xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_scsi.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2004-2009 Emulex.  All rights reserved.           *
5  * EMULEX and SLI are trademarks of Emulex.                        *
6  * www.emulex.com                                                  *
7  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
8  *                                                                 *
9  * This program is free software; you can redistribute it and/or   *
10  * modify it under the terms of version 2 of the GNU General       *
11  * Public License as published by the Free Software Foundation.    *
12  * This program is distributed in the hope that it will be useful. *
13  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
14  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
15  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
16  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
18  * more details, a copy of which can be found in the file COPYING  *
19  * included with this package.                                     *
20  *******************************************************************/
21 #include <linux/pci.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_device.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 #include <scsi/scsi_tcq.h>
32 #include <scsi/scsi_transport_fc.h>
33 
34 #include "lpfc_version.h"
35 #include "lpfc_hw4.h"
36 #include "lpfc_hw.h"
37 #include "lpfc_sli.h"
38 #include "lpfc_sli4.h"
39 #include "lpfc_nl.h"
40 #include "lpfc_disc.h"
41 #include "lpfc_scsi.h"
42 #include "lpfc.h"
43 #include "lpfc_logmsg.h"
44 #include "lpfc_crtn.h"
45 #include "lpfc_vport.h"
46 
47 #define LPFC_RESET_WAIT  2
48 #define LPFC_ABORT_WAIT  2
49 
50 int _dump_buf_done;
51 
52 static char *dif_op_str[] = {
53 	"SCSI_PROT_NORMAL",
54 	"SCSI_PROT_READ_INSERT",
55 	"SCSI_PROT_WRITE_STRIP",
56 	"SCSI_PROT_READ_STRIP",
57 	"SCSI_PROT_WRITE_INSERT",
58 	"SCSI_PROT_READ_PASS",
59 	"SCSI_PROT_WRITE_PASS",
60 };
61 static void
62 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
63 static void
64 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
65 
66 static void
67 lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
68 {
69 	void *src, *dst;
70 	struct scatterlist *sgde = scsi_sglist(cmnd);
71 
72 	if (!_dump_buf_data) {
73 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
74 			"9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
75 				__func__);
76 		return;
77 	}
78 
79 
80 	if (!sgde) {
81 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
82 			"9051 BLKGRD: ERROR: data scatterlist is null\n");
83 		return;
84 	}
85 
86 	dst = (void *) _dump_buf_data;
87 	while (sgde) {
88 		src = sg_virt(sgde);
89 		memcpy(dst, src, sgde->length);
90 		dst += sgde->length;
91 		sgde = sg_next(sgde);
92 	}
93 }
94 
95 static void
96 lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
97 {
98 	void *src, *dst;
99 	struct scatterlist *sgde = scsi_prot_sglist(cmnd);
100 
101 	if (!_dump_buf_dif) {
102 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
103 			"9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
104 				__func__);
105 		return;
106 	}
107 
108 	if (!sgde) {
109 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
110 			"9053 BLKGRD: ERROR: prot scatterlist is null\n");
111 		return;
112 	}
113 
114 	dst = _dump_buf_dif;
115 	while (sgde) {
116 		src = sg_virt(sgde);
117 		memcpy(dst, src, sgde->length);
118 		dst += sgde->length;
119 		sgde = sg_next(sgde);
120 	}
121 }
122 
123 /**
124  * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge.
125  * @phba: Pointer to HBA object.
126  * @lpfc_cmd: lpfc scsi command object pointer.
127  *
128  * This function is called from the lpfc_prep_task_mgmt_cmd function to
129  * set the last bit in the response sge entry.
130  **/
131 static void
132 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba,
133 				struct lpfc_scsi_buf *lpfc_cmd)
134 {
135 	struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
136 	if (sgl) {
137 		sgl += 1;
138 		sgl->word2 = le32_to_cpu(sgl->word2);
139 		bf_set(lpfc_sli4_sge_last, sgl, 1);
140 		sgl->word2 = cpu_to_le32(sgl->word2);
141 	}
142 }
143 
144 /**
145  * lpfc_update_stats - Update statistical data for the command completion
146  * @phba: Pointer to HBA object.
147  * @lpfc_cmd: lpfc scsi command object pointer.
148  *
149  * This function is called when there is a command completion and this
150  * function updates the statistical data for the command completion.
151  **/
152 static void
153 lpfc_update_stats(struct lpfc_hba *phba, struct  lpfc_scsi_buf *lpfc_cmd)
154 {
155 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
156 	struct lpfc_nodelist *pnode = rdata->pnode;
157 	struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
158 	unsigned long flags;
159 	struct Scsi_Host  *shost = cmd->device->host;
160 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
161 	unsigned long latency;
162 	int i;
163 
164 	if (cmd->result)
165 		return;
166 
167 	latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time);
168 
169 	spin_lock_irqsave(shost->host_lock, flags);
170 	if (!vport->stat_data_enabled ||
171 		vport->stat_data_blocked ||
172 		!pnode ||
173 		!pnode->lat_data ||
174 		(phba->bucket_type == LPFC_NO_BUCKET)) {
175 		spin_unlock_irqrestore(shost->host_lock, flags);
176 		return;
177 	}
178 
179 	if (phba->bucket_type == LPFC_LINEAR_BUCKET) {
180 		i = (latency + phba->bucket_step - 1 - phba->bucket_base)/
181 			phba->bucket_step;
182 		/* check array subscript bounds */
183 		if (i < 0)
184 			i = 0;
185 		else if (i >= LPFC_MAX_BUCKET_COUNT)
186 			i = LPFC_MAX_BUCKET_COUNT - 1;
187 	} else {
188 		for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++)
189 			if (latency <= (phba->bucket_base +
190 				((1<<i)*phba->bucket_step)))
191 				break;
192 	}
193 
194 	pnode->lat_data[i].cmd_count++;
195 	spin_unlock_irqrestore(shost->host_lock, flags);
196 }
197 
198 /**
199  * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event
200  * @phba: Pointer to HBA context object.
201  * @vport: Pointer to vport object.
202  * @ndlp: Pointer to FC node associated with the target.
203  * @lun: Lun number of the scsi device.
204  * @old_val: Old value of the queue depth.
205  * @new_val: New value of the queue depth.
206  *
207  * This function sends an event to the mgmt application indicating
208  * there is a change in the scsi device queue depth.
209  **/
210 static void
211 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba,
212 		struct lpfc_vport  *vport,
213 		struct lpfc_nodelist *ndlp,
214 		uint32_t lun,
215 		uint32_t old_val,
216 		uint32_t new_val)
217 {
218 	struct lpfc_fast_path_event *fast_path_evt;
219 	unsigned long flags;
220 
221 	fast_path_evt = lpfc_alloc_fast_evt(phba);
222 	if (!fast_path_evt)
223 		return;
224 
225 	fast_path_evt->un.queue_depth_evt.scsi_event.event_type =
226 		FC_REG_SCSI_EVENT;
227 	fast_path_evt->un.queue_depth_evt.scsi_event.subcategory =
228 		LPFC_EVENT_VARQUEDEPTH;
229 
230 	/* Report all luns with change in queue depth */
231 	fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun;
232 	if (ndlp && NLP_CHK_NODE_ACT(ndlp)) {
233 		memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn,
234 			&ndlp->nlp_portname, sizeof(struct lpfc_name));
235 		memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn,
236 			&ndlp->nlp_nodename, sizeof(struct lpfc_name));
237 	}
238 
239 	fast_path_evt->un.queue_depth_evt.oldval = old_val;
240 	fast_path_evt->un.queue_depth_evt.newval = new_val;
241 	fast_path_evt->vport = vport;
242 
243 	fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT;
244 	spin_lock_irqsave(&phba->hbalock, flags);
245 	list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
246 	spin_unlock_irqrestore(&phba->hbalock, flags);
247 	lpfc_worker_wake_up(phba);
248 
249 	return;
250 }
251 
252 /**
253  * lpfc_change_queue_depth - Alter scsi device queue depth
254  * @sdev: Pointer the scsi device on which to change the queue depth.
255  * @qdepth: New queue depth to set the sdev to.
256  * @reason: The reason for the queue depth change.
257  *
258  * This function is called by the midlayer and the LLD to alter the queue
259  * depth for a scsi device. This function sets the queue depth to the new
260  * value and sends an event out to log the queue depth change.
261  **/
262 int
263 lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason)
264 {
265 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
266 	struct lpfc_hba   *phba = vport->phba;
267 	struct lpfc_rport_data *rdata;
268 	unsigned long new_queue_depth, old_queue_depth;
269 
270 	old_queue_depth = sdev->queue_depth;
271 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
272 	new_queue_depth = sdev->queue_depth;
273 	rdata = sdev->hostdata;
274 	if (rdata)
275 		lpfc_send_sdev_queuedepth_change_event(phba, vport,
276 						       rdata->pnode, sdev->lun,
277 						       old_queue_depth,
278 						       new_queue_depth);
279 	return sdev->queue_depth;
280 }
281 
282 /**
283  * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread
284  * @phba: The Hba for which this call is being executed.
285  *
286  * This routine is called when there is resource error in driver or firmware.
287  * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine
288  * posts at most 1 event each second. This routine wakes up worker thread of
289  * @phba to process WORKER_RAM_DOWN_EVENT event.
290  *
291  * This routine should be called with no lock held.
292  **/
293 void
294 lpfc_rampdown_queue_depth(struct lpfc_hba *phba)
295 {
296 	unsigned long flags;
297 	uint32_t evt_posted;
298 
299 	spin_lock_irqsave(&phba->hbalock, flags);
300 	atomic_inc(&phba->num_rsrc_err);
301 	phba->last_rsrc_error_time = jiffies;
302 
303 	if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) {
304 		spin_unlock_irqrestore(&phba->hbalock, flags);
305 		return;
306 	}
307 
308 	phba->last_ramp_down_time = jiffies;
309 
310 	spin_unlock_irqrestore(&phba->hbalock, flags);
311 
312 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
313 	evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE;
314 	if (!evt_posted)
315 		phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE;
316 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
317 
318 	if (!evt_posted)
319 		lpfc_worker_wake_up(phba);
320 	return;
321 }
322 
323 /**
324  * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread
325  * @phba: The Hba for which this call is being executed.
326  *
327  * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine
328  * post at most 1 event every 5 minute after last_ramp_up_time or
329  * last_rsrc_error_time.  This routine wakes up worker thread of @phba
330  * to process WORKER_RAM_DOWN_EVENT event.
331  *
332  * This routine should be called with no lock held.
333  **/
334 static inline void
335 lpfc_rampup_queue_depth(struct lpfc_vport  *vport,
336 			uint32_t queue_depth)
337 {
338 	unsigned long flags;
339 	struct lpfc_hba *phba = vport->phba;
340 	uint32_t evt_posted;
341 	atomic_inc(&phba->num_cmd_success);
342 
343 	if (vport->cfg_lun_queue_depth <= queue_depth)
344 		return;
345 	spin_lock_irqsave(&phba->hbalock, flags);
346 	if (time_before(jiffies,
347 			phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) ||
348 	    time_before(jiffies,
349 			phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) {
350 		spin_unlock_irqrestore(&phba->hbalock, flags);
351 		return;
352 	}
353 	phba->last_ramp_up_time = jiffies;
354 	spin_unlock_irqrestore(&phba->hbalock, flags);
355 
356 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
357 	evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE;
358 	if (!evt_posted)
359 		phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE;
360 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
361 
362 	if (!evt_posted)
363 		lpfc_worker_wake_up(phba);
364 	return;
365 }
366 
367 /**
368  * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler
369  * @phba: The Hba for which this call is being executed.
370  *
371  * This routine is called to  process WORKER_RAMP_DOWN_QUEUE event for worker
372  * thread.This routine reduces queue depth for all scsi device on each vport
373  * associated with @phba.
374  **/
375 void
376 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba)
377 {
378 	struct lpfc_vport **vports;
379 	struct Scsi_Host  *shost;
380 	struct scsi_device *sdev;
381 	unsigned long new_queue_depth;
382 	unsigned long num_rsrc_err, num_cmd_success;
383 	int i;
384 
385 	num_rsrc_err = atomic_read(&phba->num_rsrc_err);
386 	num_cmd_success = atomic_read(&phba->num_cmd_success);
387 
388 	vports = lpfc_create_vport_work_array(phba);
389 	if (vports != NULL)
390 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
391 			shost = lpfc_shost_from_vport(vports[i]);
392 			shost_for_each_device(sdev, shost) {
393 				new_queue_depth =
394 					sdev->queue_depth * num_rsrc_err /
395 					(num_rsrc_err + num_cmd_success);
396 				if (!new_queue_depth)
397 					new_queue_depth = sdev->queue_depth - 1;
398 				else
399 					new_queue_depth = sdev->queue_depth -
400 								new_queue_depth;
401 				lpfc_change_queue_depth(sdev, new_queue_depth,
402 							SCSI_QDEPTH_DEFAULT);
403 			}
404 		}
405 	lpfc_destroy_vport_work_array(phba, vports);
406 	atomic_set(&phba->num_rsrc_err, 0);
407 	atomic_set(&phba->num_cmd_success, 0);
408 }
409 
410 /**
411  * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler
412  * @phba: The Hba for which this call is being executed.
413  *
414  * This routine is called to  process WORKER_RAMP_UP_QUEUE event for worker
415  * thread.This routine increases queue depth for all scsi device on each vport
416  * associated with @phba by 1. This routine also sets @phba num_rsrc_err and
417  * num_cmd_success to zero.
418  **/
419 void
420 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba)
421 {
422 	struct lpfc_vport **vports;
423 	struct Scsi_Host  *shost;
424 	struct scsi_device *sdev;
425 	int i;
426 
427 	vports = lpfc_create_vport_work_array(phba);
428 	if (vports != NULL)
429 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
430 			shost = lpfc_shost_from_vport(vports[i]);
431 			shost_for_each_device(sdev, shost) {
432 				if (vports[i]->cfg_lun_queue_depth <=
433 				    sdev->queue_depth)
434 					continue;
435 				lpfc_change_queue_depth(sdev,
436 							sdev->queue_depth+1,
437 							SCSI_QDEPTH_RAMP_UP);
438 			}
439 		}
440 	lpfc_destroy_vport_work_array(phba, vports);
441 	atomic_set(&phba->num_rsrc_err, 0);
442 	atomic_set(&phba->num_cmd_success, 0);
443 }
444 
445 /**
446  * lpfc_scsi_dev_block - set all scsi hosts to block state
447  * @phba: Pointer to HBA context object.
448  *
449  * This function walks vport list and set each SCSI host to block state
450  * by invoking fc_remote_port_delete() routine. This function is invoked
451  * with EEH when device's PCI slot has been permanently disabled.
452  **/
453 void
454 lpfc_scsi_dev_block(struct lpfc_hba *phba)
455 {
456 	struct lpfc_vport **vports;
457 	struct Scsi_Host  *shost;
458 	struct scsi_device *sdev;
459 	struct fc_rport *rport;
460 	int i;
461 
462 	vports = lpfc_create_vport_work_array(phba);
463 	if (vports != NULL)
464 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
465 			shost = lpfc_shost_from_vport(vports[i]);
466 			shost_for_each_device(sdev, shost) {
467 				rport = starget_to_rport(scsi_target(sdev));
468 				fc_remote_port_delete(rport);
469 			}
470 		}
471 	lpfc_destroy_vport_work_array(phba, vports);
472 }
473 
474 /**
475  * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec
476  * @vport: The virtual port for which this call being executed.
477  * @num_to_allocate: The requested number of buffers to allocate.
478  *
479  * This routine allocates a scsi buffer for device with SLI-3 interface spec,
480  * the scsi buffer contains all the necessary information needed to initiate
481  * a SCSI I/O. The non-DMAable buffer region contains information to build
482  * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP,
483  * and the initial BPL. In addition to allocating memory, the FCP CMND and
484  * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB.
485  *
486  * Return codes:
487  *   int - number of scsi buffers that were allocated.
488  *   0 = failure, less than num_to_alloc is a partial failure.
489  **/
490 static int
491 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc)
492 {
493 	struct lpfc_hba *phba = vport->phba;
494 	struct lpfc_scsi_buf *psb;
495 	struct ulp_bde64 *bpl;
496 	IOCB_t *iocb;
497 	dma_addr_t pdma_phys_fcp_cmd;
498 	dma_addr_t pdma_phys_fcp_rsp;
499 	dma_addr_t pdma_phys_bpl;
500 	uint16_t iotag;
501 	int bcnt;
502 
503 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
504 		psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
505 		if (!psb)
506 			break;
507 
508 		/*
509 		 * Get memory from the pci pool to map the virt space to pci
510 		 * bus space for an I/O.  The DMA buffer includes space for the
511 		 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
512 		 * necessary to support the sg_tablesize.
513 		 */
514 		psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
515 					GFP_KERNEL, &psb->dma_handle);
516 		if (!psb->data) {
517 			kfree(psb);
518 			break;
519 		}
520 
521 		/* Initialize virtual ptrs to dma_buf region. */
522 		memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
523 
524 		/* Allocate iotag for psb->cur_iocbq. */
525 		iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
526 		if (iotag == 0) {
527 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
528 					psb->data, psb->dma_handle);
529 			kfree(psb);
530 			break;
531 		}
532 		psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
533 
534 		psb->fcp_cmnd = psb->data;
535 		psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd);
536 		psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) +
537 			sizeof(struct fcp_rsp);
538 
539 		/* Initialize local short-hand pointers. */
540 		bpl = psb->fcp_bpl;
541 		pdma_phys_fcp_cmd = psb->dma_handle;
542 		pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd);
543 		pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) +
544 			sizeof(struct fcp_rsp);
545 
546 		/*
547 		 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
548 		 * are sg list bdes.  Initialize the first two and leave the
549 		 * rest for queuecommand.
550 		 */
551 		bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd));
552 		bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd));
553 		bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd);
554 		bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
555 		bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w);
556 
557 		/* Setup the physical region for the FCP RSP */
558 		bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp));
559 		bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp));
560 		bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp);
561 		bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
562 		bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w);
563 
564 		/*
565 		 * Since the IOCB for the FCP I/O is built into this
566 		 * lpfc_scsi_buf, initialize it with all known data now.
567 		 */
568 		iocb = &psb->cur_iocbq.iocb;
569 		iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
570 		if ((phba->sli_rev == 3) &&
571 				!(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
572 			/* fill in immediate fcp command BDE */
573 			iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED;
574 			iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
575 			iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t,
576 					unsli3.fcp_ext.icd);
577 			iocb->un.fcpi64.bdl.addrHigh = 0;
578 			iocb->ulpBdeCount = 0;
579 			iocb->ulpLe = 0;
580 			/* fill in responce BDE */
581 			iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags =
582 							BUFF_TYPE_BDE_64;
583 			iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize =
584 				sizeof(struct fcp_rsp);
585 			iocb->unsli3.fcp_ext.rbde.addrLow =
586 				putPaddrLow(pdma_phys_fcp_rsp);
587 			iocb->unsli3.fcp_ext.rbde.addrHigh =
588 				putPaddrHigh(pdma_phys_fcp_rsp);
589 		} else {
590 			iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
591 			iocb->un.fcpi64.bdl.bdeSize =
592 					(2 * sizeof(struct ulp_bde64));
593 			iocb->un.fcpi64.bdl.addrLow =
594 					putPaddrLow(pdma_phys_bpl);
595 			iocb->un.fcpi64.bdl.addrHigh =
596 					putPaddrHigh(pdma_phys_bpl);
597 			iocb->ulpBdeCount = 1;
598 			iocb->ulpLe = 1;
599 		}
600 		iocb->ulpClass = CLASS3;
601 		psb->status = IOSTAT_SUCCESS;
602 		/* Put it back into the SCSI buffer list */
603 		psb->cur_iocbq.context1  = psb;
604 		lpfc_release_scsi_buf_s3(phba, psb);
605 
606 	}
607 
608 	return bcnt;
609 }
610 
611 /**
612  * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort
613  * @phba: pointer to lpfc hba data structure.
614  * @axri: pointer to the fcp xri abort wcqe structure.
615  *
616  * This routine is invoked by the worker thread to process a SLI4 fast-path
617  * FCP aborted xri.
618  **/
619 void
620 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba,
621 			  struct sli4_wcqe_xri_aborted *axri)
622 {
623 	uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
624 	uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
625 	struct lpfc_scsi_buf *psb, *next_psb;
626 	unsigned long iflag = 0;
627 	struct lpfc_iocbq *iocbq;
628 	int i;
629 	struct lpfc_nodelist *ndlp;
630 	int rrq_empty = 0;
631 	struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
632 
633 	spin_lock_irqsave(&phba->hbalock, iflag);
634 	spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock);
635 	list_for_each_entry_safe(psb, next_psb,
636 		&phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
637 		if (psb->cur_iocbq.sli4_xritag == xri) {
638 			list_del(&psb->list);
639 			psb->exch_busy = 0;
640 			psb->status = IOSTAT_SUCCESS;
641 			spin_unlock(
642 				&phba->sli4_hba.abts_scsi_buf_list_lock);
643 			ndlp = psb->rdata->pnode;
644 			rrq_empty = list_empty(&phba->active_rrq_list);
645 			spin_unlock_irqrestore(&phba->hbalock, iflag);
646 			if (ndlp)
647 				lpfc_set_rrq_active(phba, ndlp, xri, rxid, 1);
648 			lpfc_release_scsi_buf_s4(phba, psb);
649 			if (rrq_empty)
650 				lpfc_worker_wake_up(phba);
651 			return;
652 		}
653 	}
654 	spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock);
655 	for (i = 1; i <= phba->sli.last_iotag; i++) {
656 		iocbq = phba->sli.iocbq_lookup[i];
657 
658 		if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
659 			(iocbq->iocb_flag & LPFC_IO_LIBDFC))
660 			continue;
661 		if (iocbq->sli4_xritag != xri)
662 			continue;
663 		psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
664 		psb->exch_busy = 0;
665 		spin_unlock_irqrestore(&phba->hbalock, iflag);
666 		if (pring->txq_cnt)
667 			lpfc_worker_wake_up(phba);
668 		return;
669 
670 	}
671 	spin_unlock_irqrestore(&phba->hbalock, iflag);
672 }
673 
674 /**
675  * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block
676  * @phba: pointer to lpfc hba data structure.
677  *
678  * This routine walks the list of scsi buffers that have been allocated and
679  * repost them to the HBA by using SGL block post. This is needed after a
680  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
681  * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list
682  * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers.
683  *
684  * Returns: 0 = success, non-zero failure.
685  **/
686 int
687 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba)
688 {
689 	struct lpfc_scsi_buf *psb;
690 	int index, status, bcnt = 0, rcnt = 0, rc = 0;
691 	LIST_HEAD(sblist);
692 
693 	for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) {
694 		psb = phba->sli4_hba.lpfc_scsi_psb_array[index];
695 		if (psb) {
696 			/* Remove from SCSI buffer list */
697 			list_del(&psb->list);
698 			/* Add it to a local SCSI buffer list */
699 			list_add_tail(&psb->list, &sblist);
700 			if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) {
701 				bcnt = rcnt;
702 				rcnt = 0;
703 			}
704 		} else
705 			/* A hole present in the XRI array, need to skip */
706 			bcnt = rcnt;
707 
708 		if (index == phba->sli4_hba.scsi_xri_cnt - 1)
709 			/* End of XRI array for SCSI buffer, complete */
710 			bcnt = rcnt;
711 
712 		/* Continue until collect up to a nembed page worth of sgls */
713 		if (bcnt == 0)
714 			continue;
715 		/* Now, post the SCSI buffer list sgls as a block */
716 		status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
717 		/* Reset SCSI buffer count for next round of posting */
718 		bcnt = 0;
719 		while (!list_empty(&sblist)) {
720 			list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
721 					 list);
722 			if (status) {
723 				/* Put this back on the abort scsi list */
724 				psb->exch_busy = 1;
725 				rc++;
726 			} else {
727 				psb->exch_busy = 0;
728 				psb->status = IOSTAT_SUCCESS;
729 			}
730 			/* Put it back into the SCSI buffer list */
731 			lpfc_release_scsi_buf_s4(phba, psb);
732 		}
733 	}
734 	return rc;
735 }
736 
737 /**
738  * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec
739  * @vport: The virtual port for which this call being executed.
740  * @num_to_allocate: The requested number of buffers to allocate.
741  *
742  * This routine allocates a scsi buffer for device with SLI-4 interface spec,
743  * the scsi buffer contains all the necessary information needed to initiate
744  * a SCSI I/O.
745  *
746  * Return codes:
747  *   int - number of scsi buffers that were allocated.
748  *   0 = failure, less than num_to_alloc is a partial failure.
749  **/
750 static int
751 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc)
752 {
753 	struct lpfc_hba *phba = vport->phba;
754 	struct lpfc_scsi_buf *psb;
755 	struct sli4_sge *sgl;
756 	IOCB_t *iocb;
757 	dma_addr_t pdma_phys_fcp_cmd;
758 	dma_addr_t pdma_phys_fcp_rsp;
759 	dma_addr_t pdma_phys_bpl, pdma_phys_bpl1;
760 	uint16_t iotag, last_xritag = NO_XRI;
761 	int status = 0, index;
762 	int bcnt;
763 	int non_sequential_xri = 0;
764 	LIST_HEAD(sblist);
765 
766 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
767 		psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
768 		if (!psb)
769 			break;
770 
771 		/*
772 		 * Get memory from the pci pool to map the virt space to pci bus
773 		 * space for an I/O.  The DMA buffer includes space for the
774 		 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
775 		 * necessary to support the sg_tablesize.
776 		 */
777 		psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
778 						GFP_KERNEL, &psb->dma_handle);
779 		if (!psb->data) {
780 			kfree(psb);
781 			break;
782 		}
783 
784 		/* Initialize virtual ptrs to dma_buf region. */
785 		memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
786 
787 		/* Allocate iotag for psb->cur_iocbq. */
788 		iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
789 		if (iotag == 0) {
790 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
791 				psb->data, psb->dma_handle);
792 			kfree(psb);
793 			break;
794 		}
795 
796 		psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba);
797 		if (psb->cur_iocbq.sli4_xritag == NO_XRI) {
798 			pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
799 			      psb->data, psb->dma_handle);
800 			kfree(psb);
801 			break;
802 		}
803 		if (last_xritag != NO_XRI
804 			&& psb->cur_iocbq.sli4_xritag != (last_xritag+1)) {
805 			non_sequential_xri = 1;
806 		} else
807 			list_add_tail(&psb->list, &sblist);
808 		last_xritag = psb->cur_iocbq.sli4_xritag;
809 
810 		index = phba->sli4_hba.scsi_xri_cnt++;
811 		psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
812 
813 		psb->fcp_bpl = psb->data;
814 		psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size)
815 			- (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
816 		psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd +
817 					sizeof(struct fcp_cmnd));
818 
819 		/* Initialize local short-hand pointers. */
820 		sgl = (struct sli4_sge *)psb->fcp_bpl;
821 		pdma_phys_bpl = psb->dma_handle;
822 		pdma_phys_fcp_cmd =
823 			(psb->dma_handle + phba->cfg_sg_dma_buf_size)
824 			 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
825 		pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd);
826 
827 		/*
828 		 * The first two bdes are the FCP_CMD and FCP_RSP.  The balance
829 		 * are sg list bdes.  Initialize the first two and leave the
830 		 * rest for queuecommand.
831 		 */
832 		sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd));
833 		sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd));
834 		bf_set(lpfc_sli4_sge_last, sgl, 0);
835 		sgl->word2 = cpu_to_le32(sgl->word2);
836 		sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd));
837 		sgl++;
838 
839 		/* Setup the physical region for the FCP RSP */
840 		sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp));
841 		sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp));
842 		bf_set(lpfc_sli4_sge_last, sgl, 1);
843 		sgl->word2 = cpu_to_le32(sgl->word2);
844 		sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp));
845 
846 		/*
847 		 * Since the IOCB for the FCP I/O is built into this
848 		 * lpfc_scsi_buf, initialize it with all known data now.
849 		 */
850 		iocb = &psb->cur_iocbq.iocb;
851 		iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
852 		iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
853 		/* setting the BLP size to 2 * sizeof BDE may not be correct.
854 		 * We are setting the bpl to point to out sgl. An sgl's
855 		 * entries are 16 bytes, a bpl entries are 12 bytes.
856 		 */
857 		iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
858 		iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd);
859 		iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd);
860 		iocb->ulpBdeCount = 1;
861 		iocb->ulpLe = 1;
862 		iocb->ulpClass = CLASS3;
863 		psb->cur_iocbq.context1  = psb;
864 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
865 			pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE;
866 		else
867 			pdma_phys_bpl1 = 0;
868 		psb->dma_phys_bpl = pdma_phys_bpl;
869 		phba->sli4_hba.lpfc_scsi_psb_array[index] = psb;
870 		if (non_sequential_xri) {
871 			status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl,
872 						pdma_phys_bpl1,
873 						psb->cur_iocbq.sli4_xritag);
874 			if (status) {
875 				/* Put this back on the abort scsi list */
876 				psb->exch_busy = 1;
877 			} else {
878 				psb->exch_busy = 0;
879 				psb->status = IOSTAT_SUCCESS;
880 			}
881 			/* Put it back into the SCSI buffer list */
882 			lpfc_release_scsi_buf_s4(phba, psb);
883 			break;
884 		}
885 	}
886 	if (bcnt) {
887 		status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt);
888 		/* Reset SCSI buffer count for next round of posting */
889 		while (!list_empty(&sblist)) {
890 			list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
891 				 list);
892 			if (status) {
893 				/* Put this back on the abort scsi list */
894 				psb->exch_busy = 1;
895 			} else {
896 				psb->exch_busy = 0;
897 				psb->status = IOSTAT_SUCCESS;
898 			}
899 			/* Put it back into the SCSI buffer list */
900 			lpfc_release_scsi_buf_s4(phba, psb);
901 		}
902 	}
903 
904 	return bcnt + non_sequential_xri;
905 }
906 
907 /**
908  * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator
909  * @vport: The virtual port for which this call being executed.
910  * @num_to_allocate: The requested number of buffers to allocate.
911  *
912  * This routine wraps the actual SCSI buffer allocator function pointer from
913  * the lpfc_hba struct.
914  *
915  * Return codes:
916  *   int - number of scsi buffers that were allocated.
917  *   0 = failure, less than num_to_alloc is a partial failure.
918  **/
919 static inline int
920 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc)
921 {
922 	return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc);
923 }
924 
925 /**
926  * lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
927  * @phba: The HBA for which this call is being executed.
928  *
929  * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
930  * and returns to caller.
931  *
932  * Return codes:
933  *   NULL - Error
934  *   Pointer to lpfc_scsi_buf - Success
935  **/
936 static struct lpfc_scsi_buf*
937 lpfc_get_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
938 {
939 	struct  lpfc_scsi_buf * lpfc_cmd = NULL;
940 	struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list;
941 	unsigned long iflag = 0;
942 
943 	spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
944 	list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list);
945 	if (lpfc_cmd) {
946 		lpfc_cmd->seg_cnt = 0;
947 		lpfc_cmd->nonsg_phys = 0;
948 		lpfc_cmd->prot_seg_cnt = 0;
949 	}
950 	spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
951 	return  lpfc_cmd;
952 }
953 /**
954  * lpfc_get_scsi_buf_s4 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
955  * @phba: The HBA for which this call is being executed.
956  *
957  * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
958  * and returns to caller.
959  *
960  * Return codes:
961  *   NULL - Error
962  *   Pointer to lpfc_scsi_buf - Success
963  **/
964 static struct lpfc_scsi_buf*
965 lpfc_get_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
966 {
967 	struct  lpfc_scsi_buf *lpfc_cmd = NULL;
968 	struct  lpfc_scsi_buf *start_lpfc_cmd = NULL;
969 	struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list;
970 	unsigned long iflag = 0;
971 	int found = 0;
972 
973 	spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
974 	list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list);
975 	spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
976 	while (!found && lpfc_cmd) {
977 		if (lpfc_test_rrq_active(phba, ndlp,
978 					 lpfc_cmd->cur_iocbq.sli4_xritag)) {
979 			lpfc_release_scsi_buf_s4(phba, lpfc_cmd);
980 			spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
981 			list_remove_head(scsi_buf_list, lpfc_cmd,
982 					 struct lpfc_scsi_buf, list);
983 			spin_unlock_irqrestore(&phba->scsi_buf_list_lock,
984 						 iflag);
985 			if (lpfc_cmd == start_lpfc_cmd) {
986 				lpfc_cmd = NULL;
987 				break;
988 			} else
989 				continue;
990 		}
991 		found = 1;
992 		lpfc_cmd->seg_cnt = 0;
993 		lpfc_cmd->nonsg_phys = 0;
994 		lpfc_cmd->prot_seg_cnt = 0;
995 	}
996 	return  lpfc_cmd;
997 }
998 /**
999  * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
1000  * @phba: The HBA for which this call is being executed.
1001  *
1002  * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
1003  * and returns to caller.
1004  *
1005  * Return codes:
1006  *   NULL - Error
1007  *   Pointer to lpfc_scsi_buf - Success
1008  **/
1009 static struct lpfc_scsi_buf*
1010 lpfc_get_scsi_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
1011 {
1012 	return  phba->lpfc_get_scsi_buf(phba, ndlp);
1013 }
1014 
1015 /**
1016  * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list
1017  * @phba: The Hba for which this call is being executed.
1018  * @psb: The scsi buffer which is being released.
1019  *
1020  * This routine releases @psb scsi buffer by adding it to tail of @phba
1021  * lpfc_scsi_buf_list list.
1022  **/
1023 static void
1024 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1025 {
1026 	unsigned long iflag = 0;
1027 
1028 	spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1029 	psb->pCmd = NULL;
1030 	list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
1031 	spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
1032 }
1033 
1034 /**
1035  * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list.
1036  * @phba: The Hba for which this call is being executed.
1037  * @psb: The scsi buffer which is being released.
1038  *
1039  * This routine releases @psb scsi buffer by adding it to tail of @phba
1040  * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer
1041  * and cannot be reused for at least RA_TOV amount of time if it was
1042  * aborted.
1043  **/
1044 static void
1045 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1046 {
1047 	unsigned long iflag = 0;
1048 
1049 	if (psb->exch_busy) {
1050 		spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock,
1051 					iflag);
1052 		psb->pCmd = NULL;
1053 		list_add_tail(&psb->list,
1054 			&phba->sli4_hba.lpfc_abts_scsi_buf_list);
1055 		spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock,
1056 					iflag);
1057 	} else {
1058 
1059 		spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1060 		psb->pCmd = NULL;
1061 		list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
1062 		spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
1063 	}
1064 }
1065 
1066 /**
1067  * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list.
1068  * @phba: The Hba for which this call is being executed.
1069  * @psb: The scsi buffer which is being released.
1070  *
1071  * This routine releases @psb scsi buffer by adding it to tail of @phba
1072  * lpfc_scsi_buf_list list.
1073  **/
1074 static void
1075 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1076 {
1077 
1078 	phba->lpfc_release_scsi_buf(phba, psb);
1079 }
1080 
1081 /**
1082  * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
1083  * @phba: The Hba for which this call is being executed.
1084  * @lpfc_cmd: The scsi buffer which is going to be mapped.
1085  *
1086  * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
1087  * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans
1088  * through sg elements and format the bdea. This routine also initializes all
1089  * IOCB fields which are dependent on scsi command request buffer.
1090  *
1091  * Return codes:
1092  *   1 - Error
1093  *   0 - Success
1094  **/
1095 static int
1096 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
1097 {
1098 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1099 	struct scatterlist *sgel = NULL;
1100 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1101 	struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1102 	struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq;
1103 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1104 	struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde;
1105 	dma_addr_t physaddr;
1106 	uint32_t num_bde = 0;
1107 	int nseg, datadir = scsi_cmnd->sc_data_direction;
1108 
1109 	/*
1110 	 * There are three possibilities here - use scatter-gather segment, use
1111 	 * the single mapping, or neither.  Start the lpfc command prep by
1112 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1113 	 * data bde entry.
1114 	 */
1115 	bpl += 2;
1116 	if (scsi_sg_count(scsi_cmnd)) {
1117 		/*
1118 		 * The driver stores the segment count returned from pci_map_sg
1119 		 * because this a count of dma-mappings used to map the use_sg
1120 		 * pages.  They are not guaranteed to be the same for those
1121 		 * architectures that implement an IOMMU.
1122 		 */
1123 
1124 		nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd),
1125 				  scsi_sg_count(scsi_cmnd), datadir);
1126 		if (unlikely(!nseg))
1127 			return 1;
1128 
1129 		lpfc_cmd->seg_cnt = nseg;
1130 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1131 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1132 				"9064 BLKGRD: %s: Too many sg segments from "
1133 			       "dma_map_sg.  Config %d, seg_cnt %d\n",
1134 			       __func__, phba->cfg_sg_seg_cnt,
1135 			       lpfc_cmd->seg_cnt);
1136 			scsi_dma_unmap(scsi_cmnd);
1137 			return 1;
1138 		}
1139 
1140 		/*
1141 		 * The driver established a maximum scatter-gather segment count
1142 		 * during probe that limits the number of sg elements in any
1143 		 * single scsi command.  Just run through the seg_cnt and format
1144 		 * the bde's.
1145 		 * When using SLI-3 the driver will try to fit all the BDEs into
1146 		 * the IOCB. If it can't then the BDEs get added to a BPL as it
1147 		 * does for SLI-2 mode.
1148 		 */
1149 		scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
1150 			physaddr = sg_dma_address(sgel);
1151 			if (phba->sli_rev == 3 &&
1152 			    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1153 			    !(iocbq->iocb_flag & DSS_SECURITY_OP) &&
1154 			    nseg <= LPFC_EXT_DATA_BDE_COUNT) {
1155 				data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1156 				data_bde->tus.f.bdeSize = sg_dma_len(sgel);
1157 				data_bde->addrLow = putPaddrLow(physaddr);
1158 				data_bde->addrHigh = putPaddrHigh(physaddr);
1159 				data_bde++;
1160 			} else {
1161 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1162 				bpl->tus.f.bdeSize = sg_dma_len(sgel);
1163 				bpl->tus.w = le32_to_cpu(bpl->tus.w);
1164 				bpl->addrLow =
1165 					le32_to_cpu(putPaddrLow(physaddr));
1166 				bpl->addrHigh =
1167 					le32_to_cpu(putPaddrHigh(physaddr));
1168 				bpl++;
1169 			}
1170 		}
1171 	}
1172 
1173 	/*
1174 	 * Finish initializing those IOCB fields that are dependent on the
1175 	 * scsi_cmnd request_buffer.  Note that for SLI-2 the bdeSize is
1176 	 * explicitly reinitialized and for SLI-3 the extended bde count is
1177 	 * explicitly reinitialized since all iocb memory resources are reused.
1178 	 */
1179 	if (phba->sli_rev == 3 &&
1180 	    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1181 	    !(iocbq->iocb_flag & DSS_SECURITY_OP)) {
1182 		if (num_bde > LPFC_EXT_DATA_BDE_COUNT) {
1183 			/*
1184 			 * The extended IOCB format can only fit 3 BDE or a BPL.
1185 			 * This I/O has more than 3 BDE so the 1st data bde will
1186 			 * be a BPL that is filled in here.
1187 			 */
1188 			physaddr = lpfc_cmd->dma_handle;
1189 			data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64;
1190 			data_bde->tus.f.bdeSize = (num_bde *
1191 						   sizeof(struct ulp_bde64));
1192 			physaddr += (sizeof(struct fcp_cmnd) +
1193 				     sizeof(struct fcp_rsp) +
1194 				     (2 * sizeof(struct ulp_bde64)));
1195 			data_bde->addrHigh = putPaddrHigh(physaddr);
1196 			data_bde->addrLow = putPaddrLow(physaddr);
1197 			/* ebde count includes the responce bde and data bpl */
1198 			iocb_cmd->unsli3.fcp_ext.ebde_count = 2;
1199 		} else {
1200 			/* ebde count includes the responce bde and data bdes */
1201 			iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1202 		}
1203 	} else {
1204 		iocb_cmd->un.fcpi64.bdl.bdeSize =
1205 			((num_bde + 2) * sizeof(struct ulp_bde64));
1206 		iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1207 	}
1208 	fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
1209 
1210 	/*
1211 	 * Due to difference in data length between DIF/non-DIF paths,
1212 	 * we need to set word 4 of IOCB here
1213 	 */
1214 	iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
1215 	return 0;
1216 }
1217 
1218 /*
1219  * Given a scsi cmnd, determine the BlockGuard opcodes to be used with it
1220  * @sc: The SCSI command to examine
1221  * @txopt: (out) BlockGuard operation for transmitted data
1222  * @rxopt: (out) BlockGuard operation for received data
1223  *
1224  * Returns: zero on success; non-zero if tx and/or rx op cannot be determined
1225  *
1226  */
1227 static int
1228 lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1229 		uint8_t *txop, uint8_t *rxop)
1230 {
1231 	uint8_t guard_type = scsi_host_get_guard(sc->device->host);
1232 	uint8_t ret = 0;
1233 
1234 	if (guard_type == SHOST_DIX_GUARD_IP) {
1235 		switch (scsi_get_prot_op(sc)) {
1236 		case SCSI_PROT_READ_INSERT:
1237 		case SCSI_PROT_WRITE_STRIP:
1238 			*txop = BG_OP_IN_CSUM_OUT_NODIF;
1239 			*rxop = BG_OP_IN_NODIF_OUT_CSUM;
1240 			break;
1241 
1242 		case SCSI_PROT_READ_STRIP:
1243 		case SCSI_PROT_WRITE_INSERT:
1244 			*txop = BG_OP_IN_NODIF_OUT_CRC;
1245 			*rxop = BG_OP_IN_CRC_OUT_NODIF;
1246 			break;
1247 
1248 		case SCSI_PROT_READ_PASS:
1249 		case SCSI_PROT_WRITE_PASS:
1250 			*txop = BG_OP_IN_CSUM_OUT_CRC;
1251 			*rxop = BG_OP_IN_CRC_OUT_CSUM;
1252 			break;
1253 
1254 		case SCSI_PROT_NORMAL:
1255 		default:
1256 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1257 				"9063 BLKGRD: Bad op/guard:%d/%d combination\n",
1258 					scsi_get_prot_op(sc), guard_type);
1259 			ret = 1;
1260 			break;
1261 
1262 		}
1263 	} else if (guard_type == SHOST_DIX_GUARD_CRC) {
1264 		switch (scsi_get_prot_op(sc)) {
1265 		case SCSI_PROT_READ_STRIP:
1266 		case SCSI_PROT_WRITE_INSERT:
1267 			*txop = BG_OP_IN_NODIF_OUT_CRC;
1268 			*rxop = BG_OP_IN_CRC_OUT_NODIF;
1269 			break;
1270 
1271 		case SCSI_PROT_READ_PASS:
1272 		case SCSI_PROT_WRITE_PASS:
1273 			*txop = BG_OP_IN_CRC_OUT_CRC;
1274 			*rxop = BG_OP_IN_CRC_OUT_CRC;
1275 			break;
1276 
1277 		case SCSI_PROT_READ_INSERT:
1278 		case SCSI_PROT_WRITE_STRIP:
1279 		case SCSI_PROT_NORMAL:
1280 		default:
1281 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1282 				"9075 BLKGRD: Bad op/guard:%d/%d combination\n",
1283 					scsi_get_prot_op(sc), guard_type);
1284 			ret = 1;
1285 			break;
1286 		}
1287 	} else {
1288 		/* unsupported format */
1289 		BUG();
1290 	}
1291 
1292 	return ret;
1293 }
1294 
1295 struct scsi_dif_tuple {
1296 	__be16 guard_tag;       /* Checksum */
1297 	__be16 app_tag;         /* Opaque storage */
1298 	__be32 ref_tag;         /* Target LBA or indirect LBA */
1299 };
1300 
1301 static inline unsigned
1302 lpfc_cmd_blksize(struct scsi_cmnd *sc)
1303 {
1304 	return sc->device->sector_size;
1305 }
1306 
1307 /**
1308  * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command
1309  * @sc:             in: SCSI command
1310  * @apptagmask:     out: app tag mask
1311  * @apptagval:      out: app tag value
1312  * @reftag:         out: ref tag (reference tag)
1313  *
1314  * Description:
1315  *   Extract DIF parameters from the command if possible.  Otherwise,
1316  *   use default parameters.
1317  *
1318  **/
1319 static inline void
1320 lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask,
1321 		uint16_t *apptagval, uint32_t *reftag)
1322 {
1323 	struct  scsi_dif_tuple *spt;
1324 	unsigned char op = scsi_get_prot_op(sc);
1325 	unsigned int protcnt = scsi_prot_sg_count(sc);
1326 	static int cnt;
1327 
1328 	if (protcnt && (op == SCSI_PROT_WRITE_STRIP ||
1329 				op == SCSI_PROT_WRITE_PASS)) {
1330 
1331 		cnt++;
1332 		spt = page_address(sg_page(scsi_prot_sglist(sc))) +
1333 			scsi_prot_sglist(sc)[0].offset;
1334 		*apptagmask = 0;
1335 		*apptagval = 0;
1336 		*reftag = cpu_to_be32(spt->ref_tag);
1337 
1338 	} else {
1339 		/* SBC defines ref tag to be lower 32bits of LBA */
1340 		*reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc));
1341 		*apptagmask = 0;
1342 		*apptagval = 0;
1343 	}
1344 }
1345 
1346 /*
1347  * This function sets up buffer list for protection groups of
1348  * type LPFC_PG_TYPE_NO_DIF
1349  *
1350  * This is usually used when the HBA is instructed to generate
1351  * DIFs and insert them into data stream (or strip DIF from
1352  * incoming data stream)
1353  *
1354  * The buffer list consists of just one protection group described
1355  * below:
1356  *                                +-------------------------+
1357  *   start of prot group  -->     |          PDE_5          |
1358  *                                +-------------------------+
1359  *                                |          PDE_6          |
1360  *                                +-------------------------+
1361  *                                |         Data BDE        |
1362  *                                +-------------------------+
1363  *                                |more Data BDE's ... (opt)|
1364  *                                +-------------------------+
1365  *
1366  * @sc: pointer to scsi command we're working on
1367  * @bpl: pointer to buffer list for protection groups
1368  * @datacnt: number of segments of data that have been dma mapped
1369  *
1370  * Note: Data s/g buffers have been dma mapped
1371  */
1372 static int
1373 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1374 		struct ulp_bde64 *bpl, int datasegcnt)
1375 {
1376 	struct scatterlist *sgde = NULL; /* s/g data entry */
1377 	struct lpfc_pde5 *pde5 = NULL;
1378 	struct lpfc_pde6 *pde6 = NULL;
1379 	dma_addr_t physaddr;
1380 	int i = 0, num_bde = 0, status;
1381 	int datadir = sc->sc_data_direction;
1382 	unsigned blksize;
1383 	uint32_t reftag;
1384 	uint16_t apptagmask, apptagval;
1385 	uint8_t txop, rxop;
1386 
1387 	status  = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
1388 	if (status)
1389 		goto out;
1390 
1391 	/* extract some info from the scsi command for pde*/
1392 	blksize = lpfc_cmd_blksize(sc);
1393 	lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1394 
1395 	/* setup PDE5 with what we have */
1396 	pde5 = (struct lpfc_pde5 *) bpl;
1397 	memset(pde5, 0, sizeof(struct lpfc_pde5));
1398 	bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
1399 	pde5->reftag = reftag;
1400 
1401 	/* Endianness conversion if necessary for PDE5 */
1402 	pde5->word0 = cpu_to_le32(pde5->word0);
1403 	pde5->reftag = cpu_to_le32(pde5->reftag);
1404 
1405 	/* advance bpl and increment bde count */
1406 	num_bde++;
1407 	bpl++;
1408 	pde6 = (struct lpfc_pde6 *) bpl;
1409 
1410 	/* setup PDE6 with the rest of the info */
1411 	memset(pde6, 0, sizeof(struct lpfc_pde6));
1412 	bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
1413 	bf_set(pde6_optx, pde6, txop);
1414 	bf_set(pde6_oprx, pde6, rxop);
1415 	if (datadir == DMA_FROM_DEVICE) {
1416 		bf_set(pde6_ce, pde6, 1);
1417 		bf_set(pde6_re, pde6, 1);
1418 		bf_set(pde6_ae, pde6, 1);
1419 	}
1420 	bf_set(pde6_ai, pde6, 1);
1421 	bf_set(pde6_apptagval, pde6, apptagval);
1422 
1423 	/* Endianness conversion if necessary for PDE6 */
1424 	pde6->word0 = cpu_to_le32(pde6->word0);
1425 	pde6->word1 = cpu_to_le32(pde6->word1);
1426 	pde6->word2 = cpu_to_le32(pde6->word2);
1427 
1428 	/* advance bpl and increment bde count */
1429 	num_bde++;
1430 	bpl++;
1431 
1432 	/* assumption: caller has already run dma_map_sg on command data */
1433 	scsi_for_each_sg(sc, sgde, datasegcnt, i) {
1434 		physaddr = sg_dma_address(sgde);
1435 		bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr));
1436 		bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1437 		bpl->tus.f.bdeSize = sg_dma_len(sgde);
1438 		if (datadir == DMA_TO_DEVICE)
1439 			bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1440 		else
1441 			bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1442 		bpl->tus.w = le32_to_cpu(bpl->tus.w);
1443 		bpl++;
1444 		num_bde++;
1445 	}
1446 
1447 out:
1448 	return num_bde;
1449 }
1450 
1451 /*
1452  * This function sets up buffer list for protection groups of
1453  * type LPFC_PG_TYPE_DIF_BUF
1454  *
1455  * This is usually used when DIFs are in their own buffers,
1456  * separate from the data. The HBA can then by instructed
1457  * to place the DIFs in the outgoing stream.  For read operations,
1458  * The HBA could extract the DIFs and place it in DIF buffers.
1459  *
1460  * The buffer list for this type consists of one or more of the
1461  * protection groups described below:
1462  *                                    +-------------------------+
1463  *   start of first prot group  -->   |          PDE_5          |
1464  *                                    +-------------------------+
1465  *                                    |          PDE_6          |
1466  *                                    +-------------------------+
1467  *                                    |      PDE_7 (Prot BDE)   |
1468  *                                    +-------------------------+
1469  *                                    |        Data BDE         |
1470  *                                    +-------------------------+
1471  *                                    |more Data BDE's ... (opt)|
1472  *                                    +-------------------------+
1473  *   start of new  prot group  -->    |          PDE_5          |
1474  *                                    +-------------------------+
1475  *                                    |          ...            |
1476  *                                    +-------------------------+
1477  *
1478  * @sc: pointer to scsi command we're working on
1479  * @bpl: pointer to buffer list for protection groups
1480  * @datacnt: number of segments of data that have been dma mapped
1481  * @protcnt: number of segment of protection data that have been dma mapped
1482  *
1483  * Note: It is assumed that both data and protection s/g buffers have been
1484  *       mapped for DMA
1485  */
1486 static int
1487 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1488 		struct ulp_bde64 *bpl, int datacnt, int protcnt)
1489 {
1490 	struct scatterlist *sgde = NULL; /* s/g data entry */
1491 	struct scatterlist *sgpe = NULL; /* s/g prot entry */
1492 	struct lpfc_pde5 *pde5 = NULL;
1493 	struct lpfc_pde6 *pde6 = NULL;
1494 	struct ulp_bde64 *prot_bde = NULL;
1495 	dma_addr_t dataphysaddr, protphysaddr;
1496 	unsigned short curr_data = 0, curr_prot = 0;
1497 	unsigned int split_offset, protgroup_len;
1498 	unsigned int protgrp_blks, protgrp_bytes;
1499 	unsigned int remainder, subtotal;
1500 	int status;
1501 	int datadir = sc->sc_data_direction;
1502 	unsigned char pgdone = 0, alldone = 0;
1503 	unsigned blksize;
1504 	uint32_t reftag;
1505 	uint16_t apptagmask, apptagval;
1506 	uint8_t txop, rxop;
1507 	int num_bde = 0;
1508 
1509 	sgpe = scsi_prot_sglist(sc);
1510 	sgde = scsi_sglist(sc);
1511 
1512 	if (!sgpe || !sgde) {
1513 		lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1514 				"9020 Invalid s/g entry: data=0x%p prot=0x%p\n",
1515 				sgpe, sgde);
1516 		return 0;
1517 	}
1518 
1519 	status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
1520 	if (status)
1521 		goto out;
1522 
1523 	/* extract some info from the scsi command */
1524 	blksize = lpfc_cmd_blksize(sc);
1525 	lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1526 
1527 	split_offset = 0;
1528 	do {
1529 		/* setup PDE5 with what we have */
1530 		pde5 = (struct lpfc_pde5 *) bpl;
1531 		memset(pde5, 0, sizeof(struct lpfc_pde5));
1532 		bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
1533 		pde5->reftag = reftag;
1534 
1535 		/* Endianness conversion if necessary for PDE5 */
1536 		pde5->word0 = cpu_to_le32(pde5->word0);
1537 		pde5->reftag = cpu_to_le32(pde5->reftag);
1538 
1539 		/* advance bpl and increment bde count */
1540 		num_bde++;
1541 		bpl++;
1542 		pde6 = (struct lpfc_pde6 *) bpl;
1543 
1544 		/* setup PDE6 with the rest of the info */
1545 		memset(pde6, 0, sizeof(struct lpfc_pde6));
1546 		bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
1547 		bf_set(pde6_optx, pde6, txop);
1548 		bf_set(pde6_oprx, pde6, rxop);
1549 		bf_set(pde6_ce, pde6, 1);
1550 		bf_set(pde6_re, pde6, 1);
1551 		bf_set(pde6_ae, pde6, 1);
1552 		bf_set(pde6_ai, pde6, 1);
1553 		bf_set(pde6_apptagval, pde6, apptagval);
1554 
1555 		/* Endianness conversion if necessary for PDE6 */
1556 		pde6->word0 = cpu_to_le32(pde6->word0);
1557 		pde6->word1 = cpu_to_le32(pde6->word1);
1558 		pde6->word2 = cpu_to_le32(pde6->word2);
1559 
1560 		/* advance bpl and increment bde count */
1561 		num_bde++;
1562 		bpl++;
1563 
1564 		/* setup the first BDE that points to protection buffer */
1565 		prot_bde = (struct ulp_bde64 *) bpl;
1566 		protphysaddr = sg_dma_address(sgpe);
1567 		prot_bde->addrHigh = le32_to_cpu(putPaddrLow(protphysaddr));
1568 		prot_bde->addrLow = le32_to_cpu(putPaddrHigh(protphysaddr));
1569 		protgroup_len = sg_dma_len(sgpe);
1570 
1571 		/* must be integer multiple of the DIF block length */
1572 		BUG_ON(protgroup_len % 8);
1573 
1574 		protgrp_blks = protgroup_len / 8;
1575 		protgrp_bytes = protgrp_blks * blksize;
1576 
1577 		prot_bde->tus.f.bdeSize = protgroup_len;
1578 		prot_bde->tus.f.bdeFlags = LPFC_PDE7_DESCRIPTOR;
1579 		prot_bde->tus.w = le32_to_cpu(bpl->tus.w);
1580 
1581 		curr_prot++;
1582 		num_bde++;
1583 
1584 		/* setup BDE's for data blocks associated with DIF data */
1585 		pgdone = 0;
1586 		subtotal = 0; /* total bytes processed for current prot grp */
1587 		while (!pgdone) {
1588 			if (!sgde) {
1589 				lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1590 					"9065 BLKGRD:%s Invalid data segment\n",
1591 						__func__);
1592 				return 0;
1593 			}
1594 			bpl++;
1595 			dataphysaddr = sg_dma_address(sgde) + split_offset;
1596 			bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr));
1597 			bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr));
1598 
1599 			remainder = sg_dma_len(sgde) - split_offset;
1600 
1601 			if ((subtotal + remainder) <= protgrp_bytes) {
1602 				/* we can use this whole buffer */
1603 				bpl->tus.f.bdeSize = remainder;
1604 				split_offset = 0;
1605 
1606 				if ((subtotal + remainder) == protgrp_bytes)
1607 					pgdone = 1;
1608 			} else {
1609 				/* must split this buffer with next prot grp */
1610 				bpl->tus.f.bdeSize = protgrp_bytes - subtotal;
1611 				split_offset += bpl->tus.f.bdeSize;
1612 			}
1613 
1614 			subtotal += bpl->tus.f.bdeSize;
1615 
1616 			if (datadir == DMA_TO_DEVICE)
1617 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1618 			else
1619 				bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1620 			bpl->tus.w = le32_to_cpu(bpl->tus.w);
1621 
1622 			num_bde++;
1623 			curr_data++;
1624 
1625 			if (split_offset)
1626 				break;
1627 
1628 			/* Move to the next s/g segment if possible */
1629 			sgde = sg_next(sgde);
1630 
1631 		}
1632 
1633 		/* are we done ? */
1634 		if (curr_prot == protcnt) {
1635 			alldone = 1;
1636 		} else if (curr_prot < protcnt) {
1637 			/* advance to next prot buffer */
1638 			sgpe = sg_next(sgpe);
1639 			bpl++;
1640 
1641 			/* update the reference tag */
1642 			reftag += protgrp_blks;
1643 		} else {
1644 			/* if we're here, we have a bug */
1645 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1646 				"9054 BLKGRD: bug in %s\n", __func__);
1647 		}
1648 
1649 	} while (!alldone);
1650 
1651 out:
1652 
1653 	return num_bde;
1654 }
1655 /*
1656  * Given a SCSI command that supports DIF, determine composition of protection
1657  * groups involved in setting up buffer lists
1658  *
1659  * Returns:
1660  *			      for DIF (for both read and write)
1661  * */
1662 static int
1663 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc)
1664 {
1665 	int ret = LPFC_PG_TYPE_INVALID;
1666 	unsigned char op = scsi_get_prot_op(sc);
1667 
1668 	switch (op) {
1669 	case SCSI_PROT_READ_STRIP:
1670 	case SCSI_PROT_WRITE_INSERT:
1671 		ret = LPFC_PG_TYPE_NO_DIF;
1672 		break;
1673 	case SCSI_PROT_READ_INSERT:
1674 	case SCSI_PROT_WRITE_STRIP:
1675 	case SCSI_PROT_READ_PASS:
1676 	case SCSI_PROT_WRITE_PASS:
1677 		ret = LPFC_PG_TYPE_DIF_BUF;
1678 		break;
1679 	default:
1680 		lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1681 				"9021 Unsupported protection op:%d\n", op);
1682 		break;
1683 	}
1684 
1685 	return ret;
1686 }
1687 
1688 /*
1689  * This is the protection/DIF aware version of
1690  * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
1691  * two functions eventually, but for now, it's here
1692  */
1693 static int
1694 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba,
1695 		struct lpfc_scsi_buf *lpfc_cmd)
1696 {
1697 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1698 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1699 	struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1700 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1701 	uint32_t num_bde = 0;
1702 	int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction;
1703 	int prot_group_type = 0;
1704 	int diflen, fcpdl;
1705 	unsigned blksize;
1706 
1707 	/*
1708 	 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd
1709 	 *  fcp_rsp regions to the first data bde entry
1710 	 */
1711 	bpl += 2;
1712 	if (scsi_sg_count(scsi_cmnd)) {
1713 		/*
1714 		 * The driver stores the segment count returned from pci_map_sg
1715 		 * because this a count of dma-mappings used to map the use_sg
1716 		 * pages.  They are not guaranteed to be the same for those
1717 		 * architectures that implement an IOMMU.
1718 		 */
1719 		datasegcnt = dma_map_sg(&phba->pcidev->dev,
1720 					scsi_sglist(scsi_cmnd),
1721 					scsi_sg_count(scsi_cmnd), datadir);
1722 		if (unlikely(!datasegcnt))
1723 			return 1;
1724 
1725 		lpfc_cmd->seg_cnt = datasegcnt;
1726 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1727 			lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1728 					"9067 BLKGRD: %s: Too many sg segments"
1729 					" from dma_map_sg.  Config %d, seg_cnt"
1730 					" %d\n",
1731 					__func__, phba->cfg_sg_seg_cnt,
1732 					lpfc_cmd->seg_cnt);
1733 			scsi_dma_unmap(scsi_cmnd);
1734 			return 1;
1735 		}
1736 
1737 		prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd);
1738 
1739 		switch (prot_group_type) {
1740 		case LPFC_PG_TYPE_NO_DIF:
1741 			num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl,
1742 					datasegcnt);
1743 			/* we should have 2 or more entries in buffer list */
1744 			if (num_bde < 2)
1745 				goto err;
1746 			break;
1747 		case LPFC_PG_TYPE_DIF_BUF:{
1748 			/*
1749 			 * This type indicates that protection buffers are
1750 			 * passed to the driver, so that needs to be prepared
1751 			 * for DMA
1752 			 */
1753 			protsegcnt = dma_map_sg(&phba->pcidev->dev,
1754 					scsi_prot_sglist(scsi_cmnd),
1755 					scsi_prot_sg_count(scsi_cmnd), datadir);
1756 			if (unlikely(!protsegcnt)) {
1757 				scsi_dma_unmap(scsi_cmnd);
1758 				return 1;
1759 			}
1760 
1761 			lpfc_cmd->prot_seg_cnt = protsegcnt;
1762 			if (lpfc_cmd->prot_seg_cnt
1763 			    > phba->cfg_prot_sg_seg_cnt) {
1764 				lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1765 					"9068 BLKGRD: %s: Too many prot sg "
1766 					"segments from dma_map_sg.  Config %d,"
1767 						"prot_seg_cnt %d\n", __func__,
1768 						phba->cfg_prot_sg_seg_cnt,
1769 						lpfc_cmd->prot_seg_cnt);
1770 				dma_unmap_sg(&phba->pcidev->dev,
1771 					     scsi_prot_sglist(scsi_cmnd),
1772 					     scsi_prot_sg_count(scsi_cmnd),
1773 					     datadir);
1774 				scsi_dma_unmap(scsi_cmnd);
1775 				return 1;
1776 			}
1777 
1778 			num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl,
1779 					datasegcnt, protsegcnt);
1780 			/* we should have 3 or more entries in buffer list */
1781 			if (num_bde < 3)
1782 				goto err;
1783 			break;
1784 		}
1785 		case LPFC_PG_TYPE_INVALID:
1786 		default:
1787 			lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1788 					"9022 Unexpected protection group %i\n",
1789 					prot_group_type);
1790 			return 1;
1791 		}
1792 	}
1793 
1794 	/*
1795 	 * Finish initializing those IOCB fields that are dependent on the
1796 	 * scsi_cmnd request_buffer.  Note that the bdeSize is explicitly
1797 	 * reinitialized since all iocb memory resources are used many times
1798 	 * for transmit, receive, and continuation bpl's.
1799 	 */
1800 	iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
1801 	iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64));
1802 	iocb_cmd->ulpBdeCount = 1;
1803 	iocb_cmd->ulpLe = 1;
1804 
1805 	fcpdl = scsi_bufflen(scsi_cmnd);
1806 
1807 	if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) {
1808 		/*
1809 		 * We are in DIF Type 1 mode
1810 		 * Every data block has a 8 byte DIF (trailer)
1811 		 * attached to it.  Must ajust FCP data length
1812 		 */
1813 		blksize = lpfc_cmd_blksize(scsi_cmnd);
1814 		diflen = (fcpdl / blksize) * 8;
1815 		fcpdl += diflen;
1816 	}
1817 	fcp_cmnd->fcpDl = be32_to_cpu(fcpdl);
1818 
1819 	/*
1820 	 * Due to difference in data length between DIF/non-DIF paths,
1821 	 * we need to set word 4 of IOCB here
1822 	 */
1823 	iocb_cmd->un.fcpi.fcpi_parm = fcpdl;
1824 
1825 	return 0;
1826 err:
1827 	lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1828 			"9023 Could not setup all needed BDE's"
1829 			"prot_group_type=%d, num_bde=%d\n",
1830 			prot_group_type, num_bde);
1831 	return 1;
1832 }
1833 
1834 /*
1835  * This function checks for BlockGuard errors detected by
1836  * the HBA.  In case of errors, the ASC/ASCQ fields in the
1837  * sense buffer will be set accordingly, paired with
1838  * ILLEGAL_REQUEST to signal to the kernel that the HBA
1839  * detected corruption.
1840  *
1841  * Returns:
1842  *  0 - No error found
1843  *  1 - BlockGuard error found
1844  * -1 - Internal error (bad profile, ...etc)
1845  */
1846 static int
1847 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd,
1848 			struct lpfc_iocbq *pIocbOut)
1849 {
1850 	struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
1851 	struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg;
1852 	int ret = 0;
1853 	uint32_t bghm = bgf->bghm;
1854 	uint32_t bgstat = bgf->bgstat;
1855 	uint64_t failing_sector = 0;
1856 
1857 	lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd"
1858 			" 0x%x lba 0x%llx blk cnt 0x%x "
1859 			"bgstat=0x%x bghm=0x%x\n",
1860 			cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd),
1861 			blk_rq_sectors(cmd->request), bgstat, bghm);
1862 
1863 	spin_lock(&_dump_buf_lock);
1864 	if (!_dump_buf_done) {
1865 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,  "9070 BLKGRD: Saving"
1866 			" Data for %u blocks to debugfs\n",
1867 				(cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1868 		lpfc_debug_save_data(phba, cmd);
1869 
1870 		/* If we have a prot sgl, save the DIF buffer */
1871 		if (lpfc_prot_group_type(phba, cmd) ==
1872 				LPFC_PG_TYPE_DIF_BUF) {
1873 			lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: "
1874 				"Saving DIF for %u blocks to debugfs\n",
1875 				(cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1876 			lpfc_debug_save_dif(phba, cmd);
1877 		}
1878 
1879 		_dump_buf_done = 1;
1880 	}
1881 	spin_unlock(&_dump_buf_lock);
1882 
1883 	if (lpfc_bgs_get_invalid_prof(bgstat)) {
1884 		cmd->result = ScsiResult(DID_ERROR, 0);
1885 		lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid"
1886 			" BlockGuard profile. bgstat:0x%x\n",
1887 			bgstat);
1888 		ret = (-1);
1889 		goto out;
1890 	}
1891 
1892 	if (lpfc_bgs_get_uninit_dif_block(bgstat)) {
1893 		cmd->result = ScsiResult(DID_ERROR, 0);
1894 		lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: "
1895 				"Invalid BlockGuard DIF Block. bgstat:0x%x\n",
1896 				bgstat);
1897 		ret = (-1);
1898 		goto out;
1899 	}
1900 
1901 	if (lpfc_bgs_get_guard_err(bgstat)) {
1902 		ret = 1;
1903 
1904 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1905 				0x10, 0x1);
1906 		cmd->result = DRIVER_SENSE << 24
1907 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1908 		phba->bg_guard_err_cnt++;
1909 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1910 			"9055 BLKGRD: guard_tag error\n");
1911 	}
1912 
1913 	if (lpfc_bgs_get_reftag_err(bgstat)) {
1914 		ret = 1;
1915 
1916 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1917 				0x10, 0x3);
1918 		cmd->result = DRIVER_SENSE << 24
1919 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1920 
1921 		phba->bg_reftag_err_cnt++;
1922 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1923 			"9056 BLKGRD: ref_tag error\n");
1924 	}
1925 
1926 	if (lpfc_bgs_get_apptag_err(bgstat)) {
1927 		ret = 1;
1928 
1929 		scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1930 				0x10, 0x2);
1931 		cmd->result = DRIVER_SENSE << 24
1932 			| ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1933 
1934 		phba->bg_apptag_err_cnt++;
1935 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1936 			"9061 BLKGRD: app_tag error\n");
1937 	}
1938 
1939 	if (lpfc_bgs_get_hi_water_mark_present(bgstat)) {
1940 		/*
1941 		 * setup sense data descriptor 0 per SPC-4 as an information
1942 		 * field, and put the failing LBA in it
1943 		 */
1944 		cmd->sense_buffer[8] = 0;     /* Information */
1945 		cmd->sense_buffer[9] = 0xa;   /* Add. length */
1946 		bghm /= cmd->device->sector_size;
1947 
1948 		failing_sector = scsi_get_lba(cmd);
1949 		failing_sector += bghm;
1950 
1951 		put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]);
1952 	}
1953 
1954 	if (!ret) {
1955 		/* No error was reported - problem in FW? */
1956 		cmd->result = ScsiResult(DID_ERROR, 0);
1957 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1958 			"9057 BLKGRD: no errors reported!\n");
1959 	}
1960 
1961 out:
1962 	return ret;
1963 }
1964 
1965 /**
1966  * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec
1967  * @phba: The Hba for which this call is being executed.
1968  * @lpfc_cmd: The scsi buffer which is going to be mapped.
1969  *
1970  * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
1971  * field of @lpfc_cmd for device with SLI-4 interface spec.
1972  *
1973  * Return codes:
1974  *	1 - Error
1975  *	0 - Success
1976  **/
1977 static int
1978 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
1979 {
1980 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1981 	struct scatterlist *sgel = NULL;
1982 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1983 	struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
1984 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1985 	dma_addr_t physaddr;
1986 	uint32_t num_bde = 0;
1987 	uint32_t dma_len;
1988 	uint32_t dma_offset = 0;
1989 	int nseg;
1990 
1991 	/*
1992 	 * There are three possibilities here - use scatter-gather segment, use
1993 	 * the single mapping, or neither.  Start the lpfc command prep by
1994 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1995 	 * data bde entry.
1996 	 */
1997 	if (scsi_sg_count(scsi_cmnd)) {
1998 		/*
1999 		 * The driver stores the segment count returned from pci_map_sg
2000 		 * because this a count of dma-mappings used to map the use_sg
2001 		 * pages.  They are not guaranteed to be the same for those
2002 		 * architectures that implement an IOMMU.
2003 		 */
2004 
2005 		nseg = scsi_dma_map(scsi_cmnd);
2006 		if (unlikely(!nseg))
2007 			return 1;
2008 		sgl += 1;
2009 		/* clear the last flag in the fcp_rsp map entry */
2010 		sgl->word2 = le32_to_cpu(sgl->word2);
2011 		bf_set(lpfc_sli4_sge_last, sgl, 0);
2012 		sgl->word2 = cpu_to_le32(sgl->word2);
2013 		sgl += 1;
2014 
2015 		lpfc_cmd->seg_cnt = nseg;
2016 		if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
2017 			lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:"
2018 				" %s: Too many sg segments from "
2019 				"dma_map_sg.  Config %d, seg_cnt %d\n",
2020 				__func__, phba->cfg_sg_seg_cnt,
2021 			       lpfc_cmd->seg_cnt);
2022 			scsi_dma_unmap(scsi_cmnd);
2023 			return 1;
2024 		}
2025 
2026 		/*
2027 		 * The driver established a maximum scatter-gather segment count
2028 		 * during probe that limits the number of sg elements in any
2029 		 * single scsi command.  Just run through the seg_cnt and format
2030 		 * the sge's.
2031 		 * When using SLI-3 the driver will try to fit all the BDEs into
2032 		 * the IOCB. If it can't then the BDEs get added to a BPL as it
2033 		 * does for SLI-2 mode.
2034 		 */
2035 		scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
2036 			physaddr = sg_dma_address(sgel);
2037 			dma_len = sg_dma_len(sgel);
2038 			sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr));
2039 			sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr));
2040 			if ((num_bde + 1) == nseg)
2041 				bf_set(lpfc_sli4_sge_last, sgl, 1);
2042 			else
2043 				bf_set(lpfc_sli4_sge_last, sgl, 0);
2044 			bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
2045 			sgl->word2 = cpu_to_le32(sgl->word2);
2046 			sgl->sge_len = cpu_to_le32(dma_len);
2047 			dma_offset += dma_len;
2048 			sgl++;
2049 		}
2050 	} else {
2051 		sgl += 1;
2052 		/* clear the last flag in the fcp_rsp map entry */
2053 		sgl->word2 = le32_to_cpu(sgl->word2);
2054 		bf_set(lpfc_sli4_sge_last, sgl, 1);
2055 		sgl->word2 = cpu_to_le32(sgl->word2);
2056 	}
2057 
2058 	/*
2059 	 * Finish initializing those IOCB fields that are dependent on the
2060 	 * scsi_cmnd request_buffer.  Note that for SLI-2 the bdeSize is
2061 	 * explicitly reinitialized.
2062 	 * all iocb memory resources are reused.
2063 	 */
2064 	fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
2065 
2066 	/*
2067 	 * Due to difference in data length between DIF/non-DIF paths,
2068 	 * we need to set word 4 of IOCB here
2069 	 */
2070 	iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
2071 	return 0;
2072 }
2073 
2074 /**
2075  * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer
2076  * @phba: The Hba for which this call is being executed.
2077  * @lpfc_cmd: The scsi buffer which is going to be mapped.
2078  *
2079  * This routine wraps the actual DMA mapping function pointer from the
2080  * lpfc_hba struct.
2081  *
2082  * Return codes:
2083  *	1 - Error
2084  *	0 - Success
2085  **/
2086 static inline int
2087 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
2088 {
2089 	return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
2090 }
2091 
2092 /**
2093  * lpfc_send_scsi_error_event - Posts an event when there is SCSI error
2094  * @phba: Pointer to hba context object.
2095  * @vport: Pointer to vport object.
2096  * @lpfc_cmd: Pointer to lpfc scsi command which reported the error.
2097  * @rsp_iocb: Pointer to response iocb object which reported error.
2098  *
2099  * This function posts an event when there is a SCSI command reporting
2100  * error from the scsi device.
2101  **/
2102 static void
2103 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport,
2104 		struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) {
2105 	struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2106 	struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2107 	uint32_t resp_info = fcprsp->rspStatus2;
2108 	uint32_t scsi_status = fcprsp->rspStatus3;
2109 	uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2110 	struct lpfc_fast_path_event *fast_path_evt = NULL;
2111 	struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode;
2112 	unsigned long flags;
2113 
2114 	if (!pnode || !NLP_CHK_NODE_ACT(pnode))
2115 		return;
2116 
2117 	/* If there is queuefull or busy condition send a scsi event */
2118 	if ((cmnd->result == SAM_STAT_TASK_SET_FULL) ||
2119 		(cmnd->result == SAM_STAT_BUSY)) {
2120 		fast_path_evt = lpfc_alloc_fast_evt(phba);
2121 		if (!fast_path_evt)
2122 			return;
2123 		fast_path_evt->un.scsi_evt.event_type =
2124 			FC_REG_SCSI_EVENT;
2125 		fast_path_evt->un.scsi_evt.subcategory =
2126 		(cmnd->result == SAM_STAT_TASK_SET_FULL) ?
2127 		LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY;
2128 		fast_path_evt->un.scsi_evt.lun = cmnd->device->lun;
2129 		memcpy(&fast_path_evt->un.scsi_evt.wwpn,
2130 			&pnode->nlp_portname, sizeof(struct lpfc_name));
2131 		memcpy(&fast_path_evt->un.scsi_evt.wwnn,
2132 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
2133 	} else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen &&
2134 		((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) {
2135 		fast_path_evt = lpfc_alloc_fast_evt(phba);
2136 		if (!fast_path_evt)
2137 			return;
2138 		fast_path_evt->un.check_cond_evt.scsi_event.event_type =
2139 			FC_REG_SCSI_EVENT;
2140 		fast_path_evt->un.check_cond_evt.scsi_event.subcategory =
2141 			LPFC_EVENT_CHECK_COND;
2142 		fast_path_evt->un.check_cond_evt.scsi_event.lun =
2143 			cmnd->device->lun;
2144 		memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn,
2145 			&pnode->nlp_portname, sizeof(struct lpfc_name));
2146 		memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn,
2147 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
2148 		fast_path_evt->un.check_cond_evt.sense_key =
2149 			cmnd->sense_buffer[2] & 0xf;
2150 		fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12];
2151 		fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13];
2152 	} else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2153 		     fcpi_parm &&
2154 		     ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) ||
2155 			((scsi_status == SAM_STAT_GOOD) &&
2156 			!(resp_info & (RESID_UNDER | RESID_OVER))))) {
2157 		/*
2158 		 * If status is good or resid does not match with fcp_param and
2159 		 * there is valid fcpi_parm, then there is a read_check error
2160 		 */
2161 		fast_path_evt = lpfc_alloc_fast_evt(phba);
2162 		if (!fast_path_evt)
2163 			return;
2164 		fast_path_evt->un.read_check_error.header.event_type =
2165 			FC_REG_FABRIC_EVENT;
2166 		fast_path_evt->un.read_check_error.header.subcategory =
2167 			LPFC_EVENT_FCPRDCHKERR;
2168 		memcpy(&fast_path_evt->un.read_check_error.header.wwpn,
2169 			&pnode->nlp_portname, sizeof(struct lpfc_name));
2170 		memcpy(&fast_path_evt->un.read_check_error.header.wwnn,
2171 			&pnode->nlp_nodename, sizeof(struct lpfc_name));
2172 		fast_path_evt->un.read_check_error.lun = cmnd->device->lun;
2173 		fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0];
2174 		fast_path_evt->un.read_check_error.fcpiparam =
2175 			fcpi_parm;
2176 	} else
2177 		return;
2178 
2179 	fast_path_evt->vport = vport;
2180 	spin_lock_irqsave(&phba->hbalock, flags);
2181 	list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
2182 	spin_unlock_irqrestore(&phba->hbalock, flags);
2183 	lpfc_worker_wake_up(phba);
2184 	return;
2185 }
2186 
2187 /**
2188  * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev
2189  * @phba: The HBA for which this call is being executed.
2190  * @psb: The scsi buffer which is going to be un-mapped.
2191  *
2192  * This routine does DMA un-mapping of scatter gather list of scsi command
2193  * field of @lpfc_cmd for device with SLI-3 interface spec.
2194  **/
2195 static void
2196 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
2197 {
2198 	/*
2199 	 * There are only two special cases to consider.  (1) the scsi command
2200 	 * requested scatter-gather usage or (2) the scsi command allocated
2201 	 * a request buffer, but did not request use_sg.  There is a third
2202 	 * case, but it does not require resource deallocation.
2203 	 */
2204 	if (psb->seg_cnt > 0)
2205 		scsi_dma_unmap(psb->pCmd);
2206 	if (psb->prot_seg_cnt > 0)
2207 		dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd),
2208 				scsi_prot_sg_count(psb->pCmd),
2209 				psb->pCmd->sc_data_direction);
2210 }
2211 
2212 /**
2213  * lpfc_handler_fcp_err - FCP response handler
2214  * @vport: The virtual port for which this call is being executed.
2215  * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2216  * @rsp_iocb: The response IOCB which contains FCP error.
2217  *
2218  * This routine is called to process response IOCB with status field
2219  * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command
2220  * based upon SCSI and FCP error.
2221  **/
2222 static void
2223 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2224 		    struct lpfc_iocbq *rsp_iocb)
2225 {
2226 	struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2227 	struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd;
2228 	struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2229 	uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2230 	uint32_t resp_info = fcprsp->rspStatus2;
2231 	uint32_t scsi_status = fcprsp->rspStatus3;
2232 	uint32_t *lp;
2233 	uint32_t host_status = DID_OK;
2234 	uint32_t rsplen = 0;
2235 	uint32_t logit = LOG_FCP | LOG_FCP_ERROR;
2236 
2237 
2238 	/*
2239 	 *  If this is a task management command, there is no
2240 	 *  scsi packet associated with this lpfc_cmd.  The driver
2241 	 *  consumes it.
2242 	 */
2243 	if (fcpcmd->fcpCntl2) {
2244 		scsi_status = 0;
2245 		goto out;
2246 	}
2247 
2248 	if (resp_info & RSP_LEN_VALID) {
2249 		rsplen = be32_to_cpu(fcprsp->rspRspLen);
2250 		if (rsplen != 0 && rsplen != 4 && rsplen != 8) {
2251 			lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
2252 				 "2719 Invalid response length: "
2253 				 "tgt x%x lun x%x cmnd x%x rsplen x%x\n",
2254 				 cmnd->device->id,
2255 				 cmnd->device->lun, cmnd->cmnd[0],
2256 				 rsplen);
2257 			host_status = DID_ERROR;
2258 			goto out;
2259 		}
2260 		if (fcprsp->rspInfo3 != RSP_NO_FAILURE) {
2261 			lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
2262 				 "2757 Protocol failure detected during "
2263 				 "processing of FCP I/O op: "
2264 				 "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n",
2265 				 cmnd->device->id,
2266 				 cmnd->device->lun, cmnd->cmnd[0],
2267 				 fcprsp->rspInfo3);
2268 			host_status = DID_ERROR;
2269 			goto out;
2270 		}
2271 	}
2272 
2273 	if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) {
2274 		uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen);
2275 		if (snslen > SCSI_SENSE_BUFFERSIZE)
2276 			snslen = SCSI_SENSE_BUFFERSIZE;
2277 
2278 		if (resp_info & RSP_LEN_VALID)
2279 		  rsplen = be32_to_cpu(fcprsp->rspRspLen);
2280 		memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen);
2281 	}
2282 	lp = (uint32_t *)cmnd->sense_buffer;
2283 
2284 	if (!scsi_status && (resp_info & RESID_UNDER))
2285 		logit = LOG_FCP;
2286 
2287 	lpfc_printf_vlog(vport, KERN_WARNING, logit,
2288 			 "9024 FCP command x%x failed: x%x SNS x%x x%x "
2289 			 "Data: x%x x%x x%x x%x x%x\n",
2290 			 cmnd->cmnd[0], scsi_status,
2291 			 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info,
2292 			 be32_to_cpu(fcprsp->rspResId),
2293 			 be32_to_cpu(fcprsp->rspSnsLen),
2294 			 be32_to_cpu(fcprsp->rspRspLen),
2295 			 fcprsp->rspInfo3);
2296 
2297 	scsi_set_resid(cmnd, 0);
2298 	if (resp_info & RESID_UNDER) {
2299 		scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId));
2300 
2301 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2302 				 "9025 FCP Read Underrun, expected %d, "
2303 				 "residual %d Data: x%x x%x x%x\n",
2304 				 be32_to_cpu(fcpcmd->fcpDl),
2305 				 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0],
2306 				 cmnd->underflow);
2307 
2308 		/*
2309 		 * If there is an under run check if under run reported by
2310 		 * storage array is same as the under run reported by HBA.
2311 		 * If this is not same, there is a dropped frame.
2312 		 */
2313 		if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2314 			fcpi_parm &&
2315 			(scsi_get_resid(cmnd) != fcpi_parm)) {
2316 			lpfc_printf_vlog(vport, KERN_WARNING,
2317 					 LOG_FCP | LOG_FCP_ERROR,
2318 					 "9026 FCP Read Check Error "
2319 					 "and Underrun Data: x%x x%x x%x x%x\n",
2320 					 be32_to_cpu(fcpcmd->fcpDl),
2321 					 scsi_get_resid(cmnd), fcpi_parm,
2322 					 cmnd->cmnd[0]);
2323 			scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2324 			host_status = DID_ERROR;
2325 		}
2326 		/*
2327 		 * The cmnd->underflow is the minimum number of bytes that must
2328 		 * be transfered for this command.  Provided a sense condition
2329 		 * is not present, make sure the actual amount transferred is at
2330 		 * least the underflow value or fail.
2331 		 */
2332 		if (!(resp_info & SNS_LEN_VALID) &&
2333 		    (scsi_status == SAM_STAT_GOOD) &&
2334 		    (scsi_bufflen(cmnd) - scsi_get_resid(cmnd)
2335 		     < cmnd->underflow)) {
2336 			lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2337 					 "9027 FCP command x%x residual "
2338 					 "underrun converted to error "
2339 					 "Data: x%x x%x x%x\n",
2340 					 cmnd->cmnd[0], scsi_bufflen(cmnd),
2341 					 scsi_get_resid(cmnd), cmnd->underflow);
2342 			host_status = DID_ERROR;
2343 		}
2344 	} else if (resp_info & RESID_OVER) {
2345 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2346 				 "9028 FCP command x%x residual overrun error. "
2347 				 "Data: x%x x%x\n", cmnd->cmnd[0],
2348 				 scsi_bufflen(cmnd), scsi_get_resid(cmnd));
2349 		host_status = DID_ERROR;
2350 
2351 	/*
2352 	 * Check SLI validation that all the transfer was actually done
2353 	 * (fcpi_parm should be zero). Apply check only to reads.
2354 	 */
2355 	} else if (fcpi_parm && (cmnd->sc_data_direction == DMA_FROM_DEVICE)) {
2356 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR,
2357 				 "9029 FCP Read Check Error Data: "
2358 				 "x%x x%x x%x x%x x%x\n",
2359 				 be32_to_cpu(fcpcmd->fcpDl),
2360 				 be32_to_cpu(fcprsp->rspResId),
2361 				 fcpi_parm, cmnd->cmnd[0], scsi_status);
2362 		switch (scsi_status) {
2363 		case SAM_STAT_GOOD:
2364 		case SAM_STAT_CHECK_CONDITION:
2365 			/* Fabric dropped a data frame. Fail any successful
2366 			 * command in which we detected dropped frames.
2367 			 * A status of good or some check conditions could
2368 			 * be considered a successful command.
2369 			 */
2370 			host_status = DID_ERROR;
2371 			break;
2372 		}
2373 		scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2374 	}
2375 
2376  out:
2377 	cmnd->result = ScsiResult(host_status, scsi_status);
2378 	lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb);
2379 }
2380 
2381 /**
2382  * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine
2383  * @phba: The Hba for which this call is being executed.
2384  * @pIocbIn: The command IOCBQ for the scsi cmnd.
2385  * @pIocbOut: The response IOCBQ for the scsi cmnd.
2386  *
2387  * This routine assigns scsi command result by looking into response IOCB
2388  * status field appropriately. This routine handles QUEUE FULL condition as
2389  * well by ramping down device queue depth.
2390  **/
2391 static void
2392 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn,
2393 			struct lpfc_iocbq *pIocbOut)
2394 {
2395 	struct lpfc_scsi_buf *lpfc_cmd =
2396 		(struct lpfc_scsi_buf *) pIocbIn->context1;
2397 	struct lpfc_vport      *vport = pIocbIn->vport;
2398 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2399 	struct lpfc_nodelist *pnode = rdata->pnode;
2400 	struct scsi_cmnd *cmd;
2401 	int result;
2402 	struct scsi_device *tmp_sdev;
2403 	int depth;
2404 	unsigned long flags;
2405 	struct lpfc_fast_path_event *fast_path_evt;
2406 	struct Scsi_Host *shost;
2407 	uint32_t queue_depth, scsi_id;
2408 
2409 	/* Sanity check on return of outstanding command */
2410 	if (!(lpfc_cmd->pCmd))
2411 		return;
2412 	cmd = lpfc_cmd->pCmd;
2413 	shost = cmd->device->host;
2414 
2415 	lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4];
2416 	lpfc_cmd->status = pIocbOut->iocb.ulpStatus;
2417 	/* pick up SLI4 exhange busy status from HBA */
2418 	lpfc_cmd->exch_busy = pIocbOut->iocb_flag & LPFC_EXCHANGE_BUSY;
2419 
2420 	if (pnode && NLP_CHK_NODE_ACT(pnode))
2421 		atomic_dec(&pnode->cmd_pending);
2422 
2423 	if (lpfc_cmd->status) {
2424 		if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT &&
2425 		    (lpfc_cmd->result & IOERR_DRVR_MASK))
2426 			lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
2427 		else if (lpfc_cmd->status >= IOSTAT_CNT)
2428 			lpfc_cmd->status = IOSTAT_DEFAULT;
2429 
2430 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2431 				 "9030 FCP cmd x%x failed <%d/%d> "
2432 				 "status: x%x result: x%x Data: x%x x%x\n",
2433 				 cmd->cmnd[0],
2434 				 cmd->device ? cmd->device->id : 0xffff,
2435 				 cmd->device ? cmd->device->lun : 0xffff,
2436 				 lpfc_cmd->status, lpfc_cmd->result,
2437 				 pIocbOut->iocb.ulpContext,
2438 				 lpfc_cmd->cur_iocbq.iocb.ulpIoTag);
2439 
2440 		switch (lpfc_cmd->status) {
2441 		case IOSTAT_FCP_RSP_ERROR:
2442 			/* Call FCP RSP handler to determine result */
2443 			lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut);
2444 			break;
2445 		case IOSTAT_NPORT_BSY:
2446 		case IOSTAT_FABRIC_BSY:
2447 			cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
2448 			fast_path_evt = lpfc_alloc_fast_evt(phba);
2449 			if (!fast_path_evt)
2450 				break;
2451 			fast_path_evt->un.fabric_evt.event_type =
2452 				FC_REG_FABRIC_EVENT;
2453 			fast_path_evt->un.fabric_evt.subcategory =
2454 				(lpfc_cmd->status == IOSTAT_NPORT_BSY) ?
2455 				LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY;
2456 			if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2457 				memcpy(&fast_path_evt->un.fabric_evt.wwpn,
2458 					&pnode->nlp_portname,
2459 					sizeof(struct lpfc_name));
2460 				memcpy(&fast_path_evt->un.fabric_evt.wwnn,
2461 					&pnode->nlp_nodename,
2462 					sizeof(struct lpfc_name));
2463 			}
2464 			fast_path_evt->vport = vport;
2465 			fast_path_evt->work_evt.evt =
2466 				LPFC_EVT_FASTPATH_MGMT_EVT;
2467 			spin_lock_irqsave(&phba->hbalock, flags);
2468 			list_add_tail(&fast_path_evt->work_evt.evt_listp,
2469 				&phba->work_list);
2470 			spin_unlock_irqrestore(&phba->hbalock, flags);
2471 			lpfc_worker_wake_up(phba);
2472 			break;
2473 		case IOSTAT_LOCAL_REJECT:
2474 			if (lpfc_cmd->result == IOERR_INVALID_RPI ||
2475 			    lpfc_cmd->result == IOERR_NO_RESOURCES ||
2476 			    lpfc_cmd->result == IOERR_ABORT_REQUESTED ||
2477 			    lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) {
2478 				cmd->result = ScsiResult(DID_REQUEUE, 0);
2479 				break;
2480 			}
2481 
2482 			if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED ||
2483 			     lpfc_cmd->result == IOERR_TX_DMA_FAILED) &&
2484 			     pIocbOut->iocb.unsli3.sli3_bg.bgstat) {
2485 				if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) {
2486 					/*
2487 					 * This is a response for a BG enabled
2488 					 * cmd. Parse BG error
2489 					 */
2490 					lpfc_parse_bg_err(phba, lpfc_cmd,
2491 							pIocbOut);
2492 					break;
2493 				} else {
2494 					lpfc_printf_vlog(vport, KERN_WARNING,
2495 							LOG_BG,
2496 							"9031 non-zero BGSTAT "
2497 							"on unprotected cmd\n");
2498 				}
2499 			}
2500 
2501 		/* else: fall through */
2502 		default:
2503 			cmd->result = ScsiResult(DID_ERROR, 0);
2504 			break;
2505 		}
2506 
2507 		if (!pnode || !NLP_CHK_NODE_ACT(pnode)
2508 		    || (pnode->nlp_state != NLP_STE_MAPPED_NODE))
2509 			cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED,
2510 						 SAM_STAT_BUSY);
2511 	} else {
2512 		cmd->result = ScsiResult(DID_OK, 0);
2513 	}
2514 
2515 	if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) {
2516 		uint32_t *lp = (uint32_t *)cmd->sense_buffer;
2517 
2518 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2519 				 "0710 Iodone <%d/%d> cmd %p, error "
2520 				 "x%x SNS x%x x%x Data: x%x x%x\n",
2521 				 cmd->device->id, cmd->device->lun, cmd,
2522 				 cmd->result, *lp, *(lp + 3), cmd->retries,
2523 				 scsi_get_resid(cmd));
2524 	}
2525 
2526 	lpfc_update_stats(phba, lpfc_cmd);
2527 	result = cmd->result;
2528 	if (vport->cfg_max_scsicmpl_time &&
2529 	   time_after(jiffies, lpfc_cmd->start_time +
2530 		msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) {
2531 		spin_lock_irqsave(shost->host_lock, flags);
2532 		if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2533 			if (pnode->cmd_qdepth >
2534 				atomic_read(&pnode->cmd_pending) &&
2535 				(atomic_read(&pnode->cmd_pending) >
2536 				LPFC_MIN_TGT_QDEPTH) &&
2537 				((cmd->cmnd[0] == READ_10) ||
2538 				(cmd->cmnd[0] == WRITE_10)))
2539 				pnode->cmd_qdepth =
2540 					atomic_read(&pnode->cmd_pending);
2541 
2542 			pnode->last_change_time = jiffies;
2543 		}
2544 		spin_unlock_irqrestore(shost->host_lock, flags);
2545 	} else if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2546 		if ((pnode->cmd_qdepth < vport->cfg_tgt_queue_depth) &&
2547 		   time_after(jiffies, pnode->last_change_time +
2548 			      msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) {
2549 			spin_lock_irqsave(shost->host_lock, flags);
2550 			depth = pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT
2551 				/ 100;
2552 			depth = depth ? depth : 1;
2553 			pnode->cmd_qdepth += depth;
2554 			if (pnode->cmd_qdepth > vport->cfg_tgt_queue_depth)
2555 				pnode->cmd_qdepth = vport->cfg_tgt_queue_depth;
2556 			pnode->last_change_time = jiffies;
2557 			spin_unlock_irqrestore(shost->host_lock, flags);
2558 		}
2559 	}
2560 
2561 	lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
2562 
2563 	/* The sdev is not guaranteed to be valid post scsi_done upcall. */
2564 	queue_depth = cmd->device->queue_depth;
2565 	scsi_id = cmd->device->id;
2566 	cmd->scsi_done(cmd);
2567 
2568 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
2569 		/*
2570 		 * If there is a thread waiting for command completion
2571 		 * wake up the thread.
2572 		 */
2573 		spin_lock_irqsave(shost->host_lock, flags);
2574 		lpfc_cmd->pCmd = NULL;
2575 		if (lpfc_cmd->waitq)
2576 			wake_up(lpfc_cmd->waitq);
2577 		spin_unlock_irqrestore(shost->host_lock, flags);
2578 		lpfc_release_scsi_buf(phba, lpfc_cmd);
2579 		return;
2580 	}
2581 
2582 	if (!result)
2583 		lpfc_rampup_queue_depth(vport, queue_depth);
2584 
2585 	/*
2586 	 * Check for queue full.  If the lun is reporting queue full, then
2587 	 * back off the lun queue depth to prevent target overloads.
2588 	 */
2589 	if (result == SAM_STAT_TASK_SET_FULL && pnode &&
2590 	    NLP_CHK_NODE_ACT(pnode)) {
2591 		shost_for_each_device(tmp_sdev, shost) {
2592 			if (tmp_sdev->id != scsi_id)
2593 				continue;
2594 			depth = scsi_track_queue_full(tmp_sdev,
2595 						      tmp_sdev->queue_depth-1);
2596 			if (depth <= 0)
2597 				continue;
2598 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2599 					 "0711 detected queue full - lun queue "
2600 					 "depth adjusted to %d.\n", depth);
2601 			lpfc_send_sdev_queuedepth_change_event(phba, vport,
2602 							       pnode,
2603 							       tmp_sdev->lun,
2604 							       depth+1, depth);
2605 		}
2606 	}
2607 
2608 	/*
2609 	 * If there is a thread waiting for command completion
2610 	 * wake up the thread.
2611 	 */
2612 	spin_lock_irqsave(shost->host_lock, flags);
2613 	lpfc_cmd->pCmd = NULL;
2614 	if (lpfc_cmd->waitq)
2615 		wake_up(lpfc_cmd->waitq);
2616 	spin_unlock_irqrestore(shost->host_lock, flags);
2617 
2618 	lpfc_release_scsi_buf(phba, lpfc_cmd);
2619 }
2620 
2621 /**
2622  * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB
2623  * @data: A pointer to the immediate command data portion of the IOCB.
2624  * @fcp_cmnd: The FCP Command that is provided by the SCSI layer.
2625  *
2626  * The routine copies the entire FCP command from @fcp_cmnd to @data while
2627  * byte swapping the data to big endian format for transmission on the wire.
2628  **/
2629 static void
2630 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd)
2631 {
2632 	int i, j;
2633 	for (i = 0, j = 0; i < sizeof(struct fcp_cmnd);
2634 	     i += sizeof(uint32_t), j++) {
2635 		((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]);
2636 	}
2637 }
2638 
2639 /**
2640  * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit
2641  * @vport: The virtual port for which this call is being executed.
2642  * @lpfc_cmd: The scsi command which needs to send.
2643  * @pnode: Pointer to lpfc_nodelist.
2644  *
2645  * This routine initializes fcp_cmnd and iocb data structure from scsi command
2646  * to transfer for device with SLI3 interface spec.
2647  **/
2648 static void
2649 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2650 		    struct lpfc_nodelist *pnode)
2651 {
2652 	struct lpfc_hba *phba = vport->phba;
2653 	struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
2654 	struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
2655 	IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
2656 	struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq);
2657 	int datadir = scsi_cmnd->sc_data_direction;
2658 	char tag[2];
2659 
2660 	if (!pnode || !NLP_CHK_NODE_ACT(pnode))
2661 		return;
2662 
2663 	lpfc_cmd->fcp_rsp->rspSnsLen = 0;
2664 	/* clear task management bits */
2665 	lpfc_cmd->fcp_cmnd->fcpCntl2 = 0;
2666 
2667 	int_to_scsilun(lpfc_cmd->pCmd->device->lun,
2668 			&lpfc_cmd->fcp_cmnd->fcp_lun);
2669 
2670 	memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16);
2671 
2672 	if (scsi_populate_tag_msg(scsi_cmnd, tag)) {
2673 		switch (tag[0]) {
2674 		case HEAD_OF_QUEUE_TAG:
2675 			fcp_cmnd->fcpCntl1 = HEAD_OF_Q;
2676 			break;
2677 		case ORDERED_QUEUE_TAG:
2678 			fcp_cmnd->fcpCntl1 = ORDERED_Q;
2679 			break;
2680 		default:
2681 			fcp_cmnd->fcpCntl1 = SIMPLE_Q;
2682 			break;
2683 		}
2684 	} else
2685 		fcp_cmnd->fcpCntl1 = 0;
2686 
2687 	/*
2688 	 * There are three possibilities here - use scatter-gather segment, use
2689 	 * the single mapping, or neither.  Start the lpfc command prep by
2690 	 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2691 	 * data bde entry.
2692 	 */
2693 	if (scsi_sg_count(scsi_cmnd)) {
2694 		if (datadir == DMA_TO_DEVICE) {
2695 			iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR;
2696 			if (phba->sli_rev < LPFC_SLI_REV4) {
2697 				iocb_cmd->un.fcpi.fcpi_parm = 0;
2698 				iocb_cmd->ulpPU = 0;
2699 			} else
2700 				iocb_cmd->ulpPU = PARM_READ_CHECK;
2701 			fcp_cmnd->fcpCntl3 = WRITE_DATA;
2702 			phba->fc4OutputRequests++;
2703 		} else {
2704 			iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR;
2705 			iocb_cmd->ulpPU = PARM_READ_CHECK;
2706 			fcp_cmnd->fcpCntl3 = READ_DATA;
2707 			phba->fc4InputRequests++;
2708 		}
2709 	} else {
2710 		iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR;
2711 		iocb_cmd->un.fcpi.fcpi_parm = 0;
2712 		iocb_cmd->ulpPU = 0;
2713 		fcp_cmnd->fcpCntl3 = 0;
2714 		phba->fc4ControlRequests++;
2715 	}
2716 	if (phba->sli_rev == 3 &&
2717 	    !(phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2718 		lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd);
2719 	/*
2720 	 * Finish initializing those IOCB fields that are independent
2721 	 * of the scsi_cmnd request_buffer
2722 	 */
2723 	piocbq->iocb.ulpContext = pnode->nlp_rpi;
2724 	if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE)
2725 		piocbq->iocb.ulpFCP2Rcvy = 1;
2726 	else
2727 		piocbq->iocb.ulpFCP2Rcvy = 0;
2728 
2729 	piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f);
2730 	piocbq->context1  = lpfc_cmd;
2731 	piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2732 	piocbq->iocb.ulpTimeout = lpfc_cmd->timeout;
2733 	piocbq->vport = vport;
2734 }
2735 
2736 /**
2737  * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit
2738  * @vport: The virtual port for which this call is being executed.
2739  * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2740  * @lun: Logical unit number.
2741  * @task_mgmt_cmd: SCSI task management command.
2742  *
2743  * This routine creates FCP information unit corresponding to @task_mgmt_cmd
2744  * for device with SLI-3 interface spec.
2745  *
2746  * Return codes:
2747  *   0 - Error
2748  *   1 - Success
2749  **/
2750 static int
2751 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport,
2752 			     struct lpfc_scsi_buf *lpfc_cmd,
2753 			     unsigned int lun,
2754 			     uint8_t task_mgmt_cmd)
2755 {
2756 	struct lpfc_iocbq *piocbq;
2757 	IOCB_t *piocb;
2758 	struct fcp_cmnd *fcp_cmnd;
2759 	struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2760 	struct lpfc_nodelist *ndlp = rdata->pnode;
2761 
2762 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2763 	    ndlp->nlp_state != NLP_STE_MAPPED_NODE)
2764 		return 0;
2765 
2766 	piocbq = &(lpfc_cmd->cur_iocbq);
2767 	piocbq->vport = vport;
2768 
2769 	piocb = &piocbq->iocb;
2770 
2771 	fcp_cmnd = lpfc_cmd->fcp_cmnd;
2772 	/* Clear out any old data in the FCP command area */
2773 	memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
2774 	int_to_scsilun(lun, &fcp_cmnd->fcp_lun);
2775 	fcp_cmnd->fcpCntl2 = task_mgmt_cmd;
2776 	if (vport->phba->sli_rev == 3 &&
2777 	    !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2778 		lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd);
2779 	piocb->ulpCommand = CMD_FCP_ICMND64_CR;
2780 	piocb->ulpContext = ndlp->nlp_rpi;
2781 	if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) {
2782 		piocb->ulpFCP2Rcvy = 1;
2783 	}
2784 	piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f);
2785 
2786 	/* ulpTimeout is only one byte */
2787 	if (lpfc_cmd->timeout > 0xff) {
2788 		/*
2789 		 * Do not timeout the command at the firmware level.
2790 		 * The driver will provide the timeout mechanism.
2791 		 */
2792 		piocb->ulpTimeout = 0;
2793 	} else
2794 		piocb->ulpTimeout = lpfc_cmd->timeout;
2795 
2796 	if (vport->phba->sli_rev == LPFC_SLI_REV4)
2797 		lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd);
2798 
2799 	return 1;
2800 }
2801 
2802 /**
2803  * lpfc_scsi_api_table_setup - Set up scsi api fucntion jump table
2804  * @phba: The hba struct for which this call is being executed.
2805  * @dev_grp: The HBA PCI-Device group number.
2806  *
2807  * This routine sets up the SCSI interface API function jump table in @phba
2808  * struct.
2809  * Returns: 0 - success, -ENODEV - failure.
2810  **/
2811 int
2812 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
2813 {
2814 
2815 	phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf;
2816 	phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd;
2817 
2818 	switch (dev_grp) {
2819 	case LPFC_PCI_DEV_LP:
2820 		phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3;
2821 		phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3;
2822 		phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3;
2823 		phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s3;
2824 		break;
2825 	case LPFC_PCI_DEV_OC:
2826 		phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4;
2827 		phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4;
2828 		phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4;
2829 		phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s4;
2830 		break;
2831 	default:
2832 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
2833 				"1418 Invalid HBA PCI-device group: 0x%x\n",
2834 				dev_grp);
2835 		return -ENODEV;
2836 		break;
2837 	}
2838 	phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth;
2839 	phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2840 	return 0;
2841 }
2842 
2843 /**
2844  * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command
2845  * @phba: The Hba for which this call is being executed.
2846  * @cmdiocbq: Pointer to lpfc_iocbq data structure.
2847  * @rspiocbq: Pointer to lpfc_iocbq data structure.
2848  *
2849  * This routine is IOCB completion routine for device reset and target reset
2850  * routine. This routine release scsi buffer associated with lpfc_cmd.
2851  **/
2852 static void
2853 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba,
2854 			struct lpfc_iocbq *cmdiocbq,
2855 			struct lpfc_iocbq *rspiocbq)
2856 {
2857 	struct lpfc_scsi_buf *lpfc_cmd =
2858 		(struct lpfc_scsi_buf *) cmdiocbq->context1;
2859 	if (lpfc_cmd)
2860 		lpfc_release_scsi_buf(phba, lpfc_cmd);
2861 	return;
2862 }
2863 
2864 /**
2865  * lpfc_info - Info entry point of scsi_host_template data structure
2866  * @host: The scsi host for which this call is being executed.
2867  *
2868  * This routine provides module information about hba.
2869  *
2870  * Reutrn code:
2871  *   Pointer to char - Success.
2872  **/
2873 const char *
2874 lpfc_info(struct Scsi_Host *host)
2875 {
2876 	struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata;
2877 	struct lpfc_hba   *phba = vport->phba;
2878 	int len;
2879 	static char  lpfcinfobuf[384];
2880 
2881 	memset(lpfcinfobuf,0,384);
2882 	if (phba && phba->pcidev){
2883 		strncpy(lpfcinfobuf, phba->ModelDesc, 256);
2884 		len = strlen(lpfcinfobuf);
2885 		snprintf(lpfcinfobuf + len,
2886 			384-len,
2887 			" on PCI bus %02x device %02x irq %d",
2888 			phba->pcidev->bus->number,
2889 			phba->pcidev->devfn,
2890 			phba->pcidev->irq);
2891 		len = strlen(lpfcinfobuf);
2892 		if (phba->Port[0]) {
2893 			snprintf(lpfcinfobuf + len,
2894 				 384-len,
2895 				 " port %s",
2896 				 phba->Port);
2897 		}
2898 		len = strlen(lpfcinfobuf);
2899 		if (phba->sli4_hba.link_state.logical_speed) {
2900 			snprintf(lpfcinfobuf + len,
2901 				 384-len,
2902 				 " Logical Link Speed: %d Mbps",
2903 				 phba->sli4_hba.link_state.logical_speed * 10);
2904 		}
2905 	}
2906 	return lpfcinfobuf;
2907 }
2908 
2909 /**
2910  * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba
2911  * @phba: The Hba for which this call is being executed.
2912  *
2913  * This routine modifies fcp_poll_timer  field of @phba by cfg_poll_tmo.
2914  * The default value of cfg_poll_tmo is 10 milliseconds.
2915  **/
2916 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba)
2917 {
2918 	unsigned long  poll_tmo_expires =
2919 		(jiffies + msecs_to_jiffies(phba->cfg_poll_tmo));
2920 
2921 	if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt)
2922 		mod_timer(&phba->fcp_poll_timer,
2923 			  poll_tmo_expires);
2924 }
2925 
2926 /**
2927  * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA
2928  * @phba: The Hba for which this call is being executed.
2929  *
2930  * This routine starts the fcp_poll_timer of @phba.
2931  **/
2932 void lpfc_poll_start_timer(struct lpfc_hba * phba)
2933 {
2934 	lpfc_poll_rearm_timer(phba);
2935 }
2936 
2937 /**
2938  * lpfc_poll_timeout - Restart polling timer
2939  * @ptr: Map to lpfc_hba data structure pointer.
2940  *
2941  * This routine restarts fcp_poll timer, when FCP ring  polling is enable
2942  * and FCP Ring interrupt is disable.
2943  **/
2944 
2945 void lpfc_poll_timeout(unsigned long ptr)
2946 {
2947 	struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
2948 
2949 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
2950 		lpfc_sli_handle_fast_ring_event(phba,
2951 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
2952 
2953 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
2954 			lpfc_poll_rearm_timer(phba);
2955 	}
2956 }
2957 
2958 /**
2959  * lpfc_queuecommand - scsi_host_template queuecommand entry point
2960  * @cmnd: Pointer to scsi_cmnd data structure.
2961  * @done: Pointer to done routine.
2962  *
2963  * Driver registers this routine to scsi midlayer to submit a @cmd to process.
2964  * This routine prepares an IOCB from scsi command and provides to firmware.
2965  * The @done callback is invoked after driver finished processing the command.
2966  *
2967  * Return value :
2968  *   0 - Success
2969  *   SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily.
2970  **/
2971 static int
2972 lpfc_queuecommand_lck(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *))
2973 {
2974 	struct Scsi_Host  *shost = cmnd->device->host;
2975 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
2976 	struct lpfc_hba   *phba = vport->phba;
2977 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
2978 	struct lpfc_nodelist *ndlp;
2979 	struct lpfc_scsi_buf *lpfc_cmd;
2980 	struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
2981 	int err;
2982 
2983 	err = fc_remote_port_chkready(rport);
2984 	if (err) {
2985 		cmnd->result = err;
2986 		goto out_fail_command;
2987 	}
2988 	ndlp = rdata->pnode;
2989 
2990 	if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
2991 		scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
2992 
2993 		lpfc_printf_log(phba, KERN_ERR, LOG_BG,
2994 				"9058 BLKGRD: ERROR: rcvd protected cmd:%02x"
2995 				" op:%02x str=%s without registering for"
2996 				" BlockGuard - Rejecting command\n",
2997 				cmnd->cmnd[0], scsi_get_prot_op(cmnd),
2998 				dif_op_str[scsi_get_prot_op(cmnd)]);
2999 		goto out_fail_command;
3000 	}
3001 
3002 	/*
3003 	 * Catch race where our node has transitioned, but the
3004 	 * transport is still transitioning.
3005 	 */
3006 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
3007 		cmnd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
3008 		goto out_fail_command;
3009 	}
3010 	if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth)
3011 		goto out_host_busy;
3012 
3013 	lpfc_cmd = lpfc_get_scsi_buf(phba, ndlp);
3014 	if (lpfc_cmd == NULL) {
3015 		lpfc_rampdown_queue_depth(phba);
3016 
3017 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3018 				 "0707 driver's buffer pool is empty, "
3019 				 "IO busied\n");
3020 		goto out_host_busy;
3021 	}
3022 
3023 	/*
3024 	 * Store the midlayer's command structure for the completion phase
3025 	 * and complete the command initialization.
3026 	 */
3027 	lpfc_cmd->pCmd  = cmnd;
3028 	lpfc_cmd->rdata = rdata;
3029 	lpfc_cmd->timeout = 0;
3030 	lpfc_cmd->start_time = jiffies;
3031 	cmnd->host_scribble = (unsigned char *)lpfc_cmd;
3032 	cmnd->scsi_done = done;
3033 
3034 	if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
3035 		if (vport->phba->cfg_enable_bg) {
3036 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3037 				"9033 BLKGRD: rcvd protected cmd:%02x op:%02x "
3038 				"str=%s\n",
3039 				cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3040 				dif_op_str[scsi_get_prot_op(cmnd)]);
3041 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3042 				"9034 BLKGRD: CDB: %02x %02x %02x %02x %02x "
3043 				"%02x %02x %02x %02x %02x\n",
3044 				cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2],
3045 				cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5],
3046 				cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8],
3047 				cmnd->cmnd[9]);
3048 			if (cmnd->cmnd[0] == READ_10)
3049 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3050 					"9035 BLKGRD: READ @ sector %llu, "
3051 					"count %u\n",
3052 					(unsigned long long)scsi_get_lba(cmnd),
3053 					blk_rq_sectors(cmnd->request));
3054 			else if (cmnd->cmnd[0] == WRITE_10)
3055 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3056 					"9036 BLKGRD: WRITE @ sector %llu, "
3057 					"count %u cmd=%p\n",
3058 					(unsigned long long)scsi_get_lba(cmnd),
3059 					blk_rq_sectors(cmnd->request),
3060 					cmnd);
3061 		}
3062 
3063 		err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd);
3064 	} else {
3065 		if (vport->phba->cfg_enable_bg) {
3066 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3067 					"9038 BLKGRD: rcvd unprotected cmd:"
3068 					"%02x op:%02x str=%s\n",
3069 					cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3070 					dif_op_str[scsi_get_prot_op(cmnd)]);
3071 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3072 					"9039 BLKGRD: CDB: %02x %02x %02x "
3073 					"%02x %02x %02x %02x %02x %02x %02x\n",
3074 					cmnd->cmnd[0], cmnd->cmnd[1],
3075 					cmnd->cmnd[2], cmnd->cmnd[3],
3076 					cmnd->cmnd[4], cmnd->cmnd[5],
3077 					cmnd->cmnd[6], cmnd->cmnd[7],
3078 					cmnd->cmnd[8], cmnd->cmnd[9]);
3079 			if (cmnd->cmnd[0] == READ_10)
3080 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3081 					"9040 dbg: READ @ sector %llu, "
3082 					"count %u\n",
3083 					(unsigned long long)scsi_get_lba(cmnd),
3084 					 blk_rq_sectors(cmnd->request));
3085 			else if (cmnd->cmnd[0] == WRITE_10)
3086 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3087 					 "9041 dbg: WRITE @ sector %llu, "
3088 					 "count %u cmd=%p\n",
3089 					 (unsigned long long)scsi_get_lba(cmnd),
3090 					 blk_rq_sectors(cmnd->request), cmnd);
3091 			else
3092 				lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3093 					 "9042 dbg: parser not implemented\n");
3094 		}
3095 		err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
3096 	}
3097 
3098 	if (err)
3099 		goto out_host_busy_free_buf;
3100 
3101 	lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp);
3102 
3103 	atomic_inc(&ndlp->cmd_pending);
3104 	err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING,
3105 				  &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB);
3106 	if (err) {
3107 		atomic_dec(&ndlp->cmd_pending);
3108 		goto out_host_busy_free_buf;
3109 	}
3110 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3111 		spin_unlock(shost->host_lock);
3112 		lpfc_sli_handle_fast_ring_event(phba,
3113 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3114 
3115 		spin_lock(shost->host_lock);
3116 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3117 			lpfc_poll_rearm_timer(phba);
3118 	}
3119 
3120 	return 0;
3121 
3122  out_host_busy_free_buf:
3123 	lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
3124 	lpfc_release_scsi_buf(phba, lpfc_cmd);
3125  out_host_busy:
3126 	return SCSI_MLQUEUE_HOST_BUSY;
3127 
3128  out_fail_command:
3129 	done(cmnd);
3130 	return 0;
3131 }
3132 
3133 static DEF_SCSI_QCMD(lpfc_queuecommand)
3134 
3135 /**
3136  * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point
3137  * @cmnd: Pointer to scsi_cmnd data structure.
3138  *
3139  * This routine aborts @cmnd pending in base driver.
3140  *
3141  * Return code :
3142  *   0x2003 - Error
3143  *   0x2002 - Success
3144  **/
3145 static int
3146 lpfc_abort_handler(struct scsi_cmnd *cmnd)
3147 {
3148 	struct Scsi_Host  *shost = cmnd->device->host;
3149 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3150 	struct lpfc_hba   *phba = vport->phba;
3151 	struct lpfc_iocbq *iocb;
3152 	struct lpfc_iocbq *abtsiocb;
3153 	struct lpfc_scsi_buf *lpfc_cmd;
3154 	IOCB_t *cmd, *icmd;
3155 	int ret = SUCCESS;
3156 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq);
3157 
3158 	ret = fc_block_scsi_eh(cmnd);
3159 	if (ret)
3160 		return ret;
3161 	lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble;
3162 	if (!lpfc_cmd) {
3163 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3164 			 "2873 SCSI Layer I/O Abort Request IO CMPL Status "
3165 			 "x%x ID %d "
3166 			 "LUN %d snum %#lx\n", ret, cmnd->device->id,
3167 			 cmnd->device->lun, cmnd->serial_number);
3168 		return SUCCESS;
3169 	}
3170 
3171 	/*
3172 	 * If pCmd field of the corresponding lpfc_scsi_buf structure
3173 	 * points to a different SCSI command, then the driver has
3174 	 * already completed this command, but the midlayer did not
3175 	 * see the completion before the eh fired.  Just return
3176 	 * SUCCESS.
3177 	 */
3178 	iocb = &lpfc_cmd->cur_iocbq;
3179 	if (lpfc_cmd->pCmd != cmnd)
3180 		goto out;
3181 
3182 	BUG_ON(iocb->context1 != lpfc_cmd);
3183 
3184 	abtsiocb = lpfc_sli_get_iocbq(phba);
3185 	if (abtsiocb == NULL) {
3186 		ret = FAILED;
3187 		goto out;
3188 	}
3189 
3190 	/*
3191 	 * The scsi command can not be in txq and it is in flight because the
3192 	 * pCmd is still pointig at the SCSI command we have to abort. There
3193 	 * is no need to search the txcmplq. Just send an abort to the FW.
3194 	 */
3195 
3196 	cmd = &iocb->iocb;
3197 	icmd = &abtsiocb->iocb;
3198 	icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
3199 	icmd->un.acxri.abortContextTag = cmd->ulpContext;
3200 	if (phba->sli_rev == LPFC_SLI_REV4)
3201 		icmd->un.acxri.abortIoTag = iocb->sli4_xritag;
3202 	else
3203 		icmd->un.acxri.abortIoTag = cmd->ulpIoTag;
3204 
3205 	icmd->ulpLe = 1;
3206 	icmd->ulpClass = cmd->ulpClass;
3207 
3208 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
3209 	abtsiocb->fcp_wqidx = iocb->fcp_wqidx;
3210 	abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
3211 
3212 	if (lpfc_is_link_up(phba))
3213 		icmd->ulpCommand = CMD_ABORT_XRI_CN;
3214 	else
3215 		icmd->ulpCommand = CMD_CLOSE_XRI_CN;
3216 
3217 	abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
3218 	abtsiocb->vport = vport;
3219 	if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) ==
3220 	    IOCB_ERROR) {
3221 		lpfc_sli_release_iocbq(phba, abtsiocb);
3222 		ret = FAILED;
3223 		goto out;
3224 	}
3225 
3226 	if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3227 		lpfc_sli_handle_fast_ring_event(phba,
3228 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3229 
3230 	lpfc_cmd->waitq = &waitq;
3231 	/* Wait for abort to complete */
3232 	wait_event_timeout(waitq,
3233 			  (lpfc_cmd->pCmd != cmnd),
3234 			   (2*vport->cfg_devloss_tmo*HZ));
3235 
3236 	spin_lock_irq(shost->host_lock);
3237 	lpfc_cmd->waitq = NULL;
3238 	spin_unlock_irq(shost->host_lock);
3239 
3240 	if (lpfc_cmd->pCmd == cmnd) {
3241 		ret = FAILED;
3242 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3243 				 "0748 abort handler timed out waiting "
3244 				 "for abort to complete: ret %#x, ID %d, "
3245 				 "LUN %d, snum %#lx\n",
3246 				 ret, cmnd->device->id, cmnd->device->lun,
3247 				 cmnd->serial_number);
3248 	}
3249 
3250  out:
3251 	lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3252 			 "0749 SCSI Layer I/O Abort Request Status x%x ID %d "
3253 			 "LUN %d snum %#lx\n", ret, cmnd->device->id,
3254 			 cmnd->device->lun, cmnd->serial_number);
3255 	return ret;
3256 }
3257 
3258 static char *
3259 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd)
3260 {
3261 	switch (task_mgmt_cmd) {
3262 	case FCP_ABORT_TASK_SET:
3263 		return "ABORT_TASK_SET";
3264 	case FCP_CLEAR_TASK_SET:
3265 		return "FCP_CLEAR_TASK_SET";
3266 	case FCP_BUS_RESET:
3267 		return "FCP_BUS_RESET";
3268 	case FCP_LUN_RESET:
3269 		return "FCP_LUN_RESET";
3270 	case FCP_TARGET_RESET:
3271 		return "FCP_TARGET_RESET";
3272 	case FCP_CLEAR_ACA:
3273 		return "FCP_CLEAR_ACA";
3274 	case FCP_TERMINATE_TASK:
3275 		return "FCP_TERMINATE_TASK";
3276 	default:
3277 		return "unknown";
3278 	}
3279 }
3280 
3281 /**
3282  * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler
3283  * @vport: The virtual port for which this call is being executed.
3284  * @rdata: Pointer to remote port local data
3285  * @tgt_id: Target ID of remote device.
3286  * @lun_id: Lun number for the TMF
3287  * @task_mgmt_cmd: type of TMF to send
3288  *
3289  * This routine builds and sends a TMF (SCSI Task Mgmt Function) to
3290  * a remote port.
3291  *
3292  * Return Code:
3293  *   0x2003 - Error
3294  *   0x2002 - Success.
3295  **/
3296 static int
3297 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata,
3298 		    unsigned  tgt_id, unsigned int lun_id,
3299 		    uint8_t task_mgmt_cmd)
3300 {
3301 	struct lpfc_hba   *phba = vport->phba;
3302 	struct lpfc_scsi_buf *lpfc_cmd;
3303 	struct lpfc_iocbq *iocbq;
3304 	struct lpfc_iocbq *iocbqrsp;
3305 	struct lpfc_nodelist *pnode = rdata->pnode;
3306 	int ret;
3307 	int status;
3308 
3309 	if (!pnode || !NLP_CHK_NODE_ACT(pnode))
3310 		return FAILED;
3311 
3312 	lpfc_cmd = lpfc_get_scsi_buf(phba, rdata->pnode);
3313 	if (lpfc_cmd == NULL)
3314 		return FAILED;
3315 	lpfc_cmd->timeout = 60;
3316 	lpfc_cmd->rdata = rdata;
3317 
3318 	status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id,
3319 					   task_mgmt_cmd);
3320 	if (!status) {
3321 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3322 		return FAILED;
3323 	}
3324 
3325 	iocbq = &lpfc_cmd->cur_iocbq;
3326 	iocbqrsp = lpfc_sli_get_iocbq(phba);
3327 	if (iocbqrsp == NULL) {
3328 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3329 		return FAILED;
3330 	}
3331 
3332 	lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3333 			 "0702 Issue %s to TGT %d LUN %d "
3334 			 "rpi x%x nlp_flag x%x\n",
3335 			 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id,
3336 			 pnode->nlp_rpi, pnode->nlp_flag);
3337 
3338 	status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING,
3339 					  iocbq, iocbqrsp, lpfc_cmd->timeout);
3340 	if (status != IOCB_SUCCESS) {
3341 		if (status == IOCB_TIMEDOUT) {
3342 			iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl;
3343 			ret = TIMEOUT_ERROR;
3344 		} else
3345 			ret = FAILED;
3346 		lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
3347 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3348 			 "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n",
3349 			 lpfc_taskmgmt_name(task_mgmt_cmd),
3350 			 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus,
3351 			 iocbqrsp->iocb.un.ulpWord[4]);
3352 	} else if (status == IOCB_BUSY)
3353 		ret = FAILED;
3354 	else
3355 		ret = SUCCESS;
3356 
3357 	lpfc_sli_release_iocbq(phba, iocbqrsp);
3358 
3359 	if (ret != TIMEOUT_ERROR)
3360 		lpfc_release_scsi_buf(phba, lpfc_cmd);
3361 
3362 	return ret;
3363 }
3364 
3365 /**
3366  * lpfc_chk_tgt_mapped -
3367  * @vport: The virtual port to check on
3368  * @cmnd: Pointer to scsi_cmnd data structure.
3369  *
3370  * This routine delays until the scsi target (aka rport) for the
3371  * command exists (is present and logged in) or we declare it non-existent.
3372  *
3373  * Return code :
3374  *  0x2003 - Error
3375  *  0x2002 - Success
3376  **/
3377 static int
3378 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd)
3379 {
3380 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3381 	struct lpfc_nodelist *pnode;
3382 	unsigned long later;
3383 
3384 	if (!rdata) {
3385 		lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3386 			"0797 Tgt Map rport failure: rdata x%p\n", rdata);
3387 		return FAILED;
3388 	}
3389 	pnode = rdata->pnode;
3390 	/*
3391 	 * If target is not in a MAPPED state, delay until
3392 	 * target is rediscovered or devloss timeout expires.
3393 	 */
3394 	later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3395 	while (time_after(later, jiffies)) {
3396 		if (!pnode || !NLP_CHK_NODE_ACT(pnode))
3397 			return FAILED;
3398 		if (pnode->nlp_state == NLP_STE_MAPPED_NODE)
3399 			return SUCCESS;
3400 		schedule_timeout_uninterruptible(msecs_to_jiffies(500));
3401 		rdata = cmnd->device->hostdata;
3402 		if (!rdata)
3403 			return FAILED;
3404 		pnode = rdata->pnode;
3405 	}
3406 	if (!pnode || !NLP_CHK_NODE_ACT(pnode) ||
3407 	    (pnode->nlp_state != NLP_STE_MAPPED_NODE))
3408 		return FAILED;
3409 	return SUCCESS;
3410 }
3411 
3412 /**
3413  * lpfc_reset_flush_io_context -
3414  * @vport: The virtual port (scsi_host) for the flush context
3415  * @tgt_id: If aborting by Target contect - specifies the target id
3416  * @lun_id: If aborting by Lun context - specifies the lun id
3417  * @context: specifies the context level to flush at.
3418  *
3419  * After a reset condition via TMF, we need to flush orphaned i/o
3420  * contexts from the adapter. This routine aborts any contexts
3421  * outstanding, then waits for their completions. The wait is
3422  * bounded by devloss_tmo though.
3423  *
3424  * Return code :
3425  *  0x2003 - Error
3426  *  0x2002 - Success
3427  **/
3428 static int
3429 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id,
3430 			uint64_t lun_id, lpfc_ctx_cmd context)
3431 {
3432 	struct lpfc_hba   *phba = vport->phba;
3433 	unsigned long later;
3434 	int cnt;
3435 
3436 	cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3437 	if (cnt)
3438 		lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring],
3439 				    tgt_id, lun_id, context);
3440 	later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3441 	while (time_after(later, jiffies) && cnt) {
3442 		schedule_timeout_uninterruptible(msecs_to_jiffies(20));
3443 		cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3444 	}
3445 	if (cnt) {
3446 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3447 			"0724 I/O flush failure for context %s : cnt x%x\n",
3448 			((context == LPFC_CTX_LUN) ? "LUN" :
3449 			 ((context == LPFC_CTX_TGT) ? "TGT" :
3450 			  ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))),
3451 			cnt);
3452 		return FAILED;
3453 	}
3454 	return SUCCESS;
3455 }
3456 
3457 /**
3458  * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point
3459  * @cmnd: Pointer to scsi_cmnd data structure.
3460  *
3461  * This routine does a device reset by sending a LUN_RESET task management
3462  * command.
3463  *
3464  * Return code :
3465  *  0x2003 - Error
3466  *  0x2002 - Success
3467  **/
3468 static int
3469 lpfc_device_reset_handler(struct scsi_cmnd *cmnd)
3470 {
3471 	struct Scsi_Host  *shost = cmnd->device->host;
3472 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3473 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3474 	struct lpfc_nodelist *pnode;
3475 	unsigned tgt_id = cmnd->device->id;
3476 	unsigned int lun_id = cmnd->device->lun;
3477 	struct lpfc_scsi_event_header scsi_event;
3478 	int status;
3479 
3480 	if (!rdata) {
3481 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3482 			"0798 Device Reset rport failure: rdata x%p\n", rdata);
3483 		return FAILED;
3484 	}
3485 	pnode = rdata->pnode;
3486 	status = fc_block_scsi_eh(cmnd);
3487 	if (status)
3488 		return status;
3489 
3490 	status = lpfc_chk_tgt_mapped(vport, cmnd);
3491 	if (status == FAILED) {
3492 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3493 			"0721 Device Reset rport failure: rdata x%p\n", rdata);
3494 		return FAILED;
3495 	}
3496 
3497 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3498 	scsi_event.subcategory = LPFC_EVENT_LUNRESET;
3499 	scsi_event.lun = lun_id;
3500 	memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3501 	memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3502 
3503 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3504 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3505 
3506 	status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3507 						FCP_LUN_RESET);
3508 
3509 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3510 			 "0713 SCSI layer issued Device Reset (%d, %d) "
3511 			 "return x%x\n", tgt_id, lun_id, status);
3512 
3513 	/*
3514 	 * We have to clean up i/o as : they may be orphaned by the TMF;
3515 	 * or if the TMF failed, they may be in an indeterminate state.
3516 	 * So, continue on.
3517 	 * We will report success if all the i/o aborts successfully.
3518 	 */
3519 	status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3520 						LPFC_CTX_LUN);
3521 	return status;
3522 }
3523 
3524 /**
3525  * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point
3526  * @cmnd: Pointer to scsi_cmnd data structure.
3527  *
3528  * This routine does a target reset by sending a TARGET_RESET task management
3529  * command.
3530  *
3531  * Return code :
3532  *  0x2003 - Error
3533  *  0x2002 - Success
3534  **/
3535 static int
3536 lpfc_target_reset_handler(struct scsi_cmnd *cmnd)
3537 {
3538 	struct Scsi_Host  *shost = cmnd->device->host;
3539 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3540 	struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3541 	struct lpfc_nodelist *pnode;
3542 	unsigned tgt_id = cmnd->device->id;
3543 	unsigned int lun_id = cmnd->device->lun;
3544 	struct lpfc_scsi_event_header scsi_event;
3545 	int status;
3546 
3547 	if (!rdata) {
3548 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3549 			"0799 Target Reset rport failure: rdata x%p\n", rdata);
3550 		return FAILED;
3551 	}
3552 	pnode = rdata->pnode;
3553 	status = fc_block_scsi_eh(cmnd);
3554 	if (status)
3555 		return status;
3556 
3557 	status = lpfc_chk_tgt_mapped(vport, cmnd);
3558 	if (status == FAILED) {
3559 		lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3560 			"0722 Target Reset rport failure: rdata x%p\n", rdata);
3561 		return FAILED;
3562 	}
3563 
3564 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3565 	scsi_event.subcategory = LPFC_EVENT_TGTRESET;
3566 	scsi_event.lun = 0;
3567 	memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3568 	memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3569 
3570 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3571 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3572 
3573 	status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3574 					FCP_TARGET_RESET);
3575 
3576 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3577 			 "0723 SCSI layer issued Target Reset (%d, %d) "
3578 			 "return x%x\n", tgt_id, lun_id, status);
3579 
3580 	/*
3581 	 * We have to clean up i/o as : they may be orphaned by the TMF;
3582 	 * or if the TMF failed, they may be in an indeterminate state.
3583 	 * So, continue on.
3584 	 * We will report success if all the i/o aborts successfully.
3585 	 */
3586 	status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3587 					LPFC_CTX_TGT);
3588 	return status;
3589 }
3590 
3591 /**
3592  * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point
3593  * @cmnd: Pointer to scsi_cmnd data structure.
3594  *
3595  * This routine does target reset to all targets on @cmnd->device->host.
3596  * This emulates Parallel SCSI Bus Reset Semantics.
3597  *
3598  * Return code :
3599  *  0x2003 - Error
3600  *  0x2002 - Success
3601  **/
3602 static int
3603 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd)
3604 {
3605 	struct Scsi_Host  *shost = cmnd->device->host;
3606 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3607 	struct lpfc_nodelist *ndlp = NULL;
3608 	struct lpfc_scsi_event_header scsi_event;
3609 	int match;
3610 	int ret = SUCCESS, status, i;
3611 
3612 	scsi_event.event_type = FC_REG_SCSI_EVENT;
3613 	scsi_event.subcategory = LPFC_EVENT_BUSRESET;
3614 	scsi_event.lun = 0;
3615 	memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name));
3616 	memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name));
3617 
3618 	fc_host_post_vendor_event(shost, fc_get_event_number(),
3619 		sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3620 
3621 	ret = fc_block_scsi_eh(cmnd);
3622 	if (ret)
3623 		return ret;
3624 
3625 	/*
3626 	 * Since the driver manages a single bus device, reset all
3627 	 * targets known to the driver.  Should any target reset
3628 	 * fail, this routine returns failure to the midlayer.
3629 	 */
3630 	for (i = 0; i < LPFC_MAX_TARGET; i++) {
3631 		/* Search for mapped node by target ID */
3632 		match = 0;
3633 		spin_lock_irq(shost->host_lock);
3634 		list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
3635 			if (!NLP_CHK_NODE_ACT(ndlp))
3636 				continue;
3637 			if (ndlp->nlp_state == NLP_STE_MAPPED_NODE &&
3638 			    ndlp->nlp_sid == i &&
3639 			    ndlp->rport) {
3640 				match = 1;
3641 				break;
3642 			}
3643 		}
3644 		spin_unlock_irq(shost->host_lock);
3645 		if (!match)
3646 			continue;
3647 
3648 		status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data,
3649 					i, 0, FCP_TARGET_RESET);
3650 
3651 		if (status != SUCCESS) {
3652 			lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3653 					 "0700 Bus Reset on target %d failed\n",
3654 					 i);
3655 			ret = FAILED;
3656 		}
3657 	}
3658 	/*
3659 	 * We have to clean up i/o as : they may be orphaned by the TMFs
3660 	 * above; or if any of the TMFs failed, they may be in an
3661 	 * indeterminate state.
3662 	 * We will report success if all the i/o aborts successfully.
3663 	 */
3664 
3665 	status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST);
3666 	if (status != SUCCESS)
3667 		ret = FAILED;
3668 
3669 	lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3670 			 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret);
3671 	return ret;
3672 }
3673 
3674 /**
3675  * lpfc_slave_alloc - scsi_host_template slave_alloc entry point
3676  * @sdev: Pointer to scsi_device.
3677  *
3678  * This routine populates the cmds_per_lun count + 2 scsi_bufs into  this host's
3679  * globally available list of scsi buffers. This routine also makes sure scsi
3680  * buffer is not allocated more than HBA limit conveyed to midlayer. This list
3681  * of scsi buffer exists for the lifetime of the driver.
3682  *
3683  * Return codes:
3684  *   non-0 - Error
3685  *   0 - Success
3686  **/
3687 static int
3688 lpfc_slave_alloc(struct scsi_device *sdev)
3689 {
3690 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3691 	struct lpfc_hba   *phba = vport->phba;
3692 	struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
3693 	uint32_t total = 0;
3694 	uint32_t num_to_alloc = 0;
3695 	int num_allocated = 0;
3696 	uint32_t sdev_cnt;
3697 
3698 	if (!rport || fc_remote_port_chkready(rport))
3699 		return -ENXIO;
3700 
3701 	sdev->hostdata = rport->dd_data;
3702 	sdev_cnt = atomic_inc_return(&phba->sdev_cnt);
3703 
3704 	/*
3705 	 * Populate the cmds_per_lun count scsi_bufs into this host's globally
3706 	 * available list of scsi buffers.  Don't allocate more than the
3707 	 * HBA limit conveyed to the midlayer via the host structure.  The
3708 	 * formula accounts for the lun_queue_depth + error handlers + 1
3709 	 * extra.  This list of scsi bufs exists for the lifetime of the driver.
3710 	 */
3711 	total = phba->total_scsi_bufs;
3712 	num_to_alloc = vport->cfg_lun_queue_depth + 2;
3713 
3714 	/* If allocated buffers are enough do nothing */
3715 	if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total)
3716 		return 0;
3717 
3718 	/* Allow some exchanges to be available always to complete discovery */
3719 	if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3720 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3721 				 "0704 At limitation of %d preallocated "
3722 				 "command buffers\n", total);
3723 		return 0;
3724 	/* Allow some exchanges to be available always to complete discovery */
3725 	} else if (total + num_to_alloc >
3726 		phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3727 		lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3728 				 "0705 Allocation request of %d "
3729 				 "command buffers will exceed max of %d.  "
3730 				 "Reducing allocation request to %d.\n",
3731 				 num_to_alloc, phba->cfg_hba_queue_depth,
3732 				 (phba->cfg_hba_queue_depth - total));
3733 		num_to_alloc = phba->cfg_hba_queue_depth - total;
3734 	}
3735 	num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc);
3736 	if (num_to_alloc != num_allocated) {
3737 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3738 				 "0708 Allocation request of %d "
3739 				 "command buffers did not succeed.  "
3740 				 "Allocated %d buffers.\n",
3741 				 num_to_alloc, num_allocated);
3742 	}
3743 	if (num_allocated > 0)
3744 		phba->total_scsi_bufs += num_allocated;
3745 	return 0;
3746 }
3747 
3748 /**
3749  * lpfc_slave_configure - scsi_host_template slave_configure entry point
3750  * @sdev: Pointer to scsi_device.
3751  *
3752  * This routine configures following items
3753  *   - Tag command queuing support for @sdev if supported.
3754  *   - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set.
3755  *
3756  * Return codes:
3757  *   0 - Success
3758  **/
3759 static int
3760 lpfc_slave_configure(struct scsi_device *sdev)
3761 {
3762 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3763 	struct lpfc_hba   *phba = vport->phba;
3764 
3765 	if (sdev->tagged_supported)
3766 		scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth);
3767 	else
3768 		scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth);
3769 
3770 	if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3771 		lpfc_sli_handle_fast_ring_event(phba,
3772 			&phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3773 		if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3774 			lpfc_poll_rearm_timer(phba);
3775 	}
3776 
3777 	return 0;
3778 }
3779 
3780 /**
3781  * lpfc_slave_destroy - slave_destroy entry point of SHT data structure
3782  * @sdev: Pointer to scsi_device.
3783  *
3784  * This routine sets @sdev hostatdata filed to null.
3785  **/
3786 static void
3787 lpfc_slave_destroy(struct scsi_device *sdev)
3788 {
3789 	struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3790 	struct lpfc_hba   *phba = vport->phba;
3791 	atomic_dec(&phba->sdev_cnt);
3792 	sdev->hostdata = NULL;
3793 	return;
3794 }
3795 
3796 
3797 struct scsi_host_template lpfc_template = {
3798 	.module			= THIS_MODULE,
3799 	.name			= LPFC_DRIVER_NAME,
3800 	.info			= lpfc_info,
3801 	.queuecommand		= lpfc_queuecommand,
3802 	.eh_abort_handler	= lpfc_abort_handler,
3803 	.eh_device_reset_handler = lpfc_device_reset_handler,
3804 	.eh_target_reset_handler = lpfc_target_reset_handler,
3805 	.eh_bus_reset_handler	= lpfc_bus_reset_handler,
3806 	.slave_alloc		= lpfc_slave_alloc,
3807 	.slave_configure	= lpfc_slave_configure,
3808 	.slave_destroy		= lpfc_slave_destroy,
3809 	.scan_finished		= lpfc_scan_finished,
3810 	.this_id		= -1,
3811 	.sg_tablesize		= LPFC_DEFAULT_SG_SEG_CNT,
3812 	.cmd_per_lun		= LPFC_CMD_PER_LUN,
3813 	.use_clustering		= ENABLE_CLUSTERING,
3814 	.shost_attrs		= lpfc_hba_attrs,
3815 	.max_sectors		= 0xFFFF,
3816 	.vendor_id		= LPFC_NL_VENDOR_ID,
3817 	.change_queue_depth	= lpfc_change_queue_depth,
3818 };
3819 
3820 struct scsi_host_template lpfc_vport_template = {
3821 	.module			= THIS_MODULE,
3822 	.name			= LPFC_DRIVER_NAME,
3823 	.info			= lpfc_info,
3824 	.queuecommand		= lpfc_queuecommand,
3825 	.eh_abort_handler	= lpfc_abort_handler,
3826 	.eh_device_reset_handler = lpfc_device_reset_handler,
3827 	.eh_target_reset_handler = lpfc_target_reset_handler,
3828 	.eh_bus_reset_handler	= lpfc_bus_reset_handler,
3829 	.slave_alloc		= lpfc_slave_alloc,
3830 	.slave_configure	= lpfc_slave_configure,
3831 	.slave_destroy		= lpfc_slave_destroy,
3832 	.scan_finished		= lpfc_scan_finished,
3833 	.this_id		= -1,
3834 	.sg_tablesize		= LPFC_DEFAULT_SG_SEG_CNT,
3835 	.cmd_per_lun		= LPFC_CMD_PER_LUN,
3836 	.use_clustering		= ENABLE_CLUSTERING,
3837 	.shost_attrs		= lpfc_vport_attrs,
3838 	.max_sectors		= 0xFFFF,
3839 	.change_queue_depth	= lpfc_change_queue_depth,
3840 };
3841