xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include <linux/nvme-fc-driver.h>
43 
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
60 
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 	LPFC_UNKNOWN_IOCB,
64 	LPFC_UNSOL_IOCB,
65 	LPFC_SOL_IOCB,
66 	LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
68 
69 
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 				  uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 			      uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 							 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 				      struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 					  struct hbq_dmabuf *dmabuf);
81 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *,
82 				    struct lpfc_cqe *);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 				       int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 				     struct lpfc_eqe *eqe, uint32_t qidx);
87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
89 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba,
90 				   struct lpfc_sli_ring *pring,
91 				   struct lpfc_iocbq *cmdiocb);
92 
93 static IOCB_t *
94 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
95 {
96 	return &iocbq->iocb;
97 }
98 
99 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
100 /**
101  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
102  * @srcp: Source memory pointer.
103  * @destp: Destination memory pointer.
104  * @cnt: Number of words required to be copied.
105  *       Must be a multiple of sizeof(uint64_t)
106  *
107  * This function is used for copying data between driver memory
108  * and the SLI WQ. This function also changes the endianness
109  * of each word if native endianness is different from SLI
110  * endianness. This function can be called with or without
111  * lock.
112  **/
113 void
114 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
115 {
116 	uint64_t *src = srcp;
117 	uint64_t *dest = destp;
118 	int i;
119 
120 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
121 		*dest++ = *src++;
122 }
123 #else
124 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
125 #endif
126 
127 /**
128  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
129  * @q: The Work Queue to operate on.
130  * @wqe: The work Queue Entry to put on the Work queue.
131  *
132  * This routine will copy the contents of @wqe to the next available entry on
133  * the @q. This function will then ring the Work Queue Doorbell to signal the
134  * HBA to start processing the Work Queue Entry. This function returns 0 if
135  * successful. If no entries are available on @q then this function will return
136  * -ENOMEM.
137  * The caller is expected to hold the hbalock when calling this routine.
138  **/
139 static int
140 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
141 {
142 	union lpfc_wqe *temp_wqe;
143 	struct lpfc_register doorbell;
144 	uint32_t host_index;
145 	uint32_t idx;
146 	uint32_t i = 0;
147 	uint8_t *tmp;
148 	u32 if_type;
149 
150 	/* sanity check on queue memory */
151 	if (unlikely(!q))
152 		return -ENOMEM;
153 	temp_wqe = q->qe[q->host_index].wqe;
154 
155 	/* If the host has not yet processed the next entry then we are done */
156 	idx = ((q->host_index + 1) % q->entry_count);
157 	if (idx == q->hba_index) {
158 		q->WQ_overflow++;
159 		return -EBUSY;
160 	}
161 	q->WQ_posted++;
162 	/* set consumption flag every once in a while */
163 	if (!((q->host_index + 1) % q->entry_repost))
164 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
165 	else
166 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
167 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
168 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
169 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
170 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
171 		/* write to DPP aperture taking advatage of Combined Writes */
172 		tmp = (uint8_t *)temp_wqe;
173 #ifdef __raw_writeq
174 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
175 			__raw_writeq(*((uint64_t *)(tmp + i)),
176 					q->dpp_regaddr + i);
177 #else
178 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
179 			__raw_writel(*((uint32_t *)(tmp + i)),
180 					q->dpp_regaddr + i);
181 #endif
182 	}
183 	/* ensure WQE bcopy and DPP flushed before doorbell write */
184 	wmb();
185 
186 	/* Update the host index before invoking device */
187 	host_index = q->host_index;
188 
189 	q->host_index = idx;
190 
191 	/* Ring Doorbell */
192 	doorbell.word0 = 0;
193 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
194 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
195 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
196 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
197 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
198 			    q->dpp_id);
199 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
200 			    q->queue_id);
201 		} else {
202 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
203 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
204 
205 			/* Leave bits <23:16> clear for if_type 6 dpp */
206 			if_type = bf_get(lpfc_sli_intf_if_type,
207 					 &q->phba->sli4_hba.sli_intf);
208 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
209 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
210 				       host_index);
211 		}
212 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
213 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
214 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
215 	} else {
216 		return -EINVAL;
217 	}
218 	writel(doorbell.word0, q->db_regaddr);
219 
220 	return 0;
221 }
222 
223 /**
224  * lpfc_sli4_wq_release - Updates internal hba index for WQ
225  * @q: The Work Queue to operate on.
226  * @index: The index to advance the hba index to.
227  *
228  * This routine will update the HBA index of a queue to reflect consumption of
229  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
230  * an entry the host calls this function to update the queue's internal
231  * pointers. This routine returns the number of entries that were consumed by
232  * the HBA.
233  **/
234 static uint32_t
235 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
236 {
237 	uint32_t released = 0;
238 
239 	/* sanity check on queue memory */
240 	if (unlikely(!q))
241 		return 0;
242 
243 	if (q->hba_index == index)
244 		return 0;
245 	do {
246 		q->hba_index = ((q->hba_index + 1) % q->entry_count);
247 		released++;
248 	} while (q->hba_index != index);
249 	return released;
250 }
251 
252 /**
253  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
254  * @q: The Mailbox Queue to operate on.
255  * @wqe: The Mailbox Queue Entry to put on the Work queue.
256  *
257  * This routine will copy the contents of @mqe to the next available entry on
258  * the @q. This function will then ring the Work Queue Doorbell to signal the
259  * HBA to start processing the Work Queue Entry. This function returns 0 if
260  * successful. If no entries are available on @q then this function will return
261  * -ENOMEM.
262  * The caller is expected to hold the hbalock when calling this routine.
263  **/
264 static uint32_t
265 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
266 {
267 	struct lpfc_mqe *temp_mqe;
268 	struct lpfc_register doorbell;
269 
270 	/* sanity check on queue memory */
271 	if (unlikely(!q))
272 		return -ENOMEM;
273 	temp_mqe = q->qe[q->host_index].mqe;
274 
275 	/* If the host has not yet processed the next entry then we are done */
276 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
277 		return -ENOMEM;
278 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
279 	/* Save off the mailbox pointer for completion */
280 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
281 
282 	/* Update the host index before invoking device */
283 	q->host_index = ((q->host_index + 1) % q->entry_count);
284 
285 	/* Ring Doorbell */
286 	doorbell.word0 = 0;
287 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
288 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
289 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
290 	return 0;
291 }
292 
293 /**
294  * lpfc_sli4_mq_release - Updates internal hba index for MQ
295  * @q: The Mailbox Queue to operate on.
296  *
297  * This routine will update the HBA index of a queue to reflect consumption of
298  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
299  * an entry the host calls this function to update the queue's internal
300  * pointers. This routine returns the number of entries that were consumed by
301  * the HBA.
302  **/
303 static uint32_t
304 lpfc_sli4_mq_release(struct lpfc_queue *q)
305 {
306 	/* sanity check on queue memory */
307 	if (unlikely(!q))
308 		return 0;
309 
310 	/* Clear the mailbox pointer for completion */
311 	q->phba->mbox = NULL;
312 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
313 	return 1;
314 }
315 
316 /**
317  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
318  * @q: The Event Queue to get the first valid EQE from
319  *
320  * This routine will get the first valid Event Queue Entry from @q, update
321  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
322  * the Queue (no more work to do), or the Queue is full of EQEs that have been
323  * processed, but not popped back to the HBA then this routine will return NULL.
324  **/
325 static struct lpfc_eqe *
326 lpfc_sli4_eq_get(struct lpfc_queue *q)
327 {
328 	struct lpfc_hba *phba;
329 	struct lpfc_eqe *eqe;
330 	uint32_t idx;
331 
332 	/* sanity check on queue memory */
333 	if (unlikely(!q))
334 		return NULL;
335 	phba = q->phba;
336 	eqe = q->qe[q->hba_index].eqe;
337 
338 	/* If the next EQE is not valid then we are done */
339 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
340 		return NULL;
341 	/* If the host has not yet processed the next entry then we are done */
342 	idx = ((q->hba_index + 1) % q->entry_count);
343 	if (idx == q->host_index)
344 		return NULL;
345 
346 	q->hba_index = idx;
347 	/* if the index wrapped around, toggle the valid bit */
348 	if (phba->sli4_hba.pc_sli4_params.eqav && !q->hba_index)
349 		q->qe_valid = (q->qe_valid) ? 0 : 1;
350 
351 
352 	/*
353 	 * insert barrier for instruction interlock : data from the hardware
354 	 * must have the valid bit checked before it can be copied and acted
355 	 * upon. Speculative instructions were allowing a bcopy at the start
356 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
357 	 * after our return, to copy data before the valid bit check above
358 	 * was done. As such, some of the copied data was stale. The barrier
359 	 * ensures the check is before any data is copied.
360 	 */
361 	mb();
362 	return eqe;
363 }
364 
365 /**
366  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
367  * @q: The Event Queue to disable interrupts
368  *
369  **/
370 inline void
371 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
372 {
373 	struct lpfc_register doorbell;
374 
375 	doorbell.word0 = 0;
376 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
377 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
378 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
379 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
380 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
381 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
382 }
383 
384 /**
385  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
386  * @q: The Event Queue to disable interrupts
387  *
388  **/
389 inline void
390 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
391 {
392 	struct lpfc_register doorbell;
393 
394 	doorbell.word0 = 0;
395 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
396 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
397 }
398 
399 /**
400  * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ
401  * @q: The Event Queue that the host has completed processing for.
402  * @arm: Indicates whether the host wants to arms this CQ.
403  *
404  * This routine will mark all Event Queue Entries on @q, from the last
405  * known completed entry to the last entry that was processed, as completed
406  * by clearing the valid bit for each completion queue entry. Then it will
407  * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
408  * The internal host index in the @q will be updated by this routine to indicate
409  * that the host has finished processing the entries. The @arm parameter
410  * indicates that the queue should be rearmed when ringing the doorbell.
411  *
412  * This function will return the number of EQEs that were popped.
413  **/
414 uint32_t
415 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm)
416 {
417 	uint32_t released = 0;
418 	struct lpfc_hba *phba;
419 	struct lpfc_eqe *temp_eqe;
420 	struct lpfc_register doorbell;
421 
422 	/* sanity check on queue memory */
423 	if (unlikely(!q))
424 		return 0;
425 	phba = q->phba;
426 
427 	/* while there are valid entries */
428 	while (q->hba_index != q->host_index) {
429 		if (!phba->sli4_hba.pc_sli4_params.eqav) {
430 			temp_eqe = q->qe[q->host_index].eqe;
431 			bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
432 		}
433 		released++;
434 		q->host_index = ((q->host_index + 1) % q->entry_count);
435 	}
436 	if (unlikely(released == 0 && !arm))
437 		return 0;
438 
439 	/* ring doorbell for number popped */
440 	doorbell.word0 = 0;
441 	if (arm) {
442 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
443 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
444 	}
445 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
446 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
447 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
448 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
449 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
450 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
451 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
452 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
453 		readl(q->phba->sli4_hba.EQDBregaddr);
454 	return released;
455 }
456 
457 /**
458  * lpfc_sli4_if6_eq_release - Indicates the host has finished processing an EQ
459  * @q: The Event Queue that the host has completed processing for.
460  * @arm: Indicates whether the host wants to arms this CQ.
461  *
462  * This routine will mark all Event Queue Entries on @q, from the last
463  * known completed entry to the last entry that was processed, as completed
464  * by clearing the valid bit for each completion queue entry. Then it will
465  * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
466  * The internal host index in the @q will be updated by this routine to indicate
467  * that the host has finished processing the entries. The @arm parameter
468  * indicates that the queue should be rearmed when ringing the doorbell.
469  *
470  * This function will return the number of EQEs that were popped.
471  **/
472 uint32_t
473 lpfc_sli4_if6_eq_release(struct lpfc_queue *q, bool arm)
474 {
475 	uint32_t released = 0;
476 	struct lpfc_hba *phba;
477 	struct lpfc_eqe *temp_eqe;
478 	struct lpfc_register doorbell;
479 
480 	/* sanity check on queue memory */
481 	if (unlikely(!q))
482 		return 0;
483 	phba = q->phba;
484 
485 	/* while there are valid entries */
486 	while (q->hba_index != q->host_index) {
487 		if (!phba->sli4_hba.pc_sli4_params.eqav) {
488 			temp_eqe = q->qe[q->host_index].eqe;
489 			bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
490 		}
491 		released++;
492 		q->host_index = ((q->host_index + 1) % q->entry_count);
493 	}
494 	if (unlikely(released == 0 && !arm))
495 		return 0;
496 
497 	/* ring doorbell for number popped */
498 	doorbell.word0 = 0;
499 	if (arm)
500 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
501 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, released);
502 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
503 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
504 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
505 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
506 		readl(q->phba->sli4_hba.EQDBregaddr);
507 	return released;
508 }
509 
510 /**
511  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
512  * @q: The Completion Queue to get the first valid CQE from
513  *
514  * This routine will get the first valid Completion Queue Entry from @q, update
515  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
516  * the Queue (no more work to do), or the Queue is full of CQEs that have been
517  * processed, but not popped back to the HBA then this routine will return NULL.
518  **/
519 static struct lpfc_cqe *
520 lpfc_sli4_cq_get(struct lpfc_queue *q)
521 {
522 	struct lpfc_hba *phba;
523 	struct lpfc_cqe *cqe;
524 	uint32_t idx;
525 
526 	/* sanity check on queue memory */
527 	if (unlikely(!q))
528 		return NULL;
529 	phba = q->phba;
530 	cqe = q->qe[q->hba_index].cqe;
531 
532 	/* If the next CQE is not valid then we are done */
533 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
534 		return NULL;
535 	/* If the host has not yet processed the next entry then we are done */
536 	idx = ((q->hba_index + 1) % q->entry_count);
537 	if (idx == q->host_index)
538 		return NULL;
539 
540 	q->hba_index = idx;
541 	/* if the index wrapped around, toggle the valid bit */
542 	if (phba->sli4_hba.pc_sli4_params.cqav && !q->hba_index)
543 		q->qe_valid = (q->qe_valid) ? 0 : 1;
544 
545 	/*
546 	 * insert barrier for instruction interlock : data from the hardware
547 	 * must have the valid bit checked before it can be copied and acted
548 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
549 	 * instructions allowing action on content before valid bit checked,
550 	 * add barrier here as well. May not be needed as "content" is a
551 	 * single 32-bit entity here (vs multi word structure for cq's).
552 	 */
553 	mb();
554 	return cqe;
555 }
556 
557 /**
558  * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ
559  * @q: The Completion Queue that the host has completed processing for.
560  * @arm: Indicates whether the host wants to arms this CQ.
561  *
562  * This routine will mark all Completion queue entries on @q, from the last
563  * known completed entry to the last entry that was processed, as completed
564  * by clearing the valid bit for each completion queue entry. Then it will
565  * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
566  * The internal host index in the @q will be updated by this routine to indicate
567  * that the host has finished processing the entries. The @arm parameter
568  * indicates that the queue should be rearmed when ringing the doorbell.
569  *
570  * This function will return the number of CQEs that were released.
571  **/
572 uint32_t
573 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm)
574 {
575 	uint32_t released = 0;
576 	struct lpfc_hba *phba;
577 	struct lpfc_cqe *temp_qe;
578 	struct lpfc_register doorbell;
579 
580 	/* sanity check on queue memory */
581 	if (unlikely(!q))
582 		return 0;
583 	phba = q->phba;
584 
585 	/* while there are valid entries */
586 	while (q->hba_index != q->host_index) {
587 		if (!phba->sli4_hba.pc_sli4_params.cqav) {
588 			temp_qe = q->qe[q->host_index].cqe;
589 			bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
590 		}
591 		released++;
592 		q->host_index = ((q->host_index + 1) % q->entry_count);
593 	}
594 	if (unlikely(released == 0 && !arm))
595 		return 0;
596 
597 	/* ring doorbell for number popped */
598 	doorbell.word0 = 0;
599 	if (arm)
600 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
601 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
602 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
603 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
604 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
605 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
606 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
607 	return released;
608 }
609 
610 /**
611  * lpfc_sli4_if6_cq_release - Indicates the host has finished processing a CQ
612  * @q: The Completion Queue that the host has completed processing for.
613  * @arm: Indicates whether the host wants to arms this CQ.
614  *
615  * This routine will mark all Completion queue entries on @q, from the last
616  * known completed entry to the last entry that was processed, as completed
617  * by clearing the valid bit for each completion queue entry. Then it will
618  * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
619  * The internal host index in the @q will be updated by this routine to indicate
620  * that the host has finished processing the entries. The @arm parameter
621  * indicates that the queue should be rearmed when ringing the doorbell.
622  *
623  * This function will return the number of CQEs that were released.
624  **/
625 uint32_t
626 lpfc_sli4_if6_cq_release(struct lpfc_queue *q, bool arm)
627 {
628 	uint32_t released = 0;
629 	struct lpfc_hba *phba;
630 	struct lpfc_cqe *temp_qe;
631 	struct lpfc_register doorbell;
632 
633 	/* sanity check on queue memory */
634 	if (unlikely(!q))
635 		return 0;
636 	phba = q->phba;
637 
638 	/* while there are valid entries */
639 	while (q->hba_index != q->host_index) {
640 		if (!phba->sli4_hba.pc_sli4_params.cqav) {
641 			temp_qe = q->qe[q->host_index].cqe;
642 			bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
643 		}
644 		released++;
645 		q->host_index = ((q->host_index + 1) % q->entry_count);
646 	}
647 	if (unlikely(released == 0 && !arm))
648 		return 0;
649 
650 	/* ring doorbell for number popped */
651 	doorbell.word0 = 0;
652 	if (arm)
653 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
654 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, released);
655 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
656 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
657 	return released;
658 }
659 
660 /**
661  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
662  * @q: The Header Receive Queue to operate on.
663  * @wqe: The Receive Queue Entry to put on the Receive queue.
664  *
665  * This routine will copy the contents of @wqe to the next available entry on
666  * the @q. This function will then ring the Receive Queue Doorbell to signal the
667  * HBA to start processing the Receive Queue Entry. This function returns the
668  * index that the rqe was copied to if successful. If no entries are available
669  * on @q then this function will return -ENOMEM.
670  * The caller is expected to hold the hbalock when calling this routine.
671  **/
672 int
673 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
674 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
675 {
676 	struct lpfc_rqe *temp_hrqe;
677 	struct lpfc_rqe *temp_drqe;
678 	struct lpfc_register doorbell;
679 	int hq_put_index;
680 	int dq_put_index;
681 
682 	/* sanity check on queue memory */
683 	if (unlikely(!hq) || unlikely(!dq))
684 		return -ENOMEM;
685 	hq_put_index = hq->host_index;
686 	dq_put_index = dq->host_index;
687 	temp_hrqe = hq->qe[hq_put_index].rqe;
688 	temp_drqe = dq->qe[dq_put_index].rqe;
689 
690 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
691 		return -EINVAL;
692 	if (hq_put_index != dq_put_index)
693 		return -EINVAL;
694 	/* If the host has not yet processed the next entry then we are done */
695 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
696 		return -EBUSY;
697 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
698 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
699 
700 	/* Update the host index to point to the next slot */
701 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
702 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
703 	hq->RQ_buf_posted++;
704 
705 	/* Ring The Header Receive Queue Doorbell */
706 	if (!(hq->host_index % hq->entry_repost)) {
707 		doorbell.word0 = 0;
708 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
709 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
710 			       hq->entry_repost);
711 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
712 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
713 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
714 			       hq->entry_repost);
715 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
716 			       hq->host_index);
717 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
718 		} else {
719 			return -EINVAL;
720 		}
721 		writel(doorbell.word0, hq->db_regaddr);
722 	}
723 	return hq_put_index;
724 }
725 
726 /**
727  * lpfc_sli4_rq_release - Updates internal hba index for RQ
728  * @q: The Header Receive Queue to operate on.
729  *
730  * This routine will update the HBA index of a queue to reflect consumption of
731  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
732  * consumed an entry the host calls this function to update the queue's
733  * internal pointers. This routine returns the number of entries that were
734  * consumed by the HBA.
735  **/
736 static uint32_t
737 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
738 {
739 	/* sanity check on queue memory */
740 	if (unlikely(!hq) || unlikely(!dq))
741 		return 0;
742 
743 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
744 		return 0;
745 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
746 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
747 	return 1;
748 }
749 
750 /**
751  * lpfc_cmd_iocb - Get next command iocb entry in the ring
752  * @phba: Pointer to HBA context object.
753  * @pring: Pointer to driver SLI ring object.
754  *
755  * This function returns pointer to next command iocb entry
756  * in the command ring. The caller must hold hbalock to prevent
757  * other threads consume the next command iocb.
758  * SLI-2/SLI-3 provide different sized iocbs.
759  **/
760 static inline IOCB_t *
761 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
762 {
763 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
764 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
765 }
766 
767 /**
768  * lpfc_resp_iocb - Get next response iocb entry in the ring
769  * @phba: Pointer to HBA context object.
770  * @pring: Pointer to driver SLI ring object.
771  *
772  * This function returns pointer to next response iocb entry
773  * in the response ring. The caller must hold hbalock to make sure
774  * that no other thread consume the next response iocb.
775  * SLI-2/SLI-3 provide different sized iocbs.
776  **/
777 static inline IOCB_t *
778 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
779 {
780 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
781 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
782 }
783 
784 /**
785  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
786  * @phba: Pointer to HBA context object.
787  *
788  * This function is called with hbalock held. This function
789  * allocates a new driver iocb object from the iocb pool. If the
790  * allocation is successful, it returns pointer to the newly
791  * allocated iocb object else it returns NULL.
792  **/
793 struct lpfc_iocbq *
794 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
795 {
796 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
797 	struct lpfc_iocbq * iocbq = NULL;
798 
799 	lockdep_assert_held(&phba->hbalock);
800 
801 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
802 	if (iocbq)
803 		phba->iocb_cnt++;
804 	if (phba->iocb_cnt > phba->iocb_max)
805 		phba->iocb_max = phba->iocb_cnt;
806 	return iocbq;
807 }
808 
809 /**
810  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
811  * @phba: Pointer to HBA context object.
812  * @xritag: XRI value.
813  *
814  * This function clears the sglq pointer from the array of acive
815  * sglq's. The xritag that is passed in is used to index into the
816  * array. Before the xritag can be used it needs to be adjusted
817  * by subtracting the xribase.
818  *
819  * Returns sglq ponter = success, NULL = Failure.
820  **/
821 struct lpfc_sglq *
822 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
823 {
824 	struct lpfc_sglq *sglq;
825 
826 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
827 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
828 	return sglq;
829 }
830 
831 /**
832  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
833  * @phba: Pointer to HBA context object.
834  * @xritag: XRI value.
835  *
836  * This function returns the sglq pointer from the array of acive
837  * sglq's. The xritag that is passed in is used to index into the
838  * array. Before the xritag can be used it needs to be adjusted
839  * by subtracting the xribase.
840  *
841  * Returns sglq ponter = success, NULL = Failure.
842  **/
843 struct lpfc_sglq *
844 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
845 {
846 	struct lpfc_sglq *sglq;
847 
848 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
849 	return sglq;
850 }
851 
852 /**
853  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
854  * @phba: Pointer to HBA context object.
855  * @xritag: xri used in this exchange.
856  * @rrq: The RRQ to be cleared.
857  *
858  **/
859 void
860 lpfc_clr_rrq_active(struct lpfc_hba *phba,
861 		    uint16_t xritag,
862 		    struct lpfc_node_rrq *rrq)
863 {
864 	struct lpfc_nodelist *ndlp = NULL;
865 
866 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
867 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
868 
869 	/* The target DID could have been swapped (cable swap)
870 	 * we should use the ndlp from the findnode if it is
871 	 * available.
872 	 */
873 	if ((!ndlp) && rrq->ndlp)
874 		ndlp = rrq->ndlp;
875 
876 	if (!ndlp)
877 		goto out;
878 
879 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
880 		rrq->send_rrq = 0;
881 		rrq->xritag = 0;
882 		rrq->rrq_stop_time = 0;
883 	}
884 out:
885 	mempool_free(rrq, phba->rrq_pool);
886 }
887 
888 /**
889  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
890  * @phba: Pointer to HBA context object.
891  *
892  * This function is called with hbalock held. This function
893  * Checks if stop_time (ratov from setting rrq active) has
894  * been reached, if it has and the send_rrq flag is set then
895  * it will call lpfc_send_rrq. If the send_rrq flag is not set
896  * then it will just call the routine to clear the rrq and
897  * free the rrq resource.
898  * The timer is set to the next rrq that is going to expire before
899  * leaving the routine.
900  *
901  **/
902 void
903 lpfc_handle_rrq_active(struct lpfc_hba *phba)
904 {
905 	struct lpfc_node_rrq *rrq;
906 	struct lpfc_node_rrq *nextrrq;
907 	unsigned long next_time;
908 	unsigned long iflags;
909 	LIST_HEAD(send_rrq);
910 
911 	spin_lock_irqsave(&phba->hbalock, iflags);
912 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
913 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
914 	list_for_each_entry_safe(rrq, nextrrq,
915 				 &phba->active_rrq_list, list) {
916 		if (time_after(jiffies, rrq->rrq_stop_time))
917 			list_move(&rrq->list, &send_rrq);
918 		else if (time_before(rrq->rrq_stop_time, next_time))
919 			next_time = rrq->rrq_stop_time;
920 	}
921 	spin_unlock_irqrestore(&phba->hbalock, iflags);
922 	if ((!list_empty(&phba->active_rrq_list)) &&
923 	    (!(phba->pport->load_flag & FC_UNLOADING)))
924 		mod_timer(&phba->rrq_tmr, next_time);
925 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
926 		list_del(&rrq->list);
927 		if (!rrq->send_rrq)
928 			/* this call will free the rrq */
929 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
930 		else if (lpfc_send_rrq(phba, rrq)) {
931 			/* if we send the rrq then the completion handler
932 			*  will clear the bit in the xribitmap.
933 			*/
934 			lpfc_clr_rrq_active(phba, rrq->xritag,
935 					    rrq);
936 		}
937 	}
938 }
939 
940 /**
941  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
942  * @vport: Pointer to vport context object.
943  * @xri: The xri used in the exchange.
944  * @did: The targets DID for this exchange.
945  *
946  * returns NULL = rrq not found in the phba->active_rrq_list.
947  *         rrq = rrq for this xri and target.
948  **/
949 struct lpfc_node_rrq *
950 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
951 {
952 	struct lpfc_hba *phba = vport->phba;
953 	struct lpfc_node_rrq *rrq;
954 	struct lpfc_node_rrq *nextrrq;
955 	unsigned long iflags;
956 
957 	if (phba->sli_rev != LPFC_SLI_REV4)
958 		return NULL;
959 	spin_lock_irqsave(&phba->hbalock, iflags);
960 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
961 		if (rrq->vport == vport && rrq->xritag == xri &&
962 				rrq->nlp_DID == did){
963 			list_del(&rrq->list);
964 			spin_unlock_irqrestore(&phba->hbalock, iflags);
965 			return rrq;
966 		}
967 	}
968 	spin_unlock_irqrestore(&phba->hbalock, iflags);
969 	return NULL;
970 }
971 
972 /**
973  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
974  * @vport: Pointer to vport context object.
975  * @ndlp: Pointer to the lpfc_node_list structure.
976  * If ndlp is NULL Remove all active RRQs for this vport from the
977  * phba->active_rrq_list and clear the rrq.
978  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
979  **/
980 void
981 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
982 
983 {
984 	struct lpfc_hba *phba = vport->phba;
985 	struct lpfc_node_rrq *rrq;
986 	struct lpfc_node_rrq *nextrrq;
987 	unsigned long iflags;
988 	LIST_HEAD(rrq_list);
989 
990 	if (phba->sli_rev != LPFC_SLI_REV4)
991 		return;
992 	if (!ndlp) {
993 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
994 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
995 	}
996 	spin_lock_irqsave(&phba->hbalock, iflags);
997 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
998 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
999 			list_move(&rrq->list, &rrq_list);
1000 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1001 
1002 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1003 		list_del(&rrq->list);
1004 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1005 	}
1006 }
1007 
1008 /**
1009  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1010  * @phba: Pointer to HBA context object.
1011  * @ndlp: Targets nodelist pointer for this exchange.
1012  * @xritag the xri in the bitmap to test.
1013  *
1014  * This function is called with hbalock held. This function
1015  * returns 0 = rrq not active for this xri
1016  *         1 = rrq is valid for this xri.
1017  **/
1018 int
1019 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1020 			uint16_t  xritag)
1021 {
1022 	lockdep_assert_held(&phba->hbalock);
1023 	if (!ndlp)
1024 		return 0;
1025 	if (!ndlp->active_rrqs_xri_bitmap)
1026 		return 0;
1027 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1028 			return 1;
1029 	else
1030 		return 0;
1031 }
1032 
1033 /**
1034  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1035  * @phba: Pointer to HBA context object.
1036  * @ndlp: nodelist pointer for this target.
1037  * @xritag: xri used in this exchange.
1038  * @rxid: Remote Exchange ID.
1039  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1040  *
1041  * This function takes the hbalock.
1042  * The active bit is always set in the active rrq xri_bitmap even
1043  * if there is no slot avaiable for the other rrq information.
1044  *
1045  * returns 0 rrq actived for this xri
1046  *         < 0 No memory or invalid ndlp.
1047  **/
1048 int
1049 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1050 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1051 {
1052 	unsigned long iflags;
1053 	struct lpfc_node_rrq *rrq;
1054 	int empty;
1055 
1056 	if (!ndlp)
1057 		return -EINVAL;
1058 
1059 	if (!phba->cfg_enable_rrq)
1060 		return -EINVAL;
1061 
1062 	spin_lock_irqsave(&phba->hbalock, iflags);
1063 	if (phba->pport->load_flag & FC_UNLOADING) {
1064 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1065 		goto out;
1066 	}
1067 
1068 	/*
1069 	 * set the active bit even if there is no mem available.
1070 	 */
1071 	if (NLP_CHK_FREE_REQ(ndlp))
1072 		goto out;
1073 
1074 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1075 		goto out;
1076 
1077 	if (!ndlp->active_rrqs_xri_bitmap)
1078 		goto out;
1079 
1080 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1081 		goto out;
1082 
1083 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1084 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1085 	if (!rrq) {
1086 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1087 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1088 				" DID:0x%x Send:%d\n",
1089 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1090 		return -EINVAL;
1091 	}
1092 	if (phba->cfg_enable_rrq == 1)
1093 		rrq->send_rrq = send_rrq;
1094 	else
1095 		rrq->send_rrq = 0;
1096 	rrq->xritag = xritag;
1097 	rrq->rrq_stop_time = jiffies +
1098 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1099 	rrq->ndlp = ndlp;
1100 	rrq->nlp_DID = ndlp->nlp_DID;
1101 	rrq->vport = ndlp->vport;
1102 	rrq->rxid = rxid;
1103 	spin_lock_irqsave(&phba->hbalock, iflags);
1104 	empty = list_empty(&phba->active_rrq_list);
1105 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1106 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1107 	if (empty)
1108 		lpfc_worker_wake_up(phba);
1109 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1110 	return 0;
1111 out:
1112 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1113 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1114 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1115 			" DID:0x%x Send:%d\n",
1116 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1117 	return -EINVAL;
1118 }
1119 
1120 /**
1121  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1122  * @phba: Pointer to HBA context object.
1123  * @piocb: Pointer to the iocbq.
1124  *
1125  * This function is called with the ring lock held. This function
1126  * gets a new driver sglq object from the sglq list. If the
1127  * list is not empty then it is successful, it returns pointer to the newly
1128  * allocated sglq object else it returns NULL.
1129  **/
1130 static struct lpfc_sglq *
1131 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1132 {
1133 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1134 	struct lpfc_sglq *sglq = NULL;
1135 	struct lpfc_sglq *start_sglq = NULL;
1136 	struct lpfc_scsi_buf *lpfc_cmd;
1137 	struct lpfc_nodelist *ndlp;
1138 	int found = 0;
1139 
1140 	lockdep_assert_held(&phba->hbalock);
1141 
1142 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1143 		lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1;
1144 		ndlp = lpfc_cmd->rdata->pnode;
1145 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1146 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1147 		ndlp = piocbq->context_un.ndlp;
1148 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1149 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1150 			ndlp = NULL;
1151 		else
1152 			ndlp = piocbq->context_un.ndlp;
1153 	} else {
1154 		ndlp = piocbq->context1;
1155 	}
1156 
1157 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1158 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1159 	start_sglq = sglq;
1160 	while (!found) {
1161 		if (!sglq)
1162 			break;
1163 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1164 		    test_bit(sglq->sli4_lxritag,
1165 		    ndlp->active_rrqs_xri_bitmap)) {
1166 			/* This xri has an rrq outstanding for this DID.
1167 			 * put it back in the list and get another xri.
1168 			 */
1169 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1170 			sglq = NULL;
1171 			list_remove_head(lpfc_els_sgl_list, sglq,
1172 						struct lpfc_sglq, list);
1173 			if (sglq == start_sglq) {
1174 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1175 				sglq = NULL;
1176 				break;
1177 			} else
1178 				continue;
1179 		}
1180 		sglq->ndlp = ndlp;
1181 		found = 1;
1182 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1183 		sglq->state = SGL_ALLOCATED;
1184 	}
1185 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1186 	return sglq;
1187 }
1188 
1189 /**
1190  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1191  * @phba: Pointer to HBA context object.
1192  * @piocb: Pointer to the iocbq.
1193  *
1194  * This function is called with the sgl_list lock held. This function
1195  * gets a new driver sglq object from the sglq list. If the
1196  * list is not empty then it is successful, it returns pointer to the newly
1197  * allocated sglq object else it returns NULL.
1198  **/
1199 struct lpfc_sglq *
1200 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1201 {
1202 	struct list_head *lpfc_nvmet_sgl_list;
1203 	struct lpfc_sglq *sglq = NULL;
1204 
1205 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1206 
1207 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1208 
1209 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1210 	if (!sglq)
1211 		return NULL;
1212 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1213 	sglq->state = SGL_ALLOCATED;
1214 	return sglq;
1215 }
1216 
1217 /**
1218  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1219  * @phba: Pointer to HBA context object.
1220  *
1221  * This function is called with no lock held. This function
1222  * allocates a new driver iocb object from the iocb pool. If the
1223  * allocation is successful, it returns pointer to the newly
1224  * allocated iocb object else it returns NULL.
1225  **/
1226 struct lpfc_iocbq *
1227 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1228 {
1229 	struct lpfc_iocbq * iocbq = NULL;
1230 	unsigned long iflags;
1231 
1232 	spin_lock_irqsave(&phba->hbalock, iflags);
1233 	iocbq = __lpfc_sli_get_iocbq(phba);
1234 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1235 	return iocbq;
1236 }
1237 
1238 /**
1239  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1240  * @phba: Pointer to HBA context object.
1241  * @iocbq: Pointer to driver iocb object.
1242  *
1243  * This function is called with hbalock held to release driver
1244  * iocb object to the iocb pool. The iotag in the iocb object
1245  * does not change for each use of the iocb object. This function
1246  * clears all other fields of the iocb object when it is freed.
1247  * The sqlq structure that holds the xritag and phys and virtual
1248  * mappings for the scatter gather list is retrieved from the
1249  * active array of sglq. The get of the sglq pointer also clears
1250  * the entry in the array. If the status of the IO indiactes that
1251  * this IO was aborted then the sglq entry it put on the
1252  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1253  * IO has good status or fails for any other reason then the sglq
1254  * entry is added to the free list (lpfc_els_sgl_list).
1255  **/
1256 static void
1257 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1258 {
1259 	struct lpfc_sglq *sglq;
1260 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1261 	unsigned long iflag = 0;
1262 	struct lpfc_sli_ring *pring;
1263 
1264 	lockdep_assert_held(&phba->hbalock);
1265 
1266 	if (iocbq->sli4_xritag == NO_XRI)
1267 		sglq = NULL;
1268 	else
1269 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1270 
1271 
1272 	if (sglq)  {
1273 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1274 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1275 					  iflag);
1276 			sglq->state = SGL_FREED;
1277 			sglq->ndlp = NULL;
1278 			list_add_tail(&sglq->list,
1279 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1280 			spin_unlock_irqrestore(
1281 				&phba->sli4_hba.sgl_list_lock, iflag);
1282 			goto out;
1283 		}
1284 
1285 		pring = phba->sli4_hba.els_wq->pring;
1286 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1287 			(sglq->state != SGL_XRI_ABORTED)) {
1288 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1289 					  iflag);
1290 			list_add(&sglq->list,
1291 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1292 			spin_unlock_irqrestore(
1293 				&phba->sli4_hba.sgl_list_lock, iflag);
1294 		} else {
1295 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1296 					  iflag);
1297 			sglq->state = SGL_FREED;
1298 			sglq->ndlp = NULL;
1299 			list_add_tail(&sglq->list,
1300 				      &phba->sli4_hba.lpfc_els_sgl_list);
1301 			spin_unlock_irqrestore(
1302 				&phba->sli4_hba.sgl_list_lock, iflag);
1303 
1304 			/* Check if TXQ queue needs to be serviced */
1305 			if (!list_empty(&pring->txq))
1306 				lpfc_worker_wake_up(phba);
1307 		}
1308 	}
1309 
1310 out:
1311 	/*
1312 	 * Clean all volatile data fields, preserve iotag and node struct.
1313 	 */
1314 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1315 	iocbq->sli4_lxritag = NO_XRI;
1316 	iocbq->sli4_xritag = NO_XRI;
1317 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1318 			      LPFC_IO_NVME_LS);
1319 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1320 }
1321 
1322 
1323 /**
1324  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1325  * @phba: Pointer to HBA context object.
1326  * @iocbq: Pointer to driver iocb object.
1327  *
1328  * This function is called with hbalock held to release driver
1329  * iocb object to the iocb pool. The iotag in the iocb object
1330  * does not change for each use of the iocb object. This function
1331  * clears all other fields of the iocb object when it is freed.
1332  **/
1333 static void
1334 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1335 {
1336 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1337 
1338 	lockdep_assert_held(&phba->hbalock);
1339 
1340 	/*
1341 	 * Clean all volatile data fields, preserve iotag and node struct.
1342 	 */
1343 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1344 	iocbq->sli4_xritag = NO_XRI;
1345 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1346 }
1347 
1348 /**
1349  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1350  * @phba: Pointer to HBA context object.
1351  * @iocbq: Pointer to driver iocb object.
1352  *
1353  * This function is called with hbalock held to release driver
1354  * iocb object to the iocb pool. The iotag in the iocb object
1355  * does not change for each use of the iocb object. This function
1356  * clears all other fields of the iocb object when it is freed.
1357  **/
1358 static void
1359 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1360 {
1361 	lockdep_assert_held(&phba->hbalock);
1362 
1363 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1364 	phba->iocb_cnt--;
1365 }
1366 
1367 /**
1368  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1369  * @phba: Pointer to HBA context object.
1370  * @iocbq: Pointer to driver iocb object.
1371  *
1372  * This function is called with no lock held to release the iocb to
1373  * iocb pool.
1374  **/
1375 void
1376 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1377 {
1378 	unsigned long iflags;
1379 
1380 	/*
1381 	 * Clean all volatile data fields, preserve iotag and node struct.
1382 	 */
1383 	spin_lock_irqsave(&phba->hbalock, iflags);
1384 	__lpfc_sli_release_iocbq(phba, iocbq);
1385 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1386 }
1387 
1388 /**
1389  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1390  * @phba: Pointer to HBA context object.
1391  * @iocblist: List of IOCBs.
1392  * @ulpstatus: ULP status in IOCB command field.
1393  * @ulpWord4: ULP word-4 in IOCB command field.
1394  *
1395  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1396  * on the list by invoking the complete callback function associated with the
1397  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1398  * fields.
1399  **/
1400 void
1401 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1402 		      uint32_t ulpstatus, uint32_t ulpWord4)
1403 {
1404 	struct lpfc_iocbq *piocb;
1405 
1406 	while (!list_empty(iocblist)) {
1407 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1408 		if (!piocb->iocb_cmpl)
1409 			lpfc_sli_release_iocbq(phba, piocb);
1410 		else {
1411 			piocb->iocb.ulpStatus = ulpstatus;
1412 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1413 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1414 		}
1415 	}
1416 	return;
1417 }
1418 
1419 /**
1420  * lpfc_sli_iocb_cmd_type - Get the iocb type
1421  * @iocb_cmnd: iocb command code.
1422  *
1423  * This function is called by ring event handler function to get the iocb type.
1424  * This function translates the iocb command to an iocb command type used to
1425  * decide the final disposition of each completed IOCB.
1426  * The function returns
1427  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1428  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1429  * LPFC_ABORT_IOCB   if it is an abort iocb
1430  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1431  *
1432  * The caller is not required to hold any lock.
1433  **/
1434 static lpfc_iocb_type
1435 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1436 {
1437 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1438 
1439 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1440 		return 0;
1441 
1442 	switch (iocb_cmnd) {
1443 	case CMD_XMIT_SEQUENCE_CR:
1444 	case CMD_XMIT_SEQUENCE_CX:
1445 	case CMD_XMIT_BCAST_CN:
1446 	case CMD_XMIT_BCAST_CX:
1447 	case CMD_ELS_REQUEST_CR:
1448 	case CMD_ELS_REQUEST_CX:
1449 	case CMD_CREATE_XRI_CR:
1450 	case CMD_CREATE_XRI_CX:
1451 	case CMD_GET_RPI_CN:
1452 	case CMD_XMIT_ELS_RSP_CX:
1453 	case CMD_GET_RPI_CR:
1454 	case CMD_FCP_IWRITE_CR:
1455 	case CMD_FCP_IWRITE_CX:
1456 	case CMD_FCP_IREAD_CR:
1457 	case CMD_FCP_IREAD_CX:
1458 	case CMD_FCP_ICMND_CR:
1459 	case CMD_FCP_ICMND_CX:
1460 	case CMD_FCP_TSEND_CX:
1461 	case CMD_FCP_TRSP_CX:
1462 	case CMD_FCP_TRECEIVE_CX:
1463 	case CMD_FCP_AUTO_TRSP_CX:
1464 	case CMD_ADAPTER_MSG:
1465 	case CMD_ADAPTER_DUMP:
1466 	case CMD_XMIT_SEQUENCE64_CR:
1467 	case CMD_XMIT_SEQUENCE64_CX:
1468 	case CMD_XMIT_BCAST64_CN:
1469 	case CMD_XMIT_BCAST64_CX:
1470 	case CMD_ELS_REQUEST64_CR:
1471 	case CMD_ELS_REQUEST64_CX:
1472 	case CMD_FCP_IWRITE64_CR:
1473 	case CMD_FCP_IWRITE64_CX:
1474 	case CMD_FCP_IREAD64_CR:
1475 	case CMD_FCP_IREAD64_CX:
1476 	case CMD_FCP_ICMND64_CR:
1477 	case CMD_FCP_ICMND64_CX:
1478 	case CMD_FCP_TSEND64_CX:
1479 	case CMD_FCP_TRSP64_CX:
1480 	case CMD_FCP_TRECEIVE64_CX:
1481 	case CMD_GEN_REQUEST64_CR:
1482 	case CMD_GEN_REQUEST64_CX:
1483 	case CMD_XMIT_ELS_RSP64_CX:
1484 	case DSSCMD_IWRITE64_CR:
1485 	case DSSCMD_IWRITE64_CX:
1486 	case DSSCMD_IREAD64_CR:
1487 	case DSSCMD_IREAD64_CX:
1488 		type = LPFC_SOL_IOCB;
1489 		break;
1490 	case CMD_ABORT_XRI_CN:
1491 	case CMD_ABORT_XRI_CX:
1492 	case CMD_CLOSE_XRI_CN:
1493 	case CMD_CLOSE_XRI_CX:
1494 	case CMD_XRI_ABORTED_CX:
1495 	case CMD_ABORT_MXRI64_CN:
1496 	case CMD_XMIT_BLS_RSP64_CX:
1497 		type = LPFC_ABORT_IOCB;
1498 		break;
1499 	case CMD_RCV_SEQUENCE_CX:
1500 	case CMD_RCV_ELS_REQ_CX:
1501 	case CMD_RCV_SEQUENCE64_CX:
1502 	case CMD_RCV_ELS_REQ64_CX:
1503 	case CMD_ASYNC_STATUS:
1504 	case CMD_IOCB_RCV_SEQ64_CX:
1505 	case CMD_IOCB_RCV_ELS64_CX:
1506 	case CMD_IOCB_RCV_CONT64_CX:
1507 	case CMD_IOCB_RET_XRI64_CX:
1508 		type = LPFC_UNSOL_IOCB;
1509 		break;
1510 	case CMD_IOCB_XMIT_MSEQ64_CR:
1511 	case CMD_IOCB_XMIT_MSEQ64_CX:
1512 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1513 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1514 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1515 	case CMD_IOCB_ABORT_EXTENDED_CN:
1516 	case CMD_IOCB_RET_HBQE64_CN:
1517 	case CMD_IOCB_FCP_IBIDIR64_CR:
1518 	case CMD_IOCB_FCP_IBIDIR64_CX:
1519 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1520 	case CMD_IOCB_LOGENTRY_CN:
1521 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1522 		printk("%s - Unhandled SLI-3 Command x%x\n",
1523 				__func__, iocb_cmnd);
1524 		type = LPFC_UNKNOWN_IOCB;
1525 		break;
1526 	default:
1527 		type = LPFC_UNKNOWN_IOCB;
1528 		break;
1529 	}
1530 
1531 	return type;
1532 }
1533 
1534 /**
1535  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1536  * @phba: Pointer to HBA context object.
1537  *
1538  * This function is called from SLI initialization code
1539  * to configure every ring of the HBA's SLI interface. The
1540  * caller is not required to hold any lock. This function issues
1541  * a config_ring mailbox command for each ring.
1542  * This function returns zero if successful else returns a negative
1543  * error code.
1544  **/
1545 static int
1546 lpfc_sli_ring_map(struct lpfc_hba *phba)
1547 {
1548 	struct lpfc_sli *psli = &phba->sli;
1549 	LPFC_MBOXQ_t *pmb;
1550 	MAILBOX_t *pmbox;
1551 	int i, rc, ret = 0;
1552 
1553 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1554 	if (!pmb)
1555 		return -ENOMEM;
1556 	pmbox = &pmb->u.mb;
1557 	phba->link_state = LPFC_INIT_MBX_CMDS;
1558 	for (i = 0; i < psli->num_rings; i++) {
1559 		lpfc_config_ring(phba, i, pmb);
1560 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1561 		if (rc != MBX_SUCCESS) {
1562 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1563 					"0446 Adapter failed to init (%d), "
1564 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1565 					"ring %d\n",
1566 					rc, pmbox->mbxCommand,
1567 					pmbox->mbxStatus, i);
1568 			phba->link_state = LPFC_HBA_ERROR;
1569 			ret = -ENXIO;
1570 			break;
1571 		}
1572 	}
1573 	mempool_free(pmb, phba->mbox_mem_pool);
1574 	return ret;
1575 }
1576 
1577 /**
1578  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1579  * @phba: Pointer to HBA context object.
1580  * @pring: Pointer to driver SLI ring object.
1581  * @piocb: Pointer to the driver iocb object.
1582  *
1583  * This function is called with hbalock held. The function adds the
1584  * new iocb to txcmplq of the given ring. This function always returns
1585  * 0. If this function is called for ELS ring, this function checks if
1586  * there is a vport associated with the ELS command. This function also
1587  * starts els_tmofunc timer if this is an ELS command.
1588  **/
1589 static int
1590 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1591 			struct lpfc_iocbq *piocb)
1592 {
1593 	lockdep_assert_held(&phba->hbalock);
1594 
1595 	BUG_ON(!piocb);
1596 
1597 	list_add_tail(&piocb->list, &pring->txcmplq);
1598 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1599 
1600 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1601 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1602 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1603 		BUG_ON(!piocb->vport);
1604 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1605 			mod_timer(&piocb->vport->els_tmofunc,
1606 				  jiffies +
1607 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 /**
1614  * lpfc_sli_ringtx_get - Get first element of the txq
1615  * @phba: Pointer to HBA context object.
1616  * @pring: Pointer to driver SLI ring object.
1617  *
1618  * This function is called with hbalock held to get next
1619  * iocb in txq of the given ring. If there is any iocb in
1620  * the txq, the function returns first iocb in the list after
1621  * removing the iocb from the list, else it returns NULL.
1622  **/
1623 struct lpfc_iocbq *
1624 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1625 {
1626 	struct lpfc_iocbq *cmd_iocb;
1627 
1628 	lockdep_assert_held(&phba->hbalock);
1629 
1630 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1631 	return cmd_iocb;
1632 }
1633 
1634 /**
1635  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1636  * @phba: Pointer to HBA context object.
1637  * @pring: Pointer to driver SLI ring object.
1638  *
1639  * This function is called with hbalock held and the caller must post the
1640  * iocb without releasing the lock. If the caller releases the lock,
1641  * iocb slot returned by the function is not guaranteed to be available.
1642  * The function returns pointer to the next available iocb slot if there
1643  * is available slot in the ring, else it returns NULL.
1644  * If the get index of the ring is ahead of the put index, the function
1645  * will post an error attention event to the worker thread to take the
1646  * HBA to offline state.
1647  **/
1648 static IOCB_t *
1649 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1650 {
1651 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1652 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1653 
1654 	lockdep_assert_held(&phba->hbalock);
1655 
1656 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1657 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1658 		pring->sli.sli3.next_cmdidx = 0;
1659 
1660 	if (unlikely(pring->sli.sli3.local_getidx ==
1661 		pring->sli.sli3.next_cmdidx)) {
1662 
1663 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1664 
1665 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1666 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1667 					"0315 Ring %d issue: portCmdGet %d "
1668 					"is bigger than cmd ring %d\n",
1669 					pring->ringno,
1670 					pring->sli.sli3.local_getidx,
1671 					max_cmd_idx);
1672 
1673 			phba->link_state = LPFC_HBA_ERROR;
1674 			/*
1675 			 * All error attention handlers are posted to
1676 			 * worker thread
1677 			 */
1678 			phba->work_ha |= HA_ERATT;
1679 			phba->work_hs = HS_FFER3;
1680 
1681 			lpfc_worker_wake_up(phba);
1682 
1683 			return NULL;
1684 		}
1685 
1686 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1687 			return NULL;
1688 	}
1689 
1690 	return lpfc_cmd_iocb(phba, pring);
1691 }
1692 
1693 /**
1694  * lpfc_sli_next_iotag - Get an iotag for the iocb
1695  * @phba: Pointer to HBA context object.
1696  * @iocbq: Pointer to driver iocb object.
1697  *
1698  * This function gets an iotag for the iocb. If there is no unused iotag and
1699  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1700  * array and assigns a new iotag.
1701  * The function returns the allocated iotag if successful, else returns zero.
1702  * Zero is not a valid iotag.
1703  * The caller is not required to hold any lock.
1704  **/
1705 uint16_t
1706 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1707 {
1708 	struct lpfc_iocbq **new_arr;
1709 	struct lpfc_iocbq **old_arr;
1710 	size_t new_len;
1711 	struct lpfc_sli *psli = &phba->sli;
1712 	uint16_t iotag;
1713 
1714 	spin_lock_irq(&phba->hbalock);
1715 	iotag = psli->last_iotag;
1716 	if(++iotag < psli->iocbq_lookup_len) {
1717 		psli->last_iotag = iotag;
1718 		psli->iocbq_lookup[iotag] = iocbq;
1719 		spin_unlock_irq(&phba->hbalock);
1720 		iocbq->iotag = iotag;
1721 		return iotag;
1722 	} else if (psli->iocbq_lookup_len < (0xffff
1723 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1724 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1725 		spin_unlock_irq(&phba->hbalock);
1726 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1727 				  GFP_KERNEL);
1728 		if (new_arr) {
1729 			spin_lock_irq(&phba->hbalock);
1730 			old_arr = psli->iocbq_lookup;
1731 			if (new_len <= psli->iocbq_lookup_len) {
1732 				/* highly unprobable case */
1733 				kfree(new_arr);
1734 				iotag = psli->last_iotag;
1735 				if(++iotag < psli->iocbq_lookup_len) {
1736 					psli->last_iotag = iotag;
1737 					psli->iocbq_lookup[iotag] = iocbq;
1738 					spin_unlock_irq(&phba->hbalock);
1739 					iocbq->iotag = iotag;
1740 					return iotag;
1741 				}
1742 				spin_unlock_irq(&phba->hbalock);
1743 				return 0;
1744 			}
1745 			if (psli->iocbq_lookup)
1746 				memcpy(new_arr, old_arr,
1747 				       ((psli->last_iotag  + 1) *
1748 					sizeof (struct lpfc_iocbq *)));
1749 			psli->iocbq_lookup = new_arr;
1750 			psli->iocbq_lookup_len = new_len;
1751 			psli->last_iotag = iotag;
1752 			psli->iocbq_lookup[iotag] = iocbq;
1753 			spin_unlock_irq(&phba->hbalock);
1754 			iocbq->iotag = iotag;
1755 			kfree(old_arr);
1756 			return iotag;
1757 		}
1758 	} else
1759 		spin_unlock_irq(&phba->hbalock);
1760 
1761 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1762 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1763 			psli->last_iotag);
1764 
1765 	return 0;
1766 }
1767 
1768 /**
1769  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1770  * @phba: Pointer to HBA context object.
1771  * @pring: Pointer to driver SLI ring object.
1772  * @iocb: Pointer to iocb slot in the ring.
1773  * @nextiocb: Pointer to driver iocb object which need to be
1774  *            posted to firmware.
1775  *
1776  * This function is called with hbalock held to post a new iocb to
1777  * the firmware. This function copies the new iocb to ring iocb slot and
1778  * updates the ring pointers. It adds the new iocb to txcmplq if there is
1779  * a completion call back for this iocb else the function will free the
1780  * iocb object.
1781  **/
1782 static void
1783 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1784 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1785 {
1786 	lockdep_assert_held(&phba->hbalock);
1787 	/*
1788 	 * Set up an iotag
1789 	 */
1790 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1791 
1792 
1793 	if (pring->ringno == LPFC_ELS_RING) {
1794 		lpfc_debugfs_slow_ring_trc(phba,
1795 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1796 			*(((uint32_t *) &nextiocb->iocb) + 4),
1797 			*(((uint32_t *) &nextiocb->iocb) + 6),
1798 			*(((uint32_t *) &nextiocb->iocb) + 7));
1799 	}
1800 
1801 	/*
1802 	 * Issue iocb command to adapter
1803 	 */
1804 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1805 	wmb();
1806 	pring->stats.iocb_cmd++;
1807 
1808 	/*
1809 	 * If there is no completion routine to call, we can release the
1810 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1811 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1812 	 */
1813 	if (nextiocb->iocb_cmpl)
1814 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1815 	else
1816 		__lpfc_sli_release_iocbq(phba, nextiocb);
1817 
1818 	/*
1819 	 * Let the HBA know what IOCB slot will be the next one the
1820 	 * driver will put a command into.
1821 	 */
1822 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1823 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1824 }
1825 
1826 /**
1827  * lpfc_sli_update_full_ring - Update the chip attention register
1828  * @phba: Pointer to HBA context object.
1829  * @pring: Pointer to driver SLI ring object.
1830  *
1831  * The caller is not required to hold any lock for calling this function.
1832  * This function updates the chip attention bits for the ring to inform firmware
1833  * that there are pending work to be done for this ring and requests an
1834  * interrupt when there is space available in the ring. This function is
1835  * called when the driver is unable to post more iocbs to the ring due
1836  * to unavailability of space in the ring.
1837  **/
1838 static void
1839 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1840 {
1841 	int ringno = pring->ringno;
1842 
1843 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1844 
1845 	wmb();
1846 
1847 	/*
1848 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1849 	 * The HBA will tell us when an IOCB entry is available.
1850 	 */
1851 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1852 	readl(phba->CAregaddr); /* flush */
1853 
1854 	pring->stats.iocb_cmd_full++;
1855 }
1856 
1857 /**
1858  * lpfc_sli_update_ring - Update chip attention register
1859  * @phba: Pointer to HBA context object.
1860  * @pring: Pointer to driver SLI ring object.
1861  *
1862  * This function updates the chip attention register bit for the
1863  * given ring to inform HBA that there is more work to be done
1864  * in this ring. The caller is not required to hold any lock.
1865  **/
1866 static void
1867 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1868 {
1869 	int ringno = pring->ringno;
1870 
1871 	/*
1872 	 * Tell the HBA that there is work to do in this ring.
1873 	 */
1874 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1875 		wmb();
1876 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1877 		readl(phba->CAregaddr); /* flush */
1878 	}
1879 }
1880 
1881 /**
1882  * lpfc_sli_resume_iocb - Process iocbs in the txq
1883  * @phba: Pointer to HBA context object.
1884  * @pring: Pointer to driver SLI ring object.
1885  *
1886  * This function is called with hbalock held to post pending iocbs
1887  * in the txq to the firmware. This function is called when driver
1888  * detects space available in the ring.
1889  **/
1890 static void
1891 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1892 {
1893 	IOCB_t *iocb;
1894 	struct lpfc_iocbq *nextiocb;
1895 
1896 	lockdep_assert_held(&phba->hbalock);
1897 
1898 	/*
1899 	 * Check to see if:
1900 	 *  (a) there is anything on the txq to send
1901 	 *  (b) link is up
1902 	 *  (c) link attention events can be processed (fcp ring only)
1903 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1904 	 */
1905 
1906 	if (lpfc_is_link_up(phba) &&
1907 	    (!list_empty(&pring->txq)) &&
1908 	    (pring->ringno != LPFC_FCP_RING ||
1909 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1910 
1911 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1912 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1913 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1914 
1915 		if (iocb)
1916 			lpfc_sli_update_ring(phba, pring);
1917 		else
1918 			lpfc_sli_update_full_ring(phba, pring);
1919 	}
1920 
1921 	return;
1922 }
1923 
1924 /**
1925  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1926  * @phba: Pointer to HBA context object.
1927  * @hbqno: HBQ number.
1928  *
1929  * This function is called with hbalock held to get the next
1930  * available slot for the given HBQ. If there is free slot
1931  * available for the HBQ it will return pointer to the next available
1932  * HBQ entry else it will return NULL.
1933  **/
1934 static struct lpfc_hbq_entry *
1935 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1936 {
1937 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1938 
1939 	lockdep_assert_held(&phba->hbalock);
1940 
1941 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1942 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1943 		hbqp->next_hbqPutIdx = 0;
1944 
1945 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1946 		uint32_t raw_index = phba->hbq_get[hbqno];
1947 		uint32_t getidx = le32_to_cpu(raw_index);
1948 
1949 		hbqp->local_hbqGetIdx = getidx;
1950 
1951 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1952 			lpfc_printf_log(phba, KERN_ERR,
1953 					LOG_SLI | LOG_VPORT,
1954 					"1802 HBQ %d: local_hbqGetIdx "
1955 					"%u is > than hbqp->entry_count %u\n",
1956 					hbqno, hbqp->local_hbqGetIdx,
1957 					hbqp->entry_count);
1958 
1959 			phba->link_state = LPFC_HBA_ERROR;
1960 			return NULL;
1961 		}
1962 
1963 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1964 			return NULL;
1965 	}
1966 
1967 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1968 			hbqp->hbqPutIdx;
1969 }
1970 
1971 /**
1972  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1973  * @phba: Pointer to HBA context object.
1974  *
1975  * This function is called with no lock held to free all the
1976  * hbq buffers while uninitializing the SLI interface. It also
1977  * frees the HBQ buffers returned by the firmware but not yet
1978  * processed by the upper layers.
1979  **/
1980 void
1981 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1982 {
1983 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1984 	struct hbq_dmabuf *hbq_buf;
1985 	unsigned long flags;
1986 	int i, hbq_count;
1987 
1988 	hbq_count = lpfc_sli_hbq_count();
1989 	/* Return all memory used by all HBQs */
1990 	spin_lock_irqsave(&phba->hbalock, flags);
1991 	for (i = 0; i < hbq_count; ++i) {
1992 		list_for_each_entry_safe(dmabuf, next_dmabuf,
1993 				&phba->hbqs[i].hbq_buffer_list, list) {
1994 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1995 			list_del(&hbq_buf->dbuf.list);
1996 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1997 		}
1998 		phba->hbqs[i].buffer_count = 0;
1999 	}
2000 
2001 	/* Mark the HBQs not in use */
2002 	phba->hbq_in_use = 0;
2003 	spin_unlock_irqrestore(&phba->hbalock, flags);
2004 }
2005 
2006 /**
2007  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2008  * @phba: Pointer to HBA context object.
2009  * @hbqno: HBQ number.
2010  * @hbq_buf: Pointer to HBQ buffer.
2011  *
2012  * This function is called with the hbalock held to post a
2013  * hbq buffer to the firmware. If the function finds an empty
2014  * slot in the HBQ, it will post the buffer. The function will return
2015  * pointer to the hbq entry if it successfully post the buffer
2016  * else it will return NULL.
2017  **/
2018 static int
2019 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2020 			 struct hbq_dmabuf *hbq_buf)
2021 {
2022 	lockdep_assert_held(&phba->hbalock);
2023 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2024 }
2025 
2026 /**
2027  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2028  * @phba: Pointer to HBA context object.
2029  * @hbqno: HBQ number.
2030  * @hbq_buf: Pointer to HBQ buffer.
2031  *
2032  * This function is called with the hbalock held to post a hbq buffer to the
2033  * firmware. If the function finds an empty slot in the HBQ, it will post the
2034  * buffer and place it on the hbq_buffer_list. The function will return zero if
2035  * it successfully post the buffer else it will return an error.
2036  **/
2037 static int
2038 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2039 			    struct hbq_dmabuf *hbq_buf)
2040 {
2041 	struct lpfc_hbq_entry *hbqe;
2042 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2043 
2044 	lockdep_assert_held(&phba->hbalock);
2045 	/* Get next HBQ entry slot to use */
2046 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2047 	if (hbqe) {
2048 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2049 
2050 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2051 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2052 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2053 		hbqe->bde.tus.f.bdeFlags = 0;
2054 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2055 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2056 				/* Sync SLIM */
2057 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2058 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2059 				/* flush */
2060 		readl(phba->hbq_put + hbqno);
2061 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2062 		return 0;
2063 	} else
2064 		return -ENOMEM;
2065 }
2066 
2067 /**
2068  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2069  * @phba: Pointer to HBA context object.
2070  * @hbqno: HBQ number.
2071  * @hbq_buf: Pointer to HBQ buffer.
2072  *
2073  * This function is called with the hbalock held to post an RQE to the SLI4
2074  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2075  * the hbq_buffer_list and return zero, otherwise it will return an error.
2076  **/
2077 static int
2078 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2079 			    struct hbq_dmabuf *hbq_buf)
2080 {
2081 	int rc;
2082 	struct lpfc_rqe hrqe;
2083 	struct lpfc_rqe drqe;
2084 	struct lpfc_queue *hrq;
2085 	struct lpfc_queue *drq;
2086 
2087 	if (hbqno != LPFC_ELS_HBQ)
2088 		return 1;
2089 	hrq = phba->sli4_hba.hdr_rq;
2090 	drq = phba->sli4_hba.dat_rq;
2091 
2092 	lockdep_assert_held(&phba->hbalock);
2093 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2094 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2095 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2096 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2097 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2098 	if (rc < 0)
2099 		return rc;
2100 	hbq_buf->tag = (rc | (hbqno << 16));
2101 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2102 	return 0;
2103 }
2104 
2105 /* HBQ for ELS and CT traffic. */
2106 static struct lpfc_hbq_init lpfc_els_hbq = {
2107 	.rn = 1,
2108 	.entry_count = 256,
2109 	.mask_count = 0,
2110 	.profile = 0,
2111 	.ring_mask = (1 << LPFC_ELS_RING),
2112 	.buffer_count = 0,
2113 	.init_count = 40,
2114 	.add_count = 40,
2115 };
2116 
2117 /* Array of HBQs */
2118 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2119 	&lpfc_els_hbq,
2120 };
2121 
2122 /**
2123  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2124  * @phba: Pointer to HBA context object.
2125  * @hbqno: HBQ number.
2126  * @count: Number of HBQ buffers to be posted.
2127  *
2128  * This function is called with no lock held to post more hbq buffers to the
2129  * given HBQ. The function returns the number of HBQ buffers successfully
2130  * posted.
2131  **/
2132 static int
2133 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2134 {
2135 	uint32_t i, posted = 0;
2136 	unsigned long flags;
2137 	struct hbq_dmabuf *hbq_buffer;
2138 	LIST_HEAD(hbq_buf_list);
2139 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2140 		return 0;
2141 
2142 	if ((phba->hbqs[hbqno].buffer_count + count) >
2143 	    lpfc_hbq_defs[hbqno]->entry_count)
2144 		count = lpfc_hbq_defs[hbqno]->entry_count -
2145 					phba->hbqs[hbqno].buffer_count;
2146 	if (!count)
2147 		return 0;
2148 	/* Allocate HBQ entries */
2149 	for (i = 0; i < count; i++) {
2150 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2151 		if (!hbq_buffer)
2152 			break;
2153 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2154 	}
2155 	/* Check whether HBQ is still in use */
2156 	spin_lock_irqsave(&phba->hbalock, flags);
2157 	if (!phba->hbq_in_use)
2158 		goto err;
2159 	while (!list_empty(&hbq_buf_list)) {
2160 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2161 				 dbuf.list);
2162 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2163 				      (hbqno << 16));
2164 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2165 			phba->hbqs[hbqno].buffer_count++;
2166 			posted++;
2167 		} else
2168 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2169 	}
2170 	spin_unlock_irqrestore(&phba->hbalock, flags);
2171 	return posted;
2172 err:
2173 	spin_unlock_irqrestore(&phba->hbalock, flags);
2174 	while (!list_empty(&hbq_buf_list)) {
2175 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2176 				 dbuf.list);
2177 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2178 	}
2179 	return 0;
2180 }
2181 
2182 /**
2183  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2184  * @phba: Pointer to HBA context object.
2185  * @qno: HBQ number.
2186  *
2187  * This function posts more buffers to the HBQ. This function
2188  * is called with no lock held. The function returns the number of HBQ entries
2189  * successfully allocated.
2190  **/
2191 int
2192 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2193 {
2194 	if (phba->sli_rev == LPFC_SLI_REV4)
2195 		return 0;
2196 	else
2197 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2198 					 lpfc_hbq_defs[qno]->add_count);
2199 }
2200 
2201 /**
2202  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2203  * @phba: Pointer to HBA context object.
2204  * @qno:  HBQ queue number.
2205  *
2206  * This function is called from SLI initialization code path with
2207  * no lock held to post initial HBQ buffers to firmware. The
2208  * function returns the number of HBQ entries successfully allocated.
2209  **/
2210 static int
2211 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2212 {
2213 	if (phba->sli_rev == LPFC_SLI_REV4)
2214 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2215 					lpfc_hbq_defs[qno]->entry_count);
2216 	else
2217 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2218 					 lpfc_hbq_defs[qno]->init_count);
2219 }
2220 
2221 /**
2222  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2223  * @phba: Pointer to HBA context object.
2224  * @hbqno: HBQ number.
2225  *
2226  * This function removes the first hbq buffer on an hbq list and returns a
2227  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2228  **/
2229 static struct hbq_dmabuf *
2230 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2231 {
2232 	struct lpfc_dmabuf *d_buf;
2233 
2234 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2235 	if (!d_buf)
2236 		return NULL;
2237 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2238 }
2239 
2240 /**
2241  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2242  * @phba: Pointer to HBA context object.
2243  * @hbqno: HBQ number.
2244  *
2245  * This function removes the first RQ buffer on an RQ buffer list and returns a
2246  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2247  **/
2248 static struct rqb_dmabuf *
2249 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2250 {
2251 	struct lpfc_dmabuf *h_buf;
2252 	struct lpfc_rqb *rqbp;
2253 
2254 	rqbp = hrq->rqbp;
2255 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2256 			 struct lpfc_dmabuf, list);
2257 	if (!h_buf)
2258 		return NULL;
2259 	rqbp->buffer_count--;
2260 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2261 }
2262 
2263 /**
2264  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2265  * @phba: Pointer to HBA context object.
2266  * @tag: Tag of the hbq buffer.
2267  *
2268  * This function searches for the hbq buffer associated with the given tag in
2269  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2270  * otherwise it returns NULL.
2271  **/
2272 static struct hbq_dmabuf *
2273 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2274 {
2275 	struct lpfc_dmabuf *d_buf;
2276 	struct hbq_dmabuf *hbq_buf;
2277 	uint32_t hbqno;
2278 
2279 	hbqno = tag >> 16;
2280 	if (hbqno >= LPFC_MAX_HBQS)
2281 		return NULL;
2282 
2283 	spin_lock_irq(&phba->hbalock);
2284 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2285 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2286 		if (hbq_buf->tag == tag) {
2287 			spin_unlock_irq(&phba->hbalock);
2288 			return hbq_buf;
2289 		}
2290 	}
2291 	spin_unlock_irq(&phba->hbalock);
2292 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2293 			"1803 Bad hbq tag. Data: x%x x%x\n",
2294 			tag, phba->hbqs[tag >> 16].buffer_count);
2295 	return NULL;
2296 }
2297 
2298 /**
2299  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2300  * @phba: Pointer to HBA context object.
2301  * @hbq_buffer: Pointer to HBQ buffer.
2302  *
2303  * This function is called with hbalock. This function gives back
2304  * the hbq buffer to firmware. If the HBQ does not have space to
2305  * post the buffer, it will free the buffer.
2306  **/
2307 void
2308 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2309 {
2310 	uint32_t hbqno;
2311 
2312 	if (hbq_buffer) {
2313 		hbqno = hbq_buffer->tag >> 16;
2314 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2315 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2316 	}
2317 }
2318 
2319 /**
2320  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2321  * @mbxCommand: mailbox command code.
2322  *
2323  * This function is called by the mailbox event handler function to verify
2324  * that the completed mailbox command is a legitimate mailbox command. If the
2325  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2326  * and the mailbox event handler will take the HBA offline.
2327  **/
2328 static int
2329 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2330 {
2331 	uint8_t ret;
2332 
2333 	switch (mbxCommand) {
2334 	case MBX_LOAD_SM:
2335 	case MBX_READ_NV:
2336 	case MBX_WRITE_NV:
2337 	case MBX_WRITE_VPARMS:
2338 	case MBX_RUN_BIU_DIAG:
2339 	case MBX_INIT_LINK:
2340 	case MBX_DOWN_LINK:
2341 	case MBX_CONFIG_LINK:
2342 	case MBX_CONFIG_RING:
2343 	case MBX_RESET_RING:
2344 	case MBX_READ_CONFIG:
2345 	case MBX_READ_RCONFIG:
2346 	case MBX_READ_SPARM:
2347 	case MBX_READ_STATUS:
2348 	case MBX_READ_RPI:
2349 	case MBX_READ_XRI:
2350 	case MBX_READ_REV:
2351 	case MBX_READ_LNK_STAT:
2352 	case MBX_REG_LOGIN:
2353 	case MBX_UNREG_LOGIN:
2354 	case MBX_CLEAR_LA:
2355 	case MBX_DUMP_MEMORY:
2356 	case MBX_DUMP_CONTEXT:
2357 	case MBX_RUN_DIAGS:
2358 	case MBX_RESTART:
2359 	case MBX_UPDATE_CFG:
2360 	case MBX_DOWN_LOAD:
2361 	case MBX_DEL_LD_ENTRY:
2362 	case MBX_RUN_PROGRAM:
2363 	case MBX_SET_MASK:
2364 	case MBX_SET_VARIABLE:
2365 	case MBX_UNREG_D_ID:
2366 	case MBX_KILL_BOARD:
2367 	case MBX_CONFIG_FARP:
2368 	case MBX_BEACON:
2369 	case MBX_LOAD_AREA:
2370 	case MBX_RUN_BIU_DIAG64:
2371 	case MBX_CONFIG_PORT:
2372 	case MBX_READ_SPARM64:
2373 	case MBX_READ_RPI64:
2374 	case MBX_REG_LOGIN64:
2375 	case MBX_READ_TOPOLOGY:
2376 	case MBX_WRITE_WWN:
2377 	case MBX_SET_DEBUG:
2378 	case MBX_LOAD_EXP_ROM:
2379 	case MBX_ASYNCEVT_ENABLE:
2380 	case MBX_REG_VPI:
2381 	case MBX_UNREG_VPI:
2382 	case MBX_HEARTBEAT:
2383 	case MBX_PORT_CAPABILITIES:
2384 	case MBX_PORT_IOV_CONTROL:
2385 	case MBX_SLI4_CONFIG:
2386 	case MBX_SLI4_REQ_FTRS:
2387 	case MBX_REG_FCFI:
2388 	case MBX_UNREG_FCFI:
2389 	case MBX_REG_VFI:
2390 	case MBX_UNREG_VFI:
2391 	case MBX_INIT_VPI:
2392 	case MBX_INIT_VFI:
2393 	case MBX_RESUME_RPI:
2394 	case MBX_READ_EVENT_LOG_STATUS:
2395 	case MBX_READ_EVENT_LOG:
2396 	case MBX_SECURITY_MGMT:
2397 	case MBX_AUTH_PORT:
2398 	case MBX_ACCESS_VDATA:
2399 		ret = mbxCommand;
2400 		break;
2401 	default:
2402 		ret = MBX_SHUTDOWN;
2403 		break;
2404 	}
2405 	return ret;
2406 }
2407 
2408 /**
2409  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2410  * @phba: Pointer to HBA context object.
2411  * @pmboxq: Pointer to mailbox command.
2412  *
2413  * This is completion handler function for mailbox commands issued from
2414  * lpfc_sli_issue_mbox_wait function. This function is called by the
2415  * mailbox event handler function with no lock held. This function
2416  * will wake up thread waiting on the wait queue pointed by context1
2417  * of the mailbox.
2418  **/
2419 void
2420 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2421 {
2422 	unsigned long drvr_flag;
2423 	struct completion *pmbox_done;
2424 
2425 	/*
2426 	 * If pmbox_done is empty, the driver thread gave up waiting and
2427 	 * continued running.
2428 	 */
2429 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2430 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2431 	pmbox_done = (struct completion *)pmboxq->context3;
2432 	if (pmbox_done)
2433 		complete(pmbox_done);
2434 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2435 	return;
2436 }
2437 
2438 
2439 /**
2440  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2441  * @phba: Pointer to HBA context object.
2442  * @pmb: Pointer to mailbox object.
2443  *
2444  * This function is the default mailbox completion handler. It
2445  * frees the memory resources associated with the completed mailbox
2446  * command. If the completed command is a REG_LOGIN mailbox command,
2447  * this function will issue a UREG_LOGIN to re-claim the RPI.
2448  **/
2449 void
2450 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2451 {
2452 	struct lpfc_vport  *vport = pmb->vport;
2453 	struct lpfc_dmabuf *mp;
2454 	struct lpfc_nodelist *ndlp;
2455 	struct Scsi_Host *shost;
2456 	uint16_t rpi, vpi;
2457 	int rc;
2458 
2459 	mp = (struct lpfc_dmabuf *) (pmb->context1);
2460 
2461 	if (mp) {
2462 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2463 		kfree(mp);
2464 	}
2465 
2466 	/*
2467 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2468 	 * is in re-discovery driver need to cleanup the RPI.
2469 	 */
2470 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2471 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2472 	    !pmb->u.mb.mbxStatus) {
2473 		rpi = pmb->u.mb.un.varWords[0];
2474 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2475 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2476 		pmb->vport = vport;
2477 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2478 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2479 		if (rc != MBX_NOT_FINISHED)
2480 			return;
2481 	}
2482 
2483 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2484 		!(phba->pport->load_flag & FC_UNLOADING) &&
2485 		!pmb->u.mb.mbxStatus) {
2486 		shost = lpfc_shost_from_vport(vport);
2487 		spin_lock_irq(shost->host_lock);
2488 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2489 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2490 		spin_unlock_irq(shost->host_lock);
2491 	}
2492 
2493 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2494 		ndlp = (struct lpfc_nodelist *)pmb->context2;
2495 		lpfc_nlp_put(ndlp);
2496 		pmb->context2 = NULL;
2497 	}
2498 
2499 	/* Check security permission status on INIT_LINK mailbox command */
2500 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2501 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2502 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2503 				"2860 SLI authentication is required "
2504 				"for INIT_LINK but has not done yet\n");
2505 
2506 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2507 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2508 	else
2509 		mempool_free(pmb, phba->mbox_mem_pool);
2510 }
2511  /**
2512  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2513  * @phba: Pointer to HBA context object.
2514  * @pmb: Pointer to mailbox object.
2515  *
2516  * This function is the unreg rpi mailbox completion handler. It
2517  * frees the memory resources associated with the completed mailbox
2518  * command. An additional refrenece is put on the ndlp to prevent
2519  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2520  * the unreg mailbox command completes, this routine puts the
2521  * reference back.
2522  *
2523  **/
2524 void
2525 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2526 {
2527 	struct lpfc_vport  *vport = pmb->vport;
2528 	struct lpfc_nodelist *ndlp;
2529 
2530 	ndlp = pmb->context1;
2531 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2532 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2533 		    (bf_get(lpfc_sli_intf_if_type,
2534 		     &phba->sli4_hba.sli_intf) >=
2535 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2536 			if (ndlp) {
2537 				lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
2538 						 "0010 UNREG_LOGIN vpi:%x "
2539 						 "rpi:%x DID:%x map:%x %p\n",
2540 						 vport->vpi, ndlp->nlp_rpi,
2541 						 ndlp->nlp_DID,
2542 						 ndlp->nlp_usg_map, ndlp);
2543 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2544 				lpfc_nlp_put(ndlp);
2545 			}
2546 		}
2547 	}
2548 
2549 	mempool_free(pmb, phba->mbox_mem_pool);
2550 }
2551 
2552 /**
2553  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2554  * @phba: Pointer to HBA context object.
2555  *
2556  * This function is called with no lock held. This function processes all
2557  * the completed mailbox commands and gives it to upper layers. The interrupt
2558  * service routine processes mailbox completion interrupt and adds completed
2559  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2560  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2561  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2562  * function returns the mailbox commands to the upper layer by calling the
2563  * completion handler function of each mailbox.
2564  **/
2565 int
2566 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2567 {
2568 	MAILBOX_t *pmbox;
2569 	LPFC_MBOXQ_t *pmb;
2570 	int rc;
2571 	LIST_HEAD(cmplq);
2572 
2573 	phba->sli.slistat.mbox_event++;
2574 
2575 	/* Get all completed mailboxe buffers into the cmplq */
2576 	spin_lock_irq(&phba->hbalock);
2577 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2578 	spin_unlock_irq(&phba->hbalock);
2579 
2580 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2581 	do {
2582 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2583 		if (pmb == NULL)
2584 			break;
2585 
2586 		pmbox = &pmb->u.mb;
2587 
2588 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2589 			if (pmb->vport) {
2590 				lpfc_debugfs_disc_trc(pmb->vport,
2591 					LPFC_DISC_TRC_MBOX_VPORT,
2592 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2593 					(uint32_t)pmbox->mbxCommand,
2594 					pmbox->un.varWords[0],
2595 					pmbox->un.varWords[1]);
2596 			}
2597 			else {
2598 				lpfc_debugfs_disc_trc(phba->pport,
2599 					LPFC_DISC_TRC_MBOX,
2600 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2601 					(uint32_t)pmbox->mbxCommand,
2602 					pmbox->un.varWords[0],
2603 					pmbox->un.varWords[1]);
2604 			}
2605 		}
2606 
2607 		/*
2608 		 * It is a fatal error if unknown mbox command completion.
2609 		 */
2610 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2611 		    MBX_SHUTDOWN) {
2612 			/* Unknown mailbox command compl */
2613 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2614 					"(%d):0323 Unknown Mailbox command "
2615 					"x%x (x%x/x%x) Cmpl\n",
2616 					pmb->vport ? pmb->vport->vpi : 0,
2617 					pmbox->mbxCommand,
2618 					lpfc_sli_config_mbox_subsys_get(phba,
2619 									pmb),
2620 					lpfc_sli_config_mbox_opcode_get(phba,
2621 									pmb));
2622 			phba->link_state = LPFC_HBA_ERROR;
2623 			phba->work_hs = HS_FFER3;
2624 			lpfc_handle_eratt(phba);
2625 			continue;
2626 		}
2627 
2628 		if (pmbox->mbxStatus) {
2629 			phba->sli.slistat.mbox_stat_err++;
2630 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2631 				/* Mbox cmd cmpl error - RETRYing */
2632 				lpfc_printf_log(phba, KERN_INFO,
2633 					LOG_MBOX | LOG_SLI,
2634 					"(%d):0305 Mbox cmd cmpl "
2635 					"error - RETRYing Data: x%x "
2636 					"(x%x/x%x) x%x x%x x%x\n",
2637 					pmb->vport ? pmb->vport->vpi : 0,
2638 					pmbox->mbxCommand,
2639 					lpfc_sli_config_mbox_subsys_get(phba,
2640 									pmb),
2641 					lpfc_sli_config_mbox_opcode_get(phba,
2642 									pmb),
2643 					pmbox->mbxStatus,
2644 					pmbox->un.varWords[0],
2645 					pmb->vport->port_state);
2646 				pmbox->mbxStatus = 0;
2647 				pmbox->mbxOwner = OWN_HOST;
2648 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2649 				if (rc != MBX_NOT_FINISHED)
2650 					continue;
2651 			}
2652 		}
2653 
2654 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2655 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2656 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2657 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2658 				"x%x x%x x%x\n",
2659 				pmb->vport ? pmb->vport->vpi : 0,
2660 				pmbox->mbxCommand,
2661 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2662 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2663 				pmb->mbox_cmpl,
2664 				*((uint32_t *) pmbox),
2665 				pmbox->un.varWords[0],
2666 				pmbox->un.varWords[1],
2667 				pmbox->un.varWords[2],
2668 				pmbox->un.varWords[3],
2669 				pmbox->un.varWords[4],
2670 				pmbox->un.varWords[5],
2671 				pmbox->un.varWords[6],
2672 				pmbox->un.varWords[7],
2673 				pmbox->un.varWords[8],
2674 				pmbox->un.varWords[9],
2675 				pmbox->un.varWords[10]);
2676 
2677 		if (pmb->mbox_cmpl)
2678 			pmb->mbox_cmpl(phba,pmb);
2679 	} while (1);
2680 	return 0;
2681 }
2682 
2683 /**
2684  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2685  * @phba: Pointer to HBA context object.
2686  * @pring: Pointer to driver SLI ring object.
2687  * @tag: buffer tag.
2688  *
2689  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2690  * is set in the tag the buffer is posted for a particular exchange,
2691  * the function will return the buffer without replacing the buffer.
2692  * If the buffer is for unsolicited ELS or CT traffic, this function
2693  * returns the buffer and also posts another buffer to the firmware.
2694  **/
2695 static struct lpfc_dmabuf *
2696 lpfc_sli_get_buff(struct lpfc_hba *phba,
2697 		  struct lpfc_sli_ring *pring,
2698 		  uint32_t tag)
2699 {
2700 	struct hbq_dmabuf *hbq_entry;
2701 
2702 	if (tag & QUE_BUFTAG_BIT)
2703 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2704 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2705 	if (!hbq_entry)
2706 		return NULL;
2707 	return &hbq_entry->dbuf;
2708 }
2709 
2710 /**
2711  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2712  * @phba: Pointer to HBA context object.
2713  * @pring: Pointer to driver SLI ring object.
2714  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2715  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2716  * @fch_type: the type for the first frame of the sequence.
2717  *
2718  * This function is called with no lock held. This function uses the r_ctl and
2719  * type of the received sequence to find the correct callback function to call
2720  * to process the sequence.
2721  **/
2722 static int
2723 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2724 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2725 			 uint32_t fch_type)
2726 {
2727 	int i;
2728 
2729 	switch (fch_type) {
2730 	case FC_TYPE_NVME:
2731 		lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2732 		return 1;
2733 	default:
2734 		break;
2735 	}
2736 
2737 	/* unSolicited Responses */
2738 	if (pring->prt[0].profile) {
2739 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2740 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2741 									saveq);
2742 		return 1;
2743 	}
2744 	/* We must search, based on rctl / type
2745 	   for the right routine */
2746 	for (i = 0; i < pring->num_mask; i++) {
2747 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2748 		    (pring->prt[i].type == fch_type)) {
2749 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2750 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2751 						(phba, pring, saveq);
2752 			return 1;
2753 		}
2754 	}
2755 	return 0;
2756 }
2757 
2758 /**
2759  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2760  * @phba: Pointer to HBA context object.
2761  * @pring: Pointer to driver SLI ring object.
2762  * @saveq: Pointer to the unsolicited iocb.
2763  *
2764  * This function is called with no lock held by the ring event handler
2765  * when there is an unsolicited iocb posted to the response ring by the
2766  * firmware. This function gets the buffer associated with the iocbs
2767  * and calls the event handler for the ring. This function handles both
2768  * qring buffers and hbq buffers.
2769  * When the function returns 1 the caller can free the iocb object otherwise
2770  * upper layer functions will free the iocb objects.
2771  **/
2772 static int
2773 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2774 			    struct lpfc_iocbq *saveq)
2775 {
2776 	IOCB_t           * irsp;
2777 	WORD5            * w5p;
2778 	uint32_t           Rctl, Type;
2779 	struct lpfc_iocbq *iocbq;
2780 	struct lpfc_dmabuf *dmzbuf;
2781 
2782 	irsp = &(saveq->iocb);
2783 
2784 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2785 		if (pring->lpfc_sli_rcv_async_status)
2786 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2787 		else
2788 			lpfc_printf_log(phba,
2789 					KERN_WARNING,
2790 					LOG_SLI,
2791 					"0316 Ring %d handler: unexpected "
2792 					"ASYNC_STATUS iocb received evt_code "
2793 					"0x%x\n",
2794 					pring->ringno,
2795 					irsp->un.asyncstat.evt_code);
2796 		return 1;
2797 	}
2798 
2799 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2800 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2801 		if (irsp->ulpBdeCount > 0) {
2802 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2803 					irsp->un.ulpWord[3]);
2804 			lpfc_in_buf_free(phba, dmzbuf);
2805 		}
2806 
2807 		if (irsp->ulpBdeCount > 1) {
2808 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2809 					irsp->unsli3.sli3Words[3]);
2810 			lpfc_in_buf_free(phba, dmzbuf);
2811 		}
2812 
2813 		if (irsp->ulpBdeCount > 2) {
2814 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2815 				irsp->unsli3.sli3Words[7]);
2816 			lpfc_in_buf_free(phba, dmzbuf);
2817 		}
2818 
2819 		return 1;
2820 	}
2821 
2822 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2823 		if (irsp->ulpBdeCount != 0) {
2824 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
2825 						irsp->un.ulpWord[3]);
2826 			if (!saveq->context2)
2827 				lpfc_printf_log(phba,
2828 					KERN_ERR,
2829 					LOG_SLI,
2830 					"0341 Ring %d Cannot find buffer for "
2831 					"an unsolicited iocb. tag 0x%x\n",
2832 					pring->ringno,
2833 					irsp->un.ulpWord[3]);
2834 		}
2835 		if (irsp->ulpBdeCount == 2) {
2836 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
2837 						irsp->unsli3.sli3Words[7]);
2838 			if (!saveq->context3)
2839 				lpfc_printf_log(phba,
2840 					KERN_ERR,
2841 					LOG_SLI,
2842 					"0342 Ring %d Cannot find buffer for an"
2843 					" unsolicited iocb. tag 0x%x\n",
2844 					pring->ringno,
2845 					irsp->unsli3.sli3Words[7]);
2846 		}
2847 		list_for_each_entry(iocbq, &saveq->list, list) {
2848 			irsp = &(iocbq->iocb);
2849 			if (irsp->ulpBdeCount != 0) {
2850 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2851 							irsp->un.ulpWord[3]);
2852 				if (!iocbq->context2)
2853 					lpfc_printf_log(phba,
2854 						KERN_ERR,
2855 						LOG_SLI,
2856 						"0343 Ring %d Cannot find "
2857 						"buffer for an unsolicited iocb"
2858 						". tag 0x%x\n", pring->ringno,
2859 						irsp->un.ulpWord[3]);
2860 			}
2861 			if (irsp->ulpBdeCount == 2) {
2862 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2863 						irsp->unsli3.sli3Words[7]);
2864 				if (!iocbq->context3)
2865 					lpfc_printf_log(phba,
2866 						KERN_ERR,
2867 						LOG_SLI,
2868 						"0344 Ring %d Cannot find "
2869 						"buffer for an unsolicited "
2870 						"iocb. tag 0x%x\n",
2871 						pring->ringno,
2872 						irsp->unsli3.sli3Words[7]);
2873 			}
2874 		}
2875 	}
2876 	if (irsp->ulpBdeCount != 0 &&
2877 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2878 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2879 		int found = 0;
2880 
2881 		/* search continue save q for same XRI */
2882 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2883 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2884 				saveq->iocb.unsli3.rcvsli3.ox_id) {
2885 				list_add_tail(&saveq->list, &iocbq->list);
2886 				found = 1;
2887 				break;
2888 			}
2889 		}
2890 		if (!found)
2891 			list_add_tail(&saveq->clist,
2892 				      &pring->iocb_continue_saveq);
2893 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2894 			list_del_init(&iocbq->clist);
2895 			saveq = iocbq;
2896 			irsp = &(saveq->iocb);
2897 		} else
2898 			return 0;
2899 	}
2900 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2901 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2902 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2903 		Rctl = FC_RCTL_ELS_REQ;
2904 		Type = FC_TYPE_ELS;
2905 	} else {
2906 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2907 		Rctl = w5p->hcsw.Rctl;
2908 		Type = w5p->hcsw.Type;
2909 
2910 		/* Firmware Workaround */
2911 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2912 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2913 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2914 			Rctl = FC_RCTL_ELS_REQ;
2915 			Type = FC_TYPE_ELS;
2916 			w5p->hcsw.Rctl = Rctl;
2917 			w5p->hcsw.Type = Type;
2918 		}
2919 	}
2920 
2921 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2922 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2923 				"0313 Ring %d handler: unexpected Rctl x%x "
2924 				"Type x%x received\n",
2925 				pring->ringno, Rctl, Type);
2926 
2927 	return 1;
2928 }
2929 
2930 /**
2931  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2932  * @phba: Pointer to HBA context object.
2933  * @pring: Pointer to driver SLI ring object.
2934  * @prspiocb: Pointer to response iocb object.
2935  *
2936  * This function looks up the iocb_lookup table to get the command iocb
2937  * corresponding to the given response iocb using the iotag of the
2938  * response iocb. This function is called with the hbalock held
2939  * for sli3 devices or the ring_lock for sli4 devices.
2940  * This function returns the command iocb object if it finds the command
2941  * iocb else returns NULL.
2942  **/
2943 static struct lpfc_iocbq *
2944 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2945 		      struct lpfc_sli_ring *pring,
2946 		      struct lpfc_iocbq *prspiocb)
2947 {
2948 	struct lpfc_iocbq *cmd_iocb = NULL;
2949 	uint16_t iotag;
2950 	lockdep_assert_held(&phba->hbalock);
2951 
2952 	iotag = prspiocb->iocb.ulpIoTag;
2953 
2954 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2955 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
2956 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2957 			/* remove from txcmpl queue list */
2958 			list_del_init(&cmd_iocb->list);
2959 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2960 			return cmd_iocb;
2961 		}
2962 	}
2963 
2964 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2965 			"0317 iotag x%x is out of "
2966 			"range: max iotag x%x wd0 x%x\n",
2967 			iotag, phba->sli.last_iotag,
2968 			*(((uint32_t *) &prspiocb->iocb) + 7));
2969 	return NULL;
2970 }
2971 
2972 /**
2973  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
2974  * @phba: Pointer to HBA context object.
2975  * @pring: Pointer to driver SLI ring object.
2976  * @iotag: IOCB tag.
2977  *
2978  * This function looks up the iocb_lookup table to get the command iocb
2979  * corresponding to the given iotag. This function is called with the
2980  * hbalock held.
2981  * This function returns the command iocb object if it finds the command
2982  * iocb else returns NULL.
2983  **/
2984 static struct lpfc_iocbq *
2985 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
2986 			     struct lpfc_sli_ring *pring, uint16_t iotag)
2987 {
2988 	struct lpfc_iocbq *cmd_iocb = NULL;
2989 
2990 	lockdep_assert_held(&phba->hbalock);
2991 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2992 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
2993 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2994 			/* remove from txcmpl queue list */
2995 			list_del_init(&cmd_iocb->list);
2996 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2997 			return cmd_iocb;
2998 		}
2999 	}
3000 
3001 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3002 			"0372 iotag x%x lookup error: max iotag (x%x) "
3003 			"iocb_flag x%x\n",
3004 			iotag, phba->sli.last_iotag,
3005 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3006 	return NULL;
3007 }
3008 
3009 /**
3010  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3011  * @phba: Pointer to HBA context object.
3012  * @pring: Pointer to driver SLI ring object.
3013  * @saveq: Pointer to the response iocb to be processed.
3014  *
3015  * This function is called by the ring event handler for non-fcp
3016  * rings when there is a new response iocb in the response ring.
3017  * The caller is not required to hold any locks. This function
3018  * gets the command iocb associated with the response iocb and
3019  * calls the completion handler for the command iocb. If there
3020  * is no completion handler, the function will free the resources
3021  * associated with command iocb. If the response iocb is for
3022  * an already aborted command iocb, the status of the completion
3023  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3024  * This function always returns 1.
3025  **/
3026 static int
3027 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3028 			  struct lpfc_iocbq *saveq)
3029 {
3030 	struct lpfc_iocbq *cmdiocbp;
3031 	int rc = 1;
3032 	unsigned long iflag;
3033 
3034 	/* Based on the iotag field, get the cmd IOCB from the txcmplq */
3035 	if (phba->sli_rev == LPFC_SLI_REV4)
3036 		spin_lock_irqsave(&pring->ring_lock, iflag);
3037 	else
3038 		spin_lock_irqsave(&phba->hbalock, iflag);
3039 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3040 	if (phba->sli_rev == LPFC_SLI_REV4)
3041 		spin_unlock_irqrestore(&pring->ring_lock, iflag);
3042 	else
3043 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3044 
3045 	if (cmdiocbp) {
3046 		if (cmdiocbp->iocb_cmpl) {
3047 			/*
3048 			 * If an ELS command failed send an event to mgmt
3049 			 * application.
3050 			 */
3051 			if (saveq->iocb.ulpStatus &&
3052 			     (pring->ringno == LPFC_ELS_RING) &&
3053 			     (cmdiocbp->iocb.ulpCommand ==
3054 				CMD_ELS_REQUEST64_CR))
3055 				lpfc_send_els_failure_event(phba,
3056 					cmdiocbp, saveq);
3057 
3058 			/*
3059 			 * Post all ELS completions to the worker thread.
3060 			 * All other are passed to the completion callback.
3061 			 */
3062 			if (pring->ringno == LPFC_ELS_RING) {
3063 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3064 				    (cmdiocbp->iocb_flag &
3065 							LPFC_DRIVER_ABORTED)) {
3066 					spin_lock_irqsave(&phba->hbalock,
3067 							  iflag);
3068 					cmdiocbp->iocb_flag &=
3069 						~LPFC_DRIVER_ABORTED;
3070 					spin_unlock_irqrestore(&phba->hbalock,
3071 							       iflag);
3072 					saveq->iocb.ulpStatus =
3073 						IOSTAT_LOCAL_REJECT;
3074 					saveq->iocb.un.ulpWord[4] =
3075 						IOERR_SLI_ABORTED;
3076 
3077 					/* Firmware could still be in progress
3078 					 * of DMAing payload, so don't free data
3079 					 * buffer till after a hbeat.
3080 					 */
3081 					spin_lock_irqsave(&phba->hbalock,
3082 							  iflag);
3083 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3084 					spin_unlock_irqrestore(&phba->hbalock,
3085 							       iflag);
3086 				}
3087 				if (phba->sli_rev == LPFC_SLI_REV4) {
3088 					if (saveq->iocb_flag &
3089 					    LPFC_EXCHANGE_BUSY) {
3090 						/* Set cmdiocb flag for the
3091 						 * exchange busy so sgl (xri)
3092 						 * will not be released until
3093 						 * the abort xri is received
3094 						 * from hba.
3095 						 */
3096 						spin_lock_irqsave(
3097 							&phba->hbalock, iflag);
3098 						cmdiocbp->iocb_flag |=
3099 							LPFC_EXCHANGE_BUSY;
3100 						spin_unlock_irqrestore(
3101 							&phba->hbalock, iflag);
3102 					}
3103 					if (cmdiocbp->iocb_flag &
3104 					    LPFC_DRIVER_ABORTED) {
3105 						/*
3106 						 * Clear LPFC_DRIVER_ABORTED
3107 						 * bit in case it was driver
3108 						 * initiated abort.
3109 						 */
3110 						spin_lock_irqsave(
3111 							&phba->hbalock, iflag);
3112 						cmdiocbp->iocb_flag &=
3113 							~LPFC_DRIVER_ABORTED;
3114 						spin_unlock_irqrestore(
3115 							&phba->hbalock, iflag);
3116 						cmdiocbp->iocb.ulpStatus =
3117 							IOSTAT_LOCAL_REJECT;
3118 						cmdiocbp->iocb.un.ulpWord[4] =
3119 							IOERR_ABORT_REQUESTED;
3120 						/*
3121 						 * For SLI4, irsiocb contains
3122 						 * NO_XRI in sli_xritag, it
3123 						 * shall not affect releasing
3124 						 * sgl (xri) process.
3125 						 */
3126 						saveq->iocb.ulpStatus =
3127 							IOSTAT_LOCAL_REJECT;
3128 						saveq->iocb.un.ulpWord[4] =
3129 							IOERR_SLI_ABORTED;
3130 						spin_lock_irqsave(
3131 							&phba->hbalock, iflag);
3132 						saveq->iocb_flag |=
3133 							LPFC_DELAY_MEM_FREE;
3134 						spin_unlock_irqrestore(
3135 							&phba->hbalock, iflag);
3136 					}
3137 				}
3138 			}
3139 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3140 		} else
3141 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3142 	} else {
3143 		/*
3144 		 * Unknown initiating command based on the response iotag.
3145 		 * This could be the case on the ELS ring because of
3146 		 * lpfc_els_abort().
3147 		 */
3148 		if (pring->ringno != LPFC_ELS_RING) {
3149 			/*
3150 			 * Ring <ringno> handler: unexpected completion IoTag
3151 			 * <IoTag>
3152 			 */
3153 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3154 					 "0322 Ring %d handler: "
3155 					 "unexpected completion IoTag x%x "
3156 					 "Data: x%x x%x x%x x%x\n",
3157 					 pring->ringno,
3158 					 saveq->iocb.ulpIoTag,
3159 					 saveq->iocb.ulpStatus,
3160 					 saveq->iocb.un.ulpWord[4],
3161 					 saveq->iocb.ulpCommand,
3162 					 saveq->iocb.ulpContext);
3163 		}
3164 	}
3165 
3166 	return rc;
3167 }
3168 
3169 /**
3170  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3171  * @phba: Pointer to HBA context object.
3172  * @pring: Pointer to driver SLI ring object.
3173  *
3174  * This function is called from the iocb ring event handlers when
3175  * put pointer is ahead of the get pointer for a ring. This function signal
3176  * an error attention condition to the worker thread and the worker
3177  * thread will transition the HBA to offline state.
3178  **/
3179 static void
3180 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3181 {
3182 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3183 	/*
3184 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3185 	 * rsp ring <portRspMax>
3186 	 */
3187 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3188 			"0312 Ring %d handler: portRspPut %d "
3189 			"is bigger than rsp ring %d\n",
3190 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3191 			pring->sli.sli3.numRiocb);
3192 
3193 	phba->link_state = LPFC_HBA_ERROR;
3194 
3195 	/*
3196 	 * All error attention handlers are posted to
3197 	 * worker thread
3198 	 */
3199 	phba->work_ha |= HA_ERATT;
3200 	phba->work_hs = HS_FFER3;
3201 
3202 	lpfc_worker_wake_up(phba);
3203 
3204 	return;
3205 }
3206 
3207 /**
3208  * lpfc_poll_eratt - Error attention polling timer timeout handler
3209  * @ptr: Pointer to address of HBA context object.
3210  *
3211  * This function is invoked by the Error Attention polling timer when the
3212  * timer times out. It will check the SLI Error Attention register for
3213  * possible attention events. If so, it will post an Error Attention event
3214  * and wake up worker thread to process it. Otherwise, it will set up the
3215  * Error Attention polling timer for the next poll.
3216  **/
3217 void lpfc_poll_eratt(struct timer_list *t)
3218 {
3219 	struct lpfc_hba *phba;
3220 	uint32_t eratt = 0;
3221 	uint64_t sli_intr, cnt;
3222 
3223 	phba = from_timer(phba, t, eratt_poll);
3224 
3225 	/* Here we will also keep track of interrupts per sec of the hba */
3226 	sli_intr = phba->sli.slistat.sli_intr;
3227 
3228 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3229 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3230 			sli_intr);
3231 	else
3232 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3233 
3234 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3235 	do_div(cnt, phba->eratt_poll_interval);
3236 	phba->sli.slistat.sli_ips = cnt;
3237 
3238 	phba->sli.slistat.sli_prev_intr = sli_intr;
3239 
3240 	/* Check chip HA register for error event */
3241 	eratt = lpfc_sli_check_eratt(phba);
3242 
3243 	if (eratt)
3244 		/* Tell the worker thread there is work to do */
3245 		lpfc_worker_wake_up(phba);
3246 	else
3247 		/* Restart the timer for next eratt poll */
3248 		mod_timer(&phba->eratt_poll,
3249 			  jiffies +
3250 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3251 	return;
3252 }
3253 
3254 
3255 /**
3256  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3257  * @phba: Pointer to HBA context object.
3258  * @pring: Pointer to driver SLI ring object.
3259  * @mask: Host attention register mask for this ring.
3260  *
3261  * This function is called from the interrupt context when there is a ring
3262  * event for the fcp ring. The caller does not hold any lock.
3263  * The function processes each response iocb in the response ring until it
3264  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3265  * LE bit set. The function will call the completion handler of the command iocb
3266  * if the response iocb indicates a completion for a command iocb or it is
3267  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3268  * function if this is an unsolicited iocb.
3269  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3270  * to check it explicitly.
3271  */
3272 int
3273 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3274 				struct lpfc_sli_ring *pring, uint32_t mask)
3275 {
3276 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3277 	IOCB_t *irsp = NULL;
3278 	IOCB_t *entry = NULL;
3279 	struct lpfc_iocbq *cmdiocbq = NULL;
3280 	struct lpfc_iocbq rspiocbq;
3281 	uint32_t status;
3282 	uint32_t portRspPut, portRspMax;
3283 	int rc = 1;
3284 	lpfc_iocb_type type;
3285 	unsigned long iflag;
3286 	uint32_t rsp_cmpl = 0;
3287 
3288 	spin_lock_irqsave(&phba->hbalock, iflag);
3289 	pring->stats.iocb_event++;
3290 
3291 	/*
3292 	 * The next available response entry should never exceed the maximum
3293 	 * entries.  If it does, treat it as an adapter hardware error.
3294 	 */
3295 	portRspMax = pring->sli.sli3.numRiocb;
3296 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3297 	if (unlikely(portRspPut >= portRspMax)) {
3298 		lpfc_sli_rsp_pointers_error(phba, pring);
3299 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3300 		return 1;
3301 	}
3302 	if (phba->fcp_ring_in_use) {
3303 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3304 		return 1;
3305 	} else
3306 		phba->fcp_ring_in_use = 1;
3307 
3308 	rmb();
3309 	while (pring->sli.sli3.rspidx != portRspPut) {
3310 		/*
3311 		 * Fetch an entry off the ring and copy it into a local data
3312 		 * structure.  The copy involves a byte-swap since the
3313 		 * network byte order and pci byte orders are different.
3314 		 */
3315 		entry = lpfc_resp_iocb(phba, pring);
3316 		phba->last_completion_time = jiffies;
3317 
3318 		if (++pring->sli.sli3.rspidx >= portRspMax)
3319 			pring->sli.sli3.rspidx = 0;
3320 
3321 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3322 				      (uint32_t *) &rspiocbq.iocb,
3323 				      phba->iocb_rsp_size);
3324 		INIT_LIST_HEAD(&(rspiocbq.list));
3325 		irsp = &rspiocbq.iocb;
3326 
3327 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3328 		pring->stats.iocb_rsp++;
3329 		rsp_cmpl++;
3330 
3331 		if (unlikely(irsp->ulpStatus)) {
3332 			/*
3333 			 * If resource errors reported from HBA, reduce
3334 			 * queuedepths of the SCSI device.
3335 			 */
3336 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3337 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3338 			     IOERR_NO_RESOURCES)) {
3339 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3340 				phba->lpfc_rampdown_queue_depth(phba);
3341 				spin_lock_irqsave(&phba->hbalock, iflag);
3342 			}
3343 
3344 			/* Rsp ring <ringno> error: IOCB */
3345 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3346 					"0336 Rsp Ring %d error: IOCB Data: "
3347 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3348 					pring->ringno,
3349 					irsp->un.ulpWord[0],
3350 					irsp->un.ulpWord[1],
3351 					irsp->un.ulpWord[2],
3352 					irsp->un.ulpWord[3],
3353 					irsp->un.ulpWord[4],
3354 					irsp->un.ulpWord[5],
3355 					*(uint32_t *)&irsp->un1,
3356 					*((uint32_t *)&irsp->un1 + 1));
3357 		}
3358 
3359 		switch (type) {
3360 		case LPFC_ABORT_IOCB:
3361 		case LPFC_SOL_IOCB:
3362 			/*
3363 			 * Idle exchange closed via ABTS from port.  No iocb
3364 			 * resources need to be recovered.
3365 			 */
3366 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3367 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3368 						"0333 IOCB cmd 0x%x"
3369 						" processed. Skipping"
3370 						" completion\n",
3371 						irsp->ulpCommand);
3372 				break;
3373 			}
3374 
3375 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3376 							 &rspiocbq);
3377 			if (unlikely(!cmdiocbq))
3378 				break;
3379 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3380 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3381 			if (cmdiocbq->iocb_cmpl) {
3382 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3383 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3384 						      &rspiocbq);
3385 				spin_lock_irqsave(&phba->hbalock, iflag);
3386 			}
3387 			break;
3388 		case LPFC_UNSOL_IOCB:
3389 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3390 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3391 			spin_lock_irqsave(&phba->hbalock, iflag);
3392 			break;
3393 		default:
3394 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3395 				char adaptermsg[LPFC_MAX_ADPTMSG];
3396 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3397 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3398 				       MAX_MSG_DATA);
3399 				dev_warn(&((phba->pcidev)->dev),
3400 					 "lpfc%d: %s\n",
3401 					 phba->brd_no, adaptermsg);
3402 			} else {
3403 				/* Unknown IOCB command */
3404 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3405 						"0334 Unknown IOCB command "
3406 						"Data: x%x, x%x x%x x%x x%x\n",
3407 						type, irsp->ulpCommand,
3408 						irsp->ulpStatus,
3409 						irsp->ulpIoTag,
3410 						irsp->ulpContext);
3411 			}
3412 			break;
3413 		}
3414 
3415 		/*
3416 		 * The response IOCB has been processed.  Update the ring
3417 		 * pointer in SLIM.  If the port response put pointer has not
3418 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3419 		 * response put pointer.
3420 		 */
3421 		writel(pring->sli.sli3.rspidx,
3422 			&phba->host_gp[pring->ringno].rspGetInx);
3423 
3424 		if (pring->sli.sli3.rspidx == portRspPut)
3425 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3426 	}
3427 
3428 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3429 		pring->stats.iocb_rsp_full++;
3430 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3431 		writel(status, phba->CAregaddr);
3432 		readl(phba->CAregaddr);
3433 	}
3434 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3435 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3436 		pring->stats.iocb_cmd_empty++;
3437 
3438 		/* Force update of the local copy of cmdGetInx */
3439 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3440 		lpfc_sli_resume_iocb(phba, pring);
3441 
3442 		if ((pring->lpfc_sli_cmd_available))
3443 			(pring->lpfc_sli_cmd_available) (phba, pring);
3444 
3445 	}
3446 
3447 	phba->fcp_ring_in_use = 0;
3448 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3449 	return rc;
3450 }
3451 
3452 /**
3453  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3454  * @phba: Pointer to HBA context object.
3455  * @pring: Pointer to driver SLI ring object.
3456  * @rspiocbp: Pointer to driver response IOCB object.
3457  *
3458  * This function is called from the worker thread when there is a slow-path
3459  * response IOCB to process. This function chains all the response iocbs until
3460  * seeing the iocb with the LE bit set. The function will call
3461  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3462  * completion of a command iocb. The function will call the
3463  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3464  * The function frees the resources or calls the completion handler if this
3465  * iocb is an abort completion. The function returns NULL when the response
3466  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3467  * this function shall chain the iocb on to the iocb_continueq and return the
3468  * response iocb passed in.
3469  **/
3470 static struct lpfc_iocbq *
3471 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3472 			struct lpfc_iocbq *rspiocbp)
3473 {
3474 	struct lpfc_iocbq *saveq;
3475 	struct lpfc_iocbq *cmdiocbp;
3476 	struct lpfc_iocbq *next_iocb;
3477 	IOCB_t *irsp = NULL;
3478 	uint32_t free_saveq;
3479 	uint8_t iocb_cmd_type;
3480 	lpfc_iocb_type type;
3481 	unsigned long iflag;
3482 	int rc;
3483 
3484 	spin_lock_irqsave(&phba->hbalock, iflag);
3485 	/* First add the response iocb to the countinueq list */
3486 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3487 	pring->iocb_continueq_cnt++;
3488 
3489 	/* Now, determine whether the list is completed for processing */
3490 	irsp = &rspiocbp->iocb;
3491 	if (irsp->ulpLe) {
3492 		/*
3493 		 * By default, the driver expects to free all resources
3494 		 * associated with this iocb completion.
3495 		 */
3496 		free_saveq = 1;
3497 		saveq = list_get_first(&pring->iocb_continueq,
3498 				       struct lpfc_iocbq, list);
3499 		irsp = &(saveq->iocb);
3500 		list_del_init(&pring->iocb_continueq);
3501 		pring->iocb_continueq_cnt = 0;
3502 
3503 		pring->stats.iocb_rsp++;
3504 
3505 		/*
3506 		 * If resource errors reported from HBA, reduce
3507 		 * queuedepths of the SCSI device.
3508 		 */
3509 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3510 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3511 		     IOERR_NO_RESOURCES)) {
3512 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3513 			phba->lpfc_rampdown_queue_depth(phba);
3514 			spin_lock_irqsave(&phba->hbalock, iflag);
3515 		}
3516 
3517 		if (irsp->ulpStatus) {
3518 			/* Rsp ring <ringno> error: IOCB */
3519 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3520 					"0328 Rsp Ring %d error: "
3521 					"IOCB Data: "
3522 					"x%x x%x x%x x%x "
3523 					"x%x x%x x%x x%x "
3524 					"x%x x%x x%x x%x "
3525 					"x%x x%x x%x x%x\n",
3526 					pring->ringno,
3527 					irsp->un.ulpWord[0],
3528 					irsp->un.ulpWord[1],
3529 					irsp->un.ulpWord[2],
3530 					irsp->un.ulpWord[3],
3531 					irsp->un.ulpWord[4],
3532 					irsp->un.ulpWord[5],
3533 					*(((uint32_t *) irsp) + 6),
3534 					*(((uint32_t *) irsp) + 7),
3535 					*(((uint32_t *) irsp) + 8),
3536 					*(((uint32_t *) irsp) + 9),
3537 					*(((uint32_t *) irsp) + 10),
3538 					*(((uint32_t *) irsp) + 11),
3539 					*(((uint32_t *) irsp) + 12),
3540 					*(((uint32_t *) irsp) + 13),
3541 					*(((uint32_t *) irsp) + 14),
3542 					*(((uint32_t *) irsp) + 15));
3543 		}
3544 
3545 		/*
3546 		 * Fetch the IOCB command type and call the correct completion
3547 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3548 		 * get freed back to the lpfc_iocb_list by the discovery
3549 		 * kernel thread.
3550 		 */
3551 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3552 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3553 		switch (type) {
3554 		case LPFC_SOL_IOCB:
3555 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3556 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3557 			spin_lock_irqsave(&phba->hbalock, iflag);
3558 			break;
3559 
3560 		case LPFC_UNSOL_IOCB:
3561 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3562 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3563 			spin_lock_irqsave(&phba->hbalock, iflag);
3564 			if (!rc)
3565 				free_saveq = 0;
3566 			break;
3567 
3568 		case LPFC_ABORT_IOCB:
3569 			cmdiocbp = NULL;
3570 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3571 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3572 								 saveq);
3573 			if (cmdiocbp) {
3574 				/* Call the specified completion routine */
3575 				if (cmdiocbp->iocb_cmpl) {
3576 					spin_unlock_irqrestore(&phba->hbalock,
3577 							       iflag);
3578 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3579 							      saveq);
3580 					spin_lock_irqsave(&phba->hbalock,
3581 							  iflag);
3582 				} else
3583 					__lpfc_sli_release_iocbq(phba,
3584 								 cmdiocbp);
3585 			}
3586 			break;
3587 
3588 		case LPFC_UNKNOWN_IOCB:
3589 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3590 				char adaptermsg[LPFC_MAX_ADPTMSG];
3591 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3592 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3593 				       MAX_MSG_DATA);
3594 				dev_warn(&((phba->pcidev)->dev),
3595 					 "lpfc%d: %s\n",
3596 					 phba->brd_no, adaptermsg);
3597 			} else {
3598 				/* Unknown IOCB command */
3599 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3600 						"0335 Unknown IOCB "
3601 						"command Data: x%x "
3602 						"x%x x%x x%x\n",
3603 						irsp->ulpCommand,
3604 						irsp->ulpStatus,
3605 						irsp->ulpIoTag,
3606 						irsp->ulpContext);
3607 			}
3608 			break;
3609 		}
3610 
3611 		if (free_saveq) {
3612 			list_for_each_entry_safe(rspiocbp, next_iocb,
3613 						 &saveq->list, list) {
3614 				list_del_init(&rspiocbp->list);
3615 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3616 			}
3617 			__lpfc_sli_release_iocbq(phba, saveq);
3618 		}
3619 		rspiocbp = NULL;
3620 	}
3621 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3622 	return rspiocbp;
3623 }
3624 
3625 /**
3626  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3627  * @phba: Pointer to HBA context object.
3628  * @pring: Pointer to driver SLI ring object.
3629  * @mask: Host attention register mask for this ring.
3630  *
3631  * This routine wraps the actual slow_ring event process routine from the
3632  * API jump table function pointer from the lpfc_hba struct.
3633  **/
3634 void
3635 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3636 				struct lpfc_sli_ring *pring, uint32_t mask)
3637 {
3638 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3639 }
3640 
3641 /**
3642  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3643  * @phba: Pointer to HBA context object.
3644  * @pring: Pointer to driver SLI ring object.
3645  * @mask: Host attention register mask for this ring.
3646  *
3647  * This function is called from the worker thread when there is a ring event
3648  * for non-fcp rings. The caller does not hold any lock. The function will
3649  * remove each response iocb in the response ring and calls the handle
3650  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3651  **/
3652 static void
3653 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3654 				   struct lpfc_sli_ring *pring, uint32_t mask)
3655 {
3656 	struct lpfc_pgp *pgp;
3657 	IOCB_t *entry;
3658 	IOCB_t *irsp = NULL;
3659 	struct lpfc_iocbq *rspiocbp = NULL;
3660 	uint32_t portRspPut, portRspMax;
3661 	unsigned long iflag;
3662 	uint32_t status;
3663 
3664 	pgp = &phba->port_gp[pring->ringno];
3665 	spin_lock_irqsave(&phba->hbalock, iflag);
3666 	pring->stats.iocb_event++;
3667 
3668 	/*
3669 	 * The next available response entry should never exceed the maximum
3670 	 * entries.  If it does, treat it as an adapter hardware error.
3671 	 */
3672 	portRspMax = pring->sli.sli3.numRiocb;
3673 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3674 	if (portRspPut >= portRspMax) {
3675 		/*
3676 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3677 		 * rsp ring <portRspMax>
3678 		 */
3679 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3680 				"0303 Ring %d handler: portRspPut %d "
3681 				"is bigger than rsp ring %d\n",
3682 				pring->ringno, portRspPut, portRspMax);
3683 
3684 		phba->link_state = LPFC_HBA_ERROR;
3685 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3686 
3687 		phba->work_hs = HS_FFER3;
3688 		lpfc_handle_eratt(phba);
3689 
3690 		return;
3691 	}
3692 
3693 	rmb();
3694 	while (pring->sli.sli3.rspidx != portRspPut) {
3695 		/*
3696 		 * Build a completion list and call the appropriate handler.
3697 		 * The process is to get the next available response iocb, get
3698 		 * a free iocb from the list, copy the response data into the
3699 		 * free iocb, insert to the continuation list, and update the
3700 		 * next response index to slim.  This process makes response
3701 		 * iocb's in the ring available to DMA as fast as possible but
3702 		 * pays a penalty for a copy operation.  Since the iocb is
3703 		 * only 32 bytes, this penalty is considered small relative to
3704 		 * the PCI reads for register values and a slim write.  When
3705 		 * the ulpLe field is set, the entire Command has been
3706 		 * received.
3707 		 */
3708 		entry = lpfc_resp_iocb(phba, pring);
3709 
3710 		phba->last_completion_time = jiffies;
3711 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3712 		if (rspiocbp == NULL) {
3713 			printk(KERN_ERR "%s: out of buffers! Failing "
3714 			       "completion.\n", __func__);
3715 			break;
3716 		}
3717 
3718 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3719 				      phba->iocb_rsp_size);
3720 		irsp = &rspiocbp->iocb;
3721 
3722 		if (++pring->sli.sli3.rspidx >= portRspMax)
3723 			pring->sli.sli3.rspidx = 0;
3724 
3725 		if (pring->ringno == LPFC_ELS_RING) {
3726 			lpfc_debugfs_slow_ring_trc(phba,
3727 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3728 				*(((uint32_t *) irsp) + 4),
3729 				*(((uint32_t *) irsp) + 6),
3730 				*(((uint32_t *) irsp) + 7));
3731 		}
3732 
3733 		writel(pring->sli.sli3.rspidx,
3734 			&phba->host_gp[pring->ringno].rspGetInx);
3735 
3736 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3737 		/* Handle the response IOCB */
3738 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3739 		spin_lock_irqsave(&phba->hbalock, iflag);
3740 
3741 		/*
3742 		 * If the port response put pointer has not been updated, sync
3743 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3744 		 * response put pointer.
3745 		 */
3746 		if (pring->sli.sli3.rspidx == portRspPut) {
3747 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3748 		}
3749 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3750 
3751 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3752 		/* At least one response entry has been freed */
3753 		pring->stats.iocb_rsp_full++;
3754 		/* SET RxRE_RSP in Chip Att register */
3755 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3756 		writel(status, phba->CAregaddr);
3757 		readl(phba->CAregaddr); /* flush */
3758 	}
3759 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3760 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3761 		pring->stats.iocb_cmd_empty++;
3762 
3763 		/* Force update of the local copy of cmdGetInx */
3764 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3765 		lpfc_sli_resume_iocb(phba, pring);
3766 
3767 		if ((pring->lpfc_sli_cmd_available))
3768 			(pring->lpfc_sli_cmd_available) (phba, pring);
3769 
3770 	}
3771 
3772 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3773 	return;
3774 }
3775 
3776 /**
3777  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3778  * @phba: Pointer to HBA context object.
3779  * @pring: Pointer to driver SLI ring object.
3780  * @mask: Host attention register mask for this ring.
3781  *
3782  * This function is called from the worker thread when there is a pending
3783  * ELS response iocb on the driver internal slow-path response iocb worker
3784  * queue. The caller does not hold any lock. The function will remove each
3785  * response iocb from the response worker queue and calls the handle
3786  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3787  **/
3788 static void
3789 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3790 				   struct lpfc_sli_ring *pring, uint32_t mask)
3791 {
3792 	struct lpfc_iocbq *irspiocbq;
3793 	struct hbq_dmabuf *dmabuf;
3794 	struct lpfc_cq_event *cq_event;
3795 	unsigned long iflag;
3796 	int count = 0;
3797 
3798 	spin_lock_irqsave(&phba->hbalock, iflag);
3799 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3800 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3801 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3802 		/* Get the response iocb from the head of work queue */
3803 		spin_lock_irqsave(&phba->hbalock, iflag);
3804 		list_remove_head(&phba->sli4_hba.sp_queue_event,
3805 				 cq_event, struct lpfc_cq_event, list);
3806 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3807 
3808 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3809 		case CQE_CODE_COMPL_WQE:
3810 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3811 						 cq_event);
3812 			/* Translate ELS WCQE to response IOCBQ */
3813 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3814 								   irspiocbq);
3815 			if (irspiocbq)
3816 				lpfc_sli_sp_handle_rspiocb(phba, pring,
3817 							   irspiocbq);
3818 			count++;
3819 			break;
3820 		case CQE_CODE_RECEIVE:
3821 		case CQE_CODE_RECEIVE_V1:
3822 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
3823 					      cq_event);
3824 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
3825 			count++;
3826 			break;
3827 		default:
3828 			break;
3829 		}
3830 
3831 		/* Limit the number of events to 64 to avoid soft lockups */
3832 		if (count == 64)
3833 			break;
3834 	}
3835 }
3836 
3837 /**
3838  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3839  * @phba: Pointer to HBA context object.
3840  * @pring: Pointer to driver SLI ring object.
3841  *
3842  * This function aborts all iocbs in the given ring and frees all the iocb
3843  * objects in txq. This function issues an abort iocb for all the iocb commands
3844  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3845  * the return of this function. The caller is not required to hold any locks.
3846  **/
3847 void
3848 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3849 {
3850 	LIST_HEAD(completions);
3851 	struct lpfc_iocbq *iocb, *next_iocb;
3852 
3853 	if (pring->ringno == LPFC_ELS_RING) {
3854 		lpfc_fabric_abort_hba(phba);
3855 	}
3856 
3857 	/* Error everything on txq and txcmplq
3858 	 * First do the txq.
3859 	 */
3860 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3861 		spin_lock_irq(&pring->ring_lock);
3862 		list_splice_init(&pring->txq, &completions);
3863 		pring->txq_cnt = 0;
3864 		spin_unlock_irq(&pring->ring_lock);
3865 
3866 		spin_lock_irq(&phba->hbalock);
3867 		/* Next issue ABTS for everything on the txcmplq */
3868 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3869 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3870 		spin_unlock_irq(&phba->hbalock);
3871 	} else {
3872 		spin_lock_irq(&phba->hbalock);
3873 		list_splice_init(&pring->txq, &completions);
3874 		pring->txq_cnt = 0;
3875 
3876 		/* Next issue ABTS for everything on the txcmplq */
3877 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3878 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3879 		spin_unlock_irq(&phba->hbalock);
3880 	}
3881 
3882 	/* Cancel all the IOCBs from the completions list */
3883 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3884 			      IOERR_SLI_ABORTED);
3885 }
3886 
3887 /**
3888  * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring
3889  * @phba: Pointer to HBA context object.
3890  * @pring: Pointer to driver SLI ring object.
3891  *
3892  * This function aborts all iocbs in the given ring and frees all the iocb
3893  * objects in txq. This function issues an abort iocb for all the iocb commands
3894  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3895  * the return of this function. The caller is not required to hold any locks.
3896  **/
3897 void
3898 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3899 {
3900 	LIST_HEAD(completions);
3901 	struct lpfc_iocbq *iocb, *next_iocb;
3902 
3903 	if (pring->ringno == LPFC_ELS_RING)
3904 		lpfc_fabric_abort_hba(phba);
3905 
3906 	spin_lock_irq(&phba->hbalock);
3907 	/* Next issue ABTS for everything on the txcmplq */
3908 	list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3909 		lpfc_sli4_abort_nvme_io(phba, pring, iocb);
3910 	spin_unlock_irq(&phba->hbalock);
3911 }
3912 
3913 
3914 /**
3915  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3916  * @phba: Pointer to HBA context object.
3917  * @pring: Pointer to driver SLI ring object.
3918  *
3919  * This function aborts all iocbs in FCP rings and frees all the iocb
3920  * objects in txq. This function issues an abort iocb for all the iocb commands
3921  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3922  * the return of this function. The caller is not required to hold any locks.
3923  **/
3924 void
3925 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3926 {
3927 	struct lpfc_sli *psli = &phba->sli;
3928 	struct lpfc_sli_ring  *pring;
3929 	uint32_t i;
3930 
3931 	/* Look on all the FCP Rings for the iotag */
3932 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3933 		for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3934 			pring = phba->sli4_hba.fcp_wq[i]->pring;
3935 			lpfc_sli_abort_iocb_ring(phba, pring);
3936 		}
3937 	} else {
3938 		pring = &psli->sli3_ring[LPFC_FCP_RING];
3939 		lpfc_sli_abort_iocb_ring(phba, pring);
3940 	}
3941 }
3942 
3943 /**
3944  * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings
3945  * @phba: Pointer to HBA context object.
3946  *
3947  * This function aborts all wqes in NVME rings. This function issues an
3948  * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in
3949  * the txcmplq is not guaranteed to complete before the return of this
3950  * function. The caller is not required to hold any locks.
3951  **/
3952 void
3953 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba)
3954 {
3955 	struct lpfc_sli_ring  *pring;
3956 	uint32_t i;
3957 
3958 	if (phba->sli_rev < LPFC_SLI_REV4)
3959 		return;
3960 
3961 	/* Abort all IO on each NVME ring. */
3962 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
3963 		pring = phba->sli4_hba.nvme_wq[i]->pring;
3964 		lpfc_sli_abort_wqe_ring(phba, pring);
3965 	}
3966 }
3967 
3968 
3969 /**
3970  * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3971  * @phba: Pointer to HBA context object.
3972  *
3973  * This function flushes all iocbs in the fcp ring and frees all the iocb
3974  * objects in txq and txcmplq. This function will not issue abort iocbs
3975  * for all the iocb commands in txcmplq, they will just be returned with
3976  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3977  * slot has been permanently disabled.
3978  **/
3979 void
3980 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3981 {
3982 	LIST_HEAD(txq);
3983 	LIST_HEAD(txcmplq);
3984 	struct lpfc_sli *psli = &phba->sli;
3985 	struct lpfc_sli_ring  *pring;
3986 	uint32_t i;
3987 	struct lpfc_iocbq *piocb, *next_iocb;
3988 
3989 	spin_lock_irq(&phba->hbalock);
3990 	/* Indicate the I/O queues are flushed */
3991 	phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
3992 	spin_unlock_irq(&phba->hbalock);
3993 
3994 	/* Look on all the FCP Rings for the iotag */
3995 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3996 		for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3997 			pring = phba->sli4_hba.fcp_wq[i]->pring;
3998 
3999 			spin_lock_irq(&pring->ring_lock);
4000 			/* Retrieve everything on txq */
4001 			list_splice_init(&pring->txq, &txq);
4002 			list_for_each_entry_safe(piocb, next_iocb,
4003 						 &pring->txcmplq, list)
4004 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4005 			/* Retrieve everything on the txcmplq */
4006 			list_splice_init(&pring->txcmplq, &txcmplq);
4007 			pring->txq_cnt = 0;
4008 			pring->txcmplq_cnt = 0;
4009 			spin_unlock_irq(&pring->ring_lock);
4010 
4011 			/* Flush the txq */
4012 			lpfc_sli_cancel_iocbs(phba, &txq,
4013 					      IOSTAT_LOCAL_REJECT,
4014 					      IOERR_SLI_DOWN);
4015 			/* Flush the txcmpq */
4016 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4017 					      IOSTAT_LOCAL_REJECT,
4018 					      IOERR_SLI_DOWN);
4019 		}
4020 	} else {
4021 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4022 
4023 		spin_lock_irq(&phba->hbalock);
4024 		/* Retrieve everything on txq */
4025 		list_splice_init(&pring->txq, &txq);
4026 		list_for_each_entry_safe(piocb, next_iocb,
4027 					 &pring->txcmplq, list)
4028 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4029 		/* Retrieve everything on the txcmplq */
4030 		list_splice_init(&pring->txcmplq, &txcmplq);
4031 		pring->txq_cnt = 0;
4032 		pring->txcmplq_cnt = 0;
4033 		spin_unlock_irq(&phba->hbalock);
4034 
4035 		/* Flush the txq */
4036 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4037 				      IOERR_SLI_DOWN);
4038 		/* Flush the txcmpq */
4039 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4040 				      IOERR_SLI_DOWN);
4041 	}
4042 }
4043 
4044 /**
4045  * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings
4046  * @phba: Pointer to HBA context object.
4047  *
4048  * This function flushes all wqes in the nvme rings and frees all resources
4049  * in the txcmplq. This function does not issue abort wqes for the IO
4050  * commands in txcmplq, they will just be returned with
4051  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4052  * slot has been permanently disabled.
4053  **/
4054 void
4055 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba)
4056 {
4057 	LIST_HEAD(txcmplq);
4058 	struct lpfc_sli_ring  *pring;
4059 	uint32_t i;
4060 	struct lpfc_iocbq *piocb, *next_iocb;
4061 
4062 	if (phba->sli_rev < LPFC_SLI_REV4)
4063 		return;
4064 
4065 	/* Hint to other driver operations that a flush is in progress. */
4066 	spin_lock_irq(&phba->hbalock);
4067 	phba->hba_flag |= HBA_NVME_IOQ_FLUSH;
4068 	spin_unlock_irq(&phba->hbalock);
4069 
4070 	/* Cycle through all NVME rings and complete each IO with
4071 	 * a local driver reason code.  This is a flush so no
4072 	 * abort exchange to FW.
4073 	 */
4074 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
4075 		pring = phba->sli4_hba.nvme_wq[i]->pring;
4076 
4077 		spin_lock_irq(&pring->ring_lock);
4078 		list_for_each_entry_safe(piocb, next_iocb,
4079 					 &pring->txcmplq, list)
4080 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4081 		/* Retrieve everything on the txcmplq */
4082 		list_splice_init(&pring->txcmplq, &txcmplq);
4083 		pring->txcmplq_cnt = 0;
4084 		spin_unlock_irq(&pring->ring_lock);
4085 
4086 		/* Flush the txcmpq &&&PAE */
4087 		lpfc_sli_cancel_iocbs(phba, &txcmplq,
4088 				      IOSTAT_LOCAL_REJECT,
4089 				      IOERR_SLI_DOWN);
4090 	}
4091 }
4092 
4093 /**
4094  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4095  * @phba: Pointer to HBA context object.
4096  * @mask: Bit mask to be checked.
4097  *
4098  * This function reads the host status register and compares
4099  * with the provided bit mask to check if HBA completed
4100  * the restart. This function will wait in a loop for the
4101  * HBA to complete restart. If the HBA does not restart within
4102  * 15 iterations, the function will reset the HBA again. The
4103  * function returns 1 when HBA fail to restart otherwise returns
4104  * zero.
4105  **/
4106 static int
4107 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4108 {
4109 	uint32_t status;
4110 	int i = 0;
4111 	int retval = 0;
4112 
4113 	/* Read the HBA Host Status Register */
4114 	if (lpfc_readl(phba->HSregaddr, &status))
4115 		return 1;
4116 
4117 	/*
4118 	 * Check status register every 100ms for 5 retries, then every
4119 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4120 	 * every 2.5 sec for 4.
4121 	 * Break our of the loop if errors occurred during init.
4122 	 */
4123 	while (((status & mask) != mask) &&
4124 	       !(status & HS_FFERM) &&
4125 	       i++ < 20) {
4126 
4127 		if (i <= 5)
4128 			msleep(10);
4129 		else if (i <= 10)
4130 			msleep(500);
4131 		else
4132 			msleep(2500);
4133 
4134 		if (i == 15) {
4135 				/* Do post */
4136 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4137 			lpfc_sli_brdrestart(phba);
4138 		}
4139 		/* Read the HBA Host Status Register */
4140 		if (lpfc_readl(phba->HSregaddr, &status)) {
4141 			retval = 1;
4142 			break;
4143 		}
4144 	}
4145 
4146 	/* Check to see if any errors occurred during init */
4147 	if ((status & HS_FFERM) || (i >= 20)) {
4148 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4149 				"2751 Adapter failed to restart, "
4150 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4151 				status,
4152 				readl(phba->MBslimaddr + 0xa8),
4153 				readl(phba->MBslimaddr + 0xac));
4154 		phba->link_state = LPFC_HBA_ERROR;
4155 		retval = 1;
4156 	}
4157 
4158 	return retval;
4159 }
4160 
4161 /**
4162  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4163  * @phba: Pointer to HBA context object.
4164  * @mask: Bit mask to be checked.
4165  *
4166  * This function checks the host status register to check if HBA is
4167  * ready. This function will wait in a loop for the HBA to be ready
4168  * If the HBA is not ready , the function will will reset the HBA PCI
4169  * function again. The function returns 1 when HBA fail to be ready
4170  * otherwise returns zero.
4171  **/
4172 static int
4173 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4174 {
4175 	uint32_t status;
4176 	int retval = 0;
4177 
4178 	/* Read the HBA Host Status Register */
4179 	status = lpfc_sli4_post_status_check(phba);
4180 
4181 	if (status) {
4182 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4183 		lpfc_sli_brdrestart(phba);
4184 		status = lpfc_sli4_post_status_check(phba);
4185 	}
4186 
4187 	/* Check to see if any errors occurred during init */
4188 	if (status) {
4189 		phba->link_state = LPFC_HBA_ERROR;
4190 		retval = 1;
4191 	} else
4192 		phba->sli4_hba.intr_enable = 0;
4193 
4194 	return retval;
4195 }
4196 
4197 /**
4198  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4199  * @phba: Pointer to HBA context object.
4200  * @mask: Bit mask to be checked.
4201  *
4202  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4203  * from the API jump table function pointer from the lpfc_hba struct.
4204  **/
4205 int
4206 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4207 {
4208 	return phba->lpfc_sli_brdready(phba, mask);
4209 }
4210 
4211 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4212 
4213 /**
4214  * lpfc_reset_barrier - Make HBA ready for HBA reset
4215  * @phba: Pointer to HBA context object.
4216  *
4217  * This function is called before resetting an HBA. This function is called
4218  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4219  **/
4220 void lpfc_reset_barrier(struct lpfc_hba *phba)
4221 {
4222 	uint32_t __iomem *resp_buf;
4223 	uint32_t __iomem *mbox_buf;
4224 	volatile uint32_t mbox;
4225 	uint32_t hc_copy, ha_copy, resp_data;
4226 	int  i;
4227 	uint8_t hdrtype;
4228 
4229 	lockdep_assert_held(&phba->hbalock);
4230 
4231 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4232 	if (hdrtype != 0x80 ||
4233 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4234 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4235 		return;
4236 
4237 	/*
4238 	 * Tell the other part of the chip to suspend temporarily all
4239 	 * its DMA activity.
4240 	 */
4241 	resp_buf = phba->MBslimaddr;
4242 
4243 	/* Disable the error attention */
4244 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4245 		return;
4246 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4247 	readl(phba->HCregaddr); /* flush */
4248 	phba->link_flag |= LS_IGNORE_ERATT;
4249 
4250 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4251 		return;
4252 	if (ha_copy & HA_ERATT) {
4253 		/* Clear Chip error bit */
4254 		writel(HA_ERATT, phba->HAregaddr);
4255 		phba->pport->stopped = 1;
4256 	}
4257 
4258 	mbox = 0;
4259 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4260 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4261 
4262 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4263 	mbox_buf = phba->MBslimaddr;
4264 	writel(mbox, mbox_buf);
4265 
4266 	for (i = 0; i < 50; i++) {
4267 		if (lpfc_readl((resp_buf + 1), &resp_data))
4268 			return;
4269 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4270 			mdelay(1);
4271 		else
4272 			break;
4273 	}
4274 	resp_data = 0;
4275 	if (lpfc_readl((resp_buf + 1), &resp_data))
4276 		return;
4277 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4278 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4279 		    phba->pport->stopped)
4280 			goto restore_hc;
4281 		else
4282 			goto clear_errat;
4283 	}
4284 
4285 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4286 	resp_data = 0;
4287 	for (i = 0; i < 500; i++) {
4288 		if (lpfc_readl(resp_buf, &resp_data))
4289 			return;
4290 		if (resp_data != mbox)
4291 			mdelay(1);
4292 		else
4293 			break;
4294 	}
4295 
4296 clear_errat:
4297 
4298 	while (++i < 500) {
4299 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4300 			return;
4301 		if (!(ha_copy & HA_ERATT))
4302 			mdelay(1);
4303 		else
4304 			break;
4305 	}
4306 
4307 	if (readl(phba->HAregaddr) & HA_ERATT) {
4308 		writel(HA_ERATT, phba->HAregaddr);
4309 		phba->pport->stopped = 1;
4310 	}
4311 
4312 restore_hc:
4313 	phba->link_flag &= ~LS_IGNORE_ERATT;
4314 	writel(hc_copy, phba->HCregaddr);
4315 	readl(phba->HCregaddr); /* flush */
4316 }
4317 
4318 /**
4319  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4320  * @phba: Pointer to HBA context object.
4321  *
4322  * This function issues a kill_board mailbox command and waits for
4323  * the error attention interrupt. This function is called for stopping
4324  * the firmware processing. The caller is not required to hold any
4325  * locks. This function calls lpfc_hba_down_post function to free
4326  * any pending commands after the kill. The function will return 1 when it
4327  * fails to kill the board else will return 0.
4328  **/
4329 int
4330 lpfc_sli_brdkill(struct lpfc_hba *phba)
4331 {
4332 	struct lpfc_sli *psli;
4333 	LPFC_MBOXQ_t *pmb;
4334 	uint32_t status;
4335 	uint32_t ha_copy;
4336 	int retval;
4337 	int i = 0;
4338 
4339 	psli = &phba->sli;
4340 
4341 	/* Kill HBA */
4342 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4343 			"0329 Kill HBA Data: x%x x%x\n",
4344 			phba->pport->port_state, psli->sli_flag);
4345 
4346 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4347 	if (!pmb)
4348 		return 1;
4349 
4350 	/* Disable the error attention */
4351 	spin_lock_irq(&phba->hbalock);
4352 	if (lpfc_readl(phba->HCregaddr, &status)) {
4353 		spin_unlock_irq(&phba->hbalock);
4354 		mempool_free(pmb, phba->mbox_mem_pool);
4355 		return 1;
4356 	}
4357 	status &= ~HC_ERINT_ENA;
4358 	writel(status, phba->HCregaddr);
4359 	readl(phba->HCregaddr); /* flush */
4360 	phba->link_flag |= LS_IGNORE_ERATT;
4361 	spin_unlock_irq(&phba->hbalock);
4362 
4363 	lpfc_kill_board(phba, pmb);
4364 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4365 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4366 
4367 	if (retval != MBX_SUCCESS) {
4368 		if (retval != MBX_BUSY)
4369 			mempool_free(pmb, phba->mbox_mem_pool);
4370 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4371 				"2752 KILL_BOARD command failed retval %d\n",
4372 				retval);
4373 		spin_lock_irq(&phba->hbalock);
4374 		phba->link_flag &= ~LS_IGNORE_ERATT;
4375 		spin_unlock_irq(&phba->hbalock);
4376 		return 1;
4377 	}
4378 
4379 	spin_lock_irq(&phba->hbalock);
4380 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4381 	spin_unlock_irq(&phba->hbalock);
4382 
4383 	mempool_free(pmb, phba->mbox_mem_pool);
4384 
4385 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4386 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4387 	 * 3 seconds we still set HBA_ERROR state because the status of the
4388 	 * board is now undefined.
4389 	 */
4390 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4391 		return 1;
4392 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4393 		mdelay(100);
4394 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4395 			return 1;
4396 	}
4397 
4398 	del_timer_sync(&psli->mbox_tmo);
4399 	if (ha_copy & HA_ERATT) {
4400 		writel(HA_ERATT, phba->HAregaddr);
4401 		phba->pport->stopped = 1;
4402 	}
4403 	spin_lock_irq(&phba->hbalock);
4404 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4405 	psli->mbox_active = NULL;
4406 	phba->link_flag &= ~LS_IGNORE_ERATT;
4407 	spin_unlock_irq(&phba->hbalock);
4408 
4409 	lpfc_hba_down_post(phba);
4410 	phba->link_state = LPFC_HBA_ERROR;
4411 
4412 	return ha_copy & HA_ERATT ? 0 : 1;
4413 }
4414 
4415 /**
4416  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4417  * @phba: Pointer to HBA context object.
4418  *
4419  * This function resets the HBA by writing HC_INITFF to the control
4420  * register. After the HBA resets, this function resets all the iocb ring
4421  * indices. This function disables PCI layer parity checking during
4422  * the reset.
4423  * This function returns 0 always.
4424  * The caller is not required to hold any locks.
4425  **/
4426 int
4427 lpfc_sli_brdreset(struct lpfc_hba *phba)
4428 {
4429 	struct lpfc_sli *psli;
4430 	struct lpfc_sli_ring *pring;
4431 	uint16_t cfg_value;
4432 	int i;
4433 
4434 	psli = &phba->sli;
4435 
4436 	/* Reset HBA */
4437 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4438 			"0325 Reset HBA Data: x%x x%x\n",
4439 			(phba->pport) ? phba->pport->port_state : 0,
4440 			psli->sli_flag);
4441 
4442 	/* perform board reset */
4443 	phba->fc_eventTag = 0;
4444 	phba->link_events = 0;
4445 	if (phba->pport) {
4446 		phba->pport->fc_myDID = 0;
4447 		phba->pport->fc_prevDID = 0;
4448 	}
4449 
4450 	/* Turn off parity checking and serr during the physical reset */
4451 	pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4452 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4453 			      (cfg_value &
4454 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4455 
4456 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4457 
4458 	/* Now toggle INITFF bit in the Host Control Register */
4459 	writel(HC_INITFF, phba->HCregaddr);
4460 	mdelay(1);
4461 	readl(phba->HCregaddr); /* flush */
4462 	writel(0, phba->HCregaddr);
4463 	readl(phba->HCregaddr); /* flush */
4464 
4465 	/* Restore PCI cmd register */
4466 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4467 
4468 	/* Initialize relevant SLI info */
4469 	for (i = 0; i < psli->num_rings; i++) {
4470 		pring = &psli->sli3_ring[i];
4471 		pring->flag = 0;
4472 		pring->sli.sli3.rspidx = 0;
4473 		pring->sli.sli3.next_cmdidx  = 0;
4474 		pring->sli.sli3.local_getidx = 0;
4475 		pring->sli.sli3.cmdidx = 0;
4476 		pring->missbufcnt = 0;
4477 	}
4478 
4479 	phba->link_state = LPFC_WARM_START;
4480 	return 0;
4481 }
4482 
4483 /**
4484  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4485  * @phba: Pointer to HBA context object.
4486  *
4487  * This function resets a SLI4 HBA. This function disables PCI layer parity
4488  * checking during resets the device. The caller is not required to hold
4489  * any locks.
4490  *
4491  * This function returns 0 always.
4492  **/
4493 int
4494 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4495 {
4496 	struct lpfc_sli *psli = &phba->sli;
4497 	uint16_t cfg_value;
4498 	int rc = 0;
4499 
4500 	/* Reset HBA */
4501 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4502 			"0295 Reset HBA Data: x%x x%x x%x\n",
4503 			phba->pport->port_state, psli->sli_flag,
4504 			phba->hba_flag);
4505 
4506 	/* perform board reset */
4507 	phba->fc_eventTag = 0;
4508 	phba->link_events = 0;
4509 	phba->pport->fc_myDID = 0;
4510 	phba->pport->fc_prevDID = 0;
4511 
4512 	spin_lock_irq(&phba->hbalock);
4513 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4514 	phba->fcf.fcf_flag = 0;
4515 	spin_unlock_irq(&phba->hbalock);
4516 
4517 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4518 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4519 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4520 		return rc;
4521 	}
4522 
4523 	/* Now physically reset the device */
4524 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4525 			"0389 Performing PCI function reset!\n");
4526 
4527 	/* Turn off parity checking and serr during the physical reset */
4528 	pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4529 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4530 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4531 
4532 	/* Perform FCoE PCI function reset before freeing queue memory */
4533 	rc = lpfc_pci_function_reset(phba);
4534 
4535 	/* Restore PCI cmd register */
4536 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4537 
4538 	return rc;
4539 }
4540 
4541 /**
4542  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4543  * @phba: Pointer to HBA context object.
4544  *
4545  * This function is called in the SLI initialization code path to
4546  * restart the HBA. The caller is not required to hold any lock.
4547  * This function writes MBX_RESTART mailbox command to the SLIM and
4548  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4549  * function to free any pending commands. The function enables
4550  * POST only during the first initialization. The function returns zero.
4551  * The function does not guarantee completion of MBX_RESTART mailbox
4552  * command before the return of this function.
4553  **/
4554 static int
4555 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4556 {
4557 	MAILBOX_t *mb;
4558 	struct lpfc_sli *psli;
4559 	volatile uint32_t word0;
4560 	void __iomem *to_slim;
4561 	uint32_t hba_aer_enabled;
4562 
4563 	spin_lock_irq(&phba->hbalock);
4564 
4565 	/* Take PCIe device Advanced Error Reporting (AER) state */
4566 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4567 
4568 	psli = &phba->sli;
4569 
4570 	/* Restart HBA */
4571 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4572 			"0337 Restart HBA Data: x%x x%x\n",
4573 			(phba->pport) ? phba->pport->port_state : 0,
4574 			psli->sli_flag);
4575 
4576 	word0 = 0;
4577 	mb = (MAILBOX_t *) &word0;
4578 	mb->mbxCommand = MBX_RESTART;
4579 	mb->mbxHc = 1;
4580 
4581 	lpfc_reset_barrier(phba);
4582 
4583 	to_slim = phba->MBslimaddr;
4584 	writel(*(uint32_t *) mb, to_slim);
4585 	readl(to_slim); /* flush */
4586 
4587 	/* Only skip post after fc_ffinit is completed */
4588 	if (phba->pport && phba->pport->port_state)
4589 		word0 = 1;	/* This is really setting up word1 */
4590 	else
4591 		word0 = 0;	/* This is really setting up word1 */
4592 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4593 	writel(*(uint32_t *) mb, to_slim);
4594 	readl(to_slim); /* flush */
4595 
4596 	lpfc_sli_brdreset(phba);
4597 	if (phba->pport)
4598 		phba->pport->stopped = 0;
4599 	phba->link_state = LPFC_INIT_START;
4600 	phba->hba_flag = 0;
4601 	spin_unlock_irq(&phba->hbalock);
4602 
4603 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4604 	psli->stats_start = ktime_get_seconds();
4605 
4606 	/* Give the INITFF and Post time to settle. */
4607 	mdelay(100);
4608 
4609 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4610 	if (hba_aer_enabled)
4611 		pci_disable_pcie_error_reporting(phba->pcidev);
4612 
4613 	lpfc_hba_down_post(phba);
4614 
4615 	return 0;
4616 }
4617 
4618 /**
4619  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4620  * @phba: Pointer to HBA context object.
4621  *
4622  * This function is called in the SLI initialization code path to restart
4623  * a SLI4 HBA. The caller is not required to hold any lock.
4624  * At the end of the function, it calls lpfc_hba_down_post function to
4625  * free any pending commands.
4626  **/
4627 static int
4628 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4629 {
4630 	struct lpfc_sli *psli = &phba->sli;
4631 	uint32_t hba_aer_enabled;
4632 	int rc;
4633 
4634 	/* Restart HBA */
4635 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4636 			"0296 Restart HBA Data: x%x x%x\n",
4637 			phba->pport->port_state, psli->sli_flag);
4638 
4639 	/* Take PCIe device Advanced Error Reporting (AER) state */
4640 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4641 
4642 	rc = lpfc_sli4_brdreset(phba);
4643 
4644 	spin_lock_irq(&phba->hbalock);
4645 	phba->pport->stopped = 0;
4646 	phba->link_state = LPFC_INIT_START;
4647 	phba->hba_flag = 0;
4648 	spin_unlock_irq(&phba->hbalock);
4649 
4650 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4651 	psli->stats_start = ktime_get_seconds();
4652 
4653 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4654 	if (hba_aer_enabled)
4655 		pci_disable_pcie_error_reporting(phba->pcidev);
4656 
4657 	lpfc_hba_down_post(phba);
4658 	lpfc_sli4_queue_destroy(phba);
4659 
4660 	return rc;
4661 }
4662 
4663 /**
4664  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4665  * @phba: Pointer to HBA context object.
4666  *
4667  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4668  * API jump table function pointer from the lpfc_hba struct.
4669 **/
4670 int
4671 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4672 {
4673 	return phba->lpfc_sli_brdrestart(phba);
4674 }
4675 
4676 /**
4677  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4678  * @phba: Pointer to HBA context object.
4679  *
4680  * This function is called after a HBA restart to wait for successful
4681  * restart of the HBA. Successful restart of the HBA is indicated by
4682  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4683  * iteration, the function will restart the HBA again. The function returns
4684  * zero if HBA successfully restarted else returns negative error code.
4685  **/
4686 int
4687 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4688 {
4689 	uint32_t status, i = 0;
4690 
4691 	/* Read the HBA Host Status Register */
4692 	if (lpfc_readl(phba->HSregaddr, &status))
4693 		return -EIO;
4694 
4695 	/* Check status register to see what current state is */
4696 	i = 0;
4697 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4698 
4699 		/* Check every 10ms for 10 retries, then every 100ms for 90
4700 		 * retries, then every 1 sec for 50 retires for a total of
4701 		 * ~60 seconds before reset the board again and check every
4702 		 * 1 sec for 50 retries. The up to 60 seconds before the
4703 		 * board ready is required by the Falcon FIPS zeroization
4704 		 * complete, and any reset the board in between shall cause
4705 		 * restart of zeroization, further delay the board ready.
4706 		 */
4707 		if (i++ >= 200) {
4708 			/* Adapter failed to init, timeout, status reg
4709 			   <status> */
4710 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4711 					"0436 Adapter failed to init, "
4712 					"timeout, status reg x%x, "
4713 					"FW Data: A8 x%x AC x%x\n", status,
4714 					readl(phba->MBslimaddr + 0xa8),
4715 					readl(phba->MBslimaddr + 0xac));
4716 			phba->link_state = LPFC_HBA_ERROR;
4717 			return -ETIMEDOUT;
4718 		}
4719 
4720 		/* Check to see if any errors occurred during init */
4721 		if (status & HS_FFERM) {
4722 			/* ERROR: During chipset initialization */
4723 			/* Adapter failed to init, chipset, status reg
4724 			   <status> */
4725 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4726 					"0437 Adapter failed to init, "
4727 					"chipset, status reg x%x, "
4728 					"FW Data: A8 x%x AC x%x\n", status,
4729 					readl(phba->MBslimaddr + 0xa8),
4730 					readl(phba->MBslimaddr + 0xac));
4731 			phba->link_state = LPFC_HBA_ERROR;
4732 			return -EIO;
4733 		}
4734 
4735 		if (i <= 10)
4736 			msleep(10);
4737 		else if (i <= 100)
4738 			msleep(100);
4739 		else
4740 			msleep(1000);
4741 
4742 		if (i == 150) {
4743 			/* Do post */
4744 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4745 			lpfc_sli_brdrestart(phba);
4746 		}
4747 		/* Read the HBA Host Status Register */
4748 		if (lpfc_readl(phba->HSregaddr, &status))
4749 			return -EIO;
4750 	}
4751 
4752 	/* Check to see if any errors occurred during init */
4753 	if (status & HS_FFERM) {
4754 		/* ERROR: During chipset initialization */
4755 		/* Adapter failed to init, chipset, status reg <status> */
4756 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4757 				"0438 Adapter failed to init, chipset, "
4758 				"status reg x%x, "
4759 				"FW Data: A8 x%x AC x%x\n", status,
4760 				readl(phba->MBslimaddr + 0xa8),
4761 				readl(phba->MBslimaddr + 0xac));
4762 		phba->link_state = LPFC_HBA_ERROR;
4763 		return -EIO;
4764 	}
4765 
4766 	/* Clear all interrupt enable conditions */
4767 	writel(0, phba->HCregaddr);
4768 	readl(phba->HCregaddr); /* flush */
4769 
4770 	/* setup host attn register */
4771 	writel(0xffffffff, phba->HAregaddr);
4772 	readl(phba->HAregaddr); /* flush */
4773 	return 0;
4774 }
4775 
4776 /**
4777  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4778  *
4779  * This function calculates and returns the number of HBQs required to be
4780  * configured.
4781  **/
4782 int
4783 lpfc_sli_hbq_count(void)
4784 {
4785 	return ARRAY_SIZE(lpfc_hbq_defs);
4786 }
4787 
4788 /**
4789  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4790  *
4791  * This function adds the number of hbq entries in every HBQ to get
4792  * the total number of hbq entries required for the HBA and returns
4793  * the total count.
4794  **/
4795 static int
4796 lpfc_sli_hbq_entry_count(void)
4797 {
4798 	int  hbq_count = lpfc_sli_hbq_count();
4799 	int  count = 0;
4800 	int  i;
4801 
4802 	for (i = 0; i < hbq_count; ++i)
4803 		count += lpfc_hbq_defs[i]->entry_count;
4804 	return count;
4805 }
4806 
4807 /**
4808  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4809  *
4810  * This function calculates amount of memory required for all hbq entries
4811  * to be configured and returns the total memory required.
4812  **/
4813 int
4814 lpfc_sli_hbq_size(void)
4815 {
4816 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4817 }
4818 
4819 /**
4820  * lpfc_sli_hbq_setup - configure and initialize HBQs
4821  * @phba: Pointer to HBA context object.
4822  *
4823  * This function is called during the SLI initialization to configure
4824  * all the HBQs and post buffers to the HBQ. The caller is not
4825  * required to hold any locks. This function will return zero if successful
4826  * else it will return negative error code.
4827  **/
4828 static int
4829 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4830 {
4831 	int  hbq_count = lpfc_sli_hbq_count();
4832 	LPFC_MBOXQ_t *pmb;
4833 	MAILBOX_t *pmbox;
4834 	uint32_t hbqno;
4835 	uint32_t hbq_entry_index;
4836 
4837 				/* Get a Mailbox buffer to setup mailbox
4838 				 * commands for HBA initialization
4839 				 */
4840 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4841 
4842 	if (!pmb)
4843 		return -ENOMEM;
4844 
4845 	pmbox = &pmb->u.mb;
4846 
4847 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4848 	phba->link_state = LPFC_INIT_MBX_CMDS;
4849 	phba->hbq_in_use = 1;
4850 
4851 	hbq_entry_index = 0;
4852 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4853 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4854 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4855 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4856 		phba->hbqs[hbqno].entry_count =
4857 			lpfc_hbq_defs[hbqno]->entry_count;
4858 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4859 			hbq_entry_index, pmb);
4860 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4861 
4862 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4863 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4864 			   mbxStatus <status>, ring <num> */
4865 
4866 			lpfc_printf_log(phba, KERN_ERR,
4867 					LOG_SLI | LOG_VPORT,
4868 					"1805 Adapter failed to init. "
4869 					"Data: x%x x%x x%x\n",
4870 					pmbox->mbxCommand,
4871 					pmbox->mbxStatus, hbqno);
4872 
4873 			phba->link_state = LPFC_HBA_ERROR;
4874 			mempool_free(pmb, phba->mbox_mem_pool);
4875 			return -ENXIO;
4876 		}
4877 	}
4878 	phba->hbq_count = hbq_count;
4879 
4880 	mempool_free(pmb, phba->mbox_mem_pool);
4881 
4882 	/* Initially populate or replenish the HBQs */
4883 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4884 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4885 	return 0;
4886 }
4887 
4888 /**
4889  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4890  * @phba: Pointer to HBA context object.
4891  *
4892  * This function is called during the SLI initialization to configure
4893  * all the HBQs and post buffers to the HBQ. The caller is not
4894  * required to hold any locks. This function will return zero if successful
4895  * else it will return negative error code.
4896  **/
4897 static int
4898 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4899 {
4900 	phba->hbq_in_use = 1;
4901 	phba->hbqs[LPFC_ELS_HBQ].entry_count =
4902 		lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4903 	phba->hbq_count = 1;
4904 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4905 	/* Initially populate or replenish the HBQs */
4906 	return 0;
4907 }
4908 
4909 /**
4910  * lpfc_sli_config_port - Issue config port mailbox command
4911  * @phba: Pointer to HBA context object.
4912  * @sli_mode: sli mode - 2/3
4913  *
4914  * This function is called by the sli initialization code path
4915  * to issue config_port mailbox command. This function restarts the
4916  * HBA firmware and issues a config_port mailbox command to configure
4917  * the SLI interface in the sli mode specified by sli_mode
4918  * variable. The caller is not required to hold any locks.
4919  * The function returns 0 if successful, else returns negative error
4920  * code.
4921  **/
4922 int
4923 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4924 {
4925 	LPFC_MBOXQ_t *pmb;
4926 	uint32_t resetcount = 0, rc = 0, done = 0;
4927 
4928 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4929 	if (!pmb) {
4930 		phba->link_state = LPFC_HBA_ERROR;
4931 		return -ENOMEM;
4932 	}
4933 
4934 	phba->sli_rev = sli_mode;
4935 	while (resetcount < 2 && !done) {
4936 		spin_lock_irq(&phba->hbalock);
4937 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4938 		spin_unlock_irq(&phba->hbalock);
4939 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4940 		lpfc_sli_brdrestart(phba);
4941 		rc = lpfc_sli_chipset_init(phba);
4942 		if (rc)
4943 			break;
4944 
4945 		spin_lock_irq(&phba->hbalock);
4946 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4947 		spin_unlock_irq(&phba->hbalock);
4948 		resetcount++;
4949 
4950 		/* Call pre CONFIG_PORT mailbox command initialization.  A
4951 		 * value of 0 means the call was successful.  Any other
4952 		 * nonzero value is a failure, but if ERESTART is returned,
4953 		 * the driver may reset the HBA and try again.
4954 		 */
4955 		rc = lpfc_config_port_prep(phba);
4956 		if (rc == -ERESTART) {
4957 			phba->link_state = LPFC_LINK_UNKNOWN;
4958 			continue;
4959 		} else if (rc)
4960 			break;
4961 
4962 		phba->link_state = LPFC_INIT_MBX_CMDS;
4963 		lpfc_config_port(phba, pmb);
4964 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4965 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4966 					LPFC_SLI3_HBQ_ENABLED |
4967 					LPFC_SLI3_CRP_ENABLED |
4968 					LPFC_SLI3_DSS_ENABLED);
4969 		if (rc != MBX_SUCCESS) {
4970 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4971 				"0442 Adapter failed to init, mbxCmd x%x "
4972 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4973 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4974 			spin_lock_irq(&phba->hbalock);
4975 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4976 			spin_unlock_irq(&phba->hbalock);
4977 			rc = -ENXIO;
4978 		} else {
4979 			/* Allow asynchronous mailbox command to go through */
4980 			spin_lock_irq(&phba->hbalock);
4981 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4982 			spin_unlock_irq(&phba->hbalock);
4983 			done = 1;
4984 
4985 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4986 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
4987 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4988 					"3110 Port did not grant ASABT\n");
4989 		}
4990 	}
4991 	if (!done) {
4992 		rc = -EINVAL;
4993 		goto do_prep_failed;
4994 	}
4995 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4996 		if (!pmb->u.mb.un.varCfgPort.cMA) {
4997 			rc = -ENXIO;
4998 			goto do_prep_failed;
4999 		}
5000 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5001 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5002 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5003 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5004 				phba->max_vpi : phba->max_vports;
5005 
5006 		} else
5007 			phba->max_vpi = 0;
5008 		phba->fips_level = 0;
5009 		phba->fips_spec_rev = 0;
5010 		if (pmb->u.mb.un.varCfgPort.gdss) {
5011 			phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
5012 			phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
5013 			phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
5014 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5015 					"2850 Security Crypto Active. FIPS x%d "
5016 					"(Spec Rev: x%d)",
5017 					phba->fips_level, phba->fips_spec_rev);
5018 		}
5019 		if (pmb->u.mb.un.varCfgPort.sec_err) {
5020 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5021 					"2856 Config Port Security Crypto "
5022 					"Error: x%x ",
5023 					pmb->u.mb.un.varCfgPort.sec_err);
5024 		}
5025 		if (pmb->u.mb.un.varCfgPort.gerbm)
5026 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5027 		if (pmb->u.mb.un.varCfgPort.gcrp)
5028 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5029 
5030 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5031 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5032 
5033 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5034 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5035 				phba->cfg_enable_bg = 0;
5036 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5037 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5038 						"0443 Adapter did not grant "
5039 						"BlockGuard\n");
5040 			}
5041 		}
5042 	} else {
5043 		phba->hbq_get = NULL;
5044 		phba->port_gp = phba->mbox->us.s2.port;
5045 		phba->max_vpi = 0;
5046 	}
5047 do_prep_failed:
5048 	mempool_free(pmb, phba->mbox_mem_pool);
5049 	return rc;
5050 }
5051 
5052 
5053 /**
5054  * lpfc_sli_hba_setup - SLI initialization function
5055  * @phba: Pointer to HBA context object.
5056  *
5057  * This function is the main SLI initialization function. This function
5058  * is called by the HBA initialization code, HBA reset code and HBA
5059  * error attention handler code. Caller is not required to hold any
5060  * locks. This function issues config_port mailbox command to configure
5061  * the SLI, setup iocb rings and HBQ rings. In the end the function
5062  * calls the config_port_post function to issue init_link mailbox
5063  * command and to start the discovery. The function will return zero
5064  * if successful, else it will return negative error code.
5065  **/
5066 int
5067 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5068 {
5069 	uint32_t rc;
5070 	int  mode = 3, i;
5071 	int longs;
5072 
5073 	switch (phba->cfg_sli_mode) {
5074 	case 2:
5075 		if (phba->cfg_enable_npiv) {
5076 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5077 				"1824 NPIV enabled: Override sli_mode "
5078 				"parameter (%d) to auto (0).\n",
5079 				phba->cfg_sli_mode);
5080 			break;
5081 		}
5082 		mode = 2;
5083 		break;
5084 	case 0:
5085 	case 3:
5086 		break;
5087 	default:
5088 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5089 				"1819 Unrecognized sli_mode parameter: %d.\n",
5090 				phba->cfg_sli_mode);
5091 
5092 		break;
5093 	}
5094 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5095 
5096 	rc = lpfc_sli_config_port(phba, mode);
5097 
5098 	if (rc && phba->cfg_sli_mode == 3)
5099 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5100 				"1820 Unable to select SLI-3.  "
5101 				"Not supported by adapter.\n");
5102 	if (rc && mode != 2)
5103 		rc = lpfc_sli_config_port(phba, 2);
5104 	else if (rc && mode == 2)
5105 		rc = lpfc_sli_config_port(phba, 3);
5106 	if (rc)
5107 		goto lpfc_sli_hba_setup_error;
5108 
5109 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5110 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5111 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5112 		if (!rc) {
5113 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5114 					"2709 This device supports "
5115 					"Advanced Error Reporting (AER)\n");
5116 			spin_lock_irq(&phba->hbalock);
5117 			phba->hba_flag |= HBA_AER_ENABLED;
5118 			spin_unlock_irq(&phba->hbalock);
5119 		} else {
5120 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5121 					"2708 This device does not support "
5122 					"Advanced Error Reporting (AER): %d\n",
5123 					rc);
5124 			phba->cfg_aer_support = 0;
5125 		}
5126 	}
5127 
5128 	if (phba->sli_rev == 3) {
5129 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5130 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5131 	} else {
5132 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5133 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5134 		phba->sli3_options = 0;
5135 	}
5136 
5137 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5138 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5139 			phba->sli_rev, phba->max_vpi);
5140 	rc = lpfc_sli_ring_map(phba);
5141 
5142 	if (rc)
5143 		goto lpfc_sli_hba_setup_error;
5144 
5145 	/* Initialize VPIs. */
5146 	if (phba->sli_rev == LPFC_SLI_REV3) {
5147 		/*
5148 		 * The VPI bitmask and physical ID array are allocated
5149 		 * and initialized once only - at driver load.  A port
5150 		 * reset doesn't need to reinitialize this memory.
5151 		 */
5152 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5153 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5154 			phba->vpi_bmask = kcalloc(longs,
5155 						  sizeof(unsigned long),
5156 						  GFP_KERNEL);
5157 			if (!phba->vpi_bmask) {
5158 				rc = -ENOMEM;
5159 				goto lpfc_sli_hba_setup_error;
5160 			}
5161 
5162 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5163 						sizeof(uint16_t),
5164 						GFP_KERNEL);
5165 			if (!phba->vpi_ids) {
5166 				kfree(phba->vpi_bmask);
5167 				rc = -ENOMEM;
5168 				goto lpfc_sli_hba_setup_error;
5169 			}
5170 			for (i = 0; i < phba->max_vpi; i++)
5171 				phba->vpi_ids[i] = i;
5172 		}
5173 	}
5174 
5175 	/* Init HBQs */
5176 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5177 		rc = lpfc_sli_hbq_setup(phba);
5178 		if (rc)
5179 			goto lpfc_sli_hba_setup_error;
5180 	}
5181 	spin_lock_irq(&phba->hbalock);
5182 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5183 	spin_unlock_irq(&phba->hbalock);
5184 
5185 	rc = lpfc_config_port_post(phba);
5186 	if (rc)
5187 		goto lpfc_sli_hba_setup_error;
5188 
5189 	return rc;
5190 
5191 lpfc_sli_hba_setup_error:
5192 	phba->link_state = LPFC_HBA_ERROR;
5193 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5194 			"0445 Firmware initialization failed\n");
5195 	return rc;
5196 }
5197 
5198 /**
5199  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5200  * @phba: Pointer to HBA context object.
5201  * @mboxq: mailbox pointer.
5202  * This function issue a dump mailbox command to read config region
5203  * 23 and parse the records in the region and populate driver
5204  * data structure.
5205  **/
5206 static int
5207 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5208 {
5209 	LPFC_MBOXQ_t *mboxq;
5210 	struct lpfc_dmabuf *mp;
5211 	struct lpfc_mqe *mqe;
5212 	uint32_t data_length;
5213 	int rc;
5214 
5215 	/* Program the default value of vlan_id and fc_map */
5216 	phba->valid_vlan = 0;
5217 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5218 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5219 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5220 
5221 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5222 	if (!mboxq)
5223 		return -ENOMEM;
5224 
5225 	mqe = &mboxq->u.mqe;
5226 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5227 		rc = -ENOMEM;
5228 		goto out_free_mboxq;
5229 	}
5230 
5231 	mp = (struct lpfc_dmabuf *) mboxq->context1;
5232 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5233 
5234 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5235 			"(%d):2571 Mailbox cmd x%x Status x%x "
5236 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5237 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5238 			"CQ: x%x x%x x%x x%x\n",
5239 			mboxq->vport ? mboxq->vport->vpi : 0,
5240 			bf_get(lpfc_mqe_command, mqe),
5241 			bf_get(lpfc_mqe_status, mqe),
5242 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5243 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5244 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5245 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5246 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5247 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5248 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5249 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5250 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5251 			mboxq->mcqe.word0,
5252 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5253 			mboxq->mcqe.trailer);
5254 
5255 	if (rc) {
5256 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5257 		kfree(mp);
5258 		rc = -EIO;
5259 		goto out_free_mboxq;
5260 	}
5261 	data_length = mqe->un.mb_words[5];
5262 	if (data_length > DMP_RGN23_SIZE) {
5263 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5264 		kfree(mp);
5265 		rc = -EIO;
5266 		goto out_free_mboxq;
5267 	}
5268 
5269 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5270 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5271 	kfree(mp);
5272 	rc = 0;
5273 
5274 out_free_mboxq:
5275 	mempool_free(mboxq, phba->mbox_mem_pool);
5276 	return rc;
5277 }
5278 
5279 /**
5280  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5281  * @phba: pointer to lpfc hba data structure.
5282  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5283  * @vpd: pointer to the memory to hold resulting port vpd data.
5284  * @vpd_size: On input, the number of bytes allocated to @vpd.
5285  *	      On output, the number of data bytes in @vpd.
5286  *
5287  * This routine executes a READ_REV SLI4 mailbox command.  In
5288  * addition, this routine gets the port vpd data.
5289  *
5290  * Return codes
5291  * 	0 - successful
5292  * 	-ENOMEM - could not allocated memory.
5293  **/
5294 static int
5295 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5296 		    uint8_t *vpd, uint32_t *vpd_size)
5297 {
5298 	int rc = 0;
5299 	uint32_t dma_size;
5300 	struct lpfc_dmabuf *dmabuf;
5301 	struct lpfc_mqe *mqe;
5302 
5303 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5304 	if (!dmabuf)
5305 		return -ENOMEM;
5306 
5307 	/*
5308 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5309 	 * mailbox command.
5310 	 */
5311 	dma_size = *vpd_size;
5312 	dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size,
5313 					   &dmabuf->phys, GFP_KERNEL);
5314 	if (!dmabuf->virt) {
5315 		kfree(dmabuf);
5316 		return -ENOMEM;
5317 	}
5318 
5319 	/*
5320 	 * The SLI4 implementation of READ_REV conflicts at word1,
5321 	 * bits 31:16 and SLI4 adds vpd functionality not present
5322 	 * in SLI3.  This code corrects the conflicts.
5323 	 */
5324 	lpfc_read_rev(phba, mboxq);
5325 	mqe = &mboxq->u.mqe;
5326 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5327 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5328 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5329 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5330 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5331 
5332 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5333 	if (rc) {
5334 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5335 				  dmabuf->virt, dmabuf->phys);
5336 		kfree(dmabuf);
5337 		return -EIO;
5338 	}
5339 
5340 	/*
5341 	 * The available vpd length cannot be bigger than the
5342 	 * DMA buffer passed to the port.  Catch the less than
5343 	 * case and update the caller's size.
5344 	 */
5345 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5346 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5347 
5348 	memcpy(vpd, dmabuf->virt, *vpd_size);
5349 
5350 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5351 			  dmabuf->virt, dmabuf->phys);
5352 	kfree(dmabuf);
5353 	return 0;
5354 }
5355 
5356 /**
5357  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5358  * @phba: pointer to lpfc hba data structure.
5359  *
5360  * This routine retrieves SLI4 device physical port name this PCI function
5361  * is attached to.
5362  *
5363  * Return codes
5364  *      0 - successful
5365  *      otherwise - failed to retrieve physical port name
5366  **/
5367 static int
5368 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5369 {
5370 	LPFC_MBOXQ_t *mboxq;
5371 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5372 	struct lpfc_controller_attribute *cntl_attr;
5373 	struct lpfc_mbx_get_port_name *get_port_name;
5374 	void *virtaddr = NULL;
5375 	uint32_t alloclen, reqlen;
5376 	uint32_t shdr_status, shdr_add_status;
5377 	union lpfc_sli4_cfg_shdr *shdr;
5378 	char cport_name = 0;
5379 	int rc;
5380 
5381 	/* We assume nothing at this point */
5382 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5383 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5384 
5385 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5386 	if (!mboxq)
5387 		return -ENOMEM;
5388 	/* obtain link type and link number via READ_CONFIG */
5389 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5390 	lpfc_sli4_read_config(phba);
5391 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5392 		goto retrieve_ppname;
5393 
5394 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5395 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5396 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5397 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5398 			LPFC_SLI4_MBX_NEMBED);
5399 	if (alloclen < reqlen) {
5400 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5401 				"3084 Allocated DMA memory size (%d) is "
5402 				"less than the requested DMA memory size "
5403 				"(%d)\n", alloclen, reqlen);
5404 		rc = -ENOMEM;
5405 		goto out_free_mboxq;
5406 	}
5407 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5408 	virtaddr = mboxq->sge_array->addr[0];
5409 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5410 	shdr = &mbx_cntl_attr->cfg_shdr;
5411 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5412 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5413 	if (shdr_status || shdr_add_status || rc) {
5414 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5415 				"3085 Mailbox x%x (x%x/x%x) failed, "
5416 				"rc:x%x, status:x%x, add_status:x%x\n",
5417 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5418 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5419 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5420 				rc, shdr_status, shdr_add_status);
5421 		rc = -ENXIO;
5422 		goto out_free_mboxq;
5423 	}
5424 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5425 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5426 	phba->sli4_hba.lnk_info.lnk_tp =
5427 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5428 	phba->sli4_hba.lnk_info.lnk_no =
5429 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5430 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5431 			"3086 lnk_type:%d, lnk_numb:%d\n",
5432 			phba->sli4_hba.lnk_info.lnk_tp,
5433 			phba->sli4_hba.lnk_info.lnk_no);
5434 
5435 retrieve_ppname:
5436 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5437 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5438 		sizeof(struct lpfc_mbx_get_port_name) -
5439 		sizeof(struct lpfc_sli4_cfg_mhdr),
5440 		LPFC_SLI4_MBX_EMBED);
5441 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5442 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5443 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5444 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5445 		phba->sli4_hba.lnk_info.lnk_tp);
5446 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5447 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5448 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5449 	if (shdr_status || shdr_add_status || rc) {
5450 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5451 				"3087 Mailbox x%x (x%x/x%x) failed: "
5452 				"rc:x%x, status:x%x, add_status:x%x\n",
5453 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5454 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5455 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5456 				rc, shdr_status, shdr_add_status);
5457 		rc = -ENXIO;
5458 		goto out_free_mboxq;
5459 	}
5460 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5461 	case LPFC_LINK_NUMBER_0:
5462 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5463 				&get_port_name->u.response);
5464 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5465 		break;
5466 	case LPFC_LINK_NUMBER_1:
5467 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5468 				&get_port_name->u.response);
5469 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5470 		break;
5471 	case LPFC_LINK_NUMBER_2:
5472 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5473 				&get_port_name->u.response);
5474 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5475 		break;
5476 	case LPFC_LINK_NUMBER_3:
5477 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5478 				&get_port_name->u.response);
5479 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5480 		break;
5481 	default:
5482 		break;
5483 	}
5484 
5485 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5486 		phba->Port[0] = cport_name;
5487 		phba->Port[1] = '\0';
5488 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5489 				"3091 SLI get port name: %s\n", phba->Port);
5490 	}
5491 
5492 out_free_mboxq:
5493 	if (rc != MBX_TIMEOUT) {
5494 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5495 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5496 		else
5497 			mempool_free(mboxq, phba->mbox_mem_pool);
5498 	}
5499 	return rc;
5500 }
5501 
5502 /**
5503  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5504  * @phba: pointer to lpfc hba data structure.
5505  *
5506  * This routine is called to explicitly arm the SLI4 device's completion and
5507  * event queues
5508  **/
5509 static void
5510 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5511 {
5512 	int qidx;
5513 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5514 
5515 	sli4_hba->sli4_cq_release(sli4_hba->mbx_cq, LPFC_QUEUE_REARM);
5516 	sli4_hba->sli4_cq_release(sli4_hba->els_cq, LPFC_QUEUE_REARM);
5517 	if (sli4_hba->nvmels_cq)
5518 		sli4_hba->sli4_cq_release(sli4_hba->nvmels_cq,
5519 						LPFC_QUEUE_REARM);
5520 
5521 	if (sli4_hba->fcp_cq)
5522 		for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++)
5523 			sli4_hba->sli4_cq_release(sli4_hba->fcp_cq[qidx],
5524 						LPFC_QUEUE_REARM);
5525 
5526 	if (sli4_hba->nvme_cq)
5527 		for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++)
5528 			sli4_hba->sli4_cq_release(sli4_hba->nvme_cq[qidx],
5529 						LPFC_QUEUE_REARM);
5530 
5531 	if (phba->cfg_fof)
5532 		sli4_hba->sli4_cq_release(sli4_hba->oas_cq, LPFC_QUEUE_REARM);
5533 
5534 	if (sli4_hba->hba_eq)
5535 		for (qidx = 0; qidx < phba->io_channel_irqs; qidx++)
5536 			sli4_hba->sli4_eq_release(sli4_hba->hba_eq[qidx],
5537 							LPFC_QUEUE_REARM);
5538 
5539 	if (phba->nvmet_support) {
5540 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5541 			sli4_hba->sli4_cq_release(
5542 				sli4_hba->nvmet_cqset[qidx],
5543 				LPFC_QUEUE_REARM);
5544 		}
5545 	}
5546 
5547 	if (phba->cfg_fof)
5548 		sli4_hba->sli4_eq_release(sli4_hba->fof_eq, LPFC_QUEUE_REARM);
5549 }
5550 
5551 /**
5552  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5553  * @phba: Pointer to HBA context object.
5554  * @type: The resource extent type.
5555  * @extnt_count: buffer to hold port available extent count.
5556  * @extnt_size: buffer to hold element count per extent.
5557  *
5558  * This function calls the port and retrievs the number of available
5559  * extents and their size for a particular extent type.
5560  *
5561  * Returns: 0 if successful.  Nonzero otherwise.
5562  **/
5563 int
5564 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5565 			       uint16_t *extnt_count, uint16_t *extnt_size)
5566 {
5567 	int rc = 0;
5568 	uint32_t length;
5569 	uint32_t mbox_tmo;
5570 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5571 	LPFC_MBOXQ_t *mbox;
5572 
5573 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5574 	if (!mbox)
5575 		return -ENOMEM;
5576 
5577 	/* Find out how many extents are available for this resource type */
5578 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5579 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5580 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5581 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5582 			 length, LPFC_SLI4_MBX_EMBED);
5583 
5584 	/* Send an extents count of 0 - the GET doesn't use it. */
5585 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5586 					LPFC_SLI4_MBX_EMBED);
5587 	if (unlikely(rc)) {
5588 		rc = -EIO;
5589 		goto err_exit;
5590 	}
5591 
5592 	if (!phba->sli4_hba.intr_enable)
5593 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5594 	else {
5595 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5596 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5597 	}
5598 	if (unlikely(rc)) {
5599 		rc = -EIO;
5600 		goto err_exit;
5601 	}
5602 
5603 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5604 	if (bf_get(lpfc_mbox_hdr_status,
5605 		   &rsrc_info->header.cfg_shdr.response)) {
5606 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5607 				"2930 Failed to get resource extents "
5608 				"Status 0x%x Add'l Status 0x%x\n",
5609 				bf_get(lpfc_mbox_hdr_status,
5610 				       &rsrc_info->header.cfg_shdr.response),
5611 				bf_get(lpfc_mbox_hdr_add_status,
5612 				       &rsrc_info->header.cfg_shdr.response));
5613 		rc = -EIO;
5614 		goto err_exit;
5615 	}
5616 
5617 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5618 			      &rsrc_info->u.rsp);
5619 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5620 			     &rsrc_info->u.rsp);
5621 
5622 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5623 			"3162 Retrieved extents type-%d from port: count:%d, "
5624 			"size:%d\n", type, *extnt_count, *extnt_size);
5625 
5626 err_exit:
5627 	mempool_free(mbox, phba->mbox_mem_pool);
5628 	return rc;
5629 }
5630 
5631 /**
5632  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5633  * @phba: Pointer to HBA context object.
5634  * @type: The extent type to check.
5635  *
5636  * This function reads the current available extents from the port and checks
5637  * if the extent count or extent size has changed since the last access.
5638  * Callers use this routine post port reset to understand if there is a
5639  * extent reprovisioning requirement.
5640  *
5641  * Returns:
5642  *   -Error: error indicates problem.
5643  *   1: Extent count or size has changed.
5644  *   0: No changes.
5645  **/
5646 static int
5647 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5648 {
5649 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5650 	uint16_t size_diff, rsrc_ext_size;
5651 	int rc = 0;
5652 	struct lpfc_rsrc_blks *rsrc_entry;
5653 	struct list_head *rsrc_blk_list = NULL;
5654 
5655 	size_diff = 0;
5656 	curr_ext_cnt = 0;
5657 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5658 					    &rsrc_ext_cnt,
5659 					    &rsrc_ext_size);
5660 	if (unlikely(rc))
5661 		return -EIO;
5662 
5663 	switch (type) {
5664 	case LPFC_RSC_TYPE_FCOE_RPI:
5665 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5666 		break;
5667 	case LPFC_RSC_TYPE_FCOE_VPI:
5668 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5669 		break;
5670 	case LPFC_RSC_TYPE_FCOE_XRI:
5671 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5672 		break;
5673 	case LPFC_RSC_TYPE_FCOE_VFI:
5674 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5675 		break;
5676 	default:
5677 		break;
5678 	}
5679 
5680 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5681 		curr_ext_cnt++;
5682 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5683 			size_diff++;
5684 	}
5685 
5686 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5687 		rc = 1;
5688 
5689 	return rc;
5690 }
5691 
5692 /**
5693  * lpfc_sli4_cfg_post_extnts -
5694  * @phba: Pointer to HBA context object.
5695  * @extnt_cnt - number of available extents.
5696  * @type - the extent type (rpi, xri, vfi, vpi).
5697  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5698  * @mbox - pointer to the caller's allocated mailbox structure.
5699  *
5700  * This function executes the extents allocation request.  It also
5701  * takes care of the amount of memory needed to allocate or get the
5702  * allocated extents. It is the caller's responsibility to evaluate
5703  * the response.
5704  *
5705  * Returns:
5706  *   -Error:  Error value describes the condition found.
5707  *   0: if successful
5708  **/
5709 static int
5710 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5711 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5712 {
5713 	int rc = 0;
5714 	uint32_t req_len;
5715 	uint32_t emb_len;
5716 	uint32_t alloc_len, mbox_tmo;
5717 
5718 	/* Calculate the total requested length of the dma memory */
5719 	req_len = extnt_cnt * sizeof(uint16_t);
5720 
5721 	/*
5722 	 * Calculate the size of an embedded mailbox.  The uint32_t
5723 	 * accounts for extents-specific word.
5724 	 */
5725 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5726 		sizeof(uint32_t);
5727 
5728 	/*
5729 	 * Presume the allocation and response will fit into an embedded
5730 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5731 	 */
5732 	*emb = LPFC_SLI4_MBX_EMBED;
5733 	if (req_len > emb_len) {
5734 		req_len = extnt_cnt * sizeof(uint16_t) +
5735 			sizeof(union lpfc_sli4_cfg_shdr) +
5736 			sizeof(uint32_t);
5737 		*emb = LPFC_SLI4_MBX_NEMBED;
5738 	}
5739 
5740 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5741 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5742 				     req_len, *emb);
5743 	if (alloc_len < req_len) {
5744 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5745 			"2982 Allocated DMA memory size (x%x) is "
5746 			"less than the requested DMA memory "
5747 			"size (x%x)\n", alloc_len, req_len);
5748 		return -ENOMEM;
5749 	}
5750 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5751 	if (unlikely(rc))
5752 		return -EIO;
5753 
5754 	if (!phba->sli4_hba.intr_enable)
5755 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5756 	else {
5757 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5758 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5759 	}
5760 
5761 	if (unlikely(rc))
5762 		rc = -EIO;
5763 	return rc;
5764 }
5765 
5766 /**
5767  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5768  * @phba: Pointer to HBA context object.
5769  * @type:  The resource extent type to allocate.
5770  *
5771  * This function allocates the number of elements for the specified
5772  * resource type.
5773  **/
5774 static int
5775 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5776 {
5777 	bool emb = false;
5778 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5779 	uint16_t rsrc_id, rsrc_start, j, k;
5780 	uint16_t *ids;
5781 	int i, rc;
5782 	unsigned long longs;
5783 	unsigned long *bmask;
5784 	struct lpfc_rsrc_blks *rsrc_blks;
5785 	LPFC_MBOXQ_t *mbox;
5786 	uint32_t length;
5787 	struct lpfc_id_range *id_array = NULL;
5788 	void *virtaddr = NULL;
5789 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5790 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5791 	struct list_head *ext_blk_list;
5792 
5793 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5794 					    &rsrc_cnt,
5795 					    &rsrc_size);
5796 	if (unlikely(rc))
5797 		return -EIO;
5798 
5799 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5800 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5801 			"3009 No available Resource Extents "
5802 			"for resource type 0x%x: Count: 0x%x, "
5803 			"Size 0x%x\n", type, rsrc_cnt,
5804 			rsrc_size);
5805 		return -ENOMEM;
5806 	}
5807 
5808 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5809 			"2903 Post resource extents type-0x%x: "
5810 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5811 
5812 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5813 	if (!mbox)
5814 		return -ENOMEM;
5815 
5816 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5817 	if (unlikely(rc)) {
5818 		rc = -EIO;
5819 		goto err_exit;
5820 	}
5821 
5822 	/*
5823 	 * Figure out where the response is located.  Then get local pointers
5824 	 * to the response data.  The port does not guarantee to respond to
5825 	 * all extents counts request so update the local variable with the
5826 	 * allocated count from the port.
5827 	 */
5828 	if (emb == LPFC_SLI4_MBX_EMBED) {
5829 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5830 		id_array = &rsrc_ext->u.rsp.id[0];
5831 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5832 	} else {
5833 		virtaddr = mbox->sge_array->addr[0];
5834 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5835 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5836 		id_array = &n_rsrc->id;
5837 	}
5838 
5839 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5840 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5841 
5842 	/*
5843 	 * Based on the resource size and count, correct the base and max
5844 	 * resource values.
5845 	 */
5846 	length = sizeof(struct lpfc_rsrc_blks);
5847 	switch (type) {
5848 	case LPFC_RSC_TYPE_FCOE_RPI:
5849 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
5850 						   sizeof(unsigned long),
5851 						   GFP_KERNEL);
5852 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5853 			rc = -ENOMEM;
5854 			goto err_exit;
5855 		}
5856 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5857 						 sizeof(uint16_t),
5858 						 GFP_KERNEL);
5859 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
5860 			kfree(phba->sli4_hba.rpi_bmask);
5861 			rc = -ENOMEM;
5862 			goto err_exit;
5863 		}
5864 
5865 		/*
5866 		 * The next_rpi was initialized with the maximum available
5867 		 * count but the port may allocate a smaller number.  Catch
5868 		 * that case and update the next_rpi.
5869 		 */
5870 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
5871 
5872 		/* Initialize local ptrs for common extent processing later. */
5873 		bmask = phba->sli4_hba.rpi_bmask;
5874 		ids = phba->sli4_hba.rpi_ids;
5875 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5876 		break;
5877 	case LPFC_RSC_TYPE_FCOE_VPI:
5878 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5879 					  GFP_KERNEL);
5880 		if (unlikely(!phba->vpi_bmask)) {
5881 			rc = -ENOMEM;
5882 			goto err_exit;
5883 		}
5884 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5885 					 GFP_KERNEL);
5886 		if (unlikely(!phba->vpi_ids)) {
5887 			kfree(phba->vpi_bmask);
5888 			rc = -ENOMEM;
5889 			goto err_exit;
5890 		}
5891 
5892 		/* Initialize local ptrs for common extent processing later. */
5893 		bmask = phba->vpi_bmask;
5894 		ids = phba->vpi_ids;
5895 		ext_blk_list = &phba->lpfc_vpi_blk_list;
5896 		break;
5897 	case LPFC_RSC_TYPE_FCOE_XRI:
5898 		phba->sli4_hba.xri_bmask = kcalloc(longs,
5899 						   sizeof(unsigned long),
5900 						   GFP_KERNEL);
5901 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
5902 			rc = -ENOMEM;
5903 			goto err_exit;
5904 		}
5905 		phba->sli4_hba.max_cfg_param.xri_used = 0;
5906 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5907 						 sizeof(uint16_t),
5908 						 GFP_KERNEL);
5909 		if (unlikely(!phba->sli4_hba.xri_ids)) {
5910 			kfree(phba->sli4_hba.xri_bmask);
5911 			rc = -ENOMEM;
5912 			goto err_exit;
5913 		}
5914 
5915 		/* Initialize local ptrs for common extent processing later. */
5916 		bmask = phba->sli4_hba.xri_bmask;
5917 		ids = phba->sli4_hba.xri_ids;
5918 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5919 		break;
5920 	case LPFC_RSC_TYPE_FCOE_VFI:
5921 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
5922 						   sizeof(unsigned long),
5923 						   GFP_KERNEL);
5924 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5925 			rc = -ENOMEM;
5926 			goto err_exit;
5927 		}
5928 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
5929 						 sizeof(uint16_t),
5930 						 GFP_KERNEL);
5931 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
5932 			kfree(phba->sli4_hba.vfi_bmask);
5933 			rc = -ENOMEM;
5934 			goto err_exit;
5935 		}
5936 
5937 		/* Initialize local ptrs for common extent processing later. */
5938 		bmask = phba->sli4_hba.vfi_bmask;
5939 		ids = phba->sli4_hba.vfi_ids;
5940 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5941 		break;
5942 	default:
5943 		/* Unsupported Opcode.  Fail call. */
5944 		id_array = NULL;
5945 		bmask = NULL;
5946 		ids = NULL;
5947 		ext_blk_list = NULL;
5948 		goto err_exit;
5949 	}
5950 
5951 	/*
5952 	 * Complete initializing the extent configuration with the
5953 	 * allocated ids assigned to this function.  The bitmask serves
5954 	 * as an index into the array and manages the available ids.  The
5955 	 * array just stores the ids communicated to the port via the wqes.
5956 	 */
5957 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5958 		if ((i % 2) == 0)
5959 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5960 					 &id_array[k]);
5961 		else
5962 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5963 					 &id_array[k]);
5964 
5965 		rsrc_blks = kzalloc(length, GFP_KERNEL);
5966 		if (unlikely(!rsrc_blks)) {
5967 			rc = -ENOMEM;
5968 			kfree(bmask);
5969 			kfree(ids);
5970 			goto err_exit;
5971 		}
5972 		rsrc_blks->rsrc_start = rsrc_id;
5973 		rsrc_blks->rsrc_size = rsrc_size;
5974 		list_add_tail(&rsrc_blks->list, ext_blk_list);
5975 		rsrc_start = rsrc_id;
5976 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
5977 			phba->sli4_hba.scsi_xri_start = rsrc_start +
5978 				lpfc_sli4_get_iocb_cnt(phba);
5979 			phba->sli4_hba.nvme_xri_start =
5980 				phba->sli4_hba.scsi_xri_start +
5981 				phba->sli4_hba.scsi_xri_max;
5982 		}
5983 
5984 		while (rsrc_id < (rsrc_start + rsrc_size)) {
5985 			ids[j] = rsrc_id;
5986 			rsrc_id++;
5987 			j++;
5988 		}
5989 		/* Entire word processed.  Get next word.*/
5990 		if ((i % 2) == 1)
5991 			k++;
5992 	}
5993  err_exit:
5994 	lpfc_sli4_mbox_cmd_free(phba, mbox);
5995 	return rc;
5996 }
5997 
5998 
5999 
6000 /**
6001  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6002  * @phba: Pointer to HBA context object.
6003  * @type: the extent's type.
6004  *
6005  * This function deallocates all extents of a particular resource type.
6006  * SLI4 does not allow for deallocating a particular extent range.  It
6007  * is the caller's responsibility to release all kernel memory resources.
6008  **/
6009 static int
6010 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6011 {
6012 	int rc;
6013 	uint32_t length, mbox_tmo = 0;
6014 	LPFC_MBOXQ_t *mbox;
6015 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6016 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6017 
6018 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6019 	if (!mbox)
6020 		return -ENOMEM;
6021 
6022 	/*
6023 	 * This function sends an embedded mailbox because it only sends the
6024 	 * the resource type.  All extents of this type are released by the
6025 	 * port.
6026 	 */
6027 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6028 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6029 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6030 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6031 			 length, LPFC_SLI4_MBX_EMBED);
6032 
6033 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6034 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6035 					LPFC_SLI4_MBX_EMBED);
6036 	if (unlikely(rc)) {
6037 		rc = -EIO;
6038 		goto out_free_mbox;
6039 	}
6040 	if (!phba->sli4_hba.intr_enable)
6041 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6042 	else {
6043 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6044 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6045 	}
6046 	if (unlikely(rc)) {
6047 		rc = -EIO;
6048 		goto out_free_mbox;
6049 	}
6050 
6051 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6052 	if (bf_get(lpfc_mbox_hdr_status,
6053 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6054 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6055 				"2919 Failed to release resource extents "
6056 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6057 				"Resource memory not released.\n",
6058 				type,
6059 				bf_get(lpfc_mbox_hdr_status,
6060 				    &dealloc_rsrc->header.cfg_shdr.response),
6061 				bf_get(lpfc_mbox_hdr_add_status,
6062 				    &dealloc_rsrc->header.cfg_shdr.response));
6063 		rc = -EIO;
6064 		goto out_free_mbox;
6065 	}
6066 
6067 	/* Release kernel memory resources for the specific type. */
6068 	switch (type) {
6069 	case LPFC_RSC_TYPE_FCOE_VPI:
6070 		kfree(phba->vpi_bmask);
6071 		kfree(phba->vpi_ids);
6072 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6073 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6074 				    &phba->lpfc_vpi_blk_list, list) {
6075 			list_del_init(&rsrc_blk->list);
6076 			kfree(rsrc_blk);
6077 		}
6078 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6079 		break;
6080 	case LPFC_RSC_TYPE_FCOE_XRI:
6081 		kfree(phba->sli4_hba.xri_bmask);
6082 		kfree(phba->sli4_hba.xri_ids);
6083 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6084 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6085 			list_del_init(&rsrc_blk->list);
6086 			kfree(rsrc_blk);
6087 		}
6088 		break;
6089 	case LPFC_RSC_TYPE_FCOE_VFI:
6090 		kfree(phba->sli4_hba.vfi_bmask);
6091 		kfree(phba->sli4_hba.vfi_ids);
6092 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6093 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6094 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6095 			list_del_init(&rsrc_blk->list);
6096 			kfree(rsrc_blk);
6097 		}
6098 		break;
6099 	case LPFC_RSC_TYPE_FCOE_RPI:
6100 		/* RPI bitmask and physical id array are cleaned up earlier. */
6101 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6102 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6103 			list_del_init(&rsrc_blk->list);
6104 			kfree(rsrc_blk);
6105 		}
6106 		break;
6107 	default:
6108 		break;
6109 	}
6110 
6111 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6112 
6113  out_free_mbox:
6114 	mempool_free(mbox, phba->mbox_mem_pool);
6115 	return rc;
6116 }
6117 
6118 static void
6119 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6120 		  uint32_t feature)
6121 {
6122 	uint32_t len;
6123 
6124 	len = sizeof(struct lpfc_mbx_set_feature) -
6125 		sizeof(struct lpfc_sli4_cfg_mhdr);
6126 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6127 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6128 			 LPFC_SLI4_MBX_EMBED);
6129 
6130 	switch (feature) {
6131 	case LPFC_SET_UE_RECOVERY:
6132 		bf_set(lpfc_mbx_set_feature_UER,
6133 		       &mbox->u.mqe.un.set_feature, 1);
6134 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6135 		mbox->u.mqe.un.set_feature.param_len = 8;
6136 		break;
6137 	case LPFC_SET_MDS_DIAGS:
6138 		bf_set(lpfc_mbx_set_feature_mds,
6139 		       &mbox->u.mqe.un.set_feature, 1);
6140 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6141 		       &mbox->u.mqe.un.set_feature, 1);
6142 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6143 		mbox->u.mqe.un.set_feature.param_len = 8;
6144 		break;
6145 	}
6146 
6147 	return;
6148 }
6149 
6150 /**
6151  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6152  * @phba: Pointer to HBA context object.
6153  *
6154  * This function is called to free memory allocated for RAS FW logging
6155  * support in the driver.
6156  **/
6157 void
6158 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6159 {
6160 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6161 	struct lpfc_dmabuf *dmabuf, *next;
6162 
6163 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6164 		list_for_each_entry_safe(dmabuf, next,
6165 				    &ras_fwlog->fwlog_buff_list,
6166 				    list) {
6167 			list_del(&dmabuf->list);
6168 			dma_free_coherent(&phba->pcidev->dev,
6169 					  LPFC_RAS_MAX_ENTRY_SIZE,
6170 					  dmabuf->virt, dmabuf->phys);
6171 			kfree(dmabuf);
6172 		}
6173 	}
6174 
6175 	if (ras_fwlog->lwpd.virt) {
6176 		dma_free_coherent(&phba->pcidev->dev,
6177 				  sizeof(uint32_t) * 2,
6178 				  ras_fwlog->lwpd.virt,
6179 				  ras_fwlog->lwpd.phys);
6180 		ras_fwlog->lwpd.virt = NULL;
6181 	}
6182 
6183 	ras_fwlog->ras_active = false;
6184 }
6185 
6186 /**
6187  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6188  * @phba: Pointer to HBA context object.
6189  * @fwlog_buff_count: Count of buffers to be created.
6190  *
6191  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6192  * to update FW log is posted to the adapter.
6193  * Buffer count is calculated based on module param ras_fwlog_buffsize
6194  * Size of each buffer posted to FW is 64K.
6195  **/
6196 
6197 static int
6198 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6199 			uint32_t fwlog_buff_count)
6200 {
6201 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6202 	struct lpfc_dmabuf *dmabuf;
6203 	int rc = 0, i = 0;
6204 
6205 	/* Initialize List */
6206 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6207 
6208 	/* Allocate memory for the LWPD */
6209 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6210 					    sizeof(uint32_t) * 2,
6211 					    &ras_fwlog->lwpd.phys,
6212 					    GFP_KERNEL);
6213 	if (!ras_fwlog->lwpd.virt) {
6214 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6215 				"6185 LWPD Memory Alloc Failed\n");
6216 
6217 		return -ENOMEM;
6218 	}
6219 
6220 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6221 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6222 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6223 				 GFP_KERNEL);
6224 		if (!dmabuf) {
6225 			rc = -ENOMEM;
6226 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6227 					"6186 Memory Alloc failed FW logging");
6228 			goto free_mem;
6229 		}
6230 
6231 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6232 						  LPFC_RAS_MAX_ENTRY_SIZE,
6233 						  &dmabuf->phys,
6234 						  GFP_KERNEL);
6235 		if (!dmabuf->virt) {
6236 			kfree(dmabuf);
6237 			rc = -ENOMEM;
6238 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6239 					"6187 DMA Alloc Failed FW logging");
6240 			goto free_mem;
6241 		}
6242 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6243 		dmabuf->buffer_tag = i;
6244 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6245 	}
6246 
6247 free_mem:
6248 	if (rc)
6249 		lpfc_sli4_ras_dma_free(phba);
6250 
6251 	return rc;
6252 }
6253 
6254 /**
6255  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6256  * @phba: pointer to lpfc hba data structure.
6257  * @pmboxq: pointer to the driver internal queue element for mailbox command.
6258  *
6259  * Completion handler for driver's RAS MBX command to the device.
6260  **/
6261 static void
6262 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6263 {
6264 	MAILBOX_t *mb;
6265 	union lpfc_sli4_cfg_shdr *shdr;
6266 	uint32_t shdr_status, shdr_add_status;
6267 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6268 
6269 	mb = &pmb->u.mb;
6270 
6271 	shdr = (union lpfc_sli4_cfg_shdr *)
6272 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6273 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6274 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6275 
6276 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6277 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
6278 				"6188 FW LOG mailbox "
6279 				"completed with status x%x add_status x%x,"
6280 				" mbx status x%x\n",
6281 				shdr_status, shdr_add_status, mb->mbxStatus);
6282 		goto disable_ras;
6283 	}
6284 
6285 	ras_fwlog->ras_active = true;
6286 	mempool_free(pmb, phba->mbox_mem_pool);
6287 
6288 	return;
6289 
6290 disable_ras:
6291 	/* Free RAS DMA memory */
6292 	lpfc_sli4_ras_dma_free(phba);
6293 	mempool_free(pmb, phba->mbox_mem_pool);
6294 }
6295 
6296 /**
6297  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6298  * @phba: pointer to lpfc hba data structure.
6299  * @fwlog_level: Logging verbosity level.
6300  * @fwlog_enable: Enable/Disable logging.
6301  *
6302  * Initialize memory and post mailbox command to enable FW logging in host
6303  * memory.
6304  **/
6305 int
6306 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6307 			 uint32_t fwlog_level,
6308 			 uint32_t fwlog_enable)
6309 {
6310 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6311 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6312 	struct lpfc_dmabuf *dmabuf;
6313 	LPFC_MBOXQ_t *mbox;
6314 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6315 	int rc = 0;
6316 
6317 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6318 			  phba->cfg_ras_fwlog_buffsize);
6319 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6320 
6321 	/*
6322 	 * If re-enabling FW logging support use earlier allocated
6323 	 * DMA buffers while posting MBX command.
6324 	 **/
6325 	if (!ras_fwlog->lwpd.virt) {
6326 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6327 		if (rc) {
6328 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6329 					"6189 RAS FW Log Support Not Enabled");
6330 			return rc;
6331 		}
6332 	}
6333 
6334 	/* Setup Mailbox command */
6335 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6336 	if (!mbox) {
6337 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6338 				"6190 RAS MBX Alloc Failed");
6339 		rc = -ENOMEM;
6340 		goto mem_free;
6341 	}
6342 
6343 	ras_fwlog->fw_loglevel = fwlog_level;
6344 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6345 		sizeof(struct lpfc_sli4_cfg_mhdr));
6346 
6347 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6348 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6349 			 len, LPFC_SLI4_MBX_EMBED);
6350 
6351 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6352 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6353 	       fwlog_enable);
6354 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6355 	       ras_fwlog->fw_loglevel);
6356 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6357 	       ras_fwlog->fw_buffcount);
6358 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6359 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6360 
6361 	/* Update DMA buffer address */
6362 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6363 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6364 
6365 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6366 			putPaddrLow(dmabuf->phys);
6367 
6368 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6369 			putPaddrHigh(dmabuf->phys);
6370 	}
6371 
6372 	/* Update LPWD address */
6373 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6374 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6375 
6376 	mbox->vport = phba->pport;
6377 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6378 
6379 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6380 
6381 	if (rc == MBX_NOT_FINISHED) {
6382 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6383 				"6191 RAS Mailbox failed. "
6384 				"status %d mbxStatus : x%x", rc,
6385 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6386 		mempool_free(mbox, phba->mbox_mem_pool);
6387 		rc = -EIO;
6388 		goto mem_free;
6389 	} else
6390 		rc = 0;
6391 mem_free:
6392 	if (rc)
6393 		lpfc_sli4_ras_dma_free(phba);
6394 
6395 	return rc;
6396 }
6397 
6398 /**
6399  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6400  * @phba: Pointer to HBA context object.
6401  *
6402  * Check if RAS is supported on the adapter and initialize it.
6403  **/
6404 void
6405 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6406 {
6407 	/* Check RAS FW Log needs to be enabled or not */
6408 	if (lpfc_check_fwlog_support(phba))
6409 		return;
6410 
6411 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6412 				 LPFC_RAS_ENABLE_LOGGING);
6413 }
6414 
6415 /**
6416  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6417  * @phba: Pointer to HBA context object.
6418  *
6419  * This function allocates all SLI4 resource identifiers.
6420  **/
6421 int
6422 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6423 {
6424 	int i, rc, error = 0;
6425 	uint16_t count, base;
6426 	unsigned long longs;
6427 
6428 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6429 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6430 	if (phba->sli4_hba.extents_in_use) {
6431 		/*
6432 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6433 		 * resource extent count must be read and allocated before
6434 		 * provisioning the resource id arrays.
6435 		 */
6436 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6437 		    LPFC_IDX_RSRC_RDY) {
6438 			/*
6439 			 * Extent-based resources are set - the driver could
6440 			 * be in a port reset. Figure out if any corrective
6441 			 * actions need to be taken.
6442 			 */
6443 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6444 						 LPFC_RSC_TYPE_FCOE_VFI);
6445 			if (rc != 0)
6446 				error++;
6447 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6448 						 LPFC_RSC_TYPE_FCOE_VPI);
6449 			if (rc != 0)
6450 				error++;
6451 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6452 						 LPFC_RSC_TYPE_FCOE_XRI);
6453 			if (rc != 0)
6454 				error++;
6455 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6456 						 LPFC_RSC_TYPE_FCOE_RPI);
6457 			if (rc != 0)
6458 				error++;
6459 
6460 			/*
6461 			 * It's possible that the number of resources
6462 			 * provided to this port instance changed between
6463 			 * resets.  Detect this condition and reallocate
6464 			 * resources.  Otherwise, there is no action.
6465 			 */
6466 			if (error) {
6467 				lpfc_printf_log(phba, KERN_INFO,
6468 						LOG_MBOX | LOG_INIT,
6469 						"2931 Detected extent resource "
6470 						"change.  Reallocating all "
6471 						"extents.\n");
6472 				rc = lpfc_sli4_dealloc_extent(phba,
6473 						 LPFC_RSC_TYPE_FCOE_VFI);
6474 				rc = lpfc_sli4_dealloc_extent(phba,
6475 						 LPFC_RSC_TYPE_FCOE_VPI);
6476 				rc = lpfc_sli4_dealloc_extent(phba,
6477 						 LPFC_RSC_TYPE_FCOE_XRI);
6478 				rc = lpfc_sli4_dealloc_extent(phba,
6479 						 LPFC_RSC_TYPE_FCOE_RPI);
6480 			} else
6481 				return 0;
6482 		}
6483 
6484 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6485 		if (unlikely(rc))
6486 			goto err_exit;
6487 
6488 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6489 		if (unlikely(rc))
6490 			goto err_exit;
6491 
6492 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6493 		if (unlikely(rc))
6494 			goto err_exit;
6495 
6496 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6497 		if (unlikely(rc))
6498 			goto err_exit;
6499 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6500 		       LPFC_IDX_RSRC_RDY);
6501 		return rc;
6502 	} else {
6503 		/*
6504 		 * The port does not support resource extents.  The XRI, VPI,
6505 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6506 		 * Just allocate the bitmasks and provision the resource id
6507 		 * arrays.  If a port reset is active, the resources don't
6508 		 * need any action - just exit.
6509 		 */
6510 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6511 		    LPFC_IDX_RSRC_RDY) {
6512 			lpfc_sli4_dealloc_resource_identifiers(phba);
6513 			lpfc_sli4_remove_rpis(phba);
6514 		}
6515 		/* RPIs. */
6516 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6517 		if (count <= 0) {
6518 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6519 					"3279 Invalid provisioning of "
6520 					"rpi:%d\n", count);
6521 			rc = -EINVAL;
6522 			goto err_exit;
6523 		}
6524 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6525 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6526 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6527 						   sizeof(unsigned long),
6528 						   GFP_KERNEL);
6529 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6530 			rc = -ENOMEM;
6531 			goto err_exit;
6532 		}
6533 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6534 						 GFP_KERNEL);
6535 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6536 			rc = -ENOMEM;
6537 			goto free_rpi_bmask;
6538 		}
6539 
6540 		for (i = 0; i < count; i++)
6541 			phba->sli4_hba.rpi_ids[i] = base + i;
6542 
6543 		/* VPIs. */
6544 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6545 		if (count <= 0) {
6546 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6547 					"3280 Invalid provisioning of "
6548 					"vpi:%d\n", count);
6549 			rc = -EINVAL;
6550 			goto free_rpi_ids;
6551 		}
6552 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6553 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6554 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6555 					  GFP_KERNEL);
6556 		if (unlikely(!phba->vpi_bmask)) {
6557 			rc = -ENOMEM;
6558 			goto free_rpi_ids;
6559 		}
6560 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6561 					GFP_KERNEL);
6562 		if (unlikely(!phba->vpi_ids)) {
6563 			rc = -ENOMEM;
6564 			goto free_vpi_bmask;
6565 		}
6566 
6567 		for (i = 0; i < count; i++)
6568 			phba->vpi_ids[i] = base + i;
6569 
6570 		/* XRIs. */
6571 		count = phba->sli4_hba.max_cfg_param.max_xri;
6572 		if (count <= 0) {
6573 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6574 					"3281 Invalid provisioning of "
6575 					"xri:%d\n", count);
6576 			rc = -EINVAL;
6577 			goto free_vpi_ids;
6578 		}
6579 		base = phba->sli4_hba.max_cfg_param.xri_base;
6580 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6581 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6582 						   sizeof(unsigned long),
6583 						   GFP_KERNEL);
6584 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6585 			rc = -ENOMEM;
6586 			goto free_vpi_ids;
6587 		}
6588 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6589 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6590 						 GFP_KERNEL);
6591 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6592 			rc = -ENOMEM;
6593 			goto free_xri_bmask;
6594 		}
6595 
6596 		for (i = 0; i < count; i++)
6597 			phba->sli4_hba.xri_ids[i] = base + i;
6598 
6599 		/* VFIs. */
6600 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6601 		if (count <= 0) {
6602 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6603 					"3282 Invalid provisioning of "
6604 					"vfi:%d\n", count);
6605 			rc = -EINVAL;
6606 			goto free_xri_ids;
6607 		}
6608 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6609 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6610 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6611 						   sizeof(unsigned long),
6612 						   GFP_KERNEL);
6613 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6614 			rc = -ENOMEM;
6615 			goto free_xri_ids;
6616 		}
6617 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6618 						 GFP_KERNEL);
6619 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6620 			rc = -ENOMEM;
6621 			goto free_vfi_bmask;
6622 		}
6623 
6624 		for (i = 0; i < count; i++)
6625 			phba->sli4_hba.vfi_ids[i] = base + i;
6626 
6627 		/*
6628 		 * Mark all resources ready.  An HBA reset doesn't need
6629 		 * to reset the initialization.
6630 		 */
6631 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6632 		       LPFC_IDX_RSRC_RDY);
6633 		return 0;
6634 	}
6635 
6636  free_vfi_bmask:
6637 	kfree(phba->sli4_hba.vfi_bmask);
6638 	phba->sli4_hba.vfi_bmask = NULL;
6639  free_xri_ids:
6640 	kfree(phba->sli4_hba.xri_ids);
6641 	phba->sli4_hba.xri_ids = NULL;
6642  free_xri_bmask:
6643 	kfree(phba->sli4_hba.xri_bmask);
6644 	phba->sli4_hba.xri_bmask = NULL;
6645  free_vpi_ids:
6646 	kfree(phba->vpi_ids);
6647 	phba->vpi_ids = NULL;
6648  free_vpi_bmask:
6649 	kfree(phba->vpi_bmask);
6650 	phba->vpi_bmask = NULL;
6651  free_rpi_ids:
6652 	kfree(phba->sli4_hba.rpi_ids);
6653 	phba->sli4_hba.rpi_ids = NULL;
6654  free_rpi_bmask:
6655 	kfree(phba->sli4_hba.rpi_bmask);
6656 	phba->sli4_hba.rpi_bmask = NULL;
6657  err_exit:
6658 	return rc;
6659 }
6660 
6661 /**
6662  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6663  * @phba: Pointer to HBA context object.
6664  *
6665  * This function allocates the number of elements for the specified
6666  * resource type.
6667  **/
6668 int
6669 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6670 {
6671 	if (phba->sli4_hba.extents_in_use) {
6672 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6673 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6674 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6675 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6676 	} else {
6677 		kfree(phba->vpi_bmask);
6678 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6679 		kfree(phba->vpi_ids);
6680 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6681 		kfree(phba->sli4_hba.xri_bmask);
6682 		kfree(phba->sli4_hba.xri_ids);
6683 		kfree(phba->sli4_hba.vfi_bmask);
6684 		kfree(phba->sli4_hba.vfi_ids);
6685 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6686 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6687 	}
6688 
6689 	return 0;
6690 }
6691 
6692 /**
6693  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6694  * @phba: Pointer to HBA context object.
6695  * @type: The resource extent type.
6696  * @extnt_count: buffer to hold port extent count response
6697  * @extnt_size: buffer to hold port extent size response.
6698  *
6699  * This function calls the port to read the host allocated extents
6700  * for a particular type.
6701  **/
6702 int
6703 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6704 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6705 {
6706 	bool emb;
6707 	int rc = 0;
6708 	uint16_t curr_blks = 0;
6709 	uint32_t req_len, emb_len;
6710 	uint32_t alloc_len, mbox_tmo;
6711 	struct list_head *blk_list_head;
6712 	struct lpfc_rsrc_blks *rsrc_blk;
6713 	LPFC_MBOXQ_t *mbox;
6714 	void *virtaddr = NULL;
6715 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6716 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6717 	union  lpfc_sli4_cfg_shdr *shdr;
6718 
6719 	switch (type) {
6720 	case LPFC_RSC_TYPE_FCOE_VPI:
6721 		blk_list_head = &phba->lpfc_vpi_blk_list;
6722 		break;
6723 	case LPFC_RSC_TYPE_FCOE_XRI:
6724 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6725 		break;
6726 	case LPFC_RSC_TYPE_FCOE_VFI:
6727 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6728 		break;
6729 	case LPFC_RSC_TYPE_FCOE_RPI:
6730 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6731 		break;
6732 	default:
6733 		return -EIO;
6734 	}
6735 
6736 	/* Count the number of extents currently allocatd for this type. */
6737 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6738 		if (curr_blks == 0) {
6739 			/*
6740 			 * The GET_ALLOCATED mailbox does not return the size,
6741 			 * just the count.  The size should be just the size
6742 			 * stored in the current allocated block and all sizes
6743 			 * for an extent type are the same so set the return
6744 			 * value now.
6745 			 */
6746 			*extnt_size = rsrc_blk->rsrc_size;
6747 		}
6748 		curr_blks++;
6749 	}
6750 
6751 	/*
6752 	 * Calculate the size of an embedded mailbox.  The uint32_t
6753 	 * accounts for extents-specific word.
6754 	 */
6755 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6756 		sizeof(uint32_t);
6757 
6758 	/*
6759 	 * Presume the allocation and response will fit into an embedded
6760 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6761 	 */
6762 	emb = LPFC_SLI4_MBX_EMBED;
6763 	req_len = emb_len;
6764 	if (req_len > emb_len) {
6765 		req_len = curr_blks * sizeof(uint16_t) +
6766 			sizeof(union lpfc_sli4_cfg_shdr) +
6767 			sizeof(uint32_t);
6768 		emb = LPFC_SLI4_MBX_NEMBED;
6769 	}
6770 
6771 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6772 	if (!mbox)
6773 		return -ENOMEM;
6774 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6775 
6776 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6777 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6778 				     req_len, emb);
6779 	if (alloc_len < req_len) {
6780 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6781 			"2983 Allocated DMA memory size (x%x) is "
6782 			"less than the requested DMA memory "
6783 			"size (x%x)\n", alloc_len, req_len);
6784 		rc = -ENOMEM;
6785 		goto err_exit;
6786 	}
6787 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6788 	if (unlikely(rc)) {
6789 		rc = -EIO;
6790 		goto err_exit;
6791 	}
6792 
6793 	if (!phba->sli4_hba.intr_enable)
6794 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6795 	else {
6796 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6797 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6798 	}
6799 
6800 	if (unlikely(rc)) {
6801 		rc = -EIO;
6802 		goto err_exit;
6803 	}
6804 
6805 	/*
6806 	 * Figure out where the response is located.  Then get local pointers
6807 	 * to the response data.  The port does not guarantee to respond to
6808 	 * all extents counts request so update the local variable with the
6809 	 * allocated count from the port.
6810 	 */
6811 	if (emb == LPFC_SLI4_MBX_EMBED) {
6812 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6813 		shdr = &rsrc_ext->header.cfg_shdr;
6814 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6815 	} else {
6816 		virtaddr = mbox->sge_array->addr[0];
6817 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6818 		shdr = &n_rsrc->cfg_shdr;
6819 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6820 	}
6821 
6822 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6823 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6824 			"2984 Failed to read allocated resources "
6825 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
6826 			type,
6827 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
6828 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6829 		rc = -EIO;
6830 		goto err_exit;
6831 	}
6832  err_exit:
6833 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6834 	return rc;
6835 }
6836 
6837 /**
6838  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6839  * @phba: pointer to lpfc hba data structure.
6840  * @pring: Pointer to driver SLI ring object.
6841  * @sgl_list: linked link of sgl buffers to post
6842  * @cnt: number of linked list buffers
6843  *
6844  * This routine walks the list of buffers that have been allocated and
6845  * repost them to the port by using SGL block post. This is needed after a
6846  * pci_function_reset/warm_start or start. It attempts to construct blocks
6847  * of buffer sgls which contains contiguous xris and uses the non-embedded
6848  * SGL block post mailbox commands to post them to the port. For single
6849  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6850  * mailbox command for posting.
6851  *
6852  * Returns: 0 = success, non-zero failure.
6853  **/
6854 static int
6855 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6856 			  struct list_head *sgl_list, int cnt)
6857 {
6858 	struct lpfc_sglq *sglq_entry = NULL;
6859 	struct lpfc_sglq *sglq_entry_next = NULL;
6860 	struct lpfc_sglq *sglq_entry_first = NULL;
6861 	int status, total_cnt;
6862 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
6863 	int last_xritag = NO_XRI;
6864 	LIST_HEAD(prep_sgl_list);
6865 	LIST_HEAD(blck_sgl_list);
6866 	LIST_HEAD(allc_sgl_list);
6867 	LIST_HEAD(post_sgl_list);
6868 	LIST_HEAD(free_sgl_list);
6869 
6870 	spin_lock_irq(&phba->hbalock);
6871 	spin_lock(&phba->sli4_hba.sgl_list_lock);
6872 	list_splice_init(sgl_list, &allc_sgl_list);
6873 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
6874 	spin_unlock_irq(&phba->hbalock);
6875 
6876 	total_cnt = cnt;
6877 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6878 				 &allc_sgl_list, list) {
6879 		list_del_init(&sglq_entry->list);
6880 		block_cnt++;
6881 		if ((last_xritag != NO_XRI) &&
6882 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
6883 			/* a hole in xri block, form a sgl posting block */
6884 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
6885 			post_cnt = block_cnt - 1;
6886 			/* prepare list for next posting block */
6887 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6888 			block_cnt = 1;
6889 		} else {
6890 			/* prepare list for next posting block */
6891 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6892 			/* enough sgls for non-embed sgl mbox command */
6893 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6894 				list_splice_init(&prep_sgl_list,
6895 						 &blck_sgl_list);
6896 				post_cnt = block_cnt;
6897 				block_cnt = 0;
6898 			}
6899 		}
6900 		num_posted++;
6901 
6902 		/* keep track of last sgl's xritag */
6903 		last_xritag = sglq_entry->sli4_xritag;
6904 
6905 		/* end of repost sgl list condition for buffers */
6906 		if (num_posted == total_cnt) {
6907 			if (post_cnt == 0) {
6908 				list_splice_init(&prep_sgl_list,
6909 						 &blck_sgl_list);
6910 				post_cnt = block_cnt;
6911 			} else if (block_cnt == 1) {
6912 				status = lpfc_sli4_post_sgl(phba,
6913 						sglq_entry->phys, 0,
6914 						sglq_entry->sli4_xritag);
6915 				if (!status) {
6916 					/* successful, put sgl to posted list */
6917 					list_add_tail(&sglq_entry->list,
6918 						      &post_sgl_list);
6919 				} else {
6920 					/* Failure, put sgl to free list */
6921 					lpfc_printf_log(phba, KERN_WARNING,
6922 						LOG_SLI,
6923 						"3159 Failed to post "
6924 						"sgl, xritag:x%x\n",
6925 						sglq_entry->sli4_xritag);
6926 					list_add_tail(&sglq_entry->list,
6927 						      &free_sgl_list);
6928 					total_cnt--;
6929 				}
6930 			}
6931 		}
6932 
6933 		/* continue until a nembed page worth of sgls */
6934 		if (post_cnt == 0)
6935 			continue;
6936 
6937 		/* post the buffer list sgls as a block */
6938 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
6939 						 post_cnt);
6940 
6941 		if (!status) {
6942 			/* success, put sgl list to posted sgl list */
6943 			list_splice_init(&blck_sgl_list, &post_sgl_list);
6944 		} else {
6945 			/* Failure, put sgl list to free sgl list */
6946 			sglq_entry_first = list_first_entry(&blck_sgl_list,
6947 							    struct lpfc_sglq,
6948 							    list);
6949 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6950 					"3160 Failed to post sgl-list, "
6951 					"xritag:x%x-x%x\n",
6952 					sglq_entry_first->sli4_xritag,
6953 					(sglq_entry_first->sli4_xritag +
6954 					 post_cnt - 1));
6955 			list_splice_init(&blck_sgl_list, &free_sgl_list);
6956 			total_cnt -= post_cnt;
6957 		}
6958 
6959 		/* don't reset xirtag due to hole in xri block */
6960 		if (block_cnt == 0)
6961 			last_xritag = NO_XRI;
6962 
6963 		/* reset sgl post count for next round of posting */
6964 		post_cnt = 0;
6965 	}
6966 
6967 	/* free the sgls failed to post */
6968 	lpfc_free_sgl_list(phba, &free_sgl_list);
6969 
6970 	/* push sgls posted to the available list */
6971 	if (!list_empty(&post_sgl_list)) {
6972 		spin_lock_irq(&phba->hbalock);
6973 		spin_lock(&phba->sli4_hba.sgl_list_lock);
6974 		list_splice_init(&post_sgl_list, sgl_list);
6975 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
6976 		spin_unlock_irq(&phba->hbalock);
6977 	} else {
6978 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6979 				"3161 Failure to post sgl to port.\n");
6980 		return -EIO;
6981 	}
6982 
6983 	/* return the number of XRIs actually posted */
6984 	return total_cnt;
6985 }
6986 
6987 void
6988 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
6989 {
6990 	uint32_t len;
6991 
6992 	len = sizeof(struct lpfc_mbx_set_host_data) -
6993 		sizeof(struct lpfc_sli4_cfg_mhdr);
6994 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6995 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
6996 			 LPFC_SLI4_MBX_EMBED);
6997 
6998 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
6999 	mbox->u.mqe.un.set_host_data.param_len =
7000 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7001 	snprintf(mbox->u.mqe.un.set_host_data.data,
7002 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7003 		 "Linux %s v"LPFC_DRIVER_VERSION,
7004 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7005 }
7006 
7007 int
7008 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7009 		    struct lpfc_queue *drq, int count, int idx)
7010 {
7011 	int rc, i;
7012 	struct lpfc_rqe hrqe;
7013 	struct lpfc_rqe drqe;
7014 	struct lpfc_rqb *rqbp;
7015 	unsigned long flags;
7016 	struct rqb_dmabuf *rqb_buffer;
7017 	LIST_HEAD(rqb_buf_list);
7018 
7019 	spin_lock_irqsave(&phba->hbalock, flags);
7020 	rqbp = hrq->rqbp;
7021 	for (i = 0; i < count; i++) {
7022 		/* IF RQ is already full, don't bother */
7023 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7024 			break;
7025 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7026 		if (!rqb_buffer)
7027 			break;
7028 		rqb_buffer->hrq = hrq;
7029 		rqb_buffer->drq = drq;
7030 		rqb_buffer->idx = idx;
7031 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7032 	}
7033 	while (!list_empty(&rqb_buf_list)) {
7034 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7035 				 hbuf.list);
7036 
7037 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7038 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7039 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7040 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7041 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7042 		if (rc < 0) {
7043 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7044 					"6421 Cannot post to HRQ %d: %x %x %x "
7045 					"DRQ %x %x\n",
7046 					hrq->queue_id,
7047 					hrq->host_index,
7048 					hrq->hba_index,
7049 					hrq->entry_count,
7050 					drq->host_index,
7051 					drq->hba_index);
7052 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7053 		} else {
7054 			list_add_tail(&rqb_buffer->hbuf.list,
7055 				      &rqbp->rqb_buffer_list);
7056 			rqbp->buffer_count++;
7057 		}
7058 	}
7059 	spin_unlock_irqrestore(&phba->hbalock, flags);
7060 	return 1;
7061 }
7062 
7063 /**
7064  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7065  * @phba: Pointer to HBA context object.
7066  *
7067  * This function is the main SLI4 device initialization PCI function. This
7068  * function is called by the HBA initialization code, HBA reset code and
7069  * HBA error attention handler code. Caller is not required to hold any
7070  * locks.
7071  **/
7072 int
7073 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7074 {
7075 	int rc, i, cnt;
7076 	LPFC_MBOXQ_t *mboxq;
7077 	struct lpfc_mqe *mqe;
7078 	uint8_t *vpd;
7079 	uint32_t vpd_size;
7080 	uint32_t ftr_rsp = 0;
7081 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7082 	struct lpfc_vport *vport = phba->pport;
7083 	struct lpfc_dmabuf *mp;
7084 	struct lpfc_rqb *rqbp;
7085 
7086 	/* Perform a PCI function reset to start from clean */
7087 	rc = lpfc_pci_function_reset(phba);
7088 	if (unlikely(rc))
7089 		return -ENODEV;
7090 
7091 	/* Check the HBA Host Status Register for readyness */
7092 	rc = lpfc_sli4_post_status_check(phba);
7093 	if (unlikely(rc))
7094 		return -ENODEV;
7095 	else {
7096 		spin_lock_irq(&phba->hbalock);
7097 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7098 		spin_unlock_irq(&phba->hbalock);
7099 	}
7100 
7101 	/*
7102 	 * Allocate a single mailbox container for initializing the
7103 	 * port.
7104 	 */
7105 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7106 	if (!mboxq)
7107 		return -ENOMEM;
7108 
7109 	/* Issue READ_REV to collect vpd and FW information. */
7110 	vpd_size = SLI4_PAGE_SIZE;
7111 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7112 	if (!vpd) {
7113 		rc = -ENOMEM;
7114 		goto out_free_mbox;
7115 	}
7116 
7117 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7118 	if (unlikely(rc)) {
7119 		kfree(vpd);
7120 		goto out_free_mbox;
7121 	}
7122 
7123 	mqe = &mboxq->u.mqe;
7124 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7125 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7126 		phba->hba_flag |= HBA_FCOE_MODE;
7127 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7128 	} else {
7129 		phba->hba_flag &= ~HBA_FCOE_MODE;
7130 	}
7131 
7132 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7133 		LPFC_DCBX_CEE_MODE)
7134 		phba->hba_flag |= HBA_FIP_SUPPORT;
7135 	else
7136 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7137 
7138 	phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
7139 
7140 	if (phba->sli_rev != LPFC_SLI_REV4) {
7141 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7142 			"0376 READ_REV Error. SLI Level %d "
7143 			"FCoE enabled %d\n",
7144 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7145 		rc = -EIO;
7146 		kfree(vpd);
7147 		goto out_free_mbox;
7148 	}
7149 
7150 	/*
7151 	 * Continue initialization with default values even if driver failed
7152 	 * to read FCoE param config regions, only read parameters if the
7153 	 * board is FCoE
7154 	 */
7155 	if (phba->hba_flag & HBA_FCOE_MODE &&
7156 	    lpfc_sli4_read_fcoe_params(phba))
7157 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7158 			"2570 Failed to read FCoE parameters\n");
7159 
7160 	/*
7161 	 * Retrieve sli4 device physical port name, failure of doing it
7162 	 * is considered as non-fatal.
7163 	 */
7164 	rc = lpfc_sli4_retrieve_pport_name(phba);
7165 	if (!rc)
7166 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7167 				"3080 Successful retrieving SLI4 device "
7168 				"physical port name: %s.\n", phba->Port);
7169 
7170 	/*
7171 	 * Evaluate the read rev and vpd data. Populate the driver
7172 	 * state with the results. If this routine fails, the failure
7173 	 * is not fatal as the driver will use generic values.
7174 	 */
7175 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7176 	if (unlikely(!rc)) {
7177 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7178 				"0377 Error %d parsing vpd. "
7179 				"Using defaults.\n", rc);
7180 		rc = 0;
7181 	}
7182 	kfree(vpd);
7183 
7184 	/* Save information as VPD data */
7185 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7186 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7187 
7188 	/*
7189 	 * This is because first G7 ASIC doesn't support the standard
7190 	 * 0x5a NVME cmd descriptor type/subtype
7191 	 */
7192 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7193 			LPFC_SLI_INTF_IF_TYPE_6) &&
7194 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7195 	    (phba->vpd.rev.smRev == 0) &&
7196 	    (phba->cfg_nvme_embed_cmd == 1))
7197 		phba->cfg_nvme_embed_cmd = 0;
7198 
7199 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7200 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7201 					 &mqe->un.read_rev);
7202 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7203 				       &mqe->un.read_rev);
7204 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7205 					    &mqe->un.read_rev);
7206 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7207 					   &mqe->un.read_rev);
7208 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7209 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7210 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7211 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7212 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7213 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7214 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7215 			"(%d):0380 READ_REV Status x%x "
7216 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7217 			mboxq->vport ? mboxq->vport->vpi : 0,
7218 			bf_get(lpfc_mqe_status, mqe),
7219 			phba->vpd.rev.opFwName,
7220 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7221 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7222 
7223 	/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3)  */
7224 	rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7225 	if (phba->pport->cfg_lun_queue_depth > rc) {
7226 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7227 				"3362 LUN queue depth changed from %d to %d\n",
7228 				phba->pport->cfg_lun_queue_depth, rc);
7229 		phba->pport->cfg_lun_queue_depth = rc;
7230 	}
7231 
7232 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7233 	    LPFC_SLI_INTF_IF_TYPE_0) {
7234 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7235 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7236 		if (rc == MBX_SUCCESS) {
7237 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7238 			/* Set 1Sec interval to detect UE */
7239 			phba->eratt_poll_interval = 1;
7240 			phba->sli4_hba.ue_to_sr = bf_get(
7241 					lpfc_mbx_set_feature_UESR,
7242 					&mboxq->u.mqe.un.set_feature);
7243 			phba->sli4_hba.ue_to_rp = bf_get(
7244 					lpfc_mbx_set_feature_UERP,
7245 					&mboxq->u.mqe.un.set_feature);
7246 		}
7247 	}
7248 
7249 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7250 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7251 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7252 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7253 		if (rc != MBX_SUCCESS)
7254 			phba->mds_diags_support = 0;
7255 	}
7256 
7257 	/*
7258 	 * Discover the port's supported feature set and match it against the
7259 	 * hosts requests.
7260 	 */
7261 	lpfc_request_features(phba, mboxq);
7262 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7263 	if (unlikely(rc)) {
7264 		rc = -EIO;
7265 		goto out_free_mbox;
7266 	}
7267 
7268 	/*
7269 	 * The port must support FCP initiator mode as this is the
7270 	 * only mode running in the host.
7271 	 */
7272 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7273 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7274 				"0378 No support for fcpi mode.\n");
7275 		ftr_rsp++;
7276 	}
7277 
7278 	/* Performance Hints are ONLY for FCoE */
7279 	if (phba->hba_flag & HBA_FCOE_MODE) {
7280 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7281 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7282 		else
7283 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7284 	}
7285 
7286 	/*
7287 	 * If the port cannot support the host's requested features
7288 	 * then turn off the global config parameters to disable the
7289 	 * feature in the driver.  This is not a fatal error.
7290 	 */
7291 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7292 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7293 			phba->cfg_enable_bg = 0;
7294 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7295 			ftr_rsp++;
7296 		}
7297 	}
7298 
7299 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7300 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7301 		ftr_rsp++;
7302 
7303 	if (ftr_rsp) {
7304 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7305 				"0379 Feature Mismatch Data: x%08x %08x "
7306 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7307 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7308 				phba->cfg_enable_npiv, phba->max_vpi);
7309 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7310 			phba->cfg_enable_bg = 0;
7311 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7312 			phba->cfg_enable_npiv = 0;
7313 	}
7314 
7315 	/* These SLI3 features are assumed in SLI4 */
7316 	spin_lock_irq(&phba->hbalock);
7317 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7318 	spin_unlock_irq(&phba->hbalock);
7319 
7320 	/*
7321 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7322 	 * calls depends on these resources to complete port setup.
7323 	 */
7324 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7325 	if (rc) {
7326 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7327 				"2920 Failed to alloc Resource IDs "
7328 				"rc = x%x\n", rc);
7329 		goto out_free_mbox;
7330 	}
7331 
7332 	lpfc_set_host_data(phba, mboxq);
7333 
7334 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7335 	if (rc) {
7336 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7337 				"2134 Failed to set host os driver version %x",
7338 				rc);
7339 	}
7340 
7341 	/* Read the port's service parameters. */
7342 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7343 	if (rc) {
7344 		phba->link_state = LPFC_HBA_ERROR;
7345 		rc = -ENOMEM;
7346 		goto out_free_mbox;
7347 	}
7348 
7349 	mboxq->vport = vport;
7350 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7351 	mp = (struct lpfc_dmabuf *) mboxq->context1;
7352 	if (rc == MBX_SUCCESS) {
7353 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7354 		rc = 0;
7355 	}
7356 
7357 	/*
7358 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7359 	 * it to the mbuf pool.
7360 	 */
7361 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7362 	kfree(mp);
7363 	mboxq->context1 = NULL;
7364 	if (unlikely(rc)) {
7365 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7366 				"0382 READ_SPARAM command failed "
7367 				"status %d, mbxStatus x%x\n",
7368 				rc, bf_get(lpfc_mqe_status, mqe));
7369 		phba->link_state = LPFC_HBA_ERROR;
7370 		rc = -EIO;
7371 		goto out_free_mbox;
7372 	}
7373 
7374 	lpfc_update_vport_wwn(vport);
7375 
7376 	/* Update the fc_host data structures with new wwn. */
7377 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7378 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7379 
7380 	/* Create all the SLI4 queues */
7381 	rc = lpfc_sli4_queue_create(phba);
7382 	if (rc) {
7383 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7384 				"3089 Failed to allocate queues\n");
7385 		rc = -ENODEV;
7386 		goto out_free_mbox;
7387 	}
7388 	/* Set up all the queues to the device */
7389 	rc = lpfc_sli4_queue_setup(phba);
7390 	if (unlikely(rc)) {
7391 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7392 				"0381 Error %d during queue setup.\n ", rc);
7393 		goto out_stop_timers;
7394 	}
7395 	/* Initialize the driver internal SLI layer lists. */
7396 	lpfc_sli4_setup(phba);
7397 	lpfc_sli4_queue_init(phba);
7398 
7399 	/* update host els xri-sgl sizes and mappings */
7400 	rc = lpfc_sli4_els_sgl_update(phba);
7401 	if (unlikely(rc)) {
7402 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7403 				"1400 Failed to update xri-sgl size and "
7404 				"mapping: %d\n", rc);
7405 		goto out_destroy_queue;
7406 	}
7407 
7408 	/* register the els sgl pool to the port */
7409 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7410 				       phba->sli4_hba.els_xri_cnt);
7411 	if (unlikely(rc < 0)) {
7412 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7413 				"0582 Error %d during els sgl post "
7414 				"operation\n", rc);
7415 		rc = -ENODEV;
7416 		goto out_destroy_queue;
7417 	}
7418 	phba->sli4_hba.els_xri_cnt = rc;
7419 
7420 	if (phba->nvmet_support) {
7421 		/* update host nvmet xri-sgl sizes and mappings */
7422 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7423 		if (unlikely(rc)) {
7424 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7425 					"6308 Failed to update nvmet-sgl size "
7426 					"and mapping: %d\n", rc);
7427 			goto out_destroy_queue;
7428 		}
7429 
7430 		/* register the nvmet sgl pool to the port */
7431 		rc = lpfc_sli4_repost_sgl_list(
7432 			phba,
7433 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7434 			phba->sli4_hba.nvmet_xri_cnt);
7435 		if (unlikely(rc < 0)) {
7436 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7437 					"3117 Error %d during nvmet "
7438 					"sgl post\n", rc);
7439 			rc = -ENODEV;
7440 			goto out_destroy_queue;
7441 		}
7442 		phba->sli4_hba.nvmet_xri_cnt = rc;
7443 
7444 		cnt = phba->cfg_iocb_cnt * 1024;
7445 		/* We need 1 iocbq for every SGL, for IO processing */
7446 		cnt += phba->sli4_hba.nvmet_xri_cnt;
7447 	} else {
7448 		/* update host scsi xri-sgl sizes and mappings */
7449 		rc = lpfc_sli4_scsi_sgl_update(phba);
7450 		if (unlikely(rc)) {
7451 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7452 					"6309 Failed to update scsi-sgl size "
7453 					"and mapping: %d\n", rc);
7454 			goto out_destroy_queue;
7455 		}
7456 
7457 		/* update host nvme xri-sgl sizes and mappings */
7458 		rc = lpfc_sli4_nvme_sgl_update(phba);
7459 		if (unlikely(rc)) {
7460 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7461 					"6082 Failed to update nvme-sgl size "
7462 					"and mapping: %d\n", rc);
7463 			goto out_destroy_queue;
7464 		}
7465 
7466 		cnt = phba->cfg_iocb_cnt * 1024;
7467 	}
7468 
7469 	if (!phba->sli.iocbq_lookup) {
7470 		/* Initialize and populate the iocb list per host */
7471 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7472 				"2821 initialize iocb list %d total %d\n",
7473 				phba->cfg_iocb_cnt, cnt);
7474 		rc = lpfc_init_iocb_list(phba, cnt);
7475 		if (rc) {
7476 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7477 					"1413 Failed to init iocb list.\n");
7478 			goto out_destroy_queue;
7479 		}
7480 	}
7481 
7482 	if (phba->nvmet_support)
7483 		lpfc_nvmet_create_targetport(phba);
7484 
7485 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7486 		/* Post initial buffers to all RQs created */
7487 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7488 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7489 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7490 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7491 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7492 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7493 			rqbp->buffer_count = 0;
7494 
7495 			lpfc_post_rq_buffer(
7496 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7497 				phba->sli4_hba.nvmet_mrq_data[i],
7498 				phba->cfg_nvmet_mrq_post, i);
7499 		}
7500 	}
7501 
7502 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
7503 		/* register the allocated scsi sgl pool to the port */
7504 		rc = lpfc_sli4_repost_scsi_sgl_list(phba);
7505 		if (unlikely(rc)) {
7506 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7507 					"0383 Error %d during scsi sgl post "
7508 					"operation\n", rc);
7509 			/* Some Scsi buffers were moved to abort scsi list */
7510 			/* A pci function reset will repost them */
7511 			rc = -ENODEV;
7512 			goto out_destroy_queue;
7513 		}
7514 	}
7515 
7516 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
7517 	    (phba->nvmet_support == 0)) {
7518 
7519 		/* register the allocated nvme sgl pool to the port */
7520 		rc = lpfc_repost_nvme_sgl_list(phba);
7521 		if (unlikely(rc)) {
7522 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7523 					"6116 Error %d during nvme sgl post "
7524 					"operation\n", rc);
7525 			/* Some NVME buffers were moved to abort nvme list */
7526 			/* A pci function reset will repost them */
7527 			rc = -ENODEV;
7528 			goto out_destroy_queue;
7529 		}
7530 	}
7531 
7532 	/* Post the rpi header region to the device. */
7533 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7534 	if (unlikely(rc)) {
7535 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7536 				"0393 Error %d during rpi post operation\n",
7537 				rc);
7538 		rc = -ENODEV;
7539 		goto out_destroy_queue;
7540 	}
7541 	lpfc_sli4_node_prep(phba);
7542 
7543 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7544 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7545 			/*
7546 			 * The FC Port needs to register FCFI (index 0)
7547 			 */
7548 			lpfc_reg_fcfi(phba, mboxq);
7549 			mboxq->vport = phba->pport;
7550 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7551 			if (rc != MBX_SUCCESS)
7552 				goto out_unset_queue;
7553 			rc = 0;
7554 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7555 						&mboxq->u.mqe.un.reg_fcfi);
7556 		} else {
7557 			/* We are a NVME Target mode with MRQ > 1 */
7558 
7559 			/* First register the FCFI */
7560 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7561 			mboxq->vport = phba->pport;
7562 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7563 			if (rc != MBX_SUCCESS)
7564 				goto out_unset_queue;
7565 			rc = 0;
7566 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7567 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7568 
7569 			/* Next register the MRQs */
7570 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7571 			mboxq->vport = phba->pport;
7572 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7573 			if (rc != MBX_SUCCESS)
7574 				goto out_unset_queue;
7575 			rc = 0;
7576 		}
7577 		/* Check if the port is configured to be disabled */
7578 		lpfc_sli_read_link_ste(phba);
7579 	}
7580 
7581 	/* Arm the CQs and then EQs on device */
7582 	lpfc_sli4_arm_cqeq_intr(phba);
7583 
7584 	/* Indicate device interrupt mode */
7585 	phba->sli4_hba.intr_enable = 1;
7586 
7587 	/* Allow asynchronous mailbox command to go through */
7588 	spin_lock_irq(&phba->hbalock);
7589 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7590 	spin_unlock_irq(&phba->hbalock);
7591 
7592 	/* Post receive buffers to the device */
7593 	lpfc_sli4_rb_setup(phba);
7594 
7595 	/* Reset HBA FCF states after HBA reset */
7596 	phba->fcf.fcf_flag = 0;
7597 	phba->fcf.current_rec.flag = 0;
7598 
7599 	/* Start the ELS watchdog timer */
7600 	mod_timer(&vport->els_tmofunc,
7601 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7602 
7603 	/* Start heart beat timer */
7604 	mod_timer(&phba->hb_tmofunc,
7605 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7606 	phba->hb_outstanding = 0;
7607 	phba->last_completion_time = jiffies;
7608 
7609 	/* Start error attention (ERATT) polling timer */
7610 	mod_timer(&phba->eratt_poll,
7611 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7612 
7613 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7614 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7615 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7616 		if (!rc) {
7617 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7618 					"2829 This device supports "
7619 					"Advanced Error Reporting (AER)\n");
7620 			spin_lock_irq(&phba->hbalock);
7621 			phba->hba_flag |= HBA_AER_ENABLED;
7622 			spin_unlock_irq(&phba->hbalock);
7623 		} else {
7624 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7625 					"2830 This device does not support "
7626 					"Advanced Error Reporting (AER)\n");
7627 			phba->cfg_aer_support = 0;
7628 		}
7629 		rc = 0;
7630 	}
7631 
7632 	/*
7633 	 * The port is ready, set the host's link state to LINK_DOWN
7634 	 * in preparation for link interrupts.
7635 	 */
7636 	spin_lock_irq(&phba->hbalock);
7637 	phba->link_state = LPFC_LINK_DOWN;
7638 	spin_unlock_irq(&phba->hbalock);
7639 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7640 	    (phba->hba_flag & LINK_DISABLED)) {
7641 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7642 				"3103 Adapter Link is disabled.\n");
7643 		lpfc_down_link(phba, mboxq);
7644 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7645 		if (rc != MBX_SUCCESS) {
7646 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7647 					"3104 Adapter failed to issue "
7648 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7649 			goto out_unset_queue;
7650 		}
7651 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7652 		/* don't perform init_link on SLI4 FC port loopback test */
7653 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7654 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7655 			if (rc)
7656 				goto out_unset_queue;
7657 		}
7658 	}
7659 	mempool_free(mboxq, phba->mbox_mem_pool);
7660 	return rc;
7661 out_unset_queue:
7662 	/* Unset all the queues set up in this routine when error out */
7663 	lpfc_sli4_queue_unset(phba);
7664 out_destroy_queue:
7665 	lpfc_free_iocb_list(phba);
7666 	lpfc_sli4_queue_destroy(phba);
7667 out_stop_timers:
7668 	lpfc_stop_hba_timers(phba);
7669 out_free_mbox:
7670 	mempool_free(mboxq, phba->mbox_mem_pool);
7671 	return rc;
7672 }
7673 
7674 /**
7675  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7676  * @ptr: context object - pointer to hba structure.
7677  *
7678  * This is the callback function for mailbox timer. The mailbox
7679  * timer is armed when a new mailbox command is issued and the timer
7680  * is deleted when the mailbox complete. The function is called by
7681  * the kernel timer code when a mailbox does not complete within
7682  * expected time. This function wakes up the worker thread to
7683  * process the mailbox timeout and returns. All the processing is
7684  * done by the worker thread function lpfc_mbox_timeout_handler.
7685  **/
7686 void
7687 lpfc_mbox_timeout(struct timer_list *t)
7688 {
7689 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
7690 	unsigned long iflag;
7691 	uint32_t tmo_posted;
7692 
7693 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7694 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7695 	if (!tmo_posted)
7696 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7697 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7698 
7699 	if (!tmo_posted)
7700 		lpfc_worker_wake_up(phba);
7701 	return;
7702 }
7703 
7704 /**
7705  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7706  *                                    are pending
7707  * @phba: Pointer to HBA context object.
7708  *
7709  * This function checks if any mailbox completions are present on the mailbox
7710  * completion queue.
7711  **/
7712 static bool
7713 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7714 {
7715 
7716 	uint32_t idx;
7717 	struct lpfc_queue *mcq;
7718 	struct lpfc_mcqe *mcqe;
7719 	bool pending_completions = false;
7720 	uint8_t	qe_valid;
7721 
7722 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7723 		return false;
7724 
7725 	/* Check for completions on mailbox completion queue */
7726 
7727 	mcq = phba->sli4_hba.mbx_cq;
7728 	idx = mcq->hba_index;
7729 	qe_valid = mcq->qe_valid;
7730 	while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe) == qe_valid) {
7731 		mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe;
7732 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7733 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7734 			pending_completions = true;
7735 			break;
7736 		}
7737 		idx = (idx + 1) % mcq->entry_count;
7738 		if (mcq->hba_index == idx)
7739 			break;
7740 
7741 		/* if the index wrapped around, toggle the valid bit */
7742 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7743 			qe_valid = (qe_valid) ? 0 : 1;
7744 	}
7745 	return pending_completions;
7746 
7747 }
7748 
7749 /**
7750  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7751  *					      that were missed.
7752  * @phba: Pointer to HBA context object.
7753  *
7754  * For sli4, it is possible to miss an interrupt. As such mbox completions
7755  * maybe missed causing erroneous mailbox timeouts to occur. This function
7756  * checks to see if mbox completions are on the mailbox completion queue
7757  * and will process all the completions associated with the eq for the
7758  * mailbox completion queue.
7759  **/
7760 bool
7761 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7762 {
7763 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7764 	uint32_t eqidx;
7765 	struct lpfc_queue *fpeq = NULL;
7766 	struct lpfc_eqe *eqe;
7767 	bool mbox_pending;
7768 
7769 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7770 		return false;
7771 
7772 	/* Find the eq associated with the mcq */
7773 
7774 	if (sli4_hba->hba_eq)
7775 		for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++)
7776 			if (sli4_hba->hba_eq[eqidx]->queue_id ==
7777 			    sli4_hba->mbx_cq->assoc_qid) {
7778 				fpeq = sli4_hba->hba_eq[eqidx];
7779 				break;
7780 			}
7781 	if (!fpeq)
7782 		return false;
7783 
7784 	/* Turn off interrupts from this EQ */
7785 
7786 	sli4_hba->sli4_eq_clr_intr(fpeq);
7787 
7788 	/* Check to see if a mbox completion is pending */
7789 
7790 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7791 
7792 	/*
7793 	 * If a mbox completion is pending, process all the events on EQ
7794 	 * associated with the mbox completion queue (this could include
7795 	 * mailbox commands, async events, els commands, receive queue data
7796 	 * and fcp commands)
7797 	 */
7798 
7799 	if (mbox_pending)
7800 		while ((eqe = lpfc_sli4_eq_get(fpeq))) {
7801 			lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx);
7802 			fpeq->EQ_processed++;
7803 		}
7804 
7805 	/* Always clear and re-arm the EQ */
7806 
7807 	sli4_hba->sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
7808 
7809 	return mbox_pending;
7810 
7811 }
7812 
7813 /**
7814  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7815  * @phba: Pointer to HBA context object.
7816  *
7817  * This function is called from worker thread when a mailbox command times out.
7818  * The caller is not required to hold any locks. This function will reset the
7819  * HBA and recover all the pending commands.
7820  **/
7821 void
7822 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7823 {
7824 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7825 	MAILBOX_t *mb = NULL;
7826 
7827 	struct lpfc_sli *psli = &phba->sli;
7828 
7829 	/* If the mailbox completed, process the completion and return */
7830 	if (lpfc_sli4_process_missed_mbox_completions(phba))
7831 		return;
7832 
7833 	if (pmbox != NULL)
7834 		mb = &pmbox->u.mb;
7835 	/* Check the pmbox pointer first.  There is a race condition
7836 	 * between the mbox timeout handler getting executed in the
7837 	 * worklist and the mailbox actually completing. When this
7838 	 * race condition occurs, the mbox_active will be NULL.
7839 	 */
7840 	spin_lock_irq(&phba->hbalock);
7841 	if (pmbox == NULL) {
7842 		lpfc_printf_log(phba, KERN_WARNING,
7843 				LOG_MBOX | LOG_SLI,
7844 				"0353 Active Mailbox cleared - mailbox timeout "
7845 				"exiting\n");
7846 		spin_unlock_irq(&phba->hbalock);
7847 		return;
7848 	}
7849 
7850 	/* Mbox cmd <mbxCommand> timeout */
7851 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7852 			"0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
7853 			mb->mbxCommand,
7854 			phba->pport->port_state,
7855 			phba->sli.sli_flag,
7856 			phba->sli.mbox_active);
7857 	spin_unlock_irq(&phba->hbalock);
7858 
7859 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
7860 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7861 	 * it to fail all outstanding SCSI IO.
7862 	 */
7863 	spin_lock_irq(&phba->pport->work_port_lock);
7864 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7865 	spin_unlock_irq(&phba->pport->work_port_lock);
7866 	spin_lock_irq(&phba->hbalock);
7867 	phba->link_state = LPFC_LINK_UNKNOWN;
7868 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7869 	spin_unlock_irq(&phba->hbalock);
7870 
7871 	lpfc_sli_abort_fcp_rings(phba);
7872 
7873 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7874 			"0345 Resetting board due to mailbox timeout\n");
7875 
7876 	/* Reset the HBA device */
7877 	lpfc_reset_hba(phba);
7878 }
7879 
7880 /**
7881  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7882  * @phba: Pointer to HBA context object.
7883  * @pmbox: Pointer to mailbox object.
7884  * @flag: Flag indicating how the mailbox need to be processed.
7885  *
7886  * This function is called by discovery code and HBA management code
7887  * to submit a mailbox command to firmware with SLI-3 interface spec. This
7888  * function gets the hbalock to protect the data structures.
7889  * The mailbox command can be submitted in polling mode, in which case
7890  * this function will wait in a polling loop for the completion of the
7891  * mailbox.
7892  * If the mailbox is submitted in no_wait mode (not polling) the
7893  * function will submit the command and returns immediately without waiting
7894  * for the mailbox completion. The no_wait is supported only when HBA
7895  * is in SLI2/SLI3 mode - interrupts are enabled.
7896  * The SLI interface allows only one mailbox pending at a time. If the
7897  * mailbox is issued in polling mode and there is already a mailbox
7898  * pending, then the function will return an error. If the mailbox is issued
7899  * in NO_WAIT mode and there is a mailbox pending already, the function
7900  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7901  * The sli layer owns the mailbox object until the completion of mailbox
7902  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7903  * return codes the caller owns the mailbox command after the return of
7904  * the function.
7905  **/
7906 static int
7907 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7908 		       uint32_t flag)
7909 {
7910 	MAILBOX_t *mbx;
7911 	struct lpfc_sli *psli = &phba->sli;
7912 	uint32_t status, evtctr;
7913 	uint32_t ha_copy, hc_copy;
7914 	int i;
7915 	unsigned long timeout;
7916 	unsigned long drvr_flag = 0;
7917 	uint32_t word0, ldata;
7918 	void __iomem *to_slim;
7919 	int processing_queue = 0;
7920 
7921 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
7922 	if (!pmbox) {
7923 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7924 		/* processing mbox queue from intr_handler */
7925 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7926 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7927 			return MBX_SUCCESS;
7928 		}
7929 		processing_queue = 1;
7930 		pmbox = lpfc_mbox_get(phba);
7931 		if (!pmbox) {
7932 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7933 			return MBX_SUCCESS;
7934 		}
7935 	}
7936 
7937 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
7938 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
7939 		if(!pmbox->vport) {
7940 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7941 			lpfc_printf_log(phba, KERN_ERR,
7942 					LOG_MBOX | LOG_VPORT,
7943 					"1806 Mbox x%x failed. No vport\n",
7944 					pmbox->u.mb.mbxCommand);
7945 			dump_stack();
7946 			goto out_not_finished;
7947 		}
7948 	}
7949 
7950 	/* If the PCI channel is in offline state, do not post mbox. */
7951 	if (unlikely(pci_channel_offline(phba->pcidev))) {
7952 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7953 		goto out_not_finished;
7954 	}
7955 
7956 	/* If HBA has a deferred error attention, fail the iocb. */
7957 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
7958 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7959 		goto out_not_finished;
7960 	}
7961 
7962 	psli = &phba->sli;
7963 
7964 	mbx = &pmbox->u.mb;
7965 	status = MBX_SUCCESS;
7966 
7967 	if (phba->link_state == LPFC_HBA_ERROR) {
7968 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7969 
7970 		/* Mbox command <mbxCommand> cannot issue */
7971 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7972 				"(%d):0311 Mailbox command x%x cannot "
7973 				"issue Data: x%x x%x\n",
7974 				pmbox->vport ? pmbox->vport->vpi : 0,
7975 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7976 		goto out_not_finished;
7977 	}
7978 
7979 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
7980 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
7981 			!(hc_copy & HC_MBINT_ENA)) {
7982 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7983 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7984 				"(%d):2528 Mailbox command x%x cannot "
7985 				"issue Data: x%x x%x\n",
7986 				pmbox->vport ? pmbox->vport->vpi : 0,
7987 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7988 			goto out_not_finished;
7989 		}
7990 	}
7991 
7992 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7993 		/* Polling for a mbox command when another one is already active
7994 		 * is not allowed in SLI. Also, the driver must have established
7995 		 * SLI2 mode to queue and process multiple mbox commands.
7996 		 */
7997 
7998 		if (flag & MBX_POLL) {
7999 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8000 
8001 			/* Mbox command <mbxCommand> cannot issue */
8002 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8003 					"(%d):2529 Mailbox command x%x "
8004 					"cannot issue Data: x%x x%x\n",
8005 					pmbox->vport ? pmbox->vport->vpi : 0,
8006 					pmbox->u.mb.mbxCommand,
8007 					psli->sli_flag, flag);
8008 			goto out_not_finished;
8009 		}
8010 
8011 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8012 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8013 			/* Mbox command <mbxCommand> cannot issue */
8014 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8015 					"(%d):2530 Mailbox command x%x "
8016 					"cannot issue Data: x%x x%x\n",
8017 					pmbox->vport ? pmbox->vport->vpi : 0,
8018 					pmbox->u.mb.mbxCommand,
8019 					psli->sli_flag, flag);
8020 			goto out_not_finished;
8021 		}
8022 
8023 		/* Another mailbox command is still being processed, queue this
8024 		 * command to be processed later.
8025 		 */
8026 		lpfc_mbox_put(phba, pmbox);
8027 
8028 		/* Mbox cmd issue - BUSY */
8029 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8030 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8031 				"x%x x%x x%x x%x\n",
8032 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8033 				mbx->mbxCommand,
8034 				phba->pport ? phba->pport->port_state : 0xff,
8035 				psli->sli_flag, flag);
8036 
8037 		psli->slistat.mbox_busy++;
8038 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8039 
8040 		if (pmbox->vport) {
8041 			lpfc_debugfs_disc_trc(pmbox->vport,
8042 				LPFC_DISC_TRC_MBOX_VPORT,
8043 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8044 				(uint32_t)mbx->mbxCommand,
8045 				mbx->un.varWords[0], mbx->un.varWords[1]);
8046 		}
8047 		else {
8048 			lpfc_debugfs_disc_trc(phba->pport,
8049 				LPFC_DISC_TRC_MBOX,
8050 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8051 				(uint32_t)mbx->mbxCommand,
8052 				mbx->un.varWords[0], mbx->un.varWords[1]);
8053 		}
8054 
8055 		return MBX_BUSY;
8056 	}
8057 
8058 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8059 
8060 	/* If we are not polling, we MUST be in SLI2 mode */
8061 	if (flag != MBX_POLL) {
8062 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8063 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8064 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8065 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8066 			/* Mbox command <mbxCommand> cannot issue */
8067 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8068 					"(%d):2531 Mailbox command x%x "
8069 					"cannot issue Data: x%x x%x\n",
8070 					pmbox->vport ? pmbox->vport->vpi : 0,
8071 					pmbox->u.mb.mbxCommand,
8072 					psli->sli_flag, flag);
8073 			goto out_not_finished;
8074 		}
8075 		/* timeout active mbox command */
8076 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8077 					   1000);
8078 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8079 	}
8080 
8081 	/* Mailbox cmd <cmd> issue */
8082 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8083 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8084 			"x%x\n",
8085 			pmbox->vport ? pmbox->vport->vpi : 0,
8086 			mbx->mbxCommand,
8087 			phba->pport ? phba->pport->port_state : 0xff,
8088 			psli->sli_flag, flag);
8089 
8090 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8091 		if (pmbox->vport) {
8092 			lpfc_debugfs_disc_trc(pmbox->vport,
8093 				LPFC_DISC_TRC_MBOX_VPORT,
8094 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8095 				(uint32_t)mbx->mbxCommand,
8096 				mbx->un.varWords[0], mbx->un.varWords[1]);
8097 		}
8098 		else {
8099 			lpfc_debugfs_disc_trc(phba->pport,
8100 				LPFC_DISC_TRC_MBOX,
8101 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8102 				(uint32_t)mbx->mbxCommand,
8103 				mbx->un.varWords[0], mbx->un.varWords[1]);
8104 		}
8105 	}
8106 
8107 	psli->slistat.mbox_cmd++;
8108 	evtctr = psli->slistat.mbox_event;
8109 
8110 	/* next set own bit for the adapter and copy over command word */
8111 	mbx->mbxOwner = OWN_CHIP;
8112 
8113 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8114 		/* Populate mbox extension offset word. */
8115 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8116 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8117 				= (uint8_t *)phba->mbox_ext
8118 				  - (uint8_t *)phba->mbox;
8119 		}
8120 
8121 		/* Copy the mailbox extension data */
8122 		if (pmbox->in_ext_byte_len && pmbox->context2) {
8123 			lpfc_sli_pcimem_bcopy(pmbox->context2,
8124 				(uint8_t *)phba->mbox_ext,
8125 				pmbox->in_ext_byte_len);
8126 		}
8127 		/* Copy command data to host SLIM area */
8128 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8129 	} else {
8130 		/* Populate mbox extension offset word. */
8131 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8132 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8133 				= MAILBOX_HBA_EXT_OFFSET;
8134 
8135 		/* Copy the mailbox extension data */
8136 		if (pmbox->in_ext_byte_len && pmbox->context2)
8137 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8138 				MAILBOX_HBA_EXT_OFFSET,
8139 				pmbox->context2, pmbox->in_ext_byte_len);
8140 
8141 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8142 			/* copy command data into host mbox for cmpl */
8143 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8144 					      MAILBOX_CMD_SIZE);
8145 
8146 		/* First copy mbox command data to HBA SLIM, skip past first
8147 		   word */
8148 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8149 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8150 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8151 
8152 		/* Next copy over first word, with mbxOwner set */
8153 		ldata = *((uint32_t *)mbx);
8154 		to_slim = phba->MBslimaddr;
8155 		writel(ldata, to_slim);
8156 		readl(to_slim); /* flush */
8157 
8158 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8159 			/* switch over to host mailbox */
8160 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8161 	}
8162 
8163 	wmb();
8164 
8165 	switch (flag) {
8166 	case MBX_NOWAIT:
8167 		/* Set up reference to mailbox command */
8168 		psli->mbox_active = pmbox;
8169 		/* Interrupt board to do it */
8170 		writel(CA_MBATT, phba->CAregaddr);
8171 		readl(phba->CAregaddr); /* flush */
8172 		/* Don't wait for it to finish, just return */
8173 		break;
8174 
8175 	case MBX_POLL:
8176 		/* Set up null reference to mailbox command */
8177 		psli->mbox_active = NULL;
8178 		/* Interrupt board to do it */
8179 		writel(CA_MBATT, phba->CAregaddr);
8180 		readl(phba->CAregaddr); /* flush */
8181 
8182 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8183 			/* First read mbox status word */
8184 			word0 = *((uint32_t *)phba->mbox);
8185 			word0 = le32_to_cpu(word0);
8186 		} else {
8187 			/* First read mbox status word */
8188 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8189 				spin_unlock_irqrestore(&phba->hbalock,
8190 						       drvr_flag);
8191 				goto out_not_finished;
8192 			}
8193 		}
8194 
8195 		/* Read the HBA Host Attention Register */
8196 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8197 			spin_unlock_irqrestore(&phba->hbalock,
8198 						       drvr_flag);
8199 			goto out_not_finished;
8200 		}
8201 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8202 							1000) + jiffies;
8203 		i = 0;
8204 		/* Wait for command to complete */
8205 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8206 		       (!(ha_copy & HA_MBATT) &&
8207 			(phba->link_state > LPFC_WARM_START))) {
8208 			if (time_after(jiffies, timeout)) {
8209 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8210 				spin_unlock_irqrestore(&phba->hbalock,
8211 						       drvr_flag);
8212 				goto out_not_finished;
8213 			}
8214 
8215 			/* Check if we took a mbox interrupt while we were
8216 			   polling */
8217 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8218 			    && (evtctr != psli->slistat.mbox_event))
8219 				break;
8220 
8221 			if (i++ > 10) {
8222 				spin_unlock_irqrestore(&phba->hbalock,
8223 						       drvr_flag);
8224 				msleep(1);
8225 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8226 			}
8227 
8228 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8229 				/* First copy command data */
8230 				word0 = *((uint32_t *)phba->mbox);
8231 				word0 = le32_to_cpu(word0);
8232 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8233 					MAILBOX_t *slimmb;
8234 					uint32_t slimword0;
8235 					/* Check real SLIM for any errors */
8236 					slimword0 = readl(phba->MBslimaddr);
8237 					slimmb = (MAILBOX_t *) & slimword0;
8238 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8239 					    && slimmb->mbxStatus) {
8240 						psli->sli_flag &=
8241 						    ~LPFC_SLI_ACTIVE;
8242 						word0 = slimword0;
8243 					}
8244 				}
8245 			} else {
8246 				/* First copy command data */
8247 				word0 = readl(phba->MBslimaddr);
8248 			}
8249 			/* Read the HBA Host Attention Register */
8250 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8251 				spin_unlock_irqrestore(&phba->hbalock,
8252 						       drvr_flag);
8253 				goto out_not_finished;
8254 			}
8255 		}
8256 
8257 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8258 			/* copy results back to user */
8259 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8260 						MAILBOX_CMD_SIZE);
8261 			/* Copy the mailbox extension data */
8262 			if (pmbox->out_ext_byte_len && pmbox->context2) {
8263 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8264 						      pmbox->context2,
8265 						      pmbox->out_ext_byte_len);
8266 			}
8267 		} else {
8268 			/* First copy command data */
8269 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8270 						MAILBOX_CMD_SIZE);
8271 			/* Copy the mailbox extension data */
8272 			if (pmbox->out_ext_byte_len && pmbox->context2) {
8273 				lpfc_memcpy_from_slim(pmbox->context2,
8274 					phba->MBslimaddr +
8275 					MAILBOX_HBA_EXT_OFFSET,
8276 					pmbox->out_ext_byte_len);
8277 			}
8278 		}
8279 
8280 		writel(HA_MBATT, phba->HAregaddr);
8281 		readl(phba->HAregaddr); /* flush */
8282 
8283 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8284 		status = mbx->mbxStatus;
8285 	}
8286 
8287 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8288 	return status;
8289 
8290 out_not_finished:
8291 	if (processing_queue) {
8292 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8293 		lpfc_mbox_cmpl_put(phba, pmbox);
8294 	}
8295 	return MBX_NOT_FINISHED;
8296 }
8297 
8298 /**
8299  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8300  * @phba: Pointer to HBA context object.
8301  *
8302  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8303  * the driver internal pending mailbox queue. It will then try to wait out the
8304  * possible outstanding mailbox command before return.
8305  *
8306  * Returns:
8307  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8308  * 	the outstanding mailbox command timed out.
8309  **/
8310 static int
8311 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8312 {
8313 	struct lpfc_sli *psli = &phba->sli;
8314 	int rc = 0;
8315 	unsigned long timeout = 0;
8316 
8317 	/* Mark the asynchronous mailbox command posting as blocked */
8318 	spin_lock_irq(&phba->hbalock);
8319 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8320 	/* Determine how long we might wait for the active mailbox
8321 	 * command to be gracefully completed by firmware.
8322 	 */
8323 	if (phba->sli.mbox_active)
8324 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8325 						phba->sli.mbox_active) *
8326 						1000) + jiffies;
8327 	spin_unlock_irq(&phba->hbalock);
8328 
8329 	/* Make sure the mailbox is really active */
8330 	if (timeout)
8331 		lpfc_sli4_process_missed_mbox_completions(phba);
8332 
8333 	/* Wait for the outstnading mailbox command to complete */
8334 	while (phba->sli.mbox_active) {
8335 		/* Check active mailbox complete status every 2ms */
8336 		msleep(2);
8337 		if (time_after(jiffies, timeout)) {
8338 			/* Timeout, marked the outstanding cmd not complete */
8339 			rc = 1;
8340 			break;
8341 		}
8342 	}
8343 
8344 	/* Can not cleanly block async mailbox command, fails it */
8345 	if (rc) {
8346 		spin_lock_irq(&phba->hbalock);
8347 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8348 		spin_unlock_irq(&phba->hbalock);
8349 	}
8350 	return rc;
8351 }
8352 
8353 /**
8354  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8355  * @phba: Pointer to HBA context object.
8356  *
8357  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8358  * commands from the driver internal pending mailbox queue. It makes sure
8359  * that there is no outstanding mailbox command before resuming posting
8360  * asynchronous mailbox commands. If, for any reason, there is outstanding
8361  * mailbox command, it will try to wait it out before resuming asynchronous
8362  * mailbox command posting.
8363  **/
8364 static void
8365 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8366 {
8367 	struct lpfc_sli *psli = &phba->sli;
8368 
8369 	spin_lock_irq(&phba->hbalock);
8370 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8371 		/* Asynchronous mailbox posting is not blocked, do nothing */
8372 		spin_unlock_irq(&phba->hbalock);
8373 		return;
8374 	}
8375 
8376 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8377 	 * successful or timeout, after timing-out the outstanding mailbox
8378 	 * command shall always be removed, so just unblock posting async
8379 	 * mailbox command and resume
8380 	 */
8381 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8382 	spin_unlock_irq(&phba->hbalock);
8383 
8384 	/* wake up worker thread to post asynchronlous mailbox command */
8385 	lpfc_worker_wake_up(phba);
8386 }
8387 
8388 /**
8389  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8390  * @phba: Pointer to HBA context object.
8391  * @mboxq: Pointer to mailbox object.
8392  *
8393  * The function waits for the bootstrap mailbox register ready bit from
8394  * port for twice the regular mailbox command timeout value.
8395  *
8396  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8397  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8398  **/
8399 static int
8400 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8401 {
8402 	uint32_t db_ready;
8403 	unsigned long timeout;
8404 	struct lpfc_register bmbx_reg;
8405 
8406 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8407 				   * 1000) + jiffies;
8408 
8409 	do {
8410 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8411 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8412 		if (!db_ready)
8413 			msleep(2);
8414 
8415 		if (time_after(jiffies, timeout))
8416 			return MBXERR_ERROR;
8417 	} while (!db_ready);
8418 
8419 	return 0;
8420 }
8421 
8422 /**
8423  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8424  * @phba: Pointer to HBA context object.
8425  * @mboxq: Pointer to mailbox object.
8426  *
8427  * The function posts a mailbox to the port.  The mailbox is expected
8428  * to be comletely filled in and ready for the port to operate on it.
8429  * This routine executes a synchronous completion operation on the
8430  * mailbox by polling for its completion.
8431  *
8432  * The caller must not be holding any locks when calling this routine.
8433  *
8434  * Returns:
8435  *	MBX_SUCCESS - mailbox posted successfully
8436  *	Any of the MBX error values.
8437  **/
8438 static int
8439 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8440 {
8441 	int rc = MBX_SUCCESS;
8442 	unsigned long iflag;
8443 	uint32_t mcqe_status;
8444 	uint32_t mbx_cmnd;
8445 	struct lpfc_sli *psli = &phba->sli;
8446 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8447 	struct lpfc_bmbx_create *mbox_rgn;
8448 	struct dma_address *dma_address;
8449 
8450 	/*
8451 	 * Only one mailbox can be active to the bootstrap mailbox region
8452 	 * at a time and there is no queueing provided.
8453 	 */
8454 	spin_lock_irqsave(&phba->hbalock, iflag);
8455 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8456 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8457 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8458 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8459 				"cannot issue Data: x%x x%x\n",
8460 				mboxq->vport ? mboxq->vport->vpi : 0,
8461 				mboxq->u.mb.mbxCommand,
8462 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8463 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8464 				psli->sli_flag, MBX_POLL);
8465 		return MBXERR_ERROR;
8466 	}
8467 	/* The server grabs the token and owns it until release */
8468 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8469 	phba->sli.mbox_active = mboxq;
8470 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8471 
8472 	/* wait for bootstrap mbox register for readyness */
8473 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8474 	if (rc)
8475 		goto exit;
8476 
8477 	/*
8478 	 * Initialize the bootstrap memory region to avoid stale data areas
8479 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8480 	 * the bmbx mailbox region.
8481 	 */
8482 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8483 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8484 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8485 			       sizeof(struct lpfc_mqe));
8486 
8487 	/* Post the high mailbox dma address to the port and wait for ready. */
8488 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8489 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8490 
8491 	/* wait for bootstrap mbox register for hi-address write done */
8492 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8493 	if (rc)
8494 		goto exit;
8495 
8496 	/* Post the low mailbox dma address to the port. */
8497 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8498 
8499 	/* wait for bootstrap mbox register for low address write done */
8500 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8501 	if (rc)
8502 		goto exit;
8503 
8504 	/*
8505 	 * Read the CQ to ensure the mailbox has completed.
8506 	 * If so, update the mailbox status so that the upper layers
8507 	 * can complete the request normally.
8508 	 */
8509 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8510 			       sizeof(struct lpfc_mqe));
8511 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8512 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8513 			       sizeof(struct lpfc_mcqe));
8514 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8515 	/*
8516 	 * When the CQE status indicates a failure and the mailbox status
8517 	 * indicates success then copy the CQE status into the mailbox status
8518 	 * (and prefix it with x4000).
8519 	 */
8520 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8521 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8522 			bf_set(lpfc_mqe_status, mb,
8523 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8524 		rc = MBXERR_ERROR;
8525 	} else
8526 		lpfc_sli4_swap_str(phba, mboxq);
8527 
8528 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8529 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8530 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8531 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8532 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8533 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8534 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8535 			bf_get(lpfc_mqe_status, mb),
8536 			mb->un.mb_words[0], mb->un.mb_words[1],
8537 			mb->un.mb_words[2], mb->un.mb_words[3],
8538 			mb->un.mb_words[4], mb->un.mb_words[5],
8539 			mb->un.mb_words[6], mb->un.mb_words[7],
8540 			mb->un.mb_words[8], mb->un.mb_words[9],
8541 			mb->un.mb_words[10], mb->un.mb_words[11],
8542 			mb->un.mb_words[12], mboxq->mcqe.word0,
8543 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8544 			mboxq->mcqe.trailer);
8545 exit:
8546 	/* We are holding the token, no needed for lock when release */
8547 	spin_lock_irqsave(&phba->hbalock, iflag);
8548 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8549 	phba->sli.mbox_active = NULL;
8550 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8551 	return rc;
8552 }
8553 
8554 /**
8555  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8556  * @phba: Pointer to HBA context object.
8557  * @pmbox: Pointer to mailbox object.
8558  * @flag: Flag indicating how the mailbox need to be processed.
8559  *
8560  * This function is called by discovery code and HBA management code to submit
8561  * a mailbox command to firmware with SLI-4 interface spec.
8562  *
8563  * Return codes the caller owns the mailbox command after the return of the
8564  * function.
8565  **/
8566 static int
8567 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8568 		       uint32_t flag)
8569 {
8570 	struct lpfc_sli *psli = &phba->sli;
8571 	unsigned long iflags;
8572 	int rc;
8573 
8574 	/* dump from issue mailbox command if setup */
8575 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8576 
8577 	rc = lpfc_mbox_dev_check(phba);
8578 	if (unlikely(rc)) {
8579 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8580 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8581 				"cannot issue Data: x%x x%x\n",
8582 				mboxq->vport ? mboxq->vport->vpi : 0,
8583 				mboxq->u.mb.mbxCommand,
8584 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8585 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8586 				psli->sli_flag, flag);
8587 		goto out_not_finished;
8588 	}
8589 
8590 	/* Detect polling mode and jump to a handler */
8591 	if (!phba->sli4_hba.intr_enable) {
8592 		if (flag == MBX_POLL)
8593 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8594 		else
8595 			rc = -EIO;
8596 		if (rc != MBX_SUCCESS)
8597 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8598 					"(%d):2541 Mailbox command x%x "
8599 					"(x%x/x%x) failure: "
8600 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8601 					"Data: x%x x%x\n,",
8602 					mboxq->vport ? mboxq->vport->vpi : 0,
8603 					mboxq->u.mb.mbxCommand,
8604 					lpfc_sli_config_mbox_subsys_get(phba,
8605 									mboxq),
8606 					lpfc_sli_config_mbox_opcode_get(phba,
8607 									mboxq),
8608 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8609 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8610 					bf_get(lpfc_mcqe_ext_status,
8611 					       &mboxq->mcqe),
8612 					psli->sli_flag, flag);
8613 		return rc;
8614 	} else if (flag == MBX_POLL) {
8615 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8616 				"(%d):2542 Try to issue mailbox command "
8617 				"x%x (x%x/x%x) synchronously ahead of async "
8618 				"mailbox command queue: x%x x%x\n",
8619 				mboxq->vport ? mboxq->vport->vpi : 0,
8620 				mboxq->u.mb.mbxCommand,
8621 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8622 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8623 				psli->sli_flag, flag);
8624 		/* Try to block the asynchronous mailbox posting */
8625 		rc = lpfc_sli4_async_mbox_block(phba);
8626 		if (!rc) {
8627 			/* Successfully blocked, now issue sync mbox cmd */
8628 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8629 			if (rc != MBX_SUCCESS)
8630 				lpfc_printf_log(phba, KERN_WARNING,
8631 					LOG_MBOX | LOG_SLI,
8632 					"(%d):2597 Sync Mailbox command "
8633 					"x%x (x%x/x%x) failure: "
8634 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8635 					"Data: x%x x%x\n,",
8636 					mboxq->vport ? mboxq->vport->vpi : 0,
8637 					mboxq->u.mb.mbxCommand,
8638 					lpfc_sli_config_mbox_subsys_get(phba,
8639 									mboxq),
8640 					lpfc_sli_config_mbox_opcode_get(phba,
8641 									mboxq),
8642 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8643 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8644 					bf_get(lpfc_mcqe_ext_status,
8645 					       &mboxq->mcqe),
8646 					psli->sli_flag, flag);
8647 			/* Unblock the async mailbox posting afterward */
8648 			lpfc_sli4_async_mbox_unblock(phba);
8649 		}
8650 		return rc;
8651 	}
8652 
8653 	/* Now, interrupt mode asynchrous mailbox command */
8654 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8655 	if (rc) {
8656 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8657 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8658 				"cannot issue Data: x%x x%x\n",
8659 				mboxq->vport ? mboxq->vport->vpi : 0,
8660 				mboxq->u.mb.mbxCommand,
8661 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8662 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8663 				psli->sli_flag, flag);
8664 		goto out_not_finished;
8665 	}
8666 
8667 	/* Put the mailbox command to the driver internal FIFO */
8668 	psli->slistat.mbox_busy++;
8669 	spin_lock_irqsave(&phba->hbalock, iflags);
8670 	lpfc_mbox_put(phba, mboxq);
8671 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8672 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8673 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8674 			"x%x (x%x/x%x) x%x x%x x%x\n",
8675 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8676 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8677 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8678 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8679 			phba->pport->port_state,
8680 			psli->sli_flag, MBX_NOWAIT);
8681 	/* Wake up worker thread to transport mailbox command from head */
8682 	lpfc_worker_wake_up(phba);
8683 
8684 	return MBX_BUSY;
8685 
8686 out_not_finished:
8687 	return MBX_NOT_FINISHED;
8688 }
8689 
8690 /**
8691  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8692  * @phba: Pointer to HBA context object.
8693  *
8694  * This function is called by worker thread to send a mailbox command to
8695  * SLI4 HBA firmware.
8696  *
8697  **/
8698 int
8699 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8700 {
8701 	struct lpfc_sli *psli = &phba->sli;
8702 	LPFC_MBOXQ_t *mboxq;
8703 	int rc = MBX_SUCCESS;
8704 	unsigned long iflags;
8705 	struct lpfc_mqe *mqe;
8706 	uint32_t mbx_cmnd;
8707 
8708 	/* Check interrupt mode before post async mailbox command */
8709 	if (unlikely(!phba->sli4_hba.intr_enable))
8710 		return MBX_NOT_FINISHED;
8711 
8712 	/* Check for mailbox command service token */
8713 	spin_lock_irqsave(&phba->hbalock, iflags);
8714 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8715 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8716 		return MBX_NOT_FINISHED;
8717 	}
8718 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8719 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8720 		return MBX_NOT_FINISHED;
8721 	}
8722 	if (unlikely(phba->sli.mbox_active)) {
8723 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8724 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8725 				"0384 There is pending active mailbox cmd\n");
8726 		return MBX_NOT_FINISHED;
8727 	}
8728 	/* Take the mailbox command service token */
8729 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8730 
8731 	/* Get the next mailbox command from head of queue */
8732 	mboxq = lpfc_mbox_get(phba);
8733 
8734 	/* If no more mailbox command waiting for post, we're done */
8735 	if (!mboxq) {
8736 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8737 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8738 		return MBX_SUCCESS;
8739 	}
8740 	phba->sli.mbox_active = mboxq;
8741 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8742 
8743 	/* Check device readiness for posting mailbox command */
8744 	rc = lpfc_mbox_dev_check(phba);
8745 	if (unlikely(rc))
8746 		/* Driver clean routine will clean up pending mailbox */
8747 		goto out_not_finished;
8748 
8749 	/* Prepare the mbox command to be posted */
8750 	mqe = &mboxq->u.mqe;
8751 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8752 
8753 	/* Start timer for the mbox_tmo and log some mailbox post messages */
8754 	mod_timer(&psli->mbox_tmo, (jiffies +
8755 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8756 
8757 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8758 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8759 			"x%x x%x\n",
8760 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8761 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8762 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8763 			phba->pport->port_state, psli->sli_flag);
8764 
8765 	if (mbx_cmnd != MBX_HEARTBEAT) {
8766 		if (mboxq->vport) {
8767 			lpfc_debugfs_disc_trc(mboxq->vport,
8768 				LPFC_DISC_TRC_MBOX_VPORT,
8769 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8770 				mbx_cmnd, mqe->un.mb_words[0],
8771 				mqe->un.mb_words[1]);
8772 		} else {
8773 			lpfc_debugfs_disc_trc(phba->pport,
8774 				LPFC_DISC_TRC_MBOX,
8775 				"MBOX Send: cmd:x%x mb:x%x x%x",
8776 				mbx_cmnd, mqe->un.mb_words[0],
8777 				mqe->un.mb_words[1]);
8778 		}
8779 	}
8780 	psli->slistat.mbox_cmd++;
8781 
8782 	/* Post the mailbox command to the port */
8783 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8784 	if (rc != MBX_SUCCESS) {
8785 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8786 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
8787 				"cannot issue Data: x%x x%x\n",
8788 				mboxq->vport ? mboxq->vport->vpi : 0,
8789 				mboxq->u.mb.mbxCommand,
8790 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8791 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8792 				psli->sli_flag, MBX_NOWAIT);
8793 		goto out_not_finished;
8794 	}
8795 
8796 	return rc;
8797 
8798 out_not_finished:
8799 	spin_lock_irqsave(&phba->hbalock, iflags);
8800 	if (phba->sli.mbox_active) {
8801 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8802 		__lpfc_mbox_cmpl_put(phba, mboxq);
8803 		/* Release the token */
8804 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8805 		phba->sli.mbox_active = NULL;
8806 	}
8807 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8808 
8809 	return MBX_NOT_FINISHED;
8810 }
8811 
8812 /**
8813  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8814  * @phba: Pointer to HBA context object.
8815  * @pmbox: Pointer to mailbox object.
8816  * @flag: Flag indicating how the mailbox need to be processed.
8817  *
8818  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8819  * the API jump table function pointer from the lpfc_hba struct.
8820  *
8821  * Return codes the caller owns the mailbox command after the return of the
8822  * function.
8823  **/
8824 int
8825 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8826 {
8827 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8828 }
8829 
8830 /**
8831  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8832  * @phba: The hba struct for which this call is being executed.
8833  * @dev_grp: The HBA PCI-Device group number.
8834  *
8835  * This routine sets up the mbox interface API function jump table in @phba
8836  * struct.
8837  * Returns: 0 - success, -ENODEV - failure.
8838  **/
8839 int
8840 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8841 {
8842 
8843 	switch (dev_grp) {
8844 	case LPFC_PCI_DEV_LP:
8845 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8846 		phba->lpfc_sli_handle_slow_ring_event =
8847 				lpfc_sli_handle_slow_ring_event_s3;
8848 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8849 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8850 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8851 		break;
8852 	case LPFC_PCI_DEV_OC:
8853 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8854 		phba->lpfc_sli_handle_slow_ring_event =
8855 				lpfc_sli_handle_slow_ring_event_s4;
8856 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8857 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8858 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8859 		break;
8860 	default:
8861 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8862 				"1420 Invalid HBA PCI-device group: 0x%x\n",
8863 				dev_grp);
8864 		return -ENODEV;
8865 		break;
8866 	}
8867 	return 0;
8868 }
8869 
8870 /**
8871  * __lpfc_sli_ringtx_put - Add an iocb to the txq
8872  * @phba: Pointer to HBA context object.
8873  * @pring: Pointer to driver SLI ring object.
8874  * @piocb: Pointer to address of newly added command iocb.
8875  *
8876  * This function is called with hbalock held to add a command
8877  * iocb to the txq when SLI layer cannot submit the command iocb
8878  * to the ring.
8879  **/
8880 void
8881 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8882 		    struct lpfc_iocbq *piocb)
8883 {
8884 	lockdep_assert_held(&phba->hbalock);
8885 	/* Insert the caller's iocb in the txq tail for later processing. */
8886 	list_add_tail(&piocb->list, &pring->txq);
8887 }
8888 
8889 /**
8890  * lpfc_sli_next_iocb - Get the next iocb in the txq
8891  * @phba: Pointer to HBA context object.
8892  * @pring: Pointer to driver SLI ring object.
8893  * @piocb: Pointer to address of newly added command iocb.
8894  *
8895  * This function is called with hbalock held before a new
8896  * iocb is submitted to the firmware. This function checks
8897  * txq to flush the iocbs in txq to Firmware before
8898  * submitting new iocbs to the Firmware.
8899  * If there are iocbs in the txq which need to be submitted
8900  * to firmware, lpfc_sli_next_iocb returns the first element
8901  * of the txq after dequeuing it from txq.
8902  * If there is no iocb in the txq then the function will return
8903  * *piocb and *piocb is set to NULL. Caller needs to check
8904  * *piocb to find if there are more commands in the txq.
8905  **/
8906 static struct lpfc_iocbq *
8907 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8908 		   struct lpfc_iocbq **piocb)
8909 {
8910 	struct lpfc_iocbq * nextiocb;
8911 
8912 	lockdep_assert_held(&phba->hbalock);
8913 
8914 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
8915 	if (!nextiocb) {
8916 		nextiocb = *piocb;
8917 		*piocb = NULL;
8918 	}
8919 
8920 	return nextiocb;
8921 }
8922 
8923 /**
8924  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
8925  * @phba: Pointer to HBA context object.
8926  * @ring_number: SLI ring number to issue iocb on.
8927  * @piocb: Pointer to command iocb.
8928  * @flag: Flag indicating if this command can be put into txq.
8929  *
8930  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
8931  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
8932  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
8933  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
8934  * this function allows only iocbs for posting buffers. This function finds
8935  * next available slot in the command ring and posts the command to the
8936  * available slot and writes the port attention register to request HBA start
8937  * processing new iocb. If there is no slot available in the ring and
8938  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
8939  * the function returns IOCB_BUSY.
8940  *
8941  * This function is called with hbalock held. The function will return success
8942  * after it successfully submit the iocb to firmware or after adding to the
8943  * txq.
8944  **/
8945 static int
8946 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
8947 		    struct lpfc_iocbq *piocb, uint32_t flag)
8948 {
8949 	struct lpfc_iocbq *nextiocb;
8950 	IOCB_t *iocb;
8951 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
8952 
8953 	lockdep_assert_held(&phba->hbalock);
8954 
8955 	if (piocb->iocb_cmpl && (!piocb->vport) &&
8956 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
8957 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
8958 		lpfc_printf_log(phba, KERN_ERR,
8959 				LOG_SLI | LOG_VPORT,
8960 				"1807 IOCB x%x failed. No vport\n",
8961 				piocb->iocb.ulpCommand);
8962 		dump_stack();
8963 		return IOCB_ERROR;
8964 	}
8965 
8966 
8967 	/* If the PCI channel is in offline state, do not post iocbs. */
8968 	if (unlikely(pci_channel_offline(phba->pcidev)))
8969 		return IOCB_ERROR;
8970 
8971 	/* If HBA has a deferred error attention, fail the iocb. */
8972 	if (unlikely(phba->hba_flag & DEFER_ERATT))
8973 		return IOCB_ERROR;
8974 
8975 	/*
8976 	 * We should never get an IOCB if we are in a < LINK_DOWN state
8977 	 */
8978 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
8979 		return IOCB_ERROR;
8980 
8981 	/*
8982 	 * Check to see if we are blocking IOCB processing because of a
8983 	 * outstanding event.
8984 	 */
8985 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
8986 		goto iocb_busy;
8987 
8988 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
8989 		/*
8990 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
8991 		 * can be issued if the link is not up.
8992 		 */
8993 		switch (piocb->iocb.ulpCommand) {
8994 		case CMD_GEN_REQUEST64_CR:
8995 		case CMD_GEN_REQUEST64_CX:
8996 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
8997 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
8998 					FC_RCTL_DD_UNSOL_CMD) ||
8999 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9000 					MENLO_TRANSPORT_TYPE))
9001 
9002 				goto iocb_busy;
9003 			break;
9004 		case CMD_QUE_RING_BUF_CN:
9005 		case CMD_QUE_RING_BUF64_CN:
9006 			/*
9007 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9008 			 * completion, iocb_cmpl MUST be 0.
9009 			 */
9010 			if (piocb->iocb_cmpl)
9011 				piocb->iocb_cmpl = NULL;
9012 			/*FALLTHROUGH*/
9013 		case CMD_CREATE_XRI_CR:
9014 		case CMD_CLOSE_XRI_CN:
9015 		case CMD_CLOSE_XRI_CX:
9016 			break;
9017 		default:
9018 			goto iocb_busy;
9019 		}
9020 
9021 	/*
9022 	 * For FCP commands, we must be in a state where we can process link
9023 	 * attention events.
9024 	 */
9025 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9026 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9027 		goto iocb_busy;
9028 	}
9029 
9030 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9031 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9032 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9033 
9034 	if (iocb)
9035 		lpfc_sli_update_ring(phba, pring);
9036 	else
9037 		lpfc_sli_update_full_ring(phba, pring);
9038 
9039 	if (!piocb)
9040 		return IOCB_SUCCESS;
9041 
9042 	goto out_busy;
9043 
9044  iocb_busy:
9045 	pring->stats.iocb_cmd_delay++;
9046 
9047  out_busy:
9048 
9049 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9050 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9051 		return IOCB_SUCCESS;
9052 	}
9053 
9054 	return IOCB_BUSY;
9055 }
9056 
9057 /**
9058  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9059  * @phba: Pointer to HBA context object.
9060  * @piocb: Pointer to command iocb.
9061  * @sglq: Pointer to the scatter gather queue object.
9062  *
9063  * This routine converts the bpl or bde that is in the IOCB
9064  * to a sgl list for the sli4 hardware. The physical address
9065  * of the bpl/bde is converted back to a virtual address.
9066  * If the IOCB contains a BPL then the list of BDE's is
9067  * converted to sli4_sge's. If the IOCB contains a single
9068  * BDE then it is converted to a single sli_sge.
9069  * The IOCB is still in cpu endianess so the contents of
9070  * the bpl can be used without byte swapping.
9071  *
9072  * Returns valid XRI = Success, NO_XRI = Failure.
9073 **/
9074 static uint16_t
9075 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9076 		struct lpfc_sglq *sglq)
9077 {
9078 	uint16_t xritag = NO_XRI;
9079 	struct ulp_bde64 *bpl = NULL;
9080 	struct ulp_bde64 bde;
9081 	struct sli4_sge *sgl  = NULL;
9082 	struct lpfc_dmabuf *dmabuf;
9083 	IOCB_t *icmd;
9084 	int numBdes = 0;
9085 	int i = 0;
9086 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9087 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9088 
9089 	if (!piocbq || !sglq)
9090 		return xritag;
9091 
9092 	sgl  = (struct sli4_sge *)sglq->sgl;
9093 	icmd = &piocbq->iocb;
9094 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9095 		return sglq->sli4_xritag;
9096 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9097 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9098 				sizeof(struct ulp_bde64);
9099 		/* The addrHigh and addrLow fields within the IOCB
9100 		 * have not been byteswapped yet so there is no
9101 		 * need to swap them back.
9102 		 */
9103 		if (piocbq->context3)
9104 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9105 		else
9106 			return xritag;
9107 
9108 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9109 		if (!bpl)
9110 			return xritag;
9111 
9112 		for (i = 0; i < numBdes; i++) {
9113 			/* Should already be byte swapped. */
9114 			sgl->addr_hi = bpl->addrHigh;
9115 			sgl->addr_lo = bpl->addrLow;
9116 
9117 			sgl->word2 = le32_to_cpu(sgl->word2);
9118 			if ((i+1) == numBdes)
9119 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9120 			else
9121 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9122 			/* swap the size field back to the cpu so we
9123 			 * can assign it to the sgl.
9124 			 */
9125 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9126 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9127 			/* The offsets in the sgl need to be accumulated
9128 			 * separately for the request and reply lists.
9129 			 * The request is always first, the reply follows.
9130 			 */
9131 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9132 				/* add up the reply sg entries */
9133 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9134 					inbound++;
9135 				/* first inbound? reset the offset */
9136 				if (inbound == 1)
9137 					offset = 0;
9138 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9139 				bf_set(lpfc_sli4_sge_type, sgl,
9140 					LPFC_SGE_TYPE_DATA);
9141 				offset += bde.tus.f.bdeSize;
9142 			}
9143 			sgl->word2 = cpu_to_le32(sgl->word2);
9144 			bpl++;
9145 			sgl++;
9146 		}
9147 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9148 			/* The addrHigh and addrLow fields of the BDE have not
9149 			 * been byteswapped yet so they need to be swapped
9150 			 * before putting them in the sgl.
9151 			 */
9152 			sgl->addr_hi =
9153 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9154 			sgl->addr_lo =
9155 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9156 			sgl->word2 = le32_to_cpu(sgl->word2);
9157 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9158 			sgl->word2 = cpu_to_le32(sgl->word2);
9159 			sgl->sge_len =
9160 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9161 	}
9162 	return sglq->sli4_xritag;
9163 }
9164 
9165 /**
9166  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9167  * @phba: Pointer to HBA context object.
9168  * @piocb: Pointer to command iocb.
9169  * @wqe: Pointer to the work queue entry.
9170  *
9171  * This routine converts the iocb command to its Work Queue Entry
9172  * equivalent. The wqe pointer should not have any fields set when
9173  * this routine is called because it will memcpy over them.
9174  * This routine does not set the CQ_ID or the WQEC bits in the
9175  * wqe.
9176  *
9177  * Returns: 0 = Success, IOCB_ERROR = Failure.
9178  **/
9179 static int
9180 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9181 		union lpfc_wqe128 *wqe)
9182 {
9183 	uint32_t xmit_len = 0, total_len = 0;
9184 	uint8_t ct = 0;
9185 	uint32_t fip;
9186 	uint32_t abort_tag;
9187 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9188 	uint8_t cmnd;
9189 	uint16_t xritag;
9190 	uint16_t abrt_iotag;
9191 	struct lpfc_iocbq *abrtiocbq;
9192 	struct ulp_bde64 *bpl = NULL;
9193 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9194 	int numBdes, i;
9195 	struct ulp_bde64 bde;
9196 	struct lpfc_nodelist *ndlp;
9197 	uint32_t *pcmd;
9198 	uint32_t if_type;
9199 
9200 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9201 	/* The fcp commands will set command type */
9202 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9203 		command_type = FCP_COMMAND;
9204 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9205 		command_type = ELS_COMMAND_FIP;
9206 	else
9207 		command_type = ELS_COMMAND_NON_FIP;
9208 
9209 	if (phba->fcp_embed_io)
9210 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9211 	/* Some of the fields are in the right position already */
9212 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9213 	if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) {
9214 		/* The ct field has moved so reset */
9215 		wqe->generic.wqe_com.word7 = 0;
9216 		wqe->generic.wqe_com.word10 = 0;
9217 	}
9218 
9219 	abort_tag = (uint32_t) iocbq->iotag;
9220 	xritag = iocbq->sli4_xritag;
9221 	/* words0-2 bpl convert bde */
9222 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9223 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9224 				sizeof(struct ulp_bde64);
9225 		bpl  = (struct ulp_bde64 *)
9226 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9227 		if (!bpl)
9228 			return IOCB_ERROR;
9229 
9230 		/* Should already be byte swapped. */
9231 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9232 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9233 		/* swap the size field back to the cpu so we
9234 		 * can assign it to the sgl.
9235 		 */
9236 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9237 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9238 		total_len = 0;
9239 		for (i = 0; i < numBdes; i++) {
9240 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9241 			total_len += bde.tus.f.bdeSize;
9242 		}
9243 	} else
9244 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9245 
9246 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9247 	cmnd = iocbq->iocb.ulpCommand;
9248 
9249 	switch (iocbq->iocb.ulpCommand) {
9250 	case CMD_ELS_REQUEST64_CR:
9251 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9252 			ndlp = iocbq->context_un.ndlp;
9253 		else
9254 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9255 		if (!iocbq->iocb.ulpLe) {
9256 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9257 				"2007 Only Limited Edition cmd Format"
9258 				" supported 0x%x\n",
9259 				iocbq->iocb.ulpCommand);
9260 			return IOCB_ERROR;
9261 		}
9262 
9263 		wqe->els_req.payload_len = xmit_len;
9264 		/* Els_reguest64 has a TMO */
9265 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9266 			iocbq->iocb.ulpTimeout);
9267 		/* Need a VF for word 4 set the vf bit*/
9268 		bf_set(els_req64_vf, &wqe->els_req, 0);
9269 		/* And a VFID for word 12 */
9270 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9271 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9272 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9273 		       iocbq->iocb.ulpContext);
9274 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9275 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9276 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9277 		if (command_type == ELS_COMMAND_FIP)
9278 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9279 					>> LPFC_FIP_ELS_ID_SHIFT);
9280 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9281 					iocbq->context2)->virt);
9282 		if_type = bf_get(lpfc_sli_intf_if_type,
9283 					&phba->sli4_hba.sli_intf);
9284 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9285 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9286 				*pcmd == ELS_CMD_SCR ||
9287 				*pcmd == ELS_CMD_FDISC ||
9288 				*pcmd == ELS_CMD_LOGO ||
9289 				*pcmd == ELS_CMD_PLOGI)) {
9290 				bf_set(els_req64_sp, &wqe->els_req, 1);
9291 				bf_set(els_req64_sid, &wqe->els_req,
9292 					iocbq->vport->fc_myDID);
9293 				if ((*pcmd == ELS_CMD_FLOGI) &&
9294 					!(phba->fc_topology ==
9295 						LPFC_TOPOLOGY_LOOP))
9296 					bf_set(els_req64_sid, &wqe->els_req, 0);
9297 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9298 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9299 					phba->vpi_ids[iocbq->vport->vpi]);
9300 			} else if (pcmd && iocbq->context1) {
9301 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9302 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9303 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9304 			}
9305 		}
9306 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9307 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9308 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9309 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9310 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9311 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9312 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9313 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9314 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9315 		break;
9316 	case CMD_XMIT_SEQUENCE64_CX:
9317 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9318 		       iocbq->iocb.un.ulpWord[3]);
9319 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9320 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9321 		/* The entire sequence is transmitted for this IOCB */
9322 		xmit_len = total_len;
9323 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9324 		if (phba->link_flag & LS_LOOPBACK_MODE)
9325 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9326 	case CMD_XMIT_SEQUENCE64_CR:
9327 		/* word3 iocb=io_tag32 wqe=reserved */
9328 		wqe->xmit_sequence.rsvd3 = 0;
9329 		/* word4 relative_offset memcpy */
9330 		/* word5 r_ctl/df_ctl memcpy */
9331 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9332 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9333 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9334 		       LPFC_WQE_IOD_WRITE);
9335 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9336 		       LPFC_WQE_LENLOC_WORD12);
9337 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9338 		wqe->xmit_sequence.xmit_len = xmit_len;
9339 		command_type = OTHER_COMMAND;
9340 		break;
9341 	case CMD_XMIT_BCAST64_CN:
9342 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9343 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9344 		/* word4 iocb=rsvd wqe=rsvd */
9345 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9346 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9347 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9348 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9349 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9350 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9351 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9352 		       LPFC_WQE_LENLOC_WORD3);
9353 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9354 		break;
9355 	case CMD_FCP_IWRITE64_CR:
9356 		command_type = FCP_COMMAND_DATA_OUT;
9357 		/* word3 iocb=iotag wqe=payload_offset_len */
9358 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9359 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9360 		       xmit_len + sizeof(struct fcp_rsp));
9361 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9362 		       0);
9363 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9364 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9365 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9366 		       iocbq->iocb.ulpFCP2Rcvy);
9367 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9368 		/* Always open the exchange */
9369 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9370 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9371 		       LPFC_WQE_LENLOC_WORD4);
9372 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9373 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9374 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9375 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9376 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9377 			if (iocbq->priority) {
9378 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9379 				       (iocbq->priority << 1));
9380 			} else {
9381 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9382 				       (phba->cfg_XLanePriority << 1));
9383 			}
9384 		}
9385 		/* Note, word 10 is already initialized to 0 */
9386 
9387 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9388 		if (phba->cfg_enable_pbde)
9389 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9390 		else
9391 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9392 
9393 		if (phba->fcp_embed_io) {
9394 			struct lpfc_scsi_buf *lpfc_cmd;
9395 			struct sli4_sge *sgl;
9396 			struct fcp_cmnd *fcp_cmnd;
9397 			uint32_t *ptr;
9398 
9399 			/* 128 byte wqe support here */
9400 
9401 			lpfc_cmd = iocbq->context1;
9402 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
9403 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9404 
9405 			/* Word 0-2 - FCP_CMND */
9406 			wqe->generic.bde.tus.f.bdeFlags =
9407 				BUFF_TYPE_BDE_IMMED;
9408 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9409 			wqe->generic.bde.addrHigh = 0;
9410 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9411 
9412 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9413 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9414 
9415 			/* Word 22-29  FCP CMND Payload */
9416 			ptr = &wqe->words[22];
9417 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9418 		}
9419 		break;
9420 	case CMD_FCP_IREAD64_CR:
9421 		/* word3 iocb=iotag wqe=payload_offset_len */
9422 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9423 		bf_set(payload_offset_len, &wqe->fcp_iread,
9424 		       xmit_len + sizeof(struct fcp_rsp));
9425 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9426 		       0);
9427 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9428 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9429 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9430 		       iocbq->iocb.ulpFCP2Rcvy);
9431 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9432 		/* Always open the exchange */
9433 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9434 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9435 		       LPFC_WQE_LENLOC_WORD4);
9436 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9437 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9438 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9439 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9440 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9441 			if (iocbq->priority) {
9442 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9443 				       (iocbq->priority << 1));
9444 			} else {
9445 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9446 				       (phba->cfg_XLanePriority << 1));
9447 			}
9448 		}
9449 		/* Note, word 10 is already initialized to 0 */
9450 
9451 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9452 		if (phba->cfg_enable_pbde)
9453 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9454 		else
9455 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9456 
9457 		if (phba->fcp_embed_io) {
9458 			struct lpfc_scsi_buf *lpfc_cmd;
9459 			struct sli4_sge *sgl;
9460 			struct fcp_cmnd *fcp_cmnd;
9461 			uint32_t *ptr;
9462 
9463 			/* 128 byte wqe support here */
9464 
9465 			lpfc_cmd = iocbq->context1;
9466 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
9467 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9468 
9469 			/* Word 0-2 - FCP_CMND */
9470 			wqe->generic.bde.tus.f.bdeFlags =
9471 				BUFF_TYPE_BDE_IMMED;
9472 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9473 			wqe->generic.bde.addrHigh = 0;
9474 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9475 
9476 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9477 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9478 
9479 			/* Word 22-29  FCP CMND Payload */
9480 			ptr = &wqe->words[22];
9481 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9482 		}
9483 		break;
9484 	case CMD_FCP_ICMND64_CR:
9485 		/* word3 iocb=iotag wqe=payload_offset_len */
9486 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9487 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9488 		       xmit_len + sizeof(struct fcp_rsp));
9489 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9490 		       0);
9491 		/* word3 iocb=IO_TAG wqe=reserved */
9492 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9493 		/* Always open the exchange */
9494 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9495 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9496 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9497 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9498 		       LPFC_WQE_LENLOC_NONE);
9499 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9500 		       iocbq->iocb.ulpFCP2Rcvy);
9501 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9502 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9503 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9504 			if (iocbq->priority) {
9505 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9506 				       (iocbq->priority << 1));
9507 			} else {
9508 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9509 				       (phba->cfg_XLanePriority << 1));
9510 			}
9511 		}
9512 		/* Note, word 10 is already initialized to 0 */
9513 
9514 		if (phba->fcp_embed_io) {
9515 			struct lpfc_scsi_buf *lpfc_cmd;
9516 			struct sli4_sge *sgl;
9517 			struct fcp_cmnd *fcp_cmnd;
9518 			uint32_t *ptr;
9519 
9520 			/* 128 byte wqe support here */
9521 
9522 			lpfc_cmd = iocbq->context1;
9523 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
9524 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9525 
9526 			/* Word 0-2 - FCP_CMND */
9527 			wqe->generic.bde.tus.f.bdeFlags =
9528 				BUFF_TYPE_BDE_IMMED;
9529 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9530 			wqe->generic.bde.addrHigh = 0;
9531 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9532 
9533 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9534 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9535 
9536 			/* Word 22-29  FCP CMND Payload */
9537 			ptr = &wqe->words[22];
9538 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9539 		}
9540 		break;
9541 	case CMD_GEN_REQUEST64_CR:
9542 		/* For this command calculate the xmit length of the
9543 		 * request bde.
9544 		 */
9545 		xmit_len = 0;
9546 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9547 			sizeof(struct ulp_bde64);
9548 		for (i = 0; i < numBdes; i++) {
9549 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9550 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9551 				break;
9552 			xmit_len += bde.tus.f.bdeSize;
9553 		}
9554 		/* word3 iocb=IO_TAG wqe=request_payload_len */
9555 		wqe->gen_req.request_payload_len = xmit_len;
9556 		/* word4 iocb=parameter wqe=relative_offset memcpy */
9557 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9558 		/* word6 context tag copied in memcpy */
9559 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9560 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9561 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9562 				"2015 Invalid CT %x command 0x%x\n",
9563 				ct, iocbq->iocb.ulpCommand);
9564 			return IOCB_ERROR;
9565 		}
9566 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9567 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9568 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9569 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9570 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9571 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9572 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9573 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9574 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9575 		command_type = OTHER_COMMAND;
9576 		break;
9577 	case CMD_XMIT_ELS_RSP64_CX:
9578 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9579 		/* words0-2 BDE memcpy */
9580 		/* word3 iocb=iotag32 wqe=response_payload_len */
9581 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9582 		/* word4 */
9583 		wqe->xmit_els_rsp.word4 = 0;
9584 		/* word5 iocb=rsvd wge=did */
9585 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9586 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9587 
9588 		if_type = bf_get(lpfc_sli_intf_if_type,
9589 					&phba->sli4_hba.sli_intf);
9590 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9591 			if (iocbq->vport->fc_flag & FC_PT2PT) {
9592 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9593 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9594 					iocbq->vport->fc_myDID);
9595 				if (iocbq->vport->fc_myDID == Fabric_DID) {
9596 					bf_set(wqe_els_did,
9597 						&wqe->xmit_els_rsp.wqe_dest, 0);
9598 				}
9599 			}
9600 		}
9601 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9602 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9603 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9604 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9605 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9606 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9607 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9608 			       phba->vpi_ids[iocbq->vport->vpi]);
9609 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9610 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9611 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9612 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9613 		       LPFC_WQE_LENLOC_WORD3);
9614 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9615 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9616 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9617 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9618 					iocbq->context2)->virt);
9619 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9620 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9621 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9622 					iocbq->vport->fc_myDID);
9623 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9624 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9625 					phba->vpi_ids[phba->pport->vpi]);
9626 		}
9627 		command_type = OTHER_COMMAND;
9628 		break;
9629 	case CMD_CLOSE_XRI_CN:
9630 	case CMD_ABORT_XRI_CN:
9631 	case CMD_ABORT_XRI_CX:
9632 		/* words 0-2 memcpy should be 0 rserved */
9633 		/* port will send abts */
9634 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9635 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9636 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9637 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9638 		} else
9639 			fip = 0;
9640 
9641 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9642 			/*
9643 			 * The link is down, or the command was ELS_FIP
9644 			 * so the fw does not need to send abts
9645 			 * on the wire.
9646 			 */
9647 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9648 		else
9649 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9650 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9651 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9652 		wqe->abort_cmd.rsrvd5 = 0;
9653 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9654 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9655 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9656 		/*
9657 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9658 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9659 		 */
9660 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9661 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9662 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9663 		       LPFC_WQE_LENLOC_NONE);
9664 		cmnd = CMD_ABORT_XRI_CX;
9665 		command_type = OTHER_COMMAND;
9666 		xritag = 0;
9667 		break;
9668 	case CMD_XMIT_BLS_RSP64_CX:
9669 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9670 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9671 		 * we re-construct this WQE here based on information in
9672 		 * iocbq from scratch.
9673 		 */
9674 		memset(wqe, 0, sizeof(union lpfc_wqe));
9675 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9676 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9677 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9678 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9679 		    LPFC_ABTS_UNSOL_INT) {
9680 			/* ABTS sent by initiator to CT exchange, the
9681 			 * RX_ID field will be filled with the newly
9682 			 * allocated responder XRI.
9683 			 */
9684 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9685 			       iocbq->sli4_xritag);
9686 		} else {
9687 			/* ABTS sent by responder to CT exchange, the
9688 			 * RX_ID field will be filled with the responder
9689 			 * RX_ID from ABTS.
9690 			 */
9691 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9692 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9693 		}
9694 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9695 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9696 
9697 		/* Use CT=VPI */
9698 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9699 			ndlp->nlp_DID);
9700 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9701 			iocbq->iocb.ulpContext);
9702 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9703 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9704 			phba->vpi_ids[phba->pport->vpi]);
9705 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9706 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9707 		       LPFC_WQE_LENLOC_NONE);
9708 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9709 		command_type = OTHER_COMMAND;
9710 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9711 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9712 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9713 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9714 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9715 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9716 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9717 		}
9718 
9719 		break;
9720 	case CMD_SEND_FRAME:
9721 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9722 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9723 		return 0;
9724 	case CMD_XRI_ABORTED_CX:
9725 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9726 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9727 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9728 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9729 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9730 	default:
9731 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9732 				"2014 Invalid command 0x%x\n",
9733 				iocbq->iocb.ulpCommand);
9734 		return IOCB_ERROR;
9735 		break;
9736 	}
9737 
9738 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9739 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9740 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9741 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9742 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9743 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9744 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9745 			      LPFC_IO_DIF_INSERT);
9746 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9747 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9748 	wqe->generic.wqe_com.abort_tag = abort_tag;
9749 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9750 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9751 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9752 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9753 	return 0;
9754 }
9755 
9756 /**
9757  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9758  * @phba: Pointer to HBA context object.
9759  * @ring_number: SLI ring number to issue iocb on.
9760  * @piocb: Pointer to command iocb.
9761  * @flag: Flag indicating if this command can be put into txq.
9762  *
9763  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9764  * an iocb command to an HBA with SLI-4 interface spec.
9765  *
9766  * This function is called with hbalock held. The function will return success
9767  * after it successfully submit the iocb to firmware or after adding to the
9768  * txq.
9769  **/
9770 static int
9771 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9772 			 struct lpfc_iocbq *piocb, uint32_t flag)
9773 {
9774 	struct lpfc_sglq *sglq;
9775 	union lpfc_wqe128 wqe;
9776 	struct lpfc_queue *wq;
9777 	struct lpfc_sli_ring *pring;
9778 
9779 	/* Get the WQ */
9780 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9781 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9782 		if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS)))
9783 			wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx];
9784 		else
9785 			wq = phba->sli4_hba.oas_wq;
9786 	} else {
9787 		wq = phba->sli4_hba.els_wq;
9788 	}
9789 
9790 	/* Get corresponding ring */
9791 	pring = wq->pring;
9792 
9793 	/*
9794 	 * The WQE can be either 64 or 128 bytes,
9795 	 */
9796 
9797 	lockdep_assert_held(&phba->hbalock);
9798 
9799 	if (piocb->sli4_xritag == NO_XRI) {
9800 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9801 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9802 			sglq = NULL;
9803 		else {
9804 			if (!list_empty(&pring->txq)) {
9805 				if (!(flag & SLI_IOCB_RET_IOCB)) {
9806 					__lpfc_sli_ringtx_put(phba,
9807 						pring, piocb);
9808 					return IOCB_SUCCESS;
9809 				} else {
9810 					return IOCB_BUSY;
9811 				}
9812 			} else {
9813 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9814 				if (!sglq) {
9815 					if (!(flag & SLI_IOCB_RET_IOCB)) {
9816 						__lpfc_sli_ringtx_put(phba,
9817 								pring,
9818 								piocb);
9819 						return IOCB_SUCCESS;
9820 					} else
9821 						return IOCB_BUSY;
9822 				}
9823 			}
9824 		}
9825 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
9826 		/* These IO's already have an XRI and a mapped sgl. */
9827 		sglq = NULL;
9828 	else {
9829 		/*
9830 		 * This is a continuation of a commandi,(CX) so this
9831 		 * sglq is on the active list
9832 		 */
9833 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9834 		if (!sglq)
9835 			return IOCB_ERROR;
9836 	}
9837 
9838 	if (sglq) {
9839 		piocb->sli4_lxritag = sglq->sli4_lxritag;
9840 		piocb->sli4_xritag = sglq->sli4_xritag;
9841 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9842 			return IOCB_ERROR;
9843 	}
9844 
9845 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
9846 		return IOCB_ERROR;
9847 
9848 	if (lpfc_sli4_wq_put(wq, &wqe))
9849 		return IOCB_ERROR;
9850 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9851 
9852 	return 0;
9853 }
9854 
9855 /**
9856  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9857  *
9858  * This routine wraps the actual lockless version for issusing IOCB function
9859  * pointer from the lpfc_hba struct.
9860  *
9861  * Return codes:
9862  * IOCB_ERROR - Error
9863  * IOCB_SUCCESS - Success
9864  * IOCB_BUSY - Busy
9865  **/
9866 int
9867 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9868 		struct lpfc_iocbq *piocb, uint32_t flag)
9869 {
9870 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9871 }
9872 
9873 /**
9874  * lpfc_sli_api_table_setup - Set up sli api function jump table
9875  * @phba: The hba struct for which this call is being executed.
9876  * @dev_grp: The HBA PCI-Device group number.
9877  *
9878  * This routine sets up the SLI interface API function jump table in @phba
9879  * struct.
9880  * Returns: 0 - success, -ENODEV - failure.
9881  **/
9882 int
9883 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9884 {
9885 
9886 	switch (dev_grp) {
9887 	case LPFC_PCI_DEV_LP:
9888 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9889 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9890 		break;
9891 	case LPFC_PCI_DEV_OC:
9892 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9893 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9894 		break;
9895 	default:
9896 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9897 				"1419 Invalid HBA PCI-device group: 0x%x\n",
9898 				dev_grp);
9899 		return -ENODEV;
9900 		break;
9901 	}
9902 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
9903 	return 0;
9904 }
9905 
9906 /**
9907  * lpfc_sli4_calc_ring - Calculates which ring to use
9908  * @phba: Pointer to HBA context object.
9909  * @piocb: Pointer to command iocb.
9910  *
9911  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
9912  * hba_wqidx, thus we need to calculate the corresponding ring.
9913  * Since ABORTS must go on the same WQ of the command they are
9914  * aborting, we use command's hba_wqidx.
9915  */
9916 struct lpfc_sli_ring *
9917 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
9918 {
9919 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
9920 		if (!(phba->cfg_fof) ||
9921 		    (!(piocb->iocb_flag & LPFC_IO_FOF))) {
9922 			if (unlikely(!phba->sli4_hba.fcp_wq))
9923 				return NULL;
9924 			/*
9925 			 * for abort iocb hba_wqidx should already
9926 			 * be setup based on what work queue we used.
9927 			 */
9928 			if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9929 				piocb->hba_wqidx =
9930 					lpfc_sli4_scmd_to_wqidx_distr(phba,
9931 							      piocb->context1);
9932 				piocb->hba_wqidx = piocb->hba_wqidx %
9933 					phba->cfg_fcp_io_channel;
9934 			}
9935 			return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring;
9936 		} else {
9937 			if (unlikely(!phba->sli4_hba.oas_wq))
9938 				return NULL;
9939 			piocb->hba_wqidx = 0;
9940 			return phba->sli4_hba.oas_wq->pring;
9941 		}
9942 	} else {
9943 		if (unlikely(!phba->sli4_hba.els_wq))
9944 			return NULL;
9945 		piocb->hba_wqidx = 0;
9946 		return phba->sli4_hba.els_wq->pring;
9947 	}
9948 }
9949 
9950 /**
9951  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
9952  * @phba: Pointer to HBA context object.
9953  * @pring: Pointer to driver SLI ring object.
9954  * @piocb: Pointer to command iocb.
9955  * @flag: Flag indicating if this command can be put into txq.
9956  *
9957  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
9958  * function. This function gets the hbalock and calls
9959  * __lpfc_sli_issue_iocb function and will return the error returned
9960  * by __lpfc_sli_issue_iocb function. This wrapper is used by
9961  * functions which do not hold hbalock.
9962  **/
9963 int
9964 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9965 		    struct lpfc_iocbq *piocb, uint32_t flag)
9966 {
9967 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
9968 	struct lpfc_sli_ring *pring;
9969 	struct lpfc_queue *fpeq;
9970 	struct lpfc_eqe *eqe;
9971 	unsigned long iflags;
9972 	int rc, idx;
9973 
9974 	if (phba->sli_rev == LPFC_SLI_REV4) {
9975 		pring = lpfc_sli4_calc_ring(phba, piocb);
9976 		if (unlikely(pring == NULL))
9977 			return IOCB_ERROR;
9978 
9979 		spin_lock_irqsave(&pring->ring_lock, iflags);
9980 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9981 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
9982 
9983 		if (lpfc_fcp_look_ahead && (piocb->iocb_flag &  LPFC_IO_FCP)) {
9984 			idx = piocb->hba_wqidx;
9985 			hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx];
9986 
9987 			if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) {
9988 
9989 				/* Get associated EQ with this index */
9990 				fpeq = phba->sli4_hba.hba_eq[idx];
9991 
9992 				/* Turn off interrupts from this EQ */
9993 				phba->sli4_hba.sli4_eq_clr_intr(fpeq);
9994 
9995 				/*
9996 				 * Process all the events on FCP EQ
9997 				 */
9998 				while ((eqe = lpfc_sli4_eq_get(fpeq))) {
9999 					lpfc_sli4_hba_handle_eqe(phba,
10000 						eqe, idx);
10001 					fpeq->EQ_processed++;
10002 				}
10003 
10004 				/* Always clear and re-arm the EQ */
10005 				phba->sli4_hba.sli4_eq_release(fpeq,
10006 					LPFC_QUEUE_REARM);
10007 			}
10008 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
10009 		}
10010 	} else {
10011 		/* For now, SLI2/3 will still use hbalock */
10012 		spin_lock_irqsave(&phba->hbalock, iflags);
10013 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10014 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10015 	}
10016 	return rc;
10017 }
10018 
10019 /**
10020  * lpfc_extra_ring_setup - Extra ring setup function
10021  * @phba: Pointer to HBA context object.
10022  *
10023  * This function is called while driver attaches with the
10024  * HBA to setup the extra ring. The extra ring is used
10025  * only when driver needs to support target mode functionality
10026  * or IP over FC functionalities.
10027  *
10028  * This function is called with no lock held. SLI3 only.
10029  **/
10030 static int
10031 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10032 {
10033 	struct lpfc_sli *psli;
10034 	struct lpfc_sli_ring *pring;
10035 
10036 	psli = &phba->sli;
10037 
10038 	/* Adjust cmd/rsp ring iocb entries more evenly */
10039 
10040 	/* Take some away from the FCP ring */
10041 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10042 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10043 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10044 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10045 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10046 
10047 	/* and give them to the extra ring */
10048 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10049 
10050 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10051 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10052 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10053 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10054 
10055 	/* Setup default profile for this ring */
10056 	pring->iotag_max = 4096;
10057 	pring->num_mask = 1;
10058 	pring->prt[0].profile = 0;      /* Mask 0 */
10059 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10060 	pring->prt[0].type = phba->cfg_multi_ring_type;
10061 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10062 	return 0;
10063 }
10064 
10065 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10066  * @phba: Pointer to HBA context object.
10067  * @iocbq: Pointer to iocb object.
10068  *
10069  * The async_event handler calls this routine when it receives
10070  * an ASYNC_STATUS_CN event from the port.  The port generates
10071  * this event when an Abort Sequence request to an rport fails
10072  * twice in succession.  The abort could be originated by the
10073  * driver or by the port.  The ABTS could have been for an ELS
10074  * or FCP IO.  The port only generates this event when an ABTS
10075  * fails to complete after one retry.
10076  */
10077 static void
10078 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10079 			  struct lpfc_iocbq *iocbq)
10080 {
10081 	struct lpfc_nodelist *ndlp = NULL;
10082 	uint16_t rpi = 0, vpi = 0;
10083 	struct lpfc_vport *vport = NULL;
10084 
10085 	/* The rpi in the ulpContext is vport-sensitive. */
10086 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10087 	rpi = iocbq->iocb.ulpContext;
10088 
10089 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10090 			"3092 Port generated ABTS async event "
10091 			"on vpi %d rpi %d status 0x%x\n",
10092 			vpi, rpi, iocbq->iocb.ulpStatus);
10093 
10094 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10095 	if (!vport)
10096 		goto err_exit;
10097 	ndlp = lpfc_findnode_rpi(vport, rpi);
10098 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10099 		goto err_exit;
10100 
10101 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10102 		lpfc_sli_abts_recover_port(vport, ndlp);
10103 	return;
10104 
10105  err_exit:
10106 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10107 			"3095 Event Context not found, no "
10108 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10109 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10110 			vpi, rpi);
10111 }
10112 
10113 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10114  * @phba: pointer to HBA context object.
10115  * @ndlp: nodelist pointer for the impacted rport.
10116  * @axri: pointer to the wcqe containing the failed exchange.
10117  *
10118  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10119  * port.  The port generates this event when an abort exchange request to an
10120  * rport fails twice in succession with no reply.  The abort could be originated
10121  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10122  */
10123 void
10124 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10125 			   struct lpfc_nodelist *ndlp,
10126 			   struct sli4_wcqe_xri_aborted *axri)
10127 {
10128 	struct lpfc_vport *vport;
10129 	uint32_t ext_status = 0;
10130 
10131 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10132 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10133 				"3115 Node Context not found, driver "
10134 				"ignoring abts err event\n");
10135 		return;
10136 	}
10137 
10138 	vport = ndlp->vport;
10139 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10140 			"3116 Port generated FCP XRI ABORT event on "
10141 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10142 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10143 			bf_get(lpfc_wcqe_xa_xri, axri),
10144 			bf_get(lpfc_wcqe_xa_status, axri),
10145 			axri->parameter);
10146 
10147 	/*
10148 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10149 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10150 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10151 	 */
10152 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10153 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10154 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10155 		lpfc_sli_abts_recover_port(vport, ndlp);
10156 }
10157 
10158 /**
10159  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10160  * @phba: Pointer to HBA context object.
10161  * @pring: Pointer to driver SLI ring object.
10162  * @iocbq: Pointer to iocb object.
10163  *
10164  * This function is called by the slow ring event handler
10165  * function when there is an ASYNC event iocb in the ring.
10166  * This function is called with no lock held.
10167  * Currently this function handles only temperature related
10168  * ASYNC events. The function decodes the temperature sensor
10169  * event message and posts events for the management applications.
10170  **/
10171 static void
10172 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10173 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10174 {
10175 	IOCB_t *icmd;
10176 	uint16_t evt_code;
10177 	struct temp_event temp_event_data;
10178 	struct Scsi_Host *shost;
10179 	uint32_t *iocb_w;
10180 
10181 	icmd = &iocbq->iocb;
10182 	evt_code = icmd->un.asyncstat.evt_code;
10183 
10184 	switch (evt_code) {
10185 	case ASYNC_TEMP_WARN:
10186 	case ASYNC_TEMP_SAFE:
10187 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10188 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10189 		if (evt_code == ASYNC_TEMP_WARN) {
10190 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10191 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10192 				"0347 Adapter is very hot, please take "
10193 				"corrective action. temperature : %d Celsius\n",
10194 				(uint32_t) icmd->ulpContext);
10195 		} else {
10196 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10197 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10198 				"0340 Adapter temperature is OK now. "
10199 				"temperature : %d Celsius\n",
10200 				(uint32_t) icmd->ulpContext);
10201 		}
10202 
10203 		/* Send temperature change event to applications */
10204 		shost = lpfc_shost_from_vport(phba->pport);
10205 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10206 			sizeof(temp_event_data), (char *) &temp_event_data,
10207 			LPFC_NL_VENDOR_ID);
10208 		break;
10209 	case ASYNC_STATUS_CN:
10210 		lpfc_sli_abts_err_handler(phba, iocbq);
10211 		break;
10212 	default:
10213 		iocb_w = (uint32_t *) icmd;
10214 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10215 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10216 			" evt_code 0x%x\n"
10217 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10218 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10219 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10220 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10221 			pring->ringno, icmd->un.asyncstat.evt_code,
10222 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10223 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10224 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10225 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10226 
10227 		break;
10228 	}
10229 }
10230 
10231 
10232 /**
10233  * lpfc_sli4_setup - SLI ring setup function
10234  * @phba: Pointer to HBA context object.
10235  *
10236  * lpfc_sli_setup sets up rings of the SLI interface with
10237  * number of iocbs per ring and iotags. This function is
10238  * called while driver attach to the HBA and before the
10239  * interrupts are enabled. So there is no need for locking.
10240  *
10241  * This function always returns 0.
10242  **/
10243 int
10244 lpfc_sli4_setup(struct lpfc_hba *phba)
10245 {
10246 	struct lpfc_sli_ring *pring;
10247 
10248 	pring = phba->sli4_hba.els_wq->pring;
10249 	pring->num_mask = LPFC_MAX_RING_MASK;
10250 	pring->prt[0].profile = 0;	/* Mask 0 */
10251 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10252 	pring->prt[0].type = FC_TYPE_ELS;
10253 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10254 	    lpfc_els_unsol_event;
10255 	pring->prt[1].profile = 0;	/* Mask 1 */
10256 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10257 	pring->prt[1].type = FC_TYPE_ELS;
10258 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10259 	    lpfc_els_unsol_event;
10260 	pring->prt[2].profile = 0;	/* Mask 2 */
10261 	/* NameServer Inquiry */
10262 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10263 	/* NameServer */
10264 	pring->prt[2].type = FC_TYPE_CT;
10265 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10266 	    lpfc_ct_unsol_event;
10267 	pring->prt[3].profile = 0;	/* Mask 3 */
10268 	/* NameServer response */
10269 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10270 	/* NameServer */
10271 	pring->prt[3].type = FC_TYPE_CT;
10272 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10273 	    lpfc_ct_unsol_event;
10274 	return 0;
10275 }
10276 
10277 /**
10278  * lpfc_sli_setup - SLI ring setup function
10279  * @phba: Pointer to HBA context object.
10280  *
10281  * lpfc_sli_setup sets up rings of the SLI interface with
10282  * number of iocbs per ring and iotags. This function is
10283  * called while driver attach to the HBA and before the
10284  * interrupts are enabled. So there is no need for locking.
10285  *
10286  * This function always returns 0. SLI3 only.
10287  **/
10288 int
10289 lpfc_sli_setup(struct lpfc_hba *phba)
10290 {
10291 	int i, totiocbsize = 0;
10292 	struct lpfc_sli *psli = &phba->sli;
10293 	struct lpfc_sli_ring *pring;
10294 
10295 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10296 	psli->sli_flag = 0;
10297 
10298 	psli->iocbq_lookup = NULL;
10299 	psli->iocbq_lookup_len = 0;
10300 	psli->last_iotag = 0;
10301 
10302 	for (i = 0; i < psli->num_rings; i++) {
10303 		pring = &psli->sli3_ring[i];
10304 		switch (i) {
10305 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10306 			/* numCiocb and numRiocb are used in config_port */
10307 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10308 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10309 			pring->sli.sli3.numCiocb +=
10310 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10311 			pring->sli.sli3.numRiocb +=
10312 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10313 			pring->sli.sli3.numCiocb +=
10314 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10315 			pring->sli.sli3.numRiocb +=
10316 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10317 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10318 							SLI3_IOCB_CMD_SIZE :
10319 							SLI2_IOCB_CMD_SIZE;
10320 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10321 							SLI3_IOCB_RSP_SIZE :
10322 							SLI2_IOCB_RSP_SIZE;
10323 			pring->iotag_ctr = 0;
10324 			pring->iotag_max =
10325 			    (phba->cfg_hba_queue_depth * 2);
10326 			pring->fast_iotag = pring->iotag_max;
10327 			pring->num_mask = 0;
10328 			break;
10329 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10330 			/* numCiocb and numRiocb are used in config_port */
10331 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10332 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10333 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10334 							SLI3_IOCB_CMD_SIZE :
10335 							SLI2_IOCB_CMD_SIZE;
10336 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10337 							SLI3_IOCB_RSP_SIZE :
10338 							SLI2_IOCB_RSP_SIZE;
10339 			pring->iotag_max = phba->cfg_hba_queue_depth;
10340 			pring->num_mask = 0;
10341 			break;
10342 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10343 			/* numCiocb and numRiocb are used in config_port */
10344 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10345 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10346 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10347 							SLI3_IOCB_CMD_SIZE :
10348 							SLI2_IOCB_CMD_SIZE;
10349 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10350 							SLI3_IOCB_RSP_SIZE :
10351 							SLI2_IOCB_RSP_SIZE;
10352 			pring->fast_iotag = 0;
10353 			pring->iotag_ctr = 0;
10354 			pring->iotag_max = 4096;
10355 			pring->lpfc_sli_rcv_async_status =
10356 				lpfc_sli_async_event_handler;
10357 			pring->num_mask = LPFC_MAX_RING_MASK;
10358 			pring->prt[0].profile = 0;	/* Mask 0 */
10359 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10360 			pring->prt[0].type = FC_TYPE_ELS;
10361 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10362 			    lpfc_els_unsol_event;
10363 			pring->prt[1].profile = 0;	/* Mask 1 */
10364 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10365 			pring->prt[1].type = FC_TYPE_ELS;
10366 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10367 			    lpfc_els_unsol_event;
10368 			pring->prt[2].profile = 0;	/* Mask 2 */
10369 			/* NameServer Inquiry */
10370 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10371 			/* NameServer */
10372 			pring->prt[2].type = FC_TYPE_CT;
10373 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10374 			    lpfc_ct_unsol_event;
10375 			pring->prt[3].profile = 0;	/* Mask 3 */
10376 			/* NameServer response */
10377 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10378 			/* NameServer */
10379 			pring->prt[3].type = FC_TYPE_CT;
10380 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10381 			    lpfc_ct_unsol_event;
10382 			break;
10383 		}
10384 		totiocbsize += (pring->sli.sli3.numCiocb *
10385 			pring->sli.sli3.sizeCiocb) +
10386 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10387 	}
10388 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10389 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10390 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10391 		       "SLI2 SLIM Data: x%x x%lx\n",
10392 		       phba->brd_no, totiocbsize,
10393 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10394 	}
10395 	if (phba->cfg_multi_ring_support == 2)
10396 		lpfc_extra_ring_setup(phba);
10397 
10398 	return 0;
10399 }
10400 
10401 /**
10402  * lpfc_sli4_queue_init - Queue initialization function
10403  * @phba: Pointer to HBA context object.
10404  *
10405  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10406  * ring. This function also initializes ring indices of each ring.
10407  * This function is called during the initialization of the SLI
10408  * interface of an HBA.
10409  * This function is called with no lock held and always returns
10410  * 1.
10411  **/
10412 void
10413 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10414 {
10415 	struct lpfc_sli *psli;
10416 	struct lpfc_sli_ring *pring;
10417 	int i;
10418 
10419 	psli = &phba->sli;
10420 	spin_lock_irq(&phba->hbalock);
10421 	INIT_LIST_HEAD(&psli->mboxq);
10422 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10423 	/* Initialize list headers for txq and txcmplq as double linked lists */
10424 	for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
10425 		pring = phba->sli4_hba.fcp_wq[i]->pring;
10426 		pring->flag = 0;
10427 		pring->ringno = LPFC_FCP_RING;
10428 		INIT_LIST_HEAD(&pring->txq);
10429 		INIT_LIST_HEAD(&pring->txcmplq);
10430 		INIT_LIST_HEAD(&pring->iocb_continueq);
10431 		spin_lock_init(&pring->ring_lock);
10432 	}
10433 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
10434 		pring = phba->sli4_hba.nvme_wq[i]->pring;
10435 		pring->flag = 0;
10436 		pring->ringno = LPFC_FCP_RING;
10437 		INIT_LIST_HEAD(&pring->txq);
10438 		INIT_LIST_HEAD(&pring->txcmplq);
10439 		INIT_LIST_HEAD(&pring->iocb_continueq);
10440 		spin_lock_init(&pring->ring_lock);
10441 	}
10442 	pring = phba->sli4_hba.els_wq->pring;
10443 	pring->flag = 0;
10444 	pring->ringno = LPFC_ELS_RING;
10445 	INIT_LIST_HEAD(&pring->txq);
10446 	INIT_LIST_HEAD(&pring->txcmplq);
10447 	INIT_LIST_HEAD(&pring->iocb_continueq);
10448 	spin_lock_init(&pring->ring_lock);
10449 
10450 	if (phba->cfg_nvme_io_channel) {
10451 		pring = phba->sli4_hba.nvmels_wq->pring;
10452 		pring->flag = 0;
10453 		pring->ringno = LPFC_ELS_RING;
10454 		INIT_LIST_HEAD(&pring->txq);
10455 		INIT_LIST_HEAD(&pring->txcmplq);
10456 		INIT_LIST_HEAD(&pring->iocb_continueq);
10457 		spin_lock_init(&pring->ring_lock);
10458 	}
10459 
10460 	if (phba->cfg_fof) {
10461 		pring = phba->sli4_hba.oas_wq->pring;
10462 		pring->flag = 0;
10463 		pring->ringno = LPFC_FCP_RING;
10464 		INIT_LIST_HEAD(&pring->txq);
10465 		INIT_LIST_HEAD(&pring->txcmplq);
10466 		INIT_LIST_HEAD(&pring->iocb_continueq);
10467 		spin_lock_init(&pring->ring_lock);
10468 	}
10469 
10470 	spin_unlock_irq(&phba->hbalock);
10471 }
10472 
10473 /**
10474  * lpfc_sli_queue_init - Queue initialization function
10475  * @phba: Pointer to HBA context object.
10476  *
10477  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10478  * ring. This function also initializes ring indices of each ring.
10479  * This function is called during the initialization of the SLI
10480  * interface of an HBA.
10481  * This function is called with no lock held and always returns
10482  * 1.
10483  **/
10484 void
10485 lpfc_sli_queue_init(struct lpfc_hba *phba)
10486 {
10487 	struct lpfc_sli *psli;
10488 	struct lpfc_sli_ring *pring;
10489 	int i;
10490 
10491 	psli = &phba->sli;
10492 	spin_lock_irq(&phba->hbalock);
10493 	INIT_LIST_HEAD(&psli->mboxq);
10494 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10495 	/* Initialize list headers for txq and txcmplq as double linked lists */
10496 	for (i = 0; i < psli->num_rings; i++) {
10497 		pring = &psli->sli3_ring[i];
10498 		pring->ringno = i;
10499 		pring->sli.sli3.next_cmdidx  = 0;
10500 		pring->sli.sli3.local_getidx = 0;
10501 		pring->sli.sli3.cmdidx = 0;
10502 		INIT_LIST_HEAD(&pring->iocb_continueq);
10503 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10504 		INIT_LIST_HEAD(&pring->postbufq);
10505 		pring->flag = 0;
10506 		INIT_LIST_HEAD(&pring->txq);
10507 		INIT_LIST_HEAD(&pring->txcmplq);
10508 		spin_lock_init(&pring->ring_lock);
10509 	}
10510 	spin_unlock_irq(&phba->hbalock);
10511 }
10512 
10513 /**
10514  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10515  * @phba: Pointer to HBA context object.
10516  *
10517  * This routine flushes the mailbox command subsystem. It will unconditionally
10518  * flush all the mailbox commands in the three possible stages in the mailbox
10519  * command sub-system: pending mailbox command queue; the outstanding mailbox
10520  * command; and completed mailbox command queue. It is caller's responsibility
10521  * to make sure that the driver is in the proper state to flush the mailbox
10522  * command sub-system. Namely, the posting of mailbox commands into the
10523  * pending mailbox command queue from the various clients must be stopped;
10524  * either the HBA is in a state that it will never works on the outstanding
10525  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10526  * mailbox command has been completed.
10527  **/
10528 static void
10529 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10530 {
10531 	LIST_HEAD(completions);
10532 	struct lpfc_sli *psli = &phba->sli;
10533 	LPFC_MBOXQ_t *pmb;
10534 	unsigned long iflag;
10535 
10536 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10537 	local_bh_disable();
10538 
10539 	/* Flush all the mailbox commands in the mbox system */
10540 	spin_lock_irqsave(&phba->hbalock, iflag);
10541 
10542 	/* The pending mailbox command queue */
10543 	list_splice_init(&phba->sli.mboxq, &completions);
10544 	/* The outstanding active mailbox command */
10545 	if (psli->mbox_active) {
10546 		list_add_tail(&psli->mbox_active->list, &completions);
10547 		psli->mbox_active = NULL;
10548 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10549 	}
10550 	/* The completed mailbox command queue */
10551 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10552 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10553 
10554 	/* Enable softirqs again, done with phba->hbalock */
10555 	local_bh_enable();
10556 
10557 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10558 	while (!list_empty(&completions)) {
10559 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10560 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10561 		if (pmb->mbox_cmpl)
10562 			pmb->mbox_cmpl(phba, pmb);
10563 	}
10564 }
10565 
10566 /**
10567  * lpfc_sli_host_down - Vport cleanup function
10568  * @vport: Pointer to virtual port object.
10569  *
10570  * lpfc_sli_host_down is called to clean up the resources
10571  * associated with a vport before destroying virtual
10572  * port data structures.
10573  * This function does following operations:
10574  * - Free discovery resources associated with this virtual
10575  *   port.
10576  * - Free iocbs associated with this virtual port in
10577  *   the txq.
10578  * - Send abort for all iocb commands associated with this
10579  *   vport in txcmplq.
10580  *
10581  * This function is called with no lock held and always returns 1.
10582  **/
10583 int
10584 lpfc_sli_host_down(struct lpfc_vport *vport)
10585 {
10586 	LIST_HEAD(completions);
10587 	struct lpfc_hba *phba = vport->phba;
10588 	struct lpfc_sli *psli = &phba->sli;
10589 	struct lpfc_queue *qp = NULL;
10590 	struct lpfc_sli_ring *pring;
10591 	struct lpfc_iocbq *iocb, *next_iocb;
10592 	int i;
10593 	unsigned long flags = 0;
10594 	uint16_t prev_pring_flag;
10595 
10596 	lpfc_cleanup_discovery_resources(vport);
10597 
10598 	spin_lock_irqsave(&phba->hbalock, flags);
10599 
10600 	/*
10601 	 * Error everything on the txq since these iocbs
10602 	 * have not been given to the FW yet.
10603 	 * Also issue ABTS for everything on the txcmplq
10604 	 */
10605 	if (phba->sli_rev != LPFC_SLI_REV4) {
10606 		for (i = 0; i < psli->num_rings; i++) {
10607 			pring = &psli->sli3_ring[i];
10608 			prev_pring_flag = pring->flag;
10609 			/* Only slow rings */
10610 			if (pring->ringno == LPFC_ELS_RING) {
10611 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10612 				/* Set the lpfc data pending flag */
10613 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10614 			}
10615 			list_for_each_entry_safe(iocb, next_iocb,
10616 						 &pring->txq, list) {
10617 				if (iocb->vport != vport)
10618 					continue;
10619 				list_move_tail(&iocb->list, &completions);
10620 			}
10621 			list_for_each_entry_safe(iocb, next_iocb,
10622 						 &pring->txcmplq, list) {
10623 				if (iocb->vport != vport)
10624 					continue;
10625 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10626 			}
10627 			pring->flag = prev_pring_flag;
10628 		}
10629 	} else {
10630 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10631 			pring = qp->pring;
10632 			if (!pring)
10633 				continue;
10634 			if (pring == phba->sli4_hba.els_wq->pring) {
10635 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10636 				/* Set the lpfc data pending flag */
10637 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10638 			}
10639 			prev_pring_flag = pring->flag;
10640 			spin_lock_irq(&pring->ring_lock);
10641 			list_for_each_entry_safe(iocb, next_iocb,
10642 						 &pring->txq, list) {
10643 				if (iocb->vport != vport)
10644 					continue;
10645 				list_move_tail(&iocb->list, &completions);
10646 			}
10647 			spin_unlock_irq(&pring->ring_lock);
10648 			list_for_each_entry_safe(iocb, next_iocb,
10649 						 &pring->txcmplq, list) {
10650 				if (iocb->vport != vport)
10651 					continue;
10652 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10653 			}
10654 			pring->flag = prev_pring_flag;
10655 		}
10656 	}
10657 	spin_unlock_irqrestore(&phba->hbalock, flags);
10658 
10659 	/* Cancel all the IOCBs from the completions list */
10660 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10661 			      IOERR_SLI_DOWN);
10662 	return 1;
10663 }
10664 
10665 /**
10666  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10667  * @phba: Pointer to HBA context object.
10668  *
10669  * This function cleans up all iocb, buffers, mailbox commands
10670  * while shutting down the HBA. This function is called with no
10671  * lock held and always returns 1.
10672  * This function does the following to cleanup driver resources:
10673  * - Free discovery resources for each virtual port
10674  * - Cleanup any pending fabric iocbs
10675  * - Iterate through the iocb txq and free each entry
10676  *   in the list.
10677  * - Free up any buffer posted to the HBA
10678  * - Free mailbox commands in the mailbox queue.
10679  **/
10680 int
10681 lpfc_sli_hba_down(struct lpfc_hba *phba)
10682 {
10683 	LIST_HEAD(completions);
10684 	struct lpfc_sli *psli = &phba->sli;
10685 	struct lpfc_queue *qp = NULL;
10686 	struct lpfc_sli_ring *pring;
10687 	struct lpfc_dmabuf *buf_ptr;
10688 	unsigned long flags = 0;
10689 	int i;
10690 
10691 	/* Shutdown the mailbox command sub-system */
10692 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10693 
10694 	lpfc_hba_down_prep(phba);
10695 
10696 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10697 	local_bh_disable();
10698 
10699 	lpfc_fabric_abort_hba(phba);
10700 
10701 	spin_lock_irqsave(&phba->hbalock, flags);
10702 
10703 	/*
10704 	 * Error everything on the txq since these iocbs
10705 	 * have not been given to the FW yet.
10706 	 */
10707 	if (phba->sli_rev != LPFC_SLI_REV4) {
10708 		for (i = 0; i < psli->num_rings; i++) {
10709 			pring = &psli->sli3_ring[i];
10710 			/* Only slow rings */
10711 			if (pring->ringno == LPFC_ELS_RING) {
10712 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10713 				/* Set the lpfc data pending flag */
10714 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10715 			}
10716 			list_splice_init(&pring->txq, &completions);
10717 		}
10718 	} else {
10719 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10720 			pring = qp->pring;
10721 			if (!pring)
10722 				continue;
10723 			spin_lock_irq(&pring->ring_lock);
10724 			list_splice_init(&pring->txq, &completions);
10725 			spin_unlock_irq(&pring->ring_lock);
10726 			if (pring == phba->sli4_hba.els_wq->pring) {
10727 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10728 				/* Set the lpfc data pending flag */
10729 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10730 			}
10731 		}
10732 	}
10733 	spin_unlock_irqrestore(&phba->hbalock, flags);
10734 
10735 	/* Cancel all the IOCBs from the completions list */
10736 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10737 			      IOERR_SLI_DOWN);
10738 
10739 	spin_lock_irqsave(&phba->hbalock, flags);
10740 	list_splice_init(&phba->elsbuf, &completions);
10741 	phba->elsbuf_cnt = 0;
10742 	phba->elsbuf_prev_cnt = 0;
10743 	spin_unlock_irqrestore(&phba->hbalock, flags);
10744 
10745 	while (!list_empty(&completions)) {
10746 		list_remove_head(&completions, buf_ptr,
10747 			struct lpfc_dmabuf, list);
10748 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10749 		kfree(buf_ptr);
10750 	}
10751 
10752 	/* Enable softirqs again, done with phba->hbalock */
10753 	local_bh_enable();
10754 
10755 	/* Return any active mbox cmds */
10756 	del_timer_sync(&psli->mbox_tmo);
10757 
10758 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10759 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10760 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10761 
10762 	return 1;
10763 }
10764 
10765 /**
10766  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10767  * @srcp: Source memory pointer.
10768  * @destp: Destination memory pointer.
10769  * @cnt: Number of words required to be copied.
10770  *
10771  * This function is used for copying data between driver memory
10772  * and the SLI memory. This function also changes the endianness
10773  * of each word if native endianness is different from SLI
10774  * endianness. This function can be called with or without
10775  * lock.
10776  **/
10777 void
10778 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10779 {
10780 	uint32_t *src = srcp;
10781 	uint32_t *dest = destp;
10782 	uint32_t ldata;
10783 	int i;
10784 
10785 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10786 		ldata = *src;
10787 		ldata = le32_to_cpu(ldata);
10788 		*dest = ldata;
10789 		src++;
10790 		dest++;
10791 	}
10792 }
10793 
10794 
10795 /**
10796  * lpfc_sli_bemem_bcopy - SLI memory copy function
10797  * @srcp: Source memory pointer.
10798  * @destp: Destination memory pointer.
10799  * @cnt: Number of words required to be copied.
10800  *
10801  * This function is used for copying data between a data structure
10802  * with big endian representation to local endianness.
10803  * This function can be called with or without lock.
10804  **/
10805 void
10806 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10807 {
10808 	uint32_t *src = srcp;
10809 	uint32_t *dest = destp;
10810 	uint32_t ldata;
10811 	int i;
10812 
10813 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10814 		ldata = *src;
10815 		ldata = be32_to_cpu(ldata);
10816 		*dest = ldata;
10817 		src++;
10818 		dest++;
10819 	}
10820 }
10821 
10822 /**
10823  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10824  * @phba: Pointer to HBA context object.
10825  * @pring: Pointer to driver SLI ring object.
10826  * @mp: Pointer to driver buffer object.
10827  *
10828  * This function is called with no lock held.
10829  * It always return zero after adding the buffer to the postbufq
10830  * buffer list.
10831  **/
10832 int
10833 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10834 			 struct lpfc_dmabuf *mp)
10835 {
10836 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10837 	   later */
10838 	spin_lock_irq(&phba->hbalock);
10839 	list_add_tail(&mp->list, &pring->postbufq);
10840 	pring->postbufq_cnt++;
10841 	spin_unlock_irq(&phba->hbalock);
10842 	return 0;
10843 }
10844 
10845 /**
10846  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10847  * @phba: Pointer to HBA context object.
10848  *
10849  * When HBQ is enabled, buffers are searched based on tags. This function
10850  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10851  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10852  * does not conflict with tags of buffer posted for unsolicited events.
10853  * The function returns the allocated tag. The function is called with
10854  * no locks held.
10855  **/
10856 uint32_t
10857 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10858 {
10859 	spin_lock_irq(&phba->hbalock);
10860 	phba->buffer_tag_count++;
10861 	/*
10862 	 * Always set the QUE_BUFTAG_BIT to distiguish between
10863 	 * a tag assigned by HBQ.
10864 	 */
10865 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10866 	spin_unlock_irq(&phba->hbalock);
10867 	return phba->buffer_tag_count;
10868 }
10869 
10870 /**
10871  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10872  * @phba: Pointer to HBA context object.
10873  * @pring: Pointer to driver SLI ring object.
10874  * @tag: Buffer tag.
10875  *
10876  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10877  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10878  * iocb is posted to the response ring with the tag of the buffer.
10879  * This function searches the pring->postbufq list using the tag
10880  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10881  * iocb. If the buffer is found then lpfc_dmabuf object of the
10882  * buffer is returned to the caller else NULL is returned.
10883  * This function is called with no lock held.
10884  **/
10885 struct lpfc_dmabuf *
10886 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10887 			uint32_t tag)
10888 {
10889 	struct lpfc_dmabuf *mp, *next_mp;
10890 	struct list_head *slp = &pring->postbufq;
10891 
10892 	/* Search postbufq, from the beginning, looking for a match on tag */
10893 	spin_lock_irq(&phba->hbalock);
10894 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10895 		if (mp->buffer_tag == tag) {
10896 			list_del_init(&mp->list);
10897 			pring->postbufq_cnt--;
10898 			spin_unlock_irq(&phba->hbalock);
10899 			return mp;
10900 		}
10901 	}
10902 
10903 	spin_unlock_irq(&phba->hbalock);
10904 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10905 			"0402 Cannot find virtual addr for buffer tag on "
10906 			"ring %d Data x%lx x%p x%p x%x\n",
10907 			pring->ringno, (unsigned long) tag,
10908 			slp->next, slp->prev, pring->postbufq_cnt);
10909 
10910 	return NULL;
10911 }
10912 
10913 /**
10914  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10915  * @phba: Pointer to HBA context object.
10916  * @pring: Pointer to driver SLI ring object.
10917  * @phys: DMA address of the buffer.
10918  *
10919  * This function searches the buffer list using the dma_address
10920  * of unsolicited event to find the driver's lpfc_dmabuf object
10921  * corresponding to the dma_address. The function returns the
10922  * lpfc_dmabuf object if a buffer is found else it returns NULL.
10923  * This function is called by the ct and els unsolicited event
10924  * handlers to get the buffer associated with the unsolicited
10925  * event.
10926  *
10927  * This function is called with no lock held.
10928  **/
10929 struct lpfc_dmabuf *
10930 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10931 			 dma_addr_t phys)
10932 {
10933 	struct lpfc_dmabuf *mp, *next_mp;
10934 	struct list_head *slp = &pring->postbufq;
10935 
10936 	/* Search postbufq, from the beginning, looking for a match on phys */
10937 	spin_lock_irq(&phba->hbalock);
10938 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10939 		if (mp->phys == phys) {
10940 			list_del_init(&mp->list);
10941 			pring->postbufq_cnt--;
10942 			spin_unlock_irq(&phba->hbalock);
10943 			return mp;
10944 		}
10945 	}
10946 
10947 	spin_unlock_irq(&phba->hbalock);
10948 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10949 			"0410 Cannot find virtual addr for mapped buf on "
10950 			"ring %d Data x%llx x%p x%p x%x\n",
10951 			pring->ringno, (unsigned long long)phys,
10952 			slp->next, slp->prev, pring->postbufq_cnt);
10953 	return NULL;
10954 }
10955 
10956 /**
10957  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
10958  * @phba: Pointer to HBA context object.
10959  * @cmdiocb: Pointer to driver command iocb object.
10960  * @rspiocb: Pointer to driver response iocb object.
10961  *
10962  * This function is the completion handler for the abort iocbs for
10963  * ELS commands. This function is called from the ELS ring event
10964  * handler with no lock held. This function frees memory resources
10965  * associated with the abort iocb.
10966  **/
10967 static void
10968 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10969 			struct lpfc_iocbq *rspiocb)
10970 {
10971 	IOCB_t *irsp = &rspiocb->iocb;
10972 	uint16_t abort_iotag, abort_context;
10973 	struct lpfc_iocbq *abort_iocb = NULL;
10974 
10975 	if (irsp->ulpStatus) {
10976 
10977 		/*
10978 		 * Assume that the port already completed and returned, or
10979 		 * will return the iocb. Just Log the message.
10980 		 */
10981 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
10982 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
10983 
10984 		spin_lock_irq(&phba->hbalock);
10985 		if (phba->sli_rev < LPFC_SLI_REV4) {
10986 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
10987 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
10988 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
10989 				spin_unlock_irq(&phba->hbalock);
10990 				goto release_iocb;
10991 			}
10992 			if (abort_iotag != 0 &&
10993 				abort_iotag <= phba->sli.last_iotag)
10994 				abort_iocb =
10995 					phba->sli.iocbq_lookup[abort_iotag];
10996 		} else
10997 			/* For sli4 the abort_tag is the XRI,
10998 			 * so the abort routine puts the iotag  of the iocb
10999 			 * being aborted in the context field of the abort
11000 			 * IOCB.
11001 			 */
11002 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11003 
11004 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11005 				"0327 Cannot abort els iocb %p "
11006 				"with tag %x context %x, abort status %x, "
11007 				"abort code %x\n",
11008 				abort_iocb, abort_iotag, abort_context,
11009 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11010 
11011 		spin_unlock_irq(&phba->hbalock);
11012 	}
11013 release_iocb:
11014 	lpfc_sli_release_iocbq(phba, cmdiocb);
11015 	return;
11016 }
11017 
11018 /**
11019  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11020  * @phba: Pointer to HBA context object.
11021  * @cmdiocb: Pointer to driver command iocb object.
11022  * @rspiocb: Pointer to driver response iocb object.
11023  *
11024  * The function is called from SLI ring event handler with no
11025  * lock held. This function is the completion handler for ELS commands
11026  * which are aborted. The function frees memory resources used for
11027  * the aborted ELS commands.
11028  **/
11029 static void
11030 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11031 		     struct lpfc_iocbq *rspiocb)
11032 {
11033 	IOCB_t *irsp = &rspiocb->iocb;
11034 
11035 	/* ELS cmd tag <ulpIoTag> completes */
11036 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11037 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11038 			"x%x x%x x%x\n",
11039 			irsp->ulpIoTag, irsp->ulpStatus,
11040 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11041 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11042 		lpfc_ct_free_iocb(phba, cmdiocb);
11043 	else
11044 		lpfc_els_free_iocb(phba, cmdiocb);
11045 	return;
11046 }
11047 
11048 /**
11049  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11050  * @phba: Pointer to HBA context object.
11051  * @pring: Pointer to driver SLI ring object.
11052  * @cmdiocb: Pointer to driver command iocb object.
11053  *
11054  * This function issues an abort iocb for the provided command iocb down to
11055  * the port. Other than the case the outstanding command iocb is an abort
11056  * request, this function issues abort out unconditionally. This function is
11057  * called with hbalock held. The function returns 0 when it fails due to
11058  * memory allocation failure or when the command iocb is an abort request.
11059  **/
11060 static int
11061 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11062 			   struct lpfc_iocbq *cmdiocb)
11063 {
11064 	struct lpfc_vport *vport = cmdiocb->vport;
11065 	struct lpfc_iocbq *abtsiocbp;
11066 	IOCB_t *icmd = NULL;
11067 	IOCB_t *iabt = NULL;
11068 	int retval;
11069 	unsigned long iflags;
11070 	struct lpfc_nodelist *ndlp;
11071 
11072 	lockdep_assert_held(&phba->hbalock);
11073 
11074 	/*
11075 	 * There are certain command types we don't want to abort.  And we
11076 	 * don't want to abort commands that are already in the process of
11077 	 * being aborted.
11078 	 */
11079 	icmd = &cmdiocb->iocb;
11080 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11081 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11082 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11083 		return 0;
11084 
11085 	/* issue ABTS for this IOCB based on iotag */
11086 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11087 	if (abtsiocbp == NULL)
11088 		return 0;
11089 
11090 	/* This signals the response to set the correct status
11091 	 * before calling the completion handler
11092 	 */
11093 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11094 
11095 	iabt = &abtsiocbp->iocb;
11096 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11097 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11098 	if (phba->sli_rev == LPFC_SLI_REV4) {
11099 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11100 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11101 	} else {
11102 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11103 		if (pring->ringno == LPFC_ELS_RING) {
11104 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11105 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11106 		}
11107 	}
11108 	iabt->ulpLe = 1;
11109 	iabt->ulpClass = icmd->ulpClass;
11110 
11111 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11112 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11113 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11114 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11115 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11116 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11117 
11118 	if (phba->link_state >= LPFC_LINK_UP)
11119 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11120 	else
11121 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11122 
11123 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11124 	abtsiocbp->vport = vport;
11125 
11126 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11127 			 "0339 Abort xri x%x, original iotag x%x, "
11128 			 "abort cmd iotag x%x\n",
11129 			 iabt->un.acxri.abortIoTag,
11130 			 iabt->un.acxri.abortContextTag,
11131 			 abtsiocbp->iotag);
11132 
11133 	if (phba->sli_rev == LPFC_SLI_REV4) {
11134 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11135 		if (unlikely(pring == NULL))
11136 			return 0;
11137 		/* Note: both hbalock and ring_lock need to be set here */
11138 		spin_lock_irqsave(&pring->ring_lock, iflags);
11139 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11140 			abtsiocbp, 0);
11141 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11142 	} else {
11143 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11144 			abtsiocbp, 0);
11145 	}
11146 
11147 	if (retval)
11148 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11149 
11150 	/*
11151 	 * Caller to this routine should check for IOCB_ERROR
11152 	 * and handle it properly.  This routine no longer removes
11153 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11154 	 */
11155 	return retval;
11156 }
11157 
11158 /**
11159  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11160  * @phba: Pointer to HBA context object.
11161  * @pring: Pointer to driver SLI ring object.
11162  * @cmdiocb: Pointer to driver command iocb object.
11163  *
11164  * This function issues an abort iocb for the provided command iocb. In case
11165  * of unloading, the abort iocb will not be issued to commands on the ELS
11166  * ring. Instead, the callback function shall be changed to those commands
11167  * so that nothing happens when them finishes. This function is called with
11168  * hbalock held. The function returns 0 when the command iocb is an abort
11169  * request.
11170  **/
11171 int
11172 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11173 			   struct lpfc_iocbq *cmdiocb)
11174 {
11175 	struct lpfc_vport *vport = cmdiocb->vport;
11176 	int retval = IOCB_ERROR;
11177 	IOCB_t *icmd = NULL;
11178 
11179 	lockdep_assert_held(&phba->hbalock);
11180 
11181 	/*
11182 	 * There are certain command types we don't want to abort.  And we
11183 	 * don't want to abort commands that are already in the process of
11184 	 * being aborted.
11185 	 */
11186 	icmd = &cmdiocb->iocb;
11187 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11188 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11189 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11190 		return 0;
11191 
11192 	if (!pring) {
11193 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11194 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11195 		else
11196 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11197 		goto abort_iotag_exit;
11198 	}
11199 
11200 	/*
11201 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11202 	 * the callback so that nothing happens when it finishes.
11203 	 */
11204 	if ((vport->load_flag & FC_UNLOADING) &&
11205 	    (pring->ringno == LPFC_ELS_RING)) {
11206 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11207 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11208 		else
11209 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11210 		goto abort_iotag_exit;
11211 	}
11212 
11213 	/* Now, we try to issue the abort to the cmdiocb out */
11214 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11215 
11216 abort_iotag_exit:
11217 	/*
11218 	 * Caller to this routine should check for IOCB_ERROR
11219 	 * and handle it properly.  This routine no longer removes
11220 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11221 	 */
11222 	return retval;
11223 }
11224 
11225 /**
11226  * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb
11227  * @phba: Pointer to HBA context object.
11228  * @pring: Pointer to driver SLI ring object.
11229  * @cmdiocb: Pointer to driver command iocb object.
11230  *
11231  * This function issues an abort iocb for the provided command iocb down to
11232  * the port. Other than the case the outstanding command iocb is an abort
11233  * request, this function issues abort out unconditionally. This function is
11234  * called with hbalock held. The function returns 0 when it fails due to
11235  * memory allocation failure or when the command iocb is an abort request.
11236  **/
11237 static int
11238 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11239 			struct lpfc_iocbq *cmdiocb)
11240 {
11241 	struct lpfc_vport *vport = cmdiocb->vport;
11242 	struct lpfc_iocbq *abtsiocbp;
11243 	union lpfc_wqe128 *abts_wqe;
11244 	int retval;
11245 
11246 	/*
11247 	 * There are certain command types we don't want to abort.  And we
11248 	 * don't want to abort commands that are already in the process of
11249 	 * being aborted.
11250 	 */
11251 	if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
11252 	    cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN ||
11253 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11254 		return 0;
11255 
11256 	/* issue ABTS for this io based on iotag */
11257 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11258 	if (abtsiocbp == NULL)
11259 		return 0;
11260 
11261 	/* This signals the response to set the correct status
11262 	 * before calling the completion handler
11263 	 */
11264 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11265 
11266 	/* Complete prepping the abort wqe and issue to the FW. */
11267 	abts_wqe = &abtsiocbp->wqe;
11268 	bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0);
11269 	bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
11270 
11271 	/* Explicitly set reserved fields to zero.*/
11272 	abts_wqe->abort_cmd.rsrvd4 = 0;
11273 	abts_wqe->abort_cmd.rsrvd5 = 0;
11274 
11275 	/* WQE Common - word 6.  Context is XRI tag.  Set 0. */
11276 	bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0);
11277 	bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0);
11278 
11279 	/* word 7 */
11280 	bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0);
11281 	bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
11282 	bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com,
11283 	       cmdiocb->iocb.ulpClass);
11284 
11285 	/* word 8 - tell the FW to abort the IO associated with this
11286 	 * outstanding exchange ID.
11287 	 */
11288 	abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag;
11289 
11290 	/* word 9 - this is the iotag for the abts_wqe completion. */
11291 	bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
11292 	       abtsiocbp->iotag);
11293 
11294 	/* word 10 */
11295 	bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx);
11296 	bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
11297 	bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
11298 
11299 	/* word 11 */
11300 	bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
11301 	bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
11302 	bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
11303 
11304 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11305 	abtsiocbp->iocb_flag |= LPFC_IO_NVME;
11306 	abtsiocbp->vport = vport;
11307 	abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl;
11308 	retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp);
11309 	if (retval) {
11310 		lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
11311 				 "6147 Failed abts issue_wqe with status x%x "
11312 				 "for oxid x%x\n",
11313 				 retval, cmdiocb->sli4_xritag);
11314 		lpfc_sli_release_iocbq(phba, abtsiocbp);
11315 		return retval;
11316 	}
11317 
11318 	lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
11319 			 "6148 Drv Abort NVME Request Issued for "
11320 			 "ox_id x%x on reqtag x%x\n",
11321 			 cmdiocb->sli4_xritag,
11322 			 abtsiocbp->iotag);
11323 
11324 	return retval;
11325 }
11326 
11327 /**
11328  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11329  * @phba: pointer to lpfc HBA data structure.
11330  *
11331  * This routine will abort all pending and outstanding iocbs to an HBA.
11332  **/
11333 void
11334 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11335 {
11336 	struct lpfc_sli *psli = &phba->sli;
11337 	struct lpfc_sli_ring *pring;
11338 	struct lpfc_queue *qp = NULL;
11339 	int i;
11340 
11341 	if (phba->sli_rev != LPFC_SLI_REV4) {
11342 		for (i = 0; i < psli->num_rings; i++) {
11343 			pring = &psli->sli3_ring[i];
11344 			lpfc_sli_abort_iocb_ring(phba, pring);
11345 		}
11346 		return;
11347 	}
11348 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11349 		pring = qp->pring;
11350 		if (!pring)
11351 			continue;
11352 		lpfc_sli_abort_iocb_ring(phba, pring);
11353 	}
11354 }
11355 
11356 /**
11357  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11358  * @iocbq: Pointer to driver iocb object.
11359  * @vport: Pointer to driver virtual port object.
11360  * @tgt_id: SCSI ID of the target.
11361  * @lun_id: LUN ID of the scsi device.
11362  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11363  *
11364  * This function acts as an iocb filter for functions which abort or count
11365  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11366  * 0 if the filtering criteria is met for the given iocb and will return
11367  * 1 if the filtering criteria is not met.
11368  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11369  * given iocb is for the SCSI device specified by vport, tgt_id and
11370  * lun_id parameter.
11371  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11372  * given iocb is for the SCSI target specified by vport and tgt_id
11373  * parameters.
11374  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11375  * given iocb is for the SCSI host associated with the given vport.
11376  * This function is called with no locks held.
11377  **/
11378 static int
11379 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11380 			   uint16_t tgt_id, uint64_t lun_id,
11381 			   lpfc_ctx_cmd ctx_cmd)
11382 {
11383 	struct lpfc_scsi_buf *lpfc_cmd;
11384 	int rc = 1;
11385 
11386 	if (iocbq->vport != vport)
11387 		return rc;
11388 
11389 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11390 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11391 		return rc;
11392 
11393 	lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
11394 
11395 	if (lpfc_cmd->pCmd == NULL)
11396 		return rc;
11397 
11398 	switch (ctx_cmd) {
11399 	case LPFC_CTX_LUN:
11400 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11401 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11402 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11403 			rc = 0;
11404 		break;
11405 	case LPFC_CTX_TGT:
11406 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11407 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11408 			rc = 0;
11409 		break;
11410 	case LPFC_CTX_HOST:
11411 		rc = 0;
11412 		break;
11413 	default:
11414 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11415 			__func__, ctx_cmd);
11416 		break;
11417 	}
11418 
11419 	return rc;
11420 }
11421 
11422 /**
11423  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11424  * @vport: Pointer to virtual port.
11425  * @tgt_id: SCSI ID of the target.
11426  * @lun_id: LUN ID of the scsi device.
11427  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11428  *
11429  * This function returns number of FCP commands pending for the vport.
11430  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11431  * commands pending on the vport associated with SCSI device specified
11432  * by tgt_id and lun_id parameters.
11433  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11434  * commands pending on the vport associated with SCSI target specified
11435  * by tgt_id parameter.
11436  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11437  * commands pending on the vport.
11438  * This function returns the number of iocbs which satisfy the filter.
11439  * This function is called without any lock held.
11440  **/
11441 int
11442 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11443 		  lpfc_ctx_cmd ctx_cmd)
11444 {
11445 	struct lpfc_hba *phba = vport->phba;
11446 	struct lpfc_iocbq *iocbq;
11447 	int sum, i;
11448 
11449 	spin_lock_irq(&phba->hbalock);
11450 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11451 		iocbq = phba->sli.iocbq_lookup[i];
11452 
11453 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11454 						ctx_cmd) == 0)
11455 			sum++;
11456 	}
11457 	spin_unlock_irq(&phba->hbalock);
11458 
11459 	return sum;
11460 }
11461 
11462 /**
11463  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11464  * @phba: Pointer to HBA context object
11465  * @cmdiocb: Pointer to command iocb object.
11466  * @rspiocb: Pointer to response iocb object.
11467  *
11468  * This function is called when an aborted FCP iocb completes. This
11469  * function is called by the ring event handler with no lock held.
11470  * This function frees the iocb.
11471  **/
11472 void
11473 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11474 			struct lpfc_iocbq *rspiocb)
11475 {
11476 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11477 			"3096 ABORT_XRI_CN completing on rpi x%x "
11478 			"original iotag x%x, abort cmd iotag x%x "
11479 			"status 0x%x, reason 0x%x\n",
11480 			cmdiocb->iocb.un.acxri.abortContextTag,
11481 			cmdiocb->iocb.un.acxri.abortIoTag,
11482 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11483 			rspiocb->iocb.un.ulpWord[4]);
11484 	lpfc_sli_release_iocbq(phba, cmdiocb);
11485 	return;
11486 }
11487 
11488 /**
11489  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11490  * @vport: Pointer to virtual port.
11491  * @pring: Pointer to driver SLI ring object.
11492  * @tgt_id: SCSI ID of the target.
11493  * @lun_id: LUN ID of the scsi device.
11494  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11495  *
11496  * This function sends an abort command for every SCSI command
11497  * associated with the given virtual port pending on the ring
11498  * filtered by lpfc_sli_validate_fcp_iocb function.
11499  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11500  * FCP iocbs associated with lun specified by tgt_id and lun_id
11501  * parameters
11502  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11503  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11504  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11505  * FCP iocbs associated with virtual port.
11506  * This function returns number of iocbs it failed to abort.
11507  * This function is called with no locks held.
11508  **/
11509 int
11510 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11511 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11512 {
11513 	struct lpfc_hba *phba = vport->phba;
11514 	struct lpfc_iocbq *iocbq;
11515 	struct lpfc_iocbq *abtsiocb;
11516 	struct lpfc_sli_ring *pring_s4;
11517 	IOCB_t *cmd = NULL;
11518 	int errcnt = 0, ret_val = 0;
11519 	int i;
11520 
11521 	/* all I/Os are in process of being flushed */
11522 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH)
11523 		return errcnt;
11524 
11525 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11526 		iocbq = phba->sli.iocbq_lookup[i];
11527 
11528 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11529 					       abort_cmd) != 0)
11530 			continue;
11531 
11532 		/*
11533 		 * If the iocbq is already being aborted, don't take a second
11534 		 * action, but do count it.
11535 		 */
11536 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11537 			continue;
11538 
11539 		/* issue ABTS for this IOCB based on iotag */
11540 		abtsiocb = lpfc_sli_get_iocbq(phba);
11541 		if (abtsiocb == NULL) {
11542 			errcnt++;
11543 			continue;
11544 		}
11545 
11546 		/* indicate the IO is being aborted by the driver. */
11547 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11548 
11549 		cmd = &iocbq->iocb;
11550 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11551 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11552 		if (phba->sli_rev == LPFC_SLI_REV4)
11553 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11554 		else
11555 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11556 		abtsiocb->iocb.ulpLe = 1;
11557 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11558 		abtsiocb->vport = vport;
11559 
11560 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11561 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11562 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11563 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11564 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11565 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11566 
11567 		if (lpfc_is_link_up(phba))
11568 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11569 		else
11570 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11571 
11572 		/* Setup callback routine and issue the command. */
11573 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11574 		if (phba->sli_rev == LPFC_SLI_REV4) {
11575 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11576 			if (!pring_s4)
11577 				continue;
11578 			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11579 						      abtsiocb, 0);
11580 		} else
11581 			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11582 						      abtsiocb, 0);
11583 		if (ret_val == IOCB_ERROR) {
11584 			lpfc_sli_release_iocbq(phba, abtsiocb);
11585 			errcnt++;
11586 			continue;
11587 		}
11588 	}
11589 
11590 	return errcnt;
11591 }
11592 
11593 /**
11594  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11595  * @vport: Pointer to virtual port.
11596  * @pring: Pointer to driver SLI ring object.
11597  * @tgt_id: SCSI ID of the target.
11598  * @lun_id: LUN ID of the scsi device.
11599  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11600  *
11601  * This function sends an abort command for every SCSI command
11602  * associated with the given virtual port pending on the ring
11603  * filtered by lpfc_sli_validate_fcp_iocb function.
11604  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11605  * FCP iocbs associated with lun specified by tgt_id and lun_id
11606  * parameters
11607  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11608  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11609  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11610  * FCP iocbs associated with virtual port.
11611  * This function returns number of iocbs it aborted .
11612  * This function is called with no locks held right after a taskmgmt
11613  * command is sent.
11614  **/
11615 int
11616 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11617 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11618 {
11619 	struct lpfc_hba *phba = vport->phba;
11620 	struct lpfc_scsi_buf *lpfc_cmd;
11621 	struct lpfc_iocbq *abtsiocbq;
11622 	struct lpfc_nodelist *ndlp;
11623 	struct lpfc_iocbq *iocbq;
11624 	IOCB_t *icmd;
11625 	int sum, i, ret_val;
11626 	unsigned long iflags;
11627 	struct lpfc_sli_ring *pring_s4;
11628 
11629 	spin_lock_irqsave(&phba->hbalock, iflags);
11630 
11631 	/* all I/Os are in process of being flushed */
11632 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
11633 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11634 		return 0;
11635 	}
11636 	sum = 0;
11637 
11638 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11639 		iocbq = phba->sli.iocbq_lookup[i];
11640 
11641 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11642 					       cmd) != 0)
11643 			continue;
11644 
11645 		/*
11646 		 * If the iocbq is already being aborted, don't take a second
11647 		 * action, but do count it.
11648 		 */
11649 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11650 			continue;
11651 
11652 		/* issue ABTS for this IOCB based on iotag */
11653 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11654 		if (abtsiocbq == NULL)
11655 			continue;
11656 
11657 		icmd = &iocbq->iocb;
11658 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11659 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11660 		if (phba->sli_rev == LPFC_SLI_REV4)
11661 			abtsiocbq->iocb.un.acxri.abortIoTag =
11662 							 iocbq->sli4_xritag;
11663 		else
11664 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11665 		abtsiocbq->iocb.ulpLe = 1;
11666 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11667 		abtsiocbq->vport = vport;
11668 
11669 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11670 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11671 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11672 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11673 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11674 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11675 
11676 		lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
11677 		ndlp = lpfc_cmd->rdata->pnode;
11678 
11679 		if (lpfc_is_link_up(phba) &&
11680 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11681 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11682 		else
11683 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11684 
11685 		/* Setup callback routine and issue the command. */
11686 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11687 
11688 		/*
11689 		 * Indicate the IO is being aborted by the driver and set
11690 		 * the caller's flag into the aborted IO.
11691 		 */
11692 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11693 
11694 		if (phba->sli_rev == LPFC_SLI_REV4) {
11695 			pring_s4 = lpfc_sli4_calc_ring(phba, abtsiocbq);
11696 			if (!pring_s4)
11697 				continue;
11698 			/* Note: both hbalock and ring_lock must be set here */
11699 			spin_lock(&pring_s4->ring_lock);
11700 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11701 							abtsiocbq, 0);
11702 			spin_unlock(&pring_s4->ring_lock);
11703 		} else {
11704 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11705 							abtsiocbq, 0);
11706 		}
11707 
11708 
11709 		if (ret_val == IOCB_ERROR)
11710 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11711 		else
11712 			sum++;
11713 	}
11714 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11715 	return sum;
11716 }
11717 
11718 /**
11719  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11720  * @phba: Pointer to HBA context object.
11721  * @cmdiocbq: Pointer to command iocb.
11722  * @rspiocbq: Pointer to response iocb.
11723  *
11724  * This function is the completion handler for iocbs issued using
11725  * lpfc_sli_issue_iocb_wait function. This function is called by the
11726  * ring event handler function without any lock held. This function
11727  * can be called from both worker thread context and interrupt
11728  * context. This function also can be called from other thread which
11729  * cleans up the SLI layer objects.
11730  * This function copy the contents of the response iocb to the
11731  * response iocb memory object provided by the caller of
11732  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11733  * sleeps for the iocb completion.
11734  **/
11735 static void
11736 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11737 			struct lpfc_iocbq *cmdiocbq,
11738 			struct lpfc_iocbq *rspiocbq)
11739 {
11740 	wait_queue_head_t *pdone_q;
11741 	unsigned long iflags;
11742 	struct lpfc_scsi_buf *lpfc_cmd;
11743 
11744 	spin_lock_irqsave(&phba->hbalock, iflags);
11745 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11746 
11747 		/*
11748 		 * A time out has occurred for the iocb.  If a time out
11749 		 * completion handler has been supplied, call it.  Otherwise,
11750 		 * just free the iocbq.
11751 		 */
11752 
11753 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11754 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11755 		cmdiocbq->wait_iocb_cmpl = NULL;
11756 		if (cmdiocbq->iocb_cmpl)
11757 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11758 		else
11759 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11760 		return;
11761 	}
11762 
11763 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11764 	if (cmdiocbq->context2 && rspiocbq)
11765 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11766 		       &rspiocbq->iocb, sizeof(IOCB_t));
11767 
11768 	/* Set the exchange busy flag for task management commands */
11769 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11770 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11771 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf,
11772 			cur_iocbq);
11773 		lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11774 	}
11775 
11776 	pdone_q = cmdiocbq->context_un.wait_queue;
11777 	if (pdone_q)
11778 		wake_up(pdone_q);
11779 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11780 	return;
11781 }
11782 
11783 /**
11784  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11785  * @phba: Pointer to HBA context object..
11786  * @piocbq: Pointer to command iocb.
11787  * @flag: Flag to test.
11788  *
11789  * This routine grabs the hbalock and then test the iocb_flag to
11790  * see if the passed in flag is set.
11791  * Returns:
11792  * 1 if flag is set.
11793  * 0 if flag is not set.
11794  **/
11795 static int
11796 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11797 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11798 {
11799 	unsigned long iflags;
11800 	int ret;
11801 
11802 	spin_lock_irqsave(&phba->hbalock, iflags);
11803 	ret = piocbq->iocb_flag & flag;
11804 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11805 	return ret;
11806 
11807 }
11808 
11809 /**
11810  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11811  * @phba: Pointer to HBA context object..
11812  * @pring: Pointer to sli ring.
11813  * @piocb: Pointer to command iocb.
11814  * @prspiocbq: Pointer to response iocb.
11815  * @timeout: Timeout in number of seconds.
11816  *
11817  * This function issues the iocb to firmware and waits for the
11818  * iocb to complete. The iocb_cmpl field of the shall be used
11819  * to handle iocbs which time out. If the field is NULL, the
11820  * function shall free the iocbq structure.  If more clean up is
11821  * needed, the caller is expected to provide a completion function
11822  * that will provide the needed clean up.  If the iocb command is
11823  * not completed within timeout seconds, the function will either
11824  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11825  * completion function set in the iocb_cmpl field and then return
11826  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11827  * resources if this function returns IOCB_TIMEDOUT.
11828  * The function waits for the iocb completion using an
11829  * non-interruptible wait.
11830  * This function will sleep while waiting for iocb completion.
11831  * So, this function should not be called from any context which
11832  * does not allow sleeping. Due to the same reason, this function
11833  * cannot be called with interrupt disabled.
11834  * This function assumes that the iocb completions occur while
11835  * this function sleep. So, this function cannot be called from
11836  * the thread which process iocb completion for this ring.
11837  * This function clears the iocb_flag of the iocb object before
11838  * issuing the iocb and the iocb completion handler sets this
11839  * flag and wakes this thread when the iocb completes.
11840  * The contents of the response iocb will be copied to prspiocbq
11841  * by the completion handler when the command completes.
11842  * This function returns IOCB_SUCCESS when success.
11843  * This function is called with no lock held.
11844  **/
11845 int
11846 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11847 			 uint32_t ring_number,
11848 			 struct lpfc_iocbq *piocb,
11849 			 struct lpfc_iocbq *prspiocbq,
11850 			 uint32_t timeout)
11851 {
11852 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11853 	long timeleft, timeout_req = 0;
11854 	int retval = IOCB_SUCCESS;
11855 	uint32_t creg_val;
11856 	struct lpfc_iocbq *iocb;
11857 	int txq_cnt = 0;
11858 	int txcmplq_cnt = 0;
11859 	struct lpfc_sli_ring *pring;
11860 	unsigned long iflags;
11861 	bool iocb_completed = true;
11862 
11863 	if (phba->sli_rev >= LPFC_SLI_REV4)
11864 		pring = lpfc_sli4_calc_ring(phba, piocb);
11865 	else
11866 		pring = &phba->sli.sli3_ring[ring_number];
11867 	/*
11868 	 * If the caller has provided a response iocbq buffer, then context2
11869 	 * is NULL or its an error.
11870 	 */
11871 	if (prspiocbq) {
11872 		if (piocb->context2)
11873 			return IOCB_ERROR;
11874 		piocb->context2 = prspiocbq;
11875 	}
11876 
11877 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11878 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11879 	piocb->context_un.wait_queue = &done_q;
11880 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11881 
11882 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11883 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11884 			return IOCB_ERROR;
11885 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11886 		writel(creg_val, phba->HCregaddr);
11887 		readl(phba->HCregaddr); /* flush */
11888 	}
11889 
11890 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11891 				     SLI_IOCB_RET_IOCB);
11892 	if (retval == IOCB_SUCCESS) {
11893 		timeout_req = msecs_to_jiffies(timeout * 1000);
11894 		timeleft = wait_event_timeout(done_q,
11895 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11896 				timeout_req);
11897 		spin_lock_irqsave(&phba->hbalock, iflags);
11898 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11899 
11900 			/*
11901 			 * IOCB timed out.  Inform the wake iocb wait
11902 			 * completion function and set local status
11903 			 */
11904 
11905 			iocb_completed = false;
11906 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11907 		}
11908 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11909 		if (iocb_completed) {
11910 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11911 					"0331 IOCB wake signaled\n");
11912 			/* Note: we are not indicating if the IOCB has a success
11913 			 * status or not - that's for the caller to check.
11914 			 * IOCB_SUCCESS means just that the command was sent and
11915 			 * completed. Not that it completed successfully.
11916 			 * */
11917 		} else if (timeleft == 0) {
11918 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11919 					"0338 IOCB wait timeout error - no "
11920 					"wake response Data x%x\n", timeout);
11921 			retval = IOCB_TIMEDOUT;
11922 		} else {
11923 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11924 					"0330 IOCB wake NOT set, "
11925 					"Data x%x x%lx\n",
11926 					timeout, (timeleft / jiffies));
11927 			retval = IOCB_TIMEDOUT;
11928 		}
11929 	} else if (retval == IOCB_BUSY) {
11930 		if (phba->cfg_log_verbose & LOG_SLI) {
11931 			list_for_each_entry(iocb, &pring->txq, list) {
11932 				txq_cnt++;
11933 			}
11934 			list_for_each_entry(iocb, &pring->txcmplq, list) {
11935 				txcmplq_cnt++;
11936 			}
11937 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11938 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11939 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11940 		}
11941 		return retval;
11942 	} else {
11943 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11944 				"0332 IOCB wait issue failed, Data x%x\n",
11945 				retval);
11946 		retval = IOCB_ERROR;
11947 	}
11948 
11949 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11950 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11951 			return IOCB_ERROR;
11952 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
11953 		writel(creg_val, phba->HCregaddr);
11954 		readl(phba->HCregaddr); /* flush */
11955 	}
11956 
11957 	if (prspiocbq)
11958 		piocb->context2 = NULL;
11959 
11960 	piocb->context_un.wait_queue = NULL;
11961 	piocb->iocb_cmpl = NULL;
11962 	return retval;
11963 }
11964 
11965 /**
11966  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
11967  * @phba: Pointer to HBA context object.
11968  * @pmboxq: Pointer to driver mailbox object.
11969  * @timeout: Timeout in number of seconds.
11970  *
11971  * This function issues the mailbox to firmware and waits for the
11972  * mailbox command to complete. If the mailbox command is not
11973  * completed within timeout seconds, it returns MBX_TIMEOUT.
11974  * The function waits for the mailbox completion using an
11975  * interruptible wait. If the thread is woken up due to a
11976  * signal, MBX_TIMEOUT error is returned to the caller. Caller
11977  * should not free the mailbox resources, if this function returns
11978  * MBX_TIMEOUT.
11979  * This function will sleep while waiting for mailbox completion.
11980  * So, this function should not be called from any context which
11981  * does not allow sleeping. Due to the same reason, this function
11982  * cannot be called with interrupt disabled.
11983  * This function assumes that the mailbox completion occurs while
11984  * this function sleep. So, this function cannot be called from
11985  * the worker thread which processes mailbox completion.
11986  * This function is called in the context of HBA management
11987  * applications.
11988  * This function returns MBX_SUCCESS when successful.
11989  * This function is called with no lock held.
11990  **/
11991 int
11992 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
11993 			 uint32_t timeout)
11994 {
11995 	struct completion mbox_done;
11996 	int retval;
11997 	unsigned long flag;
11998 
11999 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12000 	/* setup wake call as IOCB callback */
12001 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12002 
12003 	/* setup context3 field to pass wait_queue pointer to wake function  */
12004 	init_completion(&mbox_done);
12005 	pmboxq->context3 = &mbox_done;
12006 	/* now issue the command */
12007 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12008 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12009 		wait_for_completion_timeout(&mbox_done,
12010 					    msecs_to_jiffies(timeout * 1000));
12011 
12012 		spin_lock_irqsave(&phba->hbalock, flag);
12013 		pmboxq->context3 = NULL;
12014 		/*
12015 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12016 		 * else do not free the resources.
12017 		 */
12018 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12019 			retval = MBX_SUCCESS;
12020 		} else {
12021 			retval = MBX_TIMEOUT;
12022 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12023 		}
12024 		spin_unlock_irqrestore(&phba->hbalock, flag);
12025 	}
12026 	return retval;
12027 }
12028 
12029 /**
12030  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12031  * @phba: Pointer to HBA context.
12032  *
12033  * This function is called to shutdown the driver's mailbox sub-system.
12034  * It first marks the mailbox sub-system is in a block state to prevent
12035  * the asynchronous mailbox command from issued off the pending mailbox
12036  * command queue. If the mailbox command sub-system shutdown is due to
12037  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12038  * the mailbox sub-system flush routine to forcefully bring down the
12039  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12040  * as with offline or HBA function reset), this routine will wait for the
12041  * outstanding mailbox command to complete before invoking the mailbox
12042  * sub-system flush routine to gracefully bring down mailbox sub-system.
12043  **/
12044 void
12045 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12046 {
12047 	struct lpfc_sli *psli = &phba->sli;
12048 	unsigned long timeout;
12049 
12050 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12051 		/* delay 100ms for port state */
12052 		msleep(100);
12053 		lpfc_sli_mbox_sys_flush(phba);
12054 		return;
12055 	}
12056 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12057 
12058 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12059 	local_bh_disable();
12060 
12061 	spin_lock_irq(&phba->hbalock);
12062 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12063 
12064 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12065 		/* Determine how long we might wait for the active mailbox
12066 		 * command to be gracefully completed by firmware.
12067 		 */
12068 		if (phba->sli.mbox_active)
12069 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12070 						phba->sli.mbox_active) *
12071 						1000) + jiffies;
12072 		spin_unlock_irq(&phba->hbalock);
12073 
12074 		/* Enable softirqs again, done with phba->hbalock */
12075 		local_bh_enable();
12076 
12077 		while (phba->sli.mbox_active) {
12078 			/* Check active mailbox complete status every 2ms */
12079 			msleep(2);
12080 			if (time_after(jiffies, timeout))
12081 				/* Timeout, let the mailbox flush routine to
12082 				 * forcefully release active mailbox command
12083 				 */
12084 				break;
12085 		}
12086 	} else {
12087 		spin_unlock_irq(&phba->hbalock);
12088 
12089 		/* Enable softirqs again, done with phba->hbalock */
12090 		local_bh_enable();
12091 	}
12092 
12093 	lpfc_sli_mbox_sys_flush(phba);
12094 }
12095 
12096 /**
12097  * lpfc_sli_eratt_read - read sli-3 error attention events
12098  * @phba: Pointer to HBA context.
12099  *
12100  * This function is called to read the SLI3 device error attention registers
12101  * for possible error attention events. The caller must hold the hostlock
12102  * with spin_lock_irq().
12103  *
12104  * This function returns 1 when there is Error Attention in the Host Attention
12105  * Register and returns 0 otherwise.
12106  **/
12107 static int
12108 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12109 {
12110 	uint32_t ha_copy;
12111 
12112 	/* Read chip Host Attention (HA) register */
12113 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12114 		goto unplug_err;
12115 
12116 	if (ha_copy & HA_ERATT) {
12117 		/* Read host status register to retrieve error event */
12118 		if (lpfc_sli_read_hs(phba))
12119 			goto unplug_err;
12120 
12121 		/* Check if there is a deferred error condition is active */
12122 		if ((HS_FFER1 & phba->work_hs) &&
12123 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12124 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12125 			phba->hba_flag |= DEFER_ERATT;
12126 			/* Clear all interrupt enable conditions */
12127 			writel(0, phba->HCregaddr);
12128 			readl(phba->HCregaddr);
12129 		}
12130 
12131 		/* Set the driver HA work bitmap */
12132 		phba->work_ha |= HA_ERATT;
12133 		/* Indicate polling handles this ERATT */
12134 		phba->hba_flag |= HBA_ERATT_HANDLED;
12135 		return 1;
12136 	}
12137 	return 0;
12138 
12139 unplug_err:
12140 	/* Set the driver HS work bitmap */
12141 	phba->work_hs |= UNPLUG_ERR;
12142 	/* Set the driver HA work bitmap */
12143 	phba->work_ha |= HA_ERATT;
12144 	/* Indicate polling handles this ERATT */
12145 	phba->hba_flag |= HBA_ERATT_HANDLED;
12146 	return 1;
12147 }
12148 
12149 /**
12150  * lpfc_sli4_eratt_read - read sli-4 error attention events
12151  * @phba: Pointer to HBA context.
12152  *
12153  * This function is called to read the SLI4 device error attention registers
12154  * for possible error attention events. The caller must hold the hostlock
12155  * with spin_lock_irq().
12156  *
12157  * This function returns 1 when there is Error Attention in the Host Attention
12158  * Register and returns 0 otherwise.
12159  **/
12160 static int
12161 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12162 {
12163 	uint32_t uerr_sta_hi, uerr_sta_lo;
12164 	uint32_t if_type, portsmphr;
12165 	struct lpfc_register portstat_reg;
12166 
12167 	/*
12168 	 * For now, use the SLI4 device internal unrecoverable error
12169 	 * registers for error attention. This can be changed later.
12170 	 */
12171 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12172 	switch (if_type) {
12173 	case LPFC_SLI_INTF_IF_TYPE_0:
12174 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12175 			&uerr_sta_lo) ||
12176 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12177 			&uerr_sta_hi)) {
12178 			phba->work_hs |= UNPLUG_ERR;
12179 			phba->work_ha |= HA_ERATT;
12180 			phba->hba_flag |= HBA_ERATT_HANDLED;
12181 			return 1;
12182 		}
12183 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12184 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12185 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12186 					"1423 HBA Unrecoverable error: "
12187 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12188 					"ue_mask_lo_reg=0x%x, "
12189 					"ue_mask_hi_reg=0x%x\n",
12190 					uerr_sta_lo, uerr_sta_hi,
12191 					phba->sli4_hba.ue_mask_lo,
12192 					phba->sli4_hba.ue_mask_hi);
12193 			phba->work_status[0] = uerr_sta_lo;
12194 			phba->work_status[1] = uerr_sta_hi;
12195 			phba->work_ha |= HA_ERATT;
12196 			phba->hba_flag |= HBA_ERATT_HANDLED;
12197 			return 1;
12198 		}
12199 		break;
12200 	case LPFC_SLI_INTF_IF_TYPE_2:
12201 	case LPFC_SLI_INTF_IF_TYPE_6:
12202 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12203 			&portstat_reg.word0) ||
12204 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12205 			&portsmphr)){
12206 			phba->work_hs |= UNPLUG_ERR;
12207 			phba->work_ha |= HA_ERATT;
12208 			phba->hba_flag |= HBA_ERATT_HANDLED;
12209 			return 1;
12210 		}
12211 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12212 			phba->work_status[0] =
12213 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12214 			phba->work_status[1] =
12215 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12216 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12217 					"2885 Port Status Event: "
12218 					"port status reg 0x%x, "
12219 					"port smphr reg 0x%x, "
12220 					"error 1=0x%x, error 2=0x%x\n",
12221 					portstat_reg.word0,
12222 					portsmphr,
12223 					phba->work_status[0],
12224 					phba->work_status[1]);
12225 			phba->work_ha |= HA_ERATT;
12226 			phba->hba_flag |= HBA_ERATT_HANDLED;
12227 			return 1;
12228 		}
12229 		break;
12230 	case LPFC_SLI_INTF_IF_TYPE_1:
12231 	default:
12232 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12233 				"2886 HBA Error Attention on unsupported "
12234 				"if type %d.", if_type);
12235 		return 1;
12236 	}
12237 
12238 	return 0;
12239 }
12240 
12241 /**
12242  * lpfc_sli_check_eratt - check error attention events
12243  * @phba: Pointer to HBA context.
12244  *
12245  * This function is called from timer soft interrupt context to check HBA's
12246  * error attention register bit for error attention events.
12247  *
12248  * This function returns 1 when there is Error Attention in the Host Attention
12249  * Register and returns 0 otherwise.
12250  **/
12251 int
12252 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12253 {
12254 	uint32_t ha_copy;
12255 
12256 	/* If somebody is waiting to handle an eratt, don't process it
12257 	 * here. The brdkill function will do this.
12258 	 */
12259 	if (phba->link_flag & LS_IGNORE_ERATT)
12260 		return 0;
12261 
12262 	/* Check if interrupt handler handles this ERATT */
12263 	spin_lock_irq(&phba->hbalock);
12264 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12265 		/* Interrupt handler has handled ERATT */
12266 		spin_unlock_irq(&phba->hbalock);
12267 		return 0;
12268 	}
12269 
12270 	/*
12271 	 * If there is deferred error attention, do not check for error
12272 	 * attention
12273 	 */
12274 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12275 		spin_unlock_irq(&phba->hbalock);
12276 		return 0;
12277 	}
12278 
12279 	/* If PCI channel is offline, don't process it */
12280 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12281 		spin_unlock_irq(&phba->hbalock);
12282 		return 0;
12283 	}
12284 
12285 	switch (phba->sli_rev) {
12286 	case LPFC_SLI_REV2:
12287 	case LPFC_SLI_REV3:
12288 		/* Read chip Host Attention (HA) register */
12289 		ha_copy = lpfc_sli_eratt_read(phba);
12290 		break;
12291 	case LPFC_SLI_REV4:
12292 		/* Read device Uncoverable Error (UERR) registers */
12293 		ha_copy = lpfc_sli4_eratt_read(phba);
12294 		break;
12295 	default:
12296 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12297 				"0299 Invalid SLI revision (%d)\n",
12298 				phba->sli_rev);
12299 		ha_copy = 0;
12300 		break;
12301 	}
12302 	spin_unlock_irq(&phba->hbalock);
12303 
12304 	return ha_copy;
12305 }
12306 
12307 /**
12308  * lpfc_intr_state_check - Check device state for interrupt handling
12309  * @phba: Pointer to HBA context.
12310  *
12311  * This inline routine checks whether a device or its PCI slot is in a state
12312  * that the interrupt should be handled.
12313  *
12314  * This function returns 0 if the device or the PCI slot is in a state that
12315  * interrupt should be handled, otherwise -EIO.
12316  */
12317 static inline int
12318 lpfc_intr_state_check(struct lpfc_hba *phba)
12319 {
12320 	/* If the pci channel is offline, ignore all the interrupts */
12321 	if (unlikely(pci_channel_offline(phba->pcidev)))
12322 		return -EIO;
12323 
12324 	/* Update device level interrupt statistics */
12325 	phba->sli.slistat.sli_intr++;
12326 
12327 	/* Ignore all interrupts during initialization. */
12328 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12329 		return -EIO;
12330 
12331 	return 0;
12332 }
12333 
12334 /**
12335  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12336  * @irq: Interrupt number.
12337  * @dev_id: The device context pointer.
12338  *
12339  * This function is directly called from the PCI layer as an interrupt
12340  * service routine when device with SLI-3 interface spec is enabled with
12341  * MSI-X multi-message interrupt mode and there are slow-path events in
12342  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12343  * interrupt mode, this function is called as part of the device-level
12344  * interrupt handler. When the PCI slot is in error recovery or the HBA
12345  * is undergoing initialization, the interrupt handler will not process
12346  * the interrupt. The link attention and ELS ring attention events are
12347  * handled by the worker thread. The interrupt handler signals the worker
12348  * thread and returns for these events. This function is called without
12349  * any lock held. It gets the hbalock to access and update SLI data
12350  * structures.
12351  *
12352  * This function returns IRQ_HANDLED when interrupt is handled else it
12353  * returns IRQ_NONE.
12354  **/
12355 irqreturn_t
12356 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12357 {
12358 	struct lpfc_hba  *phba;
12359 	uint32_t ha_copy, hc_copy;
12360 	uint32_t work_ha_copy;
12361 	unsigned long status;
12362 	unsigned long iflag;
12363 	uint32_t control;
12364 
12365 	MAILBOX_t *mbox, *pmbox;
12366 	struct lpfc_vport *vport;
12367 	struct lpfc_nodelist *ndlp;
12368 	struct lpfc_dmabuf *mp;
12369 	LPFC_MBOXQ_t *pmb;
12370 	int rc;
12371 
12372 	/*
12373 	 * Get the driver's phba structure from the dev_id and
12374 	 * assume the HBA is not interrupting.
12375 	 */
12376 	phba = (struct lpfc_hba *)dev_id;
12377 
12378 	if (unlikely(!phba))
12379 		return IRQ_NONE;
12380 
12381 	/*
12382 	 * Stuff needs to be attented to when this function is invoked as an
12383 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12384 	 */
12385 	if (phba->intr_type == MSIX) {
12386 		/* Check device state for handling interrupt */
12387 		if (lpfc_intr_state_check(phba))
12388 			return IRQ_NONE;
12389 		/* Need to read HA REG for slow-path events */
12390 		spin_lock_irqsave(&phba->hbalock, iflag);
12391 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12392 			goto unplug_error;
12393 		/* If somebody is waiting to handle an eratt don't process it
12394 		 * here. The brdkill function will do this.
12395 		 */
12396 		if (phba->link_flag & LS_IGNORE_ERATT)
12397 			ha_copy &= ~HA_ERATT;
12398 		/* Check the need for handling ERATT in interrupt handler */
12399 		if (ha_copy & HA_ERATT) {
12400 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12401 				/* ERATT polling has handled ERATT */
12402 				ha_copy &= ~HA_ERATT;
12403 			else
12404 				/* Indicate interrupt handler handles ERATT */
12405 				phba->hba_flag |= HBA_ERATT_HANDLED;
12406 		}
12407 
12408 		/*
12409 		 * If there is deferred error attention, do not check for any
12410 		 * interrupt.
12411 		 */
12412 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12413 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12414 			return IRQ_NONE;
12415 		}
12416 
12417 		/* Clear up only attention source related to slow-path */
12418 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12419 			goto unplug_error;
12420 
12421 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12422 			HC_LAINT_ENA | HC_ERINT_ENA),
12423 			phba->HCregaddr);
12424 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12425 			phba->HAregaddr);
12426 		writel(hc_copy, phba->HCregaddr);
12427 		readl(phba->HAregaddr); /* flush */
12428 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12429 	} else
12430 		ha_copy = phba->ha_copy;
12431 
12432 	work_ha_copy = ha_copy & phba->work_ha_mask;
12433 
12434 	if (work_ha_copy) {
12435 		if (work_ha_copy & HA_LATT) {
12436 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12437 				/*
12438 				 * Turn off Link Attention interrupts
12439 				 * until CLEAR_LA done
12440 				 */
12441 				spin_lock_irqsave(&phba->hbalock, iflag);
12442 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12443 				if (lpfc_readl(phba->HCregaddr, &control))
12444 					goto unplug_error;
12445 				control &= ~HC_LAINT_ENA;
12446 				writel(control, phba->HCregaddr);
12447 				readl(phba->HCregaddr); /* flush */
12448 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12449 			}
12450 			else
12451 				work_ha_copy &= ~HA_LATT;
12452 		}
12453 
12454 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12455 			/*
12456 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12457 			 * the only slow ring.
12458 			 */
12459 			status = (work_ha_copy &
12460 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12461 			status >>= (4*LPFC_ELS_RING);
12462 			if (status & HA_RXMASK) {
12463 				spin_lock_irqsave(&phba->hbalock, iflag);
12464 				if (lpfc_readl(phba->HCregaddr, &control))
12465 					goto unplug_error;
12466 
12467 				lpfc_debugfs_slow_ring_trc(phba,
12468 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12469 				control, status,
12470 				(uint32_t)phba->sli.slistat.sli_intr);
12471 
12472 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12473 					lpfc_debugfs_slow_ring_trc(phba,
12474 						"ISR Disable ring:"
12475 						"pwork:x%x hawork:x%x wait:x%x",
12476 						phba->work_ha, work_ha_copy,
12477 						(uint32_t)((unsigned long)
12478 						&phba->work_waitq));
12479 
12480 					control &=
12481 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12482 					writel(control, phba->HCregaddr);
12483 					readl(phba->HCregaddr); /* flush */
12484 				}
12485 				else {
12486 					lpfc_debugfs_slow_ring_trc(phba,
12487 						"ISR slow ring:   pwork:"
12488 						"x%x hawork:x%x wait:x%x",
12489 						phba->work_ha, work_ha_copy,
12490 						(uint32_t)((unsigned long)
12491 						&phba->work_waitq));
12492 				}
12493 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12494 			}
12495 		}
12496 		spin_lock_irqsave(&phba->hbalock, iflag);
12497 		if (work_ha_copy & HA_ERATT) {
12498 			if (lpfc_sli_read_hs(phba))
12499 				goto unplug_error;
12500 			/*
12501 			 * Check if there is a deferred error condition
12502 			 * is active
12503 			 */
12504 			if ((HS_FFER1 & phba->work_hs) &&
12505 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12506 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12507 				  phba->work_hs)) {
12508 				phba->hba_flag |= DEFER_ERATT;
12509 				/* Clear all interrupt enable conditions */
12510 				writel(0, phba->HCregaddr);
12511 				readl(phba->HCregaddr);
12512 			}
12513 		}
12514 
12515 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12516 			pmb = phba->sli.mbox_active;
12517 			pmbox = &pmb->u.mb;
12518 			mbox = phba->mbox;
12519 			vport = pmb->vport;
12520 
12521 			/* First check out the status word */
12522 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12523 			if (pmbox->mbxOwner != OWN_HOST) {
12524 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12525 				/*
12526 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12527 				 * mbxStatus <status>
12528 				 */
12529 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12530 						LOG_SLI,
12531 						"(%d):0304 Stray Mailbox "
12532 						"Interrupt mbxCommand x%x "
12533 						"mbxStatus x%x\n",
12534 						(vport ? vport->vpi : 0),
12535 						pmbox->mbxCommand,
12536 						pmbox->mbxStatus);
12537 				/* clear mailbox attention bit */
12538 				work_ha_copy &= ~HA_MBATT;
12539 			} else {
12540 				phba->sli.mbox_active = NULL;
12541 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12542 				phba->last_completion_time = jiffies;
12543 				del_timer(&phba->sli.mbox_tmo);
12544 				if (pmb->mbox_cmpl) {
12545 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12546 							MAILBOX_CMD_SIZE);
12547 					if (pmb->out_ext_byte_len &&
12548 						pmb->context2)
12549 						lpfc_sli_pcimem_bcopy(
12550 						phba->mbox_ext,
12551 						pmb->context2,
12552 						pmb->out_ext_byte_len);
12553 				}
12554 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12555 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12556 
12557 					lpfc_debugfs_disc_trc(vport,
12558 						LPFC_DISC_TRC_MBOX_VPORT,
12559 						"MBOX dflt rpi: : "
12560 						"status:x%x rpi:x%x",
12561 						(uint32_t)pmbox->mbxStatus,
12562 						pmbox->un.varWords[0], 0);
12563 
12564 					if (!pmbox->mbxStatus) {
12565 						mp = (struct lpfc_dmabuf *)
12566 							(pmb->context1);
12567 						ndlp = (struct lpfc_nodelist *)
12568 							pmb->context2;
12569 
12570 						/* Reg_LOGIN of dflt RPI was
12571 						 * successful. new lets get
12572 						 * rid of the RPI using the
12573 						 * same mbox buffer.
12574 						 */
12575 						lpfc_unreg_login(phba,
12576 							vport->vpi,
12577 							pmbox->un.varWords[0],
12578 							pmb);
12579 						pmb->mbox_cmpl =
12580 							lpfc_mbx_cmpl_dflt_rpi;
12581 						pmb->context1 = mp;
12582 						pmb->context2 = ndlp;
12583 						pmb->vport = vport;
12584 						rc = lpfc_sli_issue_mbox(phba,
12585 								pmb,
12586 								MBX_NOWAIT);
12587 						if (rc != MBX_BUSY)
12588 							lpfc_printf_log(phba,
12589 							KERN_ERR,
12590 							LOG_MBOX | LOG_SLI,
12591 							"0350 rc should have"
12592 							"been MBX_BUSY\n");
12593 						if (rc != MBX_NOT_FINISHED)
12594 							goto send_current_mbox;
12595 					}
12596 				}
12597 				spin_lock_irqsave(
12598 						&phba->pport->work_port_lock,
12599 						iflag);
12600 				phba->pport->work_port_events &=
12601 					~WORKER_MBOX_TMO;
12602 				spin_unlock_irqrestore(
12603 						&phba->pport->work_port_lock,
12604 						iflag);
12605 				lpfc_mbox_cmpl_put(phba, pmb);
12606 			}
12607 		} else
12608 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12609 
12610 		if ((work_ha_copy & HA_MBATT) &&
12611 		    (phba->sli.mbox_active == NULL)) {
12612 send_current_mbox:
12613 			/* Process next mailbox command if there is one */
12614 			do {
12615 				rc = lpfc_sli_issue_mbox(phba, NULL,
12616 							 MBX_NOWAIT);
12617 			} while (rc == MBX_NOT_FINISHED);
12618 			if (rc != MBX_SUCCESS)
12619 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12620 						LOG_SLI, "0349 rc should be "
12621 						"MBX_SUCCESS\n");
12622 		}
12623 
12624 		spin_lock_irqsave(&phba->hbalock, iflag);
12625 		phba->work_ha |= work_ha_copy;
12626 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12627 		lpfc_worker_wake_up(phba);
12628 	}
12629 	return IRQ_HANDLED;
12630 unplug_error:
12631 	spin_unlock_irqrestore(&phba->hbalock, iflag);
12632 	return IRQ_HANDLED;
12633 
12634 } /* lpfc_sli_sp_intr_handler */
12635 
12636 /**
12637  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12638  * @irq: Interrupt number.
12639  * @dev_id: The device context pointer.
12640  *
12641  * This function is directly called from the PCI layer as an interrupt
12642  * service routine when device with SLI-3 interface spec is enabled with
12643  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12644  * ring event in the HBA. However, when the device is enabled with either
12645  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12646  * device-level interrupt handler. When the PCI slot is in error recovery
12647  * or the HBA is undergoing initialization, the interrupt handler will not
12648  * process the interrupt. The SCSI FCP fast-path ring event are handled in
12649  * the intrrupt context. This function is called without any lock held.
12650  * It gets the hbalock to access and update SLI data structures.
12651  *
12652  * This function returns IRQ_HANDLED when interrupt is handled else it
12653  * returns IRQ_NONE.
12654  **/
12655 irqreturn_t
12656 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12657 {
12658 	struct lpfc_hba  *phba;
12659 	uint32_t ha_copy;
12660 	unsigned long status;
12661 	unsigned long iflag;
12662 	struct lpfc_sli_ring *pring;
12663 
12664 	/* Get the driver's phba structure from the dev_id and
12665 	 * assume the HBA is not interrupting.
12666 	 */
12667 	phba = (struct lpfc_hba *) dev_id;
12668 
12669 	if (unlikely(!phba))
12670 		return IRQ_NONE;
12671 
12672 	/*
12673 	 * Stuff needs to be attented to when this function is invoked as an
12674 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12675 	 */
12676 	if (phba->intr_type == MSIX) {
12677 		/* Check device state for handling interrupt */
12678 		if (lpfc_intr_state_check(phba))
12679 			return IRQ_NONE;
12680 		/* Need to read HA REG for FCP ring and other ring events */
12681 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12682 			return IRQ_HANDLED;
12683 		/* Clear up only attention source related to fast-path */
12684 		spin_lock_irqsave(&phba->hbalock, iflag);
12685 		/*
12686 		 * If there is deferred error attention, do not check for
12687 		 * any interrupt.
12688 		 */
12689 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12690 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12691 			return IRQ_NONE;
12692 		}
12693 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12694 			phba->HAregaddr);
12695 		readl(phba->HAregaddr); /* flush */
12696 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12697 	} else
12698 		ha_copy = phba->ha_copy;
12699 
12700 	/*
12701 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12702 	 */
12703 	ha_copy &= ~(phba->work_ha_mask);
12704 
12705 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12706 	status >>= (4*LPFC_FCP_RING);
12707 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12708 	if (status & HA_RXMASK)
12709 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12710 
12711 	if (phba->cfg_multi_ring_support == 2) {
12712 		/*
12713 		 * Process all events on extra ring. Take the optimized path
12714 		 * for extra ring IO.
12715 		 */
12716 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12717 		status >>= (4*LPFC_EXTRA_RING);
12718 		if (status & HA_RXMASK) {
12719 			lpfc_sli_handle_fast_ring_event(phba,
12720 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12721 					status);
12722 		}
12723 	}
12724 	return IRQ_HANDLED;
12725 }  /* lpfc_sli_fp_intr_handler */
12726 
12727 /**
12728  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12729  * @irq: Interrupt number.
12730  * @dev_id: The device context pointer.
12731  *
12732  * This function is the HBA device-level interrupt handler to device with
12733  * SLI-3 interface spec, called from the PCI layer when either MSI or
12734  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12735  * requires driver attention. This function invokes the slow-path interrupt
12736  * attention handling function and fast-path interrupt attention handling
12737  * function in turn to process the relevant HBA attention events. This
12738  * function is called without any lock held. It gets the hbalock to access
12739  * and update SLI data structures.
12740  *
12741  * This function returns IRQ_HANDLED when interrupt is handled, else it
12742  * returns IRQ_NONE.
12743  **/
12744 irqreturn_t
12745 lpfc_sli_intr_handler(int irq, void *dev_id)
12746 {
12747 	struct lpfc_hba  *phba;
12748 	irqreturn_t sp_irq_rc, fp_irq_rc;
12749 	unsigned long status1, status2;
12750 	uint32_t hc_copy;
12751 
12752 	/*
12753 	 * Get the driver's phba structure from the dev_id and
12754 	 * assume the HBA is not interrupting.
12755 	 */
12756 	phba = (struct lpfc_hba *) dev_id;
12757 
12758 	if (unlikely(!phba))
12759 		return IRQ_NONE;
12760 
12761 	/* Check device state for handling interrupt */
12762 	if (lpfc_intr_state_check(phba))
12763 		return IRQ_NONE;
12764 
12765 	spin_lock(&phba->hbalock);
12766 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12767 		spin_unlock(&phba->hbalock);
12768 		return IRQ_HANDLED;
12769 	}
12770 
12771 	if (unlikely(!phba->ha_copy)) {
12772 		spin_unlock(&phba->hbalock);
12773 		return IRQ_NONE;
12774 	} else if (phba->ha_copy & HA_ERATT) {
12775 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12776 			/* ERATT polling has handled ERATT */
12777 			phba->ha_copy &= ~HA_ERATT;
12778 		else
12779 			/* Indicate interrupt handler handles ERATT */
12780 			phba->hba_flag |= HBA_ERATT_HANDLED;
12781 	}
12782 
12783 	/*
12784 	 * If there is deferred error attention, do not check for any interrupt.
12785 	 */
12786 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12787 		spin_unlock(&phba->hbalock);
12788 		return IRQ_NONE;
12789 	}
12790 
12791 	/* Clear attention sources except link and error attentions */
12792 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12793 		spin_unlock(&phba->hbalock);
12794 		return IRQ_HANDLED;
12795 	}
12796 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12797 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12798 		phba->HCregaddr);
12799 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12800 	writel(hc_copy, phba->HCregaddr);
12801 	readl(phba->HAregaddr); /* flush */
12802 	spin_unlock(&phba->hbalock);
12803 
12804 	/*
12805 	 * Invokes slow-path host attention interrupt handling as appropriate.
12806 	 */
12807 
12808 	/* status of events with mailbox and link attention */
12809 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12810 
12811 	/* status of events with ELS ring */
12812 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12813 	status2 >>= (4*LPFC_ELS_RING);
12814 
12815 	if (status1 || (status2 & HA_RXMASK))
12816 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12817 	else
12818 		sp_irq_rc = IRQ_NONE;
12819 
12820 	/*
12821 	 * Invoke fast-path host attention interrupt handling as appropriate.
12822 	 */
12823 
12824 	/* status of events with FCP ring */
12825 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12826 	status1 >>= (4*LPFC_FCP_RING);
12827 
12828 	/* status of events with extra ring */
12829 	if (phba->cfg_multi_ring_support == 2) {
12830 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12831 		status2 >>= (4*LPFC_EXTRA_RING);
12832 	} else
12833 		status2 = 0;
12834 
12835 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12836 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12837 	else
12838 		fp_irq_rc = IRQ_NONE;
12839 
12840 	/* Return device-level interrupt handling status */
12841 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12842 }  /* lpfc_sli_intr_handler */
12843 
12844 /**
12845  * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event
12846  * @phba: pointer to lpfc hba data structure.
12847  *
12848  * This routine is invoked by the worker thread to process all the pending
12849  * SLI4 FCP abort XRI events.
12850  **/
12851 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba)
12852 {
12853 	struct lpfc_cq_event *cq_event;
12854 
12855 	/* First, declare the fcp xri abort event has been handled */
12856 	spin_lock_irq(&phba->hbalock);
12857 	phba->hba_flag &= ~FCP_XRI_ABORT_EVENT;
12858 	spin_unlock_irq(&phba->hbalock);
12859 	/* Now, handle all the fcp xri abort events */
12860 	while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) {
12861 		/* Get the first event from the head of the event queue */
12862 		spin_lock_irq(&phba->hbalock);
12863 		list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
12864 				 cq_event, struct lpfc_cq_event, list);
12865 		spin_unlock_irq(&phba->hbalock);
12866 		/* Notify aborted XRI for FCP work queue */
12867 		lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12868 		/* Free the event processed back to the free pool */
12869 		lpfc_sli4_cq_event_release(phba, cq_event);
12870 	}
12871 }
12872 
12873 /**
12874  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12875  * @phba: pointer to lpfc hba data structure.
12876  *
12877  * This routine is invoked by the worker thread to process all the pending
12878  * SLI4 els abort xri events.
12879  **/
12880 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12881 {
12882 	struct lpfc_cq_event *cq_event;
12883 
12884 	/* First, declare the els xri abort event has been handled */
12885 	spin_lock_irq(&phba->hbalock);
12886 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12887 	spin_unlock_irq(&phba->hbalock);
12888 	/* Now, handle all the els xri abort events */
12889 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12890 		/* Get the first event from the head of the event queue */
12891 		spin_lock_irq(&phba->hbalock);
12892 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12893 				 cq_event, struct lpfc_cq_event, list);
12894 		spin_unlock_irq(&phba->hbalock);
12895 		/* Notify aborted XRI for ELS work queue */
12896 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12897 		/* Free the event processed back to the free pool */
12898 		lpfc_sli4_cq_event_release(phba, cq_event);
12899 	}
12900 }
12901 
12902 /**
12903  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12904  * @phba: pointer to lpfc hba data structure
12905  * @pIocbIn: pointer to the rspiocbq
12906  * @pIocbOut: pointer to the cmdiocbq
12907  * @wcqe: pointer to the complete wcqe
12908  *
12909  * This routine transfers the fields of a command iocbq to a response iocbq
12910  * by copying all the IOCB fields from command iocbq and transferring the
12911  * completion status information from the complete wcqe.
12912  **/
12913 static void
12914 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12915 			      struct lpfc_iocbq *pIocbIn,
12916 			      struct lpfc_iocbq *pIocbOut,
12917 			      struct lpfc_wcqe_complete *wcqe)
12918 {
12919 	int numBdes, i;
12920 	unsigned long iflags;
12921 	uint32_t status, max_response;
12922 	struct lpfc_dmabuf *dmabuf;
12923 	struct ulp_bde64 *bpl, bde;
12924 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
12925 
12926 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12927 	       sizeof(struct lpfc_iocbq) - offset);
12928 	/* Map WCQE parameters into irspiocb parameters */
12929 	status = bf_get(lpfc_wcqe_c_status, wcqe);
12930 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12931 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12932 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12933 			pIocbIn->iocb.un.fcpi.fcpi_parm =
12934 					pIocbOut->iocb.un.fcpi.fcpi_parm -
12935 					wcqe->total_data_placed;
12936 		else
12937 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12938 	else {
12939 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12940 		switch (pIocbOut->iocb.ulpCommand) {
12941 		case CMD_ELS_REQUEST64_CR:
12942 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12943 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
12944 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12945 			max_response = bde.tus.f.bdeSize;
12946 			break;
12947 		case CMD_GEN_REQUEST64_CR:
12948 			max_response = 0;
12949 			if (!pIocbOut->context3)
12950 				break;
12951 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12952 					sizeof(struct ulp_bde64);
12953 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12954 			bpl = (struct ulp_bde64 *)dmabuf->virt;
12955 			for (i = 0; i < numBdes; i++) {
12956 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12957 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12958 					max_response += bde.tus.f.bdeSize;
12959 			}
12960 			break;
12961 		default:
12962 			max_response = wcqe->total_data_placed;
12963 			break;
12964 		}
12965 		if (max_response < wcqe->total_data_placed)
12966 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12967 		else
12968 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12969 				wcqe->total_data_placed;
12970 	}
12971 
12972 	/* Convert BG errors for completion status */
12973 	if (status == CQE_STATUS_DI_ERROR) {
12974 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
12975 
12976 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
12977 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
12978 		else
12979 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
12980 
12981 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
12982 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
12983 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12984 				BGS_GUARD_ERR_MASK;
12985 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
12986 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12987 				BGS_APPTAG_ERR_MASK;
12988 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
12989 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12990 				BGS_REFTAG_ERR_MASK;
12991 
12992 		/* Check to see if there was any good data before the error */
12993 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
12994 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12995 				BGS_HI_WATER_MARK_PRESENT_MASK;
12996 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
12997 				wcqe->total_data_placed;
12998 		}
12999 
13000 		/*
13001 		* Set ALL the error bits to indicate we don't know what
13002 		* type of error it is.
13003 		*/
13004 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13005 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13006 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13007 				BGS_GUARD_ERR_MASK);
13008 	}
13009 
13010 	/* Pick up HBA exchange busy condition */
13011 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13012 		spin_lock_irqsave(&phba->hbalock, iflags);
13013 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13014 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13015 	}
13016 }
13017 
13018 /**
13019  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13020  * @phba: Pointer to HBA context object.
13021  * @wcqe: Pointer to work-queue completion queue entry.
13022  *
13023  * This routine handles an ELS work-queue completion event and construct
13024  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13025  * discovery engine to handle.
13026  *
13027  * Return: Pointer to the receive IOCBQ, NULL otherwise.
13028  **/
13029 static struct lpfc_iocbq *
13030 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13031 			       struct lpfc_iocbq *irspiocbq)
13032 {
13033 	struct lpfc_sli_ring *pring;
13034 	struct lpfc_iocbq *cmdiocbq;
13035 	struct lpfc_wcqe_complete *wcqe;
13036 	unsigned long iflags;
13037 
13038 	pring = lpfc_phba_elsring(phba);
13039 	if (unlikely(!pring))
13040 		return NULL;
13041 
13042 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13043 	spin_lock_irqsave(&pring->ring_lock, iflags);
13044 	pring->stats.iocb_event++;
13045 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13046 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13047 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13048 	if (unlikely(!cmdiocbq)) {
13049 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
13050 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13051 				"0386 ELS complete with no corresponding "
13052 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13053 				wcqe->word0, wcqe->total_data_placed,
13054 				wcqe->parameter, wcqe->word3);
13055 		lpfc_sli_release_iocbq(phba, irspiocbq);
13056 		return NULL;
13057 	}
13058 
13059 	/* Put the iocb back on the txcmplq */
13060 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13061 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13062 
13063 	/* Fake the irspiocbq and copy necessary response information */
13064 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13065 
13066 	return irspiocbq;
13067 }
13068 
13069 inline struct lpfc_cq_event *
13070 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13071 {
13072 	struct lpfc_cq_event *cq_event;
13073 
13074 	/* Allocate a new internal CQ_EVENT entry */
13075 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13076 	if (!cq_event) {
13077 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13078 				"0602 Failed to alloc CQ_EVENT entry\n");
13079 		return NULL;
13080 	}
13081 
13082 	/* Move the CQE into the event */
13083 	memcpy(&cq_event->cqe, entry, size);
13084 	return cq_event;
13085 }
13086 
13087 /**
13088  * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
13089  * @phba: Pointer to HBA context object.
13090  * @cqe: Pointer to mailbox completion queue entry.
13091  *
13092  * This routine process a mailbox completion queue entry with asynchrous
13093  * event.
13094  *
13095  * Return: true if work posted to worker thread, otherwise false.
13096  **/
13097 static bool
13098 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13099 {
13100 	struct lpfc_cq_event *cq_event;
13101 	unsigned long iflags;
13102 
13103 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13104 			"0392 Async Event: word0:x%x, word1:x%x, "
13105 			"word2:x%x, word3:x%x\n", mcqe->word0,
13106 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13107 
13108 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13109 	if (!cq_event)
13110 		return false;
13111 	spin_lock_irqsave(&phba->hbalock, iflags);
13112 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13113 	/* Set the async event flag */
13114 	phba->hba_flag |= ASYNC_EVENT;
13115 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13116 
13117 	return true;
13118 }
13119 
13120 /**
13121  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13122  * @phba: Pointer to HBA context object.
13123  * @cqe: Pointer to mailbox completion queue entry.
13124  *
13125  * This routine process a mailbox completion queue entry with mailbox
13126  * completion event.
13127  *
13128  * Return: true if work posted to worker thread, otherwise false.
13129  **/
13130 static bool
13131 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13132 {
13133 	uint32_t mcqe_status;
13134 	MAILBOX_t *mbox, *pmbox;
13135 	struct lpfc_mqe *mqe;
13136 	struct lpfc_vport *vport;
13137 	struct lpfc_nodelist *ndlp;
13138 	struct lpfc_dmabuf *mp;
13139 	unsigned long iflags;
13140 	LPFC_MBOXQ_t *pmb;
13141 	bool workposted = false;
13142 	int rc;
13143 
13144 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13145 	if (!bf_get(lpfc_trailer_completed, mcqe))
13146 		goto out_no_mqe_complete;
13147 
13148 	/* Get the reference to the active mbox command */
13149 	spin_lock_irqsave(&phba->hbalock, iflags);
13150 	pmb = phba->sli.mbox_active;
13151 	if (unlikely(!pmb)) {
13152 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13153 				"1832 No pending MBOX command to handle\n");
13154 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13155 		goto out_no_mqe_complete;
13156 	}
13157 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13158 	mqe = &pmb->u.mqe;
13159 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13160 	mbox = phba->mbox;
13161 	vport = pmb->vport;
13162 
13163 	/* Reset heartbeat timer */
13164 	phba->last_completion_time = jiffies;
13165 	del_timer(&phba->sli.mbox_tmo);
13166 
13167 	/* Move mbox data to caller's mailbox region, do endian swapping */
13168 	if (pmb->mbox_cmpl && mbox)
13169 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13170 
13171 	/*
13172 	 * For mcqe errors, conditionally move a modified error code to
13173 	 * the mbox so that the error will not be missed.
13174 	 */
13175 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13176 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13177 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13178 			bf_set(lpfc_mqe_status, mqe,
13179 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13180 	}
13181 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13182 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13183 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13184 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13185 				      mcqe_status,
13186 				      pmbox->un.varWords[0], 0);
13187 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13188 			mp = (struct lpfc_dmabuf *)(pmb->context1);
13189 			ndlp = (struct lpfc_nodelist *)pmb->context2;
13190 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13191 			 * RID of the PPI using the same mbox buffer.
13192 			 */
13193 			lpfc_unreg_login(phba, vport->vpi,
13194 					 pmbox->un.varWords[0], pmb);
13195 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13196 			pmb->context1 = mp;
13197 			pmb->context2 = ndlp;
13198 			pmb->vport = vport;
13199 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13200 			if (rc != MBX_BUSY)
13201 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13202 						LOG_SLI, "0385 rc should "
13203 						"have been MBX_BUSY\n");
13204 			if (rc != MBX_NOT_FINISHED)
13205 				goto send_current_mbox;
13206 		}
13207 	}
13208 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13209 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13210 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13211 
13212 	/* There is mailbox completion work to do */
13213 	spin_lock_irqsave(&phba->hbalock, iflags);
13214 	__lpfc_mbox_cmpl_put(phba, pmb);
13215 	phba->work_ha |= HA_MBATT;
13216 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13217 	workposted = true;
13218 
13219 send_current_mbox:
13220 	spin_lock_irqsave(&phba->hbalock, iflags);
13221 	/* Release the mailbox command posting token */
13222 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13223 	/* Setting active mailbox pointer need to be in sync to flag clear */
13224 	phba->sli.mbox_active = NULL;
13225 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13226 	/* Wake up worker thread to post the next pending mailbox command */
13227 	lpfc_worker_wake_up(phba);
13228 out_no_mqe_complete:
13229 	if (bf_get(lpfc_trailer_consumed, mcqe))
13230 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13231 	return workposted;
13232 }
13233 
13234 /**
13235  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13236  * @phba: Pointer to HBA context object.
13237  * @cqe: Pointer to mailbox completion queue entry.
13238  *
13239  * This routine process a mailbox completion queue entry, it invokes the
13240  * proper mailbox complete handling or asynchrous event handling routine
13241  * according to the MCQE's async bit.
13242  *
13243  * Return: true if work posted to worker thread, otherwise false.
13244  **/
13245 static bool
13246 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe)
13247 {
13248 	struct lpfc_mcqe mcqe;
13249 	bool workposted;
13250 
13251 	/* Copy the mailbox MCQE and convert endian order as needed */
13252 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13253 
13254 	/* Invoke the proper event handling routine */
13255 	if (!bf_get(lpfc_trailer_async, &mcqe))
13256 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13257 	else
13258 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13259 	return workposted;
13260 }
13261 
13262 /**
13263  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13264  * @phba: Pointer to HBA context object.
13265  * @cq: Pointer to associated CQ
13266  * @wcqe: Pointer to work-queue completion queue entry.
13267  *
13268  * This routine handles an ELS work-queue completion event.
13269  *
13270  * Return: true if work posted to worker thread, otherwise false.
13271  **/
13272 static bool
13273 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13274 			     struct lpfc_wcqe_complete *wcqe)
13275 {
13276 	struct lpfc_iocbq *irspiocbq;
13277 	unsigned long iflags;
13278 	struct lpfc_sli_ring *pring = cq->pring;
13279 	int txq_cnt = 0;
13280 	int txcmplq_cnt = 0;
13281 	int fcp_txcmplq_cnt = 0;
13282 
13283 	/* Check for response status */
13284 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13285 		/* Log the error status */
13286 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13287 				"0357 ELS CQE error: status=x%x: "
13288 				"CQE: %08x %08x %08x %08x\n",
13289 				bf_get(lpfc_wcqe_c_status, wcqe),
13290 				wcqe->word0, wcqe->total_data_placed,
13291 				wcqe->parameter, wcqe->word3);
13292 	}
13293 
13294 	/* Get an irspiocbq for later ELS response processing use */
13295 	irspiocbq = lpfc_sli_get_iocbq(phba);
13296 	if (!irspiocbq) {
13297 		if (!list_empty(&pring->txq))
13298 			txq_cnt++;
13299 		if (!list_empty(&pring->txcmplq))
13300 			txcmplq_cnt++;
13301 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13302 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13303 			"fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
13304 			txq_cnt, phba->iocb_cnt,
13305 			fcp_txcmplq_cnt,
13306 			txcmplq_cnt);
13307 		return false;
13308 	}
13309 
13310 	/* Save off the slow-path queue event for work thread to process */
13311 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13312 	spin_lock_irqsave(&phba->hbalock, iflags);
13313 	list_add_tail(&irspiocbq->cq_event.list,
13314 		      &phba->sli4_hba.sp_queue_event);
13315 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13316 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13317 
13318 	return true;
13319 }
13320 
13321 /**
13322  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13323  * @phba: Pointer to HBA context object.
13324  * @wcqe: Pointer to work-queue completion queue entry.
13325  *
13326  * This routine handles slow-path WQ entry consumed event by invoking the
13327  * proper WQ release routine to the slow-path WQ.
13328  **/
13329 static void
13330 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13331 			     struct lpfc_wcqe_release *wcqe)
13332 {
13333 	/* sanity check on queue memory */
13334 	if (unlikely(!phba->sli4_hba.els_wq))
13335 		return;
13336 	/* Check for the slow-path ELS work queue */
13337 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13338 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13339 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13340 	else
13341 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13342 				"2579 Slow-path wqe consume event carries "
13343 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13344 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13345 				phba->sli4_hba.els_wq->queue_id);
13346 }
13347 
13348 /**
13349  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13350  * @phba: Pointer to HBA context object.
13351  * @cq: Pointer to a WQ completion queue.
13352  * @wcqe: Pointer to work-queue completion queue entry.
13353  *
13354  * This routine handles an XRI abort event.
13355  *
13356  * Return: true if work posted to worker thread, otherwise false.
13357  **/
13358 static bool
13359 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13360 				   struct lpfc_queue *cq,
13361 				   struct sli4_wcqe_xri_aborted *wcqe)
13362 {
13363 	bool workposted = false;
13364 	struct lpfc_cq_event *cq_event;
13365 	unsigned long iflags;
13366 
13367 	switch (cq->subtype) {
13368 	case LPFC_FCP:
13369 		cq_event = lpfc_cq_event_setup(
13370 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13371 		if (!cq_event)
13372 			return false;
13373 		spin_lock_irqsave(&phba->hbalock, iflags);
13374 		list_add_tail(&cq_event->list,
13375 			      &phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
13376 		/* Set the fcp xri abort event flag */
13377 		phba->hba_flag |= FCP_XRI_ABORT_EVENT;
13378 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13379 		workposted = true;
13380 		break;
13381 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13382 	case LPFC_ELS:
13383 		cq_event = lpfc_cq_event_setup(
13384 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13385 		if (!cq_event)
13386 			return false;
13387 		spin_lock_irqsave(&phba->hbalock, iflags);
13388 		list_add_tail(&cq_event->list,
13389 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13390 		/* Set the els xri abort event flag */
13391 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13392 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13393 		workposted = true;
13394 		break;
13395 	case LPFC_NVME:
13396 		/* Notify aborted XRI for NVME work queue */
13397 		if (phba->nvmet_support)
13398 			lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13399 		else
13400 			lpfc_sli4_nvme_xri_aborted(phba, wcqe);
13401 
13402 		workposted = false;
13403 		break;
13404 	default:
13405 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13406 				"0603 Invalid CQ subtype %d: "
13407 				"%08x %08x %08x %08x\n",
13408 				cq->subtype, wcqe->word0, wcqe->parameter,
13409 				wcqe->word2, wcqe->word3);
13410 		workposted = false;
13411 		break;
13412 	}
13413 	return workposted;
13414 }
13415 
13416 /**
13417  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13418  * @phba: Pointer to HBA context object.
13419  * @rcqe: Pointer to receive-queue completion queue entry.
13420  *
13421  * This routine process a receive-queue completion queue entry.
13422  *
13423  * Return: true if work posted to worker thread, otherwise false.
13424  **/
13425 static bool
13426 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13427 {
13428 	bool workposted = false;
13429 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13430 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13431 	struct lpfc_nvmet_tgtport *tgtp;
13432 	struct hbq_dmabuf *dma_buf;
13433 	uint32_t status, rq_id;
13434 	unsigned long iflags;
13435 
13436 	/* sanity check on queue memory */
13437 	if (unlikely(!hrq) || unlikely(!drq))
13438 		return workposted;
13439 
13440 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13441 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13442 	else
13443 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13444 	if (rq_id != hrq->queue_id)
13445 		goto out;
13446 
13447 	status = bf_get(lpfc_rcqe_status, rcqe);
13448 	switch (status) {
13449 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13450 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13451 				"2537 Receive Frame Truncated!!\n");
13452 	case FC_STATUS_RQ_SUCCESS:
13453 		spin_lock_irqsave(&phba->hbalock, iflags);
13454 		lpfc_sli4_rq_release(hrq, drq);
13455 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13456 		if (!dma_buf) {
13457 			hrq->RQ_no_buf_found++;
13458 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13459 			goto out;
13460 		}
13461 		hrq->RQ_rcv_buf++;
13462 		hrq->RQ_buf_posted--;
13463 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13464 
13465 		/* save off the frame for the word thread to process */
13466 		list_add_tail(&dma_buf->cq_event.list,
13467 			      &phba->sli4_hba.sp_queue_event);
13468 		/* Frame received */
13469 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13470 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13471 		workposted = true;
13472 		break;
13473 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13474 		if (phba->nvmet_support) {
13475 			tgtp = phba->targetport->private;
13476 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13477 					"6402 RQE Error x%x, posted %d err_cnt "
13478 					"%d: %x %x %x\n",
13479 					status, hrq->RQ_buf_posted,
13480 					hrq->RQ_no_posted_buf,
13481 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13482 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13483 					atomic_read(&tgtp->xmt_fcp_release));
13484 		}
13485 		/* fallthrough */
13486 
13487 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13488 		hrq->RQ_no_posted_buf++;
13489 		/* Post more buffers if possible */
13490 		spin_lock_irqsave(&phba->hbalock, iflags);
13491 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13492 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13493 		workposted = true;
13494 		break;
13495 	}
13496 out:
13497 	return workposted;
13498 }
13499 
13500 /**
13501  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13502  * @phba: Pointer to HBA context object.
13503  * @cq: Pointer to the completion queue.
13504  * @wcqe: Pointer to a completion queue entry.
13505  *
13506  * This routine process a slow-path work-queue or receive queue completion queue
13507  * entry.
13508  *
13509  * Return: true if work posted to worker thread, otherwise false.
13510  **/
13511 static bool
13512 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13513 			 struct lpfc_cqe *cqe)
13514 {
13515 	struct lpfc_cqe cqevt;
13516 	bool workposted = false;
13517 
13518 	/* Copy the work queue CQE and convert endian order if needed */
13519 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13520 
13521 	/* Check and process for different type of WCQE and dispatch */
13522 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13523 	case CQE_CODE_COMPL_WQE:
13524 		/* Process the WQ/RQ complete event */
13525 		phba->last_completion_time = jiffies;
13526 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13527 				(struct lpfc_wcqe_complete *)&cqevt);
13528 		break;
13529 	case CQE_CODE_RELEASE_WQE:
13530 		/* Process the WQ release event */
13531 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13532 				(struct lpfc_wcqe_release *)&cqevt);
13533 		break;
13534 	case CQE_CODE_XRI_ABORTED:
13535 		/* Process the WQ XRI abort event */
13536 		phba->last_completion_time = jiffies;
13537 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13538 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13539 		break;
13540 	case CQE_CODE_RECEIVE:
13541 	case CQE_CODE_RECEIVE_V1:
13542 		/* Process the RQ event */
13543 		phba->last_completion_time = jiffies;
13544 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13545 				(struct lpfc_rcqe *)&cqevt);
13546 		break;
13547 	default:
13548 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13549 				"0388 Not a valid WCQE code: x%x\n",
13550 				bf_get(lpfc_cqe_code, &cqevt));
13551 		break;
13552 	}
13553 	return workposted;
13554 }
13555 
13556 /**
13557  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13558  * @phba: Pointer to HBA context object.
13559  * @eqe: Pointer to fast-path event queue entry.
13560  *
13561  * This routine process a event queue entry from the slow-path event queue.
13562  * It will check the MajorCode and MinorCode to determine this is for a
13563  * completion event on a completion queue, if not, an error shall be logged
13564  * and just return. Otherwise, it will get to the corresponding completion
13565  * queue and process all the entries on that completion queue, rearm the
13566  * completion queue, and then return.
13567  *
13568  **/
13569 static void
13570 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13571 	struct lpfc_queue *speq)
13572 {
13573 	struct lpfc_queue *cq = NULL, *childq;
13574 	uint16_t cqid;
13575 
13576 	/* Get the reference to the corresponding CQ */
13577 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13578 
13579 	list_for_each_entry(childq, &speq->child_list, list) {
13580 		if (childq->queue_id == cqid) {
13581 			cq = childq;
13582 			break;
13583 		}
13584 	}
13585 	if (unlikely(!cq)) {
13586 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13587 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13588 					"0365 Slow-path CQ identifier "
13589 					"(%d) does not exist\n", cqid);
13590 		return;
13591 	}
13592 
13593 	/* Save EQ associated with this CQ */
13594 	cq->assoc_qp = speq;
13595 
13596 	if (!queue_work(phba->wq, &cq->spwork))
13597 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13598 				"0390 Cannot schedule soft IRQ "
13599 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13600 				cqid, cq->queue_id, smp_processor_id());
13601 }
13602 
13603 /**
13604  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13605  * @phba: Pointer to HBA context object.
13606  *
13607  * This routine process a event queue entry from the slow-path event queue.
13608  * It will check the MajorCode and MinorCode to determine this is for a
13609  * completion event on a completion queue, if not, an error shall be logged
13610  * and just return. Otherwise, it will get to the corresponding completion
13611  * queue and process all the entries on that completion queue, rearm the
13612  * completion queue, and then return.
13613  *
13614  **/
13615 static void
13616 lpfc_sli4_sp_process_cq(struct work_struct *work)
13617 {
13618 	struct lpfc_queue *cq =
13619 		container_of(work, struct lpfc_queue, spwork);
13620 	struct lpfc_hba *phba = cq->phba;
13621 	struct lpfc_cqe *cqe;
13622 	bool workposted = false;
13623 	int ccount = 0;
13624 
13625 	/* Process all the entries to the CQ */
13626 	switch (cq->type) {
13627 	case LPFC_MCQ:
13628 		while ((cqe = lpfc_sli4_cq_get(cq))) {
13629 			workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe);
13630 			if (!(++ccount % cq->entry_repost))
13631 				break;
13632 			cq->CQ_mbox++;
13633 		}
13634 		break;
13635 	case LPFC_WCQ:
13636 		while ((cqe = lpfc_sli4_cq_get(cq))) {
13637 			if (cq->subtype == LPFC_FCP ||
13638 			    cq->subtype == LPFC_NVME) {
13639 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13640 				if (phba->ktime_on)
13641 					cq->isr_timestamp = ktime_get_ns();
13642 				else
13643 					cq->isr_timestamp = 0;
13644 #endif
13645 				workposted |= lpfc_sli4_fp_handle_cqe(phba, cq,
13646 								       cqe);
13647 			} else {
13648 				workposted |= lpfc_sli4_sp_handle_cqe(phba, cq,
13649 								      cqe);
13650 			}
13651 			if (!(++ccount % cq->entry_repost))
13652 				break;
13653 		}
13654 
13655 		/* Track the max number of CQEs processed in 1 EQ */
13656 		if (ccount > cq->CQ_max_cqe)
13657 			cq->CQ_max_cqe = ccount;
13658 		break;
13659 	default:
13660 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13661 				"0370 Invalid completion queue type (%d)\n",
13662 				cq->type);
13663 		return;
13664 	}
13665 
13666 	/* Catch the no cq entry condition, log an error */
13667 	if (unlikely(ccount == 0))
13668 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13669 				"0371 No entry from the CQ: identifier "
13670 				"(x%x), type (%d)\n", cq->queue_id, cq->type);
13671 
13672 	/* In any case, flash and re-arm the RCQ */
13673 	phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM);
13674 
13675 	/* wake up worker thread if there are works to be done */
13676 	if (workposted)
13677 		lpfc_worker_wake_up(phba);
13678 }
13679 
13680 /**
13681  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13682  * @phba: Pointer to HBA context object.
13683  * @cq: Pointer to associated CQ
13684  * @wcqe: Pointer to work-queue completion queue entry.
13685  *
13686  * This routine process a fast-path work queue completion entry from fast-path
13687  * event queue for FCP command response completion.
13688  **/
13689 static void
13690 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13691 			     struct lpfc_wcqe_complete *wcqe)
13692 {
13693 	struct lpfc_sli_ring *pring = cq->pring;
13694 	struct lpfc_iocbq *cmdiocbq;
13695 	struct lpfc_iocbq irspiocbq;
13696 	unsigned long iflags;
13697 
13698 	/* Check for response status */
13699 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13700 		/* If resource errors reported from HBA, reduce queue
13701 		 * depth of the SCSI device.
13702 		 */
13703 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13704 		     IOSTAT_LOCAL_REJECT)) &&
13705 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13706 		     IOERR_NO_RESOURCES))
13707 			phba->lpfc_rampdown_queue_depth(phba);
13708 
13709 		/* Log the error status */
13710 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13711 				"0373 FCP CQE error: status=x%x: "
13712 				"CQE: %08x %08x %08x %08x\n",
13713 				bf_get(lpfc_wcqe_c_status, wcqe),
13714 				wcqe->word0, wcqe->total_data_placed,
13715 				wcqe->parameter, wcqe->word3);
13716 	}
13717 
13718 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13719 	spin_lock_irqsave(&pring->ring_lock, iflags);
13720 	pring->stats.iocb_event++;
13721 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13722 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13723 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13724 	if (unlikely(!cmdiocbq)) {
13725 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13726 				"0374 FCP complete with no corresponding "
13727 				"cmdiocb: iotag (%d)\n",
13728 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13729 		return;
13730 	}
13731 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13732 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
13733 #endif
13734 	if (cmdiocbq->iocb_cmpl == NULL) {
13735 		if (cmdiocbq->wqe_cmpl) {
13736 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13737 				spin_lock_irqsave(&phba->hbalock, iflags);
13738 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13739 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13740 			}
13741 
13742 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13743 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13744 			return;
13745 		}
13746 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13747 				"0375 FCP cmdiocb not callback function "
13748 				"iotag: (%d)\n",
13749 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13750 		return;
13751 	}
13752 
13753 	/* Fake the irspiocb and copy necessary response information */
13754 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13755 
13756 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13757 		spin_lock_irqsave(&phba->hbalock, iflags);
13758 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13759 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13760 	}
13761 
13762 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13763 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13764 }
13765 
13766 /**
13767  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13768  * @phba: Pointer to HBA context object.
13769  * @cq: Pointer to completion queue.
13770  * @wcqe: Pointer to work-queue completion queue entry.
13771  *
13772  * This routine handles an fast-path WQ entry consumed event by invoking the
13773  * proper WQ release routine to the slow-path WQ.
13774  **/
13775 static void
13776 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13777 			     struct lpfc_wcqe_release *wcqe)
13778 {
13779 	struct lpfc_queue *childwq;
13780 	bool wqid_matched = false;
13781 	uint16_t hba_wqid;
13782 
13783 	/* Check for fast-path FCP work queue release */
13784 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13785 	list_for_each_entry(childwq, &cq->child_list, list) {
13786 		if (childwq->queue_id == hba_wqid) {
13787 			lpfc_sli4_wq_release(childwq,
13788 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13789 			if (childwq->q_flag & HBA_NVMET_WQFULL)
13790 				lpfc_nvmet_wqfull_process(phba, childwq);
13791 			wqid_matched = true;
13792 			break;
13793 		}
13794 	}
13795 	/* Report warning log message if no match found */
13796 	if (wqid_matched != true)
13797 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13798 				"2580 Fast-path wqe consume event carries "
13799 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13800 }
13801 
13802 /**
13803  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13804  * @phba: Pointer to HBA context object.
13805  * @rcqe: Pointer to receive-queue completion queue entry.
13806  *
13807  * This routine process a receive-queue completion queue entry.
13808  *
13809  * Return: true if work posted to worker thread, otherwise false.
13810  **/
13811 static bool
13812 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13813 			    struct lpfc_rcqe *rcqe)
13814 {
13815 	bool workposted = false;
13816 	struct lpfc_queue *hrq;
13817 	struct lpfc_queue *drq;
13818 	struct rqb_dmabuf *dma_buf;
13819 	struct fc_frame_header *fc_hdr;
13820 	struct lpfc_nvmet_tgtport *tgtp;
13821 	uint32_t status, rq_id;
13822 	unsigned long iflags;
13823 	uint32_t fctl, idx;
13824 
13825 	if ((phba->nvmet_support == 0) ||
13826 	    (phba->sli4_hba.nvmet_cqset == NULL))
13827 		return workposted;
13828 
13829 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13830 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13831 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
13832 
13833 	/* sanity check on queue memory */
13834 	if (unlikely(!hrq) || unlikely(!drq))
13835 		return workposted;
13836 
13837 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13838 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13839 	else
13840 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13841 
13842 	if ((phba->nvmet_support == 0) ||
13843 	    (rq_id != hrq->queue_id))
13844 		return workposted;
13845 
13846 	status = bf_get(lpfc_rcqe_status, rcqe);
13847 	switch (status) {
13848 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13849 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13850 				"6126 Receive Frame Truncated!!\n");
13851 		/* Drop thru */
13852 	case FC_STATUS_RQ_SUCCESS:
13853 		spin_lock_irqsave(&phba->hbalock, iflags);
13854 		lpfc_sli4_rq_release(hrq, drq);
13855 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13856 		if (!dma_buf) {
13857 			hrq->RQ_no_buf_found++;
13858 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13859 			goto out;
13860 		}
13861 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13862 		hrq->RQ_rcv_buf++;
13863 		hrq->RQ_buf_posted--;
13864 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13865 
13866 		/* Just some basic sanity checks on FCP Command frame */
13867 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13868 		fc_hdr->fh_f_ctl[1] << 8 |
13869 		fc_hdr->fh_f_ctl[2]);
13870 		if (((fctl &
13871 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13872 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13873 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13874 			goto drop;
13875 
13876 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
13877 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length,  rcqe);
13878 			lpfc_nvmet_unsol_fcp_event(
13879 				phba, idx, dma_buf,
13880 				cq->isr_timestamp);
13881 			return false;
13882 		}
13883 drop:
13884 		lpfc_in_buf_free(phba, &dma_buf->dbuf);
13885 		break;
13886 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13887 		if (phba->nvmet_support) {
13888 			tgtp = phba->targetport->private;
13889 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13890 					"6401 RQE Error x%x, posted %d err_cnt "
13891 					"%d: %x %x %x\n",
13892 					status, hrq->RQ_buf_posted,
13893 					hrq->RQ_no_posted_buf,
13894 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13895 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13896 					atomic_read(&tgtp->xmt_fcp_release));
13897 		}
13898 		/* fallthrough */
13899 
13900 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13901 		hrq->RQ_no_posted_buf++;
13902 		/* Post more buffers if possible */
13903 		break;
13904 	}
13905 out:
13906 	return workposted;
13907 }
13908 
13909 /**
13910  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
13911  * @cq: Pointer to the completion queue.
13912  * @eqe: Pointer to fast-path completion queue entry.
13913  *
13914  * This routine process a fast-path work queue completion entry from fast-path
13915  * event queue for FCP command response completion.
13916  **/
13917 static int
13918 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13919 			 struct lpfc_cqe *cqe)
13920 {
13921 	struct lpfc_wcqe_release wcqe;
13922 	bool workposted = false;
13923 
13924 	/* Copy the work queue CQE and convert endian order if needed */
13925 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
13926 
13927 	/* Check and process for different type of WCQE and dispatch */
13928 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
13929 	case CQE_CODE_COMPL_WQE:
13930 	case CQE_CODE_NVME_ERSP:
13931 		cq->CQ_wq++;
13932 		/* Process the WQ complete event */
13933 		phba->last_completion_time = jiffies;
13934 		if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME))
13935 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13936 				(struct lpfc_wcqe_complete *)&wcqe);
13937 		if (cq->subtype == LPFC_NVME_LS)
13938 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13939 				(struct lpfc_wcqe_complete *)&wcqe);
13940 		break;
13941 	case CQE_CODE_RELEASE_WQE:
13942 		cq->CQ_release_wqe++;
13943 		/* Process the WQ release event */
13944 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
13945 				(struct lpfc_wcqe_release *)&wcqe);
13946 		break;
13947 	case CQE_CODE_XRI_ABORTED:
13948 		cq->CQ_xri_aborted++;
13949 		/* Process the WQ XRI abort event */
13950 		phba->last_completion_time = jiffies;
13951 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13952 				(struct sli4_wcqe_xri_aborted *)&wcqe);
13953 		break;
13954 	case CQE_CODE_RECEIVE_V1:
13955 	case CQE_CODE_RECEIVE:
13956 		phba->last_completion_time = jiffies;
13957 		if (cq->subtype == LPFC_NVMET) {
13958 			workposted = lpfc_sli4_nvmet_handle_rcqe(
13959 				phba, cq, (struct lpfc_rcqe *)&wcqe);
13960 		}
13961 		break;
13962 	default:
13963 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13964 				"0144 Not a valid CQE code: x%x\n",
13965 				bf_get(lpfc_wcqe_c_code, &wcqe));
13966 		break;
13967 	}
13968 	return workposted;
13969 }
13970 
13971 /**
13972  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
13973  * @phba: Pointer to HBA context object.
13974  * @eqe: Pointer to fast-path event queue entry.
13975  *
13976  * This routine process a event queue entry from the fast-path event queue.
13977  * It will check the MajorCode and MinorCode to determine this is for a
13978  * completion event on a completion queue, if not, an error shall be logged
13979  * and just return. Otherwise, it will get to the corresponding completion
13980  * queue and process all the entries on the completion queue, rearm the
13981  * completion queue, and then return.
13982  **/
13983 static void
13984 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13985 			uint32_t qidx)
13986 {
13987 	struct lpfc_queue *cq = NULL;
13988 	uint16_t cqid, id;
13989 
13990 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
13991 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13992 				"0366 Not a valid completion "
13993 				"event: majorcode=x%x, minorcode=x%x\n",
13994 				bf_get_le32(lpfc_eqe_major_code, eqe),
13995 				bf_get_le32(lpfc_eqe_minor_code, eqe));
13996 		return;
13997 	}
13998 
13999 	/* Get the reference to the corresponding CQ */
14000 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14001 
14002 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14003 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14004 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14005 			/* Process NVMET unsol rcv */
14006 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14007 			goto  process_cq;
14008 		}
14009 	}
14010 
14011 	if (phba->sli4_hba.nvme_cq_map &&
14012 	    (cqid == phba->sli4_hba.nvme_cq_map[qidx])) {
14013 		/* Process NVME / NVMET command completion */
14014 		cq = phba->sli4_hba.nvme_cq[qidx];
14015 		goto  process_cq;
14016 	}
14017 
14018 	if (phba->sli4_hba.fcp_cq_map &&
14019 	    (cqid == phba->sli4_hba.fcp_cq_map[qidx])) {
14020 		/* Process FCP command completion */
14021 		cq = phba->sli4_hba.fcp_cq[qidx];
14022 		goto  process_cq;
14023 	}
14024 
14025 	if (phba->sli4_hba.nvmels_cq &&
14026 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14027 		/* Process NVME unsol rcv */
14028 		cq = phba->sli4_hba.nvmels_cq;
14029 	}
14030 
14031 	/* Otherwise this is a Slow path event */
14032 	if (cq == NULL) {
14033 		lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]);
14034 		return;
14035 	}
14036 
14037 process_cq:
14038 	if (unlikely(cqid != cq->queue_id)) {
14039 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14040 				"0368 Miss-matched fast-path completion "
14041 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14042 				cqid, cq->queue_id);
14043 		return;
14044 	}
14045 
14046 	/* Save EQ associated with this CQ */
14047 	cq->assoc_qp = phba->sli4_hba.hba_eq[qidx];
14048 
14049 	if (!queue_work(phba->wq, &cq->irqwork))
14050 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14051 				"0363 Cannot schedule soft IRQ "
14052 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14053 				cqid, cq->queue_id, smp_processor_id());
14054 }
14055 
14056 /**
14057  * lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14058  * @phba: Pointer to HBA context object.
14059  * @eqe: Pointer to fast-path event queue entry.
14060  *
14061  * This routine process a event queue entry from the fast-path event queue.
14062  * It will check the MajorCode and MinorCode to determine this is for a
14063  * completion event on a completion queue, if not, an error shall be logged
14064  * and just return. Otherwise, it will get to the corresponding completion
14065  * queue and process all the entries on the completion queue, rearm the
14066  * completion queue, and then return.
14067  **/
14068 static void
14069 lpfc_sli4_hba_process_cq(struct work_struct *work)
14070 {
14071 	struct lpfc_queue *cq =
14072 		container_of(work, struct lpfc_queue, irqwork);
14073 	struct lpfc_hba *phba = cq->phba;
14074 	struct lpfc_cqe *cqe;
14075 	bool workposted = false;
14076 	int ccount = 0;
14077 
14078 	/* Process all the entries to the CQ */
14079 	while ((cqe = lpfc_sli4_cq_get(cq))) {
14080 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
14081 		if (phba->ktime_on)
14082 			cq->isr_timestamp = ktime_get_ns();
14083 		else
14084 			cq->isr_timestamp = 0;
14085 #endif
14086 		workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe);
14087 		if (!(++ccount % cq->entry_repost))
14088 			break;
14089 	}
14090 
14091 	/* Track the max number of CQEs processed in 1 EQ */
14092 	if (ccount > cq->CQ_max_cqe)
14093 		cq->CQ_max_cqe = ccount;
14094 	cq->assoc_qp->EQ_cqe_cnt += ccount;
14095 
14096 	/* Catch the no cq entry condition */
14097 	if (unlikely(ccount == 0))
14098 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14099 				"0369 No entry from fast-path completion "
14100 				"queue fcpcqid=%d\n", cq->queue_id);
14101 
14102 	/* In any case, flash and re-arm the CQ */
14103 	phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM);
14104 
14105 	/* wake up worker thread if there are works to be done */
14106 	if (workposted)
14107 		lpfc_worker_wake_up(phba);
14108 }
14109 
14110 static void
14111 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
14112 {
14113 	struct lpfc_eqe *eqe;
14114 
14115 	/* walk all the EQ entries and drop on the floor */
14116 	while ((eqe = lpfc_sli4_eq_get(eq)))
14117 		;
14118 
14119 	/* Clear and re-arm the EQ */
14120 	phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM);
14121 }
14122 
14123 
14124 /**
14125  * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue
14126  *			     entry
14127  * @phba: Pointer to HBA context object.
14128  * @eqe: Pointer to fast-path event queue entry.
14129  *
14130  * This routine process a event queue entry from the Flash Optimized Fabric
14131  * event queue.  It will check the MajorCode and MinorCode to determine this
14132  * is for a completion event on a completion queue, if not, an error shall be
14133  * logged and just return. Otherwise, it will get to the corresponding
14134  * completion queue and process all the entries on the completion queue, rearm
14135  * the completion queue, and then return.
14136  **/
14137 static void
14138 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe)
14139 {
14140 	struct lpfc_queue *cq;
14141 	uint16_t cqid;
14142 
14143 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14144 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14145 				"9147 Not a valid completion "
14146 				"event: majorcode=x%x, minorcode=x%x\n",
14147 				bf_get_le32(lpfc_eqe_major_code, eqe),
14148 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14149 		return;
14150 	}
14151 
14152 	/* Get the reference to the corresponding CQ */
14153 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14154 
14155 	/* Next check for OAS */
14156 	cq = phba->sli4_hba.oas_cq;
14157 	if (unlikely(!cq)) {
14158 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14159 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14160 					"9148 OAS completion queue "
14161 					"does not exist\n");
14162 		return;
14163 	}
14164 
14165 	if (unlikely(cqid != cq->queue_id)) {
14166 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14167 				"9149 Miss-matched fast-path compl "
14168 				"queue id: eqcqid=%d, fcpcqid=%d\n",
14169 				cqid, cq->queue_id);
14170 		return;
14171 	}
14172 
14173 	/* Save EQ associated with this CQ */
14174 	cq->assoc_qp = phba->sli4_hba.fof_eq;
14175 
14176 	/* CQ work will be processed on CPU affinitized to this IRQ */
14177 	if (!queue_work(phba->wq, &cq->irqwork))
14178 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14179 				"0367 Cannot schedule soft IRQ "
14180 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14181 				cqid, cq->queue_id, smp_processor_id());
14182 }
14183 
14184 /**
14185  * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device
14186  * @irq: Interrupt number.
14187  * @dev_id: The device context pointer.
14188  *
14189  * This function is directly called from the PCI layer as an interrupt
14190  * service routine when device with SLI-4 interface spec is enabled with
14191  * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric
14192  * IOCB ring event in the HBA. However, when the device is enabled with either
14193  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14194  * device-level interrupt handler. When the PCI slot is in error recovery
14195  * or the HBA is undergoing initialization, the interrupt handler will not
14196  * process the interrupt. The Flash Optimized Fabric ring event are handled in
14197  * the intrrupt context. This function is called without any lock held.
14198  * It gets the hbalock to access and update SLI data structures. Note that,
14199  * the EQ to CQ are one-to-one map such that the EQ index is
14200  * equal to that of CQ index.
14201  *
14202  * This function returns IRQ_HANDLED when interrupt is handled else it
14203  * returns IRQ_NONE.
14204  **/
14205 irqreturn_t
14206 lpfc_sli4_fof_intr_handler(int irq, void *dev_id)
14207 {
14208 	struct lpfc_hba *phba;
14209 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14210 	struct lpfc_queue *eq;
14211 	struct lpfc_eqe *eqe;
14212 	unsigned long iflag;
14213 	int ecount = 0;
14214 
14215 	/* Get the driver's phba structure from the dev_id */
14216 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14217 	phba = hba_eq_hdl->phba;
14218 
14219 	if (unlikely(!phba))
14220 		return IRQ_NONE;
14221 
14222 	/* Get to the EQ struct associated with this vector */
14223 	eq = phba->sli4_hba.fof_eq;
14224 	if (unlikely(!eq))
14225 		return IRQ_NONE;
14226 
14227 	/* Check device state for handling interrupt */
14228 	if (unlikely(lpfc_intr_state_check(phba))) {
14229 		/* Check again for link_state with lock held */
14230 		spin_lock_irqsave(&phba->hbalock, iflag);
14231 		if (phba->link_state < LPFC_LINK_DOWN)
14232 			/* Flush, clear interrupt, and rearm the EQ */
14233 			lpfc_sli4_eq_flush(phba, eq);
14234 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14235 		return IRQ_NONE;
14236 	}
14237 
14238 	/*
14239 	 * Process all the event on FCP fast-path EQ
14240 	 */
14241 	while ((eqe = lpfc_sli4_eq_get(eq))) {
14242 		lpfc_sli4_fof_handle_eqe(phba, eqe);
14243 		if (!(++ecount % eq->entry_repost))
14244 			break;
14245 		eq->EQ_processed++;
14246 	}
14247 
14248 	/* Track the max number of EQEs processed in 1 intr */
14249 	if (ecount > eq->EQ_max_eqe)
14250 		eq->EQ_max_eqe = ecount;
14251 
14252 
14253 	if (unlikely(ecount == 0)) {
14254 		eq->EQ_no_entry++;
14255 
14256 		if (phba->intr_type == MSIX)
14257 			/* MSI-X treated interrupt served as no EQ share INT */
14258 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14259 					"9145 MSI-X interrupt with no EQE\n");
14260 		else {
14261 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14262 					"9146 ISR interrupt with no EQE\n");
14263 			/* Non MSI-X treated on interrupt as EQ share INT */
14264 			return IRQ_NONE;
14265 		}
14266 	}
14267 	/* Always clear and re-arm the fast-path EQ */
14268 	phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM);
14269 	return IRQ_HANDLED;
14270 }
14271 
14272 /**
14273  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14274  * @irq: Interrupt number.
14275  * @dev_id: The device context pointer.
14276  *
14277  * This function is directly called from the PCI layer as an interrupt
14278  * service routine when device with SLI-4 interface spec is enabled with
14279  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14280  * ring event in the HBA. However, when the device is enabled with either
14281  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14282  * device-level interrupt handler. When the PCI slot is in error recovery
14283  * or the HBA is undergoing initialization, the interrupt handler will not
14284  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14285  * the intrrupt context. This function is called without any lock held.
14286  * It gets the hbalock to access and update SLI data structures. Note that,
14287  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14288  * equal to that of FCP CQ index.
14289  *
14290  * The link attention and ELS ring attention events are handled
14291  * by the worker thread. The interrupt handler signals the worker thread
14292  * and returns for these events. This function is called without any lock
14293  * held. It gets the hbalock to access and update SLI data structures.
14294  *
14295  * This function returns IRQ_HANDLED when interrupt is handled else it
14296  * returns IRQ_NONE.
14297  **/
14298 irqreturn_t
14299 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14300 {
14301 	struct lpfc_hba *phba;
14302 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14303 	struct lpfc_queue *fpeq;
14304 	struct lpfc_eqe *eqe;
14305 	unsigned long iflag;
14306 	int ecount = 0;
14307 	int hba_eqidx;
14308 
14309 	/* Get the driver's phba structure from the dev_id */
14310 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14311 	phba = hba_eq_hdl->phba;
14312 	hba_eqidx = hba_eq_hdl->idx;
14313 
14314 	if (unlikely(!phba))
14315 		return IRQ_NONE;
14316 	if (unlikely(!phba->sli4_hba.hba_eq))
14317 		return IRQ_NONE;
14318 
14319 	/* Get to the EQ struct associated with this vector */
14320 	fpeq = phba->sli4_hba.hba_eq[hba_eqidx];
14321 	if (unlikely(!fpeq))
14322 		return IRQ_NONE;
14323 
14324 	if (lpfc_fcp_look_ahead) {
14325 		if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use))
14326 			phba->sli4_hba.sli4_eq_clr_intr(fpeq);
14327 		else {
14328 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14329 			return IRQ_NONE;
14330 		}
14331 	}
14332 
14333 	/* Check device state for handling interrupt */
14334 	if (unlikely(lpfc_intr_state_check(phba))) {
14335 		/* Check again for link_state with lock held */
14336 		spin_lock_irqsave(&phba->hbalock, iflag);
14337 		if (phba->link_state < LPFC_LINK_DOWN)
14338 			/* Flush, clear interrupt, and rearm the EQ */
14339 			lpfc_sli4_eq_flush(phba, fpeq);
14340 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14341 		if (lpfc_fcp_look_ahead)
14342 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14343 		return IRQ_NONE;
14344 	}
14345 
14346 	/*
14347 	 * Process all the event on FCP fast-path EQ
14348 	 */
14349 	while ((eqe = lpfc_sli4_eq_get(fpeq))) {
14350 		lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx);
14351 		if (!(++ecount % fpeq->entry_repost))
14352 			break;
14353 		fpeq->EQ_processed++;
14354 	}
14355 
14356 	/* Track the max number of EQEs processed in 1 intr */
14357 	if (ecount > fpeq->EQ_max_eqe)
14358 		fpeq->EQ_max_eqe = ecount;
14359 
14360 	/* Always clear and re-arm the fast-path EQ */
14361 	phba->sli4_hba.sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
14362 
14363 	if (unlikely(ecount == 0)) {
14364 		fpeq->EQ_no_entry++;
14365 
14366 		if (lpfc_fcp_look_ahead) {
14367 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14368 			return IRQ_NONE;
14369 		}
14370 
14371 		if (phba->intr_type == MSIX)
14372 			/* MSI-X treated interrupt served as no EQ share INT */
14373 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14374 					"0358 MSI-X interrupt with no EQE\n");
14375 		else
14376 			/* Non MSI-X treated on interrupt as EQ share INT */
14377 			return IRQ_NONE;
14378 	}
14379 
14380 	if (lpfc_fcp_look_ahead)
14381 		atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14382 
14383 	return IRQ_HANDLED;
14384 } /* lpfc_sli4_fp_intr_handler */
14385 
14386 /**
14387  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14388  * @irq: Interrupt number.
14389  * @dev_id: The device context pointer.
14390  *
14391  * This function is the device-level interrupt handler to device with SLI-4
14392  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14393  * interrupt mode is enabled and there is an event in the HBA which requires
14394  * driver attention. This function invokes the slow-path interrupt attention
14395  * handling function and fast-path interrupt attention handling function in
14396  * turn to process the relevant HBA attention events. This function is called
14397  * without any lock held. It gets the hbalock to access and update SLI data
14398  * structures.
14399  *
14400  * This function returns IRQ_HANDLED when interrupt is handled, else it
14401  * returns IRQ_NONE.
14402  **/
14403 irqreturn_t
14404 lpfc_sli4_intr_handler(int irq, void *dev_id)
14405 {
14406 	struct lpfc_hba  *phba;
14407 	irqreturn_t hba_irq_rc;
14408 	bool hba_handled = false;
14409 	int qidx;
14410 
14411 	/* Get the driver's phba structure from the dev_id */
14412 	phba = (struct lpfc_hba *)dev_id;
14413 
14414 	if (unlikely(!phba))
14415 		return IRQ_NONE;
14416 
14417 	/*
14418 	 * Invoke fast-path host attention interrupt handling as appropriate.
14419 	 */
14420 	for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) {
14421 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14422 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14423 		if (hba_irq_rc == IRQ_HANDLED)
14424 			hba_handled |= true;
14425 	}
14426 
14427 	if (phba->cfg_fof) {
14428 		hba_irq_rc = lpfc_sli4_fof_intr_handler(irq,
14429 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14430 		if (hba_irq_rc == IRQ_HANDLED)
14431 			hba_handled |= true;
14432 	}
14433 
14434 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14435 } /* lpfc_sli4_intr_handler */
14436 
14437 /**
14438  * lpfc_sli4_queue_free - free a queue structure and associated memory
14439  * @queue: The queue structure to free.
14440  *
14441  * This function frees a queue structure and the DMAable memory used for
14442  * the host resident queue. This function must be called after destroying the
14443  * queue on the HBA.
14444  **/
14445 void
14446 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14447 {
14448 	struct lpfc_dmabuf *dmabuf;
14449 
14450 	if (!queue)
14451 		return;
14452 
14453 	while (!list_empty(&queue->page_list)) {
14454 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14455 				 list);
14456 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14457 				  dmabuf->virt, dmabuf->phys);
14458 		kfree(dmabuf);
14459 	}
14460 	if (queue->rqbp) {
14461 		lpfc_free_rq_buffer(queue->phba, queue);
14462 		kfree(queue->rqbp);
14463 	}
14464 
14465 	if (!list_empty(&queue->wq_list))
14466 		list_del(&queue->wq_list);
14467 
14468 	kfree(queue);
14469 	return;
14470 }
14471 
14472 /**
14473  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14474  * @phba: The HBA that this queue is being created on.
14475  * @page_size: The size of a queue page
14476  * @entry_size: The size of each queue entry for this queue.
14477  * @entry count: The number of entries that this queue will handle.
14478  *
14479  * This function allocates a queue structure and the DMAable memory used for
14480  * the host resident queue. This function must be called before creating the
14481  * queue on the HBA.
14482  **/
14483 struct lpfc_queue *
14484 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14485 		      uint32_t entry_size, uint32_t entry_count)
14486 {
14487 	struct lpfc_queue *queue;
14488 	struct lpfc_dmabuf *dmabuf;
14489 	int x, total_qe_count;
14490 	void *dma_pointer;
14491 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14492 
14493 	if (!phba->sli4_hba.pc_sli4_params.supported)
14494 		hw_page_size = page_size;
14495 
14496 	queue = kzalloc(sizeof(struct lpfc_queue) +
14497 			(sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
14498 	if (!queue)
14499 		return NULL;
14500 	queue->page_count = (ALIGN(entry_size * entry_count,
14501 			hw_page_size))/hw_page_size;
14502 
14503 	/* If needed, Adjust page count to match the max the adapter supports */
14504 	if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt)
14505 		queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt;
14506 
14507 	INIT_LIST_HEAD(&queue->list);
14508 	INIT_LIST_HEAD(&queue->wq_list);
14509 	INIT_LIST_HEAD(&queue->wqfull_list);
14510 	INIT_LIST_HEAD(&queue->page_list);
14511 	INIT_LIST_HEAD(&queue->child_list);
14512 
14513 	/* Set queue parameters now.  If the system cannot provide memory
14514 	 * resources, the free routine needs to know what was allocated.
14515 	 */
14516 	queue->entry_size = entry_size;
14517 	queue->entry_count = entry_count;
14518 	queue->page_size = hw_page_size;
14519 	queue->phba = phba;
14520 
14521 	for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
14522 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
14523 		if (!dmabuf)
14524 			goto out_fail;
14525 		dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev,
14526 						   hw_page_size, &dmabuf->phys,
14527 						   GFP_KERNEL);
14528 		if (!dmabuf->virt) {
14529 			kfree(dmabuf);
14530 			goto out_fail;
14531 		}
14532 		dmabuf->buffer_tag = x;
14533 		list_add_tail(&dmabuf->list, &queue->page_list);
14534 		/* initialize queue's entry array */
14535 		dma_pointer = dmabuf->virt;
14536 		for (; total_qe_count < entry_count &&
14537 		     dma_pointer < (hw_page_size + dmabuf->virt);
14538 		     total_qe_count++, dma_pointer += entry_size) {
14539 			queue->qe[total_qe_count].address = dma_pointer;
14540 		}
14541 	}
14542 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14543 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14544 
14545 	/* entry_repost will be set during q creation */
14546 
14547 	return queue;
14548 out_fail:
14549 	lpfc_sli4_queue_free(queue);
14550 	return NULL;
14551 }
14552 
14553 /**
14554  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14555  * @phba: HBA structure that indicates port to create a queue on.
14556  * @pci_barset: PCI BAR set flag.
14557  *
14558  * This function shall perform iomap of the specified PCI BAR address to host
14559  * memory address if not already done so and return it. The returned host
14560  * memory address can be NULL.
14561  */
14562 static void __iomem *
14563 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14564 {
14565 	if (!phba->pcidev)
14566 		return NULL;
14567 
14568 	switch (pci_barset) {
14569 	case WQ_PCI_BAR_0_AND_1:
14570 		return phba->pci_bar0_memmap_p;
14571 	case WQ_PCI_BAR_2_AND_3:
14572 		return phba->pci_bar2_memmap_p;
14573 	case WQ_PCI_BAR_4_AND_5:
14574 		return phba->pci_bar4_memmap_p;
14575 	default:
14576 		break;
14577 	}
14578 	return NULL;
14579 }
14580 
14581 /**
14582  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs
14583  * @phba: HBA structure that indicates port to create a queue on.
14584  * @startq: The starting FCP EQ to modify
14585  *
14586  * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA.
14587  * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be
14588  * updated in one mailbox command.
14589  *
14590  * The @phba struct is used to send mailbox command to HBA. The @startq
14591  * is used to get the starting FCP EQ to change.
14592  * This function is asynchronous and will wait for the mailbox
14593  * command to finish before continuing.
14594  *
14595  * On success this function will return a zero. If unable to allocate enough
14596  * memory this function will return -ENOMEM. If the queue create mailbox command
14597  * fails this function will return -ENXIO.
14598  **/
14599 int
14600 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14601 			 uint32_t numq, uint32_t imax)
14602 {
14603 	struct lpfc_mbx_modify_eq_delay *eq_delay;
14604 	LPFC_MBOXQ_t *mbox;
14605 	struct lpfc_queue *eq;
14606 	int cnt, rc, length, status = 0;
14607 	uint32_t shdr_status, shdr_add_status;
14608 	uint32_t result, val;
14609 	int qidx;
14610 	union lpfc_sli4_cfg_shdr *shdr;
14611 	uint16_t dmult;
14612 
14613 	if (startq >= phba->io_channel_irqs)
14614 		return 0;
14615 
14616 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14617 	if (!mbox)
14618 		return -ENOMEM;
14619 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14620 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14621 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14622 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14623 			 length, LPFC_SLI4_MBX_EMBED);
14624 	eq_delay = &mbox->u.mqe.un.eq_delay;
14625 
14626 	/* Calculate delay multiper from maximum interrupt per second */
14627 	result = imax / phba->io_channel_irqs;
14628 	if (result > LPFC_DMULT_CONST || result == 0)
14629 		dmult = 0;
14630 	else
14631 		dmult = LPFC_DMULT_CONST/result - 1;
14632 	if (dmult > LPFC_DMULT_MAX)
14633 		dmult = LPFC_DMULT_MAX;
14634 
14635 	cnt = 0;
14636 	for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) {
14637 		eq = phba->sli4_hba.hba_eq[qidx];
14638 		if (!eq)
14639 			continue;
14640 		eq->q_mode = imax;
14641 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14642 		eq_delay->u.request.eq[cnt].phase = 0;
14643 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
14644 		cnt++;
14645 
14646 		/* q_mode is only used for auto_imax */
14647 		if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14648 			/* Use EQ Delay Register method for q_mode */
14649 
14650 			/* Convert for EQ Delay register */
14651 			val =  phba->cfg_fcp_imax;
14652 			if (val) {
14653 				/* First, interrupts per sec per EQ */
14654 				val = phba->cfg_fcp_imax /
14655 					phba->io_channel_irqs;
14656 
14657 				/* us delay between each interrupt */
14658 				val = LPFC_SEC_TO_USEC / val;
14659 			}
14660 			eq->q_mode = val;
14661 		} else {
14662 			eq->q_mode = imax;
14663 		}
14664 
14665 		if (cnt >= numq)
14666 			break;
14667 	}
14668 	eq_delay->u.request.num_eq = cnt;
14669 
14670 	mbox->vport = phba->pport;
14671 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14672 	mbox->context1 = NULL;
14673 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14674 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14675 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14676 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14677 	if (shdr_status || shdr_add_status || rc) {
14678 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14679 				"2512 MODIFY_EQ_DELAY mailbox failed with "
14680 				"status x%x add_status x%x, mbx status x%x\n",
14681 				shdr_status, shdr_add_status, rc);
14682 		status = -ENXIO;
14683 	}
14684 	mempool_free(mbox, phba->mbox_mem_pool);
14685 	return status;
14686 }
14687 
14688 /**
14689  * lpfc_eq_create - Create an Event Queue on the HBA
14690  * @phba: HBA structure that indicates port to create a queue on.
14691  * @eq: The queue structure to use to create the event queue.
14692  * @imax: The maximum interrupt per second limit.
14693  *
14694  * This function creates an event queue, as detailed in @eq, on a port,
14695  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14696  *
14697  * The @phba struct is used to send mailbox command to HBA. The @eq struct
14698  * is used to get the entry count and entry size that are necessary to
14699  * determine the number of pages to allocate and use for this queue. This
14700  * function will send the EQ_CREATE mailbox command to the HBA to setup the
14701  * event queue. This function is asynchronous and will wait for the mailbox
14702  * command to finish before continuing.
14703  *
14704  * On success this function will return a zero. If unable to allocate enough
14705  * memory this function will return -ENOMEM. If the queue create mailbox command
14706  * fails this function will return -ENXIO.
14707  **/
14708 int
14709 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14710 {
14711 	struct lpfc_mbx_eq_create *eq_create;
14712 	LPFC_MBOXQ_t *mbox;
14713 	int rc, length, status = 0;
14714 	struct lpfc_dmabuf *dmabuf;
14715 	uint32_t shdr_status, shdr_add_status;
14716 	union lpfc_sli4_cfg_shdr *shdr;
14717 	uint16_t dmult;
14718 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14719 
14720 	/* sanity check on queue memory */
14721 	if (!eq)
14722 		return -ENODEV;
14723 	if (!phba->sli4_hba.pc_sli4_params.supported)
14724 		hw_page_size = SLI4_PAGE_SIZE;
14725 
14726 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14727 	if (!mbox)
14728 		return -ENOMEM;
14729 	length = (sizeof(struct lpfc_mbx_eq_create) -
14730 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14731 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14732 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14733 			 length, LPFC_SLI4_MBX_EMBED);
14734 	eq_create = &mbox->u.mqe.un.eq_create;
14735 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14736 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14737 	       eq->page_count);
14738 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14739 	       LPFC_EQE_SIZE);
14740 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14741 
14742 	/* Use version 2 of CREATE_EQ if eqav is set */
14743 	if (phba->sli4_hba.pc_sli4_params.eqav) {
14744 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14745 		       LPFC_Q_CREATE_VERSION_2);
14746 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14747 		       phba->sli4_hba.pc_sli4_params.eqav);
14748 	}
14749 
14750 	/* don't setup delay multiplier using EQ_CREATE */
14751 	dmult = 0;
14752 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14753 	       dmult);
14754 	switch (eq->entry_count) {
14755 	default:
14756 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14757 				"0360 Unsupported EQ count. (%d)\n",
14758 				eq->entry_count);
14759 		if (eq->entry_count < 256)
14760 			return -EINVAL;
14761 		/* otherwise default to smallest count (drop through) */
14762 	case 256:
14763 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14764 		       LPFC_EQ_CNT_256);
14765 		break;
14766 	case 512:
14767 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14768 		       LPFC_EQ_CNT_512);
14769 		break;
14770 	case 1024:
14771 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14772 		       LPFC_EQ_CNT_1024);
14773 		break;
14774 	case 2048:
14775 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14776 		       LPFC_EQ_CNT_2048);
14777 		break;
14778 	case 4096:
14779 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14780 		       LPFC_EQ_CNT_4096);
14781 		break;
14782 	}
14783 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14784 		memset(dmabuf->virt, 0, hw_page_size);
14785 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14786 					putPaddrLow(dmabuf->phys);
14787 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14788 					putPaddrHigh(dmabuf->phys);
14789 	}
14790 	mbox->vport = phba->pport;
14791 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14792 	mbox->context1 = NULL;
14793 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14794 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14795 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14796 	if (shdr_status || shdr_add_status || rc) {
14797 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14798 				"2500 EQ_CREATE mailbox failed with "
14799 				"status x%x add_status x%x, mbx status x%x\n",
14800 				shdr_status, shdr_add_status, rc);
14801 		status = -ENXIO;
14802 	}
14803 	eq->type = LPFC_EQ;
14804 	eq->subtype = LPFC_NONE;
14805 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14806 	if (eq->queue_id == 0xFFFF)
14807 		status = -ENXIO;
14808 	eq->host_index = 0;
14809 	eq->hba_index = 0;
14810 	eq->entry_repost = LPFC_EQ_REPOST;
14811 
14812 	mempool_free(mbox, phba->mbox_mem_pool);
14813 	return status;
14814 }
14815 
14816 /**
14817  * lpfc_cq_create - Create a Completion Queue on the HBA
14818  * @phba: HBA structure that indicates port to create a queue on.
14819  * @cq: The queue structure to use to create the completion queue.
14820  * @eq: The event queue to bind this completion queue to.
14821  *
14822  * This function creates a completion queue, as detailed in @wq, on a port,
14823  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14824  *
14825  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14826  * is used to get the entry count and entry size that are necessary to
14827  * determine the number of pages to allocate and use for this queue. The @eq
14828  * is used to indicate which event queue to bind this completion queue to. This
14829  * function will send the CQ_CREATE mailbox command to the HBA to setup the
14830  * completion queue. This function is asynchronous and will wait for the mailbox
14831  * command to finish before continuing.
14832  *
14833  * On success this function will return a zero. If unable to allocate enough
14834  * memory this function will return -ENOMEM. If the queue create mailbox command
14835  * fails this function will return -ENXIO.
14836  **/
14837 int
14838 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14839 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14840 {
14841 	struct lpfc_mbx_cq_create *cq_create;
14842 	struct lpfc_dmabuf *dmabuf;
14843 	LPFC_MBOXQ_t *mbox;
14844 	int rc, length, status = 0;
14845 	uint32_t shdr_status, shdr_add_status;
14846 	union lpfc_sli4_cfg_shdr *shdr;
14847 
14848 	/* sanity check on queue memory */
14849 	if (!cq || !eq)
14850 		return -ENODEV;
14851 
14852 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14853 	if (!mbox)
14854 		return -ENOMEM;
14855 	length = (sizeof(struct lpfc_mbx_cq_create) -
14856 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14857 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14858 			 LPFC_MBOX_OPCODE_CQ_CREATE,
14859 			 length, LPFC_SLI4_MBX_EMBED);
14860 	cq_create = &mbox->u.mqe.un.cq_create;
14861 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14862 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14863 		    cq->page_count);
14864 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14865 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14866 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14867 	       phba->sli4_hba.pc_sli4_params.cqv);
14868 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14869 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14870 		       (cq->page_size / SLI4_PAGE_SIZE));
14871 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14872 		       eq->queue_id);
14873 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
14874 		       phba->sli4_hba.pc_sli4_params.cqav);
14875 	} else {
14876 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14877 		       eq->queue_id);
14878 	}
14879 	switch (cq->entry_count) {
14880 	case 2048:
14881 	case 4096:
14882 		if (phba->sli4_hba.pc_sli4_params.cqv ==
14883 		    LPFC_Q_CREATE_VERSION_2) {
14884 			cq_create->u.request.context.lpfc_cq_context_count =
14885 				cq->entry_count;
14886 			bf_set(lpfc_cq_context_count,
14887 			       &cq_create->u.request.context,
14888 			       LPFC_CQ_CNT_WORD7);
14889 			break;
14890 		}
14891 		/* Fall Thru */
14892 	default:
14893 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14894 				"0361 Unsupported CQ count: "
14895 				"entry cnt %d sz %d pg cnt %d\n",
14896 				cq->entry_count, cq->entry_size,
14897 				cq->page_count);
14898 		if (cq->entry_count < 256) {
14899 			status = -EINVAL;
14900 			goto out;
14901 		}
14902 		/* otherwise default to smallest count (drop through) */
14903 	case 256:
14904 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14905 		       LPFC_CQ_CNT_256);
14906 		break;
14907 	case 512:
14908 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14909 		       LPFC_CQ_CNT_512);
14910 		break;
14911 	case 1024:
14912 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14913 		       LPFC_CQ_CNT_1024);
14914 		break;
14915 	}
14916 	list_for_each_entry(dmabuf, &cq->page_list, list) {
14917 		memset(dmabuf->virt, 0, cq->page_size);
14918 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14919 					putPaddrLow(dmabuf->phys);
14920 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14921 					putPaddrHigh(dmabuf->phys);
14922 	}
14923 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14924 
14925 	/* The IOCTL status is embedded in the mailbox subheader. */
14926 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14927 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14928 	if (shdr_status || shdr_add_status || rc) {
14929 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14930 				"2501 CQ_CREATE mailbox failed with "
14931 				"status x%x add_status x%x, mbx status x%x\n",
14932 				shdr_status, shdr_add_status, rc);
14933 		status = -ENXIO;
14934 		goto out;
14935 	}
14936 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14937 	if (cq->queue_id == 0xFFFF) {
14938 		status = -ENXIO;
14939 		goto out;
14940 	}
14941 	/* link the cq onto the parent eq child list */
14942 	list_add_tail(&cq->list, &eq->child_list);
14943 	/* Set up completion queue's type and subtype */
14944 	cq->type = type;
14945 	cq->subtype = subtype;
14946 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14947 	cq->assoc_qid = eq->queue_id;
14948 	cq->host_index = 0;
14949 	cq->hba_index = 0;
14950 	cq->entry_repost = LPFC_CQ_REPOST;
14951 
14952 out:
14953 	mempool_free(mbox, phba->mbox_mem_pool);
14954 	return status;
14955 }
14956 
14957 /**
14958  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14959  * @phba: HBA structure that indicates port to create a queue on.
14960  * @cqp: The queue structure array to use to create the completion queues.
14961  * @eqp: The event queue array to bind these completion queues to.
14962  *
14963  * This function creates a set of  completion queue, s to support MRQ
14964  * as detailed in @cqp, on a port,
14965  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14966  *
14967  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14968  * is used to get the entry count and entry size that are necessary to
14969  * determine the number of pages to allocate and use for this queue. The @eq
14970  * is used to indicate which event queue to bind this completion queue to. This
14971  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14972  * completion queue. This function is asynchronous and will wait for the mailbox
14973  * command to finish before continuing.
14974  *
14975  * On success this function will return a zero. If unable to allocate enough
14976  * memory this function will return -ENOMEM. If the queue create mailbox command
14977  * fails this function will return -ENXIO.
14978  **/
14979 int
14980 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14981 		   struct lpfc_queue **eqp, uint32_t type, uint32_t subtype)
14982 {
14983 	struct lpfc_queue *cq;
14984 	struct lpfc_queue *eq;
14985 	struct lpfc_mbx_cq_create_set *cq_set;
14986 	struct lpfc_dmabuf *dmabuf;
14987 	LPFC_MBOXQ_t *mbox;
14988 	int rc, length, alloclen, status = 0;
14989 	int cnt, idx, numcq, page_idx = 0;
14990 	uint32_t shdr_status, shdr_add_status;
14991 	union lpfc_sli4_cfg_shdr *shdr;
14992 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14993 
14994 	/* sanity check on queue memory */
14995 	numcq = phba->cfg_nvmet_mrq;
14996 	if (!cqp || !eqp || !numcq)
14997 		return -ENODEV;
14998 
14999 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15000 	if (!mbox)
15001 		return -ENOMEM;
15002 
15003 	length = sizeof(struct lpfc_mbx_cq_create_set);
15004 	length += ((numcq * cqp[0]->page_count) *
15005 		   sizeof(struct dma_address));
15006 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15007 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15008 			LPFC_SLI4_MBX_NEMBED);
15009 	if (alloclen < length) {
15010 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15011 				"3098 Allocated DMA memory size (%d) is "
15012 				"less than the requested DMA memory size "
15013 				"(%d)\n", alloclen, length);
15014 		status = -ENOMEM;
15015 		goto out;
15016 	}
15017 	cq_set = mbox->sge_array->addr[0];
15018 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15019 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15020 
15021 	for (idx = 0; idx < numcq; idx++) {
15022 		cq = cqp[idx];
15023 		eq = eqp[idx];
15024 		if (!cq || !eq) {
15025 			status = -ENOMEM;
15026 			goto out;
15027 		}
15028 		if (!phba->sli4_hba.pc_sli4_params.supported)
15029 			hw_page_size = cq->page_size;
15030 
15031 		switch (idx) {
15032 		case 0:
15033 			bf_set(lpfc_mbx_cq_create_set_page_size,
15034 			       &cq_set->u.request,
15035 			       (hw_page_size / SLI4_PAGE_SIZE));
15036 			bf_set(lpfc_mbx_cq_create_set_num_pages,
15037 			       &cq_set->u.request, cq->page_count);
15038 			bf_set(lpfc_mbx_cq_create_set_evt,
15039 			       &cq_set->u.request, 1);
15040 			bf_set(lpfc_mbx_cq_create_set_valid,
15041 			       &cq_set->u.request, 1);
15042 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
15043 			       &cq_set->u.request, 0);
15044 			bf_set(lpfc_mbx_cq_create_set_num_cq,
15045 			       &cq_set->u.request, numcq);
15046 			bf_set(lpfc_mbx_cq_create_set_autovalid,
15047 			       &cq_set->u.request,
15048 			       phba->sli4_hba.pc_sli4_params.cqav);
15049 			switch (cq->entry_count) {
15050 			case 2048:
15051 			case 4096:
15052 				if (phba->sli4_hba.pc_sli4_params.cqv ==
15053 				    LPFC_Q_CREATE_VERSION_2) {
15054 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15055 					       &cq_set->u.request,
15056 						cq->entry_count);
15057 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15058 					       &cq_set->u.request,
15059 					       LPFC_CQ_CNT_WORD7);
15060 					break;
15061 				}
15062 				/* Fall Thru */
15063 			default:
15064 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15065 						"3118 Bad CQ count. (%d)\n",
15066 						cq->entry_count);
15067 				if (cq->entry_count < 256) {
15068 					status = -EINVAL;
15069 					goto out;
15070 				}
15071 				/* otherwise default to smallest (drop thru) */
15072 			case 256:
15073 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15074 				       &cq_set->u.request, LPFC_CQ_CNT_256);
15075 				break;
15076 			case 512:
15077 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15078 				       &cq_set->u.request, LPFC_CQ_CNT_512);
15079 				break;
15080 			case 1024:
15081 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15082 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15083 				break;
15084 			}
15085 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15086 			       &cq_set->u.request, eq->queue_id);
15087 			break;
15088 		case 1:
15089 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15090 			       &cq_set->u.request, eq->queue_id);
15091 			break;
15092 		case 2:
15093 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15094 			       &cq_set->u.request, eq->queue_id);
15095 			break;
15096 		case 3:
15097 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15098 			       &cq_set->u.request, eq->queue_id);
15099 			break;
15100 		case 4:
15101 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15102 			       &cq_set->u.request, eq->queue_id);
15103 			break;
15104 		case 5:
15105 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15106 			       &cq_set->u.request, eq->queue_id);
15107 			break;
15108 		case 6:
15109 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15110 			       &cq_set->u.request, eq->queue_id);
15111 			break;
15112 		case 7:
15113 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15114 			       &cq_set->u.request, eq->queue_id);
15115 			break;
15116 		case 8:
15117 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15118 			       &cq_set->u.request, eq->queue_id);
15119 			break;
15120 		case 9:
15121 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15122 			       &cq_set->u.request, eq->queue_id);
15123 			break;
15124 		case 10:
15125 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15126 			       &cq_set->u.request, eq->queue_id);
15127 			break;
15128 		case 11:
15129 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15130 			       &cq_set->u.request, eq->queue_id);
15131 			break;
15132 		case 12:
15133 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15134 			       &cq_set->u.request, eq->queue_id);
15135 			break;
15136 		case 13:
15137 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15138 			       &cq_set->u.request, eq->queue_id);
15139 			break;
15140 		case 14:
15141 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15142 			       &cq_set->u.request, eq->queue_id);
15143 			break;
15144 		case 15:
15145 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15146 			       &cq_set->u.request, eq->queue_id);
15147 			break;
15148 		}
15149 
15150 		/* link the cq onto the parent eq child list */
15151 		list_add_tail(&cq->list, &eq->child_list);
15152 		/* Set up completion queue's type and subtype */
15153 		cq->type = type;
15154 		cq->subtype = subtype;
15155 		cq->assoc_qid = eq->queue_id;
15156 		cq->host_index = 0;
15157 		cq->hba_index = 0;
15158 		cq->entry_repost = LPFC_CQ_REPOST;
15159 		cq->chann = idx;
15160 
15161 		rc = 0;
15162 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15163 			memset(dmabuf->virt, 0, hw_page_size);
15164 			cnt = page_idx + dmabuf->buffer_tag;
15165 			cq_set->u.request.page[cnt].addr_lo =
15166 					putPaddrLow(dmabuf->phys);
15167 			cq_set->u.request.page[cnt].addr_hi =
15168 					putPaddrHigh(dmabuf->phys);
15169 			rc++;
15170 		}
15171 		page_idx += rc;
15172 	}
15173 
15174 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15175 
15176 	/* The IOCTL status is embedded in the mailbox subheader. */
15177 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15178 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15179 	if (shdr_status || shdr_add_status || rc) {
15180 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15181 				"3119 CQ_CREATE_SET mailbox failed with "
15182 				"status x%x add_status x%x, mbx status x%x\n",
15183 				shdr_status, shdr_add_status, rc);
15184 		status = -ENXIO;
15185 		goto out;
15186 	}
15187 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15188 	if (rc == 0xFFFF) {
15189 		status = -ENXIO;
15190 		goto out;
15191 	}
15192 
15193 	for (idx = 0; idx < numcq; idx++) {
15194 		cq = cqp[idx];
15195 		cq->queue_id = rc + idx;
15196 	}
15197 
15198 out:
15199 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15200 	return status;
15201 }
15202 
15203 /**
15204  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15205  * @phba: HBA structure that indicates port to create a queue on.
15206  * @mq: The queue structure to use to create the mailbox queue.
15207  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15208  * @cq: The completion queue to associate with this cq.
15209  *
15210  * This function provides failback (fb) functionality when the
15211  * mq_create_ext fails on older FW generations.  It's purpose is identical
15212  * to mq_create_ext otherwise.
15213  *
15214  * This routine cannot fail as all attributes were previously accessed and
15215  * initialized in mq_create_ext.
15216  **/
15217 static void
15218 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15219 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15220 {
15221 	struct lpfc_mbx_mq_create *mq_create;
15222 	struct lpfc_dmabuf *dmabuf;
15223 	int length;
15224 
15225 	length = (sizeof(struct lpfc_mbx_mq_create) -
15226 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15227 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15228 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15229 			 length, LPFC_SLI4_MBX_EMBED);
15230 	mq_create = &mbox->u.mqe.un.mq_create;
15231 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15232 	       mq->page_count);
15233 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15234 	       cq->queue_id);
15235 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15236 	switch (mq->entry_count) {
15237 	case 16:
15238 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15239 		       LPFC_MQ_RING_SIZE_16);
15240 		break;
15241 	case 32:
15242 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15243 		       LPFC_MQ_RING_SIZE_32);
15244 		break;
15245 	case 64:
15246 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15247 		       LPFC_MQ_RING_SIZE_64);
15248 		break;
15249 	case 128:
15250 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15251 		       LPFC_MQ_RING_SIZE_128);
15252 		break;
15253 	}
15254 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15255 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15256 			putPaddrLow(dmabuf->phys);
15257 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15258 			putPaddrHigh(dmabuf->phys);
15259 	}
15260 }
15261 
15262 /**
15263  * lpfc_mq_create - Create a mailbox Queue on the HBA
15264  * @phba: HBA structure that indicates port to create a queue on.
15265  * @mq: The queue structure to use to create the mailbox queue.
15266  * @cq: The completion queue to associate with this cq.
15267  * @subtype: The queue's subtype.
15268  *
15269  * This function creates a mailbox queue, as detailed in @mq, on a port,
15270  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15271  *
15272  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15273  * is used to get the entry count and entry size that are necessary to
15274  * determine the number of pages to allocate and use for this queue. This
15275  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15276  * mailbox queue. This function is asynchronous and will wait for the mailbox
15277  * command to finish before continuing.
15278  *
15279  * On success this function will return a zero. If unable to allocate enough
15280  * memory this function will return -ENOMEM. If the queue create mailbox command
15281  * fails this function will return -ENXIO.
15282  **/
15283 int32_t
15284 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15285 	       struct lpfc_queue *cq, uint32_t subtype)
15286 {
15287 	struct lpfc_mbx_mq_create *mq_create;
15288 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15289 	struct lpfc_dmabuf *dmabuf;
15290 	LPFC_MBOXQ_t *mbox;
15291 	int rc, length, status = 0;
15292 	uint32_t shdr_status, shdr_add_status;
15293 	union lpfc_sli4_cfg_shdr *shdr;
15294 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15295 
15296 	/* sanity check on queue memory */
15297 	if (!mq || !cq)
15298 		return -ENODEV;
15299 	if (!phba->sli4_hba.pc_sli4_params.supported)
15300 		hw_page_size = SLI4_PAGE_SIZE;
15301 
15302 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15303 	if (!mbox)
15304 		return -ENOMEM;
15305 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15306 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15307 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15308 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15309 			 length, LPFC_SLI4_MBX_EMBED);
15310 
15311 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15312 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15313 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15314 	       &mq_create_ext->u.request, mq->page_count);
15315 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15316 	       &mq_create_ext->u.request, 1);
15317 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15318 	       &mq_create_ext->u.request, 1);
15319 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15320 	       &mq_create_ext->u.request, 1);
15321 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15322 	       &mq_create_ext->u.request, 1);
15323 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15324 	       &mq_create_ext->u.request, 1);
15325 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15326 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15327 	       phba->sli4_hba.pc_sli4_params.mqv);
15328 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15329 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15330 		       cq->queue_id);
15331 	else
15332 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15333 		       cq->queue_id);
15334 	switch (mq->entry_count) {
15335 	default:
15336 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15337 				"0362 Unsupported MQ count. (%d)\n",
15338 				mq->entry_count);
15339 		if (mq->entry_count < 16) {
15340 			status = -EINVAL;
15341 			goto out;
15342 		}
15343 		/* otherwise default to smallest count (drop through) */
15344 	case 16:
15345 		bf_set(lpfc_mq_context_ring_size,
15346 		       &mq_create_ext->u.request.context,
15347 		       LPFC_MQ_RING_SIZE_16);
15348 		break;
15349 	case 32:
15350 		bf_set(lpfc_mq_context_ring_size,
15351 		       &mq_create_ext->u.request.context,
15352 		       LPFC_MQ_RING_SIZE_32);
15353 		break;
15354 	case 64:
15355 		bf_set(lpfc_mq_context_ring_size,
15356 		       &mq_create_ext->u.request.context,
15357 		       LPFC_MQ_RING_SIZE_64);
15358 		break;
15359 	case 128:
15360 		bf_set(lpfc_mq_context_ring_size,
15361 		       &mq_create_ext->u.request.context,
15362 		       LPFC_MQ_RING_SIZE_128);
15363 		break;
15364 	}
15365 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15366 		memset(dmabuf->virt, 0, hw_page_size);
15367 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15368 					putPaddrLow(dmabuf->phys);
15369 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15370 					putPaddrHigh(dmabuf->phys);
15371 	}
15372 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15373 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15374 			      &mq_create_ext->u.response);
15375 	if (rc != MBX_SUCCESS) {
15376 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15377 				"2795 MQ_CREATE_EXT failed with "
15378 				"status x%x. Failback to MQ_CREATE.\n",
15379 				rc);
15380 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15381 		mq_create = &mbox->u.mqe.un.mq_create;
15382 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15383 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15384 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15385 				      &mq_create->u.response);
15386 	}
15387 
15388 	/* The IOCTL status is embedded in the mailbox subheader. */
15389 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15390 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15391 	if (shdr_status || shdr_add_status || rc) {
15392 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15393 				"2502 MQ_CREATE mailbox failed with "
15394 				"status x%x add_status x%x, mbx status x%x\n",
15395 				shdr_status, shdr_add_status, rc);
15396 		status = -ENXIO;
15397 		goto out;
15398 	}
15399 	if (mq->queue_id == 0xFFFF) {
15400 		status = -ENXIO;
15401 		goto out;
15402 	}
15403 	mq->type = LPFC_MQ;
15404 	mq->assoc_qid = cq->queue_id;
15405 	mq->subtype = subtype;
15406 	mq->host_index = 0;
15407 	mq->hba_index = 0;
15408 	mq->entry_repost = LPFC_MQ_REPOST;
15409 
15410 	/* link the mq onto the parent cq child list */
15411 	list_add_tail(&mq->list, &cq->child_list);
15412 out:
15413 	mempool_free(mbox, phba->mbox_mem_pool);
15414 	return status;
15415 }
15416 
15417 /**
15418  * lpfc_wq_create - Create a Work Queue on the HBA
15419  * @phba: HBA structure that indicates port to create a queue on.
15420  * @wq: The queue structure to use to create the work queue.
15421  * @cq: The completion queue to bind this work queue to.
15422  * @subtype: The subtype of the work queue indicating its functionality.
15423  *
15424  * This function creates a work queue, as detailed in @wq, on a port, described
15425  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15426  *
15427  * The @phba struct is used to send mailbox command to HBA. The @wq struct
15428  * is used to get the entry count and entry size that are necessary to
15429  * determine the number of pages to allocate and use for this queue. The @cq
15430  * is used to indicate which completion queue to bind this work queue to. This
15431  * function will send the WQ_CREATE mailbox command to the HBA to setup the
15432  * work queue. This function is asynchronous and will wait for the mailbox
15433  * command to finish before continuing.
15434  *
15435  * On success this function will return a zero. If unable to allocate enough
15436  * memory this function will return -ENOMEM. If the queue create mailbox command
15437  * fails this function will return -ENXIO.
15438  **/
15439 int
15440 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15441 	       struct lpfc_queue *cq, uint32_t subtype)
15442 {
15443 	struct lpfc_mbx_wq_create *wq_create;
15444 	struct lpfc_dmabuf *dmabuf;
15445 	LPFC_MBOXQ_t *mbox;
15446 	int rc, length, status = 0;
15447 	uint32_t shdr_status, shdr_add_status;
15448 	union lpfc_sli4_cfg_shdr *shdr;
15449 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15450 	struct dma_address *page;
15451 	void __iomem *bar_memmap_p;
15452 	uint32_t db_offset;
15453 	uint16_t pci_barset;
15454 	uint8_t dpp_barset;
15455 	uint32_t dpp_offset;
15456 	unsigned long pg_addr;
15457 	uint8_t wq_create_version;
15458 
15459 	/* sanity check on queue memory */
15460 	if (!wq || !cq)
15461 		return -ENODEV;
15462 	if (!phba->sli4_hba.pc_sli4_params.supported)
15463 		hw_page_size = wq->page_size;
15464 
15465 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15466 	if (!mbox)
15467 		return -ENOMEM;
15468 	length = (sizeof(struct lpfc_mbx_wq_create) -
15469 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15470 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15471 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15472 			 length, LPFC_SLI4_MBX_EMBED);
15473 	wq_create = &mbox->u.mqe.un.wq_create;
15474 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15475 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15476 		    wq->page_count);
15477 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15478 		    cq->queue_id);
15479 
15480 	/* wqv is the earliest version supported, NOT the latest */
15481 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15482 	       phba->sli4_hba.pc_sli4_params.wqv);
15483 
15484 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15485 	    (wq->page_size > SLI4_PAGE_SIZE))
15486 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15487 	else
15488 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15489 
15490 
15491 	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15492 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15493 	else
15494 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15495 
15496 	switch (wq_create_version) {
15497 	case LPFC_Q_CREATE_VERSION_1:
15498 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15499 		       wq->entry_count);
15500 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15501 		       LPFC_Q_CREATE_VERSION_1);
15502 
15503 		switch (wq->entry_size) {
15504 		default:
15505 		case 64:
15506 			bf_set(lpfc_mbx_wq_create_wqe_size,
15507 			       &wq_create->u.request_1,
15508 			       LPFC_WQ_WQE_SIZE_64);
15509 			break;
15510 		case 128:
15511 			bf_set(lpfc_mbx_wq_create_wqe_size,
15512 			       &wq_create->u.request_1,
15513 			       LPFC_WQ_WQE_SIZE_128);
15514 			break;
15515 		}
15516 		/* Request DPP by default */
15517 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15518 		bf_set(lpfc_mbx_wq_create_page_size,
15519 		       &wq_create->u.request_1,
15520 		       (wq->page_size / SLI4_PAGE_SIZE));
15521 		page = wq_create->u.request_1.page;
15522 		break;
15523 	default:
15524 		page = wq_create->u.request.page;
15525 		break;
15526 	}
15527 
15528 	list_for_each_entry(dmabuf, &wq->page_list, list) {
15529 		memset(dmabuf->virt, 0, hw_page_size);
15530 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15531 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15532 	}
15533 
15534 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15535 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15536 
15537 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15538 	/* The IOCTL status is embedded in the mailbox subheader. */
15539 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15540 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15541 	if (shdr_status || shdr_add_status || rc) {
15542 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15543 				"2503 WQ_CREATE mailbox failed with "
15544 				"status x%x add_status x%x, mbx status x%x\n",
15545 				shdr_status, shdr_add_status, rc);
15546 		status = -ENXIO;
15547 		goto out;
15548 	}
15549 
15550 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15551 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15552 					&wq_create->u.response);
15553 	else
15554 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15555 					&wq_create->u.response_1);
15556 
15557 	if (wq->queue_id == 0xFFFF) {
15558 		status = -ENXIO;
15559 		goto out;
15560 	}
15561 
15562 	wq->db_format = LPFC_DB_LIST_FORMAT;
15563 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15564 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15565 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15566 					       &wq_create->u.response);
15567 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15568 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15569 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15570 						"3265 WQ[%d] doorbell format "
15571 						"not supported: x%x\n",
15572 						wq->queue_id, wq->db_format);
15573 				status = -EINVAL;
15574 				goto out;
15575 			}
15576 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15577 					    &wq_create->u.response);
15578 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15579 								   pci_barset);
15580 			if (!bar_memmap_p) {
15581 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15582 						"3263 WQ[%d] failed to memmap "
15583 						"pci barset:x%x\n",
15584 						wq->queue_id, pci_barset);
15585 				status = -ENOMEM;
15586 				goto out;
15587 			}
15588 			db_offset = wq_create->u.response.doorbell_offset;
15589 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15590 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15591 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15592 						"3252 WQ[%d] doorbell offset "
15593 						"not supported: x%x\n",
15594 						wq->queue_id, db_offset);
15595 				status = -EINVAL;
15596 				goto out;
15597 			}
15598 			wq->db_regaddr = bar_memmap_p + db_offset;
15599 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15600 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
15601 					"format:x%x\n", wq->queue_id,
15602 					pci_barset, db_offset, wq->db_format);
15603 		} else
15604 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15605 	} else {
15606 		/* Check if DPP was honored by the firmware */
15607 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15608 				    &wq_create->u.response_1);
15609 		if (wq->dpp_enable) {
15610 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15611 					    &wq_create->u.response_1);
15612 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15613 								   pci_barset);
15614 			if (!bar_memmap_p) {
15615 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15616 						"3267 WQ[%d] failed to memmap "
15617 						"pci barset:x%x\n",
15618 						wq->queue_id, pci_barset);
15619 				status = -ENOMEM;
15620 				goto out;
15621 			}
15622 			db_offset = wq_create->u.response_1.doorbell_offset;
15623 			wq->db_regaddr = bar_memmap_p + db_offset;
15624 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15625 					    &wq_create->u.response_1);
15626 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15627 					    &wq_create->u.response_1);
15628 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15629 								   dpp_barset);
15630 			if (!bar_memmap_p) {
15631 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15632 						"3268 WQ[%d] failed to memmap "
15633 						"pci barset:x%x\n",
15634 						wq->queue_id, dpp_barset);
15635 				status = -ENOMEM;
15636 				goto out;
15637 			}
15638 			dpp_offset = wq_create->u.response_1.dpp_offset;
15639 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15640 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15641 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
15642 					"dpp_id:x%x dpp_barset:x%x "
15643 					"dpp_offset:x%x\n",
15644 					wq->queue_id, pci_barset, db_offset,
15645 					wq->dpp_id, dpp_barset, dpp_offset);
15646 
15647 			/* Enable combined writes for DPP aperture */
15648 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15649 #ifdef CONFIG_X86
15650 			rc = set_memory_wc(pg_addr, 1);
15651 			if (rc) {
15652 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15653 					"3272 Cannot setup Combined "
15654 					"Write on WQ[%d] - disable DPP\n",
15655 					wq->queue_id);
15656 				phba->cfg_enable_dpp = 0;
15657 			}
15658 #else
15659 			phba->cfg_enable_dpp = 0;
15660 #endif
15661 		} else
15662 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15663 	}
15664 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15665 	if (wq->pring == NULL) {
15666 		status = -ENOMEM;
15667 		goto out;
15668 	}
15669 	wq->type = LPFC_WQ;
15670 	wq->assoc_qid = cq->queue_id;
15671 	wq->subtype = subtype;
15672 	wq->host_index = 0;
15673 	wq->hba_index = 0;
15674 	wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL;
15675 
15676 	/* link the wq onto the parent cq child list */
15677 	list_add_tail(&wq->list, &cq->child_list);
15678 out:
15679 	mempool_free(mbox, phba->mbox_mem_pool);
15680 	return status;
15681 }
15682 
15683 /**
15684  * lpfc_rq_create - Create a Receive Queue on the HBA
15685  * @phba: HBA structure that indicates port to create a queue on.
15686  * @hrq: The queue structure to use to create the header receive queue.
15687  * @drq: The queue structure to use to create the data receive queue.
15688  * @cq: The completion queue to bind this work queue to.
15689  *
15690  * This function creates a receive buffer queue pair , as detailed in @hrq and
15691  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15692  * to the HBA.
15693  *
15694  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15695  * struct is used to get the entry count that is necessary to determine the
15696  * number of pages to use for this queue. The @cq is used to indicate which
15697  * completion queue to bind received buffers that are posted to these queues to.
15698  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15699  * receive queue pair. This function is asynchronous and will wait for the
15700  * mailbox command to finish before continuing.
15701  *
15702  * On success this function will return a zero. If unable to allocate enough
15703  * memory this function will return -ENOMEM. If the queue create mailbox command
15704  * fails this function will return -ENXIO.
15705  **/
15706 int
15707 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15708 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15709 {
15710 	struct lpfc_mbx_rq_create *rq_create;
15711 	struct lpfc_dmabuf *dmabuf;
15712 	LPFC_MBOXQ_t *mbox;
15713 	int rc, length, status = 0;
15714 	uint32_t shdr_status, shdr_add_status;
15715 	union lpfc_sli4_cfg_shdr *shdr;
15716 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15717 	void __iomem *bar_memmap_p;
15718 	uint32_t db_offset;
15719 	uint16_t pci_barset;
15720 
15721 	/* sanity check on queue memory */
15722 	if (!hrq || !drq || !cq)
15723 		return -ENODEV;
15724 	if (!phba->sli4_hba.pc_sli4_params.supported)
15725 		hw_page_size = SLI4_PAGE_SIZE;
15726 
15727 	if (hrq->entry_count != drq->entry_count)
15728 		return -EINVAL;
15729 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15730 	if (!mbox)
15731 		return -ENOMEM;
15732 	length = (sizeof(struct lpfc_mbx_rq_create) -
15733 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15734 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15735 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15736 			 length, LPFC_SLI4_MBX_EMBED);
15737 	rq_create = &mbox->u.mqe.un.rq_create;
15738 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15739 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15740 	       phba->sli4_hba.pc_sli4_params.rqv);
15741 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15742 		bf_set(lpfc_rq_context_rqe_count_1,
15743 		       &rq_create->u.request.context,
15744 		       hrq->entry_count);
15745 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15746 		bf_set(lpfc_rq_context_rqe_size,
15747 		       &rq_create->u.request.context,
15748 		       LPFC_RQE_SIZE_8);
15749 		bf_set(lpfc_rq_context_page_size,
15750 		       &rq_create->u.request.context,
15751 		       LPFC_RQ_PAGE_SIZE_4096);
15752 	} else {
15753 		switch (hrq->entry_count) {
15754 		default:
15755 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15756 					"2535 Unsupported RQ count. (%d)\n",
15757 					hrq->entry_count);
15758 			if (hrq->entry_count < 512) {
15759 				status = -EINVAL;
15760 				goto out;
15761 			}
15762 			/* otherwise default to smallest count (drop through) */
15763 		case 512:
15764 			bf_set(lpfc_rq_context_rqe_count,
15765 			       &rq_create->u.request.context,
15766 			       LPFC_RQ_RING_SIZE_512);
15767 			break;
15768 		case 1024:
15769 			bf_set(lpfc_rq_context_rqe_count,
15770 			       &rq_create->u.request.context,
15771 			       LPFC_RQ_RING_SIZE_1024);
15772 			break;
15773 		case 2048:
15774 			bf_set(lpfc_rq_context_rqe_count,
15775 			       &rq_create->u.request.context,
15776 			       LPFC_RQ_RING_SIZE_2048);
15777 			break;
15778 		case 4096:
15779 			bf_set(lpfc_rq_context_rqe_count,
15780 			       &rq_create->u.request.context,
15781 			       LPFC_RQ_RING_SIZE_4096);
15782 			break;
15783 		}
15784 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15785 		       LPFC_HDR_BUF_SIZE);
15786 	}
15787 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15788 	       cq->queue_id);
15789 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15790 	       hrq->page_count);
15791 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
15792 		memset(dmabuf->virt, 0, hw_page_size);
15793 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15794 					putPaddrLow(dmabuf->phys);
15795 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15796 					putPaddrHigh(dmabuf->phys);
15797 	}
15798 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15799 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15800 
15801 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15802 	/* The IOCTL status is embedded in the mailbox subheader. */
15803 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15804 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15805 	if (shdr_status || shdr_add_status || rc) {
15806 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15807 				"2504 RQ_CREATE mailbox failed with "
15808 				"status x%x add_status x%x, mbx status x%x\n",
15809 				shdr_status, shdr_add_status, rc);
15810 		status = -ENXIO;
15811 		goto out;
15812 	}
15813 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15814 	if (hrq->queue_id == 0xFFFF) {
15815 		status = -ENXIO;
15816 		goto out;
15817 	}
15818 
15819 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15820 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15821 					&rq_create->u.response);
15822 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15823 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15824 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15825 					"3262 RQ [%d] doorbell format not "
15826 					"supported: x%x\n", hrq->queue_id,
15827 					hrq->db_format);
15828 			status = -EINVAL;
15829 			goto out;
15830 		}
15831 
15832 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15833 				    &rq_create->u.response);
15834 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15835 		if (!bar_memmap_p) {
15836 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15837 					"3269 RQ[%d] failed to memmap pci "
15838 					"barset:x%x\n", hrq->queue_id,
15839 					pci_barset);
15840 			status = -ENOMEM;
15841 			goto out;
15842 		}
15843 
15844 		db_offset = rq_create->u.response.doorbell_offset;
15845 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15846 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15847 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15848 					"3270 RQ[%d] doorbell offset not "
15849 					"supported: x%x\n", hrq->queue_id,
15850 					db_offset);
15851 			status = -EINVAL;
15852 			goto out;
15853 		}
15854 		hrq->db_regaddr = bar_memmap_p + db_offset;
15855 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15856 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15857 				"format:x%x\n", hrq->queue_id, pci_barset,
15858 				db_offset, hrq->db_format);
15859 	} else {
15860 		hrq->db_format = LPFC_DB_RING_FORMAT;
15861 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15862 	}
15863 	hrq->type = LPFC_HRQ;
15864 	hrq->assoc_qid = cq->queue_id;
15865 	hrq->subtype = subtype;
15866 	hrq->host_index = 0;
15867 	hrq->hba_index = 0;
15868 	hrq->entry_repost = LPFC_RQ_REPOST;
15869 
15870 	/* now create the data queue */
15871 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15872 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15873 			 length, LPFC_SLI4_MBX_EMBED);
15874 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15875 	       phba->sli4_hba.pc_sli4_params.rqv);
15876 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15877 		bf_set(lpfc_rq_context_rqe_count_1,
15878 		       &rq_create->u.request.context, hrq->entry_count);
15879 		if (subtype == LPFC_NVMET)
15880 			rq_create->u.request.context.buffer_size =
15881 				LPFC_NVMET_DATA_BUF_SIZE;
15882 		else
15883 			rq_create->u.request.context.buffer_size =
15884 				LPFC_DATA_BUF_SIZE;
15885 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15886 		       LPFC_RQE_SIZE_8);
15887 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15888 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
15889 	} else {
15890 		switch (drq->entry_count) {
15891 		default:
15892 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15893 					"2536 Unsupported RQ count. (%d)\n",
15894 					drq->entry_count);
15895 			if (drq->entry_count < 512) {
15896 				status = -EINVAL;
15897 				goto out;
15898 			}
15899 			/* otherwise default to smallest count (drop through) */
15900 		case 512:
15901 			bf_set(lpfc_rq_context_rqe_count,
15902 			       &rq_create->u.request.context,
15903 			       LPFC_RQ_RING_SIZE_512);
15904 			break;
15905 		case 1024:
15906 			bf_set(lpfc_rq_context_rqe_count,
15907 			       &rq_create->u.request.context,
15908 			       LPFC_RQ_RING_SIZE_1024);
15909 			break;
15910 		case 2048:
15911 			bf_set(lpfc_rq_context_rqe_count,
15912 			       &rq_create->u.request.context,
15913 			       LPFC_RQ_RING_SIZE_2048);
15914 			break;
15915 		case 4096:
15916 			bf_set(lpfc_rq_context_rqe_count,
15917 			       &rq_create->u.request.context,
15918 			       LPFC_RQ_RING_SIZE_4096);
15919 			break;
15920 		}
15921 		if (subtype == LPFC_NVMET)
15922 			bf_set(lpfc_rq_context_buf_size,
15923 			       &rq_create->u.request.context,
15924 			       LPFC_NVMET_DATA_BUF_SIZE);
15925 		else
15926 			bf_set(lpfc_rq_context_buf_size,
15927 			       &rq_create->u.request.context,
15928 			       LPFC_DATA_BUF_SIZE);
15929 	}
15930 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15931 	       cq->queue_id);
15932 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15933 	       drq->page_count);
15934 	list_for_each_entry(dmabuf, &drq->page_list, list) {
15935 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15936 					putPaddrLow(dmabuf->phys);
15937 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15938 					putPaddrHigh(dmabuf->phys);
15939 	}
15940 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15941 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15942 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15943 	/* The IOCTL status is embedded in the mailbox subheader. */
15944 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15945 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15946 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15947 	if (shdr_status || shdr_add_status || rc) {
15948 		status = -ENXIO;
15949 		goto out;
15950 	}
15951 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15952 	if (drq->queue_id == 0xFFFF) {
15953 		status = -ENXIO;
15954 		goto out;
15955 	}
15956 	drq->type = LPFC_DRQ;
15957 	drq->assoc_qid = cq->queue_id;
15958 	drq->subtype = subtype;
15959 	drq->host_index = 0;
15960 	drq->hba_index = 0;
15961 	drq->entry_repost = LPFC_RQ_REPOST;
15962 
15963 	/* link the header and data RQs onto the parent cq child list */
15964 	list_add_tail(&hrq->list, &cq->child_list);
15965 	list_add_tail(&drq->list, &cq->child_list);
15966 
15967 out:
15968 	mempool_free(mbox, phba->mbox_mem_pool);
15969 	return status;
15970 }
15971 
15972 /**
15973  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15974  * @phba: HBA structure that indicates port to create a queue on.
15975  * @hrqp: The queue structure array to use to create the header receive queues.
15976  * @drqp: The queue structure array to use to create the data receive queues.
15977  * @cqp: The completion queue array to bind these receive queues to.
15978  *
15979  * This function creates a receive buffer queue pair , as detailed in @hrq and
15980  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15981  * to the HBA.
15982  *
15983  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15984  * struct is used to get the entry count that is necessary to determine the
15985  * number of pages to use for this queue. The @cq is used to indicate which
15986  * completion queue to bind received buffers that are posted to these queues to.
15987  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15988  * receive queue pair. This function is asynchronous and will wait for the
15989  * mailbox command to finish before continuing.
15990  *
15991  * On success this function will return a zero. If unable to allocate enough
15992  * memory this function will return -ENOMEM. If the queue create mailbox command
15993  * fails this function will return -ENXIO.
15994  **/
15995 int
15996 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15997 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15998 		uint32_t subtype)
15999 {
16000 	struct lpfc_queue *hrq, *drq, *cq;
16001 	struct lpfc_mbx_rq_create_v2 *rq_create;
16002 	struct lpfc_dmabuf *dmabuf;
16003 	LPFC_MBOXQ_t *mbox;
16004 	int rc, length, alloclen, status = 0;
16005 	int cnt, idx, numrq, page_idx = 0;
16006 	uint32_t shdr_status, shdr_add_status;
16007 	union lpfc_sli4_cfg_shdr *shdr;
16008 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16009 
16010 	numrq = phba->cfg_nvmet_mrq;
16011 	/* sanity check on array memory */
16012 	if (!hrqp || !drqp || !cqp || !numrq)
16013 		return -ENODEV;
16014 	if (!phba->sli4_hba.pc_sli4_params.supported)
16015 		hw_page_size = SLI4_PAGE_SIZE;
16016 
16017 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16018 	if (!mbox)
16019 		return -ENOMEM;
16020 
16021 	length = sizeof(struct lpfc_mbx_rq_create_v2);
16022 	length += ((2 * numrq * hrqp[0]->page_count) *
16023 		   sizeof(struct dma_address));
16024 
16025 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16026 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16027 				    LPFC_SLI4_MBX_NEMBED);
16028 	if (alloclen < length) {
16029 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16030 				"3099 Allocated DMA memory size (%d) is "
16031 				"less than the requested DMA memory size "
16032 				"(%d)\n", alloclen, length);
16033 		status = -ENOMEM;
16034 		goto out;
16035 	}
16036 
16037 
16038 
16039 	rq_create = mbox->sge_array->addr[0];
16040 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16041 
16042 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16043 	cnt = 0;
16044 
16045 	for (idx = 0; idx < numrq; idx++) {
16046 		hrq = hrqp[idx];
16047 		drq = drqp[idx];
16048 		cq  = cqp[idx];
16049 
16050 		/* sanity check on queue memory */
16051 		if (!hrq || !drq || !cq) {
16052 			status = -ENODEV;
16053 			goto out;
16054 		}
16055 
16056 		if (hrq->entry_count != drq->entry_count) {
16057 			status = -EINVAL;
16058 			goto out;
16059 		}
16060 
16061 		if (idx == 0) {
16062 			bf_set(lpfc_mbx_rq_create_num_pages,
16063 			       &rq_create->u.request,
16064 			       hrq->page_count);
16065 			bf_set(lpfc_mbx_rq_create_rq_cnt,
16066 			       &rq_create->u.request, (numrq * 2));
16067 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16068 			       1);
16069 			bf_set(lpfc_rq_context_base_cq,
16070 			       &rq_create->u.request.context,
16071 			       cq->queue_id);
16072 			bf_set(lpfc_rq_context_data_size,
16073 			       &rq_create->u.request.context,
16074 			       LPFC_NVMET_DATA_BUF_SIZE);
16075 			bf_set(lpfc_rq_context_hdr_size,
16076 			       &rq_create->u.request.context,
16077 			       LPFC_HDR_BUF_SIZE);
16078 			bf_set(lpfc_rq_context_rqe_count_1,
16079 			       &rq_create->u.request.context,
16080 			       hrq->entry_count);
16081 			bf_set(lpfc_rq_context_rqe_size,
16082 			       &rq_create->u.request.context,
16083 			       LPFC_RQE_SIZE_8);
16084 			bf_set(lpfc_rq_context_page_size,
16085 			       &rq_create->u.request.context,
16086 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16087 		}
16088 		rc = 0;
16089 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16090 			memset(dmabuf->virt, 0, hw_page_size);
16091 			cnt = page_idx + dmabuf->buffer_tag;
16092 			rq_create->u.request.page[cnt].addr_lo =
16093 					putPaddrLow(dmabuf->phys);
16094 			rq_create->u.request.page[cnt].addr_hi =
16095 					putPaddrHigh(dmabuf->phys);
16096 			rc++;
16097 		}
16098 		page_idx += rc;
16099 
16100 		rc = 0;
16101 		list_for_each_entry(dmabuf, &drq->page_list, list) {
16102 			memset(dmabuf->virt, 0, hw_page_size);
16103 			cnt = page_idx + dmabuf->buffer_tag;
16104 			rq_create->u.request.page[cnt].addr_lo =
16105 					putPaddrLow(dmabuf->phys);
16106 			rq_create->u.request.page[cnt].addr_hi =
16107 					putPaddrHigh(dmabuf->phys);
16108 			rc++;
16109 		}
16110 		page_idx += rc;
16111 
16112 		hrq->db_format = LPFC_DB_RING_FORMAT;
16113 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16114 		hrq->type = LPFC_HRQ;
16115 		hrq->assoc_qid = cq->queue_id;
16116 		hrq->subtype = subtype;
16117 		hrq->host_index = 0;
16118 		hrq->hba_index = 0;
16119 		hrq->entry_repost = LPFC_RQ_REPOST;
16120 
16121 		drq->db_format = LPFC_DB_RING_FORMAT;
16122 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16123 		drq->type = LPFC_DRQ;
16124 		drq->assoc_qid = cq->queue_id;
16125 		drq->subtype = subtype;
16126 		drq->host_index = 0;
16127 		drq->hba_index = 0;
16128 		drq->entry_repost = LPFC_RQ_REPOST;
16129 
16130 		list_add_tail(&hrq->list, &cq->child_list);
16131 		list_add_tail(&drq->list, &cq->child_list);
16132 	}
16133 
16134 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16135 	/* The IOCTL status is embedded in the mailbox subheader. */
16136 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16137 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16138 	if (shdr_status || shdr_add_status || rc) {
16139 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16140 				"3120 RQ_CREATE mailbox failed with "
16141 				"status x%x add_status x%x, mbx status x%x\n",
16142 				shdr_status, shdr_add_status, rc);
16143 		status = -ENXIO;
16144 		goto out;
16145 	}
16146 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16147 	if (rc == 0xFFFF) {
16148 		status = -ENXIO;
16149 		goto out;
16150 	}
16151 
16152 	/* Initialize all RQs with associated queue id */
16153 	for (idx = 0; idx < numrq; idx++) {
16154 		hrq = hrqp[idx];
16155 		hrq->queue_id = rc + (2 * idx);
16156 		drq = drqp[idx];
16157 		drq->queue_id = rc + (2 * idx) + 1;
16158 	}
16159 
16160 out:
16161 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16162 	return status;
16163 }
16164 
16165 /**
16166  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16167  * @eq: The queue structure associated with the queue to destroy.
16168  *
16169  * This function destroys a queue, as detailed in @eq by sending an mailbox
16170  * command, specific to the type of queue, to the HBA.
16171  *
16172  * The @eq struct is used to get the queue ID of the queue to destroy.
16173  *
16174  * On success this function will return a zero. If the queue destroy mailbox
16175  * command fails this function will return -ENXIO.
16176  **/
16177 int
16178 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16179 {
16180 	LPFC_MBOXQ_t *mbox;
16181 	int rc, length, status = 0;
16182 	uint32_t shdr_status, shdr_add_status;
16183 	union lpfc_sli4_cfg_shdr *shdr;
16184 
16185 	/* sanity check on queue memory */
16186 	if (!eq)
16187 		return -ENODEV;
16188 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16189 	if (!mbox)
16190 		return -ENOMEM;
16191 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16192 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16193 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16194 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16195 			 length, LPFC_SLI4_MBX_EMBED);
16196 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16197 	       eq->queue_id);
16198 	mbox->vport = eq->phba->pport;
16199 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16200 
16201 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16202 	/* The IOCTL status is embedded in the mailbox subheader. */
16203 	shdr = (union lpfc_sli4_cfg_shdr *)
16204 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16205 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16206 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16207 	if (shdr_status || shdr_add_status || rc) {
16208 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16209 				"2505 EQ_DESTROY mailbox failed with "
16210 				"status x%x add_status x%x, mbx status x%x\n",
16211 				shdr_status, shdr_add_status, rc);
16212 		status = -ENXIO;
16213 	}
16214 
16215 	/* Remove eq from any list */
16216 	list_del_init(&eq->list);
16217 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16218 	return status;
16219 }
16220 
16221 /**
16222  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16223  * @cq: The queue structure associated with the queue to destroy.
16224  *
16225  * This function destroys a queue, as detailed in @cq by sending an mailbox
16226  * command, specific to the type of queue, to the HBA.
16227  *
16228  * The @cq struct is used to get the queue ID of the queue to destroy.
16229  *
16230  * On success this function will return a zero. If the queue destroy mailbox
16231  * command fails this function will return -ENXIO.
16232  **/
16233 int
16234 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16235 {
16236 	LPFC_MBOXQ_t *mbox;
16237 	int rc, length, status = 0;
16238 	uint32_t shdr_status, shdr_add_status;
16239 	union lpfc_sli4_cfg_shdr *shdr;
16240 
16241 	/* sanity check on queue memory */
16242 	if (!cq)
16243 		return -ENODEV;
16244 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16245 	if (!mbox)
16246 		return -ENOMEM;
16247 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16248 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16249 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16250 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16251 			 length, LPFC_SLI4_MBX_EMBED);
16252 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16253 	       cq->queue_id);
16254 	mbox->vport = cq->phba->pport;
16255 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16256 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16257 	/* The IOCTL status is embedded in the mailbox subheader. */
16258 	shdr = (union lpfc_sli4_cfg_shdr *)
16259 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16260 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16261 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16262 	if (shdr_status || shdr_add_status || rc) {
16263 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16264 				"2506 CQ_DESTROY mailbox failed with "
16265 				"status x%x add_status x%x, mbx status x%x\n",
16266 				shdr_status, shdr_add_status, rc);
16267 		status = -ENXIO;
16268 	}
16269 	/* Remove cq from any list */
16270 	list_del_init(&cq->list);
16271 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16272 	return status;
16273 }
16274 
16275 /**
16276  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16277  * @qm: The queue structure associated with the queue to destroy.
16278  *
16279  * This function destroys a queue, as detailed in @mq by sending an mailbox
16280  * command, specific to the type of queue, to the HBA.
16281  *
16282  * The @mq struct is used to get the queue ID of the queue to destroy.
16283  *
16284  * On success this function will return a zero. If the queue destroy mailbox
16285  * command fails this function will return -ENXIO.
16286  **/
16287 int
16288 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16289 {
16290 	LPFC_MBOXQ_t *mbox;
16291 	int rc, length, status = 0;
16292 	uint32_t shdr_status, shdr_add_status;
16293 	union lpfc_sli4_cfg_shdr *shdr;
16294 
16295 	/* sanity check on queue memory */
16296 	if (!mq)
16297 		return -ENODEV;
16298 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16299 	if (!mbox)
16300 		return -ENOMEM;
16301 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16302 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16303 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16304 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16305 			 length, LPFC_SLI4_MBX_EMBED);
16306 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16307 	       mq->queue_id);
16308 	mbox->vport = mq->phba->pport;
16309 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16310 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16311 	/* The IOCTL status is embedded in the mailbox subheader. */
16312 	shdr = (union lpfc_sli4_cfg_shdr *)
16313 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16314 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16315 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16316 	if (shdr_status || shdr_add_status || rc) {
16317 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16318 				"2507 MQ_DESTROY mailbox failed with "
16319 				"status x%x add_status x%x, mbx status x%x\n",
16320 				shdr_status, shdr_add_status, rc);
16321 		status = -ENXIO;
16322 	}
16323 	/* Remove mq from any list */
16324 	list_del_init(&mq->list);
16325 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16326 	return status;
16327 }
16328 
16329 /**
16330  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16331  * @wq: The queue structure associated with the queue to destroy.
16332  *
16333  * This function destroys a queue, as detailed in @wq by sending an mailbox
16334  * command, specific to the type of queue, to the HBA.
16335  *
16336  * The @wq struct is used to get the queue ID of the queue to destroy.
16337  *
16338  * On success this function will return a zero. If the queue destroy mailbox
16339  * command fails this function will return -ENXIO.
16340  **/
16341 int
16342 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16343 {
16344 	LPFC_MBOXQ_t *mbox;
16345 	int rc, length, status = 0;
16346 	uint32_t shdr_status, shdr_add_status;
16347 	union lpfc_sli4_cfg_shdr *shdr;
16348 
16349 	/* sanity check on queue memory */
16350 	if (!wq)
16351 		return -ENODEV;
16352 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16353 	if (!mbox)
16354 		return -ENOMEM;
16355 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16356 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16357 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16358 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16359 			 length, LPFC_SLI4_MBX_EMBED);
16360 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16361 	       wq->queue_id);
16362 	mbox->vport = wq->phba->pport;
16363 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16364 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16365 	shdr = (union lpfc_sli4_cfg_shdr *)
16366 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16367 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16368 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16369 	if (shdr_status || shdr_add_status || rc) {
16370 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16371 				"2508 WQ_DESTROY mailbox failed with "
16372 				"status x%x add_status x%x, mbx status x%x\n",
16373 				shdr_status, shdr_add_status, rc);
16374 		status = -ENXIO;
16375 	}
16376 	/* Remove wq from any list */
16377 	list_del_init(&wq->list);
16378 	kfree(wq->pring);
16379 	wq->pring = NULL;
16380 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16381 	return status;
16382 }
16383 
16384 /**
16385  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16386  * @rq: The queue structure associated with the queue to destroy.
16387  *
16388  * This function destroys a queue, as detailed in @rq by sending an mailbox
16389  * command, specific to the type of queue, to the HBA.
16390  *
16391  * The @rq struct is used to get the queue ID of the queue to destroy.
16392  *
16393  * On success this function will return a zero. If the queue destroy mailbox
16394  * command fails this function will return -ENXIO.
16395  **/
16396 int
16397 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16398 		struct lpfc_queue *drq)
16399 {
16400 	LPFC_MBOXQ_t *mbox;
16401 	int rc, length, status = 0;
16402 	uint32_t shdr_status, shdr_add_status;
16403 	union lpfc_sli4_cfg_shdr *shdr;
16404 
16405 	/* sanity check on queue memory */
16406 	if (!hrq || !drq)
16407 		return -ENODEV;
16408 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16409 	if (!mbox)
16410 		return -ENOMEM;
16411 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16412 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16413 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16414 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16415 			 length, LPFC_SLI4_MBX_EMBED);
16416 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16417 	       hrq->queue_id);
16418 	mbox->vport = hrq->phba->pport;
16419 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16420 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16421 	/* The IOCTL status is embedded in the mailbox subheader. */
16422 	shdr = (union lpfc_sli4_cfg_shdr *)
16423 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16424 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16425 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16426 	if (shdr_status || shdr_add_status || rc) {
16427 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16428 				"2509 RQ_DESTROY mailbox failed with "
16429 				"status x%x add_status x%x, mbx status x%x\n",
16430 				shdr_status, shdr_add_status, rc);
16431 		if (rc != MBX_TIMEOUT)
16432 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
16433 		return -ENXIO;
16434 	}
16435 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16436 	       drq->queue_id);
16437 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16438 	shdr = (union lpfc_sli4_cfg_shdr *)
16439 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16440 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16441 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16442 	if (shdr_status || shdr_add_status || rc) {
16443 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16444 				"2510 RQ_DESTROY mailbox failed with "
16445 				"status x%x add_status x%x, mbx status x%x\n",
16446 				shdr_status, shdr_add_status, rc);
16447 		status = -ENXIO;
16448 	}
16449 	list_del_init(&hrq->list);
16450 	list_del_init(&drq->list);
16451 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16452 	return status;
16453 }
16454 
16455 /**
16456  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16457  * @phba: The virtual port for which this call being executed.
16458  * @pdma_phys_addr0: Physical address of the 1st SGL page.
16459  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16460  * @xritag: the xritag that ties this io to the SGL pages.
16461  *
16462  * This routine will post the sgl pages for the IO that has the xritag
16463  * that is in the iocbq structure. The xritag is assigned during iocbq
16464  * creation and persists for as long as the driver is loaded.
16465  * if the caller has fewer than 256 scatter gather segments to map then
16466  * pdma_phys_addr1 should be 0.
16467  * If the caller needs to map more than 256 scatter gather segment then
16468  * pdma_phys_addr1 should be a valid physical address.
16469  * physical address for SGLs must be 64 byte aligned.
16470  * If you are going to map 2 SGL's then the first one must have 256 entries
16471  * the second sgl can have between 1 and 256 entries.
16472  *
16473  * Return codes:
16474  * 	0 - Success
16475  * 	-ENXIO, -ENOMEM - Failure
16476  **/
16477 int
16478 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16479 		dma_addr_t pdma_phys_addr0,
16480 		dma_addr_t pdma_phys_addr1,
16481 		uint16_t xritag)
16482 {
16483 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16484 	LPFC_MBOXQ_t *mbox;
16485 	int rc;
16486 	uint32_t shdr_status, shdr_add_status;
16487 	uint32_t mbox_tmo;
16488 	union lpfc_sli4_cfg_shdr *shdr;
16489 
16490 	if (xritag == NO_XRI) {
16491 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16492 				"0364 Invalid param:\n");
16493 		return -EINVAL;
16494 	}
16495 
16496 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16497 	if (!mbox)
16498 		return -ENOMEM;
16499 
16500 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16501 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16502 			sizeof(struct lpfc_mbx_post_sgl_pages) -
16503 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16504 
16505 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16506 				&mbox->u.mqe.un.post_sgl_pages;
16507 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16508 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16509 
16510 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16511 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16512 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16513 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16514 
16515 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16516 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16517 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16518 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16519 	if (!phba->sli4_hba.intr_enable)
16520 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16521 	else {
16522 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16523 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16524 	}
16525 	/* The IOCTL status is embedded in the mailbox subheader. */
16526 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16527 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16528 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16529 	if (rc != MBX_TIMEOUT)
16530 		mempool_free(mbox, phba->mbox_mem_pool);
16531 	if (shdr_status || shdr_add_status || rc) {
16532 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16533 				"2511 POST_SGL mailbox failed with "
16534 				"status x%x add_status x%x, mbx status x%x\n",
16535 				shdr_status, shdr_add_status, rc);
16536 	}
16537 	return 0;
16538 }
16539 
16540 /**
16541  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16542  * @phba: pointer to lpfc hba data structure.
16543  *
16544  * This routine is invoked to post rpi header templates to the
16545  * HBA consistent with the SLI-4 interface spec.  This routine
16546  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16547  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16548  *
16549  * Returns
16550  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16551  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16552  **/
16553 static uint16_t
16554 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16555 {
16556 	unsigned long xri;
16557 
16558 	/*
16559 	 * Fetch the next logical xri.  Because this index is logical,
16560 	 * the driver starts at 0 each time.
16561 	 */
16562 	spin_lock_irq(&phba->hbalock);
16563 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16564 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16565 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16566 		spin_unlock_irq(&phba->hbalock);
16567 		return NO_XRI;
16568 	} else {
16569 		set_bit(xri, phba->sli4_hba.xri_bmask);
16570 		phba->sli4_hba.max_cfg_param.xri_used++;
16571 	}
16572 	spin_unlock_irq(&phba->hbalock);
16573 	return xri;
16574 }
16575 
16576 /**
16577  * lpfc_sli4_free_xri - Release an xri for reuse.
16578  * @phba: pointer to lpfc hba data structure.
16579  *
16580  * This routine is invoked to release an xri to the pool of
16581  * available rpis maintained by the driver.
16582  **/
16583 static void
16584 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16585 {
16586 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16587 		phba->sli4_hba.max_cfg_param.xri_used--;
16588 	}
16589 }
16590 
16591 /**
16592  * lpfc_sli4_free_xri - Release an xri for reuse.
16593  * @phba: pointer to lpfc hba data structure.
16594  *
16595  * This routine is invoked to release an xri to the pool of
16596  * available rpis maintained by the driver.
16597  **/
16598 void
16599 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16600 {
16601 	spin_lock_irq(&phba->hbalock);
16602 	__lpfc_sli4_free_xri(phba, xri);
16603 	spin_unlock_irq(&phba->hbalock);
16604 }
16605 
16606 /**
16607  * lpfc_sli4_next_xritag - Get an xritag for the io
16608  * @phba: Pointer to HBA context object.
16609  *
16610  * This function gets an xritag for the iocb. If there is no unused xritag
16611  * it will return 0xffff.
16612  * The function returns the allocated xritag if successful, else returns zero.
16613  * Zero is not a valid xritag.
16614  * The caller is not required to hold any lock.
16615  **/
16616 uint16_t
16617 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16618 {
16619 	uint16_t xri_index;
16620 
16621 	xri_index = lpfc_sli4_alloc_xri(phba);
16622 	if (xri_index == NO_XRI)
16623 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16624 				"2004 Failed to allocate XRI.last XRITAG is %d"
16625 				" Max XRI is %d, Used XRI is %d\n",
16626 				xri_index,
16627 				phba->sli4_hba.max_cfg_param.max_xri,
16628 				phba->sli4_hba.max_cfg_param.xri_used);
16629 	return xri_index;
16630 }
16631 
16632 /**
16633  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16634  * @phba: pointer to lpfc hba data structure.
16635  * @post_sgl_list: pointer to els sgl entry list.
16636  * @count: number of els sgl entries on the list.
16637  *
16638  * This routine is invoked to post a block of driver's sgl pages to the
16639  * HBA using non-embedded mailbox command. No Lock is held. This routine
16640  * is only called when the driver is loading and after all IO has been
16641  * stopped.
16642  **/
16643 static int
16644 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16645 			    struct list_head *post_sgl_list,
16646 			    int post_cnt)
16647 {
16648 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16649 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16650 	struct sgl_page_pairs *sgl_pg_pairs;
16651 	void *viraddr;
16652 	LPFC_MBOXQ_t *mbox;
16653 	uint32_t reqlen, alloclen, pg_pairs;
16654 	uint32_t mbox_tmo;
16655 	uint16_t xritag_start = 0;
16656 	int rc = 0;
16657 	uint32_t shdr_status, shdr_add_status;
16658 	union lpfc_sli4_cfg_shdr *shdr;
16659 
16660 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16661 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16662 	if (reqlen > SLI4_PAGE_SIZE) {
16663 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16664 				"2559 Block sgl registration required DMA "
16665 				"size (%d) great than a page\n", reqlen);
16666 		return -ENOMEM;
16667 	}
16668 
16669 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16670 	if (!mbox)
16671 		return -ENOMEM;
16672 
16673 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16674 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16675 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16676 			 LPFC_SLI4_MBX_NEMBED);
16677 
16678 	if (alloclen < reqlen) {
16679 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16680 				"0285 Allocated DMA memory size (%d) is "
16681 				"less than the requested DMA memory "
16682 				"size (%d)\n", alloclen, reqlen);
16683 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16684 		return -ENOMEM;
16685 	}
16686 	/* Set up the SGL pages in the non-embedded DMA pages */
16687 	viraddr = mbox->sge_array->addr[0];
16688 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16689 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16690 
16691 	pg_pairs = 0;
16692 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16693 		/* Set up the sge entry */
16694 		sgl_pg_pairs->sgl_pg0_addr_lo =
16695 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
16696 		sgl_pg_pairs->sgl_pg0_addr_hi =
16697 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16698 		sgl_pg_pairs->sgl_pg1_addr_lo =
16699 				cpu_to_le32(putPaddrLow(0));
16700 		sgl_pg_pairs->sgl_pg1_addr_hi =
16701 				cpu_to_le32(putPaddrHigh(0));
16702 
16703 		/* Keep the first xritag on the list */
16704 		if (pg_pairs == 0)
16705 			xritag_start = sglq_entry->sli4_xritag;
16706 		sgl_pg_pairs++;
16707 		pg_pairs++;
16708 	}
16709 
16710 	/* Complete initialization and perform endian conversion. */
16711 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16712 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16713 	sgl->word0 = cpu_to_le32(sgl->word0);
16714 
16715 	if (!phba->sli4_hba.intr_enable)
16716 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16717 	else {
16718 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16719 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16720 	}
16721 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16722 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16723 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16724 	if (rc != MBX_TIMEOUT)
16725 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16726 	if (shdr_status || shdr_add_status || rc) {
16727 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16728 				"2513 POST_SGL_BLOCK mailbox command failed "
16729 				"status x%x add_status x%x mbx status x%x\n",
16730 				shdr_status, shdr_add_status, rc);
16731 		rc = -ENXIO;
16732 	}
16733 	return rc;
16734 }
16735 
16736 /**
16737  * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware
16738  * @phba: pointer to lpfc hba data structure.
16739  * @sblist: pointer to scsi buffer list.
16740  * @count: number of scsi buffers on the list.
16741  *
16742  * This routine is invoked to post a block of @count scsi sgl pages from a
16743  * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
16744  * No Lock is held.
16745  *
16746  **/
16747 int
16748 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba,
16749 			      struct list_head *sblist,
16750 			      int count)
16751 {
16752 	struct lpfc_scsi_buf *psb;
16753 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16754 	struct sgl_page_pairs *sgl_pg_pairs;
16755 	void *viraddr;
16756 	LPFC_MBOXQ_t *mbox;
16757 	uint32_t reqlen, alloclen, pg_pairs;
16758 	uint32_t mbox_tmo;
16759 	uint16_t xritag_start = 0;
16760 	int rc = 0;
16761 	uint32_t shdr_status, shdr_add_status;
16762 	dma_addr_t pdma_phys_bpl1;
16763 	union lpfc_sli4_cfg_shdr *shdr;
16764 
16765 	/* Calculate the requested length of the dma memory */
16766 	reqlen = count * sizeof(struct sgl_page_pairs) +
16767 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16768 	if (reqlen > SLI4_PAGE_SIZE) {
16769 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16770 				"0217 Block sgl registration required DMA "
16771 				"size (%d) great than a page\n", reqlen);
16772 		return -ENOMEM;
16773 	}
16774 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16775 	if (!mbox) {
16776 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16777 				"0283 Failed to allocate mbox cmd memory\n");
16778 		return -ENOMEM;
16779 	}
16780 
16781 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16782 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16783 				LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16784 				LPFC_SLI4_MBX_NEMBED);
16785 
16786 	if (alloclen < reqlen) {
16787 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16788 				"2561 Allocated DMA memory size (%d) is "
16789 				"less than the requested DMA memory "
16790 				"size (%d)\n", alloclen, reqlen);
16791 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16792 		return -ENOMEM;
16793 	}
16794 
16795 	/* Get the first SGE entry from the non-embedded DMA memory */
16796 	viraddr = mbox->sge_array->addr[0];
16797 
16798 	/* Set up the SGL pages in the non-embedded DMA pages */
16799 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16800 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16801 
16802 	pg_pairs = 0;
16803 	list_for_each_entry(psb, sblist, list) {
16804 		/* Set up the sge entry */
16805 		sgl_pg_pairs->sgl_pg0_addr_lo =
16806 			cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
16807 		sgl_pg_pairs->sgl_pg0_addr_hi =
16808 			cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
16809 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16810 			pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE;
16811 		else
16812 			pdma_phys_bpl1 = 0;
16813 		sgl_pg_pairs->sgl_pg1_addr_lo =
16814 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16815 		sgl_pg_pairs->sgl_pg1_addr_hi =
16816 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16817 		/* Keep the first xritag on the list */
16818 		if (pg_pairs == 0)
16819 			xritag_start = psb->cur_iocbq.sli4_xritag;
16820 		sgl_pg_pairs++;
16821 		pg_pairs++;
16822 	}
16823 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16824 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16825 	/* Perform endian conversion if necessary */
16826 	sgl->word0 = cpu_to_le32(sgl->word0);
16827 
16828 	if (!phba->sli4_hba.intr_enable)
16829 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16830 	else {
16831 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16832 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16833 	}
16834 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16835 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16836 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16837 	if (rc != MBX_TIMEOUT)
16838 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16839 	if (shdr_status || shdr_add_status || rc) {
16840 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16841 				"2564 POST_SGL_BLOCK mailbox command failed "
16842 				"status x%x add_status x%x mbx status x%x\n",
16843 				shdr_status, shdr_add_status, rc);
16844 		rc = -ENXIO;
16845 	}
16846 	return rc;
16847 }
16848 
16849 /**
16850  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16851  * @phba: pointer to lpfc_hba struct that the frame was received on
16852  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16853  *
16854  * This function checks the fields in the @fc_hdr to see if the FC frame is a
16855  * valid type of frame that the LPFC driver will handle. This function will
16856  * return a zero if the frame is a valid frame or a non zero value when the
16857  * frame does not pass the check.
16858  **/
16859 static int
16860 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16861 {
16862 	/*  make rctl_names static to save stack space */
16863 	struct fc_vft_header *fc_vft_hdr;
16864 	uint32_t *header = (uint32_t *) fc_hdr;
16865 
16866 #define FC_RCTL_MDS_DIAGS	0xF4
16867 
16868 	switch (fc_hdr->fh_r_ctl) {
16869 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
16870 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
16871 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
16872 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
16873 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
16874 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
16875 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
16876 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
16877 	case FC_RCTL_ELS_REQ:	/* extended link services request */
16878 	case FC_RCTL_ELS_REP:	/* extended link services reply */
16879 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
16880 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
16881 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
16882 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
16883 	case FC_RCTL_BA_RMC: 	/* remove connection */
16884 	case FC_RCTL_BA_ACC:	/* basic accept */
16885 	case FC_RCTL_BA_RJT:	/* basic reject */
16886 	case FC_RCTL_BA_PRMT:
16887 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
16888 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
16889 	case FC_RCTL_P_RJT:	/* port reject */
16890 	case FC_RCTL_F_RJT:	/* fabric reject */
16891 	case FC_RCTL_P_BSY:	/* port busy */
16892 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
16893 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
16894 	case FC_RCTL_LCR:	/* link credit reset */
16895 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
16896 	case FC_RCTL_END:	/* end */
16897 		break;
16898 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
16899 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16900 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16901 		return lpfc_fc_frame_check(phba, fc_hdr);
16902 	default:
16903 		goto drop;
16904 	}
16905 
16906 #define FC_TYPE_VENDOR_UNIQUE	0xFF
16907 
16908 	switch (fc_hdr->fh_type) {
16909 	case FC_TYPE_BLS:
16910 	case FC_TYPE_ELS:
16911 	case FC_TYPE_FCP:
16912 	case FC_TYPE_CT:
16913 	case FC_TYPE_NVME:
16914 	case FC_TYPE_VENDOR_UNIQUE:
16915 		break;
16916 	case FC_TYPE_IP:
16917 	case FC_TYPE_ILS:
16918 	default:
16919 		goto drop;
16920 	}
16921 
16922 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
16923 			"2538 Received frame rctl:x%x, type:x%x, "
16924 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
16925 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
16926 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
16927 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
16928 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
16929 			be32_to_cpu(header[6]));
16930 	return 0;
16931 drop:
16932 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
16933 			"2539 Dropped frame rctl:x%x type:x%x\n",
16934 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16935 	return 1;
16936 }
16937 
16938 /**
16939  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
16940  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16941  *
16942  * This function processes the FC header to retrieve the VFI from the VF
16943  * header, if one exists. This function will return the VFI if one exists
16944  * or 0 if no VSAN Header exists.
16945  **/
16946 static uint32_t
16947 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
16948 {
16949 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16950 
16951 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
16952 		return 0;
16953 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
16954 }
16955 
16956 /**
16957  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
16958  * @phba: Pointer to the HBA structure to search for the vport on
16959  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16960  * @fcfi: The FC Fabric ID that the frame came from
16961  *
16962  * This function searches the @phba for a vport that matches the content of the
16963  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
16964  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
16965  * returns the matching vport pointer or NULL if unable to match frame to a
16966  * vport.
16967  **/
16968 static struct lpfc_vport *
16969 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
16970 		       uint16_t fcfi, uint32_t did)
16971 {
16972 	struct lpfc_vport **vports;
16973 	struct lpfc_vport *vport = NULL;
16974 	int i;
16975 
16976 	if (did == Fabric_DID)
16977 		return phba->pport;
16978 	if ((phba->pport->fc_flag & FC_PT2PT) &&
16979 		!(phba->link_state == LPFC_HBA_READY))
16980 		return phba->pport;
16981 
16982 	vports = lpfc_create_vport_work_array(phba);
16983 	if (vports != NULL) {
16984 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
16985 			if (phba->fcf.fcfi == fcfi &&
16986 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
16987 			    vports[i]->fc_myDID == did) {
16988 				vport = vports[i];
16989 				break;
16990 			}
16991 		}
16992 	}
16993 	lpfc_destroy_vport_work_array(phba, vports);
16994 	return vport;
16995 }
16996 
16997 /**
16998  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
16999  * @vport: The vport to work on.
17000  *
17001  * This function updates the receive sequence time stamp for this vport. The
17002  * receive sequence time stamp indicates the time that the last frame of the
17003  * the sequence that has been idle for the longest amount of time was received.
17004  * the driver uses this time stamp to indicate if any received sequences have
17005  * timed out.
17006  **/
17007 static void
17008 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17009 {
17010 	struct lpfc_dmabuf *h_buf;
17011 	struct hbq_dmabuf *dmabuf = NULL;
17012 
17013 	/* get the oldest sequence on the rcv list */
17014 	h_buf = list_get_first(&vport->rcv_buffer_list,
17015 			       struct lpfc_dmabuf, list);
17016 	if (!h_buf)
17017 		return;
17018 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17019 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17020 }
17021 
17022 /**
17023  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17024  * @vport: The vport that the received sequences were sent to.
17025  *
17026  * This function cleans up all outstanding received sequences. This is called
17027  * by the driver when a link event or user action invalidates all the received
17028  * sequences.
17029  **/
17030 void
17031 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17032 {
17033 	struct lpfc_dmabuf *h_buf, *hnext;
17034 	struct lpfc_dmabuf *d_buf, *dnext;
17035 	struct hbq_dmabuf *dmabuf = NULL;
17036 
17037 	/* start with the oldest sequence on the rcv list */
17038 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17039 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17040 		list_del_init(&dmabuf->hbuf.list);
17041 		list_for_each_entry_safe(d_buf, dnext,
17042 					 &dmabuf->dbuf.list, list) {
17043 			list_del_init(&d_buf->list);
17044 			lpfc_in_buf_free(vport->phba, d_buf);
17045 		}
17046 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17047 	}
17048 }
17049 
17050 /**
17051  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17052  * @vport: The vport that the received sequences were sent to.
17053  *
17054  * This function determines whether any received sequences have timed out by
17055  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17056  * indicates that there is at least one timed out sequence this routine will
17057  * go through the received sequences one at a time from most inactive to most
17058  * active to determine which ones need to be cleaned up. Once it has determined
17059  * that a sequence needs to be cleaned up it will simply free up the resources
17060  * without sending an abort.
17061  **/
17062 void
17063 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17064 {
17065 	struct lpfc_dmabuf *h_buf, *hnext;
17066 	struct lpfc_dmabuf *d_buf, *dnext;
17067 	struct hbq_dmabuf *dmabuf = NULL;
17068 	unsigned long timeout;
17069 	int abort_count = 0;
17070 
17071 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17072 		   vport->rcv_buffer_time_stamp);
17073 	if (list_empty(&vport->rcv_buffer_list) ||
17074 	    time_before(jiffies, timeout))
17075 		return;
17076 	/* start with the oldest sequence on the rcv list */
17077 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17078 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17079 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17080 			   dmabuf->time_stamp);
17081 		if (time_before(jiffies, timeout))
17082 			break;
17083 		abort_count++;
17084 		list_del_init(&dmabuf->hbuf.list);
17085 		list_for_each_entry_safe(d_buf, dnext,
17086 					 &dmabuf->dbuf.list, list) {
17087 			list_del_init(&d_buf->list);
17088 			lpfc_in_buf_free(vport->phba, d_buf);
17089 		}
17090 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17091 	}
17092 	if (abort_count)
17093 		lpfc_update_rcv_time_stamp(vport);
17094 }
17095 
17096 /**
17097  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17098  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17099  *
17100  * This function searches through the existing incomplete sequences that have
17101  * been sent to this @vport. If the frame matches one of the incomplete
17102  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17103  * make up that sequence. If no sequence is found that matches this frame then
17104  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17105  * This function returns a pointer to the first dmabuf in the sequence list that
17106  * the frame was linked to.
17107  **/
17108 static struct hbq_dmabuf *
17109 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17110 {
17111 	struct fc_frame_header *new_hdr;
17112 	struct fc_frame_header *temp_hdr;
17113 	struct lpfc_dmabuf *d_buf;
17114 	struct lpfc_dmabuf *h_buf;
17115 	struct hbq_dmabuf *seq_dmabuf = NULL;
17116 	struct hbq_dmabuf *temp_dmabuf = NULL;
17117 	uint8_t	found = 0;
17118 
17119 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17120 	dmabuf->time_stamp = jiffies;
17121 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17122 
17123 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17124 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17125 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17126 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17127 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17128 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17129 			continue;
17130 		/* found a pending sequence that matches this frame */
17131 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17132 		break;
17133 	}
17134 	if (!seq_dmabuf) {
17135 		/*
17136 		 * This indicates first frame received for this sequence.
17137 		 * Queue the buffer on the vport's rcv_buffer_list.
17138 		 */
17139 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17140 		lpfc_update_rcv_time_stamp(vport);
17141 		return dmabuf;
17142 	}
17143 	temp_hdr = seq_dmabuf->hbuf.virt;
17144 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17145 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17146 		list_del_init(&seq_dmabuf->hbuf.list);
17147 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17148 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17149 		lpfc_update_rcv_time_stamp(vport);
17150 		return dmabuf;
17151 	}
17152 	/* move this sequence to the tail to indicate a young sequence */
17153 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17154 	seq_dmabuf->time_stamp = jiffies;
17155 	lpfc_update_rcv_time_stamp(vport);
17156 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17157 		temp_hdr = dmabuf->hbuf.virt;
17158 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17159 		return seq_dmabuf;
17160 	}
17161 	/* find the correct place in the sequence to insert this frame */
17162 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17163 	while (!found) {
17164 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17165 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17166 		/*
17167 		 * If the frame's sequence count is greater than the frame on
17168 		 * the list then insert the frame right after this frame
17169 		 */
17170 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17171 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17172 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17173 			found = 1;
17174 			break;
17175 		}
17176 
17177 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17178 			break;
17179 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17180 	}
17181 
17182 	if (found)
17183 		return seq_dmabuf;
17184 	return NULL;
17185 }
17186 
17187 /**
17188  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17189  * @vport: pointer to a vitural port
17190  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17191  *
17192  * This function tries to abort from the partially assembed sequence, described
17193  * by the information from basic abbort @dmabuf. It checks to see whether such
17194  * partially assembled sequence held by the driver. If so, it shall free up all
17195  * the frames from the partially assembled sequence.
17196  *
17197  * Return
17198  * true  -- if there is matching partially assembled sequence present and all
17199  *          the frames freed with the sequence;
17200  * false -- if there is no matching partially assembled sequence present so
17201  *          nothing got aborted in the lower layer driver
17202  **/
17203 static bool
17204 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17205 			    struct hbq_dmabuf *dmabuf)
17206 {
17207 	struct fc_frame_header *new_hdr;
17208 	struct fc_frame_header *temp_hdr;
17209 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17210 	struct hbq_dmabuf *seq_dmabuf = NULL;
17211 
17212 	/* Use the hdr_buf to find the sequence that matches this frame */
17213 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17214 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17215 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17216 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17217 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17218 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17219 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17220 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17221 			continue;
17222 		/* found a pending sequence that matches this frame */
17223 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17224 		break;
17225 	}
17226 
17227 	/* Free up all the frames from the partially assembled sequence */
17228 	if (seq_dmabuf) {
17229 		list_for_each_entry_safe(d_buf, n_buf,
17230 					 &seq_dmabuf->dbuf.list, list) {
17231 			list_del_init(&d_buf->list);
17232 			lpfc_in_buf_free(vport->phba, d_buf);
17233 		}
17234 		return true;
17235 	}
17236 	return false;
17237 }
17238 
17239 /**
17240  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17241  * @vport: pointer to a vitural port
17242  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17243  *
17244  * This function tries to abort from the assembed sequence from upper level
17245  * protocol, described by the information from basic abbort @dmabuf. It
17246  * checks to see whether such pending context exists at upper level protocol.
17247  * If so, it shall clean up the pending context.
17248  *
17249  * Return
17250  * true  -- if there is matching pending context of the sequence cleaned
17251  *          at ulp;
17252  * false -- if there is no matching pending context of the sequence present
17253  *          at ulp.
17254  **/
17255 static bool
17256 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17257 {
17258 	struct lpfc_hba *phba = vport->phba;
17259 	int handled;
17260 
17261 	/* Accepting abort at ulp with SLI4 only */
17262 	if (phba->sli_rev < LPFC_SLI_REV4)
17263 		return false;
17264 
17265 	/* Register all caring upper level protocols to attend abort */
17266 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17267 	if (handled)
17268 		return true;
17269 
17270 	return false;
17271 }
17272 
17273 /**
17274  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17275  * @phba: Pointer to HBA context object.
17276  * @cmd_iocbq: pointer to the command iocbq structure.
17277  * @rsp_iocbq: pointer to the response iocbq structure.
17278  *
17279  * This function handles the sequence abort response iocb command complete
17280  * event. It properly releases the memory allocated to the sequence abort
17281  * accept iocb.
17282  **/
17283 static void
17284 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17285 			     struct lpfc_iocbq *cmd_iocbq,
17286 			     struct lpfc_iocbq *rsp_iocbq)
17287 {
17288 	struct lpfc_nodelist *ndlp;
17289 
17290 	if (cmd_iocbq) {
17291 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17292 		lpfc_nlp_put(ndlp);
17293 		lpfc_nlp_not_used(ndlp);
17294 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17295 	}
17296 
17297 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17298 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17299 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17300 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17301 			rsp_iocbq->iocb.ulpStatus,
17302 			rsp_iocbq->iocb.un.ulpWord[4]);
17303 }
17304 
17305 /**
17306  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17307  * @phba: Pointer to HBA context object.
17308  * @xri: xri id in transaction.
17309  *
17310  * This function validates the xri maps to the known range of XRIs allocated an
17311  * used by the driver.
17312  **/
17313 uint16_t
17314 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17315 		      uint16_t xri)
17316 {
17317 	uint16_t i;
17318 
17319 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17320 		if (xri == phba->sli4_hba.xri_ids[i])
17321 			return i;
17322 	}
17323 	return NO_XRI;
17324 }
17325 
17326 /**
17327  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17328  * @phba: Pointer to HBA context object.
17329  * @fc_hdr: pointer to a FC frame header.
17330  *
17331  * This function sends a basic response to a previous unsol sequence abort
17332  * event after aborting the sequence handling.
17333  **/
17334 void
17335 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17336 			struct fc_frame_header *fc_hdr, bool aborted)
17337 {
17338 	struct lpfc_hba *phba = vport->phba;
17339 	struct lpfc_iocbq *ctiocb = NULL;
17340 	struct lpfc_nodelist *ndlp;
17341 	uint16_t oxid, rxid, xri, lxri;
17342 	uint32_t sid, fctl;
17343 	IOCB_t *icmd;
17344 	int rc;
17345 
17346 	if (!lpfc_is_link_up(phba))
17347 		return;
17348 
17349 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17350 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17351 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17352 
17353 	ndlp = lpfc_findnode_did(vport, sid);
17354 	if (!ndlp) {
17355 		ndlp = lpfc_nlp_init(vport, sid);
17356 		if (!ndlp) {
17357 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17358 					 "1268 Failed to allocate ndlp for "
17359 					 "oxid:x%x SID:x%x\n", oxid, sid);
17360 			return;
17361 		}
17362 		/* Put ndlp onto pport node list */
17363 		lpfc_enqueue_node(vport, ndlp);
17364 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17365 		/* re-setup ndlp without removing from node list */
17366 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17367 		if (!ndlp) {
17368 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17369 					 "3275 Failed to active ndlp found "
17370 					 "for oxid:x%x SID:x%x\n", oxid, sid);
17371 			return;
17372 		}
17373 	}
17374 
17375 	/* Allocate buffer for rsp iocb */
17376 	ctiocb = lpfc_sli_get_iocbq(phba);
17377 	if (!ctiocb)
17378 		return;
17379 
17380 	/* Extract the F_CTL field from FC_HDR */
17381 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17382 
17383 	icmd = &ctiocb->iocb;
17384 	icmd->un.xseq64.bdl.bdeSize = 0;
17385 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17386 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17387 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17388 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17389 
17390 	/* Fill in the rest of iocb fields */
17391 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17392 	icmd->ulpBdeCount = 0;
17393 	icmd->ulpLe = 1;
17394 	icmd->ulpClass = CLASS3;
17395 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17396 	ctiocb->context1 = lpfc_nlp_get(ndlp);
17397 
17398 	ctiocb->iocb_cmpl = NULL;
17399 	ctiocb->vport = phba->pport;
17400 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17401 	ctiocb->sli4_lxritag = NO_XRI;
17402 	ctiocb->sli4_xritag = NO_XRI;
17403 
17404 	if (fctl & FC_FC_EX_CTX)
17405 		/* Exchange responder sent the abort so we
17406 		 * own the oxid.
17407 		 */
17408 		xri = oxid;
17409 	else
17410 		xri = rxid;
17411 	lxri = lpfc_sli4_xri_inrange(phba, xri);
17412 	if (lxri != NO_XRI)
17413 		lpfc_set_rrq_active(phba, ndlp, lxri,
17414 			(xri == oxid) ? rxid : oxid, 0);
17415 	/* For BA_ABTS from exchange responder, if the logical xri with
17416 	 * the oxid maps to the FCP XRI range, the port no longer has
17417 	 * that exchange context, send a BLS_RJT. Override the IOCB for
17418 	 * a BA_RJT.
17419 	 */
17420 	if ((fctl & FC_FC_EX_CTX) &&
17421 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17422 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17423 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17424 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17425 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17426 	}
17427 
17428 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17429 	 * the driver no longer has that exchange, send a BLS_RJT. Override
17430 	 * the IOCB for a BA_RJT.
17431 	 */
17432 	if (aborted == false) {
17433 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17434 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17435 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17436 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17437 	}
17438 
17439 	if (fctl & FC_FC_EX_CTX) {
17440 		/* ABTS sent by responder to CT exchange, construction
17441 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17442 		 * field and RX_ID from ABTS for RX_ID field.
17443 		 */
17444 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17445 	} else {
17446 		/* ABTS sent by initiator to CT exchange, construction
17447 		 * of BA_ACC will need to allocate a new XRI as for the
17448 		 * XRI_TAG field.
17449 		 */
17450 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17451 	}
17452 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17453 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17454 
17455 	/* Xmit CT abts response on exchange <xid> */
17456 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17457 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17458 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17459 
17460 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17461 	if (rc == IOCB_ERROR) {
17462 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17463 				 "2925 Failed to issue CT ABTS RSP x%x on "
17464 				 "xri x%x, Data x%x\n",
17465 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17466 				 phba->link_state);
17467 		lpfc_nlp_put(ndlp);
17468 		ctiocb->context1 = NULL;
17469 		lpfc_sli_release_iocbq(phba, ctiocb);
17470 	}
17471 }
17472 
17473 /**
17474  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17475  * @vport: Pointer to the vport on which this sequence was received
17476  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17477  *
17478  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17479  * receive sequence is only partially assembed by the driver, it shall abort
17480  * the partially assembled frames for the sequence. Otherwise, if the
17481  * unsolicited receive sequence has been completely assembled and passed to
17482  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17483  * unsolicited sequence has been aborted. After that, it will issue a basic
17484  * accept to accept the abort.
17485  **/
17486 static void
17487 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17488 			     struct hbq_dmabuf *dmabuf)
17489 {
17490 	struct lpfc_hba *phba = vport->phba;
17491 	struct fc_frame_header fc_hdr;
17492 	uint32_t fctl;
17493 	bool aborted;
17494 
17495 	/* Make a copy of fc_hdr before the dmabuf being released */
17496 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17497 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17498 
17499 	if (fctl & FC_FC_EX_CTX) {
17500 		/* ABTS by responder to exchange, no cleanup needed */
17501 		aborted = true;
17502 	} else {
17503 		/* ABTS by initiator to exchange, need to do cleanup */
17504 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17505 		if (aborted == false)
17506 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17507 	}
17508 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17509 
17510 	if (phba->nvmet_support) {
17511 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17512 		return;
17513 	}
17514 
17515 	/* Respond with BA_ACC or BA_RJT accordingly */
17516 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17517 }
17518 
17519 /**
17520  * lpfc_seq_complete - Indicates if a sequence is complete
17521  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17522  *
17523  * This function checks the sequence, starting with the frame described by
17524  * @dmabuf, to see if all the frames associated with this sequence are present.
17525  * the frames associated with this sequence are linked to the @dmabuf using the
17526  * dbuf list. This function looks for two major things. 1) That the first frame
17527  * has a sequence count of zero. 2) There is a frame with last frame of sequence
17528  * set. 3) That there are no holes in the sequence count. The function will
17529  * return 1 when the sequence is complete, otherwise it will return 0.
17530  **/
17531 static int
17532 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17533 {
17534 	struct fc_frame_header *hdr;
17535 	struct lpfc_dmabuf *d_buf;
17536 	struct hbq_dmabuf *seq_dmabuf;
17537 	uint32_t fctl;
17538 	int seq_count = 0;
17539 
17540 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17541 	/* make sure first fame of sequence has a sequence count of zero */
17542 	if (hdr->fh_seq_cnt != seq_count)
17543 		return 0;
17544 	fctl = (hdr->fh_f_ctl[0] << 16 |
17545 		hdr->fh_f_ctl[1] << 8 |
17546 		hdr->fh_f_ctl[2]);
17547 	/* If last frame of sequence we can return success. */
17548 	if (fctl & FC_FC_END_SEQ)
17549 		return 1;
17550 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17551 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17552 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17553 		/* If there is a hole in the sequence count then fail. */
17554 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17555 			return 0;
17556 		fctl = (hdr->fh_f_ctl[0] << 16 |
17557 			hdr->fh_f_ctl[1] << 8 |
17558 			hdr->fh_f_ctl[2]);
17559 		/* If last frame of sequence we can return success. */
17560 		if (fctl & FC_FC_END_SEQ)
17561 			return 1;
17562 	}
17563 	return 0;
17564 }
17565 
17566 /**
17567  * lpfc_prep_seq - Prep sequence for ULP processing
17568  * @vport: Pointer to the vport on which this sequence was received
17569  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17570  *
17571  * This function takes a sequence, described by a list of frames, and creates
17572  * a list of iocbq structures to describe the sequence. This iocbq list will be
17573  * used to issue to the generic unsolicited sequence handler. This routine
17574  * returns a pointer to the first iocbq in the list. If the function is unable
17575  * to allocate an iocbq then it throw out the received frames that were not
17576  * able to be described and return a pointer to the first iocbq. If unable to
17577  * allocate any iocbqs (including the first) this function will return NULL.
17578  **/
17579 static struct lpfc_iocbq *
17580 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17581 {
17582 	struct hbq_dmabuf *hbq_buf;
17583 	struct lpfc_dmabuf *d_buf, *n_buf;
17584 	struct lpfc_iocbq *first_iocbq, *iocbq;
17585 	struct fc_frame_header *fc_hdr;
17586 	uint32_t sid;
17587 	uint32_t len, tot_len;
17588 	struct ulp_bde64 *pbde;
17589 
17590 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17591 	/* remove from receive buffer list */
17592 	list_del_init(&seq_dmabuf->hbuf.list);
17593 	lpfc_update_rcv_time_stamp(vport);
17594 	/* get the Remote Port's SID */
17595 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17596 	tot_len = 0;
17597 	/* Get an iocbq struct to fill in. */
17598 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17599 	if (first_iocbq) {
17600 		/* Initialize the first IOCB. */
17601 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17602 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17603 		first_iocbq->vport = vport;
17604 
17605 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
17606 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17607 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17608 			first_iocbq->iocb.un.rcvels.parmRo =
17609 				sli4_did_from_fc_hdr(fc_hdr);
17610 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17611 		} else
17612 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17613 		first_iocbq->iocb.ulpContext = NO_XRI;
17614 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17615 			be16_to_cpu(fc_hdr->fh_ox_id);
17616 		/* iocbq is prepped for internal consumption.  Physical vpi. */
17617 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
17618 			vport->phba->vpi_ids[vport->vpi];
17619 		/* put the first buffer into the first IOCBq */
17620 		tot_len = bf_get(lpfc_rcqe_length,
17621 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17622 
17623 		first_iocbq->context2 = &seq_dmabuf->dbuf;
17624 		first_iocbq->context3 = NULL;
17625 		first_iocbq->iocb.ulpBdeCount = 1;
17626 		if (tot_len > LPFC_DATA_BUF_SIZE)
17627 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17628 							LPFC_DATA_BUF_SIZE;
17629 		else
17630 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17631 
17632 		first_iocbq->iocb.un.rcvels.remoteID = sid;
17633 
17634 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17635 	}
17636 	iocbq = first_iocbq;
17637 	/*
17638 	 * Each IOCBq can have two Buffers assigned, so go through the list
17639 	 * of buffers for this sequence and save two buffers in each IOCBq
17640 	 */
17641 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17642 		if (!iocbq) {
17643 			lpfc_in_buf_free(vport->phba, d_buf);
17644 			continue;
17645 		}
17646 		if (!iocbq->context3) {
17647 			iocbq->context3 = d_buf;
17648 			iocbq->iocb.ulpBdeCount++;
17649 			/* We need to get the size out of the right CQE */
17650 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17651 			len = bf_get(lpfc_rcqe_length,
17652 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17653 			pbde = (struct ulp_bde64 *)
17654 					&iocbq->iocb.unsli3.sli3Words[4];
17655 			if (len > LPFC_DATA_BUF_SIZE)
17656 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17657 			else
17658 				pbde->tus.f.bdeSize = len;
17659 
17660 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17661 			tot_len += len;
17662 		} else {
17663 			iocbq = lpfc_sli_get_iocbq(vport->phba);
17664 			if (!iocbq) {
17665 				if (first_iocbq) {
17666 					first_iocbq->iocb.ulpStatus =
17667 							IOSTAT_FCP_RSP_ERROR;
17668 					first_iocbq->iocb.un.ulpWord[4] =
17669 							IOERR_NO_RESOURCES;
17670 				}
17671 				lpfc_in_buf_free(vport->phba, d_buf);
17672 				continue;
17673 			}
17674 			/* We need to get the size out of the right CQE */
17675 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17676 			len = bf_get(lpfc_rcqe_length,
17677 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17678 			iocbq->context2 = d_buf;
17679 			iocbq->context3 = NULL;
17680 			iocbq->iocb.ulpBdeCount = 1;
17681 			if (len > LPFC_DATA_BUF_SIZE)
17682 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17683 							LPFC_DATA_BUF_SIZE;
17684 			else
17685 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17686 
17687 			tot_len += len;
17688 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17689 
17690 			iocbq->iocb.un.rcvels.remoteID = sid;
17691 			list_add_tail(&iocbq->list, &first_iocbq->list);
17692 		}
17693 	}
17694 	return first_iocbq;
17695 }
17696 
17697 static void
17698 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17699 			  struct hbq_dmabuf *seq_dmabuf)
17700 {
17701 	struct fc_frame_header *fc_hdr;
17702 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17703 	struct lpfc_hba *phba = vport->phba;
17704 
17705 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17706 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17707 	if (!iocbq) {
17708 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17709 				"2707 Ring %d handler: Failed to allocate "
17710 				"iocb Rctl x%x Type x%x received\n",
17711 				LPFC_ELS_RING,
17712 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17713 		return;
17714 	}
17715 	if (!lpfc_complete_unsol_iocb(phba,
17716 				      phba->sli4_hba.els_wq->pring,
17717 				      iocbq, fc_hdr->fh_r_ctl,
17718 				      fc_hdr->fh_type))
17719 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17720 				"2540 Ring %d handler: unexpected Rctl "
17721 				"x%x Type x%x received\n",
17722 				LPFC_ELS_RING,
17723 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17724 
17725 	/* Free iocb created in lpfc_prep_seq */
17726 	list_for_each_entry_safe(curr_iocb, next_iocb,
17727 		&iocbq->list, list) {
17728 		list_del_init(&curr_iocb->list);
17729 		lpfc_sli_release_iocbq(phba, curr_iocb);
17730 	}
17731 	lpfc_sli_release_iocbq(phba, iocbq);
17732 }
17733 
17734 static void
17735 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17736 			    struct lpfc_iocbq *rspiocb)
17737 {
17738 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17739 
17740 	if (pcmd && pcmd->virt)
17741 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17742 	kfree(pcmd);
17743 	lpfc_sli_release_iocbq(phba, cmdiocb);
17744 }
17745 
17746 static void
17747 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17748 			      struct hbq_dmabuf *dmabuf)
17749 {
17750 	struct fc_frame_header *fc_hdr;
17751 	struct lpfc_hba *phba = vport->phba;
17752 	struct lpfc_iocbq *iocbq = NULL;
17753 	union  lpfc_wqe *wqe;
17754 	struct lpfc_dmabuf *pcmd = NULL;
17755 	uint32_t frame_len;
17756 	int rc;
17757 
17758 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17759 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
17760 
17761 	/* Send the received frame back */
17762 	iocbq = lpfc_sli_get_iocbq(phba);
17763 	if (!iocbq)
17764 		goto exit;
17765 
17766 	/* Allocate buffer for command payload */
17767 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
17768 	if (pcmd)
17769 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
17770 					    &pcmd->phys);
17771 	if (!pcmd || !pcmd->virt)
17772 		goto exit;
17773 
17774 	INIT_LIST_HEAD(&pcmd->list);
17775 
17776 	/* copyin the payload */
17777 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
17778 
17779 	/* fill in BDE's for command */
17780 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
17781 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
17782 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
17783 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
17784 
17785 	iocbq->context2 = pcmd;
17786 	iocbq->vport = vport;
17787 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
17788 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
17789 
17790 	/*
17791 	 * Setup rest of the iocb as though it were a WQE
17792 	 * Build the SEND_FRAME WQE
17793 	 */
17794 	wqe = (union lpfc_wqe *)&iocbq->iocb;
17795 
17796 	wqe->send_frame.frame_len = frame_len;
17797 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
17798 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
17799 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
17800 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
17801 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
17802 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
17803 
17804 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
17805 	iocbq->iocb.ulpLe = 1;
17806 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
17807 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
17808 	if (rc == IOCB_ERROR)
17809 		goto exit;
17810 
17811 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17812 	return;
17813 
17814 exit:
17815 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17816 			"2023 Unable to process MDS loopback frame\n");
17817 	if (pcmd && pcmd->virt)
17818 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17819 	kfree(pcmd);
17820 	if (iocbq)
17821 		lpfc_sli_release_iocbq(phba, iocbq);
17822 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17823 }
17824 
17825 /**
17826  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
17827  * @phba: Pointer to HBA context object.
17828  *
17829  * This function is called with no lock held. This function processes all
17830  * the received buffers and gives it to upper layers when a received buffer
17831  * indicates that it is the final frame in the sequence. The interrupt
17832  * service routine processes received buffers at interrupt contexts.
17833  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
17834  * appropriate receive function when the final frame in a sequence is received.
17835  **/
17836 void
17837 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
17838 				 struct hbq_dmabuf *dmabuf)
17839 {
17840 	struct hbq_dmabuf *seq_dmabuf;
17841 	struct fc_frame_header *fc_hdr;
17842 	struct lpfc_vport *vport;
17843 	uint32_t fcfi;
17844 	uint32_t did;
17845 
17846 	/* Process each received buffer */
17847 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17848 
17849 	/* check to see if this a valid type of frame */
17850 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
17851 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17852 		return;
17853 	}
17854 
17855 	if ((bf_get(lpfc_cqe_code,
17856 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
17857 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
17858 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17859 	else
17860 		fcfi = bf_get(lpfc_rcqe_fcf_id,
17861 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17862 
17863 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
17864 		vport = phba->pport;
17865 		/* Handle MDS Loopback frames */
17866 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17867 		return;
17868 	}
17869 
17870 	/* d_id this frame is directed to */
17871 	did = sli4_did_from_fc_hdr(fc_hdr);
17872 
17873 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
17874 	if (!vport) {
17875 		/* throw out the frame */
17876 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17877 		return;
17878 	}
17879 
17880 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
17881 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
17882 		(did != Fabric_DID)) {
17883 		/*
17884 		 * Throw out the frame if we are not pt2pt.
17885 		 * The pt2pt protocol allows for discovery frames
17886 		 * to be received without a registered VPI.
17887 		 */
17888 		if (!(vport->fc_flag & FC_PT2PT) ||
17889 			(phba->link_state == LPFC_HBA_READY)) {
17890 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
17891 			return;
17892 		}
17893 	}
17894 
17895 	/* Handle the basic abort sequence (BA_ABTS) event */
17896 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
17897 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
17898 		return;
17899 	}
17900 
17901 	/* Link this frame */
17902 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
17903 	if (!seq_dmabuf) {
17904 		/* unable to add frame to vport - throw it out */
17905 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17906 		return;
17907 	}
17908 	/* If not last frame in sequence continue processing frames. */
17909 	if (!lpfc_seq_complete(seq_dmabuf))
17910 		return;
17911 
17912 	/* Send the complete sequence to the upper layer protocol */
17913 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
17914 }
17915 
17916 /**
17917  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
17918  * @phba: pointer to lpfc hba data structure.
17919  *
17920  * This routine is invoked to post rpi header templates to the
17921  * HBA consistent with the SLI-4 interface spec.  This routine
17922  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17923  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17924  *
17925  * This routine does not require any locks.  It's usage is expected
17926  * to be driver load or reset recovery when the driver is
17927  * sequential.
17928  *
17929  * Return codes
17930  * 	0 - successful
17931  *      -EIO - The mailbox failed to complete successfully.
17932  * 	When this error occurs, the driver is not guaranteed
17933  *	to have any rpi regions posted to the device and
17934  *	must either attempt to repost the regions or take a
17935  *	fatal error.
17936  **/
17937 int
17938 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
17939 {
17940 	struct lpfc_rpi_hdr *rpi_page;
17941 	uint32_t rc = 0;
17942 	uint16_t lrpi = 0;
17943 
17944 	/* SLI4 ports that support extents do not require RPI headers. */
17945 	if (!phba->sli4_hba.rpi_hdrs_in_use)
17946 		goto exit;
17947 	if (phba->sli4_hba.extents_in_use)
17948 		return -EIO;
17949 
17950 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
17951 		/*
17952 		 * Assign the rpi headers a physical rpi only if the driver
17953 		 * has not initialized those resources.  A port reset only
17954 		 * needs the headers posted.
17955 		 */
17956 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
17957 		    LPFC_RPI_RSRC_RDY)
17958 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17959 
17960 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
17961 		if (rc != MBX_SUCCESS) {
17962 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17963 					"2008 Error %d posting all rpi "
17964 					"headers\n", rc);
17965 			rc = -EIO;
17966 			break;
17967 		}
17968 	}
17969 
17970  exit:
17971 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
17972 	       LPFC_RPI_RSRC_RDY);
17973 	return rc;
17974 }
17975 
17976 /**
17977  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
17978  * @phba: pointer to lpfc hba data structure.
17979  * @rpi_page:  pointer to the rpi memory region.
17980  *
17981  * This routine is invoked to post a single rpi header to the
17982  * HBA consistent with the SLI-4 interface spec.  This memory region
17983  * maps up to 64 rpi context regions.
17984  *
17985  * Return codes
17986  * 	0 - successful
17987  * 	-ENOMEM - No available memory
17988  *      -EIO - The mailbox failed to complete successfully.
17989  **/
17990 int
17991 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
17992 {
17993 	LPFC_MBOXQ_t *mboxq;
17994 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
17995 	uint32_t rc = 0;
17996 	uint32_t shdr_status, shdr_add_status;
17997 	union lpfc_sli4_cfg_shdr *shdr;
17998 
17999 	/* SLI4 ports that support extents do not require RPI headers. */
18000 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18001 		return rc;
18002 	if (phba->sli4_hba.extents_in_use)
18003 		return -EIO;
18004 
18005 	/* The port is notified of the header region via a mailbox command. */
18006 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18007 	if (!mboxq) {
18008 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18009 				"2001 Unable to allocate memory for issuing "
18010 				"SLI_CONFIG_SPECIAL mailbox command\n");
18011 		return -ENOMEM;
18012 	}
18013 
18014 	/* Post all rpi memory regions to the port. */
18015 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18016 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18017 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18018 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18019 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18020 			 LPFC_SLI4_MBX_EMBED);
18021 
18022 
18023 	/* Post the physical rpi to the port for this rpi header. */
18024 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18025 	       rpi_page->start_rpi);
18026 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18027 	       hdr_tmpl, rpi_page->page_count);
18028 
18029 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18030 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18031 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18032 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18033 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18034 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18035 	if (rc != MBX_TIMEOUT)
18036 		mempool_free(mboxq, phba->mbox_mem_pool);
18037 	if (shdr_status || shdr_add_status || rc) {
18038 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18039 				"2514 POST_RPI_HDR mailbox failed with "
18040 				"status x%x add_status x%x, mbx status x%x\n",
18041 				shdr_status, shdr_add_status, rc);
18042 		rc = -ENXIO;
18043 	} else {
18044 		/*
18045 		 * The next_rpi stores the next logical module-64 rpi value used
18046 		 * to post physical rpis in subsequent rpi postings.
18047 		 */
18048 		spin_lock_irq(&phba->hbalock);
18049 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18050 		spin_unlock_irq(&phba->hbalock);
18051 	}
18052 	return rc;
18053 }
18054 
18055 /**
18056  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18057  * @phba: pointer to lpfc hba data structure.
18058  *
18059  * This routine is invoked to post rpi header templates to the
18060  * HBA consistent with the SLI-4 interface spec.  This routine
18061  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18062  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18063  *
18064  * Returns
18065  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18066  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18067  **/
18068 int
18069 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18070 {
18071 	unsigned long rpi;
18072 	uint16_t max_rpi, rpi_limit;
18073 	uint16_t rpi_remaining, lrpi = 0;
18074 	struct lpfc_rpi_hdr *rpi_hdr;
18075 	unsigned long iflag;
18076 
18077 	/*
18078 	 * Fetch the next logical rpi.  Because this index is logical,
18079 	 * the  driver starts at 0 each time.
18080 	 */
18081 	spin_lock_irqsave(&phba->hbalock, iflag);
18082 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18083 	rpi_limit = phba->sli4_hba.next_rpi;
18084 
18085 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18086 	if (rpi >= rpi_limit)
18087 		rpi = LPFC_RPI_ALLOC_ERROR;
18088 	else {
18089 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18090 		phba->sli4_hba.max_cfg_param.rpi_used++;
18091 		phba->sli4_hba.rpi_count++;
18092 	}
18093 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18094 			"0001 rpi:%x max:%x lim:%x\n",
18095 			(int) rpi, max_rpi, rpi_limit);
18096 
18097 	/*
18098 	 * Don't try to allocate more rpi header regions if the device limit
18099 	 * has been exhausted.
18100 	 */
18101 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18102 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18103 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18104 		return rpi;
18105 	}
18106 
18107 	/*
18108 	 * RPI header postings are not required for SLI4 ports capable of
18109 	 * extents.
18110 	 */
18111 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18112 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18113 		return rpi;
18114 	}
18115 
18116 	/*
18117 	 * If the driver is running low on rpi resources, allocate another
18118 	 * page now.  Note that the next_rpi value is used because
18119 	 * it represents how many are actually in use whereas max_rpi notes
18120 	 * how many are supported max by the device.
18121 	 */
18122 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18123 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18124 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18125 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18126 		if (!rpi_hdr) {
18127 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18128 					"2002 Error Could not grow rpi "
18129 					"count\n");
18130 		} else {
18131 			lrpi = rpi_hdr->start_rpi;
18132 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18133 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18134 		}
18135 	}
18136 
18137 	return rpi;
18138 }
18139 
18140 /**
18141  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18142  * @phba: pointer to lpfc hba data structure.
18143  *
18144  * This routine is invoked to release an rpi to the pool of
18145  * available rpis maintained by the driver.
18146  **/
18147 static void
18148 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18149 {
18150 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18151 		phba->sli4_hba.rpi_count--;
18152 		phba->sli4_hba.max_cfg_param.rpi_used--;
18153 	}
18154 }
18155 
18156 /**
18157  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18158  * @phba: pointer to lpfc hba data structure.
18159  *
18160  * This routine is invoked to release an rpi to the pool of
18161  * available rpis maintained by the driver.
18162  **/
18163 void
18164 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18165 {
18166 	spin_lock_irq(&phba->hbalock);
18167 	__lpfc_sli4_free_rpi(phba, rpi);
18168 	spin_unlock_irq(&phba->hbalock);
18169 }
18170 
18171 /**
18172  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18173  * @phba: pointer to lpfc hba data structure.
18174  *
18175  * This routine is invoked to remove the memory region that
18176  * provided rpi via a bitmask.
18177  **/
18178 void
18179 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18180 {
18181 	kfree(phba->sli4_hba.rpi_bmask);
18182 	kfree(phba->sli4_hba.rpi_ids);
18183 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18184 }
18185 
18186 /**
18187  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18188  * @phba: pointer to lpfc hba data structure.
18189  *
18190  * This routine is invoked to remove the memory region that
18191  * provided rpi via a bitmask.
18192  **/
18193 int
18194 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18195 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18196 {
18197 	LPFC_MBOXQ_t *mboxq;
18198 	struct lpfc_hba *phba = ndlp->phba;
18199 	int rc;
18200 
18201 	/* The port is notified of the header region via a mailbox command. */
18202 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18203 	if (!mboxq)
18204 		return -ENOMEM;
18205 
18206 	/* Post all rpi memory regions to the port. */
18207 	lpfc_resume_rpi(mboxq, ndlp);
18208 	if (cmpl) {
18209 		mboxq->mbox_cmpl = cmpl;
18210 		mboxq->context1 = arg;
18211 		mboxq->context2 = ndlp;
18212 	} else
18213 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18214 	mboxq->vport = ndlp->vport;
18215 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18216 	if (rc == MBX_NOT_FINISHED) {
18217 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18218 				"2010 Resume RPI Mailbox failed "
18219 				"status %d, mbxStatus x%x\n", rc,
18220 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18221 		mempool_free(mboxq, phba->mbox_mem_pool);
18222 		return -EIO;
18223 	}
18224 	return 0;
18225 }
18226 
18227 /**
18228  * lpfc_sli4_init_vpi - Initialize a vpi with the port
18229  * @vport: Pointer to the vport for which the vpi is being initialized
18230  *
18231  * This routine is invoked to activate a vpi with the port.
18232  *
18233  * Returns:
18234  *    0 success
18235  *    -Evalue otherwise
18236  **/
18237 int
18238 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18239 {
18240 	LPFC_MBOXQ_t *mboxq;
18241 	int rc = 0;
18242 	int retval = MBX_SUCCESS;
18243 	uint32_t mbox_tmo;
18244 	struct lpfc_hba *phba = vport->phba;
18245 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18246 	if (!mboxq)
18247 		return -ENOMEM;
18248 	lpfc_init_vpi(phba, mboxq, vport->vpi);
18249 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18250 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18251 	if (rc != MBX_SUCCESS) {
18252 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18253 				"2022 INIT VPI Mailbox failed "
18254 				"status %d, mbxStatus x%x\n", rc,
18255 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18256 		retval = -EIO;
18257 	}
18258 	if (rc != MBX_TIMEOUT)
18259 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18260 
18261 	return retval;
18262 }
18263 
18264 /**
18265  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18266  * @phba: pointer to lpfc hba data structure.
18267  * @mboxq: Pointer to mailbox object.
18268  *
18269  * This routine is invoked to manually add a single FCF record. The caller
18270  * must pass a completely initialized FCF_Record.  This routine takes
18271  * care of the nonembedded mailbox operations.
18272  **/
18273 static void
18274 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18275 {
18276 	void *virt_addr;
18277 	union lpfc_sli4_cfg_shdr *shdr;
18278 	uint32_t shdr_status, shdr_add_status;
18279 
18280 	virt_addr = mboxq->sge_array->addr[0];
18281 	/* The IOCTL status is embedded in the mailbox subheader. */
18282 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18283 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18284 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18285 
18286 	if ((shdr_status || shdr_add_status) &&
18287 		(shdr_status != STATUS_FCF_IN_USE))
18288 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18289 			"2558 ADD_FCF_RECORD mailbox failed with "
18290 			"status x%x add_status x%x\n",
18291 			shdr_status, shdr_add_status);
18292 
18293 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18294 }
18295 
18296 /**
18297  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18298  * @phba: pointer to lpfc hba data structure.
18299  * @fcf_record:  pointer to the initialized fcf record to add.
18300  *
18301  * This routine is invoked to manually add a single FCF record. The caller
18302  * must pass a completely initialized FCF_Record.  This routine takes
18303  * care of the nonembedded mailbox operations.
18304  **/
18305 int
18306 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18307 {
18308 	int rc = 0;
18309 	LPFC_MBOXQ_t *mboxq;
18310 	uint8_t *bytep;
18311 	void *virt_addr;
18312 	struct lpfc_mbx_sge sge;
18313 	uint32_t alloc_len, req_len;
18314 	uint32_t fcfindex;
18315 
18316 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18317 	if (!mboxq) {
18318 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18319 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18320 		return -ENOMEM;
18321 	}
18322 
18323 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18324 		  sizeof(uint32_t);
18325 
18326 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18327 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18328 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18329 				     req_len, LPFC_SLI4_MBX_NEMBED);
18330 	if (alloc_len < req_len) {
18331 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18332 			"2523 Allocated DMA memory size (x%x) is "
18333 			"less than the requested DMA memory "
18334 			"size (x%x)\n", alloc_len, req_len);
18335 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18336 		return -ENOMEM;
18337 	}
18338 
18339 	/*
18340 	 * Get the first SGE entry from the non-embedded DMA memory.  This
18341 	 * routine only uses a single SGE.
18342 	 */
18343 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18344 	virt_addr = mboxq->sge_array->addr[0];
18345 	/*
18346 	 * Configure the FCF record for FCFI 0.  This is the driver's
18347 	 * hardcoded default and gets used in nonFIP mode.
18348 	 */
18349 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18350 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18351 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18352 
18353 	/*
18354 	 * Copy the fcf_index and the FCF Record Data. The data starts after
18355 	 * the FCoE header plus word10. The data copy needs to be endian
18356 	 * correct.
18357 	 */
18358 	bytep += sizeof(uint32_t);
18359 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18360 	mboxq->vport = phba->pport;
18361 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18362 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18363 	if (rc == MBX_NOT_FINISHED) {
18364 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18365 			"2515 ADD_FCF_RECORD mailbox failed with "
18366 			"status 0x%x\n", rc);
18367 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18368 		rc = -EIO;
18369 	} else
18370 		rc = 0;
18371 
18372 	return rc;
18373 }
18374 
18375 /**
18376  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18377  * @phba: pointer to lpfc hba data structure.
18378  * @fcf_record:  pointer to the fcf record to write the default data.
18379  * @fcf_index: FCF table entry index.
18380  *
18381  * This routine is invoked to build the driver's default FCF record.  The
18382  * values used are hardcoded.  This routine handles memory initialization.
18383  *
18384  **/
18385 void
18386 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18387 				struct fcf_record *fcf_record,
18388 				uint16_t fcf_index)
18389 {
18390 	memset(fcf_record, 0, sizeof(struct fcf_record));
18391 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18392 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18393 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18394 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18395 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18396 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18397 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18398 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18399 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18400 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18401 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18402 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18403 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18404 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18405 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18406 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18407 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18408 	/* Set the VLAN bit map */
18409 	if (phba->valid_vlan) {
18410 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
18411 			= 1 << (phba->vlan_id % 8);
18412 	}
18413 }
18414 
18415 /**
18416  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18417  * @phba: pointer to lpfc hba data structure.
18418  * @fcf_index: FCF table entry offset.
18419  *
18420  * This routine is invoked to scan the entire FCF table by reading FCF
18421  * record and processing it one at a time starting from the @fcf_index
18422  * for initial FCF discovery or fast FCF failover rediscovery.
18423  *
18424  * Return 0 if the mailbox command is submitted successfully, none 0
18425  * otherwise.
18426  **/
18427 int
18428 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18429 {
18430 	int rc = 0, error;
18431 	LPFC_MBOXQ_t *mboxq;
18432 
18433 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18434 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18435 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18436 	if (!mboxq) {
18437 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18438 				"2000 Failed to allocate mbox for "
18439 				"READ_FCF cmd\n");
18440 		error = -ENOMEM;
18441 		goto fail_fcf_scan;
18442 	}
18443 	/* Construct the read FCF record mailbox command */
18444 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18445 	if (rc) {
18446 		error = -EINVAL;
18447 		goto fail_fcf_scan;
18448 	}
18449 	/* Issue the mailbox command asynchronously */
18450 	mboxq->vport = phba->pport;
18451 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18452 
18453 	spin_lock_irq(&phba->hbalock);
18454 	phba->hba_flag |= FCF_TS_INPROG;
18455 	spin_unlock_irq(&phba->hbalock);
18456 
18457 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18458 	if (rc == MBX_NOT_FINISHED)
18459 		error = -EIO;
18460 	else {
18461 		/* Reset eligible FCF count for new scan */
18462 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18463 			phba->fcf.eligible_fcf_cnt = 0;
18464 		error = 0;
18465 	}
18466 fail_fcf_scan:
18467 	if (error) {
18468 		if (mboxq)
18469 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
18470 		/* FCF scan failed, clear FCF_TS_INPROG flag */
18471 		spin_lock_irq(&phba->hbalock);
18472 		phba->hba_flag &= ~FCF_TS_INPROG;
18473 		spin_unlock_irq(&phba->hbalock);
18474 	}
18475 	return error;
18476 }
18477 
18478 /**
18479  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18480  * @phba: pointer to lpfc hba data structure.
18481  * @fcf_index: FCF table entry offset.
18482  *
18483  * This routine is invoked to read an FCF record indicated by @fcf_index
18484  * and to use it for FLOGI roundrobin FCF failover.
18485  *
18486  * Return 0 if the mailbox command is submitted successfully, none 0
18487  * otherwise.
18488  **/
18489 int
18490 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18491 {
18492 	int rc = 0, error;
18493 	LPFC_MBOXQ_t *mboxq;
18494 
18495 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18496 	if (!mboxq) {
18497 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18498 				"2763 Failed to allocate mbox for "
18499 				"READ_FCF cmd\n");
18500 		error = -ENOMEM;
18501 		goto fail_fcf_read;
18502 	}
18503 	/* Construct the read FCF record mailbox command */
18504 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18505 	if (rc) {
18506 		error = -EINVAL;
18507 		goto fail_fcf_read;
18508 	}
18509 	/* Issue the mailbox command asynchronously */
18510 	mboxq->vport = phba->pport;
18511 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18512 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18513 	if (rc == MBX_NOT_FINISHED)
18514 		error = -EIO;
18515 	else
18516 		error = 0;
18517 
18518 fail_fcf_read:
18519 	if (error && mboxq)
18520 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18521 	return error;
18522 }
18523 
18524 /**
18525  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18526  * @phba: pointer to lpfc hba data structure.
18527  * @fcf_index: FCF table entry offset.
18528  *
18529  * This routine is invoked to read an FCF record indicated by @fcf_index to
18530  * determine whether it's eligible for FLOGI roundrobin failover list.
18531  *
18532  * Return 0 if the mailbox command is submitted successfully, none 0
18533  * otherwise.
18534  **/
18535 int
18536 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18537 {
18538 	int rc = 0, error;
18539 	LPFC_MBOXQ_t *mboxq;
18540 
18541 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18542 	if (!mboxq) {
18543 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18544 				"2758 Failed to allocate mbox for "
18545 				"READ_FCF cmd\n");
18546 				error = -ENOMEM;
18547 				goto fail_fcf_read;
18548 	}
18549 	/* Construct the read FCF record mailbox command */
18550 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18551 	if (rc) {
18552 		error = -EINVAL;
18553 		goto fail_fcf_read;
18554 	}
18555 	/* Issue the mailbox command asynchronously */
18556 	mboxq->vport = phba->pport;
18557 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18558 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18559 	if (rc == MBX_NOT_FINISHED)
18560 		error = -EIO;
18561 	else
18562 		error = 0;
18563 
18564 fail_fcf_read:
18565 	if (error && mboxq)
18566 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18567 	return error;
18568 }
18569 
18570 /**
18571  * lpfc_check_next_fcf_pri_level
18572  * phba pointer to the lpfc_hba struct for this port.
18573  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18574  * routine when the rr_bmask is empty. The FCF indecies are put into the
18575  * rr_bmask based on their priority level. Starting from the highest priority
18576  * to the lowest. The most likely FCF candidate will be in the highest
18577  * priority group. When this routine is called it searches the fcf_pri list for
18578  * next lowest priority group and repopulates the rr_bmask with only those
18579  * fcf_indexes.
18580  * returns:
18581  * 1=success 0=failure
18582  **/
18583 static int
18584 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18585 {
18586 	uint16_t next_fcf_pri;
18587 	uint16_t last_index;
18588 	struct lpfc_fcf_pri *fcf_pri;
18589 	int rc;
18590 	int ret = 0;
18591 
18592 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18593 			LPFC_SLI4_FCF_TBL_INDX_MAX);
18594 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18595 			"3060 Last IDX %d\n", last_index);
18596 
18597 	/* Verify the priority list has 2 or more entries */
18598 	spin_lock_irq(&phba->hbalock);
18599 	if (list_empty(&phba->fcf.fcf_pri_list) ||
18600 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
18601 		spin_unlock_irq(&phba->hbalock);
18602 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18603 			"3061 Last IDX %d\n", last_index);
18604 		return 0; /* Empty rr list */
18605 	}
18606 	spin_unlock_irq(&phba->hbalock);
18607 
18608 	next_fcf_pri = 0;
18609 	/*
18610 	 * Clear the rr_bmask and set all of the bits that are at this
18611 	 * priority.
18612 	 */
18613 	memset(phba->fcf.fcf_rr_bmask, 0,
18614 			sizeof(*phba->fcf.fcf_rr_bmask));
18615 	spin_lock_irq(&phba->hbalock);
18616 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18617 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18618 			continue;
18619 		/*
18620 		 * the 1st priority that has not FLOGI failed
18621 		 * will be the highest.
18622 		 */
18623 		if (!next_fcf_pri)
18624 			next_fcf_pri = fcf_pri->fcf_rec.priority;
18625 		spin_unlock_irq(&phba->hbalock);
18626 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18627 			rc = lpfc_sli4_fcf_rr_index_set(phba,
18628 						fcf_pri->fcf_rec.fcf_index);
18629 			if (rc)
18630 				return 0;
18631 		}
18632 		spin_lock_irq(&phba->hbalock);
18633 	}
18634 	/*
18635 	 * if next_fcf_pri was not set above and the list is not empty then
18636 	 * we have failed flogis on all of them. So reset flogi failed
18637 	 * and start at the beginning.
18638 	 */
18639 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18640 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18641 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18642 			/*
18643 			 * the 1st priority that has not FLOGI failed
18644 			 * will be the highest.
18645 			 */
18646 			if (!next_fcf_pri)
18647 				next_fcf_pri = fcf_pri->fcf_rec.priority;
18648 			spin_unlock_irq(&phba->hbalock);
18649 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18650 				rc = lpfc_sli4_fcf_rr_index_set(phba,
18651 						fcf_pri->fcf_rec.fcf_index);
18652 				if (rc)
18653 					return 0;
18654 			}
18655 			spin_lock_irq(&phba->hbalock);
18656 		}
18657 	} else
18658 		ret = 1;
18659 	spin_unlock_irq(&phba->hbalock);
18660 
18661 	return ret;
18662 }
18663 /**
18664  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18665  * @phba: pointer to lpfc hba data structure.
18666  *
18667  * This routine is to get the next eligible FCF record index in a round
18668  * robin fashion. If the next eligible FCF record index equals to the
18669  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18670  * shall be returned, otherwise, the next eligible FCF record's index
18671  * shall be returned.
18672  **/
18673 uint16_t
18674 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18675 {
18676 	uint16_t next_fcf_index;
18677 
18678 initial_priority:
18679 	/* Search start from next bit of currently registered FCF index */
18680 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
18681 
18682 next_priority:
18683 	/* Determine the next fcf index to check */
18684 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18685 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18686 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
18687 				       next_fcf_index);
18688 
18689 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
18690 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18691 		/*
18692 		 * If we have wrapped then we need to clear the bits that
18693 		 * have been tested so that we can detect when we should
18694 		 * change the priority level.
18695 		 */
18696 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18697 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18698 	}
18699 
18700 
18701 	/* Check roundrobin failover list empty condition */
18702 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18703 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18704 		/*
18705 		 * If next fcf index is not found check if there are lower
18706 		 * Priority level fcf's in the fcf_priority list.
18707 		 * Set up the rr_bmask with all of the avaiable fcf bits
18708 		 * at that level and continue the selection process.
18709 		 */
18710 		if (lpfc_check_next_fcf_pri_level(phba))
18711 			goto initial_priority;
18712 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18713 				"2844 No roundrobin failover FCF available\n");
18714 		if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX)
18715 			return LPFC_FCOE_FCF_NEXT_NONE;
18716 		else {
18717 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18718 				"3063 Only FCF available idx %d, flag %x\n",
18719 				next_fcf_index,
18720 			phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag);
18721 			return next_fcf_index;
18722 		}
18723 	}
18724 
18725 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
18726 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
18727 		LPFC_FCF_FLOGI_FAILED) {
18728 		if (list_is_singular(&phba->fcf.fcf_pri_list))
18729 			return LPFC_FCOE_FCF_NEXT_NONE;
18730 
18731 		goto next_priority;
18732 	}
18733 
18734 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18735 			"2845 Get next roundrobin failover FCF (x%x)\n",
18736 			next_fcf_index);
18737 
18738 	return next_fcf_index;
18739 }
18740 
18741 /**
18742  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
18743  * @phba: pointer to lpfc hba data structure.
18744  *
18745  * This routine sets the FCF record index in to the eligible bmask for
18746  * roundrobin failover search. It checks to make sure that the index
18747  * does not go beyond the range of the driver allocated bmask dimension
18748  * before setting the bit.
18749  *
18750  * Returns 0 if the index bit successfully set, otherwise, it returns
18751  * -EINVAL.
18752  **/
18753 int
18754 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
18755 {
18756 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18757 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18758 				"2610 FCF (x%x) reached driver's book "
18759 				"keeping dimension:x%x\n",
18760 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18761 		return -EINVAL;
18762 	}
18763 	/* Set the eligible FCF record index bmask */
18764 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18765 
18766 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18767 			"2790 Set FCF (x%x) to roundrobin FCF failover "
18768 			"bmask\n", fcf_index);
18769 
18770 	return 0;
18771 }
18772 
18773 /**
18774  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
18775  * @phba: pointer to lpfc hba data structure.
18776  *
18777  * This routine clears the FCF record index from the eligible bmask for
18778  * roundrobin failover search. It checks to make sure that the index
18779  * does not go beyond the range of the driver allocated bmask dimension
18780  * before clearing the bit.
18781  **/
18782 void
18783 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
18784 {
18785 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
18786 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18787 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18788 				"2762 FCF (x%x) reached driver's book "
18789 				"keeping dimension:x%x\n",
18790 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18791 		return;
18792 	}
18793 	/* Clear the eligible FCF record index bmask */
18794 	spin_lock_irq(&phba->hbalock);
18795 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
18796 				 list) {
18797 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
18798 			list_del_init(&fcf_pri->list);
18799 			break;
18800 		}
18801 	}
18802 	spin_unlock_irq(&phba->hbalock);
18803 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18804 
18805 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18806 			"2791 Clear FCF (x%x) from roundrobin failover "
18807 			"bmask\n", fcf_index);
18808 }
18809 
18810 /**
18811  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
18812  * @phba: pointer to lpfc hba data structure.
18813  *
18814  * This routine is the completion routine for the rediscover FCF table mailbox
18815  * command. If the mailbox command returned failure, it will try to stop the
18816  * FCF rediscover wait timer.
18817  **/
18818 static void
18819 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
18820 {
18821 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18822 	uint32_t shdr_status, shdr_add_status;
18823 
18824 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18825 
18826 	shdr_status = bf_get(lpfc_mbox_hdr_status,
18827 			     &redisc_fcf->header.cfg_shdr.response);
18828 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
18829 			     &redisc_fcf->header.cfg_shdr.response);
18830 	if (shdr_status || shdr_add_status) {
18831 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18832 				"2746 Requesting for FCF rediscovery failed "
18833 				"status x%x add_status x%x\n",
18834 				shdr_status, shdr_add_status);
18835 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
18836 			spin_lock_irq(&phba->hbalock);
18837 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
18838 			spin_unlock_irq(&phba->hbalock);
18839 			/*
18840 			 * CVL event triggered FCF rediscover request failed,
18841 			 * last resort to re-try current registered FCF entry.
18842 			 */
18843 			lpfc_retry_pport_discovery(phba);
18844 		} else {
18845 			spin_lock_irq(&phba->hbalock);
18846 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
18847 			spin_unlock_irq(&phba->hbalock);
18848 			/*
18849 			 * DEAD FCF event triggered FCF rediscover request
18850 			 * failed, last resort to fail over as a link down
18851 			 * to FCF registration.
18852 			 */
18853 			lpfc_sli4_fcf_dead_failthrough(phba);
18854 		}
18855 	} else {
18856 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18857 				"2775 Start FCF rediscover quiescent timer\n");
18858 		/*
18859 		 * Start FCF rediscovery wait timer for pending FCF
18860 		 * before rescan FCF record table.
18861 		 */
18862 		lpfc_fcf_redisc_wait_start_timer(phba);
18863 	}
18864 
18865 	mempool_free(mbox, phba->mbox_mem_pool);
18866 }
18867 
18868 /**
18869  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
18870  * @phba: pointer to lpfc hba data structure.
18871  *
18872  * This routine is invoked to request for rediscovery of the entire FCF table
18873  * by the port.
18874  **/
18875 int
18876 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
18877 {
18878 	LPFC_MBOXQ_t *mbox;
18879 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18880 	int rc, length;
18881 
18882 	/* Cancel retry delay timers to all vports before FCF rediscover */
18883 	lpfc_cancel_all_vport_retry_delay_timer(phba);
18884 
18885 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18886 	if (!mbox) {
18887 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18888 				"2745 Failed to allocate mbox for "
18889 				"requesting FCF rediscover.\n");
18890 		return -ENOMEM;
18891 	}
18892 
18893 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
18894 		  sizeof(struct lpfc_sli4_cfg_mhdr));
18895 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18896 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
18897 			 length, LPFC_SLI4_MBX_EMBED);
18898 
18899 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18900 	/* Set count to 0 for invalidating the entire FCF database */
18901 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
18902 
18903 	/* Issue the mailbox command asynchronously */
18904 	mbox->vport = phba->pport;
18905 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
18906 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
18907 
18908 	if (rc == MBX_NOT_FINISHED) {
18909 		mempool_free(mbox, phba->mbox_mem_pool);
18910 		return -EIO;
18911 	}
18912 	return 0;
18913 }
18914 
18915 /**
18916  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
18917  * @phba: pointer to lpfc hba data structure.
18918  *
18919  * This function is the failover routine as a last resort to the FCF DEAD
18920  * event when driver failed to perform fast FCF failover.
18921  **/
18922 void
18923 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
18924 {
18925 	uint32_t link_state;
18926 
18927 	/*
18928 	 * Last resort as FCF DEAD event failover will treat this as
18929 	 * a link down, but save the link state because we don't want
18930 	 * it to be changed to Link Down unless it is already down.
18931 	 */
18932 	link_state = phba->link_state;
18933 	lpfc_linkdown(phba);
18934 	phba->link_state = link_state;
18935 
18936 	/* Unregister FCF if no devices connected to it */
18937 	lpfc_unregister_unused_fcf(phba);
18938 }
18939 
18940 /**
18941  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
18942  * @phba: pointer to lpfc hba data structure.
18943  * @rgn23_data: pointer to configure region 23 data.
18944  *
18945  * This function gets SLI3 port configure region 23 data through memory dump
18946  * mailbox command. When it successfully retrieves data, the size of the data
18947  * will be returned, otherwise, 0 will be returned.
18948  **/
18949 static uint32_t
18950 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18951 {
18952 	LPFC_MBOXQ_t *pmb = NULL;
18953 	MAILBOX_t *mb;
18954 	uint32_t offset = 0;
18955 	int rc;
18956 
18957 	if (!rgn23_data)
18958 		return 0;
18959 
18960 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18961 	if (!pmb) {
18962 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18963 				"2600 failed to allocate mailbox memory\n");
18964 		return 0;
18965 	}
18966 	mb = &pmb->u.mb;
18967 
18968 	do {
18969 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
18970 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
18971 
18972 		if (rc != MBX_SUCCESS) {
18973 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
18974 					"2601 failed to read config "
18975 					"region 23, rc 0x%x Status 0x%x\n",
18976 					rc, mb->mbxStatus);
18977 			mb->un.varDmp.word_cnt = 0;
18978 		}
18979 		/*
18980 		 * dump mem may return a zero when finished or we got a
18981 		 * mailbox error, either way we are done.
18982 		 */
18983 		if (mb->un.varDmp.word_cnt == 0)
18984 			break;
18985 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
18986 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
18987 
18988 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
18989 				       rgn23_data + offset,
18990 				       mb->un.varDmp.word_cnt);
18991 		offset += mb->un.varDmp.word_cnt;
18992 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
18993 
18994 	mempool_free(pmb, phba->mbox_mem_pool);
18995 	return offset;
18996 }
18997 
18998 /**
18999  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19000  * @phba: pointer to lpfc hba data structure.
19001  * @rgn23_data: pointer to configure region 23 data.
19002  *
19003  * This function gets SLI4 port configure region 23 data through memory dump
19004  * mailbox command. When it successfully retrieves data, the size of the data
19005  * will be returned, otherwise, 0 will be returned.
19006  **/
19007 static uint32_t
19008 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19009 {
19010 	LPFC_MBOXQ_t *mboxq = NULL;
19011 	struct lpfc_dmabuf *mp = NULL;
19012 	struct lpfc_mqe *mqe;
19013 	uint32_t data_length = 0;
19014 	int rc;
19015 
19016 	if (!rgn23_data)
19017 		return 0;
19018 
19019 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19020 	if (!mboxq) {
19021 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19022 				"3105 failed to allocate mailbox memory\n");
19023 		return 0;
19024 	}
19025 
19026 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19027 		goto out;
19028 	mqe = &mboxq->u.mqe;
19029 	mp = (struct lpfc_dmabuf *) mboxq->context1;
19030 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19031 	if (rc)
19032 		goto out;
19033 	data_length = mqe->un.mb_words[5];
19034 	if (data_length == 0)
19035 		goto out;
19036 	if (data_length > DMP_RGN23_SIZE) {
19037 		data_length = 0;
19038 		goto out;
19039 	}
19040 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19041 out:
19042 	mempool_free(mboxq, phba->mbox_mem_pool);
19043 	if (mp) {
19044 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19045 		kfree(mp);
19046 	}
19047 	return data_length;
19048 }
19049 
19050 /**
19051  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19052  * @phba: pointer to lpfc hba data structure.
19053  *
19054  * This function read region 23 and parse TLV for port status to
19055  * decide if the user disaled the port. If the TLV indicates the
19056  * port is disabled, the hba_flag is set accordingly.
19057  **/
19058 void
19059 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19060 {
19061 	uint8_t *rgn23_data = NULL;
19062 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19063 	uint32_t offset = 0;
19064 
19065 	/* Get adapter Region 23 data */
19066 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19067 	if (!rgn23_data)
19068 		goto out;
19069 
19070 	if (phba->sli_rev < LPFC_SLI_REV4)
19071 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19072 	else {
19073 		if_type = bf_get(lpfc_sli_intf_if_type,
19074 				 &phba->sli4_hba.sli_intf);
19075 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19076 			goto out;
19077 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19078 	}
19079 
19080 	if (!data_size)
19081 		goto out;
19082 
19083 	/* Check the region signature first */
19084 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19085 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19086 			"2619 Config region 23 has bad signature\n");
19087 			goto out;
19088 	}
19089 	offset += 4;
19090 
19091 	/* Check the data structure version */
19092 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19093 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19094 			"2620 Config region 23 has bad version\n");
19095 		goto out;
19096 	}
19097 	offset += 4;
19098 
19099 	/* Parse TLV entries in the region */
19100 	while (offset < data_size) {
19101 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19102 			break;
19103 		/*
19104 		 * If the TLV is not driver specific TLV or driver id is
19105 		 * not linux driver id, skip the record.
19106 		 */
19107 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19108 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19109 		    (rgn23_data[offset + 3] != 0)) {
19110 			offset += rgn23_data[offset + 1] * 4 + 4;
19111 			continue;
19112 		}
19113 
19114 		/* Driver found a driver specific TLV in the config region */
19115 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19116 		offset += 4;
19117 		tlv_offset = 0;
19118 
19119 		/*
19120 		 * Search for configured port state sub-TLV.
19121 		 */
19122 		while ((offset < data_size) &&
19123 			(tlv_offset < sub_tlv_len)) {
19124 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19125 				offset += 4;
19126 				tlv_offset += 4;
19127 				break;
19128 			}
19129 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19130 				offset += rgn23_data[offset + 1] * 4 + 4;
19131 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19132 				continue;
19133 			}
19134 
19135 			/* This HBA contains PORT_STE configured */
19136 			if (!rgn23_data[offset + 2])
19137 				phba->hba_flag |= LINK_DISABLED;
19138 
19139 			goto out;
19140 		}
19141 	}
19142 
19143 out:
19144 	kfree(rgn23_data);
19145 	return;
19146 }
19147 
19148 /**
19149  * lpfc_wr_object - write an object to the firmware
19150  * @phba: HBA structure that indicates port to create a queue on.
19151  * @dmabuf_list: list of dmabufs to write to the port.
19152  * @size: the total byte value of the objects to write to the port.
19153  * @offset: the current offset to be used to start the transfer.
19154  *
19155  * This routine will create a wr_object mailbox command to send to the port.
19156  * the mailbox command will be constructed using the dma buffers described in
19157  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19158  * BDEs that the imbedded mailbox can support. The @offset variable will be
19159  * used to indicate the starting offset of the transfer and will also return
19160  * the offset after the write object mailbox has completed. @size is used to
19161  * determine the end of the object and whether the eof bit should be set.
19162  *
19163  * Return 0 is successful and offset will contain the the new offset to use
19164  * for the next write.
19165  * Return negative value for error cases.
19166  **/
19167 int
19168 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19169 	       uint32_t size, uint32_t *offset)
19170 {
19171 	struct lpfc_mbx_wr_object *wr_object;
19172 	LPFC_MBOXQ_t *mbox;
19173 	int rc = 0, i = 0;
19174 	uint32_t shdr_status, shdr_add_status;
19175 	uint32_t mbox_tmo;
19176 	union lpfc_sli4_cfg_shdr *shdr;
19177 	struct lpfc_dmabuf *dmabuf;
19178 	uint32_t written = 0;
19179 
19180 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19181 	if (!mbox)
19182 		return -ENOMEM;
19183 
19184 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19185 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19186 			sizeof(struct lpfc_mbx_wr_object) -
19187 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19188 
19189 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19190 	wr_object->u.request.write_offset = *offset;
19191 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19192 	wr_object->u.request.object_name[0] =
19193 		cpu_to_le32(wr_object->u.request.object_name[0]);
19194 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19195 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19196 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19197 			break;
19198 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19199 		wr_object->u.request.bde[i].addrHigh =
19200 			putPaddrHigh(dmabuf->phys);
19201 		if (written + SLI4_PAGE_SIZE >= size) {
19202 			wr_object->u.request.bde[i].tus.f.bdeSize =
19203 				(size - written);
19204 			written += (size - written);
19205 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19206 		} else {
19207 			wr_object->u.request.bde[i].tus.f.bdeSize =
19208 				SLI4_PAGE_SIZE;
19209 			written += SLI4_PAGE_SIZE;
19210 		}
19211 		i++;
19212 	}
19213 	wr_object->u.request.bde_count = i;
19214 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19215 	if (!phba->sli4_hba.intr_enable)
19216 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19217 	else {
19218 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19219 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19220 	}
19221 	/* The IOCTL status is embedded in the mailbox subheader. */
19222 	shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr;
19223 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19224 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19225 	if (rc != MBX_TIMEOUT)
19226 		mempool_free(mbox, phba->mbox_mem_pool);
19227 	if (shdr_status || shdr_add_status || rc) {
19228 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19229 				"3025 Write Object mailbox failed with "
19230 				"status x%x add_status x%x, mbx status x%x\n",
19231 				shdr_status, shdr_add_status, rc);
19232 		rc = -ENXIO;
19233 		*offset = shdr_add_status;
19234 	} else
19235 		*offset += wr_object->u.response.actual_write_length;
19236 	return rc;
19237 }
19238 
19239 /**
19240  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19241  * @vport: pointer to vport data structure.
19242  *
19243  * This function iterate through the mailboxq and clean up all REG_LOGIN
19244  * and REG_VPI mailbox commands associated with the vport. This function
19245  * is called when driver want to restart discovery of the vport due to
19246  * a Clear Virtual Link event.
19247  **/
19248 void
19249 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19250 {
19251 	struct lpfc_hba *phba = vport->phba;
19252 	LPFC_MBOXQ_t *mb, *nextmb;
19253 	struct lpfc_dmabuf *mp;
19254 	struct lpfc_nodelist *ndlp;
19255 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19256 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19257 	LIST_HEAD(mbox_cmd_list);
19258 	uint8_t restart_loop;
19259 
19260 	/* Clean up internally queued mailbox commands with the vport */
19261 	spin_lock_irq(&phba->hbalock);
19262 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19263 		if (mb->vport != vport)
19264 			continue;
19265 
19266 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19267 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19268 			continue;
19269 
19270 		list_del(&mb->list);
19271 		list_add_tail(&mb->list, &mbox_cmd_list);
19272 	}
19273 	/* Clean up active mailbox command with the vport */
19274 	mb = phba->sli.mbox_active;
19275 	if (mb && (mb->vport == vport)) {
19276 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19277 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19278 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19279 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19280 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2;
19281 			/* Put reference count for delayed processing */
19282 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19283 			/* Unregister the RPI when mailbox complete */
19284 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19285 		}
19286 	}
19287 	/* Cleanup any mailbox completions which are not yet processed */
19288 	do {
19289 		restart_loop = 0;
19290 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19291 			/*
19292 			 * If this mailox is already processed or it is
19293 			 * for another vport ignore it.
19294 			 */
19295 			if ((mb->vport != vport) ||
19296 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19297 				continue;
19298 
19299 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19300 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19301 				continue;
19302 
19303 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19304 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19305 				ndlp = (struct lpfc_nodelist *)mb->context2;
19306 				/* Unregister the RPI when mailbox complete */
19307 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19308 				restart_loop = 1;
19309 				spin_unlock_irq(&phba->hbalock);
19310 				spin_lock(shost->host_lock);
19311 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19312 				spin_unlock(shost->host_lock);
19313 				spin_lock_irq(&phba->hbalock);
19314 				break;
19315 			}
19316 		}
19317 	} while (restart_loop);
19318 
19319 	spin_unlock_irq(&phba->hbalock);
19320 
19321 	/* Release the cleaned-up mailbox commands */
19322 	while (!list_empty(&mbox_cmd_list)) {
19323 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19324 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19325 			mp = (struct lpfc_dmabuf *) (mb->context1);
19326 			if (mp) {
19327 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19328 				kfree(mp);
19329 			}
19330 			ndlp = (struct lpfc_nodelist *) mb->context2;
19331 			mb->context2 = NULL;
19332 			if (ndlp) {
19333 				spin_lock(shost->host_lock);
19334 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19335 				spin_unlock(shost->host_lock);
19336 				lpfc_nlp_put(ndlp);
19337 			}
19338 		}
19339 		mempool_free(mb, phba->mbox_mem_pool);
19340 	}
19341 
19342 	/* Release the ndlp with the cleaned-up active mailbox command */
19343 	if (act_mbx_ndlp) {
19344 		spin_lock(shost->host_lock);
19345 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19346 		spin_unlock(shost->host_lock);
19347 		lpfc_nlp_put(act_mbx_ndlp);
19348 	}
19349 }
19350 
19351 /**
19352  * lpfc_drain_txq - Drain the txq
19353  * @phba: Pointer to HBA context object.
19354  *
19355  * This function attempt to submit IOCBs on the txq
19356  * to the adapter.  For SLI4 adapters, the txq contains
19357  * ELS IOCBs that have been deferred because the there
19358  * are no SGLs.  This congestion can occur with large
19359  * vport counts during node discovery.
19360  **/
19361 
19362 uint32_t
19363 lpfc_drain_txq(struct lpfc_hba *phba)
19364 {
19365 	LIST_HEAD(completions);
19366 	struct lpfc_sli_ring *pring;
19367 	struct lpfc_iocbq *piocbq = NULL;
19368 	unsigned long iflags = 0;
19369 	char *fail_msg = NULL;
19370 	struct lpfc_sglq *sglq;
19371 	union lpfc_wqe128 wqe;
19372 	uint32_t txq_cnt = 0;
19373 	struct lpfc_queue *wq;
19374 
19375 	if (phba->link_flag & LS_MDS_LOOPBACK) {
19376 		/* MDS WQE are posted only to first WQ*/
19377 		wq = phba->sli4_hba.fcp_wq[0];
19378 		if (unlikely(!wq))
19379 			return 0;
19380 		pring = wq->pring;
19381 	} else {
19382 		wq = phba->sli4_hba.els_wq;
19383 		if (unlikely(!wq))
19384 			return 0;
19385 		pring = lpfc_phba_elsring(phba);
19386 	}
19387 
19388 	if (unlikely(!pring) || list_empty(&pring->txq))
19389 		return 0;
19390 
19391 	spin_lock_irqsave(&pring->ring_lock, iflags);
19392 	list_for_each_entry(piocbq, &pring->txq, list) {
19393 		txq_cnt++;
19394 	}
19395 
19396 	if (txq_cnt > pring->txq_max)
19397 		pring->txq_max = txq_cnt;
19398 
19399 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
19400 
19401 	while (!list_empty(&pring->txq)) {
19402 		spin_lock_irqsave(&pring->ring_lock, iflags);
19403 
19404 		piocbq = lpfc_sli_ringtx_get(phba, pring);
19405 		if (!piocbq) {
19406 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19407 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19408 				"2823 txq empty and txq_cnt is %d\n ",
19409 				txq_cnt);
19410 			break;
19411 		}
19412 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19413 		if (!sglq) {
19414 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
19415 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19416 			break;
19417 		}
19418 		txq_cnt--;
19419 
19420 		/* The xri and iocb resources secured,
19421 		 * attempt to issue request
19422 		 */
19423 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
19424 		piocbq->sli4_xritag = sglq->sli4_xritag;
19425 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19426 			fail_msg = "to convert bpl to sgl";
19427 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19428 			fail_msg = "to convert iocb to wqe";
19429 		else if (lpfc_sli4_wq_put(wq, &wqe))
19430 			fail_msg = " - Wq is full";
19431 		else
19432 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19433 
19434 		if (fail_msg) {
19435 			/* Failed means we can't issue and need to cancel */
19436 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19437 					"2822 IOCB failed %s iotag 0x%x "
19438 					"xri 0x%x\n",
19439 					fail_msg,
19440 					piocbq->iotag, piocbq->sli4_xritag);
19441 			list_add_tail(&piocbq->list, &completions);
19442 		}
19443 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19444 	}
19445 
19446 	/* Cancel all the IOCBs that cannot be issued */
19447 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19448 				IOERR_SLI_ABORTED);
19449 
19450 	return txq_cnt;
19451 }
19452 
19453 /**
19454  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19455  * @phba: Pointer to HBA context object.
19456  * @pwqe: Pointer to command WQE.
19457  * @sglq: Pointer to the scatter gather queue object.
19458  *
19459  * This routine converts the bpl or bde that is in the WQE
19460  * to a sgl list for the sli4 hardware. The physical address
19461  * of the bpl/bde is converted back to a virtual address.
19462  * If the WQE contains a BPL then the list of BDE's is
19463  * converted to sli4_sge's. If the WQE contains a single
19464  * BDE then it is converted to a single sli_sge.
19465  * The WQE is still in cpu endianness so the contents of
19466  * the bpl can be used without byte swapping.
19467  *
19468  * Returns valid XRI = Success, NO_XRI = Failure.
19469  */
19470 static uint16_t
19471 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19472 		 struct lpfc_sglq *sglq)
19473 {
19474 	uint16_t xritag = NO_XRI;
19475 	struct ulp_bde64 *bpl = NULL;
19476 	struct ulp_bde64 bde;
19477 	struct sli4_sge *sgl  = NULL;
19478 	struct lpfc_dmabuf *dmabuf;
19479 	union lpfc_wqe128 *wqe;
19480 	int numBdes = 0;
19481 	int i = 0;
19482 	uint32_t offset = 0; /* accumulated offset in the sg request list */
19483 	int inbound = 0; /* number of sg reply entries inbound from firmware */
19484 	uint32_t cmd;
19485 
19486 	if (!pwqeq || !sglq)
19487 		return xritag;
19488 
19489 	sgl  = (struct sli4_sge *)sglq->sgl;
19490 	wqe = &pwqeq->wqe;
19491 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19492 
19493 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19494 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19495 		return sglq->sli4_xritag;
19496 	numBdes = pwqeq->rsvd2;
19497 	if (numBdes) {
19498 		/* The addrHigh and addrLow fields within the WQE
19499 		 * have not been byteswapped yet so there is no
19500 		 * need to swap them back.
19501 		 */
19502 		if (pwqeq->context3)
19503 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19504 		else
19505 			return xritag;
19506 
19507 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
19508 		if (!bpl)
19509 			return xritag;
19510 
19511 		for (i = 0; i < numBdes; i++) {
19512 			/* Should already be byte swapped. */
19513 			sgl->addr_hi = bpl->addrHigh;
19514 			sgl->addr_lo = bpl->addrLow;
19515 
19516 			sgl->word2 = le32_to_cpu(sgl->word2);
19517 			if ((i+1) == numBdes)
19518 				bf_set(lpfc_sli4_sge_last, sgl, 1);
19519 			else
19520 				bf_set(lpfc_sli4_sge_last, sgl, 0);
19521 			/* swap the size field back to the cpu so we
19522 			 * can assign it to the sgl.
19523 			 */
19524 			bde.tus.w = le32_to_cpu(bpl->tus.w);
19525 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19526 			/* The offsets in the sgl need to be accumulated
19527 			 * separately for the request and reply lists.
19528 			 * The request is always first, the reply follows.
19529 			 */
19530 			switch (cmd) {
19531 			case CMD_GEN_REQUEST64_WQE:
19532 				/* add up the reply sg entries */
19533 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19534 					inbound++;
19535 				/* first inbound? reset the offset */
19536 				if (inbound == 1)
19537 					offset = 0;
19538 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19539 				bf_set(lpfc_sli4_sge_type, sgl,
19540 					LPFC_SGE_TYPE_DATA);
19541 				offset += bde.tus.f.bdeSize;
19542 				break;
19543 			case CMD_FCP_TRSP64_WQE:
19544 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
19545 				bf_set(lpfc_sli4_sge_type, sgl,
19546 					LPFC_SGE_TYPE_DATA);
19547 				break;
19548 			case CMD_FCP_TSEND64_WQE:
19549 			case CMD_FCP_TRECEIVE64_WQE:
19550 				bf_set(lpfc_sli4_sge_type, sgl,
19551 					bpl->tus.f.bdeFlags);
19552 				if (i < 3)
19553 					offset = 0;
19554 				else
19555 					offset += bde.tus.f.bdeSize;
19556 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19557 				break;
19558 			}
19559 			sgl->word2 = cpu_to_le32(sgl->word2);
19560 			bpl++;
19561 			sgl++;
19562 		}
19563 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19564 		/* The addrHigh and addrLow fields of the BDE have not
19565 		 * been byteswapped yet so they need to be swapped
19566 		 * before putting them in the sgl.
19567 		 */
19568 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19569 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19570 		sgl->word2 = le32_to_cpu(sgl->word2);
19571 		bf_set(lpfc_sli4_sge_last, sgl, 1);
19572 		sgl->word2 = cpu_to_le32(sgl->word2);
19573 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19574 	}
19575 	return sglq->sli4_xritag;
19576 }
19577 
19578 /**
19579  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19580  * @phba: Pointer to HBA context object.
19581  * @ring_number: Base sli ring number
19582  * @pwqe: Pointer to command WQE.
19583  **/
19584 int
19585 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number,
19586 		    struct lpfc_iocbq *pwqe)
19587 {
19588 	union lpfc_wqe128 *wqe = &pwqe->wqe;
19589 	struct lpfc_nvmet_rcv_ctx *ctxp;
19590 	struct lpfc_queue *wq;
19591 	struct lpfc_sglq *sglq;
19592 	struct lpfc_sli_ring *pring;
19593 	unsigned long iflags;
19594 	uint32_t ret = 0;
19595 
19596 	/* NVME_LS and NVME_LS ABTS requests. */
19597 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19598 		pring =  phba->sli4_hba.nvmels_wq->pring;
19599 		spin_lock_irqsave(&pring->ring_lock, iflags);
19600 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19601 		if (!sglq) {
19602 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19603 			return WQE_BUSY;
19604 		}
19605 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
19606 		pwqe->sli4_xritag = sglq->sli4_xritag;
19607 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19608 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19609 			return WQE_ERROR;
19610 		}
19611 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19612 		       pwqe->sli4_xritag);
19613 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19614 		if (ret) {
19615 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19616 			return ret;
19617 		}
19618 
19619 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19620 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19621 		return 0;
19622 	}
19623 
19624 	/* NVME_FCREQ and NVME_ABTS requests */
19625 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
19626 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19627 		pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
19628 
19629 		spin_lock_irqsave(&pring->ring_lock, iflags);
19630 		wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
19631 		bf_set(wqe_cqid, &wqe->generic.wqe_com,
19632 		      phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
19633 		ret = lpfc_sli4_wq_put(wq, wqe);
19634 		if (ret) {
19635 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19636 			return ret;
19637 		}
19638 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19639 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19640 		return 0;
19641 	}
19642 
19643 	/* NVMET requests */
19644 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19645 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19646 		pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
19647 
19648 		spin_lock_irqsave(&pring->ring_lock, iflags);
19649 		ctxp = pwqe->context2;
19650 		sglq = ctxp->ctxbuf->sglq;
19651 		if (pwqe->sli4_xritag ==  NO_XRI) {
19652 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
19653 			pwqe->sli4_xritag = sglq->sli4_xritag;
19654 		}
19655 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19656 		       pwqe->sli4_xritag);
19657 		wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
19658 		bf_set(wqe_cqid, &wqe->generic.wqe_com,
19659 		      phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
19660 		ret = lpfc_sli4_wq_put(wq, wqe);
19661 		if (ret) {
19662 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19663 			return ret;
19664 		}
19665 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19666 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19667 		return 0;
19668 	}
19669 	return WQE_ERROR;
19670 }
19671