /* Process the RQ event */ 14769 phba->last_completion_time = jiffies; 14770 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14771 (struct lpfc_rcqe *)&cqevt); 14772 break; 14773 default: 14774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14775 "0388 Not a valid WCQE code: x%x\n", 14776 bf_get(lpfc_cqe_code, &cqevt)); 14777 break; 14778 } 14779 return workposted; 14780 } 14781 14782 /** 14783 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14784 * @phba: Pointer to HBA context object. 14785 * @eqe: Pointer to fast-path event queue entry. 14786 * @speq: Pointer to slow-path event queue. 14787 * 14788 * This routine process a event queue entry from the slow-path event queue. 14789 * It will check the MajorCode and MinorCode to determine this is for a 14790 * completion event on a completion queue, if not, an error shall be logged 14791 * and just return. Otherwise, it will get to the corresponding completion 14792 * queue and process all the entries on that completion queue, rearm the 14793 * completion queue, and then return. 14794 * 14795 **/ 14796 static void 14797 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14798 struct lpfc_queue *speq) 14799 { 14800 struct lpfc_queue *cq = NULL, *childq; 14801 uint16_t cqid; 14802 int ret = 0; 14803 14804 /* Get the reference to the corresponding CQ */ 14805 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14806 14807 list_for_each_entry(childq, &speq->child_list, list) { 14808 if (childq->queue_id == cqid) { 14809 cq = childq; 14810 break; 14811 } 14812 } 14813 if (unlikely(!cq)) { 14814 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14815 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14816 "0365 Slow-path CQ identifier " 14817 "(%d) does not exist\n", cqid); 14818 return; 14819 } 14820 14821 /* Save EQ associated with this CQ */ 14822 cq->assoc_qp = speq; 14823 14824 if (is_kdump_kernel()) 14825 ret = queue_work(phba->wq, &cq->spwork); 14826 else 14827 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14828 14829 if (!ret) 14830 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14831 "0390 Cannot schedule queue work " 14832 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14833 cqid, cq->queue_id, raw_smp_processor_id()); 14834 } 14835 14836 /** 14837 * __lpfc_sli4_process_cq - Process elements of a CQ 14838 * @phba: Pointer to HBA context object. 14839 * @cq: Pointer to CQ to be processed 14840 * @handler: Routine to process each cqe 14841 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14842 * 14843 * This routine processes completion queue entries in a CQ. While a valid 14844 * queue element is found, the handler is called. During processing checks 14845 * are made for periodic doorbell writes to let the hardware know of 14846 * element consumption. 14847 * 14848 * If the max limit on cqes to process is hit, or there are no more valid 14849 * entries, the loop stops. If we processed a sufficient number of elements, 14850 * meaning there is sufficient load, rather than rearming and generating 14851 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14852 * indicates no rescheduling. 14853 * 14854 * Returns True if work scheduled, False otherwise. 14855 **/ 14856 static bool 14857 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14858 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14859 struct lpfc_cqe *), unsigned long *delay) 14860 { 14861 struct lpfc_cqe *cqe; 14862 bool workposted = false; 14863 int count = 0, consumed = 0; 14864 bool arm = true; 14865 14866 /* default - no reschedule */ 14867 *delay = 0; 14868 14869 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14870 goto rearm_and_exit; 14871 14872 /* Process all the entries to the CQ */ 14873 cq->q_flag = 0; 14874 cqe = lpfc_sli4_cq_get(cq); 14875 while (cqe) { 14876 workposted |= handler(phba, cq, cqe); 14877 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14878 14879 consumed++; 14880 if (!(++count % cq->max_proc_limit)) 14881 break; 14882 14883 if (!(count % cq->notify_interval)) { 14884 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14885 LPFC_QUEUE_NOARM); 14886 consumed = 0; 14887 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14888 } 14889 14890 if (count == LPFC_NVMET_CQ_NOTIFY) 14891 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14892 14893 cqe = lpfc_sli4_cq_get(cq); 14894 } 14895 if (count >= phba->cfg_cq_poll_threshold) { 14896 *delay = 1; 14897 arm = false; 14898 } 14899 14900 /* Track the max number of CQEs processed in 1 EQ */ 14901 if (count > cq->CQ_max_cqe) 14902 cq->CQ_max_cqe = count; 14903 14904 cq->assoc_qp->EQ_cqe_cnt += count; 14905 14906 /* Catch the no cq entry condition */ 14907 if (unlikely(count == 0)) 14908 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14909 "0369 No entry from completion queue " 14910 "qid=%d\n", cq->queue_id); 14911 14912 xchg(&cq->queue_claimed, 0); 14913 14914 rearm_and_exit: 14915 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14916 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14917 14918 return workposted; 14919 } 14920 14921 /** 14922 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14923 * @cq: pointer to CQ to process 14924 * 14925 * This routine calls the cq processing routine with a handler specific 14926 * to the type of queue bound to it. 14927 * 14928 * The CQ routine returns two values: the first is the calling status, 14929 * which indicates whether work was queued to the background discovery 14930 * thread. If true, the routine should wakeup the discovery thread; 14931 * the second is the delay parameter. If non-zero, rather than rearming 14932 * the CQ and yet another interrupt, the CQ handler should be queued so 14933 * that it is processed in a subsequent polling action. The value of 14934 * the delay indicates when to reschedule it. 14935 **/ 14936 static void 14937 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14938 { 14939 struct lpfc_hba *phba = cq->phba; 14940 unsigned long delay; 14941 bool workposted = false; 14942 int ret = 0; 14943 14944 /* Process and rearm the CQ */ 14945 switch (cq->type) { 14946 case LPFC_MCQ: 14947 workposted |= __lpfc_sli4_process_cq(phba, cq, 14948 lpfc_sli4_sp_handle_mcqe, 14949 &delay); 14950 break; 14951 case LPFC_WCQ: 14952 if (cq->subtype == LPFC_IO) 14953 workposted |= __lpfc_sli4_process_cq(phba, cq, 14954 lpfc_sli4_fp_handle_cqe, 14955 &delay); 14956 else 14957 workposted |= __lpfc_sli4_process_cq(phba, cq, 14958 lpfc_sli4_sp_handle_cqe, 14959 &delay); 14960 break; 14961 default: 14962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14963 "0370 Invalid completion queue type (%d)\n", 14964 cq->type); 14965 return; 14966 } 14967 14968 if (delay) { 14969 if (is_kdump_kernel()) 14970 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14971 delay); 14972 else 14973 ret = queue_delayed_work_on(cq->chann, phba->wq, 14974 &cq->sched_spwork, delay); 14975 if (!ret) 14976 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14977 "0394 Cannot schedule queue work " 14978 "for cqid=%d on CPU %d\n", 14979 cq->queue_id, cq->chann); 14980 } 14981 14982 /* wake up worker thread if there are works to be done */ 14983 if (workposted) 14984 lpfc_worker_wake_up(phba); 14985 } 14986 14987 /** 14988 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14989 * interrupt 14990 * @work: pointer to work element 14991 * 14992 * translates from the work handler and calls the slow-path handler. 14993 **/ 14994 static void 14995 lpfc_sli4_sp_process_cq(struct work_struct *work) 14996 { 14997 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14998 14999 __lpfc_sli4_sp_process_cq(cq); 15000 } 15001 15002 /** 15003 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15004 * @work: pointer to work element 15005 * 15006 * translates from the work handler and calls the slow-path handler. 15007 **/ 15008 static void 15009 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15010 { 15011 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15012 struct lpfc_queue, sched_spwork); 15013 15014 __lpfc_sli4_sp_process_cq(cq); 15015 } 15016 15017 /** 15018 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15019 * @phba: Pointer to HBA context object. 15020 * @cq: Pointer to associated CQ 15021 * @wcqe: Pointer to work-queue completion queue entry. 15022 * 15023 * This routine process a fast-path work queue completion entry from fast-path 15024 * event queue for FCP command response completion. 15025 **/ 15026 static void 15027 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15028 struct lpfc_wcqe_complete *wcqe) 15029 { 15030 struct lpfc_sli_ring *pring = cq->pring; 15031 struct lpfc_iocbq *cmdiocbq; 15032 unsigned long iflags; 15033 15034 /* Check for response status */ 15035 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15036 /* If resource errors reported from HBA, reduce queue 15037 * depth of the SCSI device. 15038 */ 15039 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15040 IOSTAT_LOCAL_REJECT)) && 15041 ((wcqe->parameter & IOERR_PARAM_MASK) == 15042 IOERR_NO_RESOURCES)) 15043 phba->lpfc_rampdown_queue_depth(phba); 15044 15045 /* Log the cmpl status */ 15046 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15047 "0373 FCP CQE cmpl: status=x%x: " 15048 "CQE: %08x %08x %08x %08x\n", 15049 bf_get(lpfc_wcqe_c_status, wcqe), 15050 wcqe->word0, wcqe->total_data_placed, 15051 wcqe->parameter, wcqe->word3); 15052 } 15053 15054 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15055 spin_lock_irqsave(&pring->ring_lock, iflags); 15056 pring->stats.iocb_event++; 15057 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15058 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15059 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15060 if (unlikely(!cmdiocbq)) { 15061 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15062 "0374 FCP complete with no corresponding " 15063 "cmdiocb: iotag (%d)\n", 15064 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15065 return; 15066 } 15067 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15068 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15069 #endif 15070 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15071 spin_lock_irqsave(&phba->hbalock, iflags); 15072 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15073 spin_unlock_irqrestore(&phba->hbalock, iflags); 15074 } 15075 15076 if (cmdiocbq->cmd_cmpl) { 15077 /* For FCP the flag is cleared in cmd_cmpl */ 15078 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15079 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15080 spin_lock_irqsave(&phba->hbalock, iflags); 15081 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15082 spin_unlock_irqrestore(&phba->hbalock, iflags); 15083 } 15084 15085 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15086 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15087 sizeof(struct lpfc_wcqe_complete)); 15088 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15089 } else { 15090 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15091 "0375 FCP cmdiocb not callback function " 15092 "iotag: (%d)\n", 15093 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15094 } 15095 } 15096 15097 /** 15098 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15099 * @phba: Pointer to HBA context object. 15100 * @cq: Pointer to completion queue. 15101 * @wcqe: Pointer to work-queue completion queue entry. 15102 * 15103 * This routine handles an fast-path WQ entry consumed event by invoking the 15104 * proper WQ release routine to the slow-path WQ. 15105 **/ 15106 static void 15107 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15108 struct lpfc_wcqe_release *wcqe) 15109 { 15110 struct lpfc_queue *childwq; 15111 bool wqid_matched = false; 15112 uint16_t hba_wqid; 15113 15114 /* Check for fast-path FCP work queue release */ 15115 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15116 list_for_each_entry(childwq, &cq->child_list, list) { 15117 if (childwq->queue_id == hba_wqid) { 15118 lpfc_sli4_wq_release(childwq, 15119 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15120 if (childwq->q_flag & HBA_NVMET_WQFULL) 15121 lpfc_nvmet_wqfull_process(phba, childwq); 15122 wqid_matched = true; 15123 break; 15124 } 15125 } 15126 /* Report warning log message if no match found */ 15127 if (wqid_matched != true) 15128 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15129 "2580 Fast-path wqe consume event carries " 15130 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15131 } 15132 15133 /** 15134 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15135 * @phba: Pointer to HBA context object. 15136 * @cq: Pointer to completion queue. 15137 * @rcqe: Pointer to receive-queue completion queue entry. 15138 * 15139 * This routine process a receive-queue completion queue entry. 15140 * 15141 * Return: true if work posted to worker thread, otherwise false. 15142 **/ 15143 static bool 15144 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15145 struct lpfc_rcqe *rcqe) 15146 { 15147 bool workposted = false; 15148 struct lpfc_queue *hrq; 15149 struct lpfc_queue *drq; 15150 struct rqb_dmabuf *dma_buf; 15151 struct fc_frame_header *fc_hdr; 15152 struct lpfc_nvmet_tgtport *tgtp; 15153 uint32_t status, rq_id; 15154 unsigned long iflags; 15155 uint32_t fctl, idx; 15156 15157 if ((phba->nvmet_support == 0) || 15158 (phba->sli4_hba.nvmet_cqset == NULL)) 15159 return workposted; 15160 15161 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15162 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15163 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15164 15165 /* sanity check on queue memory */ 15166 if (unlikely(!hrq) || unlikely(!drq)) 15167 return workposted; 15168 15169 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15170 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15171 else 15172 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15173 15174 if ((phba->nvmet_support == 0) || 15175 (rq_id != hrq->queue_id)) 15176 return workposted; 15177 15178 status = bf_get(lpfc_rcqe_status, rcqe); 15179 switch (status) { 15180 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15182 "6126 Receive Frame Truncated!!\n"); 15183 fallthrough; 15184 case FC_STATUS_RQ_SUCCESS: 15185 spin_lock_irqsave(&phba->hbalock, iflags); 15186 lpfc_sli4_rq_release(hrq, drq); 15187 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15188 if (!dma_buf) { 15189 hrq->RQ_no_buf_found++; 15190 spin_unlock_irqrestore(&phba->hbalock, iflags); 15191 goto out; 15192 } 15193 spin_unlock_irqrestore(&phba->hbalock, iflags); 15194 hrq->RQ_rcv_buf++; 15195 hrq->RQ_buf_posted--; 15196 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15197 15198 /* Just some basic sanity checks on FCP Command frame */ 15199 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15200 fc_hdr->fh_f_ctl[1] << 8 | 15201 fc_hdr->fh_f_ctl[2]); 15202 if (((fctl & 15203 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15204 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15205 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15206 goto drop; 15207 15208 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15209 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15210 lpfc_nvmet_unsol_fcp_event( 15211 phba, idx, dma_buf, cq->isr_timestamp, 15212 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15213 return false; 15214 } 15215 drop: 15216 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15217 break; 15218 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15219 if (phba->nvmet_support) { 15220 tgtp = phba->targetport->private; 15221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15222 "6401 RQE Error x%x, posted %d err_cnt " 15223 "%d: %x %x %x\n", 15224 status, hrq->RQ_buf_posted, 15225 hrq->RQ_no_posted_buf, 15226 atomic_read(&tgtp->rcv_fcp_cmd_in), 15227 atomic_read(&tgtp->rcv_fcp_cmd_out), 15228 atomic_read(&tgtp->xmt_fcp_release)); 15229 } 15230 fallthrough; 15231 15232 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15233 hrq->RQ_no_posted_buf++; 15234 /* Post more buffers if possible */ 15235 break; 15236 case FC_STATUS_RQ_DMA_FAILURE: 15237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15238 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15239 "x%08x\n", 15240 status, rcqe->word0, rcqe->word1, 15241 rcqe->word2, rcqe->word3); 15242 15243 /* If IV set, no further recovery */ 15244 if (bf_get(lpfc_rcqe_iv, rcqe)) 15245 break; 15246 15247 /* recycle consumed resource */ 15248 spin_lock_irqsave(&phba->hbalock, iflags); 15249 lpfc_sli4_rq_release(hrq, drq); 15250 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15251 if (!dma_buf) { 15252 hrq->RQ_no_buf_found++; 15253 spin_unlock_irqrestore(&phba->hbalock, iflags); 15254 break; 15255 } 15256 hrq->RQ_rcv_buf++; 15257 hrq->RQ_buf_posted--; 15258 spin_unlock_irqrestore(&phba->hbalock, iflags); 15259 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15260 break; 15261 default: 15262 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15263 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15264 "x%08x x%08x x%08x\n", 15265 status, rcqe->word0, rcqe->word1, 15266 rcqe->word2, rcqe->word3); 15267 break; 15268 } 15269 out: 15270 return workposted; 15271 } 15272 15273 /** 15274 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15275 * @phba: adapter with cq 15276 * @cq: Pointer to the completion queue. 15277 * @cqe: Pointer to fast-path completion queue entry. 15278 * 15279 * This routine process a fast-path work queue completion entry from fast-path 15280 * event queue for FCP command response completion. 15281 * 15282 * Return: true if work posted to worker thread, otherwise false. 15283 **/ 15284 static bool 15285 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15286 struct lpfc_cqe *cqe) 15287 { 15288 struct lpfc_wcqe_release wcqe; 15289 bool workposted = false; 15290 15291 /* Copy the work queue CQE and convert endian order if needed */ 15292 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15293 15294 /* Check and process for different type of WCQE and dispatch */ 15295 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15296 case CQE_CODE_COMPL_WQE: 15297 case CQE_CODE_NVME_ERSP: 15298 cq->CQ_wq++; 15299 /* Process the WQ complete event */ 15300 phba->last_completion_time = jiffies; 15301 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15302 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15303 (struct lpfc_wcqe_complete *)&wcqe); 15304 break; 15305 case CQE_CODE_RELEASE_WQE: 15306 cq->CQ_release_wqe++; 15307 /* Process the WQ release event */ 15308 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15309 (struct lpfc_wcqe_release *)&wcqe); 15310 break; 15311 case CQE_CODE_XRI_ABORTED: 15312 cq->CQ_xri_aborted++; 15313 /* Process the WQ XRI abort event */ 15314 phba->last_completion_time = jiffies; 15315 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15316 (struct sli4_wcqe_xri_aborted *)&wcqe); 15317 break; 15318 case CQE_CODE_RECEIVE_V1: 15319 case CQE_CODE_RECEIVE: 15320 phba->last_completion_time = jiffies; 15321 if (cq->subtype == LPFC_NVMET) { 15322 workposted = lpfc_sli4_nvmet_handle_rcqe( 15323 phba, cq, (struct lpfc_rcqe *)&wcqe); 15324 } 15325 break; 15326 default: 15327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15328 "0144 Not a valid CQE code: x%x\n", 15329 bf_get(lpfc_wcqe_c_code, &wcqe)); 15330 break; 15331 } 15332 return workposted; 15333 } 15334 15335 /** 15336 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15337 * @cq: Pointer to CQ to be processed 15338 * 15339 * This routine calls the cq processing routine with the handler for 15340 * fast path CQEs. 15341 * 15342 * The CQ routine returns two values: the first is the calling status, 15343 * which indicates whether work was queued to the background discovery 15344 * thread. If true, the routine should wakeup the discovery thread; 15345 * the second is the delay parameter. If non-zero, rather than rearming 15346 * the CQ and yet another interrupt, the CQ handler should be queued so 15347 * that it is processed in a subsequent polling action. The value of 15348 * the delay indicates when to reschedule it. 15349 **/ 15350 static void 15351 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15352 { 15353 struct lpfc_hba *phba = cq->phba; 15354 unsigned long delay; 15355 bool workposted = false; 15356 int ret; 15357 15358 /* process and rearm the CQ */ 15359 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15360 &delay); 15361 15362 if (delay) { 15363 if (is_kdump_kernel()) 15364 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15365 delay); 15366 else 15367 ret = queue_delayed_work_on(cq->chann, phba->wq, 15368 &cq->sched_irqwork, delay); 15369 if (!ret) 15370 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15371 "0367 Cannot schedule queue work " 15372 "for cqid=%d on CPU %d\n", 15373 cq->queue_id, cq->chann); 15374 } 15375 15376 /* wake up worker thread if there are works to be done */ 15377 if (workposted) 15378 lpfc_worker_wake_up(phba); 15379 } 15380 15381 /** 15382 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15383 * interrupt 15384 * @work: pointer to work element 15385 * 15386 * translates from the work handler and calls the fast-path handler. 15387 **/ 15388 static void 15389 lpfc_sli4_hba_process_cq(struct work_struct *work) 15390 { 15391 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15392 15393 __lpfc_sli4_hba_process_cq(cq); 15394 } 15395 15396 /** 15397 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15398 * @phba: Pointer to HBA context object. 15399 * @eq: Pointer to the queue structure. 15400 * @eqe: Pointer to fast-path event queue entry. 15401 * @poll_mode: poll_mode to execute processing the cq. 15402 * 15403 * This routine process a event queue entry from the fast-path event queue. 15404 * It will check the MajorCode and MinorCode to determine this is for a 15405 * completion event on a completion queue, if not, an error shall be logged 15406 * and just return. Otherwise, it will get to the corresponding completion 15407 * queue and process all the entries on the completion queue, rearm the 15408 * completion queue, and then return. 15409 **/ 15410 static void 15411 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15412 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15413 { 15414 struct lpfc_queue *cq = NULL; 15415 uint32_t qidx = eq->hdwq; 15416 uint16_t cqid, id; 15417 int ret; 15418 15419 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15420 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15421 "0366 Not a valid completion " 15422 "event: majorcode=x%x, minorcode=x%x\n", 15423 bf_get_le32(lpfc_eqe_major_code, eqe), 15424 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15425 return; 15426 } 15427 15428 /* Get the reference to the corresponding CQ */ 15429 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15430 15431 /* Use the fast lookup method first */ 15432 if (cqid <= phba->sli4_hba.cq_max) { 15433 cq = phba->sli4_hba.cq_lookup[cqid]; 15434 if (cq) 15435 goto work_cq; 15436 } 15437 15438 /* Next check for NVMET completion */ 15439 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15440 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15441 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15442 /* Process NVMET unsol rcv */ 15443 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15444 goto process_cq; 15445 } 15446 } 15447 15448 if (phba->sli4_hba.nvmels_cq && 15449 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15450 /* Process NVME unsol rcv */ 15451 cq = phba->sli4_hba.nvmels_cq; 15452 } 15453 15454 /* Otherwise this is a Slow path event */ 15455 if (cq == NULL) { 15456 lpfc_sli4_sp_handle_eqe(phba, eqe, 15457 phba->sli4_hba.hdwq[qidx].hba_eq); 15458 return; 15459 } 15460 15461 process_cq: 15462 if (unlikely(cqid != cq->queue_id)) { 15463 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15464 "0368 Miss-matched fast-path completion " 15465 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15466 cqid, cq->queue_id); 15467 return; 15468 } 15469 15470 work_cq: 15471 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15472 if (phba->ktime_on) 15473 cq->isr_timestamp = ktime_get_ns(); 15474 else 15475 cq->isr_timestamp = 0; 15476 #endif 15477 15478 switch (poll_mode) { 15479 case LPFC_THREADED_IRQ: 15480 __lpfc_sli4_hba_process_cq(cq); 15481 break; 15482 case LPFC_QUEUE_WORK: 15483 default: 15484 if (is_kdump_kernel()) 15485 ret = queue_work(phba->wq, &cq->irqwork); 15486 else 15487 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15488 if (!ret) 15489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15490 "0383 Cannot schedule queue work " 15491 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15492 cqid, cq->queue_id, 15493 raw_smp_processor_id()); 15494 break; 15495 } 15496 } 15497 15498 /** 15499 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15500 * @work: pointer to work element 15501 * 15502 * translates from the work handler and calls the fast-path handler. 15503 **/ 15504 static void 15505 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15506 { 15507 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15508 struct lpfc_queue, sched_irqwork); 15509 15510 __lpfc_sli4_hba_process_cq(cq); 15511 } 15512 15513 /** 15514 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15515 * @irq: Interrupt number. 15516 * @dev_id: The device context pointer. 15517 * 15518 * This function is directly called from the PCI layer as an interrupt 15519 * service routine when device with SLI-4 interface spec is enabled with 15520 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15521 * ring event in the HBA. However, when the device is enabled with either 15522 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15523 * device-level interrupt handler. When the PCI slot is in error recovery 15524 * or the HBA is undergoing initialization, the interrupt handler will not 15525 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15526 * the intrrupt context. This function is called without any lock held. 15527 * It gets the hbalock to access and update SLI data structures. Note that, 15528 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15529 * equal to that of FCP CQ index. 15530 * 15531 * The link attention and ELS ring attention events are handled 15532 * by the worker thread. The interrupt handler signals the worker thread 15533 * and returns for these events. This function is called without any lock 15534 * held. It gets the hbalock to access and update SLI data structures. 15535 * 15536 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15537 * when interrupt is scheduled to be handled from a threaded irq context, or 15538 * else returns IRQ_NONE. 15539 **/ 15540 irqreturn_t 15541 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15542 { 15543 struct lpfc_hba *phba; 15544 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15545 struct lpfc_queue *fpeq; 15546 unsigned long iflag; 15547 int hba_eqidx; 15548 int ecount = 0; 15549 struct lpfc_eq_intr_info *eqi; 15550 15551 /* Get the driver's phba structure from the dev_id */ 15552 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15553 phba = hba_eq_hdl->phba; 15554 hba_eqidx = hba_eq_hdl->idx; 15555 15556 if (unlikely(!phba)) 15557 return IRQ_NONE; 15558 if (unlikely(!phba->sli4_hba.hdwq)) 15559 return IRQ_NONE; 15560 15561 /* Get to the EQ struct associated with this vector */ 15562 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15563 if (unlikely(!fpeq)) 15564 return IRQ_NONE; 15565 15566 /* Check device state for handling interrupt */ 15567 if (unlikely(lpfc_intr_state_check(phba))) { 15568 /* Check again for link_state with lock held */ 15569 spin_lock_irqsave(&phba->hbalock, iflag); 15570 if (phba->link_state < LPFC_LINK_DOWN) 15571 /* Flush, clear interrupt, and rearm the EQ */ 15572 lpfc_sli4_eqcq_flush(phba, fpeq); 15573 spin_unlock_irqrestore(&phba->hbalock, iflag); 15574 return IRQ_NONE; 15575 } 15576 15577 switch (fpeq->poll_mode) { 15578 case LPFC_THREADED_IRQ: 15579 /* CGN mgmt is mutually exclusive from irq processing */ 15580 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15581 return IRQ_WAKE_THREAD; 15582 fallthrough; 15583 case LPFC_QUEUE_WORK: 15584 default: 15585 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15586 eqi->icnt++; 15587 15588 fpeq->last_cpu = raw_smp_processor_id(); 15589 15590 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15591 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15592 phba->cfg_auto_imax && 15593 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15594 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15595 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15596 LPFC_MAX_AUTO_EQ_DELAY); 15597 15598 /* process and rearm the EQ */ 15599 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15600 LPFC_QUEUE_WORK); 15601 15602 if (unlikely(ecount == 0)) { 15603 fpeq->EQ_no_entry++; 15604 if (phba->intr_type == MSIX) 15605 /* MSI-X treated interrupt served as no EQ share INT */ 15606 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15607 "0358 MSI-X interrupt with no EQE\n"); 15608 else 15609 /* Non MSI-X treated on interrupt as EQ share INT */ 15610 return IRQ_NONE; 15611 } 15612 } 15613 15614 return IRQ_HANDLED; 15615 } /* lpfc_sli4_hba_intr_handler */ 15616 15617 /** 15618 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15619 * @irq: Interrupt number. 15620 * @dev_id: The device context pointer. 15621 * 15622 * This function is the device-level interrupt handler to device with SLI-4 15623 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15624 * interrupt mode is enabled and there is an event in the HBA which requires 15625 * driver attention. This function invokes the slow-path interrupt attention 15626 * handling function and fast-path interrupt attention handling function in 15627 * turn to process the relevant HBA attention events. This function is called 15628 * without any lock held. It gets the hbalock to access and update SLI data 15629 * structures. 15630 * 15631 * This function returns IRQ_HANDLED when interrupt is handled, else it 15632 * returns IRQ_NONE. 15633 **/ 15634 irqreturn_t 15635 lpfc_sli4_intr_handler(int irq, void *dev_id) 15636 { 15637 struct lpfc_hba *phba; 15638 irqreturn_t hba_irq_rc; 15639 bool hba_handled = false; 15640 int qidx; 15641 15642 /* Get the driver's phba structure from the dev_id */ 15643 phba = (struct lpfc_hba *)dev_id; 15644 15645 if (unlikely(!phba)) 15646 return IRQ_NONE; 15647 15648 /* 15649 * Invoke fast-path host attention interrupt handling as appropriate. 15650 */ 15651 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15652 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15653 &phba->sli4_hba.hba_eq_hdl[qidx]); 15654 if (hba_irq_rc == IRQ_HANDLED) 15655 hba_handled |= true; 15656 } 15657 15658 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15659 } /* lpfc_sli4_intr_handler */ 15660 15661 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15662 { 15663 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15664 struct lpfc_queue *eq; 15665 15666 rcu_read_lock(); 15667 15668 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15669 lpfc_sli4_poll_eq(eq); 15670 if (!list_empty(&phba->poll_list)) 15671 mod_timer(&phba->cpuhp_poll_timer, 15672 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15673 15674 rcu_read_unlock(); 15675 } 15676 15677 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15678 { 15679 struct lpfc_hba *phba = eq->phba; 15680 15681 /* kickstart slowpath processing if needed */ 15682 if (list_empty(&phba->poll_list)) 15683 mod_timer(&phba->cpuhp_poll_timer, 15684 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15685 15686 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15687 synchronize_rcu(); 15688 } 15689 15690 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15691 { 15692 struct lpfc_hba *phba = eq->phba; 15693 15694 /* Disable slowpath processing for this eq. Kick start the eq 15695 * by RE-ARMING the eq's ASAP 15696 */ 15697 list_del_rcu(&eq->_poll_list); 15698 synchronize_rcu(); 15699 15700 if (list_empty(&phba->poll_list)) 15701 del_timer_sync(&phba->cpuhp_poll_timer); 15702 } 15703 15704 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15705 { 15706 struct lpfc_queue *eq, *next; 15707 15708 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15709 list_del(&eq->_poll_list); 15710 15711 INIT_LIST_HEAD(&phba->poll_list); 15712 synchronize_rcu(); 15713 } 15714 15715 static inline void 15716 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15717 { 15718 if (mode == eq->mode) 15719 return; 15720 /* 15721 * currently this function is only called during a hotplug 15722 * event and the cpu on which this function is executing 15723 * is going offline. By now the hotplug has instructed 15724 * the scheduler to remove this cpu from cpu active mask. 15725 * So we don't need to work about being put aside by the 15726 * scheduler for a high priority process. Yes, the inte- 15727 * rrupts could come but they are known to retire ASAP. 15728 */ 15729 15730 /* Disable polling in the fastpath */ 15731 WRITE_ONCE(eq->mode, mode); 15732 /* flush out the store buffer */ 15733 smp_wmb(); 15734 15735 /* 15736 * Add this eq to the polling list and start polling. For 15737 * a grace period both interrupt handler and poller will 15738 * try to process the eq _but_ that's fine. We have a 15739 * synchronization mechanism in place (queue_claimed) to 15740 * deal with it. This is just a draining phase for int- 15741 * errupt handler (not eq's) as we have guranteed through 15742 * barrier that all the CPUs have seen the new CQ_POLLED 15743 * state. which will effectively disable the REARMING of 15744 * the EQ. The whole idea is eq's die off eventually as 15745 * we are not rearming EQ's anymore. 15746 */ 15747 mode ? lpfc_sli4_add_to_poll_list(eq) : 15748 lpfc_sli4_remove_from_poll_list(eq); 15749 } 15750 15751 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15752 { 15753 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15754 } 15755 15756 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15757 { 15758 struct lpfc_hba *phba = eq->phba; 15759 15760 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15761 15762 /* Kick start for the pending io's in h/w. 15763 * Once we switch back to interrupt processing on a eq 15764 * the io path completion will only arm eq's when it 15765 * receives a completion. But since eq's are in disa- 15766 * rmed state it doesn't receive a completion. This 15767 * creates a deadlock scenaro. 15768 */ 15769 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15770 } 15771 15772 /** 15773 * lpfc_sli4_queue_free - free a queue structure and associated memory 15774 * @queue: The queue structure to free. 15775 * 15776 * This function frees a queue structure and the DMAable memory used for 15777 * the host resident queue. This function must be called after destroying the 15778 * queue on the HBA. 15779 **/ 15780 void 15781 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15782 { 15783 struct lpfc_dmabuf *dmabuf; 15784 15785 if (!queue) 15786 return; 15787 15788 if (!list_empty(&queue->wq_list)) 15789 list_del(&queue->wq_list); 15790 15791 while (!list_empty(&queue->page_list)) { 15792 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15793 list); 15794 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15795 dmabuf->virt, dmabuf->phys); 15796 kfree(dmabuf); 15797 } 15798 if (queue->rqbp) { 15799 lpfc_free_rq_buffer(queue->phba, queue); 15800 kfree(queue->rqbp); 15801 } 15802 15803 if (!list_empty(&queue->cpu_list)) 15804 list_del(&queue->cpu_list); 15805 15806 kfree(queue); 15807 return; 15808 } 15809 15810 /** 15811 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15812 * @phba: The HBA that this queue is being created on. 15813 * @page_size: The size of a queue page 15814 * @entry_size: The size of each queue entry for this queue. 15815 * @entry_count: The number of entries that this queue will handle. 15816 * @cpu: The cpu that will primarily utilize this queue. 15817 * 15818 * This function allocates a queue structure and the DMAable memory used for 15819 * the host resident queue. This function must be called before creating the 15820 * queue on the HBA. 15821 **/ 15822 struct lpfc_queue * 15823 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15824 uint32_t entry_size, uint32_t entry_count, int cpu) 15825 { 15826 struct lpfc_queue *queue; 15827 struct lpfc_dmabuf *dmabuf; 15828 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15829 uint16_t x, pgcnt; 15830 15831 if (!phba->sli4_hba.pc_sli4_params.supported) 15832 hw_page_size = page_size; 15833 15834 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15835 15836 /* If needed, Adjust page count to match the max the adapter supports */ 15837 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15838 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15839 15840 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15841 GFP_KERNEL, cpu_to_node(cpu)); 15842 if (!queue) 15843 return NULL; 15844 15845 INIT_LIST_HEAD(&queue->list); 15846 INIT_LIST_HEAD(&queue->_poll_list); 15847 INIT_LIST_HEAD(&queue->wq_list); 15848 INIT_LIST_HEAD(&queue->wqfull_list); 15849 INIT_LIST_HEAD(&queue->page_list); 15850 INIT_LIST_HEAD(&queue->child_list); 15851 INIT_LIST_HEAD(&queue->cpu_list); 15852 15853 /* Set queue parameters now. If the system cannot provide memory 15854 * resources, the free routine needs to know what was allocated. 15855 */ 15856 queue->page_count = pgcnt; 15857 queue->q_pgs = (void **)&queue[1]; 15858 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15859 queue->entry_size = entry_size; 15860 queue->entry_count = entry_count; 15861 queue->page_size = hw_page_size; 15862 queue->phba = phba; 15863 15864 for (x = 0; x < queue->page_count; x++) { 15865 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15866 dev_to_node(&phba->pcidev->dev)); 15867 if (!dmabuf) 15868 goto out_fail; 15869 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15870 hw_page_size, &dmabuf->phys, 15871 GFP_KERNEL); 15872 if (!dmabuf->virt) { 15873 kfree(dmabuf); 15874 goto out_fail; 15875 } 15876 dmabuf->buffer_tag = x; 15877 list_add_tail(&dmabuf->list, &queue->page_list); 15878 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15879 queue->q_pgs[x] = dmabuf->virt; 15880 } 15881 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15882 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15883 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15884 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15885 15886 /* notify_interval will be set during q creation */ 15887 15888 return queue; 15889 out_fail: 15890 lpfc_sli4_queue_free(queue); 15891 return NULL; 15892 } 15893 15894 /** 15895 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15896 * @phba: HBA structure that indicates port to create a queue on. 15897 * @pci_barset: PCI BAR set flag. 15898 * 15899 * This function shall perform iomap of the specified PCI BAR address to host 15900 * memory address if not already done so and return it. The returned host 15901 * memory address can be NULL. 15902 */ 15903 static void __iomem * 15904 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15905 { 15906 if (!phba->pcidev) 15907 return NULL; 15908 15909 switch (pci_barset) { 15910 case WQ_PCI_BAR_0_AND_1: 15911 return phba->pci_bar0_memmap_p; 15912 case WQ_PCI_BAR_2_AND_3: 15913 return phba->pci_bar2_memmap_p; 15914 case WQ_PCI_BAR_4_AND_5: 15915 return phba->pci_bar4_memmap_p; 15916 default: 15917 break; 15918 } 15919 return NULL; 15920 } 15921 15922 /** 15923 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15924 * @phba: HBA structure that EQs are on. 15925 * @startq: The starting EQ index to modify 15926 * @numq: The number of EQs (consecutive indexes) to modify 15927 * @usdelay: amount of delay 15928 * 15929 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15930 * is set either by writing to a register (if supported by the SLI Port) 15931 * or by mailbox command. The mailbox command allows several EQs to be 15932 * updated at once. 15933 * 15934 * The @phba struct is used to send a mailbox command to HBA. The @startq 15935 * is used to get the starting EQ index to change. The @numq value is 15936 * used to specify how many consecutive EQ indexes, starting at EQ index, 15937 * are to be changed. This function is asynchronous and will wait for any 15938 * mailbox commands to finish before returning. 15939 * 15940 * On success this function will return a zero. If unable to allocate 15941 * enough memory this function will return -ENOMEM. If a mailbox command 15942 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15943 * have had their delay multipler changed. 15944 **/ 15945 void 15946 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15947 uint32_t numq, uint32_t usdelay) 15948 { 15949 struct lpfc_mbx_modify_eq_delay *eq_delay; 15950 LPFC_MBOXQ_t *mbox; 15951 struct lpfc_queue *eq; 15952 int cnt = 0, rc, length; 15953 uint32_t shdr_status, shdr_add_status; 15954 uint32_t dmult; 15955 int qidx; 15956 union lpfc_sli4_cfg_shdr *shdr; 15957 15958 if (startq >= phba->cfg_irq_chann) 15959 return; 15960 15961 if (usdelay > 0xFFFF) { 15962 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15963 "6429 usdelay %d too large. Scaled down to " 15964 "0xFFFF.\n", usdelay); 15965 usdelay = 0xFFFF; 15966 } 15967 15968 /* set values by EQ_DELAY register if supported */ 15969 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15970 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15971 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15972 if (!eq) 15973 continue; 15974 15975 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15976 15977 if (++cnt >= numq) 15978 break; 15979 } 15980 return; 15981 } 15982 15983 /* Otherwise, set values by mailbox cmd */ 15984 15985 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15986 if (!mbox) { 15987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15988 "6428 Failed allocating mailbox cmd buffer." 15989 " EQ delay was not set.\n"); 15990 return; 15991 } 15992 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15993 sizeof(struct lpfc_sli4_cfg_mhdr)); 15994 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15995 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15996 length, LPFC_SLI4_MBX_EMBED); 15997 eq_delay = &mbox->u.mqe.un.eq_delay; 15998 15999 /* Calculate delay multiper from maximum interrupt per second */ 16000 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16001 if (dmult) 16002 dmult--; 16003 if (dmult > LPFC_DMULT_MAX) 16004 dmult = LPFC_DMULT_MAX; 16005 16006 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16007 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16008 if (!eq) 16009 continue; 16010 eq->q_mode = usdelay; 16011 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16012 eq_delay->u.request.eq[cnt].phase = 0; 16013 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16014 16015 if (++cnt >= numq) 16016 break; 16017 } 16018 eq_delay->u.request.num_eq = cnt; 16019 16020 mbox->vport = phba->pport; 16021 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16022 mbox->ctx_ndlp = NULL; 16023 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16024 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16025 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16026 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16027 if (shdr_status || shdr_add_status || rc) { 16028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16029 "2512 MODIFY_EQ_DELAY mailbox failed with " 16030 "status x%x add_status x%x, mbx status x%x\n", 16031 shdr_status, shdr_add_status, rc); 16032 } 16033 mempool_free(mbox, phba->mbox_mem_pool); 16034 return; 16035 } 16036 16037 /** 16038 * lpfc_eq_create - Create an Event Queue on the HBA 16039 * @phba: HBA structure that indicates port to create a queue on. 16040 * @eq: The queue structure to use to create the event queue. 16041 * @imax: The maximum interrupt per second limit. 16042 * 16043 * This function creates an event queue, as detailed in @eq, on a port, 16044 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16045 * 16046 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16047 * is used to get the entry count and entry size that are necessary to 16048 * determine the number of pages to allocate and use for this queue. This 16049 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16050 * event queue. This function is asynchronous and will wait for the mailbox 16051 * command to finish before continuing. 16052 * 16053 * On success this function will return a zero. If unable to allocate enough 16054 * memory this function will return -ENOMEM. If the queue create mailbox command 16055 * fails this function will return -ENXIO. 16056 **/ 16057 int 16058 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16059 { 16060 struct lpfc_mbx_eq_create *eq_create; 16061 LPFC_MBOXQ_t *mbox; 16062 int rc, length, status = 0; 16063 struct lpfc_dmabuf *dmabuf; 16064 uint32_t shdr_status, shdr_add_status; 16065 union lpfc_sli4_cfg_shdr *shdr; 16066 uint16_t dmult; 16067 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16068 16069 /* sanity check on queue memory */ 16070 if (!eq) 16071 return -ENODEV; 16072 if (!phba->sli4_hba.pc_sli4_params.supported) 16073 hw_page_size = SLI4_PAGE_SIZE; 16074 16075 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16076 if (!mbox) 16077 return -ENOMEM; 16078 length = (sizeof(struct lpfc_mbx_eq_create) - 16079 sizeof(struct lpfc_sli4_cfg_mhdr)); 16080 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16081 LPFC_MBOX_OPCODE_EQ_CREATE, 16082 length, LPFC_SLI4_MBX_EMBED); 16083 eq_create = &mbox->u.mqe.un.eq_create; 16084 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16085 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16086 eq->page_count); 16087 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16088 LPFC_EQE_SIZE); 16089 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16090 16091 /* Use version 2 of CREATE_EQ if eqav is set */ 16092 if (phba->sli4_hba.pc_sli4_params.eqav) { 16093 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16094 LPFC_Q_CREATE_VERSION_2); 16095 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16096 phba->sli4_hba.pc_sli4_params.eqav); 16097 } 16098 16099 /* don't setup delay multiplier using EQ_CREATE */ 16100 dmult = 0; 16101 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16102 dmult); 16103 switch (eq->entry_count) { 16104 default: 16105 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16106 "0360 Unsupported EQ count. (%d)\n", 16107 eq->entry_count); 16108 if (eq->entry_count < 256) { 16109 status = -EINVAL; 16110 goto out; 16111 } 16112 fallthrough; /* otherwise default to smallest count */ 16113 case 256: 16114 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16115 LPFC_EQ_CNT_256); 16116 break; 16117 case 512: 16118 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16119 LPFC_EQ_CNT_512); 16120 break; 16121 case 1024: 16122 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16123 LPFC_EQ_CNT_1024); 16124 break; 16125 case 2048: 16126 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16127 LPFC_EQ_CNT_2048); 16128 break; 16129 case 4096: 16130 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16131 LPFC_EQ_CNT_4096); 16132 break; 16133 } 16134 list_for_each_entry(dmabuf, &eq->page_list, list) { 16135 memset(dmabuf->virt, 0, hw_page_size); 16136 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16137 putPaddrLow(dmabuf->phys); 16138 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16139 putPaddrHigh(dmabuf->phys); 16140 } 16141 mbox->vport = phba->pport; 16142 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16143 mbox->ctx_buf = NULL; 16144 mbox->ctx_ndlp = NULL; 16145 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16146 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16147 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16148 if (shdr_status || shdr_add_status || rc) { 16149 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16150 "2500 EQ_CREATE mailbox failed with " 16151 "status x%x add_status x%x, mbx status x%x\n", 16152 shdr_status, shdr_add_status, rc); 16153 status = -ENXIO; 16154 } 16155 eq->type = LPFC_EQ; 16156 eq->subtype = LPFC_NONE; 16157 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16158 if (eq->queue_id == 0xFFFF) 16159 status = -ENXIO; 16160 eq->host_index = 0; 16161 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16162 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16163 out: 16164 mempool_free(mbox, phba->mbox_mem_pool); 16165 return status; 16166 } 16167 16168 /** 16169 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16170 * @irq: Interrupt number. 16171 * @dev_id: The device context pointer. 16172 * 16173 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16174 * threaded irq context. 16175 * 16176 * Returns 16177 * IRQ_HANDLED - interrupt is handled 16178 * IRQ_NONE - otherwise 16179 **/ 16180 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16181 { 16182 struct lpfc_hba *phba; 16183 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16184 struct lpfc_queue *fpeq; 16185 int ecount = 0; 16186 int hba_eqidx; 16187 struct lpfc_eq_intr_info *eqi; 16188 16189 /* Get the driver's phba structure from the dev_id */ 16190 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16191 phba = hba_eq_hdl->phba; 16192 hba_eqidx = hba_eq_hdl->idx; 16193 16194 if (unlikely(!phba)) 16195 return IRQ_NONE; 16196 if (unlikely(!phba->sli4_hba.hdwq)) 16197 return IRQ_NONE; 16198 16199 /* Get to the EQ struct associated with this vector */ 16200 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16201 if (unlikely(!fpeq)) 16202 return IRQ_NONE; 16203 16204 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16205 eqi->icnt++; 16206 16207 fpeq->last_cpu = raw_smp_processor_id(); 16208 16209 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16210 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16211 phba->cfg_auto_imax && 16212 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16213 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16214 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16215 16216 /* process and rearm the EQ */ 16217 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16218 LPFC_THREADED_IRQ); 16219 16220 if (unlikely(ecount == 0)) { 16221 fpeq->EQ_no_entry++; 16222 if (phba->intr_type == MSIX) 16223 /* MSI-X treated interrupt served as no EQ share INT */ 16224 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16225 "3358 MSI-X interrupt with no EQE\n"); 16226 else 16227 /* Non MSI-X treated on interrupt as EQ share INT */ 16228 return IRQ_NONE; 16229 } 16230 return IRQ_HANDLED; 16231 } 16232 16233 /** 16234 * lpfc_cq_create - Create a Completion Queue on the HBA 16235 * @phba: HBA structure that indicates port to create a queue on. 16236 * @cq: The queue structure to use to create the completion queue. 16237 * @eq: The event queue to bind this completion queue to. 16238 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16239 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16240 * 16241 * This function creates a completion queue, as detailed in @wq, on a port, 16242 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16243 * 16244 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16245 * is used to get the entry count and entry size that are necessary to 16246 * determine the number of pages to allocate and use for this queue. The @eq 16247 * is used to indicate which event queue to bind this completion queue to. This 16248 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16249 * completion queue. This function is asynchronous and will wait for the mailbox 16250 * command to finish before continuing. 16251 * 16252 * On success this function will return a zero. If unable to allocate enough 16253 * memory this function will return -ENOMEM. If the queue create mailbox command 16254 * fails this function will return -ENXIO. 16255 **/ 16256 int 16257 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16258 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16259 { 16260 struct lpfc_mbx_cq_create *cq_create; 16261 struct lpfc_dmabuf *dmabuf; 16262 LPFC_MBOXQ_t *mbox; 16263 int rc, length, status = 0; 16264 uint32_t shdr_status, shdr_add_status; 16265 union lpfc_sli4_cfg_shdr *shdr; 16266 16267 /* sanity check on queue memory */ 16268 if (!cq || !eq) 16269 return -ENODEV; 16270 16271 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16272 if (!mbox) 16273 return -ENOMEM; 16274 length = (sizeof(struct lpfc_mbx_cq_create) - 16275 sizeof(struct lpfc_sli4_cfg_mhdr)); 16276 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16277 LPFC_MBOX_OPCODE_CQ_CREATE, 16278 length, LPFC_SLI4_MBX_EMBED); 16279 cq_create = &mbox->u.mqe.un.cq_create; 16280 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16281 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16282 cq->page_count); 16283 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16284 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16285 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16286 phba->sli4_hba.pc_sli4_params.cqv); 16287 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16288 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16289 (cq->page_size / SLI4_PAGE_SIZE)); 16290 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16291 eq->queue_id); 16292 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16293 phba->sli4_hba.pc_sli4_params.cqav); 16294 } else { 16295 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16296 eq->queue_id); 16297 } 16298 switch (cq->entry_count) { 16299 case 2048: 16300 case 4096: 16301 if (phba->sli4_hba.pc_sli4_params.cqv == 16302 LPFC_Q_CREATE_VERSION_2) { 16303 cq_create->u.request.context.lpfc_cq_context_count = 16304 cq->entry_count; 16305 bf_set(lpfc_cq_context_count, 16306 &cq_create->u.request.context, 16307 LPFC_CQ_CNT_WORD7); 16308 break; 16309 } 16310 fallthrough; 16311 default: 16312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16313 "0361 Unsupported CQ count: " 16314 "entry cnt %d sz %d pg cnt %d\n", 16315 cq->entry_count, cq->entry_size, 16316 cq->page_count); 16317 if (cq->entry_count < 256) { 16318 status = -EINVAL; 16319 goto out; 16320 } 16321 fallthrough; /* otherwise default to smallest count */ 16322 case 256: 16323 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16324 LPFC_CQ_CNT_256); 16325 break; 16326 case 512: 16327 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16328 LPFC_CQ_CNT_512); 16329 break; 16330 case 1024: 16331 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16332 LPFC_CQ_CNT_1024); 16333 break; 16334 } 16335 list_for_each_entry(dmabuf, &cq->page_list, list) { 16336 memset(dmabuf->virt, 0, cq->page_size); 16337 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16338 putPaddrLow(dmabuf->phys); 16339 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16340 putPaddrHigh(dmabuf->phys); 16341 } 16342 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16343 16344 /* The IOCTL status is embedded in the mailbox subheader. */ 16345 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16346 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16347 if (shdr_status || shdr_add_status || rc) { 16348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16349 "2501 CQ_CREATE mailbox failed with " 16350 "status x%x add_status x%x, mbx status x%x\n", 16351 shdr_status, shdr_add_status, rc); 16352 status = -ENXIO; 16353 goto out; 16354 } 16355 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16356 if (cq->queue_id == 0xFFFF) { 16357 status = -ENXIO; 16358 goto out; 16359 } 16360 /* link the cq onto the parent eq child list */ 16361 list_add_tail(&cq->list, &eq->child_list); 16362 /* Set up completion queue's type and subtype */ 16363 cq->type = type; 16364 cq->subtype = subtype; 16365 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16366 cq->assoc_qid = eq->queue_id; 16367 cq->assoc_qp = eq; 16368 cq->host_index = 0; 16369 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16370 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16371 16372 if (cq->queue_id > phba->sli4_hba.cq_max) 16373 phba->sli4_hba.cq_max = cq->queue_id; 16374 out: 16375 mempool_free(mbox, phba->mbox_mem_pool); 16376 return status; 16377 } 16378 16379 /** 16380 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16381 * @phba: HBA structure that indicates port to create a queue on. 16382 * @cqp: The queue structure array to use to create the completion queues. 16383 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16384 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16385 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16386 * 16387 * This function creates a set of completion queue, s to support MRQ 16388 * as detailed in @cqp, on a port, 16389 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16390 * 16391 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16392 * is used to get the entry count and entry size that are necessary to 16393 * determine the number of pages to allocate and use for this queue. The @eq 16394 * is used to indicate which event queue to bind this completion queue to. This 16395 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16396 * completion queue. This function is asynchronous and will wait for the mailbox 16397 * command to finish before continuing. 16398 * 16399 * On success this function will return a zero. If unable to allocate enough 16400 * memory this function will return -ENOMEM. If the queue create mailbox command 16401 * fails this function will return -ENXIO. 16402 **/ 16403 int 16404 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16405 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16406 uint32_t subtype) 16407 { 16408 struct lpfc_queue *cq; 16409 struct lpfc_queue *eq; 16410 struct lpfc_mbx_cq_create_set *cq_set; 16411 struct lpfc_dmabuf *dmabuf; 16412 LPFC_MBOXQ_t *mbox; 16413 int rc, length, alloclen, status = 0; 16414 int cnt, idx, numcq, page_idx = 0; 16415 uint32_t shdr_status, shdr_add_status; 16416 union lpfc_sli4_cfg_shdr *shdr; 16417 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16418 16419 /* sanity check on queue memory */ 16420 numcq = phba->cfg_nvmet_mrq; 16421 if (!cqp || !hdwq || !numcq) 16422 return -ENODEV; 16423 16424 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16425 if (!mbox) 16426 return -ENOMEM; 16427 16428 length = sizeof(struct lpfc_mbx_cq_create_set); 16429 length += ((numcq * cqp[0]->page_count) * 16430 sizeof(struct dma_address)); 16431 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16432 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16433 LPFC_SLI4_MBX_NEMBED); 16434 if (alloclen < length) { 16435 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16436 "3098 Allocated DMA memory size (%d) is " 16437 "less than the requested DMA memory size " 16438 "(%d)\n", alloclen, length); 16439 status = -ENOMEM; 16440 goto out; 16441 } 16442 cq_set = mbox->sge_array->addr[0]; 16443 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16444 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16445 16446 for (idx = 0; idx < numcq; idx++) { 16447 cq = cqp[idx]; 16448 eq = hdwq[idx].hba_eq; 16449 if (!cq || !eq) { 16450 status = -ENOMEM; 16451 goto out; 16452 } 16453 if (!phba->sli4_hba.pc_sli4_params.supported) 16454 hw_page_size = cq->page_size; 16455 16456 switch (idx) { 16457 case 0: 16458 bf_set(lpfc_mbx_cq_create_set_page_size, 16459 &cq_set->u.request, 16460 (hw_page_size / SLI4_PAGE_SIZE)); 16461 bf_set(lpfc_mbx_cq_create_set_num_pages, 16462 &cq_set->u.request, cq->page_count); 16463 bf_set(lpfc_mbx_cq_create_set_evt, 16464 &cq_set->u.request, 1); 16465 bf_set(lpfc_mbx_cq_create_set_valid, 16466 &cq_set->u.request, 1); 16467 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16468 &cq_set->u.request, 0); 16469 bf_set(lpfc_mbx_cq_create_set_num_cq, 16470 &cq_set->u.request, numcq); 16471 bf_set(lpfc_mbx_cq_create_set_autovalid, 16472 &cq_set->u.request, 16473 phba->sli4_hba.pc_sli4_params.cqav); 16474 switch (cq->entry_count) { 16475 case 2048: 16476 case 4096: 16477 if (phba->sli4_hba.pc_sli4_params.cqv == 16478 LPFC_Q_CREATE_VERSION_2) { 16479 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16480 &cq_set->u.request, 16481 cq->entry_count); 16482 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16483 &cq_set->u.request, 16484 LPFC_CQ_CNT_WORD7); 16485 break; 16486 } 16487 fallthrough; 16488 default: 16489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16490 "3118 Bad CQ count. (%d)\n", 16491 cq->entry_count); 16492 if (cq->entry_count < 256) { 16493 status = -EINVAL; 16494 goto out; 16495 } 16496 fallthrough; /* otherwise default to smallest */ 16497 case 256: 16498 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16499 &cq_set->u.request, LPFC_CQ_CNT_256); 16500 break; 16501 case 512: 16502 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16503 &cq_set->u.request, LPFC_CQ_CNT_512); 16504 break; 16505 case 1024: 16506 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16507 &cq_set->u.request, LPFC_CQ_CNT_1024); 16508 break; 16509 } 16510 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16511 &cq_set->u.request, eq->queue_id); 16512 break; 16513 case 1: 16514 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16515 &cq_set->u.request, eq->queue_id); 16516 break; 16517 case 2: 16518 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16519 &cq_set->u.request, eq->queue_id); 16520 break; 16521 case 3: 16522 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16523 &cq_set->u.request, eq->queue_id); 16524 break; 16525 case 4: 16526 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16527 &cq_set->u.request, eq->queue_id); 16528 break; 16529 case 5: 16530 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16531 &cq_set->u.request, eq->queue_id); 16532 break; 16533 case 6: 16534 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16535 &cq_set->u.request, eq->queue_id); 16536 break; 16537 case 7: 16538 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16539 &cq_set->u.request, eq->queue_id); 16540 break; 16541 case 8: 16542 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16543 &cq_set->u.request, eq->queue_id); 16544 break; 16545 case 9: 16546 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16547 &cq_set->u.request, eq->queue_id); 16548 break; 16549 case 10: 16550 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16551 &cq_set->u.request, eq->queue_id); 16552 break; 16553 case 11: 16554 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16555 &cq_set->u.request, eq->queue_id); 16556 break; 16557 case 12: 16558 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16559 &cq_set->u.request, eq->queue_id); 16560 break; 16561 case 13: 16562 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16563 &cq_set->u.request, eq->queue_id); 16564 break; 16565 case 14: 16566 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16567 &cq_set->u.request, eq->queue_id); 16568 break; 16569 case 15: 16570 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16571 &cq_set->u.request, eq->queue_id); 16572 break; 16573 } 16574 16575 /* link the cq onto the parent eq child list */ 16576 list_add_tail(&cq->list, &eq->child_list); 16577 /* Set up completion queue's type and subtype */ 16578 cq->type = type; 16579 cq->subtype = subtype; 16580 cq->assoc_qid = eq->queue_id; 16581 cq->assoc_qp = eq; 16582 cq->host_index = 0; 16583 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16584 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16585 cq->entry_count); 16586 cq->chann = idx; 16587 16588 rc = 0; 16589 list_for_each_entry(dmabuf, &cq->page_list, list) { 16590 memset(dmabuf->virt, 0, hw_page_size); 16591 cnt = page_idx + dmabuf->buffer_tag; 16592 cq_set->u.request.page[cnt].addr_lo = 16593 putPaddrLow(dmabuf->phys); 16594 cq_set->u.request.page[cnt].addr_hi = 16595 putPaddrHigh(dmabuf->phys); 16596 rc++; 16597 } 16598 page_idx += rc; 16599 } 16600 16601 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16602 16603 /* The IOCTL status is embedded in the mailbox subheader. */ 16604 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16605 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16606 if (shdr_status || shdr_add_status || rc) { 16607 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16608 "3119 CQ_CREATE_SET mailbox failed with " 16609 "status x%x add_status x%x, mbx status x%x\n", 16610 shdr_status, shdr_add_status, rc); 16611 status = -ENXIO; 16612 goto out; 16613 } 16614 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16615 if (rc == 0xFFFF) { 16616 status = -ENXIO; 16617 goto out; 16618 } 16619 16620 for (idx = 0; idx < numcq; idx++) { 16621 cq = cqp[idx]; 16622 cq->queue_id = rc + idx; 16623 if (cq->queue_id > phba->sli4_hba.cq_max) 16624 phba->sli4_hba.cq_max = cq->queue_id; 16625 } 16626 16627 out: 16628 lpfc_sli4_mbox_cmd_free(phba, mbox); 16629 return status; 16630 } 16631 16632 /** 16633 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16634 * @phba: HBA structure that indicates port to create a queue on. 16635 * @mq: The queue structure to use to create the mailbox queue. 16636 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16637 * @cq: The completion queue to associate with this cq. 16638 * 16639 * This function provides failback (fb) functionality when the 16640 * mq_create_ext fails on older FW generations. It's purpose is identical 16641 * to mq_create_ext otherwise. 16642 * 16643 * This routine cannot fail as all attributes were previously accessed and 16644 * initialized in mq_create_ext. 16645 **/ 16646 static void 16647 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16648 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16649 { 16650 struct lpfc_mbx_mq_create *mq_create; 16651 struct lpfc_dmabuf *dmabuf; 16652 int length; 16653 16654 length = (sizeof(struct lpfc_mbx_mq_create) - 16655 sizeof(struct lpfc_sli4_cfg_mhdr)); 16656 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16657 LPFC_MBOX_OPCODE_MQ_CREATE, 16658 length, LPFC_SLI4_MBX_EMBED); 16659 mq_create = &mbox->u.mqe.un.mq_create; 16660 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16661 mq->page_count); 16662 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16663 cq->queue_id); 16664 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16665 switch (mq->entry_count) { 16666 case 16: 16667 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16668 LPFC_MQ_RING_SIZE_16); 16669 break; 16670 case 32: 16671 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16672 LPFC_MQ_RING_SIZE_32); 16673 break; 16674 case 64: 16675 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16676 LPFC_MQ_RING_SIZE_64); 16677 break; 16678 case 128: 16679 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16680 LPFC_MQ_RING_SIZE_128); 16681 break; 16682 } 16683 list_for_each_entry(dmabuf, &mq->page_list, list) { 16684 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16685 putPaddrLow(dmabuf->phys); 16686 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16687 putPaddrHigh(dmabuf->phys); 16688 } 16689 } 16690 16691 /** 16692 * lpfc_mq_create - Create a mailbox Queue on the HBA 16693 * @phba: HBA structure that indicates port to create a queue on. 16694 * @mq: The queue structure to use to create the mailbox queue. 16695 * @cq: The completion queue to associate with this cq. 16696 * @subtype: The queue's subtype. 16697 * 16698 * This function creates a mailbox queue, as detailed in @mq, on a port, 16699 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16700 * 16701 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16702 * is used to get the entry count and entry size that are necessary to 16703 * determine the number of pages to allocate and use for this queue. This 16704 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16705 * mailbox queue. This function is asynchronous and will wait for the mailbox 16706 * command to finish before continuing. 16707 * 16708 * On success this function will return a zero. If unable to allocate enough 16709 * memory this function will return -ENOMEM. If the queue create mailbox command 16710 * fails this function will return -ENXIO. 16711 **/ 16712 int32_t 16713 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16714 struct lpfc_queue *cq, uint32_t subtype) 16715 { 16716 struct lpfc_mbx_mq_create *mq_create; 16717 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16718 struct lpfc_dmabuf *dmabuf; 16719 LPFC_MBOXQ_t *mbox; 16720 int rc, length, status = 0; 16721 uint32_t shdr_status, shdr_add_status; 16722 union lpfc_sli4_cfg_shdr *shdr; 16723 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16724 16725 /* sanity check on queue memory */ 16726 if (!mq || !cq) 16727 return -ENODEV; 16728 if (!phba->sli4_hba.pc_sli4_params.supported) 16729 hw_page_size = SLI4_PAGE_SIZE; 16730 16731 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16732 if (!mbox) 16733 return -ENOMEM; 16734 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16735 sizeof(struct lpfc_sli4_cfg_mhdr)); 16736 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16737 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16738 length, LPFC_SLI4_MBX_EMBED); 16739 16740 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16741 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16742 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16743 &mq_create_ext->u.request, mq->page_count); 16744 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16745 &mq_create_ext->u.request, 1); 16746 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16747 &mq_create_ext->u.request, 1); 16748 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16749 &mq_create_ext->u.request, 1); 16750 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16751 &mq_create_ext->u.request, 1); 16752 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16753 &mq_create_ext->u.request, 1); 16754 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16755 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16756 phba->sli4_hba.pc_sli4_params.mqv); 16757 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16758 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16759 cq->queue_id); 16760 else 16761 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16762 cq->queue_id); 16763 switch (mq->entry_count) { 16764 default: 16765 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16766 "0362 Unsupported MQ count. (%d)\n", 16767 mq->entry_count); 16768 if (mq->entry_count < 16) { 16769 status = -EINVAL; 16770 goto out; 16771 } 16772 fallthrough; /* otherwise default to smallest count */ 16773 case 16: 16774 bf_set(lpfc_mq_context_ring_size, 16775 &mq_create_ext->u.request.context, 16776 LPFC_MQ_RING_SIZE_16); 16777 break; 16778 case 32: 16779 bf_set(lpfc_mq_context_ring_size, 16780 &mq_create_ext->u.request.context, 16781 LPFC_MQ_RING_SIZE_32); 16782 break; 16783 case 64: 16784 bf_set(lpfc_mq_context_ring_size, 16785 &mq_create_ext->u.request.context, 16786 LPFC_MQ_RING_SIZE_64); 16787 break; 16788 case 128: 16789 bf_set(lpfc_mq_context_ring_size, 16790 &mq_create_ext->u.request.context, 16791 LPFC_MQ_RING_SIZE_128); 16792 break; 16793 } 16794 list_for_each_entry(dmabuf, &mq->page_list, list) { 16795 memset(dmabuf->virt, 0, hw_page_size); 16796 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16797 putPaddrLow(dmabuf->phys); 16798 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16799 putPaddrHigh(dmabuf->phys); 16800 } 16801 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16802 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16803 &mq_create_ext->u.response); 16804 if (rc != MBX_SUCCESS) { 16805 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16806 "2795 MQ_CREATE_EXT failed with " 16807 "status x%x. Failback to MQ_CREATE.\n", 16808 rc); 16809 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16810 mq_create = &mbox->u.mqe.un.mq_create; 16811 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16812 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16813 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16814 &mq_create->u.response); 16815 } 16816 16817 /* The IOCTL status is embedded in the mailbox subheader. */ 16818 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16819 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16820 if (shdr_status || shdr_add_status || rc) { 16821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16822 "2502 MQ_CREATE mailbox failed with " 16823 "status x%x add_status x%x, mbx status x%x\n", 16824 shdr_status, shdr_add_status, rc); 16825 status = -ENXIO; 16826 goto out; 16827 } 16828 if (mq->queue_id == 0xFFFF) { 16829 status = -ENXIO; 16830 goto out; 16831 } 16832 mq->type = LPFC_MQ; 16833 mq->assoc_qid = cq->queue_id; 16834 mq->subtype = subtype; 16835 mq->host_index = 0; 16836 mq->hba_index = 0; 16837 16838 /* link the mq onto the parent cq child list */ 16839 list_add_tail(&mq->list, &cq->child_list); 16840 out: 16841 mempool_free(mbox, phba->mbox_mem_pool); 16842 return status; 16843 } 16844 16845 /** 16846 * lpfc_wq_create - Create a Work Queue on the HBA 16847 * @phba: HBA structure that indicates port to create a queue on. 16848 * @wq: The queue structure to use to create the work queue. 16849 * @cq: The completion queue to bind this work queue to. 16850 * @subtype: The subtype of the work queue indicating its functionality. 16851 * 16852 * This function creates a work queue, as detailed in @wq, on a port, described 16853 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16854 * 16855 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16856 * is used to get the entry count and entry size that are necessary to 16857 * determine the number of pages to allocate and use for this queue. The @cq 16858 * is used to indicate which completion queue to bind this work queue to. This 16859 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16860 * work queue. This function is asynchronous and will wait for the mailbox 16861 * command to finish before continuing. 16862 * 16863 * On success this function will return a zero. If unable to allocate enough 16864 * memory this function will return -ENOMEM. If the queue create mailbox command 16865 * fails this function will return -ENXIO. 16866 **/ 16867 int 16868 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16869 struct lpfc_queue *cq, uint32_t subtype) 16870 { 16871 struct lpfc_mbx_wq_create *wq_create; 16872 struct lpfc_dmabuf *dmabuf; 16873 LPFC_MBOXQ_t *mbox; 16874 int rc, length, status = 0; 16875 uint32_t shdr_status, shdr_add_status; 16876 union lpfc_sli4_cfg_shdr *shdr; 16877 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16878 struct dma_address *page; 16879 void __iomem *bar_memmap_p; 16880 uint32_t db_offset; 16881 uint16_t pci_barset; 16882 uint8_t dpp_barset; 16883 uint32_t dpp_offset; 16884 uint8_t wq_create_version; 16885 #ifdef CONFIG_X86 16886 unsigned long pg_addr; 16887 #endif 16888 16889 /* sanity check on queue memory */ 16890 if (!wq || !cq) 16891 return -ENODEV; 16892 if (!phba->sli4_hba.pc_sli4_params.supported) 16893 hw_page_size = wq->page_size; 16894 16895 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16896 if (!mbox) 16897 return -ENOMEM; 16898 length = (sizeof(struct lpfc_mbx_wq_create) - 16899 sizeof(struct lpfc_sli4_cfg_mhdr)); 16900 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16901 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16902 length, LPFC_SLI4_MBX_EMBED); 16903 wq_create = &mbox->u.mqe.un.wq_create; 16904 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16905 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16906 wq->page_count); 16907 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16908 cq->queue_id); 16909 16910 /* wqv is the earliest version supported, NOT the latest */ 16911 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16912 phba->sli4_hba.pc_sli4_params.wqv); 16913 16914 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16915 (wq->page_size > SLI4_PAGE_SIZE)) 16916 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16917 else 16918 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16919 16920 switch (wq_create_version) { 16921 case LPFC_Q_CREATE_VERSION_1: 16922 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16923 wq->entry_count); 16924 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16925 LPFC_Q_CREATE_VERSION_1); 16926 16927 switch (wq->entry_size) { 16928 default: 16929 case 64: 16930 bf_set(lpfc_mbx_wq_create_wqe_size, 16931 &wq_create->u.request_1, 16932 LPFC_WQ_WQE_SIZE_64); 16933 break; 16934 case 128: 16935 bf_set(lpfc_mbx_wq_create_wqe_size, 16936 &wq_create->u.request_1, 16937 LPFC_WQ_WQE_SIZE_128); 16938 break; 16939 } 16940 /* Request DPP by default */ 16941 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16942 bf_set(lpfc_mbx_wq_create_page_size, 16943 &wq_create->u.request_1, 16944 (wq->page_size / SLI4_PAGE_SIZE)); 16945 page = wq_create->u.request_1.page; 16946 break; 16947 default: 16948 page = wq_create->u.request.page; 16949 break; 16950 } 16951 16952 list_for_each_entry(dmabuf, &wq->page_list, list) { 16953 memset(dmabuf->virt, 0, hw_page_size); 16954 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16955 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16956 } 16957 16958 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16959 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16960 16961 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16962 /* The IOCTL status is embedded in the mailbox subheader. */ 16963 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16964 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16965 if (shdr_status || shdr_add_status || rc) { 16966 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16967 "2503 WQ_CREATE mailbox failed with " 16968 "status x%x add_status x%x, mbx status x%x\n", 16969 shdr_status, shdr_add_status, rc); 16970 status = -ENXIO; 16971 goto out; 16972 } 16973 16974 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16975 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16976 &wq_create->u.response); 16977 else 16978 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16979 &wq_create->u.response_1); 16980 16981 if (wq->queue_id == 0xFFFF) { 16982 status = -ENXIO; 16983 goto out; 16984 } 16985 16986 wq->db_format = LPFC_DB_LIST_FORMAT; 16987 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16988 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16989 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16990 &wq_create->u.response); 16991 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16992 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16993 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16994 "3265 WQ[%d] doorbell format " 16995 "not supported: x%x\n", 16996 wq->queue_id, wq->db_format); 16997 status = -EINVAL; 16998 goto out; 16999 } 17000 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 17001 &wq_create->u.response); 17002 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17003 pci_barset); 17004 if (!bar_memmap_p) { 17005 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17006 "3263 WQ[%d] failed to memmap " 17007 "pci barset:x%x\n", 17008 wq->queue_id, pci_barset); 17009 status = -ENOMEM; 17010 goto out; 17011 } 17012 db_offset = wq_create->u.response.doorbell_offset; 17013 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17014 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17015 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17016 "3252 WQ[%d] doorbell offset " 17017 "not supported: x%x\n", 17018 wq->queue_id, db_offset); 17019 status = -EINVAL; 17020 goto out; 17021 } 17022 wq->db_regaddr = bar_memmap_p + db_offset; 17023 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17024 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17025 "format:x%x\n", wq->queue_id, 17026 pci_barset, db_offset, wq->db_format); 17027 } else 17028 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17029 } else { 17030 /* Check if DPP was honored by the firmware */ 17031 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17032 &wq_create->u.response_1); 17033 if (wq->dpp_enable) { 17034 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17035 &wq_create->u.response_1); 17036 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17037 pci_barset); 17038 if (!bar_memmap_p) { 17039 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17040 "3267 WQ[%d] failed to memmap " 17041 "pci barset:x%x\n", 17042 wq->queue_id, pci_barset); 17043 status = -ENOMEM; 17044 goto out; 17045 } 17046 db_offset = wq_create->u.response_1.doorbell_offset; 17047 wq->db_regaddr = bar_memmap_p + db_offset; 17048 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17049 &wq_create->u.response_1); 17050 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17051 &wq_create->u.response_1); 17052 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17053 dpp_barset); 17054 if (!bar_memmap_p) { 17055 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17056 "3268 WQ[%d] failed to memmap " 17057 "pci barset:x%x\n", 17058 wq->queue_id, dpp_barset); 17059 status = -ENOMEM; 17060 goto out; 17061 } 17062 dpp_offset = wq_create->u.response_1.dpp_offset; 17063 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17064 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17065 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17066 "dpp_id:x%x dpp_barset:x%x " 17067 "dpp_offset:x%x\n", 17068 wq->queue_id, pci_barset, db_offset, 17069 wq->dpp_id, dpp_barset, dpp_offset); 17070 17071 #ifdef CONFIG_X86 17072 /* Enable combined writes for DPP aperture */ 17073 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17074 rc = set_memory_wc(pg_addr, 1); 17075 if (rc) { 17076 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17077 "3272 Cannot setup Combined " 17078 "Write on WQ[%d] - disable DPP\n", 17079 wq->queue_id); 17080 phba->cfg_enable_dpp = 0; 17081 } 17082 #else 17083 phba->cfg_enable_dpp = 0; 17084 #endif 17085 } else 17086 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17087 } 17088 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17089 if (wq->pring == NULL) { 17090 status = -ENOMEM; 17091 goto out; 17092 } 17093 wq->type = LPFC_WQ; 17094 wq->assoc_qid = cq->queue_id; 17095 wq->subtype = subtype; 17096 wq->host_index = 0; 17097 wq->hba_index = 0; 17098 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17099 17100 /* link the wq onto the parent cq child list */ 17101 list_add_tail(&wq->list, &cq->child_list); 17102 out: 17103 mempool_free(mbox, phba->mbox_mem_pool); 17104 return status; 17105 } 17106 17107 /** 17108 * lpfc_rq_create - Create a Receive Queue on the HBA 17109 * @phba: HBA structure that indicates port to create a queue on. 17110 * @hrq: The queue structure to use to create the header receive queue. 17111 * @drq: The queue structure to use to create the data receive queue. 17112 * @cq: The completion queue to bind this work queue to. 17113 * @subtype: The subtype of the work queue indicating its functionality. 17114 * 17115 * This function creates a receive buffer queue pair , as detailed in @hrq and 17116 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17117 * to the HBA. 17118 * 17119 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17120 * struct is used to get the entry count that is necessary to determine the 17121 * number of pages to use for this queue. The @cq is used to indicate which 17122 * completion queue to bind received buffers that are posted to these queues to. 17123 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17124 * receive queue pair. This function is asynchronous and will wait for the 17125 * mailbox command to finish before continuing. 17126 * 17127 * On success this function will return a zero. If unable to allocate enough 17128 * memory this function will return -ENOMEM. If the queue create mailbox command 17129 * fails this function will return -ENXIO. 17130 **/ 17131 int 17132 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17133 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17134 { 17135 struct lpfc_mbx_rq_create *rq_create; 17136 struct lpfc_dmabuf *dmabuf; 17137 LPFC_MBOXQ_t *mbox; 17138 int rc, length, status = 0; 17139 uint32_t shdr_status, shdr_add_status; 17140 union lpfc_sli4_cfg_shdr *shdr; 17141 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17142 void __iomem *bar_memmap_p; 17143 uint32_t db_offset; 17144 uint16_t pci_barset; 17145 17146 /* sanity check on queue memory */ 17147 if (!hrq || !drq || !cq) 17148 return -ENODEV; 17149 if (!phba->sli4_hba.pc_sli4_params.supported) 17150 hw_page_size = SLI4_PAGE_SIZE; 17151 17152 if (hrq->entry_count != drq->entry_count) 17153 return -EINVAL; 17154 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17155 if (!mbox) 17156 return -ENOMEM; 17157 length = (sizeof(struct lpfc_mbx_rq_create) - 17158 sizeof(struct lpfc_sli4_cfg_mhdr)); 17159 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17160 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17161 length, LPFC_SLI4_MBX_EMBED); 17162 rq_create = &mbox->u.mqe.un.rq_create; 17163 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17164 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17165 phba->sli4_hba.pc_sli4_params.rqv); 17166 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17167 bf_set(lpfc_rq_context_rqe_count_1, 17168 &rq_create->u.request.context, 17169 hrq->entry_count); 17170 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17171 bf_set(lpfc_rq_context_rqe_size, 17172 &rq_create->u.request.context, 17173 LPFC_RQE_SIZE_8); 17174 bf_set(lpfc_rq_context_page_size, 17175 &rq_create->u.request.context, 17176 LPFC_RQ_PAGE_SIZE_4096); 17177 } else { 17178 switch (hrq->entry_count) { 17179 default: 17180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17181 "2535 Unsupported RQ count. (%d)\n", 17182 hrq->entry_count); 17183 if (hrq->entry_count < 512) { 17184 status = -EINVAL; 17185 goto out; 17186 } 17187 fallthrough; /* otherwise default to smallest count */ 17188 case 512: 17189 bf_set(lpfc_rq_context_rqe_count, 17190 &rq_create->u.request.context, 17191 LPFC_RQ_RING_SIZE_512); 17192 break; 17193 case 1024: 17194 bf_set(lpfc_rq_context_rqe_count, 17195 &rq_create->u.request.context, 17196 LPFC_RQ_RING_SIZE_1024); 17197 break; 17198 case 2048: 17199 bf_set(lpfc_rq_context_rqe_count, 17200 &rq_create->u.request.context, 17201 LPFC_RQ_RING_SIZE_2048); 17202 break; 17203 case 4096: 17204 bf_set(lpfc_rq_context_rqe_count, 17205 &rq_create->u.request.context, 17206 LPFC_RQ_RING_SIZE_4096); 17207 break; 17208 } 17209 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17210 LPFC_HDR_BUF_SIZE); 17211 } 17212 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17213 cq->queue_id); 17214 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17215 hrq->page_count); 17216 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17217 memset(dmabuf->virt, 0, hw_page_size); 17218 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17219 putPaddrLow(dmabuf->phys); 17220 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17221 putPaddrHigh(dmabuf->phys); 17222 } 17223 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17224 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17225 17226 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17227 /* The IOCTL status is embedded in the mailbox subheader. */ 17228 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17229 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17230 if (shdr_status || shdr_add_status || rc) { 17231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17232 "2504 RQ_CREATE mailbox failed with " 17233 "status x%x add_status x%x, mbx status x%x\n", 17234 shdr_status, shdr_add_status, rc); 17235 status = -ENXIO; 17236 goto out; 17237 } 17238 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17239 if (hrq->queue_id == 0xFFFF) { 17240 status = -ENXIO; 17241 goto out; 17242 } 17243 17244 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17245 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17246 &rq_create->u.response); 17247 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17248 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17250 "3262 RQ [%d] doorbell format not " 17251 "supported: x%x\n", hrq->queue_id, 17252 hrq->db_format); 17253 status = -EINVAL; 17254 goto out; 17255 } 17256 17257 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17258 &rq_create->u.response); 17259 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17260 if (!bar_memmap_p) { 17261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17262 "3269 RQ[%d] failed to memmap pci " 17263 "barset:x%x\n", hrq->queue_id, 17264 pci_barset); 17265 status = -ENOMEM; 17266 goto out; 17267 } 17268 17269 db_offset = rq_create->u.response.doorbell_offset; 17270 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17271 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17273 "3270 RQ[%d] doorbell offset not " 17274 "supported: x%x\n", hrq->queue_id, 17275 db_offset); 17276 status = -EINVAL; 17277 goto out; 17278 } 17279 hrq->db_regaddr = bar_memmap_p + db_offset; 17280 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17281 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17282 "format:x%x\n", hrq->queue_id, pci_barset, 17283 db_offset, hrq->db_format); 17284 } else { 17285 hrq->db_format = LPFC_DB_RING_FORMAT; 17286 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17287 } 17288 hrq->type = LPFC_HRQ; 17289 hrq->assoc_qid = cq->queue_id; 17290 hrq->subtype = subtype; 17291 hrq->host_index = 0; 17292 hrq->hba_index = 0; 17293 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17294 17295 /* now create the data queue */ 17296 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17297 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17298 length, LPFC_SLI4_MBX_EMBED); 17299 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17300 phba->sli4_hba.pc_sli4_params.rqv); 17301 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17302 bf_set(lpfc_rq_context_rqe_count_1, 17303 &rq_create->u.request.context, hrq->entry_count); 17304 if (subtype == LPFC_NVMET) 17305 rq_create->u.request.context.buffer_size = 17306 LPFC_NVMET_DATA_BUF_SIZE; 17307 else 17308 rq_create->u.request.context.buffer_size = 17309 LPFC_DATA_BUF_SIZE; 17310 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17311 LPFC_RQE_SIZE_8); 17312 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17313 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17314 } else { 17315 switch (drq->entry_count) { 17316 default: 17317 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17318 "2536 Unsupported RQ count. (%d)\n", 17319 drq->entry_count); 17320 if (drq->entry_count < 512) { 17321 status = -EINVAL; 17322 goto out; 17323 } 17324 fallthrough; /* otherwise default to smallest count */ 17325 case 512: 17326 bf_set(lpfc_rq_context_rqe_count, 17327 &rq_create->u.request.context, 17328 LPFC_RQ_RING_SIZE_512); 17329 break; 17330 case 1024: 17331 bf_set(lpfc_rq_context_rqe_count, 17332 &rq_create->u.request.context, 17333 LPFC_RQ_RING_SIZE_1024); 17334 break; 17335 case 2048: 17336 bf_set(lpfc_rq_context_rqe_count, 17337 &rq_create->u.request.context, 17338 LPFC_RQ_RING_SIZE_2048); 17339 break; 17340 case 4096: 17341 bf_set(lpfc_rq_context_rqe_count, 17342 &rq_create->u.request.context, 17343 LPFC_RQ_RING_SIZE_4096); 17344 break; 17345 } 17346 if (subtype == LPFC_NVMET) 17347 bf_set(lpfc_rq_context_buf_size, 17348 &rq_create->u.request.context, 17349 LPFC_NVMET_DATA_BUF_SIZE); 17350 else 17351 bf_set(lpfc_rq_context_buf_size, 17352 &rq_create->u.request.context, 17353 LPFC_DATA_BUF_SIZE); 17354 } 17355 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17356 cq->queue_id); 17357 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17358 drq->page_count); 17359 list_for_each_entry(dmabuf, &drq->page_list, list) { 17360 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17361 putPaddrLow(dmabuf->phys); 17362 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17363 putPaddrHigh(dmabuf->phys); 17364 } 17365 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17366 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17367 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17368 /* The IOCTL status is embedded in the mailbox subheader. */ 17369 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17370 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17371 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17372 if (shdr_status || shdr_add_status || rc) { 17373 status = -ENXIO; 17374 goto out; 17375 } 17376 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17377 if (drq->queue_id == 0xFFFF) { 17378 status = -ENXIO; 17379 goto out; 17380 } 17381 drq->type = LPFC_DRQ; 17382 drq->assoc_qid = cq->queue_id; 17383 drq->subtype = subtype; 17384 drq->host_index = 0; 17385 drq->hba_index = 0; 17386 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17387 17388 /* link the header and data RQs onto the parent cq child list */ 17389 list_add_tail(&hrq->list, &cq->child_list); 17390 list_add_tail(&drq->list, &cq->child_list); 17391 17392 out: 17393 mempool_free(mbox, phba->mbox_mem_pool); 17394 return status; 17395 } 17396 17397 /** 17398 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17399 * @phba: HBA structure that indicates port to create a queue on. 17400 * @hrqp: The queue structure array to use to create the header receive queues. 17401 * @drqp: The queue structure array to use to create the data receive queues. 17402 * @cqp: The completion queue array to bind these receive queues to. 17403 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17404 * 17405 * This function creates a receive buffer queue pair , as detailed in @hrq and 17406 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17407 * to the HBA. 17408 * 17409 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17410 * struct is used to get the entry count that is necessary to determine the 17411 * number of pages to use for this queue. The @cq is used to indicate which 17412 * completion queue to bind received buffers that are posted to these queues to. 17413 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17414 * receive queue pair. This function is asynchronous and will wait for the 17415 * mailbox command to finish before continuing. 17416 * 17417 * On success this function will return a zero. If unable to allocate enough 17418 * memory this function will return -ENOMEM. If the queue create mailbox command 17419 * fails this function will return -ENXIO. 17420 **/ 17421 int 17422 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17423 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17424 uint32_t subtype) 17425 { 17426 struct lpfc_queue *hrq, *drq, *cq; 17427 struct lpfc_mbx_rq_create_v2 *rq_create; 17428 struct lpfc_dmabuf *dmabuf; 17429 LPFC_MBOXQ_t *mbox; 17430 int rc, length, alloclen, status = 0; 17431 int cnt, idx, numrq, page_idx = 0; 17432 uint32_t shdr_status, shdr_add_status; 17433 union lpfc_sli4_cfg_shdr *shdr; 17434 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17435 17436 numrq = phba->cfg_nvmet_mrq; 17437 /* sanity check on array memory */ 17438 if (!hrqp || !drqp || !cqp || !numrq) 17439 return -ENODEV; 17440 if (!phba->sli4_hba.pc_sli4_params.supported) 17441 hw_page_size = SLI4_PAGE_SIZE; 17442 17443 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17444 if (!mbox) 17445 return -ENOMEM; 17446 17447 length = sizeof(struct lpfc_mbx_rq_create_v2); 17448 length += ((2 * numrq * hrqp[0]->page_count) * 17449 sizeof(struct dma_address)); 17450 17451 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17452 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17453 LPFC_SLI4_MBX_NEMBED); 17454 if (alloclen < length) { 17455 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17456 "3099 Allocated DMA memory size (%d) is " 17457 "less than the requested DMA memory size " 17458 "(%d)\n", alloclen, length); 17459 status = -ENOMEM; 17460 goto out; 17461 } 17462 17463 17464 17465 rq_create = mbox->sge_array->addr[0]; 17466 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17467 17468 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17469 cnt = 0; 17470 17471 for (idx = 0; idx < numrq; idx++) { 17472 hrq = hrqp[idx]; 17473 drq = drqp[idx]; 17474 cq = cqp[idx]; 17475 17476 /* sanity check on queue memory */ 17477 if (!hrq || !drq || !cq) { 17478 status = -ENODEV; 17479 goto out; 17480 } 17481 17482 if (hrq->entry_count != drq->entry_count) { 17483 status = -EINVAL; 17484 goto out; 17485 } 17486 17487 if (idx == 0) { 17488 bf_set(lpfc_mbx_rq_create_num_pages, 17489 &rq_create->u.request, 17490 hrq->page_count); 17491 bf_set(lpfc_mbx_rq_create_rq_cnt, 17492 &rq_create->u.request, (numrq * 2)); 17493 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17494 1); 17495 bf_set(lpfc_rq_context_base_cq, 17496 &rq_create->u.request.context, 17497 cq->queue_id); 17498 bf_set(lpfc_rq_context_data_size, 17499 &rq_create->u.request.context, 17500 LPFC_NVMET_DATA_BUF_SIZE); 17501 bf_set(lpfc_rq_context_hdr_size, 17502 &rq_create->u.request.context, 17503 LPFC_HDR_BUF_SIZE); 17504 bf_set(lpfc_rq_context_rqe_count_1, 17505 &rq_create->u.request.context, 17506 hrq->entry_count); 17507 bf_set(lpfc_rq_context_rqe_size, 17508 &rq_create->u.request.context, 17509 LPFC_RQE_SIZE_8); 17510 bf_set(lpfc_rq_context_page_size, 17511 &rq_create->u.request.context, 17512 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17513 } 17514 rc = 0; 17515 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17516 memset(dmabuf->virt, 0, hw_page_size); 17517 cnt = page_idx + dmabuf->buffer_tag; 17518 rq_create->u.request.page[cnt].addr_lo = 17519 putPaddrLow(dmabuf->phys); 17520 rq_create->u.request.page[cnt].addr_hi = 17521 putPaddrHigh(dmabuf->phys); 17522 rc++; 17523 } 17524 page_idx += rc; 17525 17526 rc = 0; 17527 list_for_each_entry(dmabuf, &drq->page_list, list) { 17528 memset(dmabuf->virt, 0, hw_page_size); 17529 cnt = page_idx + dmabuf->buffer_tag; 17530 rq_create->u.request.page[cnt].addr_lo = 17531 putPaddrLow(dmabuf->phys); 17532 rq_create->u.request.page[cnt].addr_hi = 17533 putPaddrHigh(dmabuf->phys); 17534 rc++; 17535 } 17536 page_idx += rc; 17537 17538 hrq->db_format = LPFC_DB_RING_FORMAT; 17539 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17540 hrq->type = LPFC_HRQ; 17541 hrq->assoc_qid = cq->queue_id; 17542 hrq->subtype = subtype; 17543 hrq->host_index = 0; 17544 hrq->hba_index = 0; 17545 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17546 17547 drq->db_format = LPFC_DB_RING_FORMAT; 17548 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17549 drq->type = LPFC_DRQ; 17550 drq->assoc_qid = cq->queue_id; 17551 drq->subtype = subtype; 17552 drq->host_index = 0; 17553 drq->hba_index = 0; 17554 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17555 17556 list_add_tail(&hrq->list, &cq->child_list); 17557 list_add_tail(&drq->list, &cq->child_list); 17558 } 17559 17560 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17561 /* The IOCTL status is embedded in the mailbox subheader. */ 17562 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17563 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17564 if (shdr_status || shdr_add_status || rc) { 17565 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17566 "3120 RQ_CREATE mailbox failed with " 17567 "status x%x add_status x%x, mbx status x%x\n", 17568 shdr_status, shdr_add_status, rc); 17569 status = -ENXIO; 17570 goto out; 17571 } 17572 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17573 if (rc == 0xFFFF) { 17574 status = -ENXIO; 17575 goto out; 17576 } 17577 17578 /* Initialize all RQs with associated queue id */ 17579 for (idx = 0; idx < numrq; idx++) { 17580 hrq = hrqp[idx]; 17581 hrq->queue_id = rc + (2 * idx); 17582 drq = drqp[idx]; 17583 drq->queue_id = rc + (2 * idx) + 1; 17584 } 17585 17586 out: 17587 lpfc_sli4_mbox_cmd_free(phba, mbox); 17588 return status; 17589 } 17590 17591 /** 17592 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17593 * @phba: HBA structure that indicates port to destroy a queue on. 17594 * @eq: The queue structure associated with the queue to destroy. 17595 * 17596 * This function destroys a queue, as detailed in @eq by sending an mailbox 17597 * command, specific to the type of queue, to the HBA. 17598 * 17599 * The @eq struct is used to get the queue ID of the queue to destroy. 17600 * 17601 * On success this function will return a zero. If the queue destroy mailbox 17602 * command fails this function will return -ENXIO. 17603 **/ 17604 int 17605 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17606 { 17607 LPFC_MBOXQ_t *mbox; 17608 int rc, length, status = 0; 17609 uint32_t shdr_status, shdr_add_status; 17610 union lpfc_sli4_cfg_shdr *shdr; 17611 17612 /* sanity check on queue memory */ 17613 if (!eq) 17614 return -ENODEV; 17615 17616 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17617 if (!mbox) 17618 return -ENOMEM; 17619 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17620 sizeof(struct lpfc_sli4_cfg_mhdr)); 17621 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17622 LPFC_MBOX_OPCODE_EQ_DESTROY, 17623 length, LPFC_SLI4_MBX_EMBED); 17624 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17625 eq->queue_id); 17626 mbox->vport = eq->phba->pport; 17627 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17628 17629 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17630 /* The IOCTL status is embedded in the mailbox subheader. */ 17631 shdr = (union lpfc_sli4_cfg_shdr *) 17632 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17633 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17634 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17635 if (shdr_status || shdr_add_status || rc) { 17636 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17637 "2505 EQ_DESTROY mailbox failed with " 17638 "status x%x add_status x%x, mbx status x%x\n", 17639 shdr_status, shdr_add_status, rc); 17640 status = -ENXIO; 17641 } 17642 17643 /* Remove eq from any list */ 17644 list_del_init(&eq->list); 17645 mempool_free(mbox, eq->phba->mbox_mem_pool); 17646 return status; 17647 } 17648 17649 /** 17650 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17651 * @phba: HBA structure that indicates port to destroy a queue on. 17652 * @cq: The queue structure associated with the queue to destroy. 17653 * 17654 * This function destroys a queue, as detailed in @cq by sending an mailbox 17655 * command, specific to the type of queue, to the HBA. 17656 * 17657 * The @cq struct is used to get the queue ID of the queue to destroy. 17658 * 17659 * On success this function will return a zero. If the queue destroy mailbox 17660 * command fails this function will return -ENXIO. 17661 **/ 17662 int 17663 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17664 { 17665 LPFC_MBOXQ_t *mbox; 17666 int rc, length, status = 0; 17667 uint32_t shdr_status, shdr_add_status; 17668 union lpfc_sli4_cfg_shdr *shdr; 17669 17670 /* sanity check on queue memory */ 17671 if (!cq) 17672 return -ENODEV; 17673 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17674 if (!mbox) 17675 return -ENOMEM; 17676 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17677 sizeof(struct lpfc_sli4_cfg_mhdr)); 17678 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17679 LPFC_MBOX_OPCODE_CQ_DESTROY, 17680 length, LPFC_SLI4_MBX_EMBED); 17681 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17682 cq->queue_id); 17683 mbox->vport = cq->phba->pport; 17684 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17685 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17686 /* The IOCTL status is embedded in the mailbox subheader. */ 17687 shdr = (union lpfc_sli4_cfg_shdr *) 17688 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17689 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17690 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17691 if (shdr_status || shdr_add_status || rc) { 17692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17693 "2506 CQ_DESTROY mailbox failed with " 17694 "status x%x add_status x%x, mbx status x%x\n", 17695 shdr_status, shdr_add_status, rc); 17696 status = -ENXIO; 17697 } 17698 /* Remove cq from any list */ 17699 list_del_init(&cq->list); 17700 mempool_free(mbox, cq->phba->mbox_mem_pool); 17701 return status; 17702 } 17703 17704 /** 17705 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17706 * @phba: HBA structure that indicates port to destroy a queue on. 17707 * @mq: The queue structure associated with the queue to destroy. 17708 * 17709 * This function destroys a queue, as detailed in @mq by sending an mailbox 17710 * command, specific to the type of queue, to the HBA. 17711 * 17712 * The @mq struct is used to get the queue ID of the queue to destroy. 17713 * 17714 * On success this function will return a zero. If the queue destroy mailbox 17715 * command fails this function will return -ENXIO. 17716 **/ 17717 int 17718 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17719 { 17720 LPFC_MBOXQ_t *mbox; 17721 int rc, length, status = 0; 17722 uint32_t shdr_status, shdr_add_status; 17723 union lpfc_sli4_cfg_shdr *shdr; 17724 17725 /* sanity check on queue memory */ 17726 if (!mq) 17727 return -ENODEV; 17728 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17729 if (!mbox) 17730 return -ENOMEM; 17731 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17732 sizeof(struct lpfc_sli4_cfg_mhdr)); 17733 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17734 LPFC_MBOX_OPCODE_MQ_DESTROY, 17735 length, LPFC_SLI4_MBX_EMBED); 17736 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17737 mq->queue_id); 17738 mbox->vport = mq->phba->pport; 17739 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17740 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17741 /* The IOCTL status is embedded in the mailbox subheader. */ 17742 shdr = (union lpfc_sli4_cfg_shdr *) 17743 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17744 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17745 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17746 if (shdr_status || shdr_add_status || rc) { 17747 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17748 "2507 MQ_DESTROY mailbox failed with " 17749 "status x%x add_status x%x, mbx status x%x\n", 17750 shdr_status, shdr_add_status, rc); 17751 status = -ENXIO; 17752 } 17753 /* Remove mq from any list */ 17754 list_del_init(&mq->list); 17755 mempool_free(mbox, mq->phba->mbox_mem_pool); 17756 return status; 17757 } 17758 17759 /** 17760 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17761 * @phba: HBA structure that indicates port to destroy a queue on. 17762 * @wq: The queue structure associated with the queue to destroy. 17763 * 17764 * This function destroys a queue, as detailed in @wq by sending an mailbox 17765 * command, specific to the type of queue, to the HBA. 17766 * 17767 * The @wq struct is used to get the queue ID of the queue to destroy. 17768 * 17769 * On success this function will return a zero. If the queue destroy mailbox 17770 * command fails this function will return -ENXIO. 17771 **/ 17772 int 17773 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17774 { 17775 LPFC_MBOXQ_t *mbox; 17776 int rc, length, status = 0; 17777 uint32_t shdr_status, shdr_add_status; 17778 union lpfc_sli4_cfg_shdr *shdr; 17779 17780 /* sanity check on queue memory */ 17781 if (!wq) 17782 return -ENODEV; 17783 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17784 if (!mbox) 17785 return -ENOMEM; 17786 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17787 sizeof(struct lpfc_sli4_cfg_mhdr)); 17788 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17789 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17790 length, LPFC_SLI4_MBX_EMBED); 17791 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17792 wq->queue_id); 17793 mbox->vport = wq->phba->pport; 17794 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17795 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17796 shdr = (union lpfc_sli4_cfg_shdr *) 17797 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17798 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17799 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17800 if (shdr_status || shdr_add_status || rc) { 17801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17802 "2508 WQ_DESTROY mailbox failed with " 17803 "status x%x add_status x%x, mbx status x%x\n", 17804 shdr_status, shdr_add_status, rc); 17805 status = -ENXIO; 17806 } 17807 /* Remove wq from any list */ 17808 list_del_init(&wq->list); 17809 kfree(wq->pring); 17810 wq->pring = NULL; 17811 mempool_free(mbox, wq->phba->mbox_mem_pool); 17812 return status; 17813 } 17814 17815 /** 17816 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17817 * @phba: HBA structure that indicates port to destroy a queue on. 17818 * @hrq: The queue structure associated with the queue to destroy. 17819 * @drq: The queue structure associated with the queue to destroy. 17820 * 17821 * This function destroys a queue, as detailed in @rq by sending an mailbox 17822 * command, specific to the type of queue, to the HBA. 17823 * 17824 * The @rq struct is used to get the queue ID of the queue to destroy. 17825 * 17826 * On success this function will return a zero. If the queue destroy mailbox 17827 * command fails this function will return -ENXIO. 17828 **/ 17829 int 17830 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17831 struct lpfc_queue *drq) 17832 { 17833 LPFC_MBOXQ_t *mbox; 17834 int rc, length, status = 0; 17835 uint32_t shdr_status, shdr_add_status; 17836 union lpfc_sli4_cfg_shdr *shdr; 17837 17838 /* sanity check on queue memory */ 17839 if (!hrq || !drq) 17840 return -ENODEV; 17841 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17842 if (!mbox) 17843 return -ENOMEM; 17844 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17845 sizeof(struct lpfc_sli4_cfg_mhdr)); 17846 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17847 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17848 length, LPFC_SLI4_MBX_EMBED); 17849 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17850 hrq->queue_id); 17851 mbox->vport = hrq->phba->pport; 17852 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17853 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17854 /* The IOCTL status is embedded in the mailbox subheader. */ 17855 shdr = (union lpfc_sli4_cfg_shdr *) 17856 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17857 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17858 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17859 if (shdr_status || shdr_add_status || rc) { 17860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17861 "2509 RQ_DESTROY mailbox failed with " 17862 "status x%x add_status x%x, mbx status x%x\n", 17863 shdr_status, shdr_add_status, rc); 17864 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17865 return -ENXIO; 17866 } 17867 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17868 drq->queue_id); 17869 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17870 shdr = (union lpfc_sli4_cfg_shdr *) 17871 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17872 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17873 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17874 if (shdr_status || shdr_add_status || rc) { 17875 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17876 "2510 RQ_DESTROY mailbox failed with " 17877 "status x%x add_status x%x, mbx status x%x\n", 17878 shdr_status, shdr_add_status, rc); 17879 status = -ENXIO; 17880 } 17881 list_del_init(&hrq->list); 17882 list_del_init(&drq->list); 17883 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17884 return status; 17885 } 17886 17887 /** 17888 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17889 * @phba: The virtual port for which this call being executed. 17890 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17891 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17892 * @xritag: the xritag that ties this io to the SGL pages. 17893 * 17894 * This routine will post the sgl pages for the IO that has the xritag 17895 * that is in the iocbq structure. The xritag is assigned during iocbq 17896 * creation and persists for as long as the driver is loaded. 17897 * if the caller has fewer than 256 scatter gather segments to map then 17898 * pdma_phys_addr1 should be 0. 17899 * If the caller needs to map more than 256 scatter gather segment then 17900 * pdma_phys_addr1 should be a valid physical address. 17901 * physical address for SGLs must be 64 byte aligned. 17902 * If you are going to map 2 SGL's then the first one must have 256 entries 17903 * the second sgl can have between 1 and 256 entries. 17904 * 17905 * Return codes: 17906 * 0 - Success 17907 * -ENXIO, -ENOMEM - Failure 17908 **/ 17909 int 17910 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17911 dma_addr_t pdma_phys_addr0, 17912 dma_addr_t pdma_phys_addr1, 17913 uint16_t xritag) 17914 { 17915 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17916 LPFC_MBOXQ_t *mbox; 17917 int rc; 17918 uint32_t shdr_status, shdr_add_status; 17919 uint32_t mbox_tmo; 17920 union lpfc_sli4_cfg_shdr *shdr; 17921 17922 if (xritag == NO_XRI) { 17923 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17924 "0364 Invalid param:\n"); 17925 return -EINVAL; 17926 } 17927 17928 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17929 if (!mbox) 17930 return -ENOMEM; 17931 17932 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17933 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17934 sizeof(struct lpfc_mbx_post_sgl_pages) - 17935 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17936 17937 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17938 &mbox->u.mqe.un.post_sgl_pages; 17939 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17940 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17941 17942 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17943 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17944 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17945 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17946 17947 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17948 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17949 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17950 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17951 if (!phba->sli4_hba.intr_enable) 17952 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17953 else { 17954 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17955 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17956 } 17957 /* The IOCTL status is embedded in the mailbox subheader. */ 17958 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17959 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17960 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17961 if (!phba->sli4_hba.intr_enable) 17962 mempool_free(mbox, phba->mbox_mem_pool); 17963 else if (rc != MBX_TIMEOUT) 17964 mempool_free(mbox, phba->mbox_mem_pool); 17965 if (shdr_status || shdr_add_status || rc) { 17966 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17967 "2511 POST_SGL mailbox failed with " 17968 "status x%x add_status x%x, mbx status x%x\n", 17969 shdr_status, shdr_add_status, rc); 17970 } 17971 return 0; 17972 } 17973 17974 /** 17975 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17976 * @phba: pointer to lpfc hba data structure. 17977 * 17978 * This routine is invoked to post rpi header templates to the 17979 * HBA consistent with the SLI-4 interface spec. This routine 17980 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17981 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17982 * 17983 * Returns 17984 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17985 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17986 **/ 17987 static uint16_t 17988 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17989 { 17990 unsigned long xri; 17991 17992 /* 17993 * Fetch the next logical xri. Because this index is logical, 17994 * the driver starts at 0 each time. 17995 */ 17996 spin_lock_irq(&phba->hbalock); 17997 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17998 phba->sli4_hba.max_cfg_param.max_xri); 17999 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18000 spin_unlock_irq(&phba->hbalock); 18001 return NO_XRI; 18002 } else { 18003 set_bit(xri, phba->sli4_hba.xri_bmask); 18004 phba->sli4_hba.max_cfg_param.xri_used++; 18005 } 18006 spin_unlock_irq(&phba->hbalock); 18007 return xri; 18008 } 18009 18010 /** 18011 * __lpfc_sli4_free_xri - Release an xri for reuse. 18012 * @phba: pointer to lpfc hba data structure. 18013 * @xri: xri to release. 18014 * 18015 * This routine is invoked to release an xri to the pool of 18016 * available rpis maintained by the driver. 18017 **/ 18018 static void 18019 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18020 { 18021 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18022 phba->sli4_hba.max_cfg_param.xri_used--; 18023 } 18024 } 18025 18026 /** 18027 * lpfc_sli4_free_xri - Release an xri for reuse. 18028 * @phba: pointer to lpfc hba data structure. 18029 * @xri: xri to release. 18030 * 18031 * This routine is invoked to release an xri to the pool of 18032 * available rpis maintained by the driver. 18033 **/ 18034 void 18035 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18036 { 18037 spin_lock_irq(&phba->hbalock); 18038 __lpfc_sli4_free_xri(phba, xri); 18039 spin_unlock_irq(&phba->hbalock); 18040 } 18041 18042 /** 18043 * lpfc_sli4_next_xritag - Get an xritag for the io 18044 * @phba: Pointer to HBA context object. 18045 * 18046 * This function gets an xritag for the iocb. If there is no unused xritag 18047 * it will return 0xffff. 18048 * The function returns the allocated xritag if successful, else returns zero. 18049 * Zero is not a valid xritag. 18050 * The caller is not required to hold any lock. 18051 **/ 18052 uint16_t 18053 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18054 { 18055 uint16_t xri_index; 18056 18057 xri_index = lpfc_sli4_alloc_xri(phba); 18058 if (xri_index == NO_XRI) 18059 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18060 "2004 Failed to allocate XRI.last XRITAG is %d" 18061 " Max XRI is %d, Used XRI is %d\n", 18062 xri_index, 18063 phba->sli4_hba.max_cfg_param.max_xri, 18064 phba->sli4_hba.max_cfg_param.xri_used); 18065 return xri_index; 18066 } 18067 18068 /** 18069 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18070 * @phba: pointer to lpfc hba data structure. 18071 * @post_sgl_list: pointer to els sgl entry list. 18072 * @post_cnt: number of els sgl entries on the list. 18073 * 18074 * This routine is invoked to post a block of driver's sgl pages to the 18075 * HBA using non-embedded mailbox command. No Lock is held. This routine 18076 * is only called when the driver is loading and after all IO has been 18077 * stopped. 18078 **/ 18079 static int 18080 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18081 struct list_head *post_sgl_list, 18082 int post_cnt) 18083 { 18084 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18085 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18086 struct sgl_page_pairs *sgl_pg_pairs; 18087 void *viraddr; 18088 LPFC_MBOXQ_t *mbox; 18089 uint32_t reqlen, alloclen, pg_pairs; 18090 uint32_t mbox_tmo; 18091 uint16_t xritag_start = 0; 18092 int rc = 0; 18093 uint32_t shdr_status, shdr_add_status; 18094 union lpfc_sli4_cfg_shdr *shdr; 18095 18096 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18097 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18098 if (reqlen > SLI4_PAGE_SIZE) { 18099 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18100 "2559 Block sgl registration required DMA " 18101 "size (%d) great than a page\n", reqlen); 18102 return -ENOMEM; 18103 } 18104 18105 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18106 if (!mbox) 18107 return -ENOMEM; 18108 18109 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18110 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18111 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18112 LPFC_SLI4_MBX_NEMBED); 18113 18114 if (alloclen < reqlen) { 18115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18116 "0285 Allocated DMA memory size (%d) is " 18117 "less than the requested DMA memory " 18118 "size (%d)\n", alloclen, reqlen); 18119 lpfc_sli4_mbox_cmd_free(phba, mbox); 18120 return -ENOMEM; 18121 } 18122 /* Set up the SGL pages in the non-embedded DMA pages */ 18123 viraddr = mbox->sge_array->addr[0]; 18124 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18125 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18126 18127 pg_pairs = 0; 18128 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18129 /* Set up the sge entry */ 18130 sgl_pg_pairs->sgl_pg0_addr_lo = 18131 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18132 sgl_pg_pairs->sgl_pg0_addr_hi = 18133 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18134 sgl_pg_pairs->sgl_pg1_addr_lo = 18135 cpu_to_le32(putPaddrLow(0)); 18136 sgl_pg_pairs->sgl_pg1_addr_hi = 18137 cpu_to_le32(putPaddrHigh(0)); 18138 18139 /* Keep the first xritag on the list */ 18140 if (pg_pairs == 0) 18141 xritag_start = sglq_entry->sli4_xritag; 18142 sgl_pg_pairs++; 18143 pg_pairs++; 18144 } 18145 18146 /* Complete initialization and perform endian conversion. */ 18147 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18148 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18149 sgl->word0 = cpu_to_le32(sgl->word0); 18150 18151 if (!phba->sli4_hba.intr_enable) 18152 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18153 else { 18154 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18155 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18156 } 18157 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18158 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18159 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18160 if (!phba->sli4_hba.intr_enable) 18161 lpfc_sli4_mbox_cmd_free(phba, mbox); 18162 else if (rc != MBX_TIMEOUT) 18163 lpfc_sli4_mbox_cmd_free(phba, mbox); 18164 if (shdr_status || shdr_add_status || rc) { 18165 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18166 "2513 POST_SGL_BLOCK mailbox command failed " 18167 "status x%x add_status x%x mbx status x%x\n", 18168 shdr_status, shdr_add_status, rc); 18169 rc = -ENXIO; 18170 } 18171 return rc; 18172 } 18173 18174 /** 18175 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18176 * @phba: pointer to lpfc hba data structure. 18177 * @nblist: pointer to nvme buffer list. 18178 * @count: number of scsi buffers on the list. 18179 * 18180 * This routine is invoked to post a block of @count scsi sgl pages from a 18181 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18182 * No Lock is held. 18183 * 18184 **/ 18185 static int 18186 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18187 int count) 18188 { 18189 struct lpfc_io_buf *lpfc_ncmd; 18190 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18191 struct sgl_page_pairs *sgl_pg_pairs; 18192 void *viraddr; 18193 LPFC_MBOXQ_t *mbox; 18194 uint32_t reqlen, alloclen, pg_pairs; 18195 uint32_t mbox_tmo; 18196 uint16_t xritag_start = 0; 18197 int rc = 0; 18198 uint32_t shdr_status, shdr_add_status; 18199 dma_addr_t pdma_phys_bpl1; 18200 union lpfc_sli4_cfg_shdr *shdr; 18201 18202 /* Calculate the requested length of the dma memory */ 18203 reqlen = count * sizeof(struct sgl_page_pairs) + 18204 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18205 if (reqlen > SLI4_PAGE_SIZE) { 18206 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18207 "6118 Block sgl registration required DMA " 18208 "size (%d) great than a page\n", reqlen); 18209 return -ENOMEM; 18210 } 18211 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18212 if (!mbox) { 18213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18214 "6119 Failed to allocate mbox cmd memory\n"); 18215 return -ENOMEM; 18216 } 18217 18218 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18219 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18220 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18221 reqlen, LPFC_SLI4_MBX_NEMBED); 18222 18223 if (alloclen < reqlen) { 18224 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18225 "6120 Allocated DMA memory size (%d) is " 18226 "less than the requested DMA memory " 18227 "size (%d)\n", alloclen, reqlen); 18228 lpfc_sli4_mbox_cmd_free(phba, mbox); 18229 return -ENOMEM; 18230 } 18231 18232 /* Get the first SGE entry from the non-embedded DMA memory */ 18233 viraddr = mbox->sge_array->addr[0]; 18234 18235 /* Set up the SGL pages in the non-embedded DMA pages */ 18236 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18237 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18238 18239 pg_pairs = 0; 18240 list_for_each_entry(lpfc_ncmd, nblist, list) { 18241 /* Set up the sge entry */ 18242 sgl_pg_pairs->sgl_pg0_addr_lo = 18243 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18244 sgl_pg_pairs->sgl_pg0_addr_hi = 18245 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18246 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18247 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18248 SGL_PAGE_SIZE; 18249 else 18250 pdma_phys_bpl1 = 0; 18251 sgl_pg_pairs->sgl_pg1_addr_lo = 18252 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18253 sgl_pg_pairs->sgl_pg1_addr_hi = 18254 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18255 /* Keep the first xritag on the list */ 18256 if (pg_pairs == 0) 18257 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18258 sgl_pg_pairs++; 18259 pg_pairs++; 18260 } 18261 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18262 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18263 /* Perform endian conversion if necessary */ 18264 sgl->word0 = cpu_to_le32(sgl->word0); 18265 18266 if (!phba->sli4_hba.intr_enable) { 18267 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18268 } else { 18269 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18270 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18271 } 18272 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18273 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18274 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18275 if (!phba->sli4_hba.intr_enable) 18276 lpfc_sli4_mbox_cmd_free(phba, mbox); 18277 else if (rc != MBX_TIMEOUT) 18278 lpfc_sli4_mbox_cmd_free(phba, mbox); 18279 if (shdr_status || shdr_add_status || rc) { 18280 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18281 "6125 POST_SGL_BLOCK mailbox command failed " 18282 "status x%x add_status x%x mbx status x%x\n", 18283 shdr_status, shdr_add_status, rc); 18284 rc = -ENXIO; 18285 } 18286 return rc; 18287 } 18288 18289 /** 18290 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18291 * @phba: pointer to lpfc hba data structure. 18292 * @post_nblist: pointer to the nvme buffer list. 18293 * @sb_count: number of nvme buffers. 18294 * 18295 * This routine walks a list of nvme buffers that was passed in. It attempts 18296 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18297 * uses the non-embedded SGL block post mailbox commands to post to the port. 18298 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18299 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18300 * must be local list, thus no lock is needed when manipulate the list. 18301 * 18302 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18303 **/ 18304 int 18305 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18306 struct list_head *post_nblist, int sb_count) 18307 { 18308 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18309 int status, sgl_size; 18310 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18311 dma_addr_t pdma_phys_sgl1; 18312 int last_xritag = NO_XRI; 18313 int cur_xritag; 18314 LIST_HEAD(prep_nblist); 18315 LIST_HEAD(blck_nblist); 18316 LIST_HEAD(nvme_nblist); 18317 18318 /* sanity check */ 18319 if (sb_count <= 0) 18320 return -EINVAL; 18321 18322 sgl_size = phba->cfg_sg_dma_buf_size; 18323 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18324 list_del_init(&lpfc_ncmd->list); 18325 block_cnt++; 18326 if ((last_xritag != NO_XRI) && 18327 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18328 /* a hole in xri block, form a sgl posting block */ 18329 list_splice_init(&prep_nblist, &blck_nblist); 18330 post_cnt = block_cnt - 1; 18331 /* prepare list for next posting block */ 18332 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18333 block_cnt = 1; 18334 } else { 18335 /* prepare list for next posting block */ 18336 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18337 /* enough sgls for non-embed sgl mbox command */ 18338 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18339 list_splice_init(&prep_nblist, &blck_nblist); 18340 post_cnt = block_cnt; 18341 block_cnt = 0; 18342 } 18343 } 18344 num_posting++; 18345 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18346 18347 /* end of repost sgl list condition for NVME buffers */ 18348 if (num_posting == sb_count) { 18349 if (post_cnt == 0) { 18350 /* last sgl posting block */ 18351 list_splice_init(&prep_nblist, &blck_nblist); 18352 post_cnt = block_cnt; 18353 } else if (block_cnt == 1) { 18354 /* last single sgl with non-contiguous xri */ 18355 if (sgl_size > SGL_PAGE_SIZE) 18356 pdma_phys_sgl1 = 18357 lpfc_ncmd->dma_phys_sgl + 18358 SGL_PAGE_SIZE; 18359 else 18360 pdma_phys_sgl1 = 0; 18361 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18362 status = lpfc_sli4_post_sgl( 18363 phba, lpfc_ncmd->dma_phys_sgl, 18364 pdma_phys_sgl1, cur_xritag); 18365 if (status) { 18366 /* Post error. Buffer unavailable. */ 18367 lpfc_ncmd->flags |= 18368 LPFC_SBUF_NOT_POSTED; 18369 } else { 18370 /* Post success. Bffer available. */ 18371 lpfc_ncmd->flags &= 18372 ~LPFC_SBUF_NOT_POSTED; 18373 lpfc_ncmd->status = IOSTAT_SUCCESS; 18374 num_posted++; 18375 } 18376 /* success, put on NVME buffer sgl list */ 18377 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18378 } 18379 } 18380 18381 /* continue until a nembed page worth of sgls */ 18382 if (post_cnt == 0) 18383 continue; 18384 18385 /* post block of NVME buffer list sgls */ 18386 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18387 post_cnt); 18388 18389 /* don't reset xirtag due to hole in xri block */ 18390 if (block_cnt == 0) 18391 last_xritag = NO_XRI; 18392 18393 /* reset NVME buffer post count for next round of posting */ 18394 post_cnt = 0; 18395 18396 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18397 while (!list_empty(&blck_nblist)) { 18398 list_remove_head(&blck_nblist, lpfc_ncmd, 18399 struct lpfc_io_buf, list); 18400 if (status) { 18401 /* Post error. Mark buffer unavailable. */ 18402 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18403 } else { 18404 /* Post success, Mark buffer available. */ 18405 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18406 lpfc_ncmd->status = IOSTAT_SUCCESS; 18407 num_posted++; 18408 } 18409 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18410 } 18411 } 18412 /* Push NVME buffers with sgl posted to the available list */ 18413 lpfc_io_buf_replenish(phba, &nvme_nblist); 18414 18415 return num_posted; 18416 } 18417 18418 /** 18419 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18420 * @phba: pointer to lpfc_hba struct that the frame was received on 18421 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18422 * 18423 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18424 * valid type of frame that the LPFC driver will handle. This function will 18425 * return a zero if the frame is a valid frame or a non zero value when the 18426 * frame does not pass the check. 18427 **/ 18428 static int 18429 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18430 { 18431 /* make rctl_names static to save stack space */ 18432 struct fc_vft_header *fc_vft_hdr; 18433 uint32_t *header = (uint32_t *) fc_hdr; 18434 18435 #define FC_RCTL_MDS_DIAGS 0xF4 18436 18437 switch (fc_hdr->fh_r_ctl) { 18438 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18439 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18440 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18441 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18442 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18443 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18444 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18445 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18446 case FC_RCTL_ELS_REQ: /* extended link services request */ 18447 case FC_RCTL_ELS_REP: /* extended link services reply */ 18448 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18449 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18450 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18451 case FC_RCTL_BA_RMC: /* remove connection */ 18452 case FC_RCTL_BA_ACC: /* basic accept */ 18453 case FC_RCTL_BA_RJT: /* basic reject */ 18454 case FC_RCTL_BA_PRMT: 18455 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18456 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18457 case FC_RCTL_P_RJT: /* port reject */ 18458 case FC_RCTL_F_RJT: /* fabric reject */ 18459 case FC_RCTL_P_BSY: /* port busy */ 18460 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18461 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18462 case FC_RCTL_LCR: /* link credit reset */ 18463 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18464 case FC_RCTL_END: /* end */ 18465 break; 18466 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18467 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18468 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18469 return lpfc_fc_frame_check(phba, fc_hdr); 18470 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18471 default: 18472 goto drop; 18473 } 18474 18475 switch (fc_hdr->fh_type) { 18476 case FC_TYPE_BLS: 18477 case FC_TYPE_ELS: 18478 case FC_TYPE_FCP: 18479 case FC_TYPE_CT: 18480 case FC_TYPE_NVME: 18481 break; 18482 case FC_TYPE_IP: 18483 case FC_TYPE_ILS: 18484 default: 18485 goto drop; 18486 } 18487 18488 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18489 "2538 Received frame rctl:x%x, type:x%x, " 18490 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18491 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18492 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18493 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18494 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18495 be32_to_cpu(header[6])); 18496 return 0; 18497 drop: 18498 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18499 "2539 Dropped frame rctl:x%x type:x%x\n", 18500 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18501 return 1; 18502 } 18503 18504 /** 18505 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18506 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18507 * 18508 * This function processes the FC header to retrieve the VFI from the VF 18509 * header, if one exists. This function will return the VFI if one exists 18510 * or 0 if no VSAN Header exists. 18511 **/ 18512 static uint32_t 18513 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18514 { 18515 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18516 18517 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18518 return 0; 18519 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18520 } 18521 18522 /** 18523 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18524 * @phba: Pointer to the HBA structure to search for the vport on 18525 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18526 * @fcfi: The FC Fabric ID that the frame came from 18527 * @did: Destination ID to match against 18528 * 18529 * This function searches the @phba for a vport that matches the content of the 18530 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18531 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18532 * returns the matching vport pointer or NULL if unable to match frame to a 18533 * vport. 18534 **/ 18535 static struct lpfc_vport * 18536 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18537 uint16_t fcfi, uint32_t did) 18538 { 18539 struct lpfc_vport **vports; 18540 struct lpfc_vport *vport = NULL; 18541 int i; 18542 18543 if (did == Fabric_DID) 18544 return phba->pport; 18545 if ((phba->pport->fc_flag & FC_PT2PT) && 18546 !(phba->link_state == LPFC_HBA_READY)) 18547 return phba->pport; 18548 18549 vports = lpfc_create_vport_work_array(phba); 18550 if (vports != NULL) { 18551 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18552 if (phba->fcf.fcfi == fcfi && 18553 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18554 vports[i]->fc_myDID == did) { 18555 vport = vports[i]; 18556 break; 18557 } 18558 } 18559 } 18560 lpfc_destroy_vport_work_array(phba, vports); 18561 return vport; 18562 } 18563 18564 /** 18565 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18566 * @vport: The vport to work on. 18567 * 18568 * This function updates the receive sequence time stamp for this vport. The 18569 * receive sequence time stamp indicates the time that the last frame of the 18570 * the sequence that has been idle for the longest amount of time was received. 18571 * the driver uses this time stamp to indicate if any received sequences have 18572 * timed out. 18573 **/ 18574 static void 18575 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18576 { 18577 struct lpfc_dmabuf *h_buf; 18578 struct hbq_dmabuf *dmabuf = NULL; 18579 18580 /* get the oldest sequence on the rcv list */ 18581 h_buf = list_get_first(&vport->rcv_buffer_list, 18582 struct lpfc_dmabuf, list); 18583 if (!h_buf) 18584 return; 18585 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18586 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18587 } 18588 18589 /** 18590 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18591 * @vport: The vport that the received sequences were sent to. 18592 * 18593 * This function cleans up all outstanding received sequences. This is called 18594 * by the driver when a link event or user action invalidates all the received 18595 * sequences. 18596 **/ 18597 void 18598 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18599 { 18600 struct lpfc_dmabuf *h_buf, *hnext; 18601 struct lpfc_dmabuf *d_buf, *dnext; 18602 struct hbq_dmabuf *dmabuf = NULL; 18603 18604 /* start with the oldest sequence on the rcv list */ 18605 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18606 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18607 list_del_init(&dmabuf->hbuf.list); 18608 list_for_each_entry_safe(d_buf, dnext, 18609 &dmabuf->dbuf.list, list) { 18610 list_del_init(&d_buf->list); 18611 lpfc_in_buf_free(vport->phba, d_buf); 18612 } 18613 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18614 } 18615 } 18616 18617 /** 18618 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18619 * @vport: The vport that the received sequences were sent to. 18620 * 18621 * This function determines whether any received sequences have timed out by 18622 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18623 * indicates that there is at least one timed out sequence this routine will 18624 * go through the received sequences one at a time from most inactive to most 18625 * active to determine which ones need to be cleaned up. Once it has determined 18626 * that a sequence needs to be cleaned up it will simply free up the resources 18627 * without sending an abort. 18628 **/ 18629 void 18630 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18631 { 18632 struct lpfc_dmabuf *h_buf, *hnext; 18633 struct lpfc_dmabuf *d_buf, *dnext; 18634 struct hbq_dmabuf *dmabuf = NULL; 18635 unsigned long timeout; 18636 int abort_count = 0; 18637 18638 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18639 vport->rcv_buffer_time_stamp); 18640 if (list_empty(&vport->rcv_buffer_list) || 18641 time_before(jiffies, timeout)) 18642 return; 18643 /* start with the oldest sequence on the rcv list */ 18644 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18645 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18646 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18647 dmabuf->time_stamp); 18648 if (time_before(jiffies, timeout)) 18649 break; 18650 abort_count++; 18651 list_del_init(&dmabuf->hbuf.list); 18652 list_for_each_entry_safe(d_buf, dnext, 18653 &dmabuf->dbuf.list, list) { 18654 list_del_init(&d_buf->list); 18655 lpfc_in_buf_free(vport->phba, d_buf); 18656 } 18657 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18658 } 18659 if (abort_count) 18660 lpfc_update_rcv_time_stamp(vport); 18661 } 18662 18663 /** 18664 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18665 * @vport: pointer to a vitural port 18666 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18667 * 18668 * This function searches through the existing incomplete sequences that have 18669 * been sent to this @vport. If the frame matches one of the incomplete 18670 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18671 * make up that sequence. If no sequence is found that matches this frame then 18672 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18673 * This function returns a pointer to the first dmabuf in the sequence list that 18674 * the frame was linked to. 18675 **/ 18676 static struct hbq_dmabuf * 18677 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18678 { 18679 struct fc_frame_header *new_hdr; 18680 struct fc_frame_header *temp_hdr; 18681 struct lpfc_dmabuf *d_buf; 18682 struct lpfc_dmabuf *h_buf; 18683 struct hbq_dmabuf *seq_dmabuf = NULL; 18684 struct hbq_dmabuf *temp_dmabuf = NULL; 18685 uint8_t found = 0; 18686 18687 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18688 dmabuf->time_stamp = jiffies; 18689 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18690 18691 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18692 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18693 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18694 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18695 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18696 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18697 continue; 18698 /* found a pending sequence that matches this frame */ 18699 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18700 break; 18701 } 18702 if (!seq_dmabuf) { 18703 /* 18704 * This indicates first frame received for this sequence. 18705 * Queue the buffer on the vport's rcv_buffer_list. 18706 */ 18707 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18708 lpfc_update_rcv_time_stamp(vport); 18709 return dmabuf; 18710 } 18711 temp_hdr = seq_dmabuf->hbuf.virt; 18712 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18713 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18714 list_del_init(&seq_dmabuf->hbuf.list); 18715 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18716 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18717 lpfc_update_rcv_time_stamp(vport); 18718 return dmabuf; 18719 } 18720 /* move this sequence to the tail to indicate a young sequence */ 18721 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18722 seq_dmabuf->time_stamp = jiffies; 18723 lpfc_update_rcv_time_stamp(vport); 18724 if (list_empty(&seq_dmabuf->dbuf.list)) { 18725 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18726 return seq_dmabuf; 18727 } 18728 /* find the correct place in the sequence to insert this frame */ 18729 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18730 while (!found) { 18731 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18732 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18733 /* 18734 * If the frame's sequence count is greater than the frame on 18735 * the list then insert the frame right after this frame 18736 */ 18737 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18738 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18739 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18740 found = 1; 18741 break; 18742 } 18743 18744 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18745 break; 18746 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18747 } 18748 18749 if (found) 18750 return seq_dmabuf; 18751 return NULL; 18752 } 18753 18754 /** 18755 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18756 * @vport: pointer to a vitural port 18757 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18758 * 18759 * This function tries to abort from the partially assembed sequence, described 18760 * by the information from basic abbort @dmabuf. It checks to see whether such 18761 * partially assembled sequence held by the driver. If so, it shall free up all 18762 * the frames from the partially assembled sequence. 18763 * 18764 * Return 18765 * true -- if there is matching partially assembled sequence present and all 18766 * the frames freed with the sequence; 18767 * false -- if there is no matching partially assembled sequence present so 18768 * nothing got aborted in the lower layer driver 18769 **/ 18770 static bool 18771 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18772 struct hbq_dmabuf *dmabuf) 18773 { 18774 struct fc_frame_header *new_hdr; 18775 struct fc_frame_header *temp_hdr; 18776 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18777 struct hbq_dmabuf *seq_dmabuf = NULL; 18778 18779 /* Use the hdr_buf to find the sequence that matches this frame */ 18780 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18781 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18782 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18783 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18784 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18785 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18786 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18787 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18788 continue; 18789 /* found a pending sequence that matches this frame */ 18790 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18791 break; 18792 } 18793 18794 /* Free up all the frames from the partially assembled sequence */ 18795 if (seq_dmabuf) { 18796 list_for_each_entry_safe(d_buf, n_buf, 18797 &seq_dmabuf->dbuf.list, list) { 18798 list_del_init(&d_buf->list); 18799 lpfc_in_buf_free(vport->phba, d_buf); 18800 } 18801 return true; 18802 } 18803 return false; 18804 } 18805 18806 /** 18807 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18808 * @vport: pointer to a vitural port 18809 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18810 * 18811 * This function tries to abort from the assembed sequence from upper level 18812 * protocol, described by the information from basic abbort @dmabuf. It 18813 * checks to see whether such pending context exists at upper level protocol. 18814 * If so, it shall clean up the pending context. 18815 * 18816 * Return 18817 * true -- if there is matching pending context of the sequence cleaned 18818 * at ulp; 18819 * false -- if there is no matching pending context of the sequence present 18820 * at ulp. 18821 **/ 18822 static bool 18823 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18824 { 18825 struct lpfc_hba *phba = vport->phba; 18826 int handled; 18827 18828 /* Accepting abort at ulp with SLI4 only */ 18829 if (phba->sli_rev < LPFC_SLI_REV4) 18830 return false; 18831 18832 /* Register all caring upper level protocols to attend abort */ 18833 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18834 if (handled) 18835 return true; 18836 18837 return false; 18838 } 18839 18840 /** 18841 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18842 * @phba: Pointer to HBA context object. 18843 * @cmd_iocbq: pointer to the command iocbq structure. 18844 * @rsp_iocbq: pointer to the response iocbq structure. 18845 * 18846 * This function handles the sequence abort response iocb command complete 18847 * event. It properly releases the memory allocated to the sequence abort 18848 * accept iocb. 18849 **/ 18850 static void 18851 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18852 struct lpfc_iocbq *cmd_iocbq, 18853 struct lpfc_iocbq *rsp_iocbq) 18854 { 18855 if (cmd_iocbq) { 18856 lpfc_nlp_put(cmd_iocbq->ndlp); 18857 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18858 } 18859 18860 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18861 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18862 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18863 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18864 get_job_ulpstatus(phba, rsp_iocbq), 18865 get_job_word4(phba, rsp_iocbq)); 18866 } 18867 18868 /** 18869 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18870 * @phba: Pointer to HBA context object. 18871 * @xri: xri id in transaction. 18872 * 18873 * This function validates the xri maps to the known range of XRIs allocated an 18874 * used by the driver. 18875 **/ 18876 uint16_t 18877 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18878 uint16_t xri) 18879 { 18880 uint16_t i; 18881 18882 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18883 if (xri == phba->sli4_hba.xri_ids[i]) 18884 return i; 18885 } 18886 return NO_XRI; 18887 } 18888 18889 /** 18890 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18891 * @vport: pointer to a virtual port. 18892 * @fc_hdr: pointer to a FC frame header. 18893 * @aborted: was the partially assembled receive sequence successfully aborted 18894 * 18895 * This function sends a basic response to a previous unsol sequence abort 18896 * event after aborting the sequence handling. 18897 **/ 18898 void 18899 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18900 struct fc_frame_header *fc_hdr, bool aborted) 18901 { 18902 struct lpfc_hba *phba = vport->phba; 18903 struct lpfc_iocbq *ctiocb = NULL; 18904 struct lpfc_nodelist *ndlp; 18905 uint16_t oxid, rxid, xri, lxri; 18906 uint32_t sid, fctl; 18907 union lpfc_wqe128 *icmd; 18908 int rc; 18909 18910 if (!lpfc_is_link_up(phba)) 18911 return; 18912 18913 sid = sli4_sid_from_fc_hdr(fc_hdr); 18914 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18915 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18916 18917 ndlp = lpfc_findnode_did(vport, sid); 18918 if (!ndlp) { 18919 ndlp = lpfc_nlp_init(vport, sid); 18920 if (!ndlp) { 18921 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18922 "1268 Failed to allocate ndlp for " 18923 "oxid:x%x SID:x%x\n", oxid, sid); 18924 return; 18925 } 18926 /* Put ndlp onto pport node list */ 18927 lpfc_enqueue_node(vport, ndlp); 18928 } 18929 18930 /* Allocate buffer for rsp iocb */ 18931 ctiocb = lpfc_sli_get_iocbq(phba); 18932 if (!ctiocb) 18933 return; 18934 18935 icmd = &ctiocb->wqe; 18936 18937 /* Extract the F_CTL field from FC_HDR */ 18938 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18939 18940 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18941 if (!ctiocb->ndlp) { 18942 lpfc_sli_release_iocbq(phba, ctiocb); 18943 return; 18944 } 18945 18946 ctiocb->vport = phba->pport; 18947 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18948 ctiocb->sli4_lxritag = NO_XRI; 18949 ctiocb->sli4_xritag = NO_XRI; 18950 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18951 18952 if (fctl & FC_FC_EX_CTX) 18953 /* Exchange responder sent the abort so we 18954 * own the oxid. 18955 */ 18956 xri = oxid; 18957 else 18958 xri = rxid; 18959 lxri = lpfc_sli4_xri_inrange(phba, xri); 18960 if (lxri != NO_XRI) 18961 lpfc_set_rrq_active(phba, ndlp, lxri, 18962 (xri == oxid) ? rxid : oxid, 0); 18963 /* For BA_ABTS from exchange responder, if the logical xri with 18964 * the oxid maps to the FCP XRI range, the port no longer has 18965 * that exchange context, send a BLS_RJT. Override the IOCB for 18966 * a BA_RJT. 18967 */ 18968 if ((fctl & FC_FC_EX_CTX) && 18969 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18970 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18971 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18972 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18973 FC_BA_RJT_INV_XID); 18974 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18975 FC_BA_RJT_UNABLE); 18976 } 18977 18978 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18979 * the driver no longer has that exchange, send a BLS_RJT. Override 18980 * the IOCB for a BA_RJT. 18981 */ 18982 if (aborted == false) { 18983 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18984 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18985 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18986 FC_BA_RJT_INV_XID); 18987 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18988 FC_BA_RJT_UNABLE); 18989 } 18990 18991 if (fctl & FC_FC_EX_CTX) { 18992 /* ABTS sent by responder to CT exchange, construction 18993 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18994 * field and RX_ID from ABTS for RX_ID field. 18995 */ 18996 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 18997 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 18998 } else { 18999 /* ABTS sent by initiator to CT exchange, construction 19000 * of BA_ACC will need to allocate a new XRI as for the 19001 * XRI_TAG field. 19002 */ 19003 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19004 } 19005 19006 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19007 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19008 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19009 19010 /* Use CT=VPI */ 19011 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19012 ndlp->nlp_DID); 19013 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19014 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19015 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19016 19017 /* Xmit CT abts response on exchange <xid> */ 19018 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19019 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19020 ctiocb->abort_rctl, oxid, phba->link_state); 19021 19022 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19023 if (rc == IOCB_ERROR) { 19024 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19025 "2925 Failed to issue CT ABTS RSP x%x on " 19026 "xri x%x, Data x%x\n", 19027 ctiocb->abort_rctl, oxid, 19028 phba->link_state); 19029 lpfc_nlp_put(ndlp); 19030 ctiocb->ndlp = NULL; 19031 lpfc_sli_release_iocbq(phba, ctiocb); 19032 } 19033 } 19034 19035 /** 19036 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19037 * @vport: Pointer to the vport on which this sequence was received 19038 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19039 * 19040 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19041 * receive sequence is only partially assembed by the driver, it shall abort 19042 * the partially assembled frames for the sequence. Otherwise, if the 19043 * unsolicited receive sequence has been completely assembled and passed to 19044 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19045 * unsolicited sequence has been aborted. After that, it will issue a basic 19046 * accept to accept the abort. 19047 **/ 19048 static void 19049 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19050 struct hbq_dmabuf *dmabuf) 19051 { 19052 struct lpfc_hba *phba = vport->phba; 19053 struct fc_frame_header fc_hdr; 19054 uint32_t fctl; 19055 bool aborted; 19056 19057 /* Make a copy of fc_hdr before the dmabuf being released */ 19058 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19059 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19060 19061 if (fctl & FC_FC_EX_CTX) { 19062 /* ABTS by responder to exchange, no cleanup needed */ 19063 aborted = true; 19064 } else { 19065 /* ABTS by initiator to exchange, need to do cleanup */ 19066 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19067 if (aborted == false) 19068 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19069 } 19070 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19071 19072 if (phba->nvmet_support) { 19073 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19074 return; 19075 } 19076 19077 /* Respond with BA_ACC or BA_RJT accordingly */ 19078 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19079 } 19080 19081 /** 19082 * lpfc_seq_complete - Indicates if a sequence is complete 19083 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19084 * 19085 * This function checks the sequence, starting with the frame described by 19086 * @dmabuf, to see if all the frames associated with this sequence are present. 19087 * the frames associated with this sequence are linked to the @dmabuf using the 19088 * dbuf list. This function looks for two major things. 1) That the first frame 19089 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19090 * set. 3) That there are no holes in the sequence count. The function will 19091 * return 1 when the sequence is complete, otherwise it will return 0. 19092 **/ 19093 static int 19094 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19095 { 19096 struct fc_frame_header *hdr; 19097 struct lpfc_dmabuf *d_buf; 19098 struct hbq_dmabuf *seq_dmabuf; 19099 uint32_t fctl; 19100 int seq_count = 0; 19101 19102 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19103 /* make sure first fame of sequence has a sequence count of zero */ 19104 if (hdr->fh_seq_cnt != seq_count) 19105 return 0; 19106 fctl = (hdr->fh_f_ctl[0] << 16 | 19107 hdr->fh_f_ctl[1] << 8 | 19108 hdr->fh_f_ctl[2]); 19109 /* If last frame of sequence we can return success. */ 19110 if (fctl & FC_FC_END_SEQ) 19111 return 1; 19112 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19113 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19114 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19115 /* If there is a hole in the sequence count then fail. */ 19116 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19117 return 0; 19118 fctl = (hdr->fh_f_ctl[0] << 16 | 19119 hdr->fh_f_ctl[1] << 8 | 19120 hdr->fh_f_ctl[2]); 19121 /* If last frame of sequence we can return success. */ 19122 if (fctl & FC_FC_END_SEQ) 19123 return 1; 19124 } 19125 return 0; 19126 } 19127 19128 /** 19129 * lpfc_prep_seq - Prep sequence for ULP processing 19130 * @vport: Pointer to the vport on which this sequence was received 19131 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19132 * 19133 * This function takes a sequence, described by a list of frames, and creates 19134 * a list of iocbq structures to describe the sequence. This iocbq list will be 19135 * used to issue to the generic unsolicited sequence handler. This routine 19136 * returns a pointer to the first iocbq in the list. If the function is unable 19137 * to allocate an iocbq then it throw out the received frames that were not 19138 * able to be described and return a pointer to the first iocbq. If unable to 19139 * allocate any iocbqs (including the first) this function will return NULL. 19140 **/ 19141 static struct lpfc_iocbq * 19142 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19143 { 19144 struct hbq_dmabuf *hbq_buf; 19145 struct lpfc_dmabuf *d_buf, *n_buf; 19146 struct lpfc_iocbq *first_iocbq, *iocbq; 19147 struct fc_frame_header *fc_hdr; 19148 uint32_t sid; 19149 uint32_t len, tot_len; 19150 19151 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19152 /* remove from receive buffer list */ 19153 list_del_init(&seq_dmabuf->hbuf.list); 19154 lpfc_update_rcv_time_stamp(vport); 19155 /* get the Remote Port's SID */ 19156 sid = sli4_sid_from_fc_hdr(fc_hdr); 19157 tot_len = 0; 19158 /* Get an iocbq struct to fill in. */ 19159 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19160 if (first_iocbq) { 19161 /* Initialize the first IOCB. */ 19162 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19163 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19164 IOSTAT_SUCCESS); 19165 first_iocbq->vport = vport; 19166 19167 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19168 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19169 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19170 sli4_did_from_fc_hdr(fc_hdr)); 19171 } 19172 19173 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19174 NO_XRI); 19175 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19176 be16_to_cpu(fc_hdr->fh_ox_id)); 19177 19178 /* put the first buffer into the first iocb */ 19179 tot_len = bf_get(lpfc_rcqe_length, 19180 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19181 19182 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19183 first_iocbq->bpl_dmabuf = NULL; 19184 /* Keep track of the BDE count */ 19185 first_iocbq->wcqe_cmpl.word3 = 1; 19186 19187 if (tot_len > LPFC_DATA_BUF_SIZE) 19188 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19189 LPFC_DATA_BUF_SIZE; 19190 else 19191 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19192 19193 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19194 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19195 sid); 19196 } 19197 iocbq = first_iocbq; 19198 /* 19199 * Each IOCBq can have two Buffers assigned, so go through the list 19200 * of buffers for this sequence and save two buffers in each IOCBq 19201 */ 19202 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19203 if (!iocbq) { 19204 lpfc_in_buf_free(vport->phba, d_buf); 19205 continue; 19206 } 19207 if (!iocbq->bpl_dmabuf) { 19208 iocbq->bpl_dmabuf = d_buf; 19209 iocbq->wcqe_cmpl.word3++; 19210 /* We need to get the size out of the right CQE */ 19211 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19212 len = bf_get(lpfc_rcqe_length, 19213 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19214 iocbq->unsol_rcv_len = len; 19215 iocbq->wcqe_cmpl.total_data_placed += len; 19216 tot_len += len; 19217 } else { 19218 iocbq = lpfc_sli_get_iocbq(vport->phba); 19219 if (!iocbq) { 19220 if (first_iocbq) { 19221 bf_set(lpfc_wcqe_c_status, 19222 &first_iocbq->wcqe_cmpl, 19223 IOSTAT_SUCCESS); 19224 first_iocbq->wcqe_cmpl.parameter = 19225 IOERR_NO_RESOURCES; 19226 } 19227 lpfc_in_buf_free(vport->phba, d_buf); 19228 continue; 19229 } 19230 /* We need to get the size out of the right CQE */ 19231 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19232 len = bf_get(lpfc_rcqe_length, 19233 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19234 iocbq->cmd_dmabuf = d_buf; 19235 iocbq->bpl_dmabuf = NULL; 19236 iocbq->wcqe_cmpl.word3 = 1; 19237 19238 if (len > LPFC_DATA_BUF_SIZE) 19239 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19240 LPFC_DATA_BUF_SIZE; 19241 else 19242 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19243 len; 19244 19245 tot_len += len; 19246 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19247 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19248 sid); 19249 list_add_tail(&iocbq->list, &first_iocbq->list); 19250 } 19251 } 19252 /* Free the sequence's header buffer */ 19253 if (!first_iocbq) 19254 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19255 19256 return first_iocbq; 19257 } 19258 19259 static void 19260 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19261 struct hbq_dmabuf *seq_dmabuf) 19262 { 19263 struct fc_frame_header *fc_hdr; 19264 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19265 struct lpfc_hba *phba = vport->phba; 19266 19267 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19268 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19269 if (!iocbq) { 19270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19271 "2707 Ring %d handler: Failed to allocate " 19272 "iocb Rctl x%x Type x%x received\n", 19273 LPFC_ELS_RING, 19274 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19275 return; 19276 } 19277 if (!lpfc_complete_unsol_iocb(phba, 19278 phba->sli4_hba.els_wq->pring, 19279 iocbq, fc_hdr->fh_r_ctl, 19280 fc_hdr->fh_type)) { 19281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19282 "2540 Ring %d handler: unexpected Rctl " 19283 "x%x Type x%x received\n", 19284 LPFC_ELS_RING, 19285 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19286 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19287 } 19288 19289 /* Free iocb created in lpfc_prep_seq */ 19290 list_for_each_entry_safe(curr_iocb, next_iocb, 19291 &iocbq->list, list) { 19292 list_del_init(&curr_iocb->list); 19293 lpfc_sli_release_iocbq(phba, curr_iocb); 19294 } 19295 lpfc_sli_release_iocbq(phba, iocbq); 19296 } 19297 19298 static void 19299 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19300 struct lpfc_iocbq *rspiocb) 19301 { 19302 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19303 19304 if (pcmd && pcmd->virt) 19305 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19306 kfree(pcmd); 19307 lpfc_sli_release_iocbq(phba, cmdiocb); 19308 lpfc_drain_txq(phba); 19309 } 19310 19311 static void 19312 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19313 struct hbq_dmabuf *dmabuf) 19314 { 19315 struct fc_frame_header *fc_hdr; 19316 struct lpfc_hba *phba = vport->phba; 19317 struct lpfc_iocbq *iocbq = NULL; 19318 union lpfc_wqe128 *pwqe; 19319 struct lpfc_dmabuf *pcmd = NULL; 19320 uint32_t frame_len; 19321 int rc; 19322 unsigned long iflags; 19323 19324 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19325 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19326 19327 /* Send the received frame back */ 19328 iocbq = lpfc_sli_get_iocbq(phba); 19329 if (!iocbq) { 19330 /* Queue cq event and wakeup worker thread to process it */ 19331 spin_lock_irqsave(&phba->hbalock, iflags); 19332 list_add_tail(&dmabuf->cq_event.list, 19333 &phba->sli4_hba.sp_queue_event); 19334 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19335 spin_unlock_irqrestore(&phba->hbalock, iflags); 19336 lpfc_worker_wake_up(phba); 19337 return; 19338 } 19339 19340 /* Allocate buffer for command payload */ 19341 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19342 if (pcmd) 19343 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19344 &pcmd->phys); 19345 if (!pcmd || !pcmd->virt) 19346 goto exit; 19347 19348 INIT_LIST_HEAD(&pcmd->list); 19349 19350 /* copyin the payload */ 19351 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19352 19353 iocbq->cmd_dmabuf = pcmd; 19354 iocbq->vport = vport; 19355 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19356 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19357 iocbq->num_bdes = 0; 19358 19359 pwqe = &iocbq->wqe; 19360 /* fill in BDE's for command */ 19361 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19362 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19363 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19364 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19365 19366 pwqe->send_frame.frame_len = frame_len; 19367 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19368 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19369 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19370 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19371 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19372 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19373 19374 pwqe->generic.wqe_com.word7 = 0; 19375 pwqe->generic.wqe_com.word10 = 0; 19376 19377 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19378 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19379 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19380 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19381 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19382 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19383 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19384 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19385 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19386 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19387 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19388 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19389 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19390 19391 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19392 19393 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19394 if (rc == IOCB_ERROR) 19395 goto exit; 19396 19397 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19398 return; 19399 19400 exit: 19401 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19402 "2023 Unable to process MDS loopback frame\n"); 19403 if (pcmd && pcmd->virt) 19404 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19405 kfree(pcmd); 19406 if (iocbq) 19407 lpfc_sli_release_iocbq(phba, iocbq); 19408 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19409 } 19410 19411 /** 19412 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19413 * @phba: Pointer to HBA context object. 19414 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19415 * 19416 * This function is called with no lock held. This function processes all 19417 * the received buffers and gives it to upper layers when a received buffer 19418 * indicates that it is the final frame in the sequence. The interrupt 19419 * service routine processes received buffers at interrupt contexts. 19420 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19421 * appropriate receive function when the final frame in a sequence is received. 19422 **/ 19423 void 19424 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19425 struct hbq_dmabuf *dmabuf) 19426 { 19427 struct hbq_dmabuf *seq_dmabuf; 19428 struct fc_frame_header *fc_hdr; 19429 struct lpfc_vport *vport; 19430 uint32_t fcfi; 19431 uint32_t did; 19432 19433 /* Process each received buffer */ 19434 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19435 19436 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19437 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19438 vport = phba->pport; 19439 /* Handle MDS Loopback frames */ 19440 if (!(phba->pport->load_flag & FC_UNLOADING)) 19441 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19442 else 19443 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19444 return; 19445 } 19446 19447 /* check to see if this a valid type of frame */ 19448 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19449 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19450 return; 19451 } 19452 19453 if ((bf_get(lpfc_cqe_code, 19454 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19455 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19456 &dmabuf->cq_event.cqe.rcqe_cmpl); 19457 else 19458 fcfi = bf_get(lpfc_rcqe_fcf_id, 19459 &dmabuf->cq_event.cqe.rcqe_cmpl); 19460 19461 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19462 vport = phba->pport; 19463 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19464 "2023 MDS Loopback %d bytes\n", 19465 bf_get(lpfc_rcqe_length, 19466 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19467 /* Handle MDS Loopback frames */ 19468 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19469 return; 19470 } 19471 19472 /* d_id this frame is directed to */ 19473 did = sli4_did_from_fc_hdr(fc_hdr); 19474 19475 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19476 if (!vport) { 19477 /* throw out the frame */ 19478 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19479 return; 19480 } 19481 19482 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19483 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19484 (did != Fabric_DID)) { 19485 /* 19486 * Throw out the frame if we are not pt2pt. 19487 * The pt2pt protocol allows for discovery frames 19488 * to be received without a registered VPI. 19489 */ 19490 if (!(vport->fc_flag & FC_PT2PT) || 19491 (phba->link_state == LPFC_HBA_READY)) { 19492 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19493 return; 19494 } 19495 } 19496 19497 /* Handle the basic abort sequence (BA_ABTS) event */ 19498 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19499 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19500 return; 19501 } 19502 19503 /* Link this frame */ 19504 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19505 if (!seq_dmabuf) { 19506 /* unable to add frame to vport - throw it out */ 19507 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19508 return; 19509 } 19510 /* If not last frame in sequence continue processing frames. */ 19511 if (!lpfc_seq_complete(seq_dmabuf)) 19512 return; 19513 19514 /* Send the complete sequence to the upper layer protocol */ 19515 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19516 } 19517 19518 /** 19519 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19520 * @phba: pointer to lpfc hba data structure. 19521 * 19522 * This routine is invoked to post rpi header templates to the 19523 * HBA consistent with the SLI-4 interface spec. This routine 19524 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19525 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19526 * 19527 * This routine does not require any locks. It's usage is expected 19528 * to be driver load or reset recovery when the driver is 19529 * sequential. 19530 * 19531 * Return codes 19532 * 0 - successful 19533 * -EIO - The mailbox failed to complete successfully. 19534 * When this error occurs, the driver is not guaranteed 19535 * to have any rpi regions posted to the device and 19536 * must either attempt to repost the regions or take a 19537 * fatal error. 19538 **/ 19539 int 19540 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19541 { 19542 struct lpfc_rpi_hdr *rpi_page; 19543 uint32_t rc = 0; 19544 uint16_t lrpi = 0; 19545 19546 /* SLI4 ports that support extents do not require RPI headers. */ 19547 if (!phba->sli4_hba.rpi_hdrs_in_use) 19548 goto exit; 19549 if (phba->sli4_hba.extents_in_use) 19550 return -EIO; 19551 19552 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19553 /* 19554 * Assign the rpi headers a physical rpi only if the driver 19555 * has not initialized those resources. A port reset only 19556 * needs the headers posted. 19557 */ 19558 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19559 LPFC_RPI_RSRC_RDY) 19560 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19561 19562 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19563 if (rc != MBX_SUCCESS) { 19564 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19565 "2008 Error %d posting all rpi " 19566 "headers\n", rc); 19567 rc = -EIO; 19568 break; 19569 } 19570 } 19571 19572 exit: 19573 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19574 LPFC_RPI_RSRC_RDY); 19575 return rc; 19576 } 19577 19578 /** 19579 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19580 * @phba: pointer to lpfc hba data structure. 19581 * @rpi_page: pointer to the rpi memory region. 19582 * 19583 * This routine is invoked to post a single rpi header to the 19584 * HBA consistent with the SLI-4 interface spec. This memory region 19585 * maps up to 64 rpi context regions. 19586 * 19587 * Return codes 19588 * 0 - successful 19589 * -ENOMEM - No available memory 19590 * -EIO - The mailbox failed to complete successfully. 19591 **/ 19592 int 19593 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19594 { 19595 LPFC_MBOXQ_t *mboxq; 19596 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19597 uint32_t rc = 0; 19598 uint32_t shdr_status, shdr_add_status; 19599 union lpfc_sli4_cfg_shdr *shdr; 19600 19601 /* SLI4 ports that support extents do not require RPI headers. */ 19602 if (!phba->sli4_hba.rpi_hdrs_in_use) 19603 return rc; 19604 if (phba->sli4_hba.extents_in_use) 19605 return -EIO; 19606 19607 /* The port is notified of the header region via a mailbox command. */ 19608 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19609 if (!mboxq) { 19610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19611 "2001 Unable to allocate memory for issuing " 19612 "SLI_CONFIG_SPECIAL mailbox command\n"); 19613 return -ENOMEM; 19614 } 19615 19616 /* Post all rpi memory regions to the port. */ 19617 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19618 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19619 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19620 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19621 sizeof(struct lpfc_sli4_cfg_mhdr), 19622 LPFC_SLI4_MBX_EMBED); 19623 19624 19625 /* Post the physical rpi to the port for this rpi header. */ 19626 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19627 rpi_page->start_rpi); 19628 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19629 hdr_tmpl, rpi_page->page_count); 19630 19631 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19632 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19633 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19634 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19635 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19636 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19637 mempool_free(mboxq, phba->mbox_mem_pool); 19638 if (shdr_status || shdr_add_status || rc) { 19639 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19640 "2514 POST_RPI_HDR mailbox failed with " 19641 "status x%x add_status x%x, mbx status x%x\n", 19642 shdr_status, shdr_add_status, rc); 19643 rc = -ENXIO; 19644 } else { 19645 /* 19646 * The next_rpi stores the next logical module-64 rpi value used 19647 * to post physical rpis in subsequent rpi postings. 19648 */ 19649 spin_lock_irq(&phba->hbalock); 19650 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19651 spin_unlock_irq(&phba->hbalock); 19652 } 19653 return rc; 19654 } 19655 19656 /** 19657 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19658 * @phba: pointer to lpfc hba data structure. 19659 * 19660 * This routine is invoked to post rpi header templates to the 19661 * HBA consistent with the SLI-4 interface spec. This routine 19662 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19663 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19664 * 19665 * Returns 19666 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19667 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19668 **/ 19669 int 19670 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19671 { 19672 unsigned long rpi; 19673 uint16_t max_rpi, rpi_limit; 19674 uint16_t rpi_remaining, lrpi = 0; 19675 struct lpfc_rpi_hdr *rpi_hdr; 19676 unsigned long iflag; 19677 19678 /* 19679 * Fetch the next logical rpi. Because this index is logical, 19680 * the driver starts at 0 each time. 19681 */ 19682 spin_lock_irqsave(&phba->hbalock, iflag); 19683 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19684 rpi_limit = phba->sli4_hba.next_rpi; 19685 19686 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19687 if (rpi >= rpi_limit) 19688 rpi = LPFC_RPI_ALLOC_ERROR; 19689 else { 19690 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19691 phba->sli4_hba.max_cfg_param.rpi_used++; 19692 phba->sli4_hba.rpi_count++; 19693 } 19694 lpfc_printf_log(phba, KERN_INFO, 19695 LOG_NODE | LOG_DISCOVERY, 19696 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19697 (int) rpi, max_rpi, rpi_limit); 19698 19699 /* 19700 * Don't try to allocate more rpi header regions if the device limit 19701 * has been exhausted. 19702 */ 19703 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19704 (phba->sli4_hba.rpi_count >= max_rpi)) { 19705 spin_unlock_irqrestore(&phba->hbalock, iflag); 19706 return rpi; 19707 } 19708 19709 /* 19710 * RPI header postings are not required for SLI4 ports capable of 19711 * extents. 19712 */ 19713 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19714 spin_unlock_irqrestore(&phba->hbalock, iflag); 19715 return rpi; 19716 } 19717 19718 /* 19719 * If the driver is running low on rpi resources, allocate another 19720 * page now. Note that the next_rpi value is used because 19721 * it represents how many are actually in use whereas max_rpi notes 19722 * how many are supported max by the device. 19723 */ 19724 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19725 spin_unlock_irqrestore(&phba->hbalock, iflag); 19726 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19727 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19728 if (!rpi_hdr) { 19729 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19730 "2002 Error Could not grow rpi " 19731 "count\n"); 19732 } else { 19733 lrpi = rpi_hdr->start_rpi; 19734 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19735 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19736 } 19737 } 19738 19739 return rpi; 19740 } 19741 19742 /** 19743 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19744 * @phba: pointer to lpfc hba data structure. 19745 * @rpi: rpi to free 19746 * 19747 * This routine is invoked to release an rpi to the pool of 19748 * available rpis maintained by the driver. 19749 **/ 19750 static void 19751 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19752 { 19753 /* 19754 * if the rpi value indicates a prior unreg has already 19755 * been done, skip the unreg. 19756 */ 19757 if (rpi == LPFC_RPI_ALLOC_ERROR) 19758 return; 19759 19760 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19761 phba->sli4_hba.rpi_count--; 19762 phba->sli4_hba.max_cfg_param.rpi_used--; 19763 } else { 19764 lpfc_printf_log(phba, KERN_INFO, 19765 LOG_NODE | LOG_DISCOVERY, 19766 "2016 rpi %x not inuse\n", 19767 rpi); 19768 } 19769 } 19770 19771 /** 19772 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19773 * @phba: pointer to lpfc hba data structure. 19774 * @rpi: rpi to free 19775 * 19776 * This routine is invoked to release an rpi to the pool of 19777 * available rpis maintained by the driver. 19778 **/ 19779 void 19780 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19781 { 19782 spin_lock_irq(&phba->hbalock); 19783 __lpfc_sli4_free_rpi(phba, rpi); 19784 spin_unlock_irq(&phba->hbalock); 19785 } 19786 19787 /** 19788 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19789 * @phba: pointer to lpfc hba data structure. 19790 * 19791 * This routine is invoked to remove the memory region that 19792 * provided rpi via a bitmask. 19793 **/ 19794 void 19795 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19796 { 19797 kfree(phba->sli4_hba.rpi_bmask); 19798 kfree(phba->sli4_hba.rpi_ids); 19799 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19800 } 19801 19802 /** 19803 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19804 * @ndlp: pointer to lpfc nodelist data structure. 19805 * @cmpl: completion call-back. 19806 * @arg: data to load as MBox 'caller buffer information' 19807 * 19808 * This routine is invoked to remove the memory region that 19809 * provided rpi via a bitmask. 19810 **/ 19811 int 19812 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19813 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19814 { 19815 LPFC_MBOXQ_t *mboxq; 19816 struct lpfc_hba *phba = ndlp->phba; 19817 int rc; 19818 19819 /* The port is notified of the header region via a mailbox command. */ 19820 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19821 if (!mboxq) 19822 return -ENOMEM; 19823 19824 /* If cmpl assigned, then this nlp_get pairs with 19825 * lpfc_mbx_cmpl_resume_rpi. 19826 * 19827 * Else cmpl is NULL, then this nlp_get pairs with 19828 * lpfc_sli_def_mbox_cmpl. 19829 */ 19830 if (!lpfc_nlp_get(ndlp)) { 19831 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19832 "2122 %s: Failed to get nlp ref\n", 19833 __func__); 19834 mempool_free(mboxq, phba->mbox_mem_pool); 19835 return -EIO; 19836 } 19837 19838 /* Post all rpi memory regions to the port. */ 19839 lpfc_resume_rpi(mboxq, ndlp); 19840 if (cmpl) { 19841 mboxq->mbox_cmpl = cmpl; 19842 mboxq->ctx_buf = arg; 19843 } else 19844 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19845 mboxq->ctx_ndlp = ndlp; 19846 mboxq->vport = ndlp->vport; 19847 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19848 if (rc == MBX_NOT_FINISHED) { 19849 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19850 "2010 Resume RPI Mailbox failed " 19851 "status %d, mbxStatus x%x\n", rc, 19852 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19853 lpfc_nlp_put(ndlp); 19854 mempool_free(mboxq, phba->mbox_mem_pool); 19855 return -EIO; 19856 } 19857 return 0; 19858 } 19859 19860 /** 19861 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19862 * @vport: Pointer to the vport for which the vpi is being initialized 19863 * 19864 * This routine is invoked to activate a vpi with the port. 19865 * 19866 * Returns: 19867 * 0 success 19868 * -Evalue otherwise 19869 **/ 19870 int 19871 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19872 { 19873 LPFC_MBOXQ_t *mboxq; 19874 int rc = 0; 19875 int retval = MBX_SUCCESS; 19876 uint32_t mbox_tmo; 19877 struct lpfc_hba *phba = vport->phba; 19878 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19879 if (!mboxq) 19880 return -ENOMEM; 19881 lpfc_init_vpi(phba, mboxq, vport->vpi); 19882 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19883 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19884 if (rc != MBX_SUCCESS) { 19885 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19886 "2022 INIT VPI Mailbox failed " 19887 "status %d, mbxStatus x%x\n", rc, 19888 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19889 retval = -EIO; 19890 } 19891 if (rc != MBX_TIMEOUT) 19892 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19893 19894 return retval; 19895 } 19896 19897 /** 19898 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19899 * @phba: pointer to lpfc hba data structure. 19900 * @mboxq: Pointer to mailbox object. 19901 * 19902 * This routine is invoked to manually add a single FCF record. The caller 19903 * must pass a completely initialized FCF_Record. This routine takes 19904 * care of the nonembedded mailbox operations. 19905 **/ 19906 static void 19907 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19908 { 19909 void *virt_addr; 19910 union lpfc_sli4_cfg_shdr *shdr; 19911 uint32_t shdr_status, shdr_add_status; 19912 19913 virt_addr = mboxq->sge_array->addr[0]; 19914 /* The IOCTL status is embedded in the mailbox subheader. */ 19915 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19916 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19917 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19918 19919 if ((shdr_status || shdr_add_status) && 19920 (shdr_status != STATUS_FCF_IN_USE)) 19921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19922 "2558 ADD_FCF_RECORD mailbox failed with " 19923 "status x%x add_status x%x\n", 19924 shdr_status, shdr_add_status); 19925 19926 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19927 } 19928 19929 /** 19930 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19931 * @phba: pointer to lpfc hba data structure. 19932 * @fcf_record: pointer to the initialized fcf record to add. 19933 * 19934 * This routine is invoked to manually add a single FCF record. The caller 19935 * must pass a completely initialized FCF_Record. This routine takes 19936 * care of the nonembedded mailbox operations. 19937 **/ 19938 int 19939 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19940 { 19941 int rc = 0; 19942 LPFC_MBOXQ_t *mboxq; 19943 uint8_t *bytep; 19944 void *virt_addr; 19945 struct lpfc_mbx_sge sge; 19946 uint32_t alloc_len, req_len; 19947 uint32_t fcfindex; 19948 19949 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19950 if (!mboxq) { 19951 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19952 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19953 return -ENOMEM; 19954 } 19955 19956 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19957 sizeof(uint32_t); 19958 19959 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19960 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19961 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19962 req_len, LPFC_SLI4_MBX_NEMBED); 19963 if (alloc_len < req_len) { 19964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19965 "2523 Allocated DMA memory size (x%x) is " 19966 "less than the requested DMA memory " 19967 "size (x%x)\n", alloc_len, req_len); 19968 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19969 return -ENOMEM; 19970 } 19971 19972 /* 19973 * Get the first SGE entry from the non-embedded DMA memory. This 19974 * routine only uses a single SGE. 19975 */ 19976 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19977 virt_addr = mboxq->sge_array->addr[0]; 19978 /* 19979 * Configure the FCF record for FCFI 0. This is the driver's 19980 * hardcoded default and gets used in nonFIP mode. 19981 */ 19982 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19983 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19984 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19985 19986 /* 19987 * Copy the fcf_index and the FCF Record Data. The data starts after 19988 * the FCoE header plus word10. The data copy needs to be endian 19989 * correct. 19990 */ 19991 bytep += sizeof(uint32_t); 19992 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19993 mboxq->vport = phba->pport; 19994 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19995 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19996 if (rc == MBX_NOT_FINISHED) { 19997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19998 "2515 ADD_FCF_RECORD mailbox failed with " 19999 "status 0x%x\n", rc); 20000 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20001 rc = -EIO; 20002 } else 20003 rc = 0; 20004 20005 return rc; 20006 } 20007 20008 /** 20009 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20010 * @phba: pointer to lpfc hba data structure. 20011 * @fcf_record: pointer to the fcf record to write the default data. 20012 * @fcf_index: FCF table entry index. 20013 * 20014 * This routine is invoked to build the driver's default FCF record. The 20015 * values used are hardcoded. This routine handles memory initialization. 20016 * 20017 **/ 20018 void 20019 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20020 struct fcf_record *fcf_record, 20021 uint16_t fcf_index) 20022 { 20023 memset(fcf_record, 0, sizeof(struct fcf_record)); 20024 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20025 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20026 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20027 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20028 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20029 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20030 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20031 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20032 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20033 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20034 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20035 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20036 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20037 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20038 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20039 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20040 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20041 /* Set the VLAN bit map */ 20042 if (phba->valid_vlan) { 20043 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20044 = 1 << (phba->vlan_id % 8); 20045 } 20046 } 20047 20048 /** 20049 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20050 * @phba: pointer to lpfc hba data structure. 20051 * @fcf_index: FCF table entry offset. 20052 * 20053 * This routine is invoked to scan the entire FCF table by reading FCF 20054 * record and processing it one at a time starting from the @fcf_index 20055 * for initial FCF discovery or fast FCF failover rediscovery. 20056 * 20057 * Return 0 if the mailbox command is submitted successfully, none 0 20058 * otherwise. 20059 **/ 20060 int 20061 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20062 { 20063 int rc = 0, error; 20064 LPFC_MBOXQ_t *mboxq; 20065 20066 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20067 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20068 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20069 if (!mboxq) { 20070 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20071 "2000 Failed to allocate mbox for " 20072 "READ_FCF cmd\n"); 20073 error = -ENOMEM; 20074 goto fail_fcf_scan; 20075 } 20076 /* Construct the read FCF record mailbox command */ 20077 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20078 if (rc) { 20079 error = -EINVAL; 20080 goto fail_fcf_scan; 20081 } 20082 /* Issue the mailbox command asynchronously */ 20083 mboxq->vport = phba->pport; 20084 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20085 20086 spin_lock_irq(&phba->hbalock); 20087 phba->hba_flag |= FCF_TS_INPROG; 20088 spin_unlock_irq(&phba->hbalock); 20089 20090 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20091 if (rc == MBX_NOT_FINISHED) 20092 error = -EIO; 20093 else { 20094 /* Reset eligible FCF count for new scan */ 20095 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20096 phba->fcf.eligible_fcf_cnt = 0; 20097 error = 0; 20098 } 20099 fail_fcf_scan: 20100 if (error) { 20101 if (mboxq) 20102 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20103 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20104 spin_lock_irq(&phba->hbalock); 20105 phba->hba_flag &= ~FCF_TS_INPROG; 20106 spin_unlock_irq(&phba->hbalock); 20107 } 20108 return error; 20109 } 20110 20111 /** 20112 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20113 * @phba: pointer to lpfc hba data structure. 20114 * @fcf_index: FCF table entry offset. 20115 * 20116 * This routine is invoked to read an FCF record indicated by @fcf_index 20117 * and to use it for FLOGI roundrobin FCF failover. 20118 * 20119 * Return 0 if the mailbox command is submitted successfully, none 0 20120 * otherwise. 20121 **/ 20122 int 20123 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20124 { 20125 int rc = 0, error; 20126 LPFC_MBOXQ_t *mboxq; 20127 20128 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20129 if (!mboxq) { 20130 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20131 "2763 Failed to allocate mbox for " 20132 "READ_FCF cmd\n"); 20133 error = -ENOMEM; 20134 goto fail_fcf_read; 20135 } 20136 /* Construct the read FCF record mailbox command */ 20137 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20138 if (rc) { 20139 error = -EINVAL; 20140 goto fail_fcf_read; 20141 } 20142 /* Issue the mailbox command asynchronously */ 20143 mboxq->vport = phba->pport; 20144 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20145 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20146 if (rc == MBX_NOT_FINISHED) 20147 error = -EIO; 20148 else 20149 error = 0; 20150 20151 fail_fcf_read: 20152 if (error && mboxq) 20153 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20154 return error; 20155 } 20156 20157 /** 20158 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20159 * @phba: pointer to lpfc hba data structure. 20160 * @fcf_index: FCF table entry offset. 20161 * 20162 * This routine is invoked to read an FCF record indicated by @fcf_index to 20163 * determine whether it's eligible for FLOGI roundrobin failover list. 20164 * 20165 * Return 0 if the mailbox command is submitted successfully, none 0 20166 * otherwise. 20167 **/ 20168 int 20169 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20170 { 20171 int rc = 0, error; 20172 LPFC_MBOXQ_t *mboxq; 20173 20174 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20175 if (!mboxq) { 20176 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20177 "2758 Failed to allocate mbox for " 20178 "READ_FCF cmd\n"); 20179 error = -ENOMEM; 20180 goto fail_fcf_read; 20181 } 20182 /* Construct the read FCF record mailbox command */ 20183 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20184 if (rc) { 20185 error = -EINVAL; 20186 goto fail_fcf_read; 20187 } 20188 /* Issue the mailbox command asynchronously */ 20189 mboxq->vport = phba->pport; 20190 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20191 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20192 if (rc == MBX_NOT_FINISHED) 20193 error = -EIO; 20194 else 20195 error = 0; 20196 20197 fail_fcf_read: 20198 if (error && mboxq) 20199 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20200 return error; 20201 } 20202 20203 /** 20204 * lpfc_check_next_fcf_pri_level 20205 * @phba: pointer to the lpfc_hba struct for this port. 20206 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20207 * routine when the rr_bmask is empty. The FCF indecies are put into the 20208 * rr_bmask based on their priority level. Starting from the highest priority 20209 * to the lowest. The most likely FCF candidate will be in the highest 20210 * priority group. When this routine is called it searches the fcf_pri list for 20211 * next lowest priority group and repopulates the rr_bmask with only those 20212 * fcf_indexes. 20213 * returns: 20214 * 1=success 0=failure 20215 **/ 20216 static int 20217 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20218 { 20219 uint16_t next_fcf_pri; 20220 uint16_t last_index; 20221 struct lpfc_fcf_pri *fcf_pri; 20222 int rc; 20223 int ret = 0; 20224 20225 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20226 LPFC_SLI4_FCF_TBL_INDX_MAX); 20227 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20228 "3060 Last IDX %d\n", last_index); 20229 20230 /* Verify the priority list has 2 or more entries */ 20231 spin_lock_irq(&phba->hbalock); 20232 if (list_empty(&phba->fcf.fcf_pri_list) || 20233 list_is_singular(&phba->fcf.fcf_pri_list)) { 20234 spin_unlock_irq(&phba->hbalock); 20235 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20236 "3061 Last IDX %d\n", last_index); 20237 return 0; /* Empty rr list */ 20238 } 20239 spin_unlock_irq(&phba->hbalock); 20240 20241 next_fcf_pri = 0; 20242 /* 20243 * Clear the rr_bmask and set all of the bits that are at this 20244 * priority. 20245 */ 20246 memset(phba->fcf.fcf_rr_bmask, 0, 20247 sizeof(*phba->fcf.fcf_rr_bmask)); 20248 spin_lock_irq(&phba->hbalock); 20249 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20250 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20251 continue; 20252 /* 20253 * the 1st priority that has not FLOGI failed 20254 * will be the highest. 20255 */ 20256 if (!next_fcf_pri) 20257 next_fcf_pri = fcf_pri->fcf_rec.priority; 20258 spin_unlock_irq(&phba->hbalock); 20259 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20260 rc = lpfc_sli4_fcf_rr_index_set(phba, 20261 fcf_pri->fcf_rec.fcf_index); 20262 if (rc) 20263 return 0; 20264 } 20265 spin_lock_irq(&phba->hbalock); 20266 } 20267 /* 20268 * if next_fcf_pri was not set above and the list is not empty then 20269 * we have failed flogis on all of them. So reset flogi failed 20270 * and start at the beginning. 20271 */ 20272 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20273 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20274 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20275 /* 20276 * the 1st priority that has not FLOGI failed 20277 * will be the highest. 20278 */ 20279 if (!next_fcf_pri) 20280 next_fcf_pri = fcf_pri->fcf_rec.priority; 20281 spin_unlock_irq(&phba->hbalock); 20282 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20283 rc = lpfc_sli4_fcf_rr_index_set(phba, 20284 fcf_pri->fcf_rec.fcf_index); 20285 if (rc) 20286 return 0; 20287 } 20288 spin_lock_irq(&phba->hbalock); 20289 } 20290 } else 20291 ret = 1; 20292 spin_unlock_irq(&phba->hbalock); 20293 20294 return ret; 20295 } 20296 /** 20297 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20298 * @phba: pointer to lpfc hba data structure. 20299 * 20300 * This routine is to get the next eligible FCF record index in a round 20301 * robin fashion. If the next eligible FCF record index equals to the 20302 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20303 * shall be returned, otherwise, the next eligible FCF record's index 20304 * shall be returned. 20305 **/ 20306 uint16_t 20307 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20308 { 20309 uint16_t next_fcf_index; 20310 20311 initial_priority: 20312 /* Search start from next bit of currently registered FCF index */ 20313 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20314 20315 next_priority: 20316 /* Determine the next fcf index to check */ 20317 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20318 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20319 LPFC_SLI4_FCF_TBL_INDX_MAX, 20320 next_fcf_index); 20321 20322 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20323 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20324 /* 20325 * If we have wrapped then we need to clear the bits that 20326 * have been tested so that we can detect when we should 20327 * change the priority level. 20328 */ 20329 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20330 LPFC_SLI4_FCF_TBL_INDX_MAX); 20331 } 20332 20333 20334 /* Check roundrobin failover list empty condition */ 20335 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20336 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20337 /* 20338 * If next fcf index is not found check if there are lower 20339 * Priority level fcf's in the fcf_priority list. 20340 * Set up the rr_bmask with all of the avaiable fcf bits 20341 * at that level and continue the selection process. 20342 */ 20343 if (lpfc_check_next_fcf_pri_level(phba)) 20344 goto initial_priority; 20345 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20346 "2844 No roundrobin failover FCF available\n"); 20347 20348 return LPFC_FCOE_FCF_NEXT_NONE; 20349 } 20350 20351 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20352 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20353 LPFC_FCF_FLOGI_FAILED) { 20354 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20355 return LPFC_FCOE_FCF_NEXT_NONE; 20356 20357 goto next_priority; 20358 } 20359 20360 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20361 "2845 Get next roundrobin failover FCF (x%x)\n", 20362 next_fcf_index); 20363 20364 return next_fcf_index; 20365 } 20366 20367 /** 20368 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20369 * @phba: pointer to lpfc hba data structure. 20370 * @fcf_index: index into the FCF table to 'set' 20371 * 20372 * This routine sets the FCF record index in to the eligible bmask for 20373 * roundrobin failover search. It checks to make sure that the index 20374 * does not go beyond the range of the driver allocated bmask dimension 20375 * before setting the bit. 20376 * 20377 * Returns 0 if the index bit successfully set, otherwise, it returns 20378 * -EINVAL. 20379 **/ 20380 int 20381 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20382 { 20383 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20384 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20385 "2610 FCF (x%x) reached driver's book " 20386 "keeping dimension:x%x\n", 20387 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20388 return -EINVAL; 20389 } 20390 /* Set the eligible FCF record index bmask */ 20391 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20392 20393 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20394 "2790 Set FCF (x%x) to roundrobin FCF failover " 20395 "bmask\n", fcf_index); 20396 20397 return 0; 20398 } 20399 20400 /** 20401 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20402 * @phba: pointer to lpfc hba data structure. 20403 * @fcf_index: index into the FCF table to 'clear' 20404 * 20405 * This routine clears the FCF record index from the eligible bmask for 20406 * roundrobin failover search. It checks to make sure that the index 20407 * does not go beyond the range of the driver allocated bmask dimension 20408 * before clearing the bit. 20409 **/ 20410 void 20411 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20412 { 20413 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20414 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20415 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20416 "2762 FCF (x%x) reached driver's book " 20417 "keeping dimension:x%x\n", 20418 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20419 return; 20420 } 20421 /* Clear the eligible FCF record index bmask */ 20422 spin_lock_irq(&phba->hbalock); 20423 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20424 list) { 20425 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20426 list_del_init(&fcf_pri->list); 20427 break; 20428 } 20429 } 20430 spin_unlock_irq(&phba->hbalock); 20431 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20432 20433 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20434 "2791 Clear FCF (x%x) from roundrobin failover " 20435 "bmask\n", fcf_index); 20436 } 20437 20438 /** 20439 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20440 * @phba: pointer to lpfc hba data structure. 20441 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20442 * 20443 * This routine is the completion routine for the rediscover FCF table mailbox 20444 * command. If the mailbox command returned failure, it will try to stop the 20445 * FCF rediscover wait timer. 20446 **/ 20447 static void 20448 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20449 { 20450 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20451 uint32_t shdr_status, shdr_add_status; 20452 20453 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20454 20455 shdr_status = bf_get(lpfc_mbox_hdr_status, 20456 &redisc_fcf->header.cfg_shdr.response); 20457 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20458 &redisc_fcf->header.cfg_shdr.response); 20459 if (shdr_status || shdr_add_status) { 20460 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20461 "2746 Requesting for FCF rediscovery failed " 20462 "status x%x add_status x%x\n", 20463 shdr_status, shdr_add_status); 20464 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20465 spin_lock_irq(&phba->hbalock); 20466 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20467 spin_unlock_irq(&phba->hbalock); 20468 /* 20469 * CVL event triggered FCF rediscover request failed, 20470 * last resort to re-try current registered FCF entry. 20471 */ 20472 lpfc_retry_pport_discovery(phba); 20473 } else { 20474 spin_lock_irq(&phba->hbalock); 20475 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20476 spin_unlock_irq(&phba->hbalock); 20477 /* 20478 * DEAD FCF event triggered FCF rediscover request 20479 * failed, last resort to fail over as a link down 20480 * to FCF registration. 20481 */ 20482 lpfc_sli4_fcf_dead_failthrough(phba); 20483 } 20484 } else { 20485 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20486 "2775 Start FCF rediscover quiescent timer\n"); 20487 /* 20488 * Start FCF rediscovery wait timer for pending FCF 20489 * before rescan FCF record table. 20490 */ 20491 lpfc_fcf_redisc_wait_start_timer(phba); 20492 } 20493 20494 mempool_free(mbox, phba->mbox_mem_pool); 20495 } 20496 20497 /** 20498 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20499 * @phba: pointer to lpfc hba data structure. 20500 * 20501 * This routine is invoked to request for rediscovery of the entire FCF table 20502 * by the port. 20503 **/ 20504 int 20505 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20506 { 20507 LPFC_MBOXQ_t *mbox; 20508 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20509 int rc, length; 20510 20511 /* Cancel retry delay timers to all vports before FCF rediscover */ 20512 lpfc_cancel_all_vport_retry_delay_timer(phba); 20513 20514 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20515 if (!mbox) { 20516 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20517 "2745 Failed to allocate mbox for " 20518 "requesting FCF rediscover.\n"); 20519 return -ENOMEM; 20520 } 20521 20522 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20523 sizeof(struct lpfc_sli4_cfg_mhdr)); 20524 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20525 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20526 length, LPFC_SLI4_MBX_EMBED); 20527 20528 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20529 /* Set count to 0 for invalidating the entire FCF database */ 20530 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20531 20532 /* Issue the mailbox command asynchronously */ 20533 mbox->vport = phba->pport; 20534 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20535 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20536 20537 if (rc == MBX_NOT_FINISHED) { 20538 mempool_free(mbox, phba->mbox_mem_pool); 20539 return -EIO; 20540 } 20541 return 0; 20542 } 20543 20544 /** 20545 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20546 * @phba: pointer to lpfc hba data structure. 20547 * 20548 * This function is the failover routine as a last resort to the FCF DEAD 20549 * event when driver failed to perform fast FCF failover. 20550 **/ 20551 void 20552 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20553 { 20554 uint32_t link_state; 20555 20556 /* 20557 * Last resort as FCF DEAD event failover will treat this as 20558 * a link down, but save the link state because we don't want 20559 * it to be changed to Link Down unless it is already down. 20560 */ 20561 link_state = phba->link_state; 20562 lpfc_linkdown(phba); 20563 phba->link_state = link_state; 20564 20565 /* Unregister FCF if no devices connected to it */ 20566 lpfc_unregister_unused_fcf(phba); 20567 } 20568 20569 /** 20570 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20571 * @phba: pointer to lpfc hba data structure. 20572 * @rgn23_data: pointer to configure region 23 data. 20573 * 20574 * This function gets SLI3 port configure region 23 data through memory dump 20575 * mailbox command. When it successfully retrieves data, the size of the data 20576 * will be returned, otherwise, 0 will be returned. 20577 **/ 20578 static uint32_t 20579 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20580 { 20581 LPFC_MBOXQ_t *pmb = NULL; 20582 MAILBOX_t *mb; 20583 uint32_t offset = 0; 20584 int rc; 20585 20586 if (!rgn23_data) 20587 return 0; 20588 20589 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20590 if (!pmb) { 20591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20592 "2600 failed to allocate mailbox memory\n"); 20593 return 0; 20594 } 20595 mb = &pmb->u.mb; 20596 20597 do { 20598 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20599 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20600 20601 if (rc != MBX_SUCCESS) { 20602 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20603 "2601 failed to read config " 20604 "region 23, rc 0x%x Status 0x%x\n", 20605 rc, mb->mbxStatus); 20606 mb->un.varDmp.word_cnt = 0; 20607 } 20608 /* 20609 * dump mem may return a zero when finished or we got a 20610 * mailbox error, either way we are done. 20611 */ 20612 if (mb->un.varDmp.word_cnt == 0) 20613 break; 20614 20615 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20616 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20617 20618 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20619 rgn23_data + offset, 20620 mb->un.varDmp.word_cnt); 20621 offset += mb->un.varDmp.word_cnt; 20622 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20623 20624 mempool_free(pmb, phba->mbox_mem_pool); 20625 return offset; 20626 } 20627 20628 /** 20629 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20630 * @phba: pointer to lpfc hba data structure. 20631 * @rgn23_data: pointer to configure region 23 data. 20632 * 20633 * This function gets SLI4 port configure region 23 data through memory dump 20634 * mailbox command. When it successfully retrieves data, the size of the data 20635 * will be returned, otherwise, 0 will be returned. 20636 **/ 20637 static uint32_t 20638 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20639 { 20640 LPFC_MBOXQ_t *mboxq = NULL; 20641 struct lpfc_dmabuf *mp = NULL; 20642 struct lpfc_mqe *mqe; 20643 uint32_t data_length = 0; 20644 int rc; 20645 20646 if (!rgn23_data) 20647 return 0; 20648 20649 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20650 if (!mboxq) { 20651 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20652 "3105 failed to allocate mailbox memory\n"); 20653 return 0; 20654 } 20655 20656 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20657 goto out; 20658 mqe = &mboxq->u.mqe; 20659 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20660 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20661 if (rc) 20662 goto out; 20663 data_length = mqe->un.mb_words[5]; 20664 if (data_length == 0) 20665 goto out; 20666 if (data_length > DMP_RGN23_SIZE) { 20667 data_length = 0; 20668 goto out; 20669 } 20670 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20671 out: 20672 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20673 return data_length; 20674 } 20675 20676 /** 20677 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20678 * @phba: pointer to lpfc hba data structure. 20679 * 20680 * This function read region 23 and parse TLV for port status to 20681 * decide if the user disaled the port. If the TLV indicates the 20682 * port is disabled, the hba_flag is set accordingly. 20683 **/ 20684 void 20685 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20686 { 20687 uint8_t *rgn23_data = NULL; 20688 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20689 uint32_t offset = 0; 20690 20691 /* Get adapter Region 23 data */ 20692 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20693 if (!rgn23_data) 20694 goto out; 20695 20696 if (phba->sli_rev < LPFC_SLI_REV4) 20697 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20698 else { 20699 if_type = bf_get(lpfc_sli_intf_if_type, 20700 &phba->sli4_hba.sli_intf); 20701 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20702 goto out; 20703 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20704 } 20705 20706 if (!data_size) 20707 goto out; 20708 20709 /* Check the region signature first */ 20710 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20712 "2619 Config region 23 has bad signature\n"); 20713 goto out; 20714 } 20715 offset += 4; 20716 20717 /* Check the data structure version */ 20718 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20720 "2620 Config region 23 has bad version\n"); 20721 goto out; 20722 } 20723 offset += 4; 20724 20725 /* Parse TLV entries in the region */ 20726 while (offset < data_size) { 20727 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20728 break; 20729 /* 20730 * If the TLV is not driver specific TLV or driver id is 20731 * not linux driver id, skip the record. 20732 */ 20733 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20734 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20735 (rgn23_data[offset + 3] != 0)) { 20736 offset += rgn23_data[offset + 1] * 4 + 4; 20737 continue; 20738 } 20739 20740 /* Driver found a driver specific TLV in the config region */ 20741 sub_tlv_len = rgn23_data[offset + 1] * 4; 20742 offset += 4; 20743 tlv_offset = 0; 20744 20745 /* 20746 * Search for configured port state sub-TLV. 20747 */ 20748 while ((offset < data_size) && 20749 (tlv_offset < sub_tlv_len)) { 20750 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20751 offset += 4; 20752 tlv_offset += 4; 20753 break; 20754 } 20755 if (rgn23_data[offset] != PORT_STE_TYPE) { 20756 offset += rgn23_data[offset + 1] * 4 + 4; 20757 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20758 continue; 20759 } 20760 20761 /* This HBA contains PORT_STE configured */ 20762 if (!rgn23_data[offset + 2]) 20763 phba->hba_flag |= LINK_DISABLED; 20764 20765 goto out; 20766 } 20767 } 20768 20769 out: 20770 kfree(rgn23_data); 20771 return; 20772 } 20773 20774 /** 20775 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20776 * @phba: pointer to lpfc hba data structure 20777 * @shdr_status: wr_object rsp's status field 20778 * @shdr_add_status: wr_object rsp's add_status field 20779 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20780 * @shdr_change_status: wr_object rsp's change_status field 20781 * @shdr_csf: wr_object rsp's csf bit 20782 * 20783 * This routine is intended to be called after a firmware write completes. 20784 * It will log next action items to be performed by the user to instantiate 20785 * the newly downloaded firmware or reason for incompatibility. 20786 **/ 20787 static void 20788 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20789 u32 shdr_add_status, u32 shdr_add_status_2, 20790 u32 shdr_change_status, u32 shdr_csf) 20791 { 20792 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20793 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20794 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20795 "change_status x%02x, csf %01x\n", __func__, 20796 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20797 shdr_status, shdr_add_status, shdr_add_status_2, 20798 shdr_change_status, shdr_csf); 20799 20800 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20801 switch (shdr_add_status_2) { 20802 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20803 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20804 "4199 Firmware write failed: " 20805 "image incompatible with flash x%02x\n", 20806 phba->sli4_hba.flash_id); 20807 break; 20808 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20809 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20810 "4200 Firmware write failed: " 20811 "image incompatible with ASIC " 20812 "architecture x%02x\n", 20813 phba->sli4_hba.asic_rev); 20814 break; 20815 default: 20816 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20817 "4210 Firmware write failed: " 20818 "add_status_2 x%02x\n", 20819 shdr_add_status_2); 20820 break; 20821 } 20822 } else if (!shdr_status && !shdr_add_status) { 20823 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20824 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20825 if (shdr_csf) 20826 shdr_change_status = 20827 LPFC_CHANGE_STATUS_PCI_RESET; 20828 } 20829 20830 switch (shdr_change_status) { 20831 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20832 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20833 "3198 Firmware write complete: System " 20834 "reboot required to instantiate\n"); 20835 break; 20836 case (LPFC_CHANGE_STATUS_FW_RESET): 20837 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20838 "3199 Firmware write complete: " 20839 "Firmware reset required to " 20840 "instantiate\n"); 20841 break; 20842 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20843 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20844 "3200 Firmware write complete: Port " 20845 "Migration or PCI Reset required to " 20846 "instantiate\n"); 20847 break; 20848 case (LPFC_CHANGE_STATUS_PCI_RESET): 20849 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20850 "3201 Firmware write complete: PCI " 20851 "Reset required to instantiate\n"); 20852 break; 20853 default: 20854 break; 20855 } 20856 } 20857 } 20858 20859 /** 20860 * lpfc_wr_object - write an object to the firmware 20861 * @phba: HBA structure that indicates port to create a queue on. 20862 * @dmabuf_list: list of dmabufs to write to the port. 20863 * @size: the total byte value of the objects to write to the port. 20864 * @offset: the current offset to be used to start the transfer. 20865 * 20866 * This routine will create a wr_object mailbox command to send to the port. 20867 * the mailbox command will be constructed using the dma buffers described in 20868 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20869 * BDEs that the imbedded mailbox can support. The @offset variable will be 20870 * used to indicate the starting offset of the transfer and will also return 20871 * the offset after the write object mailbox has completed. @size is used to 20872 * determine the end of the object and whether the eof bit should be set. 20873 * 20874 * Return 0 is successful and offset will contain the new offset to use 20875 * for the next write. 20876 * Return negative value for error cases. 20877 **/ 20878 int 20879 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20880 uint32_t size, uint32_t *offset) 20881 { 20882 struct lpfc_mbx_wr_object *wr_object; 20883 LPFC_MBOXQ_t *mbox; 20884 int rc = 0, i = 0; 20885 int mbox_status = 0; 20886 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20887 uint32_t shdr_change_status = 0, shdr_csf = 0; 20888 uint32_t mbox_tmo; 20889 struct lpfc_dmabuf *dmabuf; 20890 uint32_t written = 0; 20891 bool check_change_status = false; 20892 20893 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20894 if (!mbox) 20895 return -ENOMEM; 20896 20897 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20898 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20899 sizeof(struct lpfc_mbx_wr_object) - 20900 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20901 20902 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20903 wr_object->u.request.write_offset = *offset; 20904 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20905 wr_object->u.request.object_name[0] = 20906 cpu_to_le32(wr_object->u.request.object_name[0]); 20907 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20908 list_for_each_entry(dmabuf, dmabuf_list, list) { 20909 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20910 break; 20911 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20912 wr_object->u.request.bde[i].addrHigh = 20913 putPaddrHigh(dmabuf->phys); 20914 if (written + SLI4_PAGE_SIZE >= size) { 20915 wr_object->u.request.bde[i].tus.f.bdeSize = 20916 (size - written); 20917 written += (size - written); 20918 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20919 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20920 check_change_status = true; 20921 } else { 20922 wr_object->u.request.bde[i].tus.f.bdeSize = 20923 SLI4_PAGE_SIZE; 20924 written += SLI4_PAGE_SIZE; 20925 } 20926 i++; 20927 } 20928 wr_object->u.request.bde_count = i; 20929 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20930 if (!phba->sli4_hba.intr_enable) 20931 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20932 else { 20933 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20934 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20935 } 20936 20937 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20938 rc = mbox_status; 20939 20940 /* The IOCTL status is embedded in the mailbox subheader. */ 20941 shdr_status = bf_get(lpfc_mbox_hdr_status, 20942 &wr_object->header.cfg_shdr.response); 20943 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20944 &wr_object->header.cfg_shdr.response); 20945 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20946 &wr_object->header.cfg_shdr.response); 20947 if (check_change_status) { 20948 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20949 &wr_object->u.response); 20950 shdr_csf = bf_get(lpfc_wr_object_csf, 20951 &wr_object->u.response); 20952 } 20953 20954 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20955 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20956 "3025 Write Object mailbox failed with " 20957 "status x%x add_status x%x, add_status_2 x%x, " 20958 "mbx status x%x\n", 20959 shdr_status, shdr_add_status, shdr_add_status_2, 20960 rc); 20961 rc = -ENXIO; 20962 *offset = shdr_add_status; 20963 } else { 20964 *offset += wr_object->u.response.actual_write_length; 20965 } 20966 20967 if (rc || check_change_status) 20968 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20969 shdr_add_status_2, shdr_change_status, 20970 shdr_csf); 20971 20972 if (!phba->sli4_hba.intr_enable) 20973 mempool_free(mbox, phba->mbox_mem_pool); 20974 else if (mbox_status != MBX_TIMEOUT) 20975 mempool_free(mbox, phba->mbox_mem_pool); 20976 20977 return rc; 20978 } 20979 20980 /** 20981 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20982 * @vport: pointer to vport data structure. 20983 * 20984 * This function iterate through the mailboxq and clean up all REG_LOGIN 20985 * and REG_VPI mailbox commands associated with the vport. This function 20986 * is called when driver want to restart discovery of the vport due to 20987 * a Clear Virtual Link event. 20988 **/ 20989 void 20990 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20991 { 20992 struct lpfc_hba *phba = vport->phba; 20993 LPFC_MBOXQ_t *mb, *nextmb; 20994 struct lpfc_nodelist *ndlp; 20995 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20996 LIST_HEAD(mbox_cmd_list); 20997 uint8_t restart_loop; 20998 20999 /* Clean up internally queued mailbox commands with the vport */ 21000 spin_lock_irq(&phba->hbalock); 21001 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21002 if (mb->vport != vport) 21003 continue; 21004 21005 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21006 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21007 continue; 21008 21009 list_move_tail(&mb->list, &mbox_cmd_list); 21010 } 21011 /* Clean up active mailbox command with the vport */ 21012 mb = phba->sli.mbox_active; 21013 if (mb && (mb->vport == vport)) { 21014 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21015 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21016 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21017 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21018 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21019 21020 /* This reference is local to this routine. The 21021 * reference is removed at routine exit. 21022 */ 21023 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21024 21025 /* Unregister the RPI when mailbox complete */ 21026 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21027 } 21028 } 21029 /* Cleanup any mailbox completions which are not yet processed */ 21030 do { 21031 restart_loop = 0; 21032 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21033 /* 21034 * If this mailox is already processed or it is 21035 * for another vport ignore it. 21036 */ 21037 if ((mb->vport != vport) || 21038 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21039 continue; 21040 21041 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21042 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21043 continue; 21044 21045 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21046 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21047 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21048 /* Unregister the RPI when mailbox complete */ 21049 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21050 restart_loop = 1; 21051 spin_unlock_irq(&phba->hbalock); 21052 spin_lock(&ndlp->lock); 21053 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21054 spin_unlock(&ndlp->lock); 21055 spin_lock_irq(&phba->hbalock); 21056 break; 21057 } 21058 } 21059 } while (restart_loop); 21060 21061 spin_unlock_irq(&phba->hbalock); 21062 21063 /* Release the cleaned-up mailbox commands */ 21064 while (!list_empty(&mbox_cmd_list)) { 21065 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21066 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21067 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21068 mb->ctx_ndlp = NULL; 21069 if (ndlp) { 21070 spin_lock(&ndlp->lock); 21071 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21072 spin_unlock(&ndlp->lock); 21073 lpfc_nlp_put(ndlp); 21074 } 21075 } 21076 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21077 } 21078 21079 /* Release the ndlp with the cleaned-up active mailbox command */ 21080 if (act_mbx_ndlp) { 21081 spin_lock(&act_mbx_ndlp->lock); 21082 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21083 spin_unlock(&act_mbx_ndlp->lock); 21084 lpfc_nlp_put(act_mbx_ndlp); 21085 } 21086 } 21087 21088 /** 21089 * lpfc_drain_txq - Drain the txq 21090 * @phba: Pointer to HBA context object. 21091 * 21092 * This function attempt to submit IOCBs on the txq 21093 * to the adapter. For SLI4 adapters, the txq contains 21094 * ELS IOCBs that have been deferred because the there 21095 * are no SGLs. This congestion can occur with large 21096 * vport counts during node discovery. 21097 **/ 21098 21099 uint32_t 21100 lpfc_drain_txq(struct lpfc_hba *phba) 21101 { 21102 LIST_HEAD(completions); 21103 struct lpfc_sli_ring *pring; 21104 struct lpfc_iocbq *piocbq = NULL; 21105 unsigned long iflags = 0; 21106 char *fail_msg = NULL; 21107 uint32_t txq_cnt = 0; 21108 struct lpfc_queue *wq; 21109 int ret = 0; 21110 21111 if (phba->link_flag & LS_MDS_LOOPBACK) { 21112 /* MDS WQE are posted only to first WQ*/ 21113 wq = phba->sli4_hba.hdwq[0].io_wq; 21114 if (unlikely(!wq)) 21115 return 0; 21116 pring = wq->pring; 21117 } else { 21118 wq = phba->sli4_hba.els_wq; 21119 if (unlikely(!wq)) 21120 return 0; 21121 pring = lpfc_phba_elsring(phba); 21122 } 21123 21124 if (unlikely(!pring) || list_empty(&pring->txq)) 21125 return 0; 21126 21127 spin_lock_irqsave(&pring->ring_lock, iflags); 21128 list_for_each_entry(piocbq, &pring->txq, list) { 21129 txq_cnt++; 21130 } 21131 21132 if (txq_cnt > pring->txq_max) 21133 pring->txq_max = txq_cnt; 21134 21135 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21136 21137 while (!list_empty(&pring->txq)) { 21138 spin_lock_irqsave(&pring->ring_lock, iflags); 21139 21140 piocbq = lpfc_sli_ringtx_get(phba, pring); 21141 if (!piocbq) { 21142 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21143 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21144 "2823 txq empty and txq_cnt is %d\n ", 21145 txq_cnt); 21146 break; 21147 } 21148 txq_cnt--; 21149 21150 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21151 21152 if (ret && ret != IOCB_BUSY) { 21153 fail_msg = " - Cannot send IO "; 21154 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21155 } 21156 if (fail_msg) { 21157 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21158 /* Failed means we can't issue and need to cancel */ 21159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21160 "2822 IOCB failed %s iotag 0x%x " 21161 "xri 0x%x %d flg x%x\n", 21162 fail_msg, piocbq->iotag, 21163 piocbq->sli4_xritag, ret, 21164 piocbq->cmd_flag); 21165 list_add_tail(&piocbq->list, &completions); 21166 fail_msg = NULL; 21167 } 21168 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21169 if (txq_cnt == 0 || ret == IOCB_BUSY) 21170 break; 21171 } 21172 /* Cancel all the IOCBs that cannot be issued */ 21173 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21174 IOERR_SLI_ABORTED); 21175 21176 return txq_cnt; 21177 } 21178 21179 /** 21180 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21181 * @phba: Pointer to HBA context object. 21182 * @pwqeq: Pointer to command WQE. 21183 * @sglq: Pointer to the scatter gather queue object. 21184 * 21185 * This routine converts the bpl or bde that is in the WQE 21186 * to a sgl list for the sli4 hardware. The physical address 21187 * of the bpl/bde is converted back to a virtual address. 21188 * If the WQE contains a BPL then the list of BDE's is 21189 * converted to sli4_sge's. If the WQE contains a single 21190 * BDE then it is converted to a single sli_sge. 21191 * The WQE is still in cpu endianness so the contents of 21192 * the bpl can be used without byte swapping. 21193 * 21194 * Returns valid XRI = Success, NO_XRI = Failure. 21195 */ 21196 static uint16_t 21197 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21198 struct lpfc_sglq *sglq) 21199 { 21200 uint16_t xritag = NO_XRI; 21201 struct ulp_bde64 *bpl = NULL; 21202 struct ulp_bde64 bde; 21203 struct sli4_sge *sgl = NULL; 21204 struct lpfc_dmabuf *dmabuf; 21205 union lpfc_wqe128 *wqe; 21206 int numBdes = 0; 21207 int i = 0; 21208 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21209 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21210 uint32_t cmd; 21211 21212 if (!pwqeq || !sglq) 21213 return xritag; 21214 21215 sgl = (struct sli4_sge *)sglq->sgl; 21216 wqe = &pwqeq->wqe; 21217 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21218 21219 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21220 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21221 return sglq->sli4_xritag; 21222 numBdes = pwqeq->num_bdes; 21223 if (numBdes) { 21224 /* The addrHigh and addrLow fields within the WQE 21225 * have not been byteswapped yet so there is no 21226 * need to swap them back. 21227 */ 21228 if (pwqeq->bpl_dmabuf) 21229 dmabuf = pwqeq->bpl_dmabuf; 21230 else 21231 return xritag; 21232 21233 bpl = (struct ulp_bde64 *)dmabuf->virt; 21234 if (!bpl) 21235 return xritag; 21236 21237 for (i = 0; i < numBdes; i++) { 21238 /* Should already be byte swapped. */ 21239 sgl->addr_hi = bpl->addrHigh; 21240 sgl->addr_lo = bpl->addrLow; 21241 21242 sgl->word2 = le32_to_cpu(sgl->word2); 21243 if ((i+1) == numBdes) 21244 bf_set(lpfc_sli4_sge_last, sgl, 1); 21245 else 21246 bf_set(lpfc_sli4_sge_last, sgl, 0); 21247 /* swap the size field back to the cpu so we 21248 * can assign it to the sgl. 21249 */ 21250 bde.tus.w = le32_to_cpu(bpl->tus.w); 21251 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21252 /* The offsets in the sgl need to be accumulated 21253 * separately for the request and reply lists. 21254 * The request is always first, the reply follows. 21255 */ 21256 switch (cmd) { 21257 case CMD_GEN_REQUEST64_WQE: 21258 /* add up the reply sg entries */ 21259 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21260 inbound++; 21261 /* first inbound? reset the offset */ 21262 if (inbound == 1) 21263 offset = 0; 21264 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21265 bf_set(lpfc_sli4_sge_type, sgl, 21266 LPFC_SGE_TYPE_DATA); 21267 offset += bde.tus.f.bdeSize; 21268 break; 21269 case CMD_FCP_TRSP64_WQE: 21270 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21271 bf_set(lpfc_sli4_sge_type, sgl, 21272 LPFC_SGE_TYPE_DATA); 21273 break; 21274 case CMD_FCP_TSEND64_WQE: 21275 case CMD_FCP_TRECEIVE64_WQE: 21276 bf_set(lpfc_sli4_sge_type, sgl, 21277 bpl->tus.f.bdeFlags); 21278 if (i < 3) 21279 offset = 0; 21280 else 21281 offset += bde.tus.f.bdeSize; 21282 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21283 break; 21284 } 21285 sgl->word2 = cpu_to_le32(sgl->word2); 21286 bpl++; 21287 sgl++; 21288 } 21289 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21290 /* The addrHigh and addrLow fields of the BDE have not 21291 * been byteswapped yet so they need to be swapped 21292 * before putting them in the sgl. 21293 */ 21294 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21295 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21296 sgl->word2 = le32_to_cpu(sgl->word2); 21297 bf_set(lpfc_sli4_sge_last, sgl, 1); 21298 sgl->word2 = cpu_to_le32(sgl->word2); 21299 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21300 } 21301 return sglq->sli4_xritag; 21302 } 21303 21304 /** 21305 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21306 * @phba: Pointer to HBA context object. 21307 * @qp: Pointer to HDW queue. 21308 * @pwqe: Pointer to command WQE. 21309 **/ 21310 int 21311 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21312 struct lpfc_iocbq *pwqe) 21313 { 21314 union lpfc_wqe128 *wqe = &pwqe->wqe; 21315 struct lpfc_async_xchg_ctx *ctxp; 21316 struct lpfc_queue *wq; 21317 struct lpfc_sglq *sglq; 21318 struct lpfc_sli_ring *pring; 21319 unsigned long iflags; 21320 uint32_t ret = 0; 21321 21322 /* NVME_LS and NVME_LS ABTS requests. */ 21323 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21324 pring = phba->sli4_hba.nvmels_wq->pring; 21325 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21326 qp, wq_access); 21327 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21328 if (!sglq) { 21329 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21330 return WQE_BUSY; 21331 } 21332 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21333 pwqe->sli4_xritag = sglq->sli4_xritag; 21334 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21335 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21336 return WQE_ERROR; 21337 } 21338 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21339 pwqe->sli4_xritag); 21340 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21341 if (ret) { 21342 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21343 return ret; 21344 } 21345 21346 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21347 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21348 21349 lpfc_sli4_poll_eq(qp->hba_eq); 21350 return 0; 21351 } 21352 21353 /* NVME_FCREQ and NVME_ABTS requests */ 21354 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21355 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21356 wq = qp->io_wq; 21357 pring = wq->pring; 21358 21359 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21360 21361 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21362 qp, wq_access); 21363 ret = lpfc_sli4_wq_put(wq, wqe); 21364 if (ret) { 21365 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21366 return ret; 21367 } 21368 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21369 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21370 21371 lpfc_sli4_poll_eq(qp->hba_eq); 21372 return 0; 21373 } 21374 21375 /* NVMET requests */ 21376 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21377 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21378 wq = qp->io_wq; 21379 pring = wq->pring; 21380 21381 ctxp = pwqe->context_un.axchg; 21382 sglq = ctxp->ctxbuf->sglq; 21383 if (pwqe->sli4_xritag == NO_XRI) { 21384 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21385 pwqe->sli4_xritag = sglq->sli4_xritag; 21386 } 21387 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21388 pwqe->sli4_xritag); 21389 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21390 21391 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21392 qp, wq_access); 21393 ret = lpfc_sli4_wq_put(wq, wqe); 21394 if (ret) { 21395 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21396 return ret; 21397 } 21398 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21399 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21400 21401 lpfc_sli4_poll_eq(qp->hba_eq); 21402 return 0; 21403 } 21404 return WQE_ERROR; 21405 } 21406 21407 /** 21408 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21409 * @phba: Pointer to HBA context object. 21410 * @cmdiocb: Pointer to driver command iocb object. 21411 * @cmpl: completion function. 21412 * 21413 * Fill the appropriate fields for the abort WQE and call 21414 * internal routine lpfc_sli4_issue_wqe to send the WQE 21415 * This function is called with hbalock held and no ring_lock held. 21416 * 21417 * RETURNS 0 - SUCCESS 21418 **/ 21419 21420 int 21421 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21422 void *cmpl) 21423 { 21424 struct lpfc_vport *vport = cmdiocb->vport; 21425 struct lpfc_iocbq *abtsiocb = NULL; 21426 union lpfc_wqe128 *abtswqe; 21427 struct lpfc_io_buf *lpfc_cmd; 21428 int retval = IOCB_ERROR; 21429 u16 xritag = cmdiocb->sli4_xritag; 21430 21431 /* 21432 * The scsi command can not be in txq and it is in flight because the 21433 * pCmd is still pointing at the SCSI command we have to abort. There 21434 * is no need to search the txcmplq. Just send an abort to the FW. 21435 */ 21436 21437 abtsiocb = __lpfc_sli_get_iocbq(phba); 21438 if (!abtsiocb) 21439 return WQE_NORESOURCE; 21440 21441 /* Indicate the IO is being aborted by the driver. */ 21442 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21443 21444 abtswqe = &abtsiocb->wqe; 21445 memset(abtswqe, 0, sizeof(*abtswqe)); 21446 21447 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21448 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21449 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21450 abtswqe->abort_cmd.rsrvd5 = 0; 21451 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21452 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21453 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21454 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21455 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21456 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21457 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21458 21459 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21460 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21461 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21462 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21463 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21464 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21465 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21466 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21467 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21468 abtsiocb->vport = vport; 21469 abtsiocb->cmd_cmpl = cmpl; 21470 21471 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21472 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21473 21474 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21475 "0359 Abort xri x%x, original iotag x%x, " 21476 "abort cmd iotag x%x retval x%x\n", 21477 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21478 21479 if (retval) { 21480 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21481 __lpfc_sli_release_iocbq(phba, abtsiocb); 21482 } 21483 21484 return retval; 21485 } 21486 21487 #ifdef LPFC_MXP_STAT 21488 /** 21489 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21490 * @phba: pointer to lpfc hba data structure. 21491 * @hwqid: belong to which HWQ. 21492 * 21493 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21494 * 15 seconds after a test case is running. 21495 * 21496 * The user should call lpfc_debugfs_multixripools_write before running a test 21497 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21498 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21499 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21500 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21501 **/ 21502 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21503 { 21504 struct lpfc_sli4_hdw_queue *qp; 21505 struct lpfc_multixri_pool *multixri_pool; 21506 struct lpfc_pvt_pool *pvt_pool; 21507 struct lpfc_pbl_pool *pbl_pool; 21508 u32 txcmplq_cnt; 21509 21510 qp = &phba->sli4_hba.hdwq[hwqid]; 21511 multixri_pool = qp->p_multixri_pool; 21512 if (!multixri_pool) 21513 return; 21514 21515 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21516 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21517 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21518 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21519 21520 multixri_pool->stat_pbl_count = pbl_pool->count; 21521 multixri_pool->stat_pvt_count = pvt_pool->count; 21522 multixri_pool->stat_busy_count = txcmplq_cnt; 21523 } 21524 21525 multixri_pool->stat_snapshot_taken++; 21526 } 21527 #endif 21528 21529 /** 21530 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21531 * @phba: pointer to lpfc hba data structure. 21532 * @hwqid: belong to which HWQ. 21533 * 21534 * This routine moves some XRIs from private to public pool when private pool 21535 * is not busy. 21536 **/ 21537 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21538 { 21539 struct lpfc_multixri_pool *multixri_pool; 21540 u32 io_req_count; 21541 u32 prev_io_req_count; 21542 21543 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21544 if (!multixri_pool) 21545 return; 21546 io_req_count = multixri_pool->io_req_count; 21547 prev_io_req_count = multixri_pool->prev_io_req_count; 21548 21549 if (prev_io_req_count != io_req_count) { 21550 /* Private pool is busy */ 21551 multixri_pool->prev_io_req_count = io_req_count; 21552 } else { 21553 /* Private pool is not busy. 21554 * Move XRIs from private to public pool. 21555 */ 21556 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21557 } 21558 } 21559 21560 /** 21561 * lpfc_adjust_high_watermark - Adjust high watermark 21562 * @phba: pointer to lpfc hba data structure. 21563 * @hwqid: belong to which HWQ. 21564 * 21565 * This routine sets high watermark as number of outstanding XRIs, 21566 * but make sure the new value is between xri_limit/2 and xri_limit. 21567 **/ 21568 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21569 { 21570 u32 new_watermark; 21571 u32 watermark_max; 21572 u32 watermark_min; 21573 u32 xri_limit; 21574 u32 txcmplq_cnt; 21575 u32 abts_io_bufs; 21576 struct lpfc_multixri_pool *multixri_pool; 21577 struct lpfc_sli4_hdw_queue *qp; 21578 21579 qp = &phba->sli4_hba.hdwq[hwqid]; 21580 multixri_pool = qp->p_multixri_pool; 21581 if (!multixri_pool) 21582 return; 21583 xri_limit = multixri_pool->xri_limit; 21584 21585 watermark_max = xri_limit; 21586 watermark_min = xri_limit / 2; 21587 21588 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21589 abts_io_bufs = qp->abts_scsi_io_bufs; 21590 abts_io_bufs += qp->abts_nvme_io_bufs; 21591 21592 new_watermark = txcmplq_cnt + abts_io_bufs; 21593 new_watermark = min(watermark_max, new_watermark); 21594 new_watermark = max(watermark_min, new_watermark); 21595 multixri_pool->pvt_pool.high_watermark = new_watermark; 21596 21597 #ifdef LPFC_MXP_STAT 21598 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21599 new_watermark); 21600 #endif 21601 } 21602 21603 /** 21604 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21605 * @phba: pointer to lpfc hba data structure. 21606 * @hwqid: belong to which HWQ. 21607 * 21608 * This routine is called from hearbeat timer when pvt_pool is idle. 21609 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21610 * The first step moves (all - low_watermark) amount of XRIs. 21611 * The second step moves the rest of XRIs. 21612 **/ 21613 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21614 { 21615 struct lpfc_pbl_pool *pbl_pool; 21616 struct lpfc_pvt_pool *pvt_pool; 21617 struct lpfc_sli4_hdw_queue *qp; 21618 struct lpfc_io_buf *lpfc_ncmd; 21619 struct lpfc_io_buf *lpfc_ncmd_next; 21620 unsigned long iflag; 21621 struct list_head tmp_list; 21622 u32 tmp_count; 21623 21624 qp = &phba->sli4_hba.hdwq[hwqid]; 21625 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21626 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21627 tmp_count = 0; 21628 21629 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21630 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21631 21632 if (pvt_pool->count > pvt_pool->low_watermark) { 21633 /* Step 1: move (all - low_watermark) from pvt_pool 21634 * to pbl_pool 21635 */ 21636 21637 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21638 INIT_LIST_HEAD(&tmp_list); 21639 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21640 &pvt_pool->list, list) { 21641 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21642 tmp_count++; 21643 if (tmp_count >= pvt_pool->low_watermark) 21644 break; 21645 } 21646 21647 /* Move all bufs from pvt_pool to pbl_pool */ 21648 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21649 21650 /* Move all bufs from tmp_list to pvt_pool */ 21651 list_splice(&tmp_list, &pvt_pool->list); 21652 21653 pbl_pool->count += (pvt_pool->count - tmp_count); 21654 pvt_pool->count = tmp_count; 21655 } else { 21656 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21657 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21658 pbl_pool->count += pvt_pool->count; 21659 pvt_pool->count = 0; 21660 } 21661 21662 spin_unlock(&pvt_pool->lock); 21663 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21664 } 21665 21666 /** 21667 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21668 * @phba: pointer to lpfc hba data structure 21669 * @qp: pointer to HDW queue 21670 * @pbl_pool: specified public free XRI pool 21671 * @pvt_pool: specified private free XRI pool 21672 * @count: number of XRIs to move 21673 * 21674 * This routine tries to move some free common bufs from the specified pbl_pool 21675 * to the specified pvt_pool. It might move less than count XRIs if there's not 21676 * enough in public pool. 21677 * 21678 * Return: 21679 * true - if XRIs are successfully moved from the specified pbl_pool to the 21680 * specified pvt_pool 21681 * false - if the specified pbl_pool is empty or locked by someone else 21682 **/ 21683 static bool 21684 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21685 struct lpfc_pbl_pool *pbl_pool, 21686 struct lpfc_pvt_pool *pvt_pool, u32 count) 21687 { 21688 struct lpfc_io_buf *lpfc_ncmd; 21689 struct lpfc_io_buf *lpfc_ncmd_next; 21690 unsigned long iflag; 21691 int ret; 21692 21693 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21694 if (ret) { 21695 if (pbl_pool->count) { 21696 /* Move a batch of XRIs from public to private pool */ 21697 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21698 list_for_each_entry_safe(lpfc_ncmd, 21699 lpfc_ncmd_next, 21700 &pbl_pool->list, 21701 list) { 21702 list_move_tail(&lpfc_ncmd->list, 21703 &pvt_pool->list); 21704 pvt_pool->count++; 21705 pbl_pool->count--; 21706 count--; 21707 if (count == 0) 21708 break; 21709 } 21710 21711 spin_unlock(&pvt_pool->lock); 21712 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21713 return true; 21714 } 21715 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21716 } 21717 21718 return false; 21719 } 21720 21721 /** 21722 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21723 * @phba: pointer to lpfc hba data structure. 21724 * @hwqid: belong to which HWQ. 21725 * @count: number of XRIs to move 21726 * 21727 * This routine tries to find some free common bufs in one of public pools with 21728 * Round Robin method. The search always starts from local hwqid, then the next 21729 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21730 * a batch of free common bufs are moved to private pool on hwqid. 21731 * It might move less than count XRIs if there's not enough in public pool. 21732 **/ 21733 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21734 { 21735 struct lpfc_multixri_pool *multixri_pool; 21736 struct lpfc_multixri_pool *next_multixri_pool; 21737 struct lpfc_pvt_pool *pvt_pool; 21738 struct lpfc_pbl_pool *pbl_pool; 21739 struct lpfc_sli4_hdw_queue *qp; 21740 u32 next_hwqid; 21741 u32 hwq_count; 21742 int ret; 21743 21744 qp = &phba->sli4_hba.hdwq[hwqid]; 21745 multixri_pool = qp->p_multixri_pool; 21746 pvt_pool = &multixri_pool->pvt_pool; 21747 pbl_pool = &multixri_pool->pbl_pool; 21748 21749 /* Check if local pbl_pool is available */ 21750 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21751 if (ret) { 21752 #ifdef LPFC_MXP_STAT 21753 multixri_pool->local_pbl_hit_count++; 21754 #endif 21755 return; 21756 } 21757 21758 hwq_count = phba->cfg_hdw_queue; 21759 21760 /* Get the next hwqid which was found last time */ 21761 next_hwqid = multixri_pool->rrb_next_hwqid; 21762 21763 do { 21764 /* Go to next hwq */ 21765 next_hwqid = (next_hwqid + 1) % hwq_count; 21766 21767 next_multixri_pool = 21768 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21769 pbl_pool = &next_multixri_pool->pbl_pool; 21770 21771 /* Check if the public free xri pool is available */ 21772 ret = _lpfc_move_xri_pbl_to_pvt( 21773 phba, qp, pbl_pool, pvt_pool, count); 21774 21775 /* Exit while-loop if success or all hwqid are checked */ 21776 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21777 21778 /* Starting point for the next time */ 21779 multixri_pool->rrb_next_hwqid = next_hwqid; 21780 21781 if (!ret) { 21782 /* stats: all public pools are empty*/ 21783 multixri_pool->pbl_empty_count++; 21784 } 21785 21786 #ifdef LPFC_MXP_STAT 21787 if (ret) { 21788 if (next_hwqid == hwqid) 21789 multixri_pool->local_pbl_hit_count++; 21790 else 21791 multixri_pool->other_pbl_hit_count++; 21792 } 21793 #endif 21794 } 21795 21796 /** 21797 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21798 * @phba: pointer to lpfc hba data structure. 21799 * @hwqid: belong to which HWQ. 21800 * 21801 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21802 * low watermark. 21803 **/ 21804 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21805 { 21806 struct lpfc_multixri_pool *multixri_pool; 21807 struct lpfc_pvt_pool *pvt_pool; 21808 21809 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21810 pvt_pool = &multixri_pool->pvt_pool; 21811 21812 if (pvt_pool->count < pvt_pool->low_watermark) 21813 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21814 } 21815 21816 /** 21817 * lpfc_release_io_buf - Return one IO buf back to free pool 21818 * @phba: pointer to lpfc hba data structure. 21819 * @lpfc_ncmd: IO buf to be returned. 21820 * @qp: belong to which HWQ. 21821 * 21822 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21823 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21824 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21825 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21826 * lpfc_io_buf_list_put. 21827 **/ 21828 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21829 struct lpfc_sli4_hdw_queue *qp) 21830 { 21831 unsigned long iflag; 21832 struct lpfc_pbl_pool *pbl_pool; 21833 struct lpfc_pvt_pool *pvt_pool; 21834 struct lpfc_epd_pool *epd_pool; 21835 u32 txcmplq_cnt; 21836 u32 xri_owned; 21837 u32 xri_limit; 21838 u32 abts_io_bufs; 21839 21840 /* MUST zero fields if buffer is reused by another protocol */ 21841 lpfc_ncmd->nvmeCmd = NULL; 21842 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21843 21844 if (phba->cfg_xpsgl && !phba->nvmet_support && 21845 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21846 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21847 21848 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21849 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21850 21851 if (phba->cfg_xri_rebalancing) { 21852 if (lpfc_ncmd->expedite) { 21853 /* Return to expedite pool */ 21854 epd_pool = &phba->epd_pool; 21855 spin_lock_irqsave(&epd_pool->lock, iflag); 21856 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21857 epd_pool->count++; 21858 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21859 return; 21860 } 21861 21862 /* Avoid invalid access if an IO sneaks in and is being rejected 21863 * just _after_ xri pools are destroyed in lpfc_offline. 21864 * Nothing much can be done at this point. 21865 */ 21866 if (!qp->p_multixri_pool) 21867 return; 21868 21869 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21870 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21871 21872 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21873 abts_io_bufs = qp->abts_scsi_io_bufs; 21874 abts_io_bufs += qp->abts_nvme_io_bufs; 21875 21876 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21877 xri_limit = qp->p_multixri_pool->xri_limit; 21878 21879 #ifdef LPFC_MXP_STAT 21880 if (xri_owned <= xri_limit) 21881 qp->p_multixri_pool->below_limit_count++; 21882 else 21883 qp->p_multixri_pool->above_limit_count++; 21884 #endif 21885 21886 /* XRI goes to either public or private free xri pool 21887 * based on watermark and xri_limit 21888 */ 21889 if ((pvt_pool->count < pvt_pool->low_watermark) || 21890 (xri_owned < xri_limit && 21891 pvt_pool->count < pvt_pool->high_watermark)) { 21892 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21893 qp, free_pvt_pool); 21894 list_add_tail(&lpfc_ncmd->list, 21895 &pvt_pool->list); 21896 pvt_pool->count++; 21897 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21898 } else { 21899 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21900 qp, free_pub_pool); 21901 list_add_tail(&lpfc_ncmd->list, 21902 &pbl_pool->list); 21903 pbl_pool->count++; 21904 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21905 } 21906 } else { 21907 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21908 qp, free_xri); 21909 list_add_tail(&lpfc_ncmd->list, 21910 &qp->lpfc_io_buf_list_put); 21911 qp->put_io_bufs++; 21912 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21913 iflag); 21914 } 21915 } 21916 21917 /** 21918 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21919 * @phba: pointer to lpfc hba data structure. 21920 * @qp: pointer to HDW queue 21921 * @pvt_pool: pointer to private pool data structure. 21922 * @ndlp: pointer to lpfc nodelist data structure. 21923 * 21924 * This routine tries to get one free IO buf from private pool. 21925 * 21926 * Return: 21927 * pointer to one free IO buf - if private pool is not empty 21928 * NULL - if private pool is empty 21929 **/ 21930 static struct lpfc_io_buf * 21931 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21932 struct lpfc_sli4_hdw_queue *qp, 21933 struct lpfc_pvt_pool *pvt_pool, 21934 struct lpfc_nodelist *ndlp) 21935 { 21936 struct lpfc_io_buf *lpfc_ncmd; 21937 struct lpfc_io_buf *lpfc_ncmd_next; 21938 unsigned long iflag; 21939 21940 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21941 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21942 &pvt_pool->list, list) { 21943 if (lpfc_test_rrq_active( 21944 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21945 continue; 21946 list_del(&lpfc_ncmd->list); 21947 pvt_pool->count--; 21948 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21949 return lpfc_ncmd; 21950 } 21951 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21952 21953 return NULL; 21954 } 21955 21956 /** 21957 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21958 * @phba: pointer to lpfc hba data structure. 21959 * 21960 * This routine tries to get one free IO buf from expedite pool. 21961 * 21962 * Return: 21963 * pointer to one free IO buf - if expedite pool is not empty 21964 * NULL - if expedite pool is empty 21965 **/ 21966 static struct lpfc_io_buf * 21967 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21968 { 21969 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 21970 struct lpfc_io_buf *lpfc_ncmd_next; 21971 unsigned long iflag; 21972 struct lpfc_epd_pool *epd_pool; 21973 21974 epd_pool = &phba->epd_pool; 21975 21976 spin_lock_irqsave(&epd_pool->lock, iflag); 21977 if (epd_pool->count > 0) { 21978 list_for_each_entry_safe(iter, lpfc_ncmd_next, 21979 &epd_pool->list, list) { 21980 list_del(&iter->list); 21981 epd_pool->count--; 21982 lpfc_ncmd = iter; 21983 break; 21984 } 21985 } 21986 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21987 21988 return lpfc_ncmd; 21989 } 21990 21991 /** 21992 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21993 * @phba: pointer to lpfc hba data structure. 21994 * @ndlp: pointer to lpfc nodelist data structure. 21995 * @hwqid: belong to which HWQ 21996 * @expedite: 1 means this request is urgent. 21997 * 21998 * This routine will do the following actions and then return a pointer to 21999 * one free IO buf. 22000 * 22001 * 1. If private free xri count is empty, move some XRIs from public to 22002 * private pool. 22003 * 2. Get one XRI from private free xri pool. 22004 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22005 * get one free xri from expedite pool. 22006 * 22007 * Note: ndlp is only used on SCSI side for RRQ testing. 22008 * The caller should pass NULL for ndlp on NVME side. 22009 * 22010 * Return: 22011 * pointer to one free IO buf - if private pool is not empty 22012 * NULL - if private pool is empty 22013 **/ 22014 static struct lpfc_io_buf * 22015 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22016 struct lpfc_nodelist *ndlp, 22017 int hwqid, int expedite) 22018 { 22019 struct lpfc_sli4_hdw_queue *qp; 22020 struct lpfc_multixri_pool *multixri_pool; 22021 struct lpfc_pvt_pool *pvt_pool; 22022 struct lpfc_io_buf *lpfc_ncmd; 22023 22024 qp = &phba->sli4_hba.hdwq[hwqid]; 22025 lpfc_ncmd = NULL; 22026 if (!qp) { 22027 lpfc_printf_log(phba, KERN_INFO, 22028 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22029 "5556 NULL qp for hwqid x%x\n", hwqid); 22030 return lpfc_ncmd; 22031 } 22032 multixri_pool = qp->p_multixri_pool; 22033 if (!multixri_pool) { 22034 lpfc_printf_log(phba, KERN_INFO, 22035 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22036 "5557 NULL multixri for hwqid x%x\n", hwqid); 22037 return lpfc_ncmd; 22038 } 22039 pvt_pool = &multixri_pool->pvt_pool; 22040 if (!pvt_pool) { 22041 lpfc_printf_log(phba, KERN_INFO, 22042 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22043 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22044 return lpfc_ncmd; 22045 } 22046 multixri_pool->io_req_count++; 22047 22048 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22049 if (pvt_pool->count == 0) 22050 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22051 22052 /* Get one XRI from private free xri pool */ 22053 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22054 22055 if (lpfc_ncmd) { 22056 lpfc_ncmd->hdwq = qp; 22057 lpfc_ncmd->hdwq_no = hwqid; 22058 } else if (expedite) { 22059 /* If we fail to get one from pvt_pool and this is an expedite 22060 * request, get one free xri from expedite pool. 22061 */ 22062 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22063 } 22064 22065 return lpfc_ncmd; 22066 } 22067 22068 static inline struct lpfc_io_buf * 22069 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22070 { 22071 struct lpfc_sli4_hdw_queue *qp; 22072 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22073 22074 qp = &phba->sli4_hba.hdwq[idx]; 22075 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22076 &qp->lpfc_io_buf_list_get, list) { 22077 if (lpfc_test_rrq_active(phba, ndlp, 22078 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22079 continue; 22080 22081 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22082 continue; 22083 22084 list_del_init(&lpfc_cmd->list); 22085 qp->get_io_bufs--; 22086 lpfc_cmd->hdwq = qp; 22087 lpfc_cmd->hdwq_no = idx; 22088 return lpfc_cmd; 22089 } 22090 return NULL; 22091 } 22092 22093 /** 22094 * lpfc_get_io_buf - Get one IO buffer from free pool 22095 * @phba: The HBA for which this call is being executed. 22096 * @ndlp: pointer to lpfc nodelist data structure. 22097 * @hwqid: belong to which HWQ 22098 * @expedite: 1 means this request is urgent. 22099 * 22100 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22101 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22102 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22103 * 22104 * Note: ndlp is only used on SCSI side for RRQ testing. 22105 * The caller should pass NULL for ndlp on NVME side. 22106 * 22107 * Return codes: 22108 * NULL - Error 22109 * Pointer to lpfc_io_buf - Success 22110 **/ 22111 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22112 struct lpfc_nodelist *ndlp, 22113 u32 hwqid, int expedite) 22114 { 22115 struct lpfc_sli4_hdw_queue *qp; 22116 unsigned long iflag; 22117 struct lpfc_io_buf *lpfc_cmd; 22118 22119 qp = &phba->sli4_hba.hdwq[hwqid]; 22120 lpfc_cmd = NULL; 22121 if (!qp) { 22122 lpfc_printf_log(phba, KERN_WARNING, 22123 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22124 "5555 NULL qp for hwqid x%x\n", hwqid); 22125 return lpfc_cmd; 22126 } 22127 22128 if (phba->cfg_xri_rebalancing) 22129 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22130 phba, ndlp, hwqid, expedite); 22131 else { 22132 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22133 qp, alloc_xri_get); 22134 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22135 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22136 if (!lpfc_cmd) { 22137 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22138 qp, alloc_xri_put); 22139 list_splice(&qp->lpfc_io_buf_list_put, 22140 &qp->lpfc_io_buf_list_get); 22141 qp->get_io_bufs += qp->put_io_bufs; 22142 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22143 qp->put_io_bufs = 0; 22144 spin_unlock(&qp->io_buf_list_put_lock); 22145 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22146 expedite) 22147 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22148 } 22149 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22150 } 22151 22152 return lpfc_cmd; 22153 } 22154 22155 /** 22156 * lpfc_read_object - Retrieve object data from HBA 22157 * @phba: The HBA for which this call is being executed. 22158 * @rdobject: Pathname of object data we want to read. 22159 * @datap: Pointer to where data will be copied to. 22160 * @datasz: size of data area 22161 * 22162 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22163 * The data will be truncated if datasz is not large enough. 22164 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22165 * Returns the actual bytes read from the object. 22166 */ 22167 int 22168 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22169 uint32_t datasz) 22170 { 22171 struct lpfc_mbx_read_object *read_object; 22172 LPFC_MBOXQ_t *mbox; 22173 int rc, length, eof, j, byte_cnt = 0; 22174 uint32_t shdr_status, shdr_add_status; 22175 union lpfc_sli4_cfg_shdr *shdr; 22176 struct lpfc_dmabuf *pcmd; 22177 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22178 22179 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22180 if (!mbox) 22181 return -ENOMEM; 22182 length = (sizeof(struct lpfc_mbx_read_object) - 22183 sizeof(struct lpfc_sli4_cfg_mhdr)); 22184 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22185 LPFC_MBOX_OPCODE_READ_OBJECT, 22186 length, LPFC_SLI4_MBX_EMBED); 22187 read_object = &mbox->u.mqe.un.read_object; 22188 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22189 22190 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22191 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22192 read_object->u.request.rd_object_offset = 0; 22193 read_object->u.request.rd_object_cnt = 1; 22194 22195 memset((void *)read_object->u.request.rd_object_name, 0, 22196 LPFC_OBJ_NAME_SZ); 22197 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22198 for (j = 0; j < strlen(rdobject); j++) 22199 read_object->u.request.rd_object_name[j] = 22200 cpu_to_le32(rd_object_name[j]); 22201 22202 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22203 if (pcmd) 22204 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22205 if (!pcmd || !pcmd->virt) { 22206 kfree(pcmd); 22207 mempool_free(mbox, phba->mbox_mem_pool); 22208 return -ENOMEM; 22209 } 22210 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22211 read_object->u.request.rd_object_hbuf[0].pa_lo = 22212 putPaddrLow(pcmd->phys); 22213 read_object->u.request.rd_object_hbuf[0].pa_hi = 22214 putPaddrHigh(pcmd->phys); 22215 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22216 22217 mbox->vport = phba->pport; 22218 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22219 mbox->ctx_ndlp = NULL; 22220 22221 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22222 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22223 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22224 22225 if (shdr_status == STATUS_FAILED && 22226 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22227 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22228 "4674 No port cfg file in FW.\n"); 22229 byte_cnt = -ENOENT; 22230 } else if (shdr_status || shdr_add_status || rc) { 22231 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22232 "2625 READ_OBJECT mailbox failed with " 22233 "status x%x add_status x%x, mbx status x%x\n", 22234 shdr_status, shdr_add_status, rc); 22235 byte_cnt = -ENXIO; 22236 } else { 22237 /* Success */ 22238 length = read_object->u.response.rd_object_actual_rlen; 22239 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22240 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22241 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22242 length, datasz, eof); 22243 22244 /* Detect the port config file exists but is empty */ 22245 if (!length && eof) { 22246 byte_cnt = 0; 22247 goto exit; 22248 } 22249 22250 byte_cnt = length; 22251 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22252 } 22253 22254 exit: 22255 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22256 * Free the pcmd and then cleanup with the correct routine. 22257 */ 22258 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22259 kfree(pcmd); 22260 lpfc_sli4_mbox_cmd_free(phba, mbox); 22261 return byte_cnt; 22262 } 22263 22264 /** 22265 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22266 * @phba: The HBA for which this call is being executed. 22267 * @lpfc_buf: IO buf structure to append the SGL chunk 22268 * 22269 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22270 * and will allocate an SGL chunk if the pool is empty. 22271 * 22272 * Return codes: 22273 * NULL - Error 22274 * Pointer to sli4_hybrid_sgl - Success 22275 **/ 22276 struct sli4_hybrid_sgl * 22277 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22278 { 22279 struct sli4_hybrid_sgl *list_entry = NULL; 22280 struct sli4_hybrid_sgl *tmp = NULL; 22281 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22282 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22283 struct list_head *buf_list = &hdwq->sgl_list; 22284 unsigned long iflags; 22285 22286 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22287 22288 if (likely(!list_empty(buf_list))) { 22289 /* break off 1 chunk from the sgl_list */ 22290 list_for_each_entry_safe(list_entry, tmp, 22291 buf_list, list_node) { 22292 list_move_tail(&list_entry->list_node, 22293 &lpfc_buf->dma_sgl_xtra_list); 22294 break; 22295 } 22296 } else { 22297 /* allocate more */ 22298 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22299 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22300 cpu_to_node(hdwq->io_wq->chann)); 22301 if (!tmp) { 22302 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22303 "8353 error kmalloc memory for HDWQ " 22304 "%d %s\n", 22305 lpfc_buf->hdwq_no, __func__); 22306 return NULL; 22307 } 22308 22309 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22310 GFP_ATOMIC, &tmp->dma_phys_sgl); 22311 if (!tmp->dma_sgl) { 22312 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22313 "8354 error pool_alloc memory for HDWQ " 22314 "%d %s\n", 22315 lpfc_buf->hdwq_no, __func__); 22316 kfree(tmp); 22317 return NULL; 22318 } 22319 22320 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22321 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22322 } 22323 22324 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22325 struct sli4_hybrid_sgl, 22326 list_node); 22327 22328 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22329 22330 return allocated_sgl; 22331 } 22332 22333 /** 22334 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22335 * @phba: The HBA for which this call is being executed. 22336 * @lpfc_buf: IO buf structure with the SGL chunk 22337 * 22338 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22339 * 22340 * Return codes: 22341 * 0 - Success 22342 * -EINVAL - Error 22343 **/ 22344 int 22345 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22346 { 22347 int rc = 0; 22348 struct sli4_hybrid_sgl *list_entry = NULL; 22349 struct sli4_hybrid_sgl *tmp = NULL; 22350 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22351 struct list_head *buf_list = &hdwq->sgl_list; 22352 unsigned long iflags; 22353 22354 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22355 22356 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22357 list_for_each_entry_safe(list_entry, tmp, 22358 &lpfc_buf->dma_sgl_xtra_list, 22359 list_node) { 22360 list_move_tail(&list_entry->list_node, 22361 buf_list); 22362 } 22363 } else { 22364 rc = -EINVAL; 22365 } 22366 22367 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22368 return rc; 22369 } 22370 22371 /** 22372 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22373 * @phba: phba object 22374 * @hdwq: hdwq to cleanup sgl buff resources on 22375 * 22376 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22377 * 22378 * Return codes: 22379 * None 22380 **/ 22381 void 22382 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22383 struct lpfc_sli4_hdw_queue *hdwq) 22384 { 22385 struct list_head *buf_list = &hdwq->sgl_list; 22386 struct sli4_hybrid_sgl *list_entry = NULL; 22387 struct sli4_hybrid_sgl *tmp = NULL; 22388 unsigned long iflags; 22389 22390 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22391 22392 /* Free sgl pool */ 22393 list_for_each_entry_safe(list_entry, tmp, 22394 buf_list, list_node) { 22395 list_del(&list_entry->list_node); 22396 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22397 list_entry->dma_sgl, 22398 list_entry->dma_phys_sgl); 22399 kfree(list_entry); 22400 } 22401 22402 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22403 } 22404 22405 /** 22406 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22407 * @phba: The HBA for which this call is being executed. 22408 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22409 * 22410 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22411 * and will allocate an CMD/RSP buffer if the pool is empty. 22412 * 22413 * Return codes: 22414 * NULL - Error 22415 * Pointer to fcp_cmd_rsp_buf - Success 22416 **/ 22417 struct fcp_cmd_rsp_buf * 22418 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22419 struct lpfc_io_buf *lpfc_buf) 22420 { 22421 struct fcp_cmd_rsp_buf *list_entry = NULL; 22422 struct fcp_cmd_rsp_buf *tmp = NULL; 22423 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22424 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22425 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22426 unsigned long iflags; 22427 22428 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22429 22430 if (likely(!list_empty(buf_list))) { 22431 /* break off 1 chunk from the list */ 22432 list_for_each_entry_safe(list_entry, tmp, 22433 buf_list, 22434 list_node) { 22435 list_move_tail(&list_entry->list_node, 22436 &lpfc_buf->dma_cmd_rsp_list); 22437 break; 22438 } 22439 } else { 22440 /* allocate more */ 22441 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22442 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22443 cpu_to_node(hdwq->io_wq->chann)); 22444 if (!tmp) { 22445 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22446 "8355 error kmalloc memory for HDWQ " 22447 "%d %s\n", 22448 lpfc_buf->hdwq_no, __func__); 22449 return NULL; 22450 } 22451 22452 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22453 GFP_ATOMIC, 22454 &tmp->fcp_cmd_rsp_dma_handle); 22455 22456 if (!tmp->fcp_cmnd) { 22457 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22458 "8356 error pool_alloc memory for HDWQ " 22459 "%d %s\n", 22460 lpfc_buf->hdwq_no, __func__); 22461 kfree(tmp); 22462 return NULL; 22463 } 22464 22465 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22466 sizeof(struct fcp_cmnd)); 22467 22468 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22469 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22470 } 22471 22472 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22473 struct fcp_cmd_rsp_buf, 22474 list_node); 22475 22476 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22477 22478 return allocated_buf; 22479 } 22480 22481 /** 22482 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22483 * @phba: The HBA for which this call is being executed. 22484 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22485 * 22486 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22487 * 22488 * Return codes: 22489 * 0 - Success 22490 * -EINVAL - Error 22491 **/ 22492 int 22493 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22494 struct lpfc_io_buf *lpfc_buf) 22495 { 22496 int rc = 0; 22497 struct fcp_cmd_rsp_buf *list_entry = NULL; 22498 struct fcp_cmd_rsp_buf *tmp = NULL; 22499 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22500 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22501 unsigned long iflags; 22502 22503 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22504 22505 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22506 list_for_each_entry_safe(list_entry, tmp, 22507 &lpfc_buf->dma_cmd_rsp_list, 22508 list_node) { 22509 list_move_tail(&list_entry->list_node, 22510 buf_list); 22511 } 22512 } else { 22513 rc = -EINVAL; 22514 } 22515 22516 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22517 return rc; 22518 } 22519 22520 /** 22521 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22522 * @phba: phba object 22523 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22524 * 22525 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22526 * 22527 * Return codes: 22528 * None 22529 **/ 22530 void 22531 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22532 struct lpfc_sli4_hdw_queue *hdwq) 22533 { 22534 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22535 struct fcp_cmd_rsp_buf *list_entry = NULL; 22536 struct fcp_cmd_rsp_buf *tmp = NULL; 22537 unsigned long iflags; 22538 22539 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22540 22541 /* Free cmd_rsp buf pool */ 22542 list_for_each_entry_safe(list_entry, tmp, 22543 buf_list, 22544 list_node) { 22545 list_del(&list_entry->list_node); 22546 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22547 list_entry->fcp_cmnd, 22548 list_entry->fcp_cmd_rsp_dma_handle); 22549 kfree(list_entry); 22550 } 22551 22552 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22553 } 22554 22555 /** 22556 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22557 * @phba: phba object 22558 * @job: job entry of the command to be posted. 22559 * 22560 * Fill the common fields of the wqe for each of the command. 22561 * 22562 * Return codes: 22563 * None 22564 **/ 22565 void 22566 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22567 { 22568 u8 cmnd; 22569 u32 *pcmd; 22570 u32 if_type = 0; 22571 u32 fip, abort_tag; 22572 struct lpfc_nodelist *ndlp = NULL; 22573 union lpfc_wqe128 *wqe = &job->wqe; 22574 u8 command_type = ELS_COMMAND_NON_FIP; 22575 22576 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22577 /* The fcp commands will set command type */ 22578 if (job->cmd_flag & LPFC_IO_FCP) 22579 command_type = FCP_COMMAND; 22580 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22581 command_type = ELS_COMMAND_FIP; 22582 else 22583 command_type = ELS_COMMAND_NON_FIP; 22584 22585 abort_tag = job->iotag; 22586 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22587 22588 switch (cmnd) { 22589 case CMD_ELS_REQUEST64_WQE: 22590 ndlp = job->ndlp; 22591 22592 if_type = bf_get(lpfc_sli_intf_if_type, 22593 &phba->sli4_hba.sli_intf); 22594 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22595 pcmd = (u32 *)job->cmd_dmabuf->virt; 22596 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22597 *pcmd == ELS_CMD_SCR || 22598 *pcmd == ELS_CMD_RDF || 22599 *pcmd == ELS_CMD_EDC || 22600 *pcmd == ELS_CMD_RSCN_XMT || 22601 *pcmd == ELS_CMD_FDISC || 22602 *pcmd == ELS_CMD_LOGO || 22603 *pcmd == ELS_CMD_QFPA || 22604 *pcmd == ELS_CMD_UVEM || 22605 *pcmd == ELS_CMD_PLOGI)) { 22606 bf_set(els_req64_sp, &wqe->els_req, 1); 22607 bf_set(els_req64_sid, &wqe->els_req, 22608 job->vport->fc_myDID); 22609 22610 if ((*pcmd == ELS_CMD_FLOGI) && 22611 !(phba->fc_topology == 22612 LPFC_TOPOLOGY_LOOP)) 22613 bf_set(els_req64_sid, &wqe->els_req, 0); 22614 22615 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22616 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22617 phba->vpi_ids[job->vport->vpi]); 22618 } else if (pcmd) { 22619 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22620 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22621 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22622 } 22623 } 22624 22625 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22626 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22627 22628 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22629 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22630 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22631 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22632 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22633 break; 22634 case CMD_XMIT_ELS_RSP64_WQE: 22635 ndlp = job->ndlp; 22636 22637 /* word4 */ 22638 wqe->xmit_els_rsp.word4 = 0; 22639 22640 if_type = bf_get(lpfc_sli_intf_if_type, 22641 &phba->sli4_hba.sli_intf); 22642 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22643 if (job->vport->fc_flag & FC_PT2PT) { 22644 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22645 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22646 job->vport->fc_myDID); 22647 if (job->vport->fc_myDID == Fabric_DID) { 22648 bf_set(wqe_els_did, 22649 &wqe->xmit_els_rsp.wqe_dest, 0); 22650 } 22651 } 22652 } 22653 22654 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22655 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22656 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22657 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22658 LPFC_WQE_LENLOC_WORD3); 22659 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22660 22661 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22662 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22663 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22664 job->vport->fc_myDID); 22665 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22666 } 22667 22668 if (phba->sli_rev == LPFC_SLI_REV4) { 22669 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22670 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22671 22672 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22673 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22674 phba->vpi_ids[job->vport->vpi]); 22675 } 22676 command_type = OTHER_COMMAND; 22677 break; 22678 case CMD_GEN_REQUEST64_WQE: 22679 /* Word 10 */ 22680 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22681 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22682 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22683 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22684 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22685 command_type = OTHER_COMMAND; 22686 break; 22687 case CMD_XMIT_SEQUENCE64_WQE: 22688 if (phba->link_flag & LS_LOOPBACK_MODE) 22689 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22690 22691 wqe->xmit_sequence.rsvd3 = 0; 22692 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22693 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22694 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22695 LPFC_WQE_IOD_WRITE); 22696 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22697 LPFC_WQE_LENLOC_WORD12); 22698 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22699 command_type = OTHER_COMMAND; 22700 break; 22701 case CMD_XMIT_BLS_RSP64_WQE: 22702 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22703 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22704 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22705 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22706 phba->vpi_ids[phba->pport->vpi]); 22707 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22708 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22709 LPFC_WQE_LENLOC_NONE); 22710 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22711 command_type = OTHER_COMMAND; 22712 break; 22713 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22714 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22715 case CMD_SEND_FRAME: /* mds loopback */ 22716 /* cases already formatted for sli4 wqe - no chgs necessary */ 22717 return; 22718 default: 22719 dump_stack(); 22720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22721 "6207 Invalid command 0x%x\n", 22722 cmnd); 22723 break; 22724 } 22725 22726 wqe->generic.wqe_com.abort_tag = abort_tag; 22727 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22728 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22729 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22730 } 22731