1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include <linux/nvme-fc-driver.h> 43 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_nvmet.h" 54 #include "lpfc_crtn.h" 55 #include "lpfc_logmsg.h" 56 #include "lpfc_compat.h" 57 #include "lpfc_debugfs.h" 58 #include "lpfc_vport.h" 59 #include "lpfc_version.h" 60 61 /* There are only four IOCB completion types. */ 62 typedef enum _lpfc_iocb_type { 63 LPFC_UNKNOWN_IOCB, 64 LPFC_UNSOL_IOCB, 65 LPFC_SOL_IOCB, 66 LPFC_ABORT_IOCB 67 } lpfc_iocb_type; 68 69 70 /* Provide function prototypes local to this module. */ 71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint32_t); 73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 74 uint8_t *, uint32_t *); 75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 76 struct lpfc_iocbq *); 77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 78 struct hbq_dmabuf *); 79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 80 struct hbq_dmabuf *dmabuf); 81 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *, 82 struct lpfc_cqe *); 83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 84 int); 85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 86 struct lpfc_eqe *eqe, uint32_t qidx); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, 90 struct lpfc_sli_ring *pring, 91 struct lpfc_iocbq *cmdiocb); 92 93 static IOCB_t * 94 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 95 { 96 return &iocbq->iocb; 97 } 98 99 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 100 /** 101 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 102 * @srcp: Source memory pointer. 103 * @destp: Destination memory pointer. 104 * @cnt: Number of words required to be copied. 105 * Must be a multiple of sizeof(uint64_t) 106 * 107 * This function is used for copying data between driver memory 108 * and the SLI WQ. This function also changes the endianness 109 * of each word if native endianness is different from SLI 110 * endianness. This function can be called with or without 111 * lock. 112 **/ 113 void 114 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 115 { 116 uint64_t *src = srcp; 117 uint64_t *dest = destp; 118 int i; 119 120 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 121 *dest++ = *src++; 122 } 123 #else 124 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 125 #endif 126 127 /** 128 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 129 * @q: The Work Queue to operate on. 130 * @wqe: The work Queue Entry to put on the Work queue. 131 * 132 * This routine will copy the contents of @wqe to the next available entry on 133 * the @q. This function will then ring the Work Queue Doorbell to signal the 134 * HBA to start processing the Work Queue Entry. This function returns 0 if 135 * successful. If no entries are available on @q then this function will return 136 * -ENOMEM. 137 * The caller is expected to hold the hbalock when calling this routine. 138 **/ 139 static int 140 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 141 { 142 union lpfc_wqe *temp_wqe; 143 struct lpfc_register doorbell; 144 uint32_t host_index; 145 uint32_t idx; 146 uint32_t i = 0; 147 uint8_t *tmp; 148 u32 if_type; 149 150 /* sanity check on queue memory */ 151 if (unlikely(!q)) 152 return -ENOMEM; 153 temp_wqe = q->qe[q->host_index].wqe; 154 155 /* If the host has not yet processed the next entry then we are done */ 156 idx = ((q->host_index + 1) % q->entry_count); 157 if (idx == q->hba_index) { 158 q->WQ_overflow++; 159 return -EBUSY; 160 } 161 q->WQ_posted++; 162 /* set consumption flag every once in a while */ 163 if (!((q->host_index + 1) % q->entry_repost)) 164 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 165 else 166 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 167 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 168 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 169 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 170 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 171 /* write to DPP aperture taking advatage of Combined Writes */ 172 tmp = (uint8_t *)temp_wqe; 173 #ifdef __raw_writeq 174 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 175 __raw_writeq(*((uint64_t *)(tmp + i)), 176 q->dpp_regaddr + i); 177 #else 178 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 179 __raw_writel(*((uint32_t *)(tmp + i)), 180 q->dpp_regaddr + i); 181 #endif 182 } 183 /* ensure WQE bcopy and DPP flushed before doorbell write */ 184 wmb(); 185 186 /* Update the host index before invoking device */ 187 host_index = q->host_index; 188 189 q->host_index = idx; 190 191 /* Ring Doorbell */ 192 doorbell.word0 = 0; 193 if (q->db_format == LPFC_DB_LIST_FORMAT) { 194 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 195 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 196 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 197 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 198 q->dpp_id); 199 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 200 q->queue_id); 201 } else { 202 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 203 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 204 205 /* Leave bits <23:16> clear for if_type 6 dpp */ 206 if_type = bf_get(lpfc_sli_intf_if_type, 207 &q->phba->sli4_hba.sli_intf); 208 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 209 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 210 host_index); 211 } 212 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 213 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 214 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 215 } else { 216 return -EINVAL; 217 } 218 writel(doorbell.word0, q->db_regaddr); 219 220 return 0; 221 } 222 223 /** 224 * lpfc_sli4_wq_release - Updates internal hba index for WQ 225 * @q: The Work Queue to operate on. 226 * @index: The index to advance the hba index to. 227 * 228 * This routine will update the HBA index of a queue to reflect consumption of 229 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 230 * an entry the host calls this function to update the queue's internal 231 * pointers. This routine returns the number of entries that were consumed by 232 * the HBA. 233 **/ 234 static uint32_t 235 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 236 { 237 uint32_t released = 0; 238 239 /* sanity check on queue memory */ 240 if (unlikely(!q)) 241 return 0; 242 243 if (q->hba_index == index) 244 return 0; 245 do { 246 q->hba_index = ((q->hba_index + 1) % q->entry_count); 247 released++; 248 } while (q->hba_index != index); 249 return released; 250 } 251 252 /** 253 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 254 * @q: The Mailbox Queue to operate on. 255 * @wqe: The Mailbox Queue Entry to put on the Work queue. 256 * 257 * This routine will copy the contents of @mqe to the next available entry on 258 * the @q. This function will then ring the Work Queue Doorbell to signal the 259 * HBA to start processing the Work Queue Entry. This function returns 0 if 260 * successful. If no entries are available on @q then this function will return 261 * -ENOMEM. 262 * The caller is expected to hold the hbalock when calling this routine. 263 **/ 264 static uint32_t 265 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 266 { 267 struct lpfc_mqe *temp_mqe; 268 struct lpfc_register doorbell; 269 270 /* sanity check on queue memory */ 271 if (unlikely(!q)) 272 return -ENOMEM; 273 temp_mqe = q->qe[q->host_index].mqe; 274 275 /* If the host has not yet processed the next entry then we are done */ 276 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 277 return -ENOMEM; 278 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 279 /* Save off the mailbox pointer for completion */ 280 q->phba->mbox = (MAILBOX_t *)temp_mqe; 281 282 /* Update the host index before invoking device */ 283 q->host_index = ((q->host_index + 1) % q->entry_count); 284 285 /* Ring Doorbell */ 286 doorbell.word0 = 0; 287 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 288 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 289 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 290 return 0; 291 } 292 293 /** 294 * lpfc_sli4_mq_release - Updates internal hba index for MQ 295 * @q: The Mailbox Queue to operate on. 296 * 297 * This routine will update the HBA index of a queue to reflect consumption of 298 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 299 * an entry the host calls this function to update the queue's internal 300 * pointers. This routine returns the number of entries that were consumed by 301 * the HBA. 302 **/ 303 static uint32_t 304 lpfc_sli4_mq_release(struct lpfc_queue *q) 305 { 306 /* sanity check on queue memory */ 307 if (unlikely(!q)) 308 return 0; 309 310 /* Clear the mailbox pointer for completion */ 311 q->phba->mbox = NULL; 312 q->hba_index = ((q->hba_index + 1) % q->entry_count); 313 return 1; 314 } 315 316 /** 317 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 318 * @q: The Event Queue to get the first valid EQE from 319 * 320 * This routine will get the first valid Event Queue Entry from @q, update 321 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 322 * the Queue (no more work to do), or the Queue is full of EQEs that have been 323 * processed, but not popped back to the HBA then this routine will return NULL. 324 **/ 325 static struct lpfc_eqe * 326 lpfc_sli4_eq_get(struct lpfc_queue *q) 327 { 328 struct lpfc_hba *phba; 329 struct lpfc_eqe *eqe; 330 uint32_t idx; 331 332 /* sanity check on queue memory */ 333 if (unlikely(!q)) 334 return NULL; 335 phba = q->phba; 336 eqe = q->qe[q->hba_index].eqe; 337 338 /* If the next EQE is not valid then we are done */ 339 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 340 return NULL; 341 /* If the host has not yet processed the next entry then we are done */ 342 idx = ((q->hba_index + 1) % q->entry_count); 343 if (idx == q->host_index) 344 return NULL; 345 346 q->hba_index = idx; 347 /* if the index wrapped around, toggle the valid bit */ 348 if (phba->sli4_hba.pc_sli4_params.eqav && !q->hba_index) 349 q->qe_valid = (q->qe_valid) ? 0 : 1; 350 351 352 /* 353 * insert barrier for instruction interlock : data from the hardware 354 * must have the valid bit checked before it can be copied and acted 355 * upon. Speculative instructions were allowing a bcopy at the start 356 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 357 * after our return, to copy data before the valid bit check above 358 * was done. As such, some of the copied data was stale. The barrier 359 * ensures the check is before any data is copied. 360 */ 361 mb(); 362 return eqe; 363 } 364 365 /** 366 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 367 * @q: The Event Queue to disable interrupts 368 * 369 **/ 370 inline void 371 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 372 { 373 struct lpfc_register doorbell; 374 375 doorbell.word0 = 0; 376 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 377 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 378 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 379 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 380 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 381 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 382 } 383 384 /** 385 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 386 * @q: The Event Queue to disable interrupts 387 * 388 **/ 389 inline void 390 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 391 { 392 struct lpfc_register doorbell; 393 394 doorbell.word0 = 0; 395 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 396 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 397 } 398 399 /** 400 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 401 * @q: The Event Queue that the host has completed processing for. 402 * @arm: Indicates whether the host wants to arms this CQ. 403 * 404 * This routine will mark all Event Queue Entries on @q, from the last 405 * known completed entry to the last entry that was processed, as completed 406 * by clearing the valid bit for each completion queue entry. Then it will 407 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 408 * The internal host index in the @q will be updated by this routine to indicate 409 * that the host has finished processing the entries. The @arm parameter 410 * indicates that the queue should be rearmed when ringing the doorbell. 411 * 412 * This function will return the number of EQEs that were popped. 413 **/ 414 uint32_t 415 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 416 { 417 uint32_t released = 0; 418 struct lpfc_hba *phba; 419 struct lpfc_eqe *temp_eqe; 420 struct lpfc_register doorbell; 421 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 phba = q->phba; 426 427 /* while there are valid entries */ 428 while (q->hba_index != q->host_index) { 429 if (!phba->sli4_hba.pc_sli4_params.eqav) { 430 temp_eqe = q->qe[q->host_index].eqe; 431 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 432 } 433 released++; 434 q->host_index = ((q->host_index + 1) % q->entry_count); 435 } 436 if (unlikely(released == 0 && !arm)) 437 return 0; 438 439 /* ring doorbell for number popped */ 440 doorbell.word0 = 0; 441 if (arm) { 442 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 443 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 444 } 445 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 446 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 447 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 448 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 449 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 450 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 451 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 452 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 453 readl(q->phba->sli4_hba.EQDBregaddr); 454 return released; 455 } 456 457 /** 458 * lpfc_sli4_if6_eq_release - Indicates the host has finished processing an EQ 459 * @q: The Event Queue that the host has completed processing for. 460 * @arm: Indicates whether the host wants to arms this CQ. 461 * 462 * This routine will mark all Event Queue Entries on @q, from the last 463 * known completed entry to the last entry that was processed, as completed 464 * by clearing the valid bit for each completion queue entry. Then it will 465 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 466 * The internal host index in the @q will be updated by this routine to indicate 467 * that the host has finished processing the entries. The @arm parameter 468 * indicates that the queue should be rearmed when ringing the doorbell. 469 * 470 * This function will return the number of EQEs that were popped. 471 **/ 472 uint32_t 473 lpfc_sli4_if6_eq_release(struct lpfc_queue *q, bool arm) 474 { 475 uint32_t released = 0; 476 struct lpfc_hba *phba; 477 struct lpfc_eqe *temp_eqe; 478 struct lpfc_register doorbell; 479 480 /* sanity check on queue memory */ 481 if (unlikely(!q)) 482 return 0; 483 phba = q->phba; 484 485 /* while there are valid entries */ 486 while (q->hba_index != q->host_index) { 487 if (!phba->sli4_hba.pc_sli4_params.eqav) { 488 temp_eqe = q->qe[q->host_index].eqe; 489 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 490 } 491 released++; 492 q->host_index = ((q->host_index + 1) % q->entry_count); 493 } 494 if (unlikely(released == 0 && !arm)) 495 return 0; 496 497 /* ring doorbell for number popped */ 498 doorbell.word0 = 0; 499 if (arm) 500 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 501 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, released); 502 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 503 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 504 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 505 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 506 readl(q->phba->sli4_hba.EQDBregaddr); 507 return released; 508 } 509 510 /** 511 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 512 * @q: The Completion Queue to get the first valid CQE from 513 * 514 * This routine will get the first valid Completion Queue Entry from @q, update 515 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 516 * the Queue (no more work to do), or the Queue is full of CQEs that have been 517 * processed, but not popped back to the HBA then this routine will return NULL. 518 **/ 519 static struct lpfc_cqe * 520 lpfc_sli4_cq_get(struct lpfc_queue *q) 521 { 522 struct lpfc_hba *phba; 523 struct lpfc_cqe *cqe; 524 uint32_t idx; 525 526 /* sanity check on queue memory */ 527 if (unlikely(!q)) 528 return NULL; 529 phba = q->phba; 530 cqe = q->qe[q->hba_index].cqe; 531 532 /* If the next CQE is not valid then we are done */ 533 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 534 return NULL; 535 /* If the host has not yet processed the next entry then we are done */ 536 idx = ((q->hba_index + 1) % q->entry_count); 537 if (idx == q->host_index) 538 return NULL; 539 540 q->hba_index = idx; 541 /* if the index wrapped around, toggle the valid bit */ 542 if (phba->sli4_hba.pc_sli4_params.cqav && !q->hba_index) 543 q->qe_valid = (q->qe_valid) ? 0 : 1; 544 545 /* 546 * insert barrier for instruction interlock : data from the hardware 547 * must have the valid bit checked before it can be copied and acted 548 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 549 * instructions allowing action on content before valid bit checked, 550 * add barrier here as well. May not be needed as "content" is a 551 * single 32-bit entity here (vs multi word structure for cq's). 552 */ 553 mb(); 554 return cqe; 555 } 556 557 /** 558 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 559 * @q: The Completion Queue that the host has completed processing for. 560 * @arm: Indicates whether the host wants to arms this CQ. 561 * 562 * This routine will mark all Completion queue entries on @q, from the last 563 * known completed entry to the last entry that was processed, as completed 564 * by clearing the valid bit for each completion queue entry. Then it will 565 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 566 * The internal host index in the @q will be updated by this routine to indicate 567 * that the host has finished processing the entries. The @arm parameter 568 * indicates that the queue should be rearmed when ringing the doorbell. 569 * 570 * This function will return the number of CQEs that were released. 571 **/ 572 uint32_t 573 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 574 { 575 uint32_t released = 0; 576 struct lpfc_hba *phba; 577 struct lpfc_cqe *temp_qe; 578 struct lpfc_register doorbell; 579 580 /* sanity check on queue memory */ 581 if (unlikely(!q)) 582 return 0; 583 phba = q->phba; 584 585 /* while there are valid entries */ 586 while (q->hba_index != q->host_index) { 587 if (!phba->sli4_hba.pc_sli4_params.cqav) { 588 temp_qe = q->qe[q->host_index].cqe; 589 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 590 } 591 released++; 592 q->host_index = ((q->host_index + 1) % q->entry_count); 593 } 594 if (unlikely(released == 0 && !arm)) 595 return 0; 596 597 /* ring doorbell for number popped */ 598 doorbell.word0 = 0; 599 if (arm) 600 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 601 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 602 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 603 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 604 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 605 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 606 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 607 return released; 608 } 609 610 /** 611 * lpfc_sli4_if6_cq_release - Indicates the host has finished processing a CQ 612 * @q: The Completion Queue that the host has completed processing for. 613 * @arm: Indicates whether the host wants to arms this CQ. 614 * 615 * This routine will mark all Completion queue entries on @q, from the last 616 * known completed entry to the last entry that was processed, as completed 617 * by clearing the valid bit for each completion queue entry. Then it will 618 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 619 * The internal host index in the @q will be updated by this routine to indicate 620 * that the host has finished processing the entries. The @arm parameter 621 * indicates that the queue should be rearmed when ringing the doorbell. 622 * 623 * This function will return the number of CQEs that were released. 624 **/ 625 uint32_t 626 lpfc_sli4_if6_cq_release(struct lpfc_queue *q, bool arm) 627 { 628 uint32_t released = 0; 629 struct lpfc_hba *phba; 630 struct lpfc_cqe *temp_qe; 631 struct lpfc_register doorbell; 632 633 /* sanity check on queue memory */ 634 if (unlikely(!q)) 635 return 0; 636 phba = q->phba; 637 638 /* while there are valid entries */ 639 while (q->hba_index != q->host_index) { 640 if (!phba->sli4_hba.pc_sli4_params.cqav) { 641 temp_qe = q->qe[q->host_index].cqe; 642 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 643 } 644 released++; 645 q->host_index = ((q->host_index + 1) % q->entry_count); 646 } 647 if (unlikely(released == 0 && !arm)) 648 return 0; 649 650 /* ring doorbell for number popped */ 651 doorbell.word0 = 0; 652 if (arm) 653 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 654 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, released); 655 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 656 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 657 return released; 658 } 659 660 /** 661 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 662 * @q: The Header Receive Queue to operate on. 663 * @wqe: The Receive Queue Entry to put on the Receive queue. 664 * 665 * This routine will copy the contents of @wqe to the next available entry on 666 * the @q. This function will then ring the Receive Queue Doorbell to signal the 667 * HBA to start processing the Receive Queue Entry. This function returns the 668 * index that the rqe was copied to if successful. If no entries are available 669 * on @q then this function will return -ENOMEM. 670 * The caller is expected to hold the hbalock when calling this routine. 671 **/ 672 int 673 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 674 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 675 { 676 struct lpfc_rqe *temp_hrqe; 677 struct lpfc_rqe *temp_drqe; 678 struct lpfc_register doorbell; 679 int hq_put_index; 680 int dq_put_index; 681 682 /* sanity check on queue memory */ 683 if (unlikely(!hq) || unlikely(!dq)) 684 return -ENOMEM; 685 hq_put_index = hq->host_index; 686 dq_put_index = dq->host_index; 687 temp_hrqe = hq->qe[hq_put_index].rqe; 688 temp_drqe = dq->qe[dq_put_index].rqe; 689 690 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 691 return -EINVAL; 692 if (hq_put_index != dq_put_index) 693 return -EINVAL; 694 /* If the host has not yet processed the next entry then we are done */ 695 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 696 return -EBUSY; 697 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 698 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 699 700 /* Update the host index to point to the next slot */ 701 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 702 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 703 hq->RQ_buf_posted++; 704 705 /* Ring The Header Receive Queue Doorbell */ 706 if (!(hq->host_index % hq->entry_repost)) { 707 doorbell.word0 = 0; 708 if (hq->db_format == LPFC_DB_RING_FORMAT) { 709 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 710 hq->entry_repost); 711 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 712 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 713 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 714 hq->entry_repost); 715 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 716 hq->host_index); 717 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 718 } else { 719 return -EINVAL; 720 } 721 writel(doorbell.word0, hq->db_regaddr); 722 } 723 return hq_put_index; 724 } 725 726 /** 727 * lpfc_sli4_rq_release - Updates internal hba index for RQ 728 * @q: The Header Receive Queue to operate on. 729 * 730 * This routine will update the HBA index of a queue to reflect consumption of 731 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 732 * consumed an entry the host calls this function to update the queue's 733 * internal pointers. This routine returns the number of entries that were 734 * consumed by the HBA. 735 **/ 736 static uint32_t 737 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 738 { 739 /* sanity check on queue memory */ 740 if (unlikely(!hq) || unlikely(!dq)) 741 return 0; 742 743 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 744 return 0; 745 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 746 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 747 return 1; 748 } 749 750 /** 751 * lpfc_cmd_iocb - Get next command iocb entry in the ring 752 * @phba: Pointer to HBA context object. 753 * @pring: Pointer to driver SLI ring object. 754 * 755 * This function returns pointer to next command iocb entry 756 * in the command ring. The caller must hold hbalock to prevent 757 * other threads consume the next command iocb. 758 * SLI-2/SLI-3 provide different sized iocbs. 759 **/ 760 static inline IOCB_t * 761 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 762 { 763 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 764 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 765 } 766 767 /** 768 * lpfc_resp_iocb - Get next response iocb entry in the ring 769 * @phba: Pointer to HBA context object. 770 * @pring: Pointer to driver SLI ring object. 771 * 772 * This function returns pointer to next response iocb entry 773 * in the response ring. The caller must hold hbalock to make sure 774 * that no other thread consume the next response iocb. 775 * SLI-2/SLI-3 provide different sized iocbs. 776 **/ 777 static inline IOCB_t * 778 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 779 { 780 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 781 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 782 } 783 784 /** 785 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 786 * @phba: Pointer to HBA context object. 787 * 788 * This function is called with hbalock held. This function 789 * allocates a new driver iocb object from the iocb pool. If the 790 * allocation is successful, it returns pointer to the newly 791 * allocated iocb object else it returns NULL. 792 **/ 793 struct lpfc_iocbq * 794 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 795 { 796 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 797 struct lpfc_iocbq * iocbq = NULL; 798 799 lockdep_assert_held(&phba->hbalock); 800 801 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 802 if (iocbq) 803 phba->iocb_cnt++; 804 if (phba->iocb_cnt > phba->iocb_max) 805 phba->iocb_max = phba->iocb_cnt; 806 return iocbq; 807 } 808 809 /** 810 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 811 * @phba: Pointer to HBA context object. 812 * @xritag: XRI value. 813 * 814 * This function clears the sglq pointer from the array of acive 815 * sglq's. The xritag that is passed in is used to index into the 816 * array. Before the xritag can be used it needs to be adjusted 817 * by subtracting the xribase. 818 * 819 * Returns sglq ponter = success, NULL = Failure. 820 **/ 821 struct lpfc_sglq * 822 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 823 { 824 struct lpfc_sglq *sglq; 825 826 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 827 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 828 return sglq; 829 } 830 831 /** 832 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 833 * @phba: Pointer to HBA context object. 834 * @xritag: XRI value. 835 * 836 * This function returns the sglq pointer from the array of acive 837 * sglq's. The xritag that is passed in is used to index into the 838 * array. Before the xritag can be used it needs to be adjusted 839 * by subtracting the xribase. 840 * 841 * Returns sglq ponter = success, NULL = Failure. 842 **/ 843 struct lpfc_sglq * 844 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 845 { 846 struct lpfc_sglq *sglq; 847 848 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 849 return sglq; 850 } 851 852 /** 853 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 854 * @phba: Pointer to HBA context object. 855 * @xritag: xri used in this exchange. 856 * @rrq: The RRQ to be cleared. 857 * 858 **/ 859 void 860 lpfc_clr_rrq_active(struct lpfc_hba *phba, 861 uint16_t xritag, 862 struct lpfc_node_rrq *rrq) 863 { 864 struct lpfc_nodelist *ndlp = NULL; 865 866 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 867 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 868 869 /* The target DID could have been swapped (cable swap) 870 * we should use the ndlp from the findnode if it is 871 * available. 872 */ 873 if ((!ndlp) && rrq->ndlp) 874 ndlp = rrq->ndlp; 875 876 if (!ndlp) 877 goto out; 878 879 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 880 rrq->send_rrq = 0; 881 rrq->xritag = 0; 882 rrq->rrq_stop_time = 0; 883 } 884 out: 885 mempool_free(rrq, phba->rrq_pool); 886 } 887 888 /** 889 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 890 * @phba: Pointer to HBA context object. 891 * 892 * This function is called with hbalock held. This function 893 * Checks if stop_time (ratov from setting rrq active) has 894 * been reached, if it has and the send_rrq flag is set then 895 * it will call lpfc_send_rrq. If the send_rrq flag is not set 896 * then it will just call the routine to clear the rrq and 897 * free the rrq resource. 898 * The timer is set to the next rrq that is going to expire before 899 * leaving the routine. 900 * 901 **/ 902 void 903 lpfc_handle_rrq_active(struct lpfc_hba *phba) 904 { 905 struct lpfc_node_rrq *rrq; 906 struct lpfc_node_rrq *nextrrq; 907 unsigned long next_time; 908 unsigned long iflags; 909 LIST_HEAD(send_rrq); 910 911 spin_lock_irqsave(&phba->hbalock, iflags); 912 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 913 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 914 list_for_each_entry_safe(rrq, nextrrq, 915 &phba->active_rrq_list, list) { 916 if (time_after(jiffies, rrq->rrq_stop_time)) 917 list_move(&rrq->list, &send_rrq); 918 else if (time_before(rrq->rrq_stop_time, next_time)) 919 next_time = rrq->rrq_stop_time; 920 } 921 spin_unlock_irqrestore(&phba->hbalock, iflags); 922 if ((!list_empty(&phba->active_rrq_list)) && 923 (!(phba->pport->load_flag & FC_UNLOADING))) 924 mod_timer(&phba->rrq_tmr, next_time); 925 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 926 list_del(&rrq->list); 927 if (!rrq->send_rrq) 928 /* this call will free the rrq */ 929 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 930 else if (lpfc_send_rrq(phba, rrq)) { 931 /* if we send the rrq then the completion handler 932 * will clear the bit in the xribitmap. 933 */ 934 lpfc_clr_rrq_active(phba, rrq->xritag, 935 rrq); 936 } 937 } 938 } 939 940 /** 941 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 942 * @vport: Pointer to vport context object. 943 * @xri: The xri used in the exchange. 944 * @did: The targets DID for this exchange. 945 * 946 * returns NULL = rrq not found in the phba->active_rrq_list. 947 * rrq = rrq for this xri and target. 948 **/ 949 struct lpfc_node_rrq * 950 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 951 { 952 struct lpfc_hba *phba = vport->phba; 953 struct lpfc_node_rrq *rrq; 954 struct lpfc_node_rrq *nextrrq; 955 unsigned long iflags; 956 957 if (phba->sli_rev != LPFC_SLI_REV4) 958 return NULL; 959 spin_lock_irqsave(&phba->hbalock, iflags); 960 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 961 if (rrq->vport == vport && rrq->xritag == xri && 962 rrq->nlp_DID == did){ 963 list_del(&rrq->list); 964 spin_unlock_irqrestore(&phba->hbalock, iflags); 965 return rrq; 966 } 967 } 968 spin_unlock_irqrestore(&phba->hbalock, iflags); 969 return NULL; 970 } 971 972 /** 973 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 974 * @vport: Pointer to vport context object. 975 * @ndlp: Pointer to the lpfc_node_list structure. 976 * If ndlp is NULL Remove all active RRQs for this vport from the 977 * phba->active_rrq_list and clear the rrq. 978 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 979 **/ 980 void 981 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 982 983 { 984 struct lpfc_hba *phba = vport->phba; 985 struct lpfc_node_rrq *rrq; 986 struct lpfc_node_rrq *nextrrq; 987 unsigned long iflags; 988 LIST_HEAD(rrq_list); 989 990 if (phba->sli_rev != LPFC_SLI_REV4) 991 return; 992 if (!ndlp) { 993 lpfc_sli4_vport_delete_els_xri_aborted(vport); 994 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 995 } 996 spin_lock_irqsave(&phba->hbalock, iflags); 997 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 998 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 999 list_move(&rrq->list, &rrq_list); 1000 spin_unlock_irqrestore(&phba->hbalock, iflags); 1001 1002 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1003 list_del(&rrq->list); 1004 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1005 } 1006 } 1007 1008 /** 1009 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1010 * @phba: Pointer to HBA context object. 1011 * @ndlp: Targets nodelist pointer for this exchange. 1012 * @xritag the xri in the bitmap to test. 1013 * 1014 * This function is called with hbalock held. This function 1015 * returns 0 = rrq not active for this xri 1016 * 1 = rrq is valid for this xri. 1017 **/ 1018 int 1019 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1020 uint16_t xritag) 1021 { 1022 lockdep_assert_held(&phba->hbalock); 1023 if (!ndlp) 1024 return 0; 1025 if (!ndlp->active_rrqs_xri_bitmap) 1026 return 0; 1027 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1028 return 1; 1029 else 1030 return 0; 1031 } 1032 1033 /** 1034 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1035 * @phba: Pointer to HBA context object. 1036 * @ndlp: nodelist pointer for this target. 1037 * @xritag: xri used in this exchange. 1038 * @rxid: Remote Exchange ID. 1039 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1040 * 1041 * This function takes the hbalock. 1042 * The active bit is always set in the active rrq xri_bitmap even 1043 * if there is no slot avaiable for the other rrq information. 1044 * 1045 * returns 0 rrq actived for this xri 1046 * < 0 No memory or invalid ndlp. 1047 **/ 1048 int 1049 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1050 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1051 { 1052 unsigned long iflags; 1053 struct lpfc_node_rrq *rrq; 1054 int empty; 1055 1056 if (!ndlp) 1057 return -EINVAL; 1058 1059 if (!phba->cfg_enable_rrq) 1060 return -EINVAL; 1061 1062 spin_lock_irqsave(&phba->hbalock, iflags); 1063 if (phba->pport->load_flag & FC_UNLOADING) { 1064 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1065 goto out; 1066 } 1067 1068 /* 1069 * set the active bit even if there is no mem available. 1070 */ 1071 if (NLP_CHK_FREE_REQ(ndlp)) 1072 goto out; 1073 1074 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1075 goto out; 1076 1077 if (!ndlp->active_rrqs_xri_bitmap) 1078 goto out; 1079 1080 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1081 goto out; 1082 1083 spin_unlock_irqrestore(&phba->hbalock, iflags); 1084 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 1085 if (!rrq) { 1086 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1087 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1088 " DID:0x%x Send:%d\n", 1089 xritag, rxid, ndlp->nlp_DID, send_rrq); 1090 return -EINVAL; 1091 } 1092 if (phba->cfg_enable_rrq == 1) 1093 rrq->send_rrq = send_rrq; 1094 else 1095 rrq->send_rrq = 0; 1096 rrq->xritag = xritag; 1097 rrq->rrq_stop_time = jiffies + 1098 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1099 rrq->ndlp = ndlp; 1100 rrq->nlp_DID = ndlp->nlp_DID; 1101 rrq->vport = ndlp->vport; 1102 rrq->rxid = rxid; 1103 spin_lock_irqsave(&phba->hbalock, iflags); 1104 empty = list_empty(&phba->active_rrq_list); 1105 list_add_tail(&rrq->list, &phba->active_rrq_list); 1106 phba->hba_flag |= HBA_RRQ_ACTIVE; 1107 if (empty) 1108 lpfc_worker_wake_up(phba); 1109 spin_unlock_irqrestore(&phba->hbalock, iflags); 1110 return 0; 1111 out: 1112 spin_unlock_irqrestore(&phba->hbalock, iflags); 1113 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1114 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1115 " DID:0x%x Send:%d\n", 1116 xritag, rxid, ndlp->nlp_DID, send_rrq); 1117 return -EINVAL; 1118 } 1119 1120 /** 1121 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1122 * @phba: Pointer to HBA context object. 1123 * @piocb: Pointer to the iocbq. 1124 * 1125 * This function is called with the ring lock held. This function 1126 * gets a new driver sglq object from the sglq list. If the 1127 * list is not empty then it is successful, it returns pointer to the newly 1128 * allocated sglq object else it returns NULL. 1129 **/ 1130 static struct lpfc_sglq * 1131 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1132 { 1133 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1134 struct lpfc_sglq *sglq = NULL; 1135 struct lpfc_sglq *start_sglq = NULL; 1136 struct lpfc_scsi_buf *lpfc_cmd; 1137 struct lpfc_nodelist *ndlp; 1138 int found = 0; 1139 1140 lockdep_assert_held(&phba->hbalock); 1141 1142 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1143 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 1144 ndlp = lpfc_cmd->rdata->pnode; 1145 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1146 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1147 ndlp = piocbq->context_un.ndlp; 1148 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1149 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1150 ndlp = NULL; 1151 else 1152 ndlp = piocbq->context_un.ndlp; 1153 } else { 1154 ndlp = piocbq->context1; 1155 } 1156 1157 spin_lock(&phba->sli4_hba.sgl_list_lock); 1158 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1159 start_sglq = sglq; 1160 while (!found) { 1161 if (!sglq) 1162 break; 1163 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1164 test_bit(sglq->sli4_lxritag, 1165 ndlp->active_rrqs_xri_bitmap)) { 1166 /* This xri has an rrq outstanding for this DID. 1167 * put it back in the list and get another xri. 1168 */ 1169 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1170 sglq = NULL; 1171 list_remove_head(lpfc_els_sgl_list, sglq, 1172 struct lpfc_sglq, list); 1173 if (sglq == start_sglq) { 1174 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1175 sglq = NULL; 1176 break; 1177 } else 1178 continue; 1179 } 1180 sglq->ndlp = ndlp; 1181 found = 1; 1182 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1183 sglq->state = SGL_ALLOCATED; 1184 } 1185 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1186 return sglq; 1187 } 1188 1189 /** 1190 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1191 * @phba: Pointer to HBA context object. 1192 * @piocb: Pointer to the iocbq. 1193 * 1194 * This function is called with the sgl_list lock held. This function 1195 * gets a new driver sglq object from the sglq list. If the 1196 * list is not empty then it is successful, it returns pointer to the newly 1197 * allocated sglq object else it returns NULL. 1198 **/ 1199 struct lpfc_sglq * 1200 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1201 { 1202 struct list_head *lpfc_nvmet_sgl_list; 1203 struct lpfc_sglq *sglq = NULL; 1204 1205 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1206 1207 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1208 1209 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1210 if (!sglq) 1211 return NULL; 1212 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1213 sglq->state = SGL_ALLOCATED; 1214 return sglq; 1215 } 1216 1217 /** 1218 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1219 * @phba: Pointer to HBA context object. 1220 * 1221 * This function is called with no lock held. This function 1222 * allocates a new driver iocb object from the iocb pool. If the 1223 * allocation is successful, it returns pointer to the newly 1224 * allocated iocb object else it returns NULL. 1225 **/ 1226 struct lpfc_iocbq * 1227 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1228 { 1229 struct lpfc_iocbq * iocbq = NULL; 1230 unsigned long iflags; 1231 1232 spin_lock_irqsave(&phba->hbalock, iflags); 1233 iocbq = __lpfc_sli_get_iocbq(phba); 1234 spin_unlock_irqrestore(&phba->hbalock, iflags); 1235 return iocbq; 1236 } 1237 1238 /** 1239 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1240 * @phba: Pointer to HBA context object. 1241 * @iocbq: Pointer to driver iocb object. 1242 * 1243 * This function is called with hbalock held to release driver 1244 * iocb object to the iocb pool. The iotag in the iocb object 1245 * does not change for each use of the iocb object. This function 1246 * clears all other fields of the iocb object when it is freed. 1247 * The sqlq structure that holds the xritag and phys and virtual 1248 * mappings for the scatter gather list is retrieved from the 1249 * active array of sglq. The get of the sglq pointer also clears 1250 * the entry in the array. If the status of the IO indiactes that 1251 * this IO was aborted then the sglq entry it put on the 1252 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1253 * IO has good status or fails for any other reason then the sglq 1254 * entry is added to the free list (lpfc_els_sgl_list). 1255 **/ 1256 static void 1257 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1258 { 1259 struct lpfc_sglq *sglq; 1260 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1261 unsigned long iflag = 0; 1262 struct lpfc_sli_ring *pring; 1263 1264 lockdep_assert_held(&phba->hbalock); 1265 1266 if (iocbq->sli4_xritag == NO_XRI) 1267 sglq = NULL; 1268 else 1269 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1270 1271 1272 if (sglq) { 1273 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1274 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1275 iflag); 1276 sglq->state = SGL_FREED; 1277 sglq->ndlp = NULL; 1278 list_add_tail(&sglq->list, 1279 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1280 spin_unlock_irqrestore( 1281 &phba->sli4_hba.sgl_list_lock, iflag); 1282 goto out; 1283 } 1284 1285 pring = phba->sli4_hba.els_wq->pring; 1286 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1287 (sglq->state != SGL_XRI_ABORTED)) { 1288 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1289 iflag); 1290 list_add(&sglq->list, 1291 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1292 spin_unlock_irqrestore( 1293 &phba->sli4_hba.sgl_list_lock, iflag); 1294 } else { 1295 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1296 iflag); 1297 sglq->state = SGL_FREED; 1298 sglq->ndlp = NULL; 1299 list_add_tail(&sglq->list, 1300 &phba->sli4_hba.lpfc_els_sgl_list); 1301 spin_unlock_irqrestore( 1302 &phba->sli4_hba.sgl_list_lock, iflag); 1303 1304 /* Check if TXQ queue needs to be serviced */ 1305 if (!list_empty(&pring->txq)) 1306 lpfc_worker_wake_up(phba); 1307 } 1308 } 1309 1310 out: 1311 /* 1312 * Clean all volatile data fields, preserve iotag and node struct. 1313 */ 1314 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1315 iocbq->sli4_lxritag = NO_XRI; 1316 iocbq->sli4_xritag = NO_XRI; 1317 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1318 LPFC_IO_NVME_LS); 1319 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1320 } 1321 1322 1323 /** 1324 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1325 * @phba: Pointer to HBA context object. 1326 * @iocbq: Pointer to driver iocb object. 1327 * 1328 * This function is called with hbalock held to release driver 1329 * iocb object to the iocb pool. The iotag in the iocb object 1330 * does not change for each use of the iocb object. This function 1331 * clears all other fields of the iocb object when it is freed. 1332 **/ 1333 static void 1334 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1335 { 1336 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1337 1338 lockdep_assert_held(&phba->hbalock); 1339 1340 /* 1341 * Clean all volatile data fields, preserve iotag and node struct. 1342 */ 1343 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1344 iocbq->sli4_xritag = NO_XRI; 1345 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1346 } 1347 1348 /** 1349 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1350 * @phba: Pointer to HBA context object. 1351 * @iocbq: Pointer to driver iocb object. 1352 * 1353 * This function is called with hbalock held to release driver 1354 * iocb object to the iocb pool. The iotag in the iocb object 1355 * does not change for each use of the iocb object. This function 1356 * clears all other fields of the iocb object when it is freed. 1357 **/ 1358 static void 1359 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1360 { 1361 lockdep_assert_held(&phba->hbalock); 1362 1363 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1364 phba->iocb_cnt--; 1365 } 1366 1367 /** 1368 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1369 * @phba: Pointer to HBA context object. 1370 * @iocbq: Pointer to driver iocb object. 1371 * 1372 * This function is called with no lock held to release the iocb to 1373 * iocb pool. 1374 **/ 1375 void 1376 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1377 { 1378 unsigned long iflags; 1379 1380 /* 1381 * Clean all volatile data fields, preserve iotag and node struct. 1382 */ 1383 spin_lock_irqsave(&phba->hbalock, iflags); 1384 __lpfc_sli_release_iocbq(phba, iocbq); 1385 spin_unlock_irqrestore(&phba->hbalock, iflags); 1386 } 1387 1388 /** 1389 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1390 * @phba: Pointer to HBA context object. 1391 * @iocblist: List of IOCBs. 1392 * @ulpstatus: ULP status in IOCB command field. 1393 * @ulpWord4: ULP word-4 in IOCB command field. 1394 * 1395 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1396 * on the list by invoking the complete callback function associated with the 1397 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1398 * fields. 1399 **/ 1400 void 1401 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1402 uint32_t ulpstatus, uint32_t ulpWord4) 1403 { 1404 struct lpfc_iocbq *piocb; 1405 1406 while (!list_empty(iocblist)) { 1407 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1408 if (!piocb->iocb_cmpl) 1409 lpfc_sli_release_iocbq(phba, piocb); 1410 else { 1411 piocb->iocb.ulpStatus = ulpstatus; 1412 piocb->iocb.un.ulpWord[4] = ulpWord4; 1413 (piocb->iocb_cmpl) (phba, piocb, piocb); 1414 } 1415 } 1416 return; 1417 } 1418 1419 /** 1420 * lpfc_sli_iocb_cmd_type - Get the iocb type 1421 * @iocb_cmnd: iocb command code. 1422 * 1423 * This function is called by ring event handler function to get the iocb type. 1424 * This function translates the iocb command to an iocb command type used to 1425 * decide the final disposition of each completed IOCB. 1426 * The function returns 1427 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1428 * LPFC_SOL_IOCB if it is a solicited iocb completion 1429 * LPFC_ABORT_IOCB if it is an abort iocb 1430 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1431 * 1432 * The caller is not required to hold any lock. 1433 **/ 1434 static lpfc_iocb_type 1435 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1436 { 1437 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1438 1439 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1440 return 0; 1441 1442 switch (iocb_cmnd) { 1443 case CMD_XMIT_SEQUENCE_CR: 1444 case CMD_XMIT_SEQUENCE_CX: 1445 case CMD_XMIT_BCAST_CN: 1446 case CMD_XMIT_BCAST_CX: 1447 case CMD_ELS_REQUEST_CR: 1448 case CMD_ELS_REQUEST_CX: 1449 case CMD_CREATE_XRI_CR: 1450 case CMD_CREATE_XRI_CX: 1451 case CMD_GET_RPI_CN: 1452 case CMD_XMIT_ELS_RSP_CX: 1453 case CMD_GET_RPI_CR: 1454 case CMD_FCP_IWRITE_CR: 1455 case CMD_FCP_IWRITE_CX: 1456 case CMD_FCP_IREAD_CR: 1457 case CMD_FCP_IREAD_CX: 1458 case CMD_FCP_ICMND_CR: 1459 case CMD_FCP_ICMND_CX: 1460 case CMD_FCP_TSEND_CX: 1461 case CMD_FCP_TRSP_CX: 1462 case CMD_FCP_TRECEIVE_CX: 1463 case CMD_FCP_AUTO_TRSP_CX: 1464 case CMD_ADAPTER_MSG: 1465 case CMD_ADAPTER_DUMP: 1466 case CMD_XMIT_SEQUENCE64_CR: 1467 case CMD_XMIT_SEQUENCE64_CX: 1468 case CMD_XMIT_BCAST64_CN: 1469 case CMD_XMIT_BCAST64_CX: 1470 case CMD_ELS_REQUEST64_CR: 1471 case CMD_ELS_REQUEST64_CX: 1472 case CMD_FCP_IWRITE64_CR: 1473 case CMD_FCP_IWRITE64_CX: 1474 case CMD_FCP_IREAD64_CR: 1475 case CMD_FCP_IREAD64_CX: 1476 case CMD_FCP_ICMND64_CR: 1477 case CMD_FCP_ICMND64_CX: 1478 case CMD_FCP_TSEND64_CX: 1479 case CMD_FCP_TRSP64_CX: 1480 case CMD_FCP_TRECEIVE64_CX: 1481 case CMD_GEN_REQUEST64_CR: 1482 case CMD_GEN_REQUEST64_CX: 1483 case CMD_XMIT_ELS_RSP64_CX: 1484 case DSSCMD_IWRITE64_CR: 1485 case DSSCMD_IWRITE64_CX: 1486 case DSSCMD_IREAD64_CR: 1487 case DSSCMD_IREAD64_CX: 1488 type = LPFC_SOL_IOCB; 1489 break; 1490 case CMD_ABORT_XRI_CN: 1491 case CMD_ABORT_XRI_CX: 1492 case CMD_CLOSE_XRI_CN: 1493 case CMD_CLOSE_XRI_CX: 1494 case CMD_XRI_ABORTED_CX: 1495 case CMD_ABORT_MXRI64_CN: 1496 case CMD_XMIT_BLS_RSP64_CX: 1497 type = LPFC_ABORT_IOCB; 1498 break; 1499 case CMD_RCV_SEQUENCE_CX: 1500 case CMD_RCV_ELS_REQ_CX: 1501 case CMD_RCV_SEQUENCE64_CX: 1502 case CMD_RCV_ELS_REQ64_CX: 1503 case CMD_ASYNC_STATUS: 1504 case CMD_IOCB_RCV_SEQ64_CX: 1505 case CMD_IOCB_RCV_ELS64_CX: 1506 case CMD_IOCB_RCV_CONT64_CX: 1507 case CMD_IOCB_RET_XRI64_CX: 1508 type = LPFC_UNSOL_IOCB; 1509 break; 1510 case CMD_IOCB_XMIT_MSEQ64_CR: 1511 case CMD_IOCB_XMIT_MSEQ64_CX: 1512 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1513 case CMD_IOCB_RCV_ELS_LIST64_CX: 1514 case CMD_IOCB_CLOSE_EXTENDED_CN: 1515 case CMD_IOCB_ABORT_EXTENDED_CN: 1516 case CMD_IOCB_RET_HBQE64_CN: 1517 case CMD_IOCB_FCP_IBIDIR64_CR: 1518 case CMD_IOCB_FCP_IBIDIR64_CX: 1519 case CMD_IOCB_FCP_ITASKMGT64_CX: 1520 case CMD_IOCB_LOGENTRY_CN: 1521 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1522 printk("%s - Unhandled SLI-3 Command x%x\n", 1523 __func__, iocb_cmnd); 1524 type = LPFC_UNKNOWN_IOCB; 1525 break; 1526 default: 1527 type = LPFC_UNKNOWN_IOCB; 1528 break; 1529 } 1530 1531 return type; 1532 } 1533 1534 /** 1535 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1536 * @phba: Pointer to HBA context object. 1537 * 1538 * This function is called from SLI initialization code 1539 * to configure every ring of the HBA's SLI interface. The 1540 * caller is not required to hold any lock. This function issues 1541 * a config_ring mailbox command for each ring. 1542 * This function returns zero if successful else returns a negative 1543 * error code. 1544 **/ 1545 static int 1546 lpfc_sli_ring_map(struct lpfc_hba *phba) 1547 { 1548 struct lpfc_sli *psli = &phba->sli; 1549 LPFC_MBOXQ_t *pmb; 1550 MAILBOX_t *pmbox; 1551 int i, rc, ret = 0; 1552 1553 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1554 if (!pmb) 1555 return -ENOMEM; 1556 pmbox = &pmb->u.mb; 1557 phba->link_state = LPFC_INIT_MBX_CMDS; 1558 for (i = 0; i < psli->num_rings; i++) { 1559 lpfc_config_ring(phba, i, pmb); 1560 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1561 if (rc != MBX_SUCCESS) { 1562 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1563 "0446 Adapter failed to init (%d), " 1564 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1565 "ring %d\n", 1566 rc, pmbox->mbxCommand, 1567 pmbox->mbxStatus, i); 1568 phba->link_state = LPFC_HBA_ERROR; 1569 ret = -ENXIO; 1570 break; 1571 } 1572 } 1573 mempool_free(pmb, phba->mbox_mem_pool); 1574 return ret; 1575 } 1576 1577 /** 1578 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1579 * @phba: Pointer to HBA context object. 1580 * @pring: Pointer to driver SLI ring object. 1581 * @piocb: Pointer to the driver iocb object. 1582 * 1583 * This function is called with hbalock held. The function adds the 1584 * new iocb to txcmplq of the given ring. This function always returns 1585 * 0. If this function is called for ELS ring, this function checks if 1586 * there is a vport associated with the ELS command. This function also 1587 * starts els_tmofunc timer if this is an ELS command. 1588 **/ 1589 static int 1590 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1591 struct lpfc_iocbq *piocb) 1592 { 1593 lockdep_assert_held(&phba->hbalock); 1594 1595 BUG_ON(!piocb); 1596 1597 list_add_tail(&piocb->list, &pring->txcmplq); 1598 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1599 1600 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1601 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1602 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1603 BUG_ON(!piocb->vport); 1604 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1605 mod_timer(&piocb->vport->els_tmofunc, 1606 jiffies + 1607 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1608 } 1609 1610 return 0; 1611 } 1612 1613 /** 1614 * lpfc_sli_ringtx_get - Get first element of the txq 1615 * @phba: Pointer to HBA context object. 1616 * @pring: Pointer to driver SLI ring object. 1617 * 1618 * This function is called with hbalock held to get next 1619 * iocb in txq of the given ring. If there is any iocb in 1620 * the txq, the function returns first iocb in the list after 1621 * removing the iocb from the list, else it returns NULL. 1622 **/ 1623 struct lpfc_iocbq * 1624 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1625 { 1626 struct lpfc_iocbq *cmd_iocb; 1627 1628 lockdep_assert_held(&phba->hbalock); 1629 1630 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1631 return cmd_iocb; 1632 } 1633 1634 /** 1635 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1636 * @phba: Pointer to HBA context object. 1637 * @pring: Pointer to driver SLI ring object. 1638 * 1639 * This function is called with hbalock held and the caller must post the 1640 * iocb without releasing the lock. If the caller releases the lock, 1641 * iocb slot returned by the function is not guaranteed to be available. 1642 * The function returns pointer to the next available iocb slot if there 1643 * is available slot in the ring, else it returns NULL. 1644 * If the get index of the ring is ahead of the put index, the function 1645 * will post an error attention event to the worker thread to take the 1646 * HBA to offline state. 1647 **/ 1648 static IOCB_t * 1649 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1650 { 1651 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1652 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1653 1654 lockdep_assert_held(&phba->hbalock); 1655 1656 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1657 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1658 pring->sli.sli3.next_cmdidx = 0; 1659 1660 if (unlikely(pring->sli.sli3.local_getidx == 1661 pring->sli.sli3.next_cmdidx)) { 1662 1663 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1664 1665 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1666 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1667 "0315 Ring %d issue: portCmdGet %d " 1668 "is bigger than cmd ring %d\n", 1669 pring->ringno, 1670 pring->sli.sli3.local_getidx, 1671 max_cmd_idx); 1672 1673 phba->link_state = LPFC_HBA_ERROR; 1674 /* 1675 * All error attention handlers are posted to 1676 * worker thread 1677 */ 1678 phba->work_ha |= HA_ERATT; 1679 phba->work_hs = HS_FFER3; 1680 1681 lpfc_worker_wake_up(phba); 1682 1683 return NULL; 1684 } 1685 1686 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1687 return NULL; 1688 } 1689 1690 return lpfc_cmd_iocb(phba, pring); 1691 } 1692 1693 /** 1694 * lpfc_sli_next_iotag - Get an iotag for the iocb 1695 * @phba: Pointer to HBA context object. 1696 * @iocbq: Pointer to driver iocb object. 1697 * 1698 * This function gets an iotag for the iocb. If there is no unused iotag and 1699 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1700 * array and assigns a new iotag. 1701 * The function returns the allocated iotag if successful, else returns zero. 1702 * Zero is not a valid iotag. 1703 * The caller is not required to hold any lock. 1704 **/ 1705 uint16_t 1706 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1707 { 1708 struct lpfc_iocbq **new_arr; 1709 struct lpfc_iocbq **old_arr; 1710 size_t new_len; 1711 struct lpfc_sli *psli = &phba->sli; 1712 uint16_t iotag; 1713 1714 spin_lock_irq(&phba->hbalock); 1715 iotag = psli->last_iotag; 1716 if(++iotag < psli->iocbq_lookup_len) { 1717 psli->last_iotag = iotag; 1718 psli->iocbq_lookup[iotag] = iocbq; 1719 spin_unlock_irq(&phba->hbalock); 1720 iocbq->iotag = iotag; 1721 return iotag; 1722 } else if (psli->iocbq_lookup_len < (0xffff 1723 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1724 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1725 spin_unlock_irq(&phba->hbalock); 1726 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1727 GFP_KERNEL); 1728 if (new_arr) { 1729 spin_lock_irq(&phba->hbalock); 1730 old_arr = psli->iocbq_lookup; 1731 if (new_len <= psli->iocbq_lookup_len) { 1732 /* highly unprobable case */ 1733 kfree(new_arr); 1734 iotag = psli->last_iotag; 1735 if(++iotag < psli->iocbq_lookup_len) { 1736 psli->last_iotag = iotag; 1737 psli->iocbq_lookup[iotag] = iocbq; 1738 spin_unlock_irq(&phba->hbalock); 1739 iocbq->iotag = iotag; 1740 return iotag; 1741 } 1742 spin_unlock_irq(&phba->hbalock); 1743 return 0; 1744 } 1745 if (psli->iocbq_lookup) 1746 memcpy(new_arr, old_arr, 1747 ((psli->last_iotag + 1) * 1748 sizeof (struct lpfc_iocbq *))); 1749 psli->iocbq_lookup = new_arr; 1750 psli->iocbq_lookup_len = new_len; 1751 psli->last_iotag = iotag; 1752 psli->iocbq_lookup[iotag] = iocbq; 1753 spin_unlock_irq(&phba->hbalock); 1754 iocbq->iotag = iotag; 1755 kfree(old_arr); 1756 return iotag; 1757 } 1758 } else 1759 spin_unlock_irq(&phba->hbalock); 1760 1761 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1762 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1763 psli->last_iotag); 1764 1765 return 0; 1766 } 1767 1768 /** 1769 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1770 * @phba: Pointer to HBA context object. 1771 * @pring: Pointer to driver SLI ring object. 1772 * @iocb: Pointer to iocb slot in the ring. 1773 * @nextiocb: Pointer to driver iocb object which need to be 1774 * posted to firmware. 1775 * 1776 * This function is called with hbalock held to post a new iocb to 1777 * the firmware. This function copies the new iocb to ring iocb slot and 1778 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1779 * a completion call back for this iocb else the function will free the 1780 * iocb object. 1781 **/ 1782 static void 1783 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1784 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1785 { 1786 lockdep_assert_held(&phba->hbalock); 1787 /* 1788 * Set up an iotag 1789 */ 1790 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1791 1792 1793 if (pring->ringno == LPFC_ELS_RING) { 1794 lpfc_debugfs_slow_ring_trc(phba, 1795 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1796 *(((uint32_t *) &nextiocb->iocb) + 4), 1797 *(((uint32_t *) &nextiocb->iocb) + 6), 1798 *(((uint32_t *) &nextiocb->iocb) + 7)); 1799 } 1800 1801 /* 1802 * Issue iocb command to adapter 1803 */ 1804 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1805 wmb(); 1806 pring->stats.iocb_cmd++; 1807 1808 /* 1809 * If there is no completion routine to call, we can release the 1810 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1811 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1812 */ 1813 if (nextiocb->iocb_cmpl) 1814 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1815 else 1816 __lpfc_sli_release_iocbq(phba, nextiocb); 1817 1818 /* 1819 * Let the HBA know what IOCB slot will be the next one the 1820 * driver will put a command into. 1821 */ 1822 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1823 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1824 } 1825 1826 /** 1827 * lpfc_sli_update_full_ring - Update the chip attention register 1828 * @phba: Pointer to HBA context object. 1829 * @pring: Pointer to driver SLI ring object. 1830 * 1831 * The caller is not required to hold any lock for calling this function. 1832 * This function updates the chip attention bits for the ring to inform firmware 1833 * that there are pending work to be done for this ring and requests an 1834 * interrupt when there is space available in the ring. This function is 1835 * called when the driver is unable to post more iocbs to the ring due 1836 * to unavailability of space in the ring. 1837 **/ 1838 static void 1839 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1840 { 1841 int ringno = pring->ringno; 1842 1843 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1844 1845 wmb(); 1846 1847 /* 1848 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1849 * The HBA will tell us when an IOCB entry is available. 1850 */ 1851 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1852 readl(phba->CAregaddr); /* flush */ 1853 1854 pring->stats.iocb_cmd_full++; 1855 } 1856 1857 /** 1858 * lpfc_sli_update_ring - Update chip attention register 1859 * @phba: Pointer to HBA context object. 1860 * @pring: Pointer to driver SLI ring object. 1861 * 1862 * This function updates the chip attention register bit for the 1863 * given ring to inform HBA that there is more work to be done 1864 * in this ring. The caller is not required to hold any lock. 1865 **/ 1866 static void 1867 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1868 { 1869 int ringno = pring->ringno; 1870 1871 /* 1872 * Tell the HBA that there is work to do in this ring. 1873 */ 1874 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1875 wmb(); 1876 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1877 readl(phba->CAregaddr); /* flush */ 1878 } 1879 } 1880 1881 /** 1882 * lpfc_sli_resume_iocb - Process iocbs in the txq 1883 * @phba: Pointer to HBA context object. 1884 * @pring: Pointer to driver SLI ring object. 1885 * 1886 * This function is called with hbalock held to post pending iocbs 1887 * in the txq to the firmware. This function is called when driver 1888 * detects space available in the ring. 1889 **/ 1890 static void 1891 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1892 { 1893 IOCB_t *iocb; 1894 struct lpfc_iocbq *nextiocb; 1895 1896 lockdep_assert_held(&phba->hbalock); 1897 1898 /* 1899 * Check to see if: 1900 * (a) there is anything on the txq to send 1901 * (b) link is up 1902 * (c) link attention events can be processed (fcp ring only) 1903 * (d) IOCB processing is not blocked by the outstanding mbox command. 1904 */ 1905 1906 if (lpfc_is_link_up(phba) && 1907 (!list_empty(&pring->txq)) && 1908 (pring->ringno != LPFC_FCP_RING || 1909 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1910 1911 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1912 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1913 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1914 1915 if (iocb) 1916 lpfc_sli_update_ring(phba, pring); 1917 else 1918 lpfc_sli_update_full_ring(phba, pring); 1919 } 1920 1921 return; 1922 } 1923 1924 /** 1925 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1926 * @phba: Pointer to HBA context object. 1927 * @hbqno: HBQ number. 1928 * 1929 * This function is called with hbalock held to get the next 1930 * available slot for the given HBQ. If there is free slot 1931 * available for the HBQ it will return pointer to the next available 1932 * HBQ entry else it will return NULL. 1933 **/ 1934 static struct lpfc_hbq_entry * 1935 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1936 { 1937 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1938 1939 lockdep_assert_held(&phba->hbalock); 1940 1941 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1942 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1943 hbqp->next_hbqPutIdx = 0; 1944 1945 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1946 uint32_t raw_index = phba->hbq_get[hbqno]; 1947 uint32_t getidx = le32_to_cpu(raw_index); 1948 1949 hbqp->local_hbqGetIdx = getidx; 1950 1951 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1952 lpfc_printf_log(phba, KERN_ERR, 1953 LOG_SLI | LOG_VPORT, 1954 "1802 HBQ %d: local_hbqGetIdx " 1955 "%u is > than hbqp->entry_count %u\n", 1956 hbqno, hbqp->local_hbqGetIdx, 1957 hbqp->entry_count); 1958 1959 phba->link_state = LPFC_HBA_ERROR; 1960 return NULL; 1961 } 1962 1963 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1964 return NULL; 1965 } 1966 1967 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1968 hbqp->hbqPutIdx; 1969 } 1970 1971 /** 1972 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1973 * @phba: Pointer to HBA context object. 1974 * 1975 * This function is called with no lock held to free all the 1976 * hbq buffers while uninitializing the SLI interface. It also 1977 * frees the HBQ buffers returned by the firmware but not yet 1978 * processed by the upper layers. 1979 **/ 1980 void 1981 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1982 { 1983 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1984 struct hbq_dmabuf *hbq_buf; 1985 unsigned long flags; 1986 int i, hbq_count; 1987 1988 hbq_count = lpfc_sli_hbq_count(); 1989 /* Return all memory used by all HBQs */ 1990 spin_lock_irqsave(&phba->hbalock, flags); 1991 for (i = 0; i < hbq_count; ++i) { 1992 list_for_each_entry_safe(dmabuf, next_dmabuf, 1993 &phba->hbqs[i].hbq_buffer_list, list) { 1994 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1995 list_del(&hbq_buf->dbuf.list); 1996 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1997 } 1998 phba->hbqs[i].buffer_count = 0; 1999 } 2000 2001 /* Mark the HBQs not in use */ 2002 phba->hbq_in_use = 0; 2003 spin_unlock_irqrestore(&phba->hbalock, flags); 2004 } 2005 2006 /** 2007 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2008 * @phba: Pointer to HBA context object. 2009 * @hbqno: HBQ number. 2010 * @hbq_buf: Pointer to HBQ buffer. 2011 * 2012 * This function is called with the hbalock held to post a 2013 * hbq buffer to the firmware. If the function finds an empty 2014 * slot in the HBQ, it will post the buffer. The function will return 2015 * pointer to the hbq entry if it successfully post the buffer 2016 * else it will return NULL. 2017 **/ 2018 static int 2019 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2020 struct hbq_dmabuf *hbq_buf) 2021 { 2022 lockdep_assert_held(&phba->hbalock); 2023 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2024 } 2025 2026 /** 2027 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2028 * @phba: Pointer to HBA context object. 2029 * @hbqno: HBQ number. 2030 * @hbq_buf: Pointer to HBQ buffer. 2031 * 2032 * This function is called with the hbalock held to post a hbq buffer to the 2033 * firmware. If the function finds an empty slot in the HBQ, it will post the 2034 * buffer and place it on the hbq_buffer_list. The function will return zero if 2035 * it successfully post the buffer else it will return an error. 2036 **/ 2037 static int 2038 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2039 struct hbq_dmabuf *hbq_buf) 2040 { 2041 struct lpfc_hbq_entry *hbqe; 2042 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2043 2044 lockdep_assert_held(&phba->hbalock); 2045 /* Get next HBQ entry slot to use */ 2046 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2047 if (hbqe) { 2048 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2049 2050 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2051 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2052 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2053 hbqe->bde.tus.f.bdeFlags = 0; 2054 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2055 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2056 /* Sync SLIM */ 2057 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2058 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2059 /* flush */ 2060 readl(phba->hbq_put + hbqno); 2061 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2062 return 0; 2063 } else 2064 return -ENOMEM; 2065 } 2066 2067 /** 2068 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2069 * @phba: Pointer to HBA context object. 2070 * @hbqno: HBQ number. 2071 * @hbq_buf: Pointer to HBQ buffer. 2072 * 2073 * This function is called with the hbalock held to post an RQE to the SLI4 2074 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2075 * the hbq_buffer_list and return zero, otherwise it will return an error. 2076 **/ 2077 static int 2078 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2079 struct hbq_dmabuf *hbq_buf) 2080 { 2081 int rc; 2082 struct lpfc_rqe hrqe; 2083 struct lpfc_rqe drqe; 2084 struct lpfc_queue *hrq; 2085 struct lpfc_queue *drq; 2086 2087 if (hbqno != LPFC_ELS_HBQ) 2088 return 1; 2089 hrq = phba->sli4_hba.hdr_rq; 2090 drq = phba->sli4_hba.dat_rq; 2091 2092 lockdep_assert_held(&phba->hbalock); 2093 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2094 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2095 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2096 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2097 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2098 if (rc < 0) 2099 return rc; 2100 hbq_buf->tag = (rc | (hbqno << 16)); 2101 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2102 return 0; 2103 } 2104 2105 /* HBQ for ELS and CT traffic. */ 2106 static struct lpfc_hbq_init lpfc_els_hbq = { 2107 .rn = 1, 2108 .entry_count = 256, 2109 .mask_count = 0, 2110 .profile = 0, 2111 .ring_mask = (1 << LPFC_ELS_RING), 2112 .buffer_count = 0, 2113 .init_count = 40, 2114 .add_count = 40, 2115 }; 2116 2117 /* Array of HBQs */ 2118 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2119 &lpfc_els_hbq, 2120 }; 2121 2122 /** 2123 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2124 * @phba: Pointer to HBA context object. 2125 * @hbqno: HBQ number. 2126 * @count: Number of HBQ buffers to be posted. 2127 * 2128 * This function is called with no lock held to post more hbq buffers to the 2129 * given HBQ. The function returns the number of HBQ buffers successfully 2130 * posted. 2131 **/ 2132 static int 2133 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2134 { 2135 uint32_t i, posted = 0; 2136 unsigned long flags; 2137 struct hbq_dmabuf *hbq_buffer; 2138 LIST_HEAD(hbq_buf_list); 2139 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2140 return 0; 2141 2142 if ((phba->hbqs[hbqno].buffer_count + count) > 2143 lpfc_hbq_defs[hbqno]->entry_count) 2144 count = lpfc_hbq_defs[hbqno]->entry_count - 2145 phba->hbqs[hbqno].buffer_count; 2146 if (!count) 2147 return 0; 2148 /* Allocate HBQ entries */ 2149 for (i = 0; i < count; i++) { 2150 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2151 if (!hbq_buffer) 2152 break; 2153 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2154 } 2155 /* Check whether HBQ is still in use */ 2156 spin_lock_irqsave(&phba->hbalock, flags); 2157 if (!phba->hbq_in_use) 2158 goto err; 2159 while (!list_empty(&hbq_buf_list)) { 2160 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2161 dbuf.list); 2162 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2163 (hbqno << 16)); 2164 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2165 phba->hbqs[hbqno].buffer_count++; 2166 posted++; 2167 } else 2168 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2169 } 2170 spin_unlock_irqrestore(&phba->hbalock, flags); 2171 return posted; 2172 err: 2173 spin_unlock_irqrestore(&phba->hbalock, flags); 2174 while (!list_empty(&hbq_buf_list)) { 2175 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2176 dbuf.list); 2177 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2178 } 2179 return 0; 2180 } 2181 2182 /** 2183 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2184 * @phba: Pointer to HBA context object. 2185 * @qno: HBQ number. 2186 * 2187 * This function posts more buffers to the HBQ. This function 2188 * is called with no lock held. The function returns the number of HBQ entries 2189 * successfully allocated. 2190 **/ 2191 int 2192 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2193 { 2194 if (phba->sli_rev == LPFC_SLI_REV4) 2195 return 0; 2196 else 2197 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2198 lpfc_hbq_defs[qno]->add_count); 2199 } 2200 2201 /** 2202 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2203 * @phba: Pointer to HBA context object. 2204 * @qno: HBQ queue number. 2205 * 2206 * This function is called from SLI initialization code path with 2207 * no lock held to post initial HBQ buffers to firmware. The 2208 * function returns the number of HBQ entries successfully allocated. 2209 **/ 2210 static int 2211 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2212 { 2213 if (phba->sli_rev == LPFC_SLI_REV4) 2214 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2215 lpfc_hbq_defs[qno]->entry_count); 2216 else 2217 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2218 lpfc_hbq_defs[qno]->init_count); 2219 } 2220 2221 /** 2222 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2223 * @phba: Pointer to HBA context object. 2224 * @hbqno: HBQ number. 2225 * 2226 * This function removes the first hbq buffer on an hbq list and returns a 2227 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2228 **/ 2229 static struct hbq_dmabuf * 2230 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2231 { 2232 struct lpfc_dmabuf *d_buf; 2233 2234 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2235 if (!d_buf) 2236 return NULL; 2237 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2238 } 2239 2240 /** 2241 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2242 * @phba: Pointer to HBA context object. 2243 * @hbqno: HBQ number. 2244 * 2245 * This function removes the first RQ buffer on an RQ buffer list and returns a 2246 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2247 **/ 2248 static struct rqb_dmabuf * 2249 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2250 { 2251 struct lpfc_dmabuf *h_buf; 2252 struct lpfc_rqb *rqbp; 2253 2254 rqbp = hrq->rqbp; 2255 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2256 struct lpfc_dmabuf, list); 2257 if (!h_buf) 2258 return NULL; 2259 rqbp->buffer_count--; 2260 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2261 } 2262 2263 /** 2264 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2265 * @phba: Pointer to HBA context object. 2266 * @tag: Tag of the hbq buffer. 2267 * 2268 * This function searches for the hbq buffer associated with the given tag in 2269 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2270 * otherwise it returns NULL. 2271 **/ 2272 static struct hbq_dmabuf * 2273 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2274 { 2275 struct lpfc_dmabuf *d_buf; 2276 struct hbq_dmabuf *hbq_buf; 2277 uint32_t hbqno; 2278 2279 hbqno = tag >> 16; 2280 if (hbqno >= LPFC_MAX_HBQS) 2281 return NULL; 2282 2283 spin_lock_irq(&phba->hbalock); 2284 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2285 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2286 if (hbq_buf->tag == tag) { 2287 spin_unlock_irq(&phba->hbalock); 2288 return hbq_buf; 2289 } 2290 } 2291 spin_unlock_irq(&phba->hbalock); 2292 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2293 "1803 Bad hbq tag. Data: x%x x%x\n", 2294 tag, phba->hbqs[tag >> 16].buffer_count); 2295 return NULL; 2296 } 2297 2298 /** 2299 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2300 * @phba: Pointer to HBA context object. 2301 * @hbq_buffer: Pointer to HBQ buffer. 2302 * 2303 * This function is called with hbalock. This function gives back 2304 * the hbq buffer to firmware. If the HBQ does not have space to 2305 * post the buffer, it will free the buffer. 2306 **/ 2307 void 2308 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2309 { 2310 uint32_t hbqno; 2311 2312 if (hbq_buffer) { 2313 hbqno = hbq_buffer->tag >> 16; 2314 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2315 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2316 } 2317 } 2318 2319 /** 2320 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2321 * @mbxCommand: mailbox command code. 2322 * 2323 * This function is called by the mailbox event handler function to verify 2324 * that the completed mailbox command is a legitimate mailbox command. If the 2325 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2326 * and the mailbox event handler will take the HBA offline. 2327 **/ 2328 static int 2329 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2330 { 2331 uint8_t ret; 2332 2333 switch (mbxCommand) { 2334 case MBX_LOAD_SM: 2335 case MBX_READ_NV: 2336 case MBX_WRITE_NV: 2337 case MBX_WRITE_VPARMS: 2338 case MBX_RUN_BIU_DIAG: 2339 case MBX_INIT_LINK: 2340 case MBX_DOWN_LINK: 2341 case MBX_CONFIG_LINK: 2342 case MBX_CONFIG_RING: 2343 case MBX_RESET_RING: 2344 case MBX_READ_CONFIG: 2345 case MBX_READ_RCONFIG: 2346 case MBX_READ_SPARM: 2347 case MBX_READ_STATUS: 2348 case MBX_READ_RPI: 2349 case MBX_READ_XRI: 2350 case MBX_READ_REV: 2351 case MBX_READ_LNK_STAT: 2352 case MBX_REG_LOGIN: 2353 case MBX_UNREG_LOGIN: 2354 case MBX_CLEAR_LA: 2355 case MBX_DUMP_MEMORY: 2356 case MBX_DUMP_CONTEXT: 2357 case MBX_RUN_DIAGS: 2358 case MBX_RESTART: 2359 case MBX_UPDATE_CFG: 2360 case MBX_DOWN_LOAD: 2361 case MBX_DEL_LD_ENTRY: 2362 case MBX_RUN_PROGRAM: 2363 case MBX_SET_MASK: 2364 case MBX_SET_VARIABLE: 2365 case MBX_UNREG_D_ID: 2366 case MBX_KILL_BOARD: 2367 case MBX_CONFIG_FARP: 2368 case MBX_BEACON: 2369 case MBX_LOAD_AREA: 2370 case MBX_RUN_BIU_DIAG64: 2371 case MBX_CONFIG_PORT: 2372 case MBX_READ_SPARM64: 2373 case MBX_READ_RPI64: 2374 case MBX_REG_LOGIN64: 2375 case MBX_READ_TOPOLOGY: 2376 case MBX_WRITE_WWN: 2377 case MBX_SET_DEBUG: 2378 case MBX_LOAD_EXP_ROM: 2379 case MBX_ASYNCEVT_ENABLE: 2380 case MBX_REG_VPI: 2381 case MBX_UNREG_VPI: 2382 case MBX_HEARTBEAT: 2383 case MBX_PORT_CAPABILITIES: 2384 case MBX_PORT_IOV_CONTROL: 2385 case MBX_SLI4_CONFIG: 2386 case MBX_SLI4_REQ_FTRS: 2387 case MBX_REG_FCFI: 2388 case MBX_UNREG_FCFI: 2389 case MBX_REG_VFI: 2390 case MBX_UNREG_VFI: 2391 case MBX_INIT_VPI: 2392 case MBX_INIT_VFI: 2393 case MBX_RESUME_RPI: 2394 case MBX_READ_EVENT_LOG_STATUS: 2395 case MBX_READ_EVENT_LOG: 2396 case MBX_SECURITY_MGMT: 2397 case MBX_AUTH_PORT: 2398 case MBX_ACCESS_VDATA: 2399 ret = mbxCommand; 2400 break; 2401 default: 2402 ret = MBX_SHUTDOWN; 2403 break; 2404 } 2405 return ret; 2406 } 2407 2408 /** 2409 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2410 * @phba: Pointer to HBA context object. 2411 * @pmboxq: Pointer to mailbox command. 2412 * 2413 * This is completion handler function for mailbox commands issued from 2414 * lpfc_sli_issue_mbox_wait function. This function is called by the 2415 * mailbox event handler function with no lock held. This function 2416 * will wake up thread waiting on the wait queue pointed by context1 2417 * of the mailbox. 2418 **/ 2419 void 2420 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2421 { 2422 unsigned long drvr_flag; 2423 struct completion *pmbox_done; 2424 2425 /* 2426 * If pmbox_done is empty, the driver thread gave up waiting and 2427 * continued running. 2428 */ 2429 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2430 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2431 pmbox_done = (struct completion *)pmboxq->context3; 2432 if (pmbox_done) 2433 complete(pmbox_done); 2434 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2435 return; 2436 } 2437 2438 2439 /** 2440 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2441 * @phba: Pointer to HBA context object. 2442 * @pmb: Pointer to mailbox object. 2443 * 2444 * This function is the default mailbox completion handler. It 2445 * frees the memory resources associated with the completed mailbox 2446 * command. If the completed command is a REG_LOGIN mailbox command, 2447 * this function will issue a UREG_LOGIN to re-claim the RPI. 2448 **/ 2449 void 2450 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2451 { 2452 struct lpfc_vport *vport = pmb->vport; 2453 struct lpfc_dmabuf *mp; 2454 struct lpfc_nodelist *ndlp; 2455 struct Scsi_Host *shost; 2456 uint16_t rpi, vpi; 2457 int rc; 2458 2459 mp = (struct lpfc_dmabuf *) (pmb->context1); 2460 2461 if (mp) { 2462 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2463 kfree(mp); 2464 } 2465 2466 /* 2467 * If a REG_LOGIN succeeded after node is destroyed or node 2468 * is in re-discovery driver need to cleanup the RPI. 2469 */ 2470 if (!(phba->pport->load_flag & FC_UNLOADING) && 2471 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2472 !pmb->u.mb.mbxStatus) { 2473 rpi = pmb->u.mb.un.varWords[0]; 2474 vpi = pmb->u.mb.un.varRegLogin.vpi; 2475 lpfc_unreg_login(phba, vpi, rpi, pmb); 2476 pmb->vport = vport; 2477 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2478 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2479 if (rc != MBX_NOT_FINISHED) 2480 return; 2481 } 2482 2483 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2484 !(phba->pport->load_flag & FC_UNLOADING) && 2485 !pmb->u.mb.mbxStatus) { 2486 shost = lpfc_shost_from_vport(vport); 2487 spin_lock_irq(shost->host_lock); 2488 vport->vpi_state |= LPFC_VPI_REGISTERED; 2489 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2490 spin_unlock_irq(shost->host_lock); 2491 } 2492 2493 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2494 ndlp = (struct lpfc_nodelist *)pmb->context2; 2495 lpfc_nlp_put(ndlp); 2496 pmb->context2 = NULL; 2497 } 2498 2499 /* Check security permission status on INIT_LINK mailbox command */ 2500 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2501 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2502 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2503 "2860 SLI authentication is required " 2504 "for INIT_LINK but has not done yet\n"); 2505 2506 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2507 lpfc_sli4_mbox_cmd_free(phba, pmb); 2508 else 2509 mempool_free(pmb, phba->mbox_mem_pool); 2510 } 2511 /** 2512 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2513 * @phba: Pointer to HBA context object. 2514 * @pmb: Pointer to mailbox object. 2515 * 2516 * This function is the unreg rpi mailbox completion handler. It 2517 * frees the memory resources associated with the completed mailbox 2518 * command. An additional refrenece is put on the ndlp to prevent 2519 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2520 * the unreg mailbox command completes, this routine puts the 2521 * reference back. 2522 * 2523 **/ 2524 void 2525 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2526 { 2527 struct lpfc_vport *vport = pmb->vport; 2528 struct lpfc_nodelist *ndlp; 2529 2530 ndlp = pmb->context1; 2531 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2532 if (phba->sli_rev == LPFC_SLI_REV4 && 2533 (bf_get(lpfc_sli_intf_if_type, 2534 &phba->sli4_hba.sli_intf) >= 2535 LPFC_SLI_INTF_IF_TYPE_2)) { 2536 if (ndlp) { 2537 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2538 "0010 UNREG_LOGIN vpi:%x " 2539 "rpi:%x DID:%x map:%x %p\n", 2540 vport->vpi, ndlp->nlp_rpi, 2541 ndlp->nlp_DID, 2542 ndlp->nlp_usg_map, ndlp); 2543 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2544 lpfc_nlp_put(ndlp); 2545 } 2546 } 2547 } 2548 2549 mempool_free(pmb, phba->mbox_mem_pool); 2550 } 2551 2552 /** 2553 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2554 * @phba: Pointer to HBA context object. 2555 * 2556 * This function is called with no lock held. This function processes all 2557 * the completed mailbox commands and gives it to upper layers. The interrupt 2558 * service routine processes mailbox completion interrupt and adds completed 2559 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2560 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2561 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2562 * function returns the mailbox commands to the upper layer by calling the 2563 * completion handler function of each mailbox. 2564 **/ 2565 int 2566 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2567 { 2568 MAILBOX_t *pmbox; 2569 LPFC_MBOXQ_t *pmb; 2570 int rc; 2571 LIST_HEAD(cmplq); 2572 2573 phba->sli.slistat.mbox_event++; 2574 2575 /* Get all completed mailboxe buffers into the cmplq */ 2576 spin_lock_irq(&phba->hbalock); 2577 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2578 spin_unlock_irq(&phba->hbalock); 2579 2580 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2581 do { 2582 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2583 if (pmb == NULL) 2584 break; 2585 2586 pmbox = &pmb->u.mb; 2587 2588 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2589 if (pmb->vport) { 2590 lpfc_debugfs_disc_trc(pmb->vport, 2591 LPFC_DISC_TRC_MBOX_VPORT, 2592 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2593 (uint32_t)pmbox->mbxCommand, 2594 pmbox->un.varWords[0], 2595 pmbox->un.varWords[1]); 2596 } 2597 else { 2598 lpfc_debugfs_disc_trc(phba->pport, 2599 LPFC_DISC_TRC_MBOX, 2600 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2601 (uint32_t)pmbox->mbxCommand, 2602 pmbox->un.varWords[0], 2603 pmbox->un.varWords[1]); 2604 } 2605 } 2606 2607 /* 2608 * It is a fatal error if unknown mbox command completion. 2609 */ 2610 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2611 MBX_SHUTDOWN) { 2612 /* Unknown mailbox command compl */ 2613 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2614 "(%d):0323 Unknown Mailbox command " 2615 "x%x (x%x/x%x) Cmpl\n", 2616 pmb->vport ? pmb->vport->vpi : 0, 2617 pmbox->mbxCommand, 2618 lpfc_sli_config_mbox_subsys_get(phba, 2619 pmb), 2620 lpfc_sli_config_mbox_opcode_get(phba, 2621 pmb)); 2622 phba->link_state = LPFC_HBA_ERROR; 2623 phba->work_hs = HS_FFER3; 2624 lpfc_handle_eratt(phba); 2625 continue; 2626 } 2627 2628 if (pmbox->mbxStatus) { 2629 phba->sli.slistat.mbox_stat_err++; 2630 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2631 /* Mbox cmd cmpl error - RETRYing */ 2632 lpfc_printf_log(phba, KERN_INFO, 2633 LOG_MBOX | LOG_SLI, 2634 "(%d):0305 Mbox cmd cmpl " 2635 "error - RETRYing Data: x%x " 2636 "(x%x/x%x) x%x x%x x%x\n", 2637 pmb->vport ? pmb->vport->vpi : 0, 2638 pmbox->mbxCommand, 2639 lpfc_sli_config_mbox_subsys_get(phba, 2640 pmb), 2641 lpfc_sli_config_mbox_opcode_get(phba, 2642 pmb), 2643 pmbox->mbxStatus, 2644 pmbox->un.varWords[0], 2645 pmb->vport->port_state); 2646 pmbox->mbxStatus = 0; 2647 pmbox->mbxOwner = OWN_HOST; 2648 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2649 if (rc != MBX_NOT_FINISHED) 2650 continue; 2651 } 2652 } 2653 2654 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2655 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2656 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2657 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2658 "x%x x%x x%x\n", 2659 pmb->vport ? pmb->vport->vpi : 0, 2660 pmbox->mbxCommand, 2661 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2662 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2663 pmb->mbox_cmpl, 2664 *((uint32_t *) pmbox), 2665 pmbox->un.varWords[0], 2666 pmbox->un.varWords[1], 2667 pmbox->un.varWords[2], 2668 pmbox->un.varWords[3], 2669 pmbox->un.varWords[4], 2670 pmbox->un.varWords[5], 2671 pmbox->un.varWords[6], 2672 pmbox->un.varWords[7], 2673 pmbox->un.varWords[8], 2674 pmbox->un.varWords[9], 2675 pmbox->un.varWords[10]); 2676 2677 if (pmb->mbox_cmpl) 2678 pmb->mbox_cmpl(phba,pmb); 2679 } while (1); 2680 return 0; 2681 } 2682 2683 /** 2684 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2685 * @phba: Pointer to HBA context object. 2686 * @pring: Pointer to driver SLI ring object. 2687 * @tag: buffer tag. 2688 * 2689 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2690 * is set in the tag the buffer is posted for a particular exchange, 2691 * the function will return the buffer without replacing the buffer. 2692 * If the buffer is for unsolicited ELS or CT traffic, this function 2693 * returns the buffer and also posts another buffer to the firmware. 2694 **/ 2695 static struct lpfc_dmabuf * 2696 lpfc_sli_get_buff(struct lpfc_hba *phba, 2697 struct lpfc_sli_ring *pring, 2698 uint32_t tag) 2699 { 2700 struct hbq_dmabuf *hbq_entry; 2701 2702 if (tag & QUE_BUFTAG_BIT) 2703 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2704 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2705 if (!hbq_entry) 2706 return NULL; 2707 return &hbq_entry->dbuf; 2708 } 2709 2710 /** 2711 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2712 * @phba: Pointer to HBA context object. 2713 * @pring: Pointer to driver SLI ring object. 2714 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2715 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2716 * @fch_type: the type for the first frame of the sequence. 2717 * 2718 * This function is called with no lock held. This function uses the r_ctl and 2719 * type of the received sequence to find the correct callback function to call 2720 * to process the sequence. 2721 **/ 2722 static int 2723 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2724 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2725 uint32_t fch_type) 2726 { 2727 int i; 2728 2729 switch (fch_type) { 2730 case FC_TYPE_NVME: 2731 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2732 return 1; 2733 default: 2734 break; 2735 } 2736 2737 /* unSolicited Responses */ 2738 if (pring->prt[0].profile) { 2739 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2740 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2741 saveq); 2742 return 1; 2743 } 2744 /* We must search, based on rctl / type 2745 for the right routine */ 2746 for (i = 0; i < pring->num_mask; i++) { 2747 if ((pring->prt[i].rctl == fch_r_ctl) && 2748 (pring->prt[i].type == fch_type)) { 2749 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2750 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2751 (phba, pring, saveq); 2752 return 1; 2753 } 2754 } 2755 return 0; 2756 } 2757 2758 /** 2759 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2760 * @phba: Pointer to HBA context object. 2761 * @pring: Pointer to driver SLI ring object. 2762 * @saveq: Pointer to the unsolicited iocb. 2763 * 2764 * This function is called with no lock held by the ring event handler 2765 * when there is an unsolicited iocb posted to the response ring by the 2766 * firmware. This function gets the buffer associated with the iocbs 2767 * and calls the event handler for the ring. This function handles both 2768 * qring buffers and hbq buffers. 2769 * When the function returns 1 the caller can free the iocb object otherwise 2770 * upper layer functions will free the iocb objects. 2771 **/ 2772 static int 2773 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2774 struct lpfc_iocbq *saveq) 2775 { 2776 IOCB_t * irsp; 2777 WORD5 * w5p; 2778 uint32_t Rctl, Type; 2779 struct lpfc_iocbq *iocbq; 2780 struct lpfc_dmabuf *dmzbuf; 2781 2782 irsp = &(saveq->iocb); 2783 2784 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2785 if (pring->lpfc_sli_rcv_async_status) 2786 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2787 else 2788 lpfc_printf_log(phba, 2789 KERN_WARNING, 2790 LOG_SLI, 2791 "0316 Ring %d handler: unexpected " 2792 "ASYNC_STATUS iocb received evt_code " 2793 "0x%x\n", 2794 pring->ringno, 2795 irsp->un.asyncstat.evt_code); 2796 return 1; 2797 } 2798 2799 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2800 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2801 if (irsp->ulpBdeCount > 0) { 2802 dmzbuf = lpfc_sli_get_buff(phba, pring, 2803 irsp->un.ulpWord[3]); 2804 lpfc_in_buf_free(phba, dmzbuf); 2805 } 2806 2807 if (irsp->ulpBdeCount > 1) { 2808 dmzbuf = lpfc_sli_get_buff(phba, pring, 2809 irsp->unsli3.sli3Words[3]); 2810 lpfc_in_buf_free(phba, dmzbuf); 2811 } 2812 2813 if (irsp->ulpBdeCount > 2) { 2814 dmzbuf = lpfc_sli_get_buff(phba, pring, 2815 irsp->unsli3.sli3Words[7]); 2816 lpfc_in_buf_free(phba, dmzbuf); 2817 } 2818 2819 return 1; 2820 } 2821 2822 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2823 if (irsp->ulpBdeCount != 0) { 2824 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2825 irsp->un.ulpWord[3]); 2826 if (!saveq->context2) 2827 lpfc_printf_log(phba, 2828 KERN_ERR, 2829 LOG_SLI, 2830 "0341 Ring %d Cannot find buffer for " 2831 "an unsolicited iocb. tag 0x%x\n", 2832 pring->ringno, 2833 irsp->un.ulpWord[3]); 2834 } 2835 if (irsp->ulpBdeCount == 2) { 2836 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2837 irsp->unsli3.sli3Words[7]); 2838 if (!saveq->context3) 2839 lpfc_printf_log(phba, 2840 KERN_ERR, 2841 LOG_SLI, 2842 "0342 Ring %d Cannot find buffer for an" 2843 " unsolicited iocb. tag 0x%x\n", 2844 pring->ringno, 2845 irsp->unsli3.sli3Words[7]); 2846 } 2847 list_for_each_entry(iocbq, &saveq->list, list) { 2848 irsp = &(iocbq->iocb); 2849 if (irsp->ulpBdeCount != 0) { 2850 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2851 irsp->un.ulpWord[3]); 2852 if (!iocbq->context2) 2853 lpfc_printf_log(phba, 2854 KERN_ERR, 2855 LOG_SLI, 2856 "0343 Ring %d Cannot find " 2857 "buffer for an unsolicited iocb" 2858 ". tag 0x%x\n", pring->ringno, 2859 irsp->un.ulpWord[3]); 2860 } 2861 if (irsp->ulpBdeCount == 2) { 2862 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2863 irsp->unsli3.sli3Words[7]); 2864 if (!iocbq->context3) 2865 lpfc_printf_log(phba, 2866 KERN_ERR, 2867 LOG_SLI, 2868 "0344 Ring %d Cannot find " 2869 "buffer for an unsolicited " 2870 "iocb. tag 0x%x\n", 2871 pring->ringno, 2872 irsp->unsli3.sli3Words[7]); 2873 } 2874 } 2875 } 2876 if (irsp->ulpBdeCount != 0 && 2877 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2878 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2879 int found = 0; 2880 2881 /* search continue save q for same XRI */ 2882 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2883 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2884 saveq->iocb.unsli3.rcvsli3.ox_id) { 2885 list_add_tail(&saveq->list, &iocbq->list); 2886 found = 1; 2887 break; 2888 } 2889 } 2890 if (!found) 2891 list_add_tail(&saveq->clist, 2892 &pring->iocb_continue_saveq); 2893 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2894 list_del_init(&iocbq->clist); 2895 saveq = iocbq; 2896 irsp = &(saveq->iocb); 2897 } else 2898 return 0; 2899 } 2900 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2901 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2902 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2903 Rctl = FC_RCTL_ELS_REQ; 2904 Type = FC_TYPE_ELS; 2905 } else { 2906 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2907 Rctl = w5p->hcsw.Rctl; 2908 Type = w5p->hcsw.Type; 2909 2910 /* Firmware Workaround */ 2911 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2912 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2913 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2914 Rctl = FC_RCTL_ELS_REQ; 2915 Type = FC_TYPE_ELS; 2916 w5p->hcsw.Rctl = Rctl; 2917 w5p->hcsw.Type = Type; 2918 } 2919 } 2920 2921 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2922 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2923 "0313 Ring %d handler: unexpected Rctl x%x " 2924 "Type x%x received\n", 2925 pring->ringno, Rctl, Type); 2926 2927 return 1; 2928 } 2929 2930 /** 2931 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2932 * @phba: Pointer to HBA context object. 2933 * @pring: Pointer to driver SLI ring object. 2934 * @prspiocb: Pointer to response iocb object. 2935 * 2936 * This function looks up the iocb_lookup table to get the command iocb 2937 * corresponding to the given response iocb using the iotag of the 2938 * response iocb. This function is called with the hbalock held 2939 * for sli3 devices or the ring_lock for sli4 devices. 2940 * This function returns the command iocb object if it finds the command 2941 * iocb else returns NULL. 2942 **/ 2943 static struct lpfc_iocbq * 2944 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2945 struct lpfc_sli_ring *pring, 2946 struct lpfc_iocbq *prspiocb) 2947 { 2948 struct lpfc_iocbq *cmd_iocb = NULL; 2949 uint16_t iotag; 2950 lockdep_assert_held(&phba->hbalock); 2951 2952 iotag = prspiocb->iocb.ulpIoTag; 2953 2954 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2955 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2956 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2957 /* remove from txcmpl queue list */ 2958 list_del_init(&cmd_iocb->list); 2959 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2960 return cmd_iocb; 2961 } 2962 } 2963 2964 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2965 "0317 iotag x%x is out of " 2966 "range: max iotag x%x wd0 x%x\n", 2967 iotag, phba->sli.last_iotag, 2968 *(((uint32_t *) &prspiocb->iocb) + 7)); 2969 return NULL; 2970 } 2971 2972 /** 2973 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2974 * @phba: Pointer to HBA context object. 2975 * @pring: Pointer to driver SLI ring object. 2976 * @iotag: IOCB tag. 2977 * 2978 * This function looks up the iocb_lookup table to get the command iocb 2979 * corresponding to the given iotag. This function is called with the 2980 * hbalock held. 2981 * This function returns the command iocb object if it finds the command 2982 * iocb else returns NULL. 2983 **/ 2984 static struct lpfc_iocbq * 2985 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2986 struct lpfc_sli_ring *pring, uint16_t iotag) 2987 { 2988 struct lpfc_iocbq *cmd_iocb = NULL; 2989 2990 lockdep_assert_held(&phba->hbalock); 2991 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2992 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2993 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2994 /* remove from txcmpl queue list */ 2995 list_del_init(&cmd_iocb->list); 2996 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2997 return cmd_iocb; 2998 } 2999 } 3000 3001 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3002 "0372 iotag x%x lookup error: max iotag (x%x) " 3003 "iocb_flag x%x\n", 3004 iotag, phba->sli.last_iotag, 3005 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3006 return NULL; 3007 } 3008 3009 /** 3010 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3011 * @phba: Pointer to HBA context object. 3012 * @pring: Pointer to driver SLI ring object. 3013 * @saveq: Pointer to the response iocb to be processed. 3014 * 3015 * This function is called by the ring event handler for non-fcp 3016 * rings when there is a new response iocb in the response ring. 3017 * The caller is not required to hold any locks. This function 3018 * gets the command iocb associated with the response iocb and 3019 * calls the completion handler for the command iocb. If there 3020 * is no completion handler, the function will free the resources 3021 * associated with command iocb. If the response iocb is for 3022 * an already aborted command iocb, the status of the completion 3023 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3024 * This function always returns 1. 3025 **/ 3026 static int 3027 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3028 struct lpfc_iocbq *saveq) 3029 { 3030 struct lpfc_iocbq *cmdiocbp; 3031 int rc = 1; 3032 unsigned long iflag; 3033 3034 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 3035 if (phba->sli_rev == LPFC_SLI_REV4) 3036 spin_lock_irqsave(&pring->ring_lock, iflag); 3037 else 3038 spin_lock_irqsave(&phba->hbalock, iflag); 3039 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3040 if (phba->sli_rev == LPFC_SLI_REV4) 3041 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3042 else 3043 spin_unlock_irqrestore(&phba->hbalock, iflag); 3044 3045 if (cmdiocbp) { 3046 if (cmdiocbp->iocb_cmpl) { 3047 /* 3048 * If an ELS command failed send an event to mgmt 3049 * application. 3050 */ 3051 if (saveq->iocb.ulpStatus && 3052 (pring->ringno == LPFC_ELS_RING) && 3053 (cmdiocbp->iocb.ulpCommand == 3054 CMD_ELS_REQUEST64_CR)) 3055 lpfc_send_els_failure_event(phba, 3056 cmdiocbp, saveq); 3057 3058 /* 3059 * Post all ELS completions to the worker thread. 3060 * All other are passed to the completion callback. 3061 */ 3062 if (pring->ringno == LPFC_ELS_RING) { 3063 if ((phba->sli_rev < LPFC_SLI_REV4) && 3064 (cmdiocbp->iocb_flag & 3065 LPFC_DRIVER_ABORTED)) { 3066 spin_lock_irqsave(&phba->hbalock, 3067 iflag); 3068 cmdiocbp->iocb_flag &= 3069 ~LPFC_DRIVER_ABORTED; 3070 spin_unlock_irqrestore(&phba->hbalock, 3071 iflag); 3072 saveq->iocb.ulpStatus = 3073 IOSTAT_LOCAL_REJECT; 3074 saveq->iocb.un.ulpWord[4] = 3075 IOERR_SLI_ABORTED; 3076 3077 /* Firmware could still be in progress 3078 * of DMAing payload, so don't free data 3079 * buffer till after a hbeat. 3080 */ 3081 spin_lock_irqsave(&phba->hbalock, 3082 iflag); 3083 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3084 spin_unlock_irqrestore(&phba->hbalock, 3085 iflag); 3086 } 3087 if (phba->sli_rev == LPFC_SLI_REV4) { 3088 if (saveq->iocb_flag & 3089 LPFC_EXCHANGE_BUSY) { 3090 /* Set cmdiocb flag for the 3091 * exchange busy so sgl (xri) 3092 * will not be released until 3093 * the abort xri is received 3094 * from hba. 3095 */ 3096 spin_lock_irqsave( 3097 &phba->hbalock, iflag); 3098 cmdiocbp->iocb_flag |= 3099 LPFC_EXCHANGE_BUSY; 3100 spin_unlock_irqrestore( 3101 &phba->hbalock, iflag); 3102 } 3103 if (cmdiocbp->iocb_flag & 3104 LPFC_DRIVER_ABORTED) { 3105 /* 3106 * Clear LPFC_DRIVER_ABORTED 3107 * bit in case it was driver 3108 * initiated abort. 3109 */ 3110 spin_lock_irqsave( 3111 &phba->hbalock, iflag); 3112 cmdiocbp->iocb_flag &= 3113 ~LPFC_DRIVER_ABORTED; 3114 spin_unlock_irqrestore( 3115 &phba->hbalock, iflag); 3116 cmdiocbp->iocb.ulpStatus = 3117 IOSTAT_LOCAL_REJECT; 3118 cmdiocbp->iocb.un.ulpWord[4] = 3119 IOERR_ABORT_REQUESTED; 3120 /* 3121 * For SLI4, irsiocb contains 3122 * NO_XRI in sli_xritag, it 3123 * shall not affect releasing 3124 * sgl (xri) process. 3125 */ 3126 saveq->iocb.ulpStatus = 3127 IOSTAT_LOCAL_REJECT; 3128 saveq->iocb.un.ulpWord[4] = 3129 IOERR_SLI_ABORTED; 3130 spin_lock_irqsave( 3131 &phba->hbalock, iflag); 3132 saveq->iocb_flag |= 3133 LPFC_DELAY_MEM_FREE; 3134 spin_unlock_irqrestore( 3135 &phba->hbalock, iflag); 3136 } 3137 } 3138 } 3139 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3140 } else 3141 lpfc_sli_release_iocbq(phba, cmdiocbp); 3142 } else { 3143 /* 3144 * Unknown initiating command based on the response iotag. 3145 * This could be the case on the ELS ring because of 3146 * lpfc_els_abort(). 3147 */ 3148 if (pring->ringno != LPFC_ELS_RING) { 3149 /* 3150 * Ring <ringno> handler: unexpected completion IoTag 3151 * <IoTag> 3152 */ 3153 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3154 "0322 Ring %d handler: " 3155 "unexpected completion IoTag x%x " 3156 "Data: x%x x%x x%x x%x\n", 3157 pring->ringno, 3158 saveq->iocb.ulpIoTag, 3159 saveq->iocb.ulpStatus, 3160 saveq->iocb.un.ulpWord[4], 3161 saveq->iocb.ulpCommand, 3162 saveq->iocb.ulpContext); 3163 } 3164 } 3165 3166 return rc; 3167 } 3168 3169 /** 3170 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3171 * @phba: Pointer to HBA context object. 3172 * @pring: Pointer to driver SLI ring object. 3173 * 3174 * This function is called from the iocb ring event handlers when 3175 * put pointer is ahead of the get pointer for a ring. This function signal 3176 * an error attention condition to the worker thread and the worker 3177 * thread will transition the HBA to offline state. 3178 **/ 3179 static void 3180 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3181 { 3182 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3183 /* 3184 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3185 * rsp ring <portRspMax> 3186 */ 3187 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3188 "0312 Ring %d handler: portRspPut %d " 3189 "is bigger than rsp ring %d\n", 3190 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3191 pring->sli.sli3.numRiocb); 3192 3193 phba->link_state = LPFC_HBA_ERROR; 3194 3195 /* 3196 * All error attention handlers are posted to 3197 * worker thread 3198 */ 3199 phba->work_ha |= HA_ERATT; 3200 phba->work_hs = HS_FFER3; 3201 3202 lpfc_worker_wake_up(phba); 3203 3204 return; 3205 } 3206 3207 /** 3208 * lpfc_poll_eratt - Error attention polling timer timeout handler 3209 * @ptr: Pointer to address of HBA context object. 3210 * 3211 * This function is invoked by the Error Attention polling timer when the 3212 * timer times out. It will check the SLI Error Attention register for 3213 * possible attention events. If so, it will post an Error Attention event 3214 * and wake up worker thread to process it. Otherwise, it will set up the 3215 * Error Attention polling timer for the next poll. 3216 **/ 3217 void lpfc_poll_eratt(struct timer_list *t) 3218 { 3219 struct lpfc_hba *phba; 3220 uint32_t eratt = 0; 3221 uint64_t sli_intr, cnt; 3222 3223 phba = from_timer(phba, t, eratt_poll); 3224 3225 /* Here we will also keep track of interrupts per sec of the hba */ 3226 sli_intr = phba->sli.slistat.sli_intr; 3227 3228 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3229 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3230 sli_intr); 3231 else 3232 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3233 3234 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3235 do_div(cnt, phba->eratt_poll_interval); 3236 phba->sli.slistat.sli_ips = cnt; 3237 3238 phba->sli.slistat.sli_prev_intr = sli_intr; 3239 3240 /* Check chip HA register for error event */ 3241 eratt = lpfc_sli_check_eratt(phba); 3242 3243 if (eratt) 3244 /* Tell the worker thread there is work to do */ 3245 lpfc_worker_wake_up(phba); 3246 else 3247 /* Restart the timer for next eratt poll */ 3248 mod_timer(&phba->eratt_poll, 3249 jiffies + 3250 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3251 return; 3252 } 3253 3254 3255 /** 3256 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3257 * @phba: Pointer to HBA context object. 3258 * @pring: Pointer to driver SLI ring object. 3259 * @mask: Host attention register mask for this ring. 3260 * 3261 * This function is called from the interrupt context when there is a ring 3262 * event for the fcp ring. The caller does not hold any lock. 3263 * The function processes each response iocb in the response ring until it 3264 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3265 * LE bit set. The function will call the completion handler of the command iocb 3266 * if the response iocb indicates a completion for a command iocb or it is 3267 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3268 * function if this is an unsolicited iocb. 3269 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3270 * to check it explicitly. 3271 */ 3272 int 3273 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3274 struct lpfc_sli_ring *pring, uint32_t mask) 3275 { 3276 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3277 IOCB_t *irsp = NULL; 3278 IOCB_t *entry = NULL; 3279 struct lpfc_iocbq *cmdiocbq = NULL; 3280 struct lpfc_iocbq rspiocbq; 3281 uint32_t status; 3282 uint32_t portRspPut, portRspMax; 3283 int rc = 1; 3284 lpfc_iocb_type type; 3285 unsigned long iflag; 3286 uint32_t rsp_cmpl = 0; 3287 3288 spin_lock_irqsave(&phba->hbalock, iflag); 3289 pring->stats.iocb_event++; 3290 3291 /* 3292 * The next available response entry should never exceed the maximum 3293 * entries. If it does, treat it as an adapter hardware error. 3294 */ 3295 portRspMax = pring->sli.sli3.numRiocb; 3296 portRspPut = le32_to_cpu(pgp->rspPutInx); 3297 if (unlikely(portRspPut >= portRspMax)) { 3298 lpfc_sli_rsp_pointers_error(phba, pring); 3299 spin_unlock_irqrestore(&phba->hbalock, iflag); 3300 return 1; 3301 } 3302 if (phba->fcp_ring_in_use) { 3303 spin_unlock_irqrestore(&phba->hbalock, iflag); 3304 return 1; 3305 } else 3306 phba->fcp_ring_in_use = 1; 3307 3308 rmb(); 3309 while (pring->sli.sli3.rspidx != portRspPut) { 3310 /* 3311 * Fetch an entry off the ring and copy it into a local data 3312 * structure. The copy involves a byte-swap since the 3313 * network byte order and pci byte orders are different. 3314 */ 3315 entry = lpfc_resp_iocb(phba, pring); 3316 phba->last_completion_time = jiffies; 3317 3318 if (++pring->sli.sli3.rspidx >= portRspMax) 3319 pring->sli.sli3.rspidx = 0; 3320 3321 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3322 (uint32_t *) &rspiocbq.iocb, 3323 phba->iocb_rsp_size); 3324 INIT_LIST_HEAD(&(rspiocbq.list)); 3325 irsp = &rspiocbq.iocb; 3326 3327 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3328 pring->stats.iocb_rsp++; 3329 rsp_cmpl++; 3330 3331 if (unlikely(irsp->ulpStatus)) { 3332 /* 3333 * If resource errors reported from HBA, reduce 3334 * queuedepths of the SCSI device. 3335 */ 3336 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3337 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3338 IOERR_NO_RESOURCES)) { 3339 spin_unlock_irqrestore(&phba->hbalock, iflag); 3340 phba->lpfc_rampdown_queue_depth(phba); 3341 spin_lock_irqsave(&phba->hbalock, iflag); 3342 } 3343 3344 /* Rsp ring <ringno> error: IOCB */ 3345 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3346 "0336 Rsp Ring %d error: IOCB Data: " 3347 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3348 pring->ringno, 3349 irsp->un.ulpWord[0], 3350 irsp->un.ulpWord[1], 3351 irsp->un.ulpWord[2], 3352 irsp->un.ulpWord[3], 3353 irsp->un.ulpWord[4], 3354 irsp->un.ulpWord[5], 3355 *(uint32_t *)&irsp->un1, 3356 *((uint32_t *)&irsp->un1 + 1)); 3357 } 3358 3359 switch (type) { 3360 case LPFC_ABORT_IOCB: 3361 case LPFC_SOL_IOCB: 3362 /* 3363 * Idle exchange closed via ABTS from port. No iocb 3364 * resources need to be recovered. 3365 */ 3366 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3367 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3368 "0333 IOCB cmd 0x%x" 3369 " processed. Skipping" 3370 " completion\n", 3371 irsp->ulpCommand); 3372 break; 3373 } 3374 3375 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3376 &rspiocbq); 3377 if (unlikely(!cmdiocbq)) 3378 break; 3379 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3380 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3381 if (cmdiocbq->iocb_cmpl) { 3382 spin_unlock_irqrestore(&phba->hbalock, iflag); 3383 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3384 &rspiocbq); 3385 spin_lock_irqsave(&phba->hbalock, iflag); 3386 } 3387 break; 3388 case LPFC_UNSOL_IOCB: 3389 spin_unlock_irqrestore(&phba->hbalock, iflag); 3390 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3391 spin_lock_irqsave(&phba->hbalock, iflag); 3392 break; 3393 default: 3394 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3395 char adaptermsg[LPFC_MAX_ADPTMSG]; 3396 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3397 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3398 MAX_MSG_DATA); 3399 dev_warn(&((phba->pcidev)->dev), 3400 "lpfc%d: %s\n", 3401 phba->brd_no, adaptermsg); 3402 } else { 3403 /* Unknown IOCB command */ 3404 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3405 "0334 Unknown IOCB command " 3406 "Data: x%x, x%x x%x x%x x%x\n", 3407 type, irsp->ulpCommand, 3408 irsp->ulpStatus, 3409 irsp->ulpIoTag, 3410 irsp->ulpContext); 3411 } 3412 break; 3413 } 3414 3415 /* 3416 * The response IOCB has been processed. Update the ring 3417 * pointer in SLIM. If the port response put pointer has not 3418 * been updated, sync the pgp->rspPutInx and fetch the new port 3419 * response put pointer. 3420 */ 3421 writel(pring->sli.sli3.rspidx, 3422 &phba->host_gp[pring->ringno].rspGetInx); 3423 3424 if (pring->sli.sli3.rspidx == portRspPut) 3425 portRspPut = le32_to_cpu(pgp->rspPutInx); 3426 } 3427 3428 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3429 pring->stats.iocb_rsp_full++; 3430 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3431 writel(status, phba->CAregaddr); 3432 readl(phba->CAregaddr); 3433 } 3434 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3435 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3436 pring->stats.iocb_cmd_empty++; 3437 3438 /* Force update of the local copy of cmdGetInx */ 3439 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3440 lpfc_sli_resume_iocb(phba, pring); 3441 3442 if ((pring->lpfc_sli_cmd_available)) 3443 (pring->lpfc_sli_cmd_available) (phba, pring); 3444 3445 } 3446 3447 phba->fcp_ring_in_use = 0; 3448 spin_unlock_irqrestore(&phba->hbalock, iflag); 3449 return rc; 3450 } 3451 3452 /** 3453 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3454 * @phba: Pointer to HBA context object. 3455 * @pring: Pointer to driver SLI ring object. 3456 * @rspiocbp: Pointer to driver response IOCB object. 3457 * 3458 * This function is called from the worker thread when there is a slow-path 3459 * response IOCB to process. This function chains all the response iocbs until 3460 * seeing the iocb with the LE bit set. The function will call 3461 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3462 * completion of a command iocb. The function will call the 3463 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3464 * The function frees the resources or calls the completion handler if this 3465 * iocb is an abort completion. The function returns NULL when the response 3466 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3467 * this function shall chain the iocb on to the iocb_continueq and return the 3468 * response iocb passed in. 3469 **/ 3470 static struct lpfc_iocbq * 3471 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3472 struct lpfc_iocbq *rspiocbp) 3473 { 3474 struct lpfc_iocbq *saveq; 3475 struct lpfc_iocbq *cmdiocbp; 3476 struct lpfc_iocbq *next_iocb; 3477 IOCB_t *irsp = NULL; 3478 uint32_t free_saveq; 3479 uint8_t iocb_cmd_type; 3480 lpfc_iocb_type type; 3481 unsigned long iflag; 3482 int rc; 3483 3484 spin_lock_irqsave(&phba->hbalock, iflag); 3485 /* First add the response iocb to the countinueq list */ 3486 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3487 pring->iocb_continueq_cnt++; 3488 3489 /* Now, determine whether the list is completed for processing */ 3490 irsp = &rspiocbp->iocb; 3491 if (irsp->ulpLe) { 3492 /* 3493 * By default, the driver expects to free all resources 3494 * associated with this iocb completion. 3495 */ 3496 free_saveq = 1; 3497 saveq = list_get_first(&pring->iocb_continueq, 3498 struct lpfc_iocbq, list); 3499 irsp = &(saveq->iocb); 3500 list_del_init(&pring->iocb_continueq); 3501 pring->iocb_continueq_cnt = 0; 3502 3503 pring->stats.iocb_rsp++; 3504 3505 /* 3506 * If resource errors reported from HBA, reduce 3507 * queuedepths of the SCSI device. 3508 */ 3509 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3510 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3511 IOERR_NO_RESOURCES)) { 3512 spin_unlock_irqrestore(&phba->hbalock, iflag); 3513 phba->lpfc_rampdown_queue_depth(phba); 3514 spin_lock_irqsave(&phba->hbalock, iflag); 3515 } 3516 3517 if (irsp->ulpStatus) { 3518 /* Rsp ring <ringno> error: IOCB */ 3519 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3520 "0328 Rsp Ring %d error: " 3521 "IOCB Data: " 3522 "x%x x%x x%x x%x " 3523 "x%x x%x x%x x%x " 3524 "x%x x%x x%x x%x " 3525 "x%x x%x x%x x%x\n", 3526 pring->ringno, 3527 irsp->un.ulpWord[0], 3528 irsp->un.ulpWord[1], 3529 irsp->un.ulpWord[2], 3530 irsp->un.ulpWord[3], 3531 irsp->un.ulpWord[4], 3532 irsp->un.ulpWord[5], 3533 *(((uint32_t *) irsp) + 6), 3534 *(((uint32_t *) irsp) + 7), 3535 *(((uint32_t *) irsp) + 8), 3536 *(((uint32_t *) irsp) + 9), 3537 *(((uint32_t *) irsp) + 10), 3538 *(((uint32_t *) irsp) + 11), 3539 *(((uint32_t *) irsp) + 12), 3540 *(((uint32_t *) irsp) + 13), 3541 *(((uint32_t *) irsp) + 14), 3542 *(((uint32_t *) irsp) + 15)); 3543 } 3544 3545 /* 3546 * Fetch the IOCB command type and call the correct completion 3547 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3548 * get freed back to the lpfc_iocb_list by the discovery 3549 * kernel thread. 3550 */ 3551 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3552 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3553 switch (type) { 3554 case LPFC_SOL_IOCB: 3555 spin_unlock_irqrestore(&phba->hbalock, iflag); 3556 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3557 spin_lock_irqsave(&phba->hbalock, iflag); 3558 break; 3559 3560 case LPFC_UNSOL_IOCB: 3561 spin_unlock_irqrestore(&phba->hbalock, iflag); 3562 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3563 spin_lock_irqsave(&phba->hbalock, iflag); 3564 if (!rc) 3565 free_saveq = 0; 3566 break; 3567 3568 case LPFC_ABORT_IOCB: 3569 cmdiocbp = NULL; 3570 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3571 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3572 saveq); 3573 if (cmdiocbp) { 3574 /* Call the specified completion routine */ 3575 if (cmdiocbp->iocb_cmpl) { 3576 spin_unlock_irqrestore(&phba->hbalock, 3577 iflag); 3578 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3579 saveq); 3580 spin_lock_irqsave(&phba->hbalock, 3581 iflag); 3582 } else 3583 __lpfc_sli_release_iocbq(phba, 3584 cmdiocbp); 3585 } 3586 break; 3587 3588 case LPFC_UNKNOWN_IOCB: 3589 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3590 char adaptermsg[LPFC_MAX_ADPTMSG]; 3591 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3592 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3593 MAX_MSG_DATA); 3594 dev_warn(&((phba->pcidev)->dev), 3595 "lpfc%d: %s\n", 3596 phba->brd_no, adaptermsg); 3597 } else { 3598 /* Unknown IOCB command */ 3599 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3600 "0335 Unknown IOCB " 3601 "command Data: x%x " 3602 "x%x x%x x%x\n", 3603 irsp->ulpCommand, 3604 irsp->ulpStatus, 3605 irsp->ulpIoTag, 3606 irsp->ulpContext); 3607 } 3608 break; 3609 } 3610 3611 if (free_saveq) { 3612 list_for_each_entry_safe(rspiocbp, next_iocb, 3613 &saveq->list, list) { 3614 list_del_init(&rspiocbp->list); 3615 __lpfc_sli_release_iocbq(phba, rspiocbp); 3616 } 3617 __lpfc_sli_release_iocbq(phba, saveq); 3618 } 3619 rspiocbp = NULL; 3620 } 3621 spin_unlock_irqrestore(&phba->hbalock, iflag); 3622 return rspiocbp; 3623 } 3624 3625 /** 3626 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3627 * @phba: Pointer to HBA context object. 3628 * @pring: Pointer to driver SLI ring object. 3629 * @mask: Host attention register mask for this ring. 3630 * 3631 * This routine wraps the actual slow_ring event process routine from the 3632 * API jump table function pointer from the lpfc_hba struct. 3633 **/ 3634 void 3635 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3636 struct lpfc_sli_ring *pring, uint32_t mask) 3637 { 3638 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3639 } 3640 3641 /** 3642 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3643 * @phba: Pointer to HBA context object. 3644 * @pring: Pointer to driver SLI ring object. 3645 * @mask: Host attention register mask for this ring. 3646 * 3647 * This function is called from the worker thread when there is a ring event 3648 * for non-fcp rings. The caller does not hold any lock. The function will 3649 * remove each response iocb in the response ring and calls the handle 3650 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3651 **/ 3652 static void 3653 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3654 struct lpfc_sli_ring *pring, uint32_t mask) 3655 { 3656 struct lpfc_pgp *pgp; 3657 IOCB_t *entry; 3658 IOCB_t *irsp = NULL; 3659 struct lpfc_iocbq *rspiocbp = NULL; 3660 uint32_t portRspPut, portRspMax; 3661 unsigned long iflag; 3662 uint32_t status; 3663 3664 pgp = &phba->port_gp[pring->ringno]; 3665 spin_lock_irqsave(&phba->hbalock, iflag); 3666 pring->stats.iocb_event++; 3667 3668 /* 3669 * The next available response entry should never exceed the maximum 3670 * entries. If it does, treat it as an adapter hardware error. 3671 */ 3672 portRspMax = pring->sli.sli3.numRiocb; 3673 portRspPut = le32_to_cpu(pgp->rspPutInx); 3674 if (portRspPut >= portRspMax) { 3675 /* 3676 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3677 * rsp ring <portRspMax> 3678 */ 3679 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3680 "0303 Ring %d handler: portRspPut %d " 3681 "is bigger than rsp ring %d\n", 3682 pring->ringno, portRspPut, portRspMax); 3683 3684 phba->link_state = LPFC_HBA_ERROR; 3685 spin_unlock_irqrestore(&phba->hbalock, iflag); 3686 3687 phba->work_hs = HS_FFER3; 3688 lpfc_handle_eratt(phba); 3689 3690 return; 3691 } 3692 3693 rmb(); 3694 while (pring->sli.sli3.rspidx != portRspPut) { 3695 /* 3696 * Build a completion list and call the appropriate handler. 3697 * The process is to get the next available response iocb, get 3698 * a free iocb from the list, copy the response data into the 3699 * free iocb, insert to the continuation list, and update the 3700 * next response index to slim. This process makes response 3701 * iocb's in the ring available to DMA as fast as possible but 3702 * pays a penalty for a copy operation. Since the iocb is 3703 * only 32 bytes, this penalty is considered small relative to 3704 * the PCI reads for register values and a slim write. When 3705 * the ulpLe field is set, the entire Command has been 3706 * received. 3707 */ 3708 entry = lpfc_resp_iocb(phba, pring); 3709 3710 phba->last_completion_time = jiffies; 3711 rspiocbp = __lpfc_sli_get_iocbq(phba); 3712 if (rspiocbp == NULL) { 3713 printk(KERN_ERR "%s: out of buffers! Failing " 3714 "completion.\n", __func__); 3715 break; 3716 } 3717 3718 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3719 phba->iocb_rsp_size); 3720 irsp = &rspiocbp->iocb; 3721 3722 if (++pring->sli.sli3.rspidx >= portRspMax) 3723 pring->sli.sli3.rspidx = 0; 3724 3725 if (pring->ringno == LPFC_ELS_RING) { 3726 lpfc_debugfs_slow_ring_trc(phba, 3727 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3728 *(((uint32_t *) irsp) + 4), 3729 *(((uint32_t *) irsp) + 6), 3730 *(((uint32_t *) irsp) + 7)); 3731 } 3732 3733 writel(pring->sli.sli3.rspidx, 3734 &phba->host_gp[pring->ringno].rspGetInx); 3735 3736 spin_unlock_irqrestore(&phba->hbalock, iflag); 3737 /* Handle the response IOCB */ 3738 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3739 spin_lock_irqsave(&phba->hbalock, iflag); 3740 3741 /* 3742 * If the port response put pointer has not been updated, sync 3743 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3744 * response put pointer. 3745 */ 3746 if (pring->sli.sli3.rspidx == portRspPut) { 3747 portRspPut = le32_to_cpu(pgp->rspPutInx); 3748 } 3749 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3750 3751 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3752 /* At least one response entry has been freed */ 3753 pring->stats.iocb_rsp_full++; 3754 /* SET RxRE_RSP in Chip Att register */ 3755 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3756 writel(status, phba->CAregaddr); 3757 readl(phba->CAregaddr); /* flush */ 3758 } 3759 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3760 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3761 pring->stats.iocb_cmd_empty++; 3762 3763 /* Force update of the local copy of cmdGetInx */ 3764 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3765 lpfc_sli_resume_iocb(phba, pring); 3766 3767 if ((pring->lpfc_sli_cmd_available)) 3768 (pring->lpfc_sli_cmd_available) (phba, pring); 3769 3770 } 3771 3772 spin_unlock_irqrestore(&phba->hbalock, iflag); 3773 return; 3774 } 3775 3776 /** 3777 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3778 * @phba: Pointer to HBA context object. 3779 * @pring: Pointer to driver SLI ring object. 3780 * @mask: Host attention register mask for this ring. 3781 * 3782 * This function is called from the worker thread when there is a pending 3783 * ELS response iocb on the driver internal slow-path response iocb worker 3784 * queue. The caller does not hold any lock. The function will remove each 3785 * response iocb from the response worker queue and calls the handle 3786 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3787 **/ 3788 static void 3789 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3790 struct lpfc_sli_ring *pring, uint32_t mask) 3791 { 3792 struct lpfc_iocbq *irspiocbq; 3793 struct hbq_dmabuf *dmabuf; 3794 struct lpfc_cq_event *cq_event; 3795 unsigned long iflag; 3796 int count = 0; 3797 3798 spin_lock_irqsave(&phba->hbalock, iflag); 3799 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3800 spin_unlock_irqrestore(&phba->hbalock, iflag); 3801 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3802 /* Get the response iocb from the head of work queue */ 3803 spin_lock_irqsave(&phba->hbalock, iflag); 3804 list_remove_head(&phba->sli4_hba.sp_queue_event, 3805 cq_event, struct lpfc_cq_event, list); 3806 spin_unlock_irqrestore(&phba->hbalock, iflag); 3807 3808 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3809 case CQE_CODE_COMPL_WQE: 3810 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3811 cq_event); 3812 /* Translate ELS WCQE to response IOCBQ */ 3813 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3814 irspiocbq); 3815 if (irspiocbq) 3816 lpfc_sli_sp_handle_rspiocb(phba, pring, 3817 irspiocbq); 3818 count++; 3819 break; 3820 case CQE_CODE_RECEIVE: 3821 case CQE_CODE_RECEIVE_V1: 3822 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3823 cq_event); 3824 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3825 count++; 3826 break; 3827 default: 3828 break; 3829 } 3830 3831 /* Limit the number of events to 64 to avoid soft lockups */ 3832 if (count == 64) 3833 break; 3834 } 3835 } 3836 3837 /** 3838 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3839 * @phba: Pointer to HBA context object. 3840 * @pring: Pointer to driver SLI ring object. 3841 * 3842 * This function aborts all iocbs in the given ring and frees all the iocb 3843 * objects in txq. This function issues an abort iocb for all the iocb commands 3844 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3845 * the return of this function. The caller is not required to hold any locks. 3846 **/ 3847 void 3848 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3849 { 3850 LIST_HEAD(completions); 3851 struct lpfc_iocbq *iocb, *next_iocb; 3852 3853 if (pring->ringno == LPFC_ELS_RING) { 3854 lpfc_fabric_abort_hba(phba); 3855 } 3856 3857 /* Error everything on txq and txcmplq 3858 * First do the txq. 3859 */ 3860 if (phba->sli_rev >= LPFC_SLI_REV4) { 3861 spin_lock_irq(&pring->ring_lock); 3862 list_splice_init(&pring->txq, &completions); 3863 pring->txq_cnt = 0; 3864 spin_unlock_irq(&pring->ring_lock); 3865 3866 spin_lock_irq(&phba->hbalock); 3867 /* Next issue ABTS for everything on the txcmplq */ 3868 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3869 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3870 spin_unlock_irq(&phba->hbalock); 3871 } else { 3872 spin_lock_irq(&phba->hbalock); 3873 list_splice_init(&pring->txq, &completions); 3874 pring->txq_cnt = 0; 3875 3876 /* Next issue ABTS for everything on the txcmplq */ 3877 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3878 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3879 spin_unlock_irq(&phba->hbalock); 3880 } 3881 3882 /* Cancel all the IOCBs from the completions list */ 3883 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3884 IOERR_SLI_ABORTED); 3885 } 3886 3887 /** 3888 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring 3889 * @phba: Pointer to HBA context object. 3890 * @pring: Pointer to driver SLI ring object. 3891 * 3892 * This function aborts all iocbs in the given ring and frees all the iocb 3893 * objects in txq. This function issues an abort iocb for all the iocb commands 3894 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3895 * the return of this function. The caller is not required to hold any locks. 3896 **/ 3897 void 3898 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3899 { 3900 LIST_HEAD(completions); 3901 struct lpfc_iocbq *iocb, *next_iocb; 3902 3903 if (pring->ringno == LPFC_ELS_RING) 3904 lpfc_fabric_abort_hba(phba); 3905 3906 spin_lock_irq(&phba->hbalock); 3907 /* Next issue ABTS for everything on the txcmplq */ 3908 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3909 lpfc_sli4_abort_nvme_io(phba, pring, iocb); 3910 spin_unlock_irq(&phba->hbalock); 3911 } 3912 3913 3914 /** 3915 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3916 * @phba: Pointer to HBA context object. 3917 * @pring: Pointer to driver SLI ring object. 3918 * 3919 * This function aborts all iocbs in FCP rings and frees all the iocb 3920 * objects in txq. This function issues an abort iocb for all the iocb commands 3921 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3922 * the return of this function. The caller is not required to hold any locks. 3923 **/ 3924 void 3925 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3926 { 3927 struct lpfc_sli *psli = &phba->sli; 3928 struct lpfc_sli_ring *pring; 3929 uint32_t i; 3930 3931 /* Look on all the FCP Rings for the iotag */ 3932 if (phba->sli_rev >= LPFC_SLI_REV4) { 3933 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3934 pring = phba->sli4_hba.fcp_wq[i]->pring; 3935 lpfc_sli_abort_iocb_ring(phba, pring); 3936 } 3937 } else { 3938 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3939 lpfc_sli_abort_iocb_ring(phba, pring); 3940 } 3941 } 3942 3943 /** 3944 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings 3945 * @phba: Pointer to HBA context object. 3946 * 3947 * This function aborts all wqes in NVME rings. This function issues an 3948 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in 3949 * the txcmplq is not guaranteed to complete before the return of this 3950 * function. The caller is not required to hold any locks. 3951 **/ 3952 void 3953 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba) 3954 { 3955 struct lpfc_sli_ring *pring; 3956 uint32_t i; 3957 3958 if (phba->sli_rev < LPFC_SLI_REV4) 3959 return; 3960 3961 /* Abort all IO on each NVME ring. */ 3962 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3963 pring = phba->sli4_hba.nvme_wq[i]->pring; 3964 lpfc_sli_abort_wqe_ring(phba, pring); 3965 } 3966 } 3967 3968 3969 /** 3970 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3971 * @phba: Pointer to HBA context object. 3972 * 3973 * This function flushes all iocbs in the fcp ring and frees all the iocb 3974 * objects in txq and txcmplq. This function will not issue abort iocbs 3975 * for all the iocb commands in txcmplq, they will just be returned with 3976 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3977 * slot has been permanently disabled. 3978 **/ 3979 void 3980 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3981 { 3982 LIST_HEAD(txq); 3983 LIST_HEAD(txcmplq); 3984 struct lpfc_sli *psli = &phba->sli; 3985 struct lpfc_sli_ring *pring; 3986 uint32_t i; 3987 struct lpfc_iocbq *piocb, *next_iocb; 3988 3989 spin_lock_irq(&phba->hbalock); 3990 /* Indicate the I/O queues are flushed */ 3991 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3992 spin_unlock_irq(&phba->hbalock); 3993 3994 /* Look on all the FCP Rings for the iotag */ 3995 if (phba->sli_rev >= LPFC_SLI_REV4) { 3996 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3997 pring = phba->sli4_hba.fcp_wq[i]->pring; 3998 3999 spin_lock_irq(&pring->ring_lock); 4000 /* Retrieve everything on txq */ 4001 list_splice_init(&pring->txq, &txq); 4002 list_for_each_entry_safe(piocb, next_iocb, 4003 &pring->txcmplq, list) 4004 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4005 /* Retrieve everything on the txcmplq */ 4006 list_splice_init(&pring->txcmplq, &txcmplq); 4007 pring->txq_cnt = 0; 4008 pring->txcmplq_cnt = 0; 4009 spin_unlock_irq(&pring->ring_lock); 4010 4011 /* Flush the txq */ 4012 lpfc_sli_cancel_iocbs(phba, &txq, 4013 IOSTAT_LOCAL_REJECT, 4014 IOERR_SLI_DOWN); 4015 /* Flush the txcmpq */ 4016 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4017 IOSTAT_LOCAL_REJECT, 4018 IOERR_SLI_DOWN); 4019 } 4020 } else { 4021 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4022 4023 spin_lock_irq(&phba->hbalock); 4024 /* Retrieve everything on txq */ 4025 list_splice_init(&pring->txq, &txq); 4026 list_for_each_entry_safe(piocb, next_iocb, 4027 &pring->txcmplq, list) 4028 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4029 /* Retrieve everything on the txcmplq */ 4030 list_splice_init(&pring->txcmplq, &txcmplq); 4031 pring->txq_cnt = 0; 4032 pring->txcmplq_cnt = 0; 4033 spin_unlock_irq(&phba->hbalock); 4034 4035 /* Flush the txq */ 4036 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4037 IOERR_SLI_DOWN); 4038 /* Flush the txcmpq */ 4039 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4040 IOERR_SLI_DOWN); 4041 } 4042 } 4043 4044 /** 4045 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings 4046 * @phba: Pointer to HBA context object. 4047 * 4048 * This function flushes all wqes in the nvme rings and frees all resources 4049 * in the txcmplq. This function does not issue abort wqes for the IO 4050 * commands in txcmplq, they will just be returned with 4051 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4052 * slot has been permanently disabled. 4053 **/ 4054 void 4055 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba) 4056 { 4057 LIST_HEAD(txcmplq); 4058 struct lpfc_sli_ring *pring; 4059 uint32_t i; 4060 struct lpfc_iocbq *piocb, *next_iocb; 4061 4062 if (phba->sli_rev < LPFC_SLI_REV4) 4063 return; 4064 4065 /* Hint to other driver operations that a flush is in progress. */ 4066 spin_lock_irq(&phba->hbalock); 4067 phba->hba_flag |= HBA_NVME_IOQ_FLUSH; 4068 spin_unlock_irq(&phba->hbalock); 4069 4070 /* Cycle through all NVME rings and complete each IO with 4071 * a local driver reason code. This is a flush so no 4072 * abort exchange to FW. 4073 */ 4074 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 4075 pring = phba->sli4_hba.nvme_wq[i]->pring; 4076 4077 spin_lock_irq(&pring->ring_lock); 4078 list_for_each_entry_safe(piocb, next_iocb, 4079 &pring->txcmplq, list) 4080 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4081 /* Retrieve everything on the txcmplq */ 4082 list_splice_init(&pring->txcmplq, &txcmplq); 4083 pring->txcmplq_cnt = 0; 4084 spin_unlock_irq(&pring->ring_lock); 4085 4086 /* Flush the txcmpq &&&PAE */ 4087 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4088 IOSTAT_LOCAL_REJECT, 4089 IOERR_SLI_DOWN); 4090 } 4091 } 4092 4093 /** 4094 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4095 * @phba: Pointer to HBA context object. 4096 * @mask: Bit mask to be checked. 4097 * 4098 * This function reads the host status register and compares 4099 * with the provided bit mask to check if HBA completed 4100 * the restart. This function will wait in a loop for the 4101 * HBA to complete restart. If the HBA does not restart within 4102 * 15 iterations, the function will reset the HBA again. The 4103 * function returns 1 when HBA fail to restart otherwise returns 4104 * zero. 4105 **/ 4106 static int 4107 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4108 { 4109 uint32_t status; 4110 int i = 0; 4111 int retval = 0; 4112 4113 /* Read the HBA Host Status Register */ 4114 if (lpfc_readl(phba->HSregaddr, &status)) 4115 return 1; 4116 4117 /* 4118 * Check status register every 100ms for 5 retries, then every 4119 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4120 * every 2.5 sec for 4. 4121 * Break our of the loop if errors occurred during init. 4122 */ 4123 while (((status & mask) != mask) && 4124 !(status & HS_FFERM) && 4125 i++ < 20) { 4126 4127 if (i <= 5) 4128 msleep(10); 4129 else if (i <= 10) 4130 msleep(500); 4131 else 4132 msleep(2500); 4133 4134 if (i == 15) { 4135 /* Do post */ 4136 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4137 lpfc_sli_brdrestart(phba); 4138 } 4139 /* Read the HBA Host Status Register */ 4140 if (lpfc_readl(phba->HSregaddr, &status)) { 4141 retval = 1; 4142 break; 4143 } 4144 } 4145 4146 /* Check to see if any errors occurred during init */ 4147 if ((status & HS_FFERM) || (i >= 20)) { 4148 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4149 "2751 Adapter failed to restart, " 4150 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4151 status, 4152 readl(phba->MBslimaddr + 0xa8), 4153 readl(phba->MBslimaddr + 0xac)); 4154 phba->link_state = LPFC_HBA_ERROR; 4155 retval = 1; 4156 } 4157 4158 return retval; 4159 } 4160 4161 /** 4162 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4163 * @phba: Pointer to HBA context object. 4164 * @mask: Bit mask to be checked. 4165 * 4166 * This function checks the host status register to check if HBA is 4167 * ready. This function will wait in a loop for the HBA to be ready 4168 * If the HBA is not ready , the function will will reset the HBA PCI 4169 * function again. The function returns 1 when HBA fail to be ready 4170 * otherwise returns zero. 4171 **/ 4172 static int 4173 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4174 { 4175 uint32_t status; 4176 int retval = 0; 4177 4178 /* Read the HBA Host Status Register */ 4179 status = lpfc_sli4_post_status_check(phba); 4180 4181 if (status) { 4182 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4183 lpfc_sli_brdrestart(phba); 4184 status = lpfc_sli4_post_status_check(phba); 4185 } 4186 4187 /* Check to see if any errors occurred during init */ 4188 if (status) { 4189 phba->link_state = LPFC_HBA_ERROR; 4190 retval = 1; 4191 } else 4192 phba->sli4_hba.intr_enable = 0; 4193 4194 return retval; 4195 } 4196 4197 /** 4198 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4199 * @phba: Pointer to HBA context object. 4200 * @mask: Bit mask to be checked. 4201 * 4202 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4203 * from the API jump table function pointer from the lpfc_hba struct. 4204 **/ 4205 int 4206 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4207 { 4208 return phba->lpfc_sli_brdready(phba, mask); 4209 } 4210 4211 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4212 4213 /** 4214 * lpfc_reset_barrier - Make HBA ready for HBA reset 4215 * @phba: Pointer to HBA context object. 4216 * 4217 * This function is called before resetting an HBA. This function is called 4218 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4219 **/ 4220 void lpfc_reset_barrier(struct lpfc_hba *phba) 4221 { 4222 uint32_t __iomem *resp_buf; 4223 uint32_t __iomem *mbox_buf; 4224 volatile uint32_t mbox; 4225 uint32_t hc_copy, ha_copy, resp_data; 4226 int i; 4227 uint8_t hdrtype; 4228 4229 lockdep_assert_held(&phba->hbalock); 4230 4231 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4232 if (hdrtype != 0x80 || 4233 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4234 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4235 return; 4236 4237 /* 4238 * Tell the other part of the chip to suspend temporarily all 4239 * its DMA activity. 4240 */ 4241 resp_buf = phba->MBslimaddr; 4242 4243 /* Disable the error attention */ 4244 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4245 return; 4246 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4247 readl(phba->HCregaddr); /* flush */ 4248 phba->link_flag |= LS_IGNORE_ERATT; 4249 4250 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4251 return; 4252 if (ha_copy & HA_ERATT) { 4253 /* Clear Chip error bit */ 4254 writel(HA_ERATT, phba->HAregaddr); 4255 phba->pport->stopped = 1; 4256 } 4257 4258 mbox = 0; 4259 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4260 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4261 4262 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4263 mbox_buf = phba->MBslimaddr; 4264 writel(mbox, mbox_buf); 4265 4266 for (i = 0; i < 50; i++) { 4267 if (lpfc_readl((resp_buf + 1), &resp_data)) 4268 return; 4269 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4270 mdelay(1); 4271 else 4272 break; 4273 } 4274 resp_data = 0; 4275 if (lpfc_readl((resp_buf + 1), &resp_data)) 4276 return; 4277 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4278 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4279 phba->pport->stopped) 4280 goto restore_hc; 4281 else 4282 goto clear_errat; 4283 } 4284 4285 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4286 resp_data = 0; 4287 for (i = 0; i < 500; i++) { 4288 if (lpfc_readl(resp_buf, &resp_data)) 4289 return; 4290 if (resp_data != mbox) 4291 mdelay(1); 4292 else 4293 break; 4294 } 4295 4296 clear_errat: 4297 4298 while (++i < 500) { 4299 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4300 return; 4301 if (!(ha_copy & HA_ERATT)) 4302 mdelay(1); 4303 else 4304 break; 4305 } 4306 4307 if (readl(phba->HAregaddr) & HA_ERATT) { 4308 writel(HA_ERATT, phba->HAregaddr); 4309 phba->pport->stopped = 1; 4310 } 4311 4312 restore_hc: 4313 phba->link_flag &= ~LS_IGNORE_ERATT; 4314 writel(hc_copy, phba->HCregaddr); 4315 readl(phba->HCregaddr); /* flush */ 4316 } 4317 4318 /** 4319 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4320 * @phba: Pointer to HBA context object. 4321 * 4322 * This function issues a kill_board mailbox command and waits for 4323 * the error attention interrupt. This function is called for stopping 4324 * the firmware processing. The caller is not required to hold any 4325 * locks. This function calls lpfc_hba_down_post function to free 4326 * any pending commands after the kill. The function will return 1 when it 4327 * fails to kill the board else will return 0. 4328 **/ 4329 int 4330 lpfc_sli_brdkill(struct lpfc_hba *phba) 4331 { 4332 struct lpfc_sli *psli; 4333 LPFC_MBOXQ_t *pmb; 4334 uint32_t status; 4335 uint32_t ha_copy; 4336 int retval; 4337 int i = 0; 4338 4339 psli = &phba->sli; 4340 4341 /* Kill HBA */ 4342 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4343 "0329 Kill HBA Data: x%x x%x\n", 4344 phba->pport->port_state, psli->sli_flag); 4345 4346 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4347 if (!pmb) 4348 return 1; 4349 4350 /* Disable the error attention */ 4351 spin_lock_irq(&phba->hbalock); 4352 if (lpfc_readl(phba->HCregaddr, &status)) { 4353 spin_unlock_irq(&phba->hbalock); 4354 mempool_free(pmb, phba->mbox_mem_pool); 4355 return 1; 4356 } 4357 status &= ~HC_ERINT_ENA; 4358 writel(status, phba->HCregaddr); 4359 readl(phba->HCregaddr); /* flush */ 4360 phba->link_flag |= LS_IGNORE_ERATT; 4361 spin_unlock_irq(&phba->hbalock); 4362 4363 lpfc_kill_board(phba, pmb); 4364 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4365 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4366 4367 if (retval != MBX_SUCCESS) { 4368 if (retval != MBX_BUSY) 4369 mempool_free(pmb, phba->mbox_mem_pool); 4370 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4371 "2752 KILL_BOARD command failed retval %d\n", 4372 retval); 4373 spin_lock_irq(&phba->hbalock); 4374 phba->link_flag &= ~LS_IGNORE_ERATT; 4375 spin_unlock_irq(&phba->hbalock); 4376 return 1; 4377 } 4378 4379 spin_lock_irq(&phba->hbalock); 4380 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4381 spin_unlock_irq(&phba->hbalock); 4382 4383 mempool_free(pmb, phba->mbox_mem_pool); 4384 4385 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4386 * attention every 100ms for 3 seconds. If we don't get ERATT after 4387 * 3 seconds we still set HBA_ERROR state because the status of the 4388 * board is now undefined. 4389 */ 4390 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4391 return 1; 4392 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4393 mdelay(100); 4394 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4395 return 1; 4396 } 4397 4398 del_timer_sync(&psli->mbox_tmo); 4399 if (ha_copy & HA_ERATT) { 4400 writel(HA_ERATT, phba->HAregaddr); 4401 phba->pport->stopped = 1; 4402 } 4403 spin_lock_irq(&phba->hbalock); 4404 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4405 psli->mbox_active = NULL; 4406 phba->link_flag &= ~LS_IGNORE_ERATT; 4407 spin_unlock_irq(&phba->hbalock); 4408 4409 lpfc_hba_down_post(phba); 4410 phba->link_state = LPFC_HBA_ERROR; 4411 4412 return ha_copy & HA_ERATT ? 0 : 1; 4413 } 4414 4415 /** 4416 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4417 * @phba: Pointer to HBA context object. 4418 * 4419 * This function resets the HBA by writing HC_INITFF to the control 4420 * register. After the HBA resets, this function resets all the iocb ring 4421 * indices. This function disables PCI layer parity checking during 4422 * the reset. 4423 * This function returns 0 always. 4424 * The caller is not required to hold any locks. 4425 **/ 4426 int 4427 lpfc_sli_brdreset(struct lpfc_hba *phba) 4428 { 4429 struct lpfc_sli *psli; 4430 struct lpfc_sli_ring *pring; 4431 uint16_t cfg_value; 4432 int i; 4433 4434 psli = &phba->sli; 4435 4436 /* Reset HBA */ 4437 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4438 "0325 Reset HBA Data: x%x x%x\n", 4439 (phba->pport) ? phba->pport->port_state : 0, 4440 psli->sli_flag); 4441 4442 /* perform board reset */ 4443 phba->fc_eventTag = 0; 4444 phba->link_events = 0; 4445 if (phba->pport) { 4446 phba->pport->fc_myDID = 0; 4447 phba->pport->fc_prevDID = 0; 4448 } 4449 4450 /* Turn off parity checking and serr during the physical reset */ 4451 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4452 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4453 (cfg_value & 4454 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4455 4456 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4457 4458 /* Now toggle INITFF bit in the Host Control Register */ 4459 writel(HC_INITFF, phba->HCregaddr); 4460 mdelay(1); 4461 readl(phba->HCregaddr); /* flush */ 4462 writel(0, phba->HCregaddr); 4463 readl(phba->HCregaddr); /* flush */ 4464 4465 /* Restore PCI cmd register */ 4466 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4467 4468 /* Initialize relevant SLI info */ 4469 for (i = 0; i < psli->num_rings; i++) { 4470 pring = &psli->sli3_ring[i]; 4471 pring->flag = 0; 4472 pring->sli.sli3.rspidx = 0; 4473 pring->sli.sli3.next_cmdidx = 0; 4474 pring->sli.sli3.local_getidx = 0; 4475 pring->sli.sli3.cmdidx = 0; 4476 pring->missbufcnt = 0; 4477 } 4478 4479 phba->link_state = LPFC_WARM_START; 4480 return 0; 4481 } 4482 4483 /** 4484 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4485 * @phba: Pointer to HBA context object. 4486 * 4487 * This function resets a SLI4 HBA. This function disables PCI layer parity 4488 * checking during resets the device. The caller is not required to hold 4489 * any locks. 4490 * 4491 * This function returns 0 always. 4492 **/ 4493 int 4494 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4495 { 4496 struct lpfc_sli *psli = &phba->sli; 4497 uint16_t cfg_value; 4498 int rc = 0; 4499 4500 /* Reset HBA */ 4501 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4502 "0295 Reset HBA Data: x%x x%x x%x\n", 4503 phba->pport->port_state, psli->sli_flag, 4504 phba->hba_flag); 4505 4506 /* perform board reset */ 4507 phba->fc_eventTag = 0; 4508 phba->link_events = 0; 4509 phba->pport->fc_myDID = 0; 4510 phba->pport->fc_prevDID = 0; 4511 4512 spin_lock_irq(&phba->hbalock); 4513 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4514 phba->fcf.fcf_flag = 0; 4515 spin_unlock_irq(&phba->hbalock); 4516 4517 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4518 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4519 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4520 return rc; 4521 } 4522 4523 /* Now physically reset the device */ 4524 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4525 "0389 Performing PCI function reset!\n"); 4526 4527 /* Turn off parity checking and serr during the physical reset */ 4528 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4529 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4530 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4531 4532 /* Perform FCoE PCI function reset before freeing queue memory */ 4533 rc = lpfc_pci_function_reset(phba); 4534 4535 /* Restore PCI cmd register */ 4536 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4537 4538 return rc; 4539 } 4540 4541 /** 4542 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4543 * @phba: Pointer to HBA context object. 4544 * 4545 * This function is called in the SLI initialization code path to 4546 * restart the HBA. The caller is not required to hold any lock. 4547 * This function writes MBX_RESTART mailbox command to the SLIM and 4548 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4549 * function to free any pending commands. The function enables 4550 * POST only during the first initialization. The function returns zero. 4551 * The function does not guarantee completion of MBX_RESTART mailbox 4552 * command before the return of this function. 4553 **/ 4554 static int 4555 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4556 { 4557 MAILBOX_t *mb; 4558 struct lpfc_sli *psli; 4559 volatile uint32_t word0; 4560 void __iomem *to_slim; 4561 uint32_t hba_aer_enabled; 4562 4563 spin_lock_irq(&phba->hbalock); 4564 4565 /* Take PCIe device Advanced Error Reporting (AER) state */ 4566 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4567 4568 psli = &phba->sli; 4569 4570 /* Restart HBA */ 4571 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4572 "0337 Restart HBA Data: x%x x%x\n", 4573 (phba->pport) ? phba->pport->port_state : 0, 4574 psli->sli_flag); 4575 4576 word0 = 0; 4577 mb = (MAILBOX_t *) &word0; 4578 mb->mbxCommand = MBX_RESTART; 4579 mb->mbxHc = 1; 4580 4581 lpfc_reset_barrier(phba); 4582 4583 to_slim = phba->MBslimaddr; 4584 writel(*(uint32_t *) mb, to_slim); 4585 readl(to_slim); /* flush */ 4586 4587 /* Only skip post after fc_ffinit is completed */ 4588 if (phba->pport && phba->pport->port_state) 4589 word0 = 1; /* This is really setting up word1 */ 4590 else 4591 word0 = 0; /* This is really setting up word1 */ 4592 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4593 writel(*(uint32_t *) mb, to_slim); 4594 readl(to_slim); /* flush */ 4595 4596 lpfc_sli_brdreset(phba); 4597 if (phba->pport) 4598 phba->pport->stopped = 0; 4599 phba->link_state = LPFC_INIT_START; 4600 phba->hba_flag = 0; 4601 spin_unlock_irq(&phba->hbalock); 4602 4603 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4604 psli->stats_start = ktime_get_seconds(); 4605 4606 /* Give the INITFF and Post time to settle. */ 4607 mdelay(100); 4608 4609 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4610 if (hba_aer_enabled) 4611 pci_disable_pcie_error_reporting(phba->pcidev); 4612 4613 lpfc_hba_down_post(phba); 4614 4615 return 0; 4616 } 4617 4618 /** 4619 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4620 * @phba: Pointer to HBA context object. 4621 * 4622 * This function is called in the SLI initialization code path to restart 4623 * a SLI4 HBA. The caller is not required to hold any lock. 4624 * At the end of the function, it calls lpfc_hba_down_post function to 4625 * free any pending commands. 4626 **/ 4627 static int 4628 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4629 { 4630 struct lpfc_sli *psli = &phba->sli; 4631 uint32_t hba_aer_enabled; 4632 int rc; 4633 4634 /* Restart HBA */ 4635 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4636 "0296 Restart HBA Data: x%x x%x\n", 4637 phba->pport->port_state, psli->sli_flag); 4638 4639 /* Take PCIe device Advanced Error Reporting (AER) state */ 4640 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4641 4642 rc = lpfc_sli4_brdreset(phba); 4643 4644 spin_lock_irq(&phba->hbalock); 4645 phba->pport->stopped = 0; 4646 phba->link_state = LPFC_INIT_START; 4647 phba->hba_flag = 0; 4648 spin_unlock_irq(&phba->hbalock); 4649 4650 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4651 psli->stats_start = ktime_get_seconds(); 4652 4653 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4654 if (hba_aer_enabled) 4655 pci_disable_pcie_error_reporting(phba->pcidev); 4656 4657 lpfc_hba_down_post(phba); 4658 lpfc_sli4_queue_destroy(phba); 4659 4660 return rc; 4661 } 4662 4663 /** 4664 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4665 * @phba: Pointer to HBA context object. 4666 * 4667 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4668 * API jump table function pointer from the lpfc_hba struct. 4669 **/ 4670 int 4671 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4672 { 4673 return phba->lpfc_sli_brdrestart(phba); 4674 } 4675 4676 /** 4677 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4678 * @phba: Pointer to HBA context object. 4679 * 4680 * This function is called after a HBA restart to wait for successful 4681 * restart of the HBA. Successful restart of the HBA is indicated by 4682 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4683 * iteration, the function will restart the HBA again. The function returns 4684 * zero if HBA successfully restarted else returns negative error code. 4685 **/ 4686 int 4687 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4688 { 4689 uint32_t status, i = 0; 4690 4691 /* Read the HBA Host Status Register */ 4692 if (lpfc_readl(phba->HSregaddr, &status)) 4693 return -EIO; 4694 4695 /* Check status register to see what current state is */ 4696 i = 0; 4697 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4698 4699 /* Check every 10ms for 10 retries, then every 100ms for 90 4700 * retries, then every 1 sec for 50 retires for a total of 4701 * ~60 seconds before reset the board again and check every 4702 * 1 sec for 50 retries. The up to 60 seconds before the 4703 * board ready is required by the Falcon FIPS zeroization 4704 * complete, and any reset the board in between shall cause 4705 * restart of zeroization, further delay the board ready. 4706 */ 4707 if (i++ >= 200) { 4708 /* Adapter failed to init, timeout, status reg 4709 <status> */ 4710 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4711 "0436 Adapter failed to init, " 4712 "timeout, status reg x%x, " 4713 "FW Data: A8 x%x AC x%x\n", status, 4714 readl(phba->MBslimaddr + 0xa8), 4715 readl(phba->MBslimaddr + 0xac)); 4716 phba->link_state = LPFC_HBA_ERROR; 4717 return -ETIMEDOUT; 4718 } 4719 4720 /* Check to see if any errors occurred during init */ 4721 if (status & HS_FFERM) { 4722 /* ERROR: During chipset initialization */ 4723 /* Adapter failed to init, chipset, status reg 4724 <status> */ 4725 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4726 "0437 Adapter failed to init, " 4727 "chipset, status reg x%x, " 4728 "FW Data: A8 x%x AC x%x\n", status, 4729 readl(phba->MBslimaddr + 0xa8), 4730 readl(phba->MBslimaddr + 0xac)); 4731 phba->link_state = LPFC_HBA_ERROR; 4732 return -EIO; 4733 } 4734 4735 if (i <= 10) 4736 msleep(10); 4737 else if (i <= 100) 4738 msleep(100); 4739 else 4740 msleep(1000); 4741 4742 if (i == 150) { 4743 /* Do post */ 4744 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4745 lpfc_sli_brdrestart(phba); 4746 } 4747 /* Read the HBA Host Status Register */ 4748 if (lpfc_readl(phba->HSregaddr, &status)) 4749 return -EIO; 4750 } 4751 4752 /* Check to see if any errors occurred during init */ 4753 if (status & HS_FFERM) { 4754 /* ERROR: During chipset initialization */ 4755 /* Adapter failed to init, chipset, status reg <status> */ 4756 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4757 "0438 Adapter failed to init, chipset, " 4758 "status reg x%x, " 4759 "FW Data: A8 x%x AC x%x\n", status, 4760 readl(phba->MBslimaddr + 0xa8), 4761 readl(phba->MBslimaddr + 0xac)); 4762 phba->link_state = LPFC_HBA_ERROR; 4763 return -EIO; 4764 } 4765 4766 /* Clear all interrupt enable conditions */ 4767 writel(0, phba->HCregaddr); 4768 readl(phba->HCregaddr); /* flush */ 4769 4770 /* setup host attn register */ 4771 writel(0xffffffff, phba->HAregaddr); 4772 readl(phba->HAregaddr); /* flush */ 4773 return 0; 4774 } 4775 4776 /** 4777 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4778 * 4779 * This function calculates and returns the number of HBQs required to be 4780 * configured. 4781 **/ 4782 int 4783 lpfc_sli_hbq_count(void) 4784 { 4785 return ARRAY_SIZE(lpfc_hbq_defs); 4786 } 4787 4788 /** 4789 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4790 * 4791 * This function adds the number of hbq entries in every HBQ to get 4792 * the total number of hbq entries required for the HBA and returns 4793 * the total count. 4794 **/ 4795 static int 4796 lpfc_sli_hbq_entry_count(void) 4797 { 4798 int hbq_count = lpfc_sli_hbq_count(); 4799 int count = 0; 4800 int i; 4801 4802 for (i = 0; i < hbq_count; ++i) 4803 count += lpfc_hbq_defs[i]->entry_count; 4804 return count; 4805 } 4806 4807 /** 4808 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4809 * 4810 * This function calculates amount of memory required for all hbq entries 4811 * to be configured and returns the total memory required. 4812 **/ 4813 int 4814 lpfc_sli_hbq_size(void) 4815 { 4816 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4817 } 4818 4819 /** 4820 * lpfc_sli_hbq_setup - configure and initialize HBQs 4821 * @phba: Pointer to HBA context object. 4822 * 4823 * This function is called during the SLI initialization to configure 4824 * all the HBQs and post buffers to the HBQ. The caller is not 4825 * required to hold any locks. This function will return zero if successful 4826 * else it will return negative error code. 4827 **/ 4828 static int 4829 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4830 { 4831 int hbq_count = lpfc_sli_hbq_count(); 4832 LPFC_MBOXQ_t *pmb; 4833 MAILBOX_t *pmbox; 4834 uint32_t hbqno; 4835 uint32_t hbq_entry_index; 4836 4837 /* Get a Mailbox buffer to setup mailbox 4838 * commands for HBA initialization 4839 */ 4840 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4841 4842 if (!pmb) 4843 return -ENOMEM; 4844 4845 pmbox = &pmb->u.mb; 4846 4847 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4848 phba->link_state = LPFC_INIT_MBX_CMDS; 4849 phba->hbq_in_use = 1; 4850 4851 hbq_entry_index = 0; 4852 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4853 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4854 phba->hbqs[hbqno].hbqPutIdx = 0; 4855 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4856 phba->hbqs[hbqno].entry_count = 4857 lpfc_hbq_defs[hbqno]->entry_count; 4858 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4859 hbq_entry_index, pmb); 4860 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4861 4862 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4863 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4864 mbxStatus <status>, ring <num> */ 4865 4866 lpfc_printf_log(phba, KERN_ERR, 4867 LOG_SLI | LOG_VPORT, 4868 "1805 Adapter failed to init. " 4869 "Data: x%x x%x x%x\n", 4870 pmbox->mbxCommand, 4871 pmbox->mbxStatus, hbqno); 4872 4873 phba->link_state = LPFC_HBA_ERROR; 4874 mempool_free(pmb, phba->mbox_mem_pool); 4875 return -ENXIO; 4876 } 4877 } 4878 phba->hbq_count = hbq_count; 4879 4880 mempool_free(pmb, phba->mbox_mem_pool); 4881 4882 /* Initially populate or replenish the HBQs */ 4883 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4884 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4885 return 0; 4886 } 4887 4888 /** 4889 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4890 * @phba: Pointer to HBA context object. 4891 * 4892 * This function is called during the SLI initialization to configure 4893 * all the HBQs and post buffers to the HBQ. The caller is not 4894 * required to hold any locks. This function will return zero if successful 4895 * else it will return negative error code. 4896 **/ 4897 static int 4898 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4899 { 4900 phba->hbq_in_use = 1; 4901 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4902 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4903 phba->hbq_count = 1; 4904 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4905 /* Initially populate or replenish the HBQs */ 4906 return 0; 4907 } 4908 4909 /** 4910 * lpfc_sli_config_port - Issue config port mailbox command 4911 * @phba: Pointer to HBA context object. 4912 * @sli_mode: sli mode - 2/3 4913 * 4914 * This function is called by the sli initialization code path 4915 * to issue config_port mailbox command. This function restarts the 4916 * HBA firmware and issues a config_port mailbox command to configure 4917 * the SLI interface in the sli mode specified by sli_mode 4918 * variable. The caller is not required to hold any locks. 4919 * The function returns 0 if successful, else returns negative error 4920 * code. 4921 **/ 4922 int 4923 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4924 { 4925 LPFC_MBOXQ_t *pmb; 4926 uint32_t resetcount = 0, rc = 0, done = 0; 4927 4928 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4929 if (!pmb) { 4930 phba->link_state = LPFC_HBA_ERROR; 4931 return -ENOMEM; 4932 } 4933 4934 phba->sli_rev = sli_mode; 4935 while (resetcount < 2 && !done) { 4936 spin_lock_irq(&phba->hbalock); 4937 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4938 spin_unlock_irq(&phba->hbalock); 4939 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4940 lpfc_sli_brdrestart(phba); 4941 rc = lpfc_sli_chipset_init(phba); 4942 if (rc) 4943 break; 4944 4945 spin_lock_irq(&phba->hbalock); 4946 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4947 spin_unlock_irq(&phba->hbalock); 4948 resetcount++; 4949 4950 /* Call pre CONFIG_PORT mailbox command initialization. A 4951 * value of 0 means the call was successful. Any other 4952 * nonzero value is a failure, but if ERESTART is returned, 4953 * the driver may reset the HBA and try again. 4954 */ 4955 rc = lpfc_config_port_prep(phba); 4956 if (rc == -ERESTART) { 4957 phba->link_state = LPFC_LINK_UNKNOWN; 4958 continue; 4959 } else if (rc) 4960 break; 4961 4962 phba->link_state = LPFC_INIT_MBX_CMDS; 4963 lpfc_config_port(phba, pmb); 4964 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4965 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4966 LPFC_SLI3_HBQ_ENABLED | 4967 LPFC_SLI3_CRP_ENABLED | 4968 LPFC_SLI3_BG_ENABLED | 4969 LPFC_SLI3_DSS_ENABLED); 4970 if (rc != MBX_SUCCESS) { 4971 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4972 "0442 Adapter failed to init, mbxCmd x%x " 4973 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4974 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4975 spin_lock_irq(&phba->hbalock); 4976 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4977 spin_unlock_irq(&phba->hbalock); 4978 rc = -ENXIO; 4979 } else { 4980 /* Allow asynchronous mailbox command to go through */ 4981 spin_lock_irq(&phba->hbalock); 4982 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4983 spin_unlock_irq(&phba->hbalock); 4984 done = 1; 4985 4986 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4987 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4988 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4989 "3110 Port did not grant ASABT\n"); 4990 } 4991 } 4992 if (!done) { 4993 rc = -EINVAL; 4994 goto do_prep_failed; 4995 } 4996 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4997 if (!pmb->u.mb.un.varCfgPort.cMA) { 4998 rc = -ENXIO; 4999 goto do_prep_failed; 5000 } 5001 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5002 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5003 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5004 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5005 phba->max_vpi : phba->max_vports; 5006 5007 } else 5008 phba->max_vpi = 0; 5009 phba->fips_level = 0; 5010 phba->fips_spec_rev = 0; 5011 if (pmb->u.mb.un.varCfgPort.gdss) { 5012 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 5013 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 5014 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 5015 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5016 "2850 Security Crypto Active. FIPS x%d " 5017 "(Spec Rev: x%d)", 5018 phba->fips_level, phba->fips_spec_rev); 5019 } 5020 if (pmb->u.mb.un.varCfgPort.sec_err) { 5021 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5022 "2856 Config Port Security Crypto " 5023 "Error: x%x ", 5024 pmb->u.mb.un.varCfgPort.sec_err); 5025 } 5026 if (pmb->u.mb.un.varCfgPort.gerbm) 5027 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5028 if (pmb->u.mb.un.varCfgPort.gcrp) 5029 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5030 5031 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5032 phba->port_gp = phba->mbox->us.s3_pgp.port; 5033 5034 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5035 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5036 phba->cfg_enable_bg = 0; 5037 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5038 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5039 "0443 Adapter did not grant " 5040 "BlockGuard\n"); 5041 } 5042 } 5043 } else { 5044 phba->hbq_get = NULL; 5045 phba->port_gp = phba->mbox->us.s2.port; 5046 phba->max_vpi = 0; 5047 } 5048 do_prep_failed: 5049 mempool_free(pmb, phba->mbox_mem_pool); 5050 return rc; 5051 } 5052 5053 5054 /** 5055 * lpfc_sli_hba_setup - SLI initialization function 5056 * @phba: Pointer to HBA context object. 5057 * 5058 * This function is the main SLI initialization function. This function 5059 * is called by the HBA initialization code, HBA reset code and HBA 5060 * error attention handler code. Caller is not required to hold any 5061 * locks. This function issues config_port mailbox command to configure 5062 * the SLI, setup iocb rings and HBQ rings. In the end the function 5063 * calls the config_port_post function to issue init_link mailbox 5064 * command and to start the discovery. The function will return zero 5065 * if successful, else it will return negative error code. 5066 **/ 5067 int 5068 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5069 { 5070 uint32_t rc; 5071 int mode = 3, i; 5072 int longs; 5073 5074 switch (phba->cfg_sli_mode) { 5075 case 2: 5076 if (phba->cfg_enable_npiv) { 5077 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5078 "1824 NPIV enabled: Override sli_mode " 5079 "parameter (%d) to auto (0).\n", 5080 phba->cfg_sli_mode); 5081 break; 5082 } 5083 mode = 2; 5084 break; 5085 case 0: 5086 case 3: 5087 break; 5088 default: 5089 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5090 "1819 Unrecognized sli_mode parameter: %d.\n", 5091 phba->cfg_sli_mode); 5092 5093 break; 5094 } 5095 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5096 5097 rc = lpfc_sli_config_port(phba, mode); 5098 5099 if (rc && phba->cfg_sli_mode == 3) 5100 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5101 "1820 Unable to select SLI-3. " 5102 "Not supported by adapter.\n"); 5103 if (rc && mode != 2) 5104 rc = lpfc_sli_config_port(phba, 2); 5105 else if (rc && mode == 2) 5106 rc = lpfc_sli_config_port(phba, 3); 5107 if (rc) 5108 goto lpfc_sli_hba_setup_error; 5109 5110 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5111 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5112 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5113 if (!rc) { 5114 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5115 "2709 This device supports " 5116 "Advanced Error Reporting (AER)\n"); 5117 spin_lock_irq(&phba->hbalock); 5118 phba->hba_flag |= HBA_AER_ENABLED; 5119 spin_unlock_irq(&phba->hbalock); 5120 } else { 5121 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5122 "2708 This device does not support " 5123 "Advanced Error Reporting (AER): %d\n", 5124 rc); 5125 phba->cfg_aer_support = 0; 5126 } 5127 } 5128 5129 if (phba->sli_rev == 3) { 5130 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5131 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5132 } else { 5133 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5134 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5135 phba->sli3_options = 0; 5136 } 5137 5138 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5139 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5140 phba->sli_rev, phba->max_vpi); 5141 rc = lpfc_sli_ring_map(phba); 5142 5143 if (rc) 5144 goto lpfc_sli_hba_setup_error; 5145 5146 /* Initialize VPIs. */ 5147 if (phba->sli_rev == LPFC_SLI_REV3) { 5148 /* 5149 * The VPI bitmask and physical ID array are allocated 5150 * and initialized once only - at driver load. A port 5151 * reset doesn't need to reinitialize this memory. 5152 */ 5153 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5154 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5155 phba->vpi_bmask = kcalloc(longs, 5156 sizeof(unsigned long), 5157 GFP_KERNEL); 5158 if (!phba->vpi_bmask) { 5159 rc = -ENOMEM; 5160 goto lpfc_sli_hba_setup_error; 5161 } 5162 5163 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5164 sizeof(uint16_t), 5165 GFP_KERNEL); 5166 if (!phba->vpi_ids) { 5167 kfree(phba->vpi_bmask); 5168 rc = -ENOMEM; 5169 goto lpfc_sli_hba_setup_error; 5170 } 5171 for (i = 0; i < phba->max_vpi; i++) 5172 phba->vpi_ids[i] = i; 5173 } 5174 } 5175 5176 /* Init HBQs */ 5177 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5178 rc = lpfc_sli_hbq_setup(phba); 5179 if (rc) 5180 goto lpfc_sli_hba_setup_error; 5181 } 5182 spin_lock_irq(&phba->hbalock); 5183 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5184 spin_unlock_irq(&phba->hbalock); 5185 5186 rc = lpfc_config_port_post(phba); 5187 if (rc) 5188 goto lpfc_sli_hba_setup_error; 5189 5190 return rc; 5191 5192 lpfc_sli_hba_setup_error: 5193 phba->link_state = LPFC_HBA_ERROR; 5194 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5195 "0445 Firmware initialization failed\n"); 5196 return rc; 5197 } 5198 5199 /** 5200 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5201 * @phba: Pointer to HBA context object. 5202 * @mboxq: mailbox pointer. 5203 * This function issue a dump mailbox command to read config region 5204 * 23 and parse the records in the region and populate driver 5205 * data structure. 5206 **/ 5207 static int 5208 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5209 { 5210 LPFC_MBOXQ_t *mboxq; 5211 struct lpfc_dmabuf *mp; 5212 struct lpfc_mqe *mqe; 5213 uint32_t data_length; 5214 int rc; 5215 5216 /* Program the default value of vlan_id and fc_map */ 5217 phba->valid_vlan = 0; 5218 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5219 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5220 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5221 5222 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5223 if (!mboxq) 5224 return -ENOMEM; 5225 5226 mqe = &mboxq->u.mqe; 5227 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5228 rc = -ENOMEM; 5229 goto out_free_mboxq; 5230 } 5231 5232 mp = (struct lpfc_dmabuf *) mboxq->context1; 5233 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5234 5235 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5236 "(%d):2571 Mailbox cmd x%x Status x%x " 5237 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5238 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5239 "CQ: x%x x%x x%x x%x\n", 5240 mboxq->vport ? mboxq->vport->vpi : 0, 5241 bf_get(lpfc_mqe_command, mqe), 5242 bf_get(lpfc_mqe_status, mqe), 5243 mqe->un.mb_words[0], mqe->un.mb_words[1], 5244 mqe->un.mb_words[2], mqe->un.mb_words[3], 5245 mqe->un.mb_words[4], mqe->un.mb_words[5], 5246 mqe->un.mb_words[6], mqe->un.mb_words[7], 5247 mqe->un.mb_words[8], mqe->un.mb_words[9], 5248 mqe->un.mb_words[10], mqe->un.mb_words[11], 5249 mqe->un.mb_words[12], mqe->un.mb_words[13], 5250 mqe->un.mb_words[14], mqe->un.mb_words[15], 5251 mqe->un.mb_words[16], mqe->un.mb_words[50], 5252 mboxq->mcqe.word0, 5253 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5254 mboxq->mcqe.trailer); 5255 5256 if (rc) { 5257 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5258 kfree(mp); 5259 rc = -EIO; 5260 goto out_free_mboxq; 5261 } 5262 data_length = mqe->un.mb_words[5]; 5263 if (data_length > DMP_RGN23_SIZE) { 5264 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5265 kfree(mp); 5266 rc = -EIO; 5267 goto out_free_mboxq; 5268 } 5269 5270 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5271 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5272 kfree(mp); 5273 rc = 0; 5274 5275 out_free_mboxq: 5276 mempool_free(mboxq, phba->mbox_mem_pool); 5277 return rc; 5278 } 5279 5280 /** 5281 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5282 * @phba: pointer to lpfc hba data structure. 5283 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5284 * @vpd: pointer to the memory to hold resulting port vpd data. 5285 * @vpd_size: On input, the number of bytes allocated to @vpd. 5286 * On output, the number of data bytes in @vpd. 5287 * 5288 * This routine executes a READ_REV SLI4 mailbox command. In 5289 * addition, this routine gets the port vpd data. 5290 * 5291 * Return codes 5292 * 0 - successful 5293 * -ENOMEM - could not allocated memory. 5294 **/ 5295 static int 5296 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5297 uint8_t *vpd, uint32_t *vpd_size) 5298 { 5299 int rc = 0; 5300 uint32_t dma_size; 5301 struct lpfc_dmabuf *dmabuf; 5302 struct lpfc_mqe *mqe; 5303 5304 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5305 if (!dmabuf) 5306 return -ENOMEM; 5307 5308 /* 5309 * Get a DMA buffer for the vpd data resulting from the READ_REV 5310 * mailbox command. 5311 */ 5312 dma_size = *vpd_size; 5313 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 5314 &dmabuf->phys, GFP_KERNEL); 5315 if (!dmabuf->virt) { 5316 kfree(dmabuf); 5317 return -ENOMEM; 5318 } 5319 5320 /* 5321 * The SLI4 implementation of READ_REV conflicts at word1, 5322 * bits 31:16 and SLI4 adds vpd functionality not present 5323 * in SLI3. This code corrects the conflicts. 5324 */ 5325 lpfc_read_rev(phba, mboxq); 5326 mqe = &mboxq->u.mqe; 5327 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5328 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5329 mqe->un.read_rev.word1 &= 0x0000FFFF; 5330 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5331 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5332 5333 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5334 if (rc) { 5335 dma_free_coherent(&phba->pcidev->dev, dma_size, 5336 dmabuf->virt, dmabuf->phys); 5337 kfree(dmabuf); 5338 return -EIO; 5339 } 5340 5341 /* 5342 * The available vpd length cannot be bigger than the 5343 * DMA buffer passed to the port. Catch the less than 5344 * case and update the caller's size. 5345 */ 5346 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5347 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5348 5349 memcpy(vpd, dmabuf->virt, *vpd_size); 5350 5351 dma_free_coherent(&phba->pcidev->dev, dma_size, 5352 dmabuf->virt, dmabuf->phys); 5353 kfree(dmabuf); 5354 return 0; 5355 } 5356 5357 /** 5358 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5359 * @phba: pointer to lpfc hba data structure. 5360 * 5361 * This routine retrieves SLI4 device physical port name this PCI function 5362 * is attached to. 5363 * 5364 * Return codes 5365 * 0 - successful 5366 * otherwise - failed to retrieve physical port name 5367 **/ 5368 static int 5369 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5370 { 5371 LPFC_MBOXQ_t *mboxq; 5372 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5373 struct lpfc_controller_attribute *cntl_attr; 5374 struct lpfc_mbx_get_port_name *get_port_name; 5375 void *virtaddr = NULL; 5376 uint32_t alloclen, reqlen; 5377 uint32_t shdr_status, shdr_add_status; 5378 union lpfc_sli4_cfg_shdr *shdr; 5379 char cport_name = 0; 5380 int rc; 5381 5382 /* We assume nothing at this point */ 5383 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5384 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5385 5386 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5387 if (!mboxq) 5388 return -ENOMEM; 5389 /* obtain link type and link number via READ_CONFIG */ 5390 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5391 lpfc_sli4_read_config(phba); 5392 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5393 goto retrieve_ppname; 5394 5395 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5396 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5397 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5398 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5399 LPFC_SLI4_MBX_NEMBED); 5400 if (alloclen < reqlen) { 5401 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5402 "3084 Allocated DMA memory size (%d) is " 5403 "less than the requested DMA memory size " 5404 "(%d)\n", alloclen, reqlen); 5405 rc = -ENOMEM; 5406 goto out_free_mboxq; 5407 } 5408 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5409 virtaddr = mboxq->sge_array->addr[0]; 5410 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5411 shdr = &mbx_cntl_attr->cfg_shdr; 5412 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5413 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5414 if (shdr_status || shdr_add_status || rc) { 5415 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5416 "3085 Mailbox x%x (x%x/x%x) failed, " 5417 "rc:x%x, status:x%x, add_status:x%x\n", 5418 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5419 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5420 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5421 rc, shdr_status, shdr_add_status); 5422 rc = -ENXIO; 5423 goto out_free_mboxq; 5424 } 5425 cntl_attr = &mbx_cntl_attr->cntl_attr; 5426 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5427 phba->sli4_hba.lnk_info.lnk_tp = 5428 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5429 phba->sli4_hba.lnk_info.lnk_no = 5430 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5431 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5432 "3086 lnk_type:%d, lnk_numb:%d\n", 5433 phba->sli4_hba.lnk_info.lnk_tp, 5434 phba->sli4_hba.lnk_info.lnk_no); 5435 5436 retrieve_ppname: 5437 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5438 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5439 sizeof(struct lpfc_mbx_get_port_name) - 5440 sizeof(struct lpfc_sli4_cfg_mhdr), 5441 LPFC_SLI4_MBX_EMBED); 5442 get_port_name = &mboxq->u.mqe.un.get_port_name; 5443 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5444 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5445 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5446 phba->sli4_hba.lnk_info.lnk_tp); 5447 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5448 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5449 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5450 if (shdr_status || shdr_add_status || rc) { 5451 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5452 "3087 Mailbox x%x (x%x/x%x) failed: " 5453 "rc:x%x, status:x%x, add_status:x%x\n", 5454 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5455 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5456 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5457 rc, shdr_status, shdr_add_status); 5458 rc = -ENXIO; 5459 goto out_free_mboxq; 5460 } 5461 switch (phba->sli4_hba.lnk_info.lnk_no) { 5462 case LPFC_LINK_NUMBER_0: 5463 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5464 &get_port_name->u.response); 5465 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5466 break; 5467 case LPFC_LINK_NUMBER_1: 5468 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5469 &get_port_name->u.response); 5470 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5471 break; 5472 case LPFC_LINK_NUMBER_2: 5473 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5474 &get_port_name->u.response); 5475 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5476 break; 5477 case LPFC_LINK_NUMBER_3: 5478 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5479 &get_port_name->u.response); 5480 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5481 break; 5482 default: 5483 break; 5484 } 5485 5486 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5487 phba->Port[0] = cport_name; 5488 phba->Port[1] = '\0'; 5489 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5490 "3091 SLI get port name: %s\n", phba->Port); 5491 } 5492 5493 out_free_mboxq: 5494 if (rc != MBX_TIMEOUT) { 5495 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5496 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5497 else 5498 mempool_free(mboxq, phba->mbox_mem_pool); 5499 } 5500 return rc; 5501 } 5502 5503 /** 5504 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5505 * @phba: pointer to lpfc hba data structure. 5506 * 5507 * This routine is called to explicitly arm the SLI4 device's completion and 5508 * event queues 5509 **/ 5510 static void 5511 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5512 { 5513 int qidx; 5514 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5515 5516 sli4_hba->sli4_cq_release(sli4_hba->mbx_cq, LPFC_QUEUE_REARM); 5517 sli4_hba->sli4_cq_release(sli4_hba->els_cq, LPFC_QUEUE_REARM); 5518 if (sli4_hba->nvmels_cq) 5519 sli4_hba->sli4_cq_release(sli4_hba->nvmels_cq, 5520 LPFC_QUEUE_REARM); 5521 5522 if (sli4_hba->fcp_cq) 5523 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) 5524 sli4_hba->sli4_cq_release(sli4_hba->fcp_cq[qidx], 5525 LPFC_QUEUE_REARM); 5526 5527 if (sli4_hba->nvme_cq) 5528 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) 5529 sli4_hba->sli4_cq_release(sli4_hba->nvme_cq[qidx], 5530 LPFC_QUEUE_REARM); 5531 5532 if (phba->cfg_fof) 5533 sli4_hba->sli4_cq_release(sli4_hba->oas_cq, LPFC_QUEUE_REARM); 5534 5535 if (sli4_hba->hba_eq) 5536 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) 5537 sli4_hba->sli4_eq_release(sli4_hba->hba_eq[qidx], 5538 LPFC_QUEUE_REARM); 5539 5540 if (phba->nvmet_support) { 5541 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5542 sli4_hba->sli4_cq_release( 5543 sli4_hba->nvmet_cqset[qidx], 5544 LPFC_QUEUE_REARM); 5545 } 5546 } 5547 5548 if (phba->cfg_fof) 5549 sli4_hba->sli4_eq_release(sli4_hba->fof_eq, LPFC_QUEUE_REARM); 5550 } 5551 5552 /** 5553 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5554 * @phba: Pointer to HBA context object. 5555 * @type: The resource extent type. 5556 * @extnt_count: buffer to hold port available extent count. 5557 * @extnt_size: buffer to hold element count per extent. 5558 * 5559 * This function calls the port and retrievs the number of available 5560 * extents and their size for a particular extent type. 5561 * 5562 * Returns: 0 if successful. Nonzero otherwise. 5563 **/ 5564 int 5565 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5566 uint16_t *extnt_count, uint16_t *extnt_size) 5567 { 5568 int rc = 0; 5569 uint32_t length; 5570 uint32_t mbox_tmo; 5571 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5572 LPFC_MBOXQ_t *mbox; 5573 5574 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5575 if (!mbox) 5576 return -ENOMEM; 5577 5578 /* Find out how many extents are available for this resource type */ 5579 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5580 sizeof(struct lpfc_sli4_cfg_mhdr)); 5581 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5582 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5583 length, LPFC_SLI4_MBX_EMBED); 5584 5585 /* Send an extents count of 0 - the GET doesn't use it. */ 5586 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5587 LPFC_SLI4_MBX_EMBED); 5588 if (unlikely(rc)) { 5589 rc = -EIO; 5590 goto err_exit; 5591 } 5592 5593 if (!phba->sli4_hba.intr_enable) 5594 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5595 else { 5596 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5597 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5598 } 5599 if (unlikely(rc)) { 5600 rc = -EIO; 5601 goto err_exit; 5602 } 5603 5604 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5605 if (bf_get(lpfc_mbox_hdr_status, 5606 &rsrc_info->header.cfg_shdr.response)) { 5607 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5608 "2930 Failed to get resource extents " 5609 "Status 0x%x Add'l Status 0x%x\n", 5610 bf_get(lpfc_mbox_hdr_status, 5611 &rsrc_info->header.cfg_shdr.response), 5612 bf_get(lpfc_mbox_hdr_add_status, 5613 &rsrc_info->header.cfg_shdr.response)); 5614 rc = -EIO; 5615 goto err_exit; 5616 } 5617 5618 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5619 &rsrc_info->u.rsp); 5620 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5621 &rsrc_info->u.rsp); 5622 5623 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5624 "3162 Retrieved extents type-%d from port: count:%d, " 5625 "size:%d\n", type, *extnt_count, *extnt_size); 5626 5627 err_exit: 5628 mempool_free(mbox, phba->mbox_mem_pool); 5629 return rc; 5630 } 5631 5632 /** 5633 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5634 * @phba: Pointer to HBA context object. 5635 * @type: The extent type to check. 5636 * 5637 * This function reads the current available extents from the port and checks 5638 * if the extent count or extent size has changed since the last access. 5639 * Callers use this routine post port reset to understand if there is a 5640 * extent reprovisioning requirement. 5641 * 5642 * Returns: 5643 * -Error: error indicates problem. 5644 * 1: Extent count or size has changed. 5645 * 0: No changes. 5646 **/ 5647 static int 5648 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5649 { 5650 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5651 uint16_t size_diff, rsrc_ext_size; 5652 int rc = 0; 5653 struct lpfc_rsrc_blks *rsrc_entry; 5654 struct list_head *rsrc_blk_list = NULL; 5655 5656 size_diff = 0; 5657 curr_ext_cnt = 0; 5658 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5659 &rsrc_ext_cnt, 5660 &rsrc_ext_size); 5661 if (unlikely(rc)) 5662 return -EIO; 5663 5664 switch (type) { 5665 case LPFC_RSC_TYPE_FCOE_RPI: 5666 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5667 break; 5668 case LPFC_RSC_TYPE_FCOE_VPI: 5669 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5670 break; 5671 case LPFC_RSC_TYPE_FCOE_XRI: 5672 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5673 break; 5674 case LPFC_RSC_TYPE_FCOE_VFI: 5675 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5676 break; 5677 default: 5678 break; 5679 } 5680 5681 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5682 curr_ext_cnt++; 5683 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5684 size_diff++; 5685 } 5686 5687 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5688 rc = 1; 5689 5690 return rc; 5691 } 5692 5693 /** 5694 * lpfc_sli4_cfg_post_extnts - 5695 * @phba: Pointer to HBA context object. 5696 * @extnt_cnt - number of available extents. 5697 * @type - the extent type (rpi, xri, vfi, vpi). 5698 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5699 * @mbox - pointer to the caller's allocated mailbox structure. 5700 * 5701 * This function executes the extents allocation request. It also 5702 * takes care of the amount of memory needed to allocate or get the 5703 * allocated extents. It is the caller's responsibility to evaluate 5704 * the response. 5705 * 5706 * Returns: 5707 * -Error: Error value describes the condition found. 5708 * 0: if successful 5709 **/ 5710 static int 5711 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5712 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5713 { 5714 int rc = 0; 5715 uint32_t req_len; 5716 uint32_t emb_len; 5717 uint32_t alloc_len, mbox_tmo; 5718 5719 /* Calculate the total requested length of the dma memory */ 5720 req_len = extnt_cnt * sizeof(uint16_t); 5721 5722 /* 5723 * Calculate the size of an embedded mailbox. The uint32_t 5724 * accounts for extents-specific word. 5725 */ 5726 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5727 sizeof(uint32_t); 5728 5729 /* 5730 * Presume the allocation and response will fit into an embedded 5731 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5732 */ 5733 *emb = LPFC_SLI4_MBX_EMBED; 5734 if (req_len > emb_len) { 5735 req_len = extnt_cnt * sizeof(uint16_t) + 5736 sizeof(union lpfc_sli4_cfg_shdr) + 5737 sizeof(uint32_t); 5738 *emb = LPFC_SLI4_MBX_NEMBED; 5739 } 5740 5741 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5742 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5743 req_len, *emb); 5744 if (alloc_len < req_len) { 5745 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5746 "2982 Allocated DMA memory size (x%x) is " 5747 "less than the requested DMA memory " 5748 "size (x%x)\n", alloc_len, req_len); 5749 return -ENOMEM; 5750 } 5751 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5752 if (unlikely(rc)) 5753 return -EIO; 5754 5755 if (!phba->sli4_hba.intr_enable) 5756 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5757 else { 5758 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5759 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5760 } 5761 5762 if (unlikely(rc)) 5763 rc = -EIO; 5764 return rc; 5765 } 5766 5767 /** 5768 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5769 * @phba: Pointer to HBA context object. 5770 * @type: The resource extent type to allocate. 5771 * 5772 * This function allocates the number of elements for the specified 5773 * resource type. 5774 **/ 5775 static int 5776 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5777 { 5778 bool emb = false; 5779 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5780 uint16_t rsrc_id, rsrc_start, j, k; 5781 uint16_t *ids; 5782 int i, rc; 5783 unsigned long longs; 5784 unsigned long *bmask; 5785 struct lpfc_rsrc_blks *rsrc_blks; 5786 LPFC_MBOXQ_t *mbox; 5787 uint32_t length; 5788 struct lpfc_id_range *id_array = NULL; 5789 void *virtaddr = NULL; 5790 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5791 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5792 struct list_head *ext_blk_list; 5793 5794 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5795 &rsrc_cnt, 5796 &rsrc_size); 5797 if (unlikely(rc)) 5798 return -EIO; 5799 5800 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5801 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5802 "3009 No available Resource Extents " 5803 "for resource type 0x%x: Count: 0x%x, " 5804 "Size 0x%x\n", type, rsrc_cnt, 5805 rsrc_size); 5806 return -ENOMEM; 5807 } 5808 5809 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5810 "2903 Post resource extents type-0x%x: " 5811 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5812 5813 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5814 if (!mbox) 5815 return -ENOMEM; 5816 5817 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5818 if (unlikely(rc)) { 5819 rc = -EIO; 5820 goto err_exit; 5821 } 5822 5823 /* 5824 * Figure out where the response is located. Then get local pointers 5825 * to the response data. The port does not guarantee to respond to 5826 * all extents counts request so update the local variable with the 5827 * allocated count from the port. 5828 */ 5829 if (emb == LPFC_SLI4_MBX_EMBED) { 5830 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5831 id_array = &rsrc_ext->u.rsp.id[0]; 5832 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5833 } else { 5834 virtaddr = mbox->sge_array->addr[0]; 5835 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5836 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5837 id_array = &n_rsrc->id; 5838 } 5839 5840 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5841 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5842 5843 /* 5844 * Based on the resource size and count, correct the base and max 5845 * resource values. 5846 */ 5847 length = sizeof(struct lpfc_rsrc_blks); 5848 switch (type) { 5849 case LPFC_RSC_TYPE_FCOE_RPI: 5850 phba->sli4_hba.rpi_bmask = kcalloc(longs, 5851 sizeof(unsigned long), 5852 GFP_KERNEL); 5853 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5854 rc = -ENOMEM; 5855 goto err_exit; 5856 } 5857 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 5858 sizeof(uint16_t), 5859 GFP_KERNEL); 5860 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5861 kfree(phba->sli4_hba.rpi_bmask); 5862 rc = -ENOMEM; 5863 goto err_exit; 5864 } 5865 5866 /* 5867 * The next_rpi was initialized with the maximum available 5868 * count but the port may allocate a smaller number. Catch 5869 * that case and update the next_rpi. 5870 */ 5871 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5872 5873 /* Initialize local ptrs for common extent processing later. */ 5874 bmask = phba->sli4_hba.rpi_bmask; 5875 ids = phba->sli4_hba.rpi_ids; 5876 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5877 break; 5878 case LPFC_RSC_TYPE_FCOE_VPI: 5879 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 5880 GFP_KERNEL); 5881 if (unlikely(!phba->vpi_bmask)) { 5882 rc = -ENOMEM; 5883 goto err_exit; 5884 } 5885 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 5886 GFP_KERNEL); 5887 if (unlikely(!phba->vpi_ids)) { 5888 kfree(phba->vpi_bmask); 5889 rc = -ENOMEM; 5890 goto err_exit; 5891 } 5892 5893 /* Initialize local ptrs for common extent processing later. */ 5894 bmask = phba->vpi_bmask; 5895 ids = phba->vpi_ids; 5896 ext_blk_list = &phba->lpfc_vpi_blk_list; 5897 break; 5898 case LPFC_RSC_TYPE_FCOE_XRI: 5899 phba->sli4_hba.xri_bmask = kcalloc(longs, 5900 sizeof(unsigned long), 5901 GFP_KERNEL); 5902 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5903 rc = -ENOMEM; 5904 goto err_exit; 5905 } 5906 phba->sli4_hba.max_cfg_param.xri_used = 0; 5907 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 5908 sizeof(uint16_t), 5909 GFP_KERNEL); 5910 if (unlikely(!phba->sli4_hba.xri_ids)) { 5911 kfree(phba->sli4_hba.xri_bmask); 5912 rc = -ENOMEM; 5913 goto err_exit; 5914 } 5915 5916 /* Initialize local ptrs for common extent processing later. */ 5917 bmask = phba->sli4_hba.xri_bmask; 5918 ids = phba->sli4_hba.xri_ids; 5919 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5920 break; 5921 case LPFC_RSC_TYPE_FCOE_VFI: 5922 phba->sli4_hba.vfi_bmask = kcalloc(longs, 5923 sizeof(unsigned long), 5924 GFP_KERNEL); 5925 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5926 rc = -ENOMEM; 5927 goto err_exit; 5928 } 5929 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 5930 sizeof(uint16_t), 5931 GFP_KERNEL); 5932 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5933 kfree(phba->sli4_hba.vfi_bmask); 5934 rc = -ENOMEM; 5935 goto err_exit; 5936 } 5937 5938 /* Initialize local ptrs for common extent processing later. */ 5939 bmask = phba->sli4_hba.vfi_bmask; 5940 ids = phba->sli4_hba.vfi_ids; 5941 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5942 break; 5943 default: 5944 /* Unsupported Opcode. Fail call. */ 5945 id_array = NULL; 5946 bmask = NULL; 5947 ids = NULL; 5948 ext_blk_list = NULL; 5949 goto err_exit; 5950 } 5951 5952 /* 5953 * Complete initializing the extent configuration with the 5954 * allocated ids assigned to this function. The bitmask serves 5955 * as an index into the array and manages the available ids. The 5956 * array just stores the ids communicated to the port via the wqes. 5957 */ 5958 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5959 if ((i % 2) == 0) 5960 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5961 &id_array[k]); 5962 else 5963 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5964 &id_array[k]); 5965 5966 rsrc_blks = kzalloc(length, GFP_KERNEL); 5967 if (unlikely(!rsrc_blks)) { 5968 rc = -ENOMEM; 5969 kfree(bmask); 5970 kfree(ids); 5971 goto err_exit; 5972 } 5973 rsrc_blks->rsrc_start = rsrc_id; 5974 rsrc_blks->rsrc_size = rsrc_size; 5975 list_add_tail(&rsrc_blks->list, ext_blk_list); 5976 rsrc_start = rsrc_id; 5977 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 5978 phba->sli4_hba.scsi_xri_start = rsrc_start + 5979 lpfc_sli4_get_iocb_cnt(phba); 5980 phba->sli4_hba.nvme_xri_start = 5981 phba->sli4_hba.scsi_xri_start + 5982 phba->sli4_hba.scsi_xri_max; 5983 } 5984 5985 while (rsrc_id < (rsrc_start + rsrc_size)) { 5986 ids[j] = rsrc_id; 5987 rsrc_id++; 5988 j++; 5989 } 5990 /* Entire word processed. Get next word.*/ 5991 if ((i % 2) == 1) 5992 k++; 5993 } 5994 err_exit: 5995 lpfc_sli4_mbox_cmd_free(phba, mbox); 5996 return rc; 5997 } 5998 5999 6000 6001 /** 6002 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6003 * @phba: Pointer to HBA context object. 6004 * @type: the extent's type. 6005 * 6006 * This function deallocates all extents of a particular resource type. 6007 * SLI4 does not allow for deallocating a particular extent range. It 6008 * is the caller's responsibility to release all kernel memory resources. 6009 **/ 6010 static int 6011 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6012 { 6013 int rc; 6014 uint32_t length, mbox_tmo = 0; 6015 LPFC_MBOXQ_t *mbox; 6016 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6017 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6018 6019 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6020 if (!mbox) 6021 return -ENOMEM; 6022 6023 /* 6024 * This function sends an embedded mailbox because it only sends the 6025 * the resource type. All extents of this type are released by the 6026 * port. 6027 */ 6028 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6029 sizeof(struct lpfc_sli4_cfg_mhdr)); 6030 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6031 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6032 length, LPFC_SLI4_MBX_EMBED); 6033 6034 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6035 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6036 LPFC_SLI4_MBX_EMBED); 6037 if (unlikely(rc)) { 6038 rc = -EIO; 6039 goto out_free_mbox; 6040 } 6041 if (!phba->sli4_hba.intr_enable) 6042 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6043 else { 6044 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6045 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6046 } 6047 if (unlikely(rc)) { 6048 rc = -EIO; 6049 goto out_free_mbox; 6050 } 6051 6052 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6053 if (bf_get(lpfc_mbox_hdr_status, 6054 &dealloc_rsrc->header.cfg_shdr.response)) { 6055 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6056 "2919 Failed to release resource extents " 6057 "for type %d - Status 0x%x Add'l Status 0x%x. " 6058 "Resource memory not released.\n", 6059 type, 6060 bf_get(lpfc_mbox_hdr_status, 6061 &dealloc_rsrc->header.cfg_shdr.response), 6062 bf_get(lpfc_mbox_hdr_add_status, 6063 &dealloc_rsrc->header.cfg_shdr.response)); 6064 rc = -EIO; 6065 goto out_free_mbox; 6066 } 6067 6068 /* Release kernel memory resources for the specific type. */ 6069 switch (type) { 6070 case LPFC_RSC_TYPE_FCOE_VPI: 6071 kfree(phba->vpi_bmask); 6072 kfree(phba->vpi_ids); 6073 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6074 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6075 &phba->lpfc_vpi_blk_list, list) { 6076 list_del_init(&rsrc_blk->list); 6077 kfree(rsrc_blk); 6078 } 6079 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6080 break; 6081 case LPFC_RSC_TYPE_FCOE_XRI: 6082 kfree(phba->sli4_hba.xri_bmask); 6083 kfree(phba->sli4_hba.xri_ids); 6084 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6085 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6086 list_del_init(&rsrc_blk->list); 6087 kfree(rsrc_blk); 6088 } 6089 break; 6090 case LPFC_RSC_TYPE_FCOE_VFI: 6091 kfree(phba->sli4_hba.vfi_bmask); 6092 kfree(phba->sli4_hba.vfi_ids); 6093 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6094 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6095 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6096 list_del_init(&rsrc_blk->list); 6097 kfree(rsrc_blk); 6098 } 6099 break; 6100 case LPFC_RSC_TYPE_FCOE_RPI: 6101 /* RPI bitmask and physical id array are cleaned up earlier. */ 6102 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6103 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6104 list_del_init(&rsrc_blk->list); 6105 kfree(rsrc_blk); 6106 } 6107 break; 6108 default: 6109 break; 6110 } 6111 6112 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6113 6114 out_free_mbox: 6115 mempool_free(mbox, phba->mbox_mem_pool); 6116 return rc; 6117 } 6118 6119 static void 6120 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6121 uint32_t feature) 6122 { 6123 uint32_t len; 6124 6125 len = sizeof(struct lpfc_mbx_set_feature) - 6126 sizeof(struct lpfc_sli4_cfg_mhdr); 6127 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6128 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6129 LPFC_SLI4_MBX_EMBED); 6130 6131 switch (feature) { 6132 case LPFC_SET_UE_RECOVERY: 6133 bf_set(lpfc_mbx_set_feature_UER, 6134 &mbox->u.mqe.un.set_feature, 1); 6135 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6136 mbox->u.mqe.un.set_feature.param_len = 8; 6137 break; 6138 case LPFC_SET_MDS_DIAGS: 6139 bf_set(lpfc_mbx_set_feature_mds, 6140 &mbox->u.mqe.un.set_feature, 1); 6141 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6142 &mbox->u.mqe.un.set_feature, 1); 6143 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6144 mbox->u.mqe.un.set_feature.param_len = 8; 6145 break; 6146 } 6147 6148 return; 6149 } 6150 6151 /** 6152 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6153 * @phba: Pointer to HBA context object. 6154 * 6155 * This function is called to free memory allocated for RAS FW logging 6156 * support in the driver. 6157 **/ 6158 void 6159 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6160 { 6161 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6162 struct lpfc_dmabuf *dmabuf, *next; 6163 6164 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6165 list_for_each_entry_safe(dmabuf, next, 6166 &ras_fwlog->fwlog_buff_list, 6167 list) { 6168 list_del(&dmabuf->list); 6169 dma_free_coherent(&phba->pcidev->dev, 6170 LPFC_RAS_MAX_ENTRY_SIZE, 6171 dmabuf->virt, dmabuf->phys); 6172 kfree(dmabuf); 6173 } 6174 } 6175 6176 if (ras_fwlog->lwpd.virt) { 6177 dma_free_coherent(&phba->pcidev->dev, 6178 sizeof(uint32_t) * 2, 6179 ras_fwlog->lwpd.virt, 6180 ras_fwlog->lwpd.phys); 6181 ras_fwlog->lwpd.virt = NULL; 6182 } 6183 6184 ras_fwlog->ras_active = false; 6185 } 6186 6187 /** 6188 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6189 * @phba: Pointer to HBA context object. 6190 * @fwlog_buff_count: Count of buffers to be created. 6191 * 6192 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6193 * to update FW log is posted to the adapter. 6194 * Buffer count is calculated based on module param ras_fwlog_buffsize 6195 * Size of each buffer posted to FW is 64K. 6196 **/ 6197 6198 static int 6199 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6200 uint32_t fwlog_buff_count) 6201 { 6202 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6203 struct lpfc_dmabuf *dmabuf; 6204 int rc = 0, i = 0; 6205 6206 /* Initialize List */ 6207 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6208 6209 /* Allocate memory for the LWPD */ 6210 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6211 sizeof(uint32_t) * 2, 6212 &ras_fwlog->lwpd.phys, 6213 GFP_KERNEL); 6214 if (!ras_fwlog->lwpd.virt) { 6215 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6216 "6185 LWPD Memory Alloc Failed\n"); 6217 6218 return -ENOMEM; 6219 } 6220 6221 ras_fwlog->fw_buffcount = fwlog_buff_count; 6222 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6223 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6224 GFP_KERNEL); 6225 if (!dmabuf) { 6226 rc = -ENOMEM; 6227 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6228 "6186 Memory Alloc failed FW logging"); 6229 goto free_mem; 6230 } 6231 6232 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6233 LPFC_RAS_MAX_ENTRY_SIZE, 6234 &dmabuf->phys, 6235 GFP_KERNEL); 6236 if (!dmabuf->virt) { 6237 kfree(dmabuf); 6238 rc = -ENOMEM; 6239 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6240 "6187 DMA Alloc Failed FW logging"); 6241 goto free_mem; 6242 } 6243 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6244 dmabuf->buffer_tag = i; 6245 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6246 } 6247 6248 free_mem: 6249 if (rc) 6250 lpfc_sli4_ras_dma_free(phba); 6251 6252 return rc; 6253 } 6254 6255 /** 6256 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6257 * @phba: pointer to lpfc hba data structure. 6258 * @pmboxq: pointer to the driver internal queue element for mailbox command. 6259 * 6260 * Completion handler for driver's RAS MBX command to the device. 6261 **/ 6262 static void 6263 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6264 { 6265 MAILBOX_t *mb; 6266 union lpfc_sli4_cfg_shdr *shdr; 6267 uint32_t shdr_status, shdr_add_status; 6268 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6269 6270 mb = &pmb->u.mb; 6271 6272 shdr = (union lpfc_sli4_cfg_shdr *) 6273 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6274 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6275 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6276 6277 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6278 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 6279 "6188 FW LOG mailbox " 6280 "completed with status x%x add_status x%x," 6281 " mbx status x%x\n", 6282 shdr_status, shdr_add_status, mb->mbxStatus); 6283 goto disable_ras; 6284 } 6285 6286 ras_fwlog->ras_active = true; 6287 mempool_free(pmb, phba->mbox_mem_pool); 6288 6289 return; 6290 6291 disable_ras: 6292 /* Free RAS DMA memory */ 6293 lpfc_sli4_ras_dma_free(phba); 6294 mempool_free(pmb, phba->mbox_mem_pool); 6295 } 6296 6297 /** 6298 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6299 * @phba: pointer to lpfc hba data structure. 6300 * @fwlog_level: Logging verbosity level. 6301 * @fwlog_enable: Enable/Disable logging. 6302 * 6303 * Initialize memory and post mailbox command to enable FW logging in host 6304 * memory. 6305 **/ 6306 int 6307 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6308 uint32_t fwlog_level, 6309 uint32_t fwlog_enable) 6310 { 6311 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6312 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6313 struct lpfc_dmabuf *dmabuf; 6314 LPFC_MBOXQ_t *mbox; 6315 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6316 int rc = 0; 6317 6318 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6319 phba->cfg_ras_fwlog_buffsize); 6320 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6321 6322 /* 6323 * If re-enabling FW logging support use earlier allocated 6324 * DMA buffers while posting MBX command. 6325 **/ 6326 if (!ras_fwlog->lwpd.virt) { 6327 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6328 if (rc) { 6329 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6330 "6189 RAS FW Log Support Not Enabled"); 6331 return rc; 6332 } 6333 } 6334 6335 /* Setup Mailbox command */ 6336 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6337 if (!mbox) { 6338 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6339 "6190 RAS MBX Alloc Failed"); 6340 rc = -ENOMEM; 6341 goto mem_free; 6342 } 6343 6344 ras_fwlog->fw_loglevel = fwlog_level; 6345 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6346 sizeof(struct lpfc_sli4_cfg_mhdr)); 6347 6348 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6349 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6350 len, LPFC_SLI4_MBX_EMBED); 6351 6352 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6353 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6354 fwlog_enable); 6355 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6356 ras_fwlog->fw_loglevel); 6357 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6358 ras_fwlog->fw_buffcount); 6359 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6360 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6361 6362 /* Update DMA buffer address */ 6363 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6364 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6365 6366 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6367 putPaddrLow(dmabuf->phys); 6368 6369 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6370 putPaddrHigh(dmabuf->phys); 6371 } 6372 6373 /* Update LPWD address */ 6374 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6375 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6376 6377 mbox->vport = phba->pport; 6378 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6379 6380 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6381 6382 if (rc == MBX_NOT_FINISHED) { 6383 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6384 "6191 RAS Mailbox failed. " 6385 "status %d mbxStatus : x%x", rc, 6386 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6387 mempool_free(mbox, phba->mbox_mem_pool); 6388 rc = -EIO; 6389 goto mem_free; 6390 } else 6391 rc = 0; 6392 mem_free: 6393 if (rc) 6394 lpfc_sli4_ras_dma_free(phba); 6395 6396 return rc; 6397 } 6398 6399 /** 6400 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6401 * @phba: Pointer to HBA context object. 6402 * 6403 * Check if RAS is supported on the adapter and initialize it. 6404 **/ 6405 void 6406 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6407 { 6408 /* Check RAS FW Log needs to be enabled or not */ 6409 if (lpfc_check_fwlog_support(phba)) 6410 return; 6411 6412 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6413 LPFC_RAS_ENABLE_LOGGING); 6414 } 6415 6416 /** 6417 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6418 * @phba: Pointer to HBA context object. 6419 * 6420 * This function allocates all SLI4 resource identifiers. 6421 **/ 6422 int 6423 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6424 { 6425 int i, rc, error = 0; 6426 uint16_t count, base; 6427 unsigned long longs; 6428 6429 if (!phba->sli4_hba.rpi_hdrs_in_use) 6430 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6431 if (phba->sli4_hba.extents_in_use) { 6432 /* 6433 * The port supports resource extents. The XRI, VPI, VFI, RPI 6434 * resource extent count must be read and allocated before 6435 * provisioning the resource id arrays. 6436 */ 6437 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6438 LPFC_IDX_RSRC_RDY) { 6439 /* 6440 * Extent-based resources are set - the driver could 6441 * be in a port reset. Figure out if any corrective 6442 * actions need to be taken. 6443 */ 6444 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6445 LPFC_RSC_TYPE_FCOE_VFI); 6446 if (rc != 0) 6447 error++; 6448 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6449 LPFC_RSC_TYPE_FCOE_VPI); 6450 if (rc != 0) 6451 error++; 6452 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6453 LPFC_RSC_TYPE_FCOE_XRI); 6454 if (rc != 0) 6455 error++; 6456 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6457 LPFC_RSC_TYPE_FCOE_RPI); 6458 if (rc != 0) 6459 error++; 6460 6461 /* 6462 * It's possible that the number of resources 6463 * provided to this port instance changed between 6464 * resets. Detect this condition and reallocate 6465 * resources. Otherwise, there is no action. 6466 */ 6467 if (error) { 6468 lpfc_printf_log(phba, KERN_INFO, 6469 LOG_MBOX | LOG_INIT, 6470 "2931 Detected extent resource " 6471 "change. Reallocating all " 6472 "extents.\n"); 6473 rc = lpfc_sli4_dealloc_extent(phba, 6474 LPFC_RSC_TYPE_FCOE_VFI); 6475 rc = lpfc_sli4_dealloc_extent(phba, 6476 LPFC_RSC_TYPE_FCOE_VPI); 6477 rc = lpfc_sli4_dealloc_extent(phba, 6478 LPFC_RSC_TYPE_FCOE_XRI); 6479 rc = lpfc_sli4_dealloc_extent(phba, 6480 LPFC_RSC_TYPE_FCOE_RPI); 6481 } else 6482 return 0; 6483 } 6484 6485 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6486 if (unlikely(rc)) 6487 goto err_exit; 6488 6489 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6490 if (unlikely(rc)) 6491 goto err_exit; 6492 6493 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6494 if (unlikely(rc)) 6495 goto err_exit; 6496 6497 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6498 if (unlikely(rc)) 6499 goto err_exit; 6500 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6501 LPFC_IDX_RSRC_RDY); 6502 return rc; 6503 } else { 6504 /* 6505 * The port does not support resource extents. The XRI, VPI, 6506 * VFI, RPI resource ids were determined from READ_CONFIG. 6507 * Just allocate the bitmasks and provision the resource id 6508 * arrays. If a port reset is active, the resources don't 6509 * need any action - just exit. 6510 */ 6511 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6512 LPFC_IDX_RSRC_RDY) { 6513 lpfc_sli4_dealloc_resource_identifiers(phba); 6514 lpfc_sli4_remove_rpis(phba); 6515 } 6516 /* RPIs. */ 6517 count = phba->sli4_hba.max_cfg_param.max_rpi; 6518 if (count <= 0) { 6519 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6520 "3279 Invalid provisioning of " 6521 "rpi:%d\n", count); 6522 rc = -EINVAL; 6523 goto err_exit; 6524 } 6525 base = phba->sli4_hba.max_cfg_param.rpi_base; 6526 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6527 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6528 sizeof(unsigned long), 6529 GFP_KERNEL); 6530 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6531 rc = -ENOMEM; 6532 goto err_exit; 6533 } 6534 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6535 GFP_KERNEL); 6536 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6537 rc = -ENOMEM; 6538 goto free_rpi_bmask; 6539 } 6540 6541 for (i = 0; i < count; i++) 6542 phba->sli4_hba.rpi_ids[i] = base + i; 6543 6544 /* VPIs. */ 6545 count = phba->sli4_hba.max_cfg_param.max_vpi; 6546 if (count <= 0) { 6547 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6548 "3280 Invalid provisioning of " 6549 "vpi:%d\n", count); 6550 rc = -EINVAL; 6551 goto free_rpi_ids; 6552 } 6553 base = phba->sli4_hba.max_cfg_param.vpi_base; 6554 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6555 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6556 GFP_KERNEL); 6557 if (unlikely(!phba->vpi_bmask)) { 6558 rc = -ENOMEM; 6559 goto free_rpi_ids; 6560 } 6561 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6562 GFP_KERNEL); 6563 if (unlikely(!phba->vpi_ids)) { 6564 rc = -ENOMEM; 6565 goto free_vpi_bmask; 6566 } 6567 6568 for (i = 0; i < count; i++) 6569 phba->vpi_ids[i] = base + i; 6570 6571 /* XRIs. */ 6572 count = phba->sli4_hba.max_cfg_param.max_xri; 6573 if (count <= 0) { 6574 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6575 "3281 Invalid provisioning of " 6576 "xri:%d\n", count); 6577 rc = -EINVAL; 6578 goto free_vpi_ids; 6579 } 6580 base = phba->sli4_hba.max_cfg_param.xri_base; 6581 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6582 phba->sli4_hba.xri_bmask = kcalloc(longs, 6583 sizeof(unsigned long), 6584 GFP_KERNEL); 6585 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6586 rc = -ENOMEM; 6587 goto free_vpi_ids; 6588 } 6589 phba->sli4_hba.max_cfg_param.xri_used = 0; 6590 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6591 GFP_KERNEL); 6592 if (unlikely(!phba->sli4_hba.xri_ids)) { 6593 rc = -ENOMEM; 6594 goto free_xri_bmask; 6595 } 6596 6597 for (i = 0; i < count; i++) 6598 phba->sli4_hba.xri_ids[i] = base + i; 6599 6600 /* VFIs. */ 6601 count = phba->sli4_hba.max_cfg_param.max_vfi; 6602 if (count <= 0) { 6603 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6604 "3282 Invalid provisioning of " 6605 "vfi:%d\n", count); 6606 rc = -EINVAL; 6607 goto free_xri_ids; 6608 } 6609 base = phba->sli4_hba.max_cfg_param.vfi_base; 6610 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6611 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6612 sizeof(unsigned long), 6613 GFP_KERNEL); 6614 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6615 rc = -ENOMEM; 6616 goto free_xri_ids; 6617 } 6618 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6619 GFP_KERNEL); 6620 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6621 rc = -ENOMEM; 6622 goto free_vfi_bmask; 6623 } 6624 6625 for (i = 0; i < count; i++) 6626 phba->sli4_hba.vfi_ids[i] = base + i; 6627 6628 /* 6629 * Mark all resources ready. An HBA reset doesn't need 6630 * to reset the initialization. 6631 */ 6632 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6633 LPFC_IDX_RSRC_RDY); 6634 return 0; 6635 } 6636 6637 free_vfi_bmask: 6638 kfree(phba->sli4_hba.vfi_bmask); 6639 phba->sli4_hba.vfi_bmask = NULL; 6640 free_xri_ids: 6641 kfree(phba->sli4_hba.xri_ids); 6642 phba->sli4_hba.xri_ids = NULL; 6643 free_xri_bmask: 6644 kfree(phba->sli4_hba.xri_bmask); 6645 phba->sli4_hba.xri_bmask = NULL; 6646 free_vpi_ids: 6647 kfree(phba->vpi_ids); 6648 phba->vpi_ids = NULL; 6649 free_vpi_bmask: 6650 kfree(phba->vpi_bmask); 6651 phba->vpi_bmask = NULL; 6652 free_rpi_ids: 6653 kfree(phba->sli4_hba.rpi_ids); 6654 phba->sli4_hba.rpi_ids = NULL; 6655 free_rpi_bmask: 6656 kfree(phba->sli4_hba.rpi_bmask); 6657 phba->sli4_hba.rpi_bmask = NULL; 6658 err_exit: 6659 return rc; 6660 } 6661 6662 /** 6663 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6664 * @phba: Pointer to HBA context object. 6665 * 6666 * This function allocates the number of elements for the specified 6667 * resource type. 6668 **/ 6669 int 6670 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6671 { 6672 if (phba->sli4_hba.extents_in_use) { 6673 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6674 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6675 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6676 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6677 } else { 6678 kfree(phba->vpi_bmask); 6679 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6680 kfree(phba->vpi_ids); 6681 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6682 kfree(phba->sli4_hba.xri_bmask); 6683 kfree(phba->sli4_hba.xri_ids); 6684 kfree(phba->sli4_hba.vfi_bmask); 6685 kfree(phba->sli4_hba.vfi_ids); 6686 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6687 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6688 } 6689 6690 return 0; 6691 } 6692 6693 /** 6694 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6695 * @phba: Pointer to HBA context object. 6696 * @type: The resource extent type. 6697 * @extnt_count: buffer to hold port extent count response 6698 * @extnt_size: buffer to hold port extent size response. 6699 * 6700 * This function calls the port to read the host allocated extents 6701 * for a particular type. 6702 **/ 6703 int 6704 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6705 uint16_t *extnt_cnt, uint16_t *extnt_size) 6706 { 6707 bool emb; 6708 int rc = 0; 6709 uint16_t curr_blks = 0; 6710 uint32_t req_len, emb_len; 6711 uint32_t alloc_len, mbox_tmo; 6712 struct list_head *blk_list_head; 6713 struct lpfc_rsrc_blks *rsrc_blk; 6714 LPFC_MBOXQ_t *mbox; 6715 void *virtaddr = NULL; 6716 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6717 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6718 union lpfc_sli4_cfg_shdr *shdr; 6719 6720 switch (type) { 6721 case LPFC_RSC_TYPE_FCOE_VPI: 6722 blk_list_head = &phba->lpfc_vpi_blk_list; 6723 break; 6724 case LPFC_RSC_TYPE_FCOE_XRI: 6725 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6726 break; 6727 case LPFC_RSC_TYPE_FCOE_VFI: 6728 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6729 break; 6730 case LPFC_RSC_TYPE_FCOE_RPI: 6731 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6732 break; 6733 default: 6734 return -EIO; 6735 } 6736 6737 /* Count the number of extents currently allocatd for this type. */ 6738 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6739 if (curr_blks == 0) { 6740 /* 6741 * The GET_ALLOCATED mailbox does not return the size, 6742 * just the count. The size should be just the size 6743 * stored in the current allocated block and all sizes 6744 * for an extent type are the same so set the return 6745 * value now. 6746 */ 6747 *extnt_size = rsrc_blk->rsrc_size; 6748 } 6749 curr_blks++; 6750 } 6751 6752 /* 6753 * Calculate the size of an embedded mailbox. The uint32_t 6754 * accounts for extents-specific word. 6755 */ 6756 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6757 sizeof(uint32_t); 6758 6759 /* 6760 * Presume the allocation and response will fit into an embedded 6761 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6762 */ 6763 emb = LPFC_SLI4_MBX_EMBED; 6764 req_len = emb_len; 6765 if (req_len > emb_len) { 6766 req_len = curr_blks * sizeof(uint16_t) + 6767 sizeof(union lpfc_sli4_cfg_shdr) + 6768 sizeof(uint32_t); 6769 emb = LPFC_SLI4_MBX_NEMBED; 6770 } 6771 6772 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6773 if (!mbox) 6774 return -ENOMEM; 6775 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6776 6777 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6778 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6779 req_len, emb); 6780 if (alloc_len < req_len) { 6781 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6782 "2983 Allocated DMA memory size (x%x) is " 6783 "less than the requested DMA memory " 6784 "size (x%x)\n", alloc_len, req_len); 6785 rc = -ENOMEM; 6786 goto err_exit; 6787 } 6788 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6789 if (unlikely(rc)) { 6790 rc = -EIO; 6791 goto err_exit; 6792 } 6793 6794 if (!phba->sli4_hba.intr_enable) 6795 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6796 else { 6797 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6798 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6799 } 6800 6801 if (unlikely(rc)) { 6802 rc = -EIO; 6803 goto err_exit; 6804 } 6805 6806 /* 6807 * Figure out where the response is located. Then get local pointers 6808 * to the response data. The port does not guarantee to respond to 6809 * all extents counts request so update the local variable with the 6810 * allocated count from the port. 6811 */ 6812 if (emb == LPFC_SLI4_MBX_EMBED) { 6813 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6814 shdr = &rsrc_ext->header.cfg_shdr; 6815 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6816 } else { 6817 virtaddr = mbox->sge_array->addr[0]; 6818 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6819 shdr = &n_rsrc->cfg_shdr; 6820 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6821 } 6822 6823 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6824 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6825 "2984 Failed to read allocated resources " 6826 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6827 type, 6828 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6829 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6830 rc = -EIO; 6831 goto err_exit; 6832 } 6833 err_exit: 6834 lpfc_sli4_mbox_cmd_free(phba, mbox); 6835 return rc; 6836 } 6837 6838 /** 6839 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 6840 * @phba: pointer to lpfc hba data structure. 6841 * @pring: Pointer to driver SLI ring object. 6842 * @sgl_list: linked link of sgl buffers to post 6843 * @cnt: number of linked list buffers 6844 * 6845 * This routine walks the list of buffers that have been allocated and 6846 * repost them to the port by using SGL block post. This is needed after a 6847 * pci_function_reset/warm_start or start. It attempts to construct blocks 6848 * of buffer sgls which contains contiguous xris and uses the non-embedded 6849 * SGL block post mailbox commands to post them to the port. For single 6850 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6851 * mailbox command for posting. 6852 * 6853 * Returns: 0 = success, non-zero failure. 6854 **/ 6855 static int 6856 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6857 struct list_head *sgl_list, int cnt) 6858 { 6859 struct lpfc_sglq *sglq_entry = NULL; 6860 struct lpfc_sglq *sglq_entry_next = NULL; 6861 struct lpfc_sglq *sglq_entry_first = NULL; 6862 int status, total_cnt; 6863 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6864 int last_xritag = NO_XRI; 6865 LIST_HEAD(prep_sgl_list); 6866 LIST_HEAD(blck_sgl_list); 6867 LIST_HEAD(allc_sgl_list); 6868 LIST_HEAD(post_sgl_list); 6869 LIST_HEAD(free_sgl_list); 6870 6871 spin_lock_irq(&phba->hbalock); 6872 spin_lock(&phba->sli4_hba.sgl_list_lock); 6873 list_splice_init(sgl_list, &allc_sgl_list); 6874 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6875 spin_unlock_irq(&phba->hbalock); 6876 6877 total_cnt = cnt; 6878 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6879 &allc_sgl_list, list) { 6880 list_del_init(&sglq_entry->list); 6881 block_cnt++; 6882 if ((last_xritag != NO_XRI) && 6883 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6884 /* a hole in xri block, form a sgl posting block */ 6885 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6886 post_cnt = block_cnt - 1; 6887 /* prepare list for next posting block */ 6888 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6889 block_cnt = 1; 6890 } else { 6891 /* prepare list for next posting block */ 6892 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6893 /* enough sgls for non-embed sgl mbox command */ 6894 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6895 list_splice_init(&prep_sgl_list, 6896 &blck_sgl_list); 6897 post_cnt = block_cnt; 6898 block_cnt = 0; 6899 } 6900 } 6901 num_posted++; 6902 6903 /* keep track of last sgl's xritag */ 6904 last_xritag = sglq_entry->sli4_xritag; 6905 6906 /* end of repost sgl list condition for buffers */ 6907 if (num_posted == total_cnt) { 6908 if (post_cnt == 0) { 6909 list_splice_init(&prep_sgl_list, 6910 &blck_sgl_list); 6911 post_cnt = block_cnt; 6912 } else if (block_cnt == 1) { 6913 status = lpfc_sli4_post_sgl(phba, 6914 sglq_entry->phys, 0, 6915 sglq_entry->sli4_xritag); 6916 if (!status) { 6917 /* successful, put sgl to posted list */ 6918 list_add_tail(&sglq_entry->list, 6919 &post_sgl_list); 6920 } else { 6921 /* Failure, put sgl to free list */ 6922 lpfc_printf_log(phba, KERN_WARNING, 6923 LOG_SLI, 6924 "3159 Failed to post " 6925 "sgl, xritag:x%x\n", 6926 sglq_entry->sli4_xritag); 6927 list_add_tail(&sglq_entry->list, 6928 &free_sgl_list); 6929 total_cnt--; 6930 } 6931 } 6932 } 6933 6934 /* continue until a nembed page worth of sgls */ 6935 if (post_cnt == 0) 6936 continue; 6937 6938 /* post the buffer list sgls as a block */ 6939 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 6940 post_cnt); 6941 6942 if (!status) { 6943 /* success, put sgl list to posted sgl list */ 6944 list_splice_init(&blck_sgl_list, &post_sgl_list); 6945 } else { 6946 /* Failure, put sgl list to free sgl list */ 6947 sglq_entry_first = list_first_entry(&blck_sgl_list, 6948 struct lpfc_sglq, 6949 list); 6950 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6951 "3160 Failed to post sgl-list, " 6952 "xritag:x%x-x%x\n", 6953 sglq_entry_first->sli4_xritag, 6954 (sglq_entry_first->sli4_xritag + 6955 post_cnt - 1)); 6956 list_splice_init(&blck_sgl_list, &free_sgl_list); 6957 total_cnt -= post_cnt; 6958 } 6959 6960 /* don't reset xirtag due to hole in xri block */ 6961 if (block_cnt == 0) 6962 last_xritag = NO_XRI; 6963 6964 /* reset sgl post count for next round of posting */ 6965 post_cnt = 0; 6966 } 6967 6968 /* free the sgls failed to post */ 6969 lpfc_free_sgl_list(phba, &free_sgl_list); 6970 6971 /* push sgls posted to the available list */ 6972 if (!list_empty(&post_sgl_list)) { 6973 spin_lock_irq(&phba->hbalock); 6974 spin_lock(&phba->sli4_hba.sgl_list_lock); 6975 list_splice_init(&post_sgl_list, sgl_list); 6976 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6977 spin_unlock_irq(&phba->hbalock); 6978 } else { 6979 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6980 "3161 Failure to post sgl to port.\n"); 6981 return -EIO; 6982 } 6983 6984 /* return the number of XRIs actually posted */ 6985 return total_cnt; 6986 } 6987 6988 void 6989 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6990 { 6991 uint32_t len; 6992 6993 len = sizeof(struct lpfc_mbx_set_host_data) - 6994 sizeof(struct lpfc_sli4_cfg_mhdr); 6995 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6996 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6997 LPFC_SLI4_MBX_EMBED); 6998 6999 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7000 mbox->u.mqe.un.set_host_data.param_len = 7001 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7002 snprintf(mbox->u.mqe.un.set_host_data.data, 7003 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7004 "Linux %s v"LPFC_DRIVER_VERSION, 7005 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7006 } 7007 7008 int 7009 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7010 struct lpfc_queue *drq, int count, int idx) 7011 { 7012 int rc, i; 7013 struct lpfc_rqe hrqe; 7014 struct lpfc_rqe drqe; 7015 struct lpfc_rqb *rqbp; 7016 unsigned long flags; 7017 struct rqb_dmabuf *rqb_buffer; 7018 LIST_HEAD(rqb_buf_list); 7019 7020 spin_lock_irqsave(&phba->hbalock, flags); 7021 rqbp = hrq->rqbp; 7022 for (i = 0; i < count; i++) { 7023 /* IF RQ is already full, don't bother */ 7024 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 7025 break; 7026 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7027 if (!rqb_buffer) 7028 break; 7029 rqb_buffer->hrq = hrq; 7030 rqb_buffer->drq = drq; 7031 rqb_buffer->idx = idx; 7032 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7033 } 7034 while (!list_empty(&rqb_buf_list)) { 7035 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7036 hbuf.list); 7037 7038 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7039 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7040 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7041 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7042 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7043 if (rc < 0) { 7044 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7045 "6421 Cannot post to HRQ %d: %x %x %x " 7046 "DRQ %x %x\n", 7047 hrq->queue_id, 7048 hrq->host_index, 7049 hrq->hba_index, 7050 hrq->entry_count, 7051 drq->host_index, 7052 drq->hba_index); 7053 rqbp->rqb_free_buffer(phba, rqb_buffer); 7054 } else { 7055 list_add_tail(&rqb_buffer->hbuf.list, 7056 &rqbp->rqb_buffer_list); 7057 rqbp->buffer_count++; 7058 } 7059 } 7060 spin_unlock_irqrestore(&phba->hbalock, flags); 7061 return 1; 7062 } 7063 7064 /** 7065 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7066 * @phba: Pointer to HBA context object. 7067 * 7068 * This function is the main SLI4 device initialization PCI function. This 7069 * function is called by the HBA initialization code, HBA reset code and 7070 * HBA error attention handler code. Caller is not required to hold any 7071 * locks. 7072 **/ 7073 int 7074 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7075 { 7076 int rc, i, cnt; 7077 LPFC_MBOXQ_t *mboxq; 7078 struct lpfc_mqe *mqe; 7079 uint8_t *vpd; 7080 uint32_t vpd_size; 7081 uint32_t ftr_rsp = 0; 7082 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7083 struct lpfc_vport *vport = phba->pport; 7084 struct lpfc_dmabuf *mp; 7085 struct lpfc_rqb *rqbp; 7086 7087 /* Perform a PCI function reset to start from clean */ 7088 rc = lpfc_pci_function_reset(phba); 7089 if (unlikely(rc)) 7090 return -ENODEV; 7091 7092 /* Check the HBA Host Status Register for readyness */ 7093 rc = lpfc_sli4_post_status_check(phba); 7094 if (unlikely(rc)) 7095 return -ENODEV; 7096 else { 7097 spin_lock_irq(&phba->hbalock); 7098 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7099 spin_unlock_irq(&phba->hbalock); 7100 } 7101 7102 /* 7103 * Allocate a single mailbox container for initializing the 7104 * port. 7105 */ 7106 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7107 if (!mboxq) 7108 return -ENOMEM; 7109 7110 /* Issue READ_REV to collect vpd and FW information. */ 7111 vpd_size = SLI4_PAGE_SIZE; 7112 vpd = kzalloc(vpd_size, GFP_KERNEL); 7113 if (!vpd) { 7114 rc = -ENOMEM; 7115 goto out_free_mbox; 7116 } 7117 7118 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7119 if (unlikely(rc)) { 7120 kfree(vpd); 7121 goto out_free_mbox; 7122 } 7123 7124 mqe = &mboxq->u.mqe; 7125 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7126 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7127 phba->hba_flag |= HBA_FCOE_MODE; 7128 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7129 } else { 7130 phba->hba_flag &= ~HBA_FCOE_MODE; 7131 } 7132 7133 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7134 LPFC_DCBX_CEE_MODE) 7135 phba->hba_flag |= HBA_FIP_SUPPORT; 7136 else 7137 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7138 7139 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 7140 7141 if (phba->sli_rev != LPFC_SLI_REV4) { 7142 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7143 "0376 READ_REV Error. SLI Level %d " 7144 "FCoE enabled %d\n", 7145 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7146 rc = -EIO; 7147 kfree(vpd); 7148 goto out_free_mbox; 7149 } 7150 7151 /* 7152 * Continue initialization with default values even if driver failed 7153 * to read FCoE param config regions, only read parameters if the 7154 * board is FCoE 7155 */ 7156 if (phba->hba_flag & HBA_FCOE_MODE && 7157 lpfc_sli4_read_fcoe_params(phba)) 7158 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7159 "2570 Failed to read FCoE parameters\n"); 7160 7161 /* 7162 * Retrieve sli4 device physical port name, failure of doing it 7163 * is considered as non-fatal. 7164 */ 7165 rc = lpfc_sli4_retrieve_pport_name(phba); 7166 if (!rc) 7167 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7168 "3080 Successful retrieving SLI4 device " 7169 "physical port name: %s.\n", phba->Port); 7170 7171 /* 7172 * Evaluate the read rev and vpd data. Populate the driver 7173 * state with the results. If this routine fails, the failure 7174 * is not fatal as the driver will use generic values. 7175 */ 7176 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7177 if (unlikely(!rc)) { 7178 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7179 "0377 Error %d parsing vpd. " 7180 "Using defaults.\n", rc); 7181 rc = 0; 7182 } 7183 kfree(vpd); 7184 7185 /* Save information as VPD data */ 7186 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7187 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7188 7189 /* 7190 * This is because first G7 ASIC doesn't support the standard 7191 * 0x5a NVME cmd descriptor type/subtype 7192 */ 7193 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7194 LPFC_SLI_INTF_IF_TYPE_6) && 7195 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7196 (phba->vpd.rev.smRev == 0) && 7197 (phba->cfg_nvme_embed_cmd == 1)) 7198 phba->cfg_nvme_embed_cmd = 0; 7199 7200 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7201 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7202 &mqe->un.read_rev); 7203 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7204 &mqe->un.read_rev); 7205 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7206 &mqe->un.read_rev); 7207 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7208 &mqe->un.read_rev); 7209 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7210 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7211 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7212 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7213 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7214 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7215 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7216 "(%d):0380 READ_REV Status x%x " 7217 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7218 mboxq->vport ? mboxq->vport->vpi : 0, 7219 bf_get(lpfc_mqe_status, mqe), 7220 phba->vpd.rev.opFwName, 7221 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7222 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7223 7224 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 7225 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 7226 if (phba->pport->cfg_lun_queue_depth > rc) { 7227 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7228 "3362 LUN queue depth changed from %d to %d\n", 7229 phba->pport->cfg_lun_queue_depth, rc); 7230 phba->pport->cfg_lun_queue_depth = rc; 7231 } 7232 7233 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7234 LPFC_SLI_INTF_IF_TYPE_0) { 7235 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7236 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7237 if (rc == MBX_SUCCESS) { 7238 phba->hba_flag |= HBA_RECOVERABLE_UE; 7239 /* Set 1Sec interval to detect UE */ 7240 phba->eratt_poll_interval = 1; 7241 phba->sli4_hba.ue_to_sr = bf_get( 7242 lpfc_mbx_set_feature_UESR, 7243 &mboxq->u.mqe.un.set_feature); 7244 phba->sli4_hba.ue_to_rp = bf_get( 7245 lpfc_mbx_set_feature_UERP, 7246 &mboxq->u.mqe.un.set_feature); 7247 } 7248 } 7249 7250 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7251 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7252 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7253 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7254 if (rc != MBX_SUCCESS) 7255 phba->mds_diags_support = 0; 7256 } 7257 7258 /* 7259 * Discover the port's supported feature set and match it against the 7260 * hosts requests. 7261 */ 7262 lpfc_request_features(phba, mboxq); 7263 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7264 if (unlikely(rc)) { 7265 rc = -EIO; 7266 goto out_free_mbox; 7267 } 7268 7269 /* 7270 * The port must support FCP initiator mode as this is the 7271 * only mode running in the host. 7272 */ 7273 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7274 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7275 "0378 No support for fcpi mode.\n"); 7276 ftr_rsp++; 7277 } 7278 7279 /* Performance Hints are ONLY for FCoE */ 7280 if (phba->hba_flag & HBA_FCOE_MODE) { 7281 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7282 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7283 else 7284 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7285 } 7286 7287 /* 7288 * If the port cannot support the host's requested features 7289 * then turn off the global config parameters to disable the 7290 * feature in the driver. This is not a fatal error. 7291 */ 7292 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7293 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7294 phba->cfg_enable_bg = 0; 7295 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7296 ftr_rsp++; 7297 } 7298 } 7299 7300 if (phba->max_vpi && phba->cfg_enable_npiv && 7301 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7302 ftr_rsp++; 7303 7304 if (ftr_rsp) { 7305 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7306 "0379 Feature Mismatch Data: x%08x %08x " 7307 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7308 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7309 phba->cfg_enable_npiv, phba->max_vpi); 7310 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7311 phba->cfg_enable_bg = 0; 7312 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7313 phba->cfg_enable_npiv = 0; 7314 } 7315 7316 /* These SLI3 features are assumed in SLI4 */ 7317 spin_lock_irq(&phba->hbalock); 7318 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7319 spin_unlock_irq(&phba->hbalock); 7320 7321 /* 7322 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7323 * calls depends on these resources to complete port setup. 7324 */ 7325 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7326 if (rc) { 7327 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7328 "2920 Failed to alloc Resource IDs " 7329 "rc = x%x\n", rc); 7330 goto out_free_mbox; 7331 } 7332 7333 lpfc_set_host_data(phba, mboxq); 7334 7335 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7336 if (rc) { 7337 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7338 "2134 Failed to set host os driver version %x", 7339 rc); 7340 } 7341 7342 /* Read the port's service parameters. */ 7343 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7344 if (rc) { 7345 phba->link_state = LPFC_HBA_ERROR; 7346 rc = -ENOMEM; 7347 goto out_free_mbox; 7348 } 7349 7350 mboxq->vport = vport; 7351 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7352 mp = (struct lpfc_dmabuf *) mboxq->context1; 7353 if (rc == MBX_SUCCESS) { 7354 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7355 rc = 0; 7356 } 7357 7358 /* 7359 * This memory was allocated by the lpfc_read_sparam routine. Release 7360 * it to the mbuf pool. 7361 */ 7362 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7363 kfree(mp); 7364 mboxq->context1 = NULL; 7365 if (unlikely(rc)) { 7366 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7367 "0382 READ_SPARAM command failed " 7368 "status %d, mbxStatus x%x\n", 7369 rc, bf_get(lpfc_mqe_status, mqe)); 7370 phba->link_state = LPFC_HBA_ERROR; 7371 rc = -EIO; 7372 goto out_free_mbox; 7373 } 7374 7375 lpfc_update_vport_wwn(vport); 7376 7377 /* Update the fc_host data structures with new wwn. */ 7378 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7379 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7380 7381 /* Create all the SLI4 queues */ 7382 rc = lpfc_sli4_queue_create(phba); 7383 if (rc) { 7384 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7385 "3089 Failed to allocate queues\n"); 7386 rc = -ENODEV; 7387 goto out_free_mbox; 7388 } 7389 /* Set up all the queues to the device */ 7390 rc = lpfc_sli4_queue_setup(phba); 7391 if (unlikely(rc)) { 7392 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7393 "0381 Error %d during queue setup.\n ", rc); 7394 goto out_stop_timers; 7395 } 7396 /* Initialize the driver internal SLI layer lists. */ 7397 lpfc_sli4_setup(phba); 7398 lpfc_sli4_queue_init(phba); 7399 7400 /* update host els xri-sgl sizes and mappings */ 7401 rc = lpfc_sli4_els_sgl_update(phba); 7402 if (unlikely(rc)) { 7403 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7404 "1400 Failed to update xri-sgl size and " 7405 "mapping: %d\n", rc); 7406 goto out_destroy_queue; 7407 } 7408 7409 /* register the els sgl pool to the port */ 7410 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7411 phba->sli4_hba.els_xri_cnt); 7412 if (unlikely(rc < 0)) { 7413 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7414 "0582 Error %d during els sgl post " 7415 "operation\n", rc); 7416 rc = -ENODEV; 7417 goto out_destroy_queue; 7418 } 7419 phba->sli4_hba.els_xri_cnt = rc; 7420 7421 if (phba->nvmet_support) { 7422 /* update host nvmet xri-sgl sizes and mappings */ 7423 rc = lpfc_sli4_nvmet_sgl_update(phba); 7424 if (unlikely(rc)) { 7425 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7426 "6308 Failed to update nvmet-sgl size " 7427 "and mapping: %d\n", rc); 7428 goto out_destroy_queue; 7429 } 7430 7431 /* register the nvmet sgl pool to the port */ 7432 rc = lpfc_sli4_repost_sgl_list( 7433 phba, 7434 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7435 phba->sli4_hba.nvmet_xri_cnt); 7436 if (unlikely(rc < 0)) { 7437 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7438 "3117 Error %d during nvmet " 7439 "sgl post\n", rc); 7440 rc = -ENODEV; 7441 goto out_destroy_queue; 7442 } 7443 phba->sli4_hba.nvmet_xri_cnt = rc; 7444 7445 cnt = phba->cfg_iocb_cnt * 1024; 7446 /* We need 1 iocbq for every SGL, for IO processing */ 7447 cnt += phba->sli4_hba.nvmet_xri_cnt; 7448 } else { 7449 /* update host scsi xri-sgl sizes and mappings */ 7450 rc = lpfc_sli4_scsi_sgl_update(phba); 7451 if (unlikely(rc)) { 7452 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7453 "6309 Failed to update scsi-sgl size " 7454 "and mapping: %d\n", rc); 7455 goto out_destroy_queue; 7456 } 7457 7458 /* update host nvme xri-sgl sizes and mappings */ 7459 rc = lpfc_sli4_nvme_sgl_update(phba); 7460 if (unlikely(rc)) { 7461 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7462 "6082 Failed to update nvme-sgl size " 7463 "and mapping: %d\n", rc); 7464 goto out_destroy_queue; 7465 } 7466 7467 cnt = phba->cfg_iocb_cnt * 1024; 7468 } 7469 7470 if (!phba->sli.iocbq_lookup) { 7471 /* Initialize and populate the iocb list per host */ 7472 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7473 "2821 initialize iocb list %d total %d\n", 7474 phba->cfg_iocb_cnt, cnt); 7475 rc = lpfc_init_iocb_list(phba, cnt); 7476 if (rc) { 7477 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7478 "1413 Failed to init iocb list.\n"); 7479 goto out_destroy_queue; 7480 } 7481 } 7482 7483 if (phba->nvmet_support) 7484 lpfc_nvmet_create_targetport(phba); 7485 7486 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7487 /* Post initial buffers to all RQs created */ 7488 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7489 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7490 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7491 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7492 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7493 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7494 rqbp->buffer_count = 0; 7495 7496 lpfc_post_rq_buffer( 7497 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7498 phba->sli4_hba.nvmet_mrq_data[i], 7499 phba->cfg_nvmet_mrq_post, i); 7500 } 7501 } 7502 7503 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 7504 /* register the allocated scsi sgl pool to the port */ 7505 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 7506 if (unlikely(rc)) { 7507 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7508 "0383 Error %d during scsi sgl post " 7509 "operation\n", rc); 7510 /* Some Scsi buffers were moved to abort scsi list */ 7511 /* A pci function reset will repost them */ 7512 rc = -ENODEV; 7513 goto out_destroy_queue; 7514 } 7515 } 7516 7517 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 7518 (phba->nvmet_support == 0)) { 7519 7520 /* register the allocated nvme sgl pool to the port */ 7521 rc = lpfc_repost_nvme_sgl_list(phba); 7522 if (unlikely(rc)) { 7523 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7524 "6116 Error %d during nvme sgl post " 7525 "operation\n", rc); 7526 /* Some NVME buffers were moved to abort nvme list */ 7527 /* A pci function reset will repost them */ 7528 rc = -ENODEV; 7529 goto out_destroy_queue; 7530 } 7531 } 7532 7533 /* Post the rpi header region to the device. */ 7534 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7535 if (unlikely(rc)) { 7536 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7537 "0393 Error %d during rpi post operation\n", 7538 rc); 7539 rc = -ENODEV; 7540 goto out_destroy_queue; 7541 } 7542 lpfc_sli4_node_prep(phba); 7543 7544 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7545 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7546 /* 7547 * The FC Port needs to register FCFI (index 0) 7548 */ 7549 lpfc_reg_fcfi(phba, mboxq); 7550 mboxq->vport = phba->pport; 7551 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7552 if (rc != MBX_SUCCESS) 7553 goto out_unset_queue; 7554 rc = 0; 7555 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7556 &mboxq->u.mqe.un.reg_fcfi); 7557 } else { 7558 /* We are a NVME Target mode with MRQ > 1 */ 7559 7560 /* First register the FCFI */ 7561 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7562 mboxq->vport = phba->pport; 7563 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7564 if (rc != MBX_SUCCESS) 7565 goto out_unset_queue; 7566 rc = 0; 7567 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7568 &mboxq->u.mqe.un.reg_fcfi_mrq); 7569 7570 /* Next register the MRQs */ 7571 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7572 mboxq->vport = phba->pport; 7573 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7574 if (rc != MBX_SUCCESS) 7575 goto out_unset_queue; 7576 rc = 0; 7577 } 7578 /* Check if the port is configured to be disabled */ 7579 lpfc_sli_read_link_ste(phba); 7580 } 7581 7582 /* Arm the CQs and then EQs on device */ 7583 lpfc_sli4_arm_cqeq_intr(phba); 7584 7585 /* Indicate device interrupt mode */ 7586 phba->sli4_hba.intr_enable = 1; 7587 7588 /* Allow asynchronous mailbox command to go through */ 7589 spin_lock_irq(&phba->hbalock); 7590 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7591 spin_unlock_irq(&phba->hbalock); 7592 7593 /* Post receive buffers to the device */ 7594 lpfc_sli4_rb_setup(phba); 7595 7596 /* Reset HBA FCF states after HBA reset */ 7597 phba->fcf.fcf_flag = 0; 7598 phba->fcf.current_rec.flag = 0; 7599 7600 /* Start the ELS watchdog timer */ 7601 mod_timer(&vport->els_tmofunc, 7602 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7603 7604 /* Start heart beat timer */ 7605 mod_timer(&phba->hb_tmofunc, 7606 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7607 phba->hb_outstanding = 0; 7608 phba->last_completion_time = jiffies; 7609 7610 /* Start error attention (ERATT) polling timer */ 7611 mod_timer(&phba->eratt_poll, 7612 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7613 7614 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7615 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7616 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7617 if (!rc) { 7618 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7619 "2829 This device supports " 7620 "Advanced Error Reporting (AER)\n"); 7621 spin_lock_irq(&phba->hbalock); 7622 phba->hba_flag |= HBA_AER_ENABLED; 7623 spin_unlock_irq(&phba->hbalock); 7624 } else { 7625 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7626 "2830 This device does not support " 7627 "Advanced Error Reporting (AER)\n"); 7628 phba->cfg_aer_support = 0; 7629 } 7630 rc = 0; 7631 } 7632 7633 /* 7634 * The port is ready, set the host's link state to LINK_DOWN 7635 * in preparation for link interrupts. 7636 */ 7637 spin_lock_irq(&phba->hbalock); 7638 phba->link_state = LPFC_LINK_DOWN; 7639 spin_unlock_irq(&phba->hbalock); 7640 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7641 (phba->hba_flag & LINK_DISABLED)) { 7642 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7643 "3103 Adapter Link is disabled.\n"); 7644 lpfc_down_link(phba, mboxq); 7645 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7646 if (rc != MBX_SUCCESS) { 7647 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7648 "3104 Adapter failed to issue " 7649 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7650 goto out_unset_queue; 7651 } 7652 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7653 /* don't perform init_link on SLI4 FC port loopback test */ 7654 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7655 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7656 if (rc) 7657 goto out_unset_queue; 7658 } 7659 } 7660 mempool_free(mboxq, phba->mbox_mem_pool); 7661 return rc; 7662 out_unset_queue: 7663 /* Unset all the queues set up in this routine when error out */ 7664 lpfc_sli4_queue_unset(phba); 7665 out_destroy_queue: 7666 lpfc_free_iocb_list(phba); 7667 lpfc_sli4_queue_destroy(phba); 7668 out_stop_timers: 7669 lpfc_stop_hba_timers(phba); 7670 out_free_mbox: 7671 mempool_free(mboxq, phba->mbox_mem_pool); 7672 return rc; 7673 } 7674 7675 /** 7676 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7677 * @ptr: context object - pointer to hba structure. 7678 * 7679 * This is the callback function for mailbox timer. The mailbox 7680 * timer is armed when a new mailbox command is issued and the timer 7681 * is deleted when the mailbox complete. The function is called by 7682 * the kernel timer code when a mailbox does not complete within 7683 * expected time. This function wakes up the worker thread to 7684 * process the mailbox timeout and returns. All the processing is 7685 * done by the worker thread function lpfc_mbox_timeout_handler. 7686 **/ 7687 void 7688 lpfc_mbox_timeout(struct timer_list *t) 7689 { 7690 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 7691 unsigned long iflag; 7692 uint32_t tmo_posted; 7693 7694 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7695 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7696 if (!tmo_posted) 7697 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7698 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7699 7700 if (!tmo_posted) 7701 lpfc_worker_wake_up(phba); 7702 return; 7703 } 7704 7705 /** 7706 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7707 * are pending 7708 * @phba: Pointer to HBA context object. 7709 * 7710 * This function checks if any mailbox completions are present on the mailbox 7711 * completion queue. 7712 **/ 7713 static bool 7714 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7715 { 7716 7717 uint32_t idx; 7718 struct lpfc_queue *mcq; 7719 struct lpfc_mcqe *mcqe; 7720 bool pending_completions = false; 7721 uint8_t qe_valid; 7722 7723 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7724 return false; 7725 7726 /* Check for completions on mailbox completion queue */ 7727 7728 mcq = phba->sli4_hba.mbx_cq; 7729 idx = mcq->hba_index; 7730 qe_valid = mcq->qe_valid; 7731 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe) == qe_valid) { 7732 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 7733 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7734 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7735 pending_completions = true; 7736 break; 7737 } 7738 idx = (idx + 1) % mcq->entry_count; 7739 if (mcq->hba_index == idx) 7740 break; 7741 7742 /* if the index wrapped around, toggle the valid bit */ 7743 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 7744 qe_valid = (qe_valid) ? 0 : 1; 7745 } 7746 return pending_completions; 7747 7748 } 7749 7750 /** 7751 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7752 * that were missed. 7753 * @phba: Pointer to HBA context object. 7754 * 7755 * For sli4, it is possible to miss an interrupt. As such mbox completions 7756 * maybe missed causing erroneous mailbox timeouts to occur. This function 7757 * checks to see if mbox completions are on the mailbox completion queue 7758 * and will process all the completions associated with the eq for the 7759 * mailbox completion queue. 7760 **/ 7761 bool 7762 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7763 { 7764 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 7765 uint32_t eqidx; 7766 struct lpfc_queue *fpeq = NULL; 7767 struct lpfc_eqe *eqe; 7768 bool mbox_pending; 7769 7770 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7771 return false; 7772 7773 /* Find the eq associated with the mcq */ 7774 7775 if (sli4_hba->hba_eq) 7776 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++) 7777 if (sli4_hba->hba_eq[eqidx]->queue_id == 7778 sli4_hba->mbx_cq->assoc_qid) { 7779 fpeq = sli4_hba->hba_eq[eqidx]; 7780 break; 7781 } 7782 if (!fpeq) 7783 return false; 7784 7785 /* Turn off interrupts from this EQ */ 7786 7787 sli4_hba->sli4_eq_clr_intr(fpeq); 7788 7789 /* Check to see if a mbox completion is pending */ 7790 7791 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7792 7793 /* 7794 * If a mbox completion is pending, process all the events on EQ 7795 * associated with the mbox completion queue (this could include 7796 * mailbox commands, async events, els commands, receive queue data 7797 * and fcp commands) 7798 */ 7799 7800 if (mbox_pending) 7801 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 7802 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 7803 fpeq->EQ_processed++; 7804 } 7805 7806 /* Always clear and re-arm the EQ */ 7807 7808 sli4_hba->sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 7809 7810 return mbox_pending; 7811 7812 } 7813 7814 /** 7815 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7816 * @phba: Pointer to HBA context object. 7817 * 7818 * This function is called from worker thread when a mailbox command times out. 7819 * The caller is not required to hold any locks. This function will reset the 7820 * HBA and recover all the pending commands. 7821 **/ 7822 void 7823 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7824 { 7825 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7826 MAILBOX_t *mb = NULL; 7827 7828 struct lpfc_sli *psli = &phba->sli; 7829 7830 /* If the mailbox completed, process the completion and return */ 7831 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7832 return; 7833 7834 if (pmbox != NULL) 7835 mb = &pmbox->u.mb; 7836 /* Check the pmbox pointer first. There is a race condition 7837 * between the mbox timeout handler getting executed in the 7838 * worklist and the mailbox actually completing. When this 7839 * race condition occurs, the mbox_active will be NULL. 7840 */ 7841 spin_lock_irq(&phba->hbalock); 7842 if (pmbox == NULL) { 7843 lpfc_printf_log(phba, KERN_WARNING, 7844 LOG_MBOX | LOG_SLI, 7845 "0353 Active Mailbox cleared - mailbox timeout " 7846 "exiting\n"); 7847 spin_unlock_irq(&phba->hbalock); 7848 return; 7849 } 7850 7851 /* Mbox cmd <mbxCommand> timeout */ 7852 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7853 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 7854 mb->mbxCommand, 7855 phba->pport->port_state, 7856 phba->sli.sli_flag, 7857 phba->sli.mbox_active); 7858 spin_unlock_irq(&phba->hbalock); 7859 7860 /* Setting state unknown so lpfc_sli_abort_iocb_ring 7861 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 7862 * it to fail all outstanding SCSI IO. 7863 */ 7864 spin_lock_irq(&phba->pport->work_port_lock); 7865 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 7866 spin_unlock_irq(&phba->pport->work_port_lock); 7867 spin_lock_irq(&phba->hbalock); 7868 phba->link_state = LPFC_LINK_UNKNOWN; 7869 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 7870 spin_unlock_irq(&phba->hbalock); 7871 7872 lpfc_sli_abort_fcp_rings(phba); 7873 7874 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7875 "0345 Resetting board due to mailbox timeout\n"); 7876 7877 /* Reset the HBA device */ 7878 lpfc_reset_hba(phba); 7879 } 7880 7881 /** 7882 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 7883 * @phba: Pointer to HBA context object. 7884 * @pmbox: Pointer to mailbox object. 7885 * @flag: Flag indicating how the mailbox need to be processed. 7886 * 7887 * This function is called by discovery code and HBA management code 7888 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7889 * function gets the hbalock to protect the data structures. 7890 * The mailbox command can be submitted in polling mode, in which case 7891 * this function will wait in a polling loop for the completion of the 7892 * mailbox. 7893 * If the mailbox is submitted in no_wait mode (not polling) the 7894 * function will submit the command and returns immediately without waiting 7895 * for the mailbox completion. The no_wait is supported only when HBA 7896 * is in SLI2/SLI3 mode - interrupts are enabled. 7897 * The SLI interface allows only one mailbox pending at a time. If the 7898 * mailbox is issued in polling mode and there is already a mailbox 7899 * pending, then the function will return an error. If the mailbox is issued 7900 * in NO_WAIT mode and there is a mailbox pending already, the function 7901 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7902 * The sli layer owns the mailbox object until the completion of mailbox 7903 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7904 * return codes the caller owns the mailbox command after the return of 7905 * the function. 7906 **/ 7907 static int 7908 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7909 uint32_t flag) 7910 { 7911 MAILBOX_t *mbx; 7912 struct lpfc_sli *psli = &phba->sli; 7913 uint32_t status, evtctr; 7914 uint32_t ha_copy, hc_copy; 7915 int i; 7916 unsigned long timeout; 7917 unsigned long drvr_flag = 0; 7918 uint32_t word0, ldata; 7919 void __iomem *to_slim; 7920 int processing_queue = 0; 7921 7922 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7923 if (!pmbox) { 7924 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7925 /* processing mbox queue from intr_handler */ 7926 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7927 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7928 return MBX_SUCCESS; 7929 } 7930 processing_queue = 1; 7931 pmbox = lpfc_mbox_get(phba); 7932 if (!pmbox) { 7933 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7934 return MBX_SUCCESS; 7935 } 7936 } 7937 7938 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7939 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7940 if(!pmbox->vport) { 7941 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7942 lpfc_printf_log(phba, KERN_ERR, 7943 LOG_MBOX | LOG_VPORT, 7944 "1806 Mbox x%x failed. No vport\n", 7945 pmbox->u.mb.mbxCommand); 7946 dump_stack(); 7947 goto out_not_finished; 7948 } 7949 } 7950 7951 /* If the PCI channel is in offline state, do not post mbox. */ 7952 if (unlikely(pci_channel_offline(phba->pcidev))) { 7953 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7954 goto out_not_finished; 7955 } 7956 7957 /* If HBA has a deferred error attention, fail the iocb. */ 7958 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7959 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7960 goto out_not_finished; 7961 } 7962 7963 psli = &phba->sli; 7964 7965 mbx = &pmbox->u.mb; 7966 status = MBX_SUCCESS; 7967 7968 if (phba->link_state == LPFC_HBA_ERROR) { 7969 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7970 7971 /* Mbox command <mbxCommand> cannot issue */ 7972 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7973 "(%d):0311 Mailbox command x%x cannot " 7974 "issue Data: x%x x%x\n", 7975 pmbox->vport ? pmbox->vport->vpi : 0, 7976 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7977 goto out_not_finished; 7978 } 7979 7980 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7981 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7982 !(hc_copy & HC_MBINT_ENA)) { 7983 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7984 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7985 "(%d):2528 Mailbox command x%x cannot " 7986 "issue Data: x%x x%x\n", 7987 pmbox->vport ? pmbox->vport->vpi : 0, 7988 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7989 goto out_not_finished; 7990 } 7991 } 7992 7993 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7994 /* Polling for a mbox command when another one is already active 7995 * is not allowed in SLI. Also, the driver must have established 7996 * SLI2 mode to queue and process multiple mbox commands. 7997 */ 7998 7999 if (flag & MBX_POLL) { 8000 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8001 8002 /* Mbox command <mbxCommand> cannot issue */ 8003 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8004 "(%d):2529 Mailbox command x%x " 8005 "cannot issue Data: x%x x%x\n", 8006 pmbox->vport ? pmbox->vport->vpi : 0, 8007 pmbox->u.mb.mbxCommand, 8008 psli->sli_flag, flag); 8009 goto out_not_finished; 8010 } 8011 8012 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8013 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8014 /* Mbox command <mbxCommand> cannot issue */ 8015 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8016 "(%d):2530 Mailbox command x%x " 8017 "cannot issue Data: x%x x%x\n", 8018 pmbox->vport ? pmbox->vport->vpi : 0, 8019 pmbox->u.mb.mbxCommand, 8020 psli->sli_flag, flag); 8021 goto out_not_finished; 8022 } 8023 8024 /* Another mailbox command is still being processed, queue this 8025 * command to be processed later. 8026 */ 8027 lpfc_mbox_put(phba, pmbox); 8028 8029 /* Mbox cmd issue - BUSY */ 8030 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8031 "(%d):0308 Mbox cmd issue - BUSY Data: " 8032 "x%x x%x x%x x%x\n", 8033 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8034 mbx->mbxCommand, 8035 phba->pport ? phba->pport->port_state : 0xff, 8036 psli->sli_flag, flag); 8037 8038 psli->slistat.mbox_busy++; 8039 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8040 8041 if (pmbox->vport) { 8042 lpfc_debugfs_disc_trc(pmbox->vport, 8043 LPFC_DISC_TRC_MBOX_VPORT, 8044 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8045 (uint32_t)mbx->mbxCommand, 8046 mbx->un.varWords[0], mbx->un.varWords[1]); 8047 } 8048 else { 8049 lpfc_debugfs_disc_trc(phba->pport, 8050 LPFC_DISC_TRC_MBOX, 8051 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8052 (uint32_t)mbx->mbxCommand, 8053 mbx->un.varWords[0], mbx->un.varWords[1]); 8054 } 8055 8056 return MBX_BUSY; 8057 } 8058 8059 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8060 8061 /* If we are not polling, we MUST be in SLI2 mode */ 8062 if (flag != MBX_POLL) { 8063 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8064 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8065 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8066 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8067 /* Mbox command <mbxCommand> cannot issue */ 8068 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8069 "(%d):2531 Mailbox command x%x " 8070 "cannot issue Data: x%x x%x\n", 8071 pmbox->vport ? pmbox->vport->vpi : 0, 8072 pmbox->u.mb.mbxCommand, 8073 psli->sli_flag, flag); 8074 goto out_not_finished; 8075 } 8076 /* timeout active mbox command */ 8077 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8078 1000); 8079 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8080 } 8081 8082 /* Mailbox cmd <cmd> issue */ 8083 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8084 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8085 "x%x\n", 8086 pmbox->vport ? pmbox->vport->vpi : 0, 8087 mbx->mbxCommand, 8088 phba->pport ? phba->pport->port_state : 0xff, 8089 psli->sli_flag, flag); 8090 8091 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8092 if (pmbox->vport) { 8093 lpfc_debugfs_disc_trc(pmbox->vport, 8094 LPFC_DISC_TRC_MBOX_VPORT, 8095 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8096 (uint32_t)mbx->mbxCommand, 8097 mbx->un.varWords[0], mbx->un.varWords[1]); 8098 } 8099 else { 8100 lpfc_debugfs_disc_trc(phba->pport, 8101 LPFC_DISC_TRC_MBOX, 8102 "MBOX Send: cmd:x%x mb:x%x x%x", 8103 (uint32_t)mbx->mbxCommand, 8104 mbx->un.varWords[0], mbx->un.varWords[1]); 8105 } 8106 } 8107 8108 psli->slistat.mbox_cmd++; 8109 evtctr = psli->slistat.mbox_event; 8110 8111 /* next set own bit for the adapter and copy over command word */ 8112 mbx->mbxOwner = OWN_CHIP; 8113 8114 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8115 /* Populate mbox extension offset word. */ 8116 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8117 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8118 = (uint8_t *)phba->mbox_ext 8119 - (uint8_t *)phba->mbox; 8120 } 8121 8122 /* Copy the mailbox extension data */ 8123 if (pmbox->in_ext_byte_len && pmbox->context2) { 8124 lpfc_sli_pcimem_bcopy(pmbox->context2, 8125 (uint8_t *)phba->mbox_ext, 8126 pmbox->in_ext_byte_len); 8127 } 8128 /* Copy command data to host SLIM area */ 8129 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8130 } else { 8131 /* Populate mbox extension offset word. */ 8132 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8133 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8134 = MAILBOX_HBA_EXT_OFFSET; 8135 8136 /* Copy the mailbox extension data */ 8137 if (pmbox->in_ext_byte_len && pmbox->context2) 8138 lpfc_memcpy_to_slim(phba->MBslimaddr + 8139 MAILBOX_HBA_EXT_OFFSET, 8140 pmbox->context2, pmbox->in_ext_byte_len); 8141 8142 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8143 /* copy command data into host mbox for cmpl */ 8144 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8145 MAILBOX_CMD_SIZE); 8146 8147 /* First copy mbox command data to HBA SLIM, skip past first 8148 word */ 8149 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8150 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8151 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8152 8153 /* Next copy over first word, with mbxOwner set */ 8154 ldata = *((uint32_t *)mbx); 8155 to_slim = phba->MBslimaddr; 8156 writel(ldata, to_slim); 8157 readl(to_slim); /* flush */ 8158 8159 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8160 /* switch over to host mailbox */ 8161 psli->sli_flag |= LPFC_SLI_ACTIVE; 8162 } 8163 8164 wmb(); 8165 8166 switch (flag) { 8167 case MBX_NOWAIT: 8168 /* Set up reference to mailbox command */ 8169 psli->mbox_active = pmbox; 8170 /* Interrupt board to do it */ 8171 writel(CA_MBATT, phba->CAregaddr); 8172 readl(phba->CAregaddr); /* flush */ 8173 /* Don't wait for it to finish, just return */ 8174 break; 8175 8176 case MBX_POLL: 8177 /* Set up null reference to mailbox command */ 8178 psli->mbox_active = NULL; 8179 /* Interrupt board to do it */ 8180 writel(CA_MBATT, phba->CAregaddr); 8181 readl(phba->CAregaddr); /* flush */ 8182 8183 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8184 /* First read mbox status word */ 8185 word0 = *((uint32_t *)phba->mbox); 8186 word0 = le32_to_cpu(word0); 8187 } else { 8188 /* First read mbox status word */ 8189 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8190 spin_unlock_irqrestore(&phba->hbalock, 8191 drvr_flag); 8192 goto out_not_finished; 8193 } 8194 } 8195 8196 /* Read the HBA Host Attention Register */ 8197 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8198 spin_unlock_irqrestore(&phba->hbalock, 8199 drvr_flag); 8200 goto out_not_finished; 8201 } 8202 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8203 1000) + jiffies; 8204 i = 0; 8205 /* Wait for command to complete */ 8206 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8207 (!(ha_copy & HA_MBATT) && 8208 (phba->link_state > LPFC_WARM_START))) { 8209 if (time_after(jiffies, timeout)) { 8210 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8211 spin_unlock_irqrestore(&phba->hbalock, 8212 drvr_flag); 8213 goto out_not_finished; 8214 } 8215 8216 /* Check if we took a mbox interrupt while we were 8217 polling */ 8218 if (((word0 & OWN_CHIP) != OWN_CHIP) 8219 && (evtctr != psli->slistat.mbox_event)) 8220 break; 8221 8222 if (i++ > 10) { 8223 spin_unlock_irqrestore(&phba->hbalock, 8224 drvr_flag); 8225 msleep(1); 8226 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8227 } 8228 8229 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8230 /* First copy command data */ 8231 word0 = *((uint32_t *)phba->mbox); 8232 word0 = le32_to_cpu(word0); 8233 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8234 MAILBOX_t *slimmb; 8235 uint32_t slimword0; 8236 /* Check real SLIM for any errors */ 8237 slimword0 = readl(phba->MBslimaddr); 8238 slimmb = (MAILBOX_t *) & slimword0; 8239 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8240 && slimmb->mbxStatus) { 8241 psli->sli_flag &= 8242 ~LPFC_SLI_ACTIVE; 8243 word0 = slimword0; 8244 } 8245 } 8246 } else { 8247 /* First copy command data */ 8248 word0 = readl(phba->MBslimaddr); 8249 } 8250 /* Read the HBA Host Attention Register */ 8251 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8252 spin_unlock_irqrestore(&phba->hbalock, 8253 drvr_flag); 8254 goto out_not_finished; 8255 } 8256 } 8257 8258 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8259 /* copy results back to user */ 8260 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8261 MAILBOX_CMD_SIZE); 8262 /* Copy the mailbox extension data */ 8263 if (pmbox->out_ext_byte_len && pmbox->context2) { 8264 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8265 pmbox->context2, 8266 pmbox->out_ext_byte_len); 8267 } 8268 } else { 8269 /* First copy command data */ 8270 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8271 MAILBOX_CMD_SIZE); 8272 /* Copy the mailbox extension data */ 8273 if (pmbox->out_ext_byte_len && pmbox->context2) { 8274 lpfc_memcpy_from_slim(pmbox->context2, 8275 phba->MBslimaddr + 8276 MAILBOX_HBA_EXT_OFFSET, 8277 pmbox->out_ext_byte_len); 8278 } 8279 } 8280 8281 writel(HA_MBATT, phba->HAregaddr); 8282 readl(phba->HAregaddr); /* flush */ 8283 8284 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8285 status = mbx->mbxStatus; 8286 } 8287 8288 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8289 return status; 8290 8291 out_not_finished: 8292 if (processing_queue) { 8293 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8294 lpfc_mbox_cmpl_put(phba, pmbox); 8295 } 8296 return MBX_NOT_FINISHED; 8297 } 8298 8299 /** 8300 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8301 * @phba: Pointer to HBA context object. 8302 * 8303 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8304 * the driver internal pending mailbox queue. It will then try to wait out the 8305 * possible outstanding mailbox command before return. 8306 * 8307 * Returns: 8308 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8309 * the outstanding mailbox command timed out. 8310 **/ 8311 static int 8312 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8313 { 8314 struct lpfc_sli *psli = &phba->sli; 8315 int rc = 0; 8316 unsigned long timeout = 0; 8317 8318 /* Mark the asynchronous mailbox command posting as blocked */ 8319 spin_lock_irq(&phba->hbalock); 8320 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8321 /* Determine how long we might wait for the active mailbox 8322 * command to be gracefully completed by firmware. 8323 */ 8324 if (phba->sli.mbox_active) 8325 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8326 phba->sli.mbox_active) * 8327 1000) + jiffies; 8328 spin_unlock_irq(&phba->hbalock); 8329 8330 /* Make sure the mailbox is really active */ 8331 if (timeout) 8332 lpfc_sli4_process_missed_mbox_completions(phba); 8333 8334 /* Wait for the outstnading mailbox command to complete */ 8335 while (phba->sli.mbox_active) { 8336 /* Check active mailbox complete status every 2ms */ 8337 msleep(2); 8338 if (time_after(jiffies, timeout)) { 8339 /* Timeout, marked the outstanding cmd not complete */ 8340 rc = 1; 8341 break; 8342 } 8343 } 8344 8345 /* Can not cleanly block async mailbox command, fails it */ 8346 if (rc) { 8347 spin_lock_irq(&phba->hbalock); 8348 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8349 spin_unlock_irq(&phba->hbalock); 8350 } 8351 return rc; 8352 } 8353 8354 /** 8355 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8356 * @phba: Pointer to HBA context object. 8357 * 8358 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8359 * commands from the driver internal pending mailbox queue. It makes sure 8360 * that there is no outstanding mailbox command before resuming posting 8361 * asynchronous mailbox commands. If, for any reason, there is outstanding 8362 * mailbox command, it will try to wait it out before resuming asynchronous 8363 * mailbox command posting. 8364 **/ 8365 static void 8366 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8367 { 8368 struct lpfc_sli *psli = &phba->sli; 8369 8370 spin_lock_irq(&phba->hbalock); 8371 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8372 /* Asynchronous mailbox posting is not blocked, do nothing */ 8373 spin_unlock_irq(&phba->hbalock); 8374 return; 8375 } 8376 8377 /* Outstanding synchronous mailbox command is guaranteed to be done, 8378 * successful or timeout, after timing-out the outstanding mailbox 8379 * command shall always be removed, so just unblock posting async 8380 * mailbox command and resume 8381 */ 8382 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8383 spin_unlock_irq(&phba->hbalock); 8384 8385 /* wake up worker thread to post asynchronlous mailbox command */ 8386 lpfc_worker_wake_up(phba); 8387 } 8388 8389 /** 8390 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8391 * @phba: Pointer to HBA context object. 8392 * @mboxq: Pointer to mailbox object. 8393 * 8394 * The function waits for the bootstrap mailbox register ready bit from 8395 * port for twice the regular mailbox command timeout value. 8396 * 8397 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8398 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8399 **/ 8400 static int 8401 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8402 { 8403 uint32_t db_ready; 8404 unsigned long timeout; 8405 struct lpfc_register bmbx_reg; 8406 8407 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8408 * 1000) + jiffies; 8409 8410 do { 8411 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8412 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8413 if (!db_ready) 8414 msleep(2); 8415 8416 if (time_after(jiffies, timeout)) 8417 return MBXERR_ERROR; 8418 } while (!db_ready); 8419 8420 return 0; 8421 } 8422 8423 /** 8424 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8425 * @phba: Pointer to HBA context object. 8426 * @mboxq: Pointer to mailbox object. 8427 * 8428 * The function posts a mailbox to the port. The mailbox is expected 8429 * to be comletely filled in and ready for the port to operate on it. 8430 * This routine executes a synchronous completion operation on the 8431 * mailbox by polling for its completion. 8432 * 8433 * The caller must not be holding any locks when calling this routine. 8434 * 8435 * Returns: 8436 * MBX_SUCCESS - mailbox posted successfully 8437 * Any of the MBX error values. 8438 **/ 8439 static int 8440 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8441 { 8442 int rc = MBX_SUCCESS; 8443 unsigned long iflag; 8444 uint32_t mcqe_status; 8445 uint32_t mbx_cmnd; 8446 struct lpfc_sli *psli = &phba->sli; 8447 struct lpfc_mqe *mb = &mboxq->u.mqe; 8448 struct lpfc_bmbx_create *mbox_rgn; 8449 struct dma_address *dma_address; 8450 8451 /* 8452 * Only one mailbox can be active to the bootstrap mailbox region 8453 * at a time and there is no queueing provided. 8454 */ 8455 spin_lock_irqsave(&phba->hbalock, iflag); 8456 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8457 spin_unlock_irqrestore(&phba->hbalock, iflag); 8458 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8459 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8460 "cannot issue Data: x%x x%x\n", 8461 mboxq->vport ? mboxq->vport->vpi : 0, 8462 mboxq->u.mb.mbxCommand, 8463 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8464 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8465 psli->sli_flag, MBX_POLL); 8466 return MBXERR_ERROR; 8467 } 8468 /* The server grabs the token and owns it until release */ 8469 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8470 phba->sli.mbox_active = mboxq; 8471 spin_unlock_irqrestore(&phba->hbalock, iflag); 8472 8473 /* wait for bootstrap mbox register for readyness */ 8474 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8475 if (rc) 8476 goto exit; 8477 8478 /* 8479 * Initialize the bootstrap memory region to avoid stale data areas 8480 * in the mailbox post. Then copy the caller's mailbox contents to 8481 * the bmbx mailbox region. 8482 */ 8483 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8484 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8485 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8486 sizeof(struct lpfc_mqe)); 8487 8488 /* Post the high mailbox dma address to the port and wait for ready. */ 8489 dma_address = &phba->sli4_hba.bmbx.dma_address; 8490 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8491 8492 /* wait for bootstrap mbox register for hi-address write done */ 8493 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8494 if (rc) 8495 goto exit; 8496 8497 /* Post the low mailbox dma address to the port. */ 8498 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8499 8500 /* wait for bootstrap mbox register for low address write done */ 8501 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8502 if (rc) 8503 goto exit; 8504 8505 /* 8506 * Read the CQ to ensure the mailbox has completed. 8507 * If so, update the mailbox status so that the upper layers 8508 * can complete the request normally. 8509 */ 8510 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8511 sizeof(struct lpfc_mqe)); 8512 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8513 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8514 sizeof(struct lpfc_mcqe)); 8515 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8516 /* 8517 * When the CQE status indicates a failure and the mailbox status 8518 * indicates success then copy the CQE status into the mailbox status 8519 * (and prefix it with x4000). 8520 */ 8521 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8522 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8523 bf_set(lpfc_mqe_status, mb, 8524 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8525 rc = MBXERR_ERROR; 8526 } else 8527 lpfc_sli4_swap_str(phba, mboxq); 8528 8529 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8530 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8531 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8532 " x%x x%x CQ: x%x x%x x%x x%x\n", 8533 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8534 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8535 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8536 bf_get(lpfc_mqe_status, mb), 8537 mb->un.mb_words[0], mb->un.mb_words[1], 8538 mb->un.mb_words[2], mb->un.mb_words[3], 8539 mb->un.mb_words[4], mb->un.mb_words[5], 8540 mb->un.mb_words[6], mb->un.mb_words[7], 8541 mb->un.mb_words[8], mb->un.mb_words[9], 8542 mb->un.mb_words[10], mb->un.mb_words[11], 8543 mb->un.mb_words[12], mboxq->mcqe.word0, 8544 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8545 mboxq->mcqe.trailer); 8546 exit: 8547 /* We are holding the token, no needed for lock when release */ 8548 spin_lock_irqsave(&phba->hbalock, iflag); 8549 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8550 phba->sli.mbox_active = NULL; 8551 spin_unlock_irqrestore(&phba->hbalock, iflag); 8552 return rc; 8553 } 8554 8555 /** 8556 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8557 * @phba: Pointer to HBA context object. 8558 * @pmbox: Pointer to mailbox object. 8559 * @flag: Flag indicating how the mailbox need to be processed. 8560 * 8561 * This function is called by discovery code and HBA management code to submit 8562 * a mailbox command to firmware with SLI-4 interface spec. 8563 * 8564 * Return codes the caller owns the mailbox command after the return of the 8565 * function. 8566 **/ 8567 static int 8568 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8569 uint32_t flag) 8570 { 8571 struct lpfc_sli *psli = &phba->sli; 8572 unsigned long iflags; 8573 int rc; 8574 8575 /* dump from issue mailbox command if setup */ 8576 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8577 8578 rc = lpfc_mbox_dev_check(phba); 8579 if (unlikely(rc)) { 8580 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8581 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8582 "cannot issue Data: x%x x%x\n", 8583 mboxq->vport ? mboxq->vport->vpi : 0, 8584 mboxq->u.mb.mbxCommand, 8585 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8586 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8587 psli->sli_flag, flag); 8588 goto out_not_finished; 8589 } 8590 8591 /* Detect polling mode and jump to a handler */ 8592 if (!phba->sli4_hba.intr_enable) { 8593 if (flag == MBX_POLL) 8594 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8595 else 8596 rc = -EIO; 8597 if (rc != MBX_SUCCESS) 8598 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8599 "(%d):2541 Mailbox command x%x " 8600 "(x%x/x%x) failure: " 8601 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8602 "Data: x%x x%x\n,", 8603 mboxq->vport ? mboxq->vport->vpi : 0, 8604 mboxq->u.mb.mbxCommand, 8605 lpfc_sli_config_mbox_subsys_get(phba, 8606 mboxq), 8607 lpfc_sli_config_mbox_opcode_get(phba, 8608 mboxq), 8609 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8610 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8611 bf_get(lpfc_mcqe_ext_status, 8612 &mboxq->mcqe), 8613 psli->sli_flag, flag); 8614 return rc; 8615 } else if (flag == MBX_POLL) { 8616 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8617 "(%d):2542 Try to issue mailbox command " 8618 "x%x (x%x/x%x) synchronously ahead of async " 8619 "mailbox command queue: x%x x%x\n", 8620 mboxq->vport ? mboxq->vport->vpi : 0, 8621 mboxq->u.mb.mbxCommand, 8622 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8623 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8624 psli->sli_flag, flag); 8625 /* Try to block the asynchronous mailbox posting */ 8626 rc = lpfc_sli4_async_mbox_block(phba); 8627 if (!rc) { 8628 /* Successfully blocked, now issue sync mbox cmd */ 8629 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8630 if (rc != MBX_SUCCESS) 8631 lpfc_printf_log(phba, KERN_WARNING, 8632 LOG_MBOX | LOG_SLI, 8633 "(%d):2597 Sync Mailbox command " 8634 "x%x (x%x/x%x) failure: " 8635 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8636 "Data: x%x x%x\n,", 8637 mboxq->vport ? mboxq->vport->vpi : 0, 8638 mboxq->u.mb.mbxCommand, 8639 lpfc_sli_config_mbox_subsys_get(phba, 8640 mboxq), 8641 lpfc_sli_config_mbox_opcode_get(phba, 8642 mboxq), 8643 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8644 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8645 bf_get(lpfc_mcqe_ext_status, 8646 &mboxq->mcqe), 8647 psli->sli_flag, flag); 8648 /* Unblock the async mailbox posting afterward */ 8649 lpfc_sli4_async_mbox_unblock(phba); 8650 } 8651 return rc; 8652 } 8653 8654 /* Now, interrupt mode asynchrous mailbox command */ 8655 rc = lpfc_mbox_cmd_check(phba, mboxq); 8656 if (rc) { 8657 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8658 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8659 "cannot issue Data: x%x x%x\n", 8660 mboxq->vport ? mboxq->vport->vpi : 0, 8661 mboxq->u.mb.mbxCommand, 8662 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8663 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8664 psli->sli_flag, flag); 8665 goto out_not_finished; 8666 } 8667 8668 /* Put the mailbox command to the driver internal FIFO */ 8669 psli->slistat.mbox_busy++; 8670 spin_lock_irqsave(&phba->hbalock, iflags); 8671 lpfc_mbox_put(phba, mboxq); 8672 spin_unlock_irqrestore(&phba->hbalock, iflags); 8673 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8674 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8675 "x%x (x%x/x%x) x%x x%x x%x\n", 8676 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8677 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8678 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8679 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8680 phba->pport->port_state, 8681 psli->sli_flag, MBX_NOWAIT); 8682 /* Wake up worker thread to transport mailbox command from head */ 8683 lpfc_worker_wake_up(phba); 8684 8685 return MBX_BUSY; 8686 8687 out_not_finished: 8688 return MBX_NOT_FINISHED; 8689 } 8690 8691 /** 8692 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8693 * @phba: Pointer to HBA context object. 8694 * 8695 * This function is called by worker thread to send a mailbox command to 8696 * SLI4 HBA firmware. 8697 * 8698 **/ 8699 int 8700 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8701 { 8702 struct lpfc_sli *psli = &phba->sli; 8703 LPFC_MBOXQ_t *mboxq; 8704 int rc = MBX_SUCCESS; 8705 unsigned long iflags; 8706 struct lpfc_mqe *mqe; 8707 uint32_t mbx_cmnd; 8708 8709 /* Check interrupt mode before post async mailbox command */ 8710 if (unlikely(!phba->sli4_hba.intr_enable)) 8711 return MBX_NOT_FINISHED; 8712 8713 /* Check for mailbox command service token */ 8714 spin_lock_irqsave(&phba->hbalock, iflags); 8715 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8716 spin_unlock_irqrestore(&phba->hbalock, iflags); 8717 return MBX_NOT_FINISHED; 8718 } 8719 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8720 spin_unlock_irqrestore(&phba->hbalock, iflags); 8721 return MBX_NOT_FINISHED; 8722 } 8723 if (unlikely(phba->sli.mbox_active)) { 8724 spin_unlock_irqrestore(&phba->hbalock, iflags); 8725 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8726 "0384 There is pending active mailbox cmd\n"); 8727 return MBX_NOT_FINISHED; 8728 } 8729 /* Take the mailbox command service token */ 8730 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8731 8732 /* Get the next mailbox command from head of queue */ 8733 mboxq = lpfc_mbox_get(phba); 8734 8735 /* If no more mailbox command waiting for post, we're done */ 8736 if (!mboxq) { 8737 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8738 spin_unlock_irqrestore(&phba->hbalock, iflags); 8739 return MBX_SUCCESS; 8740 } 8741 phba->sli.mbox_active = mboxq; 8742 spin_unlock_irqrestore(&phba->hbalock, iflags); 8743 8744 /* Check device readiness for posting mailbox command */ 8745 rc = lpfc_mbox_dev_check(phba); 8746 if (unlikely(rc)) 8747 /* Driver clean routine will clean up pending mailbox */ 8748 goto out_not_finished; 8749 8750 /* Prepare the mbox command to be posted */ 8751 mqe = &mboxq->u.mqe; 8752 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8753 8754 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8755 mod_timer(&psli->mbox_tmo, (jiffies + 8756 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8757 8758 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8759 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8760 "x%x x%x\n", 8761 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8762 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8763 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8764 phba->pport->port_state, psli->sli_flag); 8765 8766 if (mbx_cmnd != MBX_HEARTBEAT) { 8767 if (mboxq->vport) { 8768 lpfc_debugfs_disc_trc(mboxq->vport, 8769 LPFC_DISC_TRC_MBOX_VPORT, 8770 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8771 mbx_cmnd, mqe->un.mb_words[0], 8772 mqe->un.mb_words[1]); 8773 } else { 8774 lpfc_debugfs_disc_trc(phba->pport, 8775 LPFC_DISC_TRC_MBOX, 8776 "MBOX Send: cmd:x%x mb:x%x x%x", 8777 mbx_cmnd, mqe->un.mb_words[0], 8778 mqe->un.mb_words[1]); 8779 } 8780 } 8781 psli->slistat.mbox_cmd++; 8782 8783 /* Post the mailbox command to the port */ 8784 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8785 if (rc != MBX_SUCCESS) { 8786 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8787 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8788 "cannot issue Data: x%x x%x\n", 8789 mboxq->vport ? mboxq->vport->vpi : 0, 8790 mboxq->u.mb.mbxCommand, 8791 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8792 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8793 psli->sli_flag, MBX_NOWAIT); 8794 goto out_not_finished; 8795 } 8796 8797 return rc; 8798 8799 out_not_finished: 8800 spin_lock_irqsave(&phba->hbalock, iflags); 8801 if (phba->sli.mbox_active) { 8802 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8803 __lpfc_mbox_cmpl_put(phba, mboxq); 8804 /* Release the token */ 8805 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8806 phba->sli.mbox_active = NULL; 8807 } 8808 spin_unlock_irqrestore(&phba->hbalock, iflags); 8809 8810 return MBX_NOT_FINISHED; 8811 } 8812 8813 /** 8814 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8815 * @phba: Pointer to HBA context object. 8816 * @pmbox: Pointer to mailbox object. 8817 * @flag: Flag indicating how the mailbox need to be processed. 8818 * 8819 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8820 * the API jump table function pointer from the lpfc_hba struct. 8821 * 8822 * Return codes the caller owns the mailbox command after the return of the 8823 * function. 8824 **/ 8825 int 8826 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8827 { 8828 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8829 } 8830 8831 /** 8832 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8833 * @phba: The hba struct for which this call is being executed. 8834 * @dev_grp: The HBA PCI-Device group number. 8835 * 8836 * This routine sets up the mbox interface API function jump table in @phba 8837 * struct. 8838 * Returns: 0 - success, -ENODEV - failure. 8839 **/ 8840 int 8841 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8842 { 8843 8844 switch (dev_grp) { 8845 case LPFC_PCI_DEV_LP: 8846 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 8847 phba->lpfc_sli_handle_slow_ring_event = 8848 lpfc_sli_handle_slow_ring_event_s3; 8849 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 8850 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 8851 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 8852 break; 8853 case LPFC_PCI_DEV_OC: 8854 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 8855 phba->lpfc_sli_handle_slow_ring_event = 8856 lpfc_sli_handle_slow_ring_event_s4; 8857 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 8858 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 8859 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 8860 break; 8861 default: 8862 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8863 "1420 Invalid HBA PCI-device group: 0x%x\n", 8864 dev_grp); 8865 return -ENODEV; 8866 break; 8867 } 8868 return 0; 8869 } 8870 8871 /** 8872 * __lpfc_sli_ringtx_put - Add an iocb to the txq 8873 * @phba: Pointer to HBA context object. 8874 * @pring: Pointer to driver SLI ring object. 8875 * @piocb: Pointer to address of newly added command iocb. 8876 * 8877 * This function is called with hbalock held to add a command 8878 * iocb to the txq when SLI layer cannot submit the command iocb 8879 * to the ring. 8880 **/ 8881 void 8882 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8883 struct lpfc_iocbq *piocb) 8884 { 8885 lockdep_assert_held(&phba->hbalock); 8886 /* Insert the caller's iocb in the txq tail for later processing. */ 8887 list_add_tail(&piocb->list, &pring->txq); 8888 } 8889 8890 /** 8891 * lpfc_sli_next_iocb - Get the next iocb in the txq 8892 * @phba: Pointer to HBA context object. 8893 * @pring: Pointer to driver SLI ring object. 8894 * @piocb: Pointer to address of newly added command iocb. 8895 * 8896 * This function is called with hbalock held before a new 8897 * iocb is submitted to the firmware. This function checks 8898 * txq to flush the iocbs in txq to Firmware before 8899 * submitting new iocbs to the Firmware. 8900 * If there are iocbs in the txq which need to be submitted 8901 * to firmware, lpfc_sli_next_iocb returns the first element 8902 * of the txq after dequeuing it from txq. 8903 * If there is no iocb in the txq then the function will return 8904 * *piocb and *piocb is set to NULL. Caller needs to check 8905 * *piocb to find if there are more commands in the txq. 8906 **/ 8907 static struct lpfc_iocbq * 8908 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8909 struct lpfc_iocbq **piocb) 8910 { 8911 struct lpfc_iocbq * nextiocb; 8912 8913 lockdep_assert_held(&phba->hbalock); 8914 8915 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8916 if (!nextiocb) { 8917 nextiocb = *piocb; 8918 *piocb = NULL; 8919 } 8920 8921 return nextiocb; 8922 } 8923 8924 /** 8925 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8926 * @phba: Pointer to HBA context object. 8927 * @ring_number: SLI ring number to issue iocb on. 8928 * @piocb: Pointer to command iocb. 8929 * @flag: Flag indicating if this command can be put into txq. 8930 * 8931 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8932 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8933 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8934 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8935 * this function allows only iocbs for posting buffers. This function finds 8936 * next available slot in the command ring and posts the command to the 8937 * available slot and writes the port attention register to request HBA start 8938 * processing new iocb. If there is no slot available in the ring and 8939 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8940 * the function returns IOCB_BUSY. 8941 * 8942 * This function is called with hbalock held. The function will return success 8943 * after it successfully submit the iocb to firmware or after adding to the 8944 * txq. 8945 **/ 8946 static int 8947 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8948 struct lpfc_iocbq *piocb, uint32_t flag) 8949 { 8950 struct lpfc_iocbq *nextiocb; 8951 IOCB_t *iocb; 8952 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 8953 8954 lockdep_assert_held(&phba->hbalock); 8955 8956 if (piocb->iocb_cmpl && (!piocb->vport) && 8957 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8958 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8959 lpfc_printf_log(phba, KERN_ERR, 8960 LOG_SLI | LOG_VPORT, 8961 "1807 IOCB x%x failed. No vport\n", 8962 piocb->iocb.ulpCommand); 8963 dump_stack(); 8964 return IOCB_ERROR; 8965 } 8966 8967 8968 /* If the PCI channel is in offline state, do not post iocbs. */ 8969 if (unlikely(pci_channel_offline(phba->pcidev))) 8970 return IOCB_ERROR; 8971 8972 /* If HBA has a deferred error attention, fail the iocb. */ 8973 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8974 return IOCB_ERROR; 8975 8976 /* 8977 * We should never get an IOCB if we are in a < LINK_DOWN state 8978 */ 8979 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8980 return IOCB_ERROR; 8981 8982 /* 8983 * Check to see if we are blocking IOCB processing because of a 8984 * outstanding event. 8985 */ 8986 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8987 goto iocb_busy; 8988 8989 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8990 /* 8991 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8992 * can be issued if the link is not up. 8993 */ 8994 switch (piocb->iocb.ulpCommand) { 8995 case CMD_GEN_REQUEST64_CR: 8996 case CMD_GEN_REQUEST64_CX: 8997 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8998 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8999 FC_RCTL_DD_UNSOL_CMD) || 9000 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9001 MENLO_TRANSPORT_TYPE)) 9002 9003 goto iocb_busy; 9004 break; 9005 case CMD_QUE_RING_BUF_CN: 9006 case CMD_QUE_RING_BUF64_CN: 9007 /* 9008 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9009 * completion, iocb_cmpl MUST be 0. 9010 */ 9011 if (piocb->iocb_cmpl) 9012 piocb->iocb_cmpl = NULL; 9013 /*FALLTHROUGH*/ 9014 case CMD_CREATE_XRI_CR: 9015 case CMD_CLOSE_XRI_CN: 9016 case CMD_CLOSE_XRI_CX: 9017 break; 9018 default: 9019 goto iocb_busy; 9020 } 9021 9022 /* 9023 * For FCP commands, we must be in a state where we can process link 9024 * attention events. 9025 */ 9026 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9027 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9028 goto iocb_busy; 9029 } 9030 9031 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9032 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9033 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9034 9035 if (iocb) 9036 lpfc_sli_update_ring(phba, pring); 9037 else 9038 lpfc_sli_update_full_ring(phba, pring); 9039 9040 if (!piocb) 9041 return IOCB_SUCCESS; 9042 9043 goto out_busy; 9044 9045 iocb_busy: 9046 pring->stats.iocb_cmd_delay++; 9047 9048 out_busy: 9049 9050 if (!(flag & SLI_IOCB_RET_IOCB)) { 9051 __lpfc_sli_ringtx_put(phba, pring, piocb); 9052 return IOCB_SUCCESS; 9053 } 9054 9055 return IOCB_BUSY; 9056 } 9057 9058 /** 9059 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9060 * @phba: Pointer to HBA context object. 9061 * @piocb: Pointer to command iocb. 9062 * @sglq: Pointer to the scatter gather queue object. 9063 * 9064 * This routine converts the bpl or bde that is in the IOCB 9065 * to a sgl list for the sli4 hardware. The physical address 9066 * of the bpl/bde is converted back to a virtual address. 9067 * If the IOCB contains a BPL then the list of BDE's is 9068 * converted to sli4_sge's. If the IOCB contains a single 9069 * BDE then it is converted to a single sli_sge. 9070 * The IOCB is still in cpu endianess so the contents of 9071 * the bpl can be used without byte swapping. 9072 * 9073 * Returns valid XRI = Success, NO_XRI = Failure. 9074 **/ 9075 static uint16_t 9076 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9077 struct lpfc_sglq *sglq) 9078 { 9079 uint16_t xritag = NO_XRI; 9080 struct ulp_bde64 *bpl = NULL; 9081 struct ulp_bde64 bde; 9082 struct sli4_sge *sgl = NULL; 9083 struct lpfc_dmabuf *dmabuf; 9084 IOCB_t *icmd; 9085 int numBdes = 0; 9086 int i = 0; 9087 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9088 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9089 9090 if (!piocbq || !sglq) 9091 return xritag; 9092 9093 sgl = (struct sli4_sge *)sglq->sgl; 9094 icmd = &piocbq->iocb; 9095 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9096 return sglq->sli4_xritag; 9097 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9098 numBdes = icmd->un.genreq64.bdl.bdeSize / 9099 sizeof(struct ulp_bde64); 9100 /* The addrHigh and addrLow fields within the IOCB 9101 * have not been byteswapped yet so there is no 9102 * need to swap them back. 9103 */ 9104 if (piocbq->context3) 9105 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9106 else 9107 return xritag; 9108 9109 bpl = (struct ulp_bde64 *)dmabuf->virt; 9110 if (!bpl) 9111 return xritag; 9112 9113 for (i = 0; i < numBdes; i++) { 9114 /* Should already be byte swapped. */ 9115 sgl->addr_hi = bpl->addrHigh; 9116 sgl->addr_lo = bpl->addrLow; 9117 9118 sgl->word2 = le32_to_cpu(sgl->word2); 9119 if ((i+1) == numBdes) 9120 bf_set(lpfc_sli4_sge_last, sgl, 1); 9121 else 9122 bf_set(lpfc_sli4_sge_last, sgl, 0); 9123 /* swap the size field back to the cpu so we 9124 * can assign it to the sgl. 9125 */ 9126 bde.tus.w = le32_to_cpu(bpl->tus.w); 9127 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9128 /* The offsets in the sgl need to be accumulated 9129 * separately for the request and reply lists. 9130 * The request is always first, the reply follows. 9131 */ 9132 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9133 /* add up the reply sg entries */ 9134 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9135 inbound++; 9136 /* first inbound? reset the offset */ 9137 if (inbound == 1) 9138 offset = 0; 9139 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9140 bf_set(lpfc_sli4_sge_type, sgl, 9141 LPFC_SGE_TYPE_DATA); 9142 offset += bde.tus.f.bdeSize; 9143 } 9144 sgl->word2 = cpu_to_le32(sgl->word2); 9145 bpl++; 9146 sgl++; 9147 } 9148 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9149 /* The addrHigh and addrLow fields of the BDE have not 9150 * been byteswapped yet so they need to be swapped 9151 * before putting them in the sgl. 9152 */ 9153 sgl->addr_hi = 9154 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9155 sgl->addr_lo = 9156 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9157 sgl->word2 = le32_to_cpu(sgl->word2); 9158 bf_set(lpfc_sli4_sge_last, sgl, 1); 9159 sgl->word2 = cpu_to_le32(sgl->word2); 9160 sgl->sge_len = 9161 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9162 } 9163 return sglq->sli4_xritag; 9164 } 9165 9166 /** 9167 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9168 * @phba: Pointer to HBA context object. 9169 * @piocb: Pointer to command iocb. 9170 * @wqe: Pointer to the work queue entry. 9171 * 9172 * This routine converts the iocb command to its Work Queue Entry 9173 * equivalent. The wqe pointer should not have any fields set when 9174 * this routine is called because it will memcpy over them. 9175 * This routine does not set the CQ_ID or the WQEC bits in the 9176 * wqe. 9177 * 9178 * Returns: 0 = Success, IOCB_ERROR = Failure. 9179 **/ 9180 static int 9181 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9182 union lpfc_wqe128 *wqe) 9183 { 9184 uint32_t xmit_len = 0, total_len = 0; 9185 uint8_t ct = 0; 9186 uint32_t fip; 9187 uint32_t abort_tag; 9188 uint8_t command_type = ELS_COMMAND_NON_FIP; 9189 uint8_t cmnd; 9190 uint16_t xritag; 9191 uint16_t abrt_iotag; 9192 struct lpfc_iocbq *abrtiocbq; 9193 struct ulp_bde64 *bpl = NULL; 9194 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9195 int numBdes, i; 9196 struct ulp_bde64 bde; 9197 struct lpfc_nodelist *ndlp; 9198 uint32_t *pcmd; 9199 uint32_t if_type; 9200 9201 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9202 /* The fcp commands will set command type */ 9203 if (iocbq->iocb_flag & LPFC_IO_FCP) 9204 command_type = FCP_COMMAND; 9205 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9206 command_type = ELS_COMMAND_FIP; 9207 else 9208 command_type = ELS_COMMAND_NON_FIP; 9209 9210 if (phba->fcp_embed_io) 9211 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9212 /* Some of the fields are in the right position already */ 9213 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9214 if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) { 9215 /* The ct field has moved so reset */ 9216 wqe->generic.wqe_com.word7 = 0; 9217 wqe->generic.wqe_com.word10 = 0; 9218 } 9219 9220 abort_tag = (uint32_t) iocbq->iotag; 9221 xritag = iocbq->sli4_xritag; 9222 /* words0-2 bpl convert bde */ 9223 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9224 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9225 sizeof(struct ulp_bde64); 9226 bpl = (struct ulp_bde64 *) 9227 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9228 if (!bpl) 9229 return IOCB_ERROR; 9230 9231 /* Should already be byte swapped. */ 9232 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9233 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9234 /* swap the size field back to the cpu so we 9235 * can assign it to the sgl. 9236 */ 9237 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9238 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9239 total_len = 0; 9240 for (i = 0; i < numBdes; i++) { 9241 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9242 total_len += bde.tus.f.bdeSize; 9243 } 9244 } else 9245 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9246 9247 iocbq->iocb.ulpIoTag = iocbq->iotag; 9248 cmnd = iocbq->iocb.ulpCommand; 9249 9250 switch (iocbq->iocb.ulpCommand) { 9251 case CMD_ELS_REQUEST64_CR: 9252 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9253 ndlp = iocbq->context_un.ndlp; 9254 else 9255 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9256 if (!iocbq->iocb.ulpLe) { 9257 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9258 "2007 Only Limited Edition cmd Format" 9259 " supported 0x%x\n", 9260 iocbq->iocb.ulpCommand); 9261 return IOCB_ERROR; 9262 } 9263 9264 wqe->els_req.payload_len = xmit_len; 9265 /* Els_reguest64 has a TMO */ 9266 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9267 iocbq->iocb.ulpTimeout); 9268 /* Need a VF for word 4 set the vf bit*/ 9269 bf_set(els_req64_vf, &wqe->els_req, 0); 9270 /* And a VFID for word 12 */ 9271 bf_set(els_req64_vfid, &wqe->els_req, 0); 9272 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9273 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9274 iocbq->iocb.ulpContext); 9275 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9276 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9277 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9278 if (command_type == ELS_COMMAND_FIP) 9279 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9280 >> LPFC_FIP_ELS_ID_SHIFT); 9281 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9282 iocbq->context2)->virt); 9283 if_type = bf_get(lpfc_sli_intf_if_type, 9284 &phba->sli4_hba.sli_intf); 9285 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9286 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9287 *pcmd == ELS_CMD_SCR || 9288 *pcmd == ELS_CMD_FDISC || 9289 *pcmd == ELS_CMD_LOGO || 9290 *pcmd == ELS_CMD_PLOGI)) { 9291 bf_set(els_req64_sp, &wqe->els_req, 1); 9292 bf_set(els_req64_sid, &wqe->els_req, 9293 iocbq->vport->fc_myDID); 9294 if ((*pcmd == ELS_CMD_FLOGI) && 9295 !(phba->fc_topology == 9296 LPFC_TOPOLOGY_LOOP)) 9297 bf_set(els_req64_sid, &wqe->els_req, 0); 9298 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9299 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9300 phba->vpi_ids[iocbq->vport->vpi]); 9301 } else if (pcmd && iocbq->context1) { 9302 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9303 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9304 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9305 } 9306 } 9307 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9308 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9309 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9310 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9311 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9312 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9313 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9314 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9315 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9316 break; 9317 case CMD_XMIT_SEQUENCE64_CX: 9318 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9319 iocbq->iocb.un.ulpWord[3]); 9320 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9321 iocbq->iocb.unsli3.rcvsli3.ox_id); 9322 /* The entire sequence is transmitted for this IOCB */ 9323 xmit_len = total_len; 9324 cmnd = CMD_XMIT_SEQUENCE64_CR; 9325 if (phba->link_flag & LS_LOOPBACK_MODE) 9326 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9327 case CMD_XMIT_SEQUENCE64_CR: 9328 /* word3 iocb=io_tag32 wqe=reserved */ 9329 wqe->xmit_sequence.rsvd3 = 0; 9330 /* word4 relative_offset memcpy */ 9331 /* word5 r_ctl/df_ctl memcpy */ 9332 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9333 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9334 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9335 LPFC_WQE_IOD_WRITE); 9336 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9337 LPFC_WQE_LENLOC_WORD12); 9338 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9339 wqe->xmit_sequence.xmit_len = xmit_len; 9340 command_type = OTHER_COMMAND; 9341 break; 9342 case CMD_XMIT_BCAST64_CN: 9343 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9344 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9345 /* word4 iocb=rsvd wqe=rsvd */ 9346 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9347 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9348 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9349 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9350 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9351 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9352 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9353 LPFC_WQE_LENLOC_WORD3); 9354 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9355 break; 9356 case CMD_FCP_IWRITE64_CR: 9357 command_type = FCP_COMMAND_DATA_OUT; 9358 /* word3 iocb=iotag wqe=payload_offset_len */ 9359 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9360 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9361 xmit_len + sizeof(struct fcp_rsp)); 9362 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9363 0); 9364 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9365 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9366 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9367 iocbq->iocb.ulpFCP2Rcvy); 9368 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9369 /* Always open the exchange */ 9370 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9371 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9372 LPFC_WQE_LENLOC_WORD4); 9373 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9374 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9375 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9376 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9377 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9378 if (iocbq->priority) { 9379 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9380 (iocbq->priority << 1)); 9381 } else { 9382 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9383 (phba->cfg_XLanePriority << 1)); 9384 } 9385 } 9386 /* Note, word 10 is already initialized to 0 */ 9387 9388 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9389 if (phba->cfg_enable_pbde) 9390 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9391 else 9392 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9393 9394 if (phba->fcp_embed_io) { 9395 struct lpfc_scsi_buf *lpfc_cmd; 9396 struct sli4_sge *sgl; 9397 struct fcp_cmnd *fcp_cmnd; 9398 uint32_t *ptr; 9399 9400 /* 128 byte wqe support here */ 9401 9402 lpfc_cmd = iocbq->context1; 9403 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9404 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9405 9406 /* Word 0-2 - FCP_CMND */ 9407 wqe->generic.bde.tus.f.bdeFlags = 9408 BUFF_TYPE_BDE_IMMED; 9409 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9410 wqe->generic.bde.addrHigh = 0; 9411 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9412 9413 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9414 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9415 9416 /* Word 22-29 FCP CMND Payload */ 9417 ptr = &wqe->words[22]; 9418 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9419 } 9420 break; 9421 case CMD_FCP_IREAD64_CR: 9422 /* word3 iocb=iotag wqe=payload_offset_len */ 9423 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9424 bf_set(payload_offset_len, &wqe->fcp_iread, 9425 xmit_len + sizeof(struct fcp_rsp)); 9426 bf_set(cmd_buff_len, &wqe->fcp_iread, 9427 0); 9428 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9429 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9430 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9431 iocbq->iocb.ulpFCP2Rcvy); 9432 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9433 /* Always open the exchange */ 9434 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9435 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9436 LPFC_WQE_LENLOC_WORD4); 9437 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9438 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9439 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9440 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9441 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9442 if (iocbq->priority) { 9443 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9444 (iocbq->priority << 1)); 9445 } else { 9446 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9447 (phba->cfg_XLanePriority << 1)); 9448 } 9449 } 9450 /* Note, word 10 is already initialized to 0 */ 9451 9452 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9453 if (phba->cfg_enable_pbde) 9454 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9455 else 9456 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9457 9458 if (phba->fcp_embed_io) { 9459 struct lpfc_scsi_buf *lpfc_cmd; 9460 struct sli4_sge *sgl; 9461 struct fcp_cmnd *fcp_cmnd; 9462 uint32_t *ptr; 9463 9464 /* 128 byte wqe support here */ 9465 9466 lpfc_cmd = iocbq->context1; 9467 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9468 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9469 9470 /* Word 0-2 - FCP_CMND */ 9471 wqe->generic.bde.tus.f.bdeFlags = 9472 BUFF_TYPE_BDE_IMMED; 9473 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9474 wqe->generic.bde.addrHigh = 0; 9475 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9476 9477 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9478 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9479 9480 /* Word 22-29 FCP CMND Payload */ 9481 ptr = &wqe->words[22]; 9482 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9483 } 9484 break; 9485 case CMD_FCP_ICMND64_CR: 9486 /* word3 iocb=iotag wqe=payload_offset_len */ 9487 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9488 bf_set(payload_offset_len, &wqe->fcp_icmd, 9489 xmit_len + sizeof(struct fcp_rsp)); 9490 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9491 0); 9492 /* word3 iocb=IO_TAG wqe=reserved */ 9493 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9494 /* Always open the exchange */ 9495 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9496 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9497 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9498 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9499 LPFC_WQE_LENLOC_NONE); 9500 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9501 iocbq->iocb.ulpFCP2Rcvy); 9502 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9503 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9504 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9505 if (iocbq->priority) { 9506 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9507 (iocbq->priority << 1)); 9508 } else { 9509 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9510 (phba->cfg_XLanePriority << 1)); 9511 } 9512 } 9513 /* Note, word 10 is already initialized to 0 */ 9514 9515 if (phba->fcp_embed_io) { 9516 struct lpfc_scsi_buf *lpfc_cmd; 9517 struct sli4_sge *sgl; 9518 struct fcp_cmnd *fcp_cmnd; 9519 uint32_t *ptr; 9520 9521 /* 128 byte wqe support here */ 9522 9523 lpfc_cmd = iocbq->context1; 9524 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9525 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9526 9527 /* Word 0-2 - FCP_CMND */ 9528 wqe->generic.bde.tus.f.bdeFlags = 9529 BUFF_TYPE_BDE_IMMED; 9530 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9531 wqe->generic.bde.addrHigh = 0; 9532 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9533 9534 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9535 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9536 9537 /* Word 22-29 FCP CMND Payload */ 9538 ptr = &wqe->words[22]; 9539 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9540 } 9541 break; 9542 case CMD_GEN_REQUEST64_CR: 9543 /* For this command calculate the xmit length of the 9544 * request bde. 9545 */ 9546 xmit_len = 0; 9547 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9548 sizeof(struct ulp_bde64); 9549 for (i = 0; i < numBdes; i++) { 9550 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9551 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9552 break; 9553 xmit_len += bde.tus.f.bdeSize; 9554 } 9555 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9556 wqe->gen_req.request_payload_len = xmit_len; 9557 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9558 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9559 /* word6 context tag copied in memcpy */ 9560 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9561 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9562 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9563 "2015 Invalid CT %x command 0x%x\n", 9564 ct, iocbq->iocb.ulpCommand); 9565 return IOCB_ERROR; 9566 } 9567 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9568 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9569 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9570 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9571 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9572 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9573 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9574 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9575 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9576 command_type = OTHER_COMMAND; 9577 break; 9578 case CMD_XMIT_ELS_RSP64_CX: 9579 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9580 /* words0-2 BDE memcpy */ 9581 /* word3 iocb=iotag32 wqe=response_payload_len */ 9582 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9583 /* word4 */ 9584 wqe->xmit_els_rsp.word4 = 0; 9585 /* word5 iocb=rsvd wge=did */ 9586 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9587 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9588 9589 if_type = bf_get(lpfc_sli_intf_if_type, 9590 &phba->sli4_hba.sli_intf); 9591 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9592 if (iocbq->vport->fc_flag & FC_PT2PT) { 9593 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9594 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9595 iocbq->vport->fc_myDID); 9596 if (iocbq->vport->fc_myDID == Fabric_DID) { 9597 bf_set(wqe_els_did, 9598 &wqe->xmit_els_rsp.wqe_dest, 0); 9599 } 9600 } 9601 } 9602 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9603 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9604 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9605 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9606 iocbq->iocb.unsli3.rcvsli3.ox_id); 9607 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9608 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9609 phba->vpi_ids[iocbq->vport->vpi]); 9610 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9611 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9612 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9613 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9614 LPFC_WQE_LENLOC_WORD3); 9615 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9616 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9617 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9618 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9619 iocbq->context2)->virt); 9620 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9621 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9622 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9623 iocbq->vport->fc_myDID); 9624 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9625 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9626 phba->vpi_ids[phba->pport->vpi]); 9627 } 9628 command_type = OTHER_COMMAND; 9629 break; 9630 case CMD_CLOSE_XRI_CN: 9631 case CMD_ABORT_XRI_CN: 9632 case CMD_ABORT_XRI_CX: 9633 /* words 0-2 memcpy should be 0 rserved */ 9634 /* port will send abts */ 9635 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9636 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9637 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9638 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9639 } else 9640 fip = 0; 9641 9642 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9643 /* 9644 * The link is down, or the command was ELS_FIP 9645 * so the fw does not need to send abts 9646 * on the wire. 9647 */ 9648 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9649 else 9650 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9651 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9652 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9653 wqe->abort_cmd.rsrvd5 = 0; 9654 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9655 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9656 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9657 /* 9658 * The abort handler will send us CMD_ABORT_XRI_CN or 9659 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9660 */ 9661 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9662 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9663 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9664 LPFC_WQE_LENLOC_NONE); 9665 cmnd = CMD_ABORT_XRI_CX; 9666 command_type = OTHER_COMMAND; 9667 xritag = 0; 9668 break; 9669 case CMD_XMIT_BLS_RSP64_CX: 9670 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9671 /* As BLS ABTS RSP WQE is very different from other WQEs, 9672 * we re-construct this WQE here based on information in 9673 * iocbq from scratch. 9674 */ 9675 memset(wqe, 0, sizeof(union lpfc_wqe)); 9676 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9677 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9678 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9679 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9680 LPFC_ABTS_UNSOL_INT) { 9681 /* ABTS sent by initiator to CT exchange, the 9682 * RX_ID field will be filled with the newly 9683 * allocated responder XRI. 9684 */ 9685 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9686 iocbq->sli4_xritag); 9687 } else { 9688 /* ABTS sent by responder to CT exchange, the 9689 * RX_ID field will be filled with the responder 9690 * RX_ID from ABTS. 9691 */ 9692 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9693 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9694 } 9695 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9696 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9697 9698 /* Use CT=VPI */ 9699 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9700 ndlp->nlp_DID); 9701 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9702 iocbq->iocb.ulpContext); 9703 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9704 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9705 phba->vpi_ids[phba->pport->vpi]); 9706 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9707 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9708 LPFC_WQE_LENLOC_NONE); 9709 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9710 command_type = OTHER_COMMAND; 9711 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9712 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9713 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9714 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9715 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9716 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9717 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9718 } 9719 9720 break; 9721 case CMD_SEND_FRAME: 9722 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9723 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9724 return 0; 9725 case CMD_XRI_ABORTED_CX: 9726 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9727 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9728 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9729 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9730 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9731 default: 9732 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9733 "2014 Invalid command 0x%x\n", 9734 iocbq->iocb.ulpCommand); 9735 return IOCB_ERROR; 9736 break; 9737 } 9738 9739 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9740 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9741 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9742 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9743 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9744 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9745 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9746 LPFC_IO_DIF_INSERT); 9747 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9748 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9749 wqe->generic.wqe_com.abort_tag = abort_tag; 9750 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9751 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9752 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9753 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9754 return 0; 9755 } 9756 9757 /** 9758 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9759 * @phba: Pointer to HBA context object. 9760 * @ring_number: SLI ring number to issue iocb on. 9761 * @piocb: Pointer to command iocb. 9762 * @flag: Flag indicating if this command can be put into txq. 9763 * 9764 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9765 * an iocb command to an HBA with SLI-4 interface spec. 9766 * 9767 * This function is called with hbalock held. The function will return success 9768 * after it successfully submit the iocb to firmware or after adding to the 9769 * txq. 9770 **/ 9771 static int 9772 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9773 struct lpfc_iocbq *piocb, uint32_t flag) 9774 { 9775 struct lpfc_sglq *sglq; 9776 union lpfc_wqe128 wqe; 9777 struct lpfc_queue *wq; 9778 struct lpfc_sli_ring *pring; 9779 9780 /* Get the WQ */ 9781 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9782 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9783 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) 9784 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx]; 9785 else 9786 wq = phba->sli4_hba.oas_wq; 9787 } else { 9788 wq = phba->sli4_hba.els_wq; 9789 } 9790 9791 /* Get corresponding ring */ 9792 pring = wq->pring; 9793 9794 /* 9795 * The WQE can be either 64 or 128 bytes, 9796 */ 9797 9798 lockdep_assert_held(&phba->hbalock); 9799 9800 if (piocb->sli4_xritag == NO_XRI) { 9801 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9802 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9803 sglq = NULL; 9804 else { 9805 if (!list_empty(&pring->txq)) { 9806 if (!(flag & SLI_IOCB_RET_IOCB)) { 9807 __lpfc_sli_ringtx_put(phba, 9808 pring, piocb); 9809 return IOCB_SUCCESS; 9810 } else { 9811 return IOCB_BUSY; 9812 } 9813 } else { 9814 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9815 if (!sglq) { 9816 if (!(flag & SLI_IOCB_RET_IOCB)) { 9817 __lpfc_sli_ringtx_put(phba, 9818 pring, 9819 piocb); 9820 return IOCB_SUCCESS; 9821 } else 9822 return IOCB_BUSY; 9823 } 9824 } 9825 } 9826 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9827 /* These IO's already have an XRI and a mapped sgl. */ 9828 sglq = NULL; 9829 else { 9830 /* 9831 * This is a continuation of a commandi,(CX) so this 9832 * sglq is on the active list 9833 */ 9834 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9835 if (!sglq) 9836 return IOCB_ERROR; 9837 } 9838 9839 if (sglq) { 9840 piocb->sli4_lxritag = sglq->sli4_lxritag; 9841 piocb->sli4_xritag = sglq->sli4_xritag; 9842 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 9843 return IOCB_ERROR; 9844 } 9845 9846 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 9847 return IOCB_ERROR; 9848 9849 if (lpfc_sli4_wq_put(wq, &wqe)) 9850 return IOCB_ERROR; 9851 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 9852 9853 return 0; 9854 } 9855 9856 /** 9857 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 9858 * 9859 * This routine wraps the actual lockless version for issusing IOCB function 9860 * pointer from the lpfc_hba struct. 9861 * 9862 * Return codes: 9863 * IOCB_ERROR - Error 9864 * IOCB_SUCCESS - Success 9865 * IOCB_BUSY - Busy 9866 **/ 9867 int 9868 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9869 struct lpfc_iocbq *piocb, uint32_t flag) 9870 { 9871 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9872 } 9873 9874 /** 9875 * lpfc_sli_api_table_setup - Set up sli api function jump table 9876 * @phba: The hba struct for which this call is being executed. 9877 * @dev_grp: The HBA PCI-Device group number. 9878 * 9879 * This routine sets up the SLI interface API function jump table in @phba 9880 * struct. 9881 * Returns: 0 - success, -ENODEV - failure. 9882 **/ 9883 int 9884 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9885 { 9886 9887 switch (dev_grp) { 9888 case LPFC_PCI_DEV_LP: 9889 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 9890 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 9891 break; 9892 case LPFC_PCI_DEV_OC: 9893 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 9894 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 9895 break; 9896 default: 9897 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9898 "1419 Invalid HBA PCI-device group: 0x%x\n", 9899 dev_grp); 9900 return -ENODEV; 9901 break; 9902 } 9903 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9904 return 0; 9905 } 9906 9907 /** 9908 * lpfc_sli4_calc_ring - Calculates which ring to use 9909 * @phba: Pointer to HBA context object. 9910 * @piocb: Pointer to command iocb. 9911 * 9912 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 9913 * hba_wqidx, thus we need to calculate the corresponding ring. 9914 * Since ABORTS must go on the same WQ of the command they are 9915 * aborting, we use command's hba_wqidx. 9916 */ 9917 struct lpfc_sli_ring * 9918 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 9919 { 9920 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9921 if (!(phba->cfg_fof) || 9922 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9923 if (unlikely(!phba->sli4_hba.fcp_wq)) 9924 return NULL; 9925 /* 9926 * for abort iocb hba_wqidx should already 9927 * be setup based on what work queue we used. 9928 */ 9929 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9930 piocb->hba_wqidx = 9931 lpfc_sli4_scmd_to_wqidx_distr(phba, 9932 piocb->context1); 9933 piocb->hba_wqidx = piocb->hba_wqidx % 9934 phba->cfg_fcp_io_channel; 9935 } 9936 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring; 9937 } else { 9938 if (unlikely(!phba->sli4_hba.oas_wq)) 9939 return NULL; 9940 piocb->hba_wqidx = 0; 9941 return phba->sli4_hba.oas_wq->pring; 9942 } 9943 } else { 9944 if (unlikely(!phba->sli4_hba.els_wq)) 9945 return NULL; 9946 piocb->hba_wqidx = 0; 9947 return phba->sli4_hba.els_wq->pring; 9948 } 9949 } 9950 9951 /** 9952 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9953 * @phba: Pointer to HBA context object. 9954 * @pring: Pointer to driver SLI ring object. 9955 * @piocb: Pointer to command iocb. 9956 * @flag: Flag indicating if this command can be put into txq. 9957 * 9958 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9959 * function. This function gets the hbalock and calls 9960 * __lpfc_sli_issue_iocb function and will return the error returned 9961 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9962 * functions which do not hold hbalock. 9963 **/ 9964 int 9965 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9966 struct lpfc_iocbq *piocb, uint32_t flag) 9967 { 9968 struct lpfc_hba_eq_hdl *hba_eq_hdl; 9969 struct lpfc_sli_ring *pring; 9970 struct lpfc_queue *fpeq; 9971 struct lpfc_eqe *eqe; 9972 unsigned long iflags; 9973 int rc, idx; 9974 9975 if (phba->sli_rev == LPFC_SLI_REV4) { 9976 pring = lpfc_sli4_calc_ring(phba, piocb); 9977 if (unlikely(pring == NULL)) 9978 return IOCB_ERROR; 9979 9980 spin_lock_irqsave(&pring->ring_lock, iflags); 9981 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9982 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9983 9984 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9985 idx = piocb->hba_wqidx; 9986 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx]; 9987 9988 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) { 9989 9990 /* Get associated EQ with this index */ 9991 fpeq = phba->sli4_hba.hba_eq[idx]; 9992 9993 /* Turn off interrupts from this EQ */ 9994 phba->sli4_hba.sli4_eq_clr_intr(fpeq); 9995 9996 /* 9997 * Process all the events on FCP EQ 9998 */ 9999 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 10000 lpfc_sli4_hba_handle_eqe(phba, 10001 eqe, idx); 10002 fpeq->EQ_processed++; 10003 } 10004 10005 /* Always clear and re-arm the EQ */ 10006 phba->sli4_hba.sli4_eq_release(fpeq, 10007 LPFC_QUEUE_REARM); 10008 } 10009 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 10010 } 10011 } else { 10012 /* For now, SLI2/3 will still use hbalock */ 10013 spin_lock_irqsave(&phba->hbalock, iflags); 10014 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10015 spin_unlock_irqrestore(&phba->hbalock, iflags); 10016 } 10017 return rc; 10018 } 10019 10020 /** 10021 * lpfc_extra_ring_setup - Extra ring setup function 10022 * @phba: Pointer to HBA context object. 10023 * 10024 * This function is called while driver attaches with the 10025 * HBA to setup the extra ring. The extra ring is used 10026 * only when driver needs to support target mode functionality 10027 * or IP over FC functionalities. 10028 * 10029 * This function is called with no lock held. SLI3 only. 10030 **/ 10031 static int 10032 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10033 { 10034 struct lpfc_sli *psli; 10035 struct lpfc_sli_ring *pring; 10036 10037 psli = &phba->sli; 10038 10039 /* Adjust cmd/rsp ring iocb entries more evenly */ 10040 10041 /* Take some away from the FCP ring */ 10042 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10043 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10044 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10045 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10046 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10047 10048 /* and give them to the extra ring */ 10049 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10050 10051 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10052 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10053 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10054 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10055 10056 /* Setup default profile for this ring */ 10057 pring->iotag_max = 4096; 10058 pring->num_mask = 1; 10059 pring->prt[0].profile = 0; /* Mask 0 */ 10060 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10061 pring->prt[0].type = phba->cfg_multi_ring_type; 10062 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10063 return 0; 10064 } 10065 10066 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10067 * @phba: Pointer to HBA context object. 10068 * @iocbq: Pointer to iocb object. 10069 * 10070 * The async_event handler calls this routine when it receives 10071 * an ASYNC_STATUS_CN event from the port. The port generates 10072 * this event when an Abort Sequence request to an rport fails 10073 * twice in succession. The abort could be originated by the 10074 * driver or by the port. The ABTS could have been for an ELS 10075 * or FCP IO. The port only generates this event when an ABTS 10076 * fails to complete after one retry. 10077 */ 10078 static void 10079 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10080 struct lpfc_iocbq *iocbq) 10081 { 10082 struct lpfc_nodelist *ndlp = NULL; 10083 uint16_t rpi = 0, vpi = 0; 10084 struct lpfc_vport *vport = NULL; 10085 10086 /* The rpi in the ulpContext is vport-sensitive. */ 10087 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10088 rpi = iocbq->iocb.ulpContext; 10089 10090 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10091 "3092 Port generated ABTS async event " 10092 "on vpi %d rpi %d status 0x%x\n", 10093 vpi, rpi, iocbq->iocb.ulpStatus); 10094 10095 vport = lpfc_find_vport_by_vpid(phba, vpi); 10096 if (!vport) 10097 goto err_exit; 10098 ndlp = lpfc_findnode_rpi(vport, rpi); 10099 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 10100 goto err_exit; 10101 10102 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10103 lpfc_sli_abts_recover_port(vport, ndlp); 10104 return; 10105 10106 err_exit: 10107 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10108 "3095 Event Context not found, no " 10109 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10110 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10111 vpi, rpi); 10112 } 10113 10114 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10115 * @phba: pointer to HBA context object. 10116 * @ndlp: nodelist pointer for the impacted rport. 10117 * @axri: pointer to the wcqe containing the failed exchange. 10118 * 10119 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10120 * port. The port generates this event when an abort exchange request to an 10121 * rport fails twice in succession with no reply. The abort could be originated 10122 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10123 */ 10124 void 10125 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10126 struct lpfc_nodelist *ndlp, 10127 struct sli4_wcqe_xri_aborted *axri) 10128 { 10129 struct lpfc_vport *vport; 10130 uint32_t ext_status = 0; 10131 10132 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 10133 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10134 "3115 Node Context not found, driver " 10135 "ignoring abts err event\n"); 10136 return; 10137 } 10138 10139 vport = ndlp->vport; 10140 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10141 "3116 Port generated FCP XRI ABORT event on " 10142 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10143 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10144 bf_get(lpfc_wcqe_xa_xri, axri), 10145 bf_get(lpfc_wcqe_xa_status, axri), 10146 axri->parameter); 10147 10148 /* 10149 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10150 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10151 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10152 */ 10153 ext_status = axri->parameter & IOERR_PARAM_MASK; 10154 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10155 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10156 lpfc_sli_abts_recover_port(vport, ndlp); 10157 } 10158 10159 /** 10160 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10161 * @phba: Pointer to HBA context object. 10162 * @pring: Pointer to driver SLI ring object. 10163 * @iocbq: Pointer to iocb object. 10164 * 10165 * This function is called by the slow ring event handler 10166 * function when there is an ASYNC event iocb in the ring. 10167 * This function is called with no lock held. 10168 * Currently this function handles only temperature related 10169 * ASYNC events. The function decodes the temperature sensor 10170 * event message and posts events for the management applications. 10171 **/ 10172 static void 10173 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10174 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10175 { 10176 IOCB_t *icmd; 10177 uint16_t evt_code; 10178 struct temp_event temp_event_data; 10179 struct Scsi_Host *shost; 10180 uint32_t *iocb_w; 10181 10182 icmd = &iocbq->iocb; 10183 evt_code = icmd->un.asyncstat.evt_code; 10184 10185 switch (evt_code) { 10186 case ASYNC_TEMP_WARN: 10187 case ASYNC_TEMP_SAFE: 10188 temp_event_data.data = (uint32_t) icmd->ulpContext; 10189 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10190 if (evt_code == ASYNC_TEMP_WARN) { 10191 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10192 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10193 "0347 Adapter is very hot, please take " 10194 "corrective action. temperature : %d Celsius\n", 10195 (uint32_t) icmd->ulpContext); 10196 } else { 10197 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10198 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10199 "0340 Adapter temperature is OK now. " 10200 "temperature : %d Celsius\n", 10201 (uint32_t) icmd->ulpContext); 10202 } 10203 10204 /* Send temperature change event to applications */ 10205 shost = lpfc_shost_from_vport(phba->pport); 10206 fc_host_post_vendor_event(shost, fc_get_event_number(), 10207 sizeof(temp_event_data), (char *) &temp_event_data, 10208 LPFC_NL_VENDOR_ID); 10209 break; 10210 case ASYNC_STATUS_CN: 10211 lpfc_sli_abts_err_handler(phba, iocbq); 10212 break; 10213 default: 10214 iocb_w = (uint32_t *) icmd; 10215 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10216 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10217 " evt_code 0x%x\n" 10218 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10219 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10220 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10221 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10222 pring->ringno, icmd->un.asyncstat.evt_code, 10223 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10224 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10225 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10226 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10227 10228 break; 10229 } 10230 } 10231 10232 10233 /** 10234 * lpfc_sli4_setup - SLI ring setup function 10235 * @phba: Pointer to HBA context object. 10236 * 10237 * lpfc_sli_setup sets up rings of the SLI interface with 10238 * number of iocbs per ring and iotags. This function is 10239 * called while driver attach to the HBA and before the 10240 * interrupts are enabled. So there is no need for locking. 10241 * 10242 * This function always returns 0. 10243 **/ 10244 int 10245 lpfc_sli4_setup(struct lpfc_hba *phba) 10246 { 10247 struct lpfc_sli_ring *pring; 10248 10249 pring = phba->sli4_hba.els_wq->pring; 10250 pring->num_mask = LPFC_MAX_RING_MASK; 10251 pring->prt[0].profile = 0; /* Mask 0 */ 10252 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10253 pring->prt[0].type = FC_TYPE_ELS; 10254 pring->prt[0].lpfc_sli_rcv_unsol_event = 10255 lpfc_els_unsol_event; 10256 pring->prt[1].profile = 0; /* Mask 1 */ 10257 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10258 pring->prt[1].type = FC_TYPE_ELS; 10259 pring->prt[1].lpfc_sli_rcv_unsol_event = 10260 lpfc_els_unsol_event; 10261 pring->prt[2].profile = 0; /* Mask 2 */ 10262 /* NameServer Inquiry */ 10263 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10264 /* NameServer */ 10265 pring->prt[2].type = FC_TYPE_CT; 10266 pring->prt[2].lpfc_sli_rcv_unsol_event = 10267 lpfc_ct_unsol_event; 10268 pring->prt[3].profile = 0; /* Mask 3 */ 10269 /* NameServer response */ 10270 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10271 /* NameServer */ 10272 pring->prt[3].type = FC_TYPE_CT; 10273 pring->prt[3].lpfc_sli_rcv_unsol_event = 10274 lpfc_ct_unsol_event; 10275 return 0; 10276 } 10277 10278 /** 10279 * lpfc_sli_setup - SLI ring setup function 10280 * @phba: Pointer to HBA context object. 10281 * 10282 * lpfc_sli_setup sets up rings of the SLI interface with 10283 * number of iocbs per ring and iotags. This function is 10284 * called while driver attach to the HBA and before the 10285 * interrupts are enabled. So there is no need for locking. 10286 * 10287 * This function always returns 0. SLI3 only. 10288 **/ 10289 int 10290 lpfc_sli_setup(struct lpfc_hba *phba) 10291 { 10292 int i, totiocbsize = 0; 10293 struct lpfc_sli *psli = &phba->sli; 10294 struct lpfc_sli_ring *pring; 10295 10296 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10297 psli->sli_flag = 0; 10298 10299 psli->iocbq_lookup = NULL; 10300 psli->iocbq_lookup_len = 0; 10301 psli->last_iotag = 0; 10302 10303 for (i = 0; i < psli->num_rings; i++) { 10304 pring = &psli->sli3_ring[i]; 10305 switch (i) { 10306 case LPFC_FCP_RING: /* ring 0 - FCP */ 10307 /* numCiocb and numRiocb are used in config_port */ 10308 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10309 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10310 pring->sli.sli3.numCiocb += 10311 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10312 pring->sli.sli3.numRiocb += 10313 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10314 pring->sli.sli3.numCiocb += 10315 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10316 pring->sli.sli3.numRiocb += 10317 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10318 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10319 SLI3_IOCB_CMD_SIZE : 10320 SLI2_IOCB_CMD_SIZE; 10321 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10322 SLI3_IOCB_RSP_SIZE : 10323 SLI2_IOCB_RSP_SIZE; 10324 pring->iotag_ctr = 0; 10325 pring->iotag_max = 10326 (phba->cfg_hba_queue_depth * 2); 10327 pring->fast_iotag = pring->iotag_max; 10328 pring->num_mask = 0; 10329 break; 10330 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10331 /* numCiocb and numRiocb are used in config_port */ 10332 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10333 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10334 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10335 SLI3_IOCB_CMD_SIZE : 10336 SLI2_IOCB_CMD_SIZE; 10337 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10338 SLI3_IOCB_RSP_SIZE : 10339 SLI2_IOCB_RSP_SIZE; 10340 pring->iotag_max = phba->cfg_hba_queue_depth; 10341 pring->num_mask = 0; 10342 break; 10343 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10344 /* numCiocb and numRiocb are used in config_port */ 10345 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10346 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10347 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10348 SLI3_IOCB_CMD_SIZE : 10349 SLI2_IOCB_CMD_SIZE; 10350 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10351 SLI3_IOCB_RSP_SIZE : 10352 SLI2_IOCB_RSP_SIZE; 10353 pring->fast_iotag = 0; 10354 pring->iotag_ctr = 0; 10355 pring->iotag_max = 4096; 10356 pring->lpfc_sli_rcv_async_status = 10357 lpfc_sli_async_event_handler; 10358 pring->num_mask = LPFC_MAX_RING_MASK; 10359 pring->prt[0].profile = 0; /* Mask 0 */ 10360 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10361 pring->prt[0].type = FC_TYPE_ELS; 10362 pring->prt[0].lpfc_sli_rcv_unsol_event = 10363 lpfc_els_unsol_event; 10364 pring->prt[1].profile = 0; /* Mask 1 */ 10365 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10366 pring->prt[1].type = FC_TYPE_ELS; 10367 pring->prt[1].lpfc_sli_rcv_unsol_event = 10368 lpfc_els_unsol_event; 10369 pring->prt[2].profile = 0; /* Mask 2 */ 10370 /* NameServer Inquiry */ 10371 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10372 /* NameServer */ 10373 pring->prt[2].type = FC_TYPE_CT; 10374 pring->prt[2].lpfc_sli_rcv_unsol_event = 10375 lpfc_ct_unsol_event; 10376 pring->prt[3].profile = 0; /* Mask 3 */ 10377 /* NameServer response */ 10378 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10379 /* NameServer */ 10380 pring->prt[3].type = FC_TYPE_CT; 10381 pring->prt[3].lpfc_sli_rcv_unsol_event = 10382 lpfc_ct_unsol_event; 10383 break; 10384 } 10385 totiocbsize += (pring->sli.sli3.numCiocb * 10386 pring->sli.sli3.sizeCiocb) + 10387 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10388 } 10389 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10390 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10391 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10392 "SLI2 SLIM Data: x%x x%lx\n", 10393 phba->brd_no, totiocbsize, 10394 (unsigned long) MAX_SLIM_IOCB_SIZE); 10395 } 10396 if (phba->cfg_multi_ring_support == 2) 10397 lpfc_extra_ring_setup(phba); 10398 10399 return 0; 10400 } 10401 10402 /** 10403 * lpfc_sli4_queue_init - Queue initialization function 10404 * @phba: Pointer to HBA context object. 10405 * 10406 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10407 * ring. This function also initializes ring indices of each ring. 10408 * This function is called during the initialization of the SLI 10409 * interface of an HBA. 10410 * This function is called with no lock held and always returns 10411 * 1. 10412 **/ 10413 void 10414 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10415 { 10416 struct lpfc_sli *psli; 10417 struct lpfc_sli_ring *pring; 10418 int i; 10419 10420 psli = &phba->sli; 10421 spin_lock_irq(&phba->hbalock); 10422 INIT_LIST_HEAD(&psli->mboxq); 10423 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10424 /* Initialize list headers for txq and txcmplq as double linked lists */ 10425 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 10426 pring = phba->sli4_hba.fcp_wq[i]->pring; 10427 pring->flag = 0; 10428 pring->ringno = LPFC_FCP_RING; 10429 INIT_LIST_HEAD(&pring->txq); 10430 INIT_LIST_HEAD(&pring->txcmplq); 10431 INIT_LIST_HEAD(&pring->iocb_continueq); 10432 spin_lock_init(&pring->ring_lock); 10433 } 10434 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 10435 pring = phba->sli4_hba.nvme_wq[i]->pring; 10436 pring->flag = 0; 10437 pring->ringno = LPFC_FCP_RING; 10438 INIT_LIST_HEAD(&pring->txq); 10439 INIT_LIST_HEAD(&pring->txcmplq); 10440 INIT_LIST_HEAD(&pring->iocb_continueq); 10441 spin_lock_init(&pring->ring_lock); 10442 } 10443 pring = phba->sli4_hba.els_wq->pring; 10444 pring->flag = 0; 10445 pring->ringno = LPFC_ELS_RING; 10446 INIT_LIST_HEAD(&pring->txq); 10447 INIT_LIST_HEAD(&pring->txcmplq); 10448 INIT_LIST_HEAD(&pring->iocb_continueq); 10449 spin_lock_init(&pring->ring_lock); 10450 10451 if (phba->cfg_nvme_io_channel) { 10452 pring = phba->sli4_hba.nvmels_wq->pring; 10453 pring->flag = 0; 10454 pring->ringno = LPFC_ELS_RING; 10455 INIT_LIST_HEAD(&pring->txq); 10456 INIT_LIST_HEAD(&pring->txcmplq); 10457 INIT_LIST_HEAD(&pring->iocb_continueq); 10458 spin_lock_init(&pring->ring_lock); 10459 } 10460 10461 if (phba->cfg_fof) { 10462 pring = phba->sli4_hba.oas_wq->pring; 10463 pring->flag = 0; 10464 pring->ringno = LPFC_FCP_RING; 10465 INIT_LIST_HEAD(&pring->txq); 10466 INIT_LIST_HEAD(&pring->txcmplq); 10467 INIT_LIST_HEAD(&pring->iocb_continueq); 10468 spin_lock_init(&pring->ring_lock); 10469 } 10470 10471 spin_unlock_irq(&phba->hbalock); 10472 } 10473 10474 /** 10475 * lpfc_sli_queue_init - Queue initialization function 10476 * @phba: Pointer to HBA context object. 10477 * 10478 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10479 * ring. This function also initializes ring indices of each ring. 10480 * This function is called during the initialization of the SLI 10481 * interface of an HBA. 10482 * This function is called with no lock held and always returns 10483 * 1. 10484 **/ 10485 void 10486 lpfc_sli_queue_init(struct lpfc_hba *phba) 10487 { 10488 struct lpfc_sli *psli; 10489 struct lpfc_sli_ring *pring; 10490 int i; 10491 10492 psli = &phba->sli; 10493 spin_lock_irq(&phba->hbalock); 10494 INIT_LIST_HEAD(&psli->mboxq); 10495 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10496 /* Initialize list headers for txq and txcmplq as double linked lists */ 10497 for (i = 0; i < psli->num_rings; i++) { 10498 pring = &psli->sli3_ring[i]; 10499 pring->ringno = i; 10500 pring->sli.sli3.next_cmdidx = 0; 10501 pring->sli.sli3.local_getidx = 0; 10502 pring->sli.sli3.cmdidx = 0; 10503 INIT_LIST_HEAD(&pring->iocb_continueq); 10504 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10505 INIT_LIST_HEAD(&pring->postbufq); 10506 pring->flag = 0; 10507 INIT_LIST_HEAD(&pring->txq); 10508 INIT_LIST_HEAD(&pring->txcmplq); 10509 spin_lock_init(&pring->ring_lock); 10510 } 10511 spin_unlock_irq(&phba->hbalock); 10512 } 10513 10514 /** 10515 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10516 * @phba: Pointer to HBA context object. 10517 * 10518 * This routine flushes the mailbox command subsystem. It will unconditionally 10519 * flush all the mailbox commands in the three possible stages in the mailbox 10520 * command sub-system: pending mailbox command queue; the outstanding mailbox 10521 * command; and completed mailbox command queue. It is caller's responsibility 10522 * to make sure that the driver is in the proper state to flush the mailbox 10523 * command sub-system. Namely, the posting of mailbox commands into the 10524 * pending mailbox command queue from the various clients must be stopped; 10525 * either the HBA is in a state that it will never works on the outstanding 10526 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10527 * mailbox command has been completed. 10528 **/ 10529 static void 10530 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10531 { 10532 LIST_HEAD(completions); 10533 struct lpfc_sli *psli = &phba->sli; 10534 LPFC_MBOXQ_t *pmb; 10535 unsigned long iflag; 10536 10537 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10538 local_bh_disable(); 10539 10540 /* Flush all the mailbox commands in the mbox system */ 10541 spin_lock_irqsave(&phba->hbalock, iflag); 10542 10543 /* The pending mailbox command queue */ 10544 list_splice_init(&phba->sli.mboxq, &completions); 10545 /* The outstanding active mailbox command */ 10546 if (psli->mbox_active) { 10547 list_add_tail(&psli->mbox_active->list, &completions); 10548 psli->mbox_active = NULL; 10549 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10550 } 10551 /* The completed mailbox command queue */ 10552 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10553 spin_unlock_irqrestore(&phba->hbalock, iflag); 10554 10555 /* Enable softirqs again, done with phba->hbalock */ 10556 local_bh_enable(); 10557 10558 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10559 while (!list_empty(&completions)) { 10560 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10561 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10562 if (pmb->mbox_cmpl) 10563 pmb->mbox_cmpl(phba, pmb); 10564 } 10565 } 10566 10567 /** 10568 * lpfc_sli_host_down - Vport cleanup function 10569 * @vport: Pointer to virtual port object. 10570 * 10571 * lpfc_sli_host_down is called to clean up the resources 10572 * associated with a vport before destroying virtual 10573 * port data structures. 10574 * This function does following operations: 10575 * - Free discovery resources associated with this virtual 10576 * port. 10577 * - Free iocbs associated with this virtual port in 10578 * the txq. 10579 * - Send abort for all iocb commands associated with this 10580 * vport in txcmplq. 10581 * 10582 * This function is called with no lock held and always returns 1. 10583 **/ 10584 int 10585 lpfc_sli_host_down(struct lpfc_vport *vport) 10586 { 10587 LIST_HEAD(completions); 10588 struct lpfc_hba *phba = vport->phba; 10589 struct lpfc_sli *psli = &phba->sli; 10590 struct lpfc_queue *qp = NULL; 10591 struct lpfc_sli_ring *pring; 10592 struct lpfc_iocbq *iocb, *next_iocb; 10593 int i; 10594 unsigned long flags = 0; 10595 uint16_t prev_pring_flag; 10596 10597 lpfc_cleanup_discovery_resources(vport); 10598 10599 spin_lock_irqsave(&phba->hbalock, flags); 10600 10601 /* 10602 * Error everything on the txq since these iocbs 10603 * have not been given to the FW yet. 10604 * Also issue ABTS for everything on the txcmplq 10605 */ 10606 if (phba->sli_rev != LPFC_SLI_REV4) { 10607 for (i = 0; i < psli->num_rings; i++) { 10608 pring = &psli->sli3_ring[i]; 10609 prev_pring_flag = pring->flag; 10610 /* Only slow rings */ 10611 if (pring->ringno == LPFC_ELS_RING) { 10612 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10613 /* Set the lpfc data pending flag */ 10614 set_bit(LPFC_DATA_READY, &phba->data_flags); 10615 } 10616 list_for_each_entry_safe(iocb, next_iocb, 10617 &pring->txq, list) { 10618 if (iocb->vport != vport) 10619 continue; 10620 list_move_tail(&iocb->list, &completions); 10621 } 10622 list_for_each_entry_safe(iocb, next_iocb, 10623 &pring->txcmplq, list) { 10624 if (iocb->vport != vport) 10625 continue; 10626 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10627 } 10628 pring->flag = prev_pring_flag; 10629 } 10630 } else { 10631 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10632 pring = qp->pring; 10633 if (!pring) 10634 continue; 10635 if (pring == phba->sli4_hba.els_wq->pring) { 10636 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10637 /* Set the lpfc data pending flag */ 10638 set_bit(LPFC_DATA_READY, &phba->data_flags); 10639 } 10640 prev_pring_flag = pring->flag; 10641 spin_lock_irq(&pring->ring_lock); 10642 list_for_each_entry_safe(iocb, next_iocb, 10643 &pring->txq, list) { 10644 if (iocb->vport != vport) 10645 continue; 10646 list_move_tail(&iocb->list, &completions); 10647 } 10648 spin_unlock_irq(&pring->ring_lock); 10649 list_for_each_entry_safe(iocb, next_iocb, 10650 &pring->txcmplq, list) { 10651 if (iocb->vport != vport) 10652 continue; 10653 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10654 } 10655 pring->flag = prev_pring_flag; 10656 } 10657 } 10658 spin_unlock_irqrestore(&phba->hbalock, flags); 10659 10660 /* Cancel all the IOCBs from the completions list */ 10661 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10662 IOERR_SLI_DOWN); 10663 return 1; 10664 } 10665 10666 /** 10667 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10668 * @phba: Pointer to HBA context object. 10669 * 10670 * This function cleans up all iocb, buffers, mailbox commands 10671 * while shutting down the HBA. This function is called with no 10672 * lock held and always returns 1. 10673 * This function does the following to cleanup driver resources: 10674 * - Free discovery resources for each virtual port 10675 * - Cleanup any pending fabric iocbs 10676 * - Iterate through the iocb txq and free each entry 10677 * in the list. 10678 * - Free up any buffer posted to the HBA 10679 * - Free mailbox commands in the mailbox queue. 10680 **/ 10681 int 10682 lpfc_sli_hba_down(struct lpfc_hba *phba) 10683 { 10684 LIST_HEAD(completions); 10685 struct lpfc_sli *psli = &phba->sli; 10686 struct lpfc_queue *qp = NULL; 10687 struct lpfc_sli_ring *pring; 10688 struct lpfc_dmabuf *buf_ptr; 10689 unsigned long flags = 0; 10690 int i; 10691 10692 /* Shutdown the mailbox command sub-system */ 10693 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10694 10695 lpfc_hba_down_prep(phba); 10696 10697 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10698 local_bh_disable(); 10699 10700 lpfc_fabric_abort_hba(phba); 10701 10702 spin_lock_irqsave(&phba->hbalock, flags); 10703 10704 /* 10705 * Error everything on the txq since these iocbs 10706 * have not been given to the FW yet. 10707 */ 10708 if (phba->sli_rev != LPFC_SLI_REV4) { 10709 for (i = 0; i < psli->num_rings; i++) { 10710 pring = &psli->sli3_ring[i]; 10711 /* Only slow rings */ 10712 if (pring->ringno == LPFC_ELS_RING) { 10713 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10714 /* Set the lpfc data pending flag */ 10715 set_bit(LPFC_DATA_READY, &phba->data_flags); 10716 } 10717 list_splice_init(&pring->txq, &completions); 10718 } 10719 } else { 10720 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10721 pring = qp->pring; 10722 if (!pring) 10723 continue; 10724 spin_lock_irq(&pring->ring_lock); 10725 list_splice_init(&pring->txq, &completions); 10726 spin_unlock_irq(&pring->ring_lock); 10727 if (pring == phba->sli4_hba.els_wq->pring) { 10728 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10729 /* Set the lpfc data pending flag */ 10730 set_bit(LPFC_DATA_READY, &phba->data_flags); 10731 } 10732 } 10733 } 10734 spin_unlock_irqrestore(&phba->hbalock, flags); 10735 10736 /* Cancel all the IOCBs from the completions list */ 10737 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10738 IOERR_SLI_DOWN); 10739 10740 spin_lock_irqsave(&phba->hbalock, flags); 10741 list_splice_init(&phba->elsbuf, &completions); 10742 phba->elsbuf_cnt = 0; 10743 phba->elsbuf_prev_cnt = 0; 10744 spin_unlock_irqrestore(&phba->hbalock, flags); 10745 10746 while (!list_empty(&completions)) { 10747 list_remove_head(&completions, buf_ptr, 10748 struct lpfc_dmabuf, list); 10749 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10750 kfree(buf_ptr); 10751 } 10752 10753 /* Enable softirqs again, done with phba->hbalock */ 10754 local_bh_enable(); 10755 10756 /* Return any active mbox cmds */ 10757 del_timer_sync(&psli->mbox_tmo); 10758 10759 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10760 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10761 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10762 10763 return 1; 10764 } 10765 10766 /** 10767 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10768 * @srcp: Source memory pointer. 10769 * @destp: Destination memory pointer. 10770 * @cnt: Number of words required to be copied. 10771 * 10772 * This function is used for copying data between driver memory 10773 * and the SLI memory. This function also changes the endianness 10774 * of each word if native endianness is different from SLI 10775 * endianness. This function can be called with or without 10776 * lock. 10777 **/ 10778 void 10779 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10780 { 10781 uint32_t *src = srcp; 10782 uint32_t *dest = destp; 10783 uint32_t ldata; 10784 int i; 10785 10786 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10787 ldata = *src; 10788 ldata = le32_to_cpu(ldata); 10789 *dest = ldata; 10790 src++; 10791 dest++; 10792 } 10793 } 10794 10795 10796 /** 10797 * lpfc_sli_bemem_bcopy - SLI memory copy function 10798 * @srcp: Source memory pointer. 10799 * @destp: Destination memory pointer. 10800 * @cnt: Number of words required to be copied. 10801 * 10802 * This function is used for copying data between a data structure 10803 * with big endian representation to local endianness. 10804 * This function can be called with or without lock. 10805 **/ 10806 void 10807 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10808 { 10809 uint32_t *src = srcp; 10810 uint32_t *dest = destp; 10811 uint32_t ldata; 10812 int i; 10813 10814 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10815 ldata = *src; 10816 ldata = be32_to_cpu(ldata); 10817 *dest = ldata; 10818 src++; 10819 dest++; 10820 } 10821 } 10822 10823 /** 10824 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10825 * @phba: Pointer to HBA context object. 10826 * @pring: Pointer to driver SLI ring object. 10827 * @mp: Pointer to driver buffer object. 10828 * 10829 * This function is called with no lock held. 10830 * It always return zero after adding the buffer to the postbufq 10831 * buffer list. 10832 **/ 10833 int 10834 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10835 struct lpfc_dmabuf *mp) 10836 { 10837 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10838 later */ 10839 spin_lock_irq(&phba->hbalock); 10840 list_add_tail(&mp->list, &pring->postbufq); 10841 pring->postbufq_cnt++; 10842 spin_unlock_irq(&phba->hbalock); 10843 return 0; 10844 } 10845 10846 /** 10847 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10848 * @phba: Pointer to HBA context object. 10849 * 10850 * When HBQ is enabled, buffers are searched based on tags. This function 10851 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10852 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10853 * does not conflict with tags of buffer posted for unsolicited events. 10854 * The function returns the allocated tag. The function is called with 10855 * no locks held. 10856 **/ 10857 uint32_t 10858 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10859 { 10860 spin_lock_irq(&phba->hbalock); 10861 phba->buffer_tag_count++; 10862 /* 10863 * Always set the QUE_BUFTAG_BIT to distiguish between 10864 * a tag assigned by HBQ. 10865 */ 10866 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10867 spin_unlock_irq(&phba->hbalock); 10868 return phba->buffer_tag_count; 10869 } 10870 10871 /** 10872 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10873 * @phba: Pointer to HBA context object. 10874 * @pring: Pointer to driver SLI ring object. 10875 * @tag: Buffer tag. 10876 * 10877 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10878 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10879 * iocb is posted to the response ring with the tag of the buffer. 10880 * This function searches the pring->postbufq list using the tag 10881 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10882 * iocb. If the buffer is found then lpfc_dmabuf object of the 10883 * buffer is returned to the caller else NULL is returned. 10884 * This function is called with no lock held. 10885 **/ 10886 struct lpfc_dmabuf * 10887 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10888 uint32_t tag) 10889 { 10890 struct lpfc_dmabuf *mp, *next_mp; 10891 struct list_head *slp = &pring->postbufq; 10892 10893 /* Search postbufq, from the beginning, looking for a match on tag */ 10894 spin_lock_irq(&phba->hbalock); 10895 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10896 if (mp->buffer_tag == tag) { 10897 list_del_init(&mp->list); 10898 pring->postbufq_cnt--; 10899 spin_unlock_irq(&phba->hbalock); 10900 return mp; 10901 } 10902 } 10903 10904 spin_unlock_irq(&phba->hbalock); 10905 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10906 "0402 Cannot find virtual addr for buffer tag on " 10907 "ring %d Data x%lx x%p x%p x%x\n", 10908 pring->ringno, (unsigned long) tag, 10909 slp->next, slp->prev, pring->postbufq_cnt); 10910 10911 return NULL; 10912 } 10913 10914 /** 10915 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 10916 * @phba: Pointer to HBA context object. 10917 * @pring: Pointer to driver SLI ring object. 10918 * @phys: DMA address of the buffer. 10919 * 10920 * This function searches the buffer list using the dma_address 10921 * of unsolicited event to find the driver's lpfc_dmabuf object 10922 * corresponding to the dma_address. The function returns the 10923 * lpfc_dmabuf object if a buffer is found else it returns NULL. 10924 * This function is called by the ct and els unsolicited event 10925 * handlers to get the buffer associated with the unsolicited 10926 * event. 10927 * 10928 * This function is called with no lock held. 10929 **/ 10930 struct lpfc_dmabuf * 10931 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10932 dma_addr_t phys) 10933 { 10934 struct lpfc_dmabuf *mp, *next_mp; 10935 struct list_head *slp = &pring->postbufq; 10936 10937 /* Search postbufq, from the beginning, looking for a match on phys */ 10938 spin_lock_irq(&phba->hbalock); 10939 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10940 if (mp->phys == phys) { 10941 list_del_init(&mp->list); 10942 pring->postbufq_cnt--; 10943 spin_unlock_irq(&phba->hbalock); 10944 return mp; 10945 } 10946 } 10947 10948 spin_unlock_irq(&phba->hbalock); 10949 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10950 "0410 Cannot find virtual addr for mapped buf on " 10951 "ring %d Data x%llx x%p x%p x%x\n", 10952 pring->ringno, (unsigned long long)phys, 10953 slp->next, slp->prev, pring->postbufq_cnt); 10954 return NULL; 10955 } 10956 10957 /** 10958 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 10959 * @phba: Pointer to HBA context object. 10960 * @cmdiocb: Pointer to driver command iocb object. 10961 * @rspiocb: Pointer to driver response iocb object. 10962 * 10963 * This function is the completion handler for the abort iocbs for 10964 * ELS commands. This function is called from the ELS ring event 10965 * handler with no lock held. This function frees memory resources 10966 * associated with the abort iocb. 10967 **/ 10968 static void 10969 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10970 struct lpfc_iocbq *rspiocb) 10971 { 10972 IOCB_t *irsp = &rspiocb->iocb; 10973 uint16_t abort_iotag, abort_context; 10974 struct lpfc_iocbq *abort_iocb = NULL; 10975 10976 if (irsp->ulpStatus) { 10977 10978 /* 10979 * Assume that the port already completed and returned, or 10980 * will return the iocb. Just Log the message. 10981 */ 10982 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 10983 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 10984 10985 spin_lock_irq(&phba->hbalock); 10986 if (phba->sli_rev < LPFC_SLI_REV4) { 10987 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 10988 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 10989 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 10990 spin_unlock_irq(&phba->hbalock); 10991 goto release_iocb; 10992 } 10993 if (abort_iotag != 0 && 10994 abort_iotag <= phba->sli.last_iotag) 10995 abort_iocb = 10996 phba->sli.iocbq_lookup[abort_iotag]; 10997 } else 10998 /* For sli4 the abort_tag is the XRI, 10999 * so the abort routine puts the iotag of the iocb 11000 * being aborted in the context field of the abort 11001 * IOCB. 11002 */ 11003 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11004 11005 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11006 "0327 Cannot abort els iocb %p " 11007 "with tag %x context %x, abort status %x, " 11008 "abort code %x\n", 11009 abort_iocb, abort_iotag, abort_context, 11010 irsp->ulpStatus, irsp->un.ulpWord[4]); 11011 11012 spin_unlock_irq(&phba->hbalock); 11013 } 11014 release_iocb: 11015 lpfc_sli_release_iocbq(phba, cmdiocb); 11016 return; 11017 } 11018 11019 /** 11020 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11021 * @phba: Pointer to HBA context object. 11022 * @cmdiocb: Pointer to driver command iocb object. 11023 * @rspiocb: Pointer to driver response iocb object. 11024 * 11025 * The function is called from SLI ring event handler with no 11026 * lock held. This function is the completion handler for ELS commands 11027 * which are aborted. The function frees memory resources used for 11028 * the aborted ELS commands. 11029 **/ 11030 static void 11031 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11032 struct lpfc_iocbq *rspiocb) 11033 { 11034 IOCB_t *irsp = &rspiocb->iocb; 11035 11036 /* ELS cmd tag <ulpIoTag> completes */ 11037 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11038 "0139 Ignoring ELS cmd tag x%x completion Data: " 11039 "x%x x%x x%x\n", 11040 irsp->ulpIoTag, irsp->ulpStatus, 11041 irsp->un.ulpWord[4], irsp->ulpTimeout); 11042 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11043 lpfc_ct_free_iocb(phba, cmdiocb); 11044 else 11045 lpfc_els_free_iocb(phba, cmdiocb); 11046 return; 11047 } 11048 11049 /** 11050 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 11051 * @phba: Pointer to HBA context object. 11052 * @pring: Pointer to driver SLI ring object. 11053 * @cmdiocb: Pointer to driver command iocb object. 11054 * 11055 * This function issues an abort iocb for the provided command iocb down to 11056 * the port. Other than the case the outstanding command iocb is an abort 11057 * request, this function issues abort out unconditionally. This function is 11058 * called with hbalock held. The function returns 0 when it fails due to 11059 * memory allocation failure or when the command iocb is an abort request. 11060 **/ 11061 static int 11062 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11063 struct lpfc_iocbq *cmdiocb) 11064 { 11065 struct lpfc_vport *vport = cmdiocb->vport; 11066 struct lpfc_iocbq *abtsiocbp; 11067 IOCB_t *icmd = NULL; 11068 IOCB_t *iabt = NULL; 11069 int retval; 11070 unsigned long iflags; 11071 struct lpfc_nodelist *ndlp; 11072 11073 lockdep_assert_held(&phba->hbalock); 11074 11075 /* 11076 * There are certain command types we don't want to abort. And we 11077 * don't want to abort commands that are already in the process of 11078 * being aborted. 11079 */ 11080 icmd = &cmdiocb->iocb; 11081 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11082 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11083 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11084 return 0; 11085 11086 /* issue ABTS for this IOCB based on iotag */ 11087 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11088 if (abtsiocbp == NULL) 11089 return 0; 11090 11091 /* This signals the response to set the correct status 11092 * before calling the completion handler 11093 */ 11094 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11095 11096 iabt = &abtsiocbp->iocb; 11097 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11098 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11099 if (phba->sli_rev == LPFC_SLI_REV4) { 11100 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11101 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11102 } else { 11103 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11104 if (pring->ringno == LPFC_ELS_RING) { 11105 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11106 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11107 } 11108 } 11109 iabt->ulpLe = 1; 11110 iabt->ulpClass = icmd->ulpClass; 11111 11112 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11113 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11114 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 11115 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11116 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11117 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11118 11119 if (phba->link_state >= LPFC_LINK_UP) 11120 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11121 else 11122 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11123 11124 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11125 abtsiocbp->vport = vport; 11126 11127 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11128 "0339 Abort xri x%x, original iotag x%x, " 11129 "abort cmd iotag x%x\n", 11130 iabt->un.acxri.abortIoTag, 11131 iabt->un.acxri.abortContextTag, 11132 abtsiocbp->iotag); 11133 11134 if (phba->sli_rev == LPFC_SLI_REV4) { 11135 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11136 if (unlikely(pring == NULL)) 11137 return 0; 11138 /* Note: both hbalock and ring_lock need to be set here */ 11139 spin_lock_irqsave(&pring->ring_lock, iflags); 11140 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11141 abtsiocbp, 0); 11142 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11143 } else { 11144 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11145 abtsiocbp, 0); 11146 } 11147 11148 if (retval) 11149 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11150 11151 /* 11152 * Caller to this routine should check for IOCB_ERROR 11153 * and handle it properly. This routine no longer removes 11154 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11155 */ 11156 return retval; 11157 } 11158 11159 /** 11160 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11161 * @phba: Pointer to HBA context object. 11162 * @pring: Pointer to driver SLI ring object. 11163 * @cmdiocb: Pointer to driver command iocb object. 11164 * 11165 * This function issues an abort iocb for the provided command iocb. In case 11166 * of unloading, the abort iocb will not be issued to commands on the ELS 11167 * ring. Instead, the callback function shall be changed to those commands 11168 * so that nothing happens when them finishes. This function is called with 11169 * hbalock held. The function returns 0 when the command iocb is an abort 11170 * request. 11171 **/ 11172 int 11173 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11174 struct lpfc_iocbq *cmdiocb) 11175 { 11176 struct lpfc_vport *vport = cmdiocb->vport; 11177 int retval = IOCB_ERROR; 11178 IOCB_t *icmd = NULL; 11179 11180 lockdep_assert_held(&phba->hbalock); 11181 11182 /* 11183 * There are certain command types we don't want to abort. And we 11184 * don't want to abort commands that are already in the process of 11185 * being aborted. 11186 */ 11187 icmd = &cmdiocb->iocb; 11188 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11189 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11190 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11191 return 0; 11192 11193 if (!pring) { 11194 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11195 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11196 else 11197 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11198 goto abort_iotag_exit; 11199 } 11200 11201 /* 11202 * If we're unloading, don't abort iocb on the ELS ring, but change 11203 * the callback so that nothing happens when it finishes. 11204 */ 11205 if ((vport->load_flag & FC_UNLOADING) && 11206 (pring->ringno == LPFC_ELS_RING)) { 11207 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11208 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11209 else 11210 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11211 goto abort_iotag_exit; 11212 } 11213 11214 /* Now, we try to issue the abort to the cmdiocb out */ 11215 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 11216 11217 abort_iotag_exit: 11218 /* 11219 * Caller to this routine should check for IOCB_ERROR 11220 * and handle it properly. This routine no longer removes 11221 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11222 */ 11223 return retval; 11224 } 11225 11226 /** 11227 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb 11228 * @phba: Pointer to HBA context object. 11229 * @pring: Pointer to driver SLI ring object. 11230 * @cmdiocb: Pointer to driver command iocb object. 11231 * 11232 * This function issues an abort iocb for the provided command iocb down to 11233 * the port. Other than the case the outstanding command iocb is an abort 11234 * request, this function issues abort out unconditionally. This function is 11235 * called with hbalock held. The function returns 0 when it fails due to 11236 * memory allocation failure or when the command iocb is an abort request. 11237 **/ 11238 static int 11239 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11240 struct lpfc_iocbq *cmdiocb) 11241 { 11242 struct lpfc_vport *vport = cmdiocb->vport; 11243 struct lpfc_iocbq *abtsiocbp; 11244 union lpfc_wqe128 *abts_wqe; 11245 int retval; 11246 11247 /* 11248 * There are certain command types we don't want to abort. And we 11249 * don't want to abort commands that are already in the process of 11250 * being aborted. 11251 */ 11252 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 11253 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN || 11254 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11255 return 0; 11256 11257 /* issue ABTS for this io based on iotag */ 11258 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11259 if (abtsiocbp == NULL) 11260 return 0; 11261 11262 /* This signals the response to set the correct status 11263 * before calling the completion handler 11264 */ 11265 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11266 11267 /* Complete prepping the abort wqe and issue to the FW. */ 11268 abts_wqe = &abtsiocbp->wqe; 11269 bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0); 11270 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 11271 11272 /* Explicitly set reserved fields to zero.*/ 11273 abts_wqe->abort_cmd.rsrvd4 = 0; 11274 abts_wqe->abort_cmd.rsrvd5 = 0; 11275 11276 /* WQE Common - word 6. Context is XRI tag. Set 0. */ 11277 bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0); 11278 bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0); 11279 11280 /* word 7 */ 11281 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 11282 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 11283 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, 11284 cmdiocb->iocb.ulpClass); 11285 11286 /* word 8 - tell the FW to abort the IO associated with this 11287 * outstanding exchange ID. 11288 */ 11289 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag; 11290 11291 /* word 9 - this is the iotag for the abts_wqe completion. */ 11292 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 11293 abtsiocbp->iotag); 11294 11295 /* word 10 */ 11296 bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx); 11297 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 11298 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 11299 11300 /* word 11 */ 11301 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11302 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 11303 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 11304 11305 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11306 abtsiocbp->iocb_flag |= LPFC_IO_NVME; 11307 abtsiocbp->vport = vport; 11308 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; 11309 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp); 11310 if (retval) { 11311 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 11312 "6147 Failed abts issue_wqe with status x%x " 11313 "for oxid x%x\n", 11314 retval, cmdiocb->sli4_xritag); 11315 lpfc_sli_release_iocbq(phba, abtsiocbp); 11316 return retval; 11317 } 11318 11319 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 11320 "6148 Drv Abort NVME Request Issued for " 11321 "ox_id x%x on reqtag x%x\n", 11322 cmdiocb->sli4_xritag, 11323 abtsiocbp->iotag); 11324 11325 return retval; 11326 } 11327 11328 /** 11329 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11330 * @phba: pointer to lpfc HBA data structure. 11331 * 11332 * This routine will abort all pending and outstanding iocbs to an HBA. 11333 **/ 11334 void 11335 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11336 { 11337 struct lpfc_sli *psli = &phba->sli; 11338 struct lpfc_sli_ring *pring; 11339 struct lpfc_queue *qp = NULL; 11340 int i; 11341 11342 if (phba->sli_rev != LPFC_SLI_REV4) { 11343 for (i = 0; i < psli->num_rings; i++) { 11344 pring = &psli->sli3_ring[i]; 11345 lpfc_sli_abort_iocb_ring(phba, pring); 11346 } 11347 return; 11348 } 11349 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11350 pring = qp->pring; 11351 if (!pring) 11352 continue; 11353 lpfc_sli_abort_iocb_ring(phba, pring); 11354 } 11355 } 11356 11357 /** 11358 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11359 * @iocbq: Pointer to driver iocb object. 11360 * @vport: Pointer to driver virtual port object. 11361 * @tgt_id: SCSI ID of the target. 11362 * @lun_id: LUN ID of the scsi device. 11363 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11364 * 11365 * This function acts as an iocb filter for functions which abort or count 11366 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11367 * 0 if the filtering criteria is met for the given iocb and will return 11368 * 1 if the filtering criteria is not met. 11369 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11370 * given iocb is for the SCSI device specified by vport, tgt_id and 11371 * lun_id parameter. 11372 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11373 * given iocb is for the SCSI target specified by vport and tgt_id 11374 * parameters. 11375 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11376 * given iocb is for the SCSI host associated with the given vport. 11377 * This function is called with no locks held. 11378 **/ 11379 static int 11380 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11381 uint16_t tgt_id, uint64_t lun_id, 11382 lpfc_ctx_cmd ctx_cmd) 11383 { 11384 struct lpfc_scsi_buf *lpfc_cmd; 11385 int rc = 1; 11386 11387 if (iocbq->vport != vport) 11388 return rc; 11389 11390 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11391 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11392 return rc; 11393 11394 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11395 11396 if (lpfc_cmd->pCmd == NULL) 11397 return rc; 11398 11399 switch (ctx_cmd) { 11400 case LPFC_CTX_LUN: 11401 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11402 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11403 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11404 rc = 0; 11405 break; 11406 case LPFC_CTX_TGT: 11407 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11408 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11409 rc = 0; 11410 break; 11411 case LPFC_CTX_HOST: 11412 rc = 0; 11413 break; 11414 default: 11415 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11416 __func__, ctx_cmd); 11417 break; 11418 } 11419 11420 return rc; 11421 } 11422 11423 /** 11424 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11425 * @vport: Pointer to virtual port. 11426 * @tgt_id: SCSI ID of the target. 11427 * @lun_id: LUN ID of the scsi device. 11428 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11429 * 11430 * This function returns number of FCP commands pending for the vport. 11431 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11432 * commands pending on the vport associated with SCSI device specified 11433 * by tgt_id and lun_id parameters. 11434 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11435 * commands pending on the vport associated with SCSI target specified 11436 * by tgt_id parameter. 11437 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11438 * commands pending on the vport. 11439 * This function returns the number of iocbs which satisfy the filter. 11440 * This function is called without any lock held. 11441 **/ 11442 int 11443 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11444 lpfc_ctx_cmd ctx_cmd) 11445 { 11446 struct lpfc_hba *phba = vport->phba; 11447 struct lpfc_iocbq *iocbq; 11448 int sum, i; 11449 11450 spin_lock_irq(&phba->hbalock); 11451 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11452 iocbq = phba->sli.iocbq_lookup[i]; 11453 11454 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11455 ctx_cmd) == 0) 11456 sum++; 11457 } 11458 spin_unlock_irq(&phba->hbalock); 11459 11460 return sum; 11461 } 11462 11463 /** 11464 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11465 * @phba: Pointer to HBA context object 11466 * @cmdiocb: Pointer to command iocb object. 11467 * @rspiocb: Pointer to response iocb object. 11468 * 11469 * This function is called when an aborted FCP iocb completes. This 11470 * function is called by the ring event handler with no lock held. 11471 * This function frees the iocb. 11472 **/ 11473 void 11474 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11475 struct lpfc_iocbq *rspiocb) 11476 { 11477 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11478 "3096 ABORT_XRI_CN completing on rpi x%x " 11479 "original iotag x%x, abort cmd iotag x%x " 11480 "status 0x%x, reason 0x%x\n", 11481 cmdiocb->iocb.un.acxri.abortContextTag, 11482 cmdiocb->iocb.un.acxri.abortIoTag, 11483 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11484 rspiocb->iocb.un.ulpWord[4]); 11485 lpfc_sli_release_iocbq(phba, cmdiocb); 11486 return; 11487 } 11488 11489 /** 11490 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11491 * @vport: Pointer to virtual port. 11492 * @pring: Pointer to driver SLI ring object. 11493 * @tgt_id: SCSI ID of the target. 11494 * @lun_id: LUN ID of the scsi device. 11495 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11496 * 11497 * This function sends an abort command for every SCSI command 11498 * associated with the given virtual port pending on the ring 11499 * filtered by lpfc_sli_validate_fcp_iocb function. 11500 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11501 * FCP iocbs associated with lun specified by tgt_id and lun_id 11502 * parameters 11503 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11504 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11505 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11506 * FCP iocbs associated with virtual port. 11507 * This function returns number of iocbs it failed to abort. 11508 * This function is called with no locks held. 11509 **/ 11510 int 11511 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11512 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11513 { 11514 struct lpfc_hba *phba = vport->phba; 11515 struct lpfc_iocbq *iocbq; 11516 struct lpfc_iocbq *abtsiocb; 11517 struct lpfc_sli_ring *pring_s4; 11518 IOCB_t *cmd = NULL; 11519 int errcnt = 0, ret_val = 0; 11520 int i; 11521 11522 /* all I/Os are in process of being flushed */ 11523 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) 11524 return errcnt; 11525 11526 for (i = 1; i <= phba->sli.last_iotag; i++) { 11527 iocbq = phba->sli.iocbq_lookup[i]; 11528 11529 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11530 abort_cmd) != 0) 11531 continue; 11532 11533 /* 11534 * If the iocbq is already being aborted, don't take a second 11535 * action, but do count it. 11536 */ 11537 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11538 continue; 11539 11540 /* issue ABTS for this IOCB based on iotag */ 11541 abtsiocb = lpfc_sli_get_iocbq(phba); 11542 if (abtsiocb == NULL) { 11543 errcnt++; 11544 continue; 11545 } 11546 11547 /* indicate the IO is being aborted by the driver. */ 11548 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11549 11550 cmd = &iocbq->iocb; 11551 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11552 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11553 if (phba->sli_rev == LPFC_SLI_REV4) 11554 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11555 else 11556 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11557 abtsiocb->iocb.ulpLe = 1; 11558 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11559 abtsiocb->vport = vport; 11560 11561 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11562 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11563 if (iocbq->iocb_flag & LPFC_IO_FCP) 11564 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11565 if (iocbq->iocb_flag & LPFC_IO_FOF) 11566 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11567 11568 if (lpfc_is_link_up(phba)) 11569 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11570 else 11571 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11572 11573 /* Setup callback routine and issue the command. */ 11574 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11575 if (phba->sli_rev == LPFC_SLI_REV4) { 11576 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11577 if (!pring_s4) 11578 continue; 11579 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11580 abtsiocb, 0); 11581 } else 11582 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11583 abtsiocb, 0); 11584 if (ret_val == IOCB_ERROR) { 11585 lpfc_sli_release_iocbq(phba, abtsiocb); 11586 errcnt++; 11587 continue; 11588 } 11589 } 11590 11591 return errcnt; 11592 } 11593 11594 /** 11595 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11596 * @vport: Pointer to virtual port. 11597 * @pring: Pointer to driver SLI ring object. 11598 * @tgt_id: SCSI ID of the target. 11599 * @lun_id: LUN ID of the scsi device. 11600 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11601 * 11602 * This function sends an abort command for every SCSI command 11603 * associated with the given virtual port pending on the ring 11604 * filtered by lpfc_sli_validate_fcp_iocb function. 11605 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11606 * FCP iocbs associated with lun specified by tgt_id and lun_id 11607 * parameters 11608 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11609 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11610 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11611 * FCP iocbs associated with virtual port. 11612 * This function returns number of iocbs it aborted . 11613 * This function is called with no locks held right after a taskmgmt 11614 * command is sent. 11615 **/ 11616 int 11617 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11618 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11619 { 11620 struct lpfc_hba *phba = vport->phba; 11621 struct lpfc_scsi_buf *lpfc_cmd; 11622 struct lpfc_iocbq *abtsiocbq; 11623 struct lpfc_nodelist *ndlp; 11624 struct lpfc_iocbq *iocbq; 11625 IOCB_t *icmd; 11626 int sum, i, ret_val; 11627 unsigned long iflags; 11628 struct lpfc_sli_ring *pring_s4; 11629 11630 spin_lock_irqsave(&phba->hbalock, iflags); 11631 11632 /* all I/Os are in process of being flushed */ 11633 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 11634 spin_unlock_irqrestore(&phba->hbalock, iflags); 11635 return 0; 11636 } 11637 sum = 0; 11638 11639 for (i = 1; i <= phba->sli.last_iotag; i++) { 11640 iocbq = phba->sli.iocbq_lookup[i]; 11641 11642 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11643 cmd) != 0) 11644 continue; 11645 11646 /* 11647 * If the iocbq is already being aborted, don't take a second 11648 * action, but do count it. 11649 */ 11650 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11651 continue; 11652 11653 /* issue ABTS for this IOCB based on iotag */ 11654 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11655 if (abtsiocbq == NULL) 11656 continue; 11657 11658 icmd = &iocbq->iocb; 11659 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11660 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11661 if (phba->sli_rev == LPFC_SLI_REV4) 11662 abtsiocbq->iocb.un.acxri.abortIoTag = 11663 iocbq->sli4_xritag; 11664 else 11665 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11666 abtsiocbq->iocb.ulpLe = 1; 11667 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11668 abtsiocbq->vport = vport; 11669 11670 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11671 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11672 if (iocbq->iocb_flag & LPFC_IO_FCP) 11673 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11674 if (iocbq->iocb_flag & LPFC_IO_FOF) 11675 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11676 11677 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11678 ndlp = lpfc_cmd->rdata->pnode; 11679 11680 if (lpfc_is_link_up(phba) && 11681 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11682 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11683 else 11684 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11685 11686 /* Setup callback routine and issue the command. */ 11687 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11688 11689 /* 11690 * Indicate the IO is being aborted by the driver and set 11691 * the caller's flag into the aborted IO. 11692 */ 11693 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11694 11695 if (phba->sli_rev == LPFC_SLI_REV4) { 11696 pring_s4 = lpfc_sli4_calc_ring(phba, abtsiocbq); 11697 if (!pring_s4) 11698 continue; 11699 /* Note: both hbalock and ring_lock must be set here */ 11700 spin_lock(&pring_s4->ring_lock); 11701 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11702 abtsiocbq, 0); 11703 spin_unlock(&pring_s4->ring_lock); 11704 } else { 11705 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11706 abtsiocbq, 0); 11707 } 11708 11709 11710 if (ret_val == IOCB_ERROR) 11711 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11712 else 11713 sum++; 11714 } 11715 spin_unlock_irqrestore(&phba->hbalock, iflags); 11716 return sum; 11717 } 11718 11719 /** 11720 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11721 * @phba: Pointer to HBA context object. 11722 * @cmdiocbq: Pointer to command iocb. 11723 * @rspiocbq: Pointer to response iocb. 11724 * 11725 * This function is the completion handler for iocbs issued using 11726 * lpfc_sli_issue_iocb_wait function. This function is called by the 11727 * ring event handler function without any lock held. This function 11728 * can be called from both worker thread context and interrupt 11729 * context. This function also can be called from other thread which 11730 * cleans up the SLI layer objects. 11731 * This function copy the contents of the response iocb to the 11732 * response iocb memory object provided by the caller of 11733 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11734 * sleeps for the iocb completion. 11735 **/ 11736 static void 11737 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11738 struct lpfc_iocbq *cmdiocbq, 11739 struct lpfc_iocbq *rspiocbq) 11740 { 11741 wait_queue_head_t *pdone_q; 11742 unsigned long iflags; 11743 struct lpfc_scsi_buf *lpfc_cmd; 11744 11745 spin_lock_irqsave(&phba->hbalock, iflags); 11746 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11747 11748 /* 11749 * A time out has occurred for the iocb. If a time out 11750 * completion handler has been supplied, call it. Otherwise, 11751 * just free the iocbq. 11752 */ 11753 11754 spin_unlock_irqrestore(&phba->hbalock, iflags); 11755 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11756 cmdiocbq->wait_iocb_cmpl = NULL; 11757 if (cmdiocbq->iocb_cmpl) 11758 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11759 else 11760 lpfc_sli_release_iocbq(phba, cmdiocbq); 11761 return; 11762 } 11763 11764 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11765 if (cmdiocbq->context2 && rspiocbq) 11766 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11767 &rspiocbq->iocb, sizeof(IOCB_t)); 11768 11769 /* Set the exchange busy flag for task management commands */ 11770 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11771 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11772 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 11773 cur_iocbq); 11774 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 11775 } 11776 11777 pdone_q = cmdiocbq->context_un.wait_queue; 11778 if (pdone_q) 11779 wake_up(pdone_q); 11780 spin_unlock_irqrestore(&phba->hbalock, iflags); 11781 return; 11782 } 11783 11784 /** 11785 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11786 * @phba: Pointer to HBA context object.. 11787 * @piocbq: Pointer to command iocb. 11788 * @flag: Flag to test. 11789 * 11790 * This routine grabs the hbalock and then test the iocb_flag to 11791 * see if the passed in flag is set. 11792 * Returns: 11793 * 1 if flag is set. 11794 * 0 if flag is not set. 11795 **/ 11796 static int 11797 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11798 struct lpfc_iocbq *piocbq, uint32_t flag) 11799 { 11800 unsigned long iflags; 11801 int ret; 11802 11803 spin_lock_irqsave(&phba->hbalock, iflags); 11804 ret = piocbq->iocb_flag & flag; 11805 spin_unlock_irqrestore(&phba->hbalock, iflags); 11806 return ret; 11807 11808 } 11809 11810 /** 11811 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11812 * @phba: Pointer to HBA context object.. 11813 * @pring: Pointer to sli ring. 11814 * @piocb: Pointer to command iocb. 11815 * @prspiocbq: Pointer to response iocb. 11816 * @timeout: Timeout in number of seconds. 11817 * 11818 * This function issues the iocb to firmware and waits for the 11819 * iocb to complete. The iocb_cmpl field of the shall be used 11820 * to handle iocbs which time out. If the field is NULL, the 11821 * function shall free the iocbq structure. If more clean up is 11822 * needed, the caller is expected to provide a completion function 11823 * that will provide the needed clean up. If the iocb command is 11824 * not completed within timeout seconds, the function will either 11825 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11826 * completion function set in the iocb_cmpl field and then return 11827 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11828 * resources if this function returns IOCB_TIMEDOUT. 11829 * The function waits for the iocb completion using an 11830 * non-interruptible wait. 11831 * This function will sleep while waiting for iocb completion. 11832 * So, this function should not be called from any context which 11833 * does not allow sleeping. Due to the same reason, this function 11834 * cannot be called with interrupt disabled. 11835 * This function assumes that the iocb completions occur while 11836 * this function sleep. So, this function cannot be called from 11837 * the thread which process iocb completion for this ring. 11838 * This function clears the iocb_flag of the iocb object before 11839 * issuing the iocb and the iocb completion handler sets this 11840 * flag and wakes this thread when the iocb completes. 11841 * The contents of the response iocb will be copied to prspiocbq 11842 * by the completion handler when the command completes. 11843 * This function returns IOCB_SUCCESS when success. 11844 * This function is called with no lock held. 11845 **/ 11846 int 11847 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11848 uint32_t ring_number, 11849 struct lpfc_iocbq *piocb, 11850 struct lpfc_iocbq *prspiocbq, 11851 uint32_t timeout) 11852 { 11853 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11854 long timeleft, timeout_req = 0; 11855 int retval = IOCB_SUCCESS; 11856 uint32_t creg_val; 11857 struct lpfc_iocbq *iocb; 11858 int txq_cnt = 0; 11859 int txcmplq_cnt = 0; 11860 struct lpfc_sli_ring *pring; 11861 unsigned long iflags; 11862 bool iocb_completed = true; 11863 11864 if (phba->sli_rev >= LPFC_SLI_REV4) 11865 pring = lpfc_sli4_calc_ring(phba, piocb); 11866 else 11867 pring = &phba->sli.sli3_ring[ring_number]; 11868 /* 11869 * If the caller has provided a response iocbq buffer, then context2 11870 * is NULL or its an error. 11871 */ 11872 if (prspiocbq) { 11873 if (piocb->context2) 11874 return IOCB_ERROR; 11875 piocb->context2 = prspiocbq; 11876 } 11877 11878 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11879 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11880 piocb->context_un.wait_queue = &done_q; 11881 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11882 11883 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11884 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11885 return IOCB_ERROR; 11886 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11887 writel(creg_val, phba->HCregaddr); 11888 readl(phba->HCregaddr); /* flush */ 11889 } 11890 11891 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11892 SLI_IOCB_RET_IOCB); 11893 if (retval == IOCB_SUCCESS) { 11894 timeout_req = msecs_to_jiffies(timeout * 1000); 11895 timeleft = wait_event_timeout(done_q, 11896 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11897 timeout_req); 11898 spin_lock_irqsave(&phba->hbalock, iflags); 11899 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11900 11901 /* 11902 * IOCB timed out. Inform the wake iocb wait 11903 * completion function and set local status 11904 */ 11905 11906 iocb_completed = false; 11907 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11908 } 11909 spin_unlock_irqrestore(&phba->hbalock, iflags); 11910 if (iocb_completed) { 11911 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11912 "0331 IOCB wake signaled\n"); 11913 /* Note: we are not indicating if the IOCB has a success 11914 * status or not - that's for the caller to check. 11915 * IOCB_SUCCESS means just that the command was sent and 11916 * completed. Not that it completed successfully. 11917 * */ 11918 } else if (timeleft == 0) { 11919 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11920 "0338 IOCB wait timeout error - no " 11921 "wake response Data x%x\n", timeout); 11922 retval = IOCB_TIMEDOUT; 11923 } else { 11924 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11925 "0330 IOCB wake NOT set, " 11926 "Data x%x x%lx\n", 11927 timeout, (timeleft / jiffies)); 11928 retval = IOCB_TIMEDOUT; 11929 } 11930 } else if (retval == IOCB_BUSY) { 11931 if (phba->cfg_log_verbose & LOG_SLI) { 11932 list_for_each_entry(iocb, &pring->txq, list) { 11933 txq_cnt++; 11934 } 11935 list_for_each_entry(iocb, &pring->txcmplq, list) { 11936 txcmplq_cnt++; 11937 } 11938 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11939 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 11940 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 11941 } 11942 return retval; 11943 } else { 11944 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11945 "0332 IOCB wait issue failed, Data x%x\n", 11946 retval); 11947 retval = IOCB_ERROR; 11948 } 11949 11950 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11951 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11952 return IOCB_ERROR; 11953 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 11954 writel(creg_val, phba->HCregaddr); 11955 readl(phba->HCregaddr); /* flush */ 11956 } 11957 11958 if (prspiocbq) 11959 piocb->context2 = NULL; 11960 11961 piocb->context_un.wait_queue = NULL; 11962 piocb->iocb_cmpl = NULL; 11963 return retval; 11964 } 11965 11966 /** 11967 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 11968 * @phba: Pointer to HBA context object. 11969 * @pmboxq: Pointer to driver mailbox object. 11970 * @timeout: Timeout in number of seconds. 11971 * 11972 * This function issues the mailbox to firmware and waits for the 11973 * mailbox command to complete. If the mailbox command is not 11974 * completed within timeout seconds, it returns MBX_TIMEOUT. 11975 * The function waits for the mailbox completion using an 11976 * interruptible wait. If the thread is woken up due to a 11977 * signal, MBX_TIMEOUT error is returned to the caller. Caller 11978 * should not free the mailbox resources, if this function returns 11979 * MBX_TIMEOUT. 11980 * This function will sleep while waiting for mailbox completion. 11981 * So, this function should not be called from any context which 11982 * does not allow sleeping. Due to the same reason, this function 11983 * cannot be called with interrupt disabled. 11984 * This function assumes that the mailbox completion occurs while 11985 * this function sleep. So, this function cannot be called from 11986 * the worker thread which processes mailbox completion. 11987 * This function is called in the context of HBA management 11988 * applications. 11989 * This function returns MBX_SUCCESS when successful. 11990 * This function is called with no lock held. 11991 **/ 11992 int 11993 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 11994 uint32_t timeout) 11995 { 11996 struct completion mbox_done; 11997 int retval; 11998 unsigned long flag; 11999 12000 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12001 /* setup wake call as IOCB callback */ 12002 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12003 12004 /* setup context3 field to pass wait_queue pointer to wake function */ 12005 init_completion(&mbox_done); 12006 pmboxq->context3 = &mbox_done; 12007 /* now issue the command */ 12008 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12009 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12010 wait_for_completion_timeout(&mbox_done, 12011 msecs_to_jiffies(timeout * 1000)); 12012 12013 spin_lock_irqsave(&phba->hbalock, flag); 12014 pmboxq->context3 = NULL; 12015 /* 12016 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12017 * else do not free the resources. 12018 */ 12019 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12020 retval = MBX_SUCCESS; 12021 } else { 12022 retval = MBX_TIMEOUT; 12023 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12024 } 12025 spin_unlock_irqrestore(&phba->hbalock, flag); 12026 } 12027 return retval; 12028 } 12029 12030 /** 12031 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12032 * @phba: Pointer to HBA context. 12033 * 12034 * This function is called to shutdown the driver's mailbox sub-system. 12035 * It first marks the mailbox sub-system is in a block state to prevent 12036 * the asynchronous mailbox command from issued off the pending mailbox 12037 * command queue. If the mailbox command sub-system shutdown is due to 12038 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12039 * the mailbox sub-system flush routine to forcefully bring down the 12040 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12041 * as with offline or HBA function reset), this routine will wait for the 12042 * outstanding mailbox command to complete before invoking the mailbox 12043 * sub-system flush routine to gracefully bring down mailbox sub-system. 12044 **/ 12045 void 12046 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12047 { 12048 struct lpfc_sli *psli = &phba->sli; 12049 unsigned long timeout; 12050 12051 if (mbx_action == LPFC_MBX_NO_WAIT) { 12052 /* delay 100ms for port state */ 12053 msleep(100); 12054 lpfc_sli_mbox_sys_flush(phba); 12055 return; 12056 } 12057 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12058 12059 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12060 local_bh_disable(); 12061 12062 spin_lock_irq(&phba->hbalock); 12063 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12064 12065 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12066 /* Determine how long we might wait for the active mailbox 12067 * command to be gracefully completed by firmware. 12068 */ 12069 if (phba->sli.mbox_active) 12070 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12071 phba->sli.mbox_active) * 12072 1000) + jiffies; 12073 spin_unlock_irq(&phba->hbalock); 12074 12075 /* Enable softirqs again, done with phba->hbalock */ 12076 local_bh_enable(); 12077 12078 while (phba->sli.mbox_active) { 12079 /* Check active mailbox complete status every 2ms */ 12080 msleep(2); 12081 if (time_after(jiffies, timeout)) 12082 /* Timeout, let the mailbox flush routine to 12083 * forcefully release active mailbox command 12084 */ 12085 break; 12086 } 12087 } else { 12088 spin_unlock_irq(&phba->hbalock); 12089 12090 /* Enable softirqs again, done with phba->hbalock */ 12091 local_bh_enable(); 12092 } 12093 12094 lpfc_sli_mbox_sys_flush(phba); 12095 } 12096 12097 /** 12098 * lpfc_sli_eratt_read - read sli-3 error attention events 12099 * @phba: Pointer to HBA context. 12100 * 12101 * This function is called to read the SLI3 device error attention registers 12102 * for possible error attention events. The caller must hold the hostlock 12103 * with spin_lock_irq(). 12104 * 12105 * This function returns 1 when there is Error Attention in the Host Attention 12106 * Register and returns 0 otherwise. 12107 **/ 12108 static int 12109 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12110 { 12111 uint32_t ha_copy; 12112 12113 /* Read chip Host Attention (HA) register */ 12114 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12115 goto unplug_err; 12116 12117 if (ha_copy & HA_ERATT) { 12118 /* Read host status register to retrieve error event */ 12119 if (lpfc_sli_read_hs(phba)) 12120 goto unplug_err; 12121 12122 /* Check if there is a deferred error condition is active */ 12123 if ((HS_FFER1 & phba->work_hs) && 12124 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12125 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12126 phba->hba_flag |= DEFER_ERATT; 12127 /* Clear all interrupt enable conditions */ 12128 writel(0, phba->HCregaddr); 12129 readl(phba->HCregaddr); 12130 } 12131 12132 /* Set the driver HA work bitmap */ 12133 phba->work_ha |= HA_ERATT; 12134 /* Indicate polling handles this ERATT */ 12135 phba->hba_flag |= HBA_ERATT_HANDLED; 12136 return 1; 12137 } 12138 return 0; 12139 12140 unplug_err: 12141 /* Set the driver HS work bitmap */ 12142 phba->work_hs |= UNPLUG_ERR; 12143 /* Set the driver HA work bitmap */ 12144 phba->work_ha |= HA_ERATT; 12145 /* Indicate polling handles this ERATT */ 12146 phba->hba_flag |= HBA_ERATT_HANDLED; 12147 return 1; 12148 } 12149 12150 /** 12151 * lpfc_sli4_eratt_read - read sli-4 error attention events 12152 * @phba: Pointer to HBA context. 12153 * 12154 * This function is called to read the SLI4 device error attention registers 12155 * for possible error attention events. The caller must hold the hostlock 12156 * with spin_lock_irq(). 12157 * 12158 * This function returns 1 when there is Error Attention in the Host Attention 12159 * Register and returns 0 otherwise. 12160 **/ 12161 static int 12162 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12163 { 12164 uint32_t uerr_sta_hi, uerr_sta_lo; 12165 uint32_t if_type, portsmphr; 12166 struct lpfc_register portstat_reg; 12167 12168 /* 12169 * For now, use the SLI4 device internal unrecoverable error 12170 * registers for error attention. This can be changed later. 12171 */ 12172 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12173 switch (if_type) { 12174 case LPFC_SLI_INTF_IF_TYPE_0: 12175 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12176 &uerr_sta_lo) || 12177 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12178 &uerr_sta_hi)) { 12179 phba->work_hs |= UNPLUG_ERR; 12180 phba->work_ha |= HA_ERATT; 12181 phba->hba_flag |= HBA_ERATT_HANDLED; 12182 return 1; 12183 } 12184 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12185 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12186 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12187 "1423 HBA Unrecoverable error: " 12188 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12189 "ue_mask_lo_reg=0x%x, " 12190 "ue_mask_hi_reg=0x%x\n", 12191 uerr_sta_lo, uerr_sta_hi, 12192 phba->sli4_hba.ue_mask_lo, 12193 phba->sli4_hba.ue_mask_hi); 12194 phba->work_status[0] = uerr_sta_lo; 12195 phba->work_status[1] = uerr_sta_hi; 12196 phba->work_ha |= HA_ERATT; 12197 phba->hba_flag |= HBA_ERATT_HANDLED; 12198 return 1; 12199 } 12200 break; 12201 case LPFC_SLI_INTF_IF_TYPE_2: 12202 case LPFC_SLI_INTF_IF_TYPE_6: 12203 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12204 &portstat_reg.word0) || 12205 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12206 &portsmphr)){ 12207 phba->work_hs |= UNPLUG_ERR; 12208 phba->work_ha |= HA_ERATT; 12209 phba->hba_flag |= HBA_ERATT_HANDLED; 12210 return 1; 12211 } 12212 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12213 phba->work_status[0] = 12214 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12215 phba->work_status[1] = 12216 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12217 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12218 "2885 Port Status Event: " 12219 "port status reg 0x%x, " 12220 "port smphr reg 0x%x, " 12221 "error 1=0x%x, error 2=0x%x\n", 12222 portstat_reg.word0, 12223 portsmphr, 12224 phba->work_status[0], 12225 phba->work_status[1]); 12226 phba->work_ha |= HA_ERATT; 12227 phba->hba_flag |= HBA_ERATT_HANDLED; 12228 return 1; 12229 } 12230 break; 12231 case LPFC_SLI_INTF_IF_TYPE_1: 12232 default: 12233 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12234 "2886 HBA Error Attention on unsupported " 12235 "if type %d.", if_type); 12236 return 1; 12237 } 12238 12239 return 0; 12240 } 12241 12242 /** 12243 * lpfc_sli_check_eratt - check error attention events 12244 * @phba: Pointer to HBA context. 12245 * 12246 * This function is called from timer soft interrupt context to check HBA's 12247 * error attention register bit for error attention events. 12248 * 12249 * This function returns 1 when there is Error Attention in the Host Attention 12250 * Register and returns 0 otherwise. 12251 **/ 12252 int 12253 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12254 { 12255 uint32_t ha_copy; 12256 12257 /* If somebody is waiting to handle an eratt, don't process it 12258 * here. The brdkill function will do this. 12259 */ 12260 if (phba->link_flag & LS_IGNORE_ERATT) 12261 return 0; 12262 12263 /* Check if interrupt handler handles this ERATT */ 12264 spin_lock_irq(&phba->hbalock); 12265 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12266 /* Interrupt handler has handled ERATT */ 12267 spin_unlock_irq(&phba->hbalock); 12268 return 0; 12269 } 12270 12271 /* 12272 * If there is deferred error attention, do not check for error 12273 * attention 12274 */ 12275 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12276 spin_unlock_irq(&phba->hbalock); 12277 return 0; 12278 } 12279 12280 /* If PCI channel is offline, don't process it */ 12281 if (unlikely(pci_channel_offline(phba->pcidev))) { 12282 spin_unlock_irq(&phba->hbalock); 12283 return 0; 12284 } 12285 12286 switch (phba->sli_rev) { 12287 case LPFC_SLI_REV2: 12288 case LPFC_SLI_REV3: 12289 /* Read chip Host Attention (HA) register */ 12290 ha_copy = lpfc_sli_eratt_read(phba); 12291 break; 12292 case LPFC_SLI_REV4: 12293 /* Read device Uncoverable Error (UERR) registers */ 12294 ha_copy = lpfc_sli4_eratt_read(phba); 12295 break; 12296 default: 12297 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12298 "0299 Invalid SLI revision (%d)\n", 12299 phba->sli_rev); 12300 ha_copy = 0; 12301 break; 12302 } 12303 spin_unlock_irq(&phba->hbalock); 12304 12305 return ha_copy; 12306 } 12307 12308 /** 12309 * lpfc_intr_state_check - Check device state for interrupt handling 12310 * @phba: Pointer to HBA context. 12311 * 12312 * This inline routine checks whether a device or its PCI slot is in a state 12313 * that the interrupt should be handled. 12314 * 12315 * This function returns 0 if the device or the PCI slot is in a state that 12316 * interrupt should be handled, otherwise -EIO. 12317 */ 12318 static inline int 12319 lpfc_intr_state_check(struct lpfc_hba *phba) 12320 { 12321 /* If the pci channel is offline, ignore all the interrupts */ 12322 if (unlikely(pci_channel_offline(phba->pcidev))) 12323 return -EIO; 12324 12325 /* Update device level interrupt statistics */ 12326 phba->sli.slistat.sli_intr++; 12327 12328 /* Ignore all interrupts during initialization. */ 12329 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12330 return -EIO; 12331 12332 return 0; 12333 } 12334 12335 /** 12336 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12337 * @irq: Interrupt number. 12338 * @dev_id: The device context pointer. 12339 * 12340 * This function is directly called from the PCI layer as an interrupt 12341 * service routine when device with SLI-3 interface spec is enabled with 12342 * MSI-X multi-message interrupt mode and there are slow-path events in 12343 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12344 * interrupt mode, this function is called as part of the device-level 12345 * interrupt handler. When the PCI slot is in error recovery or the HBA 12346 * is undergoing initialization, the interrupt handler will not process 12347 * the interrupt. The link attention and ELS ring attention events are 12348 * handled by the worker thread. The interrupt handler signals the worker 12349 * thread and returns for these events. This function is called without 12350 * any lock held. It gets the hbalock to access and update SLI data 12351 * structures. 12352 * 12353 * This function returns IRQ_HANDLED when interrupt is handled else it 12354 * returns IRQ_NONE. 12355 **/ 12356 irqreturn_t 12357 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12358 { 12359 struct lpfc_hba *phba; 12360 uint32_t ha_copy, hc_copy; 12361 uint32_t work_ha_copy; 12362 unsigned long status; 12363 unsigned long iflag; 12364 uint32_t control; 12365 12366 MAILBOX_t *mbox, *pmbox; 12367 struct lpfc_vport *vport; 12368 struct lpfc_nodelist *ndlp; 12369 struct lpfc_dmabuf *mp; 12370 LPFC_MBOXQ_t *pmb; 12371 int rc; 12372 12373 /* 12374 * Get the driver's phba structure from the dev_id and 12375 * assume the HBA is not interrupting. 12376 */ 12377 phba = (struct lpfc_hba *)dev_id; 12378 12379 if (unlikely(!phba)) 12380 return IRQ_NONE; 12381 12382 /* 12383 * Stuff needs to be attented to when this function is invoked as an 12384 * individual interrupt handler in MSI-X multi-message interrupt mode 12385 */ 12386 if (phba->intr_type == MSIX) { 12387 /* Check device state for handling interrupt */ 12388 if (lpfc_intr_state_check(phba)) 12389 return IRQ_NONE; 12390 /* Need to read HA REG for slow-path events */ 12391 spin_lock_irqsave(&phba->hbalock, iflag); 12392 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12393 goto unplug_error; 12394 /* If somebody is waiting to handle an eratt don't process it 12395 * here. The brdkill function will do this. 12396 */ 12397 if (phba->link_flag & LS_IGNORE_ERATT) 12398 ha_copy &= ~HA_ERATT; 12399 /* Check the need for handling ERATT in interrupt handler */ 12400 if (ha_copy & HA_ERATT) { 12401 if (phba->hba_flag & HBA_ERATT_HANDLED) 12402 /* ERATT polling has handled ERATT */ 12403 ha_copy &= ~HA_ERATT; 12404 else 12405 /* Indicate interrupt handler handles ERATT */ 12406 phba->hba_flag |= HBA_ERATT_HANDLED; 12407 } 12408 12409 /* 12410 * If there is deferred error attention, do not check for any 12411 * interrupt. 12412 */ 12413 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12414 spin_unlock_irqrestore(&phba->hbalock, iflag); 12415 return IRQ_NONE; 12416 } 12417 12418 /* Clear up only attention source related to slow-path */ 12419 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12420 goto unplug_error; 12421 12422 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12423 HC_LAINT_ENA | HC_ERINT_ENA), 12424 phba->HCregaddr); 12425 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12426 phba->HAregaddr); 12427 writel(hc_copy, phba->HCregaddr); 12428 readl(phba->HAregaddr); /* flush */ 12429 spin_unlock_irqrestore(&phba->hbalock, iflag); 12430 } else 12431 ha_copy = phba->ha_copy; 12432 12433 work_ha_copy = ha_copy & phba->work_ha_mask; 12434 12435 if (work_ha_copy) { 12436 if (work_ha_copy & HA_LATT) { 12437 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12438 /* 12439 * Turn off Link Attention interrupts 12440 * until CLEAR_LA done 12441 */ 12442 spin_lock_irqsave(&phba->hbalock, iflag); 12443 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12444 if (lpfc_readl(phba->HCregaddr, &control)) 12445 goto unplug_error; 12446 control &= ~HC_LAINT_ENA; 12447 writel(control, phba->HCregaddr); 12448 readl(phba->HCregaddr); /* flush */ 12449 spin_unlock_irqrestore(&phba->hbalock, iflag); 12450 } 12451 else 12452 work_ha_copy &= ~HA_LATT; 12453 } 12454 12455 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12456 /* 12457 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12458 * the only slow ring. 12459 */ 12460 status = (work_ha_copy & 12461 (HA_RXMASK << (4*LPFC_ELS_RING))); 12462 status >>= (4*LPFC_ELS_RING); 12463 if (status & HA_RXMASK) { 12464 spin_lock_irqsave(&phba->hbalock, iflag); 12465 if (lpfc_readl(phba->HCregaddr, &control)) 12466 goto unplug_error; 12467 12468 lpfc_debugfs_slow_ring_trc(phba, 12469 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12470 control, status, 12471 (uint32_t)phba->sli.slistat.sli_intr); 12472 12473 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12474 lpfc_debugfs_slow_ring_trc(phba, 12475 "ISR Disable ring:" 12476 "pwork:x%x hawork:x%x wait:x%x", 12477 phba->work_ha, work_ha_copy, 12478 (uint32_t)((unsigned long) 12479 &phba->work_waitq)); 12480 12481 control &= 12482 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12483 writel(control, phba->HCregaddr); 12484 readl(phba->HCregaddr); /* flush */ 12485 } 12486 else { 12487 lpfc_debugfs_slow_ring_trc(phba, 12488 "ISR slow ring: pwork:" 12489 "x%x hawork:x%x wait:x%x", 12490 phba->work_ha, work_ha_copy, 12491 (uint32_t)((unsigned long) 12492 &phba->work_waitq)); 12493 } 12494 spin_unlock_irqrestore(&phba->hbalock, iflag); 12495 } 12496 } 12497 spin_lock_irqsave(&phba->hbalock, iflag); 12498 if (work_ha_copy & HA_ERATT) { 12499 if (lpfc_sli_read_hs(phba)) 12500 goto unplug_error; 12501 /* 12502 * Check if there is a deferred error condition 12503 * is active 12504 */ 12505 if ((HS_FFER1 & phba->work_hs) && 12506 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12507 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12508 phba->work_hs)) { 12509 phba->hba_flag |= DEFER_ERATT; 12510 /* Clear all interrupt enable conditions */ 12511 writel(0, phba->HCregaddr); 12512 readl(phba->HCregaddr); 12513 } 12514 } 12515 12516 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12517 pmb = phba->sli.mbox_active; 12518 pmbox = &pmb->u.mb; 12519 mbox = phba->mbox; 12520 vport = pmb->vport; 12521 12522 /* First check out the status word */ 12523 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12524 if (pmbox->mbxOwner != OWN_HOST) { 12525 spin_unlock_irqrestore(&phba->hbalock, iflag); 12526 /* 12527 * Stray Mailbox Interrupt, mbxCommand <cmd> 12528 * mbxStatus <status> 12529 */ 12530 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12531 LOG_SLI, 12532 "(%d):0304 Stray Mailbox " 12533 "Interrupt mbxCommand x%x " 12534 "mbxStatus x%x\n", 12535 (vport ? vport->vpi : 0), 12536 pmbox->mbxCommand, 12537 pmbox->mbxStatus); 12538 /* clear mailbox attention bit */ 12539 work_ha_copy &= ~HA_MBATT; 12540 } else { 12541 phba->sli.mbox_active = NULL; 12542 spin_unlock_irqrestore(&phba->hbalock, iflag); 12543 phba->last_completion_time = jiffies; 12544 del_timer(&phba->sli.mbox_tmo); 12545 if (pmb->mbox_cmpl) { 12546 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12547 MAILBOX_CMD_SIZE); 12548 if (pmb->out_ext_byte_len && 12549 pmb->context2) 12550 lpfc_sli_pcimem_bcopy( 12551 phba->mbox_ext, 12552 pmb->context2, 12553 pmb->out_ext_byte_len); 12554 } 12555 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12556 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12557 12558 lpfc_debugfs_disc_trc(vport, 12559 LPFC_DISC_TRC_MBOX_VPORT, 12560 "MBOX dflt rpi: : " 12561 "status:x%x rpi:x%x", 12562 (uint32_t)pmbox->mbxStatus, 12563 pmbox->un.varWords[0], 0); 12564 12565 if (!pmbox->mbxStatus) { 12566 mp = (struct lpfc_dmabuf *) 12567 (pmb->context1); 12568 ndlp = (struct lpfc_nodelist *) 12569 pmb->context2; 12570 12571 /* Reg_LOGIN of dflt RPI was 12572 * successful. new lets get 12573 * rid of the RPI using the 12574 * same mbox buffer. 12575 */ 12576 lpfc_unreg_login(phba, 12577 vport->vpi, 12578 pmbox->un.varWords[0], 12579 pmb); 12580 pmb->mbox_cmpl = 12581 lpfc_mbx_cmpl_dflt_rpi; 12582 pmb->context1 = mp; 12583 pmb->context2 = ndlp; 12584 pmb->vport = vport; 12585 rc = lpfc_sli_issue_mbox(phba, 12586 pmb, 12587 MBX_NOWAIT); 12588 if (rc != MBX_BUSY) 12589 lpfc_printf_log(phba, 12590 KERN_ERR, 12591 LOG_MBOX | LOG_SLI, 12592 "0350 rc should have" 12593 "been MBX_BUSY\n"); 12594 if (rc != MBX_NOT_FINISHED) 12595 goto send_current_mbox; 12596 } 12597 } 12598 spin_lock_irqsave( 12599 &phba->pport->work_port_lock, 12600 iflag); 12601 phba->pport->work_port_events &= 12602 ~WORKER_MBOX_TMO; 12603 spin_unlock_irqrestore( 12604 &phba->pport->work_port_lock, 12605 iflag); 12606 lpfc_mbox_cmpl_put(phba, pmb); 12607 } 12608 } else 12609 spin_unlock_irqrestore(&phba->hbalock, iflag); 12610 12611 if ((work_ha_copy & HA_MBATT) && 12612 (phba->sli.mbox_active == NULL)) { 12613 send_current_mbox: 12614 /* Process next mailbox command if there is one */ 12615 do { 12616 rc = lpfc_sli_issue_mbox(phba, NULL, 12617 MBX_NOWAIT); 12618 } while (rc == MBX_NOT_FINISHED); 12619 if (rc != MBX_SUCCESS) 12620 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12621 LOG_SLI, "0349 rc should be " 12622 "MBX_SUCCESS\n"); 12623 } 12624 12625 spin_lock_irqsave(&phba->hbalock, iflag); 12626 phba->work_ha |= work_ha_copy; 12627 spin_unlock_irqrestore(&phba->hbalock, iflag); 12628 lpfc_worker_wake_up(phba); 12629 } 12630 return IRQ_HANDLED; 12631 unplug_error: 12632 spin_unlock_irqrestore(&phba->hbalock, iflag); 12633 return IRQ_HANDLED; 12634 12635 } /* lpfc_sli_sp_intr_handler */ 12636 12637 /** 12638 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12639 * @irq: Interrupt number. 12640 * @dev_id: The device context pointer. 12641 * 12642 * This function is directly called from the PCI layer as an interrupt 12643 * service routine when device with SLI-3 interface spec is enabled with 12644 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12645 * ring event in the HBA. However, when the device is enabled with either 12646 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12647 * device-level interrupt handler. When the PCI slot is in error recovery 12648 * or the HBA is undergoing initialization, the interrupt handler will not 12649 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12650 * the intrrupt context. This function is called without any lock held. 12651 * It gets the hbalock to access and update SLI data structures. 12652 * 12653 * This function returns IRQ_HANDLED when interrupt is handled else it 12654 * returns IRQ_NONE. 12655 **/ 12656 irqreturn_t 12657 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12658 { 12659 struct lpfc_hba *phba; 12660 uint32_t ha_copy; 12661 unsigned long status; 12662 unsigned long iflag; 12663 struct lpfc_sli_ring *pring; 12664 12665 /* Get the driver's phba structure from the dev_id and 12666 * assume the HBA is not interrupting. 12667 */ 12668 phba = (struct lpfc_hba *) dev_id; 12669 12670 if (unlikely(!phba)) 12671 return IRQ_NONE; 12672 12673 /* 12674 * Stuff needs to be attented to when this function is invoked as an 12675 * individual interrupt handler in MSI-X multi-message interrupt mode 12676 */ 12677 if (phba->intr_type == MSIX) { 12678 /* Check device state for handling interrupt */ 12679 if (lpfc_intr_state_check(phba)) 12680 return IRQ_NONE; 12681 /* Need to read HA REG for FCP ring and other ring events */ 12682 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12683 return IRQ_HANDLED; 12684 /* Clear up only attention source related to fast-path */ 12685 spin_lock_irqsave(&phba->hbalock, iflag); 12686 /* 12687 * If there is deferred error attention, do not check for 12688 * any interrupt. 12689 */ 12690 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12691 spin_unlock_irqrestore(&phba->hbalock, iflag); 12692 return IRQ_NONE; 12693 } 12694 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12695 phba->HAregaddr); 12696 readl(phba->HAregaddr); /* flush */ 12697 spin_unlock_irqrestore(&phba->hbalock, iflag); 12698 } else 12699 ha_copy = phba->ha_copy; 12700 12701 /* 12702 * Process all events on FCP ring. Take the optimized path for FCP IO. 12703 */ 12704 ha_copy &= ~(phba->work_ha_mask); 12705 12706 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12707 status >>= (4*LPFC_FCP_RING); 12708 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12709 if (status & HA_RXMASK) 12710 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12711 12712 if (phba->cfg_multi_ring_support == 2) { 12713 /* 12714 * Process all events on extra ring. Take the optimized path 12715 * for extra ring IO. 12716 */ 12717 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12718 status >>= (4*LPFC_EXTRA_RING); 12719 if (status & HA_RXMASK) { 12720 lpfc_sli_handle_fast_ring_event(phba, 12721 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12722 status); 12723 } 12724 } 12725 return IRQ_HANDLED; 12726 } /* lpfc_sli_fp_intr_handler */ 12727 12728 /** 12729 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12730 * @irq: Interrupt number. 12731 * @dev_id: The device context pointer. 12732 * 12733 * This function is the HBA device-level interrupt handler to device with 12734 * SLI-3 interface spec, called from the PCI layer when either MSI or 12735 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12736 * requires driver attention. This function invokes the slow-path interrupt 12737 * attention handling function and fast-path interrupt attention handling 12738 * function in turn to process the relevant HBA attention events. This 12739 * function is called without any lock held. It gets the hbalock to access 12740 * and update SLI data structures. 12741 * 12742 * This function returns IRQ_HANDLED when interrupt is handled, else it 12743 * returns IRQ_NONE. 12744 **/ 12745 irqreturn_t 12746 lpfc_sli_intr_handler(int irq, void *dev_id) 12747 { 12748 struct lpfc_hba *phba; 12749 irqreturn_t sp_irq_rc, fp_irq_rc; 12750 unsigned long status1, status2; 12751 uint32_t hc_copy; 12752 12753 /* 12754 * Get the driver's phba structure from the dev_id and 12755 * assume the HBA is not interrupting. 12756 */ 12757 phba = (struct lpfc_hba *) dev_id; 12758 12759 if (unlikely(!phba)) 12760 return IRQ_NONE; 12761 12762 /* Check device state for handling interrupt */ 12763 if (lpfc_intr_state_check(phba)) 12764 return IRQ_NONE; 12765 12766 spin_lock(&phba->hbalock); 12767 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12768 spin_unlock(&phba->hbalock); 12769 return IRQ_HANDLED; 12770 } 12771 12772 if (unlikely(!phba->ha_copy)) { 12773 spin_unlock(&phba->hbalock); 12774 return IRQ_NONE; 12775 } else if (phba->ha_copy & HA_ERATT) { 12776 if (phba->hba_flag & HBA_ERATT_HANDLED) 12777 /* ERATT polling has handled ERATT */ 12778 phba->ha_copy &= ~HA_ERATT; 12779 else 12780 /* Indicate interrupt handler handles ERATT */ 12781 phba->hba_flag |= HBA_ERATT_HANDLED; 12782 } 12783 12784 /* 12785 * If there is deferred error attention, do not check for any interrupt. 12786 */ 12787 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12788 spin_unlock(&phba->hbalock); 12789 return IRQ_NONE; 12790 } 12791 12792 /* Clear attention sources except link and error attentions */ 12793 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12794 spin_unlock(&phba->hbalock); 12795 return IRQ_HANDLED; 12796 } 12797 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12798 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12799 phba->HCregaddr); 12800 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12801 writel(hc_copy, phba->HCregaddr); 12802 readl(phba->HAregaddr); /* flush */ 12803 spin_unlock(&phba->hbalock); 12804 12805 /* 12806 * Invokes slow-path host attention interrupt handling as appropriate. 12807 */ 12808 12809 /* status of events with mailbox and link attention */ 12810 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12811 12812 /* status of events with ELS ring */ 12813 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12814 status2 >>= (4*LPFC_ELS_RING); 12815 12816 if (status1 || (status2 & HA_RXMASK)) 12817 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12818 else 12819 sp_irq_rc = IRQ_NONE; 12820 12821 /* 12822 * Invoke fast-path host attention interrupt handling as appropriate. 12823 */ 12824 12825 /* status of events with FCP ring */ 12826 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12827 status1 >>= (4*LPFC_FCP_RING); 12828 12829 /* status of events with extra ring */ 12830 if (phba->cfg_multi_ring_support == 2) { 12831 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12832 status2 >>= (4*LPFC_EXTRA_RING); 12833 } else 12834 status2 = 0; 12835 12836 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12837 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12838 else 12839 fp_irq_rc = IRQ_NONE; 12840 12841 /* Return device-level interrupt handling status */ 12842 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12843 } /* lpfc_sli_intr_handler */ 12844 12845 /** 12846 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 12847 * @phba: pointer to lpfc hba data structure. 12848 * 12849 * This routine is invoked by the worker thread to process all the pending 12850 * SLI4 FCP abort XRI events. 12851 **/ 12852 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 12853 { 12854 struct lpfc_cq_event *cq_event; 12855 12856 /* First, declare the fcp xri abort event has been handled */ 12857 spin_lock_irq(&phba->hbalock); 12858 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 12859 spin_unlock_irq(&phba->hbalock); 12860 /* Now, handle all the fcp xri abort events */ 12861 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 12862 /* Get the first event from the head of the event queue */ 12863 spin_lock_irq(&phba->hbalock); 12864 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 12865 cq_event, struct lpfc_cq_event, list); 12866 spin_unlock_irq(&phba->hbalock); 12867 /* Notify aborted XRI for FCP work queue */ 12868 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12869 /* Free the event processed back to the free pool */ 12870 lpfc_sli4_cq_event_release(phba, cq_event); 12871 } 12872 } 12873 12874 /** 12875 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12876 * @phba: pointer to lpfc hba data structure. 12877 * 12878 * This routine is invoked by the worker thread to process all the pending 12879 * SLI4 els abort xri events. 12880 **/ 12881 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12882 { 12883 struct lpfc_cq_event *cq_event; 12884 12885 /* First, declare the els xri abort event has been handled */ 12886 spin_lock_irq(&phba->hbalock); 12887 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12888 spin_unlock_irq(&phba->hbalock); 12889 /* Now, handle all the els xri abort events */ 12890 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12891 /* Get the first event from the head of the event queue */ 12892 spin_lock_irq(&phba->hbalock); 12893 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12894 cq_event, struct lpfc_cq_event, list); 12895 spin_unlock_irq(&phba->hbalock); 12896 /* Notify aborted XRI for ELS work queue */ 12897 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12898 /* Free the event processed back to the free pool */ 12899 lpfc_sli4_cq_event_release(phba, cq_event); 12900 } 12901 } 12902 12903 /** 12904 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12905 * @phba: pointer to lpfc hba data structure 12906 * @pIocbIn: pointer to the rspiocbq 12907 * @pIocbOut: pointer to the cmdiocbq 12908 * @wcqe: pointer to the complete wcqe 12909 * 12910 * This routine transfers the fields of a command iocbq to a response iocbq 12911 * by copying all the IOCB fields from command iocbq and transferring the 12912 * completion status information from the complete wcqe. 12913 **/ 12914 static void 12915 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12916 struct lpfc_iocbq *pIocbIn, 12917 struct lpfc_iocbq *pIocbOut, 12918 struct lpfc_wcqe_complete *wcqe) 12919 { 12920 int numBdes, i; 12921 unsigned long iflags; 12922 uint32_t status, max_response; 12923 struct lpfc_dmabuf *dmabuf; 12924 struct ulp_bde64 *bpl, bde; 12925 size_t offset = offsetof(struct lpfc_iocbq, iocb); 12926 12927 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 12928 sizeof(struct lpfc_iocbq) - offset); 12929 /* Map WCQE parameters into irspiocb parameters */ 12930 status = bf_get(lpfc_wcqe_c_status, wcqe); 12931 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 12932 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 12933 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 12934 pIocbIn->iocb.un.fcpi.fcpi_parm = 12935 pIocbOut->iocb.un.fcpi.fcpi_parm - 12936 wcqe->total_data_placed; 12937 else 12938 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12939 else { 12940 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12941 switch (pIocbOut->iocb.ulpCommand) { 12942 case CMD_ELS_REQUEST64_CR: 12943 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12944 bpl = (struct ulp_bde64 *)dmabuf->virt; 12945 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 12946 max_response = bde.tus.f.bdeSize; 12947 break; 12948 case CMD_GEN_REQUEST64_CR: 12949 max_response = 0; 12950 if (!pIocbOut->context3) 12951 break; 12952 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 12953 sizeof(struct ulp_bde64); 12954 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12955 bpl = (struct ulp_bde64 *)dmabuf->virt; 12956 for (i = 0; i < numBdes; i++) { 12957 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 12958 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 12959 max_response += bde.tus.f.bdeSize; 12960 } 12961 break; 12962 default: 12963 max_response = wcqe->total_data_placed; 12964 break; 12965 } 12966 if (max_response < wcqe->total_data_placed) 12967 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 12968 else 12969 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 12970 wcqe->total_data_placed; 12971 } 12972 12973 /* Convert BG errors for completion status */ 12974 if (status == CQE_STATUS_DI_ERROR) { 12975 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 12976 12977 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 12978 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 12979 else 12980 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 12981 12982 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 12983 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 12984 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12985 BGS_GUARD_ERR_MASK; 12986 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 12987 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12988 BGS_APPTAG_ERR_MASK; 12989 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 12990 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12991 BGS_REFTAG_ERR_MASK; 12992 12993 /* Check to see if there was any good data before the error */ 12994 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 12995 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12996 BGS_HI_WATER_MARK_PRESENT_MASK; 12997 pIocbIn->iocb.unsli3.sli3_bg.bghm = 12998 wcqe->total_data_placed; 12999 } 13000 13001 /* 13002 * Set ALL the error bits to indicate we don't know what 13003 * type of error it is. 13004 */ 13005 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13006 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13007 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13008 BGS_GUARD_ERR_MASK); 13009 } 13010 13011 /* Pick up HBA exchange busy condition */ 13012 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13013 spin_lock_irqsave(&phba->hbalock, iflags); 13014 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13015 spin_unlock_irqrestore(&phba->hbalock, iflags); 13016 } 13017 } 13018 13019 /** 13020 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13021 * @phba: Pointer to HBA context object. 13022 * @wcqe: Pointer to work-queue completion queue entry. 13023 * 13024 * This routine handles an ELS work-queue completion event and construct 13025 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13026 * discovery engine to handle. 13027 * 13028 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13029 **/ 13030 static struct lpfc_iocbq * 13031 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13032 struct lpfc_iocbq *irspiocbq) 13033 { 13034 struct lpfc_sli_ring *pring; 13035 struct lpfc_iocbq *cmdiocbq; 13036 struct lpfc_wcqe_complete *wcqe; 13037 unsigned long iflags; 13038 13039 pring = lpfc_phba_elsring(phba); 13040 if (unlikely(!pring)) 13041 return NULL; 13042 13043 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13044 spin_lock_irqsave(&pring->ring_lock, iflags); 13045 pring->stats.iocb_event++; 13046 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13047 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13048 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13049 if (unlikely(!cmdiocbq)) { 13050 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13051 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13052 "0386 ELS complete with no corresponding " 13053 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13054 wcqe->word0, wcqe->total_data_placed, 13055 wcqe->parameter, wcqe->word3); 13056 lpfc_sli_release_iocbq(phba, irspiocbq); 13057 return NULL; 13058 } 13059 13060 /* Put the iocb back on the txcmplq */ 13061 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13062 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13063 13064 /* Fake the irspiocbq and copy necessary response information */ 13065 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13066 13067 return irspiocbq; 13068 } 13069 13070 inline struct lpfc_cq_event * 13071 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13072 { 13073 struct lpfc_cq_event *cq_event; 13074 13075 /* Allocate a new internal CQ_EVENT entry */ 13076 cq_event = lpfc_sli4_cq_event_alloc(phba); 13077 if (!cq_event) { 13078 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13079 "0602 Failed to alloc CQ_EVENT entry\n"); 13080 return NULL; 13081 } 13082 13083 /* Move the CQE into the event */ 13084 memcpy(&cq_event->cqe, entry, size); 13085 return cq_event; 13086 } 13087 13088 /** 13089 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 13090 * @phba: Pointer to HBA context object. 13091 * @cqe: Pointer to mailbox completion queue entry. 13092 * 13093 * This routine process a mailbox completion queue entry with asynchrous 13094 * event. 13095 * 13096 * Return: true if work posted to worker thread, otherwise false. 13097 **/ 13098 static bool 13099 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13100 { 13101 struct lpfc_cq_event *cq_event; 13102 unsigned long iflags; 13103 13104 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13105 "0392 Async Event: word0:x%x, word1:x%x, " 13106 "word2:x%x, word3:x%x\n", mcqe->word0, 13107 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13108 13109 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13110 if (!cq_event) 13111 return false; 13112 spin_lock_irqsave(&phba->hbalock, iflags); 13113 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13114 /* Set the async event flag */ 13115 phba->hba_flag |= ASYNC_EVENT; 13116 spin_unlock_irqrestore(&phba->hbalock, iflags); 13117 13118 return true; 13119 } 13120 13121 /** 13122 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13123 * @phba: Pointer to HBA context object. 13124 * @cqe: Pointer to mailbox completion queue entry. 13125 * 13126 * This routine process a mailbox completion queue entry with mailbox 13127 * completion event. 13128 * 13129 * Return: true if work posted to worker thread, otherwise false. 13130 **/ 13131 static bool 13132 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13133 { 13134 uint32_t mcqe_status; 13135 MAILBOX_t *mbox, *pmbox; 13136 struct lpfc_mqe *mqe; 13137 struct lpfc_vport *vport; 13138 struct lpfc_nodelist *ndlp; 13139 struct lpfc_dmabuf *mp; 13140 unsigned long iflags; 13141 LPFC_MBOXQ_t *pmb; 13142 bool workposted = false; 13143 int rc; 13144 13145 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13146 if (!bf_get(lpfc_trailer_completed, mcqe)) 13147 goto out_no_mqe_complete; 13148 13149 /* Get the reference to the active mbox command */ 13150 spin_lock_irqsave(&phba->hbalock, iflags); 13151 pmb = phba->sli.mbox_active; 13152 if (unlikely(!pmb)) { 13153 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13154 "1832 No pending MBOX command to handle\n"); 13155 spin_unlock_irqrestore(&phba->hbalock, iflags); 13156 goto out_no_mqe_complete; 13157 } 13158 spin_unlock_irqrestore(&phba->hbalock, iflags); 13159 mqe = &pmb->u.mqe; 13160 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13161 mbox = phba->mbox; 13162 vport = pmb->vport; 13163 13164 /* Reset heartbeat timer */ 13165 phba->last_completion_time = jiffies; 13166 del_timer(&phba->sli.mbox_tmo); 13167 13168 /* Move mbox data to caller's mailbox region, do endian swapping */ 13169 if (pmb->mbox_cmpl && mbox) 13170 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13171 13172 /* 13173 * For mcqe errors, conditionally move a modified error code to 13174 * the mbox so that the error will not be missed. 13175 */ 13176 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13177 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13178 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13179 bf_set(lpfc_mqe_status, mqe, 13180 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13181 } 13182 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13183 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13184 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13185 "MBOX dflt rpi: status:x%x rpi:x%x", 13186 mcqe_status, 13187 pmbox->un.varWords[0], 0); 13188 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13189 mp = (struct lpfc_dmabuf *)(pmb->context1); 13190 ndlp = (struct lpfc_nodelist *)pmb->context2; 13191 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13192 * RID of the PPI using the same mbox buffer. 13193 */ 13194 lpfc_unreg_login(phba, vport->vpi, 13195 pmbox->un.varWords[0], pmb); 13196 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13197 pmb->context1 = mp; 13198 pmb->context2 = ndlp; 13199 pmb->vport = vport; 13200 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13201 if (rc != MBX_BUSY) 13202 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 13203 LOG_SLI, "0385 rc should " 13204 "have been MBX_BUSY\n"); 13205 if (rc != MBX_NOT_FINISHED) 13206 goto send_current_mbox; 13207 } 13208 } 13209 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13210 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13211 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13212 13213 /* There is mailbox completion work to do */ 13214 spin_lock_irqsave(&phba->hbalock, iflags); 13215 __lpfc_mbox_cmpl_put(phba, pmb); 13216 phba->work_ha |= HA_MBATT; 13217 spin_unlock_irqrestore(&phba->hbalock, iflags); 13218 workposted = true; 13219 13220 send_current_mbox: 13221 spin_lock_irqsave(&phba->hbalock, iflags); 13222 /* Release the mailbox command posting token */ 13223 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13224 /* Setting active mailbox pointer need to be in sync to flag clear */ 13225 phba->sli.mbox_active = NULL; 13226 spin_unlock_irqrestore(&phba->hbalock, iflags); 13227 /* Wake up worker thread to post the next pending mailbox command */ 13228 lpfc_worker_wake_up(phba); 13229 out_no_mqe_complete: 13230 if (bf_get(lpfc_trailer_consumed, mcqe)) 13231 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13232 return workposted; 13233 } 13234 13235 /** 13236 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13237 * @phba: Pointer to HBA context object. 13238 * @cqe: Pointer to mailbox completion queue entry. 13239 * 13240 * This routine process a mailbox completion queue entry, it invokes the 13241 * proper mailbox complete handling or asynchrous event handling routine 13242 * according to the MCQE's async bit. 13243 * 13244 * Return: true if work posted to worker thread, otherwise false. 13245 **/ 13246 static bool 13247 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 13248 { 13249 struct lpfc_mcqe mcqe; 13250 bool workposted; 13251 13252 /* Copy the mailbox MCQE and convert endian order as needed */ 13253 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13254 13255 /* Invoke the proper event handling routine */ 13256 if (!bf_get(lpfc_trailer_async, &mcqe)) 13257 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13258 else 13259 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13260 return workposted; 13261 } 13262 13263 /** 13264 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13265 * @phba: Pointer to HBA context object. 13266 * @cq: Pointer to associated CQ 13267 * @wcqe: Pointer to work-queue completion queue entry. 13268 * 13269 * This routine handles an ELS work-queue completion event. 13270 * 13271 * Return: true if work posted to worker thread, otherwise false. 13272 **/ 13273 static bool 13274 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13275 struct lpfc_wcqe_complete *wcqe) 13276 { 13277 struct lpfc_iocbq *irspiocbq; 13278 unsigned long iflags; 13279 struct lpfc_sli_ring *pring = cq->pring; 13280 int txq_cnt = 0; 13281 int txcmplq_cnt = 0; 13282 int fcp_txcmplq_cnt = 0; 13283 13284 /* Check for response status */ 13285 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13286 /* Log the error status */ 13287 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13288 "0357 ELS CQE error: status=x%x: " 13289 "CQE: %08x %08x %08x %08x\n", 13290 bf_get(lpfc_wcqe_c_status, wcqe), 13291 wcqe->word0, wcqe->total_data_placed, 13292 wcqe->parameter, wcqe->word3); 13293 } 13294 13295 /* Get an irspiocbq for later ELS response processing use */ 13296 irspiocbq = lpfc_sli_get_iocbq(phba); 13297 if (!irspiocbq) { 13298 if (!list_empty(&pring->txq)) 13299 txq_cnt++; 13300 if (!list_empty(&pring->txcmplq)) 13301 txcmplq_cnt++; 13302 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13303 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13304 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 13305 txq_cnt, phba->iocb_cnt, 13306 fcp_txcmplq_cnt, 13307 txcmplq_cnt); 13308 return false; 13309 } 13310 13311 /* Save off the slow-path queue event for work thread to process */ 13312 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13313 spin_lock_irqsave(&phba->hbalock, iflags); 13314 list_add_tail(&irspiocbq->cq_event.list, 13315 &phba->sli4_hba.sp_queue_event); 13316 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13317 spin_unlock_irqrestore(&phba->hbalock, iflags); 13318 13319 return true; 13320 } 13321 13322 /** 13323 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13324 * @phba: Pointer to HBA context object. 13325 * @wcqe: Pointer to work-queue completion queue entry. 13326 * 13327 * This routine handles slow-path WQ entry consumed event by invoking the 13328 * proper WQ release routine to the slow-path WQ. 13329 **/ 13330 static void 13331 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13332 struct lpfc_wcqe_release *wcqe) 13333 { 13334 /* sanity check on queue memory */ 13335 if (unlikely(!phba->sli4_hba.els_wq)) 13336 return; 13337 /* Check for the slow-path ELS work queue */ 13338 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13339 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13340 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13341 else 13342 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13343 "2579 Slow-path wqe consume event carries " 13344 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13345 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13346 phba->sli4_hba.els_wq->queue_id); 13347 } 13348 13349 /** 13350 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13351 * @phba: Pointer to HBA context object. 13352 * @cq: Pointer to a WQ completion queue. 13353 * @wcqe: Pointer to work-queue completion queue entry. 13354 * 13355 * This routine handles an XRI abort event. 13356 * 13357 * Return: true if work posted to worker thread, otherwise false. 13358 **/ 13359 static bool 13360 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13361 struct lpfc_queue *cq, 13362 struct sli4_wcqe_xri_aborted *wcqe) 13363 { 13364 bool workposted = false; 13365 struct lpfc_cq_event *cq_event; 13366 unsigned long iflags; 13367 13368 switch (cq->subtype) { 13369 case LPFC_FCP: 13370 cq_event = lpfc_cq_event_setup( 13371 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13372 if (!cq_event) 13373 return false; 13374 spin_lock_irqsave(&phba->hbalock, iflags); 13375 list_add_tail(&cq_event->list, 13376 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 13377 /* Set the fcp xri abort event flag */ 13378 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 13379 spin_unlock_irqrestore(&phba->hbalock, iflags); 13380 workposted = true; 13381 break; 13382 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13383 case LPFC_ELS: 13384 cq_event = lpfc_cq_event_setup( 13385 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13386 if (!cq_event) 13387 return false; 13388 spin_lock_irqsave(&phba->hbalock, iflags); 13389 list_add_tail(&cq_event->list, 13390 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13391 /* Set the els xri abort event flag */ 13392 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13393 spin_unlock_irqrestore(&phba->hbalock, iflags); 13394 workposted = true; 13395 break; 13396 case LPFC_NVME: 13397 /* Notify aborted XRI for NVME work queue */ 13398 if (phba->nvmet_support) 13399 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13400 else 13401 lpfc_sli4_nvme_xri_aborted(phba, wcqe); 13402 13403 workposted = false; 13404 break; 13405 default: 13406 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13407 "0603 Invalid CQ subtype %d: " 13408 "%08x %08x %08x %08x\n", 13409 cq->subtype, wcqe->word0, wcqe->parameter, 13410 wcqe->word2, wcqe->word3); 13411 workposted = false; 13412 break; 13413 } 13414 return workposted; 13415 } 13416 13417 /** 13418 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13419 * @phba: Pointer to HBA context object. 13420 * @rcqe: Pointer to receive-queue completion queue entry. 13421 * 13422 * This routine process a receive-queue completion queue entry. 13423 * 13424 * Return: true if work posted to worker thread, otherwise false. 13425 **/ 13426 static bool 13427 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13428 { 13429 bool workposted = false; 13430 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13431 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13432 struct lpfc_nvmet_tgtport *tgtp; 13433 struct hbq_dmabuf *dma_buf; 13434 uint32_t status, rq_id; 13435 unsigned long iflags; 13436 13437 /* sanity check on queue memory */ 13438 if (unlikely(!hrq) || unlikely(!drq)) 13439 return workposted; 13440 13441 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13442 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13443 else 13444 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13445 if (rq_id != hrq->queue_id) 13446 goto out; 13447 13448 status = bf_get(lpfc_rcqe_status, rcqe); 13449 switch (status) { 13450 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13451 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13452 "2537 Receive Frame Truncated!!\n"); 13453 case FC_STATUS_RQ_SUCCESS: 13454 spin_lock_irqsave(&phba->hbalock, iflags); 13455 lpfc_sli4_rq_release(hrq, drq); 13456 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13457 if (!dma_buf) { 13458 hrq->RQ_no_buf_found++; 13459 spin_unlock_irqrestore(&phba->hbalock, iflags); 13460 goto out; 13461 } 13462 hrq->RQ_rcv_buf++; 13463 hrq->RQ_buf_posted--; 13464 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13465 13466 /* save off the frame for the word thread to process */ 13467 list_add_tail(&dma_buf->cq_event.list, 13468 &phba->sli4_hba.sp_queue_event); 13469 /* Frame received */ 13470 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13471 spin_unlock_irqrestore(&phba->hbalock, iflags); 13472 workposted = true; 13473 break; 13474 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13475 if (phba->nvmet_support) { 13476 tgtp = phba->targetport->private; 13477 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13478 "6402 RQE Error x%x, posted %d err_cnt " 13479 "%d: %x %x %x\n", 13480 status, hrq->RQ_buf_posted, 13481 hrq->RQ_no_posted_buf, 13482 atomic_read(&tgtp->rcv_fcp_cmd_in), 13483 atomic_read(&tgtp->rcv_fcp_cmd_out), 13484 atomic_read(&tgtp->xmt_fcp_release)); 13485 } 13486 /* fallthrough */ 13487 13488 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13489 hrq->RQ_no_posted_buf++; 13490 /* Post more buffers if possible */ 13491 spin_lock_irqsave(&phba->hbalock, iflags); 13492 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13493 spin_unlock_irqrestore(&phba->hbalock, iflags); 13494 workposted = true; 13495 break; 13496 } 13497 out: 13498 return workposted; 13499 } 13500 13501 /** 13502 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13503 * @phba: Pointer to HBA context object. 13504 * @cq: Pointer to the completion queue. 13505 * @wcqe: Pointer to a completion queue entry. 13506 * 13507 * This routine process a slow-path work-queue or receive queue completion queue 13508 * entry. 13509 * 13510 * Return: true if work posted to worker thread, otherwise false. 13511 **/ 13512 static bool 13513 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13514 struct lpfc_cqe *cqe) 13515 { 13516 struct lpfc_cqe cqevt; 13517 bool workposted = false; 13518 13519 /* Copy the work queue CQE and convert endian order if needed */ 13520 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13521 13522 /* Check and process for different type of WCQE and dispatch */ 13523 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13524 case CQE_CODE_COMPL_WQE: 13525 /* Process the WQ/RQ complete event */ 13526 phba->last_completion_time = jiffies; 13527 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13528 (struct lpfc_wcqe_complete *)&cqevt); 13529 break; 13530 case CQE_CODE_RELEASE_WQE: 13531 /* Process the WQ release event */ 13532 lpfc_sli4_sp_handle_rel_wcqe(phba, 13533 (struct lpfc_wcqe_release *)&cqevt); 13534 break; 13535 case CQE_CODE_XRI_ABORTED: 13536 /* Process the WQ XRI abort event */ 13537 phba->last_completion_time = jiffies; 13538 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13539 (struct sli4_wcqe_xri_aborted *)&cqevt); 13540 break; 13541 case CQE_CODE_RECEIVE: 13542 case CQE_CODE_RECEIVE_V1: 13543 /* Process the RQ event */ 13544 phba->last_completion_time = jiffies; 13545 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13546 (struct lpfc_rcqe *)&cqevt); 13547 break; 13548 default: 13549 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13550 "0388 Not a valid WCQE code: x%x\n", 13551 bf_get(lpfc_cqe_code, &cqevt)); 13552 break; 13553 } 13554 return workposted; 13555 } 13556 13557 /** 13558 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13559 * @phba: Pointer to HBA context object. 13560 * @eqe: Pointer to fast-path event queue entry. 13561 * 13562 * This routine process a event queue entry from the slow-path event queue. 13563 * It will check the MajorCode and MinorCode to determine this is for a 13564 * completion event on a completion queue, if not, an error shall be logged 13565 * and just return. Otherwise, it will get to the corresponding completion 13566 * queue and process all the entries on that completion queue, rearm the 13567 * completion queue, and then return. 13568 * 13569 **/ 13570 static void 13571 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13572 struct lpfc_queue *speq) 13573 { 13574 struct lpfc_queue *cq = NULL, *childq; 13575 uint16_t cqid; 13576 13577 /* Get the reference to the corresponding CQ */ 13578 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13579 13580 list_for_each_entry(childq, &speq->child_list, list) { 13581 if (childq->queue_id == cqid) { 13582 cq = childq; 13583 break; 13584 } 13585 } 13586 if (unlikely(!cq)) { 13587 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13588 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13589 "0365 Slow-path CQ identifier " 13590 "(%d) does not exist\n", cqid); 13591 return; 13592 } 13593 13594 /* Save EQ associated with this CQ */ 13595 cq->assoc_qp = speq; 13596 13597 if (!queue_work(phba->wq, &cq->spwork)) 13598 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13599 "0390 Cannot schedule soft IRQ " 13600 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13601 cqid, cq->queue_id, smp_processor_id()); 13602 } 13603 13604 /** 13605 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13606 * @phba: Pointer to HBA context object. 13607 * 13608 * This routine process a event queue entry from the slow-path event queue. 13609 * It will check the MajorCode and MinorCode to determine this is for a 13610 * completion event on a completion queue, if not, an error shall be logged 13611 * and just return. Otherwise, it will get to the corresponding completion 13612 * queue and process all the entries on that completion queue, rearm the 13613 * completion queue, and then return. 13614 * 13615 **/ 13616 static void 13617 lpfc_sli4_sp_process_cq(struct work_struct *work) 13618 { 13619 struct lpfc_queue *cq = 13620 container_of(work, struct lpfc_queue, spwork); 13621 struct lpfc_hba *phba = cq->phba; 13622 struct lpfc_cqe *cqe; 13623 bool workposted = false; 13624 int ccount = 0; 13625 13626 /* Process all the entries to the CQ */ 13627 switch (cq->type) { 13628 case LPFC_MCQ: 13629 while ((cqe = lpfc_sli4_cq_get(cq))) { 13630 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 13631 if (!(++ccount % cq->entry_repost)) 13632 break; 13633 cq->CQ_mbox++; 13634 } 13635 break; 13636 case LPFC_WCQ: 13637 while ((cqe = lpfc_sli4_cq_get(cq))) { 13638 if (cq->subtype == LPFC_FCP || 13639 cq->subtype == LPFC_NVME) { 13640 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13641 if (phba->ktime_on) 13642 cq->isr_timestamp = ktime_get_ns(); 13643 else 13644 cq->isr_timestamp = 0; 13645 #endif 13646 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, 13647 cqe); 13648 } else { 13649 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 13650 cqe); 13651 } 13652 if (!(++ccount % cq->entry_repost)) 13653 break; 13654 } 13655 13656 /* Track the max number of CQEs processed in 1 EQ */ 13657 if (ccount > cq->CQ_max_cqe) 13658 cq->CQ_max_cqe = ccount; 13659 break; 13660 default: 13661 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13662 "0370 Invalid completion queue type (%d)\n", 13663 cq->type); 13664 return; 13665 } 13666 13667 /* Catch the no cq entry condition, log an error */ 13668 if (unlikely(ccount == 0)) 13669 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13670 "0371 No entry from the CQ: identifier " 13671 "(x%x), type (%d)\n", cq->queue_id, cq->type); 13672 13673 /* In any case, flash and re-arm the RCQ */ 13674 phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM); 13675 13676 /* wake up worker thread if there are works to be done */ 13677 if (workposted) 13678 lpfc_worker_wake_up(phba); 13679 } 13680 13681 /** 13682 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13683 * @phba: Pointer to HBA context object. 13684 * @cq: Pointer to associated CQ 13685 * @wcqe: Pointer to work-queue completion queue entry. 13686 * 13687 * This routine process a fast-path work queue completion entry from fast-path 13688 * event queue for FCP command response completion. 13689 **/ 13690 static void 13691 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13692 struct lpfc_wcqe_complete *wcqe) 13693 { 13694 struct lpfc_sli_ring *pring = cq->pring; 13695 struct lpfc_iocbq *cmdiocbq; 13696 struct lpfc_iocbq irspiocbq; 13697 unsigned long iflags; 13698 13699 /* Check for response status */ 13700 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13701 /* If resource errors reported from HBA, reduce queue 13702 * depth of the SCSI device. 13703 */ 13704 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13705 IOSTAT_LOCAL_REJECT)) && 13706 ((wcqe->parameter & IOERR_PARAM_MASK) == 13707 IOERR_NO_RESOURCES)) 13708 phba->lpfc_rampdown_queue_depth(phba); 13709 13710 /* Log the error status */ 13711 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13712 "0373 FCP CQE error: status=x%x: " 13713 "CQE: %08x %08x %08x %08x\n", 13714 bf_get(lpfc_wcqe_c_status, wcqe), 13715 wcqe->word0, wcqe->total_data_placed, 13716 wcqe->parameter, wcqe->word3); 13717 } 13718 13719 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13720 spin_lock_irqsave(&pring->ring_lock, iflags); 13721 pring->stats.iocb_event++; 13722 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13723 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13724 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13725 if (unlikely(!cmdiocbq)) { 13726 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13727 "0374 FCP complete with no corresponding " 13728 "cmdiocb: iotag (%d)\n", 13729 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13730 return; 13731 } 13732 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13733 cmdiocbq->isr_timestamp = cq->isr_timestamp; 13734 #endif 13735 if (cmdiocbq->iocb_cmpl == NULL) { 13736 if (cmdiocbq->wqe_cmpl) { 13737 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13738 spin_lock_irqsave(&phba->hbalock, iflags); 13739 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13740 spin_unlock_irqrestore(&phba->hbalock, iflags); 13741 } 13742 13743 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13744 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13745 return; 13746 } 13747 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13748 "0375 FCP cmdiocb not callback function " 13749 "iotag: (%d)\n", 13750 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13751 return; 13752 } 13753 13754 /* Fake the irspiocb and copy necessary response information */ 13755 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13756 13757 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13758 spin_lock_irqsave(&phba->hbalock, iflags); 13759 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13760 spin_unlock_irqrestore(&phba->hbalock, iflags); 13761 } 13762 13763 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13764 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13765 } 13766 13767 /** 13768 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13769 * @phba: Pointer to HBA context object. 13770 * @cq: Pointer to completion queue. 13771 * @wcqe: Pointer to work-queue completion queue entry. 13772 * 13773 * This routine handles an fast-path WQ entry consumed event by invoking the 13774 * proper WQ release routine to the slow-path WQ. 13775 **/ 13776 static void 13777 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13778 struct lpfc_wcqe_release *wcqe) 13779 { 13780 struct lpfc_queue *childwq; 13781 bool wqid_matched = false; 13782 uint16_t hba_wqid; 13783 13784 /* Check for fast-path FCP work queue release */ 13785 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13786 list_for_each_entry(childwq, &cq->child_list, list) { 13787 if (childwq->queue_id == hba_wqid) { 13788 lpfc_sli4_wq_release(childwq, 13789 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13790 if (childwq->q_flag & HBA_NVMET_WQFULL) 13791 lpfc_nvmet_wqfull_process(phba, childwq); 13792 wqid_matched = true; 13793 break; 13794 } 13795 } 13796 /* Report warning log message if no match found */ 13797 if (wqid_matched != true) 13798 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13799 "2580 Fast-path wqe consume event carries " 13800 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13801 } 13802 13803 /** 13804 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13805 * @phba: Pointer to HBA context object. 13806 * @rcqe: Pointer to receive-queue completion queue entry. 13807 * 13808 * This routine process a receive-queue completion queue entry. 13809 * 13810 * Return: true if work posted to worker thread, otherwise false. 13811 **/ 13812 static bool 13813 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13814 struct lpfc_rcqe *rcqe) 13815 { 13816 bool workposted = false; 13817 struct lpfc_queue *hrq; 13818 struct lpfc_queue *drq; 13819 struct rqb_dmabuf *dma_buf; 13820 struct fc_frame_header *fc_hdr; 13821 struct lpfc_nvmet_tgtport *tgtp; 13822 uint32_t status, rq_id; 13823 unsigned long iflags; 13824 uint32_t fctl, idx; 13825 13826 if ((phba->nvmet_support == 0) || 13827 (phba->sli4_hba.nvmet_cqset == NULL)) 13828 return workposted; 13829 13830 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13831 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13832 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13833 13834 /* sanity check on queue memory */ 13835 if (unlikely(!hrq) || unlikely(!drq)) 13836 return workposted; 13837 13838 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13839 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13840 else 13841 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13842 13843 if ((phba->nvmet_support == 0) || 13844 (rq_id != hrq->queue_id)) 13845 return workposted; 13846 13847 status = bf_get(lpfc_rcqe_status, rcqe); 13848 switch (status) { 13849 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13850 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13851 "6126 Receive Frame Truncated!!\n"); 13852 /* Drop thru */ 13853 case FC_STATUS_RQ_SUCCESS: 13854 spin_lock_irqsave(&phba->hbalock, iflags); 13855 lpfc_sli4_rq_release(hrq, drq); 13856 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13857 if (!dma_buf) { 13858 hrq->RQ_no_buf_found++; 13859 spin_unlock_irqrestore(&phba->hbalock, iflags); 13860 goto out; 13861 } 13862 spin_unlock_irqrestore(&phba->hbalock, iflags); 13863 hrq->RQ_rcv_buf++; 13864 hrq->RQ_buf_posted--; 13865 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13866 13867 /* Just some basic sanity checks on FCP Command frame */ 13868 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13869 fc_hdr->fh_f_ctl[1] << 8 | 13870 fc_hdr->fh_f_ctl[2]); 13871 if (((fctl & 13872 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13873 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13874 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13875 goto drop; 13876 13877 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13878 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13879 lpfc_nvmet_unsol_fcp_event( 13880 phba, idx, dma_buf, 13881 cq->isr_timestamp); 13882 return false; 13883 } 13884 drop: 13885 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13886 break; 13887 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13888 if (phba->nvmet_support) { 13889 tgtp = phba->targetport->private; 13890 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13891 "6401 RQE Error x%x, posted %d err_cnt " 13892 "%d: %x %x %x\n", 13893 status, hrq->RQ_buf_posted, 13894 hrq->RQ_no_posted_buf, 13895 atomic_read(&tgtp->rcv_fcp_cmd_in), 13896 atomic_read(&tgtp->rcv_fcp_cmd_out), 13897 atomic_read(&tgtp->xmt_fcp_release)); 13898 } 13899 /* fallthrough */ 13900 13901 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13902 hrq->RQ_no_posted_buf++; 13903 /* Post more buffers if possible */ 13904 break; 13905 } 13906 out: 13907 return workposted; 13908 } 13909 13910 /** 13911 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 13912 * @cq: Pointer to the completion queue. 13913 * @eqe: Pointer to fast-path completion queue entry. 13914 * 13915 * This routine process a fast-path work queue completion entry from fast-path 13916 * event queue for FCP command response completion. 13917 **/ 13918 static int 13919 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13920 struct lpfc_cqe *cqe) 13921 { 13922 struct lpfc_wcqe_release wcqe; 13923 bool workposted = false; 13924 13925 /* Copy the work queue CQE and convert endian order if needed */ 13926 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 13927 13928 /* Check and process for different type of WCQE and dispatch */ 13929 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 13930 case CQE_CODE_COMPL_WQE: 13931 case CQE_CODE_NVME_ERSP: 13932 cq->CQ_wq++; 13933 /* Process the WQ complete event */ 13934 phba->last_completion_time = jiffies; 13935 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME)) 13936 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13937 (struct lpfc_wcqe_complete *)&wcqe); 13938 if (cq->subtype == LPFC_NVME_LS) 13939 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13940 (struct lpfc_wcqe_complete *)&wcqe); 13941 break; 13942 case CQE_CODE_RELEASE_WQE: 13943 cq->CQ_release_wqe++; 13944 /* Process the WQ release event */ 13945 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 13946 (struct lpfc_wcqe_release *)&wcqe); 13947 break; 13948 case CQE_CODE_XRI_ABORTED: 13949 cq->CQ_xri_aborted++; 13950 /* Process the WQ XRI abort event */ 13951 phba->last_completion_time = jiffies; 13952 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13953 (struct sli4_wcqe_xri_aborted *)&wcqe); 13954 break; 13955 case CQE_CODE_RECEIVE_V1: 13956 case CQE_CODE_RECEIVE: 13957 phba->last_completion_time = jiffies; 13958 if (cq->subtype == LPFC_NVMET) { 13959 workposted = lpfc_sli4_nvmet_handle_rcqe( 13960 phba, cq, (struct lpfc_rcqe *)&wcqe); 13961 } 13962 break; 13963 default: 13964 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13965 "0144 Not a valid CQE code: x%x\n", 13966 bf_get(lpfc_wcqe_c_code, &wcqe)); 13967 break; 13968 } 13969 return workposted; 13970 } 13971 13972 /** 13973 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 13974 * @phba: Pointer to HBA context object. 13975 * @eqe: Pointer to fast-path event queue entry. 13976 * 13977 * This routine process a event queue entry from the fast-path event queue. 13978 * It will check the MajorCode and MinorCode to determine this is for a 13979 * completion event on a completion queue, if not, an error shall be logged 13980 * and just return. Otherwise, it will get to the corresponding completion 13981 * queue and process all the entries on the completion queue, rearm the 13982 * completion queue, and then return. 13983 **/ 13984 static void 13985 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13986 uint32_t qidx) 13987 { 13988 struct lpfc_queue *cq = NULL; 13989 uint16_t cqid, id; 13990 13991 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13992 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13993 "0366 Not a valid completion " 13994 "event: majorcode=x%x, minorcode=x%x\n", 13995 bf_get_le32(lpfc_eqe_major_code, eqe), 13996 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13997 return; 13998 } 13999 14000 /* Get the reference to the corresponding CQ */ 14001 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14002 14003 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14004 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14005 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14006 /* Process NVMET unsol rcv */ 14007 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14008 goto process_cq; 14009 } 14010 } 14011 14012 if (phba->sli4_hba.nvme_cq_map && 14013 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) { 14014 /* Process NVME / NVMET command completion */ 14015 cq = phba->sli4_hba.nvme_cq[qidx]; 14016 goto process_cq; 14017 } 14018 14019 if (phba->sli4_hba.fcp_cq_map && 14020 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) { 14021 /* Process FCP command completion */ 14022 cq = phba->sli4_hba.fcp_cq[qidx]; 14023 goto process_cq; 14024 } 14025 14026 if (phba->sli4_hba.nvmels_cq && 14027 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14028 /* Process NVME unsol rcv */ 14029 cq = phba->sli4_hba.nvmels_cq; 14030 } 14031 14032 /* Otherwise this is a Slow path event */ 14033 if (cq == NULL) { 14034 lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]); 14035 return; 14036 } 14037 14038 process_cq: 14039 if (unlikely(cqid != cq->queue_id)) { 14040 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14041 "0368 Miss-matched fast-path completion " 14042 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14043 cqid, cq->queue_id); 14044 return; 14045 } 14046 14047 /* Save EQ associated with this CQ */ 14048 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx]; 14049 14050 if (!queue_work(phba->wq, &cq->irqwork)) 14051 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14052 "0363 Cannot schedule soft IRQ " 14053 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14054 cqid, cq->queue_id, smp_processor_id()); 14055 } 14056 14057 /** 14058 * lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14059 * @phba: Pointer to HBA context object. 14060 * @eqe: Pointer to fast-path event queue entry. 14061 * 14062 * This routine process a event queue entry from the fast-path event queue. 14063 * It will check the MajorCode and MinorCode to determine this is for a 14064 * completion event on a completion queue, if not, an error shall be logged 14065 * and just return. Otherwise, it will get to the corresponding completion 14066 * queue and process all the entries on the completion queue, rearm the 14067 * completion queue, and then return. 14068 **/ 14069 static void 14070 lpfc_sli4_hba_process_cq(struct work_struct *work) 14071 { 14072 struct lpfc_queue *cq = 14073 container_of(work, struct lpfc_queue, irqwork); 14074 struct lpfc_hba *phba = cq->phba; 14075 struct lpfc_cqe *cqe; 14076 bool workposted = false; 14077 int ccount = 0; 14078 14079 /* Process all the entries to the CQ */ 14080 while ((cqe = lpfc_sli4_cq_get(cq))) { 14081 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14082 if (phba->ktime_on) 14083 cq->isr_timestamp = ktime_get_ns(); 14084 else 14085 cq->isr_timestamp = 0; 14086 #endif 14087 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 14088 if (!(++ccount % cq->entry_repost)) 14089 break; 14090 } 14091 14092 /* Track the max number of CQEs processed in 1 EQ */ 14093 if (ccount > cq->CQ_max_cqe) 14094 cq->CQ_max_cqe = ccount; 14095 cq->assoc_qp->EQ_cqe_cnt += ccount; 14096 14097 /* Catch the no cq entry condition */ 14098 if (unlikely(ccount == 0)) 14099 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14100 "0369 No entry from fast-path completion " 14101 "queue fcpcqid=%d\n", cq->queue_id); 14102 14103 /* In any case, flash and re-arm the CQ */ 14104 phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM); 14105 14106 /* wake up worker thread if there are works to be done */ 14107 if (workposted) 14108 lpfc_worker_wake_up(phba); 14109 } 14110 14111 static void 14112 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 14113 { 14114 struct lpfc_eqe *eqe; 14115 14116 /* walk all the EQ entries and drop on the floor */ 14117 while ((eqe = lpfc_sli4_eq_get(eq))) 14118 ; 14119 14120 /* Clear and re-arm the EQ */ 14121 phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM); 14122 } 14123 14124 14125 /** 14126 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 14127 * entry 14128 * @phba: Pointer to HBA context object. 14129 * @eqe: Pointer to fast-path event queue entry. 14130 * 14131 * This routine process a event queue entry from the Flash Optimized Fabric 14132 * event queue. It will check the MajorCode and MinorCode to determine this 14133 * is for a completion event on a completion queue, if not, an error shall be 14134 * logged and just return. Otherwise, it will get to the corresponding 14135 * completion queue and process all the entries on the completion queue, rearm 14136 * the completion queue, and then return. 14137 **/ 14138 static void 14139 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 14140 { 14141 struct lpfc_queue *cq; 14142 uint16_t cqid; 14143 14144 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14145 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14146 "9147 Not a valid completion " 14147 "event: majorcode=x%x, minorcode=x%x\n", 14148 bf_get_le32(lpfc_eqe_major_code, eqe), 14149 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14150 return; 14151 } 14152 14153 /* Get the reference to the corresponding CQ */ 14154 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14155 14156 /* Next check for OAS */ 14157 cq = phba->sli4_hba.oas_cq; 14158 if (unlikely(!cq)) { 14159 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14160 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14161 "9148 OAS completion queue " 14162 "does not exist\n"); 14163 return; 14164 } 14165 14166 if (unlikely(cqid != cq->queue_id)) { 14167 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14168 "9149 Miss-matched fast-path compl " 14169 "queue id: eqcqid=%d, fcpcqid=%d\n", 14170 cqid, cq->queue_id); 14171 return; 14172 } 14173 14174 /* Save EQ associated with this CQ */ 14175 cq->assoc_qp = phba->sli4_hba.fof_eq; 14176 14177 /* CQ work will be processed on CPU affinitized to this IRQ */ 14178 if (!queue_work(phba->wq, &cq->irqwork)) 14179 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14180 "0367 Cannot schedule soft IRQ " 14181 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14182 cqid, cq->queue_id, smp_processor_id()); 14183 } 14184 14185 /** 14186 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 14187 * @irq: Interrupt number. 14188 * @dev_id: The device context pointer. 14189 * 14190 * This function is directly called from the PCI layer as an interrupt 14191 * service routine when device with SLI-4 interface spec is enabled with 14192 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 14193 * IOCB ring event in the HBA. However, when the device is enabled with either 14194 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14195 * device-level interrupt handler. When the PCI slot is in error recovery 14196 * or the HBA is undergoing initialization, the interrupt handler will not 14197 * process the interrupt. The Flash Optimized Fabric ring event are handled in 14198 * the intrrupt context. This function is called without any lock held. 14199 * It gets the hbalock to access and update SLI data structures. Note that, 14200 * the EQ to CQ are one-to-one map such that the EQ index is 14201 * equal to that of CQ index. 14202 * 14203 * This function returns IRQ_HANDLED when interrupt is handled else it 14204 * returns IRQ_NONE. 14205 **/ 14206 irqreturn_t 14207 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 14208 { 14209 struct lpfc_hba *phba; 14210 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14211 struct lpfc_queue *eq; 14212 struct lpfc_eqe *eqe; 14213 unsigned long iflag; 14214 int ecount = 0; 14215 14216 /* Get the driver's phba structure from the dev_id */ 14217 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14218 phba = hba_eq_hdl->phba; 14219 14220 if (unlikely(!phba)) 14221 return IRQ_NONE; 14222 14223 /* Get to the EQ struct associated with this vector */ 14224 eq = phba->sli4_hba.fof_eq; 14225 if (unlikely(!eq)) 14226 return IRQ_NONE; 14227 14228 /* Check device state for handling interrupt */ 14229 if (unlikely(lpfc_intr_state_check(phba))) { 14230 /* Check again for link_state with lock held */ 14231 spin_lock_irqsave(&phba->hbalock, iflag); 14232 if (phba->link_state < LPFC_LINK_DOWN) 14233 /* Flush, clear interrupt, and rearm the EQ */ 14234 lpfc_sli4_eq_flush(phba, eq); 14235 spin_unlock_irqrestore(&phba->hbalock, iflag); 14236 return IRQ_NONE; 14237 } 14238 14239 /* 14240 * Process all the event on FCP fast-path EQ 14241 */ 14242 while ((eqe = lpfc_sli4_eq_get(eq))) { 14243 lpfc_sli4_fof_handle_eqe(phba, eqe); 14244 if (!(++ecount % eq->entry_repost)) 14245 break; 14246 eq->EQ_processed++; 14247 } 14248 14249 /* Track the max number of EQEs processed in 1 intr */ 14250 if (ecount > eq->EQ_max_eqe) 14251 eq->EQ_max_eqe = ecount; 14252 14253 14254 if (unlikely(ecount == 0)) { 14255 eq->EQ_no_entry++; 14256 14257 if (phba->intr_type == MSIX) 14258 /* MSI-X treated interrupt served as no EQ share INT */ 14259 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14260 "9145 MSI-X interrupt with no EQE\n"); 14261 else { 14262 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14263 "9146 ISR interrupt with no EQE\n"); 14264 /* Non MSI-X treated on interrupt as EQ share INT */ 14265 return IRQ_NONE; 14266 } 14267 } 14268 /* Always clear and re-arm the fast-path EQ */ 14269 phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM); 14270 return IRQ_HANDLED; 14271 } 14272 14273 /** 14274 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14275 * @irq: Interrupt number. 14276 * @dev_id: The device context pointer. 14277 * 14278 * This function is directly called from the PCI layer as an interrupt 14279 * service routine when device with SLI-4 interface spec is enabled with 14280 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14281 * ring event in the HBA. However, when the device is enabled with either 14282 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14283 * device-level interrupt handler. When the PCI slot is in error recovery 14284 * or the HBA is undergoing initialization, the interrupt handler will not 14285 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14286 * the intrrupt context. This function is called without any lock held. 14287 * It gets the hbalock to access and update SLI data structures. Note that, 14288 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14289 * equal to that of FCP CQ index. 14290 * 14291 * The link attention and ELS ring attention events are handled 14292 * by the worker thread. The interrupt handler signals the worker thread 14293 * and returns for these events. This function is called without any lock 14294 * held. It gets the hbalock to access and update SLI data structures. 14295 * 14296 * This function returns IRQ_HANDLED when interrupt is handled else it 14297 * returns IRQ_NONE. 14298 **/ 14299 irqreturn_t 14300 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14301 { 14302 struct lpfc_hba *phba; 14303 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14304 struct lpfc_queue *fpeq; 14305 struct lpfc_eqe *eqe; 14306 unsigned long iflag; 14307 int ecount = 0; 14308 int hba_eqidx; 14309 14310 /* Get the driver's phba structure from the dev_id */ 14311 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14312 phba = hba_eq_hdl->phba; 14313 hba_eqidx = hba_eq_hdl->idx; 14314 14315 if (unlikely(!phba)) 14316 return IRQ_NONE; 14317 if (unlikely(!phba->sli4_hba.hba_eq)) 14318 return IRQ_NONE; 14319 14320 /* Get to the EQ struct associated with this vector */ 14321 fpeq = phba->sli4_hba.hba_eq[hba_eqidx]; 14322 if (unlikely(!fpeq)) 14323 return IRQ_NONE; 14324 14325 if (lpfc_fcp_look_ahead) { 14326 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) 14327 phba->sli4_hba.sli4_eq_clr_intr(fpeq); 14328 else { 14329 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14330 return IRQ_NONE; 14331 } 14332 } 14333 14334 /* Check device state for handling interrupt */ 14335 if (unlikely(lpfc_intr_state_check(phba))) { 14336 /* Check again for link_state with lock held */ 14337 spin_lock_irqsave(&phba->hbalock, iflag); 14338 if (phba->link_state < LPFC_LINK_DOWN) 14339 /* Flush, clear interrupt, and rearm the EQ */ 14340 lpfc_sli4_eq_flush(phba, fpeq); 14341 spin_unlock_irqrestore(&phba->hbalock, iflag); 14342 if (lpfc_fcp_look_ahead) 14343 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14344 return IRQ_NONE; 14345 } 14346 14347 /* 14348 * Process all the event on FCP fast-path EQ 14349 */ 14350 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 14351 lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx); 14352 if (!(++ecount % fpeq->entry_repost)) 14353 break; 14354 fpeq->EQ_processed++; 14355 } 14356 14357 /* Track the max number of EQEs processed in 1 intr */ 14358 if (ecount > fpeq->EQ_max_eqe) 14359 fpeq->EQ_max_eqe = ecount; 14360 14361 /* Always clear and re-arm the fast-path EQ */ 14362 phba->sli4_hba.sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 14363 14364 if (unlikely(ecount == 0)) { 14365 fpeq->EQ_no_entry++; 14366 14367 if (lpfc_fcp_look_ahead) { 14368 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14369 return IRQ_NONE; 14370 } 14371 14372 if (phba->intr_type == MSIX) 14373 /* MSI-X treated interrupt served as no EQ share INT */ 14374 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14375 "0358 MSI-X interrupt with no EQE\n"); 14376 else 14377 /* Non MSI-X treated on interrupt as EQ share INT */ 14378 return IRQ_NONE; 14379 } 14380 14381 if (lpfc_fcp_look_ahead) 14382 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 14383 14384 return IRQ_HANDLED; 14385 } /* lpfc_sli4_fp_intr_handler */ 14386 14387 /** 14388 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14389 * @irq: Interrupt number. 14390 * @dev_id: The device context pointer. 14391 * 14392 * This function is the device-level interrupt handler to device with SLI-4 14393 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14394 * interrupt mode is enabled and there is an event in the HBA which requires 14395 * driver attention. This function invokes the slow-path interrupt attention 14396 * handling function and fast-path interrupt attention handling function in 14397 * turn to process the relevant HBA attention events. This function is called 14398 * without any lock held. It gets the hbalock to access and update SLI data 14399 * structures. 14400 * 14401 * This function returns IRQ_HANDLED when interrupt is handled, else it 14402 * returns IRQ_NONE. 14403 **/ 14404 irqreturn_t 14405 lpfc_sli4_intr_handler(int irq, void *dev_id) 14406 { 14407 struct lpfc_hba *phba; 14408 irqreturn_t hba_irq_rc; 14409 bool hba_handled = false; 14410 int qidx; 14411 14412 /* Get the driver's phba structure from the dev_id */ 14413 phba = (struct lpfc_hba *)dev_id; 14414 14415 if (unlikely(!phba)) 14416 return IRQ_NONE; 14417 14418 /* 14419 * Invoke fast-path host attention interrupt handling as appropriate. 14420 */ 14421 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { 14422 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14423 &phba->sli4_hba.hba_eq_hdl[qidx]); 14424 if (hba_irq_rc == IRQ_HANDLED) 14425 hba_handled |= true; 14426 } 14427 14428 if (phba->cfg_fof) { 14429 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 14430 &phba->sli4_hba.hba_eq_hdl[qidx]); 14431 if (hba_irq_rc == IRQ_HANDLED) 14432 hba_handled |= true; 14433 } 14434 14435 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14436 } /* lpfc_sli4_intr_handler */ 14437 14438 /** 14439 * lpfc_sli4_queue_free - free a queue structure and associated memory 14440 * @queue: The queue structure to free. 14441 * 14442 * This function frees a queue structure and the DMAable memory used for 14443 * the host resident queue. This function must be called after destroying the 14444 * queue on the HBA. 14445 **/ 14446 void 14447 lpfc_sli4_queue_free(struct lpfc_queue *queue) 14448 { 14449 struct lpfc_dmabuf *dmabuf; 14450 14451 if (!queue) 14452 return; 14453 14454 while (!list_empty(&queue->page_list)) { 14455 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14456 list); 14457 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14458 dmabuf->virt, dmabuf->phys); 14459 kfree(dmabuf); 14460 } 14461 if (queue->rqbp) { 14462 lpfc_free_rq_buffer(queue->phba, queue); 14463 kfree(queue->rqbp); 14464 } 14465 14466 if (!list_empty(&queue->wq_list)) 14467 list_del(&queue->wq_list); 14468 14469 kfree(queue); 14470 return; 14471 } 14472 14473 /** 14474 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14475 * @phba: The HBA that this queue is being created on. 14476 * @page_size: The size of a queue page 14477 * @entry_size: The size of each queue entry for this queue. 14478 * @entry count: The number of entries that this queue will handle. 14479 * 14480 * This function allocates a queue structure and the DMAable memory used for 14481 * the host resident queue. This function must be called before creating the 14482 * queue on the HBA. 14483 **/ 14484 struct lpfc_queue * 14485 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14486 uint32_t entry_size, uint32_t entry_count) 14487 { 14488 struct lpfc_queue *queue; 14489 struct lpfc_dmabuf *dmabuf; 14490 int x, total_qe_count; 14491 void *dma_pointer; 14492 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14493 14494 if (!phba->sli4_hba.pc_sli4_params.supported) 14495 hw_page_size = page_size; 14496 14497 queue = kzalloc(sizeof(struct lpfc_queue) + 14498 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 14499 if (!queue) 14500 return NULL; 14501 queue->page_count = (ALIGN(entry_size * entry_count, 14502 hw_page_size))/hw_page_size; 14503 14504 /* If needed, Adjust page count to match the max the adapter supports */ 14505 if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt) 14506 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt; 14507 14508 INIT_LIST_HEAD(&queue->list); 14509 INIT_LIST_HEAD(&queue->wq_list); 14510 INIT_LIST_HEAD(&queue->wqfull_list); 14511 INIT_LIST_HEAD(&queue->page_list); 14512 INIT_LIST_HEAD(&queue->child_list); 14513 14514 /* Set queue parameters now. If the system cannot provide memory 14515 * resources, the free routine needs to know what was allocated. 14516 */ 14517 queue->entry_size = entry_size; 14518 queue->entry_count = entry_count; 14519 queue->page_size = hw_page_size; 14520 queue->phba = phba; 14521 14522 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 14523 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 14524 if (!dmabuf) 14525 goto out_fail; 14526 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 14527 hw_page_size, &dmabuf->phys, 14528 GFP_KERNEL); 14529 if (!dmabuf->virt) { 14530 kfree(dmabuf); 14531 goto out_fail; 14532 } 14533 dmabuf->buffer_tag = x; 14534 list_add_tail(&dmabuf->list, &queue->page_list); 14535 /* initialize queue's entry array */ 14536 dma_pointer = dmabuf->virt; 14537 for (; total_qe_count < entry_count && 14538 dma_pointer < (hw_page_size + dmabuf->virt); 14539 total_qe_count++, dma_pointer += entry_size) { 14540 queue->qe[total_qe_count].address = dma_pointer; 14541 } 14542 } 14543 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14544 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14545 14546 /* entry_repost will be set during q creation */ 14547 14548 return queue; 14549 out_fail: 14550 lpfc_sli4_queue_free(queue); 14551 return NULL; 14552 } 14553 14554 /** 14555 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14556 * @phba: HBA structure that indicates port to create a queue on. 14557 * @pci_barset: PCI BAR set flag. 14558 * 14559 * This function shall perform iomap of the specified PCI BAR address to host 14560 * memory address if not already done so and return it. The returned host 14561 * memory address can be NULL. 14562 */ 14563 static void __iomem * 14564 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14565 { 14566 if (!phba->pcidev) 14567 return NULL; 14568 14569 switch (pci_barset) { 14570 case WQ_PCI_BAR_0_AND_1: 14571 return phba->pci_bar0_memmap_p; 14572 case WQ_PCI_BAR_2_AND_3: 14573 return phba->pci_bar2_memmap_p; 14574 case WQ_PCI_BAR_4_AND_5: 14575 return phba->pci_bar4_memmap_p; 14576 default: 14577 break; 14578 } 14579 return NULL; 14580 } 14581 14582 /** 14583 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs 14584 * @phba: HBA structure that indicates port to create a queue on. 14585 * @startq: The starting FCP EQ to modify 14586 * 14587 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 14588 * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be 14589 * updated in one mailbox command. 14590 * 14591 * The @phba struct is used to send mailbox command to HBA. The @startq 14592 * is used to get the starting FCP EQ to change. 14593 * This function is asynchronous and will wait for the mailbox 14594 * command to finish before continuing. 14595 * 14596 * On success this function will return a zero. If unable to allocate enough 14597 * memory this function will return -ENOMEM. If the queue create mailbox command 14598 * fails this function will return -ENXIO. 14599 **/ 14600 int 14601 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14602 uint32_t numq, uint32_t imax) 14603 { 14604 struct lpfc_mbx_modify_eq_delay *eq_delay; 14605 LPFC_MBOXQ_t *mbox; 14606 struct lpfc_queue *eq; 14607 int cnt, rc, length, status = 0; 14608 uint32_t shdr_status, shdr_add_status; 14609 uint32_t result, val; 14610 int qidx; 14611 union lpfc_sli4_cfg_shdr *shdr; 14612 uint16_t dmult; 14613 14614 if (startq >= phba->io_channel_irqs) 14615 return 0; 14616 14617 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14618 if (!mbox) 14619 return -ENOMEM; 14620 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14621 sizeof(struct lpfc_sli4_cfg_mhdr)); 14622 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14623 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14624 length, LPFC_SLI4_MBX_EMBED); 14625 eq_delay = &mbox->u.mqe.un.eq_delay; 14626 14627 /* Calculate delay multiper from maximum interrupt per second */ 14628 result = imax / phba->io_channel_irqs; 14629 if (result > LPFC_DMULT_CONST || result == 0) 14630 dmult = 0; 14631 else 14632 dmult = LPFC_DMULT_CONST/result - 1; 14633 if (dmult > LPFC_DMULT_MAX) 14634 dmult = LPFC_DMULT_MAX; 14635 14636 cnt = 0; 14637 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) { 14638 eq = phba->sli4_hba.hba_eq[qidx]; 14639 if (!eq) 14640 continue; 14641 eq->q_mode = imax; 14642 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14643 eq_delay->u.request.eq[cnt].phase = 0; 14644 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14645 cnt++; 14646 14647 /* q_mode is only used for auto_imax */ 14648 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14649 /* Use EQ Delay Register method for q_mode */ 14650 14651 /* Convert for EQ Delay register */ 14652 val = phba->cfg_fcp_imax; 14653 if (val) { 14654 /* First, interrupts per sec per EQ */ 14655 val = phba->cfg_fcp_imax / 14656 phba->io_channel_irqs; 14657 14658 /* us delay between each interrupt */ 14659 val = LPFC_SEC_TO_USEC / val; 14660 } 14661 eq->q_mode = val; 14662 } else { 14663 eq->q_mode = imax; 14664 } 14665 14666 if (cnt >= numq) 14667 break; 14668 } 14669 eq_delay->u.request.num_eq = cnt; 14670 14671 mbox->vport = phba->pport; 14672 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14673 mbox->context1 = NULL; 14674 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14675 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14676 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14677 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14678 if (shdr_status || shdr_add_status || rc) { 14679 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14680 "2512 MODIFY_EQ_DELAY mailbox failed with " 14681 "status x%x add_status x%x, mbx status x%x\n", 14682 shdr_status, shdr_add_status, rc); 14683 status = -ENXIO; 14684 } 14685 mempool_free(mbox, phba->mbox_mem_pool); 14686 return status; 14687 } 14688 14689 /** 14690 * lpfc_eq_create - Create an Event Queue on the HBA 14691 * @phba: HBA structure that indicates port to create a queue on. 14692 * @eq: The queue structure to use to create the event queue. 14693 * @imax: The maximum interrupt per second limit. 14694 * 14695 * This function creates an event queue, as detailed in @eq, on a port, 14696 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14697 * 14698 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14699 * is used to get the entry count and entry size that are necessary to 14700 * determine the number of pages to allocate and use for this queue. This 14701 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14702 * event queue. This function is asynchronous and will wait for the mailbox 14703 * command to finish before continuing. 14704 * 14705 * On success this function will return a zero. If unable to allocate enough 14706 * memory this function will return -ENOMEM. If the queue create mailbox command 14707 * fails this function will return -ENXIO. 14708 **/ 14709 int 14710 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14711 { 14712 struct lpfc_mbx_eq_create *eq_create; 14713 LPFC_MBOXQ_t *mbox; 14714 int rc, length, status = 0; 14715 struct lpfc_dmabuf *dmabuf; 14716 uint32_t shdr_status, shdr_add_status; 14717 union lpfc_sli4_cfg_shdr *shdr; 14718 uint16_t dmult; 14719 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14720 14721 /* sanity check on queue memory */ 14722 if (!eq) 14723 return -ENODEV; 14724 if (!phba->sli4_hba.pc_sli4_params.supported) 14725 hw_page_size = SLI4_PAGE_SIZE; 14726 14727 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14728 if (!mbox) 14729 return -ENOMEM; 14730 length = (sizeof(struct lpfc_mbx_eq_create) - 14731 sizeof(struct lpfc_sli4_cfg_mhdr)); 14732 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14733 LPFC_MBOX_OPCODE_EQ_CREATE, 14734 length, LPFC_SLI4_MBX_EMBED); 14735 eq_create = &mbox->u.mqe.un.eq_create; 14736 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14737 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14738 eq->page_count); 14739 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14740 LPFC_EQE_SIZE); 14741 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14742 14743 /* Use version 2 of CREATE_EQ if eqav is set */ 14744 if (phba->sli4_hba.pc_sli4_params.eqav) { 14745 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14746 LPFC_Q_CREATE_VERSION_2); 14747 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 14748 phba->sli4_hba.pc_sli4_params.eqav); 14749 } 14750 14751 /* don't setup delay multiplier using EQ_CREATE */ 14752 dmult = 0; 14753 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14754 dmult); 14755 switch (eq->entry_count) { 14756 default: 14757 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14758 "0360 Unsupported EQ count. (%d)\n", 14759 eq->entry_count); 14760 if (eq->entry_count < 256) 14761 return -EINVAL; 14762 /* otherwise default to smallest count (drop through) */ 14763 case 256: 14764 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14765 LPFC_EQ_CNT_256); 14766 break; 14767 case 512: 14768 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14769 LPFC_EQ_CNT_512); 14770 break; 14771 case 1024: 14772 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14773 LPFC_EQ_CNT_1024); 14774 break; 14775 case 2048: 14776 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14777 LPFC_EQ_CNT_2048); 14778 break; 14779 case 4096: 14780 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14781 LPFC_EQ_CNT_4096); 14782 break; 14783 } 14784 list_for_each_entry(dmabuf, &eq->page_list, list) { 14785 memset(dmabuf->virt, 0, hw_page_size); 14786 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14787 putPaddrLow(dmabuf->phys); 14788 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14789 putPaddrHigh(dmabuf->phys); 14790 } 14791 mbox->vport = phba->pport; 14792 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14793 mbox->context1 = NULL; 14794 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14795 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14796 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14797 if (shdr_status || shdr_add_status || rc) { 14798 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14799 "2500 EQ_CREATE mailbox failed with " 14800 "status x%x add_status x%x, mbx status x%x\n", 14801 shdr_status, shdr_add_status, rc); 14802 status = -ENXIO; 14803 } 14804 eq->type = LPFC_EQ; 14805 eq->subtype = LPFC_NONE; 14806 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14807 if (eq->queue_id == 0xFFFF) 14808 status = -ENXIO; 14809 eq->host_index = 0; 14810 eq->hba_index = 0; 14811 eq->entry_repost = LPFC_EQ_REPOST; 14812 14813 mempool_free(mbox, phba->mbox_mem_pool); 14814 return status; 14815 } 14816 14817 /** 14818 * lpfc_cq_create - Create a Completion Queue on the HBA 14819 * @phba: HBA structure that indicates port to create a queue on. 14820 * @cq: The queue structure to use to create the completion queue. 14821 * @eq: The event queue to bind this completion queue to. 14822 * 14823 * This function creates a completion queue, as detailed in @wq, on a port, 14824 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14825 * 14826 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14827 * is used to get the entry count and entry size that are necessary to 14828 * determine the number of pages to allocate and use for this queue. The @eq 14829 * is used to indicate which event queue to bind this completion queue to. This 14830 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14831 * completion queue. This function is asynchronous and will wait for the mailbox 14832 * command to finish before continuing. 14833 * 14834 * On success this function will return a zero. If unable to allocate enough 14835 * memory this function will return -ENOMEM. If the queue create mailbox command 14836 * fails this function will return -ENXIO. 14837 **/ 14838 int 14839 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14840 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14841 { 14842 struct lpfc_mbx_cq_create *cq_create; 14843 struct lpfc_dmabuf *dmabuf; 14844 LPFC_MBOXQ_t *mbox; 14845 int rc, length, status = 0; 14846 uint32_t shdr_status, shdr_add_status; 14847 union lpfc_sli4_cfg_shdr *shdr; 14848 14849 /* sanity check on queue memory */ 14850 if (!cq || !eq) 14851 return -ENODEV; 14852 14853 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14854 if (!mbox) 14855 return -ENOMEM; 14856 length = (sizeof(struct lpfc_mbx_cq_create) - 14857 sizeof(struct lpfc_sli4_cfg_mhdr)); 14858 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14859 LPFC_MBOX_OPCODE_CQ_CREATE, 14860 length, LPFC_SLI4_MBX_EMBED); 14861 cq_create = &mbox->u.mqe.un.cq_create; 14862 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14863 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14864 cq->page_count); 14865 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14866 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14867 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14868 phba->sli4_hba.pc_sli4_params.cqv); 14869 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14870 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 14871 (cq->page_size / SLI4_PAGE_SIZE)); 14872 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14873 eq->queue_id); 14874 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 14875 phba->sli4_hba.pc_sli4_params.cqav); 14876 } else { 14877 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14878 eq->queue_id); 14879 } 14880 switch (cq->entry_count) { 14881 case 2048: 14882 case 4096: 14883 if (phba->sli4_hba.pc_sli4_params.cqv == 14884 LPFC_Q_CREATE_VERSION_2) { 14885 cq_create->u.request.context.lpfc_cq_context_count = 14886 cq->entry_count; 14887 bf_set(lpfc_cq_context_count, 14888 &cq_create->u.request.context, 14889 LPFC_CQ_CNT_WORD7); 14890 break; 14891 } 14892 /* Fall Thru */ 14893 default: 14894 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14895 "0361 Unsupported CQ count: " 14896 "entry cnt %d sz %d pg cnt %d\n", 14897 cq->entry_count, cq->entry_size, 14898 cq->page_count); 14899 if (cq->entry_count < 256) { 14900 status = -EINVAL; 14901 goto out; 14902 } 14903 /* otherwise default to smallest count (drop through) */ 14904 case 256: 14905 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14906 LPFC_CQ_CNT_256); 14907 break; 14908 case 512: 14909 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14910 LPFC_CQ_CNT_512); 14911 break; 14912 case 1024: 14913 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14914 LPFC_CQ_CNT_1024); 14915 break; 14916 } 14917 list_for_each_entry(dmabuf, &cq->page_list, list) { 14918 memset(dmabuf->virt, 0, cq->page_size); 14919 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14920 putPaddrLow(dmabuf->phys); 14921 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14922 putPaddrHigh(dmabuf->phys); 14923 } 14924 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14925 14926 /* The IOCTL status is embedded in the mailbox subheader. */ 14927 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14928 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14929 if (shdr_status || shdr_add_status || rc) { 14930 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14931 "2501 CQ_CREATE mailbox failed with " 14932 "status x%x add_status x%x, mbx status x%x\n", 14933 shdr_status, shdr_add_status, rc); 14934 status = -ENXIO; 14935 goto out; 14936 } 14937 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14938 if (cq->queue_id == 0xFFFF) { 14939 status = -ENXIO; 14940 goto out; 14941 } 14942 /* link the cq onto the parent eq child list */ 14943 list_add_tail(&cq->list, &eq->child_list); 14944 /* Set up completion queue's type and subtype */ 14945 cq->type = type; 14946 cq->subtype = subtype; 14947 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14948 cq->assoc_qid = eq->queue_id; 14949 cq->host_index = 0; 14950 cq->hba_index = 0; 14951 cq->entry_repost = LPFC_CQ_REPOST; 14952 14953 out: 14954 mempool_free(mbox, phba->mbox_mem_pool); 14955 return status; 14956 } 14957 14958 /** 14959 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 14960 * @phba: HBA structure that indicates port to create a queue on. 14961 * @cqp: The queue structure array to use to create the completion queues. 14962 * @eqp: The event queue array to bind these completion queues to. 14963 * 14964 * This function creates a set of completion queue, s to support MRQ 14965 * as detailed in @cqp, on a port, 14966 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 14967 * 14968 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14969 * is used to get the entry count and entry size that are necessary to 14970 * determine the number of pages to allocate and use for this queue. The @eq 14971 * is used to indicate which event queue to bind this completion queue to. This 14972 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 14973 * completion queue. This function is asynchronous and will wait for the mailbox 14974 * command to finish before continuing. 14975 * 14976 * On success this function will return a zero. If unable to allocate enough 14977 * memory this function will return -ENOMEM. If the queue create mailbox command 14978 * fails this function will return -ENXIO. 14979 **/ 14980 int 14981 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 14982 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype) 14983 { 14984 struct lpfc_queue *cq; 14985 struct lpfc_queue *eq; 14986 struct lpfc_mbx_cq_create_set *cq_set; 14987 struct lpfc_dmabuf *dmabuf; 14988 LPFC_MBOXQ_t *mbox; 14989 int rc, length, alloclen, status = 0; 14990 int cnt, idx, numcq, page_idx = 0; 14991 uint32_t shdr_status, shdr_add_status; 14992 union lpfc_sli4_cfg_shdr *shdr; 14993 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14994 14995 /* sanity check on queue memory */ 14996 numcq = phba->cfg_nvmet_mrq; 14997 if (!cqp || !eqp || !numcq) 14998 return -ENODEV; 14999 15000 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15001 if (!mbox) 15002 return -ENOMEM; 15003 15004 length = sizeof(struct lpfc_mbx_cq_create_set); 15005 length += ((numcq * cqp[0]->page_count) * 15006 sizeof(struct dma_address)); 15007 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15008 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15009 LPFC_SLI4_MBX_NEMBED); 15010 if (alloclen < length) { 15011 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15012 "3098 Allocated DMA memory size (%d) is " 15013 "less than the requested DMA memory size " 15014 "(%d)\n", alloclen, length); 15015 status = -ENOMEM; 15016 goto out; 15017 } 15018 cq_set = mbox->sge_array->addr[0]; 15019 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15020 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15021 15022 for (idx = 0; idx < numcq; idx++) { 15023 cq = cqp[idx]; 15024 eq = eqp[idx]; 15025 if (!cq || !eq) { 15026 status = -ENOMEM; 15027 goto out; 15028 } 15029 if (!phba->sli4_hba.pc_sli4_params.supported) 15030 hw_page_size = cq->page_size; 15031 15032 switch (idx) { 15033 case 0: 15034 bf_set(lpfc_mbx_cq_create_set_page_size, 15035 &cq_set->u.request, 15036 (hw_page_size / SLI4_PAGE_SIZE)); 15037 bf_set(lpfc_mbx_cq_create_set_num_pages, 15038 &cq_set->u.request, cq->page_count); 15039 bf_set(lpfc_mbx_cq_create_set_evt, 15040 &cq_set->u.request, 1); 15041 bf_set(lpfc_mbx_cq_create_set_valid, 15042 &cq_set->u.request, 1); 15043 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15044 &cq_set->u.request, 0); 15045 bf_set(lpfc_mbx_cq_create_set_num_cq, 15046 &cq_set->u.request, numcq); 15047 bf_set(lpfc_mbx_cq_create_set_autovalid, 15048 &cq_set->u.request, 15049 phba->sli4_hba.pc_sli4_params.cqav); 15050 switch (cq->entry_count) { 15051 case 2048: 15052 case 4096: 15053 if (phba->sli4_hba.pc_sli4_params.cqv == 15054 LPFC_Q_CREATE_VERSION_2) { 15055 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15056 &cq_set->u.request, 15057 cq->entry_count); 15058 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15059 &cq_set->u.request, 15060 LPFC_CQ_CNT_WORD7); 15061 break; 15062 } 15063 /* Fall Thru */ 15064 default: 15065 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15066 "3118 Bad CQ count. (%d)\n", 15067 cq->entry_count); 15068 if (cq->entry_count < 256) { 15069 status = -EINVAL; 15070 goto out; 15071 } 15072 /* otherwise default to smallest (drop thru) */ 15073 case 256: 15074 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15075 &cq_set->u.request, LPFC_CQ_CNT_256); 15076 break; 15077 case 512: 15078 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15079 &cq_set->u.request, LPFC_CQ_CNT_512); 15080 break; 15081 case 1024: 15082 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15083 &cq_set->u.request, LPFC_CQ_CNT_1024); 15084 break; 15085 } 15086 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15087 &cq_set->u.request, eq->queue_id); 15088 break; 15089 case 1: 15090 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15091 &cq_set->u.request, eq->queue_id); 15092 break; 15093 case 2: 15094 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15095 &cq_set->u.request, eq->queue_id); 15096 break; 15097 case 3: 15098 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15099 &cq_set->u.request, eq->queue_id); 15100 break; 15101 case 4: 15102 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15103 &cq_set->u.request, eq->queue_id); 15104 break; 15105 case 5: 15106 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15107 &cq_set->u.request, eq->queue_id); 15108 break; 15109 case 6: 15110 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15111 &cq_set->u.request, eq->queue_id); 15112 break; 15113 case 7: 15114 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15115 &cq_set->u.request, eq->queue_id); 15116 break; 15117 case 8: 15118 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15119 &cq_set->u.request, eq->queue_id); 15120 break; 15121 case 9: 15122 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15123 &cq_set->u.request, eq->queue_id); 15124 break; 15125 case 10: 15126 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15127 &cq_set->u.request, eq->queue_id); 15128 break; 15129 case 11: 15130 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15131 &cq_set->u.request, eq->queue_id); 15132 break; 15133 case 12: 15134 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15135 &cq_set->u.request, eq->queue_id); 15136 break; 15137 case 13: 15138 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15139 &cq_set->u.request, eq->queue_id); 15140 break; 15141 case 14: 15142 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15143 &cq_set->u.request, eq->queue_id); 15144 break; 15145 case 15: 15146 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15147 &cq_set->u.request, eq->queue_id); 15148 break; 15149 } 15150 15151 /* link the cq onto the parent eq child list */ 15152 list_add_tail(&cq->list, &eq->child_list); 15153 /* Set up completion queue's type and subtype */ 15154 cq->type = type; 15155 cq->subtype = subtype; 15156 cq->assoc_qid = eq->queue_id; 15157 cq->host_index = 0; 15158 cq->hba_index = 0; 15159 cq->entry_repost = LPFC_CQ_REPOST; 15160 cq->chann = idx; 15161 15162 rc = 0; 15163 list_for_each_entry(dmabuf, &cq->page_list, list) { 15164 memset(dmabuf->virt, 0, hw_page_size); 15165 cnt = page_idx + dmabuf->buffer_tag; 15166 cq_set->u.request.page[cnt].addr_lo = 15167 putPaddrLow(dmabuf->phys); 15168 cq_set->u.request.page[cnt].addr_hi = 15169 putPaddrHigh(dmabuf->phys); 15170 rc++; 15171 } 15172 page_idx += rc; 15173 } 15174 15175 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15176 15177 /* The IOCTL status is embedded in the mailbox subheader. */ 15178 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15179 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15180 if (shdr_status || shdr_add_status || rc) { 15181 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15182 "3119 CQ_CREATE_SET mailbox failed with " 15183 "status x%x add_status x%x, mbx status x%x\n", 15184 shdr_status, shdr_add_status, rc); 15185 status = -ENXIO; 15186 goto out; 15187 } 15188 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15189 if (rc == 0xFFFF) { 15190 status = -ENXIO; 15191 goto out; 15192 } 15193 15194 for (idx = 0; idx < numcq; idx++) { 15195 cq = cqp[idx]; 15196 cq->queue_id = rc + idx; 15197 } 15198 15199 out: 15200 lpfc_sli4_mbox_cmd_free(phba, mbox); 15201 return status; 15202 } 15203 15204 /** 15205 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15206 * @phba: HBA structure that indicates port to create a queue on. 15207 * @mq: The queue structure to use to create the mailbox queue. 15208 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15209 * @cq: The completion queue to associate with this cq. 15210 * 15211 * This function provides failback (fb) functionality when the 15212 * mq_create_ext fails on older FW generations. It's purpose is identical 15213 * to mq_create_ext otherwise. 15214 * 15215 * This routine cannot fail as all attributes were previously accessed and 15216 * initialized in mq_create_ext. 15217 **/ 15218 static void 15219 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15220 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15221 { 15222 struct lpfc_mbx_mq_create *mq_create; 15223 struct lpfc_dmabuf *dmabuf; 15224 int length; 15225 15226 length = (sizeof(struct lpfc_mbx_mq_create) - 15227 sizeof(struct lpfc_sli4_cfg_mhdr)); 15228 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15229 LPFC_MBOX_OPCODE_MQ_CREATE, 15230 length, LPFC_SLI4_MBX_EMBED); 15231 mq_create = &mbox->u.mqe.un.mq_create; 15232 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15233 mq->page_count); 15234 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15235 cq->queue_id); 15236 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15237 switch (mq->entry_count) { 15238 case 16: 15239 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15240 LPFC_MQ_RING_SIZE_16); 15241 break; 15242 case 32: 15243 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15244 LPFC_MQ_RING_SIZE_32); 15245 break; 15246 case 64: 15247 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15248 LPFC_MQ_RING_SIZE_64); 15249 break; 15250 case 128: 15251 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15252 LPFC_MQ_RING_SIZE_128); 15253 break; 15254 } 15255 list_for_each_entry(dmabuf, &mq->page_list, list) { 15256 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15257 putPaddrLow(dmabuf->phys); 15258 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15259 putPaddrHigh(dmabuf->phys); 15260 } 15261 } 15262 15263 /** 15264 * lpfc_mq_create - Create a mailbox Queue on the HBA 15265 * @phba: HBA structure that indicates port to create a queue on. 15266 * @mq: The queue structure to use to create the mailbox queue. 15267 * @cq: The completion queue to associate with this cq. 15268 * @subtype: The queue's subtype. 15269 * 15270 * This function creates a mailbox queue, as detailed in @mq, on a port, 15271 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15272 * 15273 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15274 * is used to get the entry count and entry size that are necessary to 15275 * determine the number of pages to allocate and use for this queue. This 15276 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15277 * mailbox queue. This function is asynchronous and will wait for the mailbox 15278 * command to finish before continuing. 15279 * 15280 * On success this function will return a zero. If unable to allocate enough 15281 * memory this function will return -ENOMEM. If the queue create mailbox command 15282 * fails this function will return -ENXIO. 15283 **/ 15284 int32_t 15285 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15286 struct lpfc_queue *cq, uint32_t subtype) 15287 { 15288 struct lpfc_mbx_mq_create *mq_create; 15289 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15290 struct lpfc_dmabuf *dmabuf; 15291 LPFC_MBOXQ_t *mbox; 15292 int rc, length, status = 0; 15293 uint32_t shdr_status, shdr_add_status; 15294 union lpfc_sli4_cfg_shdr *shdr; 15295 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15296 15297 /* sanity check on queue memory */ 15298 if (!mq || !cq) 15299 return -ENODEV; 15300 if (!phba->sli4_hba.pc_sli4_params.supported) 15301 hw_page_size = SLI4_PAGE_SIZE; 15302 15303 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15304 if (!mbox) 15305 return -ENOMEM; 15306 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15307 sizeof(struct lpfc_sli4_cfg_mhdr)); 15308 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15309 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15310 length, LPFC_SLI4_MBX_EMBED); 15311 15312 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15313 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15314 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15315 &mq_create_ext->u.request, mq->page_count); 15316 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15317 &mq_create_ext->u.request, 1); 15318 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15319 &mq_create_ext->u.request, 1); 15320 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15321 &mq_create_ext->u.request, 1); 15322 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15323 &mq_create_ext->u.request, 1); 15324 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15325 &mq_create_ext->u.request, 1); 15326 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15327 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15328 phba->sli4_hba.pc_sli4_params.mqv); 15329 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15330 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15331 cq->queue_id); 15332 else 15333 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15334 cq->queue_id); 15335 switch (mq->entry_count) { 15336 default: 15337 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15338 "0362 Unsupported MQ count. (%d)\n", 15339 mq->entry_count); 15340 if (mq->entry_count < 16) { 15341 status = -EINVAL; 15342 goto out; 15343 } 15344 /* otherwise default to smallest count (drop through) */ 15345 case 16: 15346 bf_set(lpfc_mq_context_ring_size, 15347 &mq_create_ext->u.request.context, 15348 LPFC_MQ_RING_SIZE_16); 15349 break; 15350 case 32: 15351 bf_set(lpfc_mq_context_ring_size, 15352 &mq_create_ext->u.request.context, 15353 LPFC_MQ_RING_SIZE_32); 15354 break; 15355 case 64: 15356 bf_set(lpfc_mq_context_ring_size, 15357 &mq_create_ext->u.request.context, 15358 LPFC_MQ_RING_SIZE_64); 15359 break; 15360 case 128: 15361 bf_set(lpfc_mq_context_ring_size, 15362 &mq_create_ext->u.request.context, 15363 LPFC_MQ_RING_SIZE_128); 15364 break; 15365 } 15366 list_for_each_entry(dmabuf, &mq->page_list, list) { 15367 memset(dmabuf->virt, 0, hw_page_size); 15368 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15369 putPaddrLow(dmabuf->phys); 15370 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15371 putPaddrHigh(dmabuf->phys); 15372 } 15373 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15374 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15375 &mq_create_ext->u.response); 15376 if (rc != MBX_SUCCESS) { 15377 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15378 "2795 MQ_CREATE_EXT failed with " 15379 "status x%x. Failback to MQ_CREATE.\n", 15380 rc); 15381 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15382 mq_create = &mbox->u.mqe.un.mq_create; 15383 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15384 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15385 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15386 &mq_create->u.response); 15387 } 15388 15389 /* The IOCTL status is embedded in the mailbox subheader. */ 15390 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15391 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15392 if (shdr_status || shdr_add_status || rc) { 15393 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15394 "2502 MQ_CREATE mailbox failed with " 15395 "status x%x add_status x%x, mbx status x%x\n", 15396 shdr_status, shdr_add_status, rc); 15397 status = -ENXIO; 15398 goto out; 15399 } 15400 if (mq->queue_id == 0xFFFF) { 15401 status = -ENXIO; 15402 goto out; 15403 } 15404 mq->type = LPFC_MQ; 15405 mq->assoc_qid = cq->queue_id; 15406 mq->subtype = subtype; 15407 mq->host_index = 0; 15408 mq->hba_index = 0; 15409 mq->entry_repost = LPFC_MQ_REPOST; 15410 15411 /* link the mq onto the parent cq child list */ 15412 list_add_tail(&mq->list, &cq->child_list); 15413 out: 15414 mempool_free(mbox, phba->mbox_mem_pool); 15415 return status; 15416 } 15417 15418 /** 15419 * lpfc_wq_create - Create a Work Queue on the HBA 15420 * @phba: HBA structure that indicates port to create a queue on. 15421 * @wq: The queue structure to use to create the work queue. 15422 * @cq: The completion queue to bind this work queue to. 15423 * @subtype: The subtype of the work queue indicating its functionality. 15424 * 15425 * This function creates a work queue, as detailed in @wq, on a port, described 15426 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15427 * 15428 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15429 * is used to get the entry count and entry size that are necessary to 15430 * determine the number of pages to allocate and use for this queue. The @cq 15431 * is used to indicate which completion queue to bind this work queue to. This 15432 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15433 * work queue. This function is asynchronous and will wait for the mailbox 15434 * command to finish before continuing. 15435 * 15436 * On success this function will return a zero. If unable to allocate enough 15437 * memory this function will return -ENOMEM. If the queue create mailbox command 15438 * fails this function will return -ENXIO. 15439 **/ 15440 int 15441 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15442 struct lpfc_queue *cq, uint32_t subtype) 15443 { 15444 struct lpfc_mbx_wq_create *wq_create; 15445 struct lpfc_dmabuf *dmabuf; 15446 LPFC_MBOXQ_t *mbox; 15447 int rc, length, status = 0; 15448 uint32_t shdr_status, shdr_add_status; 15449 union lpfc_sli4_cfg_shdr *shdr; 15450 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15451 struct dma_address *page; 15452 void __iomem *bar_memmap_p; 15453 uint32_t db_offset; 15454 uint16_t pci_barset; 15455 uint8_t dpp_barset; 15456 uint32_t dpp_offset; 15457 unsigned long pg_addr; 15458 uint8_t wq_create_version; 15459 15460 /* sanity check on queue memory */ 15461 if (!wq || !cq) 15462 return -ENODEV; 15463 if (!phba->sli4_hba.pc_sli4_params.supported) 15464 hw_page_size = wq->page_size; 15465 15466 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15467 if (!mbox) 15468 return -ENOMEM; 15469 length = (sizeof(struct lpfc_mbx_wq_create) - 15470 sizeof(struct lpfc_sli4_cfg_mhdr)); 15471 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15472 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15473 length, LPFC_SLI4_MBX_EMBED); 15474 wq_create = &mbox->u.mqe.un.wq_create; 15475 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15476 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15477 wq->page_count); 15478 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15479 cq->queue_id); 15480 15481 /* wqv is the earliest version supported, NOT the latest */ 15482 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15483 phba->sli4_hba.pc_sli4_params.wqv); 15484 15485 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15486 (wq->page_size > SLI4_PAGE_SIZE)) 15487 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15488 else 15489 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15490 15491 15492 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15493 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15494 else 15495 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15496 15497 switch (wq_create_version) { 15498 case LPFC_Q_CREATE_VERSION_1: 15499 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15500 wq->entry_count); 15501 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15502 LPFC_Q_CREATE_VERSION_1); 15503 15504 switch (wq->entry_size) { 15505 default: 15506 case 64: 15507 bf_set(lpfc_mbx_wq_create_wqe_size, 15508 &wq_create->u.request_1, 15509 LPFC_WQ_WQE_SIZE_64); 15510 break; 15511 case 128: 15512 bf_set(lpfc_mbx_wq_create_wqe_size, 15513 &wq_create->u.request_1, 15514 LPFC_WQ_WQE_SIZE_128); 15515 break; 15516 } 15517 /* Request DPP by default */ 15518 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15519 bf_set(lpfc_mbx_wq_create_page_size, 15520 &wq_create->u.request_1, 15521 (wq->page_size / SLI4_PAGE_SIZE)); 15522 page = wq_create->u.request_1.page; 15523 break; 15524 default: 15525 page = wq_create->u.request.page; 15526 break; 15527 } 15528 15529 list_for_each_entry(dmabuf, &wq->page_list, list) { 15530 memset(dmabuf->virt, 0, hw_page_size); 15531 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15532 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15533 } 15534 15535 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15536 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15537 15538 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15539 /* The IOCTL status is embedded in the mailbox subheader. */ 15540 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15541 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15542 if (shdr_status || shdr_add_status || rc) { 15543 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15544 "2503 WQ_CREATE mailbox failed with " 15545 "status x%x add_status x%x, mbx status x%x\n", 15546 shdr_status, shdr_add_status, rc); 15547 status = -ENXIO; 15548 goto out; 15549 } 15550 15551 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15552 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15553 &wq_create->u.response); 15554 else 15555 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15556 &wq_create->u.response_1); 15557 15558 if (wq->queue_id == 0xFFFF) { 15559 status = -ENXIO; 15560 goto out; 15561 } 15562 15563 wq->db_format = LPFC_DB_LIST_FORMAT; 15564 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15565 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15566 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15567 &wq_create->u.response); 15568 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15569 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15570 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15571 "3265 WQ[%d] doorbell format " 15572 "not supported: x%x\n", 15573 wq->queue_id, wq->db_format); 15574 status = -EINVAL; 15575 goto out; 15576 } 15577 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15578 &wq_create->u.response); 15579 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15580 pci_barset); 15581 if (!bar_memmap_p) { 15582 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15583 "3263 WQ[%d] failed to memmap " 15584 "pci barset:x%x\n", 15585 wq->queue_id, pci_barset); 15586 status = -ENOMEM; 15587 goto out; 15588 } 15589 db_offset = wq_create->u.response.doorbell_offset; 15590 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15591 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15592 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15593 "3252 WQ[%d] doorbell offset " 15594 "not supported: x%x\n", 15595 wq->queue_id, db_offset); 15596 status = -EINVAL; 15597 goto out; 15598 } 15599 wq->db_regaddr = bar_memmap_p + db_offset; 15600 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15601 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15602 "format:x%x\n", wq->queue_id, 15603 pci_barset, db_offset, wq->db_format); 15604 } else 15605 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15606 } else { 15607 /* Check if DPP was honored by the firmware */ 15608 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 15609 &wq_create->u.response_1); 15610 if (wq->dpp_enable) { 15611 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 15612 &wq_create->u.response_1); 15613 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15614 pci_barset); 15615 if (!bar_memmap_p) { 15616 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15617 "3267 WQ[%d] failed to memmap " 15618 "pci barset:x%x\n", 15619 wq->queue_id, pci_barset); 15620 status = -ENOMEM; 15621 goto out; 15622 } 15623 db_offset = wq_create->u.response_1.doorbell_offset; 15624 wq->db_regaddr = bar_memmap_p + db_offset; 15625 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 15626 &wq_create->u.response_1); 15627 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 15628 &wq_create->u.response_1); 15629 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15630 dpp_barset); 15631 if (!bar_memmap_p) { 15632 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15633 "3268 WQ[%d] failed to memmap " 15634 "pci barset:x%x\n", 15635 wq->queue_id, dpp_barset); 15636 status = -ENOMEM; 15637 goto out; 15638 } 15639 dpp_offset = wq_create->u.response_1.dpp_offset; 15640 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 15641 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15642 "3271 WQ[%d]: barset:x%x, offset:x%x, " 15643 "dpp_id:x%x dpp_barset:x%x " 15644 "dpp_offset:x%x\n", 15645 wq->queue_id, pci_barset, db_offset, 15646 wq->dpp_id, dpp_barset, dpp_offset); 15647 15648 /* Enable combined writes for DPP aperture */ 15649 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 15650 #ifdef CONFIG_X86 15651 rc = set_memory_wc(pg_addr, 1); 15652 if (rc) { 15653 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15654 "3272 Cannot setup Combined " 15655 "Write on WQ[%d] - disable DPP\n", 15656 wq->queue_id); 15657 phba->cfg_enable_dpp = 0; 15658 } 15659 #else 15660 phba->cfg_enable_dpp = 0; 15661 #endif 15662 } else 15663 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15664 } 15665 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 15666 if (wq->pring == NULL) { 15667 status = -ENOMEM; 15668 goto out; 15669 } 15670 wq->type = LPFC_WQ; 15671 wq->assoc_qid = cq->queue_id; 15672 wq->subtype = subtype; 15673 wq->host_index = 0; 15674 wq->hba_index = 0; 15675 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 15676 15677 /* link the wq onto the parent cq child list */ 15678 list_add_tail(&wq->list, &cq->child_list); 15679 out: 15680 mempool_free(mbox, phba->mbox_mem_pool); 15681 return status; 15682 } 15683 15684 /** 15685 * lpfc_rq_create - Create a Receive Queue on the HBA 15686 * @phba: HBA structure that indicates port to create a queue on. 15687 * @hrq: The queue structure to use to create the header receive queue. 15688 * @drq: The queue structure to use to create the data receive queue. 15689 * @cq: The completion queue to bind this work queue to. 15690 * 15691 * This function creates a receive buffer queue pair , as detailed in @hrq and 15692 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15693 * to the HBA. 15694 * 15695 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15696 * struct is used to get the entry count that is necessary to determine the 15697 * number of pages to use for this queue. The @cq is used to indicate which 15698 * completion queue to bind received buffers that are posted to these queues to. 15699 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15700 * receive queue pair. This function is asynchronous and will wait for the 15701 * mailbox command to finish before continuing. 15702 * 15703 * On success this function will return a zero. If unable to allocate enough 15704 * memory this function will return -ENOMEM. If the queue create mailbox command 15705 * fails this function will return -ENXIO. 15706 **/ 15707 int 15708 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15709 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15710 { 15711 struct lpfc_mbx_rq_create *rq_create; 15712 struct lpfc_dmabuf *dmabuf; 15713 LPFC_MBOXQ_t *mbox; 15714 int rc, length, status = 0; 15715 uint32_t shdr_status, shdr_add_status; 15716 union lpfc_sli4_cfg_shdr *shdr; 15717 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15718 void __iomem *bar_memmap_p; 15719 uint32_t db_offset; 15720 uint16_t pci_barset; 15721 15722 /* sanity check on queue memory */ 15723 if (!hrq || !drq || !cq) 15724 return -ENODEV; 15725 if (!phba->sli4_hba.pc_sli4_params.supported) 15726 hw_page_size = SLI4_PAGE_SIZE; 15727 15728 if (hrq->entry_count != drq->entry_count) 15729 return -EINVAL; 15730 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15731 if (!mbox) 15732 return -ENOMEM; 15733 length = (sizeof(struct lpfc_mbx_rq_create) - 15734 sizeof(struct lpfc_sli4_cfg_mhdr)); 15735 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15736 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15737 length, LPFC_SLI4_MBX_EMBED); 15738 rq_create = &mbox->u.mqe.un.rq_create; 15739 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15740 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15741 phba->sli4_hba.pc_sli4_params.rqv); 15742 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15743 bf_set(lpfc_rq_context_rqe_count_1, 15744 &rq_create->u.request.context, 15745 hrq->entry_count); 15746 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15747 bf_set(lpfc_rq_context_rqe_size, 15748 &rq_create->u.request.context, 15749 LPFC_RQE_SIZE_8); 15750 bf_set(lpfc_rq_context_page_size, 15751 &rq_create->u.request.context, 15752 LPFC_RQ_PAGE_SIZE_4096); 15753 } else { 15754 switch (hrq->entry_count) { 15755 default: 15756 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15757 "2535 Unsupported RQ count. (%d)\n", 15758 hrq->entry_count); 15759 if (hrq->entry_count < 512) { 15760 status = -EINVAL; 15761 goto out; 15762 } 15763 /* otherwise default to smallest count (drop through) */ 15764 case 512: 15765 bf_set(lpfc_rq_context_rqe_count, 15766 &rq_create->u.request.context, 15767 LPFC_RQ_RING_SIZE_512); 15768 break; 15769 case 1024: 15770 bf_set(lpfc_rq_context_rqe_count, 15771 &rq_create->u.request.context, 15772 LPFC_RQ_RING_SIZE_1024); 15773 break; 15774 case 2048: 15775 bf_set(lpfc_rq_context_rqe_count, 15776 &rq_create->u.request.context, 15777 LPFC_RQ_RING_SIZE_2048); 15778 break; 15779 case 4096: 15780 bf_set(lpfc_rq_context_rqe_count, 15781 &rq_create->u.request.context, 15782 LPFC_RQ_RING_SIZE_4096); 15783 break; 15784 } 15785 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15786 LPFC_HDR_BUF_SIZE); 15787 } 15788 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15789 cq->queue_id); 15790 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15791 hrq->page_count); 15792 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15793 memset(dmabuf->virt, 0, hw_page_size); 15794 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15795 putPaddrLow(dmabuf->phys); 15796 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15797 putPaddrHigh(dmabuf->phys); 15798 } 15799 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15800 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15801 15802 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15803 /* The IOCTL status is embedded in the mailbox subheader. */ 15804 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15805 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15806 if (shdr_status || shdr_add_status || rc) { 15807 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15808 "2504 RQ_CREATE mailbox failed with " 15809 "status x%x add_status x%x, mbx status x%x\n", 15810 shdr_status, shdr_add_status, rc); 15811 status = -ENXIO; 15812 goto out; 15813 } 15814 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15815 if (hrq->queue_id == 0xFFFF) { 15816 status = -ENXIO; 15817 goto out; 15818 } 15819 15820 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15821 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15822 &rq_create->u.response); 15823 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15824 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15825 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15826 "3262 RQ [%d] doorbell format not " 15827 "supported: x%x\n", hrq->queue_id, 15828 hrq->db_format); 15829 status = -EINVAL; 15830 goto out; 15831 } 15832 15833 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15834 &rq_create->u.response); 15835 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15836 if (!bar_memmap_p) { 15837 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15838 "3269 RQ[%d] failed to memmap pci " 15839 "barset:x%x\n", hrq->queue_id, 15840 pci_barset); 15841 status = -ENOMEM; 15842 goto out; 15843 } 15844 15845 db_offset = rq_create->u.response.doorbell_offset; 15846 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15847 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15848 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15849 "3270 RQ[%d] doorbell offset not " 15850 "supported: x%x\n", hrq->queue_id, 15851 db_offset); 15852 status = -EINVAL; 15853 goto out; 15854 } 15855 hrq->db_regaddr = bar_memmap_p + db_offset; 15856 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15857 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15858 "format:x%x\n", hrq->queue_id, pci_barset, 15859 db_offset, hrq->db_format); 15860 } else { 15861 hrq->db_format = LPFC_DB_RING_FORMAT; 15862 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15863 } 15864 hrq->type = LPFC_HRQ; 15865 hrq->assoc_qid = cq->queue_id; 15866 hrq->subtype = subtype; 15867 hrq->host_index = 0; 15868 hrq->hba_index = 0; 15869 hrq->entry_repost = LPFC_RQ_REPOST; 15870 15871 /* now create the data queue */ 15872 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15873 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15874 length, LPFC_SLI4_MBX_EMBED); 15875 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15876 phba->sli4_hba.pc_sli4_params.rqv); 15877 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15878 bf_set(lpfc_rq_context_rqe_count_1, 15879 &rq_create->u.request.context, hrq->entry_count); 15880 if (subtype == LPFC_NVMET) 15881 rq_create->u.request.context.buffer_size = 15882 LPFC_NVMET_DATA_BUF_SIZE; 15883 else 15884 rq_create->u.request.context.buffer_size = 15885 LPFC_DATA_BUF_SIZE; 15886 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15887 LPFC_RQE_SIZE_8); 15888 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15889 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15890 } else { 15891 switch (drq->entry_count) { 15892 default: 15893 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15894 "2536 Unsupported RQ count. (%d)\n", 15895 drq->entry_count); 15896 if (drq->entry_count < 512) { 15897 status = -EINVAL; 15898 goto out; 15899 } 15900 /* otherwise default to smallest count (drop through) */ 15901 case 512: 15902 bf_set(lpfc_rq_context_rqe_count, 15903 &rq_create->u.request.context, 15904 LPFC_RQ_RING_SIZE_512); 15905 break; 15906 case 1024: 15907 bf_set(lpfc_rq_context_rqe_count, 15908 &rq_create->u.request.context, 15909 LPFC_RQ_RING_SIZE_1024); 15910 break; 15911 case 2048: 15912 bf_set(lpfc_rq_context_rqe_count, 15913 &rq_create->u.request.context, 15914 LPFC_RQ_RING_SIZE_2048); 15915 break; 15916 case 4096: 15917 bf_set(lpfc_rq_context_rqe_count, 15918 &rq_create->u.request.context, 15919 LPFC_RQ_RING_SIZE_4096); 15920 break; 15921 } 15922 if (subtype == LPFC_NVMET) 15923 bf_set(lpfc_rq_context_buf_size, 15924 &rq_create->u.request.context, 15925 LPFC_NVMET_DATA_BUF_SIZE); 15926 else 15927 bf_set(lpfc_rq_context_buf_size, 15928 &rq_create->u.request.context, 15929 LPFC_DATA_BUF_SIZE); 15930 } 15931 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15932 cq->queue_id); 15933 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15934 drq->page_count); 15935 list_for_each_entry(dmabuf, &drq->page_list, list) { 15936 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15937 putPaddrLow(dmabuf->phys); 15938 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15939 putPaddrHigh(dmabuf->phys); 15940 } 15941 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15942 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15943 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15944 /* The IOCTL status is embedded in the mailbox subheader. */ 15945 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15946 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15947 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15948 if (shdr_status || shdr_add_status || rc) { 15949 status = -ENXIO; 15950 goto out; 15951 } 15952 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15953 if (drq->queue_id == 0xFFFF) { 15954 status = -ENXIO; 15955 goto out; 15956 } 15957 drq->type = LPFC_DRQ; 15958 drq->assoc_qid = cq->queue_id; 15959 drq->subtype = subtype; 15960 drq->host_index = 0; 15961 drq->hba_index = 0; 15962 drq->entry_repost = LPFC_RQ_REPOST; 15963 15964 /* link the header and data RQs onto the parent cq child list */ 15965 list_add_tail(&hrq->list, &cq->child_list); 15966 list_add_tail(&drq->list, &cq->child_list); 15967 15968 out: 15969 mempool_free(mbox, phba->mbox_mem_pool); 15970 return status; 15971 } 15972 15973 /** 15974 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 15975 * @phba: HBA structure that indicates port to create a queue on. 15976 * @hrqp: The queue structure array to use to create the header receive queues. 15977 * @drqp: The queue structure array to use to create the data receive queues. 15978 * @cqp: The completion queue array to bind these receive queues to. 15979 * 15980 * This function creates a receive buffer queue pair , as detailed in @hrq and 15981 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15982 * to the HBA. 15983 * 15984 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15985 * struct is used to get the entry count that is necessary to determine the 15986 * number of pages to use for this queue. The @cq is used to indicate which 15987 * completion queue to bind received buffers that are posted to these queues to. 15988 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15989 * receive queue pair. This function is asynchronous and will wait for the 15990 * mailbox command to finish before continuing. 15991 * 15992 * On success this function will return a zero. If unable to allocate enough 15993 * memory this function will return -ENOMEM. If the queue create mailbox command 15994 * fails this function will return -ENXIO. 15995 **/ 15996 int 15997 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 15998 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 15999 uint32_t subtype) 16000 { 16001 struct lpfc_queue *hrq, *drq, *cq; 16002 struct lpfc_mbx_rq_create_v2 *rq_create; 16003 struct lpfc_dmabuf *dmabuf; 16004 LPFC_MBOXQ_t *mbox; 16005 int rc, length, alloclen, status = 0; 16006 int cnt, idx, numrq, page_idx = 0; 16007 uint32_t shdr_status, shdr_add_status; 16008 union lpfc_sli4_cfg_shdr *shdr; 16009 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16010 16011 numrq = phba->cfg_nvmet_mrq; 16012 /* sanity check on array memory */ 16013 if (!hrqp || !drqp || !cqp || !numrq) 16014 return -ENODEV; 16015 if (!phba->sli4_hba.pc_sli4_params.supported) 16016 hw_page_size = SLI4_PAGE_SIZE; 16017 16018 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16019 if (!mbox) 16020 return -ENOMEM; 16021 16022 length = sizeof(struct lpfc_mbx_rq_create_v2); 16023 length += ((2 * numrq * hrqp[0]->page_count) * 16024 sizeof(struct dma_address)); 16025 16026 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16027 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16028 LPFC_SLI4_MBX_NEMBED); 16029 if (alloclen < length) { 16030 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16031 "3099 Allocated DMA memory size (%d) is " 16032 "less than the requested DMA memory size " 16033 "(%d)\n", alloclen, length); 16034 status = -ENOMEM; 16035 goto out; 16036 } 16037 16038 16039 16040 rq_create = mbox->sge_array->addr[0]; 16041 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16042 16043 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16044 cnt = 0; 16045 16046 for (idx = 0; idx < numrq; idx++) { 16047 hrq = hrqp[idx]; 16048 drq = drqp[idx]; 16049 cq = cqp[idx]; 16050 16051 /* sanity check on queue memory */ 16052 if (!hrq || !drq || !cq) { 16053 status = -ENODEV; 16054 goto out; 16055 } 16056 16057 if (hrq->entry_count != drq->entry_count) { 16058 status = -EINVAL; 16059 goto out; 16060 } 16061 16062 if (idx == 0) { 16063 bf_set(lpfc_mbx_rq_create_num_pages, 16064 &rq_create->u.request, 16065 hrq->page_count); 16066 bf_set(lpfc_mbx_rq_create_rq_cnt, 16067 &rq_create->u.request, (numrq * 2)); 16068 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16069 1); 16070 bf_set(lpfc_rq_context_base_cq, 16071 &rq_create->u.request.context, 16072 cq->queue_id); 16073 bf_set(lpfc_rq_context_data_size, 16074 &rq_create->u.request.context, 16075 LPFC_NVMET_DATA_BUF_SIZE); 16076 bf_set(lpfc_rq_context_hdr_size, 16077 &rq_create->u.request.context, 16078 LPFC_HDR_BUF_SIZE); 16079 bf_set(lpfc_rq_context_rqe_count_1, 16080 &rq_create->u.request.context, 16081 hrq->entry_count); 16082 bf_set(lpfc_rq_context_rqe_size, 16083 &rq_create->u.request.context, 16084 LPFC_RQE_SIZE_8); 16085 bf_set(lpfc_rq_context_page_size, 16086 &rq_create->u.request.context, 16087 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16088 } 16089 rc = 0; 16090 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16091 memset(dmabuf->virt, 0, hw_page_size); 16092 cnt = page_idx + dmabuf->buffer_tag; 16093 rq_create->u.request.page[cnt].addr_lo = 16094 putPaddrLow(dmabuf->phys); 16095 rq_create->u.request.page[cnt].addr_hi = 16096 putPaddrHigh(dmabuf->phys); 16097 rc++; 16098 } 16099 page_idx += rc; 16100 16101 rc = 0; 16102 list_for_each_entry(dmabuf, &drq->page_list, list) { 16103 memset(dmabuf->virt, 0, hw_page_size); 16104 cnt = page_idx + dmabuf->buffer_tag; 16105 rq_create->u.request.page[cnt].addr_lo = 16106 putPaddrLow(dmabuf->phys); 16107 rq_create->u.request.page[cnt].addr_hi = 16108 putPaddrHigh(dmabuf->phys); 16109 rc++; 16110 } 16111 page_idx += rc; 16112 16113 hrq->db_format = LPFC_DB_RING_FORMAT; 16114 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16115 hrq->type = LPFC_HRQ; 16116 hrq->assoc_qid = cq->queue_id; 16117 hrq->subtype = subtype; 16118 hrq->host_index = 0; 16119 hrq->hba_index = 0; 16120 hrq->entry_repost = LPFC_RQ_REPOST; 16121 16122 drq->db_format = LPFC_DB_RING_FORMAT; 16123 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16124 drq->type = LPFC_DRQ; 16125 drq->assoc_qid = cq->queue_id; 16126 drq->subtype = subtype; 16127 drq->host_index = 0; 16128 drq->hba_index = 0; 16129 drq->entry_repost = LPFC_RQ_REPOST; 16130 16131 list_add_tail(&hrq->list, &cq->child_list); 16132 list_add_tail(&drq->list, &cq->child_list); 16133 } 16134 16135 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16136 /* The IOCTL status is embedded in the mailbox subheader. */ 16137 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16138 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16139 if (shdr_status || shdr_add_status || rc) { 16140 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16141 "3120 RQ_CREATE mailbox failed with " 16142 "status x%x add_status x%x, mbx status x%x\n", 16143 shdr_status, shdr_add_status, rc); 16144 status = -ENXIO; 16145 goto out; 16146 } 16147 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16148 if (rc == 0xFFFF) { 16149 status = -ENXIO; 16150 goto out; 16151 } 16152 16153 /* Initialize all RQs with associated queue id */ 16154 for (idx = 0; idx < numrq; idx++) { 16155 hrq = hrqp[idx]; 16156 hrq->queue_id = rc + (2 * idx); 16157 drq = drqp[idx]; 16158 drq->queue_id = rc + (2 * idx) + 1; 16159 } 16160 16161 out: 16162 lpfc_sli4_mbox_cmd_free(phba, mbox); 16163 return status; 16164 } 16165 16166 /** 16167 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16168 * @eq: The queue structure associated with the queue to destroy. 16169 * 16170 * This function destroys a queue, as detailed in @eq by sending an mailbox 16171 * command, specific to the type of queue, to the HBA. 16172 * 16173 * The @eq struct is used to get the queue ID of the queue to destroy. 16174 * 16175 * On success this function will return a zero. If the queue destroy mailbox 16176 * command fails this function will return -ENXIO. 16177 **/ 16178 int 16179 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16180 { 16181 LPFC_MBOXQ_t *mbox; 16182 int rc, length, status = 0; 16183 uint32_t shdr_status, shdr_add_status; 16184 union lpfc_sli4_cfg_shdr *shdr; 16185 16186 /* sanity check on queue memory */ 16187 if (!eq) 16188 return -ENODEV; 16189 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16190 if (!mbox) 16191 return -ENOMEM; 16192 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16193 sizeof(struct lpfc_sli4_cfg_mhdr)); 16194 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16195 LPFC_MBOX_OPCODE_EQ_DESTROY, 16196 length, LPFC_SLI4_MBX_EMBED); 16197 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16198 eq->queue_id); 16199 mbox->vport = eq->phba->pport; 16200 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16201 16202 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16203 /* The IOCTL status is embedded in the mailbox subheader. */ 16204 shdr = (union lpfc_sli4_cfg_shdr *) 16205 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16206 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16207 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16208 if (shdr_status || shdr_add_status || rc) { 16209 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16210 "2505 EQ_DESTROY mailbox failed with " 16211 "status x%x add_status x%x, mbx status x%x\n", 16212 shdr_status, shdr_add_status, rc); 16213 status = -ENXIO; 16214 } 16215 16216 /* Remove eq from any list */ 16217 list_del_init(&eq->list); 16218 mempool_free(mbox, eq->phba->mbox_mem_pool); 16219 return status; 16220 } 16221 16222 /** 16223 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16224 * @cq: The queue structure associated with the queue to destroy. 16225 * 16226 * This function destroys a queue, as detailed in @cq by sending an mailbox 16227 * command, specific to the type of queue, to the HBA. 16228 * 16229 * The @cq struct is used to get the queue ID of the queue to destroy. 16230 * 16231 * On success this function will return a zero. If the queue destroy mailbox 16232 * command fails this function will return -ENXIO. 16233 **/ 16234 int 16235 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16236 { 16237 LPFC_MBOXQ_t *mbox; 16238 int rc, length, status = 0; 16239 uint32_t shdr_status, shdr_add_status; 16240 union lpfc_sli4_cfg_shdr *shdr; 16241 16242 /* sanity check on queue memory */ 16243 if (!cq) 16244 return -ENODEV; 16245 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16246 if (!mbox) 16247 return -ENOMEM; 16248 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16249 sizeof(struct lpfc_sli4_cfg_mhdr)); 16250 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16251 LPFC_MBOX_OPCODE_CQ_DESTROY, 16252 length, LPFC_SLI4_MBX_EMBED); 16253 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16254 cq->queue_id); 16255 mbox->vport = cq->phba->pport; 16256 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16257 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16258 /* The IOCTL status is embedded in the mailbox subheader. */ 16259 shdr = (union lpfc_sli4_cfg_shdr *) 16260 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16261 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16262 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16263 if (shdr_status || shdr_add_status || rc) { 16264 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16265 "2506 CQ_DESTROY mailbox failed with " 16266 "status x%x add_status x%x, mbx status x%x\n", 16267 shdr_status, shdr_add_status, rc); 16268 status = -ENXIO; 16269 } 16270 /* Remove cq from any list */ 16271 list_del_init(&cq->list); 16272 mempool_free(mbox, cq->phba->mbox_mem_pool); 16273 return status; 16274 } 16275 16276 /** 16277 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16278 * @qm: The queue structure associated with the queue to destroy. 16279 * 16280 * This function destroys a queue, as detailed in @mq by sending an mailbox 16281 * command, specific to the type of queue, to the HBA. 16282 * 16283 * The @mq struct is used to get the queue ID of the queue to destroy. 16284 * 16285 * On success this function will return a zero. If the queue destroy mailbox 16286 * command fails this function will return -ENXIO. 16287 **/ 16288 int 16289 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16290 { 16291 LPFC_MBOXQ_t *mbox; 16292 int rc, length, status = 0; 16293 uint32_t shdr_status, shdr_add_status; 16294 union lpfc_sli4_cfg_shdr *shdr; 16295 16296 /* sanity check on queue memory */ 16297 if (!mq) 16298 return -ENODEV; 16299 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16300 if (!mbox) 16301 return -ENOMEM; 16302 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16303 sizeof(struct lpfc_sli4_cfg_mhdr)); 16304 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16305 LPFC_MBOX_OPCODE_MQ_DESTROY, 16306 length, LPFC_SLI4_MBX_EMBED); 16307 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16308 mq->queue_id); 16309 mbox->vport = mq->phba->pport; 16310 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16311 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16312 /* The IOCTL status is embedded in the mailbox subheader. */ 16313 shdr = (union lpfc_sli4_cfg_shdr *) 16314 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16315 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16316 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16317 if (shdr_status || shdr_add_status || rc) { 16318 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16319 "2507 MQ_DESTROY mailbox failed with " 16320 "status x%x add_status x%x, mbx status x%x\n", 16321 shdr_status, shdr_add_status, rc); 16322 status = -ENXIO; 16323 } 16324 /* Remove mq from any list */ 16325 list_del_init(&mq->list); 16326 mempool_free(mbox, mq->phba->mbox_mem_pool); 16327 return status; 16328 } 16329 16330 /** 16331 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16332 * @wq: The queue structure associated with the queue to destroy. 16333 * 16334 * This function destroys a queue, as detailed in @wq by sending an mailbox 16335 * command, specific to the type of queue, to the HBA. 16336 * 16337 * The @wq struct is used to get the queue ID of the queue to destroy. 16338 * 16339 * On success this function will return a zero. If the queue destroy mailbox 16340 * command fails this function will return -ENXIO. 16341 **/ 16342 int 16343 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16344 { 16345 LPFC_MBOXQ_t *mbox; 16346 int rc, length, status = 0; 16347 uint32_t shdr_status, shdr_add_status; 16348 union lpfc_sli4_cfg_shdr *shdr; 16349 16350 /* sanity check on queue memory */ 16351 if (!wq) 16352 return -ENODEV; 16353 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16354 if (!mbox) 16355 return -ENOMEM; 16356 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16357 sizeof(struct lpfc_sli4_cfg_mhdr)); 16358 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16359 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16360 length, LPFC_SLI4_MBX_EMBED); 16361 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16362 wq->queue_id); 16363 mbox->vport = wq->phba->pport; 16364 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16365 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16366 shdr = (union lpfc_sli4_cfg_shdr *) 16367 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16368 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16369 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16370 if (shdr_status || shdr_add_status || rc) { 16371 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16372 "2508 WQ_DESTROY mailbox failed with " 16373 "status x%x add_status x%x, mbx status x%x\n", 16374 shdr_status, shdr_add_status, rc); 16375 status = -ENXIO; 16376 } 16377 /* Remove wq from any list */ 16378 list_del_init(&wq->list); 16379 kfree(wq->pring); 16380 wq->pring = NULL; 16381 mempool_free(mbox, wq->phba->mbox_mem_pool); 16382 return status; 16383 } 16384 16385 /** 16386 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16387 * @rq: The queue structure associated with the queue to destroy. 16388 * 16389 * This function destroys a queue, as detailed in @rq by sending an mailbox 16390 * command, specific to the type of queue, to the HBA. 16391 * 16392 * The @rq struct is used to get the queue ID of the queue to destroy. 16393 * 16394 * On success this function will return a zero. If the queue destroy mailbox 16395 * command fails this function will return -ENXIO. 16396 **/ 16397 int 16398 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16399 struct lpfc_queue *drq) 16400 { 16401 LPFC_MBOXQ_t *mbox; 16402 int rc, length, status = 0; 16403 uint32_t shdr_status, shdr_add_status; 16404 union lpfc_sli4_cfg_shdr *shdr; 16405 16406 /* sanity check on queue memory */ 16407 if (!hrq || !drq) 16408 return -ENODEV; 16409 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16410 if (!mbox) 16411 return -ENOMEM; 16412 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16413 sizeof(struct lpfc_sli4_cfg_mhdr)); 16414 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16415 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16416 length, LPFC_SLI4_MBX_EMBED); 16417 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16418 hrq->queue_id); 16419 mbox->vport = hrq->phba->pport; 16420 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16421 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16422 /* The IOCTL status is embedded in the mailbox subheader. */ 16423 shdr = (union lpfc_sli4_cfg_shdr *) 16424 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16425 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16426 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16427 if (shdr_status || shdr_add_status || rc) { 16428 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16429 "2509 RQ_DESTROY mailbox failed with " 16430 "status x%x add_status x%x, mbx status x%x\n", 16431 shdr_status, shdr_add_status, rc); 16432 if (rc != MBX_TIMEOUT) 16433 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16434 return -ENXIO; 16435 } 16436 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16437 drq->queue_id); 16438 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16439 shdr = (union lpfc_sli4_cfg_shdr *) 16440 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16441 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16442 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16443 if (shdr_status || shdr_add_status || rc) { 16444 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16445 "2510 RQ_DESTROY mailbox failed with " 16446 "status x%x add_status x%x, mbx status x%x\n", 16447 shdr_status, shdr_add_status, rc); 16448 status = -ENXIO; 16449 } 16450 list_del_init(&hrq->list); 16451 list_del_init(&drq->list); 16452 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16453 return status; 16454 } 16455 16456 /** 16457 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16458 * @phba: The virtual port for which this call being executed. 16459 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16460 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16461 * @xritag: the xritag that ties this io to the SGL pages. 16462 * 16463 * This routine will post the sgl pages for the IO that has the xritag 16464 * that is in the iocbq structure. The xritag is assigned during iocbq 16465 * creation and persists for as long as the driver is loaded. 16466 * if the caller has fewer than 256 scatter gather segments to map then 16467 * pdma_phys_addr1 should be 0. 16468 * If the caller needs to map more than 256 scatter gather segment then 16469 * pdma_phys_addr1 should be a valid physical address. 16470 * physical address for SGLs must be 64 byte aligned. 16471 * If you are going to map 2 SGL's then the first one must have 256 entries 16472 * the second sgl can have between 1 and 256 entries. 16473 * 16474 * Return codes: 16475 * 0 - Success 16476 * -ENXIO, -ENOMEM - Failure 16477 **/ 16478 int 16479 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16480 dma_addr_t pdma_phys_addr0, 16481 dma_addr_t pdma_phys_addr1, 16482 uint16_t xritag) 16483 { 16484 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16485 LPFC_MBOXQ_t *mbox; 16486 int rc; 16487 uint32_t shdr_status, shdr_add_status; 16488 uint32_t mbox_tmo; 16489 union lpfc_sli4_cfg_shdr *shdr; 16490 16491 if (xritag == NO_XRI) { 16492 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16493 "0364 Invalid param:\n"); 16494 return -EINVAL; 16495 } 16496 16497 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16498 if (!mbox) 16499 return -ENOMEM; 16500 16501 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16502 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16503 sizeof(struct lpfc_mbx_post_sgl_pages) - 16504 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16505 16506 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16507 &mbox->u.mqe.un.post_sgl_pages; 16508 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16509 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16510 16511 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16512 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16513 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16514 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16515 16516 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16517 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16518 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16519 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16520 if (!phba->sli4_hba.intr_enable) 16521 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16522 else { 16523 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16524 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16525 } 16526 /* The IOCTL status is embedded in the mailbox subheader. */ 16527 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16528 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16529 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16530 if (rc != MBX_TIMEOUT) 16531 mempool_free(mbox, phba->mbox_mem_pool); 16532 if (shdr_status || shdr_add_status || rc) { 16533 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16534 "2511 POST_SGL mailbox failed with " 16535 "status x%x add_status x%x, mbx status x%x\n", 16536 shdr_status, shdr_add_status, rc); 16537 } 16538 return 0; 16539 } 16540 16541 /** 16542 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16543 * @phba: pointer to lpfc hba data structure. 16544 * 16545 * This routine is invoked to post rpi header templates to the 16546 * HBA consistent with the SLI-4 interface spec. This routine 16547 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16548 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16549 * 16550 * Returns 16551 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16552 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16553 **/ 16554 static uint16_t 16555 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16556 { 16557 unsigned long xri; 16558 16559 /* 16560 * Fetch the next logical xri. Because this index is logical, 16561 * the driver starts at 0 each time. 16562 */ 16563 spin_lock_irq(&phba->hbalock); 16564 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16565 phba->sli4_hba.max_cfg_param.max_xri, 0); 16566 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16567 spin_unlock_irq(&phba->hbalock); 16568 return NO_XRI; 16569 } else { 16570 set_bit(xri, phba->sli4_hba.xri_bmask); 16571 phba->sli4_hba.max_cfg_param.xri_used++; 16572 } 16573 spin_unlock_irq(&phba->hbalock); 16574 return xri; 16575 } 16576 16577 /** 16578 * lpfc_sli4_free_xri - Release an xri for reuse. 16579 * @phba: pointer to lpfc hba data structure. 16580 * 16581 * This routine is invoked to release an xri to the pool of 16582 * available rpis maintained by the driver. 16583 **/ 16584 static void 16585 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16586 { 16587 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 16588 phba->sli4_hba.max_cfg_param.xri_used--; 16589 } 16590 } 16591 16592 /** 16593 * lpfc_sli4_free_xri - Release an xri for reuse. 16594 * @phba: pointer to lpfc hba data structure. 16595 * 16596 * This routine is invoked to release an xri to the pool of 16597 * available rpis maintained by the driver. 16598 **/ 16599 void 16600 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16601 { 16602 spin_lock_irq(&phba->hbalock); 16603 __lpfc_sli4_free_xri(phba, xri); 16604 spin_unlock_irq(&phba->hbalock); 16605 } 16606 16607 /** 16608 * lpfc_sli4_next_xritag - Get an xritag for the io 16609 * @phba: Pointer to HBA context object. 16610 * 16611 * This function gets an xritag for the iocb. If there is no unused xritag 16612 * it will return 0xffff. 16613 * The function returns the allocated xritag if successful, else returns zero. 16614 * Zero is not a valid xritag. 16615 * The caller is not required to hold any lock. 16616 **/ 16617 uint16_t 16618 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 16619 { 16620 uint16_t xri_index; 16621 16622 xri_index = lpfc_sli4_alloc_xri(phba); 16623 if (xri_index == NO_XRI) 16624 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16625 "2004 Failed to allocate XRI.last XRITAG is %d" 16626 " Max XRI is %d, Used XRI is %d\n", 16627 xri_index, 16628 phba->sli4_hba.max_cfg_param.max_xri, 16629 phba->sli4_hba.max_cfg_param.xri_used); 16630 return xri_index; 16631 } 16632 16633 /** 16634 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 16635 * @phba: pointer to lpfc hba data structure. 16636 * @post_sgl_list: pointer to els sgl entry list. 16637 * @count: number of els sgl entries on the list. 16638 * 16639 * This routine is invoked to post a block of driver's sgl pages to the 16640 * HBA using non-embedded mailbox command. No Lock is held. This routine 16641 * is only called when the driver is loading and after all IO has been 16642 * stopped. 16643 **/ 16644 static int 16645 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 16646 struct list_head *post_sgl_list, 16647 int post_cnt) 16648 { 16649 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 16650 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16651 struct sgl_page_pairs *sgl_pg_pairs; 16652 void *viraddr; 16653 LPFC_MBOXQ_t *mbox; 16654 uint32_t reqlen, alloclen, pg_pairs; 16655 uint32_t mbox_tmo; 16656 uint16_t xritag_start = 0; 16657 int rc = 0; 16658 uint32_t shdr_status, shdr_add_status; 16659 union lpfc_sli4_cfg_shdr *shdr; 16660 16661 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 16662 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16663 if (reqlen > SLI4_PAGE_SIZE) { 16664 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16665 "2559 Block sgl registration required DMA " 16666 "size (%d) great than a page\n", reqlen); 16667 return -ENOMEM; 16668 } 16669 16670 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16671 if (!mbox) 16672 return -ENOMEM; 16673 16674 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16675 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16676 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16677 LPFC_SLI4_MBX_NEMBED); 16678 16679 if (alloclen < reqlen) { 16680 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16681 "0285 Allocated DMA memory size (%d) is " 16682 "less than the requested DMA memory " 16683 "size (%d)\n", alloclen, reqlen); 16684 lpfc_sli4_mbox_cmd_free(phba, mbox); 16685 return -ENOMEM; 16686 } 16687 /* Set up the SGL pages in the non-embedded DMA pages */ 16688 viraddr = mbox->sge_array->addr[0]; 16689 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16690 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16691 16692 pg_pairs = 0; 16693 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16694 /* Set up the sge entry */ 16695 sgl_pg_pairs->sgl_pg0_addr_lo = 16696 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16697 sgl_pg_pairs->sgl_pg0_addr_hi = 16698 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16699 sgl_pg_pairs->sgl_pg1_addr_lo = 16700 cpu_to_le32(putPaddrLow(0)); 16701 sgl_pg_pairs->sgl_pg1_addr_hi = 16702 cpu_to_le32(putPaddrHigh(0)); 16703 16704 /* Keep the first xritag on the list */ 16705 if (pg_pairs == 0) 16706 xritag_start = sglq_entry->sli4_xritag; 16707 sgl_pg_pairs++; 16708 pg_pairs++; 16709 } 16710 16711 /* Complete initialization and perform endian conversion. */ 16712 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16713 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16714 sgl->word0 = cpu_to_le32(sgl->word0); 16715 16716 if (!phba->sli4_hba.intr_enable) 16717 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16718 else { 16719 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16720 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16721 } 16722 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16723 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16724 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16725 if (rc != MBX_TIMEOUT) 16726 lpfc_sli4_mbox_cmd_free(phba, mbox); 16727 if (shdr_status || shdr_add_status || rc) { 16728 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16729 "2513 POST_SGL_BLOCK mailbox command failed " 16730 "status x%x add_status x%x mbx status x%x\n", 16731 shdr_status, shdr_add_status, rc); 16732 rc = -ENXIO; 16733 } 16734 return rc; 16735 } 16736 16737 /** 16738 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 16739 * @phba: pointer to lpfc hba data structure. 16740 * @sblist: pointer to scsi buffer list. 16741 * @count: number of scsi buffers on the list. 16742 * 16743 * This routine is invoked to post a block of @count scsi sgl pages from a 16744 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 16745 * No Lock is held. 16746 * 16747 **/ 16748 int 16749 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 16750 struct list_head *sblist, 16751 int count) 16752 { 16753 struct lpfc_scsi_buf *psb; 16754 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16755 struct sgl_page_pairs *sgl_pg_pairs; 16756 void *viraddr; 16757 LPFC_MBOXQ_t *mbox; 16758 uint32_t reqlen, alloclen, pg_pairs; 16759 uint32_t mbox_tmo; 16760 uint16_t xritag_start = 0; 16761 int rc = 0; 16762 uint32_t shdr_status, shdr_add_status; 16763 dma_addr_t pdma_phys_bpl1; 16764 union lpfc_sli4_cfg_shdr *shdr; 16765 16766 /* Calculate the requested length of the dma memory */ 16767 reqlen = count * sizeof(struct sgl_page_pairs) + 16768 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16769 if (reqlen > SLI4_PAGE_SIZE) { 16770 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16771 "0217 Block sgl registration required DMA " 16772 "size (%d) great than a page\n", reqlen); 16773 return -ENOMEM; 16774 } 16775 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16776 if (!mbox) { 16777 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16778 "0283 Failed to allocate mbox cmd memory\n"); 16779 return -ENOMEM; 16780 } 16781 16782 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16783 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16784 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16785 LPFC_SLI4_MBX_NEMBED); 16786 16787 if (alloclen < reqlen) { 16788 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16789 "2561 Allocated DMA memory size (%d) is " 16790 "less than the requested DMA memory " 16791 "size (%d)\n", alloclen, reqlen); 16792 lpfc_sli4_mbox_cmd_free(phba, mbox); 16793 return -ENOMEM; 16794 } 16795 16796 /* Get the first SGE entry from the non-embedded DMA memory */ 16797 viraddr = mbox->sge_array->addr[0]; 16798 16799 /* Set up the SGL pages in the non-embedded DMA pages */ 16800 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16801 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16802 16803 pg_pairs = 0; 16804 list_for_each_entry(psb, sblist, list) { 16805 /* Set up the sge entry */ 16806 sgl_pg_pairs->sgl_pg0_addr_lo = 16807 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 16808 sgl_pg_pairs->sgl_pg0_addr_hi = 16809 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 16810 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 16811 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 16812 else 16813 pdma_phys_bpl1 = 0; 16814 sgl_pg_pairs->sgl_pg1_addr_lo = 16815 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 16816 sgl_pg_pairs->sgl_pg1_addr_hi = 16817 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16818 /* Keep the first xritag on the list */ 16819 if (pg_pairs == 0) 16820 xritag_start = psb->cur_iocbq.sli4_xritag; 16821 sgl_pg_pairs++; 16822 pg_pairs++; 16823 } 16824 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16825 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16826 /* Perform endian conversion if necessary */ 16827 sgl->word0 = cpu_to_le32(sgl->word0); 16828 16829 if (!phba->sli4_hba.intr_enable) 16830 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16831 else { 16832 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16833 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16834 } 16835 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16836 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16837 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16838 if (rc != MBX_TIMEOUT) 16839 lpfc_sli4_mbox_cmd_free(phba, mbox); 16840 if (shdr_status || shdr_add_status || rc) { 16841 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16842 "2564 POST_SGL_BLOCK mailbox command failed " 16843 "status x%x add_status x%x mbx status x%x\n", 16844 shdr_status, shdr_add_status, rc); 16845 rc = -ENXIO; 16846 } 16847 return rc; 16848 } 16849 16850 /** 16851 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 16852 * @phba: pointer to lpfc_hba struct that the frame was received on 16853 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16854 * 16855 * This function checks the fields in the @fc_hdr to see if the FC frame is a 16856 * valid type of frame that the LPFC driver will handle. This function will 16857 * return a zero if the frame is a valid frame or a non zero value when the 16858 * frame does not pass the check. 16859 **/ 16860 static int 16861 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 16862 { 16863 /* make rctl_names static to save stack space */ 16864 struct fc_vft_header *fc_vft_hdr; 16865 uint32_t *header = (uint32_t *) fc_hdr; 16866 16867 #define FC_RCTL_MDS_DIAGS 0xF4 16868 16869 switch (fc_hdr->fh_r_ctl) { 16870 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 16871 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 16872 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 16873 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 16874 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 16875 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 16876 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 16877 case FC_RCTL_DD_CMD_STATUS: /* command status */ 16878 case FC_RCTL_ELS_REQ: /* extended link services request */ 16879 case FC_RCTL_ELS_REP: /* extended link services reply */ 16880 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 16881 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 16882 case FC_RCTL_BA_NOP: /* basic link service NOP */ 16883 case FC_RCTL_BA_ABTS: /* basic link service abort */ 16884 case FC_RCTL_BA_RMC: /* remove connection */ 16885 case FC_RCTL_BA_ACC: /* basic accept */ 16886 case FC_RCTL_BA_RJT: /* basic reject */ 16887 case FC_RCTL_BA_PRMT: 16888 case FC_RCTL_ACK_1: /* acknowledge_1 */ 16889 case FC_RCTL_ACK_0: /* acknowledge_0 */ 16890 case FC_RCTL_P_RJT: /* port reject */ 16891 case FC_RCTL_F_RJT: /* fabric reject */ 16892 case FC_RCTL_P_BSY: /* port busy */ 16893 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 16894 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 16895 case FC_RCTL_LCR: /* link credit reset */ 16896 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 16897 case FC_RCTL_END: /* end */ 16898 break; 16899 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 16900 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16901 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 16902 return lpfc_fc_frame_check(phba, fc_hdr); 16903 default: 16904 goto drop; 16905 } 16906 16907 #define FC_TYPE_VENDOR_UNIQUE 0xFF 16908 16909 switch (fc_hdr->fh_type) { 16910 case FC_TYPE_BLS: 16911 case FC_TYPE_ELS: 16912 case FC_TYPE_FCP: 16913 case FC_TYPE_CT: 16914 case FC_TYPE_NVME: 16915 case FC_TYPE_VENDOR_UNIQUE: 16916 break; 16917 case FC_TYPE_IP: 16918 case FC_TYPE_ILS: 16919 default: 16920 goto drop; 16921 } 16922 16923 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 16924 "2538 Received frame rctl:x%x, type:x%x, " 16925 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 16926 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 16927 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 16928 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 16929 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 16930 be32_to_cpu(header[6])); 16931 return 0; 16932 drop: 16933 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 16934 "2539 Dropped frame rctl:x%x type:x%x\n", 16935 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16936 return 1; 16937 } 16938 16939 /** 16940 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 16941 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16942 * 16943 * This function processes the FC header to retrieve the VFI from the VF 16944 * header, if one exists. This function will return the VFI if one exists 16945 * or 0 if no VSAN Header exists. 16946 **/ 16947 static uint32_t 16948 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 16949 { 16950 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16951 16952 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 16953 return 0; 16954 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 16955 } 16956 16957 /** 16958 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 16959 * @phba: Pointer to the HBA structure to search for the vport on 16960 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16961 * @fcfi: The FC Fabric ID that the frame came from 16962 * 16963 * This function searches the @phba for a vport that matches the content of the 16964 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 16965 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 16966 * returns the matching vport pointer or NULL if unable to match frame to a 16967 * vport. 16968 **/ 16969 static struct lpfc_vport * 16970 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 16971 uint16_t fcfi, uint32_t did) 16972 { 16973 struct lpfc_vport **vports; 16974 struct lpfc_vport *vport = NULL; 16975 int i; 16976 16977 if (did == Fabric_DID) 16978 return phba->pport; 16979 if ((phba->pport->fc_flag & FC_PT2PT) && 16980 !(phba->link_state == LPFC_HBA_READY)) 16981 return phba->pport; 16982 16983 vports = lpfc_create_vport_work_array(phba); 16984 if (vports != NULL) { 16985 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 16986 if (phba->fcf.fcfi == fcfi && 16987 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 16988 vports[i]->fc_myDID == did) { 16989 vport = vports[i]; 16990 break; 16991 } 16992 } 16993 } 16994 lpfc_destroy_vport_work_array(phba, vports); 16995 return vport; 16996 } 16997 16998 /** 16999 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17000 * @vport: The vport to work on. 17001 * 17002 * This function updates the receive sequence time stamp for this vport. The 17003 * receive sequence time stamp indicates the time that the last frame of the 17004 * the sequence that has been idle for the longest amount of time was received. 17005 * the driver uses this time stamp to indicate if any received sequences have 17006 * timed out. 17007 **/ 17008 static void 17009 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17010 { 17011 struct lpfc_dmabuf *h_buf; 17012 struct hbq_dmabuf *dmabuf = NULL; 17013 17014 /* get the oldest sequence on the rcv list */ 17015 h_buf = list_get_first(&vport->rcv_buffer_list, 17016 struct lpfc_dmabuf, list); 17017 if (!h_buf) 17018 return; 17019 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17020 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17021 } 17022 17023 /** 17024 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17025 * @vport: The vport that the received sequences were sent to. 17026 * 17027 * This function cleans up all outstanding received sequences. This is called 17028 * by the driver when a link event or user action invalidates all the received 17029 * sequences. 17030 **/ 17031 void 17032 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17033 { 17034 struct lpfc_dmabuf *h_buf, *hnext; 17035 struct lpfc_dmabuf *d_buf, *dnext; 17036 struct hbq_dmabuf *dmabuf = NULL; 17037 17038 /* start with the oldest sequence on the rcv list */ 17039 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17040 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17041 list_del_init(&dmabuf->hbuf.list); 17042 list_for_each_entry_safe(d_buf, dnext, 17043 &dmabuf->dbuf.list, list) { 17044 list_del_init(&d_buf->list); 17045 lpfc_in_buf_free(vport->phba, d_buf); 17046 } 17047 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17048 } 17049 } 17050 17051 /** 17052 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17053 * @vport: The vport that the received sequences were sent to. 17054 * 17055 * This function determines whether any received sequences have timed out by 17056 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17057 * indicates that there is at least one timed out sequence this routine will 17058 * go through the received sequences one at a time from most inactive to most 17059 * active to determine which ones need to be cleaned up. Once it has determined 17060 * that a sequence needs to be cleaned up it will simply free up the resources 17061 * without sending an abort. 17062 **/ 17063 void 17064 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17065 { 17066 struct lpfc_dmabuf *h_buf, *hnext; 17067 struct lpfc_dmabuf *d_buf, *dnext; 17068 struct hbq_dmabuf *dmabuf = NULL; 17069 unsigned long timeout; 17070 int abort_count = 0; 17071 17072 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17073 vport->rcv_buffer_time_stamp); 17074 if (list_empty(&vport->rcv_buffer_list) || 17075 time_before(jiffies, timeout)) 17076 return; 17077 /* start with the oldest sequence on the rcv list */ 17078 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17079 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17080 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17081 dmabuf->time_stamp); 17082 if (time_before(jiffies, timeout)) 17083 break; 17084 abort_count++; 17085 list_del_init(&dmabuf->hbuf.list); 17086 list_for_each_entry_safe(d_buf, dnext, 17087 &dmabuf->dbuf.list, list) { 17088 list_del_init(&d_buf->list); 17089 lpfc_in_buf_free(vport->phba, d_buf); 17090 } 17091 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17092 } 17093 if (abort_count) 17094 lpfc_update_rcv_time_stamp(vport); 17095 } 17096 17097 /** 17098 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17099 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17100 * 17101 * This function searches through the existing incomplete sequences that have 17102 * been sent to this @vport. If the frame matches one of the incomplete 17103 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17104 * make up that sequence. If no sequence is found that matches this frame then 17105 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17106 * This function returns a pointer to the first dmabuf in the sequence list that 17107 * the frame was linked to. 17108 **/ 17109 static struct hbq_dmabuf * 17110 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17111 { 17112 struct fc_frame_header *new_hdr; 17113 struct fc_frame_header *temp_hdr; 17114 struct lpfc_dmabuf *d_buf; 17115 struct lpfc_dmabuf *h_buf; 17116 struct hbq_dmabuf *seq_dmabuf = NULL; 17117 struct hbq_dmabuf *temp_dmabuf = NULL; 17118 uint8_t found = 0; 17119 17120 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17121 dmabuf->time_stamp = jiffies; 17122 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17123 17124 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17125 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17126 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17127 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17128 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17129 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17130 continue; 17131 /* found a pending sequence that matches this frame */ 17132 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17133 break; 17134 } 17135 if (!seq_dmabuf) { 17136 /* 17137 * This indicates first frame received for this sequence. 17138 * Queue the buffer on the vport's rcv_buffer_list. 17139 */ 17140 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17141 lpfc_update_rcv_time_stamp(vport); 17142 return dmabuf; 17143 } 17144 temp_hdr = seq_dmabuf->hbuf.virt; 17145 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17146 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17147 list_del_init(&seq_dmabuf->hbuf.list); 17148 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17149 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17150 lpfc_update_rcv_time_stamp(vport); 17151 return dmabuf; 17152 } 17153 /* move this sequence to the tail to indicate a young sequence */ 17154 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17155 seq_dmabuf->time_stamp = jiffies; 17156 lpfc_update_rcv_time_stamp(vport); 17157 if (list_empty(&seq_dmabuf->dbuf.list)) { 17158 temp_hdr = dmabuf->hbuf.virt; 17159 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17160 return seq_dmabuf; 17161 } 17162 /* find the correct place in the sequence to insert this frame */ 17163 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17164 while (!found) { 17165 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17166 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17167 /* 17168 * If the frame's sequence count is greater than the frame on 17169 * the list then insert the frame right after this frame 17170 */ 17171 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17172 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17173 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17174 found = 1; 17175 break; 17176 } 17177 17178 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17179 break; 17180 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17181 } 17182 17183 if (found) 17184 return seq_dmabuf; 17185 return NULL; 17186 } 17187 17188 /** 17189 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17190 * @vport: pointer to a vitural port 17191 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17192 * 17193 * This function tries to abort from the partially assembed sequence, described 17194 * by the information from basic abbort @dmabuf. It checks to see whether such 17195 * partially assembled sequence held by the driver. If so, it shall free up all 17196 * the frames from the partially assembled sequence. 17197 * 17198 * Return 17199 * true -- if there is matching partially assembled sequence present and all 17200 * the frames freed with the sequence; 17201 * false -- if there is no matching partially assembled sequence present so 17202 * nothing got aborted in the lower layer driver 17203 **/ 17204 static bool 17205 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17206 struct hbq_dmabuf *dmabuf) 17207 { 17208 struct fc_frame_header *new_hdr; 17209 struct fc_frame_header *temp_hdr; 17210 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17211 struct hbq_dmabuf *seq_dmabuf = NULL; 17212 17213 /* Use the hdr_buf to find the sequence that matches this frame */ 17214 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17215 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17216 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17217 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17218 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17219 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17220 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17221 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17222 continue; 17223 /* found a pending sequence that matches this frame */ 17224 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17225 break; 17226 } 17227 17228 /* Free up all the frames from the partially assembled sequence */ 17229 if (seq_dmabuf) { 17230 list_for_each_entry_safe(d_buf, n_buf, 17231 &seq_dmabuf->dbuf.list, list) { 17232 list_del_init(&d_buf->list); 17233 lpfc_in_buf_free(vport->phba, d_buf); 17234 } 17235 return true; 17236 } 17237 return false; 17238 } 17239 17240 /** 17241 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 17242 * @vport: pointer to a vitural port 17243 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17244 * 17245 * This function tries to abort from the assembed sequence from upper level 17246 * protocol, described by the information from basic abbort @dmabuf. It 17247 * checks to see whether such pending context exists at upper level protocol. 17248 * If so, it shall clean up the pending context. 17249 * 17250 * Return 17251 * true -- if there is matching pending context of the sequence cleaned 17252 * at ulp; 17253 * false -- if there is no matching pending context of the sequence present 17254 * at ulp. 17255 **/ 17256 static bool 17257 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17258 { 17259 struct lpfc_hba *phba = vport->phba; 17260 int handled; 17261 17262 /* Accepting abort at ulp with SLI4 only */ 17263 if (phba->sli_rev < LPFC_SLI_REV4) 17264 return false; 17265 17266 /* Register all caring upper level protocols to attend abort */ 17267 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 17268 if (handled) 17269 return true; 17270 17271 return false; 17272 } 17273 17274 /** 17275 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 17276 * @phba: Pointer to HBA context object. 17277 * @cmd_iocbq: pointer to the command iocbq structure. 17278 * @rsp_iocbq: pointer to the response iocbq structure. 17279 * 17280 * This function handles the sequence abort response iocb command complete 17281 * event. It properly releases the memory allocated to the sequence abort 17282 * accept iocb. 17283 **/ 17284 static void 17285 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 17286 struct lpfc_iocbq *cmd_iocbq, 17287 struct lpfc_iocbq *rsp_iocbq) 17288 { 17289 struct lpfc_nodelist *ndlp; 17290 17291 if (cmd_iocbq) { 17292 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 17293 lpfc_nlp_put(ndlp); 17294 lpfc_nlp_not_used(ndlp); 17295 lpfc_sli_release_iocbq(phba, cmd_iocbq); 17296 } 17297 17298 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 17299 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 17300 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17301 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 17302 rsp_iocbq->iocb.ulpStatus, 17303 rsp_iocbq->iocb.un.ulpWord[4]); 17304 } 17305 17306 /** 17307 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 17308 * @phba: Pointer to HBA context object. 17309 * @xri: xri id in transaction. 17310 * 17311 * This function validates the xri maps to the known range of XRIs allocated an 17312 * used by the driver. 17313 **/ 17314 uint16_t 17315 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 17316 uint16_t xri) 17317 { 17318 uint16_t i; 17319 17320 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 17321 if (xri == phba->sli4_hba.xri_ids[i]) 17322 return i; 17323 } 17324 return NO_XRI; 17325 } 17326 17327 /** 17328 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 17329 * @phba: Pointer to HBA context object. 17330 * @fc_hdr: pointer to a FC frame header. 17331 * 17332 * This function sends a basic response to a previous unsol sequence abort 17333 * event after aborting the sequence handling. 17334 **/ 17335 void 17336 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 17337 struct fc_frame_header *fc_hdr, bool aborted) 17338 { 17339 struct lpfc_hba *phba = vport->phba; 17340 struct lpfc_iocbq *ctiocb = NULL; 17341 struct lpfc_nodelist *ndlp; 17342 uint16_t oxid, rxid, xri, lxri; 17343 uint32_t sid, fctl; 17344 IOCB_t *icmd; 17345 int rc; 17346 17347 if (!lpfc_is_link_up(phba)) 17348 return; 17349 17350 sid = sli4_sid_from_fc_hdr(fc_hdr); 17351 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17352 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17353 17354 ndlp = lpfc_findnode_did(vport, sid); 17355 if (!ndlp) { 17356 ndlp = lpfc_nlp_init(vport, sid); 17357 if (!ndlp) { 17358 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17359 "1268 Failed to allocate ndlp for " 17360 "oxid:x%x SID:x%x\n", oxid, sid); 17361 return; 17362 } 17363 /* Put ndlp onto pport node list */ 17364 lpfc_enqueue_node(vport, ndlp); 17365 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17366 /* re-setup ndlp without removing from node list */ 17367 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17368 if (!ndlp) { 17369 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17370 "3275 Failed to active ndlp found " 17371 "for oxid:x%x SID:x%x\n", oxid, sid); 17372 return; 17373 } 17374 } 17375 17376 /* Allocate buffer for rsp iocb */ 17377 ctiocb = lpfc_sli_get_iocbq(phba); 17378 if (!ctiocb) 17379 return; 17380 17381 /* Extract the F_CTL field from FC_HDR */ 17382 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17383 17384 icmd = &ctiocb->iocb; 17385 icmd->un.xseq64.bdl.bdeSize = 0; 17386 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17387 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17388 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17389 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17390 17391 /* Fill in the rest of iocb fields */ 17392 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17393 icmd->ulpBdeCount = 0; 17394 icmd->ulpLe = 1; 17395 icmd->ulpClass = CLASS3; 17396 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17397 ctiocb->context1 = lpfc_nlp_get(ndlp); 17398 17399 ctiocb->iocb_cmpl = NULL; 17400 ctiocb->vport = phba->pport; 17401 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17402 ctiocb->sli4_lxritag = NO_XRI; 17403 ctiocb->sli4_xritag = NO_XRI; 17404 17405 if (fctl & FC_FC_EX_CTX) 17406 /* Exchange responder sent the abort so we 17407 * own the oxid. 17408 */ 17409 xri = oxid; 17410 else 17411 xri = rxid; 17412 lxri = lpfc_sli4_xri_inrange(phba, xri); 17413 if (lxri != NO_XRI) 17414 lpfc_set_rrq_active(phba, ndlp, lxri, 17415 (xri == oxid) ? rxid : oxid, 0); 17416 /* For BA_ABTS from exchange responder, if the logical xri with 17417 * the oxid maps to the FCP XRI range, the port no longer has 17418 * that exchange context, send a BLS_RJT. Override the IOCB for 17419 * a BA_RJT. 17420 */ 17421 if ((fctl & FC_FC_EX_CTX) && 17422 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17423 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17424 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17425 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17426 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17427 } 17428 17429 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17430 * the driver no longer has that exchange, send a BLS_RJT. Override 17431 * the IOCB for a BA_RJT. 17432 */ 17433 if (aborted == false) { 17434 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17435 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17436 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17437 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17438 } 17439 17440 if (fctl & FC_FC_EX_CTX) { 17441 /* ABTS sent by responder to CT exchange, construction 17442 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 17443 * field and RX_ID from ABTS for RX_ID field. 17444 */ 17445 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 17446 } else { 17447 /* ABTS sent by initiator to CT exchange, construction 17448 * of BA_ACC will need to allocate a new XRI as for the 17449 * XRI_TAG field. 17450 */ 17451 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 17452 } 17453 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 17454 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 17455 17456 /* Xmit CT abts response on exchange <xid> */ 17457 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 17458 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 17459 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 17460 17461 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 17462 if (rc == IOCB_ERROR) { 17463 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 17464 "2925 Failed to issue CT ABTS RSP x%x on " 17465 "xri x%x, Data x%x\n", 17466 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 17467 phba->link_state); 17468 lpfc_nlp_put(ndlp); 17469 ctiocb->context1 = NULL; 17470 lpfc_sli_release_iocbq(phba, ctiocb); 17471 } 17472 } 17473 17474 /** 17475 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 17476 * @vport: Pointer to the vport on which this sequence was received 17477 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17478 * 17479 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 17480 * receive sequence is only partially assembed by the driver, it shall abort 17481 * the partially assembled frames for the sequence. Otherwise, if the 17482 * unsolicited receive sequence has been completely assembled and passed to 17483 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 17484 * unsolicited sequence has been aborted. After that, it will issue a basic 17485 * accept to accept the abort. 17486 **/ 17487 static void 17488 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 17489 struct hbq_dmabuf *dmabuf) 17490 { 17491 struct lpfc_hba *phba = vport->phba; 17492 struct fc_frame_header fc_hdr; 17493 uint32_t fctl; 17494 bool aborted; 17495 17496 /* Make a copy of fc_hdr before the dmabuf being released */ 17497 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 17498 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 17499 17500 if (fctl & FC_FC_EX_CTX) { 17501 /* ABTS by responder to exchange, no cleanup needed */ 17502 aborted = true; 17503 } else { 17504 /* ABTS by initiator to exchange, need to do cleanup */ 17505 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 17506 if (aborted == false) 17507 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 17508 } 17509 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17510 17511 if (phba->nvmet_support) { 17512 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 17513 return; 17514 } 17515 17516 /* Respond with BA_ACC or BA_RJT accordingly */ 17517 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 17518 } 17519 17520 /** 17521 * lpfc_seq_complete - Indicates if a sequence is complete 17522 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17523 * 17524 * This function checks the sequence, starting with the frame described by 17525 * @dmabuf, to see if all the frames associated with this sequence are present. 17526 * the frames associated with this sequence are linked to the @dmabuf using the 17527 * dbuf list. This function looks for two major things. 1) That the first frame 17528 * has a sequence count of zero. 2) There is a frame with last frame of sequence 17529 * set. 3) That there are no holes in the sequence count. The function will 17530 * return 1 when the sequence is complete, otherwise it will return 0. 17531 **/ 17532 static int 17533 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 17534 { 17535 struct fc_frame_header *hdr; 17536 struct lpfc_dmabuf *d_buf; 17537 struct hbq_dmabuf *seq_dmabuf; 17538 uint32_t fctl; 17539 int seq_count = 0; 17540 17541 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17542 /* make sure first fame of sequence has a sequence count of zero */ 17543 if (hdr->fh_seq_cnt != seq_count) 17544 return 0; 17545 fctl = (hdr->fh_f_ctl[0] << 16 | 17546 hdr->fh_f_ctl[1] << 8 | 17547 hdr->fh_f_ctl[2]); 17548 /* If last frame of sequence we can return success. */ 17549 if (fctl & FC_FC_END_SEQ) 17550 return 1; 17551 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 17552 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17553 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17554 /* If there is a hole in the sequence count then fail. */ 17555 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 17556 return 0; 17557 fctl = (hdr->fh_f_ctl[0] << 16 | 17558 hdr->fh_f_ctl[1] << 8 | 17559 hdr->fh_f_ctl[2]); 17560 /* If last frame of sequence we can return success. */ 17561 if (fctl & FC_FC_END_SEQ) 17562 return 1; 17563 } 17564 return 0; 17565 } 17566 17567 /** 17568 * lpfc_prep_seq - Prep sequence for ULP processing 17569 * @vport: Pointer to the vport on which this sequence was received 17570 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17571 * 17572 * This function takes a sequence, described by a list of frames, and creates 17573 * a list of iocbq structures to describe the sequence. This iocbq list will be 17574 * used to issue to the generic unsolicited sequence handler. This routine 17575 * returns a pointer to the first iocbq in the list. If the function is unable 17576 * to allocate an iocbq then it throw out the received frames that were not 17577 * able to be described and return a pointer to the first iocbq. If unable to 17578 * allocate any iocbqs (including the first) this function will return NULL. 17579 **/ 17580 static struct lpfc_iocbq * 17581 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 17582 { 17583 struct hbq_dmabuf *hbq_buf; 17584 struct lpfc_dmabuf *d_buf, *n_buf; 17585 struct lpfc_iocbq *first_iocbq, *iocbq; 17586 struct fc_frame_header *fc_hdr; 17587 uint32_t sid; 17588 uint32_t len, tot_len; 17589 struct ulp_bde64 *pbde; 17590 17591 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17592 /* remove from receive buffer list */ 17593 list_del_init(&seq_dmabuf->hbuf.list); 17594 lpfc_update_rcv_time_stamp(vport); 17595 /* get the Remote Port's SID */ 17596 sid = sli4_sid_from_fc_hdr(fc_hdr); 17597 tot_len = 0; 17598 /* Get an iocbq struct to fill in. */ 17599 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 17600 if (first_iocbq) { 17601 /* Initialize the first IOCB. */ 17602 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 17603 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 17604 first_iocbq->vport = vport; 17605 17606 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 17607 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 17608 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 17609 first_iocbq->iocb.un.rcvels.parmRo = 17610 sli4_did_from_fc_hdr(fc_hdr); 17611 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 17612 } else 17613 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 17614 first_iocbq->iocb.ulpContext = NO_XRI; 17615 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 17616 be16_to_cpu(fc_hdr->fh_ox_id); 17617 /* iocbq is prepped for internal consumption. Physical vpi. */ 17618 first_iocbq->iocb.unsli3.rcvsli3.vpi = 17619 vport->phba->vpi_ids[vport->vpi]; 17620 /* put the first buffer into the first IOCBq */ 17621 tot_len = bf_get(lpfc_rcqe_length, 17622 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 17623 17624 first_iocbq->context2 = &seq_dmabuf->dbuf; 17625 first_iocbq->context3 = NULL; 17626 first_iocbq->iocb.ulpBdeCount = 1; 17627 if (tot_len > LPFC_DATA_BUF_SIZE) 17628 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17629 LPFC_DATA_BUF_SIZE; 17630 else 17631 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 17632 17633 first_iocbq->iocb.un.rcvels.remoteID = sid; 17634 17635 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17636 } 17637 iocbq = first_iocbq; 17638 /* 17639 * Each IOCBq can have two Buffers assigned, so go through the list 17640 * of buffers for this sequence and save two buffers in each IOCBq 17641 */ 17642 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 17643 if (!iocbq) { 17644 lpfc_in_buf_free(vport->phba, d_buf); 17645 continue; 17646 } 17647 if (!iocbq->context3) { 17648 iocbq->context3 = d_buf; 17649 iocbq->iocb.ulpBdeCount++; 17650 /* We need to get the size out of the right CQE */ 17651 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17652 len = bf_get(lpfc_rcqe_length, 17653 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17654 pbde = (struct ulp_bde64 *) 17655 &iocbq->iocb.unsli3.sli3Words[4]; 17656 if (len > LPFC_DATA_BUF_SIZE) 17657 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 17658 else 17659 pbde->tus.f.bdeSize = len; 17660 17661 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 17662 tot_len += len; 17663 } else { 17664 iocbq = lpfc_sli_get_iocbq(vport->phba); 17665 if (!iocbq) { 17666 if (first_iocbq) { 17667 first_iocbq->iocb.ulpStatus = 17668 IOSTAT_FCP_RSP_ERROR; 17669 first_iocbq->iocb.un.ulpWord[4] = 17670 IOERR_NO_RESOURCES; 17671 } 17672 lpfc_in_buf_free(vport->phba, d_buf); 17673 continue; 17674 } 17675 /* We need to get the size out of the right CQE */ 17676 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17677 len = bf_get(lpfc_rcqe_length, 17678 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17679 iocbq->context2 = d_buf; 17680 iocbq->context3 = NULL; 17681 iocbq->iocb.ulpBdeCount = 1; 17682 if (len > LPFC_DATA_BUF_SIZE) 17683 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17684 LPFC_DATA_BUF_SIZE; 17685 else 17686 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 17687 17688 tot_len += len; 17689 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17690 17691 iocbq->iocb.un.rcvels.remoteID = sid; 17692 list_add_tail(&iocbq->list, &first_iocbq->list); 17693 } 17694 } 17695 return first_iocbq; 17696 } 17697 17698 static void 17699 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 17700 struct hbq_dmabuf *seq_dmabuf) 17701 { 17702 struct fc_frame_header *fc_hdr; 17703 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 17704 struct lpfc_hba *phba = vport->phba; 17705 17706 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17707 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 17708 if (!iocbq) { 17709 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17710 "2707 Ring %d handler: Failed to allocate " 17711 "iocb Rctl x%x Type x%x received\n", 17712 LPFC_ELS_RING, 17713 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17714 return; 17715 } 17716 if (!lpfc_complete_unsol_iocb(phba, 17717 phba->sli4_hba.els_wq->pring, 17718 iocbq, fc_hdr->fh_r_ctl, 17719 fc_hdr->fh_type)) 17720 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17721 "2540 Ring %d handler: unexpected Rctl " 17722 "x%x Type x%x received\n", 17723 LPFC_ELS_RING, 17724 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17725 17726 /* Free iocb created in lpfc_prep_seq */ 17727 list_for_each_entry_safe(curr_iocb, next_iocb, 17728 &iocbq->list, list) { 17729 list_del_init(&curr_iocb->list); 17730 lpfc_sli_release_iocbq(phba, curr_iocb); 17731 } 17732 lpfc_sli_release_iocbq(phba, iocbq); 17733 } 17734 17735 static void 17736 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 17737 struct lpfc_iocbq *rspiocb) 17738 { 17739 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 17740 17741 if (pcmd && pcmd->virt) 17742 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17743 kfree(pcmd); 17744 lpfc_sli_release_iocbq(phba, cmdiocb); 17745 } 17746 17747 static void 17748 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 17749 struct hbq_dmabuf *dmabuf) 17750 { 17751 struct fc_frame_header *fc_hdr; 17752 struct lpfc_hba *phba = vport->phba; 17753 struct lpfc_iocbq *iocbq = NULL; 17754 union lpfc_wqe *wqe; 17755 struct lpfc_dmabuf *pcmd = NULL; 17756 uint32_t frame_len; 17757 int rc; 17758 17759 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17760 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 17761 17762 /* Send the received frame back */ 17763 iocbq = lpfc_sli_get_iocbq(phba); 17764 if (!iocbq) 17765 goto exit; 17766 17767 /* Allocate buffer for command payload */ 17768 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 17769 if (pcmd) 17770 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 17771 &pcmd->phys); 17772 if (!pcmd || !pcmd->virt) 17773 goto exit; 17774 17775 INIT_LIST_HEAD(&pcmd->list); 17776 17777 /* copyin the payload */ 17778 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 17779 17780 /* fill in BDE's for command */ 17781 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 17782 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 17783 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 17784 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 17785 17786 iocbq->context2 = pcmd; 17787 iocbq->vport = vport; 17788 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 17789 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 17790 17791 /* 17792 * Setup rest of the iocb as though it were a WQE 17793 * Build the SEND_FRAME WQE 17794 */ 17795 wqe = (union lpfc_wqe *)&iocbq->iocb; 17796 17797 wqe->send_frame.frame_len = frame_len; 17798 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 17799 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 17800 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 17801 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 17802 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 17803 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 17804 17805 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 17806 iocbq->iocb.ulpLe = 1; 17807 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 17808 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 17809 if (rc == IOCB_ERROR) 17810 goto exit; 17811 17812 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17813 return; 17814 17815 exit: 17816 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17817 "2023 Unable to process MDS loopback frame\n"); 17818 if (pcmd && pcmd->virt) 17819 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17820 kfree(pcmd); 17821 if (iocbq) 17822 lpfc_sli_release_iocbq(phba, iocbq); 17823 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17824 } 17825 17826 /** 17827 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 17828 * @phba: Pointer to HBA context object. 17829 * 17830 * This function is called with no lock held. This function processes all 17831 * the received buffers and gives it to upper layers when a received buffer 17832 * indicates that it is the final frame in the sequence. The interrupt 17833 * service routine processes received buffers at interrupt contexts. 17834 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 17835 * appropriate receive function when the final frame in a sequence is received. 17836 **/ 17837 void 17838 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 17839 struct hbq_dmabuf *dmabuf) 17840 { 17841 struct hbq_dmabuf *seq_dmabuf; 17842 struct fc_frame_header *fc_hdr; 17843 struct lpfc_vport *vport; 17844 uint32_t fcfi; 17845 uint32_t did; 17846 17847 /* Process each received buffer */ 17848 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17849 17850 /* check to see if this a valid type of frame */ 17851 if (lpfc_fc_frame_check(phba, fc_hdr)) { 17852 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17853 return; 17854 } 17855 17856 if ((bf_get(lpfc_cqe_code, 17857 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 17858 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 17859 &dmabuf->cq_event.cqe.rcqe_cmpl); 17860 else 17861 fcfi = bf_get(lpfc_rcqe_fcf_id, 17862 &dmabuf->cq_event.cqe.rcqe_cmpl); 17863 17864 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 17865 vport = phba->pport; 17866 /* Handle MDS Loopback frames */ 17867 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 17868 return; 17869 } 17870 17871 /* d_id this frame is directed to */ 17872 did = sli4_did_from_fc_hdr(fc_hdr); 17873 17874 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 17875 if (!vport) { 17876 /* throw out the frame */ 17877 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17878 return; 17879 } 17880 17881 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 17882 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 17883 (did != Fabric_DID)) { 17884 /* 17885 * Throw out the frame if we are not pt2pt. 17886 * The pt2pt protocol allows for discovery frames 17887 * to be received without a registered VPI. 17888 */ 17889 if (!(vport->fc_flag & FC_PT2PT) || 17890 (phba->link_state == LPFC_HBA_READY)) { 17891 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17892 return; 17893 } 17894 } 17895 17896 /* Handle the basic abort sequence (BA_ABTS) event */ 17897 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 17898 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 17899 return; 17900 } 17901 17902 /* Link this frame */ 17903 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 17904 if (!seq_dmabuf) { 17905 /* unable to add frame to vport - throw it out */ 17906 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17907 return; 17908 } 17909 /* If not last frame in sequence continue processing frames. */ 17910 if (!lpfc_seq_complete(seq_dmabuf)) 17911 return; 17912 17913 /* Send the complete sequence to the upper layer protocol */ 17914 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 17915 } 17916 17917 /** 17918 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 17919 * @phba: pointer to lpfc hba data structure. 17920 * 17921 * This routine is invoked to post rpi header templates to the 17922 * HBA consistent with the SLI-4 interface spec. This routine 17923 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17924 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17925 * 17926 * This routine does not require any locks. It's usage is expected 17927 * to be driver load or reset recovery when the driver is 17928 * sequential. 17929 * 17930 * Return codes 17931 * 0 - successful 17932 * -EIO - The mailbox failed to complete successfully. 17933 * When this error occurs, the driver is not guaranteed 17934 * to have any rpi regions posted to the device and 17935 * must either attempt to repost the regions or take a 17936 * fatal error. 17937 **/ 17938 int 17939 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 17940 { 17941 struct lpfc_rpi_hdr *rpi_page; 17942 uint32_t rc = 0; 17943 uint16_t lrpi = 0; 17944 17945 /* SLI4 ports that support extents do not require RPI headers. */ 17946 if (!phba->sli4_hba.rpi_hdrs_in_use) 17947 goto exit; 17948 if (phba->sli4_hba.extents_in_use) 17949 return -EIO; 17950 17951 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 17952 /* 17953 * Assign the rpi headers a physical rpi only if the driver 17954 * has not initialized those resources. A port reset only 17955 * needs the headers posted. 17956 */ 17957 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 17958 LPFC_RPI_RSRC_RDY) 17959 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17960 17961 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 17962 if (rc != MBX_SUCCESS) { 17963 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17964 "2008 Error %d posting all rpi " 17965 "headers\n", rc); 17966 rc = -EIO; 17967 break; 17968 } 17969 } 17970 17971 exit: 17972 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 17973 LPFC_RPI_RSRC_RDY); 17974 return rc; 17975 } 17976 17977 /** 17978 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 17979 * @phba: pointer to lpfc hba data structure. 17980 * @rpi_page: pointer to the rpi memory region. 17981 * 17982 * This routine is invoked to post a single rpi header to the 17983 * HBA consistent with the SLI-4 interface spec. This memory region 17984 * maps up to 64 rpi context regions. 17985 * 17986 * Return codes 17987 * 0 - successful 17988 * -ENOMEM - No available memory 17989 * -EIO - The mailbox failed to complete successfully. 17990 **/ 17991 int 17992 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 17993 { 17994 LPFC_MBOXQ_t *mboxq; 17995 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 17996 uint32_t rc = 0; 17997 uint32_t shdr_status, shdr_add_status; 17998 union lpfc_sli4_cfg_shdr *shdr; 17999 18000 /* SLI4 ports that support extents do not require RPI headers. */ 18001 if (!phba->sli4_hba.rpi_hdrs_in_use) 18002 return rc; 18003 if (phba->sli4_hba.extents_in_use) 18004 return -EIO; 18005 18006 /* The port is notified of the header region via a mailbox command. */ 18007 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18008 if (!mboxq) { 18009 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18010 "2001 Unable to allocate memory for issuing " 18011 "SLI_CONFIG_SPECIAL mailbox command\n"); 18012 return -ENOMEM; 18013 } 18014 18015 /* Post all rpi memory regions to the port. */ 18016 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18017 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18018 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18019 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18020 sizeof(struct lpfc_sli4_cfg_mhdr), 18021 LPFC_SLI4_MBX_EMBED); 18022 18023 18024 /* Post the physical rpi to the port for this rpi header. */ 18025 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18026 rpi_page->start_rpi); 18027 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18028 hdr_tmpl, rpi_page->page_count); 18029 18030 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18031 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18032 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18033 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18034 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18035 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18036 if (rc != MBX_TIMEOUT) 18037 mempool_free(mboxq, phba->mbox_mem_pool); 18038 if (shdr_status || shdr_add_status || rc) { 18039 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18040 "2514 POST_RPI_HDR mailbox failed with " 18041 "status x%x add_status x%x, mbx status x%x\n", 18042 shdr_status, shdr_add_status, rc); 18043 rc = -ENXIO; 18044 } else { 18045 /* 18046 * The next_rpi stores the next logical module-64 rpi value used 18047 * to post physical rpis in subsequent rpi postings. 18048 */ 18049 spin_lock_irq(&phba->hbalock); 18050 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18051 spin_unlock_irq(&phba->hbalock); 18052 } 18053 return rc; 18054 } 18055 18056 /** 18057 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18058 * @phba: pointer to lpfc hba data structure. 18059 * 18060 * This routine is invoked to post rpi header templates to the 18061 * HBA consistent with the SLI-4 interface spec. This routine 18062 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18063 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18064 * 18065 * Returns 18066 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18067 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18068 **/ 18069 int 18070 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18071 { 18072 unsigned long rpi; 18073 uint16_t max_rpi, rpi_limit; 18074 uint16_t rpi_remaining, lrpi = 0; 18075 struct lpfc_rpi_hdr *rpi_hdr; 18076 unsigned long iflag; 18077 18078 /* 18079 * Fetch the next logical rpi. Because this index is logical, 18080 * the driver starts at 0 each time. 18081 */ 18082 spin_lock_irqsave(&phba->hbalock, iflag); 18083 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18084 rpi_limit = phba->sli4_hba.next_rpi; 18085 18086 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18087 if (rpi >= rpi_limit) 18088 rpi = LPFC_RPI_ALLOC_ERROR; 18089 else { 18090 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18091 phba->sli4_hba.max_cfg_param.rpi_used++; 18092 phba->sli4_hba.rpi_count++; 18093 } 18094 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18095 "0001 rpi:%x max:%x lim:%x\n", 18096 (int) rpi, max_rpi, rpi_limit); 18097 18098 /* 18099 * Don't try to allocate more rpi header regions if the device limit 18100 * has been exhausted. 18101 */ 18102 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18103 (phba->sli4_hba.rpi_count >= max_rpi)) { 18104 spin_unlock_irqrestore(&phba->hbalock, iflag); 18105 return rpi; 18106 } 18107 18108 /* 18109 * RPI header postings are not required for SLI4 ports capable of 18110 * extents. 18111 */ 18112 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18113 spin_unlock_irqrestore(&phba->hbalock, iflag); 18114 return rpi; 18115 } 18116 18117 /* 18118 * If the driver is running low on rpi resources, allocate another 18119 * page now. Note that the next_rpi value is used because 18120 * it represents how many are actually in use whereas max_rpi notes 18121 * how many are supported max by the device. 18122 */ 18123 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18124 spin_unlock_irqrestore(&phba->hbalock, iflag); 18125 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18126 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18127 if (!rpi_hdr) { 18128 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18129 "2002 Error Could not grow rpi " 18130 "count\n"); 18131 } else { 18132 lrpi = rpi_hdr->start_rpi; 18133 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18134 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18135 } 18136 } 18137 18138 return rpi; 18139 } 18140 18141 /** 18142 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18143 * @phba: pointer to lpfc hba data structure. 18144 * 18145 * This routine is invoked to release an rpi to the pool of 18146 * available rpis maintained by the driver. 18147 **/ 18148 static void 18149 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18150 { 18151 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18152 phba->sli4_hba.rpi_count--; 18153 phba->sli4_hba.max_cfg_param.rpi_used--; 18154 } 18155 } 18156 18157 /** 18158 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18159 * @phba: pointer to lpfc hba data structure. 18160 * 18161 * This routine is invoked to release an rpi to the pool of 18162 * available rpis maintained by the driver. 18163 **/ 18164 void 18165 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18166 { 18167 spin_lock_irq(&phba->hbalock); 18168 __lpfc_sli4_free_rpi(phba, rpi); 18169 spin_unlock_irq(&phba->hbalock); 18170 } 18171 18172 /** 18173 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18174 * @phba: pointer to lpfc hba data structure. 18175 * 18176 * This routine is invoked to remove the memory region that 18177 * provided rpi via a bitmask. 18178 **/ 18179 void 18180 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18181 { 18182 kfree(phba->sli4_hba.rpi_bmask); 18183 kfree(phba->sli4_hba.rpi_ids); 18184 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18185 } 18186 18187 /** 18188 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 18189 * @phba: pointer to lpfc hba data structure. 18190 * 18191 * This routine is invoked to remove the memory region that 18192 * provided rpi via a bitmask. 18193 **/ 18194 int 18195 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 18196 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 18197 { 18198 LPFC_MBOXQ_t *mboxq; 18199 struct lpfc_hba *phba = ndlp->phba; 18200 int rc; 18201 18202 /* The port is notified of the header region via a mailbox command. */ 18203 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18204 if (!mboxq) 18205 return -ENOMEM; 18206 18207 /* Post all rpi memory regions to the port. */ 18208 lpfc_resume_rpi(mboxq, ndlp); 18209 if (cmpl) { 18210 mboxq->mbox_cmpl = cmpl; 18211 mboxq->context1 = arg; 18212 mboxq->context2 = ndlp; 18213 } else 18214 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18215 mboxq->vport = ndlp->vport; 18216 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18217 if (rc == MBX_NOT_FINISHED) { 18218 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18219 "2010 Resume RPI Mailbox failed " 18220 "status %d, mbxStatus x%x\n", rc, 18221 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18222 mempool_free(mboxq, phba->mbox_mem_pool); 18223 return -EIO; 18224 } 18225 return 0; 18226 } 18227 18228 /** 18229 * lpfc_sli4_init_vpi - Initialize a vpi with the port 18230 * @vport: Pointer to the vport for which the vpi is being initialized 18231 * 18232 * This routine is invoked to activate a vpi with the port. 18233 * 18234 * Returns: 18235 * 0 success 18236 * -Evalue otherwise 18237 **/ 18238 int 18239 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 18240 { 18241 LPFC_MBOXQ_t *mboxq; 18242 int rc = 0; 18243 int retval = MBX_SUCCESS; 18244 uint32_t mbox_tmo; 18245 struct lpfc_hba *phba = vport->phba; 18246 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18247 if (!mboxq) 18248 return -ENOMEM; 18249 lpfc_init_vpi(phba, mboxq, vport->vpi); 18250 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 18251 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 18252 if (rc != MBX_SUCCESS) { 18253 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 18254 "2022 INIT VPI Mailbox failed " 18255 "status %d, mbxStatus x%x\n", rc, 18256 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18257 retval = -EIO; 18258 } 18259 if (rc != MBX_TIMEOUT) 18260 mempool_free(mboxq, vport->phba->mbox_mem_pool); 18261 18262 return retval; 18263 } 18264 18265 /** 18266 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 18267 * @phba: pointer to lpfc hba data structure. 18268 * @mboxq: Pointer to mailbox object. 18269 * 18270 * This routine is invoked to manually add a single FCF record. The caller 18271 * must pass a completely initialized FCF_Record. This routine takes 18272 * care of the nonembedded mailbox operations. 18273 **/ 18274 static void 18275 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 18276 { 18277 void *virt_addr; 18278 union lpfc_sli4_cfg_shdr *shdr; 18279 uint32_t shdr_status, shdr_add_status; 18280 18281 virt_addr = mboxq->sge_array->addr[0]; 18282 /* The IOCTL status is embedded in the mailbox subheader. */ 18283 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 18284 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18285 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18286 18287 if ((shdr_status || shdr_add_status) && 18288 (shdr_status != STATUS_FCF_IN_USE)) 18289 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18290 "2558 ADD_FCF_RECORD mailbox failed with " 18291 "status x%x add_status x%x\n", 18292 shdr_status, shdr_add_status); 18293 18294 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18295 } 18296 18297 /** 18298 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 18299 * @phba: pointer to lpfc hba data structure. 18300 * @fcf_record: pointer to the initialized fcf record to add. 18301 * 18302 * This routine is invoked to manually add a single FCF record. The caller 18303 * must pass a completely initialized FCF_Record. This routine takes 18304 * care of the nonembedded mailbox operations. 18305 **/ 18306 int 18307 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 18308 { 18309 int rc = 0; 18310 LPFC_MBOXQ_t *mboxq; 18311 uint8_t *bytep; 18312 void *virt_addr; 18313 struct lpfc_mbx_sge sge; 18314 uint32_t alloc_len, req_len; 18315 uint32_t fcfindex; 18316 18317 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18318 if (!mboxq) { 18319 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18320 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 18321 return -ENOMEM; 18322 } 18323 18324 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 18325 sizeof(uint32_t); 18326 18327 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18328 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18329 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 18330 req_len, LPFC_SLI4_MBX_NEMBED); 18331 if (alloc_len < req_len) { 18332 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18333 "2523 Allocated DMA memory size (x%x) is " 18334 "less than the requested DMA memory " 18335 "size (x%x)\n", alloc_len, req_len); 18336 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18337 return -ENOMEM; 18338 } 18339 18340 /* 18341 * Get the first SGE entry from the non-embedded DMA memory. This 18342 * routine only uses a single SGE. 18343 */ 18344 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18345 virt_addr = mboxq->sge_array->addr[0]; 18346 /* 18347 * Configure the FCF record for FCFI 0. This is the driver's 18348 * hardcoded default and gets used in nonFIP mode. 18349 */ 18350 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18351 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18352 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18353 18354 /* 18355 * Copy the fcf_index and the FCF Record Data. The data starts after 18356 * the FCoE header plus word10. The data copy needs to be endian 18357 * correct. 18358 */ 18359 bytep += sizeof(uint32_t); 18360 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18361 mboxq->vport = phba->pport; 18362 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18363 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18364 if (rc == MBX_NOT_FINISHED) { 18365 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18366 "2515 ADD_FCF_RECORD mailbox failed with " 18367 "status 0x%x\n", rc); 18368 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18369 rc = -EIO; 18370 } else 18371 rc = 0; 18372 18373 return rc; 18374 } 18375 18376 /** 18377 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18378 * @phba: pointer to lpfc hba data structure. 18379 * @fcf_record: pointer to the fcf record to write the default data. 18380 * @fcf_index: FCF table entry index. 18381 * 18382 * This routine is invoked to build the driver's default FCF record. The 18383 * values used are hardcoded. This routine handles memory initialization. 18384 * 18385 **/ 18386 void 18387 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 18388 struct fcf_record *fcf_record, 18389 uint16_t fcf_index) 18390 { 18391 memset(fcf_record, 0, sizeof(struct fcf_record)); 18392 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 18393 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 18394 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 18395 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 18396 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 18397 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 18398 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 18399 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 18400 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 18401 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 18402 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 18403 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 18404 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 18405 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 18406 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 18407 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 18408 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 18409 /* Set the VLAN bit map */ 18410 if (phba->valid_vlan) { 18411 fcf_record->vlan_bitmap[phba->vlan_id / 8] 18412 = 1 << (phba->vlan_id % 8); 18413 } 18414 } 18415 18416 /** 18417 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 18418 * @phba: pointer to lpfc hba data structure. 18419 * @fcf_index: FCF table entry offset. 18420 * 18421 * This routine is invoked to scan the entire FCF table by reading FCF 18422 * record and processing it one at a time starting from the @fcf_index 18423 * for initial FCF discovery or fast FCF failover rediscovery. 18424 * 18425 * Return 0 if the mailbox command is submitted successfully, none 0 18426 * otherwise. 18427 **/ 18428 int 18429 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18430 { 18431 int rc = 0, error; 18432 LPFC_MBOXQ_t *mboxq; 18433 18434 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 18435 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 18436 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18437 if (!mboxq) { 18438 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18439 "2000 Failed to allocate mbox for " 18440 "READ_FCF cmd\n"); 18441 error = -ENOMEM; 18442 goto fail_fcf_scan; 18443 } 18444 /* Construct the read FCF record mailbox command */ 18445 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18446 if (rc) { 18447 error = -EINVAL; 18448 goto fail_fcf_scan; 18449 } 18450 /* Issue the mailbox command asynchronously */ 18451 mboxq->vport = phba->pport; 18452 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 18453 18454 spin_lock_irq(&phba->hbalock); 18455 phba->hba_flag |= FCF_TS_INPROG; 18456 spin_unlock_irq(&phba->hbalock); 18457 18458 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18459 if (rc == MBX_NOT_FINISHED) 18460 error = -EIO; 18461 else { 18462 /* Reset eligible FCF count for new scan */ 18463 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 18464 phba->fcf.eligible_fcf_cnt = 0; 18465 error = 0; 18466 } 18467 fail_fcf_scan: 18468 if (error) { 18469 if (mboxq) 18470 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18471 /* FCF scan failed, clear FCF_TS_INPROG flag */ 18472 spin_lock_irq(&phba->hbalock); 18473 phba->hba_flag &= ~FCF_TS_INPROG; 18474 spin_unlock_irq(&phba->hbalock); 18475 } 18476 return error; 18477 } 18478 18479 /** 18480 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 18481 * @phba: pointer to lpfc hba data structure. 18482 * @fcf_index: FCF table entry offset. 18483 * 18484 * This routine is invoked to read an FCF record indicated by @fcf_index 18485 * and to use it for FLOGI roundrobin FCF failover. 18486 * 18487 * Return 0 if the mailbox command is submitted successfully, none 0 18488 * otherwise. 18489 **/ 18490 int 18491 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18492 { 18493 int rc = 0, error; 18494 LPFC_MBOXQ_t *mboxq; 18495 18496 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18497 if (!mboxq) { 18498 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18499 "2763 Failed to allocate mbox for " 18500 "READ_FCF cmd\n"); 18501 error = -ENOMEM; 18502 goto fail_fcf_read; 18503 } 18504 /* Construct the read FCF record mailbox command */ 18505 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18506 if (rc) { 18507 error = -EINVAL; 18508 goto fail_fcf_read; 18509 } 18510 /* Issue the mailbox command asynchronously */ 18511 mboxq->vport = phba->pport; 18512 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 18513 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18514 if (rc == MBX_NOT_FINISHED) 18515 error = -EIO; 18516 else 18517 error = 0; 18518 18519 fail_fcf_read: 18520 if (error && mboxq) 18521 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18522 return error; 18523 } 18524 18525 /** 18526 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 18527 * @phba: pointer to lpfc hba data structure. 18528 * @fcf_index: FCF table entry offset. 18529 * 18530 * This routine is invoked to read an FCF record indicated by @fcf_index to 18531 * determine whether it's eligible for FLOGI roundrobin failover list. 18532 * 18533 * Return 0 if the mailbox command is submitted successfully, none 0 18534 * otherwise. 18535 **/ 18536 int 18537 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18538 { 18539 int rc = 0, error; 18540 LPFC_MBOXQ_t *mboxq; 18541 18542 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18543 if (!mboxq) { 18544 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18545 "2758 Failed to allocate mbox for " 18546 "READ_FCF cmd\n"); 18547 error = -ENOMEM; 18548 goto fail_fcf_read; 18549 } 18550 /* Construct the read FCF record mailbox command */ 18551 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18552 if (rc) { 18553 error = -EINVAL; 18554 goto fail_fcf_read; 18555 } 18556 /* Issue the mailbox command asynchronously */ 18557 mboxq->vport = phba->pport; 18558 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 18559 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18560 if (rc == MBX_NOT_FINISHED) 18561 error = -EIO; 18562 else 18563 error = 0; 18564 18565 fail_fcf_read: 18566 if (error && mboxq) 18567 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18568 return error; 18569 } 18570 18571 /** 18572 * lpfc_check_next_fcf_pri_level 18573 * phba pointer to the lpfc_hba struct for this port. 18574 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 18575 * routine when the rr_bmask is empty. The FCF indecies are put into the 18576 * rr_bmask based on their priority level. Starting from the highest priority 18577 * to the lowest. The most likely FCF candidate will be in the highest 18578 * priority group. When this routine is called it searches the fcf_pri list for 18579 * next lowest priority group and repopulates the rr_bmask with only those 18580 * fcf_indexes. 18581 * returns: 18582 * 1=success 0=failure 18583 **/ 18584 static int 18585 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 18586 { 18587 uint16_t next_fcf_pri; 18588 uint16_t last_index; 18589 struct lpfc_fcf_pri *fcf_pri; 18590 int rc; 18591 int ret = 0; 18592 18593 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 18594 LPFC_SLI4_FCF_TBL_INDX_MAX); 18595 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18596 "3060 Last IDX %d\n", last_index); 18597 18598 /* Verify the priority list has 2 or more entries */ 18599 spin_lock_irq(&phba->hbalock); 18600 if (list_empty(&phba->fcf.fcf_pri_list) || 18601 list_is_singular(&phba->fcf.fcf_pri_list)) { 18602 spin_unlock_irq(&phba->hbalock); 18603 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18604 "3061 Last IDX %d\n", last_index); 18605 return 0; /* Empty rr list */ 18606 } 18607 spin_unlock_irq(&phba->hbalock); 18608 18609 next_fcf_pri = 0; 18610 /* 18611 * Clear the rr_bmask and set all of the bits that are at this 18612 * priority. 18613 */ 18614 memset(phba->fcf.fcf_rr_bmask, 0, 18615 sizeof(*phba->fcf.fcf_rr_bmask)); 18616 spin_lock_irq(&phba->hbalock); 18617 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18618 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 18619 continue; 18620 /* 18621 * the 1st priority that has not FLOGI failed 18622 * will be the highest. 18623 */ 18624 if (!next_fcf_pri) 18625 next_fcf_pri = fcf_pri->fcf_rec.priority; 18626 spin_unlock_irq(&phba->hbalock); 18627 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18628 rc = lpfc_sli4_fcf_rr_index_set(phba, 18629 fcf_pri->fcf_rec.fcf_index); 18630 if (rc) 18631 return 0; 18632 } 18633 spin_lock_irq(&phba->hbalock); 18634 } 18635 /* 18636 * if next_fcf_pri was not set above and the list is not empty then 18637 * we have failed flogis on all of them. So reset flogi failed 18638 * and start at the beginning. 18639 */ 18640 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 18641 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18642 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 18643 /* 18644 * the 1st priority that has not FLOGI failed 18645 * will be the highest. 18646 */ 18647 if (!next_fcf_pri) 18648 next_fcf_pri = fcf_pri->fcf_rec.priority; 18649 spin_unlock_irq(&phba->hbalock); 18650 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18651 rc = lpfc_sli4_fcf_rr_index_set(phba, 18652 fcf_pri->fcf_rec.fcf_index); 18653 if (rc) 18654 return 0; 18655 } 18656 spin_lock_irq(&phba->hbalock); 18657 } 18658 } else 18659 ret = 1; 18660 spin_unlock_irq(&phba->hbalock); 18661 18662 return ret; 18663 } 18664 /** 18665 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 18666 * @phba: pointer to lpfc hba data structure. 18667 * 18668 * This routine is to get the next eligible FCF record index in a round 18669 * robin fashion. If the next eligible FCF record index equals to the 18670 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 18671 * shall be returned, otherwise, the next eligible FCF record's index 18672 * shall be returned. 18673 **/ 18674 uint16_t 18675 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 18676 { 18677 uint16_t next_fcf_index; 18678 18679 initial_priority: 18680 /* Search start from next bit of currently registered FCF index */ 18681 next_fcf_index = phba->fcf.current_rec.fcf_indx; 18682 18683 next_priority: 18684 /* Determine the next fcf index to check */ 18685 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 18686 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18687 LPFC_SLI4_FCF_TBL_INDX_MAX, 18688 next_fcf_index); 18689 18690 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 18691 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18692 /* 18693 * If we have wrapped then we need to clear the bits that 18694 * have been tested so that we can detect when we should 18695 * change the priority level. 18696 */ 18697 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18698 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 18699 } 18700 18701 18702 /* Check roundrobin failover list empty condition */ 18703 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 18704 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 18705 /* 18706 * If next fcf index is not found check if there are lower 18707 * Priority level fcf's in the fcf_priority list. 18708 * Set up the rr_bmask with all of the avaiable fcf bits 18709 * at that level and continue the selection process. 18710 */ 18711 if (lpfc_check_next_fcf_pri_level(phba)) 18712 goto initial_priority; 18713 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18714 "2844 No roundrobin failover FCF available\n"); 18715 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 18716 return LPFC_FCOE_FCF_NEXT_NONE; 18717 else { 18718 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18719 "3063 Only FCF available idx %d, flag %x\n", 18720 next_fcf_index, 18721 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 18722 return next_fcf_index; 18723 } 18724 } 18725 18726 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 18727 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 18728 LPFC_FCF_FLOGI_FAILED) { 18729 if (list_is_singular(&phba->fcf.fcf_pri_list)) 18730 return LPFC_FCOE_FCF_NEXT_NONE; 18731 18732 goto next_priority; 18733 } 18734 18735 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18736 "2845 Get next roundrobin failover FCF (x%x)\n", 18737 next_fcf_index); 18738 18739 return next_fcf_index; 18740 } 18741 18742 /** 18743 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 18744 * @phba: pointer to lpfc hba data structure. 18745 * 18746 * This routine sets the FCF record index in to the eligible bmask for 18747 * roundrobin failover search. It checks to make sure that the index 18748 * does not go beyond the range of the driver allocated bmask dimension 18749 * before setting the bit. 18750 * 18751 * Returns 0 if the index bit successfully set, otherwise, it returns 18752 * -EINVAL. 18753 **/ 18754 int 18755 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 18756 { 18757 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18758 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18759 "2610 FCF (x%x) reached driver's book " 18760 "keeping dimension:x%x\n", 18761 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18762 return -EINVAL; 18763 } 18764 /* Set the eligible FCF record index bmask */ 18765 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18766 18767 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18768 "2790 Set FCF (x%x) to roundrobin FCF failover " 18769 "bmask\n", fcf_index); 18770 18771 return 0; 18772 } 18773 18774 /** 18775 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 18776 * @phba: pointer to lpfc hba data structure. 18777 * 18778 * This routine clears the FCF record index from the eligible bmask for 18779 * roundrobin failover search. It checks to make sure that the index 18780 * does not go beyond the range of the driver allocated bmask dimension 18781 * before clearing the bit. 18782 **/ 18783 void 18784 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 18785 { 18786 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 18787 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18788 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18789 "2762 FCF (x%x) reached driver's book " 18790 "keeping dimension:x%x\n", 18791 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18792 return; 18793 } 18794 /* Clear the eligible FCF record index bmask */ 18795 spin_lock_irq(&phba->hbalock); 18796 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 18797 list) { 18798 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 18799 list_del_init(&fcf_pri->list); 18800 break; 18801 } 18802 } 18803 spin_unlock_irq(&phba->hbalock); 18804 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18805 18806 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18807 "2791 Clear FCF (x%x) from roundrobin failover " 18808 "bmask\n", fcf_index); 18809 } 18810 18811 /** 18812 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 18813 * @phba: pointer to lpfc hba data structure. 18814 * 18815 * This routine is the completion routine for the rediscover FCF table mailbox 18816 * command. If the mailbox command returned failure, it will try to stop the 18817 * FCF rediscover wait timer. 18818 **/ 18819 static void 18820 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 18821 { 18822 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18823 uint32_t shdr_status, shdr_add_status; 18824 18825 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18826 18827 shdr_status = bf_get(lpfc_mbox_hdr_status, 18828 &redisc_fcf->header.cfg_shdr.response); 18829 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 18830 &redisc_fcf->header.cfg_shdr.response); 18831 if (shdr_status || shdr_add_status) { 18832 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18833 "2746 Requesting for FCF rediscovery failed " 18834 "status x%x add_status x%x\n", 18835 shdr_status, shdr_add_status); 18836 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 18837 spin_lock_irq(&phba->hbalock); 18838 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 18839 spin_unlock_irq(&phba->hbalock); 18840 /* 18841 * CVL event triggered FCF rediscover request failed, 18842 * last resort to re-try current registered FCF entry. 18843 */ 18844 lpfc_retry_pport_discovery(phba); 18845 } else { 18846 spin_lock_irq(&phba->hbalock); 18847 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 18848 spin_unlock_irq(&phba->hbalock); 18849 /* 18850 * DEAD FCF event triggered FCF rediscover request 18851 * failed, last resort to fail over as a link down 18852 * to FCF registration. 18853 */ 18854 lpfc_sli4_fcf_dead_failthrough(phba); 18855 } 18856 } else { 18857 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18858 "2775 Start FCF rediscover quiescent timer\n"); 18859 /* 18860 * Start FCF rediscovery wait timer for pending FCF 18861 * before rescan FCF record table. 18862 */ 18863 lpfc_fcf_redisc_wait_start_timer(phba); 18864 } 18865 18866 mempool_free(mbox, phba->mbox_mem_pool); 18867 } 18868 18869 /** 18870 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 18871 * @phba: pointer to lpfc hba data structure. 18872 * 18873 * This routine is invoked to request for rediscovery of the entire FCF table 18874 * by the port. 18875 **/ 18876 int 18877 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 18878 { 18879 LPFC_MBOXQ_t *mbox; 18880 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18881 int rc, length; 18882 18883 /* Cancel retry delay timers to all vports before FCF rediscover */ 18884 lpfc_cancel_all_vport_retry_delay_timer(phba); 18885 18886 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18887 if (!mbox) { 18888 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18889 "2745 Failed to allocate mbox for " 18890 "requesting FCF rediscover.\n"); 18891 return -ENOMEM; 18892 } 18893 18894 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 18895 sizeof(struct lpfc_sli4_cfg_mhdr)); 18896 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18897 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 18898 length, LPFC_SLI4_MBX_EMBED); 18899 18900 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18901 /* Set count to 0 for invalidating the entire FCF database */ 18902 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 18903 18904 /* Issue the mailbox command asynchronously */ 18905 mbox->vport = phba->pport; 18906 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 18907 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 18908 18909 if (rc == MBX_NOT_FINISHED) { 18910 mempool_free(mbox, phba->mbox_mem_pool); 18911 return -EIO; 18912 } 18913 return 0; 18914 } 18915 18916 /** 18917 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 18918 * @phba: pointer to lpfc hba data structure. 18919 * 18920 * This function is the failover routine as a last resort to the FCF DEAD 18921 * event when driver failed to perform fast FCF failover. 18922 **/ 18923 void 18924 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 18925 { 18926 uint32_t link_state; 18927 18928 /* 18929 * Last resort as FCF DEAD event failover will treat this as 18930 * a link down, but save the link state because we don't want 18931 * it to be changed to Link Down unless it is already down. 18932 */ 18933 link_state = phba->link_state; 18934 lpfc_linkdown(phba); 18935 phba->link_state = link_state; 18936 18937 /* Unregister FCF if no devices connected to it */ 18938 lpfc_unregister_unused_fcf(phba); 18939 } 18940 18941 /** 18942 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 18943 * @phba: pointer to lpfc hba data structure. 18944 * @rgn23_data: pointer to configure region 23 data. 18945 * 18946 * This function gets SLI3 port configure region 23 data through memory dump 18947 * mailbox command. When it successfully retrieves data, the size of the data 18948 * will be returned, otherwise, 0 will be returned. 18949 **/ 18950 static uint32_t 18951 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18952 { 18953 LPFC_MBOXQ_t *pmb = NULL; 18954 MAILBOX_t *mb; 18955 uint32_t offset = 0; 18956 int rc; 18957 18958 if (!rgn23_data) 18959 return 0; 18960 18961 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18962 if (!pmb) { 18963 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18964 "2600 failed to allocate mailbox memory\n"); 18965 return 0; 18966 } 18967 mb = &pmb->u.mb; 18968 18969 do { 18970 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 18971 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 18972 18973 if (rc != MBX_SUCCESS) { 18974 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 18975 "2601 failed to read config " 18976 "region 23, rc 0x%x Status 0x%x\n", 18977 rc, mb->mbxStatus); 18978 mb->un.varDmp.word_cnt = 0; 18979 } 18980 /* 18981 * dump mem may return a zero when finished or we got a 18982 * mailbox error, either way we are done. 18983 */ 18984 if (mb->un.varDmp.word_cnt == 0) 18985 break; 18986 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 18987 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 18988 18989 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 18990 rgn23_data + offset, 18991 mb->un.varDmp.word_cnt); 18992 offset += mb->un.varDmp.word_cnt; 18993 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 18994 18995 mempool_free(pmb, phba->mbox_mem_pool); 18996 return offset; 18997 } 18998 18999 /** 19000 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19001 * @phba: pointer to lpfc hba data structure. 19002 * @rgn23_data: pointer to configure region 23 data. 19003 * 19004 * This function gets SLI4 port configure region 23 data through memory dump 19005 * mailbox command. When it successfully retrieves data, the size of the data 19006 * will be returned, otherwise, 0 will be returned. 19007 **/ 19008 static uint32_t 19009 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19010 { 19011 LPFC_MBOXQ_t *mboxq = NULL; 19012 struct lpfc_dmabuf *mp = NULL; 19013 struct lpfc_mqe *mqe; 19014 uint32_t data_length = 0; 19015 int rc; 19016 19017 if (!rgn23_data) 19018 return 0; 19019 19020 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19021 if (!mboxq) { 19022 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19023 "3105 failed to allocate mailbox memory\n"); 19024 return 0; 19025 } 19026 19027 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19028 goto out; 19029 mqe = &mboxq->u.mqe; 19030 mp = (struct lpfc_dmabuf *) mboxq->context1; 19031 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19032 if (rc) 19033 goto out; 19034 data_length = mqe->un.mb_words[5]; 19035 if (data_length == 0) 19036 goto out; 19037 if (data_length > DMP_RGN23_SIZE) { 19038 data_length = 0; 19039 goto out; 19040 } 19041 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19042 out: 19043 mempool_free(mboxq, phba->mbox_mem_pool); 19044 if (mp) { 19045 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19046 kfree(mp); 19047 } 19048 return data_length; 19049 } 19050 19051 /** 19052 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19053 * @phba: pointer to lpfc hba data structure. 19054 * 19055 * This function read region 23 and parse TLV for port status to 19056 * decide if the user disaled the port. If the TLV indicates the 19057 * port is disabled, the hba_flag is set accordingly. 19058 **/ 19059 void 19060 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19061 { 19062 uint8_t *rgn23_data = NULL; 19063 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19064 uint32_t offset = 0; 19065 19066 /* Get adapter Region 23 data */ 19067 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19068 if (!rgn23_data) 19069 goto out; 19070 19071 if (phba->sli_rev < LPFC_SLI_REV4) 19072 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19073 else { 19074 if_type = bf_get(lpfc_sli_intf_if_type, 19075 &phba->sli4_hba.sli_intf); 19076 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19077 goto out; 19078 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19079 } 19080 19081 if (!data_size) 19082 goto out; 19083 19084 /* Check the region signature first */ 19085 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19086 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19087 "2619 Config region 23 has bad signature\n"); 19088 goto out; 19089 } 19090 offset += 4; 19091 19092 /* Check the data structure version */ 19093 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19094 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19095 "2620 Config region 23 has bad version\n"); 19096 goto out; 19097 } 19098 offset += 4; 19099 19100 /* Parse TLV entries in the region */ 19101 while (offset < data_size) { 19102 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19103 break; 19104 /* 19105 * If the TLV is not driver specific TLV or driver id is 19106 * not linux driver id, skip the record. 19107 */ 19108 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19109 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19110 (rgn23_data[offset + 3] != 0)) { 19111 offset += rgn23_data[offset + 1] * 4 + 4; 19112 continue; 19113 } 19114 19115 /* Driver found a driver specific TLV in the config region */ 19116 sub_tlv_len = rgn23_data[offset + 1] * 4; 19117 offset += 4; 19118 tlv_offset = 0; 19119 19120 /* 19121 * Search for configured port state sub-TLV. 19122 */ 19123 while ((offset < data_size) && 19124 (tlv_offset < sub_tlv_len)) { 19125 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19126 offset += 4; 19127 tlv_offset += 4; 19128 break; 19129 } 19130 if (rgn23_data[offset] != PORT_STE_TYPE) { 19131 offset += rgn23_data[offset + 1] * 4 + 4; 19132 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19133 continue; 19134 } 19135 19136 /* This HBA contains PORT_STE configured */ 19137 if (!rgn23_data[offset + 2]) 19138 phba->hba_flag |= LINK_DISABLED; 19139 19140 goto out; 19141 } 19142 } 19143 19144 out: 19145 kfree(rgn23_data); 19146 return; 19147 } 19148 19149 /** 19150 * lpfc_wr_object - write an object to the firmware 19151 * @phba: HBA structure that indicates port to create a queue on. 19152 * @dmabuf_list: list of dmabufs to write to the port. 19153 * @size: the total byte value of the objects to write to the port. 19154 * @offset: the current offset to be used to start the transfer. 19155 * 19156 * This routine will create a wr_object mailbox command to send to the port. 19157 * the mailbox command will be constructed using the dma buffers described in 19158 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19159 * BDEs that the imbedded mailbox can support. The @offset variable will be 19160 * used to indicate the starting offset of the transfer and will also return 19161 * the offset after the write object mailbox has completed. @size is used to 19162 * determine the end of the object and whether the eof bit should be set. 19163 * 19164 * Return 0 is successful and offset will contain the the new offset to use 19165 * for the next write. 19166 * Return negative value for error cases. 19167 **/ 19168 int 19169 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19170 uint32_t size, uint32_t *offset) 19171 { 19172 struct lpfc_mbx_wr_object *wr_object; 19173 LPFC_MBOXQ_t *mbox; 19174 int rc = 0, i = 0; 19175 uint32_t shdr_status, shdr_add_status; 19176 uint32_t mbox_tmo; 19177 union lpfc_sli4_cfg_shdr *shdr; 19178 struct lpfc_dmabuf *dmabuf; 19179 uint32_t written = 0; 19180 19181 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19182 if (!mbox) 19183 return -ENOMEM; 19184 19185 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19186 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19187 sizeof(struct lpfc_mbx_wr_object) - 19188 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 19189 19190 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 19191 wr_object->u.request.write_offset = *offset; 19192 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 19193 wr_object->u.request.object_name[0] = 19194 cpu_to_le32(wr_object->u.request.object_name[0]); 19195 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 19196 list_for_each_entry(dmabuf, dmabuf_list, list) { 19197 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 19198 break; 19199 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 19200 wr_object->u.request.bde[i].addrHigh = 19201 putPaddrHigh(dmabuf->phys); 19202 if (written + SLI4_PAGE_SIZE >= size) { 19203 wr_object->u.request.bde[i].tus.f.bdeSize = 19204 (size - written); 19205 written += (size - written); 19206 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 19207 } else { 19208 wr_object->u.request.bde[i].tus.f.bdeSize = 19209 SLI4_PAGE_SIZE; 19210 written += SLI4_PAGE_SIZE; 19211 } 19212 i++; 19213 } 19214 wr_object->u.request.bde_count = i; 19215 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 19216 if (!phba->sli4_hba.intr_enable) 19217 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 19218 else { 19219 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 19220 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 19221 } 19222 /* The IOCTL status is embedded in the mailbox subheader. */ 19223 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 19224 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19225 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19226 if (rc != MBX_TIMEOUT) 19227 mempool_free(mbox, phba->mbox_mem_pool); 19228 if (shdr_status || shdr_add_status || rc) { 19229 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19230 "3025 Write Object mailbox failed with " 19231 "status x%x add_status x%x, mbx status x%x\n", 19232 shdr_status, shdr_add_status, rc); 19233 rc = -ENXIO; 19234 *offset = shdr_add_status; 19235 } else 19236 *offset += wr_object->u.response.actual_write_length; 19237 return rc; 19238 } 19239 19240 /** 19241 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 19242 * @vport: pointer to vport data structure. 19243 * 19244 * This function iterate through the mailboxq and clean up all REG_LOGIN 19245 * and REG_VPI mailbox commands associated with the vport. This function 19246 * is called when driver want to restart discovery of the vport due to 19247 * a Clear Virtual Link event. 19248 **/ 19249 void 19250 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 19251 { 19252 struct lpfc_hba *phba = vport->phba; 19253 LPFC_MBOXQ_t *mb, *nextmb; 19254 struct lpfc_dmabuf *mp; 19255 struct lpfc_nodelist *ndlp; 19256 struct lpfc_nodelist *act_mbx_ndlp = NULL; 19257 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 19258 LIST_HEAD(mbox_cmd_list); 19259 uint8_t restart_loop; 19260 19261 /* Clean up internally queued mailbox commands with the vport */ 19262 spin_lock_irq(&phba->hbalock); 19263 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 19264 if (mb->vport != vport) 19265 continue; 19266 19267 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19268 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19269 continue; 19270 19271 list_del(&mb->list); 19272 list_add_tail(&mb->list, &mbox_cmd_list); 19273 } 19274 /* Clean up active mailbox command with the vport */ 19275 mb = phba->sli.mbox_active; 19276 if (mb && (mb->vport == vport)) { 19277 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 19278 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 19279 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19280 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19281 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 19282 /* Put reference count for delayed processing */ 19283 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 19284 /* Unregister the RPI when mailbox complete */ 19285 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19286 } 19287 } 19288 /* Cleanup any mailbox completions which are not yet processed */ 19289 do { 19290 restart_loop = 0; 19291 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 19292 /* 19293 * If this mailox is already processed or it is 19294 * for another vport ignore it. 19295 */ 19296 if ((mb->vport != vport) || 19297 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 19298 continue; 19299 19300 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19301 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19302 continue; 19303 19304 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19305 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19306 ndlp = (struct lpfc_nodelist *)mb->context2; 19307 /* Unregister the RPI when mailbox complete */ 19308 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19309 restart_loop = 1; 19310 spin_unlock_irq(&phba->hbalock); 19311 spin_lock(shost->host_lock); 19312 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19313 spin_unlock(shost->host_lock); 19314 spin_lock_irq(&phba->hbalock); 19315 break; 19316 } 19317 } 19318 } while (restart_loop); 19319 19320 spin_unlock_irq(&phba->hbalock); 19321 19322 /* Release the cleaned-up mailbox commands */ 19323 while (!list_empty(&mbox_cmd_list)) { 19324 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 19325 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19326 mp = (struct lpfc_dmabuf *) (mb->context1); 19327 if (mp) { 19328 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 19329 kfree(mp); 19330 } 19331 ndlp = (struct lpfc_nodelist *) mb->context2; 19332 mb->context2 = NULL; 19333 if (ndlp) { 19334 spin_lock(shost->host_lock); 19335 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19336 spin_unlock(shost->host_lock); 19337 lpfc_nlp_put(ndlp); 19338 } 19339 } 19340 mempool_free(mb, phba->mbox_mem_pool); 19341 } 19342 19343 /* Release the ndlp with the cleaned-up active mailbox command */ 19344 if (act_mbx_ndlp) { 19345 spin_lock(shost->host_lock); 19346 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19347 spin_unlock(shost->host_lock); 19348 lpfc_nlp_put(act_mbx_ndlp); 19349 } 19350 } 19351 19352 /** 19353 * lpfc_drain_txq - Drain the txq 19354 * @phba: Pointer to HBA context object. 19355 * 19356 * This function attempt to submit IOCBs on the txq 19357 * to the adapter. For SLI4 adapters, the txq contains 19358 * ELS IOCBs that have been deferred because the there 19359 * are no SGLs. This congestion can occur with large 19360 * vport counts during node discovery. 19361 **/ 19362 19363 uint32_t 19364 lpfc_drain_txq(struct lpfc_hba *phba) 19365 { 19366 LIST_HEAD(completions); 19367 struct lpfc_sli_ring *pring; 19368 struct lpfc_iocbq *piocbq = NULL; 19369 unsigned long iflags = 0; 19370 char *fail_msg = NULL; 19371 struct lpfc_sglq *sglq; 19372 union lpfc_wqe128 wqe; 19373 uint32_t txq_cnt = 0; 19374 struct lpfc_queue *wq; 19375 19376 if (phba->link_flag & LS_MDS_LOOPBACK) { 19377 /* MDS WQE are posted only to first WQ*/ 19378 wq = phba->sli4_hba.fcp_wq[0]; 19379 if (unlikely(!wq)) 19380 return 0; 19381 pring = wq->pring; 19382 } else { 19383 wq = phba->sli4_hba.els_wq; 19384 if (unlikely(!wq)) 19385 return 0; 19386 pring = lpfc_phba_elsring(phba); 19387 } 19388 19389 if (unlikely(!pring) || list_empty(&pring->txq)) 19390 return 0; 19391 19392 spin_lock_irqsave(&pring->ring_lock, iflags); 19393 list_for_each_entry(piocbq, &pring->txq, list) { 19394 txq_cnt++; 19395 } 19396 19397 if (txq_cnt > pring->txq_max) 19398 pring->txq_max = txq_cnt; 19399 19400 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19401 19402 while (!list_empty(&pring->txq)) { 19403 spin_lock_irqsave(&pring->ring_lock, iflags); 19404 19405 piocbq = lpfc_sli_ringtx_get(phba, pring); 19406 if (!piocbq) { 19407 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19408 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19409 "2823 txq empty and txq_cnt is %d\n ", 19410 txq_cnt); 19411 break; 19412 } 19413 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 19414 if (!sglq) { 19415 __lpfc_sli_ringtx_put(phba, pring, piocbq); 19416 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19417 break; 19418 } 19419 txq_cnt--; 19420 19421 /* The xri and iocb resources secured, 19422 * attempt to issue request 19423 */ 19424 piocbq->sli4_lxritag = sglq->sli4_lxritag; 19425 piocbq->sli4_xritag = sglq->sli4_xritag; 19426 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 19427 fail_msg = "to convert bpl to sgl"; 19428 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 19429 fail_msg = "to convert iocb to wqe"; 19430 else if (lpfc_sli4_wq_put(wq, &wqe)) 19431 fail_msg = " - Wq is full"; 19432 else 19433 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 19434 19435 if (fail_msg) { 19436 /* Failed means we can't issue and need to cancel */ 19437 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19438 "2822 IOCB failed %s iotag 0x%x " 19439 "xri 0x%x\n", 19440 fail_msg, 19441 piocbq->iotag, piocbq->sli4_xritag); 19442 list_add_tail(&piocbq->list, &completions); 19443 } 19444 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19445 } 19446 19447 /* Cancel all the IOCBs that cannot be issued */ 19448 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 19449 IOERR_SLI_ABORTED); 19450 19451 return txq_cnt; 19452 } 19453 19454 /** 19455 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 19456 * @phba: Pointer to HBA context object. 19457 * @pwqe: Pointer to command WQE. 19458 * @sglq: Pointer to the scatter gather queue object. 19459 * 19460 * This routine converts the bpl or bde that is in the WQE 19461 * to a sgl list for the sli4 hardware. The physical address 19462 * of the bpl/bde is converted back to a virtual address. 19463 * If the WQE contains a BPL then the list of BDE's is 19464 * converted to sli4_sge's. If the WQE contains a single 19465 * BDE then it is converted to a single sli_sge. 19466 * The WQE is still in cpu endianness so the contents of 19467 * the bpl can be used without byte swapping. 19468 * 19469 * Returns valid XRI = Success, NO_XRI = Failure. 19470 */ 19471 static uint16_t 19472 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 19473 struct lpfc_sglq *sglq) 19474 { 19475 uint16_t xritag = NO_XRI; 19476 struct ulp_bde64 *bpl = NULL; 19477 struct ulp_bde64 bde; 19478 struct sli4_sge *sgl = NULL; 19479 struct lpfc_dmabuf *dmabuf; 19480 union lpfc_wqe128 *wqe; 19481 int numBdes = 0; 19482 int i = 0; 19483 uint32_t offset = 0; /* accumulated offset in the sg request list */ 19484 int inbound = 0; /* number of sg reply entries inbound from firmware */ 19485 uint32_t cmd; 19486 19487 if (!pwqeq || !sglq) 19488 return xritag; 19489 19490 sgl = (struct sli4_sge *)sglq->sgl; 19491 wqe = &pwqeq->wqe; 19492 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 19493 19494 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 19495 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 19496 return sglq->sli4_xritag; 19497 numBdes = pwqeq->rsvd2; 19498 if (numBdes) { 19499 /* The addrHigh and addrLow fields within the WQE 19500 * have not been byteswapped yet so there is no 19501 * need to swap them back. 19502 */ 19503 if (pwqeq->context3) 19504 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 19505 else 19506 return xritag; 19507 19508 bpl = (struct ulp_bde64 *)dmabuf->virt; 19509 if (!bpl) 19510 return xritag; 19511 19512 for (i = 0; i < numBdes; i++) { 19513 /* Should already be byte swapped. */ 19514 sgl->addr_hi = bpl->addrHigh; 19515 sgl->addr_lo = bpl->addrLow; 19516 19517 sgl->word2 = le32_to_cpu(sgl->word2); 19518 if ((i+1) == numBdes) 19519 bf_set(lpfc_sli4_sge_last, sgl, 1); 19520 else 19521 bf_set(lpfc_sli4_sge_last, sgl, 0); 19522 /* swap the size field back to the cpu so we 19523 * can assign it to the sgl. 19524 */ 19525 bde.tus.w = le32_to_cpu(bpl->tus.w); 19526 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 19527 /* The offsets in the sgl need to be accumulated 19528 * separately for the request and reply lists. 19529 * The request is always first, the reply follows. 19530 */ 19531 switch (cmd) { 19532 case CMD_GEN_REQUEST64_WQE: 19533 /* add up the reply sg entries */ 19534 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 19535 inbound++; 19536 /* first inbound? reset the offset */ 19537 if (inbound == 1) 19538 offset = 0; 19539 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19540 bf_set(lpfc_sli4_sge_type, sgl, 19541 LPFC_SGE_TYPE_DATA); 19542 offset += bde.tus.f.bdeSize; 19543 break; 19544 case CMD_FCP_TRSP64_WQE: 19545 bf_set(lpfc_sli4_sge_offset, sgl, 0); 19546 bf_set(lpfc_sli4_sge_type, sgl, 19547 LPFC_SGE_TYPE_DATA); 19548 break; 19549 case CMD_FCP_TSEND64_WQE: 19550 case CMD_FCP_TRECEIVE64_WQE: 19551 bf_set(lpfc_sli4_sge_type, sgl, 19552 bpl->tus.f.bdeFlags); 19553 if (i < 3) 19554 offset = 0; 19555 else 19556 offset += bde.tus.f.bdeSize; 19557 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19558 break; 19559 } 19560 sgl->word2 = cpu_to_le32(sgl->word2); 19561 bpl++; 19562 sgl++; 19563 } 19564 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 19565 /* The addrHigh and addrLow fields of the BDE have not 19566 * been byteswapped yet so they need to be swapped 19567 * before putting them in the sgl. 19568 */ 19569 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 19570 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 19571 sgl->word2 = le32_to_cpu(sgl->word2); 19572 bf_set(lpfc_sli4_sge_last, sgl, 1); 19573 sgl->word2 = cpu_to_le32(sgl->word2); 19574 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 19575 } 19576 return sglq->sli4_xritag; 19577 } 19578 19579 /** 19580 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 19581 * @phba: Pointer to HBA context object. 19582 * @ring_number: Base sli ring number 19583 * @pwqe: Pointer to command WQE. 19584 **/ 19585 int 19586 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number, 19587 struct lpfc_iocbq *pwqe) 19588 { 19589 union lpfc_wqe128 *wqe = &pwqe->wqe; 19590 struct lpfc_nvmet_rcv_ctx *ctxp; 19591 struct lpfc_queue *wq; 19592 struct lpfc_sglq *sglq; 19593 struct lpfc_sli_ring *pring; 19594 unsigned long iflags; 19595 uint32_t ret = 0; 19596 19597 /* NVME_LS and NVME_LS ABTS requests. */ 19598 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 19599 pring = phba->sli4_hba.nvmels_wq->pring; 19600 spin_lock_irqsave(&pring->ring_lock, iflags); 19601 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 19602 if (!sglq) { 19603 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19604 return WQE_BUSY; 19605 } 19606 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19607 pwqe->sli4_xritag = sglq->sli4_xritag; 19608 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 19609 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19610 return WQE_ERROR; 19611 } 19612 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19613 pwqe->sli4_xritag); 19614 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 19615 if (ret) { 19616 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19617 return ret; 19618 } 19619 19620 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19621 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19622 return 0; 19623 } 19624 19625 /* NVME_FCREQ and NVME_ABTS requests */ 19626 if (pwqe->iocb_flag & LPFC_IO_NVME) { 19627 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19628 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19629 19630 spin_lock_irqsave(&pring->ring_lock, iflags); 19631 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19632 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19633 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19634 ret = lpfc_sli4_wq_put(wq, wqe); 19635 if (ret) { 19636 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19637 return ret; 19638 } 19639 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19640 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19641 return 0; 19642 } 19643 19644 /* NVMET requests */ 19645 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 19646 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19647 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19648 19649 spin_lock_irqsave(&pring->ring_lock, iflags); 19650 ctxp = pwqe->context2; 19651 sglq = ctxp->ctxbuf->sglq; 19652 if (pwqe->sli4_xritag == NO_XRI) { 19653 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19654 pwqe->sli4_xritag = sglq->sli4_xritag; 19655 } 19656 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19657 pwqe->sli4_xritag); 19658 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19659 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19660 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19661 ret = lpfc_sli4_wq_put(wq, wqe); 19662 if (ret) { 19663 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19664 return ret; 19665 } 19666 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19667 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19668 return 0; 19669 } 19670 return WQE_ERROR; 19671 } 19672