xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 08283d30)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include <linux/nvme-fc-driver.h>
43 
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
60 
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 	LPFC_UNKNOWN_IOCB,
64 	LPFC_UNSOL_IOCB,
65 	LPFC_SOL_IOCB,
66 	LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
68 
69 
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 				  uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 			      uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 							 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 				      struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 					  struct hbq_dmabuf *dmabuf);
81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
82 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 				       int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 				     struct lpfc_queue *eq,
87 				     struct lpfc_eqe *eqe);
88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
90 
91 static IOCB_t *
92 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
93 {
94 	return &iocbq->iocb;
95 }
96 
97 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
98 /**
99  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
100  * @srcp: Source memory pointer.
101  * @destp: Destination memory pointer.
102  * @cnt: Number of words required to be copied.
103  *       Must be a multiple of sizeof(uint64_t)
104  *
105  * This function is used for copying data between driver memory
106  * and the SLI WQ. This function also changes the endianness
107  * of each word if native endianness is different from SLI
108  * endianness. This function can be called with or without
109  * lock.
110  **/
111 static void
112 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
113 {
114 	uint64_t *src = srcp;
115 	uint64_t *dest = destp;
116 	int i;
117 
118 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
119 		*dest++ = *src++;
120 }
121 #else
122 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
123 #endif
124 
125 /**
126  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
127  * @q: The Work Queue to operate on.
128  * @wqe: The work Queue Entry to put on the Work queue.
129  *
130  * This routine will copy the contents of @wqe to the next available entry on
131  * the @q. This function will then ring the Work Queue Doorbell to signal the
132  * HBA to start processing the Work Queue Entry. This function returns 0 if
133  * successful. If no entries are available on @q then this function will return
134  * -ENOMEM.
135  * The caller is expected to hold the hbalock when calling this routine.
136  **/
137 static int
138 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
139 {
140 	union lpfc_wqe *temp_wqe;
141 	struct lpfc_register doorbell;
142 	uint32_t host_index;
143 	uint32_t idx;
144 	uint32_t i = 0;
145 	uint8_t *tmp;
146 	u32 if_type;
147 
148 	/* sanity check on queue memory */
149 	if (unlikely(!q))
150 		return -ENOMEM;
151 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
152 
153 	/* If the host has not yet processed the next entry then we are done */
154 	idx = ((q->host_index + 1) % q->entry_count);
155 	if (idx == q->hba_index) {
156 		q->WQ_overflow++;
157 		return -EBUSY;
158 	}
159 	q->WQ_posted++;
160 	/* set consumption flag every once in a while */
161 	if (!((q->host_index + 1) % q->notify_interval))
162 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
163 	else
164 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
165 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
166 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
167 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
168 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
169 		/* write to DPP aperture taking advatage of Combined Writes */
170 		tmp = (uint8_t *)temp_wqe;
171 #ifdef __raw_writeq
172 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
173 			__raw_writeq(*((uint64_t *)(tmp + i)),
174 					q->dpp_regaddr + i);
175 #else
176 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
177 			__raw_writel(*((uint32_t *)(tmp + i)),
178 					q->dpp_regaddr + i);
179 #endif
180 	}
181 	/* ensure WQE bcopy and DPP flushed before doorbell write */
182 	wmb();
183 
184 	/* Update the host index before invoking device */
185 	host_index = q->host_index;
186 
187 	q->host_index = idx;
188 
189 	/* Ring Doorbell */
190 	doorbell.word0 = 0;
191 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
192 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
193 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
194 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
195 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
196 			    q->dpp_id);
197 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
198 			    q->queue_id);
199 		} else {
200 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
201 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
202 
203 			/* Leave bits <23:16> clear for if_type 6 dpp */
204 			if_type = bf_get(lpfc_sli_intf_if_type,
205 					 &q->phba->sli4_hba.sli_intf);
206 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
207 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
208 				       host_index);
209 		}
210 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
211 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
212 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
213 	} else {
214 		return -EINVAL;
215 	}
216 	writel(doorbell.word0, q->db_regaddr);
217 
218 	return 0;
219 }
220 
221 /**
222  * lpfc_sli4_wq_release - Updates internal hba index for WQ
223  * @q: The Work Queue to operate on.
224  * @index: The index to advance the hba index to.
225  *
226  * This routine will update the HBA index of a queue to reflect consumption of
227  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
228  * an entry the host calls this function to update the queue's internal
229  * pointers. This routine returns the number of entries that were consumed by
230  * the HBA.
231  **/
232 static uint32_t
233 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
234 {
235 	uint32_t released = 0;
236 
237 	/* sanity check on queue memory */
238 	if (unlikely(!q))
239 		return 0;
240 
241 	if (q->hba_index == index)
242 		return 0;
243 	do {
244 		q->hba_index = ((q->hba_index + 1) % q->entry_count);
245 		released++;
246 	} while (q->hba_index != index);
247 	return released;
248 }
249 
250 /**
251  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
252  * @q: The Mailbox Queue to operate on.
253  * @wqe: The Mailbox Queue Entry to put on the Work queue.
254  *
255  * This routine will copy the contents of @mqe to the next available entry on
256  * the @q. This function will then ring the Work Queue Doorbell to signal the
257  * HBA to start processing the Work Queue Entry. This function returns 0 if
258  * successful. If no entries are available on @q then this function will return
259  * -ENOMEM.
260  * The caller is expected to hold the hbalock when calling this routine.
261  **/
262 static uint32_t
263 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
264 {
265 	struct lpfc_mqe *temp_mqe;
266 	struct lpfc_register doorbell;
267 
268 	/* sanity check on queue memory */
269 	if (unlikely(!q))
270 		return -ENOMEM;
271 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
272 
273 	/* If the host has not yet processed the next entry then we are done */
274 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
275 		return -ENOMEM;
276 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
277 	/* Save off the mailbox pointer for completion */
278 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
279 
280 	/* Update the host index before invoking device */
281 	q->host_index = ((q->host_index + 1) % q->entry_count);
282 
283 	/* Ring Doorbell */
284 	doorbell.word0 = 0;
285 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
286 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
287 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
288 	return 0;
289 }
290 
291 /**
292  * lpfc_sli4_mq_release - Updates internal hba index for MQ
293  * @q: The Mailbox Queue to operate on.
294  *
295  * This routine will update the HBA index of a queue to reflect consumption of
296  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
297  * an entry the host calls this function to update the queue's internal
298  * pointers. This routine returns the number of entries that were consumed by
299  * the HBA.
300  **/
301 static uint32_t
302 lpfc_sli4_mq_release(struct lpfc_queue *q)
303 {
304 	/* sanity check on queue memory */
305 	if (unlikely(!q))
306 		return 0;
307 
308 	/* Clear the mailbox pointer for completion */
309 	q->phba->mbox = NULL;
310 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
311 	return 1;
312 }
313 
314 /**
315  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
316  * @q: The Event Queue to get the first valid EQE from
317  *
318  * This routine will get the first valid Event Queue Entry from @q, update
319  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
320  * the Queue (no more work to do), or the Queue is full of EQEs that have been
321  * processed, but not popped back to the HBA then this routine will return NULL.
322  **/
323 static struct lpfc_eqe *
324 lpfc_sli4_eq_get(struct lpfc_queue *q)
325 {
326 	struct lpfc_eqe *eqe;
327 
328 	/* sanity check on queue memory */
329 	if (unlikely(!q))
330 		return NULL;
331 	eqe = lpfc_sli4_qe(q, q->host_index);
332 
333 	/* If the next EQE is not valid then we are done */
334 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
335 		return NULL;
336 
337 	/*
338 	 * insert barrier for instruction interlock : data from the hardware
339 	 * must have the valid bit checked before it can be copied and acted
340 	 * upon. Speculative instructions were allowing a bcopy at the start
341 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
342 	 * after our return, to copy data before the valid bit check above
343 	 * was done. As such, some of the copied data was stale. The barrier
344 	 * ensures the check is before any data is copied.
345 	 */
346 	mb();
347 	return eqe;
348 }
349 
350 /**
351  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
352  * @q: The Event Queue to disable interrupts
353  *
354  **/
355 void
356 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
357 {
358 	struct lpfc_register doorbell;
359 
360 	doorbell.word0 = 0;
361 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
362 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
363 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
364 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
365 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
366 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
367 }
368 
369 /**
370  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
371  * @q: The Event Queue to disable interrupts
372  *
373  **/
374 void
375 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
376 {
377 	struct lpfc_register doorbell;
378 
379 	doorbell.word0 = 0;
380 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
381 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
382 }
383 
384 /**
385  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
386  * @phba: adapter with EQ
387  * @q: The Event Queue that the host has completed processing for.
388  * @count: Number of elements that have been consumed
389  * @arm: Indicates whether the host wants to arms this CQ.
390  *
391  * This routine will notify the HBA, by ringing the doorbell, that count
392  * number of EQEs have been processed. The @arm parameter indicates whether
393  * the queue should be rearmed when ringing the doorbell.
394  **/
395 void
396 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
397 		     uint32_t count, bool arm)
398 {
399 	struct lpfc_register doorbell;
400 
401 	/* sanity check on queue memory */
402 	if (unlikely(!q || (count == 0 && !arm)))
403 		return;
404 
405 	/* ring doorbell for number popped */
406 	doorbell.word0 = 0;
407 	if (arm) {
408 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
409 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
410 	}
411 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
412 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
413 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
414 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
415 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
416 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
417 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
418 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
419 		readl(q->phba->sli4_hba.EQDBregaddr);
420 }
421 
422 /**
423  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
424  * @phba: adapter with EQ
425  * @q: The Event Queue that the host has completed processing for.
426  * @count: Number of elements that have been consumed
427  * @arm: Indicates whether the host wants to arms this CQ.
428  *
429  * This routine will notify the HBA, by ringing the doorbell, that count
430  * number of EQEs have been processed. The @arm parameter indicates whether
431  * the queue should be rearmed when ringing the doorbell.
432  **/
433 void
434 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
435 			  uint32_t count, bool arm)
436 {
437 	struct lpfc_register doorbell;
438 
439 	/* sanity check on queue memory */
440 	if (unlikely(!q || (count == 0 && !arm)))
441 		return;
442 
443 	/* ring doorbell for number popped */
444 	doorbell.word0 = 0;
445 	if (arm)
446 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
447 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
448 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
449 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
450 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
451 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
452 		readl(q->phba->sli4_hba.EQDBregaddr);
453 }
454 
455 static void
456 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
457 			struct lpfc_eqe *eqe)
458 {
459 	if (!phba->sli4_hba.pc_sli4_params.eqav)
460 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
461 
462 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
463 
464 	/* if the index wrapped around, toggle the valid bit */
465 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
466 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
467 }
468 
469 static void
470 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
471 {
472 	struct lpfc_eqe *eqe;
473 	uint32_t count = 0;
474 
475 	/* walk all the EQ entries and drop on the floor */
476 	eqe = lpfc_sli4_eq_get(eq);
477 	while (eqe) {
478 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
479 		count++;
480 		eqe = lpfc_sli4_eq_get(eq);
481 	}
482 
483 	/* Clear and re-arm the EQ */
484 	phba->sli4_hba.sli4_write_eq_db(phba, eq, count, LPFC_QUEUE_REARM);
485 }
486 
487 static int
488 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq)
489 {
490 	struct lpfc_eqe *eqe;
491 	int count = 0, consumed = 0;
492 
493 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
494 		goto rearm_and_exit;
495 
496 	eqe = lpfc_sli4_eq_get(eq);
497 	while (eqe) {
498 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
499 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
500 
501 		consumed++;
502 		if (!(++count % eq->max_proc_limit))
503 			break;
504 
505 		if (!(count % eq->notify_interval)) {
506 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
507 							LPFC_QUEUE_NOARM);
508 			consumed = 0;
509 		}
510 
511 		eqe = lpfc_sli4_eq_get(eq);
512 	}
513 	eq->EQ_processed += count;
514 
515 	/* Track the max number of EQEs processed in 1 intr */
516 	if (count > eq->EQ_max_eqe)
517 		eq->EQ_max_eqe = count;
518 
519 	eq->queue_claimed = 0;
520 
521 rearm_and_exit:
522 	/* Always clear and re-arm the EQ */
523 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, LPFC_QUEUE_REARM);
524 
525 	return count;
526 }
527 
528 /**
529  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
530  * @q: The Completion Queue to get the first valid CQE from
531  *
532  * This routine will get the first valid Completion Queue Entry from @q, update
533  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
534  * the Queue (no more work to do), or the Queue is full of CQEs that have been
535  * processed, but not popped back to the HBA then this routine will return NULL.
536  **/
537 static struct lpfc_cqe *
538 lpfc_sli4_cq_get(struct lpfc_queue *q)
539 {
540 	struct lpfc_cqe *cqe;
541 
542 	/* sanity check on queue memory */
543 	if (unlikely(!q))
544 		return NULL;
545 	cqe = lpfc_sli4_qe(q, q->host_index);
546 
547 	/* If the next CQE is not valid then we are done */
548 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
549 		return NULL;
550 
551 	/*
552 	 * insert barrier for instruction interlock : data from the hardware
553 	 * must have the valid bit checked before it can be copied and acted
554 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
555 	 * instructions allowing action on content before valid bit checked,
556 	 * add barrier here as well. May not be needed as "content" is a
557 	 * single 32-bit entity here (vs multi word structure for cq's).
558 	 */
559 	mb();
560 	return cqe;
561 }
562 
563 static void
564 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
565 			struct lpfc_cqe *cqe)
566 {
567 	if (!phba->sli4_hba.pc_sli4_params.cqav)
568 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
569 
570 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
571 
572 	/* if the index wrapped around, toggle the valid bit */
573 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
574 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
575 }
576 
577 /**
578  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
579  * @phba: the adapter with the CQ
580  * @q: The Completion Queue that the host has completed processing for.
581  * @count: the number of elements that were consumed
582  * @arm: Indicates whether the host wants to arms this CQ.
583  *
584  * This routine will notify the HBA, by ringing the doorbell, that the
585  * CQEs have been processed. The @arm parameter specifies whether the
586  * queue should be rearmed when ringing the doorbell.
587  **/
588 void
589 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
590 		     uint32_t count, bool arm)
591 {
592 	struct lpfc_register doorbell;
593 
594 	/* sanity check on queue memory */
595 	if (unlikely(!q || (count == 0 && !arm)))
596 		return;
597 
598 	/* ring doorbell for number popped */
599 	doorbell.word0 = 0;
600 	if (arm)
601 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
602 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
603 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
604 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
605 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
606 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
607 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
608 }
609 
610 /**
611  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
612  * @phba: the adapter with the CQ
613  * @q: The Completion Queue that the host has completed processing for.
614  * @count: the number of elements that were consumed
615  * @arm: Indicates whether the host wants to arms this CQ.
616  *
617  * This routine will notify the HBA, by ringing the doorbell, that the
618  * CQEs have been processed. The @arm parameter specifies whether the
619  * queue should be rearmed when ringing the doorbell.
620  **/
621 void
622 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
623 			 uint32_t count, bool arm)
624 {
625 	struct lpfc_register doorbell;
626 
627 	/* sanity check on queue memory */
628 	if (unlikely(!q || (count == 0 && !arm)))
629 		return;
630 
631 	/* ring doorbell for number popped */
632 	doorbell.word0 = 0;
633 	if (arm)
634 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
635 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
636 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
637 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
638 }
639 
640 /**
641  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
642  * @q: The Header Receive Queue to operate on.
643  * @wqe: The Receive Queue Entry to put on the Receive queue.
644  *
645  * This routine will copy the contents of @wqe to the next available entry on
646  * the @q. This function will then ring the Receive Queue Doorbell to signal the
647  * HBA to start processing the Receive Queue Entry. This function returns the
648  * index that the rqe was copied to if successful. If no entries are available
649  * on @q then this function will return -ENOMEM.
650  * The caller is expected to hold the hbalock when calling this routine.
651  **/
652 int
653 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
654 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
655 {
656 	struct lpfc_rqe *temp_hrqe;
657 	struct lpfc_rqe *temp_drqe;
658 	struct lpfc_register doorbell;
659 	int hq_put_index;
660 	int dq_put_index;
661 
662 	/* sanity check on queue memory */
663 	if (unlikely(!hq) || unlikely(!dq))
664 		return -ENOMEM;
665 	hq_put_index = hq->host_index;
666 	dq_put_index = dq->host_index;
667 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
668 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
669 
670 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
671 		return -EINVAL;
672 	if (hq_put_index != dq_put_index)
673 		return -EINVAL;
674 	/* If the host has not yet processed the next entry then we are done */
675 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
676 		return -EBUSY;
677 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
678 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
679 
680 	/* Update the host index to point to the next slot */
681 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
682 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
683 	hq->RQ_buf_posted++;
684 
685 	/* Ring The Header Receive Queue Doorbell */
686 	if (!(hq->host_index % hq->notify_interval)) {
687 		doorbell.word0 = 0;
688 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
689 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
690 			       hq->notify_interval);
691 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
692 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
693 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
694 			       hq->notify_interval);
695 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
696 			       hq->host_index);
697 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
698 		} else {
699 			return -EINVAL;
700 		}
701 		writel(doorbell.word0, hq->db_regaddr);
702 	}
703 	return hq_put_index;
704 }
705 
706 /**
707  * lpfc_sli4_rq_release - Updates internal hba index for RQ
708  * @q: The Header Receive Queue to operate on.
709  *
710  * This routine will update the HBA index of a queue to reflect consumption of
711  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
712  * consumed an entry the host calls this function to update the queue's
713  * internal pointers. This routine returns the number of entries that were
714  * consumed by the HBA.
715  **/
716 static uint32_t
717 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
718 {
719 	/* sanity check on queue memory */
720 	if (unlikely(!hq) || unlikely(!dq))
721 		return 0;
722 
723 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
724 		return 0;
725 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
726 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
727 	return 1;
728 }
729 
730 /**
731  * lpfc_cmd_iocb - Get next command iocb entry in the ring
732  * @phba: Pointer to HBA context object.
733  * @pring: Pointer to driver SLI ring object.
734  *
735  * This function returns pointer to next command iocb entry
736  * in the command ring. The caller must hold hbalock to prevent
737  * other threads consume the next command iocb.
738  * SLI-2/SLI-3 provide different sized iocbs.
739  **/
740 static inline IOCB_t *
741 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
742 {
743 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
744 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
745 }
746 
747 /**
748  * lpfc_resp_iocb - Get next response iocb entry in the ring
749  * @phba: Pointer to HBA context object.
750  * @pring: Pointer to driver SLI ring object.
751  *
752  * This function returns pointer to next response iocb entry
753  * in the response ring. The caller must hold hbalock to make sure
754  * that no other thread consume the next response iocb.
755  * SLI-2/SLI-3 provide different sized iocbs.
756  **/
757 static inline IOCB_t *
758 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
759 {
760 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
761 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
762 }
763 
764 /**
765  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
766  * @phba: Pointer to HBA context object.
767  *
768  * This function is called with hbalock held. This function
769  * allocates a new driver iocb object from the iocb pool. If the
770  * allocation is successful, it returns pointer to the newly
771  * allocated iocb object else it returns NULL.
772  **/
773 struct lpfc_iocbq *
774 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
775 {
776 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
777 	struct lpfc_iocbq * iocbq = NULL;
778 
779 	lockdep_assert_held(&phba->hbalock);
780 
781 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
782 	if (iocbq)
783 		phba->iocb_cnt++;
784 	if (phba->iocb_cnt > phba->iocb_max)
785 		phba->iocb_max = phba->iocb_cnt;
786 	return iocbq;
787 }
788 
789 /**
790  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
791  * @phba: Pointer to HBA context object.
792  * @xritag: XRI value.
793  *
794  * This function clears the sglq pointer from the array of acive
795  * sglq's. The xritag that is passed in is used to index into the
796  * array. Before the xritag can be used it needs to be adjusted
797  * by subtracting the xribase.
798  *
799  * Returns sglq ponter = success, NULL = Failure.
800  **/
801 struct lpfc_sglq *
802 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
803 {
804 	struct lpfc_sglq *sglq;
805 
806 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
807 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
808 	return sglq;
809 }
810 
811 /**
812  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
813  * @phba: Pointer to HBA context object.
814  * @xritag: XRI value.
815  *
816  * This function returns the sglq pointer from the array of acive
817  * sglq's. The xritag that is passed in is used to index into the
818  * array. Before the xritag can be used it needs to be adjusted
819  * by subtracting the xribase.
820  *
821  * Returns sglq ponter = success, NULL = Failure.
822  **/
823 struct lpfc_sglq *
824 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
825 {
826 	struct lpfc_sglq *sglq;
827 
828 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
829 	return sglq;
830 }
831 
832 /**
833  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
834  * @phba: Pointer to HBA context object.
835  * @xritag: xri used in this exchange.
836  * @rrq: The RRQ to be cleared.
837  *
838  **/
839 void
840 lpfc_clr_rrq_active(struct lpfc_hba *phba,
841 		    uint16_t xritag,
842 		    struct lpfc_node_rrq *rrq)
843 {
844 	struct lpfc_nodelist *ndlp = NULL;
845 
846 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
847 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
848 
849 	/* The target DID could have been swapped (cable swap)
850 	 * we should use the ndlp from the findnode if it is
851 	 * available.
852 	 */
853 	if ((!ndlp) && rrq->ndlp)
854 		ndlp = rrq->ndlp;
855 
856 	if (!ndlp)
857 		goto out;
858 
859 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
860 		rrq->send_rrq = 0;
861 		rrq->xritag = 0;
862 		rrq->rrq_stop_time = 0;
863 	}
864 out:
865 	mempool_free(rrq, phba->rrq_pool);
866 }
867 
868 /**
869  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
870  * @phba: Pointer to HBA context object.
871  *
872  * This function is called with hbalock held. This function
873  * Checks if stop_time (ratov from setting rrq active) has
874  * been reached, if it has and the send_rrq flag is set then
875  * it will call lpfc_send_rrq. If the send_rrq flag is not set
876  * then it will just call the routine to clear the rrq and
877  * free the rrq resource.
878  * The timer is set to the next rrq that is going to expire before
879  * leaving the routine.
880  *
881  **/
882 void
883 lpfc_handle_rrq_active(struct lpfc_hba *phba)
884 {
885 	struct lpfc_node_rrq *rrq;
886 	struct lpfc_node_rrq *nextrrq;
887 	unsigned long next_time;
888 	unsigned long iflags;
889 	LIST_HEAD(send_rrq);
890 
891 	spin_lock_irqsave(&phba->hbalock, iflags);
892 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
893 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
894 	list_for_each_entry_safe(rrq, nextrrq,
895 				 &phba->active_rrq_list, list) {
896 		if (time_after(jiffies, rrq->rrq_stop_time))
897 			list_move(&rrq->list, &send_rrq);
898 		else if (time_before(rrq->rrq_stop_time, next_time))
899 			next_time = rrq->rrq_stop_time;
900 	}
901 	spin_unlock_irqrestore(&phba->hbalock, iflags);
902 	if ((!list_empty(&phba->active_rrq_list)) &&
903 	    (!(phba->pport->load_flag & FC_UNLOADING)))
904 		mod_timer(&phba->rrq_tmr, next_time);
905 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
906 		list_del(&rrq->list);
907 		if (!rrq->send_rrq) {
908 			/* this call will free the rrq */
909 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
910 		} else if (lpfc_send_rrq(phba, rrq)) {
911 			/* if we send the rrq then the completion handler
912 			*  will clear the bit in the xribitmap.
913 			*/
914 			lpfc_clr_rrq_active(phba, rrq->xritag,
915 					    rrq);
916 		}
917 	}
918 }
919 
920 /**
921  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
922  * @vport: Pointer to vport context object.
923  * @xri: The xri used in the exchange.
924  * @did: The targets DID for this exchange.
925  *
926  * returns NULL = rrq not found in the phba->active_rrq_list.
927  *         rrq = rrq for this xri and target.
928  **/
929 struct lpfc_node_rrq *
930 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
931 {
932 	struct lpfc_hba *phba = vport->phba;
933 	struct lpfc_node_rrq *rrq;
934 	struct lpfc_node_rrq *nextrrq;
935 	unsigned long iflags;
936 
937 	if (phba->sli_rev != LPFC_SLI_REV4)
938 		return NULL;
939 	spin_lock_irqsave(&phba->hbalock, iflags);
940 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
941 		if (rrq->vport == vport && rrq->xritag == xri &&
942 				rrq->nlp_DID == did){
943 			list_del(&rrq->list);
944 			spin_unlock_irqrestore(&phba->hbalock, iflags);
945 			return rrq;
946 		}
947 	}
948 	spin_unlock_irqrestore(&phba->hbalock, iflags);
949 	return NULL;
950 }
951 
952 /**
953  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
954  * @vport: Pointer to vport context object.
955  * @ndlp: Pointer to the lpfc_node_list structure.
956  * If ndlp is NULL Remove all active RRQs for this vport from the
957  * phba->active_rrq_list and clear the rrq.
958  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
959  **/
960 void
961 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
962 
963 {
964 	struct lpfc_hba *phba = vport->phba;
965 	struct lpfc_node_rrq *rrq;
966 	struct lpfc_node_rrq *nextrrq;
967 	unsigned long iflags;
968 	LIST_HEAD(rrq_list);
969 
970 	if (phba->sli_rev != LPFC_SLI_REV4)
971 		return;
972 	if (!ndlp) {
973 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
974 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
975 	}
976 	spin_lock_irqsave(&phba->hbalock, iflags);
977 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
978 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
979 			list_move(&rrq->list, &rrq_list);
980 	spin_unlock_irqrestore(&phba->hbalock, iflags);
981 
982 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
983 		list_del(&rrq->list);
984 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
985 	}
986 }
987 
988 /**
989  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
990  * @phba: Pointer to HBA context object.
991  * @ndlp: Targets nodelist pointer for this exchange.
992  * @xritag the xri in the bitmap to test.
993  *
994  * This function returns:
995  * 0 = rrq not active for this xri
996  * 1 = rrq is valid for this xri.
997  **/
998 int
999 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1000 			uint16_t  xritag)
1001 {
1002 	if (!ndlp)
1003 		return 0;
1004 	if (!ndlp->active_rrqs_xri_bitmap)
1005 		return 0;
1006 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1007 		return 1;
1008 	else
1009 		return 0;
1010 }
1011 
1012 /**
1013  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1014  * @phba: Pointer to HBA context object.
1015  * @ndlp: nodelist pointer for this target.
1016  * @xritag: xri used in this exchange.
1017  * @rxid: Remote Exchange ID.
1018  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1019  *
1020  * This function takes the hbalock.
1021  * The active bit is always set in the active rrq xri_bitmap even
1022  * if there is no slot avaiable for the other rrq information.
1023  *
1024  * returns 0 rrq actived for this xri
1025  *         < 0 No memory or invalid ndlp.
1026  **/
1027 int
1028 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1029 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1030 {
1031 	unsigned long iflags;
1032 	struct lpfc_node_rrq *rrq;
1033 	int empty;
1034 
1035 	if (!ndlp)
1036 		return -EINVAL;
1037 
1038 	if (!phba->cfg_enable_rrq)
1039 		return -EINVAL;
1040 
1041 	spin_lock_irqsave(&phba->hbalock, iflags);
1042 	if (phba->pport->load_flag & FC_UNLOADING) {
1043 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1044 		goto out;
1045 	}
1046 
1047 	/*
1048 	 * set the active bit even if there is no mem available.
1049 	 */
1050 	if (NLP_CHK_FREE_REQ(ndlp))
1051 		goto out;
1052 
1053 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1054 		goto out;
1055 
1056 	if (!ndlp->active_rrqs_xri_bitmap)
1057 		goto out;
1058 
1059 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1060 		goto out;
1061 
1062 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1063 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1064 	if (!rrq) {
1065 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1066 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1067 				" DID:0x%x Send:%d\n",
1068 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1069 		return -EINVAL;
1070 	}
1071 	if (phba->cfg_enable_rrq == 1)
1072 		rrq->send_rrq = send_rrq;
1073 	else
1074 		rrq->send_rrq = 0;
1075 	rrq->xritag = xritag;
1076 	rrq->rrq_stop_time = jiffies +
1077 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1078 	rrq->ndlp = ndlp;
1079 	rrq->nlp_DID = ndlp->nlp_DID;
1080 	rrq->vport = ndlp->vport;
1081 	rrq->rxid = rxid;
1082 	spin_lock_irqsave(&phba->hbalock, iflags);
1083 	empty = list_empty(&phba->active_rrq_list);
1084 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1085 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1086 	if (empty)
1087 		lpfc_worker_wake_up(phba);
1088 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1089 	return 0;
1090 out:
1091 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1092 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1093 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1094 			" DID:0x%x Send:%d\n",
1095 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1096 	return -EINVAL;
1097 }
1098 
1099 /**
1100  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1101  * @phba: Pointer to HBA context object.
1102  * @piocb: Pointer to the iocbq.
1103  *
1104  * The driver calls this function with either the nvme ls ring lock
1105  * or the fc els ring lock held depending on the iocb usage.  This function
1106  * gets a new driver sglq object from the sglq list. If the list is not empty
1107  * then it is successful, it returns pointer to the newly allocated sglq
1108  * object else it returns NULL.
1109  **/
1110 static struct lpfc_sglq *
1111 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1112 {
1113 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1114 	struct lpfc_sglq *sglq = NULL;
1115 	struct lpfc_sglq *start_sglq = NULL;
1116 	struct lpfc_io_buf *lpfc_cmd;
1117 	struct lpfc_nodelist *ndlp;
1118 	struct lpfc_sli_ring *pring = NULL;
1119 	int found = 0;
1120 
1121 	if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1122 		pring =  phba->sli4_hba.nvmels_wq->pring;
1123 	else
1124 		pring = lpfc_phba_elsring(phba);
1125 
1126 	lockdep_assert_held(&pring->ring_lock);
1127 
1128 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1129 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1130 		ndlp = lpfc_cmd->rdata->pnode;
1131 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1132 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1133 		ndlp = piocbq->context_un.ndlp;
1134 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1135 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1136 			ndlp = NULL;
1137 		else
1138 			ndlp = piocbq->context_un.ndlp;
1139 	} else {
1140 		ndlp = piocbq->context1;
1141 	}
1142 
1143 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1144 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1145 	start_sglq = sglq;
1146 	while (!found) {
1147 		if (!sglq)
1148 			break;
1149 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1150 		    test_bit(sglq->sli4_lxritag,
1151 		    ndlp->active_rrqs_xri_bitmap)) {
1152 			/* This xri has an rrq outstanding for this DID.
1153 			 * put it back in the list and get another xri.
1154 			 */
1155 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1156 			sglq = NULL;
1157 			list_remove_head(lpfc_els_sgl_list, sglq,
1158 						struct lpfc_sglq, list);
1159 			if (sglq == start_sglq) {
1160 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1161 				sglq = NULL;
1162 				break;
1163 			} else
1164 				continue;
1165 		}
1166 		sglq->ndlp = ndlp;
1167 		found = 1;
1168 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1169 		sglq->state = SGL_ALLOCATED;
1170 	}
1171 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1172 	return sglq;
1173 }
1174 
1175 /**
1176  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1177  * @phba: Pointer to HBA context object.
1178  * @piocb: Pointer to the iocbq.
1179  *
1180  * This function is called with the sgl_list lock held. This function
1181  * gets a new driver sglq object from the sglq list. If the
1182  * list is not empty then it is successful, it returns pointer to the newly
1183  * allocated sglq object else it returns NULL.
1184  **/
1185 struct lpfc_sglq *
1186 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1187 {
1188 	struct list_head *lpfc_nvmet_sgl_list;
1189 	struct lpfc_sglq *sglq = NULL;
1190 
1191 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1192 
1193 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1194 
1195 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1196 	if (!sglq)
1197 		return NULL;
1198 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1199 	sglq->state = SGL_ALLOCATED;
1200 	return sglq;
1201 }
1202 
1203 /**
1204  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1205  * @phba: Pointer to HBA context object.
1206  *
1207  * This function is called with no lock held. This function
1208  * allocates a new driver iocb object from the iocb pool. If the
1209  * allocation is successful, it returns pointer to the newly
1210  * allocated iocb object else it returns NULL.
1211  **/
1212 struct lpfc_iocbq *
1213 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1214 {
1215 	struct lpfc_iocbq * iocbq = NULL;
1216 	unsigned long iflags;
1217 
1218 	spin_lock_irqsave(&phba->hbalock, iflags);
1219 	iocbq = __lpfc_sli_get_iocbq(phba);
1220 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1221 	return iocbq;
1222 }
1223 
1224 /**
1225  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1226  * @phba: Pointer to HBA context object.
1227  * @iocbq: Pointer to driver iocb object.
1228  *
1229  * This function is called with hbalock held to release driver
1230  * iocb object to the iocb pool. The iotag in the iocb object
1231  * does not change for each use of the iocb object. This function
1232  * clears all other fields of the iocb object when it is freed.
1233  * The sqlq structure that holds the xritag and phys and virtual
1234  * mappings for the scatter gather list is retrieved from the
1235  * active array of sglq. The get of the sglq pointer also clears
1236  * the entry in the array. If the status of the IO indiactes that
1237  * this IO was aborted then the sglq entry it put on the
1238  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1239  * IO has good status or fails for any other reason then the sglq
1240  * entry is added to the free list (lpfc_els_sgl_list).
1241  **/
1242 static void
1243 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1244 {
1245 	struct lpfc_sglq *sglq;
1246 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1247 	unsigned long iflag = 0;
1248 	struct lpfc_sli_ring *pring;
1249 
1250 	lockdep_assert_held(&phba->hbalock);
1251 
1252 	if (iocbq->sli4_xritag == NO_XRI)
1253 		sglq = NULL;
1254 	else
1255 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1256 
1257 
1258 	if (sglq)  {
1259 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1260 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1261 					  iflag);
1262 			sglq->state = SGL_FREED;
1263 			sglq->ndlp = NULL;
1264 			list_add_tail(&sglq->list,
1265 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1266 			spin_unlock_irqrestore(
1267 				&phba->sli4_hba.sgl_list_lock, iflag);
1268 			goto out;
1269 		}
1270 
1271 		pring = phba->sli4_hba.els_wq->pring;
1272 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1273 			(sglq->state != SGL_XRI_ABORTED)) {
1274 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1275 					  iflag);
1276 			list_add(&sglq->list,
1277 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1278 			spin_unlock_irqrestore(
1279 				&phba->sli4_hba.sgl_list_lock, iflag);
1280 		} else {
1281 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1282 					  iflag);
1283 			sglq->state = SGL_FREED;
1284 			sglq->ndlp = NULL;
1285 			list_add_tail(&sglq->list,
1286 				      &phba->sli4_hba.lpfc_els_sgl_list);
1287 			spin_unlock_irqrestore(
1288 				&phba->sli4_hba.sgl_list_lock, iflag);
1289 
1290 			/* Check if TXQ queue needs to be serviced */
1291 			if (!list_empty(&pring->txq))
1292 				lpfc_worker_wake_up(phba);
1293 		}
1294 	}
1295 
1296 out:
1297 	/*
1298 	 * Clean all volatile data fields, preserve iotag and node struct.
1299 	 */
1300 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1301 	iocbq->sli4_lxritag = NO_XRI;
1302 	iocbq->sli4_xritag = NO_XRI;
1303 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1304 			      LPFC_IO_NVME_LS);
1305 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1306 }
1307 
1308 
1309 /**
1310  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1311  * @phba: Pointer to HBA context object.
1312  * @iocbq: Pointer to driver iocb object.
1313  *
1314  * This function is called with hbalock held to release driver
1315  * iocb object to the iocb pool. The iotag in the iocb object
1316  * does not change for each use of the iocb object. This function
1317  * clears all other fields of the iocb object when it is freed.
1318  **/
1319 static void
1320 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1321 {
1322 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1323 
1324 	lockdep_assert_held(&phba->hbalock);
1325 
1326 	/*
1327 	 * Clean all volatile data fields, preserve iotag and node struct.
1328 	 */
1329 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1330 	iocbq->sli4_xritag = NO_XRI;
1331 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1332 }
1333 
1334 /**
1335  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1336  * @phba: Pointer to HBA context object.
1337  * @iocbq: Pointer to driver iocb object.
1338  *
1339  * This function is called with hbalock held to release driver
1340  * iocb object to the iocb pool. The iotag in the iocb object
1341  * does not change for each use of the iocb object. This function
1342  * clears all other fields of the iocb object when it is freed.
1343  **/
1344 static void
1345 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1346 {
1347 	lockdep_assert_held(&phba->hbalock);
1348 
1349 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1350 	phba->iocb_cnt--;
1351 }
1352 
1353 /**
1354  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1355  * @phba: Pointer to HBA context object.
1356  * @iocbq: Pointer to driver iocb object.
1357  *
1358  * This function is called with no lock held to release the iocb to
1359  * iocb pool.
1360  **/
1361 void
1362 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1363 {
1364 	unsigned long iflags;
1365 
1366 	/*
1367 	 * Clean all volatile data fields, preserve iotag and node struct.
1368 	 */
1369 	spin_lock_irqsave(&phba->hbalock, iflags);
1370 	__lpfc_sli_release_iocbq(phba, iocbq);
1371 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1372 }
1373 
1374 /**
1375  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1376  * @phba: Pointer to HBA context object.
1377  * @iocblist: List of IOCBs.
1378  * @ulpstatus: ULP status in IOCB command field.
1379  * @ulpWord4: ULP word-4 in IOCB command field.
1380  *
1381  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1382  * on the list by invoking the complete callback function associated with the
1383  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1384  * fields.
1385  **/
1386 void
1387 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1388 		      uint32_t ulpstatus, uint32_t ulpWord4)
1389 {
1390 	struct lpfc_iocbq *piocb;
1391 
1392 	while (!list_empty(iocblist)) {
1393 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1394 		if (!piocb->iocb_cmpl) {
1395 			if (piocb->iocb_flag & LPFC_IO_NVME)
1396 				lpfc_nvme_cancel_iocb(phba, piocb);
1397 			else
1398 				lpfc_sli_release_iocbq(phba, piocb);
1399 		} else {
1400 			piocb->iocb.ulpStatus = ulpstatus;
1401 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1402 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1403 		}
1404 	}
1405 	return;
1406 }
1407 
1408 /**
1409  * lpfc_sli_iocb_cmd_type - Get the iocb type
1410  * @iocb_cmnd: iocb command code.
1411  *
1412  * This function is called by ring event handler function to get the iocb type.
1413  * This function translates the iocb command to an iocb command type used to
1414  * decide the final disposition of each completed IOCB.
1415  * The function returns
1416  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1417  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1418  * LPFC_ABORT_IOCB   if it is an abort iocb
1419  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1420  *
1421  * The caller is not required to hold any lock.
1422  **/
1423 static lpfc_iocb_type
1424 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1425 {
1426 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1427 
1428 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1429 		return 0;
1430 
1431 	switch (iocb_cmnd) {
1432 	case CMD_XMIT_SEQUENCE_CR:
1433 	case CMD_XMIT_SEQUENCE_CX:
1434 	case CMD_XMIT_BCAST_CN:
1435 	case CMD_XMIT_BCAST_CX:
1436 	case CMD_ELS_REQUEST_CR:
1437 	case CMD_ELS_REQUEST_CX:
1438 	case CMD_CREATE_XRI_CR:
1439 	case CMD_CREATE_XRI_CX:
1440 	case CMD_GET_RPI_CN:
1441 	case CMD_XMIT_ELS_RSP_CX:
1442 	case CMD_GET_RPI_CR:
1443 	case CMD_FCP_IWRITE_CR:
1444 	case CMD_FCP_IWRITE_CX:
1445 	case CMD_FCP_IREAD_CR:
1446 	case CMD_FCP_IREAD_CX:
1447 	case CMD_FCP_ICMND_CR:
1448 	case CMD_FCP_ICMND_CX:
1449 	case CMD_FCP_TSEND_CX:
1450 	case CMD_FCP_TRSP_CX:
1451 	case CMD_FCP_TRECEIVE_CX:
1452 	case CMD_FCP_AUTO_TRSP_CX:
1453 	case CMD_ADAPTER_MSG:
1454 	case CMD_ADAPTER_DUMP:
1455 	case CMD_XMIT_SEQUENCE64_CR:
1456 	case CMD_XMIT_SEQUENCE64_CX:
1457 	case CMD_XMIT_BCAST64_CN:
1458 	case CMD_XMIT_BCAST64_CX:
1459 	case CMD_ELS_REQUEST64_CR:
1460 	case CMD_ELS_REQUEST64_CX:
1461 	case CMD_FCP_IWRITE64_CR:
1462 	case CMD_FCP_IWRITE64_CX:
1463 	case CMD_FCP_IREAD64_CR:
1464 	case CMD_FCP_IREAD64_CX:
1465 	case CMD_FCP_ICMND64_CR:
1466 	case CMD_FCP_ICMND64_CX:
1467 	case CMD_FCP_TSEND64_CX:
1468 	case CMD_FCP_TRSP64_CX:
1469 	case CMD_FCP_TRECEIVE64_CX:
1470 	case CMD_GEN_REQUEST64_CR:
1471 	case CMD_GEN_REQUEST64_CX:
1472 	case CMD_XMIT_ELS_RSP64_CX:
1473 	case DSSCMD_IWRITE64_CR:
1474 	case DSSCMD_IWRITE64_CX:
1475 	case DSSCMD_IREAD64_CR:
1476 	case DSSCMD_IREAD64_CX:
1477 		type = LPFC_SOL_IOCB;
1478 		break;
1479 	case CMD_ABORT_XRI_CN:
1480 	case CMD_ABORT_XRI_CX:
1481 	case CMD_CLOSE_XRI_CN:
1482 	case CMD_CLOSE_XRI_CX:
1483 	case CMD_XRI_ABORTED_CX:
1484 	case CMD_ABORT_MXRI64_CN:
1485 	case CMD_XMIT_BLS_RSP64_CX:
1486 		type = LPFC_ABORT_IOCB;
1487 		break;
1488 	case CMD_RCV_SEQUENCE_CX:
1489 	case CMD_RCV_ELS_REQ_CX:
1490 	case CMD_RCV_SEQUENCE64_CX:
1491 	case CMD_RCV_ELS_REQ64_CX:
1492 	case CMD_ASYNC_STATUS:
1493 	case CMD_IOCB_RCV_SEQ64_CX:
1494 	case CMD_IOCB_RCV_ELS64_CX:
1495 	case CMD_IOCB_RCV_CONT64_CX:
1496 	case CMD_IOCB_RET_XRI64_CX:
1497 		type = LPFC_UNSOL_IOCB;
1498 		break;
1499 	case CMD_IOCB_XMIT_MSEQ64_CR:
1500 	case CMD_IOCB_XMIT_MSEQ64_CX:
1501 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1502 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1503 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1504 	case CMD_IOCB_ABORT_EXTENDED_CN:
1505 	case CMD_IOCB_RET_HBQE64_CN:
1506 	case CMD_IOCB_FCP_IBIDIR64_CR:
1507 	case CMD_IOCB_FCP_IBIDIR64_CX:
1508 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1509 	case CMD_IOCB_LOGENTRY_CN:
1510 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1511 		printk("%s - Unhandled SLI-3 Command x%x\n",
1512 				__func__, iocb_cmnd);
1513 		type = LPFC_UNKNOWN_IOCB;
1514 		break;
1515 	default:
1516 		type = LPFC_UNKNOWN_IOCB;
1517 		break;
1518 	}
1519 
1520 	return type;
1521 }
1522 
1523 /**
1524  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1525  * @phba: Pointer to HBA context object.
1526  *
1527  * This function is called from SLI initialization code
1528  * to configure every ring of the HBA's SLI interface. The
1529  * caller is not required to hold any lock. This function issues
1530  * a config_ring mailbox command for each ring.
1531  * This function returns zero if successful else returns a negative
1532  * error code.
1533  **/
1534 static int
1535 lpfc_sli_ring_map(struct lpfc_hba *phba)
1536 {
1537 	struct lpfc_sli *psli = &phba->sli;
1538 	LPFC_MBOXQ_t *pmb;
1539 	MAILBOX_t *pmbox;
1540 	int i, rc, ret = 0;
1541 
1542 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1543 	if (!pmb)
1544 		return -ENOMEM;
1545 	pmbox = &pmb->u.mb;
1546 	phba->link_state = LPFC_INIT_MBX_CMDS;
1547 	for (i = 0; i < psli->num_rings; i++) {
1548 		lpfc_config_ring(phba, i, pmb);
1549 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1550 		if (rc != MBX_SUCCESS) {
1551 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1552 					"0446 Adapter failed to init (%d), "
1553 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1554 					"ring %d\n",
1555 					rc, pmbox->mbxCommand,
1556 					pmbox->mbxStatus, i);
1557 			phba->link_state = LPFC_HBA_ERROR;
1558 			ret = -ENXIO;
1559 			break;
1560 		}
1561 	}
1562 	mempool_free(pmb, phba->mbox_mem_pool);
1563 	return ret;
1564 }
1565 
1566 /**
1567  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1568  * @phba: Pointer to HBA context object.
1569  * @pring: Pointer to driver SLI ring object.
1570  * @piocb: Pointer to the driver iocb object.
1571  *
1572  * The driver calls this function with the hbalock held for SLI3 ports or
1573  * the ring lock held for SLI4 ports. The function adds the
1574  * new iocb to txcmplq of the given ring. This function always returns
1575  * 0. If this function is called for ELS ring, this function checks if
1576  * there is a vport associated with the ELS command. This function also
1577  * starts els_tmofunc timer if this is an ELS command.
1578  **/
1579 static int
1580 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1581 			struct lpfc_iocbq *piocb)
1582 {
1583 	if (phba->sli_rev == LPFC_SLI_REV4)
1584 		lockdep_assert_held(&pring->ring_lock);
1585 	else
1586 		lockdep_assert_held(&phba->hbalock);
1587 
1588 	BUG_ON(!piocb);
1589 
1590 	list_add_tail(&piocb->list, &pring->txcmplq);
1591 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1592 	pring->txcmplq_cnt++;
1593 
1594 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1595 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1596 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1597 		BUG_ON(!piocb->vport);
1598 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1599 			mod_timer(&piocb->vport->els_tmofunc,
1600 				  jiffies +
1601 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 /**
1608  * lpfc_sli_ringtx_get - Get first element of the txq
1609  * @phba: Pointer to HBA context object.
1610  * @pring: Pointer to driver SLI ring object.
1611  *
1612  * This function is called with hbalock held to get next
1613  * iocb in txq of the given ring. If there is any iocb in
1614  * the txq, the function returns first iocb in the list after
1615  * removing the iocb from the list, else it returns NULL.
1616  **/
1617 struct lpfc_iocbq *
1618 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1619 {
1620 	struct lpfc_iocbq *cmd_iocb;
1621 
1622 	lockdep_assert_held(&phba->hbalock);
1623 
1624 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1625 	return cmd_iocb;
1626 }
1627 
1628 /**
1629  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1630  * @phba: Pointer to HBA context object.
1631  * @pring: Pointer to driver SLI ring object.
1632  *
1633  * This function is called with hbalock held and the caller must post the
1634  * iocb without releasing the lock. If the caller releases the lock,
1635  * iocb slot returned by the function is not guaranteed to be available.
1636  * The function returns pointer to the next available iocb slot if there
1637  * is available slot in the ring, else it returns NULL.
1638  * If the get index of the ring is ahead of the put index, the function
1639  * will post an error attention event to the worker thread to take the
1640  * HBA to offline state.
1641  **/
1642 static IOCB_t *
1643 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1644 {
1645 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1646 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1647 
1648 	lockdep_assert_held(&phba->hbalock);
1649 
1650 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1651 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1652 		pring->sli.sli3.next_cmdidx = 0;
1653 
1654 	if (unlikely(pring->sli.sli3.local_getidx ==
1655 		pring->sli.sli3.next_cmdidx)) {
1656 
1657 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1658 
1659 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1660 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1661 					"0315 Ring %d issue: portCmdGet %d "
1662 					"is bigger than cmd ring %d\n",
1663 					pring->ringno,
1664 					pring->sli.sli3.local_getidx,
1665 					max_cmd_idx);
1666 
1667 			phba->link_state = LPFC_HBA_ERROR;
1668 			/*
1669 			 * All error attention handlers are posted to
1670 			 * worker thread
1671 			 */
1672 			phba->work_ha |= HA_ERATT;
1673 			phba->work_hs = HS_FFER3;
1674 
1675 			lpfc_worker_wake_up(phba);
1676 
1677 			return NULL;
1678 		}
1679 
1680 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1681 			return NULL;
1682 	}
1683 
1684 	return lpfc_cmd_iocb(phba, pring);
1685 }
1686 
1687 /**
1688  * lpfc_sli_next_iotag - Get an iotag for the iocb
1689  * @phba: Pointer to HBA context object.
1690  * @iocbq: Pointer to driver iocb object.
1691  *
1692  * This function gets an iotag for the iocb. If there is no unused iotag and
1693  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1694  * array and assigns a new iotag.
1695  * The function returns the allocated iotag if successful, else returns zero.
1696  * Zero is not a valid iotag.
1697  * The caller is not required to hold any lock.
1698  **/
1699 uint16_t
1700 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1701 {
1702 	struct lpfc_iocbq **new_arr;
1703 	struct lpfc_iocbq **old_arr;
1704 	size_t new_len;
1705 	struct lpfc_sli *psli = &phba->sli;
1706 	uint16_t iotag;
1707 
1708 	spin_lock_irq(&phba->hbalock);
1709 	iotag = psli->last_iotag;
1710 	if(++iotag < psli->iocbq_lookup_len) {
1711 		psli->last_iotag = iotag;
1712 		psli->iocbq_lookup[iotag] = iocbq;
1713 		spin_unlock_irq(&phba->hbalock);
1714 		iocbq->iotag = iotag;
1715 		return iotag;
1716 	} else if (psli->iocbq_lookup_len < (0xffff
1717 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1718 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1719 		spin_unlock_irq(&phba->hbalock);
1720 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1721 				  GFP_KERNEL);
1722 		if (new_arr) {
1723 			spin_lock_irq(&phba->hbalock);
1724 			old_arr = psli->iocbq_lookup;
1725 			if (new_len <= psli->iocbq_lookup_len) {
1726 				/* highly unprobable case */
1727 				kfree(new_arr);
1728 				iotag = psli->last_iotag;
1729 				if(++iotag < psli->iocbq_lookup_len) {
1730 					psli->last_iotag = iotag;
1731 					psli->iocbq_lookup[iotag] = iocbq;
1732 					spin_unlock_irq(&phba->hbalock);
1733 					iocbq->iotag = iotag;
1734 					return iotag;
1735 				}
1736 				spin_unlock_irq(&phba->hbalock);
1737 				return 0;
1738 			}
1739 			if (psli->iocbq_lookup)
1740 				memcpy(new_arr, old_arr,
1741 				       ((psli->last_iotag  + 1) *
1742 					sizeof (struct lpfc_iocbq *)));
1743 			psli->iocbq_lookup = new_arr;
1744 			psli->iocbq_lookup_len = new_len;
1745 			psli->last_iotag = iotag;
1746 			psli->iocbq_lookup[iotag] = iocbq;
1747 			spin_unlock_irq(&phba->hbalock);
1748 			iocbq->iotag = iotag;
1749 			kfree(old_arr);
1750 			return iotag;
1751 		}
1752 	} else
1753 		spin_unlock_irq(&phba->hbalock);
1754 
1755 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1756 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1757 			psli->last_iotag);
1758 
1759 	return 0;
1760 }
1761 
1762 /**
1763  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1764  * @phba: Pointer to HBA context object.
1765  * @pring: Pointer to driver SLI ring object.
1766  * @iocb: Pointer to iocb slot in the ring.
1767  * @nextiocb: Pointer to driver iocb object which need to be
1768  *            posted to firmware.
1769  *
1770  * This function is called with hbalock held to post a new iocb to
1771  * the firmware. This function copies the new iocb to ring iocb slot and
1772  * updates the ring pointers. It adds the new iocb to txcmplq if there is
1773  * a completion call back for this iocb else the function will free the
1774  * iocb object.
1775  **/
1776 static void
1777 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1778 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1779 {
1780 	lockdep_assert_held(&phba->hbalock);
1781 	/*
1782 	 * Set up an iotag
1783 	 */
1784 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1785 
1786 
1787 	if (pring->ringno == LPFC_ELS_RING) {
1788 		lpfc_debugfs_slow_ring_trc(phba,
1789 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1790 			*(((uint32_t *) &nextiocb->iocb) + 4),
1791 			*(((uint32_t *) &nextiocb->iocb) + 6),
1792 			*(((uint32_t *) &nextiocb->iocb) + 7));
1793 	}
1794 
1795 	/*
1796 	 * Issue iocb command to adapter
1797 	 */
1798 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1799 	wmb();
1800 	pring->stats.iocb_cmd++;
1801 
1802 	/*
1803 	 * If there is no completion routine to call, we can release the
1804 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1805 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1806 	 */
1807 	if (nextiocb->iocb_cmpl)
1808 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1809 	else
1810 		__lpfc_sli_release_iocbq(phba, nextiocb);
1811 
1812 	/*
1813 	 * Let the HBA know what IOCB slot will be the next one the
1814 	 * driver will put a command into.
1815 	 */
1816 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1817 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1818 }
1819 
1820 /**
1821  * lpfc_sli_update_full_ring - Update the chip attention register
1822  * @phba: Pointer to HBA context object.
1823  * @pring: Pointer to driver SLI ring object.
1824  *
1825  * The caller is not required to hold any lock for calling this function.
1826  * This function updates the chip attention bits for the ring to inform firmware
1827  * that there are pending work to be done for this ring and requests an
1828  * interrupt when there is space available in the ring. This function is
1829  * called when the driver is unable to post more iocbs to the ring due
1830  * to unavailability of space in the ring.
1831  **/
1832 static void
1833 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1834 {
1835 	int ringno = pring->ringno;
1836 
1837 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1838 
1839 	wmb();
1840 
1841 	/*
1842 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1843 	 * The HBA will tell us when an IOCB entry is available.
1844 	 */
1845 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1846 	readl(phba->CAregaddr); /* flush */
1847 
1848 	pring->stats.iocb_cmd_full++;
1849 }
1850 
1851 /**
1852  * lpfc_sli_update_ring - Update chip attention register
1853  * @phba: Pointer to HBA context object.
1854  * @pring: Pointer to driver SLI ring object.
1855  *
1856  * This function updates the chip attention register bit for the
1857  * given ring to inform HBA that there is more work to be done
1858  * in this ring. The caller is not required to hold any lock.
1859  **/
1860 static void
1861 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1862 {
1863 	int ringno = pring->ringno;
1864 
1865 	/*
1866 	 * Tell the HBA that there is work to do in this ring.
1867 	 */
1868 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1869 		wmb();
1870 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1871 		readl(phba->CAregaddr); /* flush */
1872 	}
1873 }
1874 
1875 /**
1876  * lpfc_sli_resume_iocb - Process iocbs in the txq
1877  * @phba: Pointer to HBA context object.
1878  * @pring: Pointer to driver SLI ring object.
1879  *
1880  * This function is called with hbalock held to post pending iocbs
1881  * in the txq to the firmware. This function is called when driver
1882  * detects space available in the ring.
1883  **/
1884 static void
1885 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1886 {
1887 	IOCB_t *iocb;
1888 	struct lpfc_iocbq *nextiocb;
1889 
1890 	lockdep_assert_held(&phba->hbalock);
1891 
1892 	/*
1893 	 * Check to see if:
1894 	 *  (a) there is anything on the txq to send
1895 	 *  (b) link is up
1896 	 *  (c) link attention events can be processed (fcp ring only)
1897 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1898 	 */
1899 
1900 	if (lpfc_is_link_up(phba) &&
1901 	    (!list_empty(&pring->txq)) &&
1902 	    (pring->ringno != LPFC_FCP_RING ||
1903 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1904 
1905 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1906 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1907 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1908 
1909 		if (iocb)
1910 			lpfc_sli_update_ring(phba, pring);
1911 		else
1912 			lpfc_sli_update_full_ring(phba, pring);
1913 	}
1914 
1915 	return;
1916 }
1917 
1918 /**
1919  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1920  * @phba: Pointer to HBA context object.
1921  * @hbqno: HBQ number.
1922  *
1923  * This function is called with hbalock held to get the next
1924  * available slot for the given HBQ. If there is free slot
1925  * available for the HBQ it will return pointer to the next available
1926  * HBQ entry else it will return NULL.
1927  **/
1928 static struct lpfc_hbq_entry *
1929 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1930 {
1931 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1932 
1933 	lockdep_assert_held(&phba->hbalock);
1934 
1935 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1936 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1937 		hbqp->next_hbqPutIdx = 0;
1938 
1939 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1940 		uint32_t raw_index = phba->hbq_get[hbqno];
1941 		uint32_t getidx = le32_to_cpu(raw_index);
1942 
1943 		hbqp->local_hbqGetIdx = getidx;
1944 
1945 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1946 			lpfc_printf_log(phba, KERN_ERR,
1947 					LOG_SLI | LOG_VPORT,
1948 					"1802 HBQ %d: local_hbqGetIdx "
1949 					"%u is > than hbqp->entry_count %u\n",
1950 					hbqno, hbqp->local_hbqGetIdx,
1951 					hbqp->entry_count);
1952 
1953 			phba->link_state = LPFC_HBA_ERROR;
1954 			return NULL;
1955 		}
1956 
1957 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1958 			return NULL;
1959 	}
1960 
1961 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1962 			hbqp->hbqPutIdx;
1963 }
1964 
1965 /**
1966  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1967  * @phba: Pointer to HBA context object.
1968  *
1969  * This function is called with no lock held to free all the
1970  * hbq buffers while uninitializing the SLI interface. It also
1971  * frees the HBQ buffers returned by the firmware but not yet
1972  * processed by the upper layers.
1973  **/
1974 void
1975 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1976 {
1977 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1978 	struct hbq_dmabuf *hbq_buf;
1979 	unsigned long flags;
1980 	int i, hbq_count;
1981 
1982 	hbq_count = lpfc_sli_hbq_count();
1983 	/* Return all memory used by all HBQs */
1984 	spin_lock_irqsave(&phba->hbalock, flags);
1985 	for (i = 0; i < hbq_count; ++i) {
1986 		list_for_each_entry_safe(dmabuf, next_dmabuf,
1987 				&phba->hbqs[i].hbq_buffer_list, list) {
1988 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1989 			list_del(&hbq_buf->dbuf.list);
1990 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1991 		}
1992 		phba->hbqs[i].buffer_count = 0;
1993 	}
1994 
1995 	/* Mark the HBQs not in use */
1996 	phba->hbq_in_use = 0;
1997 	spin_unlock_irqrestore(&phba->hbalock, flags);
1998 }
1999 
2000 /**
2001  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2002  * @phba: Pointer to HBA context object.
2003  * @hbqno: HBQ number.
2004  * @hbq_buf: Pointer to HBQ buffer.
2005  *
2006  * This function is called with the hbalock held to post a
2007  * hbq buffer to the firmware. If the function finds an empty
2008  * slot in the HBQ, it will post the buffer. The function will return
2009  * pointer to the hbq entry if it successfully post the buffer
2010  * else it will return NULL.
2011  **/
2012 static int
2013 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2014 			 struct hbq_dmabuf *hbq_buf)
2015 {
2016 	lockdep_assert_held(&phba->hbalock);
2017 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2018 }
2019 
2020 /**
2021  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2022  * @phba: Pointer to HBA context object.
2023  * @hbqno: HBQ number.
2024  * @hbq_buf: Pointer to HBQ buffer.
2025  *
2026  * This function is called with the hbalock held to post a hbq buffer to the
2027  * firmware. If the function finds an empty slot in the HBQ, it will post the
2028  * buffer and place it on the hbq_buffer_list. The function will return zero if
2029  * it successfully post the buffer else it will return an error.
2030  **/
2031 static int
2032 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2033 			    struct hbq_dmabuf *hbq_buf)
2034 {
2035 	struct lpfc_hbq_entry *hbqe;
2036 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2037 
2038 	lockdep_assert_held(&phba->hbalock);
2039 	/* Get next HBQ entry slot to use */
2040 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2041 	if (hbqe) {
2042 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2043 
2044 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2045 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2046 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2047 		hbqe->bde.tus.f.bdeFlags = 0;
2048 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2049 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2050 				/* Sync SLIM */
2051 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2052 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2053 				/* flush */
2054 		readl(phba->hbq_put + hbqno);
2055 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2056 		return 0;
2057 	} else
2058 		return -ENOMEM;
2059 }
2060 
2061 /**
2062  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2063  * @phba: Pointer to HBA context object.
2064  * @hbqno: HBQ number.
2065  * @hbq_buf: Pointer to HBQ buffer.
2066  *
2067  * This function is called with the hbalock held to post an RQE to the SLI4
2068  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2069  * the hbq_buffer_list and return zero, otherwise it will return an error.
2070  **/
2071 static int
2072 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2073 			    struct hbq_dmabuf *hbq_buf)
2074 {
2075 	int rc;
2076 	struct lpfc_rqe hrqe;
2077 	struct lpfc_rqe drqe;
2078 	struct lpfc_queue *hrq;
2079 	struct lpfc_queue *drq;
2080 
2081 	if (hbqno != LPFC_ELS_HBQ)
2082 		return 1;
2083 	hrq = phba->sli4_hba.hdr_rq;
2084 	drq = phba->sli4_hba.dat_rq;
2085 
2086 	lockdep_assert_held(&phba->hbalock);
2087 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2088 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2089 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2090 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2091 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2092 	if (rc < 0)
2093 		return rc;
2094 	hbq_buf->tag = (rc | (hbqno << 16));
2095 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2096 	return 0;
2097 }
2098 
2099 /* HBQ for ELS and CT traffic. */
2100 static struct lpfc_hbq_init lpfc_els_hbq = {
2101 	.rn = 1,
2102 	.entry_count = 256,
2103 	.mask_count = 0,
2104 	.profile = 0,
2105 	.ring_mask = (1 << LPFC_ELS_RING),
2106 	.buffer_count = 0,
2107 	.init_count = 40,
2108 	.add_count = 40,
2109 };
2110 
2111 /* Array of HBQs */
2112 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2113 	&lpfc_els_hbq,
2114 };
2115 
2116 /**
2117  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2118  * @phba: Pointer to HBA context object.
2119  * @hbqno: HBQ number.
2120  * @count: Number of HBQ buffers to be posted.
2121  *
2122  * This function is called with no lock held to post more hbq buffers to the
2123  * given HBQ. The function returns the number of HBQ buffers successfully
2124  * posted.
2125  **/
2126 static int
2127 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2128 {
2129 	uint32_t i, posted = 0;
2130 	unsigned long flags;
2131 	struct hbq_dmabuf *hbq_buffer;
2132 	LIST_HEAD(hbq_buf_list);
2133 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2134 		return 0;
2135 
2136 	if ((phba->hbqs[hbqno].buffer_count + count) >
2137 	    lpfc_hbq_defs[hbqno]->entry_count)
2138 		count = lpfc_hbq_defs[hbqno]->entry_count -
2139 					phba->hbqs[hbqno].buffer_count;
2140 	if (!count)
2141 		return 0;
2142 	/* Allocate HBQ entries */
2143 	for (i = 0; i < count; i++) {
2144 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2145 		if (!hbq_buffer)
2146 			break;
2147 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2148 	}
2149 	/* Check whether HBQ is still in use */
2150 	spin_lock_irqsave(&phba->hbalock, flags);
2151 	if (!phba->hbq_in_use)
2152 		goto err;
2153 	while (!list_empty(&hbq_buf_list)) {
2154 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2155 				 dbuf.list);
2156 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2157 				      (hbqno << 16));
2158 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2159 			phba->hbqs[hbqno].buffer_count++;
2160 			posted++;
2161 		} else
2162 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2163 	}
2164 	spin_unlock_irqrestore(&phba->hbalock, flags);
2165 	return posted;
2166 err:
2167 	spin_unlock_irqrestore(&phba->hbalock, flags);
2168 	while (!list_empty(&hbq_buf_list)) {
2169 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2170 				 dbuf.list);
2171 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2172 	}
2173 	return 0;
2174 }
2175 
2176 /**
2177  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2178  * @phba: Pointer to HBA context object.
2179  * @qno: HBQ number.
2180  *
2181  * This function posts more buffers to the HBQ. This function
2182  * is called with no lock held. The function returns the number of HBQ entries
2183  * successfully allocated.
2184  **/
2185 int
2186 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2187 {
2188 	if (phba->sli_rev == LPFC_SLI_REV4)
2189 		return 0;
2190 	else
2191 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2192 					 lpfc_hbq_defs[qno]->add_count);
2193 }
2194 
2195 /**
2196  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2197  * @phba: Pointer to HBA context object.
2198  * @qno:  HBQ queue number.
2199  *
2200  * This function is called from SLI initialization code path with
2201  * no lock held to post initial HBQ buffers to firmware. The
2202  * function returns the number of HBQ entries successfully allocated.
2203  **/
2204 static int
2205 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2206 {
2207 	if (phba->sli_rev == LPFC_SLI_REV4)
2208 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2209 					lpfc_hbq_defs[qno]->entry_count);
2210 	else
2211 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2212 					 lpfc_hbq_defs[qno]->init_count);
2213 }
2214 
2215 /**
2216  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2217  * @phba: Pointer to HBA context object.
2218  * @hbqno: HBQ number.
2219  *
2220  * This function removes the first hbq buffer on an hbq list and returns a
2221  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2222  **/
2223 static struct hbq_dmabuf *
2224 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2225 {
2226 	struct lpfc_dmabuf *d_buf;
2227 
2228 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2229 	if (!d_buf)
2230 		return NULL;
2231 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2232 }
2233 
2234 /**
2235  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2236  * @phba: Pointer to HBA context object.
2237  * @hbqno: HBQ number.
2238  *
2239  * This function removes the first RQ buffer on an RQ buffer list and returns a
2240  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2241  **/
2242 static struct rqb_dmabuf *
2243 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2244 {
2245 	struct lpfc_dmabuf *h_buf;
2246 	struct lpfc_rqb *rqbp;
2247 
2248 	rqbp = hrq->rqbp;
2249 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2250 			 struct lpfc_dmabuf, list);
2251 	if (!h_buf)
2252 		return NULL;
2253 	rqbp->buffer_count--;
2254 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2255 }
2256 
2257 /**
2258  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2259  * @phba: Pointer to HBA context object.
2260  * @tag: Tag of the hbq buffer.
2261  *
2262  * This function searches for the hbq buffer associated with the given tag in
2263  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2264  * otherwise it returns NULL.
2265  **/
2266 static struct hbq_dmabuf *
2267 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2268 {
2269 	struct lpfc_dmabuf *d_buf;
2270 	struct hbq_dmabuf *hbq_buf;
2271 	uint32_t hbqno;
2272 
2273 	hbqno = tag >> 16;
2274 	if (hbqno >= LPFC_MAX_HBQS)
2275 		return NULL;
2276 
2277 	spin_lock_irq(&phba->hbalock);
2278 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2279 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2280 		if (hbq_buf->tag == tag) {
2281 			spin_unlock_irq(&phba->hbalock);
2282 			return hbq_buf;
2283 		}
2284 	}
2285 	spin_unlock_irq(&phba->hbalock);
2286 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2287 			"1803 Bad hbq tag. Data: x%x x%x\n",
2288 			tag, phba->hbqs[tag >> 16].buffer_count);
2289 	return NULL;
2290 }
2291 
2292 /**
2293  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2294  * @phba: Pointer to HBA context object.
2295  * @hbq_buffer: Pointer to HBQ buffer.
2296  *
2297  * This function is called with hbalock. This function gives back
2298  * the hbq buffer to firmware. If the HBQ does not have space to
2299  * post the buffer, it will free the buffer.
2300  **/
2301 void
2302 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2303 {
2304 	uint32_t hbqno;
2305 
2306 	if (hbq_buffer) {
2307 		hbqno = hbq_buffer->tag >> 16;
2308 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2309 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2310 	}
2311 }
2312 
2313 /**
2314  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2315  * @mbxCommand: mailbox command code.
2316  *
2317  * This function is called by the mailbox event handler function to verify
2318  * that the completed mailbox command is a legitimate mailbox command. If the
2319  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2320  * and the mailbox event handler will take the HBA offline.
2321  **/
2322 static int
2323 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2324 {
2325 	uint8_t ret;
2326 
2327 	switch (mbxCommand) {
2328 	case MBX_LOAD_SM:
2329 	case MBX_READ_NV:
2330 	case MBX_WRITE_NV:
2331 	case MBX_WRITE_VPARMS:
2332 	case MBX_RUN_BIU_DIAG:
2333 	case MBX_INIT_LINK:
2334 	case MBX_DOWN_LINK:
2335 	case MBX_CONFIG_LINK:
2336 	case MBX_CONFIG_RING:
2337 	case MBX_RESET_RING:
2338 	case MBX_READ_CONFIG:
2339 	case MBX_READ_RCONFIG:
2340 	case MBX_READ_SPARM:
2341 	case MBX_READ_STATUS:
2342 	case MBX_READ_RPI:
2343 	case MBX_READ_XRI:
2344 	case MBX_READ_REV:
2345 	case MBX_READ_LNK_STAT:
2346 	case MBX_REG_LOGIN:
2347 	case MBX_UNREG_LOGIN:
2348 	case MBX_CLEAR_LA:
2349 	case MBX_DUMP_MEMORY:
2350 	case MBX_DUMP_CONTEXT:
2351 	case MBX_RUN_DIAGS:
2352 	case MBX_RESTART:
2353 	case MBX_UPDATE_CFG:
2354 	case MBX_DOWN_LOAD:
2355 	case MBX_DEL_LD_ENTRY:
2356 	case MBX_RUN_PROGRAM:
2357 	case MBX_SET_MASK:
2358 	case MBX_SET_VARIABLE:
2359 	case MBX_UNREG_D_ID:
2360 	case MBX_KILL_BOARD:
2361 	case MBX_CONFIG_FARP:
2362 	case MBX_BEACON:
2363 	case MBX_LOAD_AREA:
2364 	case MBX_RUN_BIU_DIAG64:
2365 	case MBX_CONFIG_PORT:
2366 	case MBX_READ_SPARM64:
2367 	case MBX_READ_RPI64:
2368 	case MBX_REG_LOGIN64:
2369 	case MBX_READ_TOPOLOGY:
2370 	case MBX_WRITE_WWN:
2371 	case MBX_SET_DEBUG:
2372 	case MBX_LOAD_EXP_ROM:
2373 	case MBX_ASYNCEVT_ENABLE:
2374 	case MBX_REG_VPI:
2375 	case MBX_UNREG_VPI:
2376 	case MBX_HEARTBEAT:
2377 	case MBX_PORT_CAPABILITIES:
2378 	case MBX_PORT_IOV_CONTROL:
2379 	case MBX_SLI4_CONFIG:
2380 	case MBX_SLI4_REQ_FTRS:
2381 	case MBX_REG_FCFI:
2382 	case MBX_UNREG_FCFI:
2383 	case MBX_REG_VFI:
2384 	case MBX_UNREG_VFI:
2385 	case MBX_INIT_VPI:
2386 	case MBX_INIT_VFI:
2387 	case MBX_RESUME_RPI:
2388 	case MBX_READ_EVENT_LOG_STATUS:
2389 	case MBX_READ_EVENT_LOG:
2390 	case MBX_SECURITY_MGMT:
2391 	case MBX_AUTH_PORT:
2392 	case MBX_ACCESS_VDATA:
2393 		ret = mbxCommand;
2394 		break;
2395 	default:
2396 		ret = MBX_SHUTDOWN;
2397 		break;
2398 	}
2399 	return ret;
2400 }
2401 
2402 /**
2403  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2404  * @phba: Pointer to HBA context object.
2405  * @pmboxq: Pointer to mailbox command.
2406  *
2407  * This is completion handler function for mailbox commands issued from
2408  * lpfc_sli_issue_mbox_wait function. This function is called by the
2409  * mailbox event handler function with no lock held. This function
2410  * will wake up thread waiting on the wait queue pointed by context1
2411  * of the mailbox.
2412  **/
2413 void
2414 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2415 {
2416 	unsigned long drvr_flag;
2417 	struct completion *pmbox_done;
2418 
2419 	/*
2420 	 * If pmbox_done is empty, the driver thread gave up waiting and
2421 	 * continued running.
2422 	 */
2423 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2424 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2425 	pmbox_done = (struct completion *)pmboxq->context3;
2426 	if (pmbox_done)
2427 		complete(pmbox_done);
2428 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2429 	return;
2430 }
2431 
2432 static void
2433 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2434 {
2435 	unsigned long iflags;
2436 
2437 	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2438 		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2439 		spin_lock_irqsave(&vport->phba->ndlp_lock, iflags);
2440 		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2441 		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2442 		spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags);
2443 	}
2444 	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2445 }
2446 
2447 /**
2448  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2449  * @phba: Pointer to HBA context object.
2450  * @pmb: Pointer to mailbox object.
2451  *
2452  * This function is the default mailbox completion handler. It
2453  * frees the memory resources associated with the completed mailbox
2454  * command. If the completed command is a REG_LOGIN mailbox command,
2455  * this function will issue a UREG_LOGIN to re-claim the RPI.
2456  **/
2457 void
2458 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2459 {
2460 	struct lpfc_vport  *vport = pmb->vport;
2461 	struct lpfc_dmabuf *mp;
2462 	struct lpfc_nodelist *ndlp;
2463 	struct Scsi_Host *shost;
2464 	uint16_t rpi, vpi;
2465 	int rc;
2466 
2467 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2468 
2469 	if (mp) {
2470 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2471 		kfree(mp);
2472 	}
2473 
2474 	/*
2475 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2476 	 * is in re-discovery driver need to cleanup the RPI.
2477 	 */
2478 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2479 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2480 	    !pmb->u.mb.mbxStatus) {
2481 		rpi = pmb->u.mb.un.varWords[0];
2482 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2483 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2484 		pmb->vport = vport;
2485 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2486 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2487 		if (rc != MBX_NOT_FINISHED)
2488 			return;
2489 	}
2490 
2491 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2492 		!(phba->pport->load_flag & FC_UNLOADING) &&
2493 		!pmb->u.mb.mbxStatus) {
2494 		shost = lpfc_shost_from_vport(vport);
2495 		spin_lock_irq(shost->host_lock);
2496 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2497 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2498 		spin_unlock_irq(shost->host_lock);
2499 	}
2500 
2501 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2502 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2503 		lpfc_nlp_put(ndlp);
2504 		pmb->ctx_buf = NULL;
2505 		pmb->ctx_ndlp = NULL;
2506 	}
2507 
2508 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2509 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2510 
2511 		/* Check to see if there are any deferred events to process */
2512 		if (ndlp) {
2513 			lpfc_printf_vlog(
2514 				vport,
2515 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2516 				"1438 UNREG cmpl deferred mbox x%x "
2517 				"on NPort x%x Data: x%x x%x %px\n",
2518 				ndlp->nlp_rpi, ndlp->nlp_DID,
2519 				ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2520 
2521 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2522 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2523 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2524 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2525 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2526 			} else {
2527 				__lpfc_sli_rpi_release(vport, ndlp);
2528 			}
2529 			pmb->ctx_ndlp = NULL;
2530 		}
2531 	}
2532 
2533 	/* Check security permission status on INIT_LINK mailbox command */
2534 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2535 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2536 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2537 				"2860 SLI authentication is required "
2538 				"for INIT_LINK but has not done yet\n");
2539 
2540 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2541 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2542 	else
2543 		mempool_free(pmb, phba->mbox_mem_pool);
2544 }
2545  /**
2546  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2547  * @phba: Pointer to HBA context object.
2548  * @pmb: Pointer to mailbox object.
2549  *
2550  * This function is the unreg rpi mailbox completion handler. It
2551  * frees the memory resources associated with the completed mailbox
2552  * command. An additional refrenece is put on the ndlp to prevent
2553  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2554  * the unreg mailbox command completes, this routine puts the
2555  * reference back.
2556  *
2557  **/
2558 void
2559 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2560 {
2561 	struct lpfc_vport  *vport = pmb->vport;
2562 	struct lpfc_nodelist *ndlp;
2563 
2564 	ndlp = pmb->ctx_ndlp;
2565 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2566 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2567 		    (bf_get(lpfc_sli_intf_if_type,
2568 		     &phba->sli4_hba.sli_intf) >=
2569 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2570 			if (ndlp) {
2571 				lpfc_printf_vlog(
2572 					vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2573 					 "0010 UNREG_LOGIN vpi:%x "
2574 					 "rpi:%x DID:%x defer x%x flg x%x "
2575 					 "map:%x %px\n",
2576 					 vport->vpi, ndlp->nlp_rpi,
2577 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2578 					 ndlp->nlp_flag,
2579 					 ndlp->nlp_usg_map, ndlp);
2580 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2581 				lpfc_nlp_put(ndlp);
2582 
2583 				/* Check to see if there are any deferred
2584 				 * events to process
2585 				 */
2586 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2587 				    (ndlp->nlp_defer_did !=
2588 				    NLP_EVT_NOTHING_PENDING)) {
2589 					lpfc_printf_vlog(
2590 						vport, KERN_INFO, LOG_DISCOVERY,
2591 						"4111 UNREG cmpl deferred "
2592 						"clr x%x on "
2593 						"NPort x%x Data: x%x x%px\n",
2594 						ndlp->nlp_rpi, ndlp->nlp_DID,
2595 						ndlp->nlp_defer_did, ndlp);
2596 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2597 					ndlp->nlp_defer_did =
2598 						NLP_EVT_NOTHING_PENDING;
2599 					lpfc_issue_els_plogi(
2600 						vport, ndlp->nlp_DID, 0);
2601 				} else {
2602 					__lpfc_sli_rpi_release(vport, ndlp);
2603 				}
2604 			}
2605 		}
2606 	}
2607 
2608 	mempool_free(pmb, phba->mbox_mem_pool);
2609 }
2610 
2611 /**
2612  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2613  * @phba: Pointer to HBA context object.
2614  *
2615  * This function is called with no lock held. This function processes all
2616  * the completed mailbox commands and gives it to upper layers. The interrupt
2617  * service routine processes mailbox completion interrupt and adds completed
2618  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2619  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2620  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2621  * function returns the mailbox commands to the upper layer by calling the
2622  * completion handler function of each mailbox.
2623  **/
2624 int
2625 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2626 {
2627 	MAILBOX_t *pmbox;
2628 	LPFC_MBOXQ_t *pmb;
2629 	int rc;
2630 	LIST_HEAD(cmplq);
2631 
2632 	phba->sli.slistat.mbox_event++;
2633 
2634 	/* Get all completed mailboxe buffers into the cmplq */
2635 	spin_lock_irq(&phba->hbalock);
2636 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2637 	spin_unlock_irq(&phba->hbalock);
2638 
2639 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2640 	do {
2641 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2642 		if (pmb == NULL)
2643 			break;
2644 
2645 		pmbox = &pmb->u.mb;
2646 
2647 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2648 			if (pmb->vport) {
2649 				lpfc_debugfs_disc_trc(pmb->vport,
2650 					LPFC_DISC_TRC_MBOX_VPORT,
2651 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2652 					(uint32_t)pmbox->mbxCommand,
2653 					pmbox->un.varWords[0],
2654 					pmbox->un.varWords[1]);
2655 			}
2656 			else {
2657 				lpfc_debugfs_disc_trc(phba->pport,
2658 					LPFC_DISC_TRC_MBOX,
2659 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2660 					(uint32_t)pmbox->mbxCommand,
2661 					pmbox->un.varWords[0],
2662 					pmbox->un.varWords[1]);
2663 			}
2664 		}
2665 
2666 		/*
2667 		 * It is a fatal error if unknown mbox command completion.
2668 		 */
2669 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2670 		    MBX_SHUTDOWN) {
2671 			/* Unknown mailbox command compl */
2672 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2673 					"(%d):0323 Unknown Mailbox command "
2674 					"x%x (x%x/x%x) Cmpl\n",
2675 					pmb->vport ? pmb->vport->vpi : 0,
2676 					pmbox->mbxCommand,
2677 					lpfc_sli_config_mbox_subsys_get(phba,
2678 									pmb),
2679 					lpfc_sli_config_mbox_opcode_get(phba,
2680 									pmb));
2681 			phba->link_state = LPFC_HBA_ERROR;
2682 			phba->work_hs = HS_FFER3;
2683 			lpfc_handle_eratt(phba);
2684 			continue;
2685 		}
2686 
2687 		if (pmbox->mbxStatus) {
2688 			phba->sli.slistat.mbox_stat_err++;
2689 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2690 				/* Mbox cmd cmpl error - RETRYing */
2691 				lpfc_printf_log(phba, KERN_INFO,
2692 					LOG_MBOX | LOG_SLI,
2693 					"(%d):0305 Mbox cmd cmpl "
2694 					"error - RETRYing Data: x%x "
2695 					"(x%x/x%x) x%x x%x x%x\n",
2696 					pmb->vport ? pmb->vport->vpi : 0,
2697 					pmbox->mbxCommand,
2698 					lpfc_sli_config_mbox_subsys_get(phba,
2699 									pmb),
2700 					lpfc_sli_config_mbox_opcode_get(phba,
2701 									pmb),
2702 					pmbox->mbxStatus,
2703 					pmbox->un.varWords[0],
2704 					pmb->vport->port_state);
2705 				pmbox->mbxStatus = 0;
2706 				pmbox->mbxOwner = OWN_HOST;
2707 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2708 				if (rc != MBX_NOT_FINISHED)
2709 					continue;
2710 			}
2711 		}
2712 
2713 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2714 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2715 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2716 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2717 				"x%x x%x x%x\n",
2718 				pmb->vport ? pmb->vport->vpi : 0,
2719 				pmbox->mbxCommand,
2720 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2721 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2722 				pmb->mbox_cmpl,
2723 				*((uint32_t *) pmbox),
2724 				pmbox->un.varWords[0],
2725 				pmbox->un.varWords[1],
2726 				pmbox->un.varWords[2],
2727 				pmbox->un.varWords[3],
2728 				pmbox->un.varWords[4],
2729 				pmbox->un.varWords[5],
2730 				pmbox->un.varWords[6],
2731 				pmbox->un.varWords[7],
2732 				pmbox->un.varWords[8],
2733 				pmbox->un.varWords[9],
2734 				pmbox->un.varWords[10]);
2735 
2736 		if (pmb->mbox_cmpl)
2737 			pmb->mbox_cmpl(phba,pmb);
2738 	} while (1);
2739 	return 0;
2740 }
2741 
2742 /**
2743  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2744  * @phba: Pointer to HBA context object.
2745  * @pring: Pointer to driver SLI ring object.
2746  * @tag: buffer tag.
2747  *
2748  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2749  * is set in the tag the buffer is posted for a particular exchange,
2750  * the function will return the buffer without replacing the buffer.
2751  * If the buffer is for unsolicited ELS or CT traffic, this function
2752  * returns the buffer and also posts another buffer to the firmware.
2753  **/
2754 static struct lpfc_dmabuf *
2755 lpfc_sli_get_buff(struct lpfc_hba *phba,
2756 		  struct lpfc_sli_ring *pring,
2757 		  uint32_t tag)
2758 {
2759 	struct hbq_dmabuf *hbq_entry;
2760 
2761 	if (tag & QUE_BUFTAG_BIT)
2762 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2763 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2764 	if (!hbq_entry)
2765 		return NULL;
2766 	return &hbq_entry->dbuf;
2767 }
2768 
2769 /**
2770  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2771  * @phba: Pointer to HBA context object.
2772  * @pring: Pointer to driver SLI ring object.
2773  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2774  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2775  * @fch_type: the type for the first frame of the sequence.
2776  *
2777  * This function is called with no lock held. This function uses the r_ctl and
2778  * type of the received sequence to find the correct callback function to call
2779  * to process the sequence.
2780  **/
2781 static int
2782 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2783 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2784 			 uint32_t fch_type)
2785 {
2786 	int i;
2787 
2788 	switch (fch_type) {
2789 	case FC_TYPE_NVME:
2790 		lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2791 		return 1;
2792 	default:
2793 		break;
2794 	}
2795 
2796 	/* unSolicited Responses */
2797 	if (pring->prt[0].profile) {
2798 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2799 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2800 									saveq);
2801 		return 1;
2802 	}
2803 	/* We must search, based on rctl / type
2804 	   for the right routine */
2805 	for (i = 0; i < pring->num_mask; i++) {
2806 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2807 		    (pring->prt[i].type == fch_type)) {
2808 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2809 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2810 						(phba, pring, saveq);
2811 			return 1;
2812 		}
2813 	}
2814 	return 0;
2815 }
2816 
2817 /**
2818  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2819  * @phba: Pointer to HBA context object.
2820  * @pring: Pointer to driver SLI ring object.
2821  * @saveq: Pointer to the unsolicited iocb.
2822  *
2823  * This function is called with no lock held by the ring event handler
2824  * when there is an unsolicited iocb posted to the response ring by the
2825  * firmware. This function gets the buffer associated with the iocbs
2826  * and calls the event handler for the ring. This function handles both
2827  * qring buffers and hbq buffers.
2828  * When the function returns 1 the caller can free the iocb object otherwise
2829  * upper layer functions will free the iocb objects.
2830  **/
2831 static int
2832 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2833 			    struct lpfc_iocbq *saveq)
2834 {
2835 	IOCB_t           * irsp;
2836 	WORD5            * w5p;
2837 	uint32_t           Rctl, Type;
2838 	struct lpfc_iocbq *iocbq;
2839 	struct lpfc_dmabuf *dmzbuf;
2840 
2841 	irsp = &(saveq->iocb);
2842 
2843 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2844 		if (pring->lpfc_sli_rcv_async_status)
2845 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2846 		else
2847 			lpfc_printf_log(phba,
2848 					KERN_WARNING,
2849 					LOG_SLI,
2850 					"0316 Ring %d handler: unexpected "
2851 					"ASYNC_STATUS iocb received evt_code "
2852 					"0x%x\n",
2853 					pring->ringno,
2854 					irsp->un.asyncstat.evt_code);
2855 		return 1;
2856 	}
2857 
2858 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2859 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2860 		if (irsp->ulpBdeCount > 0) {
2861 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2862 					irsp->un.ulpWord[3]);
2863 			lpfc_in_buf_free(phba, dmzbuf);
2864 		}
2865 
2866 		if (irsp->ulpBdeCount > 1) {
2867 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2868 					irsp->unsli3.sli3Words[3]);
2869 			lpfc_in_buf_free(phba, dmzbuf);
2870 		}
2871 
2872 		if (irsp->ulpBdeCount > 2) {
2873 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2874 				irsp->unsli3.sli3Words[7]);
2875 			lpfc_in_buf_free(phba, dmzbuf);
2876 		}
2877 
2878 		return 1;
2879 	}
2880 
2881 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2882 		if (irsp->ulpBdeCount != 0) {
2883 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
2884 						irsp->un.ulpWord[3]);
2885 			if (!saveq->context2)
2886 				lpfc_printf_log(phba,
2887 					KERN_ERR,
2888 					LOG_SLI,
2889 					"0341 Ring %d Cannot find buffer for "
2890 					"an unsolicited iocb. tag 0x%x\n",
2891 					pring->ringno,
2892 					irsp->un.ulpWord[3]);
2893 		}
2894 		if (irsp->ulpBdeCount == 2) {
2895 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
2896 						irsp->unsli3.sli3Words[7]);
2897 			if (!saveq->context3)
2898 				lpfc_printf_log(phba,
2899 					KERN_ERR,
2900 					LOG_SLI,
2901 					"0342 Ring %d Cannot find buffer for an"
2902 					" unsolicited iocb. tag 0x%x\n",
2903 					pring->ringno,
2904 					irsp->unsli3.sli3Words[7]);
2905 		}
2906 		list_for_each_entry(iocbq, &saveq->list, list) {
2907 			irsp = &(iocbq->iocb);
2908 			if (irsp->ulpBdeCount != 0) {
2909 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2910 							irsp->un.ulpWord[3]);
2911 				if (!iocbq->context2)
2912 					lpfc_printf_log(phba,
2913 						KERN_ERR,
2914 						LOG_SLI,
2915 						"0343 Ring %d Cannot find "
2916 						"buffer for an unsolicited iocb"
2917 						". tag 0x%x\n", pring->ringno,
2918 						irsp->un.ulpWord[3]);
2919 			}
2920 			if (irsp->ulpBdeCount == 2) {
2921 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2922 						irsp->unsli3.sli3Words[7]);
2923 				if (!iocbq->context3)
2924 					lpfc_printf_log(phba,
2925 						KERN_ERR,
2926 						LOG_SLI,
2927 						"0344 Ring %d Cannot find "
2928 						"buffer for an unsolicited "
2929 						"iocb. tag 0x%x\n",
2930 						pring->ringno,
2931 						irsp->unsli3.sli3Words[7]);
2932 			}
2933 		}
2934 	}
2935 	if (irsp->ulpBdeCount != 0 &&
2936 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2937 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2938 		int found = 0;
2939 
2940 		/* search continue save q for same XRI */
2941 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2942 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2943 				saveq->iocb.unsli3.rcvsli3.ox_id) {
2944 				list_add_tail(&saveq->list, &iocbq->list);
2945 				found = 1;
2946 				break;
2947 			}
2948 		}
2949 		if (!found)
2950 			list_add_tail(&saveq->clist,
2951 				      &pring->iocb_continue_saveq);
2952 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2953 			list_del_init(&iocbq->clist);
2954 			saveq = iocbq;
2955 			irsp = &(saveq->iocb);
2956 		} else
2957 			return 0;
2958 	}
2959 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2960 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2961 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2962 		Rctl = FC_RCTL_ELS_REQ;
2963 		Type = FC_TYPE_ELS;
2964 	} else {
2965 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2966 		Rctl = w5p->hcsw.Rctl;
2967 		Type = w5p->hcsw.Type;
2968 
2969 		/* Firmware Workaround */
2970 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2971 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2972 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2973 			Rctl = FC_RCTL_ELS_REQ;
2974 			Type = FC_TYPE_ELS;
2975 			w5p->hcsw.Rctl = Rctl;
2976 			w5p->hcsw.Type = Type;
2977 		}
2978 	}
2979 
2980 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2981 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2982 				"0313 Ring %d handler: unexpected Rctl x%x "
2983 				"Type x%x received\n",
2984 				pring->ringno, Rctl, Type);
2985 
2986 	return 1;
2987 }
2988 
2989 /**
2990  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2991  * @phba: Pointer to HBA context object.
2992  * @pring: Pointer to driver SLI ring object.
2993  * @prspiocb: Pointer to response iocb object.
2994  *
2995  * This function looks up the iocb_lookup table to get the command iocb
2996  * corresponding to the given response iocb using the iotag of the
2997  * response iocb. The driver calls this function with the hbalock held
2998  * for SLI3 ports or the ring lock held for SLI4 ports.
2999  * This function returns the command iocb object if it finds the command
3000  * iocb else returns NULL.
3001  **/
3002 static struct lpfc_iocbq *
3003 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3004 		      struct lpfc_sli_ring *pring,
3005 		      struct lpfc_iocbq *prspiocb)
3006 {
3007 	struct lpfc_iocbq *cmd_iocb = NULL;
3008 	uint16_t iotag;
3009 	spinlock_t *temp_lock = NULL;
3010 	unsigned long iflag = 0;
3011 
3012 	if (phba->sli_rev == LPFC_SLI_REV4)
3013 		temp_lock = &pring->ring_lock;
3014 	else
3015 		temp_lock = &phba->hbalock;
3016 
3017 	spin_lock_irqsave(temp_lock, iflag);
3018 	iotag = prspiocb->iocb.ulpIoTag;
3019 
3020 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3021 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3022 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3023 			/* remove from txcmpl queue list */
3024 			list_del_init(&cmd_iocb->list);
3025 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3026 			pring->txcmplq_cnt--;
3027 			spin_unlock_irqrestore(temp_lock, iflag);
3028 			return cmd_iocb;
3029 		}
3030 	}
3031 
3032 	spin_unlock_irqrestore(temp_lock, iflag);
3033 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3034 			"0317 iotag x%x is out of "
3035 			"range: max iotag x%x wd0 x%x\n",
3036 			iotag, phba->sli.last_iotag,
3037 			*(((uint32_t *) &prspiocb->iocb) + 7));
3038 	return NULL;
3039 }
3040 
3041 /**
3042  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3043  * @phba: Pointer to HBA context object.
3044  * @pring: Pointer to driver SLI ring object.
3045  * @iotag: IOCB tag.
3046  *
3047  * This function looks up the iocb_lookup table to get the command iocb
3048  * corresponding to the given iotag. The driver calls this function with
3049  * the ring lock held because this function is an SLI4 port only helper.
3050  * This function returns the command iocb object if it finds the command
3051  * iocb else returns NULL.
3052  **/
3053 static struct lpfc_iocbq *
3054 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3055 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3056 {
3057 	struct lpfc_iocbq *cmd_iocb = NULL;
3058 	spinlock_t *temp_lock = NULL;
3059 	unsigned long iflag = 0;
3060 
3061 	if (phba->sli_rev == LPFC_SLI_REV4)
3062 		temp_lock = &pring->ring_lock;
3063 	else
3064 		temp_lock = &phba->hbalock;
3065 
3066 	spin_lock_irqsave(temp_lock, iflag);
3067 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3068 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3069 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3070 			/* remove from txcmpl queue list */
3071 			list_del_init(&cmd_iocb->list);
3072 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3073 			pring->txcmplq_cnt--;
3074 			spin_unlock_irqrestore(temp_lock, iflag);
3075 			return cmd_iocb;
3076 		}
3077 	}
3078 
3079 	spin_unlock_irqrestore(temp_lock, iflag);
3080 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3081 			"0372 iotag x%x lookup error: max iotag (x%x) "
3082 			"iocb_flag x%x\n",
3083 			iotag, phba->sli.last_iotag,
3084 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3085 	return NULL;
3086 }
3087 
3088 /**
3089  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3090  * @phba: Pointer to HBA context object.
3091  * @pring: Pointer to driver SLI ring object.
3092  * @saveq: Pointer to the response iocb to be processed.
3093  *
3094  * This function is called by the ring event handler for non-fcp
3095  * rings when there is a new response iocb in the response ring.
3096  * The caller is not required to hold any locks. This function
3097  * gets the command iocb associated with the response iocb and
3098  * calls the completion handler for the command iocb. If there
3099  * is no completion handler, the function will free the resources
3100  * associated with command iocb. If the response iocb is for
3101  * an already aborted command iocb, the status of the completion
3102  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3103  * This function always returns 1.
3104  **/
3105 static int
3106 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3107 			  struct lpfc_iocbq *saveq)
3108 {
3109 	struct lpfc_iocbq *cmdiocbp;
3110 	int rc = 1;
3111 	unsigned long iflag;
3112 
3113 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3114 	if (cmdiocbp) {
3115 		if (cmdiocbp->iocb_cmpl) {
3116 			/*
3117 			 * If an ELS command failed send an event to mgmt
3118 			 * application.
3119 			 */
3120 			if (saveq->iocb.ulpStatus &&
3121 			     (pring->ringno == LPFC_ELS_RING) &&
3122 			     (cmdiocbp->iocb.ulpCommand ==
3123 				CMD_ELS_REQUEST64_CR))
3124 				lpfc_send_els_failure_event(phba,
3125 					cmdiocbp, saveq);
3126 
3127 			/*
3128 			 * Post all ELS completions to the worker thread.
3129 			 * All other are passed to the completion callback.
3130 			 */
3131 			if (pring->ringno == LPFC_ELS_RING) {
3132 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3133 				    (cmdiocbp->iocb_flag &
3134 							LPFC_DRIVER_ABORTED)) {
3135 					spin_lock_irqsave(&phba->hbalock,
3136 							  iflag);
3137 					cmdiocbp->iocb_flag &=
3138 						~LPFC_DRIVER_ABORTED;
3139 					spin_unlock_irqrestore(&phba->hbalock,
3140 							       iflag);
3141 					saveq->iocb.ulpStatus =
3142 						IOSTAT_LOCAL_REJECT;
3143 					saveq->iocb.un.ulpWord[4] =
3144 						IOERR_SLI_ABORTED;
3145 
3146 					/* Firmware could still be in progress
3147 					 * of DMAing payload, so don't free data
3148 					 * buffer till after a hbeat.
3149 					 */
3150 					spin_lock_irqsave(&phba->hbalock,
3151 							  iflag);
3152 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3153 					spin_unlock_irqrestore(&phba->hbalock,
3154 							       iflag);
3155 				}
3156 				if (phba->sli_rev == LPFC_SLI_REV4) {
3157 					if (saveq->iocb_flag &
3158 					    LPFC_EXCHANGE_BUSY) {
3159 						/* Set cmdiocb flag for the
3160 						 * exchange busy so sgl (xri)
3161 						 * will not be released until
3162 						 * the abort xri is received
3163 						 * from hba.
3164 						 */
3165 						spin_lock_irqsave(
3166 							&phba->hbalock, iflag);
3167 						cmdiocbp->iocb_flag |=
3168 							LPFC_EXCHANGE_BUSY;
3169 						spin_unlock_irqrestore(
3170 							&phba->hbalock, iflag);
3171 					}
3172 					if (cmdiocbp->iocb_flag &
3173 					    LPFC_DRIVER_ABORTED) {
3174 						/*
3175 						 * Clear LPFC_DRIVER_ABORTED
3176 						 * bit in case it was driver
3177 						 * initiated abort.
3178 						 */
3179 						spin_lock_irqsave(
3180 							&phba->hbalock, iflag);
3181 						cmdiocbp->iocb_flag &=
3182 							~LPFC_DRIVER_ABORTED;
3183 						spin_unlock_irqrestore(
3184 							&phba->hbalock, iflag);
3185 						cmdiocbp->iocb.ulpStatus =
3186 							IOSTAT_LOCAL_REJECT;
3187 						cmdiocbp->iocb.un.ulpWord[4] =
3188 							IOERR_ABORT_REQUESTED;
3189 						/*
3190 						 * For SLI4, irsiocb contains
3191 						 * NO_XRI in sli_xritag, it
3192 						 * shall not affect releasing
3193 						 * sgl (xri) process.
3194 						 */
3195 						saveq->iocb.ulpStatus =
3196 							IOSTAT_LOCAL_REJECT;
3197 						saveq->iocb.un.ulpWord[4] =
3198 							IOERR_SLI_ABORTED;
3199 						spin_lock_irqsave(
3200 							&phba->hbalock, iflag);
3201 						saveq->iocb_flag |=
3202 							LPFC_DELAY_MEM_FREE;
3203 						spin_unlock_irqrestore(
3204 							&phba->hbalock, iflag);
3205 					}
3206 				}
3207 			}
3208 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3209 		} else
3210 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3211 	} else {
3212 		/*
3213 		 * Unknown initiating command based on the response iotag.
3214 		 * This could be the case on the ELS ring because of
3215 		 * lpfc_els_abort().
3216 		 */
3217 		if (pring->ringno != LPFC_ELS_RING) {
3218 			/*
3219 			 * Ring <ringno> handler: unexpected completion IoTag
3220 			 * <IoTag>
3221 			 */
3222 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3223 					 "0322 Ring %d handler: "
3224 					 "unexpected completion IoTag x%x "
3225 					 "Data: x%x x%x x%x x%x\n",
3226 					 pring->ringno,
3227 					 saveq->iocb.ulpIoTag,
3228 					 saveq->iocb.ulpStatus,
3229 					 saveq->iocb.un.ulpWord[4],
3230 					 saveq->iocb.ulpCommand,
3231 					 saveq->iocb.ulpContext);
3232 		}
3233 	}
3234 
3235 	return rc;
3236 }
3237 
3238 /**
3239  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3240  * @phba: Pointer to HBA context object.
3241  * @pring: Pointer to driver SLI ring object.
3242  *
3243  * This function is called from the iocb ring event handlers when
3244  * put pointer is ahead of the get pointer for a ring. This function signal
3245  * an error attention condition to the worker thread and the worker
3246  * thread will transition the HBA to offline state.
3247  **/
3248 static void
3249 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3250 {
3251 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3252 	/*
3253 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3254 	 * rsp ring <portRspMax>
3255 	 */
3256 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3257 			"0312 Ring %d handler: portRspPut %d "
3258 			"is bigger than rsp ring %d\n",
3259 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3260 			pring->sli.sli3.numRiocb);
3261 
3262 	phba->link_state = LPFC_HBA_ERROR;
3263 
3264 	/*
3265 	 * All error attention handlers are posted to
3266 	 * worker thread
3267 	 */
3268 	phba->work_ha |= HA_ERATT;
3269 	phba->work_hs = HS_FFER3;
3270 
3271 	lpfc_worker_wake_up(phba);
3272 
3273 	return;
3274 }
3275 
3276 /**
3277  * lpfc_poll_eratt - Error attention polling timer timeout handler
3278  * @ptr: Pointer to address of HBA context object.
3279  *
3280  * This function is invoked by the Error Attention polling timer when the
3281  * timer times out. It will check the SLI Error Attention register for
3282  * possible attention events. If so, it will post an Error Attention event
3283  * and wake up worker thread to process it. Otherwise, it will set up the
3284  * Error Attention polling timer for the next poll.
3285  **/
3286 void lpfc_poll_eratt(struct timer_list *t)
3287 {
3288 	struct lpfc_hba *phba;
3289 	uint32_t eratt = 0;
3290 	uint64_t sli_intr, cnt;
3291 
3292 	phba = from_timer(phba, t, eratt_poll);
3293 
3294 	/* Here we will also keep track of interrupts per sec of the hba */
3295 	sli_intr = phba->sli.slistat.sli_intr;
3296 
3297 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3298 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3299 			sli_intr);
3300 	else
3301 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3302 
3303 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3304 	do_div(cnt, phba->eratt_poll_interval);
3305 	phba->sli.slistat.sli_ips = cnt;
3306 
3307 	phba->sli.slistat.sli_prev_intr = sli_intr;
3308 
3309 	/* Check chip HA register for error event */
3310 	eratt = lpfc_sli_check_eratt(phba);
3311 
3312 	if (eratt)
3313 		/* Tell the worker thread there is work to do */
3314 		lpfc_worker_wake_up(phba);
3315 	else
3316 		/* Restart the timer for next eratt poll */
3317 		mod_timer(&phba->eratt_poll,
3318 			  jiffies +
3319 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3320 	return;
3321 }
3322 
3323 
3324 /**
3325  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3326  * @phba: Pointer to HBA context object.
3327  * @pring: Pointer to driver SLI ring object.
3328  * @mask: Host attention register mask for this ring.
3329  *
3330  * This function is called from the interrupt context when there is a ring
3331  * event for the fcp ring. The caller does not hold any lock.
3332  * The function processes each response iocb in the response ring until it
3333  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3334  * LE bit set. The function will call the completion handler of the command iocb
3335  * if the response iocb indicates a completion for a command iocb or it is
3336  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3337  * function if this is an unsolicited iocb.
3338  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3339  * to check it explicitly.
3340  */
3341 int
3342 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3343 				struct lpfc_sli_ring *pring, uint32_t mask)
3344 {
3345 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3346 	IOCB_t *irsp = NULL;
3347 	IOCB_t *entry = NULL;
3348 	struct lpfc_iocbq *cmdiocbq = NULL;
3349 	struct lpfc_iocbq rspiocbq;
3350 	uint32_t status;
3351 	uint32_t portRspPut, portRspMax;
3352 	int rc = 1;
3353 	lpfc_iocb_type type;
3354 	unsigned long iflag;
3355 	uint32_t rsp_cmpl = 0;
3356 
3357 	spin_lock_irqsave(&phba->hbalock, iflag);
3358 	pring->stats.iocb_event++;
3359 
3360 	/*
3361 	 * The next available response entry should never exceed the maximum
3362 	 * entries.  If it does, treat it as an adapter hardware error.
3363 	 */
3364 	portRspMax = pring->sli.sli3.numRiocb;
3365 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3366 	if (unlikely(portRspPut >= portRspMax)) {
3367 		lpfc_sli_rsp_pointers_error(phba, pring);
3368 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3369 		return 1;
3370 	}
3371 	if (phba->fcp_ring_in_use) {
3372 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3373 		return 1;
3374 	} else
3375 		phba->fcp_ring_in_use = 1;
3376 
3377 	rmb();
3378 	while (pring->sli.sli3.rspidx != portRspPut) {
3379 		/*
3380 		 * Fetch an entry off the ring and copy it into a local data
3381 		 * structure.  The copy involves a byte-swap since the
3382 		 * network byte order and pci byte orders are different.
3383 		 */
3384 		entry = lpfc_resp_iocb(phba, pring);
3385 		phba->last_completion_time = jiffies;
3386 
3387 		if (++pring->sli.sli3.rspidx >= portRspMax)
3388 			pring->sli.sli3.rspidx = 0;
3389 
3390 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3391 				      (uint32_t *) &rspiocbq.iocb,
3392 				      phba->iocb_rsp_size);
3393 		INIT_LIST_HEAD(&(rspiocbq.list));
3394 		irsp = &rspiocbq.iocb;
3395 
3396 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3397 		pring->stats.iocb_rsp++;
3398 		rsp_cmpl++;
3399 
3400 		if (unlikely(irsp->ulpStatus)) {
3401 			/*
3402 			 * If resource errors reported from HBA, reduce
3403 			 * queuedepths of the SCSI device.
3404 			 */
3405 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3406 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3407 			     IOERR_NO_RESOURCES)) {
3408 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3409 				phba->lpfc_rampdown_queue_depth(phba);
3410 				spin_lock_irqsave(&phba->hbalock, iflag);
3411 			}
3412 
3413 			/* Rsp ring <ringno> error: IOCB */
3414 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3415 					"0336 Rsp Ring %d error: IOCB Data: "
3416 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3417 					pring->ringno,
3418 					irsp->un.ulpWord[0],
3419 					irsp->un.ulpWord[1],
3420 					irsp->un.ulpWord[2],
3421 					irsp->un.ulpWord[3],
3422 					irsp->un.ulpWord[4],
3423 					irsp->un.ulpWord[5],
3424 					*(uint32_t *)&irsp->un1,
3425 					*((uint32_t *)&irsp->un1 + 1));
3426 		}
3427 
3428 		switch (type) {
3429 		case LPFC_ABORT_IOCB:
3430 		case LPFC_SOL_IOCB:
3431 			/*
3432 			 * Idle exchange closed via ABTS from port.  No iocb
3433 			 * resources need to be recovered.
3434 			 */
3435 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3436 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3437 						"0333 IOCB cmd 0x%x"
3438 						" processed. Skipping"
3439 						" completion\n",
3440 						irsp->ulpCommand);
3441 				break;
3442 			}
3443 
3444 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3445 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3446 							 &rspiocbq);
3447 			spin_lock_irqsave(&phba->hbalock, iflag);
3448 			if (unlikely(!cmdiocbq))
3449 				break;
3450 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3451 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3452 			if (cmdiocbq->iocb_cmpl) {
3453 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3454 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3455 						      &rspiocbq);
3456 				spin_lock_irqsave(&phba->hbalock, iflag);
3457 			}
3458 			break;
3459 		case LPFC_UNSOL_IOCB:
3460 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3461 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3462 			spin_lock_irqsave(&phba->hbalock, iflag);
3463 			break;
3464 		default:
3465 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3466 				char adaptermsg[LPFC_MAX_ADPTMSG];
3467 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3468 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3469 				       MAX_MSG_DATA);
3470 				dev_warn(&((phba->pcidev)->dev),
3471 					 "lpfc%d: %s\n",
3472 					 phba->brd_no, adaptermsg);
3473 			} else {
3474 				/* Unknown IOCB command */
3475 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3476 						"0334 Unknown IOCB command "
3477 						"Data: x%x, x%x x%x x%x x%x\n",
3478 						type, irsp->ulpCommand,
3479 						irsp->ulpStatus,
3480 						irsp->ulpIoTag,
3481 						irsp->ulpContext);
3482 			}
3483 			break;
3484 		}
3485 
3486 		/*
3487 		 * The response IOCB has been processed.  Update the ring
3488 		 * pointer in SLIM.  If the port response put pointer has not
3489 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3490 		 * response put pointer.
3491 		 */
3492 		writel(pring->sli.sli3.rspidx,
3493 			&phba->host_gp[pring->ringno].rspGetInx);
3494 
3495 		if (pring->sli.sli3.rspidx == portRspPut)
3496 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3497 	}
3498 
3499 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3500 		pring->stats.iocb_rsp_full++;
3501 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3502 		writel(status, phba->CAregaddr);
3503 		readl(phba->CAregaddr);
3504 	}
3505 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3506 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3507 		pring->stats.iocb_cmd_empty++;
3508 
3509 		/* Force update of the local copy of cmdGetInx */
3510 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3511 		lpfc_sli_resume_iocb(phba, pring);
3512 
3513 		if ((pring->lpfc_sli_cmd_available))
3514 			(pring->lpfc_sli_cmd_available) (phba, pring);
3515 
3516 	}
3517 
3518 	phba->fcp_ring_in_use = 0;
3519 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3520 	return rc;
3521 }
3522 
3523 /**
3524  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3525  * @phba: Pointer to HBA context object.
3526  * @pring: Pointer to driver SLI ring object.
3527  * @rspiocbp: Pointer to driver response IOCB object.
3528  *
3529  * This function is called from the worker thread when there is a slow-path
3530  * response IOCB to process. This function chains all the response iocbs until
3531  * seeing the iocb with the LE bit set. The function will call
3532  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3533  * completion of a command iocb. The function will call the
3534  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3535  * The function frees the resources or calls the completion handler if this
3536  * iocb is an abort completion. The function returns NULL when the response
3537  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3538  * this function shall chain the iocb on to the iocb_continueq and return the
3539  * response iocb passed in.
3540  **/
3541 static struct lpfc_iocbq *
3542 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3543 			struct lpfc_iocbq *rspiocbp)
3544 {
3545 	struct lpfc_iocbq *saveq;
3546 	struct lpfc_iocbq *cmdiocbp;
3547 	struct lpfc_iocbq *next_iocb;
3548 	IOCB_t *irsp = NULL;
3549 	uint32_t free_saveq;
3550 	uint8_t iocb_cmd_type;
3551 	lpfc_iocb_type type;
3552 	unsigned long iflag;
3553 	int rc;
3554 
3555 	spin_lock_irqsave(&phba->hbalock, iflag);
3556 	/* First add the response iocb to the countinueq list */
3557 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3558 	pring->iocb_continueq_cnt++;
3559 
3560 	/* Now, determine whether the list is completed for processing */
3561 	irsp = &rspiocbp->iocb;
3562 	if (irsp->ulpLe) {
3563 		/*
3564 		 * By default, the driver expects to free all resources
3565 		 * associated with this iocb completion.
3566 		 */
3567 		free_saveq = 1;
3568 		saveq = list_get_first(&pring->iocb_continueq,
3569 				       struct lpfc_iocbq, list);
3570 		irsp = &(saveq->iocb);
3571 		list_del_init(&pring->iocb_continueq);
3572 		pring->iocb_continueq_cnt = 0;
3573 
3574 		pring->stats.iocb_rsp++;
3575 
3576 		/*
3577 		 * If resource errors reported from HBA, reduce
3578 		 * queuedepths of the SCSI device.
3579 		 */
3580 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3581 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3582 		     IOERR_NO_RESOURCES)) {
3583 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3584 			phba->lpfc_rampdown_queue_depth(phba);
3585 			spin_lock_irqsave(&phba->hbalock, iflag);
3586 		}
3587 
3588 		if (irsp->ulpStatus) {
3589 			/* Rsp ring <ringno> error: IOCB */
3590 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3591 					"0328 Rsp Ring %d error: "
3592 					"IOCB Data: "
3593 					"x%x x%x x%x x%x "
3594 					"x%x x%x x%x x%x "
3595 					"x%x x%x x%x x%x "
3596 					"x%x x%x x%x x%x\n",
3597 					pring->ringno,
3598 					irsp->un.ulpWord[0],
3599 					irsp->un.ulpWord[1],
3600 					irsp->un.ulpWord[2],
3601 					irsp->un.ulpWord[3],
3602 					irsp->un.ulpWord[4],
3603 					irsp->un.ulpWord[5],
3604 					*(((uint32_t *) irsp) + 6),
3605 					*(((uint32_t *) irsp) + 7),
3606 					*(((uint32_t *) irsp) + 8),
3607 					*(((uint32_t *) irsp) + 9),
3608 					*(((uint32_t *) irsp) + 10),
3609 					*(((uint32_t *) irsp) + 11),
3610 					*(((uint32_t *) irsp) + 12),
3611 					*(((uint32_t *) irsp) + 13),
3612 					*(((uint32_t *) irsp) + 14),
3613 					*(((uint32_t *) irsp) + 15));
3614 		}
3615 
3616 		/*
3617 		 * Fetch the IOCB command type and call the correct completion
3618 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3619 		 * get freed back to the lpfc_iocb_list by the discovery
3620 		 * kernel thread.
3621 		 */
3622 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3623 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3624 		switch (type) {
3625 		case LPFC_SOL_IOCB:
3626 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3627 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3628 			spin_lock_irqsave(&phba->hbalock, iflag);
3629 			break;
3630 
3631 		case LPFC_UNSOL_IOCB:
3632 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3633 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3634 			spin_lock_irqsave(&phba->hbalock, iflag);
3635 			if (!rc)
3636 				free_saveq = 0;
3637 			break;
3638 
3639 		case LPFC_ABORT_IOCB:
3640 			cmdiocbp = NULL;
3641 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3642 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3643 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3644 								 saveq);
3645 				spin_lock_irqsave(&phba->hbalock, iflag);
3646 			}
3647 			if (cmdiocbp) {
3648 				/* Call the specified completion routine */
3649 				if (cmdiocbp->iocb_cmpl) {
3650 					spin_unlock_irqrestore(&phba->hbalock,
3651 							       iflag);
3652 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3653 							      saveq);
3654 					spin_lock_irqsave(&phba->hbalock,
3655 							  iflag);
3656 				} else
3657 					__lpfc_sli_release_iocbq(phba,
3658 								 cmdiocbp);
3659 			}
3660 			break;
3661 
3662 		case LPFC_UNKNOWN_IOCB:
3663 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3664 				char adaptermsg[LPFC_MAX_ADPTMSG];
3665 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3666 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3667 				       MAX_MSG_DATA);
3668 				dev_warn(&((phba->pcidev)->dev),
3669 					 "lpfc%d: %s\n",
3670 					 phba->brd_no, adaptermsg);
3671 			} else {
3672 				/* Unknown IOCB command */
3673 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3674 						"0335 Unknown IOCB "
3675 						"command Data: x%x "
3676 						"x%x x%x x%x\n",
3677 						irsp->ulpCommand,
3678 						irsp->ulpStatus,
3679 						irsp->ulpIoTag,
3680 						irsp->ulpContext);
3681 			}
3682 			break;
3683 		}
3684 
3685 		if (free_saveq) {
3686 			list_for_each_entry_safe(rspiocbp, next_iocb,
3687 						 &saveq->list, list) {
3688 				list_del_init(&rspiocbp->list);
3689 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3690 			}
3691 			__lpfc_sli_release_iocbq(phba, saveq);
3692 		}
3693 		rspiocbp = NULL;
3694 	}
3695 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3696 	return rspiocbp;
3697 }
3698 
3699 /**
3700  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3701  * @phba: Pointer to HBA context object.
3702  * @pring: Pointer to driver SLI ring object.
3703  * @mask: Host attention register mask for this ring.
3704  *
3705  * This routine wraps the actual slow_ring event process routine from the
3706  * API jump table function pointer from the lpfc_hba struct.
3707  **/
3708 void
3709 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3710 				struct lpfc_sli_ring *pring, uint32_t mask)
3711 {
3712 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3713 }
3714 
3715 /**
3716  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3717  * @phba: Pointer to HBA context object.
3718  * @pring: Pointer to driver SLI ring object.
3719  * @mask: Host attention register mask for this ring.
3720  *
3721  * This function is called from the worker thread when there is a ring event
3722  * for non-fcp rings. The caller does not hold any lock. The function will
3723  * remove each response iocb in the response ring and calls the handle
3724  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3725  **/
3726 static void
3727 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3728 				   struct lpfc_sli_ring *pring, uint32_t mask)
3729 {
3730 	struct lpfc_pgp *pgp;
3731 	IOCB_t *entry;
3732 	IOCB_t *irsp = NULL;
3733 	struct lpfc_iocbq *rspiocbp = NULL;
3734 	uint32_t portRspPut, portRspMax;
3735 	unsigned long iflag;
3736 	uint32_t status;
3737 
3738 	pgp = &phba->port_gp[pring->ringno];
3739 	spin_lock_irqsave(&phba->hbalock, iflag);
3740 	pring->stats.iocb_event++;
3741 
3742 	/*
3743 	 * The next available response entry should never exceed the maximum
3744 	 * entries.  If it does, treat it as an adapter hardware error.
3745 	 */
3746 	portRspMax = pring->sli.sli3.numRiocb;
3747 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3748 	if (portRspPut >= portRspMax) {
3749 		/*
3750 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3751 		 * rsp ring <portRspMax>
3752 		 */
3753 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3754 				"0303 Ring %d handler: portRspPut %d "
3755 				"is bigger than rsp ring %d\n",
3756 				pring->ringno, portRspPut, portRspMax);
3757 
3758 		phba->link_state = LPFC_HBA_ERROR;
3759 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3760 
3761 		phba->work_hs = HS_FFER3;
3762 		lpfc_handle_eratt(phba);
3763 
3764 		return;
3765 	}
3766 
3767 	rmb();
3768 	while (pring->sli.sli3.rspidx != portRspPut) {
3769 		/*
3770 		 * Build a completion list and call the appropriate handler.
3771 		 * The process is to get the next available response iocb, get
3772 		 * a free iocb from the list, copy the response data into the
3773 		 * free iocb, insert to the continuation list, and update the
3774 		 * next response index to slim.  This process makes response
3775 		 * iocb's in the ring available to DMA as fast as possible but
3776 		 * pays a penalty for a copy operation.  Since the iocb is
3777 		 * only 32 bytes, this penalty is considered small relative to
3778 		 * the PCI reads for register values and a slim write.  When
3779 		 * the ulpLe field is set, the entire Command has been
3780 		 * received.
3781 		 */
3782 		entry = lpfc_resp_iocb(phba, pring);
3783 
3784 		phba->last_completion_time = jiffies;
3785 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3786 		if (rspiocbp == NULL) {
3787 			printk(KERN_ERR "%s: out of buffers! Failing "
3788 			       "completion.\n", __func__);
3789 			break;
3790 		}
3791 
3792 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3793 				      phba->iocb_rsp_size);
3794 		irsp = &rspiocbp->iocb;
3795 
3796 		if (++pring->sli.sli3.rspidx >= portRspMax)
3797 			pring->sli.sli3.rspidx = 0;
3798 
3799 		if (pring->ringno == LPFC_ELS_RING) {
3800 			lpfc_debugfs_slow_ring_trc(phba,
3801 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3802 				*(((uint32_t *) irsp) + 4),
3803 				*(((uint32_t *) irsp) + 6),
3804 				*(((uint32_t *) irsp) + 7));
3805 		}
3806 
3807 		writel(pring->sli.sli3.rspidx,
3808 			&phba->host_gp[pring->ringno].rspGetInx);
3809 
3810 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3811 		/* Handle the response IOCB */
3812 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3813 		spin_lock_irqsave(&phba->hbalock, iflag);
3814 
3815 		/*
3816 		 * If the port response put pointer has not been updated, sync
3817 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3818 		 * response put pointer.
3819 		 */
3820 		if (pring->sli.sli3.rspidx == portRspPut) {
3821 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3822 		}
3823 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3824 
3825 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3826 		/* At least one response entry has been freed */
3827 		pring->stats.iocb_rsp_full++;
3828 		/* SET RxRE_RSP in Chip Att register */
3829 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3830 		writel(status, phba->CAregaddr);
3831 		readl(phba->CAregaddr); /* flush */
3832 	}
3833 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3834 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3835 		pring->stats.iocb_cmd_empty++;
3836 
3837 		/* Force update of the local copy of cmdGetInx */
3838 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3839 		lpfc_sli_resume_iocb(phba, pring);
3840 
3841 		if ((pring->lpfc_sli_cmd_available))
3842 			(pring->lpfc_sli_cmd_available) (phba, pring);
3843 
3844 	}
3845 
3846 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3847 	return;
3848 }
3849 
3850 /**
3851  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3852  * @phba: Pointer to HBA context object.
3853  * @pring: Pointer to driver SLI ring object.
3854  * @mask: Host attention register mask for this ring.
3855  *
3856  * This function is called from the worker thread when there is a pending
3857  * ELS response iocb on the driver internal slow-path response iocb worker
3858  * queue. The caller does not hold any lock. The function will remove each
3859  * response iocb from the response worker queue and calls the handle
3860  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3861  **/
3862 static void
3863 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3864 				   struct lpfc_sli_ring *pring, uint32_t mask)
3865 {
3866 	struct lpfc_iocbq *irspiocbq;
3867 	struct hbq_dmabuf *dmabuf;
3868 	struct lpfc_cq_event *cq_event;
3869 	unsigned long iflag;
3870 	int count = 0;
3871 
3872 	spin_lock_irqsave(&phba->hbalock, iflag);
3873 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3874 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3875 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3876 		/* Get the response iocb from the head of work queue */
3877 		spin_lock_irqsave(&phba->hbalock, iflag);
3878 		list_remove_head(&phba->sli4_hba.sp_queue_event,
3879 				 cq_event, struct lpfc_cq_event, list);
3880 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3881 
3882 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3883 		case CQE_CODE_COMPL_WQE:
3884 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3885 						 cq_event);
3886 			/* Translate ELS WCQE to response IOCBQ */
3887 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3888 								   irspiocbq);
3889 			if (irspiocbq)
3890 				lpfc_sli_sp_handle_rspiocb(phba, pring,
3891 							   irspiocbq);
3892 			count++;
3893 			break;
3894 		case CQE_CODE_RECEIVE:
3895 		case CQE_CODE_RECEIVE_V1:
3896 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
3897 					      cq_event);
3898 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
3899 			count++;
3900 			break;
3901 		default:
3902 			break;
3903 		}
3904 
3905 		/* Limit the number of events to 64 to avoid soft lockups */
3906 		if (count == 64)
3907 			break;
3908 	}
3909 }
3910 
3911 /**
3912  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3913  * @phba: Pointer to HBA context object.
3914  * @pring: Pointer to driver SLI ring object.
3915  *
3916  * This function aborts all iocbs in the given ring and frees all the iocb
3917  * objects in txq. This function issues an abort iocb for all the iocb commands
3918  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3919  * the return of this function. The caller is not required to hold any locks.
3920  **/
3921 void
3922 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3923 {
3924 	LIST_HEAD(completions);
3925 	struct lpfc_iocbq *iocb, *next_iocb;
3926 
3927 	if (pring->ringno == LPFC_ELS_RING) {
3928 		lpfc_fabric_abort_hba(phba);
3929 	}
3930 
3931 	/* Error everything on txq and txcmplq
3932 	 * First do the txq.
3933 	 */
3934 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3935 		spin_lock_irq(&pring->ring_lock);
3936 		list_splice_init(&pring->txq, &completions);
3937 		pring->txq_cnt = 0;
3938 		spin_unlock_irq(&pring->ring_lock);
3939 
3940 		spin_lock_irq(&phba->hbalock);
3941 		/* Next issue ABTS for everything on the txcmplq */
3942 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3943 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3944 		spin_unlock_irq(&phba->hbalock);
3945 	} else {
3946 		spin_lock_irq(&phba->hbalock);
3947 		list_splice_init(&pring->txq, &completions);
3948 		pring->txq_cnt = 0;
3949 
3950 		/* Next issue ABTS for everything on the txcmplq */
3951 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3952 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3953 		spin_unlock_irq(&phba->hbalock);
3954 	}
3955 
3956 	/* Cancel all the IOCBs from the completions list */
3957 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3958 			      IOERR_SLI_ABORTED);
3959 }
3960 
3961 /**
3962  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3963  * @phba: Pointer to HBA context object.
3964  * @pring: Pointer to driver SLI ring object.
3965  *
3966  * This function aborts all iocbs in FCP rings and frees all the iocb
3967  * objects in txq. This function issues an abort iocb for all the iocb commands
3968  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3969  * the return of this function. The caller is not required to hold any locks.
3970  **/
3971 void
3972 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3973 {
3974 	struct lpfc_sli *psli = &phba->sli;
3975 	struct lpfc_sli_ring  *pring;
3976 	uint32_t i;
3977 
3978 	/* Look on all the FCP Rings for the iotag */
3979 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3980 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
3981 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
3982 			lpfc_sli_abort_iocb_ring(phba, pring);
3983 		}
3984 	} else {
3985 		pring = &psli->sli3_ring[LPFC_FCP_RING];
3986 		lpfc_sli_abort_iocb_ring(phba, pring);
3987 	}
3988 }
3989 
3990 /**
3991  * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
3992  * @phba: Pointer to HBA context object.
3993  *
3994  * This function flushes all iocbs in the IO ring and frees all the iocb
3995  * objects in txq and txcmplq. This function will not issue abort iocbs
3996  * for all the iocb commands in txcmplq, they will just be returned with
3997  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3998  * slot has been permanently disabled.
3999  **/
4000 void
4001 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4002 {
4003 	LIST_HEAD(txq);
4004 	LIST_HEAD(txcmplq);
4005 	struct lpfc_sli *psli = &phba->sli;
4006 	struct lpfc_sli_ring  *pring;
4007 	uint32_t i;
4008 	struct lpfc_iocbq *piocb, *next_iocb;
4009 
4010 	spin_lock_irq(&phba->hbalock);
4011 	/* Indicate the I/O queues are flushed */
4012 	phba->hba_flag |= HBA_IOQ_FLUSH;
4013 	spin_unlock_irq(&phba->hbalock);
4014 
4015 	/* Look on all the FCP Rings for the iotag */
4016 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4017 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4018 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4019 
4020 			spin_lock_irq(&pring->ring_lock);
4021 			/* Retrieve everything on txq */
4022 			list_splice_init(&pring->txq, &txq);
4023 			list_for_each_entry_safe(piocb, next_iocb,
4024 						 &pring->txcmplq, list)
4025 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4026 			/* Retrieve everything on the txcmplq */
4027 			list_splice_init(&pring->txcmplq, &txcmplq);
4028 			pring->txq_cnt = 0;
4029 			pring->txcmplq_cnt = 0;
4030 			spin_unlock_irq(&pring->ring_lock);
4031 
4032 			/* Flush the txq */
4033 			lpfc_sli_cancel_iocbs(phba, &txq,
4034 					      IOSTAT_LOCAL_REJECT,
4035 					      IOERR_SLI_DOWN);
4036 			/* Flush the txcmpq */
4037 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4038 					      IOSTAT_LOCAL_REJECT,
4039 					      IOERR_SLI_DOWN);
4040 		}
4041 	} else {
4042 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4043 
4044 		spin_lock_irq(&phba->hbalock);
4045 		/* Retrieve everything on txq */
4046 		list_splice_init(&pring->txq, &txq);
4047 		list_for_each_entry_safe(piocb, next_iocb,
4048 					 &pring->txcmplq, list)
4049 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4050 		/* Retrieve everything on the txcmplq */
4051 		list_splice_init(&pring->txcmplq, &txcmplq);
4052 		pring->txq_cnt = 0;
4053 		pring->txcmplq_cnt = 0;
4054 		spin_unlock_irq(&phba->hbalock);
4055 
4056 		/* Flush the txq */
4057 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4058 				      IOERR_SLI_DOWN);
4059 		/* Flush the txcmpq */
4060 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4061 				      IOERR_SLI_DOWN);
4062 	}
4063 }
4064 
4065 /**
4066  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4067  * @phba: Pointer to HBA context object.
4068  * @mask: Bit mask to be checked.
4069  *
4070  * This function reads the host status register and compares
4071  * with the provided bit mask to check if HBA completed
4072  * the restart. This function will wait in a loop for the
4073  * HBA to complete restart. If the HBA does not restart within
4074  * 15 iterations, the function will reset the HBA again. The
4075  * function returns 1 when HBA fail to restart otherwise returns
4076  * zero.
4077  **/
4078 static int
4079 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4080 {
4081 	uint32_t status;
4082 	int i = 0;
4083 	int retval = 0;
4084 
4085 	/* Read the HBA Host Status Register */
4086 	if (lpfc_readl(phba->HSregaddr, &status))
4087 		return 1;
4088 
4089 	/*
4090 	 * Check status register every 100ms for 5 retries, then every
4091 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4092 	 * every 2.5 sec for 4.
4093 	 * Break our of the loop if errors occurred during init.
4094 	 */
4095 	while (((status & mask) != mask) &&
4096 	       !(status & HS_FFERM) &&
4097 	       i++ < 20) {
4098 
4099 		if (i <= 5)
4100 			msleep(10);
4101 		else if (i <= 10)
4102 			msleep(500);
4103 		else
4104 			msleep(2500);
4105 
4106 		if (i == 15) {
4107 				/* Do post */
4108 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4109 			lpfc_sli_brdrestart(phba);
4110 		}
4111 		/* Read the HBA Host Status Register */
4112 		if (lpfc_readl(phba->HSregaddr, &status)) {
4113 			retval = 1;
4114 			break;
4115 		}
4116 	}
4117 
4118 	/* Check to see if any errors occurred during init */
4119 	if ((status & HS_FFERM) || (i >= 20)) {
4120 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4121 				"2751 Adapter failed to restart, "
4122 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4123 				status,
4124 				readl(phba->MBslimaddr + 0xa8),
4125 				readl(phba->MBslimaddr + 0xac));
4126 		phba->link_state = LPFC_HBA_ERROR;
4127 		retval = 1;
4128 	}
4129 
4130 	return retval;
4131 }
4132 
4133 /**
4134  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4135  * @phba: Pointer to HBA context object.
4136  * @mask: Bit mask to be checked.
4137  *
4138  * This function checks the host status register to check if HBA is
4139  * ready. This function will wait in a loop for the HBA to be ready
4140  * If the HBA is not ready , the function will will reset the HBA PCI
4141  * function again. The function returns 1 when HBA fail to be ready
4142  * otherwise returns zero.
4143  **/
4144 static int
4145 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4146 {
4147 	uint32_t status;
4148 	int retval = 0;
4149 
4150 	/* Read the HBA Host Status Register */
4151 	status = lpfc_sli4_post_status_check(phba);
4152 
4153 	if (status) {
4154 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4155 		lpfc_sli_brdrestart(phba);
4156 		status = lpfc_sli4_post_status_check(phba);
4157 	}
4158 
4159 	/* Check to see if any errors occurred during init */
4160 	if (status) {
4161 		phba->link_state = LPFC_HBA_ERROR;
4162 		retval = 1;
4163 	} else
4164 		phba->sli4_hba.intr_enable = 0;
4165 
4166 	return retval;
4167 }
4168 
4169 /**
4170  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4171  * @phba: Pointer to HBA context object.
4172  * @mask: Bit mask to be checked.
4173  *
4174  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4175  * from the API jump table function pointer from the lpfc_hba struct.
4176  **/
4177 int
4178 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4179 {
4180 	return phba->lpfc_sli_brdready(phba, mask);
4181 }
4182 
4183 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4184 
4185 /**
4186  * lpfc_reset_barrier - Make HBA ready for HBA reset
4187  * @phba: Pointer to HBA context object.
4188  *
4189  * This function is called before resetting an HBA. This function is called
4190  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4191  **/
4192 void lpfc_reset_barrier(struct lpfc_hba *phba)
4193 {
4194 	uint32_t __iomem *resp_buf;
4195 	uint32_t __iomem *mbox_buf;
4196 	volatile uint32_t mbox;
4197 	uint32_t hc_copy, ha_copy, resp_data;
4198 	int  i;
4199 	uint8_t hdrtype;
4200 
4201 	lockdep_assert_held(&phba->hbalock);
4202 
4203 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4204 	if (hdrtype != 0x80 ||
4205 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4206 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4207 		return;
4208 
4209 	/*
4210 	 * Tell the other part of the chip to suspend temporarily all
4211 	 * its DMA activity.
4212 	 */
4213 	resp_buf = phba->MBslimaddr;
4214 
4215 	/* Disable the error attention */
4216 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4217 		return;
4218 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4219 	readl(phba->HCregaddr); /* flush */
4220 	phba->link_flag |= LS_IGNORE_ERATT;
4221 
4222 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4223 		return;
4224 	if (ha_copy & HA_ERATT) {
4225 		/* Clear Chip error bit */
4226 		writel(HA_ERATT, phba->HAregaddr);
4227 		phba->pport->stopped = 1;
4228 	}
4229 
4230 	mbox = 0;
4231 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4232 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4233 
4234 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4235 	mbox_buf = phba->MBslimaddr;
4236 	writel(mbox, mbox_buf);
4237 
4238 	for (i = 0; i < 50; i++) {
4239 		if (lpfc_readl((resp_buf + 1), &resp_data))
4240 			return;
4241 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4242 			mdelay(1);
4243 		else
4244 			break;
4245 	}
4246 	resp_data = 0;
4247 	if (lpfc_readl((resp_buf + 1), &resp_data))
4248 		return;
4249 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4250 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4251 		    phba->pport->stopped)
4252 			goto restore_hc;
4253 		else
4254 			goto clear_errat;
4255 	}
4256 
4257 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4258 	resp_data = 0;
4259 	for (i = 0; i < 500; i++) {
4260 		if (lpfc_readl(resp_buf, &resp_data))
4261 			return;
4262 		if (resp_data != mbox)
4263 			mdelay(1);
4264 		else
4265 			break;
4266 	}
4267 
4268 clear_errat:
4269 
4270 	while (++i < 500) {
4271 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4272 			return;
4273 		if (!(ha_copy & HA_ERATT))
4274 			mdelay(1);
4275 		else
4276 			break;
4277 	}
4278 
4279 	if (readl(phba->HAregaddr) & HA_ERATT) {
4280 		writel(HA_ERATT, phba->HAregaddr);
4281 		phba->pport->stopped = 1;
4282 	}
4283 
4284 restore_hc:
4285 	phba->link_flag &= ~LS_IGNORE_ERATT;
4286 	writel(hc_copy, phba->HCregaddr);
4287 	readl(phba->HCregaddr); /* flush */
4288 }
4289 
4290 /**
4291  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4292  * @phba: Pointer to HBA context object.
4293  *
4294  * This function issues a kill_board mailbox command and waits for
4295  * the error attention interrupt. This function is called for stopping
4296  * the firmware processing. The caller is not required to hold any
4297  * locks. This function calls lpfc_hba_down_post function to free
4298  * any pending commands after the kill. The function will return 1 when it
4299  * fails to kill the board else will return 0.
4300  **/
4301 int
4302 lpfc_sli_brdkill(struct lpfc_hba *phba)
4303 {
4304 	struct lpfc_sli *psli;
4305 	LPFC_MBOXQ_t *pmb;
4306 	uint32_t status;
4307 	uint32_t ha_copy;
4308 	int retval;
4309 	int i = 0;
4310 
4311 	psli = &phba->sli;
4312 
4313 	/* Kill HBA */
4314 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4315 			"0329 Kill HBA Data: x%x x%x\n",
4316 			phba->pport->port_state, psli->sli_flag);
4317 
4318 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4319 	if (!pmb)
4320 		return 1;
4321 
4322 	/* Disable the error attention */
4323 	spin_lock_irq(&phba->hbalock);
4324 	if (lpfc_readl(phba->HCregaddr, &status)) {
4325 		spin_unlock_irq(&phba->hbalock);
4326 		mempool_free(pmb, phba->mbox_mem_pool);
4327 		return 1;
4328 	}
4329 	status &= ~HC_ERINT_ENA;
4330 	writel(status, phba->HCregaddr);
4331 	readl(phba->HCregaddr); /* flush */
4332 	phba->link_flag |= LS_IGNORE_ERATT;
4333 	spin_unlock_irq(&phba->hbalock);
4334 
4335 	lpfc_kill_board(phba, pmb);
4336 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4337 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4338 
4339 	if (retval != MBX_SUCCESS) {
4340 		if (retval != MBX_BUSY)
4341 			mempool_free(pmb, phba->mbox_mem_pool);
4342 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4343 				"2752 KILL_BOARD command failed retval %d\n",
4344 				retval);
4345 		spin_lock_irq(&phba->hbalock);
4346 		phba->link_flag &= ~LS_IGNORE_ERATT;
4347 		spin_unlock_irq(&phba->hbalock);
4348 		return 1;
4349 	}
4350 
4351 	spin_lock_irq(&phba->hbalock);
4352 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4353 	spin_unlock_irq(&phba->hbalock);
4354 
4355 	mempool_free(pmb, phba->mbox_mem_pool);
4356 
4357 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4358 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4359 	 * 3 seconds we still set HBA_ERROR state because the status of the
4360 	 * board is now undefined.
4361 	 */
4362 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4363 		return 1;
4364 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4365 		mdelay(100);
4366 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4367 			return 1;
4368 	}
4369 
4370 	del_timer_sync(&psli->mbox_tmo);
4371 	if (ha_copy & HA_ERATT) {
4372 		writel(HA_ERATT, phba->HAregaddr);
4373 		phba->pport->stopped = 1;
4374 	}
4375 	spin_lock_irq(&phba->hbalock);
4376 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4377 	psli->mbox_active = NULL;
4378 	phba->link_flag &= ~LS_IGNORE_ERATT;
4379 	spin_unlock_irq(&phba->hbalock);
4380 
4381 	lpfc_hba_down_post(phba);
4382 	phba->link_state = LPFC_HBA_ERROR;
4383 
4384 	return ha_copy & HA_ERATT ? 0 : 1;
4385 }
4386 
4387 /**
4388  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4389  * @phba: Pointer to HBA context object.
4390  *
4391  * This function resets the HBA by writing HC_INITFF to the control
4392  * register. After the HBA resets, this function resets all the iocb ring
4393  * indices. This function disables PCI layer parity checking during
4394  * the reset.
4395  * This function returns 0 always.
4396  * The caller is not required to hold any locks.
4397  **/
4398 int
4399 lpfc_sli_brdreset(struct lpfc_hba *phba)
4400 {
4401 	struct lpfc_sli *psli;
4402 	struct lpfc_sli_ring *pring;
4403 	uint16_t cfg_value;
4404 	int i;
4405 
4406 	psli = &phba->sli;
4407 
4408 	/* Reset HBA */
4409 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4410 			"0325 Reset HBA Data: x%x x%x\n",
4411 			(phba->pport) ? phba->pport->port_state : 0,
4412 			psli->sli_flag);
4413 
4414 	/* perform board reset */
4415 	phba->fc_eventTag = 0;
4416 	phba->link_events = 0;
4417 	if (phba->pport) {
4418 		phba->pport->fc_myDID = 0;
4419 		phba->pport->fc_prevDID = 0;
4420 	}
4421 
4422 	/* Turn off parity checking and serr during the physical reset */
4423 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4424 		return -EIO;
4425 
4426 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4427 			      (cfg_value &
4428 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4429 
4430 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4431 
4432 	/* Now toggle INITFF bit in the Host Control Register */
4433 	writel(HC_INITFF, phba->HCregaddr);
4434 	mdelay(1);
4435 	readl(phba->HCregaddr); /* flush */
4436 	writel(0, phba->HCregaddr);
4437 	readl(phba->HCregaddr); /* flush */
4438 
4439 	/* Restore PCI cmd register */
4440 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4441 
4442 	/* Initialize relevant SLI info */
4443 	for (i = 0; i < psli->num_rings; i++) {
4444 		pring = &psli->sli3_ring[i];
4445 		pring->flag = 0;
4446 		pring->sli.sli3.rspidx = 0;
4447 		pring->sli.sli3.next_cmdidx  = 0;
4448 		pring->sli.sli3.local_getidx = 0;
4449 		pring->sli.sli3.cmdidx = 0;
4450 		pring->missbufcnt = 0;
4451 	}
4452 
4453 	phba->link_state = LPFC_WARM_START;
4454 	return 0;
4455 }
4456 
4457 /**
4458  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4459  * @phba: Pointer to HBA context object.
4460  *
4461  * This function resets a SLI4 HBA. This function disables PCI layer parity
4462  * checking during resets the device. The caller is not required to hold
4463  * any locks.
4464  *
4465  * This function returns 0 on success else returns negative error code.
4466  **/
4467 int
4468 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4469 {
4470 	struct lpfc_sli *psli = &phba->sli;
4471 	uint16_t cfg_value;
4472 	int rc = 0;
4473 
4474 	/* Reset HBA */
4475 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4476 			"0295 Reset HBA Data: x%x x%x x%x\n",
4477 			phba->pport->port_state, psli->sli_flag,
4478 			phba->hba_flag);
4479 
4480 	/* perform board reset */
4481 	phba->fc_eventTag = 0;
4482 	phba->link_events = 0;
4483 	phba->pport->fc_myDID = 0;
4484 	phba->pport->fc_prevDID = 0;
4485 
4486 	spin_lock_irq(&phba->hbalock);
4487 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4488 	phba->fcf.fcf_flag = 0;
4489 	spin_unlock_irq(&phba->hbalock);
4490 
4491 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4492 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4493 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4494 		return rc;
4495 	}
4496 
4497 	/* Now physically reset the device */
4498 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4499 			"0389 Performing PCI function reset!\n");
4500 
4501 	/* Turn off parity checking and serr during the physical reset */
4502 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4503 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4504 				"3205 PCI read Config failed\n");
4505 		return -EIO;
4506 	}
4507 
4508 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4509 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4510 
4511 	/* Perform FCoE PCI function reset before freeing queue memory */
4512 	rc = lpfc_pci_function_reset(phba);
4513 
4514 	/* Restore PCI cmd register */
4515 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4516 
4517 	return rc;
4518 }
4519 
4520 /**
4521  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4522  * @phba: Pointer to HBA context object.
4523  *
4524  * This function is called in the SLI initialization code path to
4525  * restart the HBA. The caller is not required to hold any lock.
4526  * This function writes MBX_RESTART mailbox command to the SLIM and
4527  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4528  * function to free any pending commands. The function enables
4529  * POST only during the first initialization. The function returns zero.
4530  * The function does not guarantee completion of MBX_RESTART mailbox
4531  * command before the return of this function.
4532  **/
4533 static int
4534 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4535 {
4536 	MAILBOX_t *mb;
4537 	struct lpfc_sli *psli;
4538 	volatile uint32_t word0;
4539 	void __iomem *to_slim;
4540 	uint32_t hba_aer_enabled;
4541 
4542 	spin_lock_irq(&phba->hbalock);
4543 
4544 	/* Take PCIe device Advanced Error Reporting (AER) state */
4545 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4546 
4547 	psli = &phba->sli;
4548 
4549 	/* Restart HBA */
4550 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4551 			"0337 Restart HBA Data: x%x x%x\n",
4552 			(phba->pport) ? phba->pport->port_state : 0,
4553 			psli->sli_flag);
4554 
4555 	word0 = 0;
4556 	mb = (MAILBOX_t *) &word0;
4557 	mb->mbxCommand = MBX_RESTART;
4558 	mb->mbxHc = 1;
4559 
4560 	lpfc_reset_barrier(phba);
4561 
4562 	to_slim = phba->MBslimaddr;
4563 	writel(*(uint32_t *) mb, to_slim);
4564 	readl(to_slim); /* flush */
4565 
4566 	/* Only skip post after fc_ffinit is completed */
4567 	if (phba->pport && phba->pport->port_state)
4568 		word0 = 1;	/* This is really setting up word1 */
4569 	else
4570 		word0 = 0;	/* This is really setting up word1 */
4571 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4572 	writel(*(uint32_t *) mb, to_slim);
4573 	readl(to_slim); /* flush */
4574 
4575 	lpfc_sli_brdreset(phba);
4576 	if (phba->pport)
4577 		phba->pport->stopped = 0;
4578 	phba->link_state = LPFC_INIT_START;
4579 	phba->hba_flag = 0;
4580 	spin_unlock_irq(&phba->hbalock);
4581 
4582 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4583 	psli->stats_start = ktime_get_seconds();
4584 
4585 	/* Give the INITFF and Post time to settle. */
4586 	mdelay(100);
4587 
4588 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4589 	if (hba_aer_enabled)
4590 		pci_disable_pcie_error_reporting(phba->pcidev);
4591 
4592 	lpfc_hba_down_post(phba);
4593 
4594 	return 0;
4595 }
4596 
4597 /**
4598  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4599  * @phba: Pointer to HBA context object.
4600  *
4601  * This function is called in the SLI initialization code path to restart
4602  * a SLI4 HBA. The caller is not required to hold any lock.
4603  * At the end of the function, it calls lpfc_hba_down_post function to
4604  * free any pending commands.
4605  **/
4606 static int
4607 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4608 {
4609 	struct lpfc_sli *psli = &phba->sli;
4610 	uint32_t hba_aer_enabled;
4611 	int rc;
4612 
4613 	/* Restart HBA */
4614 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4615 			"0296 Restart HBA Data: x%x x%x\n",
4616 			phba->pport->port_state, psli->sli_flag);
4617 
4618 	/* Take PCIe device Advanced Error Reporting (AER) state */
4619 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4620 
4621 	rc = lpfc_sli4_brdreset(phba);
4622 	if (rc) {
4623 		phba->link_state = LPFC_HBA_ERROR;
4624 		goto hba_down_queue;
4625 	}
4626 
4627 	spin_lock_irq(&phba->hbalock);
4628 	phba->pport->stopped = 0;
4629 	phba->link_state = LPFC_INIT_START;
4630 	phba->hba_flag = 0;
4631 	spin_unlock_irq(&phba->hbalock);
4632 
4633 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4634 	psli->stats_start = ktime_get_seconds();
4635 
4636 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4637 	if (hba_aer_enabled)
4638 		pci_disable_pcie_error_reporting(phba->pcidev);
4639 
4640 hba_down_queue:
4641 	lpfc_hba_down_post(phba);
4642 	lpfc_sli4_queue_destroy(phba);
4643 
4644 	return rc;
4645 }
4646 
4647 /**
4648  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4649  * @phba: Pointer to HBA context object.
4650  *
4651  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4652  * API jump table function pointer from the lpfc_hba struct.
4653 **/
4654 int
4655 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4656 {
4657 	return phba->lpfc_sli_brdrestart(phba);
4658 }
4659 
4660 /**
4661  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4662  * @phba: Pointer to HBA context object.
4663  *
4664  * This function is called after a HBA restart to wait for successful
4665  * restart of the HBA. Successful restart of the HBA is indicated by
4666  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4667  * iteration, the function will restart the HBA again. The function returns
4668  * zero if HBA successfully restarted else returns negative error code.
4669  **/
4670 int
4671 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4672 {
4673 	uint32_t status, i = 0;
4674 
4675 	/* Read the HBA Host Status Register */
4676 	if (lpfc_readl(phba->HSregaddr, &status))
4677 		return -EIO;
4678 
4679 	/* Check status register to see what current state is */
4680 	i = 0;
4681 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4682 
4683 		/* Check every 10ms for 10 retries, then every 100ms for 90
4684 		 * retries, then every 1 sec for 50 retires for a total of
4685 		 * ~60 seconds before reset the board again and check every
4686 		 * 1 sec for 50 retries. The up to 60 seconds before the
4687 		 * board ready is required by the Falcon FIPS zeroization
4688 		 * complete, and any reset the board in between shall cause
4689 		 * restart of zeroization, further delay the board ready.
4690 		 */
4691 		if (i++ >= 200) {
4692 			/* Adapter failed to init, timeout, status reg
4693 			   <status> */
4694 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4695 					"0436 Adapter failed to init, "
4696 					"timeout, status reg x%x, "
4697 					"FW Data: A8 x%x AC x%x\n", status,
4698 					readl(phba->MBslimaddr + 0xa8),
4699 					readl(phba->MBslimaddr + 0xac));
4700 			phba->link_state = LPFC_HBA_ERROR;
4701 			return -ETIMEDOUT;
4702 		}
4703 
4704 		/* Check to see if any errors occurred during init */
4705 		if (status & HS_FFERM) {
4706 			/* ERROR: During chipset initialization */
4707 			/* Adapter failed to init, chipset, status reg
4708 			   <status> */
4709 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4710 					"0437 Adapter failed to init, "
4711 					"chipset, status reg x%x, "
4712 					"FW Data: A8 x%x AC x%x\n", status,
4713 					readl(phba->MBslimaddr + 0xa8),
4714 					readl(phba->MBslimaddr + 0xac));
4715 			phba->link_state = LPFC_HBA_ERROR;
4716 			return -EIO;
4717 		}
4718 
4719 		if (i <= 10)
4720 			msleep(10);
4721 		else if (i <= 100)
4722 			msleep(100);
4723 		else
4724 			msleep(1000);
4725 
4726 		if (i == 150) {
4727 			/* Do post */
4728 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4729 			lpfc_sli_brdrestart(phba);
4730 		}
4731 		/* Read the HBA Host Status Register */
4732 		if (lpfc_readl(phba->HSregaddr, &status))
4733 			return -EIO;
4734 	}
4735 
4736 	/* Check to see if any errors occurred during init */
4737 	if (status & HS_FFERM) {
4738 		/* ERROR: During chipset initialization */
4739 		/* Adapter failed to init, chipset, status reg <status> */
4740 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4741 				"0438 Adapter failed to init, chipset, "
4742 				"status reg x%x, "
4743 				"FW Data: A8 x%x AC x%x\n", status,
4744 				readl(phba->MBslimaddr + 0xa8),
4745 				readl(phba->MBslimaddr + 0xac));
4746 		phba->link_state = LPFC_HBA_ERROR;
4747 		return -EIO;
4748 	}
4749 
4750 	/* Clear all interrupt enable conditions */
4751 	writel(0, phba->HCregaddr);
4752 	readl(phba->HCregaddr); /* flush */
4753 
4754 	/* setup host attn register */
4755 	writel(0xffffffff, phba->HAregaddr);
4756 	readl(phba->HAregaddr); /* flush */
4757 	return 0;
4758 }
4759 
4760 /**
4761  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4762  *
4763  * This function calculates and returns the number of HBQs required to be
4764  * configured.
4765  **/
4766 int
4767 lpfc_sli_hbq_count(void)
4768 {
4769 	return ARRAY_SIZE(lpfc_hbq_defs);
4770 }
4771 
4772 /**
4773  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4774  *
4775  * This function adds the number of hbq entries in every HBQ to get
4776  * the total number of hbq entries required for the HBA and returns
4777  * the total count.
4778  **/
4779 static int
4780 lpfc_sli_hbq_entry_count(void)
4781 {
4782 	int  hbq_count = lpfc_sli_hbq_count();
4783 	int  count = 0;
4784 	int  i;
4785 
4786 	for (i = 0; i < hbq_count; ++i)
4787 		count += lpfc_hbq_defs[i]->entry_count;
4788 	return count;
4789 }
4790 
4791 /**
4792  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4793  *
4794  * This function calculates amount of memory required for all hbq entries
4795  * to be configured and returns the total memory required.
4796  **/
4797 int
4798 lpfc_sli_hbq_size(void)
4799 {
4800 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4801 }
4802 
4803 /**
4804  * lpfc_sli_hbq_setup - configure and initialize HBQs
4805  * @phba: Pointer to HBA context object.
4806  *
4807  * This function is called during the SLI initialization to configure
4808  * all the HBQs and post buffers to the HBQ. The caller is not
4809  * required to hold any locks. This function will return zero if successful
4810  * else it will return negative error code.
4811  **/
4812 static int
4813 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4814 {
4815 	int  hbq_count = lpfc_sli_hbq_count();
4816 	LPFC_MBOXQ_t *pmb;
4817 	MAILBOX_t *pmbox;
4818 	uint32_t hbqno;
4819 	uint32_t hbq_entry_index;
4820 
4821 				/* Get a Mailbox buffer to setup mailbox
4822 				 * commands for HBA initialization
4823 				 */
4824 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4825 
4826 	if (!pmb)
4827 		return -ENOMEM;
4828 
4829 	pmbox = &pmb->u.mb;
4830 
4831 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4832 	phba->link_state = LPFC_INIT_MBX_CMDS;
4833 	phba->hbq_in_use = 1;
4834 
4835 	hbq_entry_index = 0;
4836 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4837 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4838 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4839 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4840 		phba->hbqs[hbqno].entry_count =
4841 			lpfc_hbq_defs[hbqno]->entry_count;
4842 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4843 			hbq_entry_index, pmb);
4844 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4845 
4846 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4847 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4848 			   mbxStatus <status>, ring <num> */
4849 
4850 			lpfc_printf_log(phba, KERN_ERR,
4851 					LOG_SLI | LOG_VPORT,
4852 					"1805 Adapter failed to init. "
4853 					"Data: x%x x%x x%x\n",
4854 					pmbox->mbxCommand,
4855 					pmbox->mbxStatus, hbqno);
4856 
4857 			phba->link_state = LPFC_HBA_ERROR;
4858 			mempool_free(pmb, phba->mbox_mem_pool);
4859 			return -ENXIO;
4860 		}
4861 	}
4862 	phba->hbq_count = hbq_count;
4863 
4864 	mempool_free(pmb, phba->mbox_mem_pool);
4865 
4866 	/* Initially populate or replenish the HBQs */
4867 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4868 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4869 	return 0;
4870 }
4871 
4872 /**
4873  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4874  * @phba: Pointer to HBA context object.
4875  *
4876  * This function is called during the SLI initialization to configure
4877  * all the HBQs and post buffers to the HBQ. The caller is not
4878  * required to hold any locks. This function will return zero if successful
4879  * else it will return negative error code.
4880  **/
4881 static int
4882 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4883 {
4884 	phba->hbq_in_use = 1;
4885 	phba->hbqs[LPFC_ELS_HBQ].entry_count =
4886 		lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4887 	phba->hbq_count = 1;
4888 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4889 	/* Initially populate or replenish the HBQs */
4890 	return 0;
4891 }
4892 
4893 /**
4894  * lpfc_sli_config_port - Issue config port mailbox command
4895  * @phba: Pointer to HBA context object.
4896  * @sli_mode: sli mode - 2/3
4897  *
4898  * This function is called by the sli initialization code path
4899  * to issue config_port mailbox command. This function restarts the
4900  * HBA firmware and issues a config_port mailbox command to configure
4901  * the SLI interface in the sli mode specified by sli_mode
4902  * variable. The caller is not required to hold any locks.
4903  * The function returns 0 if successful, else returns negative error
4904  * code.
4905  **/
4906 int
4907 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4908 {
4909 	LPFC_MBOXQ_t *pmb;
4910 	uint32_t resetcount = 0, rc = 0, done = 0;
4911 
4912 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4913 	if (!pmb) {
4914 		phba->link_state = LPFC_HBA_ERROR;
4915 		return -ENOMEM;
4916 	}
4917 
4918 	phba->sli_rev = sli_mode;
4919 	while (resetcount < 2 && !done) {
4920 		spin_lock_irq(&phba->hbalock);
4921 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4922 		spin_unlock_irq(&phba->hbalock);
4923 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4924 		lpfc_sli_brdrestart(phba);
4925 		rc = lpfc_sli_chipset_init(phba);
4926 		if (rc)
4927 			break;
4928 
4929 		spin_lock_irq(&phba->hbalock);
4930 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4931 		spin_unlock_irq(&phba->hbalock);
4932 		resetcount++;
4933 
4934 		/* Call pre CONFIG_PORT mailbox command initialization.  A
4935 		 * value of 0 means the call was successful.  Any other
4936 		 * nonzero value is a failure, but if ERESTART is returned,
4937 		 * the driver may reset the HBA and try again.
4938 		 */
4939 		rc = lpfc_config_port_prep(phba);
4940 		if (rc == -ERESTART) {
4941 			phba->link_state = LPFC_LINK_UNKNOWN;
4942 			continue;
4943 		} else if (rc)
4944 			break;
4945 
4946 		phba->link_state = LPFC_INIT_MBX_CMDS;
4947 		lpfc_config_port(phba, pmb);
4948 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4949 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4950 					LPFC_SLI3_HBQ_ENABLED |
4951 					LPFC_SLI3_CRP_ENABLED |
4952 					LPFC_SLI3_DSS_ENABLED);
4953 		if (rc != MBX_SUCCESS) {
4954 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4955 				"0442 Adapter failed to init, mbxCmd x%x "
4956 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4957 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4958 			spin_lock_irq(&phba->hbalock);
4959 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4960 			spin_unlock_irq(&phba->hbalock);
4961 			rc = -ENXIO;
4962 		} else {
4963 			/* Allow asynchronous mailbox command to go through */
4964 			spin_lock_irq(&phba->hbalock);
4965 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4966 			spin_unlock_irq(&phba->hbalock);
4967 			done = 1;
4968 
4969 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4970 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
4971 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4972 					"3110 Port did not grant ASABT\n");
4973 		}
4974 	}
4975 	if (!done) {
4976 		rc = -EINVAL;
4977 		goto do_prep_failed;
4978 	}
4979 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4980 		if (!pmb->u.mb.un.varCfgPort.cMA) {
4981 			rc = -ENXIO;
4982 			goto do_prep_failed;
4983 		}
4984 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
4985 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
4986 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
4987 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
4988 				phba->max_vpi : phba->max_vports;
4989 
4990 		} else
4991 			phba->max_vpi = 0;
4992 		phba->fips_level = 0;
4993 		phba->fips_spec_rev = 0;
4994 		if (pmb->u.mb.un.varCfgPort.gdss) {
4995 			phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
4996 			phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
4997 			phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
4998 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4999 					"2850 Security Crypto Active. FIPS x%d "
5000 					"(Spec Rev: x%d)",
5001 					phba->fips_level, phba->fips_spec_rev);
5002 		}
5003 		if (pmb->u.mb.un.varCfgPort.sec_err) {
5004 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5005 					"2856 Config Port Security Crypto "
5006 					"Error: x%x ",
5007 					pmb->u.mb.un.varCfgPort.sec_err);
5008 		}
5009 		if (pmb->u.mb.un.varCfgPort.gerbm)
5010 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5011 		if (pmb->u.mb.un.varCfgPort.gcrp)
5012 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5013 
5014 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5015 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5016 
5017 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5018 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5019 				phba->cfg_enable_bg = 0;
5020 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5021 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5022 						"0443 Adapter did not grant "
5023 						"BlockGuard\n");
5024 			}
5025 		}
5026 	} else {
5027 		phba->hbq_get = NULL;
5028 		phba->port_gp = phba->mbox->us.s2.port;
5029 		phba->max_vpi = 0;
5030 	}
5031 do_prep_failed:
5032 	mempool_free(pmb, phba->mbox_mem_pool);
5033 	return rc;
5034 }
5035 
5036 
5037 /**
5038  * lpfc_sli_hba_setup - SLI initialization function
5039  * @phba: Pointer to HBA context object.
5040  *
5041  * This function is the main SLI initialization function. This function
5042  * is called by the HBA initialization code, HBA reset code and HBA
5043  * error attention handler code. Caller is not required to hold any
5044  * locks. This function issues config_port mailbox command to configure
5045  * the SLI, setup iocb rings and HBQ rings. In the end the function
5046  * calls the config_port_post function to issue init_link mailbox
5047  * command and to start the discovery. The function will return zero
5048  * if successful, else it will return negative error code.
5049  **/
5050 int
5051 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5052 {
5053 	uint32_t rc;
5054 	int  mode = 3, i;
5055 	int longs;
5056 
5057 	switch (phba->cfg_sli_mode) {
5058 	case 2:
5059 		if (phba->cfg_enable_npiv) {
5060 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5061 				"1824 NPIV enabled: Override sli_mode "
5062 				"parameter (%d) to auto (0).\n",
5063 				phba->cfg_sli_mode);
5064 			break;
5065 		}
5066 		mode = 2;
5067 		break;
5068 	case 0:
5069 	case 3:
5070 		break;
5071 	default:
5072 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5073 				"1819 Unrecognized sli_mode parameter: %d.\n",
5074 				phba->cfg_sli_mode);
5075 
5076 		break;
5077 	}
5078 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5079 
5080 	rc = lpfc_sli_config_port(phba, mode);
5081 
5082 	if (rc && phba->cfg_sli_mode == 3)
5083 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5084 				"1820 Unable to select SLI-3.  "
5085 				"Not supported by adapter.\n");
5086 	if (rc && mode != 2)
5087 		rc = lpfc_sli_config_port(phba, 2);
5088 	else if (rc && mode == 2)
5089 		rc = lpfc_sli_config_port(phba, 3);
5090 	if (rc)
5091 		goto lpfc_sli_hba_setup_error;
5092 
5093 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5094 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5095 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5096 		if (!rc) {
5097 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5098 					"2709 This device supports "
5099 					"Advanced Error Reporting (AER)\n");
5100 			spin_lock_irq(&phba->hbalock);
5101 			phba->hba_flag |= HBA_AER_ENABLED;
5102 			spin_unlock_irq(&phba->hbalock);
5103 		} else {
5104 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5105 					"2708 This device does not support "
5106 					"Advanced Error Reporting (AER): %d\n",
5107 					rc);
5108 			phba->cfg_aer_support = 0;
5109 		}
5110 	}
5111 
5112 	if (phba->sli_rev == 3) {
5113 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5114 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5115 	} else {
5116 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5117 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5118 		phba->sli3_options = 0;
5119 	}
5120 
5121 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5122 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5123 			phba->sli_rev, phba->max_vpi);
5124 	rc = lpfc_sli_ring_map(phba);
5125 
5126 	if (rc)
5127 		goto lpfc_sli_hba_setup_error;
5128 
5129 	/* Initialize VPIs. */
5130 	if (phba->sli_rev == LPFC_SLI_REV3) {
5131 		/*
5132 		 * The VPI bitmask and physical ID array are allocated
5133 		 * and initialized once only - at driver load.  A port
5134 		 * reset doesn't need to reinitialize this memory.
5135 		 */
5136 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5137 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5138 			phba->vpi_bmask = kcalloc(longs,
5139 						  sizeof(unsigned long),
5140 						  GFP_KERNEL);
5141 			if (!phba->vpi_bmask) {
5142 				rc = -ENOMEM;
5143 				goto lpfc_sli_hba_setup_error;
5144 			}
5145 
5146 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5147 						sizeof(uint16_t),
5148 						GFP_KERNEL);
5149 			if (!phba->vpi_ids) {
5150 				kfree(phba->vpi_bmask);
5151 				rc = -ENOMEM;
5152 				goto lpfc_sli_hba_setup_error;
5153 			}
5154 			for (i = 0; i < phba->max_vpi; i++)
5155 				phba->vpi_ids[i] = i;
5156 		}
5157 	}
5158 
5159 	/* Init HBQs */
5160 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5161 		rc = lpfc_sli_hbq_setup(phba);
5162 		if (rc)
5163 			goto lpfc_sli_hba_setup_error;
5164 	}
5165 	spin_lock_irq(&phba->hbalock);
5166 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5167 	spin_unlock_irq(&phba->hbalock);
5168 
5169 	rc = lpfc_config_port_post(phba);
5170 	if (rc)
5171 		goto lpfc_sli_hba_setup_error;
5172 
5173 	return rc;
5174 
5175 lpfc_sli_hba_setup_error:
5176 	phba->link_state = LPFC_HBA_ERROR;
5177 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5178 			"0445 Firmware initialization failed\n");
5179 	return rc;
5180 }
5181 
5182 /**
5183  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5184  * @phba: Pointer to HBA context object.
5185  * @mboxq: mailbox pointer.
5186  * This function issue a dump mailbox command to read config region
5187  * 23 and parse the records in the region and populate driver
5188  * data structure.
5189  **/
5190 static int
5191 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5192 {
5193 	LPFC_MBOXQ_t *mboxq;
5194 	struct lpfc_dmabuf *mp;
5195 	struct lpfc_mqe *mqe;
5196 	uint32_t data_length;
5197 	int rc;
5198 
5199 	/* Program the default value of vlan_id and fc_map */
5200 	phba->valid_vlan = 0;
5201 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5202 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5203 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5204 
5205 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5206 	if (!mboxq)
5207 		return -ENOMEM;
5208 
5209 	mqe = &mboxq->u.mqe;
5210 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5211 		rc = -ENOMEM;
5212 		goto out_free_mboxq;
5213 	}
5214 
5215 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5216 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5217 
5218 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5219 			"(%d):2571 Mailbox cmd x%x Status x%x "
5220 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5221 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5222 			"CQ: x%x x%x x%x x%x\n",
5223 			mboxq->vport ? mboxq->vport->vpi : 0,
5224 			bf_get(lpfc_mqe_command, mqe),
5225 			bf_get(lpfc_mqe_status, mqe),
5226 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5227 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5228 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5229 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5230 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5231 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5232 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5233 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5234 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5235 			mboxq->mcqe.word0,
5236 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5237 			mboxq->mcqe.trailer);
5238 
5239 	if (rc) {
5240 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5241 		kfree(mp);
5242 		rc = -EIO;
5243 		goto out_free_mboxq;
5244 	}
5245 	data_length = mqe->un.mb_words[5];
5246 	if (data_length > DMP_RGN23_SIZE) {
5247 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5248 		kfree(mp);
5249 		rc = -EIO;
5250 		goto out_free_mboxq;
5251 	}
5252 
5253 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5254 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5255 	kfree(mp);
5256 	rc = 0;
5257 
5258 out_free_mboxq:
5259 	mempool_free(mboxq, phba->mbox_mem_pool);
5260 	return rc;
5261 }
5262 
5263 /**
5264  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5265  * @phba: pointer to lpfc hba data structure.
5266  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5267  * @vpd: pointer to the memory to hold resulting port vpd data.
5268  * @vpd_size: On input, the number of bytes allocated to @vpd.
5269  *	      On output, the number of data bytes in @vpd.
5270  *
5271  * This routine executes a READ_REV SLI4 mailbox command.  In
5272  * addition, this routine gets the port vpd data.
5273  *
5274  * Return codes
5275  * 	0 - successful
5276  * 	-ENOMEM - could not allocated memory.
5277  **/
5278 static int
5279 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5280 		    uint8_t *vpd, uint32_t *vpd_size)
5281 {
5282 	int rc = 0;
5283 	uint32_t dma_size;
5284 	struct lpfc_dmabuf *dmabuf;
5285 	struct lpfc_mqe *mqe;
5286 
5287 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5288 	if (!dmabuf)
5289 		return -ENOMEM;
5290 
5291 	/*
5292 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5293 	 * mailbox command.
5294 	 */
5295 	dma_size = *vpd_size;
5296 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5297 					  &dmabuf->phys, GFP_KERNEL);
5298 	if (!dmabuf->virt) {
5299 		kfree(dmabuf);
5300 		return -ENOMEM;
5301 	}
5302 
5303 	/*
5304 	 * The SLI4 implementation of READ_REV conflicts at word1,
5305 	 * bits 31:16 and SLI4 adds vpd functionality not present
5306 	 * in SLI3.  This code corrects the conflicts.
5307 	 */
5308 	lpfc_read_rev(phba, mboxq);
5309 	mqe = &mboxq->u.mqe;
5310 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5311 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5312 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5313 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5314 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5315 
5316 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5317 	if (rc) {
5318 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5319 				  dmabuf->virt, dmabuf->phys);
5320 		kfree(dmabuf);
5321 		return -EIO;
5322 	}
5323 
5324 	/*
5325 	 * The available vpd length cannot be bigger than the
5326 	 * DMA buffer passed to the port.  Catch the less than
5327 	 * case and update the caller's size.
5328 	 */
5329 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5330 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5331 
5332 	memcpy(vpd, dmabuf->virt, *vpd_size);
5333 
5334 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5335 			  dmabuf->virt, dmabuf->phys);
5336 	kfree(dmabuf);
5337 	return 0;
5338 }
5339 
5340 /**
5341  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5342  * @phba: pointer to lpfc hba data structure.
5343  *
5344  * This routine retrieves SLI4 device physical port name this PCI function
5345  * is attached to.
5346  *
5347  * Return codes
5348  *      0 - successful
5349  *      otherwise - failed to retrieve controller attributes
5350  **/
5351 static int
5352 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5353 {
5354 	LPFC_MBOXQ_t *mboxq;
5355 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5356 	struct lpfc_controller_attribute *cntl_attr;
5357 	void *virtaddr = NULL;
5358 	uint32_t alloclen, reqlen;
5359 	uint32_t shdr_status, shdr_add_status;
5360 	union lpfc_sli4_cfg_shdr *shdr;
5361 	int rc;
5362 
5363 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5364 	if (!mboxq)
5365 		return -ENOMEM;
5366 
5367 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5368 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5369 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5370 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5371 			LPFC_SLI4_MBX_NEMBED);
5372 
5373 	if (alloclen < reqlen) {
5374 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5375 				"3084 Allocated DMA memory size (%d) is "
5376 				"less than the requested DMA memory size "
5377 				"(%d)\n", alloclen, reqlen);
5378 		rc = -ENOMEM;
5379 		goto out_free_mboxq;
5380 	}
5381 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5382 	virtaddr = mboxq->sge_array->addr[0];
5383 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5384 	shdr = &mbx_cntl_attr->cfg_shdr;
5385 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5386 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5387 	if (shdr_status || shdr_add_status || rc) {
5388 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5389 				"3085 Mailbox x%x (x%x/x%x) failed, "
5390 				"rc:x%x, status:x%x, add_status:x%x\n",
5391 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5392 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5393 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5394 				rc, shdr_status, shdr_add_status);
5395 		rc = -ENXIO;
5396 		goto out_free_mboxq;
5397 	}
5398 
5399 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5400 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5401 	phba->sli4_hba.lnk_info.lnk_tp =
5402 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5403 	phba->sli4_hba.lnk_info.lnk_no =
5404 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5405 
5406 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5407 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5408 		sizeof(phba->BIOSVersion));
5409 
5410 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5411 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5412 			phba->sli4_hba.lnk_info.lnk_tp,
5413 			phba->sli4_hba.lnk_info.lnk_no,
5414 			phba->BIOSVersion);
5415 out_free_mboxq:
5416 	if (rc != MBX_TIMEOUT) {
5417 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5418 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5419 		else
5420 			mempool_free(mboxq, phba->mbox_mem_pool);
5421 	}
5422 	return rc;
5423 }
5424 
5425 /**
5426  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5427  * @phba: pointer to lpfc hba data structure.
5428  *
5429  * This routine retrieves SLI4 device physical port name this PCI function
5430  * is attached to.
5431  *
5432  * Return codes
5433  *      0 - successful
5434  *      otherwise - failed to retrieve physical port name
5435  **/
5436 static int
5437 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5438 {
5439 	LPFC_MBOXQ_t *mboxq;
5440 	struct lpfc_mbx_get_port_name *get_port_name;
5441 	uint32_t shdr_status, shdr_add_status;
5442 	union lpfc_sli4_cfg_shdr *shdr;
5443 	char cport_name = 0;
5444 	int rc;
5445 
5446 	/* We assume nothing at this point */
5447 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5448 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5449 
5450 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5451 	if (!mboxq)
5452 		return -ENOMEM;
5453 	/* obtain link type and link number via READ_CONFIG */
5454 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5455 	lpfc_sli4_read_config(phba);
5456 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5457 		goto retrieve_ppname;
5458 
5459 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5460 	rc = lpfc_sli4_get_ctl_attr(phba);
5461 	if (rc)
5462 		goto out_free_mboxq;
5463 
5464 retrieve_ppname:
5465 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5466 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5467 		sizeof(struct lpfc_mbx_get_port_name) -
5468 		sizeof(struct lpfc_sli4_cfg_mhdr),
5469 		LPFC_SLI4_MBX_EMBED);
5470 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5471 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5472 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5473 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5474 		phba->sli4_hba.lnk_info.lnk_tp);
5475 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5476 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5477 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5478 	if (shdr_status || shdr_add_status || rc) {
5479 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5480 				"3087 Mailbox x%x (x%x/x%x) failed: "
5481 				"rc:x%x, status:x%x, add_status:x%x\n",
5482 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5483 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5484 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5485 				rc, shdr_status, shdr_add_status);
5486 		rc = -ENXIO;
5487 		goto out_free_mboxq;
5488 	}
5489 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5490 	case LPFC_LINK_NUMBER_0:
5491 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5492 				&get_port_name->u.response);
5493 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5494 		break;
5495 	case LPFC_LINK_NUMBER_1:
5496 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5497 				&get_port_name->u.response);
5498 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5499 		break;
5500 	case LPFC_LINK_NUMBER_2:
5501 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5502 				&get_port_name->u.response);
5503 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5504 		break;
5505 	case LPFC_LINK_NUMBER_3:
5506 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5507 				&get_port_name->u.response);
5508 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5509 		break;
5510 	default:
5511 		break;
5512 	}
5513 
5514 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5515 		phba->Port[0] = cport_name;
5516 		phba->Port[1] = '\0';
5517 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5518 				"3091 SLI get port name: %s\n", phba->Port);
5519 	}
5520 
5521 out_free_mboxq:
5522 	if (rc != MBX_TIMEOUT) {
5523 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5524 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5525 		else
5526 			mempool_free(mboxq, phba->mbox_mem_pool);
5527 	}
5528 	return rc;
5529 }
5530 
5531 /**
5532  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5533  * @phba: pointer to lpfc hba data structure.
5534  *
5535  * This routine is called to explicitly arm the SLI4 device's completion and
5536  * event queues
5537  **/
5538 static void
5539 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5540 {
5541 	int qidx;
5542 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5543 	struct lpfc_sli4_hdw_queue *qp;
5544 	struct lpfc_queue *eq;
5545 
5546 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5547 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5548 	if (sli4_hba->nvmels_cq)
5549 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5550 					   LPFC_QUEUE_REARM);
5551 
5552 	if (sli4_hba->hdwq) {
5553 		/* Loop thru all Hardware Queues */
5554 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5555 			qp = &sli4_hba->hdwq[qidx];
5556 			/* ARM the corresponding CQ */
5557 			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5558 						LPFC_QUEUE_REARM);
5559 		}
5560 
5561 		/* Loop thru all IRQ vectors */
5562 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5563 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
5564 			/* ARM the corresponding EQ */
5565 			sli4_hba->sli4_write_eq_db(phba, eq,
5566 						   0, LPFC_QUEUE_REARM);
5567 		}
5568 	}
5569 
5570 	if (phba->nvmet_support) {
5571 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5572 			sli4_hba->sli4_write_cq_db(phba,
5573 				sli4_hba->nvmet_cqset[qidx], 0,
5574 				LPFC_QUEUE_REARM);
5575 		}
5576 	}
5577 }
5578 
5579 /**
5580  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5581  * @phba: Pointer to HBA context object.
5582  * @type: The resource extent type.
5583  * @extnt_count: buffer to hold port available extent count.
5584  * @extnt_size: buffer to hold element count per extent.
5585  *
5586  * This function calls the port and retrievs the number of available
5587  * extents and their size for a particular extent type.
5588  *
5589  * Returns: 0 if successful.  Nonzero otherwise.
5590  **/
5591 int
5592 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5593 			       uint16_t *extnt_count, uint16_t *extnt_size)
5594 {
5595 	int rc = 0;
5596 	uint32_t length;
5597 	uint32_t mbox_tmo;
5598 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5599 	LPFC_MBOXQ_t *mbox;
5600 
5601 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5602 	if (!mbox)
5603 		return -ENOMEM;
5604 
5605 	/* Find out how many extents are available for this resource type */
5606 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5607 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5608 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5609 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5610 			 length, LPFC_SLI4_MBX_EMBED);
5611 
5612 	/* Send an extents count of 0 - the GET doesn't use it. */
5613 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5614 					LPFC_SLI4_MBX_EMBED);
5615 	if (unlikely(rc)) {
5616 		rc = -EIO;
5617 		goto err_exit;
5618 	}
5619 
5620 	if (!phba->sli4_hba.intr_enable)
5621 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5622 	else {
5623 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5624 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5625 	}
5626 	if (unlikely(rc)) {
5627 		rc = -EIO;
5628 		goto err_exit;
5629 	}
5630 
5631 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5632 	if (bf_get(lpfc_mbox_hdr_status,
5633 		   &rsrc_info->header.cfg_shdr.response)) {
5634 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5635 				"2930 Failed to get resource extents "
5636 				"Status 0x%x Add'l Status 0x%x\n",
5637 				bf_get(lpfc_mbox_hdr_status,
5638 				       &rsrc_info->header.cfg_shdr.response),
5639 				bf_get(lpfc_mbox_hdr_add_status,
5640 				       &rsrc_info->header.cfg_shdr.response));
5641 		rc = -EIO;
5642 		goto err_exit;
5643 	}
5644 
5645 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5646 			      &rsrc_info->u.rsp);
5647 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5648 			     &rsrc_info->u.rsp);
5649 
5650 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5651 			"3162 Retrieved extents type-%d from port: count:%d, "
5652 			"size:%d\n", type, *extnt_count, *extnt_size);
5653 
5654 err_exit:
5655 	mempool_free(mbox, phba->mbox_mem_pool);
5656 	return rc;
5657 }
5658 
5659 /**
5660  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5661  * @phba: Pointer to HBA context object.
5662  * @type: The extent type to check.
5663  *
5664  * This function reads the current available extents from the port and checks
5665  * if the extent count or extent size has changed since the last access.
5666  * Callers use this routine post port reset to understand if there is a
5667  * extent reprovisioning requirement.
5668  *
5669  * Returns:
5670  *   -Error: error indicates problem.
5671  *   1: Extent count or size has changed.
5672  *   0: No changes.
5673  **/
5674 static int
5675 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5676 {
5677 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5678 	uint16_t size_diff, rsrc_ext_size;
5679 	int rc = 0;
5680 	struct lpfc_rsrc_blks *rsrc_entry;
5681 	struct list_head *rsrc_blk_list = NULL;
5682 
5683 	size_diff = 0;
5684 	curr_ext_cnt = 0;
5685 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5686 					    &rsrc_ext_cnt,
5687 					    &rsrc_ext_size);
5688 	if (unlikely(rc))
5689 		return -EIO;
5690 
5691 	switch (type) {
5692 	case LPFC_RSC_TYPE_FCOE_RPI:
5693 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5694 		break;
5695 	case LPFC_RSC_TYPE_FCOE_VPI:
5696 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5697 		break;
5698 	case LPFC_RSC_TYPE_FCOE_XRI:
5699 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5700 		break;
5701 	case LPFC_RSC_TYPE_FCOE_VFI:
5702 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5703 		break;
5704 	default:
5705 		break;
5706 	}
5707 
5708 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5709 		curr_ext_cnt++;
5710 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5711 			size_diff++;
5712 	}
5713 
5714 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5715 		rc = 1;
5716 
5717 	return rc;
5718 }
5719 
5720 /**
5721  * lpfc_sli4_cfg_post_extnts -
5722  * @phba: Pointer to HBA context object.
5723  * @extnt_cnt - number of available extents.
5724  * @type - the extent type (rpi, xri, vfi, vpi).
5725  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5726  * @mbox - pointer to the caller's allocated mailbox structure.
5727  *
5728  * This function executes the extents allocation request.  It also
5729  * takes care of the amount of memory needed to allocate or get the
5730  * allocated extents. It is the caller's responsibility to evaluate
5731  * the response.
5732  *
5733  * Returns:
5734  *   -Error:  Error value describes the condition found.
5735  *   0: if successful
5736  **/
5737 static int
5738 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5739 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5740 {
5741 	int rc = 0;
5742 	uint32_t req_len;
5743 	uint32_t emb_len;
5744 	uint32_t alloc_len, mbox_tmo;
5745 
5746 	/* Calculate the total requested length of the dma memory */
5747 	req_len = extnt_cnt * sizeof(uint16_t);
5748 
5749 	/*
5750 	 * Calculate the size of an embedded mailbox.  The uint32_t
5751 	 * accounts for extents-specific word.
5752 	 */
5753 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5754 		sizeof(uint32_t);
5755 
5756 	/*
5757 	 * Presume the allocation and response will fit into an embedded
5758 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5759 	 */
5760 	*emb = LPFC_SLI4_MBX_EMBED;
5761 	if (req_len > emb_len) {
5762 		req_len = extnt_cnt * sizeof(uint16_t) +
5763 			sizeof(union lpfc_sli4_cfg_shdr) +
5764 			sizeof(uint32_t);
5765 		*emb = LPFC_SLI4_MBX_NEMBED;
5766 	}
5767 
5768 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5769 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5770 				     req_len, *emb);
5771 	if (alloc_len < req_len) {
5772 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5773 			"2982 Allocated DMA memory size (x%x) is "
5774 			"less than the requested DMA memory "
5775 			"size (x%x)\n", alloc_len, req_len);
5776 		return -ENOMEM;
5777 	}
5778 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5779 	if (unlikely(rc))
5780 		return -EIO;
5781 
5782 	if (!phba->sli4_hba.intr_enable)
5783 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5784 	else {
5785 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5786 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5787 	}
5788 
5789 	if (unlikely(rc))
5790 		rc = -EIO;
5791 	return rc;
5792 }
5793 
5794 /**
5795  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5796  * @phba: Pointer to HBA context object.
5797  * @type:  The resource extent type to allocate.
5798  *
5799  * This function allocates the number of elements for the specified
5800  * resource type.
5801  **/
5802 static int
5803 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5804 {
5805 	bool emb = false;
5806 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5807 	uint16_t rsrc_id, rsrc_start, j, k;
5808 	uint16_t *ids;
5809 	int i, rc;
5810 	unsigned long longs;
5811 	unsigned long *bmask;
5812 	struct lpfc_rsrc_blks *rsrc_blks;
5813 	LPFC_MBOXQ_t *mbox;
5814 	uint32_t length;
5815 	struct lpfc_id_range *id_array = NULL;
5816 	void *virtaddr = NULL;
5817 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5818 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5819 	struct list_head *ext_blk_list;
5820 
5821 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5822 					    &rsrc_cnt,
5823 					    &rsrc_size);
5824 	if (unlikely(rc))
5825 		return -EIO;
5826 
5827 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5828 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5829 			"3009 No available Resource Extents "
5830 			"for resource type 0x%x: Count: 0x%x, "
5831 			"Size 0x%x\n", type, rsrc_cnt,
5832 			rsrc_size);
5833 		return -ENOMEM;
5834 	}
5835 
5836 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5837 			"2903 Post resource extents type-0x%x: "
5838 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5839 
5840 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5841 	if (!mbox)
5842 		return -ENOMEM;
5843 
5844 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5845 	if (unlikely(rc)) {
5846 		rc = -EIO;
5847 		goto err_exit;
5848 	}
5849 
5850 	/*
5851 	 * Figure out where the response is located.  Then get local pointers
5852 	 * to the response data.  The port does not guarantee to respond to
5853 	 * all extents counts request so update the local variable with the
5854 	 * allocated count from the port.
5855 	 */
5856 	if (emb == LPFC_SLI4_MBX_EMBED) {
5857 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5858 		id_array = &rsrc_ext->u.rsp.id[0];
5859 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5860 	} else {
5861 		virtaddr = mbox->sge_array->addr[0];
5862 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5863 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5864 		id_array = &n_rsrc->id;
5865 	}
5866 
5867 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5868 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5869 
5870 	/*
5871 	 * Based on the resource size and count, correct the base and max
5872 	 * resource values.
5873 	 */
5874 	length = sizeof(struct lpfc_rsrc_blks);
5875 	switch (type) {
5876 	case LPFC_RSC_TYPE_FCOE_RPI:
5877 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
5878 						   sizeof(unsigned long),
5879 						   GFP_KERNEL);
5880 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5881 			rc = -ENOMEM;
5882 			goto err_exit;
5883 		}
5884 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5885 						 sizeof(uint16_t),
5886 						 GFP_KERNEL);
5887 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
5888 			kfree(phba->sli4_hba.rpi_bmask);
5889 			rc = -ENOMEM;
5890 			goto err_exit;
5891 		}
5892 
5893 		/*
5894 		 * The next_rpi was initialized with the maximum available
5895 		 * count but the port may allocate a smaller number.  Catch
5896 		 * that case and update the next_rpi.
5897 		 */
5898 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
5899 
5900 		/* Initialize local ptrs for common extent processing later. */
5901 		bmask = phba->sli4_hba.rpi_bmask;
5902 		ids = phba->sli4_hba.rpi_ids;
5903 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5904 		break;
5905 	case LPFC_RSC_TYPE_FCOE_VPI:
5906 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5907 					  GFP_KERNEL);
5908 		if (unlikely(!phba->vpi_bmask)) {
5909 			rc = -ENOMEM;
5910 			goto err_exit;
5911 		}
5912 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5913 					 GFP_KERNEL);
5914 		if (unlikely(!phba->vpi_ids)) {
5915 			kfree(phba->vpi_bmask);
5916 			rc = -ENOMEM;
5917 			goto err_exit;
5918 		}
5919 
5920 		/* Initialize local ptrs for common extent processing later. */
5921 		bmask = phba->vpi_bmask;
5922 		ids = phba->vpi_ids;
5923 		ext_blk_list = &phba->lpfc_vpi_blk_list;
5924 		break;
5925 	case LPFC_RSC_TYPE_FCOE_XRI:
5926 		phba->sli4_hba.xri_bmask = kcalloc(longs,
5927 						   sizeof(unsigned long),
5928 						   GFP_KERNEL);
5929 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
5930 			rc = -ENOMEM;
5931 			goto err_exit;
5932 		}
5933 		phba->sli4_hba.max_cfg_param.xri_used = 0;
5934 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5935 						 sizeof(uint16_t),
5936 						 GFP_KERNEL);
5937 		if (unlikely(!phba->sli4_hba.xri_ids)) {
5938 			kfree(phba->sli4_hba.xri_bmask);
5939 			rc = -ENOMEM;
5940 			goto err_exit;
5941 		}
5942 
5943 		/* Initialize local ptrs for common extent processing later. */
5944 		bmask = phba->sli4_hba.xri_bmask;
5945 		ids = phba->sli4_hba.xri_ids;
5946 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5947 		break;
5948 	case LPFC_RSC_TYPE_FCOE_VFI:
5949 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
5950 						   sizeof(unsigned long),
5951 						   GFP_KERNEL);
5952 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5953 			rc = -ENOMEM;
5954 			goto err_exit;
5955 		}
5956 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
5957 						 sizeof(uint16_t),
5958 						 GFP_KERNEL);
5959 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
5960 			kfree(phba->sli4_hba.vfi_bmask);
5961 			rc = -ENOMEM;
5962 			goto err_exit;
5963 		}
5964 
5965 		/* Initialize local ptrs for common extent processing later. */
5966 		bmask = phba->sli4_hba.vfi_bmask;
5967 		ids = phba->sli4_hba.vfi_ids;
5968 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5969 		break;
5970 	default:
5971 		/* Unsupported Opcode.  Fail call. */
5972 		id_array = NULL;
5973 		bmask = NULL;
5974 		ids = NULL;
5975 		ext_blk_list = NULL;
5976 		goto err_exit;
5977 	}
5978 
5979 	/*
5980 	 * Complete initializing the extent configuration with the
5981 	 * allocated ids assigned to this function.  The bitmask serves
5982 	 * as an index into the array and manages the available ids.  The
5983 	 * array just stores the ids communicated to the port via the wqes.
5984 	 */
5985 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5986 		if ((i % 2) == 0)
5987 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5988 					 &id_array[k]);
5989 		else
5990 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5991 					 &id_array[k]);
5992 
5993 		rsrc_blks = kzalloc(length, GFP_KERNEL);
5994 		if (unlikely(!rsrc_blks)) {
5995 			rc = -ENOMEM;
5996 			kfree(bmask);
5997 			kfree(ids);
5998 			goto err_exit;
5999 		}
6000 		rsrc_blks->rsrc_start = rsrc_id;
6001 		rsrc_blks->rsrc_size = rsrc_size;
6002 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6003 		rsrc_start = rsrc_id;
6004 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6005 			phba->sli4_hba.io_xri_start = rsrc_start +
6006 				lpfc_sli4_get_iocb_cnt(phba);
6007 		}
6008 
6009 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6010 			ids[j] = rsrc_id;
6011 			rsrc_id++;
6012 			j++;
6013 		}
6014 		/* Entire word processed.  Get next word.*/
6015 		if ((i % 2) == 1)
6016 			k++;
6017 	}
6018  err_exit:
6019 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6020 	return rc;
6021 }
6022 
6023 
6024 
6025 /**
6026  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6027  * @phba: Pointer to HBA context object.
6028  * @type: the extent's type.
6029  *
6030  * This function deallocates all extents of a particular resource type.
6031  * SLI4 does not allow for deallocating a particular extent range.  It
6032  * is the caller's responsibility to release all kernel memory resources.
6033  **/
6034 static int
6035 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6036 {
6037 	int rc;
6038 	uint32_t length, mbox_tmo = 0;
6039 	LPFC_MBOXQ_t *mbox;
6040 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6041 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6042 
6043 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6044 	if (!mbox)
6045 		return -ENOMEM;
6046 
6047 	/*
6048 	 * This function sends an embedded mailbox because it only sends the
6049 	 * the resource type.  All extents of this type are released by the
6050 	 * port.
6051 	 */
6052 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6053 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6054 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6055 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6056 			 length, LPFC_SLI4_MBX_EMBED);
6057 
6058 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6059 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6060 					LPFC_SLI4_MBX_EMBED);
6061 	if (unlikely(rc)) {
6062 		rc = -EIO;
6063 		goto out_free_mbox;
6064 	}
6065 	if (!phba->sli4_hba.intr_enable)
6066 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6067 	else {
6068 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6069 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6070 	}
6071 	if (unlikely(rc)) {
6072 		rc = -EIO;
6073 		goto out_free_mbox;
6074 	}
6075 
6076 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6077 	if (bf_get(lpfc_mbox_hdr_status,
6078 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6079 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6080 				"2919 Failed to release resource extents "
6081 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6082 				"Resource memory not released.\n",
6083 				type,
6084 				bf_get(lpfc_mbox_hdr_status,
6085 				    &dealloc_rsrc->header.cfg_shdr.response),
6086 				bf_get(lpfc_mbox_hdr_add_status,
6087 				    &dealloc_rsrc->header.cfg_shdr.response));
6088 		rc = -EIO;
6089 		goto out_free_mbox;
6090 	}
6091 
6092 	/* Release kernel memory resources for the specific type. */
6093 	switch (type) {
6094 	case LPFC_RSC_TYPE_FCOE_VPI:
6095 		kfree(phba->vpi_bmask);
6096 		kfree(phba->vpi_ids);
6097 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6098 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6099 				    &phba->lpfc_vpi_blk_list, list) {
6100 			list_del_init(&rsrc_blk->list);
6101 			kfree(rsrc_blk);
6102 		}
6103 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6104 		break;
6105 	case LPFC_RSC_TYPE_FCOE_XRI:
6106 		kfree(phba->sli4_hba.xri_bmask);
6107 		kfree(phba->sli4_hba.xri_ids);
6108 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6109 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6110 			list_del_init(&rsrc_blk->list);
6111 			kfree(rsrc_blk);
6112 		}
6113 		break;
6114 	case LPFC_RSC_TYPE_FCOE_VFI:
6115 		kfree(phba->sli4_hba.vfi_bmask);
6116 		kfree(phba->sli4_hba.vfi_ids);
6117 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6118 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6119 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6120 			list_del_init(&rsrc_blk->list);
6121 			kfree(rsrc_blk);
6122 		}
6123 		break;
6124 	case LPFC_RSC_TYPE_FCOE_RPI:
6125 		/* RPI bitmask and physical id array are cleaned up earlier. */
6126 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6127 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6128 			list_del_init(&rsrc_blk->list);
6129 			kfree(rsrc_blk);
6130 		}
6131 		break;
6132 	default:
6133 		break;
6134 	}
6135 
6136 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6137 
6138  out_free_mbox:
6139 	mempool_free(mbox, phba->mbox_mem_pool);
6140 	return rc;
6141 }
6142 
6143 static void
6144 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6145 		  uint32_t feature)
6146 {
6147 	uint32_t len;
6148 
6149 	len = sizeof(struct lpfc_mbx_set_feature) -
6150 		sizeof(struct lpfc_sli4_cfg_mhdr);
6151 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6152 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6153 			 LPFC_SLI4_MBX_EMBED);
6154 
6155 	switch (feature) {
6156 	case LPFC_SET_UE_RECOVERY:
6157 		bf_set(lpfc_mbx_set_feature_UER,
6158 		       &mbox->u.mqe.un.set_feature, 1);
6159 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6160 		mbox->u.mqe.un.set_feature.param_len = 8;
6161 		break;
6162 	case LPFC_SET_MDS_DIAGS:
6163 		bf_set(lpfc_mbx_set_feature_mds,
6164 		       &mbox->u.mqe.un.set_feature, 1);
6165 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6166 		       &mbox->u.mqe.un.set_feature, 1);
6167 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6168 		mbox->u.mqe.un.set_feature.param_len = 8;
6169 		break;
6170 	}
6171 
6172 	return;
6173 }
6174 
6175 /**
6176  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6177  * @phba: Pointer to HBA context object.
6178  *
6179  * Disable FW logging into host memory on the adapter. To
6180  * be done before reading logs from the host memory.
6181  **/
6182 void
6183 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6184 {
6185 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6186 
6187 	ras_fwlog->ras_active = false;
6188 
6189 	/* Disable FW logging to host memory */
6190 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6191 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6192 }
6193 
6194 /**
6195  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6196  * @phba: Pointer to HBA context object.
6197  *
6198  * This function is called to free memory allocated for RAS FW logging
6199  * support in the driver.
6200  **/
6201 void
6202 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6203 {
6204 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6205 	struct lpfc_dmabuf *dmabuf, *next;
6206 
6207 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6208 		list_for_each_entry_safe(dmabuf, next,
6209 				    &ras_fwlog->fwlog_buff_list,
6210 				    list) {
6211 			list_del(&dmabuf->list);
6212 			dma_free_coherent(&phba->pcidev->dev,
6213 					  LPFC_RAS_MAX_ENTRY_SIZE,
6214 					  dmabuf->virt, dmabuf->phys);
6215 			kfree(dmabuf);
6216 		}
6217 	}
6218 
6219 	if (ras_fwlog->lwpd.virt) {
6220 		dma_free_coherent(&phba->pcidev->dev,
6221 				  sizeof(uint32_t) * 2,
6222 				  ras_fwlog->lwpd.virt,
6223 				  ras_fwlog->lwpd.phys);
6224 		ras_fwlog->lwpd.virt = NULL;
6225 	}
6226 
6227 	ras_fwlog->ras_active = false;
6228 }
6229 
6230 /**
6231  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6232  * @phba: Pointer to HBA context object.
6233  * @fwlog_buff_count: Count of buffers to be created.
6234  *
6235  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6236  * to update FW log is posted to the adapter.
6237  * Buffer count is calculated based on module param ras_fwlog_buffsize
6238  * Size of each buffer posted to FW is 64K.
6239  **/
6240 
6241 static int
6242 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6243 			uint32_t fwlog_buff_count)
6244 {
6245 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6246 	struct lpfc_dmabuf *dmabuf;
6247 	int rc = 0, i = 0;
6248 
6249 	/* Initialize List */
6250 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6251 
6252 	/* Allocate memory for the LWPD */
6253 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6254 					    sizeof(uint32_t) * 2,
6255 					    &ras_fwlog->lwpd.phys,
6256 					    GFP_KERNEL);
6257 	if (!ras_fwlog->lwpd.virt) {
6258 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6259 				"6185 LWPD Memory Alloc Failed\n");
6260 
6261 		return -ENOMEM;
6262 	}
6263 
6264 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6265 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6266 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6267 				 GFP_KERNEL);
6268 		if (!dmabuf) {
6269 			rc = -ENOMEM;
6270 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6271 					"6186 Memory Alloc failed FW logging");
6272 			goto free_mem;
6273 		}
6274 
6275 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6276 						  LPFC_RAS_MAX_ENTRY_SIZE,
6277 						  &dmabuf->phys, GFP_KERNEL);
6278 		if (!dmabuf->virt) {
6279 			kfree(dmabuf);
6280 			rc = -ENOMEM;
6281 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6282 					"6187 DMA Alloc Failed FW logging");
6283 			goto free_mem;
6284 		}
6285 		dmabuf->buffer_tag = i;
6286 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6287 	}
6288 
6289 free_mem:
6290 	if (rc)
6291 		lpfc_sli4_ras_dma_free(phba);
6292 
6293 	return rc;
6294 }
6295 
6296 /**
6297  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6298  * @phba: pointer to lpfc hba data structure.
6299  * @pmboxq: pointer to the driver internal queue element for mailbox command.
6300  *
6301  * Completion handler for driver's RAS MBX command to the device.
6302  **/
6303 static void
6304 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6305 {
6306 	MAILBOX_t *mb;
6307 	union lpfc_sli4_cfg_shdr *shdr;
6308 	uint32_t shdr_status, shdr_add_status;
6309 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6310 
6311 	mb = &pmb->u.mb;
6312 
6313 	shdr = (union lpfc_sli4_cfg_shdr *)
6314 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6315 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6316 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6317 
6318 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6319 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6320 				"6188 FW LOG mailbox "
6321 				"completed with status x%x add_status x%x,"
6322 				" mbx status x%x\n",
6323 				shdr_status, shdr_add_status, mb->mbxStatus);
6324 
6325 		ras_fwlog->ras_hwsupport = false;
6326 		goto disable_ras;
6327 	}
6328 
6329 	ras_fwlog->ras_active = true;
6330 	mempool_free(pmb, phba->mbox_mem_pool);
6331 
6332 	return;
6333 
6334 disable_ras:
6335 	/* Free RAS DMA memory */
6336 	lpfc_sli4_ras_dma_free(phba);
6337 	mempool_free(pmb, phba->mbox_mem_pool);
6338 }
6339 
6340 /**
6341  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6342  * @phba: pointer to lpfc hba data structure.
6343  * @fwlog_level: Logging verbosity level.
6344  * @fwlog_enable: Enable/Disable logging.
6345  *
6346  * Initialize memory and post mailbox command to enable FW logging in host
6347  * memory.
6348  **/
6349 int
6350 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6351 			 uint32_t fwlog_level,
6352 			 uint32_t fwlog_enable)
6353 {
6354 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6355 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6356 	struct lpfc_dmabuf *dmabuf;
6357 	LPFC_MBOXQ_t *mbox;
6358 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6359 	int rc = 0;
6360 
6361 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6362 			  phba->cfg_ras_fwlog_buffsize);
6363 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6364 
6365 	/*
6366 	 * If re-enabling FW logging support use earlier allocated
6367 	 * DMA buffers while posting MBX command.
6368 	 **/
6369 	if (!ras_fwlog->lwpd.virt) {
6370 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6371 		if (rc) {
6372 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6373 					"6189 FW Log Memory Allocation Failed");
6374 			return rc;
6375 		}
6376 	}
6377 
6378 	/* Setup Mailbox command */
6379 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6380 	if (!mbox) {
6381 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6382 				"6190 RAS MBX Alloc Failed");
6383 		rc = -ENOMEM;
6384 		goto mem_free;
6385 	}
6386 
6387 	ras_fwlog->fw_loglevel = fwlog_level;
6388 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6389 		sizeof(struct lpfc_sli4_cfg_mhdr));
6390 
6391 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6392 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6393 			 len, LPFC_SLI4_MBX_EMBED);
6394 
6395 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6396 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6397 	       fwlog_enable);
6398 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6399 	       ras_fwlog->fw_loglevel);
6400 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6401 	       ras_fwlog->fw_buffcount);
6402 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6403 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6404 
6405 	/* Update DMA buffer address */
6406 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6407 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6408 
6409 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6410 			putPaddrLow(dmabuf->phys);
6411 
6412 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6413 			putPaddrHigh(dmabuf->phys);
6414 	}
6415 
6416 	/* Update LPWD address */
6417 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6418 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6419 
6420 	mbox->vport = phba->pport;
6421 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6422 
6423 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6424 
6425 	if (rc == MBX_NOT_FINISHED) {
6426 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6427 				"6191 FW-Log Mailbox failed. "
6428 				"status %d mbxStatus : x%x", rc,
6429 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6430 		mempool_free(mbox, phba->mbox_mem_pool);
6431 		rc = -EIO;
6432 		goto mem_free;
6433 	} else
6434 		rc = 0;
6435 mem_free:
6436 	if (rc)
6437 		lpfc_sli4_ras_dma_free(phba);
6438 
6439 	return rc;
6440 }
6441 
6442 /**
6443  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6444  * @phba: Pointer to HBA context object.
6445  *
6446  * Check if RAS is supported on the adapter and initialize it.
6447  **/
6448 void
6449 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6450 {
6451 	/* Check RAS FW Log needs to be enabled or not */
6452 	if (lpfc_check_fwlog_support(phba))
6453 		return;
6454 
6455 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6456 				 LPFC_RAS_ENABLE_LOGGING);
6457 }
6458 
6459 /**
6460  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6461  * @phba: Pointer to HBA context object.
6462  *
6463  * This function allocates all SLI4 resource identifiers.
6464  **/
6465 int
6466 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6467 {
6468 	int i, rc, error = 0;
6469 	uint16_t count, base;
6470 	unsigned long longs;
6471 
6472 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6473 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6474 	if (phba->sli4_hba.extents_in_use) {
6475 		/*
6476 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6477 		 * resource extent count must be read and allocated before
6478 		 * provisioning the resource id arrays.
6479 		 */
6480 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6481 		    LPFC_IDX_RSRC_RDY) {
6482 			/*
6483 			 * Extent-based resources are set - the driver could
6484 			 * be in a port reset. Figure out if any corrective
6485 			 * actions need to be taken.
6486 			 */
6487 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6488 						 LPFC_RSC_TYPE_FCOE_VFI);
6489 			if (rc != 0)
6490 				error++;
6491 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6492 						 LPFC_RSC_TYPE_FCOE_VPI);
6493 			if (rc != 0)
6494 				error++;
6495 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6496 						 LPFC_RSC_TYPE_FCOE_XRI);
6497 			if (rc != 0)
6498 				error++;
6499 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6500 						 LPFC_RSC_TYPE_FCOE_RPI);
6501 			if (rc != 0)
6502 				error++;
6503 
6504 			/*
6505 			 * It's possible that the number of resources
6506 			 * provided to this port instance changed between
6507 			 * resets.  Detect this condition and reallocate
6508 			 * resources.  Otherwise, there is no action.
6509 			 */
6510 			if (error) {
6511 				lpfc_printf_log(phba, KERN_INFO,
6512 						LOG_MBOX | LOG_INIT,
6513 						"2931 Detected extent resource "
6514 						"change.  Reallocating all "
6515 						"extents.\n");
6516 				rc = lpfc_sli4_dealloc_extent(phba,
6517 						 LPFC_RSC_TYPE_FCOE_VFI);
6518 				rc = lpfc_sli4_dealloc_extent(phba,
6519 						 LPFC_RSC_TYPE_FCOE_VPI);
6520 				rc = lpfc_sli4_dealloc_extent(phba,
6521 						 LPFC_RSC_TYPE_FCOE_XRI);
6522 				rc = lpfc_sli4_dealloc_extent(phba,
6523 						 LPFC_RSC_TYPE_FCOE_RPI);
6524 			} else
6525 				return 0;
6526 		}
6527 
6528 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6529 		if (unlikely(rc))
6530 			goto err_exit;
6531 
6532 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6533 		if (unlikely(rc))
6534 			goto err_exit;
6535 
6536 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6537 		if (unlikely(rc))
6538 			goto err_exit;
6539 
6540 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6541 		if (unlikely(rc))
6542 			goto err_exit;
6543 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6544 		       LPFC_IDX_RSRC_RDY);
6545 		return rc;
6546 	} else {
6547 		/*
6548 		 * The port does not support resource extents.  The XRI, VPI,
6549 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6550 		 * Just allocate the bitmasks and provision the resource id
6551 		 * arrays.  If a port reset is active, the resources don't
6552 		 * need any action - just exit.
6553 		 */
6554 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6555 		    LPFC_IDX_RSRC_RDY) {
6556 			lpfc_sli4_dealloc_resource_identifiers(phba);
6557 			lpfc_sli4_remove_rpis(phba);
6558 		}
6559 		/* RPIs. */
6560 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6561 		if (count <= 0) {
6562 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6563 					"3279 Invalid provisioning of "
6564 					"rpi:%d\n", count);
6565 			rc = -EINVAL;
6566 			goto err_exit;
6567 		}
6568 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6569 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6570 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6571 						   sizeof(unsigned long),
6572 						   GFP_KERNEL);
6573 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6574 			rc = -ENOMEM;
6575 			goto err_exit;
6576 		}
6577 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6578 						 GFP_KERNEL);
6579 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6580 			rc = -ENOMEM;
6581 			goto free_rpi_bmask;
6582 		}
6583 
6584 		for (i = 0; i < count; i++)
6585 			phba->sli4_hba.rpi_ids[i] = base + i;
6586 
6587 		/* VPIs. */
6588 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6589 		if (count <= 0) {
6590 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6591 					"3280 Invalid provisioning of "
6592 					"vpi:%d\n", count);
6593 			rc = -EINVAL;
6594 			goto free_rpi_ids;
6595 		}
6596 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6597 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6598 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6599 					  GFP_KERNEL);
6600 		if (unlikely(!phba->vpi_bmask)) {
6601 			rc = -ENOMEM;
6602 			goto free_rpi_ids;
6603 		}
6604 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6605 					GFP_KERNEL);
6606 		if (unlikely(!phba->vpi_ids)) {
6607 			rc = -ENOMEM;
6608 			goto free_vpi_bmask;
6609 		}
6610 
6611 		for (i = 0; i < count; i++)
6612 			phba->vpi_ids[i] = base + i;
6613 
6614 		/* XRIs. */
6615 		count = phba->sli4_hba.max_cfg_param.max_xri;
6616 		if (count <= 0) {
6617 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6618 					"3281 Invalid provisioning of "
6619 					"xri:%d\n", count);
6620 			rc = -EINVAL;
6621 			goto free_vpi_ids;
6622 		}
6623 		base = phba->sli4_hba.max_cfg_param.xri_base;
6624 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6625 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6626 						   sizeof(unsigned long),
6627 						   GFP_KERNEL);
6628 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6629 			rc = -ENOMEM;
6630 			goto free_vpi_ids;
6631 		}
6632 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6633 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6634 						 GFP_KERNEL);
6635 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6636 			rc = -ENOMEM;
6637 			goto free_xri_bmask;
6638 		}
6639 
6640 		for (i = 0; i < count; i++)
6641 			phba->sli4_hba.xri_ids[i] = base + i;
6642 
6643 		/* VFIs. */
6644 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6645 		if (count <= 0) {
6646 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6647 					"3282 Invalid provisioning of "
6648 					"vfi:%d\n", count);
6649 			rc = -EINVAL;
6650 			goto free_xri_ids;
6651 		}
6652 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6653 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6654 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6655 						   sizeof(unsigned long),
6656 						   GFP_KERNEL);
6657 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6658 			rc = -ENOMEM;
6659 			goto free_xri_ids;
6660 		}
6661 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6662 						 GFP_KERNEL);
6663 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6664 			rc = -ENOMEM;
6665 			goto free_vfi_bmask;
6666 		}
6667 
6668 		for (i = 0; i < count; i++)
6669 			phba->sli4_hba.vfi_ids[i] = base + i;
6670 
6671 		/*
6672 		 * Mark all resources ready.  An HBA reset doesn't need
6673 		 * to reset the initialization.
6674 		 */
6675 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6676 		       LPFC_IDX_RSRC_RDY);
6677 		return 0;
6678 	}
6679 
6680  free_vfi_bmask:
6681 	kfree(phba->sli4_hba.vfi_bmask);
6682 	phba->sli4_hba.vfi_bmask = NULL;
6683  free_xri_ids:
6684 	kfree(phba->sli4_hba.xri_ids);
6685 	phba->sli4_hba.xri_ids = NULL;
6686  free_xri_bmask:
6687 	kfree(phba->sli4_hba.xri_bmask);
6688 	phba->sli4_hba.xri_bmask = NULL;
6689  free_vpi_ids:
6690 	kfree(phba->vpi_ids);
6691 	phba->vpi_ids = NULL;
6692  free_vpi_bmask:
6693 	kfree(phba->vpi_bmask);
6694 	phba->vpi_bmask = NULL;
6695  free_rpi_ids:
6696 	kfree(phba->sli4_hba.rpi_ids);
6697 	phba->sli4_hba.rpi_ids = NULL;
6698  free_rpi_bmask:
6699 	kfree(phba->sli4_hba.rpi_bmask);
6700 	phba->sli4_hba.rpi_bmask = NULL;
6701  err_exit:
6702 	return rc;
6703 }
6704 
6705 /**
6706  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6707  * @phba: Pointer to HBA context object.
6708  *
6709  * This function allocates the number of elements for the specified
6710  * resource type.
6711  **/
6712 int
6713 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6714 {
6715 	if (phba->sli4_hba.extents_in_use) {
6716 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6717 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6718 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6719 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6720 	} else {
6721 		kfree(phba->vpi_bmask);
6722 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6723 		kfree(phba->vpi_ids);
6724 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6725 		kfree(phba->sli4_hba.xri_bmask);
6726 		kfree(phba->sli4_hba.xri_ids);
6727 		kfree(phba->sli4_hba.vfi_bmask);
6728 		kfree(phba->sli4_hba.vfi_ids);
6729 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6730 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6731 	}
6732 
6733 	return 0;
6734 }
6735 
6736 /**
6737  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6738  * @phba: Pointer to HBA context object.
6739  * @type: The resource extent type.
6740  * @extnt_count: buffer to hold port extent count response
6741  * @extnt_size: buffer to hold port extent size response.
6742  *
6743  * This function calls the port to read the host allocated extents
6744  * for a particular type.
6745  **/
6746 int
6747 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6748 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6749 {
6750 	bool emb;
6751 	int rc = 0;
6752 	uint16_t curr_blks = 0;
6753 	uint32_t req_len, emb_len;
6754 	uint32_t alloc_len, mbox_tmo;
6755 	struct list_head *blk_list_head;
6756 	struct lpfc_rsrc_blks *rsrc_blk;
6757 	LPFC_MBOXQ_t *mbox;
6758 	void *virtaddr = NULL;
6759 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6760 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6761 	union  lpfc_sli4_cfg_shdr *shdr;
6762 
6763 	switch (type) {
6764 	case LPFC_RSC_TYPE_FCOE_VPI:
6765 		blk_list_head = &phba->lpfc_vpi_blk_list;
6766 		break;
6767 	case LPFC_RSC_TYPE_FCOE_XRI:
6768 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6769 		break;
6770 	case LPFC_RSC_TYPE_FCOE_VFI:
6771 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6772 		break;
6773 	case LPFC_RSC_TYPE_FCOE_RPI:
6774 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6775 		break;
6776 	default:
6777 		return -EIO;
6778 	}
6779 
6780 	/* Count the number of extents currently allocatd for this type. */
6781 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6782 		if (curr_blks == 0) {
6783 			/*
6784 			 * The GET_ALLOCATED mailbox does not return the size,
6785 			 * just the count.  The size should be just the size
6786 			 * stored in the current allocated block and all sizes
6787 			 * for an extent type are the same so set the return
6788 			 * value now.
6789 			 */
6790 			*extnt_size = rsrc_blk->rsrc_size;
6791 		}
6792 		curr_blks++;
6793 	}
6794 
6795 	/*
6796 	 * Calculate the size of an embedded mailbox.  The uint32_t
6797 	 * accounts for extents-specific word.
6798 	 */
6799 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6800 		sizeof(uint32_t);
6801 
6802 	/*
6803 	 * Presume the allocation and response will fit into an embedded
6804 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6805 	 */
6806 	emb = LPFC_SLI4_MBX_EMBED;
6807 	req_len = emb_len;
6808 	if (req_len > emb_len) {
6809 		req_len = curr_blks * sizeof(uint16_t) +
6810 			sizeof(union lpfc_sli4_cfg_shdr) +
6811 			sizeof(uint32_t);
6812 		emb = LPFC_SLI4_MBX_NEMBED;
6813 	}
6814 
6815 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6816 	if (!mbox)
6817 		return -ENOMEM;
6818 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6819 
6820 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6821 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6822 				     req_len, emb);
6823 	if (alloc_len < req_len) {
6824 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6825 			"2983 Allocated DMA memory size (x%x) is "
6826 			"less than the requested DMA memory "
6827 			"size (x%x)\n", alloc_len, req_len);
6828 		rc = -ENOMEM;
6829 		goto err_exit;
6830 	}
6831 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6832 	if (unlikely(rc)) {
6833 		rc = -EIO;
6834 		goto err_exit;
6835 	}
6836 
6837 	if (!phba->sli4_hba.intr_enable)
6838 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6839 	else {
6840 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6841 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6842 	}
6843 
6844 	if (unlikely(rc)) {
6845 		rc = -EIO;
6846 		goto err_exit;
6847 	}
6848 
6849 	/*
6850 	 * Figure out where the response is located.  Then get local pointers
6851 	 * to the response data.  The port does not guarantee to respond to
6852 	 * all extents counts request so update the local variable with the
6853 	 * allocated count from the port.
6854 	 */
6855 	if (emb == LPFC_SLI4_MBX_EMBED) {
6856 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6857 		shdr = &rsrc_ext->header.cfg_shdr;
6858 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6859 	} else {
6860 		virtaddr = mbox->sge_array->addr[0];
6861 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6862 		shdr = &n_rsrc->cfg_shdr;
6863 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6864 	}
6865 
6866 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6867 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6868 			"2984 Failed to read allocated resources "
6869 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
6870 			type,
6871 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
6872 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6873 		rc = -EIO;
6874 		goto err_exit;
6875 	}
6876  err_exit:
6877 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6878 	return rc;
6879 }
6880 
6881 /**
6882  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6883  * @phba: pointer to lpfc hba data structure.
6884  * @pring: Pointer to driver SLI ring object.
6885  * @sgl_list: linked link of sgl buffers to post
6886  * @cnt: number of linked list buffers
6887  *
6888  * This routine walks the list of buffers that have been allocated and
6889  * repost them to the port by using SGL block post. This is needed after a
6890  * pci_function_reset/warm_start or start. It attempts to construct blocks
6891  * of buffer sgls which contains contiguous xris and uses the non-embedded
6892  * SGL block post mailbox commands to post them to the port. For single
6893  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6894  * mailbox command for posting.
6895  *
6896  * Returns: 0 = success, non-zero failure.
6897  **/
6898 static int
6899 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6900 			  struct list_head *sgl_list, int cnt)
6901 {
6902 	struct lpfc_sglq *sglq_entry = NULL;
6903 	struct lpfc_sglq *sglq_entry_next = NULL;
6904 	struct lpfc_sglq *sglq_entry_first = NULL;
6905 	int status, total_cnt;
6906 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
6907 	int last_xritag = NO_XRI;
6908 	LIST_HEAD(prep_sgl_list);
6909 	LIST_HEAD(blck_sgl_list);
6910 	LIST_HEAD(allc_sgl_list);
6911 	LIST_HEAD(post_sgl_list);
6912 	LIST_HEAD(free_sgl_list);
6913 
6914 	spin_lock_irq(&phba->hbalock);
6915 	spin_lock(&phba->sli4_hba.sgl_list_lock);
6916 	list_splice_init(sgl_list, &allc_sgl_list);
6917 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
6918 	spin_unlock_irq(&phba->hbalock);
6919 
6920 	total_cnt = cnt;
6921 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6922 				 &allc_sgl_list, list) {
6923 		list_del_init(&sglq_entry->list);
6924 		block_cnt++;
6925 		if ((last_xritag != NO_XRI) &&
6926 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
6927 			/* a hole in xri block, form a sgl posting block */
6928 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
6929 			post_cnt = block_cnt - 1;
6930 			/* prepare list for next posting block */
6931 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6932 			block_cnt = 1;
6933 		} else {
6934 			/* prepare list for next posting block */
6935 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6936 			/* enough sgls for non-embed sgl mbox command */
6937 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6938 				list_splice_init(&prep_sgl_list,
6939 						 &blck_sgl_list);
6940 				post_cnt = block_cnt;
6941 				block_cnt = 0;
6942 			}
6943 		}
6944 		num_posted++;
6945 
6946 		/* keep track of last sgl's xritag */
6947 		last_xritag = sglq_entry->sli4_xritag;
6948 
6949 		/* end of repost sgl list condition for buffers */
6950 		if (num_posted == total_cnt) {
6951 			if (post_cnt == 0) {
6952 				list_splice_init(&prep_sgl_list,
6953 						 &blck_sgl_list);
6954 				post_cnt = block_cnt;
6955 			} else if (block_cnt == 1) {
6956 				status = lpfc_sli4_post_sgl(phba,
6957 						sglq_entry->phys, 0,
6958 						sglq_entry->sli4_xritag);
6959 				if (!status) {
6960 					/* successful, put sgl to posted list */
6961 					list_add_tail(&sglq_entry->list,
6962 						      &post_sgl_list);
6963 				} else {
6964 					/* Failure, put sgl to free list */
6965 					lpfc_printf_log(phba, KERN_WARNING,
6966 						LOG_SLI,
6967 						"3159 Failed to post "
6968 						"sgl, xritag:x%x\n",
6969 						sglq_entry->sli4_xritag);
6970 					list_add_tail(&sglq_entry->list,
6971 						      &free_sgl_list);
6972 					total_cnt--;
6973 				}
6974 			}
6975 		}
6976 
6977 		/* continue until a nembed page worth of sgls */
6978 		if (post_cnt == 0)
6979 			continue;
6980 
6981 		/* post the buffer list sgls as a block */
6982 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
6983 						 post_cnt);
6984 
6985 		if (!status) {
6986 			/* success, put sgl list to posted sgl list */
6987 			list_splice_init(&blck_sgl_list, &post_sgl_list);
6988 		} else {
6989 			/* Failure, put sgl list to free sgl list */
6990 			sglq_entry_first = list_first_entry(&blck_sgl_list,
6991 							    struct lpfc_sglq,
6992 							    list);
6993 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6994 					"3160 Failed to post sgl-list, "
6995 					"xritag:x%x-x%x\n",
6996 					sglq_entry_first->sli4_xritag,
6997 					(sglq_entry_first->sli4_xritag +
6998 					 post_cnt - 1));
6999 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7000 			total_cnt -= post_cnt;
7001 		}
7002 
7003 		/* don't reset xirtag due to hole in xri block */
7004 		if (block_cnt == 0)
7005 			last_xritag = NO_XRI;
7006 
7007 		/* reset sgl post count for next round of posting */
7008 		post_cnt = 0;
7009 	}
7010 
7011 	/* free the sgls failed to post */
7012 	lpfc_free_sgl_list(phba, &free_sgl_list);
7013 
7014 	/* push sgls posted to the available list */
7015 	if (!list_empty(&post_sgl_list)) {
7016 		spin_lock_irq(&phba->hbalock);
7017 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7018 		list_splice_init(&post_sgl_list, sgl_list);
7019 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7020 		spin_unlock_irq(&phba->hbalock);
7021 	} else {
7022 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7023 				"3161 Failure to post sgl to port.\n");
7024 		return -EIO;
7025 	}
7026 
7027 	/* return the number of XRIs actually posted */
7028 	return total_cnt;
7029 }
7030 
7031 /**
7032  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7033  * @phba: pointer to lpfc hba data structure.
7034  *
7035  * This routine walks the list of nvme buffers that have been allocated and
7036  * repost them to the port by using SGL block post. This is needed after a
7037  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7038  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7039  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7040  *
7041  * Returns: 0 = success, non-zero failure.
7042  **/
7043 static int
7044 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7045 {
7046 	LIST_HEAD(post_nblist);
7047 	int num_posted, rc = 0;
7048 
7049 	/* get all NVME buffers need to repost to a local list */
7050 	lpfc_io_buf_flush(phba, &post_nblist);
7051 
7052 	/* post the list of nvme buffer sgls to port if available */
7053 	if (!list_empty(&post_nblist)) {
7054 		num_posted = lpfc_sli4_post_io_sgl_list(
7055 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7056 		/* failed to post any nvme buffer, return error */
7057 		if (num_posted == 0)
7058 			rc = -EIO;
7059 	}
7060 	return rc;
7061 }
7062 
7063 static void
7064 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7065 {
7066 	uint32_t len;
7067 
7068 	len = sizeof(struct lpfc_mbx_set_host_data) -
7069 		sizeof(struct lpfc_sli4_cfg_mhdr);
7070 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7071 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7072 			 LPFC_SLI4_MBX_EMBED);
7073 
7074 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7075 	mbox->u.mqe.un.set_host_data.param_len =
7076 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7077 	snprintf(mbox->u.mqe.un.set_host_data.data,
7078 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7079 		 "Linux %s v"LPFC_DRIVER_VERSION,
7080 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7081 }
7082 
7083 int
7084 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7085 		    struct lpfc_queue *drq, int count, int idx)
7086 {
7087 	int rc, i;
7088 	struct lpfc_rqe hrqe;
7089 	struct lpfc_rqe drqe;
7090 	struct lpfc_rqb *rqbp;
7091 	unsigned long flags;
7092 	struct rqb_dmabuf *rqb_buffer;
7093 	LIST_HEAD(rqb_buf_list);
7094 
7095 	spin_lock_irqsave(&phba->hbalock, flags);
7096 	rqbp = hrq->rqbp;
7097 	for (i = 0; i < count; i++) {
7098 		/* IF RQ is already full, don't bother */
7099 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7100 			break;
7101 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7102 		if (!rqb_buffer)
7103 			break;
7104 		rqb_buffer->hrq = hrq;
7105 		rqb_buffer->drq = drq;
7106 		rqb_buffer->idx = idx;
7107 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7108 	}
7109 	while (!list_empty(&rqb_buf_list)) {
7110 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7111 				 hbuf.list);
7112 
7113 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7114 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7115 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7116 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7117 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7118 		if (rc < 0) {
7119 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7120 					"6421 Cannot post to HRQ %d: %x %x %x "
7121 					"DRQ %x %x\n",
7122 					hrq->queue_id,
7123 					hrq->host_index,
7124 					hrq->hba_index,
7125 					hrq->entry_count,
7126 					drq->host_index,
7127 					drq->hba_index);
7128 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7129 		} else {
7130 			list_add_tail(&rqb_buffer->hbuf.list,
7131 				      &rqbp->rqb_buffer_list);
7132 			rqbp->buffer_count++;
7133 		}
7134 	}
7135 	spin_unlock_irqrestore(&phba->hbalock, flags);
7136 	return 1;
7137 }
7138 
7139 /**
7140  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7141  * @phba: Pointer to HBA context object.
7142  *
7143  * This function is the main SLI4 device initialization PCI function. This
7144  * function is called by the HBA initialization code, HBA reset code and
7145  * HBA error attention handler code. Caller is not required to hold any
7146  * locks.
7147  **/
7148 int
7149 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7150 {
7151 	int rc, i, cnt, len;
7152 	LPFC_MBOXQ_t *mboxq;
7153 	struct lpfc_mqe *mqe;
7154 	uint8_t *vpd;
7155 	uint32_t vpd_size;
7156 	uint32_t ftr_rsp = 0;
7157 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7158 	struct lpfc_vport *vport = phba->pport;
7159 	struct lpfc_dmabuf *mp;
7160 	struct lpfc_rqb *rqbp;
7161 
7162 	/* Perform a PCI function reset to start from clean */
7163 	rc = lpfc_pci_function_reset(phba);
7164 	if (unlikely(rc))
7165 		return -ENODEV;
7166 
7167 	/* Check the HBA Host Status Register for readyness */
7168 	rc = lpfc_sli4_post_status_check(phba);
7169 	if (unlikely(rc))
7170 		return -ENODEV;
7171 	else {
7172 		spin_lock_irq(&phba->hbalock);
7173 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7174 		spin_unlock_irq(&phba->hbalock);
7175 	}
7176 
7177 	/*
7178 	 * Allocate a single mailbox container for initializing the
7179 	 * port.
7180 	 */
7181 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7182 	if (!mboxq)
7183 		return -ENOMEM;
7184 
7185 	/* Issue READ_REV to collect vpd and FW information. */
7186 	vpd_size = SLI4_PAGE_SIZE;
7187 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7188 	if (!vpd) {
7189 		rc = -ENOMEM;
7190 		goto out_free_mbox;
7191 	}
7192 
7193 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7194 	if (unlikely(rc)) {
7195 		kfree(vpd);
7196 		goto out_free_mbox;
7197 	}
7198 
7199 	mqe = &mboxq->u.mqe;
7200 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7201 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7202 		phba->hba_flag |= HBA_FCOE_MODE;
7203 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7204 	} else {
7205 		phba->hba_flag &= ~HBA_FCOE_MODE;
7206 	}
7207 
7208 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7209 		LPFC_DCBX_CEE_MODE)
7210 		phba->hba_flag |= HBA_FIP_SUPPORT;
7211 	else
7212 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7213 
7214 	phba->hba_flag &= ~HBA_IOQ_FLUSH;
7215 
7216 	if (phba->sli_rev != LPFC_SLI_REV4) {
7217 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7218 			"0376 READ_REV Error. SLI Level %d "
7219 			"FCoE enabled %d\n",
7220 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7221 		rc = -EIO;
7222 		kfree(vpd);
7223 		goto out_free_mbox;
7224 	}
7225 
7226 	/*
7227 	 * Continue initialization with default values even if driver failed
7228 	 * to read FCoE param config regions, only read parameters if the
7229 	 * board is FCoE
7230 	 */
7231 	if (phba->hba_flag & HBA_FCOE_MODE &&
7232 	    lpfc_sli4_read_fcoe_params(phba))
7233 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7234 			"2570 Failed to read FCoE parameters\n");
7235 
7236 	/*
7237 	 * Retrieve sli4 device physical port name, failure of doing it
7238 	 * is considered as non-fatal.
7239 	 */
7240 	rc = lpfc_sli4_retrieve_pport_name(phba);
7241 	if (!rc)
7242 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7243 				"3080 Successful retrieving SLI4 device "
7244 				"physical port name: %s.\n", phba->Port);
7245 
7246 	rc = lpfc_sli4_get_ctl_attr(phba);
7247 	if (!rc)
7248 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7249 				"8351 Successful retrieving SLI4 device "
7250 				"CTL ATTR\n");
7251 
7252 	/*
7253 	 * Evaluate the read rev and vpd data. Populate the driver
7254 	 * state with the results. If this routine fails, the failure
7255 	 * is not fatal as the driver will use generic values.
7256 	 */
7257 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7258 	if (unlikely(!rc)) {
7259 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7260 				"0377 Error %d parsing vpd. "
7261 				"Using defaults.\n", rc);
7262 		rc = 0;
7263 	}
7264 	kfree(vpd);
7265 
7266 	/* Save information as VPD data */
7267 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7268 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7269 
7270 	/*
7271 	 * This is because first G7 ASIC doesn't support the standard
7272 	 * 0x5a NVME cmd descriptor type/subtype
7273 	 */
7274 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7275 			LPFC_SLI_INTF_IF_TYPE_6) &&
7276 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7277 	    (phba->vpd.rev.smRev == 0) &&
7278 	    (phba->cfg_nvme_embed_cmd == 1))
7279 		phba->cfg_nvme_embed_cmd = 0;
7280 
7281 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7282 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7283 					 &mqe->un.read_rev);
7284 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7285 				       &mqe->un.read_rev);
7286 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7287 					    &mqe->un.read_rev);
7288 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7289 					   &mqe->un.read_rev);
7290 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7291 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7292 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7293 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7294 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7295 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7296 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7297 			"(%d):0380 READ_REV Status x%x "
7298 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7299 			mboxq->vport ? mboxq->vport->vpi : 0,
7300 			bf_get(lpfc_mqe_status, mqe),
7301 			phba->vpd.rev.opFwName,
7302 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7303 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7304 
7305 	/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3)  */
7306 	rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7307 	if (phba->pport->cfg_lun_queue_depth > rc) {
7308 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7309 				"3362 LUN queue depth changed from %d to %d\n",
7310 				phba->pport->cfg_lun_queue_depth, rc);
7311 		phba->pport->cfg_lun_queue_depth = rc;
7312 	}
7313 
7314 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7315 	    LPFC_SLI_INTF_IF_TYPE_0) {
7316 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7317 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7318 		if (rc == MBX_SUCCESS) {
7319 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7320 			/* Set 1Sec interval to detect UE */
7321 			phba->eratt_poll_interval = 1;
7322 			phba->sli4_hba.ue_to_sr = bf_get(
7323 					lpfc_mbx_set_feature_UESR,
7324 					&mboxq->u.mqe.un.set_feature);
7325 			phba->sli4_hba.ue_to_rp = bf_get(
7326 					lpfc_mbx_set_feature_UERP,
7327 					&mboxq->u.mqe.un.set_feature);
7328 		}
7329 	}
7330 
7331 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7332 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7333 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7334 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7335 		if (rc != MBX_SUCCESS)
7336 			phba->mds_diags_support = 0;
7337 	}
7338 
7339 	/*
7340 	 * Discover the port's supported feature set and match it against the
7341 	 * hosts requests.
7342 	 */
7343 	lpfc_request_features(phba, mboxq);
7344 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7345 	if (unlikely(rc)) {
7346 		rc = -EIO;
7347 		goto out_free_mbox;
7348 	}
7349 
7350 	/*
7351 	 * The port must support FCP initiator mode as this is the
7352 	 * only mode running in the host.
7353 	 */
7354 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7355 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7356 				"0378 No support for fcpi mode.\n");
7357 		ftr_rsp++;
7358 	}
7359 
7360 	/* Performance Hints are ONLY for FCoE */
7361 	if (phba->hba_flag & HBA_FCOE_MODE) {
7362 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7363 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7364 		else
7365 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7366 	}
7367 
7368 	/*
7369 	 * If the port cannot support the host's requested features
7370 	 * then turn off the global config parameters to disable the
7371 	 * feature in the driver.  This is not a fatal error.
7372 	 */
7373 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7374 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7375 			phba->cfg_enable_bg = 0;
7376 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7377 			ftr_rsp++;
7378 		}
7379 	}
7380 
7381 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7382 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7383 		ftr_rsp++;
7384 
7385 	if (ftr_rsp) {
7386 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7387 				"0379 Feature Mismatch Data: x%08x %08x "
7388 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7389 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7390 				phba->cfg_enable_npiv, phba->max_vpi);
7391 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7392 			phba->cfg_enable_bg = 0;
7393 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7394 			phba->cfg_enable_npiv = 0;
7395 	}
7396 
7397 	/* These SLI3 features are assumed in SLI4 */
7398 	spin_lock_irq(&phba->hbalock);
7399 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7400 	spin_unlock_irq(&phba->hbalock);
7401 
7402 	/*
7403 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7404 	 * calls depends on these resources to complete port setup.
7405 	 */
7406 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7407 	if (rc) {
7408 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7409 				"2920 Failed to alloc Resource IDs "
7410 				"rc = x%x\n", rc);
7411 		goto out_free_mbox;
7412 	}
7413 
7414 	lpfc_set_host_data(phba, mboxq);
7415 
7416 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7417 	if (rc) {
7418 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7419 				"2134 Failed to set host os driver version %x",
7420 				rc);
7421 	}
7422 
7423 	/* Read the port's service parameters. */
7424 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7425 	if (rc) {
7426 		phba->link_state = LPFC_HBA_ERROR;
7427 		rc = -ENOMEM;
7428 		goto out_free_mbox;
7429 	}
7430 
7431 	mboxq->vport = vport;
7432 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7433 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7434 	if (rc == MBX_SUCCESS) {
7435 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7436 		rc = 0;
7437 	}
7438 
7439 	/*
7440 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7441 	 * it to the mbuf pool.
7442 	 */
7443 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7444 	kfree(mp);
7445 	mboxq->ctx_buf = NULL;
7446 	if (unlikely(rc)) {
7447 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7448 				"0382 READ_SPARAM command failed "
7449 				"status %d, mbxStatus x%x\n",
7450 				rc, bf_get(lpfc_mqe_status, mqe));
7451 		phba->link_state = LPFC_HBA_ERROR;
7452 		rc = -EIO;
7453 		goto out_free_mbox;
7454 	}
7455 
7456 	lpfc_update_vport_wwn(vport);
7457 
7458 	/* Update the fc_host data structures with new wwn. */
7459 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7460 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7461 
7462 	/* Create all the SLI4 queues */
7463 	rc = lpfc_sli4_queue_create(phba);
7464 	if (rc) {
7465 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7466 				"3089 Failed to allocate queues\n");
7467 		rc = -ENODEV;
7468 		goto out_free_mbox;
7469 	}
7470 	/* Set up all the queues to the device */
7471 	rc = lpfc_sli4_queue_setup(phba);
7472 	if (unlikely(rc)) {
7473 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7474 				"0381 Error %d during queue setup.\n ", rc);
7475 		goto out_stop_timers;
7476 	}
7477 	/* Initialize the driver internal SLI layer lists. */
7478 	lpfc_sli4_setup(phba);
7479 	lpfc_sli4_queue_init(phba);
7480 
7481 	/* update host els xri-sgl sizes and mappings */
7482 	rc = lpfc_sli4_els_sgl_update(phba);
7483 	if (unlikely(rc)) {
7484 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7485 				"1400 Failed to update xri-sgl size and "
7486 				"mapping: %d\n", rc);
7487 		goto out_destroy_queue;
7488 	}
7489 
7490 	/* register the els sgl pool to the port */
7491 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7492 				       phba->sli4_hba.els_xri_cnt);
7493 	if (unlikely(rc < 0)) {
7494 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7495 				"0582 Error %d during els sgl post "
7496 				"operation\n", rc);
7497 		rc = -ENODEV;
7498 		goto out_destroy_queue;
7499 	}
7500 	phba->sli4_hba.els_xri_cnt = rc;
7501 
7502 	if (phba->nvmet_support) {
7503 		/* update host nvmet xri-sgl sizes and mappings */
7504 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7505 		if (unlikely(rc)) {
7506 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7507 					"6308 Failed to update nvmet-sgl size "
7508 					"and mapping: %d\n", rc);
7509 			goto out_destroy_queue;
7510 		}
7511 
7512 		/* register the nvmet sgl pool to the port */
7513 		rc = lpfc_sli4_repost_sgl_list(
7514 			phba,
7515 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7516 			phba->sli4_hba.nvmet_xri_cnt);
7517 		if (unlikely(rc < 0)) {
7518 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7519 					"3117 Error %d during nvmet "
7520 					"sgl post\n", rc);
7521 			rc = -ENODEV;
7522 			goto out_destroy_queue;
7523 		}
7524 		phba->sli4_hba.nvmet_xri_cnt = rc;
7525 
7526 		cnt = phba->cfg_iocb_cnt * 1024;
7527 		/* We need 1 iocbq for every SGL, for IO processing */
7528 		cnt += phba->sli4_hba.nvmet_xri_cnt;
7529 	} else {
7530 		/* update host common xri-sgl sizes and mappings */
7531 		rc = lpfc_sli4_io_sgl_update(phba);
7532 		if (unlikely(rc)) {
7533 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7534 					"6082 Failed to update nvme-sgl size "
7535 					"and mapping: %d\n", rc);
7536 			goto out_destroy_queue;
7537 		}
7538 
7539 		/* register the allocated common sgl pool to the port */
7540 		rc = lpfc_sli4_repost_io_sgl_list(phba);
7541 		if (unlikely(rc)) {
7542 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7543 					"6116 Error %d during nvme sgl post "
7544 					"operation\n", rc);
7545 			/* Some NVME buffers were moved to abort nvme list */
7546 			/* A pci function reset will repost them */
7547 			rc = -ENODEV;
7548 			goto out_destroy_queue;
7549 		}
7550 		cnt = phba->cfg_iocb_cnt * 1024;
7551 	}
7552 
7553 	if (!phba->sli.iocbq_lookup) {
7554 		/* Initialize and populate the iocb list per host */
7555 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7556 				"2821 initialize iocb list %d total %d\n",
7557 				phba->cfg_iocb_cnt, cnt);
7558 		rc = lpfc_init_iocb_list(phba, cnt);
7559 		if (rc) {
7560 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7561 					"1413 Failed to init iocb list.\n");
7562 			goto out_destroy_queue;
7563 		}
7564 	}
7565 
7566 	if (phba->nvmet_support)
7567 		lpfc_nvmet_create_targetport(phba);
7568 
7569 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7570 		/* Post initial buffers to all RQs created */
7571 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7572 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7573 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7574 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7575 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7576 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7577 			rqbp->buffer_count = 0;
7578 
7579 			lpfc_post_rq_buffer(
7580 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7581 				phba->sli4_hba.nvmet_mrq_data[i],
7582 				phba->cfg_nvmet_mrq_post, i);
7583 		}
7584 	}
7585 
7586 	/* Post the rpi header region to the device. */
7587 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7588 	if (unlikely(rc)) {
7589 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7590 				"0393 Error %d during rpi post operation\n",
7591 				rc);
7592 		rc = -ENODEV;
7593 		goto out_destroy_queue;
7594 	}
7595 	lpfc_sli4_node_prep(phba);
7596 
7597 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7598 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7599 			/*
7600 			 * The FC Port needs to register FCFI (index 0)
7601 			 */
7602 			lpfc_reg_fcfi(phba, mboxq);
7603 			mboxq->vport = phba->pport;
7604 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7605 			if (rc != MBX_SUCCESS)
7606 				goto out_unset_queue;
7607 			rc = 0;
7608 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7609 						&mboxq->u.mqe.un.reg_fcfi);
7610 		} else {
7611 			/* We are a NVME Target mode with MRQ > 1 */
7612 
7613 			/* First register the FCFI */
7614 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7615 			mboxq->vport = phba->pport;
7616 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7617 			if (rc != MBX_SUCCESS)
7618 				goto out_unset_queue;
7619 			rc = 0;
7620 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7621 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7622 
7623 			/* Next register the MRQs */
7624 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7625 			mboxq->vport = phba->pport;
7626 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7627 			if (rc != MBX_SUCCESS)
7628 				goto out_unset_queue;
7629 			rc = 0;
7630 		}
7631 		/* Check if the port is configured to be disabled */
7632 		lpfc_sli_read_link_ste(phba);
7633 	}
7634 
7635 	/* Don't post more new bufs if repost already recovered
7636 	 * the nvme sgls.
7637 	 */
7638 	if (phba->nvmet_support == 0) {
7639 		if (phba->sli4_hba.io_xri_cnt == 0) {
7640 			len = lpfc_new_io_buf(
7641 					      phba, phba->sli4_hba.io_xri_max);
7642 			if (len == 0) {
7643 				rc = -ENOMEM;
7644 				goto out_unset_queue;
7645 			}
7646 
7647 			if (phba->cfg_xri_rebalancing)
7648 				lpfc_create_multixri_pools(phba);
7649 		}
7650 	} else {
7651 		phba->cfg_xri_rebalancing = 0;
7652 	}
7653 
7654 	/* Allow asynchronous mailbox command to go through */
7655 	spin_lock_irq(&phba->hbalock);
7656 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7657 	spin_unlock_irq(&phba->hbalock);
7658 
7659 	/* Post receive buffers to the device */
7660 	lpfc_sli4_rb_setup(phba);
7661 
7662 	/* Reset HBA FCF states after HBA reset */
7663 	phba->fcf.fcf_flag = 0;
7664 	phba->fcf.current_rec.flag = 0;
7665 
7666 	/* Start the ELS watchdog timer */
7667 	mod_timer(&vport->els_tmofunc,
7668 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7669 
7670 	/* Start heart beat timer */
7671 	mod_timer(&phba->hb_tmofunc,
7672 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7673 	phba->hb_outstanding = 0;
7674 	phba->last_completion_time = jiffies;
7675 
7676 	/* start eq_delay heartbeat */
7677 	if (phba->cfg_auto_imax)
7678 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
7679 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7680 
7681 	/* Start error attention (ERATT) polling timer */
7682 	mod_timer(&phba->eratt_poll,
7683 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7684 
7685 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7686 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7687 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7688 		if (!rc) {
7689 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7690 					"2829 This device supports "
7691 					"Advanced Error Reporting (AER)\n");
7692 			spin_lock_irq(&phba->hbalock);
7693 			phba->hba_flag |= HBA_AER_ENABLED;
7694 			spin_unlock_irq(&phba->hbalock);
7695 		} else {
7696 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7697 					"2830 This device does not support "
7698 					"Advanced Error Reporting (AER)\n");
7699 			phba->cfg_aer_support = 0;
7700 		}
7701 		rc = 0;
7702 	}
7703 
7704 	/*
7705 	 * The port is ready, set the host's link state to LINK_DOWN
7706 	 * in preparation for link interrupts.
7707 	 */
7708 	spin_lock_irq(&phba->hbalock);
7709 	phba->link_state = LPFC_LINK_DOWN;
7710 
7711 	/* Check if physical ports are trunked */
7712 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7713 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7714 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7715 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7716 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7717 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7718 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7719 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7720 	spin_unlock_irq(&phba->hbalock);
7721 
7722 	/* Arm the CQs and then EQs on device */
7723 	lpfc_sli4_arm_cqeq_intr(phba);
7724 
7725 	/* Indicate device interrupt mode */
7726 	phba->sli4_hba.intr_enable = 1;
7727 
7728 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7729 	    (phba->hba_flag & LINK_DISABLED)) {
7730 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7731 				"3103 Adapter Link is disabled.\n");
7732 		lpfc_down_link(phba, mboxq);
7733 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7734 		if (rc != MBX_SUCCESS) {
7735 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7736 					"3104 Adapter failed to issue "
7737 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7738 			goto out_io_buff_free;
7739 		}
7740 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7741 		/* don't perform init_link on SLI4 FC port loopback test */
7742 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7743 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7744 			if (rc)
7745 				goto out_io_buff_free;
7746 		}
7747 	}
7748 	mempool_free(mboxq, phba->mbox_mem_pool);
7749 	return rc;
7750 out_io_buff_free:
7751 	/* Free allocated IO Buffers */
7752 	lpfc_io_free(phba);
7753 out_unset_queue:
7754 	/* Unset all the queues set up in this routine when error out */
7755 	lpfc_sli4_queue_unset(phba);
7756 out_destroy_queue:
7757 	lpfc_free_iocb_list(phba);
7758 	lpfc_sli4_queue_destroy(phba);
7759 out_stop_timers:
7760 	lpfc_stop_hba_timers(phba);
7761 out_free_mbox:
7762 	mempool_free(mboxq, phba->mbox_mem_pool);
7763 	return rc;
7764 }
7765 
7766 /**
7767  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7768  * @ptr: context object - pointer to hba structure.
7769  *
7770  * This is the callback function for mailbox timer. The mailbox
7771  * timer is armed when a new mailbox command is issued and the timer
7772  * is deleted when the mailbox complete. The function is called by
7773  * the kernel timer code when a mailbox does not complete within
7774  * expected time. This function wakes up the worker thread to
7775  * process the mailbox timeout and returns. All the processing is
7776  * done by the worker thread function lpfc_mbox_timeout_handler.
7777  **/
7778 void
7779 lpfc_mbox_timeout(struct timer_list *t)
7780 {
7781 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
7782 	unsigned long iflag;
7783 	uint32_t tmo_posted;
7784 
7785 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7786 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7787 	if (!tmo_posted)
7788 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7789 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7790 
7791 	if (!tmo_posted)
7792 		lpfc_worker_wake_up(phba);
7793 	return;
7794 }
7795 
7796 /**
7797  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7798  *                                    are pending
7799  * @phba: Pointer to HBA context object.
7800  *
7801  * This function checks if any mailbox completions are present on the mailbox
7802  * completion queue.
7803  **/
7804 static bool
7805 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7806 {
7807 
7808 	uint32_t idx;
7809 	struct lpfc_queue *mcq;
7810 	struct lpfc_mcqe *mcqe;
7811 	bool pending_completions = false;
7812 	uint8_t	qe_valid;
7813 
7814 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7815 		return false;
7816 
7817 	/* Check for completions on mailbox completion queue */
7818 
7819 	mcq = phba->sli4_hba.mbx_cq;
7820 	idx = mcq->hba_index;
7821 	qe_valid = mcq->qe_valid;
7822 	while (bf_get_le32(lpfc_cqe_valid,
7823 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
7824 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
7825 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7826 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7827 			pending_completions = true;
7828 			break;
7829 		}
7830 		idx = (idx + 1) % mcq->entry_count;
7831 		if (mcq->hba_index == idx)
7832 			break;
7833 
7834 		/* if the index wrapped around, toggle the valid bit */
7835 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7836 			qe_valid = (qe_valid) ? 0 : 1;
7837 	}
7838 	return pending_completions;
7839 
7840 }
7841 
7842 /**
7843  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7844  *					      that were missed.
7845  * @phba: Pointer to HBA context object.
7846  *
7847  * For sli4, it is possible to miss an interrupt. As such mbox completions
7848  * maybe missed causing erroneous mailbox timeouts to occur. This function
7849  * checks to see if mbox completions are on the mailbox completion queue
7850  * and will process all the completions associated with the eq for the
7851  * mailbox completion queue.
7852  **/
7853 static bool
7854 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7855 {
7856 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7857 	uint32_t eqidx;
7858 	struct lpfc_queue *fpeq = NULL;
7859 	struct lpfc_queue *eq;
7860 	bool mbox_pending;
7861 
7862 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7863 		return false;
7864 
7865 	/* Find the EQ associated with the mbox CQ */
7866 	if (sli4_hba->hdwq) {
7867 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
7868 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
7869 			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
7870 				fpeq = eq;
7871 				break;
7872 			}
7873 		}
7874 	}
7875 	if (!fpeq)
7876 		return false;
7877 
7878 	/* Turn off interrupts from this EQ */
7879 
7880 	sli4_hba->sli4_eq_clr_intr(fpeq);
7881 
7882 	/* Check to see if a mbox completion is pending */
7883 
7884 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7885 
7886 	/*
7887 	 * If a mbox completion is pending, process all the events on EQ
7888 	 * associated with the mbox completion queue (this could include
7889 	 * mailbox commands, async events, els commands, receive queue data
7890 	 * and fcp commands)
7891 	 */
7892 
7893 	if (mbox_pending)
7894 		/* process and rearm the EQ */
7895 		lpfc_sli4_process_eq(phba, fpeq);
7896 	else
7897 		/* Always clear and re-arm the EQ */
7898 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
7899 
7900 	return mbox_pending;
7901 
7902 }
7903 
7904 /**
7905  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7906  * @phba: Pointer to HBA context object.
7907  *
7908  * This function is called from worker thread when a mailbox command times out.
7909  * The caller is not required to hold any locks. This function will reset the
7910  * HBA and recover all the pending commands.
7911  **/
7912 void
7913 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7914 {
7915 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7916 	MAILBOX_t *mb = NULL;
7917 
7918 	struct lpfc_sli *psli = &phba->sli;
7919 
7920 	/* If the mailbox completed, process the completion and return */
7921 	if (lpfc_sli4_process_missed_mbox_completions(phba))
7922 		return;
7923 
7924 	if (pmbox != NULL)
7925 		mb = &pmbox->u.mb;
7926 	/* Check the pmbox pointer first.  There is a race condition
7927 	 * between the mbox timeout handler getting executed in the
7928 	 * worklist and the mailbox actually completing. When this
7929 	 * race condition occurs, the mbox_active will be NULL.
7930 	 */
7931 	spin_lock_irq(&phba->hbalock);
7932 	if (pmbox == NULL) {
7933 		lpfc_printf_log(phba, KERN_WARNING,
7934 				LOG_MBOX | LOG_SLI,
7935 				"0353 Active Mailbox cleared - mailbox timeout "
7936 				"exiting\n");
7937 		spin_unlock_irq(&phba->hbalock);
7938 		return;
7939 	}
7940 
7941 	/* Mbox cmd <mbxCommand> timeout */
7942 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7943 			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
7944 			mb->mbxCommand,
7945 			phba->pport->port_state,
7946 			phba->sli.sli_flag,
7947 			phba->sli.mbox_active);
7948 	spin_unlock_irq(&phba->hbalock);
7949 
7950 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
7951 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7952 	 * it to fail all outstanding SCSI IO.
7953 	 */
7954 	spin_lock_irq(&phba->pport->work_port_lock);
7955 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7956 	spin_unlock_irq(&phba->pport->work_port_lock);
7957 	spin_lock_irq(&phba->hbalock);
7958 	phba->link_state = LPFC_LINK_UNKNOWN;
7959 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7960 	spin_unlock_irq(&phba->hbalock);
7961 
7962 	lpfc_sli_abort_fcp_rings(phba);
7963 
7964 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7965 			"0345 Resetting board due to mailbox timeout\n");
7966 
7967 	/* Reset the HBA device */
7968 	lpfc_reset_hba(phba);
7969 }
7970 
7971 /**
7972  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7973  * @phba: Pointer to HBA context object.
7974  * @pmbox: Pointer to mailbox object.
7975  * @flag: Flag indicating how the mailbox need to be processed.
7976  *
7977  * This function is called by discovery code and HBA management code
7978  * to submit a mailbox command to firmware with SLI-3 interface spec. This
7979  * function gets the hbalock to protect the data structures.
7980  * The mailbox command can be submitted in polling mode, in which case
7981  * this function will wait in a polling loop for the completion of the
7982  * mailbox.
7983  * If the mailbox is submitted in no_wait mode (not polling) the
7984  * function will submit the command and returns immediately without waiting
7985  * for the mailbox completion. The no_wait is supported only when HBA
7986  * is in SLI2/SLI3 mode - interrupts are enabled.
7987  * The SLI interface allows only one mailbox pending at a time. If the
7988  * mailbox is issued in polling mode and there is already a mailbox
7989  * pending, then the function will return an error. If the mailbox is issued
7990  * in NO_WAIT mode and there is a mailbox pending already, the function
7991  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7992  * The sli layer owns the mailbox object until the completion of mailbox
7993  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7994  * return codes the caller owns the mailbox command after the return of
7995  * the function.
7996  **/
7997 static int
7998 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7999 		       uint32_t flag)
8000 {
8001 	MAILBOX_t *mbx;
8002 	struct lpfc_sli *psli = &phba->sli;
8003 	uint32_t status, evtctr;
8004 	uint32_t ha_copy, hc_copy;
8005 	int i;
8006 	unsigned long timeout;
8007 	unsigned long drvr_flag = 0;
8008 	uint32_t word0, ldata;
8009 	void __iomem *to_slim;
8010 	int processing_queue = 0;
8011 
8012 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8013 	if (!pmbox) {
8014 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8015 		/* processing mbox queue from intr_handler */
8016 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8017 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8018 			return MBX_SUCCESS;
8019 		}
8020 		processing_queue = 1;
8021 		pmbox = lpfc_mbox_get(phba);
8022 		if (!pmbox) {
8023 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8024 			return MBX_SUCCESS;
8025 		}
8026 	}
8027 
8028 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8029 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8030 		if(!pmbox->vport) {
8031 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8032 			lpfc_printf_log(phba, KERN_ERR,
8033 					LOG_MBOX | LOG_VPORT,
8034 					"1806 Mbox x%x failed. No vport\n",
8035 					pmbox->u.mb.mbxCommand);
8036 			dump_stack();
8037 			goto out_not_finished;
8038 		}
8039 	}
8040 
8041 	/* If the PCI channel is in offline state, do not post mbox. */
8042 	if (unlikely(pci_channel_offline(phba->pcidev))) {
8043 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8044 		goto out_not_finished;
8045 	}
8046 
8047 	/* If HBA has a deferred error attention, fail the iocb. */
8048 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8049 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8050 		goto out_not_finished;
8051 	}
8052 
8053 	psli = &phba->sli;
8054 
8055 	mbx = &pmbox->u.mb;
8056 	status = MBX_SUCCESS;
8057 
8058 	if (phba->link_state == LPFC_HBA_ERROR) {
8059 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8060 
8061 		/* Mbox command <mbxCommand> cannot issue */
8062 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8063 				"(%d):0311 Mailbox command x%x cannot "
8064 				"issue Data: x%x x%x\n",
8065 				pmbox->vport ? pmbox->vport->vpi : 0,
8066 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8067 		goto out_not_finished;
8068 	}
8069 
8070 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8071 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8072 			!(hc_copy & HC_MBINT_ENA)) {
8073 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8074 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8075 				"(%d):2528 Mailbox command x%x cannot "
8076 				"issue Data: x%x x%x\n",
8077 				pmbox->vport ? pmbox->vport->vpi : 0,
8078 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8079 			goto out_not_finished;
8080 		}
8081 	}
8082 
8083 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8084 		/* Polling for a mbox command when another one is already active
8085 		 * is not allowed in SLI. Also, the driver must have established
8086 		 * SLI2 mode to queue and process multiple mbox commands.
8087 		 */
8088 
8089 		if (flag & MBX_POLL) {
8090 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8091 
8092 			/* Mbox command <mbxCommand> cannot issue */
8093 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8094 					"(%d):2529 Mailbox command x%x "
8095 					"cannot issue Data: x%x x%x\n",
8096 					pmbox->vport ? pmbox->vport->vpi : 0,
8097 					pmbox->u.mb.mbxCommand,
8098 					psli->sli_flag, flag);
8099 			goto out_not_finished;
8100 		}
8101 
8102 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8103 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8104 			/* Mbox command <mbxCommand> cannot issue */
8105 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8106 					"(%d):2530 Mailbox command x%x "
8107 					"cannot issue Data: x%x x%x\n",
8108 					pmbox->vport ? pmbox->vport->vpi : 0,
8109 					pmbox->u.mb.mbxCommand,
8110 					psli->sli_flag, flag);
8111 			goto out_not_finished;
8112 		}
8113 
8114 		/* Another mailbox command is still being processed, queue this
8115 		 * command to be processed later.
8116 		 */
8117 		lpfc_mbox_put(phba, pmbox);
8118 
8119 		/* Mbox cmd issue - BUSY */
8120 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8121 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8122 				"x%x x%x x%x x%x\n",
8123 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8124 				mbx->mbxCommand,
8125 				phba->pport ? phba->pport->port_state : 0xff,
8126 				psli->sli_flag, flag);
8127 
8128 		psli->slistat.mbox_busy++;
8129 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8130 
8131 		if (pmbox->vport) {
8132 			lpfc_debugfs_disc_trc(pmbox->vport,
8133 				LPFC_DISC_TRC_MBOX_VPORT,
8134 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8135 				(uint32_t)mbx->mbxCommand,
8136 				mbx->un.varWords[0], mbx->un.varWords[1]);
8137 		}
8138 		else {
8139 			lpfc_debugfs_disc_trc(phba->pport,
8140 				LPFC_DISC_TRC_MBOX,
8141 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8142 				(uint32_t)mbx->mbxCommand,
8143 				mbx->un.varWords[0], mbx->un.varWords[1]);
8144 		}
8145 
8146 		return MBX_BUSY;
8147 	}
8148 
8149 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8150 
8151 	/* If we are not polling, we MUST be in SLI2 mode */
8152 	if (flag != MBX_POLL) {
8153 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8154 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8155 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8156 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8157 			/* Mbox command <mbxCommand> cannot issue */
8158 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8159 					"(%d):2531 Mailbox command x%x "
8160 					"cannot issue Data: x%x x%x\n",
8161 					pmbox->vport ? pmbox->vport->vpi : 0,
8162 					pmbox->u.mb.mbxCommand,
8163 					psli->sli_flag, flag);
8164 			goto out_not_finished;
8165 		}
8166 		/* timeout active mbox command */
8167 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8168 					   1000);
8169 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8170 	}
8171 
8172 	/* Mailbox cmd <cmd> issue */
8173 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8174 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8175 			"x%x\n",
8176 			pmbox->vport ? pmbox->vport->vpi : 0,
8177 			mbx->mbxCommand,
8178 			phba->pport ? phba->pport->port_state : 0xff,
8179 			psli->sli_flag, flag);
8180 
8181 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8182 		if (pmbox->vport) {
8183 			lpfc_debugfs_disc_trc(pmbox->vport,
8184 				LPFC_DISC_TRC_MBOX_VPORT,
8185 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8186 				(uint32_t)mbx->mbxCommand,
8187 				mbx->un.varWords[0], mbx->un.varWords[1]);
8188 		}
8189 		else {
8190 			lpfc_debugfs_disc_trc(phba->pport,
8191 				LPFC_DISC_TRC_MBOX,
8192 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8193 				(uint32_t)mbx->mbxCommand,
8194 				mbx->un.varWords[0], mbx->un.varWords[1]);
8195 		}
8196 	}
8197 
8198 	psli->slistat.mbox_cmd++;
8199 	evtctr = psli->slistat.mbox_event;
8200 
8201 	/* next set own bit for the adapter and copy over command word */
8202 	mbx->mbxOwner = OWN_CHIP;
8203 
8204 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8205 		/* Populate mbox extension offset word. */
8206 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8207 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8208 				= (uint8_t *)phba->mbox_ext
8209 				  - (uint8_t *)phba->mbox;
8210 		}
8211 
8212 		/* Copy the mailbox extension data */
8213 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8214 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8215 					      (uint8_t *)phba->mbox_ext,
8216 					      pmbox->in_ext_byte_len);
8217 		}
8218 		/* Copy command data to host SLIM area */
8219 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8220 	} else {
8221 		/* Populate mbox extension offset word. */
8222 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8223 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8224 				= MAILBOX_HBA_EXT_OFFSET;
8225 
8226 		/* Copy the mailbox extension data */
8227 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8228 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8229 				MAILBOX_HBA_EXT_OFFSET,
8230 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8231 
8232 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8233 			/* copy command data into host mbox for cmpl */
8234 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8235 					      MAILBOX_CMD_SIZE);
8236 
8237 		/* First copy mbox command data to HBA SLIM, skip past first
8238 		   word */
8239 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8240 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8241 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8242 
8243 		/* Next copy over first word, with mbxOwner set */
8244 		ldata = *((uint32_t *)mbx);
8245 		to_slim = phba->MBslimaddr;
8246 		writel(ldata, to_slim);
8247 		readl(to_slim); /* flush */
8248 
8249 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8250 			/* switch over to host mailbox */
8251 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8252 	}
8253 
8254 	wmb();
8255 
8256 	switch (flag) {
8257 	case MBX_NOWAIT:
8258 		/* Set up reference to mailbox command */
8259 		psli->mbox_active = pmbox;
8260 		/* Interrupt board to do it */
8261 		writel(CA_MBATT, phba->CAregaddr);
8262 		readl(phba->CAregaddr); /* flush */
8263 		/* Don't wait for it to finish, just return */
8264 		break;
8265 
8266 	case MBX_POLL:
8267 		/* Set up null reference to mailbox command */
8268 		psli->mbox_active = NULL;
8269 		/* Interrupt board to do it */
8270 		writel(CA_MBATT, phba->CAregaddr);
8271 		readl(phba->CAregaddr); /* flush */
8272 
8273 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8274 			/* First read mbox status word */
8275 			word0 = *((uint32_t *)phba->mbox);
8276 			word0 = le32_to_cpu(word0);
8277 		} else {
8278 			/* First read mbox status word */
8279 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8280 				spin_unlock_irqrestore(&phba->hbalock,
8281 						       drvr_flag);
8282 				goto out_not_finished;
8283 			}
8284 		}
8285 
8286 		/* Read the HBA Host Attention Register */
8287 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8288 			spin_unlock_irqrestore(&phba->hbalock,
8289 						       drvr_flag);
8290 			goto out_not_finished;
8291 		}
8292 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8293 							1000) + jiffies;
8294 		i = 0;
8295 		/* Wait for command to complete */
8296 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8297 		       (!(ha_copy & HA_MBATT) &&
8298 			(phba->link_state > LPFC_WARM_START))) {
8299 			if (time_after(jiffies, timeout)) {
8300 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8301 				spin_unlock_irqrestore(&phba->hbalock,
8302 						       drvr_flag);
8303 				goto out_not_finished;
8304 			}
8305 
8306 			/* Check if we took a mbox interrupt while we were
8307 			   polling */
8308 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8309 			    && (evtctr != psli->slistat.mbox_event))
8310 				break;
8311 
8312 			if (i++ > 10) {
8313 				spin_unlock_irqrestore(&phba->hbalock,
8314 						       drvr_flag);
8315 				msleep(1);
8316 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8317 			}
8318 
8319 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8320 				/* First copy command data */
8321 				word0 = *((uint32_t *)phba->mbox);
8322 				word0 = le32_to_cpu(word0);
8323 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8324 					MAILBOX_t *slimmb;
8325 					uint32_t slimword0;
8326 					/* Check real SLIM for any errors */
8327 					slimword0 = readl(phba->MBslimaddr);
8328 					slimmb = (MAILBOX_t *) & slimword0;
8329 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8330 					    && slimmb->mbxStatus) {
8331 						psli->sli_flag &=
8332 						    ~LPFC_SLI_ACTIVE;
8333 						word0 = slimword0;
8334 					}
8335 				}
8336 			} else {
8337 				/* First copy command data */
8338 				word0 = readl(phba->MBslimaddr);
8339 			}
8340 			/* Read the HBA Host Attention Register */
8341 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8342 				spin_unlock_irqrestore(&phba->hbalock,
8343 						       drvr_flag);
8344 				goto out_not_finished;
8345 			}
8346 		}
8347 
8348 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8349 			/* copy results back to user */
8350 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8351 						MAILBOX_CMD_SIZE);
8352 			/* Copy the mailbox extension data */
8353 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8354 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8355 						      pmbox->ctx_buf,
8356 						      pmbox->out_ext_byte_len);
8357 			}
8358 		} else {
8359 			/* First copy command data */
8360 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8361 						MAILBOX_CMD_SIZE);
8362 			/* Copy the mailbox extension data */
8363 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8364 				lpfc_memcpy_from_slim(
8365 					pmbox->ctx_buf,
8366 					phba->MBslimaddr +
8367 					MAILBOX_HBA_EXT_OFFSET,
8368 					pmbox->out_ext_byte_len);
8369 			}
8370 		}
8371 
8372 		writel(HA_MBATT, phba->HAregaddr);
8373 		readl(phba->HAregaddr); /* flush */
8374 
8375 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8376 		status = mbx->mbxStatus;
8377 	}
8378 
8379 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8380 	return status;
8381 
8382 out_not_finished:
8383 	if (processing_queue) {
8384 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8385 		lpfc_mbox_cmpl_put(phba, pmbox);
8386 	}
8387 	return MBX_NOT_FINISHED;
8388 }
8389 
8390 /**
8391  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8392  * @phba: Pointer to HBA context object.
8393  *
8394  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8395  * the driver internal pending mailbox queue. It will then try to wait out the
8396  * possible outstanding mailbox command before return.
8397  *
8398  * Returns:
8399  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8400  * 	the outstanding mailbox command timed out.
8401  **/
8402 static int
8403 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8404 {
8405 	struct lpfc_sli *psli = &phba->sli;
8406 	int rc = 0;
8407 	unsigned long timeout = 0;
8408 
8409 	/* Mark the asynchronous mailbox command posting as blocked */
8410 	spin_lock_irq(&phba->hbalock);
8411 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8412 	/* Determine how long we might wait for the active mailbox
8413 	 * command to be gracefully completed by firmware.
8414 	 */
8415 	if (phba->sli.mbox_active)
8416 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8417 						phba->sli.mbox_active) *
8418 						1000) + jiffies;
8419 	spin_unlock_irq(&phba->hbalock);
8420 
8421 	/* Make sure the mailbox is really active */
8422 	if (timeout)
8423 		lpfc_sli4_process_missed_mbox_completions(phba);
8424 
8425 	/* Wait for the outstnading mailbox command to complete */
8426 	while (phba->sli.mbox_active) {
8427 		/* Check active mailbox complete status every 2ms */
8428 		msleep(2);
8429 		if (time_after(jiffies, timeout)) {
8430 			/* Timeout, marked the outstanding cmd not complete */
8431 			rc = 1;
8432 			break;
8433 		}
8434 	}
8435 
8436 	/* Can not cleanly block async mailbox command, fails it */
8437 	if (rc) {
8438 		spin_lock_irq(&phba->hbalock);
8439 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8440 		spin_unlock_irq(&phba->hbalock);
8441 	}
8442 	return rc;
8443 }
8444 
8445 /**
8446  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8447  * @phba: Pointer to HBA context object.
8448  *
8449  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8450  * commands from the driver internal pending mailbox queue. It makes sure
8451  * that there is no outstanding mailbox command before resuming posting
8452  * asynchronous mailbox commands. If, for any reason, there is outstanding
8453  * mailbox command, it will try to wait it out before resuming asynchronous
8454  * mailbox command posting.
8455  **/
8456 static void
8457 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8458 {
8459 	struct lpfc_sli *psli = &phba->sli;
8460 
8461 	spin_lock_irq(&phba->hbalock);
8462 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8463 		/* Asynchronous mailbox posting is not blocked, do nothing */
8464 		spin_unlock_irq(&phba->hbalock);
8465 		return;
8466 	}
8467 
8468 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8469 	 * successful or timeout, after timing-out the outstanding mailbox
8470 	 * command shall always be removed, so just unblock posting async
8471 	 * mailbox command and resume
8472 	 */
8473 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8474 	spin_unlock_irq(&phba->hbalock);
8475 
8476 	/* wake up worker thread to post asynchronlous mailbox command */
8477 	lpfc_worker_wake_up(phba);
8478 }
8479 
8480 /**
8481  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8482  * @phba: Pointer to HBA context object.
8483  * @mboxq: Pointer to mailbox object.
8484  *
8485  * The function waits for the bootstrap mailbox register ready bit from
8486  * port for twice the regular mailbox command timeout value.
8487  *
8488  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8489  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8490  **/
8491 static int
8492 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8493 {
8494 	uint32_t db_ready;
8495 	unsigned long timeout;
8496 	struct lpfc_register bmbx_reg;
8497 
8498 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8499 				   * 1000) + jiffies;
8500 
8501 	do {
8502 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8503 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8504 		if (!db_ready)
8505 			mdelay(2);
8506 
8507 		if (time_after(jiffies, timeout))
8508 			return MBXERR_ERROR;
8509 	} while (!db_ready);
8510 
8511 	return 0;
8512 }
8513 
8514 /**
8515  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8516  * @phba: Pointer to HBA context object.
8517  * @mboxq: Pointer to mailbox object.
8518  *
8519  * The function posts a mailbox to the port.  The mailbox is expected
8520  * to be comletely filled in and ready for the port to operate on it.
8521  * This routine executes a synchronous completion operation on the
8522  * mailbox by polling for its completion.
8523  *
8524  * The caller must not be holding any locks when calling this routine.
8525  *
8526  * Returns:
8527  *	MBX_SUCCESS - mailbox posted successfully
8528  *	Any of the MBX error values.
8529  **/
8530 static int
8531 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8532 {
8533 	int rc = MBX_SUCCESS;
8534 	unsigned long iflag;
8535 	uint32_t mcqe_status;
8536 	uint32_t mbx_cmnd;
8537 	struct lpfc_sli *psli = &phba->sli;
8538 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8539 	struct lpfc_bmbx_create *mbox_rgn;
8540 	struct dma_address *dma_address;
8541 
8542 	/*
8543 	 * Only one mailbox can be active to the bootstrap mailbox region
8544 	 * at a time and there is no queueing provided.
8545 	 */
8546 	spin_lock_irqsave(&phba->hbalock, iflag);
8547 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8548 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8549 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8550 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8551 				"cannot issue Data: x%x x%x\n",
8552 				mboxq->vport ? mboxq->vport->vpi : 0,
8553 				mboxq->u.mb.mbxCommand,
8554 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8555 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8556 				psli->sli_flag, MBX_POLL);
8557 		return MBXERR_ERROR;
8558 	}
8559 	/* The server grabs the token and owns it until release */
8560 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8561 	phba->sli.mbox_active = mboxq;
8562 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8563 
8564 	/* wait for bootstrap mbox register for readyness */
8565 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8566 	if (rc)
8567 		goto exit;
8568 	/*
8569 	 * Initialize the bootstrap memory region to avoid stale data areas
8570 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8571 	 * the bmbx mailbox region.
8572 	 */
8573 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8574 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8575 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8576 			       sizeof(struct lpfc_mqe));
8577 
8578 	/* Post the high mailbox dma address to the port and wait for ready. */
8579 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8580 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8581 
8582 	/* wait for bootstrap mbox register for hi-address write done */
8583 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8584 	if (rc)
8585 		goto exit;
8586 
8587 	/* Post the low mailbox dma address to the port. */
8588 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8589 
8590 	/* wait for bootstrap mbox register for low address write done */
8591 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8592 	if (rc)
8593 		goto exit;
8594 
8595 	/*
8596 	 * Read the CQ to ensure the mailbox has completed.
8597 	 * If so, update the mailbox status so that the upper layers
8598 	 * can complete the request normally.
8599 	 */
8600 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8601 			       sizeof(struct lpfc_mqe));
8602 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8603 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8604 			       sizeof(struct lpfc_mcqe));
8605 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8606 	/*
8607 	 * When the CQE status indicates a failure and the mailbox status
8608 	 * indicates success then copy the CQE status into the mailbox status
8609 	 * (and prefix it with x4000).
8610 	 */
8611 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8612 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8613 			bf_set(lpfc_mqe_status, mb,
8614 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8615 		rc = MBXERR_ERROR;
8616 	} else
8617 		lpfc_sli4_swap_str(phba, mboxq);
8618 
8619 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8620 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8621 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8622 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8623 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8624 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8625 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8626 			bf_get(lpfc_mqe_status, mb),
8627 			mb->un.mb_words[0], mb->un.mb_words[1],
8628 			mb->un.mb_words[2], mb->un.mb_words[3],
8629 			mb->un.mb_words[4], mb->un.mb_words[5],
8630 			mb->un.mb_words[6], mb->un.mb_words[7],
8631 			mb->un.mb_words[8], mb->un.mb_words[9],
8632 			mb->un.mb_words[10], mb->un.mb_words[11],
8633 			mb->un.mb_words[12], mboxq->mcqe.word0,
8634 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8635 			mboxq->mcqe.trailer);
8636 exit:
8637 	/* We are holding the token, no needed for lock when release */
8638 	spin_lock_irqsave(&phba->hbalock, iflag);
8639 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8640 	phba->sli.mbox_active = NULL;
8641 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8642 	return rc;
8643 }
8644 
8645 /**
8646  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8647  * @phba: Pointer to HBA context object.
8648  * @pmbox: Pointer to mailbox object.
8649  * @flag: Flag indicating how the mailbox need to be processed.
8650  *
8651  * This function is called by discovery code and HBA management code to submit
8652  * a mailbox command to firmware with SLI-4 interface spec.
8653  *
8654  * Return codes the caller owns the mailbox command after the return of the
8655  * function.
8656  **/
8657 static int
8658 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8659 		       uint32_t flag)
8660 {
8661 	struct lpfc_sli *psli = &phba->sli;
8662 	unsigned long iflags;
8663 	int rc;
8664 
8665 	/* dump from issue mailbox command if setup */
8666 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8667 
8668 	rc = lpfc_mbox_dev_check(phba);
8669 	if (unlikely(rc)) {
8670 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8671 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8672 				"cannot issue Data: x%x x%x\n",
8673 				mboxq->vport ? mboxq->vport->vpi : 0,
8674 				mboxq->u.mb.mbxCommand,
8675 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8676 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8677 				psli->sli_flag, flag);
8678 		goto out_not_finished;
8679 	}
8680 
8681 	/* Detect polling mode and jump to a handler */
8682 	if (!phba->sli4_hba.intr_enable) {
8683 		if (flag == MBX_POLL)
8684 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8685 		else
8686 			rc = -EIO;
8687 		if (rc != MBX_SUCCESS)
8688 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8689 					"(%d):2541 Mailbox command x%x "
8690 					"(x%x/x%x) failure: "
8691 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8692 					"Data: x%x x%x\n,",
8693 					mboxq->vport ? mboxq->vport->vpi : 0,
8694 					mboxq->u.mb.mbxCommand,
8695 					lpfc_sli_config_mbox_subsys_get(phba,
8696 									mboxq),
8697 					lpfc_sli_config_mbox_opcode_get(phba,
8698 									mboxq),
8699 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8700 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8701 					bf_get(lpfc_mcqe_ext_status,
8702 					       &mboxq->mcqe),
8703 					psli->sli_flag, flag);
8704 		return rc;
8705 	} else if (flag == MBX_POLL) {
8706 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8707 				"(%d):2542 Try to issue mailbox command "
8708 				"x%x (x%x/x%x) synchronously ahead of async "
8709 				"mailbox command queue: x%x x%x\n",
8710 				mboxq->vport ? mboxq->vport->vpi : 0,
8711 				mboxq->u.mb.mbxCommand,
8712 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8713 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8714 				psli->sli_flag, flag);
8715 		/* Try to block the asynchronous mailbox posting */
8716 		rc = lpfc_sli4_async_mbox_block(phba);
8717 		if (!rc) {
8718 			/* Successfully blocked, now issue sync mbox cmd */
8719 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8720 			if (rc != MBX_SUCCESS)
8721 				lpfc_printf_log(phba, KERN_WARNING,
8722 					LOG_MBOX | LOG_SLI,
8723 					"(%d):2597 Sync Mailbox command "
8724 					"x%x (x%x/x%x) failure: "
8725 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8726 					"Data: x%x x%x\n,",
8727 					mboxq->vport ? mboxq->vport->vpi : 0,
8728 					mboxq->u.mb.mbxCommand,
8729 					lpfc_sli_config_mbox_subsys_get(phba,
8730 									mboxq),
8731 					lpfc_sli_config_mbox_opcode_get(phba,
8732 									mboxq),
8733 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8734 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8735 					bf_get(lpfc_mcqe_ext_status,
8736 					       &mboxq->mcqe),
8737 					psli->sli_flag, flag);
8738 			/* Unblock the async mailbox posting afterward */
8739 			lpfc_sli4_async_mbox_unblock(phba);
8740 		}
8741 		return rc;
8742 	}
8743 
8744 	/* Now, interrupt mode asynchrous mailbox command */
8745 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8746 	if (rc) {
8747 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8748 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8749 				"cannot issue Data: x%x x%x\n",
8750 				mboxq->vport ? mboxq->vport->vpi : 0,
8751 				mboxq->u.mb.mbxCommand,
8752 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8753 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8754 				psli->sli_flag, flag);
8755 		goto out_not_finished;
8756 	}
8757 
8758 	/* Put the mailbox command to the driver internal FIFO */
8759 	psli->slistat.mbox_busy++;
8760 	spin_lock_irqsave(&phba->hbalock, iflags);
8761 	lpfc_mbox_put(phba, mboxq);
8762 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8763 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8764 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8765 			"x%x (x%x/x%x) x%x x%x x%x\n",
8766 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8767 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8768 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8769 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8770 			phba->pport->port_state,
8771 			psli->sli_flag, MBX_NOWAIT);
8772 	/* Wake up worker thread to transport mailbox command from head */
8773 	lpfc_worker_wake_up(phba);
8774 
8775 	return MBX_BUSY;
8776 
8777 out_not_finished:
8778 	return MBX_NOT_FINISHED;
8779 }
8780 
8781 /**
8782  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8783  * @phba: Pointer to HBA context object.
8784  *
8785  * This function is called by worker thread to send a mailbox command to
8786  * SLI4 HBA firmware.
8787  *
8788  **/
8789 int
8790 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8791 {
8792 	struct lpfc_sli *psli = &phba->sli;
8793 	LPFC_MBOXQ_t *mboxq;
8794 	int rc = MBX_SUCCESS;
8795 	unsigned long iflags;
8796 	struct lpfc_mqe *mqe;
8797 	uint32_t mbx_cmnd;
8798 
8799 	/* Check interrupt mode before post async mailbox command */
8800 	if (unlikely(!phba->sli4_hba.intr_enable))
8801 		return MBX_NOT_FINISHED;
8802 
8803 	/* Check for mailbox command service token */
8804 	spin_lock_irqsave(&phba->hbalock, iflags);
8805 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8806 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8807 		return MBX_NOT_FINISHED;
8808 	}
8809 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8810 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8811 		return MBX_NOT_FINISHED;
8812 	}
8813 	if (unlikely(phba->sli.mbox_active)) {
8814 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8815 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8816 				"0384 There is pending active mailbox cmd\n");
8817 		return MBX_NOT_FINISHED;
8818 	}
8819 	/* Take the mailbox command service token */
8820 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8821 
8822 	/* Get the next mailbox command from head of queue */
8823 	mboxq = lpfc_mbox_get(phba);
8824 
8825 	/* If no more mailbox command waiting for post, we're done */
8826 	if (!mboxq) {
8827 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8828 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8829 		return MBX_SUCCESS;
8830 	}
8831 	phba->sli.mbox_active = mboxq;
8832 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8833 
8834 	/* Check device readiness for posting mailbox command */
8835 	rc = lpfc_mbox_dev_check(phba);
8836 	if (unlikely(rc))
8837 		/* Driver clean routine will clean up pending mailbox */
8838 		goto out_not_finished;
8839 
8840 	/* Prepare the mbox command to be posted */
8841 	mqe = &mboxq->u.mqe;
8842 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8843 
8844 	/* Start timer for the mbox_tmo and log some mailbox post messages */
8845 	mod_timer(&psli->mbox_tmo, (jiffies +
8846 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8847 
8848 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8849 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8850 			"x%x x%x\n",
8851 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8852 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8853 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8854 			phba->pport->port_state, psli->sli_flag);
8855 
8856 	if (mbx_cmnd != MBX_HEARTBEAT) {
8857 		if (mboxq->vport) {
8858 			lpfc_debugfs_disc_trc(mboxq->vport,
8859 				LPFC_DISC_TRC_MBOX_VPORT,
8860 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8861 				mbx_cmnd, mqe->un.mb_words[0],
8862 				mqe->un.mb_words[1]);
8863 		} else {
8864 			lpfc_debugfs_disc_trc(phba->pport,
8865 				LPFC_DISC_TRC_MBOX,
8866 				"MBOX Send: cmd:x%x mb:x%x x%x",
8867 				mbx_cmnd, mqe->un.mb_words[0],
8868 				mqe->un.mb_words[1]);
8869 		}
8870 	}
8871 	psli->slistat.mbox_cmd++;
8872 
8873 	/* Post the mailbox command to the port */
8874 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8875 	if (rc != MBX_SUCCESS) {
8876 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8877 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
8878 				"cannot issue Data: x%x x%x\n",
8879 				mboxq->vport ? mboxq->vport->vpi : 0,
8880 				mboxq->u.mb.mbxCommand,
8881 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8882 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8883 				psli->sli_flag, MBX_NOWAIT);
8884 		goto out_not_finished;
8885 	}
8886 
8887 	return rc;
8888 
8889 out_not_finished:
8890 	spin_lock_irqsave(&phba->hbalock, iflags);
8891 	if (phba->sli.mbox_active) {
8892 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8893 		__lpfc_mbox_cmpl_put(phba, mboxq);
8894 		/* Release the token */
8895 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8896 		phba->sli.mbox_active = NULL;
8897 	}
8898 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8899 
8900 	return MBX_NOT_FINISHED;
8901 }
8902 
8903 /**
8904  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8905  * @phba: Pointer to HBA context object.
8906  * @pmbox: Pointer to mailbox object.
8907  * @flag: Flag indicating how the mailbox need to be processed.
8908  *
8909  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8910  * the API jump table function pointer from the lpfc_hba struct.
8911  *
8912  * Return codes the caller owns the mailbox command after the return of the
8913  * function.
8914  **/
8915 int
8916 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8917 {
8918 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8919 }
8920 
8921 /**
8922  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8923  * @phba: The hba struct for which this call is being executed.
8924  * @dev_grp: The HBA PCI-Device group number.
8925  *
8926  * This routine sets up the mbox interface API function jump table in @phba
8927  * struct.
8928  * Returns: 0 - success, -ENODEV - failure.
8929  **/
8930 int
8931 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8932 {
8933 
8934 	switch (dev_grp) {
8935 	case LPFC_PCI_DEV_LP:
8936 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8937 		phba->lpfc_sli_handle_slow_ring_event =
8938 				lpfc_sli_handle_slow_ring_event_s3;
8939 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8940 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8941 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8942 		break;
8943 	case LPFC_PCI_DEV_OC:
8944 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8945 		phba->lpfc_sli_handle_slow_ring_event =
8946 				lpfc_sli_handle_slow_ring_event_s4;
8947 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8948 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8949 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8950 		break;
8951 	default:
8952 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8953 				"1420 Invalid HBA PCI-device group: 0x%x\n",
8954 				dev_grp);
8955 		return -ENODEV;
8956 		break;
8957 	}
8958 	return 0;
8959 }
8960 
8961 /**
8962  * __lpfc_sli_ringtx_put - Add an iocb to the txq
8963  * @phba: Pointer to HBA context object.
8964  * @pring: Pointer to driver SLI ring object.
8965  * @piocb: Pointer to address of newly added command iocb.
8966  *
8967  * This function is called with hbalock held to add a command
8968  * iocb to the txq when SLI layer cannot submit the command iocb
8969  * to the ring.
8970  **/
8971 void
8972 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8973 		    struct lpfc_iocbq *piocb)
8974 {
8975 	lockdep_assert_held(&phba->hbalock);
8976 	/* Insert the caller's iocb in the txq tail for later processing. */
8977 	list_add_tail(&piocb->list, &pring->txq);
8978 }
8979 
8980 /**
8981  * lpfc_sli_next_iocb - Get the next iocb in the txq
8982  * @phba: Pointer to HBA context object.
8983  * @pring: Pointer to driver SLI ring object.
8984  * @piocb: Pointer to address of newly added command iocb.
8985  *
8986  * This function is called with hbalock held before a new
8987  * iocb is submitted to the firmware. This function checks
8988  * txq to flush the iocbs in txq to Firmware before
8989  * submitting new iocbs to the Firmware.
8990  * If there are iocbs in the txq which need to be submitted
8991  * to firmware, lpfc_sli_next_iocb returns the first element
8992  * of the txq after dequeuing it from txq.
8993  * If there is no iocb in the txq then the function will return
8994  * *piocb and *piocb is set to NULL. Caller needs to check
8995  * *piocb to find if there are more commands in the txq.
8996  **/
8997 static struct lpfc_iocbq *
8998 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8999 		   struct lpfc_iocbq **piocb)
9000 {
9001 	struct lpfc_iocbq * nextiocb;
9002 
9003 	lockdep_assert_held(&phba->hbalock);
9004 
9005 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9006 	if (!nextiocb) {
9007 		nextiocb = *piocb;
9008 		*piocb = NULL;
9009 	}
9010 
9011 	return nextiocb;
9012 }
9013 
9014 /**
9015  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9016  * @phba: Pointer to HBA context object.
9017  * @ring_number: SLI ring number to issue iocb on.
9018  * @piocb: Pointer to command iocb.
9019  * @flag: Flag indicating if this command can be put into txq.
9020  *
9021  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9022  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9023  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9024  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9025  * this function allows only iocbs for posting buffers. This function finds
9026  * next available slot in the command ring and posts the command to the
9027  * available slot and writes the port attention register to request HBA start
9028  * processing new iocb. If there is no slot available in the ring and
9029  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9030  * the function returns IOCB_BUSY.
9031  *
9032  * This function is called with hbalock held. The function will return success
9033  * after it successfully submit the iocb to firmware or after adding to the
9034  * txq.
9035  **/
9036 static int
9037 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9038 		    struct lpfc_iocbq *piocb, uint32_t flag)
9039 {
9040 	struct lpfc_iocbq *nextiocb;
9041 	IOCB_t *iocb;
9042 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9043 
9044 	lockdep_assert_held(&phba->hbalock);
9045 
9046 	if (piocb->iocb_cmpl && (!piocb->vport) &&
9047 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9048 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9049 		lpfc_printf_log(phba, KERN_ERR,
9050 				LOG_SLI | LOG_VPORT,
9051 				"1807 IOCB x%x failed. No vport\n",
9052 				piocb->iocb.ulpCommand);
9053 		dump_stack();
9054 		return IOCB_ERROR;
9055 	}
9056 
9057 
9058 	/* If the PCI channel is in offline state, do not post iocbs. */
9059 	if (unlikely(pci_channel_offline(phba->pcidev)))
9060 		return IOCB_ERROR;
9061 
9062 	/* If HBA has a deferred error attention, fail the iocb. */
9063 	if (unlikely(phba->hba_flag & DEFER_ERATT))
9064 		return IOCB_ERROR;
9065 
9066 	/*
9067 	 * We should never get an IOCB if we are in a < LINK_DOWN state
9068 	 */
9069 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9070 		return IOCB_ERROR;
9071 
9072 	/*
9073 	 * Check to see if we are blocking IOCB processing because of a
9074 	 * outstanding event.
9075 	 */
9076 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9077 		goto iocb_busy;
9078 
9079 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9080 		/*
9081 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9082 		 * can be issued if the link is not up.
9083 		 */
9084 		switch (piocb->iocb.ulpCommand) {
9085 		case CMD_GEN_REQUEST64_CR:
9086 		case CMD_GEN_REQUEST64_CX:
9087 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9088 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9089 					FC_RCTL_DD_UNSOL_CMD) ||
9090 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9091 					MENLO_TRANSPORT_TYPE))
9092 
9093 				goto iocb_busy;
9094 			break;
9095 		case CMD_QUE_RING_BUF_CN:
9096 		case CMD_QUE_RING_BUF64_CN:
9097 			/*
9098 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9099 			 * completion, iocb_cmpl MUST be 0.
9100 			 */
9101 			if (piocb->iocb_cmpl)
9102 				piocb->iocb_cmpl = NULL;
9103 			/*FALLTHROUGH*/
9104 		case CMD_CREATE_XRI_CR:
9105 		case CMD_CLOSE_XRI_CN:
9106 		case CMD_CLOSE_XRI_CX:
9107 			break;
9108 		default:
9109 			goto iocb_busy;
9110 		}
9111 
9112 	/*
9113 	 * For FCP commands, we must be in a state where we can process link
9114 	 * attention events.
9115 	 */
9116 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9117 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9118 		goto iocb_busy;
9119 	}
9120 
9121 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9122 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9123 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9124 
9125 	if (iocb)
9126 		lpfc_sli_update_ring(phba, pring);
9127 	else
9128 		lpfc_sli_update_full_ring(phba, pring);
9129 
9130 	if (!piocb)
9131 		return IOCB_SUCCESS;
9132 
9133 	goto out_busy;
9134 
9135  iocb_busy:
9136 	pring->stats.iocb_cmd_delay++;
9137 
9138  out_busy:
9139 
9140 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9141 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9142 		return IOCB_SUCCESS;
9143 	}
9144 
9145 	return IOCB_BUSY;
9146 }
9147 
9148 /**
9149  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9150  * @phba: Pointer to HBA context object.
9151  * @piocb: Pointer to command iocb.
9152  * @sglq: Pointer to the scatter gather queue object.
9153  *
9154  * This routine converts the bpl or bde that is in the IOCB
9155  * to a sgl list for the sli4 hardware. The physical address
9156  * of the bpl/bde is converted back to a virtual address.
9157  * If the IOCB contains a BPL then the list of BDE's is
9158  * converted to sli4_sge's. If the IOCB contains a single
9159  * BDE then it is converted to a single sli_sge.
9160  * The IOCB is still in cpu endianess so the contents of
9161  * the bpl can be used without byte swapping.
9162  *
9163  * Returns valid XRI = Success, NO_XRI = Failure.
9164 **/
9165 static uint16_t
9166 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9167 		struct lpfc_sglq *sglq)
9168 {
9169 	uint16_t xritag = NO_XRI;
9170 	struct ulp_bde64 *bpl = NULL;
9171 	struct ulp_bde64 bde;
9172 	struct sli4_sge *sgl  = NULL;
9173 	struct lpfc_dmabuf *dmabuf;
9174 	IOCB_t *icmd;
9175 	int numBdes = 0;
9176 	int i = 0;
9177 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9178 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9179 
9180 	if (!piocbq || !sglq)
9181 		return xritag;
9182 
9183 	sgl  = (struct sli4_sge *)sglq->sgl;
9184 	icmd = &piocbq->iocb;
9185 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9186 		return sglq->sli4_xritag;
9187 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9188 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9189 				sizeof(struct ulp_bde64);
9190 		/* The addrHigh and addrLow fields within the IOCB
9191 		 * have not been byteswapped yet so there is no
9192 		 * need to swap them back.
9193 		 */
9194 		if (piocbq->context3)
9195 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9196 		else
9197 			return xritag;
9198 
9199 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9200 		if (!bpl)
9201 			return xritag;
9202 
9203 		for (i = 0; i < numBdes; i++) {
9204 			/* Should already be byte swapped. */
9205 			sgl->addr_hi = bpl->addrHigh;
9206 			sgl->addr_lo = bpl->addrLow;
9207 
9208 			sgl->word2 = le32_to_cpu(sgl->word2);
9209 			if ((i+1) == numBdes)
9210 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9211 			else
9212 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9213 			/* swap the size field back to the cpu so we
9214 			 * can assign it to the sgl.
9215 			 */
9216 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9217 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9218 			/* The offsets in the sgl need to be accumulated
9219 			 * separately for the request and reply lists.
9220 			 * The request is always first, the reply follows.
9221 			 */
9222 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9223 				/* add up the reply sg entries */
9224 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9225 					inbound++;
9226 				/* first inbound? reset the offset */
9227 				if (inbound == 1)
9228 					offset = 0;
9229 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9230 				bf_set(lpfc_sli4_sge_type, sgl,
9231 					LPFC_SGE_TYPE_DATA);
9232 				offset += bde.tus.f.bdeSize;
9233 			}
9234 			sgl->word2 = cpu_to_le32(sgl->word2);
9235 			bpl++;
9236 			sgl++;
9237 		}
9238 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9239 			/* The addrHigh and addrLow fields of the BDE have not
9240 			 * been byteswapped yet so they need to be swapped
9241 			 * before putting them in the sgl.
9242 			 */
9243 			sgl->addr_hi =
9244 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9245 			sgl->addr_lo =
9246 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9247 			sgl->word2 = le32_to_cpu(sgl->word2);
9248 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9249 			sgl->word2 = cpu_to_le32(sgl->word2);
9250 			sgl->sge_len =
9251 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9252 	}
9253 	return sglq->sli4_xritag;
9254 }
9255 
9256 /**
9257  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9258  * @phba: Pointer to HBA context object.
9259  * @piocb: Pointer to command iocb.
9260  * @wqe: Pointer to the work queue entry.
9261  *
9262  * This routine converts the iocb command to its Work Queue Entry
9263  * equivalent. The wqe pointer should not have any fields set when
9264  * this routine is called because it will memcpy over them.
9265  * This routine does not set the CQ_ID or the WQEC bits in the
9266  * wqe.
9267  *
9268  * Returns: 0 = Success, IOCB_ERROR = Failure.
9269  **/
9270 static int
9271 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9272 		union lpfc_wqe128 *wqe)
9273 {
9274 	uint32_t xmit_len = 0, total_len = 0;
9275 	uint8_t ct = 0;
9276 	uint32_t fip;
9277 	uint32_t abort_tag;
9278 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9279 	uint8_t cmnd;
9280 	uint16_t xritag;
9281 	uint16_t abrt_iotag;
9282 	struct lpfc_iocbq *abrtiocbq;
9283 	struct ulp_bde64 *bpl = NULL;
9284 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9285 	int numBdes, i;
9286 	struct ulp_bde64 bde;
9287 	struct lpfc_nodelist *ndlp;
9288 	uint32_t *pcmd;
9289 	uint32_t if_type;
9290 
9291 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9292 	/* The fcp commands will set command type */
9293 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9294 		command_type = FCP_COMMAND;
9295 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9296 		command_type = ELS_COMMAND_FIP;
9297 	else
9298 		command_type = ELS_COMMAND_NON_FIP;
9299 
9300 	if (phba->fcp_embed_io)
9301 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9302 	/* Some of the fields are in the right position already */
9303 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9304 	/* The ct field has moved so reset */
9305 	wqe->generic.wqe_com.word7 = 0;
9306 	wqe->generic.wqe_com.word10 = 0;
9307 
9308 	abort_tag = (uint32_t) iocbq->iotag;
9309 	xritag = iocbq->sli4_xritag;
9310 	/* words0-2 bpl convert bde */
9311 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9312 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9313 				sizeof(struct ulp_bde64);
9314 		bpl  = (struct ulp_bde64 *)
9315 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9316 		if (!bpl)
9317 			return IOCB_ERROR;
9318 
9319 		/* Should already be byte swapped. */
9320 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9321 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9322 		/* swap the size field back to the cpu so we
9323 		 * can assign it to the sgl.
9324 		 */
9325 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9326 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9327 		total_len = 0;
9328 		for (i = 0; i < numBdes; i++) {
9329 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9330 			total_len += bde.tus.f.bdeSize;
9331 		}
9332 	} else
9333 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9334 
9335 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9336 	cmnd = iocbq->iocb.ulpCommand;
9337 
9338 	switch (iocbq->iocb.ulpCommand) {
9339 	case CMD_ELS_REQUEST64_CR:
9340 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9341 			ndlp = iocbq->context_un.ndlp;
9342 		else
9343 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9344 		if (!iocbq->iocb.ulpLe) {
9345 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9346 				"2007 Only Limited Edition cmd Format"
9347 				" supported 0x%x\n",
9348 				iocbq->iocb.ulpCommand);
9349 			return IOCB_ERROR;
9350 		}
9351 
9352 		wqe->els_req.payload_len = xmit_len;
9353 		/* Els_reguest64 has a TMO */
9354 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9355 			iocbq->iocb.ulpTimeout);
9356 		/* Need a VF for word 4 set the vf bit*/
9357 		bf_set(els_req64_vf, &wqe->els_req, 0);
9358 		/* And a VFID for word 12 */
9359 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9360 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9361 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9362 		       iocbq->iocb.ulpContext);
9363 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9364 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9365 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9366 		if (command_type == ELS_COMMAND_FIP)
9367 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9368 					>> LPFC_FIP_ELS_ID_SHIFT);
9369 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9370 					iocbq->context2)->virt);
9371 		if_type = bf_get(lpfc_sli_intf_if_type,
9372 					&phba->sli4_hba.sli_intf);
9373 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9374 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9375 				*pcmd == ELS_CMD_SCR ||
9376 				*pcmd == ELS_CMD_RSCN_XMT ||
9377 				*pcmd == ELS_CMD_FDISC ||
9378 				*pcmd == ELS_CMD_LOGO ||
9379 				*pcmd == ELS_CMD_PLOGI)) {
9380 				bf_set(els_req64_sp, &wqe->els_req, 1);
9381 				bf_set(els_req64_sid, &wqe->els_req,
9382 					iocbq->vport->fc_myDID);
9383 				if ((*pcmd == ELS_CMD_FLOGI) &&
9384 					!(phba->fc_topology ==
9385 						LPFC_TOPOLOGY_LOOP))
9386 					bf_set(els_req64_sid, &wqe->els_req, 0);
9387 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9388 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9389 					phba->vpi_ids[iocbq->vport->vpi]);
9390 			} else if (pcmd && iocbq->context1) {
9391 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9392 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9393 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9394 			}
9395 		}
9396 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9397 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9398 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9399 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9400 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9401 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9402 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9403 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9404 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9405 		break;
9406 	case CMD_XMIT_SEQUENCE64_CX:
9407 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9408 		       iocbq->iocb.un.ulpWord[3]);
9409 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9410 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9411 		/* The entire sequence is transmitted for this IOCB */
9412 		xmit_len = total_len;
9413 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9414 		if (phba->link_flag & LS_LOOPBACK_MODE)
9415 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9416 		/* fall through */
9417 	case CMD_XMIT_SEQUENCE64_CR:
9418 		/* word3 iocb=io_tag32 wqe=reserved */
9419 		wqe->xmit_sequence.rsvd3 = 0;
9420 		/* word4 relative_offset memcpy */
9421 		/* word5 r_ctl/df_ctl memcpy */
9422 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9423 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9424 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9425 		       LPFC_WQE_IOD_WRITE);
9426 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9427 		       LPFC_WQE_LENLOC_WORD12);
9428 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9429 		wqe->xmit_sequence.xmit_len = xmit_len;
9430 		command_type = OTHER_COMMAND;
9431 		break;
9432 	case CMD_XMIT_BCAST64_CN:
9433 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9434 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9435 		/* word4 iocb=rsvd wqe=rsvd */
9436 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9437 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9438 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9439 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9440 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9441 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9442 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9443 		       LPFC_WQE_LENLOC_WORD3);
9444 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9445 		break;
9446 	case CMD_FCP_IWRITE64_CR:
9447 		command_type = FCP_COMMAND_DATA_OUT;
9448 		/* word3 iocb=iotag wqe=payload_offset_len */
9449 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9450 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9451 		       xmit_len + sizeof(struct fcp_rsp));
9452 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9453 		       0);
9454 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9455 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9456 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9457 		       iocbq->iocb.ulpFCP2Rcvy);
9458 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9459 		/* Always open the exchange */
9460 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9461 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9462 		       LPFC_WQE_LENLOC_WORD4);
9463 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9464 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9465 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9466 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9467 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9468 			if (iocbq->priority) {
9469 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9470 				       (iocbq->priority << 1));
9471 			} else {
9472 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9473 				       (phba->cfg_XLanePriority << 1));
9474 			}
9475 		}
9476 		/* Note, word 10 is already initialized to 0 */
9477 
9478 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9479 		if (phba->cfg_enable_pbde)
9480 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9481 		else
9482 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9483 
9484 		if (phba->fcp_embed_io) {
9485 			struct lpfc_io_buf *lpfc_cmd;
9486 			struct sli4_sge *sgl;
9487 			struct fcp_cmnd *fcp_cmnd;
9488 			uint32_t *ptr;
9489 
9490 			/* 128 byte wqe support here */
9491 
9492 			lpfc_cmd = iocbq->context1;
9493 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9494 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9495 
9496 			/* Word 0-2 - FCP_CMND */
9497 			wqe->generic.bde.tus.f.bdeFlags =
9498 				BUFF_TYPE_BDE_IMMED;
9499 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9500 			wqe->generic.bde.addrHigh = 0;
9501 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9502 
9503 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9504 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9505 
9506 			/* Word 22-29  FCP CMND Payload */
9507 			ptr = &wqe->words[22];
9508 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9509 		}
9510 		break;
9511 	case CMD_FCP_IREAD64_CR:
9512 		/* word3 iocb=iotag wqe=payload_offset_len */
9513 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9514 		bf_set(payload_offset_len, &wqe->fcp_iread,
9515 		       xmit_len + sizeof(struct fcp_rsp));
9516 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9517 		       0);
9518 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9519 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9520 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9521 		       iocbq->iocb.ulpFCP2Rcvy);
9522 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9523 		/* Always open the exchange */
9524 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9525 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9526 		       LPFC_WQE_LENLOC_WORD4);
9527 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9528 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9529 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9530 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9531 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9532 			if (iocbq->priority) {
9533 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9534 				       (iocbq->priority << 1));
9535 			} else {
9536 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9537 				       (phba->cfg_XLanePriority << 1));
9538 			}
9539 		}
9540 		/* Note, word 10 is already initialized to 0 */
9541 
9542 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9543 		if (phba->cfg_enable_pbde)
9544 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9545 		else
9546 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9547 
9548 		if (phba->fcp_embed_io) {
9549 			struct lpfc_io_buf *lpfc_cmd;
9550 			struct sli4_sge *sgl;
9551 			struct fcp_cmnd *fcp_cmnd;
9552 			uint32_t *ptr;
9553 
9554 			/* 128 byte wqe support here */
9555 
9556 			lpfc_cmd = iocbq->context1;
9557 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9558 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9559 
9560 			/* Word 0-2 - FCP_CMND */
9561 			wqe->generic.bde.tus.f.bdeFlags =
9562 				BUFF_TYPE_BDE_IMMED;
9563 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9564 			wqe->generic.bde.addrHigh = 0;
9565 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9566 
9567 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9568 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9569 
9570 			/* Word 22-29  FCP CMND Payload */
9571 			ptr = &wqe->words[22];
9572 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9573 		}
9574 		break;
9575 	case CMD_FCP_ICMND64_CR:
9576 		/* word3 iocb=iotag wqe=payload_offset_len */
9577 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9578 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9579 		       xmit_len + sizeof(struct fcp_rsp));
9580 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9581 		       0);
9582 		/* word3 iocb=IO_TAG wqe=reserved */
9583 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9584 		/* Always open the exchange */
9585 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9586 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9587 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9588 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9589 		       LPFC_WQE_LENLOC_NONE);
9590 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9591 		       iocbq->iocb.ulpFCP2Rcvy);
9592 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9593 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9594 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9595 			if (iocbq->priority) {
9596 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9597 				       (iocbq->priority << 1));
9598 			} else {
9599 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9600 				       (phba->cfg_XLanePriority << 1));
9601 			}
9602 		}
9603 		/* Note, word 10 is already initialized to 0 */
9604 
9605 		if (phba->fcp_embed_io) {
9606 			struct lpfc_io_buf *lpfc_cmd;
9607 			struct sli4_sge *sgl;
9608 			struct fcp_cmnd *fcp_cmnd;
9609 			uint32_t *ptr;
9610 
9611 			/* 128 byte wqe support here */
9612 
9613 			lpfc_cmd = iocbq->context1;
9614 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9615 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9616 
9617 			/* Word 0-2 - FCP_CMND */
9618 			wqe->generic.bde.tus.f.bdeFlags =
9619 				BUFF_TYPE_BDE_IMMED;
9620 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9621 			wqe->generic.bde.addrHigh = 0;
9622 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9623 
9624 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9625 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9626 
9627 			/* Word 22-29  FCP CMND Payload */
9628 			ptr = &wqe->words[22];
9629 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9630 		}
9631 		break;
9632 	case CMD_GEN_REQUEST64_CR:
9633 		/* For this command calculate the xmit length of the
9634 		 * request bde.
9635 		 */
9636 		xmit_len = 0;
9637 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9638 			sizeof(struct ulp_bde64);
9639 		for (i = 0; i < numBdes; i++) {
9640 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9641 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9642 				break;
9643 			xmit_len += bde.tus.f.bdeSize;
9644 		}
9645 		/* word3 iocb=IO_TAG wqe=request_payload_len */
9646 		wqe->gen_req.request_payload_len = xmit_len;
9647 		/* word4 iocb=parameter wqe=relative_offset memcpy */
9648 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9649 		/* word6 context tag copied in memcpy */
9650 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9651 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9652 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9653 				"2015 Invalid CT %x command 0x%x\n",
9654 				ct, iocbq->iocb.ulpCommand);
9655 			return IOCB_ERROR;
9656 		}
9657 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9658 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9659 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9660 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9661 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9662 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9663 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9664 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9665 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9666 		command_type = OTHER_COMMAND;
9667 		break;
9668 	case CMD_XMIT_ELS_RSP64_CX:
9669 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9670 		/* words0-2 BDE memcpy */
9671 		/* word3 iocb=iotag32 wqe=response_payload_len */
9672 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9673 		/* word4 */
9674 		wqe->xmit_els_rsp.word4 = 0;
9675 		/* word5 iocb=rsvd wge=did */
9676 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9677 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9678 
9679 		if_type = bf_get(lpfc_sli_intf_if_type,
9680 					&phba->sli4_hba.sli_intf);
9681 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9682 			if (iocbq->vport->fc_flag & FC_PT2PT) {
9683 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9684 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9685 					iocbq->vport->fc_myDID);
9686 				if (iocbq->vport->fc_myDID == Fabric_DID) {
9687 					bf_set(wqe_els_did,
9688 						&wqe->xmit_els_rsp.wqe_dest, 0);
9689 				}
9690 			}
9691 		}
9692 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9693 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9694 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9695 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9696 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9697 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9698 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9699 			       phba->vpi_ids[iocbq->vport->vpi]);
9700 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9701 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9702 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9703 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9704 		       LPFC_WQE_LENLOC_WORD3);
9705 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9706 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9707 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9708 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9709 					iocbq->context2)->virt);
9710 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9711 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9712 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9713 					iocbq->vport->fc_myDID);
9714 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9715 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9716 					phba->vpi_ids[phba->pport->vpi]);
9717 		}
9718 		command_type = OTHER_COMMAND;
9719 		break;
9720 	case CMD_CLOSE_XRI_CN:
9721 	case CMD_ABORT_XRI_CN:
9722 	case CMD_ABORT_XRI_CX:
9723 		/* words 0-2 memcpy should be 0 rserved */
9724 		/* port will send abts */
9725 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9726 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9727 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9728 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9729 		} else
9730 			fip = 0;
9731 
9732 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9733 			/*
9734 			 * The link is down, or the command was ELS_FIP
9735 			 * so the fw does not need to send abts
9736 			 * on the wire.
9737 			 */
9738 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9739 		else
9740 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9741 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9742 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9743 		wqe->abort_cmd.rsrvd5 = 0;
9744 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9745 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9746 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9747 		/*
9748 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9749 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9750 		 */
9751 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9752 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9753 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9754 		       LPFC_WQE_LENLOC_NONE);
9755 		cmnd = CMD_ABORT_XRI_CX;
9756 		command_type = OTHER_COMMAND;
9757 		xritag = 0;
9758 		break;
9759 	case CMD_XMIT_BLS_RSP64_CX:
9760 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9761 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9762 		 * we re-construct this WQE here based on information in
9763 		 * iocbq from scratch.
9764 		 */
9765 		memset(wqe, 0, sizeof(*wqe));
9766 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9767 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9768 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9769 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9770 		    LPFC_ABTS_UNSOL_INT) {
9771 			/* ABTS sent by initiator to CT exchange, the
9772 			 * RX_ID field will be filled with the newly
9773 			 * allocated responder XRI.
9774 			 */
9775 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9776 			       iocbq->sli4_xritag);
9777 		} else {
9778 			/* ABTS sent by responder to CT exchange, the
9779 			 * RX_ID field will be filled with the responder
9780 			 * RX_ID from ABTS.
9781 			 */
9782 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9783 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9784 		}
9785 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9786 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9787 
9788 		/* Use CT=VPI */
9789 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9790 			ndlp->nlp_DID);
9791 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9792 			iocbq->iocb.ulpContext);
9793 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9794 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9795 			phba->vpi_ids[phba->pport->vpi]);
9796 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9797 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9798 		       LPFC_WQE_LENLOC_NONE);
9799 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9800 		command_type = OTHER_COMMAND;
9801 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9802 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9803 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9804 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9805 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9806 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9807 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9808 		}
9809 
9810 		break;
9811 	case CMD_SEND_FRAME:
9812 		bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
9813 		bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
9814 		bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
9815 		bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
9816 		bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
9817 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
9818 		bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
9819 		bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
9820 		bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9821 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9822 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9823 		return 0;
9824 	case CMD_XRI_ABORTED_CX:
9825 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9826 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9827 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9828 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9829 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9830 	default:
9831 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9832 				"2014 Invalid command 0x%x\n",
9833 				iocbq->iocb.ulpCommand);
9834 		return IOCB_ERROR;
9835 		break;
9836 	}
9837 
9838 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9839 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9840 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9841 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9842 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9843 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9844 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9845 			      LPFC_IO_DIF_INSERT);
9846 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9847 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9848 	wqe->generic.wqe_com.abort_tag = abort_tag;
9849 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9850 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9851 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9852 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9853 	return 0;
9854 }
9855 
9856 /**
9857  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9858  * @phba: Pointer to HBA context object.
9859  * @ring_number: SLI ring number to issue iocb on.
9860  * @piocb: Pointer to command iocb.
9861  * @flag: Flag indicating if this command can be put into txq.
9862  *
9863  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9864  * an iocb command to an HBA with SLI-4 interface spec.
9865  *
9866  * This function is called with hbalock held. The function will return success
9867  * after it successfully submit the iocb to firmware or after adding to the
9868  * txq.
9869  **/
9870 static int
9871 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9872 			 struct lpfc_iocbq *piocb, uint32_t flag)
9873 {
9874 	struct lpfc_sglq *sglq;
9875 	union lpfc_wqe128 wqe;
9876 	struct lpfc_queue *wq;
9877 	struct lpfc_sli_ring *pring;
9878 
9879 	/* Get the WQ */
9880 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9881 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9882 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
9883 	} else {
9884 		wq = phba->sli4_hba.els_wq;
9885 	}
9886 
9887 	/* Get corresponding ring */
9888 	pring = wq->pring;
9889 
9890 	/*
9891 	 * The WQE can be either 64 or 128 bytes,
9892 	 */
9893 
9894 	lockdep_assert_held(&pring->ring_lock);
9895 
9896 	if (piocb->sli4_xritag == NO_XRI) {
9897 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9898 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9899 			sglq = NULL;
9900 		else {
9901 			if (!list_empty(&pring->txq)) {
9902 				if (!(flag & SLI_IOCB_RET_IOCB)) {
9903 					__lpfc_sli_ringtx_put(phba,
9904 						pring, piocb);
9905 					return IOCB_SUCCESS;
9906 				} else {
9907 					return IOCB_BUSY;
9908 				}
9909 			} else {
9910 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9911 				if (!sglq) {
9912 					if (!(flag & SLI_IOCB_RET_IOCB)) {
9913 						__lpfc_sli_ringtx_put(phba,
9914 								pring,
9915 								piocb);
9916 						return IOCB_SUCCESS;
9917 					} else
9918 						return IOCB_BUSY;
9919 				}
9920 			}
9921 		}
9922 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
9923 		/* These IO's already have an XRI and a mapped sgl. */
9924 		sglq = NULL;
9925 	else {
9926 		/*
9927 		 * This is a continuation of a commandi,(CX) so this
9928 		 * sglq is on the active list
9929 		 */
9930 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9931 		if (!sglq)
9932 			return IOCB_ERROR;
9933 	}
9934 
9935 	if (sglq) {
9936 		piocb->sli4_lxritag = sglq->sli4_lxritag;
9937 		piocb->sli4_xritag = sglq->sli4_xritag;
9938 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9939 			return IOCB_ERROR;
9940 	}
9941 
9942 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
9943 		return IOCB_ERROR;
9944 
9945 	if (lpfc_sli4_wq_put(wq, &wqe))
9946 		return IOCB_ERROR;
9947 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9948 
9949 	return 0;
9950 }
9951 
9952 /**
9953  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9954  *
9955  * This routine wraps the actual lockless version for issusing IOCB function
9956  * pointer from the lpfc_hba struct.
9957  *
9958  * Return codes:
9959  * IOCB_ERROR - Error
9960  * IOCB_SUCCESS - Success
9961  * IOCB_BUSY - Busy
9962  **/
9963 int
9964 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9965 		struct lpfc_iocbq *piocb, uint32_t flag)
9966 {
9967 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9968 }
9969 
9970 /**
9971  * lpfc_sli_api_table_setup - Set up sli api function jump table
9972  * @phba: The hba struct for which this call is being executed.
9973  * @dev_grp: The HBA PCI-Device group number.
9974  *
9975  * This routine sets up the SLI interface API function jump table in @phba
9976  * struct.
9977  * Returns: 0 - success, -ENODEV - failure.
9978  **/
9979 int
9980 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9981 {
9982 
9983 	switch (dev_grp) {
9984 	case LPFC_PCI_DEV_LP:
9985 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9986 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9987 		break;
9988 	case LPFC_PCI_DEV_OC:
9989 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9990 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9991 		break;
9992 	default:
9993 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9994 				"1419 Invalid HBA PCI-device group: 0x%x\n",
9995 				dev_grp);
9996 		return -ENODEV;
9997 		break;
9998 	}
9999 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10000 	return 0;
10001 }
10002 
10003 /**
10004  * lpfc_sli4_calc_ring - Calculates which ring to use
10005  * @phba: Pointer to HBA context object.
10006  * @piocb: Pointer to command iocb.
10007  *
10008  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10009  * hba_wqidx, thus we need to calculate the corresponding ring.
10010  * Since ABORTS must go on the same WQ of the command they are
10011  * aborting, we use command's hba_wqidx.
10012  */
10013 struct lpfc_sli_ring *
10014 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10015 {
10016 	struct lpfc_io_buf *lpfc_cmd;
10017 
10018 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10019 		if (unlikely(!phba->sli4_hba.hdwq))
10020 			return NULL;
10021 		/*
10022 		 * for abort iocb hba_wqidx should already
10023 		 * be setup based on what work queue we used.
10024 		 */
10025 		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10026 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10027 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10028 		}
10029 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10030 	} else {
10031 		if (unlikely(!phba->sli4_hba.els_wq))
10032 			return NULL;
10033 		piocb->hba_wqidx = 0;
10034 		return phba->sli4_hba.els_wq->pring;
10035 	}
10036 }
10037 
10038 /**
10039  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10040  * @phba: Pointer to HBA context object.
10041  * @pring: Pointer to driver SLI ring object.
10042  * @piocb: Pointer to command iocb.
10043  * @flag: Flag indicating if this command can be put into txq.
10044  *
10045  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10046  * function. This function gets the hbalock and calls
10047  * __lpfc_sli_issue_iocb function and will return the error returned
10048  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10049  * functions which do not hold hbalock.
10050  **/
10051 int
10052 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10053 		    struct lpfc_iocbq *piocb, uint32_t flag)
10054 {
10055 	struct lpfc_sli_ring *pring;
10056 	unsigned long iflags;
10057 	int rc;
10058 
10059 	if (phba->sli_rev == LPFC_SLI_REV4) {
10060 		pring = lpfc_sli4_calc_ring(phba, piocb);
10061 		if (unlikely(pring == NULL))
10062 			return IOCB_ERROR;
10063 
10064 		spin_lock_irqsave(&pring->ring_lock, iflags);
10065 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10066 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10067 	} else {
10068 		/* For now, SLI2/3 will still use hbalock */
10069 		spin_lock_irqsave(&phba->hbalock, iflags);
10070 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10071 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10072 	}
10073 	return rc;
10074 }
10075 
10076 /**
10077  * lpfc_extra_ring_setup - Extra ring setup function
10078  * @phba: Pointer to HBA context object.
10079  *
10080  * This function is called while driver attaches with the
10081  * HBA to setup the extra ring. The extra ring is used
10082  * only when driver needs to support target mode functionality
10083  * or IP over FC functionalities.
10084  *
10085  * This function is called with no lock held. SLI3 only.
10086  **/
10087 static int
10088 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10089 {
10090 	struct lpfc_sli *psli;
10091 	struct lpfc_sli_ring *pring;
10092 
10093 	psli = &phba->sli;
10094 
10095 	/* Adjust cmd/rsp ring iocb entries more evenly */
10096 
10097 	/* Take some away from the FCP ring */
10098 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10099 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10100 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10101 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10102 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10103 
10104 	/* and give them to the extra ring */
10105 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10106 
10107 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10108 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10109 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10110 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10111 
10112 	/* Setup default profile for this ring */
10113 	pring->iotag_max = 4096;
10114 	pring->num_mask = 1;
10115 	pring->prt[0].profile = 0;      /* Mask 0 */
10116 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10117 	pring->prt[0].type = phba->cfg_multi_ring_type;
10118 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10119 	return 0;
10120 }
10121 
10122 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10123  * @phba: Pointer to HBA context object.
10124  * @iocbq: Pointer to iocb object.
10125  *
10126  * The async_event handler calls this routine when it receives
10127  * an ASYNC_STATUS_CN event from the port.  The port generates
10128  * this event when an Abort Sequence request to an rport fails
10129  * twice in succession.  The abort could be originated by the
10130  * driver or by the port.  The ABTS could have been for an ELS
10131  * or FCP IO.  The port only generates this event when an ABTS
10132  * fails to complete after one retry.
10133  */
10134 static void
10135 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10136 			  struct lpfc_iocbq *iocbq)
10137 {
10138 	struct lpfc_nodelist *ndlp = NULL;
10139 	uint16_t rpi = 0, vpi = 0;
10140 	struct lpfc_vport *vport = NULL;
10141 
10142 	/* The rpi in the ulpContext is vport-sensitive. */
10143 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10144 	rpi = iocbq->iocb.ulpContext;
10145 
10146 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10147 			"3092 Port generated ABTS async event "
10148 			"on vpi %d rpi %d status 0x%x\n",
10149 			vpi, rpi, iocbq->iocb.ulpStatus);
10150 
10151 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10152 	if (!vport)
10153 		goto err_exit;
10154 	ndlp = lpfc_findnode_rpi(vport, rpi);
10155 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10156 		goto err_exit;
10157 
10158 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10159 		lpfc_sli_abts_recover_port(vport, ndlp);
10160 	return;
10161 
10162  err_exit:
10163 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10164 			"3095 Event Context not found, no "
10165 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10166 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10167 			vpi, rpi);
10168 }
10169 
10170 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10171  * @phba: pointer to HBA context object.
10172  * @ndlp: nodelist pointer for the impacted rport.
10173  * @axri: pointer to the wcqe containing the failed exchange.
10174  *
10175  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10176  * port.  The port generates this event when an abort exchange request to an
10177  * rport fails twice in succession with no reply.  The abort could be originated
10178  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10179  */
10180 void
10181 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10182 			   struct lpfc_nodelist *ndlp,
10183 			   struct sli4_wcqe_xri_aborted *axri)
10184 {
10185 	struct lpfc_vport *vport;
10186 	uint32_t ext_status = 0;
10187 
10188 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10189 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10190 				"3115 Node Context not found, driver "
10191 				"ignoring abts err event\n");
10192 		return;
10193 	}
10194 
10195 	vport = ndlp->vport;
10196 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10197 			"3116 Port generated FCP XRI ABORT event on "
10198 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10199 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10200 			bf_get(lpfc_wcqe_xa_xri, axri),
10201 			bf_get(lpfc_wcqe_xa_status, axri),
10202 			axri->parameter);
10203 
10204 	/*
10205 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10206 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10207 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10208 	 */
10209 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10210 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10211 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10212 		lpfc_sli_abts_recover_port(vport, ndlp);
10213 }
10214 
10215 /**
10216  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10217  * @phba: Pointer to HBA context object.
10218  * @pring: Pointer to driver SLI ring object.
10219  * @iocbq: Pointer to iocb object.
10220  *
10221  * This function is called by the slow ring event handler
10222  * function when there is an ASYNC event iocb in the ring.
10223  * This function is called with no lock held.
10224  * Currently this function handles only temperature related
10225  * ASYNC events. The function decodes the temperature sensor
10226  * event message and posts events for the management applications.
10227  **/
10228 static void
10229 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10230 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10231 {
10232 	IOCB_t *icmd;
10233 	uint16_t evt_code;
10234 	struct temp_event temp_event_data;
10235 	struct Scsi_Host *shost;
10236 	uint32_t *iocb_w;
10237 
10238 	icmd = &iocbq->iocb;
10239 	evt_code = icmd->un.asyncstat.evt_code;
10240 
10241 	switch (evt_code) {
10242 	case ASYNC_TEMP_WARN:
10243 	case ASYNC_TEMP_SAFE:
10244 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10245 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10246 		if (evt_code == ASYNC_TEMP_WARN) {
10247 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10248 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10249 				"0347 Adapter is very hot, please take "
10250 				"corrective action. temperature : %d Celsius\n",
10251 				(uint32_t) icmd->ulpContext);
10252 		} else {
10253 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10254 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10255 				"0340 Adapter temperature is OK now. "
10256 				"temperature : %d Celsius\n",
10257 				(uint32_t) icmd->ulpContext);
10258 		}
10259 
10260 		/* Send temperature change event to applications */
10261 		shost = lpfc_shost_from_vport(phba->pport);
10262 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10263 			sizeof(temp_event_data), (char *) &temp_event_data,
10264 			LPFC_NL_VENDOR_ID);
10265 		break;
10266 	case ASYNC_STATUS_CN:
10267 		lpfc_sli_abts_err_handler(phba, iocbq);
10268 		break;
10269 	default:
10270 		iocb_w = (uint32_t *) icmd;
10271 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10272 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10273 			" evt_code 0x%x\n"
10274 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10275 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10276 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10277 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10278 			pring->ringno, icmd->un.asyncstat.evt_code,
10279 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10280 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10281 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10282 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10283 
10284 		break;
10285 	}
10286 }
10287 
10288 
10289 /**
10290  * lpfc_sli4_setup - SLI ring setup function
10291  * @phba: Pointer to HBA context object.
10292  *
10293  * lpfc_sli_setup sets up rings of the SLI interface with
10294  * number of iocbs per ring and iotags. This function is
10295  * called while driver attach to the HBA and before the
10296  * interrupts are enabled. So there is no need for locking.
10297  *
10298  * This function always returns 0.
10299  **/
10300 int
10301 lpfc_sli4_setup(struct lpfc_hba *phba)
10302 {
10303 	struct lpfc_sli_ring *pring;
10304 
10305 	pring = phba->sli4_hba.els_wq->pring;
10306 	pring->num_mask = LPFC_MAX_RING_MASK;
10307 	pring->prt[0].profile = 0;	/* Mask 0 */
10308 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10309 	pring->prt[0].type = FC_TYPE_ELS;
10310 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10311 	    lpfc_els_unsol_event;
10312 	pring->prt[1].profile = 0;	/* Mask 1 */
10313 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10314 	pring->prt[1].type = FC_TYPE_ELS;
10315 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10316 	    lpfc_els_unsol_event;
10317 	pring->prt[2].profile = 0;	/* Mask 2 */
10318 	/* NameServer Inquiry */
10319 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10320 	/* NameServer */
10321 	pring->prt[2].type = FC_TYPE_CT;
10322 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10323 	    lpfc_ct_unsol_event;
10324 	pring->prt[3].profile = 0;	/* Mask 3 */
10325 	/* NameServer response */
10326 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10327 	/* NameServer */
10328 	pring->prt[3].type = FC_TYPE_CT;
10329 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10330 	    lpfc_ct_unsol_event;
10331 	return 0;
10332 }
10333 
10334 /**
10335  * lpfc_sli_setup - SLI ring setup function
10336  * @phba: Pointer to HBA context object.
10337  *
10338  * lpfc_sli_setup sets up rings of the SLI interface with
10339  * number of iocbs per ring and iotags. This function is
10340  * called while driver attach to the HBA and before the
10341  * interrupts are enabled. So there is no need for locking.
10342  *
10343  * This function always returns 0. SLI3 only.
10344  **/
10345 int
10346 lpfc_sli_setup(struct lpfc_hba *phba)
10347 {
10348 	int i, totiocbsize = 0;
10349 	struct lpfc_sli *psli = &phba->sli;
10350 	struct lpfc_sli_ring *pring;
10351 
10352 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10353 	psli->sli_flag = 0;
10354 
10355 	psli->iocbq_lookup = NULL;
10356 	psli->iocbq_lookup_len = 0;
10357 	psli->last_iotag = 0;
10358 
10359 	for (i = 0; i < psli->num_rings; i++) {
10360 		pring = &psli->sli3_ring[i];
10361 		switch (i) {
10362 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10363 			/* numCiocb and numRiocb are used in config_port */
10364 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10365 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10366 			pring->sli.sli3.numCiocb +=
10367 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10368 			pring->sli.sli3.numRiocb +=
10369 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10370 			pring->sli.sli3.numCiocb +=
10371 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10372 			pring->sli.sli3.numRiocb +=
10373 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10374 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10375 							SLI3_IOCB_CMD_SIZE :
10376 							SLI2_IOCB_CMD_SIZE;
10377 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10378 							SLI3_IOCB_RSP_SIZE :
10379 							SLI2_IOCB_RSP_SIZE;
10380 			pring->iotag_ctr = 0;
10381 			pring->iotag_max =
10382 			    (phba->cfg_hba_queue_depth * 2);
10383 			pring->fast_iotag = pring->iotag_max;
10384 			pring->num_mask = 0;
10385 			break;
10386 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10387 			/* numCiocb and numRiocb are used in config_port */
10388 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10389 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10390 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10391 							SLI3_IOCB_CMD_SIZE :
10392 							SLI2_IOCB_CMD_SIZE;
10393 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10394 							SLI3_IOCB_RSP_SIZE :
10395 							SLI2_IOCB_RSP_SIZE;
10396 			pring->iotag_max = phba->cfg_hba_queue_depth;
10397 			pring->num_mask = 0;
10398 			break;
10399 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10400 			/* numCiocb and numRiocb are used in config_port */
10401 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10402 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10403 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10404 							SLI3_IOCB_CMD_SIZE :
10405 							SLI2_IOCB_CMD_SIZE;
10406 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10407 							SLI3_IOCB_RSP_SIZE :
10408 							SLI2_IOCB_RSP_SIZE;
10409 			pring->fast_iotag = 0;
10410 			pring->iotag_ctr = 0;
10411 			pring->iotag_max = 4096;
10412 			pring->lpfc_sli_rcv_async_status =
10413 				lpfc_sli_async_event_handler;
10414 			pring->num_mask = LPFC_MAX_RING_MASK;
10415 			pring->prt[0].profile = 0;	/* Mask 0 */
10416 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10417 			pring->prt[0].type = FC_TYPE_ELS;
10418 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10419 			    lpfc_els_unsol_event;
10420 			pring->prt[1].profile = 0;	/* Mask 1 */
10421 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10422 			pring->prt[1].type = FC_TYPE_ELS;
10423 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10424 			    lpfc_els_unsol_event;
10425 			pring->prt[2].profile = 0;	/* Mask 2 */
10426 			/* NameServer Inquiry */
10427 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10428 			/* NameServer */
10429 			pring->prt[2].type = FC_TYPE_CT;
10430 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10431 			    lpfc_ct_unsol_event;
10432 			pring->prt[3].profile = 0;	/* Mask 3 */
10433 			/* NameServer response */
10434 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10435 			/* NameServer */
10436 			pring->prt[3].type = FC_TYPE_CT;
10437 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10438 			    lpfc_ct_unsol_event;
10439 			break;
10440 		}
10441 		totiocbsize += (pring->sli.sli3.numCiocb *
10442 			pring->sli.sli3.sizeCiocb) +
10443 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10444 	}
10445 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10446 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10447 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10448 		       "SLI2 SLIM Data: x%x x%lx\n",
10449 		       phba->brd_no, totiocbsize,
10450 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10451 	}
10452 	if (phba->cfg_multi_ring_support == 2)
10453 		lpfc_extra_ring_setup(phba);
10454 
10455 	return 0;
10456 }
10457 
10458 /**
10459  * lpfc_sli4_queue_init - Queue initialization function
10460  * @phba: Pointer to HBA context object.
10461  *
10462  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10463  * ring. This function also initializes ring indices of each ring.
10464  * This function is called during the initialization of the SLI
10465  * interface of an HBA.
10466  * This function is called with no lock held and always returns
10467  * 1.
10468  **/
10469 void
10470 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10471 {
10472 	struct lpfc_sli *psli;
10473 	struct lpfc_sli_ring *pring;
10474 	int i;
10475 
10476 	psli = &phba->sli;
10477 	spin_lock_irq(&phba->hbalock);
10478 	INIT_LIST_HEAD(&psli->mboxq);
10479 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10480 	/* Initialize list headers for txq and txcmplq as double linked lists */
10481 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
10482 		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
10483 		pring->flag = 0;
10484 		pring->ringno = LPFC_FCP_RING;
10485 		pring->txcmplq_cnt = 0;
10486 		INIT_LIST_HEAD(&pring->txq);
10487 		INIT_LIST_HEAD(&pring->txcmplq);
10488 		INIT_LIST_HEAD(&pring->iocb_continueq);
10489 		spin_lock_init(&pring->ring_lock);
10490 	}
10491 	pring = phba->sli4_hba.els_wq->pring;
10492 	pring->flag = 0;
10493 	pring->ringno = LPFC_ELS_RING;
10494 	pring->txcmplq_cnt = 0;
10495 	INIT_LIST_HEAD(&pring->txq);
10496 	INIT_LIST_HEAD(&pring->txcmplq);
10497 	INIT_LIST_HEAD(&pring->iocb_continueq);
10498 	spin_lock_init(&pring->ring_lock);
10499 
10500 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10501 		pring = phba->sli4_hba.nvmels_wq->pring;
10502 		pring->flag = 0;
10503 		pring->ringno = LPFC_ELS_RING;
10504 		pring->txcmplq_cnt = 0;
10505 		INIT_LIST_HEAD(&pring->txq);
10506 		INIT_LIST_HEAD(&pring->txcmplq);
10507 		INIT_LIST_HEAD(&pring->iocb_continueq);
10508 		spin_lock_init(&pring->ring_lock);
10509 	}
10510 
10511 	spin_unlock_irq(&phba->hbalock);
10512 }
10513 
10514 /**
10515  * lpfc_sli_queue_init - Queue initialization function
10516  * @phba: Pointer to HBA context object.
10517  *
10518  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10519  * ring. This function also initializes ring indices of each ring.
10520  * This function is called during the initialization of the SLI
10521  * interface of an HBA.
10522  * This function is called with no lock held and always returns
10523  * 1.
10524  **/
10525 void
10526 lpfc_sli_queue_init(struct lpfc_hba *phba)
10527 {
10528 	struct lpfc_sli *psli;
10529 	struct lpfc_sli_ring *pring;
10530 	int i;
10531 
10532 	psli = &phba->sli;
10533 	spin_lock_irq(&phba->hbalock);
10534 	INIT_LIST_HEAD(&psli->mboxq);
10535 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10536 	/* Initialize list headers for txq and txcmplq as double linked lists */
10537 	for (i = 0; i < psli->num_rings; i++) {
10538 		pring = &psli->sli3_ring[i];
10539 		pring->ringno = i;
10540 		pring->sli.sli3.next_cmdidx  = 0;
10541 		pring->sli.sli3.local_getidx = 0;
10542 		pring->sli.sli3.cmdidx = 0;
10543 		INIT_LIST_HEAD(&pring->iocb_continueq);
10544 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10545 		INIT_LIST_HEAD(&pring->postbufq);
10546 		pring->flag = 0;
10547 		INIT_LIST_HEAD(&pring->txq);
10548 		INIT_LIST_HEAD(&pring->txcmplq);
10549 		spin_lock_init(&pring->ring_lock);
10550 	}
10551 	spin_unlock_irq(&phba->hbalock);
10552 }
10553 
10554 /**
10555  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10556  * @phba: Pointer to HBA context object.
10557  *
10558  * This routine flushes the mailbox command subsystem. It will unconditionally
10559  * flush all the mailbox commands in the three possible stages in the mailbox
10560  * command sub-system: pending mailbox command queue; the outstanding mailbox
10561  * command; and completed mailbox command queue. It is caller's responsibility
10562  * to make sure that the driver is in the proper state to flush the mailbox
10563  * command sub-system. Namely, the posting of mailbox commands into the
10564  * pending mailbox command queue from the various clients must be stopped;
10565  * either the HBA is in a state that it will never works on the outstanding
10566  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10567  * mailbox command has been completed.
10568  **/
10569 static void
10570 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10571 {
10572 	LIST_HEAD(completions);
10573 	struct lpfc_sli *psli = &phba->sli;
10574 	LPFC_MBOXQ_t *pmb;
10575 	unsigned long iflag;
10576 
10577 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10578 	local_bh_disable();
10579 
10580 	/* Flush all the mailbox commands in the mbox system */
10581 	spin_lock_irqsave(&phba->hbalock, iflag);
10582 
10583 	/* The pending mailbox command queue */
10584 	list_splice_init(&phba->sli.mboxq, &completions);
10585 	/* The outstanding active mailbox command */
10586 	if (psli->mbox_active) {
10587 		list_add_tail(&psli->mbox_active->list, &completions);
10588 		psli->mbox_active = NULL;
10589 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10590 	}
10591 	/* The completed mailbox command queue */
10592 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10593 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10594 
10595 	/* Enable softirqs again, done with phba->hbalock */
10596 	local_bh_enable();
10597 
10598 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10599 	while (!list_empty(&completions)) {
10600 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10601 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10602 		if (pmb->mbox_cmpl)
10603 			pmb->mbox_cmpl(phba, pmb);
10604 	}
10605 }
10606 
10607 /**
10608  * lpfc_sli_host_down - Vport cleanup function
10609  * @vport: Pointer to virtual port object.
10610  *
10611  * lpfc_sli_host_down is called to clean up the resources
10612  * associated with a vport before destroying virtual
10613  * port data structures.
10614  * This function does following operations:
10615  * - Free discovery resources associated with this virtual
10616  *   port.
10617  * - Free iocbs associated with this virtual port in
10618  *   the txq.
10619  * - Send abort for all iocb commands associated with this
10620  *   vport in txcmplq.
10621  *
10622  * This function is called with no lock held and always returns 1.
10623  **/
10624 int
10625 lpfc_sli_host_down(struct lpfc_vport *vport)
10626 {
10627 	LIST_HEAD(completions);
10628 	struct lpfc_hba *phba = vport->phba;
10629 	struct lpfc_sli *psli = &phba->sli;
10630 	struct lpfc_queue *qp = NULL;
10631 	struct lpfc_sli_ring *pring;
10632 	struct lpfc_iocbq *iocb, *next_iocb;
10633 	int i;
10634 	unsigned long flags = 0;
10635 	uint16_t prev_pring_flag;
10636 
10637 	lpfc_cleanup_discovery_resources(vport);
10638 
10639 	spin_lock_irqsave(&phba->hbalock, flags);
10640 
10641 	/*
10642 	 * Error everything on the txq since these iocbs
10643 	 * have not been given to the FW yet.
10644 	 * Also issue ABTS for everything on the txcmplq
10645 	 */
10646 	if (phba->sli_rev != LPFC_SLI_REV4) {
10647 		for (i = 0; i < psli->num_rings; i++) {
10648 			pring = &psli->sli3_ring[i];
10649 			prev_pring_flag = pring->flag;
10650 			/* Only slow rings */
10651 			if (pring->ringno == LPFC_ELS_RING) {
10652 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10653 				/* Set the lpfc data pending flag */
10654 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10655 			}
10656 			list_for_each_entry_safe(iocb, next_iocb,
10657 						 &pring->txq, list) {
10658 				if (iocb->vport != vport)
10659 					continue;
10660 				list_move_tail(&iocb->list, &completions);
10661 			}
10662 			list_for_each_entry_safe(iocb, next_iocb,
10663 						 &pring->txcmplq, list) {
10664 				if (iocb->vport != vport)
10665 					continue;
10666 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10667 			}
10668 			pring->flag = prev_pring_flag;
10669 		}
10670 	} else {
10671 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10672 			pring = qp->pring;
10673 			if (!pring)
10674 				continue;
10675 			if (pring == phba->sli4_hba.els_wq->pring) {
10676 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10677 				/* Set the lpfc data pending flag */
10678 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10679 			}
10680 			prev_pring_flag = pring->flag;
10681 			spin_lock_irq(&pring->ring_lock);
10682 			list_for_each_entry_safe(iocb, next_iocb,
10683 						 &pring->txq, list) {
10684 				if (iocb->vport != vport)
10685 					continue;
10686 				list_move_tail(&iocb->list, &completions);
10687 			}
10688 			spin_unlock_irq(&pring->ring_lock);
10689 			list_for_each_entry_safe(iocb, next_iocb,
10690 						 &pring->txcmplq, list) {
10691 				if (iocb->vport != vport)
10692 					continue;
10693 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10694 			}
10695 			pring->flag = prev_pring_flag;
10696 		}
10697 	}
10698 	spin_unlock_irqrestore(&phba->hbalock, flags);
10699 
10700 	/* Cancel all the IOCBs from the completions list */
10701 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10702 			      IOERR_SLI_DOWN);
10703 	return 1;
10704 }
10705 
10706 /**
10707  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10708  * @phba: Pointer to HBA context object.
10709  *
10710  * This function cleans up all iocb, buffers, mailbox commands
10711  * while shutting down the HBA. This function is called with no
10712  * lock held and always returns 1.
10713  * This function does the following to cleanup driver resources:
10714  * - Free discovery resources for each virtual port
10715  * - Cleanup any pending fabric iocbs
10716  * - Iterate through the iocb txq and free each entry
10717  *   in the list.
10718  * - Free up any buffer posted to the HBA
10719  * - Free mailbox commands in the mailbox queue.
10720  **/
10721 int
10722 lpfc_sli_hba_down(struct lpfc_hba *phba)
10723 {
10724 	LIST_HEAD(completions);
10725 	struct lpfc_sli *psli = &phba->sli;
10726 	struct lpfc_queue *qp = NULL;
10727 	struct lpfc_sli_ring *pring;
10728 	struct lpfc_dmabuf *buf_ptr;
10729 	unsigned long flags = 0;
10730 	int i;
10731 
10732 	/* Shutdown the mailbox command sub-system */
10733 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10734 
10735 	lpfc_hba_down_prep(phba);
10736 
10737 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10738 	local_bh_disable();
10739 
10740 	lpfc_fabric_abort_hba(phba);
10741 
10742 	spin_lock_irqsave(&phba->hbalock, flags);
10743 
10744 	/*
10745 	 * Error everything on the txq since these iocbs
10746 	 * have not been given to the FW yet.
10747 	 */
10748 	if (phba->sli_rev != LPFC_SLI_REV4) {
10749 		for (i = 0; i < psli->num_rings; i++) {
10750 			pring = &psli->sli3_ring[i];
10751 			/* Only slow rings */
10752 			if (pring->ringno == LPFC_ELS_RING) {
10753 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10754 				/* Set the lpfc data pending flag */
10755 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10756 			}
10757 			list_splice_init(&pring->txq, &completions);
10758 		}
10759 	} else {
10760 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10761 			pring = qp->pring;
10762 			if (!pring)
10763 				continue;
10764 			spin_lock(&pring->ring_lock);
10765 			list_splice_init(&pring->txq, &completions);
10766 			spin_unlock(&pring->ring_lock);
10767 			if (pring == phba->sli4_hba.els_wq->pring) {
10768 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10769 				/* Set the lpfc data pending flag */
10770 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10771 			}
10772 		}
10773 	}
10774 	spin_unlock_irqrestore(&phba->hbalock, flags);
10775 
10776 	/* Cancel all the IOCBs from the completions list */
10777 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10778 			      IOERR_SLI_DOWN);
10779 
10780 	spin_lock_irqsave(&phba->hbalock, flags);
10781 	list_splice_init(&phba->elsbuf, &completions);
10782 	phba->elsbuf_cnt = 0;
10783 	phba->elsbuf_prev_cnt = 0;
10784 	spin_unlock_irqrestore(&phba->hbalock, flags);
10785 
10786 	while (!list_empty(&completions)) {
10787 		list_remove_head(&completions, buf_ptr,
10788 			struct lpfc_dmabuf, list);
10789 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10790 		kfree(buf_ptr);
10791 	}
10792 
10793 	/* Enable softirqs again, done with phba->hbalock */
10794 	local_bh_enable();
10795 
10796 	/* Return any active mbox cmds */
10797 	del_timer_sync(&psli->mbox_tmo);
10798 
10799 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10800 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10801 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10802 
10803 	return 1;
10804 }
10805 
10806 /**
10807  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10808  * @srcp: Source memory pointer.
10809  * @destp: Destination memory pointer.
10810  * @cnt: Number of words required to be copied.
10811  *
10812  * This function is used for copying data between driver memory
10813  * and the SLI memory. This function also changes the endianness
10814  * of each word if native endianness is different from SLI
10815  * endianness. This function can be called with or without
10816  * lock.
10817  **/
10818 void
10819 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10820 {
10821 	uint32_t *src = srcp;
10822 	uint32_t *dest = destp;
10823 	uint32_t ldata;
10824 	int i;
10825 
10826 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10827 		ldata = *src;
10828 		ldata = le32_to_cpu(ldata);
10829 		*dest = ldata;
10830 		src++;
10831 		dest++;
10832 	}
10833 }
10834 
10835 
10836 /**
10837  * lpfc_sli_bemem_bcopy - SLI memory copy function
10838  * @srcp: Source memory pointer.
10839  * @destp: Destination memory pointer.
10840  * @cnt: Number of words required to be copied.
10841  *
10842  * This function is used for copying data between a data structure
10843  * with big endian representation to local endianness.
10844  * This function can be called with or without lock.
10845  **/
10846 void
10847 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10848 {
10849 	uint32_t *src = srcp;
10850 	uint32_t *dest = destp;
10851 	uint32_t ldata;
10852 	int i;
10853 
10854 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10855 		ldata = *src;
10856 		ldata = be32_to_cpu(ldata);
10857 		*dest = ldata;
10858 		src++;
10859 		dest++;
10860 	}
10861 }
10862 
10863 /**
10864  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10865  * @phba: Pointer to HBA context object.
10866  * @pring: Pointer to driver SLI ring object.
10867  * @mp: Pointer to driver buffer object.
10868  *
10869  * This function is called with no lock held.
10870  * It always return zero after adding the buffer to the postbufq
10871  * buffer list.
10872  **/
10873 int
10874 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10875 			 struct lpfc_dmabuf *mp)
10876 {
10877 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10878 	   later */
10879 	spin_lock_irq(&phba->hbalock);
10880 	list_add_tail(&mp->list, &pring->postbufq);
10881 	pring->postbufq_cnt++;
10882 	spin_unlock_irq(&phba->hbalock);
10883 	return 0;
10884 }
10885 
10886 /**
10887  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10888  * @phba: Pointer to HBA context object.
10889  *
10890  * When HBQ is enabled, buffers are searched based on tags. This function
10891  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10892  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10893  * does not conflict with tags of buffer posted for unsolicited events.
10894  * The function returns the allocated tag. The function is called with
10895  * no locks held.
10896  **/
10897 uint32_t
10898 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10899 {
10900 	spin_lock_irq(&phba->hbalock);
10901 	phba->buffer_tag_count++;
10902 	/*
10903 	 * Always set the QUE_BUFTAG_BIT to distiguish between
10904 	 * a tag assigned by HBQ.
10905 	 */
10906 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10907 	spin_unlock_irq(&phba->hbalock);
10908 	return phba->buffer_tag_count;
10909 }
10910 
10911 /**
10912  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10913  * @phba: Pointer to HBA context object.
10914  * @pring: Pointer to driver SLI ring object.
10915  * @tag: Buffer tag.
10916  *
10917  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10918  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10919  * iocb is posted to the response ring with the tag of the buffer.
10920  * This function searches the pring->postbufq list using the tag
10921  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10922  * iocb. If the buffer is found then lpfc_dmabuf object of the
10923  * buffer is returned to the caller else NULL is returned.
10924  * This function is called with no lock held.
10925  **/
10926 struct lpfc_dmabuf *
10927 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10928 			uint32_t tag)
10929 {
10930 	struct lpfc_dmabuf *mp, *next_mp;
10931 	struct list_head *slp = &pring->postbufq;
10932 
10933 	/* Search postbufq, from the beginning, looking for a match on tag */
10934 	spin_lock_irq(&phba->hbalock);
10935 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10936 		if (mp->buffer_tag == tag) {
10937 			list_del_init(&mp->list);
10938 			pring->postbufq_cnt--;
10939 			spin_unlock_irq(&phba->hbalock);
10940 			return mp;
10941 		}
10942 	}
10943 
10944 	spin_unlock_irq(&phba->hbalock);
10945 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10946 			"0402 Cannot find virtual addr for buffer tag on "
10947 			"ring %d Data x%lx x%px x%px x%x\n",
10948 			pring->ringno, (unsigned long) tag,
10949 			slp->next, slp->prev, pring->postbufq_cnt);
10950 
10951 	return NULL;
10952 }
10953 
10954 /**
10955  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10956  * @phba: Pointer to HBA context object.
10957  * @pring: Pointer to driver SLI ring object.
10958  * @phys: DMA address of the buffer.
10959  *
10960  * This function searches the buffer list using the dma_address
10961  * of unsolicited event to find the driver's lpfc_dmabuf object
10962  * corresponding to the dma_address. The function returns the
10963  * lpfc_dmabuf object if a buffer is found else it returns NULL.
10964  * This function is called by the ct and els unsolicited event
10965  * handlers to get the buffer associated with the unsolicited
10966  * event.
10967  *
10968  * This function is called with no lock held.
10969  **/
10970 struct lpfc_dmabuf *
10971 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10972 			 dma_addr_t phys)
10973 {
10974 	struct lpfc_dmabuf *mp, *next_mp;
10975 	struct list_head *slp = &pring->postbufq;
10976 
10977 	/* Search postbufq, from the beginning, looking for a match on phys */
10978 	spin_lock_irq(&phba->hbalock);
10979 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10980 		if (mp->phys == phys) {
10981 			list_del_init(&mp->list);
10982 			pring->postbufq_cnt--;
10983 			spin_unlock_irq(&phba->hbalock);
10984 			return mp;
10985 		}
10986 	}
10987 
10988 	spin_unlock_irq(&phba->hbalock);
10989 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10990 			"0410 Cannot find virtual addr for mapped buf on "
10991 			"ring %d Data x%llx x%px x%px x%x\n",
10992 			pring->ringno, (unsigned long long)phys,
10993 			slp->next, slp->prev, pring->postbufq_cnt);
10994 	return NULL;
10995 }
10996 
10997 /**
10998  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
10999  * @phba: Pointer to HBA context object.
11000  * @cmdiocb: Pointer to driver command iocb object.
11001  * @rspiocb: Pointer to driver response iocb object.
11002  *
11003  * This function is the completion handler for the abort iocbs for
11004  * ELS commands. This function is called from the ELS ring event
11005  * handler with no lock held. This function frees memory resources
11006  * associated with the abort iocb.
11007  **/
11008 static void
11009 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11010 			struct lpfc_iocbq *rspiocb)
11011 {
11012 	IOCB_t *irsp = &rspiocb->iocb;
11013 	uint16_t abort_iotag, abort_context;
11014 	struct lpfc_iocbq *abort_iocb = NULL;
11015 
11016 	if (irsp->ulpStatus) {
11017 
11018 		/*
11019 		 * Assume that the port already completed and returned, or
11020 		 * will return the iocb. Just Log the message.
11021 		 */
11022 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11023 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11024 
11025 		spin_lock_irq(&phba->hbalock);
11026 		if (phba->sli_rev < LPFC_SLI_REV4) {
11027 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11028 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11029 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11030 				spin_unlock_irq(&phba->hbalock);
11031 				goto release_iocb;
11032 			}
11033 			if (abort_iotag != 0 &&
11034 				abort_iotag <= phba->sli.last_iotag)
11035 				abort_iocb =
11036 					phba->sli.iocbq_lookup[abort_iotag];
11037 		} else
11038 			/* For sli4 the abort_tag is the XRI,
11039 			 * so the abort routine puts the iotag  of the iocb
11040 			 * being aborted in the context field of the abort
11041 			 * IOCB.
11042 			 */
11043 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11044 
11045 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11046 				"0327 Cannot abort els iocb x%px "
11047 				"with tag %x context %x, abort status %x, "
11048 				"abort code %x\n",
11049 				abort_iocb, abort_iotag, abort_context,
11050 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11051 
11052 		spin_unlock_irq(&phba->hbalock);
11053 		if (irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11054 		    irsp->un.ulpWord[4] == IOERR_SLI_ABORTED)
11055 			lpfc_sli_release_iocbq(phba, abort_iocb);
11056 	}
11057 release_iocb:
11058 	lpfc_sli_release_iocbq(phba, cmdiocb);
11059 	return;
11060 }
11061 
11062 /**
11063  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11064  * @phba: Pointer to HBA context object.
11065  * @cmdiocb: Pointer to driver command iocb object.
11066  * @rspiocb: Pointer to driver response iocb object.
11067  *
11068  * The function is called from SLI ring event handler with no
11069  * lock held. This function is the completion handler for ELS commands
11070  * which are aborted. The function frees memory resources used for
11071  * the aborted ELS commands.
11072  **/
11073 static void
11074 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11075 		     struct lpfc_iocbq *rspiocb)
11076 {
11077 	IOCB_t *irsp = &rspiocb->iocb;
11078 
11079 	/* ELS cmd tag <ulpIoTag> completes */
11080 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11081 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11082 			"x%x x%x x%x\n",
11083 			irsp->ulpIoTag, irsp->ulpStatus,
11084 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11085 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11086 		lpfc_ct_free_iocb(phba, cmdiocb);
11087 	else
11088 		lpfc_els_free_iocb(phba, cmdiocb);
11089 	return;
11090 }
11091 
11092 /**
11093  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11094  * @phba: Pointer to HBA context object.
11095  * @pring: Pointer to driver SLI ring object.
11096  * @cmdiocb: Pointer to driver command iocb object.
11097  *
11098  * This function issues an abort iocb for the provided command iocb down to
11099  * the port. Other than the case the outstanding command iocb is an abort
11100  * request, this function issues abort out unconditionally. This function is
11101  * called with hbalock held. The function returns 0 when it fails due to
11102  * memory allocation failure or when the command iocb is an abort request.
11103  **/
11104 static int
11105 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11106 			   struct lpfc_iocbq *cmdiocb)
11107 {
11108 	struct lpfc_vport *vport = cmdiocb->vport;
11109 	struct lpfc_iocbq *abtsiocbp;
11110 	IOCB_t *icmd = NULL;
11111 	IOCB_t *iabt = NULL;
11112 	int retval;
11113 	unsigned long iflags;
11114 	struct lpfc_nodelist *ndlp;
11115 
11116 	lockdep_assert_held(&phba->hbalock);
11117 
11118 	/*
11119 	 * There are certain command types we don't want to abort.  And we
11120 	 * don't want to abort commands that are already in the process of
11121 	 * being aborted.
11122 	 */
11123 	icmd = &cmdiocb->iocb;
11124 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11125 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11126 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11127 		return 0;
11128 
11129 	/* issue ABTS for this IOCB based on iotag */
11130 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11131 	if (abtsiocbp == NULL)
11132 		return 0;
11133 
11134 	/* This signals the response to set the correct status
11135 	 * before calling the completion handler
11136 	 */
11137 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11138 
11139 	iabt = &abtsiocbp->iocb;
11140 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11141 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11142 	if (phba->sli_rev == LPFC_SLI_REV4) {
11143 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11144 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11145 	} else {
11146 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11147 		if (pring->ringno == LPFC_ELS_RING) {
11148 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11149 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11150 		}
11151 	}
11152 	iabt->ulpLe = 1;
11153 	iabt->ulpClass = icmd->ulpClass;
11154 
11155 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11156 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11157 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11158 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11159 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11160 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11161 
11162 	if (phba->link_state >= LPFC_LINK_UP)
11163 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11164 	else
11165 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11166 
11167 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11168 	abtsiocbp->vport = vport;
11169 
11170 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11171 			 "0339 Abort xri x%x, original iotag x%x, "
11172 			 "abort cmd iotag x%x\n",
11173 			 iabt->un.acxri.abortIoTag,
11174 			 iabt->un.acxri.abortContextTag,
11175 			 abtsiocbp->iotag);
11176 
11177 	if (phba->sli_rev == LPFC_SLI_REV4) {
11178 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11179 		if (unlikely(pring == NULL))
11180 			return 0;
11181 		/* Note: both hbalock and ring_lock need to be set here */
11182 		spin_lock_irqsave(&pring->ring_lock, iflags);
11183 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11184 			abtsiocbp, 0);
11185 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11186 	} else {
11187 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11188 			abtsiocbp, 0);
11189 	}
11190 
11191 	if (retval)
11192 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11193 
11194 	/*
11195 	 * Caller to this routine should check for IOCB_ERROR
11196 	 * and handle it properly.  This routine no longer removes
11197 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11198 	 */
11199 	return retval;
11200 }
11201 
11202 /**
11203  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11204  * @phba: Pointer to HBA context object.
11205  * @pring: Pointer to driver SLI ring object.
11206  * @cmdiocb: Pointer to driver command iocb object.
11207  *
11208  * This function issues an abort iocb for the provided command iocb. In case
11209  * of unloading, the abort iocb will not be issued to commands on the ELS
11210  * ring. Instead, the callback function shall be changed to those commands
11211  * so that nothing happens when them finishes. This function is called with
11212  * hbalock held. The function returns 0 when the command iocb is an abort
11213  * request.
11214  **/
11215 int
11216 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11217 			   struct lpfc_iocbq *cmdiocb)
11218 {
11219 	struct lpfc_vport *vport = cmdiocb->vport;
11220 	int retval = IOCB_ERROR;
11221 	IOCB_t *icmd = NULL;
11222 
11223 	lockdep_assert_held(&phba->hbalock);
11224 
11225 	/*
11226 	 * There are certain command types we don't want to abort.  And we
11227 	 * don't want to abort commands that are already in the process of
11228 	 * being aborted.
11229 	 */
11230 	icmd = &cmdiocb->iocb;
11231 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11232 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11233 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11234 		return 0;
11235 
11236 	if (!pring) {
11237 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11238 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11239 		else
11240 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11241 		goto abort_iotag_exit;
11242 	}
11243 
11244 	/*
11245 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11246 	 * the callback so that nothing happens when it finishes.
11247 	 */
11248 	if ((vport->load_flag & FC_UNLOADING) &&
11249 	    (pring->ringno == LPFC_ELS_RING)) {
11250 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11251 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11252 		else
11253 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11254 		goto abort_iotag_exit;
11255 	}
11256 
11257 	/* Now, we try to issue the abort to the cmdiocb out */
11258 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11259 
11260 abort_iotag_exit:
11261 	/*
11262 	 * Caller to this routine should check for IOCB_ERROR
11263 	 * and handle it properly.  This routine no longer removes
11264 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11265 	 */
11266 	return retval;
11267 }
11268 
11269 /**
11270  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11271  * @phba: pointer to lpfc HBA data structure.
11272  *
11273  * This routine will abort all pending and outstanding iocbs to an HBA.
11274  **/
11275 void
11276 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11277 {
11278 	struct lpfc_sli *psli = &phba->sli;
11279 	struct lpfc_sli_ring *pring;
11280 	struct lpfc_queue *qp = NULL;
11281 	int i;
11282 
11283 	if (phba->sli_rev != LPFC_SLI_REV4) {
11284 		for (i = 0; i < psli->num_rings; i++) {
11285 			pring = &psli->sli3_ring[i];
11286 			lpfc_sli_abort_iocb_ring(phba, pring);
11287 		}
11288 		return;
11289 	}
11290 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11291 		pring = qp->pring;
11292 		if (!pring)
11293 			continue;
11294 		lpfc_sli_abort_iocb_ring(phba, pring);
11295 	}
11296 }
11297 
11298 /**
11299  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11300  * @iocbq: Pointer to driver iocb object.
11301  * @vport: Pointer to driver virtual port object.
11302  * @tgt_id: SCSI ID of the target.
11303  * @lun_id: LUN ID of the scsi device.
11304  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11305  *
11306  * This function acts as an iocb filter for functions which abort or count
11307  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11308  * 0 if the filtering criteria is met for the given iocb and will return
11309  * 1 if the filtering criteria is not met.
11310  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11311  * given iocb is for the SCSI device specified by vport, tgt_id and
11312  * lun_id parameter.
11313  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11314  * given iocb is for the SCSI target specified by vport and tgt_id
11315  * parameters.
11316  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11317  * given iocb is for the SCSI host associated with the given vport.
11318  * This function is called with no locks held.
11319  **/
11320 static int
11321 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11322 			   uint16_t tgt_id, uint64_t lun_id,
11323 			   lpfc_ctx_cmd ctx_cmd)
11324 {
11325 	struct lpfc_io_buf *lpfc_cmd;
11326 	int rc = 1;
11327 
11328 	if (iocbq->vport != vport)
11329 		return rc;
11330 
11331 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11332 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11333 		return rc;
11334 
11335 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11336 
11337 	if (lpfc_cmd->pCmd == NULL)
11338 		return rc;
11339 
11340 	switch (ctx_cmd) {
11341 	case LPFC_CTX_LUN:
11342 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11343 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11344 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11345 			rc = 0;
11346 		break;
11347 	case LPFC_CTX_TGT:
11348 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11349 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11350 			rc = 0;
11351 		break;
11352 	case LPFC_CTX_HOST:
11353 		rc = 0;
11354 		break;
11355 	default:
11356 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11357 			__func__, ctx_cmd);
11358 		break;
11359 	}
11360 
11361 	return rc;
11362 }
11363 
11364 /**
11365  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11366  * @vport: Pointer to virtual port.
11367  * @tgt_id: SCSI ID of the target.
11368  * @lun_id: LUN ID of the scsi device.
11369  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11370  *
11371  * This function returns number of FCP commands pending for the vport.
11372  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11373  * commands pending on the vport associated with SCSI device specified
11374  * by tgt_id and lun_id parameters.
11375  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11376  * commands pending on the vport associated with SCSI target specified
11377  * by tgt_id parameter.
11378  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11379  * commands pending on the vport.
11380  * This function returns the number of iocbs which satisfy the filter.
11381  * This function is called without any lock held.
11382  **/
11383 int
11384 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11385 		  lpfc_ctx_cmd ctx_cmd)
11386 {
11387 	struct lpfc_hba *phba = vport->phba;
11388 	struct lpfc_iocbq *iocbq;
11389 	int sum, i;
11390 
11391 	spin_lock_irq(&phba->hbalock);
11392 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11393 		iocbq = phba->sli.iocbq_lookup[i];
11394 
11395 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11396 						ctx_cmd) == 0)
11397 			sum++;
11398 	}
11399 	spin_unlock_irq(&phba->hbalock);
11400 
11401 	return sum;
11402 }
11403 
11404 /**
11405  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11406  * @phba: Pointer to HBA context object
11407  * @cmdiocb: Pointer to command iocb object.
11408  * @rspiocb: Pointer to response iocb object.
11409  *
11410  * This function is called when an aborted FCP iocb completes. This
11411  * function is called by the ring event handler with no lock held.
11412  * This function frees the iocb.
11413  **/
11414 void
11415 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11416 			struct lpfc_iocbq *rspiocb)
11417 {
11418 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11419 			"3096 ABORT_XRI_CN completing on rpi x%x "
11420 			"original iotag x%x, abort cmd iotag x%x "
11421 			"status 0x%x, reason 0x%x\n",
11422 			cmdiocb->iocb.un.acxri.abortContextTag,
11423 			cmdiocb->iocb.un.acxri.abortIoTag,
11424 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11425 			rspiocb->iocb.un.ulpWord[4]);
11426 	lpfc_sli_release_iocbq(phba, cmdiocb);
11427 	return;
11428 }
11429 
11430 /**
11431  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11432  * @vport: Pointer to virtual port.
11433  * @pring: Pointer to driver SLI ring object.
11434  * @tgt_id: SCSI ID of the target.
11435  * @lun_id: LUN ID of the scsi device.
11436  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11437  *
11438  * This function sends an abort command for every SCSI command
11439  * associated with the given virtual port pending on the ring
11440  * filtered by lpfc_sli_validate_fcp_iocb function.
11441  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11442  * FCP iocbs associated with lun specified by tgt_id and lun_id
11443  * parameters
11444  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11445  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11446  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11447  * FCP iocbs associated with virtual port.
11448  * This function returns number of iocbs it failed to abort.
11449  * This function is called with no locks held.
11450  **/
11451 int
11452 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11453 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11454 {
11455 	struct lpfc_hba *phba = vport->phba;
11456 	struct lpfc_iocbq *iocbq;
11457 	struct lpfc_iocbq *abtsiocb;
11458 	struct lpfc_sli_ring *pring_s4;
11459 	IOCB_t *cmd = NULL;
11460 	int errcnt = 0, ret_val = 0;
11461 	int i;
11462 
11463 	/* all I/Os are in process of being flushed */
11464 	if (phba->hba_flag & HBA_IOQ_FLUSH)
11465 		return errcnt;
11466 
11467 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11468 		iocbq = phba->sli.iocbq_lookup[i];
11469 
11470 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11471 					       abort_cmd) != 0)
11472 			continue;
11473 
11474 		/*
11475 		 * If the iocbq is already being aborted, don't take a second
11476 		 * action, but do count it.
11477 		 */
11478 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11479 			continue;
11480 
11481 		/* issue ABTS for this IOCB based on iotag */
11482 		abtsiocb = lpfc_sli_get_iocbq(phba);
11483 		if (abtsiocb == NULL) {
11484 			errcnt++;
11485 			continue;
11486 		}
11487 
11488 		/* indicate the IO is being aborted by the driver. */
11489 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11490 
11491 		cmd = &iocbq->iocb;
11492 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11493 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11494 		if (phba->sli_rev == LPFC_SLI_REV4)
11495 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11496 		else
11497 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11498 		abtsiocb->iocb.ulpLe = 1;
11499 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11500 		abtsiocb->vport = vport;
11501 
11502 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11503 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11504 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11505 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11506 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11507 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11508 
11509 		if (lpfc_is_link_up(phba))
11510 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11511 		else
11512 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11513 
11514 		/* Setup callback routine and issue the command. */
11515 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11516 		if (phba->sli_rev == LPFC_SLI_REV4) {
11517 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11518 			if (!pring_s4)
11519 				continue;
11520 			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11521 						      abtsiocb, 0);
11522 		} else
11523 			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11524 						      abtsiocb, 0);
11525 		if (ret_val == IOCB_ERROR) {
11526 			lpfc_sli_release_iocbq(phba, abtsiocb);
11527 			errcnt++;
11528 			continue;
11529 		}
11530 	}
11531 
11532 	return errcnt;
11533 }
11534 
11535 /**
11536  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11537  * @vport: Pointer to virtual port.
11538  * @pring: Pointer to driver SLI ring object.
11539  * @tgt_id: SCSI ID of the target.
11540  * @lun_id: LUN ID of the scsi device.
11541  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11542  *
11543  * This function sends an abort command for every SCSI command
11544  * associated with the given virtual port pending on the ring
11545  * filtered by lpfc_sli_validate_fcp_iocb function.
11546  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11547  * FCP iocbs associated with lun specified by tgt_id and lun_id
11548  * parameters
11549  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11550  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11551  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11552  * FCP iocbs associated with virtual port.
11553  * This function returns number of iocbs it aborted .
11554  * This function is called with no locks held right after a taskmgmt
11555  * command is sent.
11556  **/
11557 int
11558 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11559 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11560 {
11561 	struct lpfc_hba *phba = vport->phba;
11562 	struct lpfc_io_buf *lpfc_cmd;
11563 	struct lpfc_iocbq *abtsiocbq;
11564 	struct lpfc_nodelist *ndlp;
11565 	struct lpfc_iocbq *iocbq;
11566 	IOCB_t *icmd;
11567 	int sum, i, ret_val;
11568 	unsigned long iflags;
11569 	struct lpfc_sli_ring *pring_s4 = NULL;
11570 
11571 	spin_lock_irqsave(&phba->hbalock, iflags);
11572 
11573 	/* all I/Os are in process of being flushed */
11574 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
11575 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11576 		return 0;
11577 	}
11578 	sum = 0;
11579 
11580 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11581 		iocbq = phba->sli.iocbq_lookup[i];
11582 
11583 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11584 					       cmd) != 0)
11585 			continue;
11586 
11587 		/* Guard against IO completion being called at same time */
11588 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11589 		spin_lock(&lpfc_cmd->buf_lock);
11590 
11591 		if (!lpfc_cmd->pCmd) {
11592 			spin_unlock(&lpfc_cmd->buf_lock);
11593 			continue;
11594 		}
11595 
11596 		if (phba->sli_rev == LPFC_SLI_REV4) {
11597 			pring_s4 =
11598 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
11599 			if (!pring_s4) {
11600 				spin_unlock(&lpfc_cmd->buf_lock);
11601 				continue;
11602 			}
11603 			/* Note: both hbalock and ring_lock must be set here */
11604 			spin_lock(&pring_s4->ring_lock);
11605 		}
11606 
11607 		/*
11608 		 * If the iocbq is already being aborted, don't take a second
11609 		 * action, but do count it.
11610 		 */
11611 		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11612 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11613 			if (phba->sli_rev == LPFC_SLI_REV4)
11614 				spin_unlock(&pring_s4->ring_lock);
11615 			spin_unlock(&lpfc_cmd->buf_lock);
11616 			continue;
11617 		}
11618 
11619 		/* issue ABTS for this IOCB based on iotag */
11620 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11621 		if (!abtsiocbq) {
11622 			if (phba->sli_rev == LPFC_SLI_REV4)
11623 				spin_unlock(&pring_s4->ring_lock);
11624 			spin_unlock(&lpfc_cmd->buf_lock);
11625 			continue;
11626 		}
11627 
11628 		icmd = &iocbq->iocb;
11629 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11630 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11631 		if (phba->sli_rev == LPFC_SLI_REV4)
11632 			abtsiocbq->iocb.un.acxri.abortIoTag =
11633 							 iocbq->sli4_xritag;
11634 		else
11635 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11636 		abtsiocbq->iocb.ulpLe = 1;
11637 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11638 		abtsiocbq->vport = vport;
11639 
11640 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11641 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11642 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11643 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11644 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11645 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11646 
11647 		ndlp = lpfc_cmd->rdata->pnode;
11648 
11649 		if (lpfc_is_link_up(phba) &&
11650 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11651 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11652 		else
11653 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11654 
11655 		/* Setup callback routine and issue the command. */
11656 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11657 
11658 		/*
11659 		 * Indicate the IO is being aborted by the driver and set
11660 		 * the caller's flag into the aborted IO.
11661 		 */
11662 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11663 
11664 		if (phba->sli_rev == LPFC_SLI_REV4) {
11665 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11666 							abtsiocbq, 0);
11667 			spin_unlock(&pring_s4->ring_lock);
11668 		} else {
11669 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11670 							abtsiocbq, 0);
11671 		}
11672 
11673 		spin_unlock(&lpfc_cmd->buf_lock);
11674 
11675 		if (ret_val == IOCB_ERROR)
11676 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11677 		else
11678 			sum++;
11679 	}
11680 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11681 	return sum;
11682 }
11683 
11684 /**
11685  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11686  * @phba: Pointer to HBA context object.
11687  * @cmdiocbq: Pointer to command iocb.
11688  * @rspiocbq: Pointer to response iocb.
11689  *
11690  * This function is the completion handler for iocbs issued using
11691  * lpfc_sli_issue_iocb_wait function. This function is called by the
11692  * ring event handler function without any lock held. This function
11693  * can be called from both worker thread context and interrupt
11694  * context. This function also can be called from other thread which
11695  * cleans up the SLI layer objects.
11696  * This function copy the contents of the response iocb to the
11697  * response iocb memory object provided by the caller of
11698  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11699  * sleeps for the iocb completion.
11700  **/
11701 static void
11702 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11703 			struct lpfc_iocbq *cmdiocbq,
11704 			struct lpfc_iocbq *rspiocbq)
11705 {
11706 	wait_queue_head_t *pdone_q;
11707 	unsigned long iflags;
11708 	struct lpfc_io_buf *lpfc_cmd;
11709 
11710 	spin_lock_irqsave(&phba->hbalock, iflags);
11711 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11712 
11713 		/*
11714 		 * A time out has occurred for the iocb.  If a time out
11715 		 * completion handler has been supplied, call it.  Otherwise,
11716 		 * just free the iocbq.
11717 		 */
11718 
11719 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11720 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11721 		cmdiocbq->wait_iocb_cmpl = NULL;
11722 		if (cmdiocbq->iocb_cmpl)
11723 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11724 		else
11725 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11726 		return;
11727 	}
11728 
11729 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11730 	if (cmdiocbq->context2 && rspiocbq)
11731 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11732 		       &rspiocbq->iocb, sizeof(IOCB_t));
11733 
11734 	/* Set the exchange busy flag for task management commands */
11735 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11736 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11737 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11738 			cur_iocbq);
11739 		lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11740 	}
11741 
11742 	pdone_q = cmdiocbq->context_un.wait_queue;
11743 	if (pdone_q)
11744 		wake_up(pdone_q);
11745 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11746 	return;
11747 }
11748 
11749 /**
11750  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11751  * @phba: Pointer to HBA context object..
11752  * @piocbq: Pointer to command iocb.
11753  * @flag: Flag to test.
11754  *
11755  * This routine grabs the hbalock and then test the iocb_flag to
11756  * see if the passed in flag is set.
11757  * Returns:
11758  * 1 if flag is set.
11759  * 0 if flag is not set.
11760  **/
11761 static int
11762 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11763 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11764 {
11765 	unsigned long iflags;
11766 	int ret;
11767 
11768 	spin_lock_irqsave(&phba->hbalock, iflags);
11769 	ret = piocbq->iocb_flag & flag;
11770 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11771 	return ret;
11772 
11773 }
11774 
11775 /**
11776  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11777  * @phba: Pointer to HBA context object..
11778  * @pring: Pointer to sli ring.
11779  * @piocb: Pointer to command iocb.
11780  * @prspiocbq: Pointer to response iocb.
11781  * @timeout: Timeout in number of seconds.
11782  *
11783  * This function issues the iocb to firmware and waits for the
11784  * iocb to complete. The iocb_cmpl field of the shall be used
11785  * to handle iocbs which time out. If the field is NULL, the
11786  * function shall free the iocbq structure.  If more clean up is
11787  * needed, the caller is expected to provide a completion function
11788  * that will provide the needed clean up.  If the iocb command is
11789  * not completed within timeout seconds, the function will either
11790  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11791  * completion function set in the iocb_cmpl field and then return
11792  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11793  * resources if this function returns IOCB_TIMEDOUT.
11794  * The function waits for the iocb completion using an
11795  * non-interruptible wait.
11796  * This function will sleep while waiting for iocb completion.
11797  * So, this function should not be called from any context which
11798  * does not allow sleeping. Due to the same reason, this function
11799  * cannot be called with interrupt disabled.
11800  * This function assumes that the iocb completions occur while
11801  * this function sleep. So, this function cannot be called from
11802  * the thread which process iocb completion for this ring.
11803  * This function clears the iocb_flag of the iocb object before
11804  * issuing the iocb and the iocb completion handler sets this
11805  * flag and wakes this thread when the iocb completes.
11806  * The contents of the response iocb will be copied to prspiocbq
11807  * by the completion handler when the command completes.
11808  * This function returns IOCB_SUCCESS when success.
11809  * This function is called with no lock held.
11810  **/
11811 int
11812 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11813 			 uint32_t ring_number,
11814 			 struct lpfc_iocbq *piocb,
11815 			 struct lpfc_iocbq *prspiocbq,
11816 			 uint32_t timeout)
11817 {
11818 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11819 	long timeleft, timeout_req = 0;
11820 	int retval = IOCB_SUCCESS;
11821 	uint32_t creg_val;
11822 	struct lpfc_iocbq *iocb;
11823 	int txq_cnt = 0;
11824 	int txcmplq_cnt = 0;
11825 	struct lpfc_sli_ring *pring;
11826 	unsigned long iflags;
11827 	bool iocb_completed = true;
11828 
11829 	if (phba->sli_rev >= LPFC_SLI_REV4)
11830 		pring = lpfc_sli4_calc_ring(phba, piocb);
11831 	else
11832 		pring = &phba->sli.sli3_ring[ring_number];
11833 	/*
11834 	 * If the caller has provided a response iocbq buffer, then context2
11835 	 * is NULL or its an error.
11836 	 */
11837 	if (prspiocbq) {
11838 		if (piocb->context2)
11839 			return IOCB_ERROR;
11840 		piocb->context2 = prspiocbq;
11841 	}
11842 
11843 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11844 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11845 	piocb->context_un.wait_queue = &done_q;
11846 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11847 
11848 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11849 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11850 			return IOCB_ERROR;
11851 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11852 		writel(creg_val, phba->HCregaddr);
11853 		readl(phba->HCregaddr); /* flush */
11854 	}
11855 
11856 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11857 				     SLI_IOCB_RET_IOCB);
11858 	if (retval == IOCB_SUCCESS) {
11859 		timeout_req = msecs_to_jiffies(timeout * 1000);
11860 		timeleft = wait_event_timeout(done_q,
11861 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11862 				timeout_req);
11863 		spin_lock_irqsave(&phba->hbalock, iflags);
11864 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11865 
11866 			/*
11867 			 * IOCB timed out.  Inform the wake iocb wait
11868 			 * completion function and set local status
11869 			 */
11870 
11871 			iocb_completed = false;
11872 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11873 		}
11874 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11875 		if (iocb_completed) {
11876 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11877 					"0331 IOCB wake signaled\n");
11878 			/* Note: we are not indicating if the IOCB has a success
11879 			 * status or not - that's for the caller to check.
11880 			 * IOCB_SUCCESS means just that the command was sent and
11881 			 * completed. Not that it completed successfully.
11882 			 * */
11883 		} else if (timeleft == 0) {
11884 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11885 					"0338 IOCB wait timeout error - no "
11886 					"wake response Data x%x\n", timeout);
11887 			retval = IOCB_TIMEDOUT;
11888 		} else {
11889 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11890 					"0330 IOCB wake NOT set, "
11891 					"Data x%x x%lx\n",
11892 					timeout, (timeleft / jiffies));
11893 			retval = IOCB_TIMEDOUT;
11894 		}
11895 	} else if (retval == IOCB_BUSY) {
11896 		if (phba->cfg_log_verbose & LOG_SLI) {
11897 			list_for_each_entry(iocb, &pring->txq, list) {
11898 				txq_cnt++;
11899 			}
11900 			list_for_each_entry(iocb, &pring->txcmplq, list) {
11901 				txcmplq_cnt++;
11902 			}
11903 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11904 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11905 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11906 		}
11907 		return retval;
11908 	} else {
11909 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11910 				"0332 IOCB wait issue failed, Data x%x\n",
11911 				retval);
11912 		retval = IOCB_ERROR;
11913 	}
11914 
11915 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11916 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11917 			return IOCB_ERROR;
11918 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
11919 		writel(creg_val, phba->HCregaddr);
11920 		readl(phba->HCregaddr); /* flush */
11921 	}
11922 
11923 	if (prspiocbq)
11924 		piocb->context2 = NULL;
11925 
11926 	piocb->context_un.wait_queue = NULL;
11927 	piocb->iocb_cmpl = NULL;
11928 	return retval;
11929 }
11930 
11931 /**
11932  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
11933  * @phba: Pointer to HBA context object.
11934  * @pmboxq: Pointer to driver mailbox object.
11935  * @timeout: Timeout in number of seconds.
11936  *
11937  * This function issues the mailbox to firmware and waits for the
11938  * mailbox command to complete. If the mailbox command is not
11939  * completed within timeout seconds, it returns MBX_TIMEOUT.
11940  * The function waits for the mailbox completion using an
11941  * interruptible wait. If the thread is woken up due to a
11942  * signal, MBX_TIMEOUT error is returned to the caller. Caller
11943  * should not free the mailbox resources, if this function returns
11944  * MBX_TIMEOUT.
11945  * This function will sleep while waiting for mailbox completion.
11946  * So, this function should not be called from any context which
11947  * does not allow sleeping. Due to the same reason, this function
11948  * cannot be called with interrupt disabled.
11949  * This function assumes that the mailbox completion occurs while
11950  * this function sleep. So, this function cannot be called from
11951  * the worker thread which processes mailbox completion.
11952  * This function is called in the context of HBA management
11953  * applications.
11954  * This function returns MBX_SUCCESS when successful.
11955  * This function is called with no lock held.
11956  **/
11957 int
11958 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
11959 			 uint32_t timeout)
11960 {
11961 	struct completion mbox_done;
11962 	int retval;
11963 	unsigned long flag;
11964 
11965 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
11966 	/* setup wake call as IOCB callback */
11967 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
11968 
11969 	/* setup context3 field to pass wait_queue pointer to wake function  */
11970 	init_completion(&mbox_done);
11971 	pmboxq->context3 = &mbox_done;
11972 	/* now issue the command */
11973 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
11974 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
11975 		wait_for_completion_timeout(&mbox_done,
11976 					    msecs_to_jiffies(timeout * 1000));
11977 
11978 		spin_lock_irqsave(&phba->hbalock, flag);
11979 		pmboxq->context3 = NULL;
11980 		/*
11981 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
11982 		 * else do not free the resources.
11983 		 */
11984 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
11985 			retval = MBX_SUCCESS;
11986 		} else {
11987 			retval = MBX_TIMEOUT;
11988 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
11989 		}
11990 		spin_unlock_irqrestore(&phba->hbalock, flag);
11991 	}
11992 	return retval;
11993 }
11994 
11995 /**
11996  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
11997  * @phba: Pointer to HBA context.
11998  *
11999  * This function is called to shutdown the driver's mailbox sub-system.
12000  * It first marks the mailbox sub-system is in a block state to prevent
12001  * the asynchronous mailbox command from issued off the pending mailbox
12002  * command queue. If the mailbox command sub-system shutdown is due to
12003  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12004  * the mailbox sub-system flush routine to forcefully bring down the
12005  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12006  * as with offline or HBA function reset), this routine will wait for the
12007  * outstanding mailbox command to complete before invoking the mailbox
12008  * sub-system flush routine to gracefully bring down mailbox sub-system.
12009  **/
12010 void
12011 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12012 {
12013 	struct lpfc_sli *psli = &phba->sli;
12014 	unsigned long timeout;
12015 
12016 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12017 		/* delay 100ms for port state */
12018 		msleep(100);
12019 		lpfc_sli_mbox_sys_flush(phba);
12020 		return;
12021 	}
12022 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12023 
12024 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12025 	local_bh_disable();
12026 
12027 	spin_lock_irq(&phba->hbalock);
12028 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12029 
12030 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12031 		/* Determine how long we might wait for the active mailbox
12032 		 * command to be gracefully completed by firmware.
12033 		 */
12034 		if (phba->sli.mbox_active)
12035 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12036 						phba->sli.mbox_active) *
12037 						1000) + jiffies;
12038 		spin_unlock_irq(&phba->hbalock);
12039 
12040 		/* Enable softirqs again, done with phba->hbalock */
12041 		local_bh_enable();
12042 
12043 		while (phba->sli.mbox_active) {
12044 			/* Check active mailbox complete status every 2ms */
12045 			msleep(2);
12046 			if (time_after(jiffies, timeout))
12047 				/* Timeout, let the mailbox flush routine to
12048 				 * forcefully release active mailbox command
12049 				 */
12050 				break;
12051 		}
12052 	} else {
12053 		spin_unlock_irq(&phba->hbalock);
12054 
12055 		/* Enable softirqs again, done with phba->hbalock */
12056 		local_bh_enable();
12057 	}
12058 
12059 	lpfc_sli_mbox_sys_flush(phba);
12060 }
12061 
12062 /**
12063  * lpfc_sli_eratt_read - read sli-3 error attention events
12064  * @phba: Pointer to HBA context.
12065  *
12066  * This function is called to read the SLI3 device error attention registers
12067  * for possible error attention events. The caller must hold the hostlock
12068  * with spin_lock_irq().
12069  *
12070  * This function returns 1 when there is Error Attention in the Host Attention
12071  * Register and returns 0 otherwise.
12072  **/
12073 static int
12074 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12075 {
12076 	uint32_t ha_copy;
12077 
12078 	/* Read chip Host Attention (HA) register */
12079 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12080 		goto unplug_err;
12081 
12082 	if (ha_copy & HA_ERATT) {
12083 		/* Read host status register to retrieve error event */
12084 		if (lpfc_sli_read_hs(phba))
12085 			goto unplug_err;
12086 
12087 		/* Check if there is a deferred error condition is active */
12088 		if ((HS_FFER1 & phba->work_hs) &&
12089 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12090 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12091 			phba->hba_flag |= DEFER_ERATT;
12092 			/* Clear all interrupt enable conditions */
12093 			writel(0, phba->HCregaddr);
12094 			readl(phba->HCregaddr);
12095 		}
12096 
12097 		/* Set the driver HA work bitmap */
12098 		phba->work_ha |= HA_ERATT;
12099 		/* Indicate polling handles this ERATT */
12100 		phba->hba_flag |= HBA_ERATT_HANDLED;
12101 		return 1;
12102 	}
12103 	return 0;
12104 
12105 unplug_err:
12106 	/* Set the driver HS work bitmap */
12107 	phba->work_hs |= UNPLUG_ERR;
12108 	/* Set the driver HA work bitmap */
12109 	phba->work_ha |= HA_ERATT;
12110 	/* Indicate polling handles this ERATT */
12111 	phba->hba_flag |= HBA_ERATT_HANDLED;
12112 	return 1;
12113 }
12114 
12115 /**
12116  * lpfc_sli4_eratt_read - read sli-4 error attention events
12117  * @phba: Pointer to HBA context.
12118  *
12119  * This function is called to read the SLI4 device error attention registers
12120  * for possible error attention events. The caller must hold the hostlock
12121  * with spin_lock_irq().
12122  *
12123  * This function returns 1 when there is Error Attention in the Host Attention
12124  * Register and returns 0 otherwise.
12125  **/
12126 static int
12127 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12128 {
12129 	uint32_t uerr_sta_hi, uerr_sta_lo;
12130 	uint32_t if_type, portsmphr;
12131 	struct lpfc_register portstat_reg;
12132 
12133 	/*
12134 	 * For now, use the SLI4 device internal unrecoverable error
12135 	 * registers for error attention. This can be changed later.
12136 	 */
12137 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12138 	switch (if_type) {
12139 	case LPFC_SLI_INTF_IF_TYPE_0:
12140 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12141 			&uerr_sta_lo) ||
12142 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12143 			&uerr_sta_hi)) {
12144 			phba->work_hs |= UNPLUG_ERR;
12145 			phba->work_ha |= HA_ERATT;
12146 			phba->hba_flag |= HBA_ERATT_HANDLED;
12147 			return 1;
12148 		}
12149 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12150 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12151 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12152 					"1423 HBA Unrecoverable error: "
12153 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12154 					"ue_mask_lo_reg=0x%x, "
12155 					"ue_mask_hi_reg=0x%x\n",
12156 					uerr_sta_lo, uerr_sta_hi,
12157 					phba->sli4_hba.ue_mask_lo,
12158 					phba->sli4_hba.ue_mask_hi);
12159 			phba->work_status[0] = uerr_sta_lo;
12160 			phba->work_status[1] = uerr_sta_hi;
12161 			phba->work_ha |= HA_ERATT;
12162 			phba->hba_flag |= HBA_ERATT_HANDLED;
12163 			return 1;
12164 		}
12165 		break;
12166 	case LPFC_SLI_INTF_IF_TYPE_2:
12167 	case LPFC_SLI_INTF_IF_TYPE_6:
12168 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12169 			&portstat_reg.word0) ||
12170 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12171 			&portsmphr)){
12172 			phba->work_hs |= UNPLUG_ERR;
12173 			phba->work_ha |= HA_ERATT;
12174 			phba->hba_flag |= HBA_ERATT_HANDLED;
12175 			return 1;
12176 		}
12177 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12178 			phba->work_status[0] =
12179 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12180 			phba->work_status[1] =
12181 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12182 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12183 					"2885 Port Status Event: "
12184 					"port status reg 0x%x, "
12185 					"port smphr reg 0x%x, "
12186 					"error 1=0x%x, error 2=0x%x\n",
12187 					portstat_reg.word0,
12188 					portsmphr,
12189 					phba->work_status[0],
12190 					phba->work_status[1]);
12191 			phba->work_ha |= HA_ERATT;
12192 			phba->hba_flag |= HBA_ERATT_HANDLED;
12193 			return 1;
12194 		}
12195 		break;
12196 	case LPFC_SLI_INTF_IF_TYPE_1:
12197 	default:
12198 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12199 				"2886 HBA Error Attention on unsupported "
12200 				"if type %d.", if_type);
12201 		return 1;
12202 	}
12203 
12204 	return 0;
12205 }
12206 
12207 /**
12208  * lpfc_sli_check_eratt - check error attention events
12209  * @phba: Pointer to HBA context.
12210  *
12211  * This function is called from timer soft interrupt context to check HBA's
12212  * error attention register bit for error attention events.
12213  *
12214  * This function returns 1 when there is Error Attention in the Host Attention
12215  * Register and returns 0 otherwise.
12216  **/
12217 int
12218 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12219 {
12220 	uint32_t ha_copy;
12221 
12222 	/* If somebody is waiting to handle an eratt, don't process it
12223 	 * here. The brdkill function will do this.
12224 	 */
12225 	if (phba->link_flag & LS_IGNORE_ERATT)
12226 		return 0;
12227 
12228 	/* Check if interrupt handler handles this ERATT */
12229 	spin_lock_irq(&phba->hbalock);
12230 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12231 		/* Interrupt handler has handled ERATT */
12232 		spin_unlock_irq(&phba->hbalock);
12233 		return 0;
12234 	}
12235 
12236 	/*
12237 	 * If there is deferred error attention, do not check for error
12238 	 * attention
12239 	 */
12240 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12241 		spin_unlock_irq(&phba->hbalock);
12242 		return 0;
12243 	}
12244 
12245 	/* If PCI channel is offline, don't process it */
12246 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12247 		spin_unlock_irq(&phba->hbalock);
12248 		return 0;
12249 	}
12250 
12251 	switch (phba->sli_rev) {
12252 	case LPFC_SLI_REV2:
12253 	case LPFC_SLI_REV3:
12254 		/* Read chip Host Attention (HA) register */
12255 		ha_copy = lpfc_sli_eratt_read(phba);
12256 		break;
12257 	case LPFC_SLI_REV4:
12258 		/* Read device Uncoverable Error (UERR) registers */
12259 		ha_copy = lpfc_sli4_eratt_read(phba);
12260 		break;
12261 	default:
12262 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12263 				"0299 Invalid SLI revision (%d)\n",
12264 				phba->sli_rev);
12265 		ha_copy = 0;
12266 		break;
12267 	}
12268 	spin_unlock_irq(&phba->hbalock);
12269 
12270 	return ha_copy;
12271 }
12272 
12273 /**
12274  * lpfc_intr_state_check - Check device state for interrupt handling
12275  * @phba: Pointer to HBA context.
12276  *
12277  * This inline routine checks whether a device or its PCI slot is in a state
12278  * that the interrupt should be handled.
12279  *
12280  * This function returns 0 if the device or the PCI slot is in a state that
12281  * interrupt should be handled, otherwise -EIO.
12282  */
12283 static inline int
12284 lpfc_intr_state_check(struct lpfc_hba *phba)
12285 {
12286 	/* If the pci channel is offline, ignore all the interrupts */
12287 	if (unlikely(pci_channel_offline(phba->pcidev)))
12288 		return -EIO;
12289 
12290 	/* Update device level interrupt statistics */
12291 	phba->sli.slistat.sli_intr++;
12292 
12293 	/* Ignore all interrupts during initialization. */
12294 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12295 		return -EIO;
12296 
12297 	return 0;
12298 }
12299 
12300 /**
12301  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12302  * @irq: Interrupt number.
12303  * @dev_id: The device context pointer.
12304  *
12305  * This function is directly called from the PCI layer as an interrupt
12306  * service routine when device with SLI-3 interface spec is enabled with
12307  * MSI-X multi-message interrupt mode and there are slow-path events in
12308  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12309  * interrupt mode, this function is called as part of the device-level
12310  * interrupt handler. When the PCI slot is in error recovery or the HBA
12311  * is undergoing initialization, the interrupt handler will not process
12312  * the interrupt. The link attention and ELS ring attention events are
12313  * handled by the worker thread. The interrupt handler signals the worker
12314  * thread and returns for these events. This function is called without
12315  * any lock held. It gets the hbalock to access and update SLI data
12316  * structures.
12317  *
12318  * This function returns IRQ_HANDLED when interrupt is handled else it
12319  * returns IRQ_NONE.
12320  **/
12321 irqreturn_t
12322 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12323 {
12324 	struct lpfc_hba  *phba;
12325 	uint32_t ha_copy, hc_copy;
12326 	uint32_t work_ha_copy;
12327 	unsigned long status;
12328 	unsigned long iflag;
12329 	uint32_t control;
12330 
12331 	MAILBOX_t *mbox, *pmbox;
12332 	struct lpfc_vport *vport;
12333 	struct lpfc_nodelist *ndlp;
12334 	struct lpfc_dmabuf *mp;
12335 	LPFC_MBOXQ_t *pmb;
12336 	int rc;
12337 
12338 	/*
12339 	 * Get the driver's phba structure from the dev_id and
12340 	 * assume the HBA is not interrupting.
12341 	 */
12342 	phba = (struct lpfc_hba *)dev_id;
12343 
12344 	if (unlikely(!phba))
12345 		return IRQ_NONE;
12346 
12347 	/*
12348 	 * Stuff needs to be attented to when this function is invoked as an
12349 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12350 	 */
12351 	if (phba->intr_type == MSIX) {
12352 		/* Check device state for handling interrupt */
12353 		if (lpfc_intr_state_check(phba))
12354 			return IRQ_NONE;
12355 		/* Need to read HA REG for slow-path events */
12356 		spin_lock_irqsave(&phba->hbalock, iflag);
12357 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12358 			goto unplug_error;
12359 		/* If somebody is waiting to handle an eratt don't process it
12360 		 * here. The brdkill function will do this.
12361 		 */
12362 		if (phba->link_flag & LS_IGNORE_ERATT)
12363 			ha_copy &= ~HA_ERATT;
12364 		/* Check the need for handling ERATT in interrupt handler */
12365 		if (ha_copy & HA_ERATT) {
12366 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12367 				/* ERATT polling has handled ERATT */
12368 				ha_copy &= ~HA_ERATT;
12369 			else
12370 				/* Indicate interrupt handler handles ERATT */
12371 				phba->hba_flag |= HBA_ERATT_HANDLED;
12372 		}
12373 
12374 		/*
12375 		 * If there is deferred error attention, do not check for any
12376 		 * interrupt.
12377 		 */
12378 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12379 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12380 			return IRQ_NONE;
12381 		}
12382 
12383 		/* Clear up only attention source related to slow-path */
12384 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12385 			goto unplug_error;
12386 
12387 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12388 			HC_LAINT_ENA | HC_ERINT_ENA),
12389 			phba->HCregaddr);
12390 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12391 			phba->HAregaddr);
12392 		writel(hc_copy, phba->HCregaddr);
12393 		readl(phba->HAregaddr); /* flush */
12394 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12395 	} else
12396 		ha_copy = phba->ha_copy;
12397 
12398 	work_ha_copy = ha_copy & phba->work_ha_mask;
12399 
12400 	if (work_ha_copy) {
12401 		if (work_ha_copy & HA_LATT) {
12402 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12403 				/*
12404 				 * Turn off Link Attention interrupts
12405 				 * until CLEAR_LA done
12406 				 */
12407 				spin_lock_irqsave(&phba->hbalock, iflag);
12408 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12409 				if (lpfc_readl(phba->HCregaddr, &control))
12410 					goto unplug_error;
12411 				control &= ~HC_LAINT_ENA;
12412 				writel(control, phba->HCregaddr);
12413 				readl(phba->HCregaddr); /* flush */
12414 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12415 			}
12416 			else
12417 				work_ha_copy &= ~HA_LATT;
12418 		}
12419 
12420 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12421 			/*
12422 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12423 			 * the only slow ring.
12424 			 */
12425 			status = (work_ha_copy &
12426 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12427 			status >>= (4*LPFC_ELS_RING);
12428 			if (status & HA_RXMASK) {
12429 				spin_lock_irqsave(&phba->hbalock, iflag);
12430 				if (lpfc_readl(phba->HCregaddr, &control))
12431 					goto unplug_error;
12432 
12433 				lpfc_debugfs_slow_ring_trc(phba,
12434 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12435 				control, status,
12436 				(uint32_t)phba->sli.slistat.sli_intr);
12437 
12438 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12439 					lpfc_debugfs_slow_ring_trc(phba,
12440 						"ISR Disable ring:"
12441 						"pwork:x%x hawork:x%x wait:x%x",
12442 						phba->work_ha, work_ha_copy,
12443 						(uint32_t)((unsigned long)
12444 						&phba->work_waitq));
12445 
12446 					control &=
12447 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12448 					writel(control, phba->HCregaddr);
12449 					readl(phba->HCregaddr); /* flush */
12450 				}
12451 				else {
12452 					lpfc_debugfs_slow_ring_trc(phba,
12453 						"ISR slow ring:   pwork:"
12454 						"x%x hawork:x%x wait:x%x",
12455 						phba->work_ha, work_ha_copy,
12456 						(uint32_t)((unsigned long)
12457 						&phba->work_waitq));
12458 				}
12459 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12460 			}
12461 		}
12462 		spin_lock_irqsave(&phba->hbalock, iflag);
12463 		if (work_ha_copy & HA_ERATT) {
12464 			if (lpfc_sli_read_hs(phba))
12465 				goto unplug_error;
12466 			/*
12467 			 * Check if there is a deferred error condition
12468 			 * is active
12469 			 */
12470 			if ((HS_FFER1 & phba->work_hs) &&
12471 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12472 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12473 				  phba->work_hs)) {
12474 				phba->hba_flag |= DEFER_ERATT;
12475 				/* Clear all interrupt enable conditions */
12476 				writel(0, phba->HCregaddr);
12477 				readl(phba->HCregaddr);
12478 			}
12479 		}
12480 
12481 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12482 			pmb = phba->sli.mbox_active;
12483 			pmbox = &pmb->u.mb;
12484 			mbox = phba->mbox;
12485 			vport = pmb->vport;
12486 
12487 			/* First check out the status word */
12488 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12489 			if (pmbox->mbxOwner != OWN_HOST) {
12490 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12491 				/*
12492 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12493 				 * mbxStatus <status>
12494 				 */
12495 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12496 						LOG_SLI,
12497 						"(%d):0304 Stray Mailbox "
12498 						"Interrupt mbxCommand x%x "
12499 						"mbxStatus x%x\n",
12500 						(vport ? vport->vpi : 0),
12501 						pmbox->mbxCommand,
12502 						pmbox->mbxStatus);
12503 				/* clear mailbox attention bit */
12504 				work_ha_copy &= ~HA_MBATT;
12505 			} else {
12506 				phba->sli.mbox_active = NULL;
12507 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12508 				phba->last_completion_time = jiffies;
12509 				del_timer(&phba->sli.mbox_tmo);
12510 				if (pmb->mbox_cmpl) {
12511 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12512 							MAILBOX_CMD_SIZE);
12513 					if (pmb->out_ext_byte_len &&
12514 						pmb->ctx_buf)
12515 						lpfc_sli_pcimem_bcopy(
12516 						phba->mbox_ext,
12517 						pmb->ctx_buf,
12518 						pmb->out_ext_byte_len);
12519 				}
12520 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12521 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12522 
12523 					lpfc_debugfs_disc_trc(vport,
12524 						LPFC_DISC_TRC_MBOX_VPORT,
12525 						"MBOX dflt rpi: : "
12526 						"status:x%x rpi:x%x",
12527 						(uint32_t)pmbox->mbxStatus,
12528 						pmbox->un.varWords[0], 0);
12529 
12530 					if (!pmbox->mbxStatus) {
12531 						mp = (struct lpfc_dmabuf *)
12532 							(pmb->ctx_buf);
12533 						ndlp = (struct lpfc_nodelist *)
12534 							pmb->ctx_ndlp;
12535 
12536 						/* Reg_LOGIN of dflt RPI was
12537 						 * successful. new lets get
12538 						 * rid of the RPI using the
12539 						 * same mbox buffer.
12540 						 */
12541 						lpfc_unreg_login(phba,
12542 							vport->vpi,
12543 							pmbox->un.varWords[0],
12544 							pmb);
12545 						pmb->mbox_cmpl =
12546 							lpfc_mbx_cmpl_dflt_rpi;
12547 						pmb->ctx_buf = mp;
12548 						pmb->ctx_ndlp = ndlp;
12549 						pmb->vport = vport;
12550 						rc = lpfc_sli_issue_mbox(phba,
12551 								pmb,
12552 								MBX_NOWAIT);
12553 						if (rc != MBX_BUSY)
12554 							lpfc_printf_log(phba,
12555 							KERN_ERR,
12556 							LOG_MBOX | LOG_SLI,
12557 							"0350 rc should have"
12558 							"been MBX_BUSY\n");
12559 						if (rc != MBX_NOT_FINISHED)
12560 							goto send_current_mbox;
12561 					}
12562 				}
12563 				spin_lock_irqsave(
12564 						&phba->pport->work_port_lock,
12565 						iflag);
12566 				phba->pport->work_port_events &=
12567 					~WORKER_MBOX_TMO;
12568 				spin_unlock_irqrestore(
12569 						&phba->pport->work_port_lock,
12570 						iflag);
12571 				lpfc_mbox_cmpl_put(phba, pmb);
12572 			}
12573 		} else
12574 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12575 
12576 		if ((work_ha_copy & HA_MBATT) &&
12577 		    (phba->sli.mbox_active == NULL)) {
12578 send_current_mbox:
12579 			/* Process next mailbox command if there is one */
12580 			do {
12581 				rc = lpfc_sli_issue_mbox(phba, NULL,
12582 							 MBX_NOWAIT);
12583 			} while (rc == MBX_NOT_FINISHED);
12584 			if (rc != MBX_SUCCESS)
12585 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12586 						LOG_SLI, "0349 rc should be "
12587 						"MBX_SUCCESS\n");
12588 		}
12589 
12590 		spin_lock_irqsave(&phba->hbalock, iflag);
12591 		phba->work_ha |= work_ha_copy;
12592 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12593 		lpfc_worker_wake_up(phba);
12594 	}
12595 	return IRQ_HANDLED;
12596 unplug_error:
12597 	spin_unlock_irqrestore(&phba->hbalock, iflag);
12598 	return IRQ_HANDLED;
12599 
12600 } /* lpfc_sli_sp_intr_handler */
12601 
12602 /**
12603  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12604  * @irq: Interrupt number.
12605  * @dev_id: The device context pointer.
12606  *
12607  * This function is directly called from the PCI layer as an interrupt
12608  * service routine when device with SLI-3 interface spec is enabled with
12609  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12610  * ring event in the HBA. However, when the device is enabled with either
12611  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12612  * device-level interrupt handler. When the PCI slot is in error recovery
12613  * or the HBA is undergoing initialization, the interrupt handler will not
12614  * process the interrupt. The SCSI FCP fast-path ring event are handled in
12615  * the intrrupt context. This function is called without any lock held.
12616  * It gets the hbalock to access and update SLI data structures.
12617  *
12618  * This function returns IRQ_HANDLED when interrupt is handled else it
12619  * returns IRQ_NONE.
12620  **/
12621 irqreturn_t
12622 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12623 {
12624 	struct lpfc_hba  *phba;
12625 	uint32_t ha_copy;
12626 	unsigned long status;
12627 	unsigned long iflag;
12628 	struct lpfc_sli_ring *pring;
12629 
12630 	/* Get the driver's phba structure from the dev_id and
12631 	 * assume the HBA is not interrupting.
12632 	 */
12633 	phba = (struct lpfc_hba *) dev_id;
12634 
12635 	if (unlikely(!phba))
12636 		return IRQ_NONE;
12637 
12638 	/*
12639 	 * Stuff needs to be attented to when this function is invoked as an
12640 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12641 	 */
12642 	if (phba->intr_type == MSIX) {
12643 		/* Check device state for handling interrupt */
12644 		if (lpfc_intr_state_check(phba))
12645 			return IRQ_NONE;
12646 		/* Need to read HA REG for FCP ring and other ring events */
12647 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12648 			return IRQ_HANDLED;
12649 		/* Clear up only attention source related to fast-path */
12650 		spin_lock_irqsave(&phba->hbalock, iflag);
12651 		/*
12652 		 * If there is deferred error attention, do not check for
12653 		 * any interrupt.
12654 		 */
12655 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12656 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12657 			return IRQ_NONE;
12658 		}
12659 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12660 			phba->HAregaddr);
12661 		readl(phba->HAregaddr); /* flush */
12662 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12663 	} else
12664 		ha_copy = phba->ha_copy;
12665 
12666 	/*
12667 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12668 	 */
12669 	ha_copy &= ~(phba->work_ha_mask);
12670 
12671 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12672 	status >>= (4*LPFC_FCP_RING);
12673 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12674 	if (status & HA_RXMASK)
12675 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12676 
12677 	if (phba->cfg_multi_ring_support == 2) {
12678 		/*
12679 		 * Process all events on extra ring. Take the optimized path
12680 		 * for extra ring IO.
12681 		 */
12682 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12683 		status >>= (4*LPFC_EXTRA_RING);
12684 		if (status & HA_RXMASK) {
12685 			lpfc_sli_handle_fast_ring_event(phba,
12686 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12687 					status);
12688 		}
12689 	}
12690 	return IRQ_HANDLED;
12691 }  /* lpfc_sli_fp_intr_handler */
12692 
12693 /**
12694  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12695  * @irq: Interrupt number.
12696  * @dev_id: The device context pointer.
12697  *
12698  * This function is the HBA device-level interrupt handler to device with
12699  * SLI-3 interface spec, called from the PCI layer when either MSI or
12700  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12701  * requires driver attention. This function invokes the slow-path interrupt
12702  * attention handling function and fast-path interrupt attention handling
12703  * function in turn to process the relevant HBA attention events. This
12704  * function is called without any lock held. It gets the hbalock to access
12705  * and update SLI data structures.
12706  *
12707  * This function returns IRQ_HANDLED when interrupt is handled, else it
12708  * returns IRQ_NONE.
12709  **/
12710 irqreturn_t
12711 lpfc_sli_intr_handler(int irq, void *dev_id)
12712 {
12713 	struct lpfc_hba  *phba;
12714 	irqreturn_t sp_irq_rc, fp_irq_rc;
12715 	unsigned long status1, status2;
12716 	uint32_t hc_copy;
12717 
12718 	/*
12719 	 * Get the driver's phba structure from the dev_id and
12720 	 * assume the HBA is not interrupting.
12721 	 */
12722 	phba = (struct lpfc_hba *) dev_id;
12723 
12724 	if (unlikely(!phba))
12725 		return IRQ_NONE;
12726 
12727 	/* Check device state for handling interrupt */
12728 	if (lpfc_intr_state_check(phba))
12729 		return IRQ_NONE;
12730 
12731 	spin_lock(&phba->hbalock);
12732 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12733 		spin_unlock(&phba->hbalock);
12734 		return IRQ_HANDLED;
12735 	}
12736 
12737 	if (unlikely(!phba->ha_copy)) {
12738 		spin_unlock(&phba->hbalock);
12739 		return IRQ_NONE;
12740 	} else if (phba->ha_copy & HA_ERATT) {
12741 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12742 			/* ERATT polling has handled ERATT */
12743 			phba->ha_copy &= ~HA_ERATT;
12744 		else
12745 			/* Indicate interrupt handler handles ERATT */
12746 			phba->hba_flag |= HBA_ERATT_HANDLED;
12747 	}
12748 
12749 	/*
12750 	 * If there is deferred error attention, do not check for any interrupt.
12751 	 */
12752 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12753 		spin_unlock(&phba->hbalock);
12754 		return IRQ_NONE;
12755 	}
12756 
12757 	/* Clear attention sources except link and error attentions */
12758 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12759 		spin_unlock(&phba->hbalock);
12760 		return IRQ_HANDLED;
12761 	}
12762 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12763 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12764 		phba->HCregaddr);
12765 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12766 	writel(hc_copy, phba->HCregaddr);
12767 	readl(phba->HAregaddr); /* flush */
12768 	spin_unlock(&phba->hbalock);
12769 
12770 	/*
12771 	 * Invokes slow-path host attention interrupt handling as appropriate.
12772 	 */
12773 
12774 	/* status of events with mailbox and link attention */
12775 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12776 
12777 	/* status of events with ELS ring */
12778 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12779 	status2 >>= (4*LPFC_ELS_RING);
12780 
12781 	if (status1 || (status2 & HA_RXMASK))
12782 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12783 	else
12784 		sp_irq_rc = IRQ_NONE;
12785 
12786 	/*
12787 	 * Invoke fast-path host attention interrupt handling as appropriate.
12788 	 */
12789 
12790 	/* status of events with FCP ring */
12791 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12792 	status1 >>= (4*LPFC_FCP_RING);
12793 
12794 	/* status of events with extra ring */
12795 	if (phba->cfg_multi_ring_support == 2) {
12796 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12797 		status2 >>= (4*LPFC_EXTRA_RING);
12798 	} else
12799 		status2 = 0;
12800 
12801 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12802 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12803 	else
12804 		fp_irq_rc = IRQ_NONE;
12805 
12806 	/* Return device-level interrupt handling status */
12807 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12808 }  /* lpfc_sli_intr_handler */
12809 
12810 /**
12811  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12812  * @phba: pointer to lpfc hba data structure.
12813  *
12814  * This routine is invoked by the worker thread to process all the pending
12815  * SLI4 els abort xri events.
12816  **/
12817 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12818 {
12819 	struct lpfc_cq_event *cq_event;
12820 
12821 	/* First, declare the els xri abort event has been handled */
12822 	spin_lock_irq(&phba->hbalock);
12823 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12824 	spin_unlock_irq(&phba->hbalock);
12825 	/* Now, handle all the els xri abort events */
12826 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12827 		/* Get the first event from the head of the event queue */
12828 		spin_lock_irq(&phba->hbalock);
12829 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12830 				 cq_event, struct lpfc_cq_event, list);
12831 		spin_unlock_irq(&phba->hbalock);
12832 		/* Notify aborted XRI for ELS work queue */
12833 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12834 		/* Free the event processed back to the free pool */
12835 		lpfc_sli4_cq_event_release(phba, cq_event);
12836 	}
12837 }
12838 
12839 /**
12840  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12841  * @phba: pointer to lpfc hba data structure
12842  * @pIocbIn: pointer to the rspiocbq
12843  * @pIocbOut: pointer to the cmdiocbq
12844  * @wcqe: pointer to the complete wcqe
12845  *
12846  * This routine transfers the fields of a command iocbq to a response iocbq
12847  * by copying all the IOCB fields from command iocbq and transferring the
12848  * completion status information from the complete wcqe.
12849  **/
12850 static void
12851 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12852 			      struct lpfc_iocbq *pIocbIn,
12853 			      struct lpfc_iocbq *pIocbOut,
12854 			      struct lpfc_wcqe_complete *wcqe)
12855 {
12856 	int numBdes, i;
12857 	unsigned long iflags;
12858 	uint32_t status, max_response;
12859 	struct lpfc_dmabuf *dmabuf;
12860 	struct ulp_bde64 *bpl, bde;
12861 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
12862 
12863 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12864 	       sizeof(struct lpfc_iocbq) - offset);
12865 	/* Map WCQE parameters into irspiocb parameters */
12866 	status = bf_get(lpfc_wcqe_c_status, wcqe);
12867 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12868 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12869 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12870 			pIocbIn->iocb.un.fcpi.fcpi_parm =
12871 					pIocbOut->iocb.un.fcpi.fcpi_parm -
12872 					wcqe->total_data_placed;
12873 		else
12874 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12875 	else {
12876 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12877 		switch (pIocbOut->iocb.ulpCommand) {
12878 		case CMD_ELS_REQUEST64_CR:
12879 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12880 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
12881 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12882 			max_response = bde.tus.f.bdeSize;
12883 			break;
12884 		case CMD_GEN_REQUEST64_CR:
12885 			max_response = 0;
12886 			if (!pIocbOut->context3)
12887 				break;
12888 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12889 					sizeof(struct ulp_bde64);
12890 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12891 			bpl = (struct ulp_bde64 *)dmabuf->virt;
12892 			for (i = 0; i < numBdes; i++) {
12893 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12894 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12895 					max_response += bde.tus.f.bdeSize;
12896 			}
12897 			break;
12898 		default:
12899 			max_response = wcqe->total_data_placed;
12900 			break;
12901 		}
12902 		if (max_response < wcqe->total_data_placed)
12903 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12904 		else
12905 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12906 				wcqe->total_data_placed;
12907 	}
12908 
12909 	/* Convert BG errors for completion status */
12910 	if (status == CQE_STATUS_DI_ERROR) {
12911 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
12912 
12913 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
12914 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
12915 		else
12916 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
12917 
12918 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
12919 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
12920 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12921 				BGS_GUARD_ERR_MASK;
12922 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
12923 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12924 				BGS_APPTAG_ERR_MASK;
12925 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
12926 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12927 				BGS_REFTAG_ERR_MASK;
12928 
12929 		/* Check to see if there was any good data before the error */
12930 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
12931 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12932 				BGS_HI_WATER_MARK_PRESENT_MASK;
12933 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
12934 				wcqe->total_data_placed;
12935 		}
12936 
12937 		/*
12938 		* Set ALL the error bits to indicate we don't know what
12939 		* type of error it is.
12940 		*/
12941 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
12942 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12943 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
12944 				BGS_GUARD_ERR_MASK);
12945 	}
12946 
12947 	/* Pick up HBA exchange busy condition */
12948 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
12949 		spin_lock_irqsave(&phba->hbalock, iflags);
12950 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
12951 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12952 	}
12953 }
12954 
12955 /**
12956  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
12957  * @phba: Pointer to HBA context object.
12958  * @wcqe: Pointer to work-queue completion queue entry.
12959  *
12960  * This routine handles an ELS work-queue completion event and construct
12961  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
12962  * discovery engine to handle.
12963  *
12964  * Return: Pointer to the receive IOCBQ, NULL otherwise.
12965  **/
12966 static struct lpfc_iocbq *
12967 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
12968 			       struct lpfc_iocbq *irspiocbq)
12969 {
12970 	struct lpfc_sli_ring *pring;
12971 	struct lpfc_iocbq *cmdiocbq;
12972 	struct lpfc_wcqe_complete *wcqe;
12973 	unsigned long iflags;
12974 
12975 	pring = lpfc_phba_elsring(phba);
12976 	if (unlikely(!pring))
12977 		return NULL;
12978 
12979 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
12980 	pring->stats.iocb_event++;
12981 	/* Look up the ELS command IOCB and create pseudo response IOCB */
12982 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
12983 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
12984 	if (unlikely(!cmdiocbq)) {
12985 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12986 				"0386 ELS complete with no corresponding "
12987 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
12988 				wcqe->word0, wcqe->total_data_placed,
12989 				wcqe->parameter, wcqe->word3);
12990 		lpfc_sli_release_iocbq(phba, irspiocbq);
12991 		return NULL;
12992 	}
12993 
12994 	spin_lock_irqsave(&pring->ring_lock, iflags);
12995 	/* Put the iocb back on the txcmplq */
12996 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
12997 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
12998 
12999 	/* Fake the irspiocbq and copy necessary response information */
13000 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13001 
13002 	return irspiocbq;
13003 }
13004 
13005 inline struct lpfc_cq_event *
13006 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13007 {
13008 	struct lpfc_cq_event *cq_event;
13009 
13010 	/* Allocate a new internal CQ_EVENT entry */
13011 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13012 	if (!cq_event) {
13013 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13014 				"0602 Failed to alloc CQ_EVENT entry\n");
13015 		return NULL;
13016 	}
13017 
13018 	/* Move the CQE into the event */
13019 	memcpy(&cq_event->cqe, entry, size);
13020 	return cq_event;
13021 }
13022 
13023 /**
13024  * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
13025  * @phba: Pointer to HBA context object.
13026  * @cqe: Pointer to mailbox completion queue entry.
13027  *
13028  * This routine process a mailbox completion queue entry with asynchrous
13029  * event.
13030  *
13031  * Return: true if work posted to worker thread, otherwise false.
13032  **/
13033 static bool
13034 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13035 {
13036 	struct lpfc_cq_event *cq_event;
13037 	unsigned long iflags;
13038 
13039 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13040 			"0392 Async Event: word0:x%x, word1:x%x, "
13041 			"word2:x%x, word3:x%x\n", mcqe->word0,
13042 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13043 
13044 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13045 	if (!cq_event)
13046 		return false;
13047 	spin_lock_irqsave(&phba->hbalock, iflags);
13048 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13049 	/* Set the async event flag */
13050 	phba->hba_flag |= ASYNC_EVENT;
13051 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13052 
13053 	return true;
13054 }
13055 
13056 /**
13057  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13058  * @phba: Pointer to HBA context object.
13059  * @cqe: Pointer to mailbox completion queue entry.
13060  *
13061  * This routine process a mailbox completion queue entry with mailbox
13062  * completion event.
13063  *
13064  * Return: true if work posted to worker thread, otherwise false.
13065  **/
13066 static bool
13067 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13068 {
13069 	uint32_t mcqe_status;
13070 	MAILBOX_t *mbox, *pmbox;
13071 	struct lpfc_mqe *mqe;
13072 	struct lpfc_vport *vport;
13073 	struct lpfc_nodelist *ndlp;
13074 	struct lpfc_dmabuf *mp;
13075 	unsigned long iflags;
13076 	LPFC_MBOXQ_t *pmb;
13077 	bool workposted = false;
13078 	int rc;
13079 
13080 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13081 	if (!bf_get(lpfc_trailer_completed, mcqe))
13082 		goto out_no_mqe_complete;
13083 
13084 	/* Get the reference to the active mbox command */
13085 	spin_lock_irqsave(&phba->hbalock, iflags);
13086 	pmb = phba->sli.mbox_active;
13087 	if (unlikely(!pmb)) {
13088 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13089 				"1832 No pending MBOX command to handle\n");
13090 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13091 		goto out_no_mqe_complete;
13092 	}
13093 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13094 	mqe = &pmb->u.mqe;
13095 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13096 	mbox = phba->mbox;
13097 	vport = pmb->vport;
13098 
13099 	/* Reset heartbeat timer */
13100 	phba->last_completion_time = jiffies;
13101 	del_timer(&phba->sli.mbox_tmo);
13102 
13103 	/* Move mbox data to caller's mailbox region, do endian swapping */
13104 	if (pmb->mbox_cmpl && mbox)
13105 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13106 
13107 	/*
13108 	 * For mcqe errors, conditionally move a modified error code to
13109 	 * the mbox so that the error will not be missed.
13110 	 */
13111 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13112 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13113 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13114 			bf_set(lpfc_mqe_status, mqe,
13115 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13116 	}
13117 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13118 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13119 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13120 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13121 				      mcqe_status,
13122 				      pmbox->un.varWords[0], 0);
13123 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13124 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13125 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13126 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13127 			 * RID of the PPI using the same mbox buffer.
13128 			 */
13129 			lpfc_unreg_login(phba, vport->vpi,
13130 					 pmbox->un.varWords[0], pmb);
13131 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13132 			pmb->ctx_buf = mp;
13133 			pmb->ctx_ndlp = ndlp;
13134 			pmb->vport = vport;
13135 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13136 			if (rc != MBX_BUSY)
13137 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13138 						LOG_SLI, "0385 rc should "
13139 						"have been MBX_BUSY\n");
13140 			if (rc != MBX_NOT_FINISHED)
13141 				goto send_current_mbox;
13142 		}
13143 	}
13144 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13145 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13146 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13147 
13148 	/* There is mailbox completion work to do */
13149 	spin_lock_irqsave(&phba->hbalock, iflags);
13150 	__lpfc_mbox_cmpl_put(phba, pmb);
13151 	phba->work_ha |= HA_MBATT;
13152 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13153 	workposted = true;
13154 
13155 send_current_mbox:
13156 	spin_lock_irqsave(&phba->hbalock, iflags);
13157 	/* Release the mailbox command posting token */
13158 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13159 	/* Setting active mailbox pointer need to be in sync to flag clear */
13160 	phba->sli.mbox_active = NULL;
13161 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13162 	/* Wake up worker thread to post the next pending mailbox command */
13163 	lpfc_worker_wake_up(phba);
13164 out_no_mqe_complete:
13165 	if (bf_get(lpfc_trailer_consumed, mcqe))
13166 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13167 	return workposted;
13168 }
13169 
13170 /**
13171  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13172  * @phba: Pointer to HBA context object.
13173  * @cqe: Pointer to mailbox completion queue entry.
13174  *
13175  * This routine process a mailbox completion queue entry, it invokes the
13176  * proper mailbox complete handling or asynchrous event handling routine
13177  * according to the MCQE's async bit.
13178  *
13179  * Return: true if work posted to worker thread, otherwise false.
13180  **/
13181 static bool
13182 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13183 			 struct lpfc_cqe *cqe)
13184 {
13185 	struct lpfc_mcqe mcqe;
13186 	bool workposted;
13187 
13188 	cq->CQ_mbox++;
13189 
13190 	/* Copy the mailbox MCQE and convert endian order as needed */
13191 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13192 
13193 	/* Invoke the proper event handling routine */
13194 	if (!bf_get(lpfc_trailer_async, &mcqe))
13195 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13196 	else
13197 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13198 	return workposted;
13199 }
13200 
13201 /**
13202  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13203  * @phba: Pointer to HBA context object.
13204  * @cq: Pointer to associated CQ
13205  * @wcqe: Pointer to work-queue completion queue entry.
13206  *
13207  * This routine handles an ELS work-queue completion event.
13208  *
13209  * Return: true if work posted to worker thread, otherwise false.
13210  **/
13211 static bool
13212 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13213 			     struct lpfc_wcqe_complete *wcqe)
13214 {
13215 	struct lpfc_iocbq *irspiocbq;
13216 	unsigned long iflags;
13217 	struct lpfc_sli_ring *pring = cq->pring;
13218 	int txq_cnt = 0;
13219 	int txcmplq_cnt = 0;
13220 	int fcp_txcmplq_cnt = 0;
13221 
13222 	/* Check for response status */
13223 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13224 		/* Log the error status */
13225 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13226 				"0357 ELS CQE error: status=x%x: "
13227 				"CQE: %08x %08x %08x %08x\n",
13228 				bf_get(lpfc_wcqe_c_status, wcqe),
13229 				wcqe->word0, wcqe->total_data_placed,
13230 				wcqe->parameter, wcqe->word3);
13231 	}
13232 
13233 	/* Get an irspiocbq for later ELS response processing use */
13234 	irspiocbq = lpfc_sli_get_iocbq(phba);
13235 	if (!irspiocbq) {
13236 		if (!list_empty(&pring->txq))
13237 			txq_cnt++;
13238 		if (!list_empty(&pring->txcmplq))
13239 			txcmplq_cnt++;
13240 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13241 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13242 			"fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
13243 			txq_cnt, phba->iocb_cnt,
13244 			fcp_txcmplq_cnt,
13245 			txcmplq_cnt);
13246 		return false;
13247 	}
13248 
13249 	/* Save off the slow-path queue event for work thread to process */
13250 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13251 	spin_lock_irqsave(&phba->hbalock, iflags);
13252 	list_add_tail(&irspiocbq->cq_event.list,
13253 		      &phba->sli4_hba.sp_queue_event);
13254 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13255 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13256 
13257 	return true;
13258 }
13259 
13260 /**
13261  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13262  * @phba: Pointer to HBA context object.
13263  * @wcqe: Pointer to work-queue completion queue entry.
13264  *
13265  * This routine handles slow-path WQ entry consumed event by invoking the
13266  * proper WQ release routine to the slow-path WQ.
13267  **/
13268 static void
13269 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13270 			     struct lpfc_wcqe_release *wcqe)
13271 {
13272 	/* sanity check on queue memory */
13273 	if (unlikely(!phba->sli4_hba.els_wq))
13274 		return;
13275 	/* Check for the slow-path ELS work queue */
13276 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13277 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13278 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13279 	else
13280 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13281 				"2579 Slow-path wqe consume event carries "
13282 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13283 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13284 				phba->sli4_hba.els_wq->queue_id);
13285 }
13286 
13287 /**
13288  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13289  * @phba: Pointer to HBA context object.
13290  * @cq: Pointer to a WQ completion queue.
13291  * @wcqe: Pointer to work-queue completion queue entry.
13292  *
13293  * This routine handles an XRI abort event.
13294  *
13295  * Return: true if work posted to worker thread, otherwise false.
13296  **/
13297 static bool
13298 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13299 				   struct lpfc_queue *cq,
13300 				   struct sli4_wcqe_xri_aborted *wcqe)
13301 {
13302 	bool workposted = false;
13303 	struct lpfc_cq_event *cq_event;
13304 	unsigned long iflags;
13305 
13306 	switch (cq->subtype) {
13307 	case LPFC_IO:
13308 		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13309 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13310 			/* Notify aborted XRI for NVME work queue */
13311 			if (phba->nvmet_support)
13312 				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13313 		}
13314 		workposted = false;
13315 		break;
13316 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13317 	case LPFC_ELS:
13318 		cq_event = lpfc_cq_event_setup(
13319 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13320 		if (!cq_event)
13321 			return false;
13322 		cq_event->hdwq = cq->hdwq;
13323 		spin_lock_irqsave(&phba->hbalock, iflags);
13324 		list_add_tail(&cq_event->list,
13325 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13326 		/* Set the els xri abort event flag */
13327 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13328 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13329 		workposted = true;
13330 		break;
13331 	default:
13332 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13333 				"0603 Invalid CQ subtype %d: "
13334 				"%08x %08x %08x %08x\n",
13335 				cq->subtype, wcqe->word0, wcqe->parameter,
13336 				wcqe->word2, wcqe->word3);
13337 		workposted = false;
13338 		break;
13339 	}
13340 	return workposted;
13341 }
13342 
13343 #define FC_RCTL_MDS_DIAGS	0xF4
13344 
13345 /**
13346  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13347  * @phba: Pointer to HBA context object.
13348  * @rcqe: Pointer to receive-queue completion queue entry.
13349  *
13350  * This routine process a receive-queue completion queue entry.
13351  *
13352  * Return: true if work posted to worker thread, otherwise false.
13353  **/
13354 static bool
13355 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13356 {
13357 	bool workposted = false;
13358 	struct fc_frame_header *fc_hdr;
13359 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13360 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13361 	struct lpfc_nvmet_tgtport *tgtp;
13362 	struct hbq_dmabuf *dma_buf;
13363 	uint32_t status, rq_id;
13364 	unsigned long iflags;
13365 
13366 	/* sanity check on queue memory */
13367 	if (unlikely(!hrq) || unlikely(!drq))
13368 		return workposted;
13369 
13370 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13371 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13372 	else
13373 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13374 	if (rq_id != hrq->queue_id)
13375 		goto out;
13376 
13377 	status = bf_get(lpfc_rcqe_status, rcqe);
13378 	switch (status) {
13379 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13380 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13381 				"2537 Receive Frame Truncated!!\n");
13382 		/* fall through */
13383 	case FC_STATUS_RQ_SUCCESS:
13384 		spin_lock_irqsave(&phba->hbalock, iflags);
13385 		lpfc_sli4_rq_release(hrq, drq);
13386 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13387 		if (!dma_buf) {
13388 			hrq->RQ_no_buf_found++;
13389 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13390 			goto out;
13391 		}
13392 		hrq->RQ_rcv_buf++;
13393 		hrq->RQ_buf_posted--;
13394 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13395 
13396 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13397 
13398 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13399 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13400 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13401 			/* Handle MDS Loopback frames */
13402 			lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13403 			break;
13404 		}
13405 
13406 		/* save off the frame for the work thread to process */
13407 		list_add_tail(&dma_buf->cq_event.list,
13408 			      &phba->sli4_hba.sp_queue_event);
13409 		/* Frame received */
13410 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13411 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13412 		workposted = true;
13413 		break;
13414 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13415 		if (phba->nvmet_support) {
13416 			tgtp = phba->targetport->private;
13417 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13418 					"6402 RQE Error x%x, posted %d err_cnt "
13419 					"%d: %x %x %x\n",
13420 					status, hrq->RQ_buf_posted,
13421 					hrq->RQ_no_posted_buf,
13422 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13423 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13424 					atomic_read(&tgtp->xmt_fcp_release));
13425 		}
13426 		/* fallthrough */
13427 
13428 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13429 		hrq->RQ_no_posted_buf++;
13430 		/* Post more buffers if possible */
13431 		spin_lock_irqsave(&phba->hbalock, iflags);
13432 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13433 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13434 		workposted = true;
13435 		break;
13436 	}
13437 out:
13438 	return workposted;
13439 }
13440 
13441 /**
13442  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13443  * @phba: Pointer to HBA context object.
13444  * @cq: Pointer to the completion queue.
13445  * @cqe: Pointer to a completion queue entry.
13446  *
13447  * This routine process a slow-path work-queue or receive queue completion queue
13448  * entry.
13449  *
13450  * Return: true if work posted to worker thread, otherwise false.
13451  **/
13452 static bool
13453 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13454 			 struct lpfc_cqe *cqe)
13455 {
13456 	struct lpfc_cqe cqevt;
13457 	bool workposted = false;
13458 
13459 	/* Copy the work queue CQE and convert endian order if needed */
13460 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13461 
13462 	/* Check and process for different type of WCQE and dispatch */
13463 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13464 	case CQE_CODE_COMPL_WQE:
13465 		/* Process the WQ/RQ complete event */
13466 		phba->last_completion_time = jiffies;
13467 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13468 				(struct lpfc_wcqe_complete *)&cqevt);
13469 		break;
13470 	case CQE_CODE_RELEASE_WQE:
13471 		/* Process the WQ release event */
13472 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13473 				(struct lpfc_wcqe_release *)&cqevt);
13474 		break;
13475 	case CQE_CODE_XRI_ABORTED:
13476 		/* Process the WQ XRI abort event */
13477 		phba->last_completion_time = jiffies;
13478 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13479 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13480 		break;
13481 	case CQE_CODE_RECEIVE:
13482 	case CQE_CODE_RECEIVE_V1:
13483 		/* Process the RQ event */
13484 		phba->last_completion_time = jiffies;
13485 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13486 				(struct lpfc_rcqe *)&cqevt);
13487 		break;
13488 	default:
13489 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13490 				"0388 Not a valid WCQE code: x%x\n",
13491 				bf_get(lpfc_cqe_code, &cqevt));
13492 		break;
13493 	}
13494 	return workposted;
13495 }
13496 
13497 /**
13498  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13499  * @phba: Pointer to HBA context object.
13500  * @eqe: Pointer to fast-path event queue entry.
13501  *
13502  * This routine process a event queue entry from the slow-path event queue.
13503  * It will check the MajorCode and MinorCode to determine this is for a
13504  * completion event on a completion queue, if not, an error shall be logged
13505  * and just return. Otherwise, it will get to the corresponding completion
13506  * queue and process all the entries on that completion queue, rearm the
13507  * completion queue, and then return.
13508  *
13509  **/
13510 static void
13511 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13512 	struct lpfc_queue *speq)
13513 {
13514 	struct lpfc_queue *cq = NULL, *childq;
13515 	uint16_t cqid;
13516 
13517 	/* Get the reference to the corresponding CQ */
13518 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13519 
13520 	list_for_each_entry(childq, &speq->child_list, list) {
13521 		if (childq->queue_id == cqid) {
13522 			cq = childq;
13523 			break;
13524 		}
13525 	}
13526 	if (unlikely(!cq)) {
13527 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13528 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13529 					"0365 Slow-path CQ identifier "
13530 					"(%d) does not exist\n", cqid);
13531 		return;
13532 	}
13533 
13534 	/* Save EQ associated with this CQ */
13535 	cq->assoc_qp = speq;
13536 
13537 	if (!queue_work_on(cq->chann, phba->wq, &cq->spwork))
13538 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13539 				"0390 Cannot schedule soft IRQ "
13540 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13541 				cqid, cq->queue_id, raw_smp_processor_id());
13542 }
13543 
13544 /**
13545  * __lpfc_sli4_process_cq - Process elements of a CQ
13546  * @phba: Pointer to HBA context object.
13547  * @cq: Pointer to CQ to be processed
13548  * @handler: Routine to process each cqe
13549  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13550  *
13551  * This routine processes completion queue entries in a CQ. While a valid
13552  * queue element is found, the handler is called. During processing checks
13553  * are made for periodic doorbell writes to let the hardware know of
13554  * element consumption.
13555  *
13556  * If the max limit on cqes to process is hit, or there are no more valid
13557  * entries, the loop stops. If we processed a sufficient number of elements,
13558  * meaning there is sufficient load, rather than rearming and generating
13559  * another interrupt, a cq rescheduling delay will be set. A delay of 0
13560  * indicates no rescheduling.
13561  *
13562  * Returns True if work scheduled, False otherwise.
13563  **/
13564 static bool
13565 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13566 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13567 			struct lpfc_cqe *), unsigned long *delay)
13568 {
13569 	struct lpfc_cqe *cqe;
13570 	bool workposted = false;
13571 	int count = 0, consumed = 0;
13572 	bool arm = true;
13573 
13574 	/* default - no reschedule */
13575 	*delay = 0;
13576 
13577 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13578 		goto rearm_and_exit;
13579 
13580 	/* Process all the entries to the CQ */
13581 	cq->q_flag = 0;
13582 	cqe = lpfc_sli4_cq_get(cq);
13583 	while (cqe) {
13584 		workposted |= handler(phba, cq, cqe);
13585 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
13586 
13587 		consumed++;
13588 		if (!(++count % cq->max_proc_limit))
13589 			break;
13590 
13591 		if (!(count % cq->notify_interval)) {
13592 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13593 						LPFC_QUEUE_NOARM);
13594 			consumed = 0;
13595 		}
13596 
13597 		if (count == LPFC_NVMET_CQ_NOTIFY)
13598 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
13599 
13600 		cqe = lpfc_sli4_cq_get(cq);
13601 	}
13602 	if (count >= phba->cfg_cq_poll_threshold) {
13603 		*delay = 1;
13604 		arm = false;
13605 	}
13606 
13607 	/* Track the max number of CQEs processed in 1 EQ */
13608 	if (count > cq->CQ_max_cqe)
13609 		cq->CQ_max_cqe = count;
13610 
13611 	cq->assoc_qp->EQ_cqe_cnt += count;
13612 
13613 	/* Catch the no cq entry condition */
13614 	if (unlikely(count == 0))
13615 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13616 				"0369 No entry from completion queue "
13617 				"qid=%d\n", cq->queue_id);
13618 
13619 	cq->queue_claimed = 0;
13620 
13621 rearm_and_exit:
13622 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13623 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13624 
13625 	return workposted;
13626 }
13627 
13628 /**
13629  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13630  * @cq: pointer to CQ to process
13631  *
13632  * This routine calls the cq processing routine with a handler specific
13633  * to the type of queue bound to it.
13634  *
13635  * The CQ routine returns two values: the first is the calling status,
13636  * which indicates whether work was queued to the  background discovery
13637  * thread. If true, the routine should wakeup the discovery thread;
13638  * the second is the delay parameter. If non-zero, rather than rearming
13639  * the CQ and yet another interrupt, the CQ handler should be queued so
13640  * that it is processed in a subsequent polling action. The value of
13641  * the delay indicates when to reschedule it.
13642  **/
13643 static void
13644 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13645 {
13646 	struct lpfc_hba *phba = cq->phba;
13647 	unsigned long delay;
13648 	bool workposted = false;
13649 
13650 	/* Process and rearm the CQ */
13651 	switch (cq->type) {
13652 	case LPFC_MCQ:
13653 		workposted |= __lpfc_sli4_process_cq(phba, cq,
13654 						lpfc_sli4_sp_handle_mcqe,
13655 						&delay);
13656 		break;
13657 	case LPFC_WCQ:
13658 		if (cq->subtype == LPFC_IO)
13659 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13660 						lpfc_sli4_fp_handle_cqe,
13661 						&delay);
13662 		else
13663 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13664 						lpfc_sli4_sp_handle_cqe,
13665 						&delay);
13666 		break;
13667 	default:
13668 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13669 				"0370 Invalid completion queue type (%d)\n",
13670 				cq->type);
13671 		return;
13672 	}
13673 
13674 	if (delay) {
13675 		if (!queue_delayed_work_on(cq->chann, phba->wq,
13676 					   &cq->sched_spwork, delay))
13677 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13678 				"0394 Cannot schedule soft IRQ "
13679 				"for cqid=%d on CPU %d\n",
13680 				cq->queue_id, cq->chann);
13681 	}
13682 
13683 	/* wake up worker thread if there are works to be done */
13684 	if (workposted)
13685 		lpfc_worker_wake_up(phba);
13686 }
13687 
13688 /**
13689  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13690  *   interrupt
13691  * @work: pointer to work element
13692  *
13693  * translates from the work handler and calls the slow-path handler.
13694  **/
13695 static void
13696 lpfc_sli4_sp_process_cq(struct work_struct *work)
13697 {
13698 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13699 
13700 	__lpfc_sli4_sp_process_cq(cq);
13701 }
13702 
13703 /**
13704  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13705  * @work: pointer to work element
13706  *
13707  * translates from the work handler and calls the slow-path handler.
13708  **/
13709 static void
13710 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13711 {
13712 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
13713 					struct lpfc_queue, sched_spwork);
13714 
13715 	__lpfc_sli4_sp_process_cq(cq);
13716 }
13717 
13718 /**
13719  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13720  * @phba: Pointer to HBA context object.
13721  * @cq: Pointer to associated CQ
13722  * @wcqe: Pointer to work-queue completion queue entry.
13723  *
13724  * This routine process a fast-path work queue completion entry from fast-path
13725  * event queue for FCP command response completion.
13726  **/
13727 static void
13728 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13729 			     struct lpfc_wcqe_complete *wcqe)
13730 {
13731 	struct lpfc_sli_ring *pring = cq->pring;
13732 	struct lpfc_iocbq *cmdiocbq;
13733 	struct lpfc_iocbq irspiocbq;
13734 	unsigned long iflags;
13735 
13736 	/* Check for response status */
13737 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13738 		/* If resource errors reported from HBA, reduce queue
13739 		 * depth of the SCSI device.
13740 		 */
13741 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13742 		     IOSTAT_LOCAL_REJECT)) &&
13743 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13744 		     IOERR_NO_RESOURCES))
13745 			phba->lpfc_rampdown_queue_depth(phba);
13746 
13747 		/* Log the error status */
13748 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13749 				"0373 FCP CQE error: status=x%x: "
13750 				"CQE: %08x %08x %08x %08x\n",
13751 				bf_get(lpfc_wcqe_c_status, wcqe),
13752 				wcqe->word0, wcqe->total_data_placed,
13753 				wcqe->parameter, wcqe->word3);
13754 	}
13755 
13756 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13757 	spin_lock_irqsave(&pring->ring_lock, iflags);
13758 	pring->stats.iocb_event++;
13759 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13760 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13761 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13762 	if (unlikely(!cmdiocbq)) {
13763 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13764 				"0374 FCP complete with no corresponding "
13765 				"cmdiocb: iotag (%d)\n",
13766 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13767 		return;
13768 	}
13769 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13770 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
13771 #endif
13772 	if (cmdiocbq->iocb_cmpl == NULL) {
13773 		if (cmdiocbq->wqe_cmpl) {
13774 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13775 				spin_lock_irqsave(&phba->hbalock, iflags);
13776 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13777 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13778 			}
13779 
13780 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13781 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13782 			return;
13783 		}
13784 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13785 				"0375 FCP cmdiocb not callback function "
13786 				"iotag: (%d)\n",
13787 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13788 		return;
13789 	}
13790 
13791 	/* Fake the irspiocb and copy necessary response information */
13792 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13793 
13794 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13795 		spin_lock_irqsave(&phba->hbalock, iflags);
13796 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13797 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13798 	}
13799 
13800 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13801 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13802 }
13803 
13804 /**
13805  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13806  * @phba: Pointer to HBA context object.
13807  * @cq: Pointer to completion queue.
13808  * @wcqe: Pointer to work-queue completion queue entry.
13809  *
13810  * This routine handles an fast-path WQ entry consumed event by invoking the
13811  * proper WQ release routine to the slow-path WQ.
13812  **/
13813 static void
13814 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13815 			     struct lpfc_wcqe_release *wcqe)
13816 {
13817 	struct lpfc_queue *childwq;
13818 	bool wqid_matched = false;
13819 	uint16_t hba_wqid;
13820 
13821 	/* Check for fast-path FCP work queue release */
13822 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13823 	list_for_each_entry(childwq, &cq->child_list, list) {
13824 		if (childwq->queue_id == hba_wqid) {
13825 			lpfc_sli4_wq_release(childwq,
13826 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13827 			if (childwq->q_flag & HBA_NVMET_WQFULL)
13828 				lpfc_nvmet_wqfull_process(phba, childwq);
13829 			wqid_matched = true;
13830 			break;
13831 		}
13832 	}
13833 	/* Report warning log message if no match found */
13834 	if (wqid_matched != true)
13835 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13836 				"2580 Fast-path wqe consume event carries "
13837 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13838 }
13839 
13840 /**
13841  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13842  * @phba: Pointer to HBA context object.
13843  * @rcqe: Pointer to receive-queue completion queue entry.
13844  *
13845  * This routine process a receive-queue completion queue entry.
13846  *
13847  * Return: true if work posted to worker thread, otherwise false.
13848  **/
13849 static bool
13850 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13851 			    struct lpfc_rcqe *rcqe)
13852 {
13853 	bool workposted = false;
13854 	struct lpfc_queue *hrq;
13855 	struct lpfc_queue *drq;
13856 	struct rqb_dmabuf *dma_buf;
13857 	struct fc_frame_header *fc_hdr;
13858 	struct lpfc_nvmet_tgtport *tgtp;
13859 	uint32_t status, rq_id;
13860 	unsigned long iflags;
13861 	uint32_t fctl, idx;
13862 
13863 	if ((phba->nvmet_support == 0) ||
13864 	    (phba->sli4_hba.nvmet_cqset == NULL))
13865 		return workposted;
13866 
13867 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13868 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13869 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
13870 
13871 	/* sanity check on queue memory */
13872 	if (unlikely(!hrq) || unlikely(!drq))
13873 		return workposted;
13874 
13875 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13876 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13877 	else
13878 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13879 
13880 	if ((phba->nvmet_support == 0) ||
13881 	    (rq_id != hrq->queue_id))
13882 		return workposted;
13883 
13884 	status = bf_get(lpfc_rcqe_status, rcqe);
13885 	switch (status) {
13886 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13887 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13888 				"6126 Receive Frame Truncated!!\n");
13889 		/* fall through */
13890 	case FC_STATUS_RQ_SUCCESS:
13891 		spin_lock_irqsave(&phba->hbalock, iflags);
13892 		lpfc_sli4_rq_release(hrq, drq);
13893 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13894 		if (!dma_buf) {
13895 			hrq->RQ_no_buf_found++;
13896 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13897 			goto out;
13898 		}
13899 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13900 		hrq->RQ_rcv_buf++;
13901 		hrq->RQ_buf_posted--;
13902 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13903 
13904 		/* Just some basic sanity checks on FCP Command frame */
13905 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13906 		fc_hdr->fh_f_ctl[1] << 8 |
13907 		fc_hdr->fh_f_ctl[2]);
13908 		if (((fctl &
13909 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13910 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13911 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13912 			goto drop;
13913 
13914 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
13915 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
13916 			lpfc_nvmet_unsol_fcp_event(
13917 				phba, idx, dma_buf, cq->isr_timestamp,
13918 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
13919 			return false;
13920 		}
13921 drop:
13922 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
13923 		break;
13924 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13925 		if (phba->nvmet_support) {
13926 			tgtp = phba->targetport->private;
13927 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13928 					"6401 RQE Error x%x, posted %d err_cnt "
13929 					"%d: %x %x %x\n",
13930 					status, hrq->RQ_buf_posted,
13931 					hrq->RQ_no_posted_buf,
13932 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13933 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13934 					atomic_read(&tgtp->xmt_fcp_release));
13935 		}
13936 		/* fallthrough */
13937 
13938 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13939 		hrq->RQ_no_posted_buf++;
13940 		/* Post more buffers if possible */
13941 		break;
13942 	}
13943 out:
13944 	return workposted;
13945 }
13946 
13947 /**
13948  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
13949  * @phba: adapter with cq
13950  * @cq: Pointer to the completion queue.
13951  * @eqe: Pointer to fast-path completion queue entry.
13952  *
13953  * This routine process a fast-path work queue completion entry from fast-path
13954  * event queue for FCP command response completion.
13955  *
13956  * Return: true if work posted to worker thread, otherwise false.
13957  **/
13958 static bool
13959 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13960 			 struct lpfc_cqe *cqe)
13961 {
13962 	struct lpfc_wcqe_release wcqe;
13963 	bool workposted = false;
13964 
13965 	/* Copy the work queue CQE and convert endian order if needed */
13966 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
13967 
13968 	/* Check and process for different type of WCQE and dispatch */
13969 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
13970 	case CQE_CODE_COMPL_WQE:
13971 	case CQE_CODE_NVME_ERSP:
13972 		cq->CQ_wq++;
13973 		/* Process the WQ complete event */
13974 		phba->last_completion_time = jiffies;
13975 		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
13976 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13977 				(struct lpfc_wcqe_complete *)&wcqe);
13978 		break;
13979 	case CQE_CODE_RELEASE_WQE:
13980 		cq->CQ_release_wqe++;
13981 		/* Process the WQ release event */
13982 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
13983 				(struct lpfc_wcqe_release *)&wcqe);
13984 		break;
13985 	case CQE_CODE_XRI_ABORTED:
13986 		cq->CQ_xri_aborted++;
13987 		/* Process the WQ XRI abort event */
13988 		phba->last_completion_time = jiffies;
13989 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13990 				(struct sli4_wcqe_xri_aborted *)&wcqe);
13991 		break;
13992 	case CQE_CODE_RECEIVE_V1:
13993 	case CQE_CODE_RECEIVE:
13994 		phba->last_completion_time = jiffies;
13995 		if (cq->subtype == LPFC_NVMET) {
13996 			workposted = lpfc_sli4_nvmet_handle_rcqe(
13997 				phba, cq, (struct lpfc_rcqe *)&wcqe);
13998 		}
13999 		break;
14000 	default:
14001 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14002 				"0144 Not a valid CQE code: x%x\n",
14003 				bf_get(lpfc_wcqe_c_code, &wcqe));
14004 		break;
14005 	}
14006 	return workposted;
14007 }
14008 
14009 /**
14010  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14011  * @phba: Pointer to HBA context object.
14012  * @eqe: Pointer to fast-path event queue entry.
14013  *
14014  * This routine process a event queue entry from the fast-path event queue.
14015  * It will check the MajorCode and MinorCode to determine this is for a
14016  * completion event on a completion queue, if not, an error shall be logged
14017  * and just return. Otherwise, it will get to the corresponding completion
14018  * queue and process all the entries on the completion queue, rearm the
14019  * completion queue, and then return.
14020  **/
14021 static void
14022 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14023 			 struct lpfc_eqe *eqe)
14024 {
14025 	struct lpfc_queue *cq = NULL;
14026 	uint32_t qidx = eq->hdwq;
14027 	uint16_t cqid, id;
14028 
14029 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14030 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14031 				"0366 Not a valid completion "
14032 				"event: majorcode=x%x, minorcode=x%x\n",
14033 				bf_get_le32(lpfc_eqe_major_code, eqe),
14034 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14035 		return;
14036 	}
14037 
14038 	/* Get the reference to the corresponding CQ */
14039 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14040 
14041 	/* Use the fast lookup method first */
14042 	if (cqid <= phba->sli4_hba.cq_max) {
14043 		cq = phba->sli4_hba.cq_lookup[cqid];
14044 		if (cq)
14045 			goto  work_cq;
14046 	}
14047 
14048 	/* Next check for NVMET completion */
14049 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14050 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14051 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14052 			/* Process NVMET unsol rcv */
14053 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14054 			goto  process_cq;
14055 		}
14056 	}
14057 
14058 	if (phba->sli4_hba.nvmels_cq &&
14059 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14060 		/* Process NVME unsol rcv */
14061 		cq = phba->sli4_hba.nvmels_cq;
14062 	}
14063 
14064 	/* Otherwise this is a Slow path event */
14065 	if (cq == NULL) {
14066 		lpfc_sli4_sp_handle_eqe(phba, eqe,
14067 					phba->sli4_hba.hdwq[qidx].hba_eq);
14068 		return;
14069 	}
14070 
14071 process_cq:
14072 	if (unlikely(cqid != cq->queue_id)) {
14073 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14074 				"0368 Miss-matched fast-path completion "
14075 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14076 				cqid, cq->queue_id);
14077 		return;
14078 	}
14079 
14080 work_cq:
14081 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14082 	if (phba->ktime_on)
14083 		cq->isr_timestamp = ktime_get_ns();
14084 	else
14085 		cq->isr_timestamp = 0;
14086 #endif
14087 	if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork))
14088 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14089 				"0363 Cannot schedule soft IRQ "
14090 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14091 				cqid, cq->queue_id, raw_smp_processor_id());
14092 }
14093 
14094 /**
14095  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14096  * @cq: Pointer to CQ to be processed
14097  *
14098  * This routine calls the cq processing routine with the handler for
14099  * fast path CQEs.
14100  *
14101  * The CQ routine returns two values: the first is the calling status,
14102  * which indicates whether work was queued to the  background discovery
14103  * thread. If true, the routine should wakeup the discovery thread;
14104  * the second is the delay parameter. If non-zero, rather than rearming
14105  * the CQ and yet another interrupt, the CQ handler should be queued so
14106  * that it is processed in a subsequent polling action. The value of
14107  * the delay indicates when to reschedule it.
14108  **/
14109 static void
14110 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
14111 {
14112 	struct lpfc_hba *phba = cq->phba;
14113 	unsigned long delay;
14114 	bool workposted = false;
14115 
14116 	/* process and rearm the CQ */
14117 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14118 					     &delay);
14119 
14120 	if (delay) {
14121 		if (!queue_delayed_work_on(cq->chann, phba->wq,
14122 					   &cq->sched_irqwork, delay))
14123 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14124 				"0367 Cannot schedule soft IRQ "
14125 				"for cqid=%d on CPU %d\n",
14126 				cq->queue_id, cq->chann);
14127 	}
14128 
14129 	/* wake up worker thread if there are works to be done */
14130 	if (workposted)
14131 		lpfc_worker_wake_up(phba);
14132 }
14133 
14134 /**
14135  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14136  *   interrupt
14137  * @work: pointer to work element
14138  *
14139  * translates from the work handler and calls the fast-path handler.
14140  **/
14141 static void
14142 lpfc_sli4_hba_process_cq(struct work_struct *work)
14143 {
14144 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14145 
14146 	__lpfc_sli4_hba_process_cq(cq);
14147 }
14148 
14149 /**
14150  * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14151  * @work: pointer to work element
14152  *
14153  * translates from the work handler and calls the fast-path handler.
14154  **/
14155 static void
14156 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14157 {
14158 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14159 					struct lpfc_queue, sched_irqwork);
14160 
14161 	__lpfc_sli4_hba_process_cq(cq);
14162 }
14163 
14164 /**
14165  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14166  * @irq: Interrupt number.
14167  * @dev_id: The device context pointer.
14168  *
14169  * This function is directly called from the PCI layer as an interrupt
14170  * service routine when device with SLI-4 interface spec is enabled with
14171  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14172  * ring event in the HBA. However, when the device is enabled with either
14173  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14174  * device-level interrupt handler. When the PCI slot is in error recovery
14175  * or the HBA is undergoing initialization, the interrupt handler will not
14176  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14177  * the intrrupt context. This function is called without any lock held.
14178  * It gets the hbalock to access and update SLI data structures. Note that,
14179  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14180  * equal to that of FCP CQ index.
14181  *
14182  * The link attention and ELS ring attention events are handled
14183  * by the worker thread. The interrupt handler signals the worker thread
14184  * and returns for these events. This function is called without any lock
14185  * held. It gets the hbalock to access and update SLI data structures.
14186  *
14187  * This function returns IRQ_HANDLED when interrupt is handled else it
14188  * returns IRQ_NONE.
14189  **/
14190 irqreturn_t
14191 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14192 {
14193 	struct lpfc_hba *phba;
14194 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14195 	struct lpfc_queue *fpeq;
14196 	unsigned long iflag;
14197 	int ecount = 0;
14198 	int hba_eqidx;
14199 	struct lpfc_eq_intr_info *eqi;
14200 	uint32_t icnt;
14201 
14202 	/* Get the driver's phba structure from the dev_id */
14203 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14204 	phba = hba_eq_hdl->phba;
14205 	hba_eqidx = hba_eq_hdl->idx;
14206 
14207 	if (unlikely(!phba))
14208 		return IRQ_NONE;
14209 	if (unlikely(!phba->sli4_hba.hdwq))
14210 		return IRQ_NONE;
14211 
14212 	/* Get to the EQ struct associated with this vector */
14213 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14214 	if (unlikely(!fpeq))
14215 		return IRQ_NONE;
14216 
14217 	/* Check device state for handling interrupt */
14218 	if (unlikely(lpfc_intr_state_check(phba))) {
14219 		/* Check again for link_state with lock held */
14220 		spin_lock_irqsave(&phba->hbalock, iflag);
14221 		if (phba->link_state < LPFC_LINK_DOWN)
14222 			/* Flush, clear interrupt, and rearm the EQ */
14223 			lpfc_sli4_eq_flush(phba, fpeq);
14224 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14225 		return IRQ_NONE;
14226 	}
14227 
14228 	eqi = phba->sli4_hba.eq_info;
14229 	icnt = this_cpu_inc_return(eqi->icnt);
14230 	fpeq->last_cpu = raw_smp_processor_id();
14231 
14232 	if (icnt > LPFC_EQD_ISR_TRIGGER &&
14233 	    phba->cfg_irq_chann == 1 &&
14234 	    phba->cfg_auto_imax &&
14235 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14236 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14237 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14238 
14239 	/* process and rearm the EQ */
14240 	ecount = lpfc_sli4_process_eq(phba, fpeq);
14241 
14242 	if (unlikely(ecount == 0)) {
14243 		fpeq->EQ_no_entry++;
14244 		if (phba->intr_type == MSIX)
14245 			/* MSI-X treated interrupt served as no EQ share INT */
14246 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14247 					"0358 MSI-X interrupt with no EQE\n");
14248 		else
14249 			/* Non MSI-X treated on interrupt as EQ share INT */
14250 			return IRQ_NONE;
14251 	}
14252 
14253 	return IRQ_HANDLED;
14254 } /* lpfc_sli4_fp_intr_handler */
14255 
14256 /**
14257  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14258  * @irq: Interrupt number.
14259  * @dev_id: The device context pointer.
14260  *
14261  * This function is the device-level interrupt handler to device with SLI-4
14262  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14263  * interrupt mode is enabled and there is an event in the HBA which requires
14264  * driver attention. This function invokes the slow-path interrupt attention
14265  * handling function and fast-path interrupt attention handling function in
14266  * turn to process the relevant HBA attention events. This function is called
14267  * without any lock held. It gets the hbalock to access and update SLI data
14268  * structures.
14269  *
14270  * This function returns IRQ_HANDLED when interrupt is handled, else it
14271  * returns IRQ_NONE.
14272  **/
14273 irqreturn_t
14274 lpfc_sli4_intr_handler(int irq, void *dev_id)
14275 {
14276 	struct lpfc_hba  *phba;
14277 	irqreturn_t hba_irq_rc;
14278 	bool hba_handled = false;
14279 	int qidx;
14280 
14281 	/* Get the driver's phba structure from the dev_id */
14282 	phba = (struct lpfc_hba *)dev_id;
14283 
14284 	if (unlikely(!phba))
14285 		return IRQ_NONE;
14286 
14287 	/*
14288 	 * Invoke fast-path host attention interrupt handling as appropriate.
14289 	 */
14290 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14291 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14292 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14293 		if (hba_irq_rc == IRQ_HANDLED)
14294 			hba_handled |= true;
14295 	}
14296 
14297 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14298 } /* lpfc_sli4_intr_handler */
14299 
14300 /**
14301  * lpfc_sli4_queue_free - free a queue structure and associated memory
14302  * @queue: The queue structure to free.
14303  *
14304  * This function frees a queue structure and the DMAable memory used for
14305  * the host resident queue. This function must be called after destroying the
14306  * queue on the HBA.
14307  **/
14308 void
14309 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14310 {
14311 	struct lpfc_dmabuf *dmabuf;
14312 
14313 	if (!queue)
14314 		return;
14315 
14316 	if (!list_empty(&queue->wq_list))
14317 		list_del(&queue->wq_list);
14318 
14319 	while (!list_empty(&queue->page_list)) {
14320 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14321 				 list);
14322 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14323 				  dmabuf->virt, dmabuf->phys);
14324 		kfree(dmabuf);
14325 	}
14326 	if (queue->rqbp) {
14327 		lpfc_free_rq_buffer(queue->phba, queue);
14328 		kfree(queue->rqbp);
14329 	}
14330 
14331 	if (!list_empty(&queue->cpu_list))
14332 		list_del(&queue->cpu_list);
14333 
14334 	kfree(queue);
14335 	return;
14336 }
14337 
14338 /**
14339  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14340  * @phba: The HBA that this queue is being created on.
14341  * @page_size: The size of a queue page
14342  * @entry_size: The size of each queue entry for this queue.
14343  * @entry count: The number of entries that this queue will handle.
14344  * @cpu: The cpu that will primarily utilize this queue.
14345  *
14346  * This function allocates a queue structure and the DMAable memory used for
14347  * the host resident queue. This function must be called before creating the
14348  * queue on the HBA.
14349  **/
14350 struct lpfc_queue *
14351 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14352 		      uint32_t entry_size, uint32_t entry_count, int cpu)
14353 {
14354 	struct lpfc_queue *queue;
14355 	struct lpfc_dmabuf *dmabuf;
14356 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14357 	uint16_t x, pgcnt;
14358 
14359 	if (!phba->sli4_hba.pc_sli4_params.supported)
14360 		hw_page_size = page_size;
14361 
14362 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14363 
14364 	/* If needed, Adjust page count to match the max the adapter supports */
14365 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14366 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14367 
14368 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14369 			     GFP_KERNEL, cpu_to_node(cpu));
14370 	if (!queue)
14371 		return NULL;
14372 
14373 	INIT_LIST_HEAD(&queue->list);
14374 	INIT_LIST_HEAD(&queue->wq_list);
14375 	INIT_LIST_HEAD(&queue->wqfull_list);
14376 	INIT_LIST_HEAD(&queue->page_list);
14377 	INIT_LIST_HEAD(&queue->child_list);
14378 	INIT_LIST_HEAD(&queue->cpu_list);
14379 
14380 	/* Set queue parameters now.  If the system cannot provide memory
14381 	 * resources, the free routine needs to know what was allocated.
14382 	 */
14383 	queue->page_count = pgcnt;
14384 	queue->q_pgs = (void **)&queue[1];
14385 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
14386 	queue->entry_size = entry_size;
14387 	queue->entry_count = entry_count;
14388 	queue->page_size = hw_page_size;
14389 	queue->phba = phba;
14390 
14391 	for (x = 0; x < queue->page_count; x++) {
14392 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14393 				      dev_to_node(&phba->pcidev->dev));
14394 		if (!dmabuf)
14395 			goto out_fail;
14396 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14397 						  hw_page_size, &dmabuf->phys,
14398 						  GFP_KERNEL);
14399 		if (!dmabuf->virt) {
14400 			kfree(dmabuf);
14401 			goto out_fail;
14402 		}
14403 		dmabuf->buffer_tag = x;
14404 		list_add_tail(&dmabuf->list, &queue->page_list);
14405 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
14406 		queue->q_pgs[x] = dmabuf->virt;
14407 	}
14408 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14409 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14410 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14411 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14412 
14413 	/* notify_interval will be set during q creation */
14414 
14415 	return queue;
14416 out_fail:
14417 	lpfc_sli4_queue_free(queue);
14418 	return NULL;
14419 }
14420 
14421 /**
14422  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14423  * @phba: HBA structure that indicates port to create a queue on.
14424  * @pci_barset: PCI BAR set flag.
14425  *
14426  * This function shall perform iomap of the specified PCI BAR address to host
14427  * memory address if not already done so and return it. The returned host
14428  * memory address can be NULL.
14429  */
14430 static void __iomem *
14431 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14432 {
14433 	if (!phba->pcidev)
14434 		return NULL;
14435 
14436 	switch (pci_barset) {
14437 	case WQ_PCI_BAR_0_AND_1:
14438 		return phba->pci_bar0_memmap_p;
14439 	case WQ_PCI_BAR_2_AND_3:
14440 		return phba->pci_bar2_memmap_p;
14441 	case WQ_PCI_BAR_4_AND_5:
14442 		return phba->pci_bar4_memmap_p;
14443 	default:
14444 		break;
14445 	}
14446 	return NULL;
14447 }
14448 
14449 /**
14450  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14451  * @phba: HBA structure that EQs are on.
14452  * @startq: The starting EQ index to modify
14453  * @numq: The number of EQs (consecutive indexes) to modify
14454  * @usdelay: amount of delay
14455  *
14456  * This function revises the EQ delay on 1 or more EQs. The EQ delay
14457  * is set either by writing to a register (if supported by the SLI Port)
14458  * or by mailbox command. The mailbox command allows several EQs to be
14459  * updated at once.
14460  *
14461  * The @phba struct is used to send a mailbox command to HBA. The @startq
14462  * is used to get the starting EQ index to change. The @numq value is
14463  * used to specify how many consecutive EQ indexes, starting at EQ index,
14464  * are to be changed. This function is asynchronous and will wait for any
14465  * mailbox commands to finish before returning.
14466  *
14467  * On success this function will return a zero. If unable to allocate
14468  * enough memory this function will return -ENOMEM. If a mailbox command
14469  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14470  * have had their delay multipler changed.
14471  **/
14472 void
14473 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14474 			 uint32_t numq, uint32_t usdelay)
14475 {
14476 	struct lpfc_mbx_modify_eq_delay *eq_delay;
14477 	LPFC_MBOXQ_t *mbox;
14478 	struct lpfc_queue *eq;
14479 	int cnt = 0, rc, length;
14480 	uint32_t shdr_status, shdr_add_status;
14481 	uint32_t dmult;
14482 	int qidx;
14483 	union lpfc_sli4_cfg_shdr *shdr;
14484 
14485 	if (startq >= phba->cfg_irq_chann)
14486 		return;
14487 
14488 	if (usdelay > 0xFFFF) {
14489 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14490 				"6429 usdelay %d too large. Scaled down to "
14491 				"0xFFFF.\n", usdelay);
14492 		usdelay = 0xFFFF;
14493 	}
14494 
14495 	/* set values by EQ_DELAY register if supported */
14496 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14497 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14498 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14499 			if (!eq)
14500 				continue;
14501 
14502 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14503 
14504 			if (++cnt >= numq)
14505 				break;
14506 		}
14507 		return;
14508 	}
14509 
14510 	/* Otherwise, set values by mailbox cmd */
14511 
14512 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14513 	if (!mbox) {
14514 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME,
14515 				"6428 Failed allocating mailbox cmd buffer."
14516 				" EQ delay was not set.\n");
14517 		return;
14518 	}
14519 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14520 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14521 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14522 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14523 			 length, LPFC_SLI4_MBX_EMBED);
14524 	eq_delay = &mbox->u.mqe.un.eq_delay;
14525 
14526 	/* Calculate delay multiper from maximum interrupt per second */
14527 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14528 	if (dmult)
14529 		dmult--;
14530 	if (dmult > LPFC_DMULT_MAX)
14531 		dmult = LPFC_DMULT_MAX;
14532 
14533 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14534 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14535 		if (!eq)
14536 			continue;
14537 		eq->q_mode = usdelay;
14538 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14539 		eq_delay->u.request.eq[cnt].phase = 0;
14540 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
14541 
14542 		if (++cnt >= numq)
14543 			break;
14544 	}
14545 	eq_delay->u.request.num_eq = cnt;
14546 
14547 	mbox->vport = phba->pport;
14548 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14549 	mbox->ctx_buf = NULL;
14550 	mbox->ctx_ndlp = NULL;
14551 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14552 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14553 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14554 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14555 	if (shdr_status || shdr_add_status || rc) {
14556 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14557 				"2512 MODIFY_EQ_DELAY mailbox failed with "
14558 				"status x%x add_status x%x, mbx status x%x\n",
14559 				shdr_status, shdr_add_status, rc);
14560 	}
14561 	mempool_free(mbox, phba->mbox_mem_pool);
14562 	return;
14563 }
14564 
14565 /**
14566  * lpfc_eq_create - Create an Event Queue on the HBA
14567  * @phba: HBA structure that indicates port to create a queue on.
14568  * @eq: The queue structure to use to create the event queue.
14569  * @imax: The maximum interrupt per second limit.
14570  *
14571  * This function creates an event queue, as detailed in @eq, on a port,
14572  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14573  *
14574  * The @phba struct is used to send mailbox command to HBA. The @eq struct
14575  * is used to get the entry count and entry size that are necessary to
14576  * determine the number of pages to allocate and use for this queue. This
14577  * function will send the EQ_CREATE mailbox command to the HBA to setup the
14578  * event queue. This function is asynchronous and will wait for the mailbox
14579  * command to finish before continuing.
14580  *
14581  * On success this function will return a zero. If unable to allocate enough
14582  * memory this function will return -ENOMEM. If the queue create mailbox command
14583  * fails this function will return -ENXIO.
14584  **/
14585 int
14586 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14587 {
14588 	struct lpfc_mbx_eq_create *eq_create;
14589 	LPFC_MBOXQ_t *mbox;
14590 	int rc, length, status = 0;
14591 	struct lpfc_dmabuf *dmabuf;
14592 	uint32_t shdr_status, shdr_add_status;
14593 	union lpfc_sli4_cfg_shdr *shdr;
14594 	uint16_t dmult;
14595 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14596 
14597 	/* sanity check on queue memory */
14598 	if (!eq)
14599 		return -ENODEV;
14600 	if (!phba->sli4_hba.pc_sli4_params.supported)
14601 		hw_page_size = SLI4_PAGE_SIZE;
14602 
14603 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14604 	if (!mbox)
14605 		return -ENOMEM;
14606 	length = (sizeof(struct lpfc_mbx_eq_create) -
14607 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14608 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14609 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14610 			 length, LPFC_SLI4_MBX_EMBED);
14611 	eq_create = &mbox->u.mqe.un.eq_create;
14612 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14613 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14614 	       eq->page_count);
14615 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14616 	       LPFC_EQE_SIZE);
14617 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14618 
14619 	/* Use version 2 of CREATE_EQ if eqav is set */
14620 	if (phba->sli4_hba.pc_sli4_params.eqav) {
14621 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14622 		       LPFC_Q_CREATE_VERSION_2);
14623 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14624 		       phba->sli4_hba.pc_sli4_params.eqav);
14625 	}
14626 
14627 	/* don't setup delay multiplier using EQ_CREATE */
14628 	dmult = 0;
14629 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14630 	       dmult);
14631 	switch (eq->entry_count) {
14632 	default:
14633 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14634 				"0360 Unsupported EQ count. (%d)\n",
14635 				eq->entry_count);
14636 		if (eq->entry_count < 256) {
14637 			status = -EINVAL;
14638 			goto out;
14639 		}
14640 		/* fall through - otherwise default to smallest count */
14641 	case 256:
14642 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14643 		       LPFC_EQ_CNT_256);
14644 		break;
14645 	case 512:
14646 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14647 		       LPFC_EQ_CNT_512);
14648 		break;
14649 	case 1024:
14650 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14651 		       LPFC_EQ_CNT_1024);
14652 		break;
14653 	case 2048:
14654 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14655 		       LPFC_EQ_CNT_2048);
14656 		break;
14657 	case 4096:
14658 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14659 		       LPFC_EQ_CNT_4096);
14660 		break;
14661 	}
14662 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14663 		memset(dmabuf->virt, 0, hw_page_size);
14664 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14665 					putPaddrLow(dmabuf->phys);
14666 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14667 					putPaddrHigh(dmabuf->phys);
14668 	}
14669 	mbox->vport = phba->pport;
14670 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14671 	mbox->ctx_buf = NULL;
14672 	mbox->ctx_ndlp = NULL;
14673 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14674 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14675 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14676 	if (shdr_status || shdr_add_status || rc) {
14677 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14678 				"2500 EQ_CREATE mailbox failed with "
14679 				"status x%x add_status x%x, mbx status x%x\n",
14680 				shdr_status, shdr_add_status, rc);
14681 		status = -ENXIO;
14682 	}
14683 	eq->type = LPFC_EQ;
14684 	eq->subtype = LPFC_NONE;
14685 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14686 	if (eq->queue_id == 0xFFFF)
14687 		status = -ENXIO;
14688 	eq->host_index = 0;
14689 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
14690 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
14691 out:
14692 	mempool_free(mbox, phba->mbox_mem_pool);
14693 	return status;
14694 }
14695 
14696 /**
14697  * lpfc_cq_create - Create a Completion Queue on the HBA
14698  * @phba: HBA structure that indicates port to create a queue on.
14699  * @cq: The queue structure to use to create the completion queue.
14700  * @eq: The event queue to bind this completion queue to.
14701  *
14702  * This function creates a completion queue, as detailed in @wq, on a port,
14703  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14704  *
14705  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14706  * is used to get the entry count and entry size that are necessary to
14707  * determine the number of pages to allocate and use for this queue. The @eq
14708  * is used to indicate which event queue to bind this completion queue to. This
14709  * function will send the CQ_CREATE mailbox command to the HBA to setup the
14710  * completion queue. This function is asynchronous and will wait for the mailbox
14711  * command to finish before continuing.
14712  *
14713  * On success this function will return a zero. If unable to allocate enough
14714  * memory this function will return -ENOMEM. If the queue create mailbox command
14715  * fails this function will return -ENXIO.
14716  **/
14717 int
14718 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14719 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14720 {
14721 	struct lpfc_mbx_cq_create *cq_create;
14722 	struct lpfc_dmabuf *dmabuf;
14723 	LPFC_MBOXQ_t *mbox;
14724 	int rc, length, status = 0;
14725 	uint32_t shdr_status, shdr_add_status;
14726 	union lpfc_sli4_cfg_shdr *shdr;
14727 
14728 	/* sanity check on queue memory */
14729 	if (!cq || !eq)
14730 		return -ENODEV;
14731 
14732 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14733 	if (!mbox)
14734 		return -ENOMEM;
14735 	length = (sizeof(struct lpfc_mbx_cq_create) -
14736 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14737 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14738 			 LPFC_MBOX_OPCODE_CQ_CREATE,
14739 			 length, LPFC_SLI4_MBX_EMBED);
14740 	cq_create = &mbox->u.mqe.un.cq_create;
14741 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14742 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14743 		    cq->page_count);
14744 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14745 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14746 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14747 	       phba->sli4_hba.pc_sli4_params.cqv);
14748 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14749 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14750 		       (cq->page_size / SLI4_PAGE_SIZE));
14751 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14752 		       eq->queue_id);
14753 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
14754 		       phba->sli4_hba.pc_sli4_params.cqav);
14755 	} else {
14756 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14757 		       eq->queue_id);
14758 	}
14759 	switch (cq->entry_count) {
14760 	case 2048:
14761 	case 4096:
14762 		if (phba->sli4_hba.pc_sli4_params.cqv ==
14763 		    LPFC_Q_CREATE_VERSION_2) {
14764 			cq_create->u.request.context.lpfc_cq_context_count =
14765 				cq->entry_count;
14766 			bf_set(lpfc_cq_context_count,
14767 			       &cq_create->u.request.context,
14768 			       LPFC_CQ_CNT_WORD7);
14769 			break;
14770 		}
14771 		/* fall through */
14772 	default:
14773 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14774 				"0361 Unsupported CQ count: "
14775 				"entry cnt %d sz %d pg cnt %d\n",
14776 				cq->entry_count, cq->entry_size,
14777 				cq->page_count);
14778 		if (cq->entry_count < 256) {
14779 			status = -EINVAL;
14780 			goto out;
14781 		}
14782 		/* fall through - otherwise default to smallest count */
14783 	case 256:
14784 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14785 		       LPFC_CQ_CNT_256);
14786 		break;
14787 	case 512:
14788 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14789 		       LPFC_CQ_CNT_512);
14790 		break;
14791 	case 1024:
14792 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14793 		       LPFC_CQ_CNT_1024);
14794 		break;
14795 	}
14796 	list_for_each_entry(dmabuf, &cq->page_list, list) {
14797 		memset(dmabuf->virt, 0, cq->page_size);
14798 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14799 					putPaddrLow(dmabuf->phys);
14800 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14801 					putPaddrHigh(dmabuf->phys);
14802 	}
14803 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14804 
14805 	/* The IOCTL status is embedded in the mailbox subheader. */
14806 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14807 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14808 	if (shdr_status || shdr_add_status || rc) {
14809 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14810 				"2501 CQ_CREATE mailbox failed with "
14811 				"status x%x add_status x%x, mbx status x%x\n",
14812 				shdr_status, shdr_add_status, rc);
14813 		status = -ENXIO;
14814 		goto out;
14815 	}
14816 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14817 	if (cq->queue_id == 0xFFFF) {
14818 		status = -ENXIO;
14819 		goto out;
14820 	}
14821 	/* link the cq onto the parent eq child list */
14822 	list_add_tail(&cq->list, &eq->child_list);
14823 	/* Set up completion queue's type and subtype */
14824 	cq->type = type;
14825 	cq->subtype = subtype;
14826 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14827 	cq->assoc_qid = eq->queue_id;
14828 	cq->assoc_qp = eq;
14829 	cq->host_index = 0;
14830 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
14831 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
14832 
14833 	if (cq->queue_id > phba->sli4_hba.cq_max)
14834 		phba->sli4_hba.cq_max = cq->queue_id;
14835 out:
14836 	mempool_free(mbox, phba->mbox_mem_pool);
14837 	return status;
14838 }
14839 
14840 /**
14841  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14842  * @phba: HBA structure that indicates port to create a queue on.
14843  * @cqp: The queue structure array to use to create the completion queues.
14844  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
14845  *
14846  * This function creates a set of  completion queue, s to support MRQ
14847  * as detailed in @cqp, on a port,
14848  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14849  *
14850  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14851  * is used to get the entry count and entry size that are necessary to
14852  * determine the number of pages to allocate and use for this queue. The @eq
14853  * is used to indicate which event queue to bind this completion queue to. This
14854  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14855  * completion queue. This function is asynchronous and will wait for the mailbox
14856  * command to finish before continuing.
14857  *
14858  * On success this function will return a zero. If unable to allocate enough
14859  * memory this function will return -ENOMEM. If the queue create mailbox command
14860  * fails this function will return -ENXIO.
14861  **/
14862 int
14863 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14864 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
14865 		   uint32_t subtype)
14866 {
14867 	struct lpfc_queue *cq;
14868 	struct lpfc_queue *eq;
14869 	struct lpfc_mbx_cq_create_set *cq_set;
14870 	struct lpfc_dmabuf *dmabuf;
14871 	LPFC_MBOXQ_t *mbox;
14872 	int rc, length, alloclen, status = 0;
14873 	int cnt, idx, numcq, page_idx = 0;
14874 	uint32_t shdr_status, shdr_add_status;
14875 	union lpfc_sli4_cfg_shdr *shdr;
14876 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14877 
14878 	/* sanity check on queue memory */
14879 	numcq = phba->cfg_nvmet_mrq;
14880 	if (!cqp || !hdwq || !numcq)
14881 		return -ENODEV;
14882 
14883 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14884 	if (!mbox)
14885 		return -ENOMEM;
14886 
14887 	length = sizeof(struct lpfc_mbx_cq_create_set);
14888 	length += ((numcq * cqp[0]->page_count) *
14889 		   sizeof(struct dma_address));
14890 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14891 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
14892 			LPFC_SLI4_MBX_NEMBED);
14893 	if (alloclen < length) {
14894 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14895 				"3098 Allocated DMA memory size (%d) is "
14896 				"less than the requested DMA memory size "
14897 				"(%d)\n", alloclen, length);
14898 		status = -ENOMEM;
14899 		goto out;
14900 	}
14901 	cq_set = mbox->sge_array->addr[0];
14902 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
14903 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
14904 
14905 	for (idx = 0; idx < numcq; idx++) {
14906 		cq = cqp[idx];
14907 		eq = hdwq[idx].hba_eq;
14908 		if (!cq || !eq) {
14909 			status = -ENOMEM;
14910 			goto out;
14911 		}
14912 		if (!phba->sli4_hba.pc_sli4_params.supported)
14913 			hw_page_size = cq->page_size;
14914 
14915 		switch (idx) {
14916 		case 0:
14917 			bf_set(lpfc_mbx_cq_create_set_page_size,
14918 			       &cq_set->u.request,
14919 			       (hw_page_size / SLI4_PAGE_SIZE));
14920 			bf_set(lpfc_mbx_cq_create_set_num_pages,
14921 			       &cq_set->u.request, cq->page_count);
14922 			bf_set(lpfc_mbx_cq_create_set_evt,
14923 			       &cq_set->u.request, 1);
14924 			bf_set(lpfc_mbx_cq_create_set_valid,
14925 			       &cq_set->u.request, 1);
14926 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
14927 			       &cq_set->u.request, 0);
14928 			bf_set(lpfc_mbx_cq_create_set_num_cq,
14929 			       &cq_set->u.request, numcq);
14930 			bf_set(lpfc_mbx_cq_create_set_autovalid,
14931 			       &cq_set->u.request,
14932 			       phba->sli4_hba.pc_sli4_params.cqav);
14933 			switch (cq->entry_count) {
14934 			case 2048:
14935 			case 4096:
14936 				if (phba->sli4_hba.pc_sli4_params.cqv ==
14937 				    LPFC_Q_CREATE_VERSION_2) {
14938 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14939 					       &cq_set->u.request,
14940 						cq->entry_count);
14941 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14942 					       &cq_set->u.request,
14943 					       LPFC_CQ_CNT_WORD7);
14944 					break;
14945 				}
14946 				/* fall through */
14947 			default:
14948 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14949 						"3118 Bad CQ count. (%d)\n",
14950 						cq->entry_count);
14951 				if (cq->entry_count < 256) {
14952 					status = -EINVAL;
14953 					goto out;
14954 				}
14955 				/* fall through - otherwise default to smallest */
14956 			case 256:
14957 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14958 				       &cq_set->u.request, LPFC_CQ_CNT_256);
14959 				break;
14960 			case 512:
14961 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14962 				       &cq_set->u.request, LPFC_CQ_CNT_512);
14963 				break;
14964 			case 1024:
14965 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14966 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
14967 				break;
14968 			}
14969 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
14970 			       &cq_set->u.request, eq->queue_id);
14971 			break;
14972 		case 1:
14973 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
14974 			       &cq_set->u.request, eq->queue_id);
14975 			break;
14976 		case 2:
14977 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
14978 			       &cq_set->u.request, eq->queue_id);
14979 			break;
14980 		case 3:
14981 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
14982 			       &cq_set->u.request, eq->queue_id);
14983 			break;
14984 		case 4:
14985 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
14986 			       &cq_set->u.request, eq->queue_id);
14987 			break;
14988 		case 5:
14989 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
14990 			       &cq_set->u.request, eq->queue_id);
14991 			break;
14992 		case 6:
14993 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
14994 			       &cq_set->u.request, eq->queue_id);
14995 			break;
14996 		case 7:
14997 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
14998 			       &cq_set->u.request, eq->queue_id);
14999 			break;
15000 		case 8:
15001 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15002 			       &cq_set->u.request, eq->queue_id);
15003 			break;
15004 		case 9:
15005 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15006 			       &cq_set->u.request, eq->queue_id);
15007 			break;
15008 		case 10:
15009 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15010 			       &cq_set->u.request, eq->queue_id);
15011 			break;
15012 		case 11:
15013 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15014 			       &cq_set->u.request, eq->queue_id);
15015 			break;
15016 		case 12:
15017 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15018 			       &cq_set->u.request, eq->queue_id);
15019 			break;
15020 		case 13:
15021 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15022 			       &cq_set->u.request, eq->queue_id);
15023 			break;
15024 		case 14:
15025 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15026 			       &cq_set->u.request, eq->queue_id);
15027 			break;
15028 		case 15:
15029 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15030 			       &cq_set->u.request, eq->queue_id);
15031 			break;
15032 		}
15033 
15034 		/* link the cq onto the parent eq child list */
15035 		list_add_tail(&cq->list, &eq->child_list);
15036 		/* Set up completion queue's type and subtype */
15037 		cq->type = type;
15038 		cq->subtype = subtype;
15039 		cq->assoc_qid = eq->queue_id;
15040 		cq->assoc_qp = eq;
15041 		cq->host_index = 0;
15042 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15043 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15044 					 cq->entry_count);
15045 		cq->chann = idx;
15046 
15047 		rc = 0;
15048 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15049 			memset(dmabuf->virt, 0, hw_page_size);
15050 			cnt = page_idx + dmabuf->buffer_tag;
15051 			cq_set->u.request.page[cnt].addr_lo =
15052 					putPaddrLow(dmabuf->phys);
15053 			cq_set->u.request.page[cnt].addr_hi =
15054 					putPaddrHigh(dmabuf->phys);
15055 			rc++;
15056 		}
15057 		page_idx += rc;
15058 	}
15059 
15060 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15061 
15062 	/* The IOCTL status is embedded in the mailbox subheader. */
15063 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15064 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15065 	if (shdr_status || shdr_add_status || rc) {
15066 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15067 				"3119 CQ_CREATE_SET mailbox failed with "
15068 				"status x%x add_status x%x, mbx status x%x\n",
15069 				shdr_status, shdr_add_status, rc);
15070 		status = -ENXIO;
15071 		goto out;
15072 	}
15073 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15074 	if (rc == 0xFFFF) {
15075 		status = -ENXIO;
15076 		goto out;
15077 	}
15078 
15079 	for (idx = 0; idx < numcq; idx++) {
15080 		cq = cqp[idx];
15081 		cq->queue_id = rc + idx;
15082 		if (cq->queue_id > phba->sli4_hba.cq_max)
15083 			phba->sli4_hba.cq_max = cq->queue_id;
15084 	}
15085 
15086 out:
15087 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15088 	return status;
15089 }
15090 
15091 /**
15092  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15093  * @phba: HBA structure that indicates port to create a queue on.
15094  * @mq: The queue structure to use to create the mailbox queue.
15095  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15096  * @cq: The completion queue to associate with this cq.
15097  *
15098  * This function provides failback (fb) functionality when the
15099  * mq_create_ext fails on older FW generations.  It's purpose is identical
15100  * to mq_create_ext otherwise.
15101  *
15102  * This routine cannot fail as all attributes were previously accessed and
15103  * initialized in mq_create_ext.
15104  **/
15105 static void
15106 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15107 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15108 {
15109 	struct lpfc_mbx_mq_create *mq_create;
15110 	struct lpfc_dmabuf *dmabuf;
15111 	int length;
15112 
15113 	length = (sizeof(struct lpfc_mbx_mq_create) -
15114 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15115 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15116 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15117 			 length, LPFC_SLI4_MBX_EMBED);
15118 	mq_create = &mbox->u.mqe.un.mq_create;
15119 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15120 	       mq->page_count);
15121 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15122 	       cq->queue_id);
15123 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15124 	switch (mq->entry_count) {
15125 	case 16:
15126 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15127 		       LPFC_MQ_RING_SIZE_16);
15128 		break;
15129 	case 32:
15130 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15131 		       LPFC_MQ_RING_SIZE_32);
15132 		break;
15133 	case 64:
15134 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15135 		       LPFC_MQ_RING_SIZE_64);
15136 		break;
15137 	case 128:
15138 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15139 		       LPFC_MQ_RING_SIZE_128);
15140 		break;
15141 	}
15142 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15143 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15144 			putPaddrLow(dmabuf->phys);
15145 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15146 			putPaddrHigh(dmabuf->phys);
15147 	}
15148 }
15149 
15150 /**
15151  * lpfc_mq_create - Create a mailbox Queue on the HBA
15152  * @phba: HBA structure that indicates port to create a queue on.
15153  * @mq: The queue structure to use to create the mailbox queue.
15154  * @cq: The completion queue to associate with this cq.
15155  * @subtype: The queue's subtype.
15156  *
15157  * This function creates a mailbox queue, as detailed in @mq, on a port,
15158  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15159  *
15160  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15161  * is used to get the entry count and entry size that are necessary to
15162  * determine the number of pages to allocate and use for this queue. This
15163  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15164  * mailbox queue. This function is asynchronous and will wait for the mailbox
15165  * command to finish before continuing.
15166  *
15167  * On success this function will return a zero. If unable to allocate enough
15168  * memory this function will return -ENOMEM. If the queue create mailbox command
15169  * fails this function will return -ENXIO.
15170  **/
15171 int32_t
15172 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15173 	       struct lpfc_queue *cq, uint32_t subtype)
15174 {
15175 	struct lpfc_mbx_mq_create *mq_create;
15176 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15177 	struct lpfc_dmabuf *dmabuf;
15178 	LPFC_MBOXQ_t *mbox;
15179 	int rc, length, status = 0;
15180 	uint32_t shdr_status, shdr_add_status;
15181 	union lpfc_sli4_cfg_shdr *shdr;
15182 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15183 
15184 	/* sanity check on queue memory */
15185 	if (!mq || !cq)
15186 		return -ENODEV;
15187 	if (!phba->sli4_hba.pc_sli4_params.supported)
15188 		hw_page_size = SLI4_PAGE_SIZE;
15189 
15190 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15191 	if (!mbox)
15192 		return -ENOMEM;
15193 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15194 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15195 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15196 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15197 			 length, LPFC_SLI4_MBX_EMBED);
15198 
15199 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15200 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15201 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15202 	       &mq_create_ext->u.request, mq->page_count);
15203 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15204 	       &mq_create_ext->u.request, 1);
15205 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15206 	       &mq_create_ext->u.request, 1);
15207 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15208 	       &mq_create_ext->u.request, 1);
15209 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15210 	       &mq_create_ext->u.request, 1);
15211 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15212 	       &mq_create_ext->u.request, 1);
15213 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15214 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15215 	       phba->sli4_hba.pc_sli4_params.mqv);
15216 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15217 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15218 		       cq->queue_id);
15219 	else
15220 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15221 		       cq->queue_id);
15222 	switch (mq->entry_count) {
15223 	default:
15224 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15225 				"0362 Unsupported MQ count. (%d)\n",
15226 				mq->entry_count);
15227 		if (mq->entry_count < 16) {
15228 			status = -EINVAL;
15229 			goto out;
15230 		}
15231 		/* fall through - otherwise default to smallest count */
15232 	case 16:
15233 		bf_set(lpfc_mq_context_ring_size,
15234 		       &mq_create_ext->u.request.context,
15235 		       LPFC_MQ_RING_SIZE_16);
15236 		break;
15237 	case 32:
15238 		bf_set(lpfc_mq_context_ring_size,
15239 		       &mq_create_ext->u.request.context,
15240 		       LPFC_MQ_RING_SIZE_32);
15241 		break;
15242 	case 64:
15243 		bf_set(lpfc_mq_context_ring_size,
15244 		       &mq_create_ext->u.request.context,
15245 		       LPFC_MQ_RING_SIZE_64);
15246 		break;
15247 	case 128:
15248 		bf_set(lpfc_mq_context_ring_size,
15249 		       &mq_create_ext->u.request.context,
15250 		       LPFC_MQ_RING_SIZE_128);
15251 		break;
15252 	}
15253 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15254 		memset(dmabuf->virt, 0, hw_page_size);
15255 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15256 					putPaddrLow(dmabuf->phys);
15257 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15258 					putPaddrHigh(dmabuf->phys);
15259 	}
15260 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15261 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15262 			      &mq_create_ext->u.response);
15263 	if (rc != MBX_SUCCESS) {
15264 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15265 				"2795 MQ_CREATE_EXT failed with "
15266 				"status x%x. Failback to MQ_CREATE.\n",
15267 				rc);
15268 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15269 		mq_create = &mbox->u.mqe.un.mq_create;
15270 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15271 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15272 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15273 				      &mq_create->u.response);
15274 	}
15275 
15276 	/* The IOCTL status is embedded in the mailbox subheader. */
15277 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15278 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15279 	if (shdr_status || shdr_add_status || rc) {
15280 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15281 				"2502 MQ_CREATE mailbox failed with "
15282 				"status x%x add_status x%x, mbx status x%x\n",
15283 				shdr_status, shdr_add_status, rc);
15284 		status = -ENXIO;
15285 		goto out;
15286 	}
15287 	if (mq->queue_id == 0xFFFF) {
15288 		status = -ENXIO;
15289 		goto out;
15290 	}
15291 	mq->type = LPFC_MQ;
15292 	mq->assoc_qid = cq->queue_id;
15293 	mq->subtype = subtype;
15294 	mq->host_index = 0;
15295 	mq->hba_index = 0;
15296 
15297 	/* link the mq onto the parent cq child list */
15298 	list_add_tail(&mq->list, &cq->child_list);
15299 out:
15300 	mempool_free(mbox, phba->mbox_mem_pool);
15301 	return status;
15302 }
15303 
15304 /**
15305  * lpfc_wq_create - Create a Work Queue on the HBA
15306  * @phba: HBA structure that indicates port to create a queue on.
15307  * @wq: The queue structure to use to create the work queue.
15308  * @cq: The completion queue to bind this work queue to.
15309  * @subtype: The subtype of the work queue indicating its functionality.
15310  *
15311  * This function creates a work queue, as detailed in @wq, on a port, described
15312  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15313  *
15314  * The @phba struct is used to send mailbox command to HBA. The @wq struct
15315  * is used to get the entry count and entry size that are necessary to
15316  * determine the number of pages to allocate and use for this queue. The @cq
15317  * is used to indicate which completion queue to bind this work queue to. This
15318  * function will send the WQ_CREATE mailbox command to the HBA to setup the
15319  * work queue. This function is asynchronous and will wait for the mailbox
15320  * command to finish before continuing.
15321  *
15322  * On success this function will return a zero. If unable to allocate enough
15323  * memory this function will return -ENOMEM. If the queue create mailbox command
15324  * fails this function will return -ENXIO.
15325  **/
15326 int
15327 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15328 	       struct lpfc_queue *cq, uint32_t subtype)
15329 {
15330 	struct lpfc_mbx_wq_create *wq_create;
15331 	struct lpfc_dmabuf *dmabuf;
15332 	LPFC_MBOXQ_t *mbox;
15333 	int rc, length, status = 0;
15334 	uint32_t shdr_status, shdr_add_status;
15335 	union lpfc_sli4_cfg_shdr *shdr;
15336 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15337 	struct dma_address *page;
15338 	void __iomem *bar_memmap_p;
15339 	uint32_t db_offset;
15340 	uint16_t pci_barset;
15341 	uint8_t dpp_barset;
15342 	uint32_t dpp_offset;
15343 	unsigned long pg_addr;
15344 	uint8_t wq_create_version;
15345 
15346 	/* sanity check on queue memory */
15347 	if (!wq || !cq)
15348 		return -ENODEV;
15349 	if (!phba->sli4_hba.pc_sli4_params.supported)
15350 		hw_page_size = wq->page_size;
15351 
15352 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15353 	if (!mbox)
15354 		return -ENOMEM;
15355 	length = (sizeof(struct lpfc_mbx_wq_create) -
15356 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15357 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15358 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15359 			 length, LPFC_SLI4_MBX_EMBED);
15360 	wq_create = &mbox->u.mqe.un.wq_create;
15361 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15362 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15363 		    wq->page_count);
15364 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15365 		    cq->queue_id);
15366 
15367 	/* wqv is the earliest version supported, NOT the latest */
15368 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15369 	       phba->sli4_hba.pc_sli4_params.wqv);
15370 
15371 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15372 	    (wq->page_size > SLI4_PAGE_SIZE))
15373 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15374 	else
15375 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15376 
15377 
15378 	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15379 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15380 	else
15381 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15382 
15383 	switch (wq_create_version) {
15384 	case LPFC_Q_CREATE_VERSION_1:
15385 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15386 		       wq->entry_count);
15387 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15388 		       LPFC_Q_CREATE_VERSION_1);
15389 
15390 		switch (wq->entry_size) {
15391 		default:
15392 		case 64:
15393 			bf_set(lpfc_mbx_wq_create_wqe_size,
15394 			       &wq_create->u.request_1,
15395 			       LPFC_WQ_WQE_SIZE_64);
15396 			break;
15397 		case 128:
15398 			bf_set(lpfc_mbx_wq_create_wqe_size,
15399 			       &wq_create->u.request_1,
15400 			       LPFC_WQ_WQE_SIZE_128);
15401 			break;
15402 		}
15403 		/* Request DPP by default */
15404 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15405 		bf_set(lpfc_mbx_wq_create_page_size,
15406 		       &wq_create->u.request_1,
15407 		       (wq->page_size / SLI4_PAGE_SIZE));
15408 		page = wq_create->u.request_1.page;
15409 		break;
15410 	default:
15411 		page = wq_create->u.request.page;
15412 		break;
15413 	}
15414 
15415 	list_for_each_entry(dmabuf, &wq->page_list, list) {
15416 		memset(dmabuf->virt, 0, hw_page_size);
15417 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15418 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15419 	}
15420 
15421 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15422 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15423 
15424 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15425 	/* The IOCTL status is embedded in the mailbox subheader. */
15426 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15427 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15428 	if (shdr_status || shdr_add_status || rc) {
15429 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15430 				"2503 WQ_CREATE mailbox failed with "
15431 				"status x%x add_status x%x, mbx status x%x\n",
15432 				shdr_status, shdr_add_status, rc);
15433 		status = -ENXIO;
15434 		goto out;
15435 	}
15436 
15437 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15438 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15439 					&wq_create->u.response);
15440 	else
15441 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15442 					&wq_create->u.response_1);
15443 
15444 	if (wq->queue_id == 0xFFFF) {
15445 		status = -ENXIO;
15446 		goto out;
15447 	}
15448 
15449 	wq->db_format = LPFC_DB_LIST_FORMAT;
15450 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15451 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15452 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15453 					       &wq_create->u.response);
15454 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15455 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15456 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15457 						"3265 WQ[%d] doorbell format "
15458 						"not supported: x%x\n",
15459 						wq->queue_id, wq->db_format);
15460 				status = -EINVAL;
15461 				goto out;
15462 			}
15463 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15464 					    &wq_create->u.response);
15465 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15466 								   pci_barset);
15467 			if (!bar_memmap_p) {
15468 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15469 						"3263 WQ[%d] failed to memmap "
15470 						"pci barset:x%x\n",
15471 						wq->queue_id, pci_barset);
15472 				status = -ENOMEM;
15473 				goto out;
15474 			}
15475 			db_offset = wq_create->u.response.doorbell_offset;
15476 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15477 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15478 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15479 						"3252 WQ[%d] doorbell offset "
15480 						"not supported: x%x\n",
15481 						wq->queue_id, db_offset);
15482 				status = -EINVAL;
15483 				goto out;
15484 			}
15485 			wq->db_regaddr = bar_memmap_p + db_offset;
15486 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15487 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
15488 					"format:x%x\n", wq->queue_id,
15489 					pci_barset, db_offset, wq->db_format);
15490 		} else
15491 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15492 	} else {
15493 		/* Check if DPP was honored by the firmware */
15494 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15495 				    &wq_create->u.response_1);
15496 		if (wq->dpp_enable) {
15497 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15498 					    &wq_create->u.response_1);
15499 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15500 								   pci_barset);
15501 			if (!bar_memmap_p) {
15502 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15503 						"3267 WQ[%d] failed to memmap "
15504 						"pci barset:x%x\n",
15505 						wq->queue_id, pci_barset);
15506 				status = -ENOMEM;
15507 				goto out;
15508 			}
15509 			db_offset = wq_create->u.response_1.doorbell_offset;
15510 			wq->db_regaddr = bar_memmap_p + db_offset;
15511 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15512 					    &wq_create->u.response_1);
15513 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15514 					    &wq_create->u.response_1);
15515 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15516 								   dpp_barset);
15517 			if (!bar_memmap_p) {
15518 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15519 						"3268 WQ[%d] failed to memmap "
15520 						"pci barset:x%x\n",
15521 						wq->queue_id, dpp_barset);
15522 				status = -ENOMEM;
15523 				goto out;
15524 			}
15525 			dpp_offset = wq_create->u.response_1.dpp_offset;
15526 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15527 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15528 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
15529 					"dpp_id:x%x dpp_barset:x%x "
15530 					"dpp_offset:x%x\n",
15531 					wq->queue_id, pci_barset, db_offset,
15532 					wq->dpp_id, dpp_barset, dpp_offset);
15533 
15534 			/* Enable combined writes for DPP aperture */
15535 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15536 #ifdef CONFIG_X86
15537 			rc = set_memory_wc(pg_addr, 1);
15538 			if (rc) {
15539 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15540 					"3272 Cannot setup Combined "
15541 					"Write on WQ[%d] - disable DPP\n",
15542 					wq->queue_id);
15543 				phba->cfg_enable_dpp = 0;
15544 			}
15545 #else
15546 			phba->cfg_enable_dpp = 0;
15547 #endif
15548 		} else
15549 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15550 	}
15551 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15552 	if (wq->pring == NULL) {
15553 		status = -ENOMEM;
15554 		goto out;
15555 	}
15556 	wq->type = LPFC_WQ;
15557 	wq->assoc_qid = cq->queue_id;
15558 	wq->subtype = subtype;
15559 	wq->host_index = 0;
15560 	wq->hba_index = 0;
15561 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
15562 
15563 	/* link the wq onto the parent cq child list */
15564 	list_add_tail(&wq->list, &cq->child_list);
15565 out:
15566 	mempool_free(mbox, phba->mbox_mem_pool);
15567 	return status;
15568 }
15569 
15570 /**
15571  * lpfc_rq_create - Create a Receive Queue on the HBA
15572  * @phba: HBA structure that indicates port to create a queue on.
15573  * @hrq: The queue structure to use to create the header receive queue.
15574  * @drq: The queue structure to use to create the data receive queue.
15575  * @cq: The completion queue to bind this work queue to.
15576  *
15577  * This function creates a receive buffer queue pair , as detailed in @hrq and
15578  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15579  * to the HBA.
15580  *
15581  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15582  * struct is used to get the entry count that is necessary to determine the
15583  * number of pages to use for this queue. The @cq is used to indicate which
15584  * completion queue to bind received buffers that are posted to these queues to.
15585  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15586  * receive queue pair. This function is asynchronous and will wait for the
15587  * mailbox command to finish before continuing.
15588  *
15589  * On success this function will return a zero. If unable to allocate enough
15590  * memory this function will return -ENOMEM. If the queue create mailbox command
15591  * fails this function will return -ENXIO.
15592  **/
15593 int
15594 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15595 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15596 {
15597 	struct lpfc_mbx_rq_create *rq_create;
15598 	struct lpfc_dmabuf *dmabuf;
15599 	LPFC_MBOXQ_t *mbox;
15600 	int rc, length, status = 0;
15601 	uint32_t shdr_status, shdr_add_status;
15602 	union lpfc_sli4_cfg_shdr *shdr;
15603 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15604 	void __iomem *bar_memmap_p;
15605 	uint32_t db_offset;
15606 	uint16_t pci_barset;
15607 
15608 	/* sanity check on queue memory */
15609 	if (!hrq || !drq || !cq)
15610 		return -ENODEV;
15611 	if (!phba->sli4_hba.pc_sli4_params.supported)
15612 		hw_page_size = SLI4_PAGE_SIZE;
15613 
15614 	if (hrq->entry_count != drq->entry_count)
15615 		return -EINVAL;
15616 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15617 	if (!mbox)
15618 		return -ENOMEM;
15619 	length = (sizeof(struct lpfc_mbx_rq_create) -
15620 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15621 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15622 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15623 			 length, LPFC_SLI4_MBX_EMBED);
15624 	rq_create = &mbox->u.mqe.un.rq_create;
15625 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15626 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15627 	       phba->sli4_hba.pc_sli4_params.rqv);
15628 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15629 		bf_set(lpfc_rq_context_rqe_count_1,
15630 		       &rq_create->u.request.context,
15631 		       hrq->entry_count);
15632 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15633 		bf_set(lpfc_rq_context_rqe_size,
15634 		       &rq_create->u.request.context,
15635 		       LPFC_RQE_SIZE_8);
15636 		bf_set(lpfc_rq_context_page_size,
15637 		       &rq_create->u.request.context,
15638 		       LPFC_RQ_PAGE_SIZE_4096);
15639 	} else {
15640 		switch (hrq->entry_count) {
15641 		default:
15642 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15643 					"2535 Unsupported RQ count. (%d)\n",
15644 					hrq->entry_count);
15645 			if (hrq->entry_count < 512) {
15646 				status = -EINVAL;
15647 				goto out;
15648 			}
15649 			/* fall through - otherwise default to smallest count */
15650 		case 512:
15651 			bf_set(lpfc_rq_context_rqe_count,
15652 			       &rq_create->u.request.context,
15653 			       LPFC_RQ_RING_SIZE_512);
15654 			break;
15655 		case 1024:
15656 			bf_set(lpfc_rq_context_rqe_count,
15657 			       &rq_create->u.request.context,
15658 			       LPFC_RQ_RING_SIZE_1024);
15659 			break;
15660 		case 2048:
15661 			bf_set(lpfc_rq_context_rqe_count,
15662 			       &rq_create->u.request.context,
15663 			       LPFC_RQ_RING_SIZE_2048);
15664 			break;
15665 		case 4096:
15666 			bf_set(lpfc_rq_context_rqe_count,
15667 			       &rq_create->u.request.context,
15668 			       LPFC_RQ_RING_SIZE_4096);
15669 			break;
15670 		}
15671 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15672 		       LPFC_HDR_BUF_SIZE);
15673 	}
15674 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15675 	       cq->queue_id);
15676 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15677 	       hrq->page_count);
15678 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
15679 		memset(dmabuf->virt, 0, hw_page_size);
15680 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15681 					putPaddrLow(dmabuf->phys);
15682 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15683 					putPaddrHigh(dmabuf->phys);
15684 	}
15685 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15686 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15687 
15688 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15689 	/* The IOCTL status is embedded in the mailbox subheader. */
15690 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15691 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15692 	if (shdr_status || shdr_add_status || rc) {
15693 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15694 				"2504 RQ_CREATE mailbox failed with "
15695 				"status x%x add_status x%x, mbx status x%x\n",
15696 				shdr_status, shdr_add_status, rc);
15697 		status = -ENXIO;
15698 		goto out;
15699 	}
15700 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15701 	if (hrq->queue_id == 0xFFFF) {
15702 		status = -ENXIO;
15703 		goto out;
15704 	}
15705 
15706 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15707 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15708 					&rq_create->u.response);
15709 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15710 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15711 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15712 					"3262 RQ [%d] doorbell format not "
15713 					"supported: x%x\n", hrq->queue_id,
15714 					hrq->db_format);
15715 			status = -EINVAL;
15716 			goto out;
15717 		}
15718 
15719 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15720 				    &rq_create->u.response);
15721 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15722 		if (!bar_memmap_p) {
15723 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15724 					"3269 RQ[%d] failed to memmap pci "
15725 					"barset:x%x\n", hrq->queue_id,
15726 					pci_barset);
15727 			status = -ENOMEM;
15728 			goto out;
15729 		}
15730 
15731 		db_offset = rq_create->u.response.doorbell_offset;
15732 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15733 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15734 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15735 					"3270 RQ[%d] doorbell offset not "
15736 					"supported: x%x\n", hrq->queue_id,
15737 					db_offset);
15738 			status = -EINVAL;
15739 			goto out;
15740 		}
15741 		hrq->db_regaddr = bar_memmap_p + db_offset;
15742 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15743 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15744 				"format:x%x\n", hrq->queue_id, pci_barset,
15745 				db_offset, hrq->db_format);
15746 	} else {
15747 		hrq->db_format = LPFC_DB_RING_FORMAT;
15748 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15749 	}
15750 	hrq->type = LPFC_HRQ;
15751 	hrq->assoc_qid = cq->queue_id;
15752 	hrq->subtype = subtype;
15753 	hrq->host_index = 0;
15754 	hrq->hba_index = 0;
15755 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15756 
15757 	/* now create the data queue */
15758 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15759 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15760 			 length, LPFC_SLI4_MBX_EMBED);
15761 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15762 	       phba->sli4_hba.pc_sli4_params.rqv);
15763 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15764 		bf_set(lpfc_rq_context_rqe_count_1,
15765 		       &rq_create->u.request.context, hrq->entry_count);
15766 		if (subtype == LPFC_NVMET)
15767 			rq_create->u.request.context.buffer_size =
15768 				LPFC_NVMET_DATA_BUF_SIZE;
15769 		else
15770 			rq_create->u.request.context.buffer_size =
15771 				LPFC_DATA_BUF_SIZE;
15772 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15773 		       LPFC_RQE_SIZE_8);
15774 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15775 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
15776 	} else {
15777 		switch (drq->entry_count) {
15778 		default:
15779 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15780 					"2536 Unsupported RQ count. (%d)\n",
15781 					drq->entry_count);
15782 			if (drq->entry_count < 512) {
15783 				status = -EINVAL;
15784 				goto out;
15785 			}
15786 			/* fall through - otherwise default to smallest count */
15787 		case 512:
15788 			bf_set(lpfc_rq_context_rqe_count,
15789 			       &rq_create->u.request.context,
15790 			       LPFC_RQ_RING_SIZE_512);
15791 			break;
15792 		case 1024:
15793 			bf_set(lpfc_rq_context_rqe_count,
15794 			       &rq_create->u.request.context,
15795 			       LPFC_RQ_RING_SIZE_1024);
15796 			break;
15797 		case 2048:
15798 			bf_set(lpfc_rq_context_rqe_count,
15799 			       &rq_create->u.request.context,
15800 			       LPFC_RQ_RING_SIZE_2048);
15801 			break;
15802 		case 4096:
15803 			bf_set(lpfc_rq_context_rqe_count,
15804 			       &rq_create->u.request.context,
15805 			       LPFC_RQ_RING_SIZE_4096);
15806 			break;
15807 		}
15808 		if (subtype == LPFC_NVMET)
15809 			bf_set(lpfc_rq_context_buf_size,
15810 			       &rq_create->u.request.context,
15811 			       LPFC_NVMET_DATA_BUF_SIZE);
15812 		else
15813 			bf_set(lpfc_rq_context_buf_size,
15814 			       &rq_create->u.request.context,
15815 			       LPFC_DATA_BUF_SIZE);
15816 	}
15817 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15818 	       cq->queue_id);
15819 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15820 	       drq->page_count);
15821 	list_for_each_entry(dmabuf, &drq->page_list, list) {
15822 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15823 					putPaddrLow(dmabuf->phys);
15824 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15825 					putPaddrHigh(dmabuf->phys);
15826 	}
15827 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15828 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15829 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15830 	/* The IOCTL status is embedded in the mailbox subheader. */
15831 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15832 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15833 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15834 	if (shdr_status || shdr_add_status || rc) {
15835 		status = -ENXIO;
15836 		goto out;
15837 	}
15838 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15839 	if (drq->queue_id == 0xFFFF) {
15840 		status = -ENXIO;
15841 		goto out;
15842 	}
15843 	drq->type = LPFC_DRQ;
15844 	drq->assoc_qid = cq->queue_id;
15845 	drq->subtype = subtype;
15846 	drq->host_index = 0;
15847 	drq->hba_index = 0;
15848 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15849 
15850 	/* link the header and data RQs onto the parent cq child list */
15851 	list_add_tail(&hrq->list, &cq->child_list);
15852 	list_add_tail(&drq->list, &cq->child_list);
15853 
15854 out:
15855 	mempool_free(mbox, phba->mbox_mem_pool);
15856 	return status;
15857 }
15858 
15859 /**
15860  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15861  * @phba: HBA structure that indicates port to create a queue on.
15862  * @hrqp: The queue structure array to use to create the header receive queues.
15863  * @drqp: The queue structure array to use to create the data receive queues.
15864  * @cqp: The completion queue array to bind these receive queues to.
15865  *
15866  * This function creates a receive buffer queue pair , as detailed in @hrq and
15867  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15868  * to the HBA.
15869  *
15870  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15871  * struct is used to get the entry count that is necessary to determine the
15872  * number of pages to use for this queue. The @cq is used to indicate which
15873  * completion queue to bind received buffers that are posted to these queues to.
15874  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15875  * receive queue pair. This function is asynchronous and will wait for the
15876  * mailbox command to finish before continuing.
15877  *
15878  * On success this function will return a zero. If unable to allocate enough
15879  * memory this function will return -ENOMEM. If the queue create mailbox command
15880  * fails this function will return -ENXIO.
15881  **/
15882 int
15883 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15884 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15885 		uint32_t subtype)
15886 {
15887 	struct lpfc_queue *hrq, *drq, *cq;
15888 	struct lpfc_mbx_rq_create_v2 *rq_create;
15889 	struct lpfc_dmabuf *dmabuf;
15890 	LPFC_MBOXQ_t *mbox;
15891 	int rc, length, alloclen, status = 0;
15892 	int cnt, idx, numrq, page_idx = 0;
15893 	uint32_t shdr_status, shdr_add_status;
15894 	union lpfc_sli4_cfg_shdr *shdr;
15895 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15896 
15897 	numrq = phba->cfg_nvmet_mrq;
15898 	/* sanity check on array memory */
15899 	if (!hrqp || !drqp || !cqp || !numrq)
15900 		return -ENODEV;
15901 	if (!phba->sli4_hba.pc_sli4_params.supported)
15902 		hw_page_size = SLI4_PAGE_SIZE;
15903 
15904 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15905 	if (!mbox)
15906 		return -ENOMEM;
15907 
15908 	length = sizeof(struct lpfc_mbx_rq_create_v2);
15909 	length += ((2 * numrq * hrqp[0]->page_count) *
15910 		   sizeof(struct dma_address));
15911 
15912 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15913 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
15914 				    LPFC_SLI4_MBX_NEMBED);
15915 	if (alloclen < length) {
15916 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15917 				"3099 Allocated DMA memory size (%d) is "
15918 				"less than the requested DMA memory size "
15919 				"(%d)\n", alloclen, length);
15920 		status = -ENOMEM;
15921 		goto out;
15922 	}
15923 
15924 
15925 
15926 	rq_create = mbox->sge_array->addr[0];
15927 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
15928 
15929 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
15930 	cnt = 0;
15931 
15932 	for (idx = 0; idx < numrq; idx++) {
15933 		hrq = hrqp[idx];
15934 		drq = drqp[idx];
15935 		cq  = cqp[idx];
15936 
15937 		/* sanity check on queue memory */
15938 		if (!hrq || !drq || !cq) {
15939 			status = -ENODEV;
15940 			goto out;
15941 		}
15942 
15943 		if (hrq->entry_count != drq->entry_count) {
15944 			status = -EINVAL;
15945 			goto out;
15946 		}
15947 
15948 		if (idx == 0) {
15949 			bf_set(lpfc_mbx_rq_create_num_pages,
15950 			       &rq_create->u.request,
15951 			       hrq->page_count);
15952 			bf_set(lpfc_mbx_rq_create_rq_cnt,
15953 			       &rq_create->u.request, (numrq * 2));
15954 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
15955 			       1);
15956 			bf_set(lpfc_rq_context_base_cq,
15957 			       &rq_create->u.request.context,
15958 			       cq->queue_id);
15959 			bf_set(lpfc_rq_context_data_size,
15960 			       &rq_create->u.request.context,
15961 			       LPFC_NVMET_DATA_BUF_SIZE);
15962 			bf_set(lpfc_rq_context_hdr_size,
15963 			       &rq_create->u.request.context,
15964 			       LPFC_HDR_BUF_SIZE);
15965 			bf_set(lpfc_rq_context_rqe_count_1,
15966 			       &rq_create->u.request.context,
15967 			       hrq->entry_count);
15968 			bf_set(lpfc_rq_context_rqe_size,
15969 			       &rq_create->u.request.context,
15970 			       LPFC_RQE_SIZE_8);
15971 			bf_set(lpfc_rq_context_page_size,
15972 			       &rq_create->u.request.context,
15973 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
15974 		}
15975 		rc = 0;
15976 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
15977 			memset(dmabuf->virt, 0, hw_page_size);
15978 			cnt = page_idx + dmabuf->buffer_tag;
15979 			rq_create->u.request.page[cnt].addr_lo =
15980 					putPaddrLow(dmabuf->phys);
15981 			rq_create->u.request.page[cnt].addr_hi =
15982 					putPaddrHigh(dmabuf->phys);
15983 			rc++;
15984 		}
15985 		page_idx += rc;
15986 
15987 		rc = 0;
15988 		list_for_each_entry(dmabuf, &drq->page_list, list) {
15989 			memset(dmabuf->virt, 0, hw_page_size);
15990 			cnt = page_idx + dmabuf->buffer_tag;
15991 			rq_create->u.request.page[cnt].addr_lo =
15992 					putPaddrLow(dmabuf->phys);
15993 			rq_create->u.request.page[cnt].addr_hi =
15994 					putPaddrHigh(dmabuf->phys);
15995 			rc++;
15996 		}
15997 		page_idx += rc;
15998 
15999 		hrq->db_format = LPFC_DB_RING_FORMAT;
16000 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16001 		hrq->type = LPFC_HRQ;
16002 		hrq->assoc_qid = cq->queue_id;
16003 		hrq->subtype = subtype;
16004 		hrq->host_index = 0;
16005 		hrq->hba_index = 0;
16006 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16007 
16008 		drq->db_format = LPFC_DB_RING_FORMAT;
16009 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16010 		drq->type = LPFC_DRQ;
16011 		drq->assoc_qid = cq->queue_id;
16012 		drq->subtype = subtype;
16013 		drq->host_index = 0;
16014 		drq->hba_index = 0;
16015 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16016 
16017 		list_add_tail(&hrq->list, &cq->child_list);
16018 		list_add_tail(&drq->list, &cq->child_list);
16019 	}
16020 
16021 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16022 	/* The IOCTL status is embedded in the mailbox subheader. */
16023 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16024 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16025 	if (shdr_status || shdr_add_status || rc) {
16026 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16027 				"3120 RQ_CREATE mailbox failed with "
16028 				"status x%x add_status x%x, mbx status x%x\n",
16029 				shdr_status, shdr_add_status, rc);
16030 		status = -ENXIO;
16031 		goto out;
16032 	}
16033 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16034 	if (rc == 0xFFFF) {
16035 		status = -ENXIO;
16036 		goto out;
16037 	}
16038 
16039 	/* Initialize all RQs with associated queue id */
16040 	for (idx = 0; idx < numrq; idx++) {
16041 		hrq = hrqp[idx];
16042 		hrq->queue_id = rc + (2 * idx);
16043 		drq = drqp[idx];
16044 		drq->queue_id = rc + (2 * idx) + 1;
16045 	}
16046 
16047 out:
16048 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16049 	return status;
16050 }
16051 
16052 /**
16053  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16054  * @eq: The queue structure associated with the queue to destroy.
16055  *
16056  * This function destroys a queue, as detailed in @eq by sending an mailbox
16057  * command, specific to the type of queue, to the HBA.
16058  *
16059  * The @eq struct is used to get the queue ID of the queue to destroy.
16060  *
16061  * On success this function will return a zero. If the queue destroy mailbox
16062  * command fails this function will return -ENXIO.
16063  **/
16064 int
16065 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16066 {
16067 	LPFC_MBOXQ_t *mbox;
16068 	int rc, length, status = 0;
16069 	uint32_t shdr_status, shdr_add_status;
16070 	union lpfc_sli4_cfg_shdr *shdr;
16071 
16072 	/* sanity check on queue memory */
16073 	if (!eq)
16074 		return -ENODEV;
16075 
16076 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16077 	if (!mbox)
16078 		return -ENOMEM;
16079 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16080 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16081 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16082 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16083 			 length, LPFC_SLI4_MBX_EMBED);
16084 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16085 	       eq->queue_id);
16086 	mbox->vport = eq->phba->pport;
16087 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16088 
16089 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16090 	/* The IOCTL status is embedded in the mailbox subheader. */
16091 	shdr = (union lpfc_sli4_cfg_shdr *)
16092 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16093 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16094 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16095 	if (shdr_status || shdr_add_status || rc) {
16096 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16097 				"2505 EQ_DESTROY mailbox failed with "
16098 				"status x%x add_status x%x, mbx status x%x\n",
16099 				shdr_status, shdr_add_status, rc);
16100 		status = -ENXIO;
16101 	}
16102 
16103 	/* Remove eq from any list */
16104 	list_del_init(&eq->list);
16105 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16106 	return status;
16107 }
16108 
16109 /**
16110  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16111  * @cq: The queue structure associated with the queue to destroy.
16112  *
16113  * This function destroys a queue, as detailed in @cq by sending an mailbox
16114  * command, specific to the type of queue, to the HBA.
16115  *
16116  * The @cq struct is used to get the queue ID of the queue to destroy.
16117  *
16118  * On success this function will return a zero. If the queue destroy mailbox
16119  * command fails this function will return -ENXIO.
16120  **/
16121 int
16122 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16123 {
16124 	LPFC_MBOXQ_t *mbox;
16125 	int rc, length, status = 0;
16126 	uint32_t shdr_status, shdr_add_status;
16127 	union lpfc_sli4_cfg_shdr *shdr;
16128 
16129 	/* sanity check on queue memory */
16130 	if (!cq)
16131 		return -ENODEV;
16132 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16133 	if (!mbox)
16134 		return -ENOMEM;
16135 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16136 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16137 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16138 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16139 			 length, LPFC_SLI4_MBX_EMBED);
16140 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16141 	       cq->queue_id);
16142 	mbox->vport = cq->phba->pport;
16143 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16144 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16145 	/* The IOCTL status is embedded in the mailbox subheader. */
16146 	shdr = (union lpfc_sli4_cfg_shdr *)
16147 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16148 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16149 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16150 	if (shdr_status || shdr_add_status || rc) {
16151 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16152 				"2506 CQ_DESTROY mailbox failed with "
16153 				"status x%x add_status x%x, mbx status x%x\n",
16154 				shdr_status, shdr_add_status, rc);
16155 		status = -ENXIO;
16156 	}
16157 	/* Remove cq from any list */
16158 	list_del_init(&cq->list);
16159 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16160 	return status;
16161 }
16162 
16163 /**
16164  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16165  * @qm: The queue structure associated with the queue to destroy.
16166  *
16167  * This function destroys a queue, as detailed in @mq by sending an mailbox
16168  * command, specific to the type of queue, to the HBA.
16169  *
16170  * The @mq struct is used to get the queue ID of the queue to destroy.
16171  *
16172  * On success this function will return a zero. If the queue destroy mailbox
16173  * command fails this function will return -ENXIO.
16174  **/
16175 int
16176 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16177 {
16178 	LPFC_MBOXQ_t *mbox;
16179 	int rc, length, status = 0;
16180 	uint32_t shdr_status, shdr_add_status;
16181 	union lpfc_sli4_cfg_shdr *shdr;
16182 
16183 	/* sanity check on queue memory */
16184 	if (!mq)
16185 		return -ENODEV;
16186 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16187 	if (!mbox)
16188 		return -ENOMEM;
16189 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16190 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16191 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16192 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16193 			 length, LPFC_SLI4_MBX_EMBED);
16194 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16195 	       mq->queue_id);
16196 	mbox->vport = mq->phba->pport;
16197 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16198 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16199 	/* The IOCTL status is embedded in the mailbox subheader. */
16200 	shdr = (union lpfc_sli4_cfg_shdr *)
16201 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16202 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16203 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16204 	if (shdr_status || shdr_add_status || rc) {
16205 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16206 				"2507 MQ_DESTROY mailbox failed with "
16207 				"status x%x add_status x%x, mbx status x%x\n",
16208 				shdr_status, shdr_add_status, rc);
16209 		status = -ENXIO;
16210 	}
16211 	/* Remove mq from any list */
16212 	list_del_init(&mq->list);
16213 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16214 	return status;
16215 }
16216 
16217 /**
16218  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16219  * @wq: The queue structure associated with the queue to destroy.
16220  *
16221  * This function destroys a queue, as detailed in @wq by sending an mailbox
16222  * command, specific to the type of queue, to the HBA.
16223  *
16224  * The @wq struct is used to get the queue ID of the queue to destroy.
16225  *
16226  * On success this function will return a zero. If the queue destroy mailbox
16227  * command fails this function will return -ENXIO.
16228  **/
16229 int
16230 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16231 {
16232 	LPFC_MBOXQ_t *mbox;
16233 	int rc, length, status = 0;
16234 	uint32_t shdr_status, shdr_add_status;
16235 	union lpfc_sli4_cfg_shdr *shdr;
16236 
16237 	/* sanity check on queue memory */
16238 	if (!wq)
16239 		return -ENODEV;
16240 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16241 	if (!mbox)
16242 		return -ENOMEM;
16243 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16244 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16245 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16246 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16247 			 length, LPFC_SLI4_MBX_EMBED);
16248 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16249 	       wq->queue_id);
16250 	mbox->vport = wq->phba->pport;
16251 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16252 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16253 	shdr = (union lpfc_sli4_cfg_shdr *)
16254 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16255 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16256 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16257 	if (shdr_status || shdr_add_status || rc) {
16258 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16259 				"2508 WQ_DESTROY mailbox failed with "
16260 				"status x%x add_status x%x, mbx status x%x\n",
16261 				shdr_status, shdr_add_status, rc);
16262 		status = -ENXIO;
16263 	}
16264 	/* Remove wq from any list */
16265 	list_del_init(&wq->list);
16266 	kfree(wq->pring);
16267 	wq->pring = NULL;
16268 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16269 	return status;
16270 }
16271 
16272 /**
16273  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16274  * @rq: The queue structure associated with the queue to destroy.
16275  *
16276  * This function destroys a queue, as detailed in @rq by sending an mailbox
16277  * command, specific to the type of queue, to the HBA.
16278  *
16279  * The @rq struct is used to get the queue ID of the queue to destroy.
16280  *
16281  * On success this function will return a zero. If the queue destroy mailbox
16282  * command fails this function will return -ENXIO.
16283  **/
16284 int
16285 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16286 		struct lpfc_queue *drq)
16287 {
16288 	LPFC_MBOXQ_t *mbox;
16289 	int rc, length, status = 0;
16290 	uint32_t shdr_status, shdr_add_status;
16291 	union lpfc_sli4_cfg_shdr *shdr;
16292 
16293 	/* sanity check on queue memory */
16294 	if (!hrq || !drq)
16295 		return -ENODEV;
16296 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16297 	if (!mbox)
16298 		return -ENOMEM;
16299 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16300 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16301 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16302 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16303 			 length, LPFC_SLI4_MBX_EMBED);
16304 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16305 	       hrq->queue_id);
16306 	mbox->vport = hrq->phba->pport;
16307 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16308 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16309 	/* The IOCTL status is embedded in the mailbox subheader. */
16310 	shdr = (union lpfc_sli4_cfg_shdr *)
16311 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16312 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16313 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16314 	if (shdr_status || shdr_add_status || rc) {
16315 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16316 				"2509 RQ_DESTROY mailbox failed with "
16317 				"status x%x add_status x%x, mbx status x%x\n",
16318 				shdr_status, shdr_add_status, rc);
16319 		if (rc != MBX_TIMEOUT)
16320 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
16321 		return -ENXIO;
16322 	}
16323 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16324 	       drq->queue_id);
16325 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16326 	shdr = (union lpfc_sli4_cfg_shdr *)
16327 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16328 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16329 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16330 	if (shdr_status || shdr_add_status || rc) {
16331 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16332 				"2510 RQ_DESTROY mailbox failed with "
16333 				"status x%x add_status x%x, mbx status x%x\n",
16334 				shdr_status, shdr_add_status, rc);
16335 		status = -ENXIO;
16336 	}
16337 	list_del_init(&hrq->list);
16338 	list_del_init(&drq->list);
16339 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16340 	return status;
16341 }
16342 
16343 /**
16344  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16345  * @phba: The virtual port for which this call being executed.
16346  * @pdma_phys_addr0: Physical address of the 1st SGL page.
16347  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16348  * @xritag: the xritag that ties this io to the SGL pages.
16349  *
16350  * This routine will post the sgl pages for the IO that has the xritag
16351  * that is in the iocbq structure. The xritag is assigned during iocbq
16352  * creation and persists for as long as the driver is loaded.
16353  * if the caller has fewer than 256 scatter gather segments to map then
16354  * pdma_phys_addr1 should be 0.
16355  * If the caller needs to map more than 256 scatter gather segment then
16356  * pdma_phys_addr1 should be a valid physical address.
16357  * physical address for SGLs must be 64 byte aligned.
16358  * If you are going to map 2 SGL's then the first one must have 256 entries
16359  * the second sgl can have between 1 and 256 entries.
16360  *
16361  * Return codes:
16362  * 	0 - Success
16363  * 	-ENXIO, -ENOMEM - Failure
16364  **/
16365 int
16366 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16367 		dma_addr_t pdma_phys_addr0,
16368 		dma_addr_t pdma_phys_addr1,
16369 		uint16_t xritag)
16370 {
16371 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16372 	LPFC_MBOXQ_t *mbox;
16373 	int rc;
16374 	uint32_t shdr_status, shdr_add_status;
16375 	uint32_t mbox_tmo;
16376 	union lpfc_sli4_cfg_shdr *shdr;
16377 
16378 	if (xritag == NO_XRI) {
16379 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16380 				"0364 Invalid param:\n");
16381 		return -EINVAL;
16382 	}
16383 
16384 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16385 	if (!mbox)
16386 		return -ENOMEM;
16387 
16388 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16389 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16390 			sizeof(struct lpfc_mbx_post_sgl_pages) -
16391 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16392 
16393 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16394 				&mbox->u.mqe.un.post_sgl_pages;
16395 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16396 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16397 
16398 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16399 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16400 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16401 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16402 
16403 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16404 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16405 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16406 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16407 	if (!phba->sli4_hba.intr_enable)
16408 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16409 	else {
16410 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16411 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16412 	}
16413 	/* The IOCTL status is embedded in the mailbox subheader. */
16414 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16415 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16416 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16417 	if (rc != MBX_TIMEOUT)
16418 		mempool_free(mbox, phba->mbox_mem_pool);
16419 	if (shdr_status || shdr_add_status || rc) {
16420 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16421 				"2511 POST_SGL mailbox failed with "
16422 				"status x%x add_status x%x, mbx status x%x\n",
16423 				shdr_status, shdr_add_status, rc);
16424 	}
16425 	return 0;
16426 }
16427 
16428 /**
16429  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16430  * @phba: pointer to lpfc hba data structure.
16431  *
16432  * This routine is invoked to post rpi header templates to the
16433  * HBA consistent with the SLI-4 interface spec.  This routine
16434  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16435  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16436  *
16437  * Returns
16438  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16439  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16440  **/
16441 static uint16_t
16442 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16443 {
16444 	unsigned long xri;
16445 
16446 	/*
16447 	 * Fetch the next logical xri.  Because this index is logical,
16448 	 * the driver starts at 0 each time.
16449 	 */
16450 	spin_lock_irq(&phba->hbalock);
16451 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16452 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16453 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16454 		spin_unlock_irq(&phba->hbalock);
16455 		return NO_XRI;
16456 	} else {
16457 		set_bit(xri, phba->sli4_hba.xri_bmask);
16458 		phba->sli4_hba.max_cfg_param.xri_used++;
16459 	}
16460 	spin_unlock_irq(&phba->hbalock);
16461 	return xri;
16462 }
16463 
16464 /**
16465  * lpfc_sli4_free_xri - Release an xri for reuse.
16466  * @phba: pointer to lpfc hba data structure.
16467  *
16468  * This routine is invoked to release an xri to the pool of
16469  * available rpis maintained by the driver.
16470  **/
16471 static void
16472 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16473 {
16474 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16475 		phba->sli4_hba.max_cfg_param.xri_used--;
16476 	}
16477 }
16478 
16479 /**
16480  * lpfc_sli4_free_xri - Release an xri for reuse.
16481  * @phba: pointer to lpfc hba data structure.
16482  *
16483  * This routine is invoked to release an xri to the pool of
16484  * available rpis maintained by the driver.
16485  **/
16486 void
16487 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16488 {
16489 	spin_lock_irq(&phba->hbalock);
16490 	__lpfc_sli4_free_xri(phba, xri);
16491 	spin_unlock_irq(&phba->hbalock);
16492 }
16493 
16494 /**
16495  * lpfc_sli4_next_xritag - Get an xritag for the io
16496  * @phba: Pointer to HBA context object.
16497  *
16498  * This function gets an xritag for the iocb. If there is no unused xritag
16499  * it will return 0xffff.
16500  * The function returns the allocated xritag if successful, else returns zero.
16501  * Zero is not a valid xritag.
16502  * The caller is not required to hold any lock.
16503  **/
16504 uint16_t
16505 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16506 {
16507 	uint16_t xri_index;
16508 
16509 	xri_index = lpfc_sli4_alloc_xri(phba);
16510 	if (xri_index == NO_XRI)
16511 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16512 				"2004 Failed to allocate XRI.last XRITAG is %d"
16513 				" Max XRI is %d, Used XRI is %d\n",
16514 				xri_index,
16515 				phba->sli4_hba.max_cfg_param.max_xri,
16516 				phba->sli4_hba.max_cfg_param.xri_used);
16517 	return xri_index;
16518 }
16519 
16520 /**
16521  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16522  * @phba: pointer to lpfc hba data structure.
16523  * @post_sgl_list: pointer to els sgl entry list.
16524  * @count: number of els sgl entries on the list.
16525  *
16526  * This routine is invoked to post a block of driver's sgl pages to the
16527  * HBA using non-embedded mailbox command. No Lock is held. This routine
16528  * is only called when the driver is loading and after all IO has been
16529  * stopped.
16530  **/
16531 static int
16532 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16533 			    struct list_head *post_sgl_list,
16534 			    int post_cnt)
16535 {
16536 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16537 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16538 	struct sgl_page_pairs *sgl_pg_pairs;
16539 	void *viraddr;
16540 	LPFC_MBOXQ_t *mbox;
16541 	uint32_t reqlen, alloclen, pg_pairs;
16542 	uint32_t mbox_tmo;
16543 	uint16_t xritag_start = 0;
16544 	int rc = 0;
16545 	uint32_t shdr_status, shdr_add_status;
16546 	union lpfc_sli4_cfg_shdr *shdr;
16547 
16548 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16549 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16550 	if (reqlen > SLI4_PAGE_SIZE) {
16551 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16552 				"2559 Block sgl registration required DMA "
16553 				"size (%d) great than a page\n", reqlen);
16554 		return -ENOMEM;
16555 	}
16556 
16557 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16558 	if (!mbox)
16559 		return -ENOMEM;
16560 
16561 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16562 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16563 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16564 			 LPFC_SLI4_MBX_NEMBED);
16565 
16566 	if (alloclen < reqlen) {
16567 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16568 				"0285 Allocated DMA memory size (%d) is "
16569 				"less than the requested DMA memory "
16570 				"size (%d)\n", alloclen, reqlen);
16571 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16572 		return -ENOMEM;
16573 	}
16574 	/* Set up the SGL pages in the non-embedded DMA pages */
16575 	viraddr = mbox->sge_array->addr[0];
16576 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16577 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16578 
16579 	pg_pairs = 0;
16580 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16581 		/* Set up the sge entry */
16582 		sgl_pg_pairs->sgl_pg0_addr_lo =
16583 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
16584 		sgl_pg_pairs->sgl_pg0_addr_hi =
16585 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16586 		sgl_pg_pairs->sgl_pg1_addr_lo =
16587 				cpu_to_le32(putPaddrLow(0));
16588 		sgl_pg_pairs->sgl_pg1_addr_hi =
16589 				cpu_to_le32(putPaddrHigh(0));
16590 
16591 		/* Keep the first xritag on the list */
16592 		if (pg_pairs == 0)
16593 			xritag_start = sglq_entry->sli4_xritag;
16594 		sgl_pg_pairs++;
16595 		pg_pairs++;
16596 	}
16597 
16598 	/* Complete initialization and perform endian conversion. */
16599 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16600 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16601 	sgl->word0 = cpu_to_le32(sgl->word0);
16602 
16603 	if (!phba->sli4_hba.intr_enable)
16604 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16605 	else {
16606 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16607 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16608 	}
16609 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16610 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16611 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16612 	if (rc != MBX_TIMEOUT)
16613 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16614 	if (shdr_status || shdr_add_status || rc) {
16615 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16616 				"2513 POST_SGL_BLOCK mailbox command failed "
16617 				"status x%x add_status x%x mbx status x%x\n",
16618 				shdr_status, shdr_add_status, rc);
16619 		rc = -ENXIO;
16620 	}
16621 	return rc;
16622 }
16623 
16624 /**
16625  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
16626  * @phba: pointer to lpfc hba data structure.
16627  * @nblist: pointer to nvme buffer list.
16628  * @count: number of scsi buffers on the list.
16629  *
16630  * This routine is invoked to post a block of @count scsi sgl pages from a
16631  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
16632  * No Lock is held.
16633  *
16634  **/
16635 static int
16636 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
16637 			    int count)
16638 {
16639 	struct lpfc_io_buf *lpfc_ncmd;
16640 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16641 	struct sgl_page_pairs *sgl_pg_pairs;
16642 	void *viraddr;
16643 	LPFC_MBOXQ_t *mbox;
16644 	uint32_t reqlen, alloclen, pg_pairs;
16645 	uint32_t mbox_tmo;
16646 	uint16_t xritag_start = 0;
16647 	int rc = 0;
16648 	uint32_t shdr_status, shdr_add_status;
16649 	dma_addr_t pdma_phys_bpl1;
16650 	union lpfc_sli4_cfg_shdr *shdr;
16651 
16652 	/* Calculate the requested length of the dma memory */
16653 	reqlen = count * sizeof(struct sgl_page_pairs) +
16654 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16655 	if (reqlen > SLI4_PAGE_SIZE) {
16656 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16657 				"6118 Block sgl registration required DMA "
16658 				"size (%d) great than a page\n", reqlen);
16659 		return -ENOMEM;
16660 	}
16661 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16662 	if (!mbox) {
16663 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16664 				"6119 Failed to allocate mbox cmd memory\n");
16665 		return -ENOMEM;
16666 	}
16667 
16668 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16669 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16670 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16671 				    reqlen, LPFC_SLI4_MBX_NEMBED);
16672 
16673 	if (alloclen < reqlen) {
16674 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16675 				"6120 Allocated DMA memory size (%d) is "
16676 				"less than the requested DMA memory "
16677 				"size (%d)\n", alloclen, reqlen);
16678 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16679 		return -ENOMEM;
16680 	}
16681 
16682 	/* Get the first SGE entry from the non-embedded DMA memory */
16683 	viraddr = mbox->sge_array->addr[0];
16684 
16685 	/* Set up the SGL pages in the non-embedded DMA pages */
16686 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16687 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16688 
16689 	pg_pairs = 0;
16690 	list_for_each_entry(lpfc_ncmd, nblist, list) {
16691 		/* Set up the sge entry */
16692 		sgl_pg_pairs->sgl_pg0_addr_lo =
16693 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
16694 		sgl_pg_pairs->sgl_pg0_addr_hi =
16695 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
16696 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16697 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
16698 						SGL_PAGE_SIZE;
16699 		else
16700 			pdma_phys_bpl1 = 0;
16701 		sgl_pg_pairs->sgl_pg1_addr_lo =
16702 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16703 		sgl_pg_pairs->sgl_pg1_addr_hi =
16704 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16705 		/* Keep the first xritag on the list */
16706 		if (pg_pairs == 0)
16707 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
16708 		sgl_pg_pairs++;
16709 		pg_pairs++;
16710 	}
16711 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16712 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16713 	/* Perform endian conversion if necessary */
16714 	sgl->word0 = cpu_to_le32(sgl->word0);
16715 
16716 	if (!phba->sli4_hba.intr_enable) {
16717 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16718 	} else {
16719 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16720 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16721 	}
16722 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
16723 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16724 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16725 	if (rc != MBX_TIMEOUT)
16726 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16727 	if (shdr_status || shdr_add_status || rc) {
16728 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16729 				"6125 POST_SGL_BLOCK mailbox command failed "
16730 				"status x%x add_status x%x mbx status x%x\n",
16731 				shdr_status, shdr_add_status, rc);
16732 		rc = -ENXIO;
16733 	}
16734 	return rc;
16735 }
16736 
16737 /**
16738  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
16739  * @phba: pointer to lpfc hba data structure.
16740  * @post_nblist: pointer to the nvme buffer list.
16741  *
16742  * This routine walks a list of nvme buffers that was passed in. It attempts
16743  * to construct blocks of nvme buffer sgls which contains contiguous xris and
16744  * uses the non-embedded SGL block post mailbox commands to post to the port.
16745  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
16746  * embedded SGL post mailbox command for posting. The @post_nblist passed in
16747  * must be local list, thus no lock is needed when manipulate the list.
16748  *
16749  * Returns: 0 = failure, non-zero number of successfully posted buffers.
16750  **/
16751 int
16752 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
16753 			   struct list_head *post_nblist, int sb_count)
16754 {
16755 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
16756 	int status, sgl_size;
16757 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
16758 	dma_addr_t pdma_phys_sgl1;
16759 	int last_xritag = NO_XRI;
16760 	int cur_xritag;
16761 	LIST_HEAD(prep_nblist);
16762 	LIST_HEAD(blck_nblist);
16763 	LIST_HEAD(nvme_nblist);
16764 
16765 	/* sanity check */
16766 	if (sb_count <= 0)
16767 		return -EINVAL;
16768 
16769 	sgl_size = phba->cfg_sg_dma_buf_size;
16770 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
16771 		list_del_init(&lpfc_ncmd->list);
16772 		block_cnt++;
16773 		if ((last_xritag != NO_XRI) &&
16774 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
16775 			/* a hole in xri block, form a sgl posting block */
16776 			list_splice_init(&prep_nblist, &blck_nblist);
16777 			post_cnt = block_cnt - 1;
16778 			/* prepare list for next posting block */
16779 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16780 			block_cnt = 1;
16781 		} else {
16782 			/* prepare list for next posting block */
16783 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16784 			/* enough sgls for non-embed sgl mbox command */
16785 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
16786 				list_splice_init(&prep_nblist, &blck_nblist);
16787 				post_cnt = block_cnt;
16788 				block_cnt = 0;
16789 			}
16790 		}
16791 		num_posting++;
16792 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16793 
16794 		/* end of repost sgl list condition for NVME buffers */
16795 		if (num_posting == sb_count) {
16796 			if (post_cnt == 0) {
16797 				/* last sgl posting block */
16798 				list_splice_init(&prep_nblist, &blck_nblist);
16799 				post_cnt = block_cnt;
16800 			} else if (block_cnt == 1) {
16801 				/* last single sgl with non-contiguous xri */
16802 				if (sgl_size > SGL_PAGE_SIZE)
16803 					pdma_phys_sgl1 =
16804 						lpfc_ncmd->dma_phys_sgl +
16805 						SGL_PAGE_SIZE;
16806 				else
16807 					pdma_phys_sgl1 = 0;
16808 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16809 				status = lpfc_sli4_post_sgl(
16810 						phba, lpfc_ncmd->dma_phys_sgl,
16811 						pdma_phys_sgl1, cur_xritag);
16812 				if (status) {
16813 					/* Post error.  Buffer unavailable. */
16814 					lpfc_ncmd->flags |=
16815 						LPFC_SBUF_NOT_POSTED;
16816 				} else {
16817 					/* Post success. Bffer available. */
16818 					lpfc_ncmd->flags &=
16819 						~LPFC_SBUF_NOT_POSTED;
16820 					lpfc_ncmd->status = IOSTAT_SUCCESS;
16821 					num_posted++;
16822 				}
16823 				/* success, put on NVME buffer sgl list */
16824 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16825 			}
16826 		}
16827 
16828 		/* continue until a nembed page worth of sgls */
16829 		if (post_cnt == 0)
16830 			continue;
16831 
16832 		/* post block of NVME buffer list sgls */
16833 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
16834 						     post_cnt);
16835 
16836 		/* don't reset xirtag due to hole in xri block */
16837 		if (block_cnt == 0)
16838 			last_xritag = NO_XRI;
16839 
16840 		/* reset NVME buffer post count for next round of posting */
16841 		post_cnt = 0;
16842 
16843 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
16844 		while (!list_empty(&blck_nblist)) {
16845 			list_remove_head(&blck_nblist, lpfc_ncmd,
16846 					 struct lpfc_io_buf, list);
16847 			if (status) {
16848 				/* Post error.  Mark buffer unavailable. */
16849 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
16850 			} else {
16851 				/* Post success, Mark buffer available. */
16852 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
16853 				lpfc_ncmd->status = IOSTAT_SUCCESS;
16854 				num_posted++;
16855 			}
16856 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16857 		}
16858 	}
16859 	/* Push NVME buffers with sgl posted to the available list */
16860 	lpfc_io_buf_replenish(phba, &nvme_nblist);
16861 
16862 	return num_posted;
16863 }
16864 
16865 /**
16866  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16867  * @phba: pointer to lpfc_hba struct that the frame was received on
16868  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16869  *
16870  * This function checks the fields in the @fc_hdr to see if the FC frame is a
16871  * valid type of frame that the LPFC driver will handle. This function will
16872  * return a zero if the frame is a valid frame or a non zero value when the
16873  * frame does not pass the check.
16874  **/
16875 static int
16876 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16877 {
16878 	/*  make rctl_names static to save stack space */
16879 	struct fc_vft_header *fc_vft_hdr;
16880 	uint32_t *header = (uint32_t *) fc_hdr;
16881 
16882 #define FC_RCTL_MDS_DIAGS	0xF4
16883 
16884 	switch (fc_hdr->fh_r_ctl) {
16885 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
16886 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
16887 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
16888 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
16889 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
16890 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
16891 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
16892 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
16893 	case FC_RCTL_ELS_REQ:	/* extended link services request */
16894 	case FC_RCTL_ELS_REP:	/* extended link services reply */
16895 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
16896 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
16897 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
16898 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
16899 	case FC_RCTL_BA_RMC: 	/* remove connection */
16900 	case FC_RCTL_BA_ACC:	/* basic accept */
16901 	case FC_RCTL_BA_RJT:	/* basic reject */
16902 	case FC_RCTL_BA_PRMT:
16903 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
16904 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
16905 	case FC_RCTL_P_RJT:	/* port reject */
16906 	case FC_RCTL_F_RJT:	/* fabric reject */
16907 	case FC_RCTL_P_BSY:	/* port busy */
16908 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
16909 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
16910 	case FC_RCTL_LCR:	/* link credit reset */
16911 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
16912 	case FC_RCTL_END:	/* end */
16913 		break;
16914 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
16915 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16916 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16917 		return lpfc_fc_frame_check(phba, fc_hdr);
16918 	default:
16919 		goto drop;
16920 	}
16921 
16922 	switch (fc_hdr->fh_type) {
16923 	case FC_TYPE_BLS:
16924 	case FC_TYPE_ELS:
16925 	case FC_TYPE_FCP:
16926 	case FC_TYPE_CT:
16927 	case FC_TYPE_NVME:
16928 		break;
16929 	case FC_TYPE_IP:
16930 	case FC_TYPE_ILS:
16931 	default:
16932 		goto drop;
16933 	}
16934 
16935 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
16936 			"2538 Received frame rctl:x%x, type:x%x, "
16937 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
16938 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
16939 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
16940 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
16941 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
16942 			be32_to_cpu(header[6]));
16943 	return 0;
16944 drop:
16945 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
16946 			"2539 Dropped frame rctl:x%x type:x%x\n",
16947 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16948 	return 1;
16949 }
16950 
16951 /**
16952  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
16953  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16954  *
16955  * This function processes the FC header to retrieve the VFI from the VF
16956  * header, if one exists. This function will return the VFI if one exists
16957  * or 0 if no VSAN Header exists.
16958  **/
16959 static uint32_t
16960 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
16961 {
16962 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16963 
16964 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
16965 		return 0;
16966 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
16967 }
16968 
16969 /**
16970  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
16971  * @phba: Pointer to the HBA structure to search for the vport on
16972  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16973  * @fcfi: The FC Fabric ID that the frame came from
16974  *
16975  * This function searches the @phba for a vport that matches the content of the
16976  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
16977  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
16978  * returns the matching vport pointer or NULL if unable to match frame to a
16979  * vport.
16980  **/
16981 static struct lpfc_vport *
16982 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
16983 		       uint16_t fcfi, uint32_t did)
16984 {
16985 	struct lpfc_vport **vports;
16986 	struct lpfc_vport *vport = NULL;
16987 	int i;
16988 
16989 	if (did == Fabric_DID)
16990 		return phba->pport;
16991 	if ((phba->pport->fc_flag & FC_PT2PT) &&
16992 		!(phba->link_state == LPFC_HBA_READY))
16993 		return phba->pport;
16994 
16995 	vports = lpfc_create_vport_work_array(phba);
16996 	if (vports != NULL) {
16997 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
16998 			if (phba->fcf.fcfi == fcfi &&
16999 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17000 			    vports[i]->fc_myDID == did) {
17001 				vport = vports[i];
17002 				break;
17003 			}
17004 		}
17005 	}
17006 	lpfc_destroy_vport_work_array(phba, vports);
17007 	return vport;
17008 }
17009 
17010 /**
17011  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17012  * @vport: The vport to work on.
17013  *
17014  * This function updates the receive sequence time stamp for this vport. The
17015  * receive sequence time stamp indicates the time that the last frame of the
17016  * the sequence that has been idle for the longest amount of time was received.
17017  * the driver uses this time stamp to indicate if any received sequences have
17018  * timed out.
17019  **/
17020 static void
17021 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17022 {
17023 	struct lpfc_dmabuf *h_buf;
17024 	struct hbq_dmabuf *dmabuf = NULL;
17025 
17026 	/* get the oldest sequence on the rcv list */
17027 	h_buf = list_get_first(&vport->rcv_buffer_list,
17028 			       struct lpfc_dmabuf, list);
17029 	if (!h_buf)
17030 		return;
17031 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17032 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17033 }
17034 
17035 /**
17036  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17037  * @vport: The vport that the received sequences were sent to.
17038  *
17039  * This function cleans up all outstanding received sequences. This is called
17040  * by the driver when a link event or user action invalidates all the received
17041  * sequences.
17042  **/
17043 void
17044 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17045 {
17046 	struct lpfc_dmabuf *h_buf, *hnext;
17047 	struct lpfc_dmabuf *d_buf, *dnext;
17048 	struct hbq_dmabuf *dmabuf = NULL;
17049 
17050 	/* start with the oldest sequence on the rcv list */
17051 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17052 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17053 		list_del_init(&dmabuf->hbuf.list);
17054 		list_for_each_entry_safe(d_buf, dnext,
17055 					 &dmabuf->dbuf.list, list) {
17056 			list_del_init(&d_buf->list);
17057 			lpfc_in_buf_free(vport->phba, d_buf);
17058 		}
17059 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17060 	}
17061 }
17062 
17063 /**
17064  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17065  * @vport: The vport that the received sequences were sent to.
17066  *
17067  * This function determines whether any received sequences have timed out by
17068  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17069  * indicates that there is at least one timed out sequence this routine will
17070  * go through the received sequences one at a time from most inactive to most
17071  * active to determine which ones need to be cleaned up. Once it has determined
17072  * that a sequence needs to be cleaned up it will simply free up the resources
17073  * without sending an abort.
17074  **/
17075 void
17076 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17077 {
17078 	struct lpfc_dmabuf *h_buf, *hnext;
17079 	struct lpfc_dmabuf *d_buf, *dnext;
17080 	struct hbq_dmabuf *dmabuf = NULL;
17081 	unsigned long timeout;
17082 	int abort_count = 0;
17083 
17084 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17085 		   vport->rcv_buffer_time_stamp);
17086 	if (list_empty(&vport->rcv_buffer_list) ||
17087 	    time_before(jiffies, timeout))
17088 		return;
17089 	/* start with the oldest sequence on the rcv list */
17090 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17091 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17092 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17093 			   dmabuf->time_stamp);
17094 		if (time_before(jiffies, timeout))
17095 			break;
17096 		abort_count++;
17097 		list_del_init(&dmabuf->hbuf.list);
17098 		list_for_each_entry_safe(d_buf, dnext,
17099 					 &dmabuf->dbuf.list, list) {
17100 			list_del_init(&d_buf->list);
17101 			lpfc_in_buf_free(vport->phba, d_buf);
17102 		}
17103 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17104 	}
17105 	if (abort_count)
17106 		lpfc_update_rcv_time_stamp(vport);
17107 }
17108 
17109 /**
17110  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17111  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17112  *
17113  * This function searches through the existing incomplete sequences that have
17114  * been sent to this @vport. If the frame matches one of the incomplete
17115  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17116  * make up that sequence. If no sequence is found that matches this frame then
17117  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17118  * This function returns a pointer to the first dmabuf in the sequence list that
17119  * the frame was linked to.
17120  **/
17121 static struct hbq_dmabuf *
17122 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17123 {
17124 	struct fc_frame_header *new_hdr;
17125 	struct fc_frame_header *temp_hdr;
17126 	struct lpfc_dmabuf *d_buf;
17127 	struct lpfc_dmabuf *h_buf;
17128 	struct hbq_dmabuf *seq_dmabuf = NULL;
17129 	struct hbq_dmabuf *temp_dmabuf = NULL;
17130 	uint8_t	found = 0;
17131 
17132 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17133 	dmabuf->time_stamp = jiffies;
17134 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17135 
17136 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17137 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17138 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17139 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17140 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17141 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17142 			continue;
17143 		/* found a pending sequence that matches this frame */
17144 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17145 		break;
17146 	}
17147 	if (!seq_dmabuf) {
17148 		/*
17149 		 * This indicates first frame received for this sequence.
17150 		 * Queue the buffer on the vport's rcv_buffer_list.
17151 		 */
17152 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17153 		lpfc_update_rcv_time_stamp(vport);
17154 		return dmabuf;
17155 	}
17156 	temp_hdr = seq_dmabuf->hbuf.virt;
17157 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17158 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17159 		list_del_init(&seq_dmabuf->hbuf.list);
17160 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17161 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17162 		lpfc_update_rcv_time_stamp(vport);
17163 		return dmabuf;
17164 	}
17165 	/* move this sequence to the tail to indicate a young sequence */
17166 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17167 	seq_dmabuf->time_stamp = jiffies;
17168 	lpfc_update_rcv_time_stamp(vport);
17169 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17170 		temp_hdr = dmabuf->hbuf.virt;
17171 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17172 		return seq_dmabuf;
17173 	}
17174 	/* find the correct place in the sequence to insert this frame */
17175 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17176 	while (!found) {
17177 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17178 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17179 		/*
17180 		 * If the frame's sequence count is greater than the frame on
17181 		 * the list then insert the frame right after this frame
17182 		 */
17183 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17184 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17185 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17186 			found = 1;
17187 			break;
17188 		}
17189 
17190 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17191 			break;
17192 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17193 	}
17194 
17195 	if (found)
17196 		return seq_dmabuf;
17197 	return NULL;
17198 }
17199 
17200 /**
17201  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17202  * @vport: pointer to a vitural port
17203  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17204  *
17205  * This function tries to abort from the partially assembed sequence, described
17206  * by the information from basic abbort @dmabuf. It checks to see whether such
17207  * partially assembled sequence held by the driver. If so, it shall free up all
17208  * the frames from the partially assembled sequence.
17209  *
17210  * Return
17211  * true  -- if there is matching partially assembled sequence present and all
17212  *          the frames freed with the sequence;
17213  * false -- if there is no matching partially assembled sequence present so
17214  *          nothing got aborted in the lower layer driver
17215  **/
17216 static bool
17217 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17218 			    struct hbq_dmabuf *dmabuf)
17219 {
17220 	struct fc_frame_header *new_hdr;
17221 	struct fc_frame_header *temp_hdr;
17222 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17223 	struct hbq_dmabuf *seq_dmabuf = NULL;
17224 
17225 	/* Use the hdr_buf to find the sequence that matches this frame */
17226 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17227 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17228 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17229 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17230 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17231 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17232 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17233 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17234 			continue;
17235 		/* found a pending sequence that matches this frame */
17236 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17237 		break;
17238 	}
17239 
17240 	/* Free up all the frames from the partially assembled sequence */
17241 	if (seq_dmabuf) {
17242 		list_for_each_entry_safe(d_buf, n_buf,
17243 					 &seq_dmabuf->dbuf.list, list) {
17244 			list_del_init(&d_buf->list);
17245 			lpfc_in_buf_free(vport->phba, d_buf);
17246 		}
17247 		return true;
17248 	}
17249 	return false;
17250 }
17251 
17252 /**
17253  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17254  * @vport: pointer to a vitural port
17255  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17256  *
17257  * This function tries to abort from the assembed sequence from upper level
17258  * protocol, described by the information from basic abbort @dmabuf. It
17259  * checks to see whether such pending context exists at upper level protocol.
17260  * If so, it shall clean up the pending context.
17261  *
17262  * Return
17263  * true  -- if there is matching pending context of the sequence cleaned
17264  *          at ulp;
17265  * false -- if there is no matching pending context of the sequence present
17266  *          at ulp.
17267  **/
17268 static bool
17269 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17270 {
17271 	struct lpfc_hba *phba = vport->phba;
17272 	int handled;
17273 
17274 	/* Accepting abort at ulp with SLI4 only */
17275 	if (phba->sli_rev < LPFC_SLI_REV4)
17276 		return false;
17277 
17278 	/* Register all caring upper level protocols to attend abort */
17279 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17280 	if (handled)
17281 		return true;
17282 
17283 	return false;
17284 }
17285 
17286 /**
17287  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17288  * @phba: Pointer to HBA context object.
17289  * @cmd_iocbq: pointer to the command iocbq structure.
17290  * @rsp_iocbq: pointer to the response iocbq structure.
17291  *
17292  * This function handles the sequence abort response iocb command complete
17293  * event. It properly releases the memory allocated to the sequence abort
17294  * accept iocb.
17295  **/
17296 static void
17297 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17298 			     struct lpfc_iocbq *cmd_iocbq,
17299 			     struct lpfc_iocbq *rsp_iocbq)
17300 {
17301 	struct lpfc_nodelist *ndlp;
17302 
17303 	if (cmd_iocbq) {
17304 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17305 		lpfc_nlp_put(ndlp);
17306 		lpfc_nlp_not_used(ndlp);
17307 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17308 	}
17309 
17310 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17311 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17312 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17313 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17314 			rsp_iocbq->iocb.ulpStatus,
17315 			rsp_iocbq->iocb.un.ulpWord[4]);
17316 }
17317 
17318 /**
17319  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17320  * @phba: Pointer to HBA context object.
17321  * @xri: xri id in transaction.
17322  *
17323  * This function validates the xri maps to the known range of XRIs allocated an
17324  * used by the driver.
17325  **/
17326 uint16_t
17327 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17328 		      uint16_t xri)
17329 {
17330 	uint16_t i;
17331 
17332 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17333 		if (xri == phba->sli4_hba.xri_ids[i])
17334 			return i;
17335 	}
17336 	return NO_XRI;
17337 }
17338 
17339 /**
17340  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17341  * @phba: Pointer to HBA context object.
17342  * @fc_hdr: pointer to a FC frame header.
17343  *
17344  * This function sends a basic response to a previous unsol sequence abort
17345  * event after aborting the sequence handling.
17346  **/
17347 void
17348 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17349 			struct fc_frame_header *fc_hdr, bool aborted)
17350 {
17351 	struct lpfc_hba *phba = vport->phba;
17352 	struct lpfc_iocbq *ctiocb = NULL;
17353 	struct lpfc_nodelist *ndlp;
17354 	uint16_t oxid, rxid, xri, lxri;
17355 	uint32_t sid, fctl;
17356 	IOCB_t *icmd;
17357 	int rc;
17358 
17359 	if (!lpfc_is_link_up(phba))
17360 		return;
17361 
17362 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17363 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17364 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17365 
17366 	ndlp = lpfc_findnode_did(vport, sid);
17367 	if (!ndlp) {
17368 		ndlp = lpfc_nlp_init(vport, sid);
17369 		if (!ndlp) {
17370 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17371 					 "1268 Failed to allocate ndlp for "
17372 					 "oxid:x%x SID:x%x\n", oxid, sid);
17373 			return;
17374 		}
17375 		/* Put ndlp onto pport node list */
17376 		lpfc_enqueue_node(vport, ndlp);
17377 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17378 		/* re-setup ndlp without removing from node list */
17379 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17380 		if (!ndlp) {
17381 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17382 					 "3275 Failed to active ndlp found "
17383 					 "for oxid:x%x SID:x%x\n", oxid, sid);
17384 			return;
17385 		}
17386 	}
17387 
17388 	/* Allocate buffer for rsp iocb */
17389 	ctiocb = lpfc_sli_get_iocbq(phba);
17390 	if (!ctiocb)
17391 		return;
17392 
17393 	/* Extract the F_CTL field from FC_HDR */
17394 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17395 
17396 	icmd = &ctiocb->iocb;
17397 	icmd->un.xseq64.bdl.bdeSize = 0;
17398 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17399 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17400 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17401 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17402 
17403 	/* Fill in the rest of iocb fields */
17404 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17405 	icmd->ulpBdeCount = 0;
17406 	icmd->ulpLe = 1;
17407 	icmd->ulpClass = CLASS3;
17408 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17409 	ctiocb->context1 = lpfc_nlp_get(ndlp);
17410 
17411 	ctiocb->vport = phba->pport;
17412 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17413 	ctiocb->sli4_lxritag = NO_XRI;
17414 	ctiocb->sli4_xritag = NO_XRI;
17415 
17416 	if (fctl & FC_FC_EX_CTX)
17417 		/* Exchange responder sent the abort so we
17418 		 * own the oxid.
17419 		 */
17420 		xri = oxid;
17421 	else
17422 		xri = rxid;
17423 	lxri = lpfc_sli4_xri_inrange(phba, xri);
17424 	if (lxri != NO_XRI)
17425 		lpfc_set_rrq_active(phba, ndlp, lxri,
17426 			(xri == oxid) ? rxid : oxid, 0);
17427 	/* For BA_ABTS from exchange responder, if the logical xri with
17428 	 * the oxid maps to the FCP XRI range, the port no longer has
17429 	 * that exchange context, send a BLS_RJT. Override the IOCB for
17430 	 * a BA_RJT.
17431 	 */
17432 	if ((fctl & FC_FC_EX_CTX) &&
17433 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17434 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17435 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17436 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17437 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17438 	}
17439 
17440 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17441 	 * the driver no longer has that exchange, send a BLS_RJT. Override
17442 	 * the IOCB for a BA_RJT.
17443 	 */
17444 	if (aborted == false) {
17445 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17446 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17447 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17448 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17449 	}
17450 
17451 	if (fctl & FC_FC_EX_CTX) {
17452 		/* ABTS sent by responder to CT exchange, construction
17453 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17454 		 * field and RX_ID from ABTS for RX_ID field.
17455 		 */
17456 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17457 	} else {
17458 		/* ABTS sent by initiator to CT exchange, construction
17459 		 * of BA_ACC will need to allocate a new XRI as for the
17460 		 * XRI_TAG field.
17461 		 */
17462 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17463 	}
17464 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17465 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17466 
17467 	/* Xmit CT abts response on exchange <xid> */
17468 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17469 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17470 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17471 
17472 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17473 	if (rc == IOCB_ERROR) {
17474 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17475 				 "2925 Failed to issue CT ABTS RSP x%x on "
17476 				 "xri x%x, Data x%x\n",
17477 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17478 				 phba->link_state);
17479 		lpfc_nlp_put(ndlp);
17480 		ctiocb->context1 = NULL;
17481 		lpfc_sli_release_iocbq(phba, ctiocb);
17482 	}
17483 }
17484 
17485 /**
17486  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17487  * @vport: Pointer to the vport on which this sequence was received
17488  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17489  *
17490  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17491  * receive sequence is only partially assembed by the driver, it shall abort
17492  * the partially assembled frames for the sequence. Otherwise, if the
17493  * unsolicited receive sequence has been completely assembled and passed to
17494  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17495  * unsolicited sequence has been aborted. After that, it will issue a basic
17496  * accept to accept the abort.
17497  **/
17498 static void
17499 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17500 			     struct hbq_dmabuf *dmabuf)
17501 {
17502 	struct lpfc_hba *phba = vport->phba;
17503 	struct fc_frame_header fc_hdr;
17504 	uint32_t fctl;
17505 	bool aborted;
17506 
17507 	/* Make a copy of fc_hdr before the dmabuf being released */
17508 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17509 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17510 
17511 	if (fctl & FC_FC_EX_CTX) {
17512 		/* ABTS by responder to exchange, no cleanup needed */
17513 		aborted = true;
17514 	} else {
17515 		/* ABTS by initiator to exchange, need to do cleanup */
17516 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17517 		if (aborted == false)
17518 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17519 	}
17520 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17521 
17522 	if (phba->nvmet_support) {
17523 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17524 		return;
17525 	}
17526 
17527 	/* Respond with BA_ACC or BA_RJT accordingly */
17528 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17529 }
17530 
17531 /**
17532  * lpfc_seq_complete - Indicates if a sequence is complete
17533  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17534  *
17535  * This function checks the sequence, starting with the frame described by
17536  * @dmabuf, to see if all the frames associated with this sequence are present.
17537  * the frames associated with this sequence are linked to the @dmabuf using the
17538  * dbuf list. This function looks for two major things. 1) That the first frame
17539  * has a sequence count of zero. 2) There is a frame with last frame of sequence
17540  * set. 3) That there are no holes in the sequence count. The function will
17541  * return 1 when the sequence is complete, otherwise it will return 0.
17542  **/
17543 static int
17544 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17545 {
17546 	struct fc_frame_header *hdr;
17547 	struct lpfc_dmabuf *d_buf;
17548 	struct hbq_dmabuf *seq_dmabuf;
17549 	uint32_t fctl;
17550 	int seq_count = 0;
17551 
17552 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17553 	/* make sure first fame of sequence has a sequence count of zero */
17554 	if (hdr->fh_seq_cnt != seq_count)
17555 		return 0;
17556 	fctl = (hdr->fh_f_ctl[0] << 16 |
17557 		hdr->fh_f_ctl[1] << 8 |
17558 		hdr->fh_f_ctl[2]);
17559 	/* If last frame of sequence we can return success. */
17560 	if (fctl & FC_FC_END_SEQ)
17561 		return 1;
17562 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17563 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17564 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17565 		/* If there is a hole in the sequence count then fail. */
17566 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17567 			return 0;
17568 		fctl = (hdr->fh_f_ctl[0] << 16 |
17569 			hdr->fh_f_ctl[1] << 8 |
17570 			hdr->fh_f_ctl[2]);
17571 		/* If last frame of sequence we can return success. */
17572 		if (fctl & FC_FC_END_SEQ)
17573 			return 1;
17574 	}
17575 	return 0;
17576 }
17577 
17578 /**
17579  * lpfc_prep_seq - Prep sequence for ULP processing
17580  * @vport: Pointer to the vport on which this sequence was received
17581  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17582  *
17583  * This function takes a sequence, described by a list of frames, and creates
17584  * a list of iocbq structures to describe the sequence. This iocbq list will be
17585  * used to issue to the generic unsolicited sequence handler. This routine
17586  * returns a pointer to the first iocbq in the list. If the function is unable
17587  * to allocate an iocbq then it throw out the received frames that were not
17588  * able to be described and return a pointer to the first iocbq. If unable to
17589  * allocate any iocbqs (including the first) this function will return NULL.
17590  **/
17591 static struct lpfc_iocbq *
17592 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17593 {
17594 	struct hbq_dmabuf *hbq_buf;
17595 	struct lpfc_dmabuf *d_buf, *n_buf;
17596 	struct lpfc_iocbq *first_iocbq, *iocbq;
17597 	struct fc_frame_header *fc_hdr;
17598 	uint32_t sid;
17599 	uint32_t len, tot_len;
17600 	struct ulp_bde64 *pbde;
17601 
17602 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17603 	/* remove from receive buffer list */
17604 	list_del_init(&seq_dmabuf->hbuf.list);
17605 	lpfc_update_rcv_time_stamp(vport);
17606 	/* get the Remote Port's SID */
17607 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17608 	tot_len = 0;
17609 	/* Get an iocbq struct to fill in. */
17610 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17611 	if (first_iocbq) {
17612 		/* Initialize the first IOCB. */
17613 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17614 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17615 		first_iocbq->vport = vport;
17616 
17617 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
17618 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17619 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17620 			first_iocbq->iocb.un.rcvels.parmRo =
17621 				sli4_did_from_fc_hdr(fc_hdr);
17622 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17623 		} else
17624 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17625 		first_iocbq->iocb.ulpContext = NO_XRI;
17626 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17627 			be16_to_cpu(fc_hdr->fh_ox_id);
17628 		/* iocbq is prepped for internal consumption.  Physical vpi. */
17629 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
17630 			vport->phba->vpi_ids[vport->vpi];
17631 		/* put the first buffer into the first IOCBq */
17632 		tot_len = bf_get(lpfc_rcqe_length,
17633 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17634 
17635 		first_iocbq->context2 = &seq_dmabuf->dbuf;
17636 		first_iocbq->context3 = NULL;
17637 		first_iocbq->iocb.ulpBdeCount = 1;
17638 		if (tot_len > LPFC_DATA_BUF_SIZE)
17639 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17640 							LPFC_DATA_BUF_SIZE;
17641 		else
17642 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17643 
17644 		first_iocbq->iocb.un.rcvels.remoteID = sid;
17645 
17646 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17647 	}
17648 	iocbq = first_iocbq;
17649 	/*
17650 	 * Each IOCBq can have two Buffers assigned, so go through the list
17651 	 * of buffers for this sequence and save two buffers in each IOCBq
17652 	 */
17653 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17654 		if (!iocbq) {
17655 			lpfc_in_buf_free(vport->phba, d_buf);
17656 			continue;
17657 		}
17658 		if (!iocbq->context3) {
17659 			iocbq->context3 = d_buf;
17660 			iocbq->iocb.ulpBdeCount++;
17661 			/* We need to get the size out of the right CQE */
17662 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17663 			len = bf_get(lpfc_rcqe_length,
17664 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17665 			pbde = (struct ulp_bde64 *)
17666 					&iocbq->iocb.unsli3.sli3Words[4];
17667 			if (len > LPFC_DATA_BUF_SIZE)
17668 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17669 			else
17670 				pbde->tus.f.bdeSize = len;
17671 
17672 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17673 			tot_len += len;
17674 		} else {
17675 			iocbq = lpfc_sli_get_iocbq(vport->phba);
17676 			if (!iocbq) {
17677 				if (first_iocbq) {
17678 					first_iocbq->iocb.ulpStatus =
17679 							IOSTAT_FCP_RSP_ERROR;
17680 					first_iocbq->iocb.un.ulpWord[4] =
17681 							IOERR_NO_RESOURCES;
17682 				}
17683 				lpfc_in_buf_free(vport->phba, d_buf);
17684 				continue;
17685 			}
17686 			/* We need to get the size out of the right CQE */
17687 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17688 			len = bf_get(lpfc_rcqe_length,
17689 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17690 			iocbq->context2 = d_buf;
17691 			iocbq->context3 = NULL;
17692 			iocbq->iocb.ulpBdeCount = 1;
17693 			if (len > LPFC_DATA_BUF_SIZE)
17694 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17695 							LPFC_DATA_BUF_SIZE;
17696 			else
17697 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17698 
17699 			tot_len += len;
17700 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17701 
17702 			iocbq->iocb.un.rcvels.remoteID = sid;
17703 			list_add_tail(&iocbq->list, &first_iocbq->list);
17704 		}
17705 	}
17706 	return first_iocbq;
17707 }
17708 
17709 static void
17710 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17711 			  struct hbq_dmabuf *seq_dmabuf)
17712 {
17713 	struct fc_frame_header *fc_hdr;
17714 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17715 	struct lpfc_hba *phba = vport->phba;
17716 
17717 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17718 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17719 	if (!iocbq) {
17720 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17721 				"2707 Ring %d handler: Failed to allocate "
17722 				"iocb Rctl x%x Type x%x received\n",
17723 				LPFC_ELS_RING,
17724 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17725 		return;
17726 	}
17727 	if (!lpfc_complete_unsol_iocb(phba,
17728 				      phba->sli4_hba.els_wq->pring,
17729 				      iocbq, fc_hdr->fh_r_ctl,
17730 				      fc_hdr->fh_type))
17731 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17732 				"2540 Ring %d handler: unexpected Rctl "
17733 				"x%x Type x%x received\n",
17734 				LPFC_ELS_RING,
17735 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17736 
17737 	/* Free iocb created in lpfc_prep_seq */
17738 	list_for_each_entry_safe(curr_iocb, next_iocb,
17739 		&iocbq->list, list) {
17740 		list_del_init(&curr_iocb->list);
17741 		lpfc_sli_release_iocbq(phba, curr_iocb);
17742 	}
17743 	lpfc_sli_release_iocbq(phba, iocbq);
17744 }
17745 
17746 static void
17747 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17748 			    struct lpfc_iocbq *rspiocb)
17749 {
17750 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17751 
17752 	if (pcmd && pcmd->virt)
17753 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17754 	kfree(pcmd);
17755 	lpfc_sli_release_iocbq(phba, cmdiocb);
17756 	lpfc_drain_txq(phba);
17757 }
17758 
17759 static void
17760 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17761 			      struct hbq_dmabuf *dmabuf)
17762 {
17763 	struct fc_frame_header *fc_hdr;
17764 	struct lpfc_hba *phba = vport->phba;
17765 	struct lpfc_iocbq *iocbq = NULL;
17766 	union  lpfc_wqe *wqe;
17767 	struct lpfc_dmabuf *pcmd = NULL;
17768 	uint32_t frame_len;
17769 	int rc;
17770 	unsigned long iflags;
17771 
17772 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17773 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
17774 
17775 	/* Send the received frame back */
17776 	iocbq = lpfc_sli_get_iocbq(phba);
17777 	if (!iocbq) {
17778 		/* Queue cq event and wakeup worker thread to process it */
17779 		spin_lock_irqsave(&phba->hbalock, iflags);
17780 		list_add_tail(&dmabuf->cq_event.list,
17781 			      &phba->sli4_hba.sp_queue_event);
17782 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
17783 		spin_unlock_irqrestore(&phba->hbalock, iflags);
17784 		lpfc_worker_wake_up(phba);
17785 		return;
17786 	}
17787 
17788 	/* Allocate buffer for command payload */
17789 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
17790 	if (pcmd)
17791 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
17792 					    &pcmd->phys);
17793 	if (!pcmd || !pcmd->virt)
17794 		goto exit;
17795 
17796 	INIT_LIST_HEAD(&pcmd->list);
17797 
17798 	/* copyin the payload */
17799 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
17800 
17801 	/* fill in BDE's for command */
17802 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
17803 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
17804 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
17805 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
17806 
17807 	iocbq->context2 = pcmd;
17808 	iocbq->vport = vport;
17809 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
17810 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
17811 
17812 	/*
17813 	 * Setup rest of the iocb as though it were a WQE
17814 	 * Build the SEND_FRAME WQE
17815 	 */
17816 	wqe = (union lpfc_wqe *)&iocbq->iocb;
17817 
17818 	wqe->send_frame.frame_len = frame_len;
17819 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
17820 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
17821 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
17822 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
17823 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
17824 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
17825 
17826 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
17827 	iocbq->iocb.ulpLe = 1;
17828 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
17829 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
17830 	if (rc == IOCB_ERROR)
17831 		goto exit;
17832 
17833 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17834 	return;
17835 
17836 exit:
17837 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17838 			"2023 Unable to process MDS loopback frame\n");
17839 	if (pcmd && pcmd->virt)
17840 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17841 	kfree(pcmd);
17842 	if (iocbq)
17843 		lpfc_sli_release_iocbq(phba, iocbq);
17844 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17845 }
17846 
17847 /**
17848  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
17849  * @phba: Pointer to HBA context object.
17850  *
17851  * This function is called with no lock held. This function processes all
17852  * the received buffers and gives it to upper layers when a received buffer
17853  * indicates that it is the final frame in the sequence. The interrupt
17854  * service routine processes received buffers at interrupt contexts.
17855  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
17856  * appropriate receive function when the final frame in a sequence is received.
17857  **/
17858 void
17859 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
17860 				 struct hbq_dmabuf *dmabuf)
17861 {
17862 	struct hbq_dmabuf *seq_dmabuf;
17863 	struct fc_frame_header *fc_hdr;
17864 	struct lpfc_vport *vport;
17865 	uint32_t fcfi;
17866 	uint32_t did;
17867 
17868 	/* Process each received buffer */
17869 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17870 
17871 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
17872 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
17873 		vport = phba->pport;
17874 		/* Handle MDS Loopback frames */
17875 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17876 		return;
17877 	}
17878 
17879 	/* check to see if this a valid type of frame */
17880 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
17881 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17882 		return;
17883 	}
17884 
17885 	if ((bf_get(lpfc_cqe_code,
17886 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
17887 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
17888 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17889 	else
17890 		fcfi = bf_get(lpfc_rcqe_fcf_id,
17891 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17892 
17893 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
17894 		vport = phba->pport;
17895 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
17896 				"2023 MDS Loopback %d bytes\n",
17897 				bf_get(lpfc_rcqe_length,
17898 				       &dmabuf->cq_event.cqe.rcqe_cmpl));
17899 		/* Handle MDS Loopback frames */
17900 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17901 		return;
17902 	}
17903 
17904 	/* d_id this frame is directed to */
17905 	did = sli4_did_from_fc_hdr(fc_hdr);
17906 
17907 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
17908 	if (!vport) {
17909 		/* throw out the frame */
17910 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17911 		return;
17912 	}
17913 
17914 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
17915 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
17916 		(did != Fabric_DID)) {
17917 		/*
17918 		 * Throw out the frame if we are not pt2pt.
17919 		 * The pt2pt protocol allows for discovery frames
17920 		 * to be received without a registered VPI.
17921 		 */
17922 		if (!(vport->fc_flag & FC_PT2PT) ||
17923 			(phba->link_state == LPFC_HBA_READY)) {
17924 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
17925 			return;
17926 		}
17927 	}
17928 
17929 	/* Handle the basic abort sequence (BA_ABTS) event */
17930 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
17931 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
17932 		return;
17933 	}
17934 
17935 	/* Link this frame */
17936 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
17937 	if (!seq_dmabuf) {
17938 		/* unable to add frame to vport - throw it out */
17939 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17940 		return;
17941 	}
17942 	/* If not last frame in sequence continue processing frames. */
17943 	if (!lpfc_seq_complete(seq_dmabuf))
17944 		return;
17945 
17946 	/* Send the complete sequence to the upper layer protocol */
17947 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
17948 }
17949 
17950 /**
17951  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
17952  * @phba: pointer to lpfc hba data structure.
17953  *
17954  * This routine is invoked to post rpi header templates to the
17955  * HBA consistent with the SLI-4 interface spec.  This routine
17956  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17957  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17958  *
17959  * This routine does not require any locks.  It's usage is expected
17960  * to be driver load or reset recovery when the driver is
17961  * sequential.
17962  *
17963  * Return codes
17964  * 	0 - successful
17965  *      -EIO - The mailbox failed to complete successfully.
17966  * 	When this error occurs, the driver is not guaranteed
17967  *	to have any rpi regions posted to the device and
17968  *	must either attempt to repost the regions or take a
17969  *	fatal error.
17970  **/
17971 int
17972 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
17973 {
17974 	struct lpfc_rpi_hdr *rpi_page;
17975 	uint32_t rc = 0;
17976 	uint16_t lrpi = 0;
17977 
17978 	/* SLI4 ports that support extents do not require RPI headers. */
17979 	if (!phba->sli4_hba.rpi_hdrs_in_use)
17980 		goto exit;
17981 	if (phba->sli4_hba.extents_in_use)
17982 		return -EIO;
17983 
17984 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
17985 		/*
17986 		 * Assign the rpi headers a physical rpi only if the driver
17987 		 * has not initialized those resources.  A port reset only
17988 		 * needs the headers posted.
17989 		 */
17990 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
17991 		    LPFC_RPI_RSRC_RDY)
17992 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17993 
17994 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
17995 		if (rc != MBX_SUCCESS) {
17996 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17997 					"2008 Error %d posting all rpi "
17998 					"headers\n", rc);
17999 			rc = -EIO;
18000 			break;
18001 		}
18002 	}
18003 
18004  exit:
18005 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18006 	       LPFC_RPI_RSRC_RDY);
18007 	return rc;
18008 }
18009 
18010 /**
18011  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18012  * @phba: pointer to lpfc hba data structure.
18013  * @rpi_page:  pointer to the rpi memory region.
18014  *
18015  * This routine is invoked to post a single rpi header to the
18016  * HBA consistent with the SLI-4 interface spec.  This memory region
18017  * maps up to 64 rpi context regions.
18018  *
18019  * Return codes
18020  * 	0 - successful
18021  * 	-ENOMEM - No available memory
18022  *      -EIO - The mailbox failed to complete successfully.
18023  **/
18024 int
18025 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18026 {
18027 	LPFC_MBOXQ_t *mboxq;
18028 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18029 	uint32_t rc = 0;
18030 	uint32_t shdr_status, shdr_add_status;
18031 	union lpfc_sli4_cfg_shdr *shdr;
18032 
18033 	/* SLI4 ports that support extents do not require RPI headers. */
18034 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18035 		return rc;
18036 	if (phba->sli4_hba.extents_in_use)
18037 		return -EIO;
18038 
18039 	/* The port is notified of the header region via a mailbox command. */
18040 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18041 	if (!mboxq) {
18042 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18043 				"2001 Unable to allocate memory for issuing "
18044 				"SLI_CONFIG_SPECIAL mailbox command\n");
18045 		return -ENOMEM;
18046 	}
18047 
18048 	/* Post all rpi memory regions to the port. */
18049 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18050 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18051 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18052 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18053 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18054 			 LPFC_SLI4_MBX_EMBED);
18055 
18056 
18057 	/* Post the physical rpi to the port for this rpi header. */
18058 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18059 	       rpi_page->start_rpi);
18060 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18061 	       hdr_tmpl, rpi_page->page_count);
18062 
18063 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18064 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18065 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18066 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18067 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18068 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18069 	if (rc != MBX_TIMEOUT)
18070 		mempool_free(mboxq, phba->mbox_mem_pool);
18071 	if (shdr_status || shdr_add_status || rc) {
18072 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18073 				"2514 POST_RPI_HDR mailbox failed with "
18074 				"status x%x add_status x%x, mbx status x%x\n",
18075 				shdr_status, shdr_add_status, rc);
18076 		rc = -ENXIO;
18077 	} else {
18078 		/*
18079 		 * The next_rpi stores the next logical module-64 rpi value used
18080 		 * to post physical rpis in subsequent rpi postings.
18081 		 */
18082 		spin_lock_irq(&phba->hbalock);
18083 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18084 		spin_unlock_irq(&phba->hbalock);
18085 	}
18086 	return rc;
18087 }
18088 
18089 /**
18090  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18091  * @phba: pointer to lpfc hba data structure.
18092  *
18093  * This routine is invoked to post rpi header templates to the
18094  * HBA consistent with the SLI-4 interface spec.  This routine
18095  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18096  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18097  *
18098  * Returns
18099  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18100  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18101  **/
18102 int
18103 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18104 {
18105 	unsigned long rpi;
18106 	uint16_t max_rpi, rpi_limit;
18107 	uint16_t rpi_remaining, lrpi = 0;
18108 	struct lpfc_rpi_hdr *rpi_hdr;
18109 	unsigned long iflag;
18110 
18111 	/*
18112 	 * Fetch the next logical rpi.  Because this index is logical,
18113 	 * the  driver starts at 0 each time.
18114 	 */
18115 	spin_lock_irqsave(&phba->hbalock, iflag);
18116 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18117 	rpi_limit = phba->sli4_hba.next_rpi;
18118 
18119 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18120 	if (rpi >= rpi_limit)
18121 		rpi = LPFC_RPI_ALLOC_ERROR;
18122 	else {
18123 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18124 		phba->sli4_hba.max_cfg_param.rpi_used++;
18125 		phba->sli4_hba.rpi_count++;
18126 	}
18127 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18128 			"0001 rpi:%x max:%x lim:%x\n",
18129 			(int) rpi, max_rpi, rpi_limit);
18130 
18131 	/*
18132 	 * Don't try to allocate more rpi header regions if the device limit
18133 	 * has been exhausted.
18134 	 */
18135 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18136 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18137 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18138 		return rpi;
18139 	}
18140 
18141 	/*
18142 	 * RPI header postings are not required for SLI4 ports capable of
18143 	 * extents.
18144 	 */
18145 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18146 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18147 		return rpi;
18148 	}
18149 
18150 	/*
18151 	 * If the driver is running low on rpi resources, allocate another
18152 	 * page now.  Note that the next_rpi value is used because
18153 	 * it represents how many are actually in use whereas max_rpi notes
18154 	 * how many are supported max by the device.
18155 	 */
18156 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18157 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18158 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18159 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18160 		if (!rpi_hdr) {
18161 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18162 					"2002 Error Could not grow rpi "
18163 					"count\n");
18164 		} else {
18165 			lrpi = rpi_hdr->start_rpi;
18166 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18167 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18168 		}
18169 	}
18170 
18171 	return rpi;
18172 }
18173 
18174 /**
18175  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18176  * @phba: pointer to lpfc hba data structure.
18177  *
18178  * This routine is invoked to release an rpi to the pool of
18179  * available rpis maintained by the driver.
18180  **/
18181 static void
18182 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18183 {
18184 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18185 		phba->sli4_hba.rpi_count--;
18186 		phba->sli4_hba.max_cfg_param.rpi_used--;
18187 	} else {
18188 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18189 				"2016 rpi %x not inuse\n",
18190 				rpi);
18191 	}
18192 }
18193 
18194 /**
18195  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18196  * @phba: pointer to lpfc hba data structure.
18197  *
18198  * This routine is invoked to release an rpi to the pool of
18199  * available rpis maintained by the driver.
18200  **/
18201 void
18202 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18203 {
18204 	spin_lock_irq(&phba->hbalock);
18205 	__lpfc_sli4_free_rpi(phba, rpi);
18206 	spin_unlock_irq(&phba->hbalock);
18207 }
18208 
18209 /**
18210  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18211  * @phba: pointer to lpfc hba data structure.
18212  *
18213  * This routine is invoked to remove the memory region that
18214  * provided rpi via a bitmask.
18215  **/
18216 void
18217 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18218 {
18219 	kfree(phba->sli4_hba.rpi_bmask);
18220 	kfree(phba->sli4_hba.rpi_ids);
18221 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18222 }
18223 
18224 /**
18225  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18226  * @phba: pointer to lpfc hba data structure.
18227  *
18228  * This routine is invoked to remove the memory region that
18229  * provided rpi via a bitmask.
18230  **/
18231 int
18232 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18233 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18234 {
18235 	LPFC_MBOXQ_t *mboxq;
18236 	struct lpfc_hba *phba = ndlp->phba;
18237 	int rc;
18238 
18239 	/* The port is notified of the header region via a mailbox command. */
18240 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18241 	if (!mboxq)
18242 		return -ENOMEM;
18243 
18244 	/* Post all rpi memory regions to the port. */
18245 	lpfc_resume_rpi(mboxq, ndlp);
18246 	if (cmpl) {
18247 		mboxq->mbox_cmpl = cmpl;
18248 		mboxq->ctx_buf = arg;
18249 		mboxq->ctx_ndlp = ndlp;
18250 	} else
18251 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18252 	mboxq->vport = ndlp->vport;
18253 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18254 	if (rc == MBX_NOT_FINISHED) {
18255 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18256 				"2010 Resume RPI Mailbox failed "
18257 				"status %d, mbxStatus x%x\n", rc,
18258 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18259 		mempool_free(mboxq, phba->mbox_mem_pool);
18260 		return -EIO;
18261 	}
18262 	return 0;
18263 }
18264 
18265 /**
18266  * lpfc_sli4_init_vpi - Initialize a vpi with the port
18267  * @vport: Pointer to the vport for which the vpi is being initialized
18268  *
18269  * This routine is invoked to activate a vpi with the port.
18270  *
18271  * Returns:
18272  *    0 success
18273  *    -Evalue otherwise
18274  **/
18275 int
18276 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18277 {
18278 	LPFC_MBOXQ_t *mboxq;
18279 	int rc = 0;
18280 	int retval = MBX_SUCCESS;
18281 	uint32_t mbox_tmo;
18282 	struct lpfc_hba *phba = vport->phba;
18283 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18284 	if (!mboxq)
18285 		return -ENOMEM;
18286 	lpfc_init_vpi(phba, mboxq, vport->vpi);
18287 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18288 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18289 	if (rc != MBX_SUCCESS) {
18290 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18291 				"2022 INIT VPI Mailbox failed "
18292 				"status %d, mbxStatus x%x\n", rc,
18293 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18294 		retval = -EIO;
18295 	}
18296 	if (rc != MBX_TIMEOUT)
18297 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18298 
18299 	return retval;
18300 }
18301 
18302 /**
18303  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18304  * @phba: pointer to lpfc hba data structure.
18305  * @mboxq: Pointer to mailbox object.
18306  *
18307  * This routine is invoked to manually add a single FCF record. The caller
18308  * must pass a completely initialized FCF_Record.  This routine takes
18309  * care of the nonembedded mailbox operations.
18310  **/
18311 static void
18312 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18313 {
18314 	void *virt_addr;
18315 	union lpfc_sli4_cfg_shdr *shdr;
18316 	uint32_t shdr_status, shdr_add_status;
18317 
18318 	virt_addr = mboxq->sge_array->addr[0];
18319 	/* The IOCTL status is embedded in the mailbox subheader. */
18320 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18321 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18322 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18323 
18324 	if ((shdr_status || shdr_add_status) &&
18325 		(shdr_status != STATUS_FCF_IN_USE))
18326 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18327 			"2558 ADD_FCF_RECORD mailbox failed with "
18328 			"status x%x add_status x%x\n",
18329 			shdr_status, shdr_add_status);
18330 
18331 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18332 }
18333 
18334 /**
18335  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18336  * @phba: pointer to lpfc hba data structure.
18337  * @fcf_record:  pointer to the initialized fcf record to add.
18338  *
18339  * This routine is invoked to manually add a single FCF record. The caller
18340  * must pass a completely initialized FCF_Record.  This routine takes
18341  * care of the nonembedded mailbox operations.
18342  **/
18343 int
18344 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18345 {
18346 	int rc = 0;
18347 	LPFC_MBOXQ_t *mboxq;
18348 	uint8_t *bytep;
18349 	void *virt_addr;
18350 	struct lpfc_mbx_sge sge;
18351 	uint32_t alloc_len, req_len;
18352 	uint32_t fcfindex;
18353 
18354 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18355 	if (!mboxq) {
18356 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18357 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18358 		return -ENOMEM;
18359 	}
18360 
18361 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18362 		  sizeof(uint32_t);
18363 
18364 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18365 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18366 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18367 				     req_len, LPFC_SLI4_MBX_NEMBED);
18368 	if (alloc_len < req_len) {
18369 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18370 			"2523 Allocated DMA memory size (x%x) is "
18371 			"less than the requested DMA memory "
18372 			"size (x%x)\n", alloc_len, req_len);
18373 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18374 		return -ENOMEM;
18375 	}
18376 
18377 	/*
18378 	 * Get the first SGE entry from the non-embedded DMA memory.  This
18379 	 * routine only uses a single SGE.
18380 	 */
18381 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18382 	virt_addr = mboxq->sge_array->addr[0];
18383 	/*
18384 	 * Configure the FCF record for FCFI 0.  This is the driver's
18385 	 * hardcoded default and gets used in nonFIP mode.
18386 	 */
18387 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18388 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18389 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18390 
18391 	/*
18392 	 * Copy the fcf_index and the FCF Record Data. The data starts after
18393 	 * the FCoE header plus word10. The data copy needs to be endian
18394 	 * correct.
18395 	 */
18396 	bytep += sizeof(uint32_t);
18397 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18398 	mboxq->vport = phba->pport;
18399 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18400 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18401 	if (rc == MBX_NOT_FINISHED) {
18402 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18403 			"2515 ADD_FCF_RECORD mailbox failed with "
18404 			"status 0x%x\n", rc);
18405 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18406 		rc = -EIO;
18407 	} else
18408 		rc = 0;
18409 
18410 	return rc;
18411 }
18412 
18413 /**
18414  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18415  * @phba: pointer to lpfc hba data structure.
18416  * @fcf_record:  pointer to the fcf record to write the default data.
18417  * @fcf_index: FCF table entry index.
18418  *
18419  * This routine is invoked to build the driver's default FCF record.  The
18420  * values used are hardcoded.  This routine handles memory initialization.
18421  *
18422  **/
18423 void
18424 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18425 				struct fcf_record *fcf_record,
18426 				uint16_t fcf_index)
18427 {
18428 	memset(fcf_record, 0, sizeof(struct fcf_record));
18429 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18430 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18431 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18432 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18433 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18434 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18435 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18436 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18437 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18438 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18439 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18440 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18441 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18442 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18443 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18444 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18445 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18446 	/* Set the VLAN bit map */
18447 	if (phba->valid_vlan) {
18448 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
18449 			= 1 << (phba->vlan_id % 8);
18450 	}
18451 }
18452 
18453 /**
18454  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18455  * @phba: pointer to lpfc hba data structure.
18456  * @fcf_index: FCF table entry offset.
18457  *
18458  * This routine is invoked to scan the entire FCF table by reading FCF
18459  * record and processing it one at a time starting from the @fcf_index
18460  * for initial FCF discovery or fast FCF failover rediscovery.
18461  *
18462  * Return 0 if the mailbox command is submitted successfully, none 0
18463  * otherwise.
18464  **/
18465 int
18466 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18467 {
18468 	int rc = 0, error;
18469 	LPFC_MBOXQ_t *mboxq;
18470 
18471 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18472 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18473 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18474 	if (!mboxq) {
18475 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18476 				"2000 Failed to allocate mbox for "
18477 				"READ_FCF cmd\n");
18478 		error = -ENOMEM;
18479 		goto fail_fcf_scan;
18480 	}
18481 	/* Construct the read FCF record mailbox command */
18482 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18483 	if (rc) {
18484 		error = -EINVAL;
18485 		goto fail_fcf_scan;
18486 	}
18487 	/* Issue the mailbox command asynchronously */
18488 	mboxq->vport = phba->pport;
18489 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18490 
18491 	spin_lock_irq(&phba->hbalock);
18492 	phba->hba_flag |= FCF_TS_INPROG;
18493 	spin_unlock_irq(&phba->hbalock);
18494 
18495 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18496 	if (rc == MBX_NOT_FINISHED)
18497 		error = -EIO;
18498 	else {
18499 		/* Reset eligible FCF count for new scan */
18500 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18501 			phba->fcf.eligible_fcf_cnt = 0;
18502 		error = 0;
18503 	}
18504 fail_fcf_scan:
18505 	if (error) {
18506 		if (mboxq)
18507 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
18508 		/* FCF scan failed, clear FCF_TS_INPROG flag */
18509 		spin_lock_irq(&phba->hbalock);
18510 		phba->hba_flag &= ~FCF_TS_INPROG;
18511 		spin_unlock_irq(&phba->hbalock);
18512 	}
18513 	return error;
18514 }
18515 
18516 /**
18517  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18518  * @phba: pointer to lpfc hba data structure.
18519  * @fcf_index: FCF table entry offset.
18520  *
18521  * This routine is invoked to read an FCF record indicated by @fcf_index
18522  * and to use it for FLOGI roundrobin FCF failover.
18523  *
18524  * Return 0 if the mailbox command is submitted successfully, none 0
18525  * otherwise.
18526  **/
18527 int
18528 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18529 {
18530 	int rc = 0, error;
18531 	LPFC_MBOXQ_t *mboxq;
18532 
18533 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18534 	if (!mboxq) {
18535 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18536 				"2763 Failed to allocate mbox for "
18537 				"READ_FCF cmd\n");
18538 		error = -ENOMEM;
18539 		goto fail_fcf_read;
18540 	}
18541 	/* Construct the read FCF record mailbox command */
18542 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18543 	if (rc) {
18544 		error = -EINVAL;
18545 		goto fail_fcf_read;
18546 	}
18547 	/* Issue the mailbox command asynchronously */
18548 	mboxq->vport = phba->pport;
18549 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18550 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18551 	if (rc == MBX_NOT_FINISHED)
18552 		error = -EIO;
18553 	else
18554 		error = 0;
18555 
18556 fail_fcf_read:
18557 	if (error && mboxq)
18558 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18559 	return error;
18560 }
18561 
18562 /**
18563  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18564  * @phba: pointer to lpfc hba data structure.
18565  * @fcf_index: FCF table entry offset.
18566  *
18567  * This routine is invoked to read an FCF record indicated by @fcf_index to
18568  * determine whether it's eligible for FLOGI roundrobin failover list.
18569  *
18570  * Return 0 if the mailbox command is submitted successfully, none 0
18571  * otherwise.
18572  **/
18573 int
18574 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18575 {
18576 	int rc = 0, error;
18577 	LPFC_MBOXQ_t *mboxq;
18578 
18579 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18580 	if (!mboxq) {
18581 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18582 				"2758 Failed to allocate mbox for "
18583 				"READ_FCF cmd\n");
18584 				error = -ENOMEM;
18585 				goto fail_fcf_read;
18586 	}
18587 	/* Construct the read FCF record mailbox command */
18588 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18589 	if (rc) {
18590 		error = -EINVAL;
18591 		goto fail_fcf_read;
18592 	}
18593 	/* Issue the mailbox command asynchronously */
18594 	mboxq->vport = phba->pport;
18595 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18596 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18597 	if (rc == MBX_NOT_FINISHED)
18598 		error = -EIO;
18599 	else
18600 		error = 0;
18601 
18602 fail_fcf_read:
18603 	if (error && mboxq)
18604 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18605 	return error;
18606 }
18607 
18608 /**
18609  * lpfc_check_next_fcf_pri_level
18610  * phba pointer to the lpfc_hba struct for this port.
18611  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18612  * routine when the rr_bmask is empty. The FCF indecies are put into the
18613  * rr_bmask based on their priority level. Starting from the highest priority
18614  * to the lowest. The most likely FCF candidate will be in the highest
18615  * priority group. When this routine is called it searches the fcf_pri list for
18616  * next lowest priority group and repopulates the rr_bmask with only those
18617  * fcf_indexes.
18618  * returns:
18619  * 1=success 0=failure
18620  **/
18621 static int
18622 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18623 {
18624 	uint16_t next_fcf_pri;
18625 	uint16_t last_index;
18626 	struct lpfc_fcf_pri *fcf_pri;
18627 	int rc;
18628 	int ret = 0;
18629 
18630 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18631 			LPFC_SLI4_FCF_TBL_INDX_MAX);
18632 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18633 			"3060 Last IDX %d\n", last_index);
18634 
18635 	/* Verify the priority list has 2 or more entries */
18636 	spin_lock_irq(&phba->hbalock);
18637 	if (list_empty(&phba->fcf.fcf_pri_list) ||
18638 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
18639 		spin_unlock_irq(&phba->hbalock);
18640 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18641 			"3061 Last IDX %d\n", last_index);
18642 		return 0; /* Empty rr list */
18643 	}
18644 	spin_unlock_irq(&phba->hbalock);
18645 
18646 	next_fcf_pri = 0;
18647 	/*
18648 	 * Clear the rr_bmask and set all of the bits that are at this
18649 	 * priority.
18650 	 */
18651 	memset(phba->fcf.fcf_rr_bmask, 0,
18652 			sizeof(*phba->fcf.fcf_rr_bmask));
18653 	spin_lock_irq(&phba->hbalock);
18654 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18655 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18656 			continue;
18657 		/*
18658 		 * the 1st priority that has not FLOGI failed
18659 		 * will be the highest.
18660 		 */
18661 		if (!next_fcf_pri)
18662 			next_fcf_pri = fcf_pri->fcf_rec.priority;
18663 		spin_unlock_irq(&phba->hbalock);
18664 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18665 			rc = lpfc_sli4_fcf_rr_index_set(phba,
18666 						fcf_pri->fcf_rec.fcf_index);
18667 			if (rc)
18668 				return 0;
18669 		}
18670 		spin_lock_irq(&phba->hbalock);
18671 	}
18672 	/*
18673 	 * if next_fcf_pri was not set above and the list is not empty then
18674 	 * we have failed flogis on all of them. So reset flogi failed
18675 	 * and start at the beginning.
18676 	 */
18677 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18678 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18679 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18680 			/*
18681 			 * the 1st priority that has not FLOGI failed
18682 			 * will be the highest.
18683 			 */
18684 			if (!next_fcf_pri)
18685 				next_fcf_pri = fcf_pri->fcf_rec.priority;
18686 			spin_unlock_irq(&phba->hbalock);
18687 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18688 				rc = lpfc_sli4_fcf_rr_index_set(phba,
18689 						fcf_pri->fcf_rec.fcf_index);
18690 				if (rc)
18691 					return 0;
18692 			}
18693 			spin_lock_irq(&phba->hbalock);
18694 		}
18695 	} else
18696 		ret = 1;
18697 	spin_unlock_irq(&phba->hbalock);
18698 
18699 	return ret;
18700 }
18701 /**
18702  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18703  * @phba: pointer to lpfc hba data structure.
18704  *
18705  * This routine is to get the next eligible FCF record index in a round
18706  * robin fashion. If the next eligible FCF record index equals to the
18707  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18708  * shall be returned, otherwise, the next eligible FCF record's index
18709  * shall be returned.
18710  **/
18711 uint16_t
18712 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18713 {
18714 	uint16_t next_fcf_index;
18715 
18716 initial_priority:
18717 	/* Search start from next bit of currently registered FCF index */
18718 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
18719 
18720 next_priority:
18721 	/* Determine the next fcf index to check */
18722 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18723 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18724 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
18725 				       next_fcf_index);
18726 
18727 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
18728 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18729 		/*
18730 		 * If we have wrapped then we need to clear the bits that
18731 		 * have been tested so that we can detect when we should
18732 		 * change the priority level.
18733 		 */
18734 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18735 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18736 	}
18737 
18738 
18739 	/* Check roundrobin failover list empty condition */
18740 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18741 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18742 		/*
18743 		 * If next fcf index is not found check if there are lower
18744 		 * Priority level fcf's in the fcf_priority list.
18745 		 * Set up the rr_bmask with all of the avaiable fcf bits
18746 		 * at that level and continue the selection process.
18747 		 */
18748 		if (lpfc_check_next_fcf_pri_level(phba))
18749 			goto initial_priority;
18750 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18751 				"2844 No roundrobin failover FCF available\n");
18752 
18753 		return LPFC_FCOE_FCF_NEXT_NONE;
18754 	}
18755 
18756 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
18757 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
18758 		LPFC_FCF_FLOGI_FAILED) {
18759 		if (list_is_singular(&phba->fcf.fcf_pri_list))
18760 			return LPFC_FCOE_FCF_NEXT_NONE;
18761 
18762 		goto next_priority;
18763 	}
18764 
18765 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18766 			"2845 Get next roundrobin failover FCF (x%x)\n",
18767 			next_fcf_index);
18768 
18769 	return next_fcf_index;
18770 }
18771 
18772 /**
18773  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
18774  * @phba: pointer to lpfc hba data structure.
18775  *
18776  * This routine sets the FCF record index in to the eligible bmask for
18777  * roundrobin failover search. It checks to make sure that the index
18778  * does not go beyond the range of the driver allocated bmask dimension
18779  * before setting the bit.
18780  *
18781  * Returns 0 if the index bit successfully set, otherwise, it returns
18782  * -EINVAL.
18783  **/
18784 int
18785 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
18786 {
18787 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18788 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18789 				"2610 FCF (x%x) reached driver's book "
18790 				"keeping dimension:x%x\n",
18791 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18792 		return -EINVAL;
18793 	}
18794 	/* Set the eligible FCF record index bmask */
18795 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18796 
18797 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18798 			"2790 Set FCF (x%x) to roundrobin FCF failover "
18799 			"bmask\n", fcf_index);
18800 
18801 	return 0;
18802 }
18803 
18804 /**
18805  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
18806  * @phba: pointer to lpfc hba data structure.
18807  *
18808  * This routine clears the FCF record index from the eligible bmask for
18809  * roundrobin failover search. It checks to make sure that the index
18810  * does not go beyond the range of the driver allocated bmask dimension
18811  * before clearing the bit.
18812  **/
18813 void
18814 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
18815 {
18816 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
18817 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18818 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18819 				"2762 FCF (x%x) reached driver's book "
18820 				"keeping dimension:x%x\n",
18821 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18822 		return;
18823 	}
18824 	/* Clear the eligible FCF record index bmask */
18825 	spin_lock_irq(&phba->hbalock);
18826 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
18827 				 list) {
18828 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
18829 			list_del_init(&fcf_pri->list);
18830 			break;
18831 		}
18832 	}
18833 	spin_unlock_irq(&phba->hbalock);
18834 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18835 
18836 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18837 			"2791 Clear FCF (x%x) from roundrobin failover "
18838 			"bmask\n", fcf_index);
18839 }
18840 
18841 /**
18842  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
18843  * @phba: pointer to lpfc hba data structure.
18844  *
18845  * This routine is the completion routine for the rediscover FCF table mailbox
18846  * command. If the mailbox command returned failure, it will try to stop the
18847  * FCF rediscover wait timer.
18848  **/
18849 static void
18850 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
18851 {
18852 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18853 	uint32_t shdr_status, shdr_add_status;
18854 
18855 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18856 
18857 	shdr_status = bf_get(lpfc_mbox_hdr_status,
18858 			     &redisc_fcf->header.cfg_shdr.response);
18859 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
18860 			     &redisc_fcf->header.cfg_shdr.response);
18861 	if (shdr_status || shdr_add_status) {
18862 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18863 				"2746 Requesting for FCF rediscovery failed "
18864 				"status x%x add_status x%x\n",
18865 				shdr_status, shdr_add_status);
18866 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
18867 			spin_lock_irq(&phba->hbalock);
18868 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
18869 			spin_unlock_irq(&phba->hbalock);
18870 			/*
18871 			 * CVL event triggered FCF rediscover request failed,
18872 			 * last resort to re-try current registered FCF entry.
18873 			 */
18874 			lpfc_retry_pport_discovery(phba);
18875 		} else {
18876 			spin_lock_irq(&phba->hbalock);
18877 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
18878 			spin_unlock_irq(&phba->hbalock);
18879 			/*
18880 			 * DEAD FCF event triggered FCF rediscover request
18881 			 * failed, last resort to fail over as a link down
18882 			 * to FCF registration.
18883 			 */
18884 			lpfc_sli4_fcf_dead_failthrough(phba);
18885 		}
18886 	} else {
18887 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18888 				"2775 Start FCF rediscover quiescent timer\n");
18889 		/*
18890 		 * Start FCF rediscovery wait timer for pending FCF
18891 		 * before rescan FCF record table.
18892 		 */
18893 		lpfc_fcf_redisc_wait_start_timer(phba);
18894 	}
18895 
18896 	mempool_free(mbox, phba->mbox_mem_pool);
18897 }
18898 
18899 /**
18900  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
18901  * @phba: pointer to lpfc hba data structure.
18902  *
18903  * This routine is invoked to request for rediscovery of the entire FCF table
18904  * by the port.
18905  **/
18906 int
18907 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
18908 {
18909 	LPFC_MBOXQ_t *mbox;
18910 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18911 	int rc, length;
18912 
18913 	/* Cancel retry delay timers to all vports before FCF rediscover */
18914 	lpfc_cancel_all_vport_retry_delay_timer(phba);
18915 
18916 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18917 	if (!mbox) {
18918 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18919 				"2745 Failed to allocate mbox for "
18920 				"requesting FCF rediscover.\n");
18921 		return -ENOMEM;
18922 	}
18923 
18924 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
18925 		  sizeof(struct lpfc_sli4_cfg_mhdr));
18926 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18927 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
18928 			 length, LPFC_SLI4_MBX_EMBED);
18929 
18930 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18931 	/* Set count to 0 for invalidating the entire FCF database */
18932 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
18933 
18934 	/* Issue the mailbox command asynchronously */
18935 	mbox->vport = phba->pport;
18936 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
18937 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
18938 
18939 	if (rc == MBX_NOT_FINISHED) {
18940 		mempool_free(mbox, phba->mbox_mem_pool);
18941 		return -EIO;
18942 	}
18943 	return 0;
18944 }
18945 
18946 /**
18947  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
18948  * @phba: pointer to lpfc hba data structure.
18949  *
18950  * This function is the failover routine as a last resort to the FCF DEAD
18951  * event when driver failed to perform fast FCF failover.
18952  **/
18953 void
18954 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
18955 {
18956 	uint32_t link_state;
18957 
18958 	/*
18959 	 * Last resort as FCF DEAD event failover will treat this as
18960 	 * a link down, but save the link state because we don't want
18961 	 * it to be changed to Link Down unless it is already down.
18962 	 */
18963 	link_state = phba->link_state;
18964 	lpfc_linkdown(phba);
18965 	phba->link_state = link_state;
18966 
18967 	/* Unregister FCF if no devices connected to it */
18968 	lpfc_unregister_unused_fcf(phba);
18969 }
18970 
18971 /**
18972  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
18973  * @phba: pointer to lpfc hba data structure.
18974  * @rgn23_data: pointer to configure region 23 data.
18975  *
18976  * This function gets SLI3 port configure region 23 data through memory dump
18977  * mailbox command. When it successfully retrieves data, the size of the data
18978  * will be returned, otherwise, 0 will be returned.
18979  **/
18980 static uint32_t
18981 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18982 {
18983 	LPFC_MBOXQ_t *pmb = NULL;
18984 	MAILBOX_t *mb;
18985 	uint32_t offset = 0;
18986 	int rc;
18987 
18988 	if (!rgn23_data)
18989 		return 0;
18990 
18991 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18992 	if (!pmb) {
18993 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18994 				"2600 failed to allocate mailbox memory\n");
18995 		return 0;
18996 	}
18997 	mb = &pmb->u.mb;
18998 
18999 	do {
19000 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19001 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19002 
19003 		if (rc != MBX_SUCCESS) {
19004 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19005 					"2601 failed to read config "
19006 					"region 23, rc 0x%x Status 0x%x\n",
19007 					rc, mb->mbxStatus);
19008 			mb->un.varDmp.word_cnt = 0;
19009 		}
19010 		/*
19011 		 * dump mem may return a zero when finished or we got a
19012 		 * mailbox error, either way we are done.
19013 		 */
19014 		if (mb->un.varDmp.word_cnt == 0)
19015 			break;
19016 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19017 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19018 
19019 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19020 				       rgn23_data + offset,
19021 				       mb->un.varDmp.word_cnt);
19022 		offset += mb->un.varDmp.word_cnt;
19023 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19024 
19025 	mempool_free(pmb, phba->mbox_mem_pool);
19026 	return offset;
19027 }
19028 
19029 /**
19030  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19031  * @phba: pointer to lpfc hba data structure.
19032  * @rgn23_data: pointer to configure region 23 data.
19033  *
19034  * This function gets SLI4 port configure region 23 data through memory dump
19035  * mailbox command. When it successfully retrieves data, the size of the data
19036  * will be returned, otherwise, 0 will be returned.
19037  **/
19038 static uint32_t
19039 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19040 {
19041 	LPFC_MBOXQ_t *mboxq = NULL;
19042 	struct lpfc_dmabuf *mp = NULL;
19043 	struct lpfc_mqe *mqe;
19044 	uint32_t data_length = 0;
19045 	int rc;
19046 
19047 	if (!rgn23_data)
19048 		return 0;
19049 
19050 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19051 	if (!mboxq) {
19052 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19053 				"3105 failed to allocate mailbox memory\n");
19054 		return 0;
19055 	}
19056 
19057 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19058 		goto out;
19059 	mqe = &mboxq->u.mqe;
19060 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19061 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19062 	if (rc)
19063 		goto out;
19064 	data_length = mqe->un.mb_words[5];
19065 	if (data_length == 0)
19066 		goto out;
19067 	if (data_length > DMP_RGN23_SIZE) {
19068 		data_length = 0;
19069 		goto out;
19070 	}
19071 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19072 out:
19073 	mempool_free(mboxq, phba->mbox_mem_pool);
19074 	if (mp) {
19075 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19076 		kfree(mp);
19077 	}
19078 	return data_length;
19079 }
19080 
19081 /**
19082  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19083  * @phba: pointer to lpfc hba data structure.
19084  *
19085  * This function read region 23 and parse TLV for port status to
19086  * decide if the user disaled the port. If the TLV indicates the
19087  * port is disabled, the hba_flag is set accordingly.
19088  **/
19089 void
19090 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19091 {
19092 	uint8_t *rgn23_data = NULL;
19093 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19094 	uint32_t offset = 0;
19095 
19096 	/* Get adapter Region 23 data */
19097 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19098 	if (!rgn23_data)
19099 		goto out;
19100 
19101 	if (phba->sli_rev < LPFC_SLI_REV4)
19102 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19103 	else {
19104 		if_type = bf_get(lpfc_sli_intf_if_type,
19105 				 &phba->sli4_hba.sli_intf);
19106 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19107 			goto out;
19108 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19109 	}
19110 
19111 	if (!data_size)
19112 		goto out;
19113 
19114 	/* Check the region signature first */
19115 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19116 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19117 			"2619 Config region 23 has bad signature\n");
19118 			goto out;
19119 	}
19120 	offset += 4;
19121 
19122 	/* Check the data structure version */
19123 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19124 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19125 			"2620 Config region 23 has bad version\n");
19126 		goto out;
19127 	}
19128 	offset += 4;
19129 
19130 	/* Parse TLV entries in the region */
19131 	while (offset < data_size) {
19132 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19133 			break;
19134 		/*
19135 		 * If the TLV is not driver specific TLV or driver id is
19136 		 * not linux driver id, skip the record.
19137 		 */
19138 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19139 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19140 		    (rgn23_data[offset + 3] != 0)) {
19141 			offset += rgn23_data[offset + 1] * 4 + 4;
19142 			continue;
19143 		}
19144 
19145 		/* Driver found a driver specific TLV in the config region */
19146 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19147 		offset += 4;
19148 		tlv_offset = 0;
19149 
19150 		/*
19151 		 * Search for configured port state sub-TLV.
19152 		 */
19153 		while ((offset < data_size) &&
19154 			(tlv_offset < sub_tlv_len)) {
19155 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19156 				offset += 4;
19157 				tlv_offset += 4;
19158 				break;
19159 			}
19160 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19161 				offset += rgn23_data[offset + 1] * 4 + 4;
19162 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19163 				continue;
19164 			}
19165 
19166 			/* This HBA contains PORT_STE configured */
19167 			if (!rgn23_data[offset + 2])
19168 				phba->hba_flag |= LINK_DISABLED;
19169 
19170 			goto out;
19171 		}
19172 	}
19173 
19174 out:
19175 	kfree(rgn23_data);
19176 	return;
19177 }
19178 
19179 /**
19180  * lpfc_wr_object - write an object to the firmware
19181  * @phba: HBA structure that indicates port to create a queue on.
19182  * @dmabuf_list: list of dmabufs to write to the port.
19183  * @size: the total byte value of the objects to write to the port.
19184  * @offset: the current offset to be used to start the transfer.
19185  *
19186  * This routine will create a wr_object mailbox command to send to the port.
19187  * the mailbox command will be constructed using the dma buffers described in
19188  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19189  * BDEs that the imbedded mailbox can support. The @offset variable will be
19190  * used to indicate the starting offset of the transfer and will also return
19191  * the offset after the write object mailbox has completed. @size is used to
19192  * determine the end of the object and whether the eof bit should be set.
19193  *
19194  * Return 0 is successful and offset will contain the the new offset to use
19195  * for the next write.
19196  * Return negative value for error cases.
19197  **/
19198 int
19199 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19200 	       uint32_t size, uint32_t *offset)
19201 {
19202 	struct lpfc_mbx_wr_object *wr_object;
19203 	LPFC_MBOXQ_t *mbox;
19204 	int rc = 0, i = 0;
19205 	uint32_t shdr_status, shdr_add_status, shdr_change_status;
19206 	uint32_t mbox_tmo;
19207 	struct lpfc_dmabuf *dmabuf;
19208 	uint32_t written = 0;
19209 	bool check_change_status = false;
19210 
19211 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19212 	if (!mbox)
19213 		return -ENOMEM;
19214 
19215 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19216 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19217 			sizeof(struct lpfc_mbx_wr_object) -
19218 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19219 
19220 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19221 	wr_object->u.request.write_offset = *offset;
19222 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19223 	wr_object->u.request.object_name[0] =
19224 		cpu_to_le32(wr_object->u.request.object_name[0]);
19225 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19226 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19227 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19228 			break;
19229 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19230 		wr_object->u.request.bde[i].addrHigh =
19231 			putPaddrHigh(dmabuf->phys);
19232 		if (written + SLI4_PAGE_SIZE >= size) {
19233 			wr_object->u.request.bde[i].tus.f.bdeSize =
19234 				(size - written);
19235 			written += (size - written);
19236 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19237 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19238 			check_change_status = true;
19239 		} else {
19240 			wr_object->u.request.bde[i].tus.f.bdeSize =
19241 				SLI4_PAGE_SIZE;
19242 			written += SLI4_PAGE_SIZE;
19243 		}
19244 		i++;
19245 	}
19246 	wr_object->u.request.bde_count = i;
19247 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19248 	if (!phba->sli4_hba.intr_enable)
19249 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19250 	else {
19251 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19252 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19253 	}
19254 	/* The IOCTL status is embedded in the mailbox subheader. */
19255 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19256 			     &wr_object->header.cfg_shdr.response);
19257 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19258 				 &wr_object->header.cfg_shdr.response);
19259 	if (check_change_status) {
19260 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
19261 					    &wr_object->u.response);
19262 		switch (shdr_change_status) {
19263 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19264 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19265 					"3198 Firmware write complete: System "
19266 					"reboot required to instantiate\n");
19267 			break;
19268 		case (LPFC_CHANGE_STATUS_FW_RESET):
19269 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19270 					"3199 Firmware write complete: Firmware"
19271 					" reset required to instantiate\n");
19272 			break;
19273 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19274 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19275 					"3200 Firmware write complete: Port "
19276 					"Migration or PCI Reset required to "
19277 					"instantiate\n");
19278 			break;
19279 		case (LPFC_CHANGE_STATUS_PCI_RESET):
19280 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19281 					"3201 Firmware write complete: PCI "
19282 					"Reset required to instantiate\n");
19283 			break;
19284 		default:
19285 			break;
19286 		}
19287 	}
19288 	if (rc != MBX_TIMEOUT)
19289 		mempool_free(mbox, phba->mbox_mem_pool);
19290 	if (shdr_status || shdr_add_status || rc) {
19291 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19292 				"3025 Write Object mailbox failed with "
19293 				"status x%x add_status x%x, mbx status x%x\n",
19294 				shdr_status, shdr_add_status, rc);
19295 		rc = -ENXIO;
19296 		*offset = shdr_add_status;
19297 	} else
19298 		*offset += wr_object->u.response.actual_write_length;
19299 	return rc;
19300 }
19301 
19302 /**
19303  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19304  * @vport: pointer to vport data structure.
19305  *
19306  * This function iterate through the mailboxq and clean up all REG_LOGIN
19307  * and REG_VPI mailbox commands associated with the vport. This function
19308  * is called when driver want to restart discovery of the vport due to
19309  * a Clear Virtual Link event.
19310  **/
19311 void
19312 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19313 {
19314 	struct lpfc_hba *phba = vport->phba;
19315 	LPFC_MBOXQ_t *mb, *nextmb;
19316 	struct lpfc_dmabuf *mp;
19317 	struct lpfc_nodelist *ndlp;
19318 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19319 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19320 	LIST_HEAD(mbox_cmd_list);
19321 	uint8_t restart_loop;
19322 
19323 	/* Clean up internally queued mailbox commands with the vport */
19324 	spin_lock_irq(&phba->hbalock);
19325 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19326 		if (mb->vport != vport)
19327 			continue;
19328 
19329 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19330 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19331 			continue;
19332 
19333 		list_del(&mb->list);
19334 		list_add_tail(&mb->list, &mbox_cmd_list);
19335 	}
19336 	/* Clean up active mailbox command with the vport */
19337 	mb = phba->sli.mbox_active;
19338 	if (mb && (mb->vport == vport)) {
19339 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19340 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19341 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19342 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19343 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19344 			/* Put reference count for delayed processing */
19345 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19346 			/* Unregister the RPI when mailbox complete */
19347 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19348 		}
19349 	}
19350 	/* Cleanup any mailbox completions which are not yet processed */
19351 	do {
19352 		restart_loop = 0;
19353 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19354 			/*
19355 			 * If this mailox is already processed or it is
19356 			 * for another vport ignore it.
19357 			 */
19358 			if ((mb->vport != vport) ||
19359 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19360 				continue;
19361 
19362 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19363 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19364 				continue;
19365 
19366 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19367 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19368 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19369 				/* Unregister the RPI when mailbox complete */
19370 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19371 				restart_loop = 1;
19372 				spin_unlock_irq(&phba->hbalock);
19373 				spin_lock(shost->host_lock);
19374 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19375 				spin_unlock(shost->host_lock);
19376 				spin_lock_irq(&phba->hbalock);
19377 				break;
19378 			}
19379 		}
19380 	} while (restart_loop);
19381 
19382 	spin_unlock_irq(&phba->hbalock);
19383 
19384 	/* Release the cleaned-up mailbox commands */
19385 	while (!list_empty(&mbox_cmd_list)) {
19386 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19387 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19388 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19389 			if (mp) {
19390 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19391 				kfree(mp);
19392 			}
19393 			mb->ctx_buf = NULL;
19394 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19395 			mb->ctx_ndlp = NULL;
19396 			if (ndlp) {
19397 				spin_lock(shost->host_lock);
19398 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19399 				spin_unlock(shost->host_lock);
19400 				lpfc_nlp_put(ndlp);
19401 			}
19402 		}
19403 		mempool_free(mb, phba->mbox_mem_pool);
19404 	}
19405 
19406 	/* Release the ndlp with the cleaned-up active mailbox command */
19407 	if (act_mbx_ndlp) {
19408 		spin_lock(shost->host_lock);
19409 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19410 		spin_unlock(shost->host_lock);
19411 		lpfc_nlp_put(act_mbx_ndlp);
19412 	}
19413 }
19414 
19415 /**
19416  * lpfc_drain_txq - Drain the txq
19417  * @phba: Pointer to HBA context object.
19418  *
19419  * This function attempt to submit IOCBs on the txq
19420  * to the adapter.  For SLI4 adapters, the txq contains
19421  * ELS IOCBs that have been deferred because the there
19422  * are no SGLs.  This congestion can occur with large
19423  * vport counts during node discovery.
19424  **/
19425 
19426 uint32_t
19427 lpfc_drain_txq(struct lpfc_hba *phba)
19428 {
19429 	LIST_HEAD(completions);
19430 	struct lpfc_sli_ring *pring;
19431 	struct lpfc_iocbq *piocbq = NULL;
19432 	unsigned long iflags = 0;
19433 	char *fail_msg = NULL;
19434 	struct lpfc_sglq *sglq;
19435 	union lpfc_wqe128 wqe;
19436 	uint32_t txq_cnt = 0;
19437 	struct lpfc_queue *wq;
19438 
19439 	if (phba->link_flag & LS_MDS_LOOPBACK) {
19440 		/* MDS WQE are posted only to first WQ*/
19441 		wq = phba->sli4_hba.hdwq[0].io_wq;
19442 		if (unlikely(!wq))
19443 			return 0;
19444 		pring = wq->pring;
19445 	} else {
19446 		wq = phba->sli4_hba.els_wq;
19447 		if (unlikely(!wq))
19448 			return 0;
19449 		pring = lpfc_phba_elsring(phba);
19450 	}
19451 
19452 	if (unlikely(!pring) || list_empty(&pring->txq))
19453 		return 0;
19454 
19455 	spin_lock_irqsave(&pring->ring_lock, iflags);
19456 	list_for_each_entry(piocbq, &pring->txq, list) {
19457 		txq_cnt++;
19458 	}
19459 
19460 	if (txq_cnt > pring->txq_max)
19461 		pring->txq_max = txq_cnt;
19462 
19463 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
19464 
19465 	while (!list_empty(&pring->txq)) {
19466 		spin_lock_irqsave(&pring->ring_lock, iflags);
19467 
19468 		piocbq = lpfc_sli_ringtx_get(phba, pring);
19469 		if (!piocbq) {
19470 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19471 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19472 				"2823 txq empty and txq_cnt is %d\n ",
19473 				txq_cnt);
19474 			break;
19475 		}
19476 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19477 		if (!sglq) {
19478 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
19479 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19480 			break;
19481 		}
19482 		txq_cnt--;
19483 
19484 		/* The xri and iocb resources secured,
19485 		 * attempt to issue request
19486 		 */
19487 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
19488 		piocbq->sli4_xritag = sglq->sli4_xritag;
19489 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19490 			fail_msg = "to convert bpl to sgl";
19491 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19492 			fail_msg = "to convert iocb to wqe";
19493 		else if (lpfc_sli4_wq_put(wq, &wqe))
19494 			fail_msg = " - Wq is full";
19495 		else
19496 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19497 
19498 		if (fail_msg) {
19499 			/* Failed means we can't issue and need to cancel */
19500 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19501 					"2822 IOCB failed %s iotag 0x%x "
19502 					"xri 0x%x\n",
19503 					fail_msg,
19504 					piocbq->iotag, piocbq->sli4_xritag);
19505 			list_add_tail(&piocbq->list, &completions);
19506 		}
19507 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19508 	}
19509 
19510 	/* Cancel all the IOCBs that cannot be issued */
19511 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19512 				IOERR_SLI_ABORTED);
19513 
19514 	return txq_cnt;
19515 }
19516 
19517 /**
19518  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19519  * @phba: Pointer to HBA context object.
19520  * @pwqe: Pointer to command WQE.
19521  * @sglq: Pointer to the scatter gather queue object.
19522  *
19523  * This routine converts the bpl or bde that is in the WQE
19524  * to a sgl list for the sli4 hardware. The physical address
19525  * of the bpl/bde is converted back to a virtual address.
19526  * If the WQE contains a BPL then the list of BDE's is
19527  * converted to sli4_sge's. If the WQE contains a single
19528  * BDE then it is converted to a single sli_sge.
19529  * The WQE is still in cpu endianness so the contents of
19530  * the bpl can be used without byte swapping.
19531  *
19532  * Returns valid XRI = Success, NO_XRI = Failure.
19533  */
19534 static uint16_t
19535 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19536 		 struct lpfc_sglq *sglq)
19537 {
19538 	uint16_t xritag = NO_XRI;
19539 	struct ulp_bde64 *bpl = NULL;
19540 	struct ulp_bde64 bde;
19541 	struct sli4_sge *sgl  = NULL;
19542 	struct lpfc_dmabuf *dmabuf;
19543 	union lpfc_wqe128 *wqe;
19544 	int numBdes = 0;
19545 	int i = 0;
19546 	uint32_t offset = 0; /* accumulated offset in the sg request list */
19547 	int inbound = 0; /* number of sg reply entries inbound from firmware */
19548 	uint32_t cmd;
19549 
19550 	if (!pwqeq || !sglq)
19551 		return xritag;
19552 
19553 	sgl  = (struct sli4_sge *)sglq->sgl;
19554 	wqe = &pwqeq->wqe;
19555 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19556 
19557 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19558 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19559 		return sglq->sli4_xritag;
19560 	numBdes = pwqeq->rsvd2;
19561 	if (numBdes) {
19562 		/* The addrHigh and addrLow fields within the WQE
19563 		 * have not been byteswapped yet so there is no
19564 		 * need to swap them back.
19565 		 */
19566 		if (pwqeq->context3)
19567 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19568 		else
19569 			return xritag;
19570 
19571 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
19572 		if (!bpl)
19573 			return xritag;
19574 
19575 		for (i = 0; i < numBdes; i++) {
19576 			/* Should already be byte swapped. */
19577 			sgl->addr_hi = bpl->addrHigh;
19578 			sgl->addr_lo = bpl->addrLow;
19579 
19580 			sgl->word2 = le32_to_cpu(sgl->word2);
19581 			if ((i+1) == numBdes)
19582 				bf_set(lpfc_sli4_sge_last, sgl, 1);
19583 			else
19584 				bf_set(lpfc_sli4_sge_last, sgl, 0);
19585 			/* swap the size field back to the cpu so we
19586 			 * can assign it to the sgl.
19587 			 */
19588 			bde.tus.w = le32_to_cpu(bpl->tus.w);
19589 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19590 			/* The offsets in the sgl need to be accumulated
19591 			 * separately for the request and reply lists.
19592 			 * The request is always first, the reply follows.
19593 			 */
19594 			switch (cmd) {
19595 			case CMD_GEN_REQUEST64_WQE:
19596 				/* add up the reply sg entries */
19597 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19598 					inbound++;
19599 				/* first inbound? reset the offset */
19600 				if (inbound == 1)
19601 					offset = 0;
19602 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19603 				bf_set(lpfc_sli4_sge_type, sgl,
19604 					LPFC_SGE_TYPE_DATA);
19605 				offset += bde.tus.f.bdeSize;
19606 				break;
19607 			case CMD_FCP_TRSP64_WQE:
19608 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
19609 				bf_set(lpfc_sli4_sge_type, sgl,
19610 					LPFC_SGE_TYPE_DATA);
19611 				break;
19612 			case CMD_FCP_TSEND64_WQE:
19613 			case CMD_FCP_TRECEIVE64_WQE:
19614 				bf_set(lpfc_sli4_sge_type, sgl,
19615 					bpl->tus.f.bdeFlags);
19616 				if (i < 3)
19617 					offset = 0;
19618 				else
19619 					offset += bde.tus.f.bdeSize;
19620 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19621 				break;
19622 			}
19623 			sgl->word2 = cpu_to_le32(sgl->word2);
19624 			bpl++;
19625 			sgl++;
19626 		}
19627 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19628 		/* The addrHigh and addrLow fields of the BDE have not
19629 		 * been byteswapped yet so they need to be swapped
19630 		 * before putting them in the sgl.
19631 		 */
19632 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19633 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19634 		sgl->word2 = le32_to_cpu(sgl->word2);
19635 		bf_set(lpfc_sli4_sge_last, sgl, 1);
19636 		sgl->word2 = cpu_to_le32(sgl->word2);
19637 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19638 	}
19639 	return sglq->sli4_xritag;
19640 }
19641 
19642 /**
19643  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19644  * @phba: Pointer to HBA context object.
19645  * @ring_number: Base sli ring number
19646  * @pwqe: Pointer to command WQE.
19647  **/
19648 int
19649 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19650 		    struct lpfc_iocbq *pwqe)
19651 {
19652 	union lpfc_wqe128 *wqe = &pwqe->wqe;
19653 	struct lpfc_nvmet_rcv_ctx *ctxp;
19654 	struct lpfc_queue *wq;
19655 	struct lpfc_sglq *sglq;
19656 	struct lpfc_sli_ring *pring;
19657 	unsigned long iflags;
19658 	uint32_t ret = 0;
19659 
19660 	/* NVME_LS and NVME_LS ABTS requests. */
19661 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19662 		pring =  phba->sli4_hba.nvmels_wq->pring;
19663 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19664 					  qp, wq_access);
19665 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19666 		if (!sglq) {
19667 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19668 			return WQE_BUSY;
19669 		}
19670 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
19671 		pwqe->sli4_xritag = sglq->sli4_xritag;
19672 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19673 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19674 			return WQE_ERROR;
19675 		}
19676 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19677 		       pwqe->sli4_xritag);
19678 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19679 		if (ret) {
19680 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19681 			return ret;
19682 		}
19683 
19684 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19685 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19686 		return 0;
19687 	}
19688 
19689 	/* NVME_FCREQ and NVME_ABTS requests */
19690 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
19691 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19692 		wq = qp->io_wq;
19693 		pring = wq->pring;
19694 
19695 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
19696 
19697 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19698 					  qp, wq_access);
19699 		ret = lpfc_sli4_wq_put(wq, wqe);
19700 		if (ret) {
19701 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19702 			return ret;
19703 		}
19704 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19705 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19706 		return 0;
19707 	}
19708 
19709 	/* NVMET requests */
19710 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19711 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19712 		wq = qp->io_wq;
19713 		pring = wq->pring;
19714 
19715 		ctxp = pwqe->context2;
19716 		sglq = ctxp->ctxbuf->sglq;
19717 		if (pwqe->sli4_xritag ==  NO_XRI) {
19718 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
19719 			pwqe->sli4_xritag = sglq->sli4_xritag;
19720 		}
19721 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19722 		       pwqe->sli4_xritag);
19723 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
19724 
19725 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19726 					  qp, wq_access);
19727 		ret = lpfc_sli4_wq_put(wq, wqe);
19728 		if (ret) {
19729 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19730 			return ret;
19731 		}
19732 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19733 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19734 		return 0;
19735 	}
19736 	return WQE_ERROR;
19737 }
19738 
19739 #ifdef LPFC_MXP_STAT
19740 /**
19741  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
19742  * @phba: pointer to lpfc hba data structure.
19743  * @hwqid: belong to which HWQ.
19744  *
19745  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
19746  * 15 seconds after a test case is running.
19747  *
19748  * The user should call lpfc_debugfs_multixripools_write before running a test
19749  * case to clear stat_snapshot_taken. Then the user starts a test case. During
19750  * test case is running, stat_snapshot_taken is incremented by 1 every time when
19751  * this routine is called from heartbeat timer. When stat_snapshot_taken is
19752  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
19753  **/
19754 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
19755 {
19756 	struct lpfc_sli4_hdw_queue *qp;
19757 	struct lpfc_multixri_pool *multixri_pool;
19758 	struct lpfc_pvt_pool *pvt_pool;
19759 	struct lpfc_pbl_pool *pbl_pool;
19760 	u32 txcmplq_cnt;
19761 
19762 	qp = &phba->sli4_hba.hdwq[hwqid];
19763 	multixri_pool = qp->p_multixri_pool;
19764 	if (!multixri_pool)
19765 		return;
19766 
19767 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
19768 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
19769 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
19770 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
19771 
19772 		multixri_pool->stat_pbl_count = pbl_pool->count;
19773 		multixri_pool->stat_pvt_count = pvt_pool->count;
19774 		multixri_pool->stat_busy_count = txcmplq_cnt;
19775 	}
19776 
19777 	multixri_pool->stat_snapshot_taken++;
19778 }
19779 #endif
19780 
19781 /**
19782  * lpfc_adjust_pvt_pool_count - Adjust private pool count
19783  * @phba: pointer to lpfc hba data structure.
19784  * @hwqid: belong to which HWQ.
19785  *
19786  * This routine moves some XRIs from private to public pool when private pool
19787  * is not busy.
19788  **/
19789 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
19790 {
19791 	struct lpfc_multixri_pool *multixri_pool;
19792 	u32 io_req_count;
19793 	u32 prev_io_req_count;
19794 
19795 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
19796 	if (!multixri_pool)
19797 		return;
19798 	io_req_count = multixri_pool->io_req_count;
19799 	prev_io_req_count = multixri_pool->prev_io_req_count;
19800 
19801 	if (prev_io_req_count != io_req_count) {
19802 		/* Private pool is busy */
19803 		multixri_pool->prev_io_req_count = io_req_count;
19804 	} else {
19805 		/* Private pool is not busy.
19806 		 * Move XRIs from private to public pool.
19807 		 */
19808 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
19809 	}
19810 }
19811 
19812 /**
19813  * lpfc_adjust_high_watermark - Adjust high watermark
19814  * @phba: pointer to lpfc hba data structure.
19815  * @hwqid: belong to which HWQ.
19816  *
19817  * This routine sets high watermark as number of outstanding XRIs,
19818  * but make sure the new value is between xri_limit/2 and xri_limit.
19819  **/
19820 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
19821 {
19822 	u32 new_watermark;
19823 	u32 watermark_max;
19824 	u32 watermark_min;
19825 	u32 xri_limit;
19826 	u32 txcmplq_cnt;
19827 	u32 abts_io_bufs;
19828 	struct lpfc_multixri_pool *multixri_pool;
19829 	struct lpfc_sli4_hdw_queue *qp;
19830 
19831 	qp = &phba->sli4_hba.hdwq[hwqid];
19832 	multixri_pool = qp->p_multixri_pool;
19833 	if (!multixri_pool)
19834 		return;
19835 	xri_limit = multixri_pool->xri_limit;
19836 
19837 	watermark_max = xri_limit;
19838 	watermark_min = xri_limit / 2;
19839 
19840 	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
19841 	abts_io_bufs = qp->abts_scsi_io_bufs;
19842 	abts_io_bufs += qp->abts_nvme_io_bufs;
19843 
19844 	new_watermark = txcmplq_cnt + abts_io_bufs;
19845 	new_watermark = min(watermark_max, new_watermark);
19846 	new_watermark = max(watermark_min, new_watermark);
19847 	multixri_pool->pvt_pool.high_watermark = new_watermark;
19848 
19849 #ifdef LPFC_MXP_STAT
19850 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
19851 					  new_watermark);
19852 #endif
19853 }
19854 
19855 /**
19856  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
19857  * @phba: pointer to lpfc hba data structure.
19858  * @hwqid: belong to which HWQ.
19859  *
19860  * This routine is called from hearbeat timer when pvt_pool is idle.
19861  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
19862  * The first step moves (all - low_watermark) amount of XRIs.
19863  * The second step moves the rest of XRIs.
19864  **/
19865 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
19866 {
19867 	struct lpfc_pbl_pool *pbl_pool;
19868 	struct lpfc_pvt_pool *pvt_pool;
19869 	struct lpfc_sli4_hdw_queue *qp;
19870 	struct lpfc_io_buf *lpfc_ncmd;
19871 	struct lpfc_io_buf *lpfc_ncmd_next;
19872 	unsigned long iflag;
19873 	struct list_head tmp_list;
19874 	u32 tmp_count;
19875 
19876 	qp = &phba->sli4_hba.hdwq[hwqid];
19877 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
19878 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
19879 	tmp_count = 0;
19880 
19881 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
19882 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
19883 
19884 	if (pvt_pool->count > pvt_pool->low_watermark) {
19885 		/* Step 1: move (all - low_watermark) from pvt_pool
19886 		 * to pbl_pool
19887 		 */
19888 
19889 		/* Move low watermark of bufs from pvt_pool to tmp_list */
19890 		INIT_LIST_HEAD(&tmp_list);
19891 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
19892 					 &pvt_pool->list, list) {
19893 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
19894 			tmp_count++;
19895 			if (tmp_count >= pvt_pool->low_watermark)
19896 				break;
19897 		}
19898 
19899 		/* Move all bufs from pvt_pool to pbl_pool */
19900 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
19901 
19902 		/* Move all bufs from tmp_list to pvt_pool */
19903 		list_splice(&tmp_list, &pvt_pool->list);
19904 
19905 		pbl_pool->count += (pvt_pool->count - tmp_count);
19906 		pvt_pool->count = tmp_count;
19907 	} else {
19908 		/* Step 2: move the rest from pvt_pool to pbl_pool */
19909 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
19910 		pbl_pool->count += pvt_pool->count;
19911 		pvt_pool->count = 0;
19912 	}
19913 
19914 	spin_unlock(&pvt_pool->lock);
19915 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19916 }
19917 
19918 /**
19919  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
19920  * @phba: pointer to lpfc hba data structure
19921  * @pbl_pool: specified public free XRI pool
19922  * @pvt_pool: specified private free XRI pool
19923  * @count: number of XRIs to move
19924  *
19925  * This routine tries to move some free common bufs from the specified pbl_pool
19926  * to the specified pvt_pool. It might move less than count XRIs if there's not
19927  * enough in public pool.
19928  *
19929  * Return:
19930  *   true - if XRIs are successfully moved from the specified pbl_pool to the
19931  *          specified pvt_pool
19932  *   false - if the specified pbl_pool is empty or locked by someone else
19933  **/
19934 static bool
19935 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19936 			  struct lpfc_pbl_pool *pbl_pool,
19937 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
19938 {
19939 	struct lpfc_io_buf *lpfc_ncmd;
19940 	struct lpfc_io_buf *lpfc_ncmd_next;
19941 	unsigned long iflag;
19942 	int ret;
19943 
19944 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
19945 	if (ret) {
19946 		if (pbl_pool->count) {
19947 			/* Move a batch of XRIs from public to private pool */
19948 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
19949 			list_for_each_entry_safe(lpfc_ncmd,
19950 						 lpfc_ncmd_next,
19951 						 &pbl_pool->list,
19952 						 list) {
19953 				list_move_tail(&lpfc_ncmd->list,
19954 					       &pvt_pool->list);
19955 				pvt_pool->count++;
19956 				pbl_pool->count--;
19957 				count--;
19958 				if (count == 0)
19959 					break;
19960 			}
19961 
19962 			spin_unlock(&pvt_pool->lock);
19963 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19964 			return true;
19965 		}
19966 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19967 	}
19968 
19969 	return false;
19970 }
19971 
19972 /**
19973  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
19974  * @phba: pointer to lpfc hba data structure.
19975  * @hwqid: belong to which HWQ.
19976  * @count: number of XRIs to move
19977  *
19978  * This routine tries to find some free common bufs in one of public pools with
19979  * Round Robin method. The search always starts from local hwqid, then the next
19980  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
19981  * a batch of free common bufs are moved to private pool on hwqid.
19982  * It might move less than count XRIs if there's not enough in public pool.
19983  **/
19984 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
19985 {
19986 	struct lpfc_multixri_pool *multixri_pool;
19987 	struct lpfc_multixri_pool *next_multixri_pool;
19988 	struct lpfc_pvt_pool *pvt_pool;
19989 	struct lpfc_pbl_pool *pbl_pool;
19990 	struct lpfc_sli4_hdw_queue *qp;
19991 	u32 next_hwqid;
19992 	u32 hwq_count;
19993 	int ret;
19994 
19995 	qp = &phba->sli4_hba.hdwq[hwqid];
19996 	multixri_pool = qp->p_multixri_pool;
19997 	pvt_pool = &multixri_pool->pvt_pool;
19998 	pbl_pool = &multixri_pool->pbl_pool;
19999 
20000 	/* Check if local pbl_pool is available */
20001 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20002 	if (ret) {
20003 #ifdef LPFC_MXP_STAT
20004 		multixri_pool->local_pbl_hit_count++;
20005 #endif
20006 		return;
20007 	}
20008 
20009 	hwq_count = phba->cfg_hdw_queue;
20010 
20011 	/* Get the next hwqid which was found last time */
20012 	next_hwqid = multixri_pool->rrb_next_hwqid;
20013 
20014 	do {
20015 		/* Go to next hwq */
20016 		next_hwqid = (next_hwqid + 1) % hwq_count;
20017 
20018 		next_multixri_pool =
20019 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20020 		pbl_pool = &next_multixri_pool->pbl_pool;
20021 
20022 		/* Check if the public free xri pool is available */
20023 		ret = _lpfc_move_xri_pbl_to_pvt(
20024 			phba, qp, pbl_pool, pvt_pool, count);
20025 
20026 		/* Exit while-loop if success or all hwqid are checked */
20027 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20028 
20029 	/* Starting point for the next time */
20030 	multixri_pool->rrb_next_hwqid = next_hwqid;
20031 
20032 	if (!ret) {
20033 		/* stats: all public pools are empty*/
20034 		multixri_pool->pbl_empty_count++;
20035 	}
20036 
20037 #ifdef LPFC_MXP_STAT
20038 	if (ret) {
20039 		if (next_hwqid == hwqid)
20040 			multixri_pool->local_pbl_hit_count++;
20041 		else
20042 			multixri_pool->other_pbl_hit_count++;
20043 	}
20044 #endif
20045 }
20046 
20047 /**
20048  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20049  * @phba: pointer to lpfc hba data structure.
20050  * @qp: belong to which HWQ.
20051  *
20052  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20053  * low watermark.
20054  **/
20055 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20056 {
20057 	struct lpfc_multixri_pool *multixri_pool;
20058 	struct lpfc_pvt_pool *pvt_pool;
20059 
20060 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20061 	pvt_pool = &multixri_pool->pvt_pool;
20062 
20063 	if (pvt_pool->count < pvt_pool->low_watermark)
20064 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20065 }
20066 
20067 /**
20068  * lpfc_release_io_buf - Return one IO buf back to free pool
20069  * @phba: pointer to lpfc hba data structure.
20070  * @lpfc_ncmd: IO buf to be returned.
20071  * @qp: belong to which HWQ.
20072  *
20073  * This routine returns one IO buf back to free pool. If this is an urgent IO,
20074  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20075  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20076  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
20077  * lpfc_io_buf_list_put.
20078  **/
20079 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20080 			 struct lpfc_sli4_hdw_queue *qp)
20081 {
20082 	unsigned long iflag;
20083 	struct lpfc_pbl_pool *pbl_pool;
20084 	struct lpfc_pvt_pool *pvt_pool;
20085 	struct lpfc_epd_pool *epd_pool;
20086 	u32 txcmplq_cnt;
20087 	u32 xri_owned;
20088 	u32 xri_limit;
20089 	u32 abts_io_bufs;
20090 
20091 	/* MUST zero fields if buffer is reused by another protocol */
20092 	lpfc_ncmd->nvmeCmd = NULL;
20093 	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20094 	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20095 
20096 	if (phba->cfg_xri_rebalancing) {
20097 		if (lpfc_ncmd->expedite) {
20098 			/* Return to expedite pool */
20099 			epd_pool = &phba->epd_pool;
20100 			spin_lock_irqsave(&epd_pool->lock, iflag);
20101 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20102 			epd_pool->count++;
20103 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
20104 			return;
20105 		}
20106 
20107 		/* Avoid invalid access if an IO sneaks in and is being rejected
20108 		 * just _after_ xri pools are destroyed in lpfc_offline.
20109 		 * Nothing much can be done at this point.
20110 		 */
20111 		if (!qp->p_multixri_pool)
20112 			return;
20113 
20114 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20115 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20116 
20117 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20118 		abts_io_bufs = qp->abts_scsi_io_bufs;
20119 		abts_io_bufs += qp->abts_nvme_io_bufs;
20120 
20121 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20122 		xri_limit = qp->p_multixri_pool->xri_limit;
20123 
20124 #ifdef LPFC_MXP_STAT
20125 		if (xri_owned <= xri_limit)
20126 			qp->p_multixri_pool->below_limit_count++;
20127 		else
20128 			qp->p_multixri_pool->above_limit_count++;
20129 #endif
20130 
20131 		/* XRI goes to either public or private free xri pool
20132 		 *     based on watermark and xri_limit
20133 		 */
20134 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
20135 		    (xri_owned < xri_limit &&
20136 		     pvt_pool->count < pvt_pool->high_watermark)) {
20137 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20138 						  qp, free_pvt_pool);
20139 			list_add_tail(&lpfc_ncmd->list,
20140 				      &pvt_pool->list);
20141 			pvt_pool->count++;
20142 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20143 		} else {
20144 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20145 						  qp, free_pub_pool);
20146 			list_add_tail(&lpfc_ncmd->list,
20147 				      &pbl_pool->list);
20148 			pbl_pool->count++;
20149 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20150 		}
20151 	} else {
20152 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20153 					  qp, free_xri);
20154 		list_add_tail(&lpfc_ncmd->list,
20155 			      &qp->lpfc_io_buf_list_put);
20156 		qp->put_io_bufs++;
20157 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20158 				       iflag);
20159 	}
20160 
20161 	if (phba->cfg_xpsgl && !phba->nvmet_support &&
20162 	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
20163 		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
20164 
20165 	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
20166 		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
20167 }
20168 
20169 /**
20170  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20171  * @phba: pointer to lpfc hba data structure.
20172  * @pvt_pool: pointer to private pool data structure.
20173  * @ndlp: pointer to lpfc nodelist data structure.
20174  *
20175  * This routine tries to get one free IO buf from private pool.
20176  *
20177  * Return:
20178  *   pointer to one free IO buf - if private pool is not empty
20179  *   NULL - if private pool is empty
20180  **/
20181 static struct lpfc_io_buf *
20182 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20183 				  struct lpfc_sli4_hdw_queue *qp,
20184 				  struct lpfc_pvt_pool *pvt_pool,
20185 				  struct lpfc_nodelist *ndlp)
20186 {
20187 	struct lpfc_io_buf *lpfc_ncmd;
20188 	struct lpfc_io_buf *lpfc_ncmd_next;
20189 	unsigned long iflag;
20190 
20191 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20192 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20193 				 &pvt_pool->list, list) {
20194 		if (lpfc_test_rrq_active(
20195 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20196 			continue;
20197 		list_del(&lpfc_ncmd->list);
20198 		pvt_pool->count--;
20199 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20200 		return lpfc_ncmd;
20201 	}
20202 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20203 
20204 	return NULL;
20205 }
20206 
20207 /**
20208  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20209  * @phba: pointer to lpfc hba data structure.
20210  *
20211  * This routine tries to get one free IO buf from expedite pool.
20212  *
20213  * Return:
20214  *   pointer to one free IO buf - if expedite pool is not empty
20215  *   NULL - if expedite pool is empty
20216  **/
20217 static struct lpfc_io_buf *
20218 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20219 {
20220 	struct lpfc_io_buf *lpfc_ncmd;
20221 	struct lpfc_io_buf *lpfc_ncmd_next;
20222 	unsigned long iflag;
20223 	struct lpfc_epd_pool *epd_pool;
20224 
20225 	epd_pool = &phba->epd_pool;
20226 	lpfc_ncmd = NULL;
20227 
20228 	spin_lock_irqsave(&epd_pool->lock, iflag);
20229 	if (epd_pool->count > 0) {
20230 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20231 					 &epd_pool->list, list) {
20232 			list_del(&lpfc_ncmd->list);
20233 			epd_pool->count--;
20234 			break;
20235 		}
20236 	}
20237 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
20238 
20239 	return lpfc_ncmd;
20240 }
20241 
20242 /**
20243  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20244  * @phba: pointer to lpfc hba data structure.
20245  * @ndlp: pointer to lpfc nodelist data structure.
20246  * @hwqid: belong to which HWQ
20247  * @expedite: 1 means this request is urgent.
20248  *
20249  * This routine will do the following actions and then return a pointer to
20250  * one free IO buf.
20251  *
20252  * 1. If private free xri count is empty, move some XRIs from public to
20253  *    private pool.
20254  * 2. Get one XRI from private free xri pool.
20255  * 3. If we fail to get one from pvt_pool and this is an expedite request,
20256  *    get one free xri from expedite pool.
20257  *
20258  * Note: ndlp is only used on SCSI side for RRQ testing.
20259  *       The caller should pass NULL for ndlp on NVME side.
20260  *
20261  * Return:
20262  *   pointer to one free IO buf - if private pool is not empty
20263  *   NULL - if private pool is empty
20264  **/
20265 static struct lpfc_io_buf *
20266 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20267 				    struct lpfc_nodelist *ndlp,
20268 				    int hwqid, int expedite)
20269 {
20270 	struct lpfc_sli4_hdw_queue *qp;
20271 	struct lpfc_multixri_pool *multixri_pool;
20272 	struct lpfc_pvt_pool *pvt_pool;
20273 	struct lpfc_io_buf *lpfc_ncmd;
20274 
20275 	qp = &phba->sli4_hba.hdwq[hwqid];
20276 	lpfc_ncmd = NULL;
20277 	multixri_pool = qp->p_multixri_pool;
20278 	pvt_pool = &multixri_pool->pvt_pool;
20279 	multixri_pool->io_req_count++;
20280 
20281 	/* If pvt_pool is empty, move some XRIs from public to private pool */
20282 	if (pvt_pool->count == 0)
20283 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20284 
20285 	/* Get one XRI from private free xri pool */
20286 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20287 
20288 	if (lpfc_ncmd) {
20289 		lpfc_ncmd->hdwq = qp;
20290 		lpfc_ncmd->hdwq_no = hwqid;
20291 	} else if (expedite) {
20292 		/* If we fail to get one from pvt_pool and this is an expedite
20293 		 * request, get one free xri from expedite pool.
20294 		 */
20295 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20296 	}
20297 
20298 	return lpfc_ncmd;
20299 }
20300 
20301 static inline struct lpfc_io_buf *
20302 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20303 {
20304 	struct lpfc_sli4_hdw_queue *qp;
20305 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20306 
20307 	qp = &phba->sli4_hba.hdwq[idx];
20308 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20309 				 &qp->lpfc_io_buf_list_get, list) {
20310 		if (lpfc_test_rrq_active(phba, ndlp,
20311 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
20312 			continue;
20313 
20314 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20315 			continue;
20316 
20317 		list_del_init(&lpfc_cmd->list);
20318 		qp->get_io_bufs--;
20319 		lpfc_cmd->hdwq = qp;
20320 		lpfc_cmd->hdwq_no = idx;
20321 		return lpfc_cmd;
20322 	}
20323 	return NULL;
20324 }
20325 
20326 /**
20327  * lpfc_get_io_buf - Get one IO buffer from free pool
20328  * @phba: The HBA for which this call is being executed.
20329  * @ndlp: pointer to lpfc nodelist data structure.
20330  * @hwqid: belong to which HWQ
20331  * @expedite: 1 means this request is urgent.
20332  *
20333  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20334  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20335  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20336  *
20337  * Note: ndlp is only used on SCSI side for RRQ testing.
20338  *       The caller should pass NULL for ndlp on NVME side.
20339  *
20340  * Return codes:
20341  *   NULL - Error
20342  *   Pointer to lpfc_io_buf - Success
20343  **/
20344 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20345 				    struct lpfc_nodelist *ndlp,
20346 				    u32 hwqid, int expedite)
20347 {
20348 	struct lpfc_sli4_hdw_queue *qp;
20349 	unsigned long iflag;
20350 	struct lpfc_io_buf *lpfc_cmd;
20351 
20352 	qp = &phba->sli4_hba.hdwq[hwqid];
20353 	lpfc_cmd = NULL;
20354 
20355 	if (phba->cfg_xri_rebalancing)
20356 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20357 			phba, ndlp, hwqid, expedite);
20358 	else {
20359 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20360 					  qp, alloc_xri_get);
20361 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20362 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20363 		if (!lpfc_cmd) {
20364 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20365 					  qp, alloc_xri_put);
20366 			list_splice(&qp->lpfc_io_buf_list_put,
20367 				    &qp->lpfc_io_buf_list_get);
20368 			qp->get_io_bufs += qp->put_io_bufs;
20369 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20370 			qp->put_io_bufs = 0;
20371 			spin_unlock(&qp->io_buf_list_put_lock);
20372 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20373 			    expedite)
20374 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20375 		}
20376 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20377 	}
20378 
20379 	return lpfc_cmd;
20380 }
20381 
20382 /**
20383  * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
20384  * @phba: The HBA for which this call is being executed.
20385  * @lpfc_buf: IO buf structure to append the SGL chunk
20386  *
20387  * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
20388  * and will allocate an SGL chunk if the pool is empty.
20389  *
20390  * Return codes:
20391  *   NULL - Error
20392  *   Pointer to sli4_hybrid_sgl - Success
20393  **/
20394 struct sli4_hybrid_sgl *
20395 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20396 {
20397 	struct sli4_hybrid_sgl *list_entry = NULL;
20398 	struct sli4_hybrid_sgl *tmp = NULL;
20399 	struct sli4_hybrid_sgl *allocated_sgl = NULL;
20400 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20401 	struct list_head *buf_list = &hdwq->sgl_list;
20402 
20403 	spin_lock_irq(&hdwq->hdwq_lock);
20404 
20405 	if (likely(!list_empty(buf_list))) {
20406 		/* break off 1 chunk from the sgl_list */
20407 		list_for_each_entry_safe(list_entry, tmp,
20408 					 buf_list, list_node) {
20409 			list_move_tail(&list_entry->list_node,
20410 				       &lpfc_buf->dma_sgl_xtra_list);
20411 			break;
20412 		}
20413 	} else {
20414 		/* allocate more */
20415 		spin_unlock_irq(&hdwq->hdwq_lock);
20416 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20417 				   cpu_to_node(smp_processor_id()));
20418 		if (!tmp) {
20419 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20420 					"8353 error kmalloc memory for HDWQ "
20421 					"%d %s\n",
20422 					lpfc_buf->hdwq_no, __func__);
20423 			return NULL;
20424 		}
20425 
20426 		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
20427 					      GFP_ATOMIC, &tmp->dma_phys_sgl);
20428 		if (!tmp->dma_sgl) {
20429 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20430 					"8354 error pool_alloc memory for HDWQ "
20431 					"%d %s\n",
20432 					lpfc_buf->hdwq_no, __func__);
20433 			kfree(tmp);
20434 			return NULL;
20435 		}
20436 
20437 		spin_lock_irq(&hdwq->hdwq_lock);
20438 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
20439 	}
20440 
20441 	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
20442 					struct sli4_hybrid_sgl,
20443 					list_node);
20444 
20445 	spin_unlock_irq(&hdwq->hdwq_lock);
20446 
20447 	return allocated_sgl;
20448 }
20449 
20450 /**
20451  * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
20452  * @phba: The HBA for which this call is being executed.
20453  * @lpfc_buf: IO buf structure with the SGL chunk
20454  *
20455  * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
20456  *
20457  * Return codes:
20458  *   0 - Success
20459  *   -EINVAL - Error
20460  **/
20461 int
20462 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20463 {
20464 	int rc = 0;
20465 	struct sli4_hybrid_sgl *list_entry = NULL;
20466 	struct sli4_hybrid_sgl *tmp = NULL;
20467 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20468 	struct list_head *buf_list = &hdwq->sgl_list;
20469 
20470 	spin_lock_irq(&hdwq->hdwq_lock);
20471 
20472 	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
20473 		list_for_each_entry_safe(list_entry, tmp,
20474 					 &lpfc_buf->dma_sgl_xtra_list,
20475 					 list_node) {
20476 			list_move_tail(&list_entry->list_node,
20477 				       buf_list);
20478 		}
20479 	} else {
20480 		rc = -EINVAL;
20481 	}
20482 
20483 	spin_unlock_irq(&hdwq->hdwq_lock);
20484 	return rc;
20485 }
20486 
20487 /**
20488  * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
20489  * @phba: phba object
20490  * @hdwq: hdwq to cleanup sgl buff resources on
20491  *
20492  * This routine frees all SGL chunks of hdwq SGL chunk pool.
20493  *
20494  * Return codes:
20495  *   None
20496  **/
20497 void
20498 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
20499 		       struct lpfc_sli4_hdw_queue *hdwq)
20500 {
20501 	struct list_head *buf_list = &hdwq->sgl_list;
20502 	struct sli4_hybrid_sgl *list_entry = NULL;
20503 	struct sli4_hybrid_sgl *tmp = NULL;
20504 
20505 	spin_lock_irq(&hdwq->hdwq_lock);
20506 
20507 	/* Free sgl pool */
20508 	list_for_each_entry_safe(list_entry, tmp,
20509 				 buf_list, list_node) {
20510 		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
20511 			      list_entry->dma_sgl,
20512 			      list_entry->dma_phys_sgl);
20513 		list_del(&list_entry->list_node);
20514 		kfree(list_entry);
20515 	}
20516 
20517 	spin_unlock_irq(&hdwq->hdwq_lock);
20518 }
20519 
20520 /**
20521  * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
20522  * @phba: The HBA for which this call is being executed.
20523  * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
20524  *
20525  * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
20526  * and will allocate an CMD/RSP buffer if the pool is empty.
20527  *
20528  * Return codes:
20529  *   NULL - Error
20530  *   Pointer to fcp_cmd_rsp_buf - Success
20531  **/
20532 struct fcp_cmd_rsp_buf *
20533 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20534 			      struct lpfc_io_buf *lpfc_buf)
20535 {
20536 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20537 	struct fcp_cmd_rsp_buf *tmp = NULL;
20538 	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
20539 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20540 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20541 
20542 	spin_lock_irq(&hdwq->hdwq_lock);
20543 
20544 	if (likely(!list_empty(buf_list))) {
20545 		/* break off 1 chunk from the list */
20546 		list_for_each_entry_safe(list_entry, tmp,
20547 					 buf_list,
20548 					 list_node) {
20549 			list_move_tail(&list_entry->list_node,
20550 				       &lpfc_buf->dma_cmd_rsp_list);
20551 			break;
20552 		}
20553 	} else {
20554 		/* allocate more */
20555 		spin_unlock_irq(&hdwq->hdwq_lock);
20556 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20557 				   cpu_to_node(smp_processor_id()));
20558 		if (!tmp) {
20559 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20560 					"8355 error kmalloc memory for HDWQ "
20561 					"%d %s\n",
20562 					lpfc_buf->hdwq_no, __func__);
20563 			return NULL;
20564 		}
20565 
20566 		tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
20567 						GFP_ATOMIC,
20568 						&tmp->fcp_cmd_rsp_dma_handle);
20569 
20570 		if (!tmp->fcp_cmnd) {
20571 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20572 					"8356 error pool_alloc memory for HDWQ "
20573 					"%d %s\n",
20574 					lpfc_buf->hdwq_no, __func__);
20575 			kfree(tmp);
20576 			return NULL;
20577 		}
20578 
20579 		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
20580 				sizeof(struct fcp_cmnd));
20581 
20582 		spin_lock_irq(&hdwq->hdwq_lock);
20583 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
20584 	}
20585 
20586 	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
20587 					struct fcp_cmd_rsp_buf,
20588 					list_node);
20589 
20590 	spin_unlock_irq(&hdwq->hdwq_lock);
20591 
20592 	return allocated_buf;
20593 }
20594 
20595 /**
20596  * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
20597  * @phba: The HBA for which this call is being executed.
20598  * @lpfc_buf: IO buf structure with the CMD/RSP buf
20599  *
20600  * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
20601  *
20602  * Return codes:
20603  *   0 - Success
20604  *   -EINVAL - Error
20605  **/
20606 int
20607 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20608 			      struct lpfc_io_buf *lpfc_buf)
20609 {
20610 	int rc = 0;
20611 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20612 	struct fcp_cmd_rsp_buf *tmp = NULL;
20613 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20614 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20615 
20616 	spin_lock_irq(&hdwq->hdwq_lock);
20617 
20618 	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
20619 		list_for_each_entry_safe(list_entry, tmp,
20620 					 &lpfc_buf->dma_cmd_rsp_list,
20621 					 list_node) {
20622 			list_move_tail(&list_entry->list_node,
20623 				       buf_list);
20624 		}
20625 	} else {
20626 		rc = -EINVAL;
20627 	}
20628 
20629 	spin_unlock_irq(&hdwq->hdwq_lock);
20630 	return rc;
20631 }
20632 
20633 /**
20634  * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
20635  * @phba: phba object
20636  * @hdwq: hdwq to cleanup cmd rsp buff resources on
20637  *
20638  * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
20639  *
20640  * Return codes:
20641  *   None
20642  **/
20643 void
20644 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20645 			       struct lpfc_sli4_hdw_queue *hdwq)
20646 {
20647 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20648 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20649 	struct fcp_cmd_rsp_buf *tmp = NULL;
20650 
20651 	spin_lock_irq(&hdwq->hdwq_lock);
20652 
20653 	/* Free cmd_rsp buf pool */
20654 	list_for_each_entry_safe(list_entry, tmp,
20655 				 buf_list,
20656 				 list_node) {
20657 		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
20658 			      list_entry->fcp_cmnd,
20659 			      list_entry->fcp_cmd_rsp_dma_handle);
20660 		list_del(&list_entry->list_node);
20661 		kfree(list_entry);
20662 	}
20663 
20664 	spin_unlock_irq(&hdwq->hdwq_lock);
20665 }
20666