1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2009 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 #include <linux/pci.h> 22 #include <linux/slab.h> 23 #include <linux/interrupt.h> 24 #include <linux/delay.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_device.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_host.h> 31 #include <scsi/scsi_tcq.h> 32 #include <scsi/scsi_transport_fc.h> 33 34 #include "lpfc_version.h" 35 #include "lpfc_hw4.h" 36 #include "lpfc_hw.h" 37 #include "lpfc_sli.h" 38 #include "lpfc_sli4.h" 39 #include "lpfc_nl.h" 40 #include "lpfc_disc.h" 41 #include "lpfc_scsi.h" 42 #include "lpfc.h" 43 #include "lpfc_logmsg.h" 44 #include "lpfc_crtn.h" 45 #include "lpfc_vport.h" 46 47 #define LPFC_RESET_WAIT 2 48 #define LPFC_ABORT_WAIT 2 49 50 int _dump_buf_done; 51 52 static char *dif_op_str[] = { 53 "SCSI_PROT_NORMAL", 54 "SCSI_PROT_READ_INSERT", 55 "SCSI_PROT_WRITE_STRIP", 56 "SCSI_PROT_READ_STRIP", 57 "SCSI_PROT_WRITE_INSERT", 58 "SCSI_PROT_READ_PASS", 59 "SCSI_PROT_WRITE_PASS", 60 }; 61 static void 62 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 63 static void 64 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 65 66 static void 67 lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) 68 { 69 void *src, *dst; 70 struct scatterlist *sgde = scsi_sglist(cmnd); 71 72 if (!_dump_buf_data) { 73 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 74 "9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n", 75 __func__); 76 return; 77 } 78 79 80 if (!sgde) { 81 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 82 "9051 BLKGRD: ERROR: data scatterlist is null\n"); 83 return; 84 } 85 86 dst = (void *) _dump_buf_data; 87 while (sgde) { 88 src = sg_virt(sgde); 89 memcpy(dst, src, sgde->length); 90 dst += sgde->length; 91 sgde = sg_next(sgde); 92 } 93 } 94 95 static void 96 lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) 97 { 98 void *src, *dst; 99 struct scatterlist *sgde = scsi_prot_sglist(cmnd); 100 101 if (!_dump_buf_dif) { 102 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 103 "9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n", 104 __func__); 105 return; 106 } 107 108 if (!sgde) { 109 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 110 "9053 BLKGRD: ERROR: prot scatterlist is null\n"); 111 return; 112 } 113 114 dst = _dump_buf_dif; 115 while (sgde) { 116 src = sg_virt(sgde); 117 memcpy(dst, src, sgde->length); 118 dst += sgde->length; 119 sgde = sg_next(sgde); 120 } 121 } 122 123 /** 124 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge. 125 * @phba: Pointer to HBA object. 126 * @lpfc_cmd: lpfc scsi command object pointer. 127 * 128 * This function is called from the lpfc_prep_task_mgmt_cmd function to 129 * set the last bit in the response sge entry. 130 **/ 131 static void 132 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba, 133 struct lpfc_scsi_buf *lpfc_cmd) 134 { 135 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 136 if (sgl) { 137 sgl += 1; 138 sgl->word2 = le32_to_cpu(sgl->word2); 139 bf_set(lpfc_sli4_sge_last, sgl, 1); 140 sgl->word2 = cpu_to_le32(sgl->word2); 141 } 142 } 143 144 /** 145 * lpfc_update_stats - Update statistical data for the command completion 146 * @phba: Pointer to HBA object. 147 * @lpfc_cmd: lpfc scsi command object pointer. 148 * 149 * This function is called when there is a command completion and this 150 * function updates the statistical data for the command completion. 151 **/ 152 static void 153 lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 154 { 155 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 156 struct lpfc_nodelist *pnode = rdata->pnode; 157 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 158 unsigned long flags; 159 struct Scsi_Host *shost = cmd->device->host; 160 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 161 unsigned long latency; 162 int i; 163 164 if (cmd->result) 165 return; 166 167 latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time); 168 169 spin_lock_irqsave(shost->host_lock, flags); 170 if (!vport->stat_data_enabled || 171 vport->stat_data_blocked || 172 !pnode || 173 !pnode->lat_data || 174 (phba->bucket_type == LPFC_NO_BUCKET)) { 175 spin_unlock_irqrestore(shost->host_lock, flags); 176 return; 177 } 178 179 if (phba->bucket_type == LPFC_LINEAR_BUCKET) { 180 i = (latency + phba->bucket_step - 1 - phba->bucket_base)/ 181 phba->bucket_step; 182 /* check array subscript bounds */ 183 if (i < 0) 184 i = 0; 185 else if (i >= LPFC_MAX_BUCKET_COUNT) 186 i = LPFC_MAX_BUCKET_COUNT - 1; 187 } else { 188 for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++) 189 if (latency <= (phba->bucket_base + 190 ((1<<i)*phba->bucket_step))) 191 break; 192 } 193 194 pnode->lat_data[i].cmd_count++; 195 spin_unlock_irqrestore(shost->host_lock, flags); 196 } 197 198 /** 199 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event 200 * @phba: Pointer to HBA context object. 201 * @vport: Pointer to vport object. 202 * @ndlp: Pointer to FC node associated with the target. 203 * @lun: Lun number of the scsi device. 204 * @old_val: Old value of the queue depth. 205 * @new_val: New value of the queue depth. 206 * 207 * This function sends an event to the mgmt application indicating 208 * there is a change in the scsi device queue depth. 209 **/ 210 static void 211 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba, 212 struct lpfc_vport *vport, 213 struct lpfc_nodelist *ndlp, 214 uint32_t lun, 215 uint32_t old_val, 216 uint32_t new_val) 217 { 218 struct lpfc_fast_path_event *fast_path_evt; 219 unsigned long flags; 220 221 fast_path_evt = lpfc_alloc_fast_evt(phba); 222 if (!fast_path_evt) 223 return; 224 225 fast_path_evt->un.queue_depth_evt.scsi_event.event_type = 226 FC_REG_SCSI_EVENT; 227 fast_path_evt->un.queue_depth_evt.scsi_event.subcategory = 228 LPFC_EVENT_VARQUEDEPTH; 229 230 /* Report all luns with change in queue depth */ 231 fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun; 232 if (ndlp && NLP_CHK_NODE_ACT(ndlp)) { 233 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn, 234 &ndlp->nlp_portname, sizeof(struct lpfc_name)); 235 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn, 236 &ndlp->nlp_nodename, sizeof(struct lpfc_name)); 237 } 238 239 fast_path_evt->un.queue_depth_evt.oldval = old_val; 240 fast_path_evt->un.queue_depth_evt.newval = new_val; 241 fast_path_evt->vport = vport; 242 243 fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; 244 spin_lock_irqsave(&phba->hbalock, flags); 245 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 246 spin_unlock_irqrestore(&phba->hbalock, flags); 247 lpfc_worker_wake_up(phba); 248 249 return; 250 } 251 252 /** 253 * lpfc_change_queue_depth - Alter scsi device queue depth 254 * @sdev: Pointer the scsi device on which to change the queue depth. 255 * @qdepth: New queue depth to set the sdev to. 256 * @reason: The reason for the queue depth change. 257 * 258 * This function is called by the midlayer and the LLD to alter the queue 259 * depth for a scsi device. This function sets the queue depth to the new 260 * value and sends an event out to log the queue depth change. 261 **/ 262 int 263 lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason) 264 { 265 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 266 struct lpfc_hba *phba = vport->phba; 267 struct lpfc_rport_data *rdata; 268 unsigned long new_queue_depth, old_queue_depth; 269 270 old_queue_depth = sdev->queue_depth; 271 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 272 new_queue_depth = sdev->queue_depth; 273 rdata = sdev->hostdata; 274 if (rdata) 275 lpfc_send_sdev_queuedepth_change_event(phba, vport, 276 rdata->pnode, sdev->lun, 277 old_queue_depth, 278 new_queue_depth); 279 return sdev->queue_depth; 280 } 281 282 /** 283 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread 284 * @phba: The Hba for which this call is being executed. 285 * 286 * This routine is called when there is resource error in driver or firmware. 287 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine 288 * posts at most 1 event each second. This routine wakes up worker thread of 289 * @phba to process WORKER_RAM_DOWN_EVENT event. 290 * 291 * This routine should be called with no lock held. 292 **/ 293 void 294 lpfc_rampdown_queue_depth(struct lpfc_hba *phba) 295 { 296 unsigned long flags; 297 uint32_t evt_posted; 298 299 spin_lock_irqsave(&phba->hbalock, flags); 300 atomic_inc(&phba->num_rsrc_err); 301 phba->last_rsrc_error_time = jiffies; 302 303 if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) { 304 spin_unlock_irqrestore(&phba->hbalock, flags); 305 return; 306 } 307 308 phba->last_ramp_down_time = jiffies; 309 310 spin_unlock_irqrestore(&phba->hbalock, flags); 311 312 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 313 evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE; 314 if (!evt_posted) 315 phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE; 316 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 317 318 if (!evt_posted) 319 lpfc_worker_wake_up(phba); 320 return; 321 } 322 323 /** 324 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread 325 * @phba: The Hba for which this call is being executed. 326 * 327 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine 328 * post at most 1 event every 5 minute after last_ramp_up_time or 329 * last_rsrc_error_time. This routine wakes up worker thread of @phba 330 * to process WORKER_RAM_DOWN_EVENT event. 331 * 332 * This routine should be called with no lock held. 333 **/ 334 static inline void 335 lpfc_rampup_queue_depth(struct lpfc_vport *vport, 336 uint32_t queue_depth) 337 { 338 unsigned long flags; 339 struct lpfc_hba *phba = vport->phba; 340 uint32_t evt_posted; 341 atomic_inc(&phba->num_cmd_success); 342 343 if (vport->cfg_lun_queue_depth <= queue_depth) 344 return; 345 spin_lock_irqsave(&phba->hbalock, flags); 346 if (time_before(jiffies, 347 phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) || 348 time_before(jiffies, 349 phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) { 350 spin_unlock_irqrestore(&phba->hbalock, flags); 351 return; 352 } 353 phba->last_ramp_up_time = jiffies; 354 spin_unlock_irqrestore(&phba->hbalock, flags); 355 356 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 357 evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE; 358 if (!evt_posted) 359 phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE; 360 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 361 362 if (!evt_posted) 363 lpfc_worker_wake_up(phba); 364 return; 365 } 366 367 /** 368 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler 369 * @phba: The Hba for which this call is being executed. 370 * 371 * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker 372 * thread.This routine reduces queue depth for all scsi device on each vport 373 * associated with @phba. 374 **/ 375 void 376 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba) 377 { 378 struct lpfc_vport **vports; 379 struct Scsi_Host *shost; 380 struct scsi_device *sdev; 381 unsigned long new_queue_depth; 382 unsigned long num_rsrc_err, num_cmd_success; 383 int i; 384 385 num_rsrc_err = atomic_read(&phba->num_rsrc_err); 386 num_cmd_success = atomic_read(&phba->num_cmd_success); 387 388 vports = lpfc_create_vport_work_array(phba); 389 if (vports != NULL) 390 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 391 shost = lpfc_shost_from_vport(vports[i]); 392 shost_for_each_device(sdev, shost) { 393 new_queue_depth = 394 sdev->queue_depth * num_rsrc_err / 395 (num_rsrc_err + num_cmd_success); 396 if (!new_queue_depth) 397 new_queue_depth = sdev->queue_depth - 1; 398 else 399 new_queue_depth = sdev->queue_depth - 400 new_queue_depth; 401 lpfc_change_queue_depth(sdev, new_queue_depth, 402 SCSI_QDEPTH_DEFAULT); 403 } 404 } 405 lpfc_destroy_vport_work_array(phba, vports); 406 atomic_set(&phba->num_rsrc_err, 0); 407 atomic_set(&phba->num_cmd_success, 0); 408 } 409 410 /** 411 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler 412 * @phba: The Hba for which this call is being executed. 413 * 414 * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker 415 * thread.This routine increases queue depth for all scsi device on each vport 416 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and 417 * num_cmd_success to zero. 418 **/ 419 void 420 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba) 421 { 422 struct lpfc_vport **vports; 423 struct Scsi_Host *shost; 424 struct scsi_device *sdev; 425 int i; 426 427 vports = lpfc_create_vport_work_array(phba); 428 if (vports != NULL) 429 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 430 shost = lpfc_shost_from_vport(vports[i]); 431 shost_for_each_device(sdev, shost) { 432 if (vports[i]->cfg_lun_queue_depth <= 433 sdev->queue_depth) 434 continue; 435 lpfc_change_queue_depth(sdev, 436 sdev->queue_depth+1, 437 SCSI_QDEPTH_RAMP_UP); 438 } 439 } 440 lpfc_destroy_vport_work_array(phba, vports); 441 atomic_set(&phba->num_rsrc_err, 0); 442 atomic_set(&phba->num_cmd_success, 0); 443 } 444 445 /** 446 * lpfc_scsi_dev_block - set all scsi hosts to block state 447 * @phba: Pointer to HBA context object. 448 * 449 * This function walks vport list and set each SCSI host to block state 450 * by invoking fc_remote_port_delete() routine. This function is invoked 451 * with EEH when device's PCI slot has been permanently disabled. 452 **/ 453 void 454 lpfc_scsi_dev_block(struct lpfc_hba *phba) 455 { 456 struct lpfc_vport **vports; 457 struct Scsi_Host *shost; 458 struct scsi_device *sdev; 459 struct fc_rport *rport; 460 int i; 461 462 vports = lpfc_create_vport_work_array(phba); 463 if (vports != NULL) 464 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 465 shost = lpfc_shost_from_vport(vports[i]); 466 shost_for_each_device(sdev, shost) { 467 rport = starget_to_rport(scsi_target(sdev)); 468 fc_remote_port_delete(rport); 469 } 470 } 471 lpfc_destroy_vport_work_array(phba, vports); 472 } 473 474 /** 475 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec 476 * @vport: The virtual port for which this call being executed. 477 * @num_to_allocate: The requested number of buffers to allocate. 478 * 479 * This routine allocates a scsi buffer for device with SLI-3 interface spec, 480 * the scsi buffer contains all the necessary information needed to initiate 481 * a SCSI I/O. The non-DMAable buffer region contains information to build 482 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP, 483 * and the initial BPL. In addition to allocating memory, the FCP CMND and 484 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB. 485 * 486 * Return codes: 487 * int - number of scsi buffers that were allocated. 488 * 0 = failure, less than num_to_alloc is a partial failure. 489 **/ 490 static int 491 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc) 492 { 493 struct lpfc_hba *phba = vport->phba; 494 struct lpfc_scsi_buf *psb; 495 struct ulp_bde64 *bpl; 496 IOCB_t *iocb; 497 dma_addr_t pdma_phys_fcp_cmd; 498 dma_addr_t pdma_phys_fcp_rsp; 499 dma_addr_t pdma_phys_bpl; 500 uint16_t iotag; 501 int bcnt; 502 503 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 504 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 505 if (!psb) 506 break; 507 508 /* 509 * Get memory from the pci pool to map the virt space to pci 510 * bus space for an I/O. The DMA buffer includes space for the 511 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 512 * necessary to support the sg_tablesize. 513 */ 514 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 515 GFP_KERNEL, &psb->dma_handle); 516 if (!psb->data) { 517 kfree(psb); 518 break; 519 } 520 521 /* Initialize virtual ptrs to dma_buf region. */ 522 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 523 524 /* Allocate iotag for psb->cur_iocbq. */ 525 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 526 if (iotag == 0) { 527 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 528 psb->data, psb->dma_handle); 529 kfree(psb); 530 break; 531 } 532 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 533 534 psb->fcp_cmnd = psb->data; 535 psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd); 536 psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) + 537 sizeof(struct fcp_rsp); 538 539 /* Initialize local short-hand pointers. */ 540 bpl = psb->fcp_bpl; 541 pdma_phys_fcp_cmd = psb->dma_handle; 542 pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd); 543 pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) + 544 sizeof(struct fcp_rsp); 545 546 /* 547 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 548 * are sg list bdes. Initialize the first two and leave the 549 * rest for queuecommand. 550 */ 551 bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd)); 552 bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd)); 553 bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd); 554 bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 555 bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w); 556 557 /* Setup the physical region for the FCP RSP */ 558 bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp)); 559 bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp)); 560 bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp); 561 bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 562 bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w); 563 564 /* 565 * Since the IOCB for the FCP I/O is built into this 566 * lpfc_scsi_buf, initialize it with all known data now. 567 */ 568 iocb = &psb->cur_iocbq.iocb; 569 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 570 if ((phba->sli_rev == 3) && 571 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { 572 /* fill in immediate fcp command BDE */ 573 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED; 574 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 575 iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t, 576 unsli3.fcp_ext.icd); 577 iocb->un.fcpi64.bdl.addrHigh = 0; 578 iocb->ulpBdeCount = 0; 579 iocb->ulpLe = 0; 580 /* fill in responce BDE */ 581 iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags = 582 BUFF_TYPE_BDE_64; 583 iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize = 584 sizeof(struct fcp_rsp); 585 iocb->unsli3.fcp_ext.rbde.addrLow = 586 putPaddrLow(pdma_phys_fcp_rsp); 587 iocb->unsli3.fcp_ext.rbde.addrHigh = 588 putPaddrHigh(pdma_phys_fcp_rsp); 589 } else { 590 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 591 iocb->un.fcpi64.bdl.bdeSize = 592 (2 * sizeof(struct ulp_bde64)); 593 iocb->un.fcpi64.bdl.addrLow = 594 putPaddrLow(pdma_phys_bpl); 595 iocb->un.fcpi64.bdl.addrHigh = 596 putPaddrHigh(pdma_phys_bpl); 597 iocb->ulpBdeCount = 1; 598 iocb->ulpLe = 1; 599 } 600 iocb->ulpClass = CLASS3; 601 psb->status = IOSTAT_SUCCESS; 602 /* Put it back into the SCSI buffer list */ 603 psb->cur_iocbq.context1 = psb; 604 lpfc_release_scsi_buf_s3(phba, psb); 605 606 } 607 608 return bcnt; 609 } 610 611 /** 612 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort 613 * @phba: pointer to lpfc hba data structure. 614 * @axri: pointer to the fcp xri abort wcqe structure. 615 * 616 * This routine is invoked by the worker thread to process a SLI4 fast-path 617 * FCP aborted xri. 618 **/ 619 void 620 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba, 621 struct sli4_wcqe_xri_aborted *axri) 622 { 623 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 624 struct lpfc_scsi_buf *psb, *next_psb; 625 unsigned long iflag = 0; 626 struct lpfc_iocbq *iocbq; 627 int i; 628 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 629 630 spin_lock_irqsave(&phba->hbalock, iflag); 631 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock); 632 list_for_each_entry_safe(psb, next_psb, 633 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { 634 if (psb->cur_iocbq.sli4_xritag == xri) { 635 list_del(&psb->list); 636 psb->exch_busy = 0; 637 psb->status = IOSTAT_SUCCESS; 638 spin_unlock( 639 &phba->sli4_hba.abts_scsi_buf_list_lock); 640 spin_unlock_irqrestore(&phba->hbalock, iflag); 641 lpfc_release_scsi_buf_s4(phba, psb); 642 return; 643 } 644 } 645 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock); 646 for (i = 1; i <= phba->sli.last_iotag; i++) { 647 iocbq = phba->sli.iocbq_lookup[i]; 648 649 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 650 (iocbq->iocb_flag & LPFC_IO_LIBDFC)) 651 continue; 652 if (iocbq->sli4_xritag != xri) 653 continue; 654 psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 655 psb->exch_busy = 0; 656 spin_unlock_irqrestore(&phba->hbalock, iflag); 657 if (pring->txq_cnt) 658 lpfc_worker_wake_up(phba); 659 return; 660 661 } 662 spin_unlock_irqrestore(&phba->hbalock, iflag); 663 } 664 665 /** 666 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block 667 * @phba: pointer to lpfc hba data structure. 668 * 669 * This routine walks the list of scsi buffers that have been allocated and 670 * repost them to the HBA by using SGL block post. This is needed after a 671 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 672 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list 673 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers. 674 * 675 * Returns: 0 = success, non-zero failure. 676 **/ 677 int 678 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba) 679 { 680 struct lpfc_scsi_buf *psb; 681 int index, status, bcnt = 0, rcnt = 0, rc = 0; 682 LIST_HEAD(sblist); 683 684 for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) { 685 psb = phba->sli4_hba.lpfc_scsi_psb_array[index]; 686 if (psb) { 687 /* Remove from SCSI buffer list */ 688 list_del(&psb->list); 689 /* Add it to a local SCSI buffer list */ 690 list_add_tail(&psb->list, &sblist); 691 if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) { 692 bcnt = rcnt; 693 rcnt = 0; 694 } 695 } else 696 /* A hole present in the XRI array, need to skip */ 697 bcnt = rcnt; 698 699 if (index == phba->sli4_hba.scsi_xri_cnt - 1) 700 /* End of XRI array for SCSI buffer, complete */ 701 bcnt = rcnt; 702 703 /* Continue until collect up to a nembed page worth of sgls */ 704 if (bcnt == 0) 705 continue; 706 /* Now, post the SCSI buffer list sgls as a block */ 707 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt); 708 /* Reset SCSI buffer count for next round of posting */ 709 bcnt = 0; 710 while (!list_empty(&sblist)) { 711 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 712 list); 713 if (status) { 714 /* Put this back on the abort scsi list */ 715 psb->exch_busy = 1; 716 rc++; 717 } else { 718 psb->exch_busy = 0; 719 psb->status = IOSTAT_SUCCESS; 720 } 721 /* Put it back into the SCSI buffer list */ 722 lpfc_release_scsi_buf_s4(phba, psb); 723 } 724 } 725 return rc; 726 } 727 728 /** 729 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec 730 * @vport: The virtual port for which this call being executed. 731 * @num_to_allocate: The requested number of buffers to allocate. 732 * 733 * This routine allocates a scsi buffer for device with SLI-4 interface spec, 734 * the scsi buffer contains all the necessary information needed to initiate 735 * a SCSI I/O. 736 * 737 * Return codes: 738 * int - number of scsi buffers that were allocated. 739 * 0 = failure, less than num_to_alloc is a partial failure. 740 **/ 741 static int 742 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc) 743 { 744 struct lpfc_hba *phba = vport->phba; 745 struct lpfc_scsi_buf *psb; 746 struct sli4_sge *sgl; 747 IOCB_t *iocb; 748 dma_addr_t pdma_phys_fcp_cmd; 749 dma_addr_t pdma_phys_fcp_rsp; 750 dma_addr_t pdma_phys_bpl, pdma_phys_bpl1; 751 uint16_t iotag, last_xritag = NO_XRI; 752 int status = 0, index; 753 int bcnt; 754 int non_sequential_xri = 0; 755 LIST_HEAD(sblist); 756 757 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 758 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 759 if (!psb) 760 break; 761 762 /* 763 * Get memory from the pci pool to map the virt space to pci bus 764 * space for an I/O. The DMA buffer includes space for the 765 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 766 * necessary to support the sg_tablesize. 767 */ 768 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 769 GFP_KERNEL, &psb->dma_handle); 770 if (!psb->data) { 771 kfree(psb); 772 break; 773 } 774 775 /* Initialize virtual ptrs to dma_buf region. */ 776 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 777 778 /* Allocate iotag for psb->cur_iocbq. */ 779 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 780 if (iotag == 0) { 781 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 782 psb->data, psb->dma_handle); 783 kfree(psb); 784 break; 785 } 786 787 psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba); 788 if (psb->cur_iocbq.sli4_xritag == NO_XRI) { 789 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 790 psb->data, psb->dma_handle); 791 kfree(psb); 792 break; 793 } 794 if (last_xritag != NO_XRI 795 && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) { 796 non_sequential_xri = 1; 797 } else 798 list_add_tail(&psb->list, &sblist); 799 last_xritag = psb->cur_iocbq.sli4_xritag; 800 801 index = phba->sli4_hba.scsi_xri_cnt++; 802 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 803 804 psb->fcp_bpl = psb->data; 805 psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size) 806 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 807 psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd + 808 sizeof(struct fcp_cmnd)); 809 810 /* Initialize local short-hand pointers. */ 811 sgl = (struct sli4_sge *)psb->fcp_bpl; 812 pdma_phys_bpl = psb->dma_handle; 813 pdma_phys_fcp_cmd = 814 (psb->dma_handle + phba->cfg_sg_dma_buf_size) 815 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 816 pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd); 817 818 /* 819 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 820 * are sg list bdes. Initialize the first two and leave the 821 * rest for queuecommand. 822 */ 823 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd)); 824 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd)); 825 bf_set(lpfc_sli4_sge_last, sgl, 0); 826 sgl->word2 = cpu_to_le32(sgl->word2); 827 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd)); 828 sgl++; 829 830 /* Setup the physical region for the FCP RSP */ 831 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp)); 832 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp)); 833 bf_set(lpfc_sli4_sge_last, sgl, 1); 834 sgl->word2 = cpu_to_le32(sgl->word2); 835 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp)); 836 837 /* 838 * Since the IOCB for the FCP I/O is built into this 839 * lpfc_scsi_buf, initialize it with all known data now. 840 */ 841 iocb = &psb->cur_iocbq.iocb; 842 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 843 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 844 /* setting the BLP size to 2 * sizeof BDE may not be correct. 845 * We are setting the bpl to point to out sgl. An sgl's 846 * entries are 16 bytes, a bpl entries are 12 bytes. 847 */ 848 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 849 iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd); 850 iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd); 851 iocb->ulpBdeCount = 1; 852 iocb->ulpLe = 1; 853 iocb->ulpClass = CLASS3; 854 psb->cur_iocbq.context1 = psb; 855 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 856 pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE; 857 else 858 pdma_phys_bpl1 = 0; 859 psb->dma_phys_bpl = pdma_phys_bpl; 860 phba->sli4_hba.lpfc_scsi_psb_array[index] = psb; 861 if (non_sequential_xri) { 862 status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl, 863 pdma_phys_bpl1, 864 psb->cur_iocbq.sli4_xritag); 865 if (status) { 866 /* Put this back on the abort scsi list */ 867 psb->exch_busy = 1; 868 } else { 869 psb->exch_busy = 0; 870 psb->status = IOSTAT_SUCCESS; 871 } 872 /* Put it back into the SCSI buffer list */ 873 lpfc_release_scsi_buf_s4(phba, psb); 874 break; 875 } 876 } 877 if (bcnt) { 878 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt); 879 /* Reset SCSI buffer count for next round of posting */ 880 while (!list_empty(&sblist)) { 881 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 882 list); 883 if (status) { 884 /* Put this back on the abort scsi list */ 885 psb->exch_busy = 1; 886 } else { 887 psb->exch_busy = 0; 888 psb->status = IOSTAT_SUCCESS; 889 } 890 /* Put it back into the SCSI buffer list */ 891 lpfc_release_scsi_buf_s4(phba, psb); 892 } 893 } 894 895 return bcnt + non_sequential_xri; 896 } 897 898 /** 899 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator 900 * @vport: The virtual port for which this call being executed. 901 * @num_to_allocate: The requested number of buffers to allocate. 902 * 903 * This routine wraps the actual SCSI buffer allocator function pointer from 904 * the lpfc_hba struct. 905 * 906 * Return codes: 907 * int - number of scsi buffers that were allocated. 908 * 0 = failure, less than num_to_alloc is a partial failure. 909 **/ 910 static inline int 911 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc) 912 { 913 return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc); 914 } 915 916 /** 917 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 918 * @phba: The HBA for which this call is being executed. 919 * 920 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 921 * and returns to caller. 922 * 923 * Return codes: 924 * NULL - Error 925 * Pointer to lpfc_scsi_buf - Success 926 **/ 927 static struct lpfc_scsi_buf* 928 lpfc_get_scsi_buf(struct lpfc_hba * phba) 929 { 930 struct lpfc_scsi_buf * lpfc_cmd = NULL; 931 struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list; 932 unsigned long iflag = 0; 933 934 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 935 list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list); 936 if (lpfc_cmd) { 937 lpfc_cmd->seg_cnt = 0; 938 lpfc_cmd->nonsg_phys = 0; 939 lpfc_cmd->prot_seg_cnt = 0; 940 } 941 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 942 return lpfc_cmd; 943 } 944 945 /** 946 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list 947 * @phba: The Hba for which this call is being executed. 948 * @psb: The scsi buffer which is being released. 949 * 950 * This routine releases @psb scsi buffer by adding it to tail of @phba 951 * lpfc_scsi_buf_list list. 952 **/ 953 static void 954 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 955 { 956 unsigned long iflag = 0; 957 958 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 959 psb->pCmd = NULL; 960 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 961 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 962 } 963 964 /** 965 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list. 966 * @phba: The Hba for which this call is being executed. 967 * @psb: The scsi buffer which is being released. 968 * 969 * This routine releases @psb scsi buffer by adding it to tail of @phba 970 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer 971 * and cannot be reused for at least RA_TOV amount of time if it was 972 * aborted. 973 **/ 974 static void 975 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 976 { 977 unsigned long iflag = 0; 978 979 if (psb->exch_busy) { 980 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, 981 iflag); 982 psb->pCmd = NULL; 983 list_add_tail(&psb->list, 984 &phba->sli4_hba.lpfc_abts_scsi_buf_list); 985 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock, 986 iflag); 987 } else { 988 989 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 990 psb->pCmd = NULL; 991 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 992 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 993 } 994 } 995 996 /** 997 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list. 998 * @phba: The Hba for which this call is being executed. 999 * @psb: The scsi buffer which is being released. 1000 * 1001 * This routine releases @psb scsi buffer by adding it to tail of @phba 1002 * lpfc_scsi_buf_list list. 1003 **/ 1004 static void 1005 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 1006 { 1007 1008 phba->lpfc_release_scsi_buf(phba, psb); 1009 } 1010 1011 /** 1012 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec 1013 * @phba: The Hba for which this call is being executed. 1014 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1015 * 1016 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 1017 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans 1018 * through sg elements and format the bdea. This routine also initializes all 1019 * IOCB fields which are dependent on scsi command request buffer. 1020 * 1021 * Return codes: 1022 * 1 - Error 1023 * 0 - Success 1024 **/ 1025 static int 1026 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 1027 { 1028 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1029 struct scatterlist *sgel = NULL; 1030 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1031 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1032 struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq; 1033 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1034 struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde; 1035 dma_addr_t physaddr; 1036 uint32_t num_bde = 0; 1037 int nseg, datadir = scsi_cmnd->sc_data_direction; 1038 1039 /* 1040 * There are three possibilities here - use scatter-gather segment, use 1041 * the single mapping, or neither. Start the lpfc command prep by 1042 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 1043 * data bde entry. 1044 */ 1045 bpl += 2; 1046 if (scsi_sg_count(scsi_cmnd)) { 1047 /* 1048 * The driver stores the segment count returned from pci_map_sg 1049 * because this a count of dma-mappings used to map the use_sg 1050 * pages. They are not guaranteed to be the same for those 1051 * architectures that implement an IOMMU. 1052 */ 1053 1054 nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), 1055 scsi_sg_count(scsi_cmnd), datadir); 1056 if (unlikely(!nseg)) 1057 return 1; 1058 1059 lpfc_cmd->seg_cnt = nseg; 1060 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1061 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1062 "9064 BLKGRD: %s: Too many sg segments from " 1063 "dma_map_sg. Config %d, seg_cnt %d\n", 1064 __func__, phba->cfg_sg_seg_cnt, 1065 lpfc_cmd->seg_cnt); 1066 scsi_dma_unmap(scsi_cmnd); 1067 return 1; 1068 } 1069 1070 /* 1071 * The driver established a maximum scatter-gather segment count 1072 * during probe that limits the number of sg elements in any 1073 * single scsi command. Just run through the seg_cnt and format 1074 * the bde's. 1075 * When using SLI-3 the driver will try to fit all the BDEs into 1076 * the IOCB. If it can't then the BDEs get added to a BPL as it 1077 * does for SLI-2 mode. 1078 */ 1079 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 1080 physaddr = sg_dma_address(sgel); 1081 if (phba->sli_rev == 3 && 1082 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 1083 !(iocbq->iocb_flag & DSS_SECURITY_OP) && 1084 nseg <= LPFC_EXT_DATA_BDE_COUNT) { 1085 data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1086 data_bde->tus.f.bdeSize = sg_dma_len(sgel); 1087 data_bde->addrLow = putPaddrLow(physaddr); 1088 data_bde->addrHigh = putPaddrHigh(physaddr); 1089 data_bde++; 1090 } else { 1091 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1092 bpl->tus.f.bdeSize = sg_dma_len(sgel); 1093 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1094 bpl->addrLow = 1095 le32_to_cpu(putPaddrLow(physaddr)); 1096 bpl->addrHigh = 1097 le32_to_cpu(putPaddrHigh(physaddr)); 1098 bpl++; 1099 } 1100 } 1101 } 1102 1103 /* 1104 * Finish initializing those IOCB fields that are dependent on the 1105 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 1106 * explicitly reinitialized and for SLI-3 the extended bde count is 1107 * explicitly reinitialized since all iocb memory resources are reused. 1108 */ 1109 if (phba->sli_rev == 3 && 1110 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 1111 !(iocbq->iocb_flag & DSS_SECURITY_OP)) { 1112 if (num_bde > LPFC_EXT_DATA_BDE_COUNT) { 1113 /* 1114 * The extended IOCB format can only fit 3 BDE or a BPL. 1115 * This I/O has more than 3 BDE so the 1st data bde will 1116 * be a BPL that is filled in here. 1117 */ 1118 physaddr = lpfc_cmd->dma_handle; 1119 data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64; 1120 data_bde->tus.f.bdeSize = (num_bde * 1121 sizeof(struct ulp_bde64)); 1122 physaddr += (sizeof(struct fcp_cmnd) + 1123 sizeof(struct fcp_rsp) + 1124 (2 * sizeof(struct ulp_bde64))); 1125 data_bde->addrHigh = putPaddrHigh(physaddr); 1126 data_bde->addrLow = putPaddrLow(physaddr); 1127 /* ebde count includes the responce bde and data bpl */ 1128 iocb_cmd->unsli3.fcp_ext.ebde_count = 2; 1129 } else { 1130 /* ebde count includes the responce bde and data bdes */ 1131 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); 1132 } 1133 } else { 1134 iocb_cmd->un.fcpi64.bdl.bdeSize = 1135 ((num_bde + 2) * sizeof(struct ulp_bde64)); 1136 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); 1137 } 1138 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 1139 1140 /* 1141 * Due to difference in data length between DIF/non-DIF paths, 1142 * we need to set word 4 of IOCB here 1143 */ 1144 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 1145 return 0; 1146 } 1147 1148 /* 1149 * Given a scsi cmnd, determine the BlockGuard opcodes to be used with it 1150 * @sc: The SCSI command to examine 1151 * @txopt: (out) BlockGuard operation for transmitted data 1152 * @rxopt: (out) BlockGuard operation for received data 1153 * 1154 * Returns: zero on success; non-zero if tx and/or rx op cannot be determined 1155 * 1156 */ 1157 static int 1158 lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1159 uint8_t *txop, uint8_t *rxop) 1160 { 1161 uint8_t guard_type = scsi_host_get_guard(sc->device->host); 1162 uint8_t ret = 0; 1163 1164 if (guard_type == SHOST_DIX_GUARD_IP) { 1165 switch (scsi_get_prot_op(sc)) { 1166 case SCSI_PROT_READ_INSERT: 1167 case SCSI_PROT_WRITE_STRIP: 1168 *txop = BG_OP_IN_CSUM_OUT_NODIF; 1169 *rxop = BG_OP_IN_NODIF_OUT_CSUM; 1170 break; 1171 1172 case SCSI_PROT_READ_STRIP: 1173 case SCSI_PROT_WRITE_INSERT: 1174 *txop = BG_OP_IN_NODIF_OUT_CRC; 1175 *rxop = BG_OP_IN_CRC_OUT_NODIF; 1176 break; 1177 1178 case SCSI_PROT_READ_PASS: 1179 case SCSI_PROT_WRITE_PASS: 1180 *txop = BG_OP_IN_CSUM_OUT_CRC; 1181 *rxop = BG_OP_IN_CRC_OUT_CSUM; 1182 break; 1183 1184 case SCSI_PROT_NORMAL: 1185 default: 1186 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1187 "9063 BLKGRD: Bad op/guard:%d/%d combination\n", 1188 scsi_get_prot_op(sc), guard_type); 1189 ret = 1; 1190 break; 1191 1192 } 1193 } else if (guard_type == SHOST_DIX_GUARD_CRC) { 1194 switch (scsi_get_prot_op(sc)) { 1195 case SCSI_PROT_READ_STRIP: 1196 case SCSI_PROT_WRITE_INSERT: 1197 *txop = BG_OP_IN_NODIF_OUT_CRC; 1198 *rxop = BG_OP_IN_CRC_OUT_NODIF; 1199 break; 1200 1201 case SCSI_PROT_READ_PASS: 1202 case SCSI_PROT_WRITE_PASS: 1203 *txop = BG_OP_IN_CRC_OUT_CRC; 1204 *rxop = BG_OP_IN_CRC_OUT_CRC; 1205 break; 1206 1207 case SCSI_PROT_READ_INSERT: 1208 case SCSI_PROT_WRITE_STRIP: 1209 case SCSI_PROT_NORMAL: 1210 default: 1211 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1212 "9075 BLKGRD: Bad op/guard:%d/%d combination\n", 1213 scsi_get_prot_op(sc), guard_type); 1214 ret = 1; 1215 break; 1216 } 1217 } else { 1218 /* unsupported format */ 1219 BUG(); 1220 } 1221 1222 return ret; 1223 } 1224 1225 struct scsi_dif_tuple { 1226 __be16 guard_tag; /* Checksum */ 1227 __be16 app_tag; /* Opaque storage */ 1228 __be32 ref_tag; /* Target LBA or indirect LBA */ 1229 }; 1230 1231 static inline unsigned 1232 lpfc_cmd_blksize(struct scsi_cmnd *sc) 1233 { 1234 return sc->device->sector_size; 1235 } 1236 1237 /** 1238 * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command 1239 * @sc: in: SCSI command 1240 * @apptagmask: out: app tag mask 1241 * @apptagval: out: app tag value 1242 * @reftag: out: ref tag (reference tag) 1243 * 1244 * Description: 1245 * Extract DIF parameters from the command if possible. Otherwise, 1246 * use default parameters. 1247 * 1248 **/ 1249 static inline void 1250 lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask, 1251 uint16_t *apptagval, uint32_t *reftag) 1252 { 1253 struct scsi_dif_tuple *spt; 1254 unsigned char op = scsi_get_prot_op(sc); 1255 unsigned int protcnt = scsi_prot_sg_count(sc); 1256 static int cnt; 1257 1258 if (protcnt && (op == SCSI_PROT_WRITE_STRIP || 1259 op == SCSI_PROT_WRITE_PASS)) { 1260 1261 cnt++; 1262 spt = page_address(sg_page(scsi_prot_sglist(sc))) + 1263 scsi_prot_sglist(sc)[0].offset; 1264 *apptagmask = 0; 1265 *apptagval = 0; 1266 *reftag = cpu_to_be32(spt->ref_tag); 1267 1268 } else { 1269 /* SBC defines ref tag to be lower 32bits of LBA */ 1270 *reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc)); 1271 *apptagmask = 0; 1272 *apptagval = 0; 1273 } 1274 } 1275 1276 /* 1277 * This function sets up buffer list for protection groups of 1278 * type LPFC_PG_TYPE_NO_DIF 1279 * 1280 * This is usually used when the HBA is instructed to generate 1281 * DIFs and insert them into data stream (or strip DIF from 1282 * incoming data stream) 1283 * 1284 * The buffer list consists of just one protection group described 1285 * below: 1286 * +-------------------------+ 1287 * start of prot group --> | PDE_5 | 1288 * +-------------------------+ 1289 * | PDE_6 | 1290 * +-------------------------+ 1291 * | Data BDE | 1292 * +-------------------------+ 1293 * |more Data BDE's ... (opt)| 1294 * +-------------------------+ 1295 * 1296 * @sc: pointer to scsi command we're working on 1297 * @bpl: pointer to buffer list for protection groups 1298 * @datacnt: number of segments of data that have been dma mapped 1299 * 1300 * Note: Data s/g buffers have been dma mapped 1301 */ 1302 static int 1303 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1304 struct ulp_bde64 *bpl, int datasegcnt) 1305 { 1306 struct scatterlist *sgde = NULL; /* s/g data entry */ 1307 struct lpfc_pde5 *pde5 = NULL; 1308 struct lpfc_pde6 *pde6 = NULL; 1309 dma_addr_t physaddr; 1310 int i = 0, num_bde = 0, status; 1311 int datadir = sc->sc_data_direction; 1312 unsigned blksize; 1313 uint32_t reftag; 1314 uint16_t apptagmask, apptagval; 1315 uint8_t txop, rxop; 1316 1317 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); 1318 if (status) 1319 goto out; 1320 1321 /* extract some info from the scsi command for pde*/ 1322 blksize = lpfc_cmd_blksize(sc); 1323 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag); 1324 1325 /* setup PDE5 with what we have */ 1326 pde5 = (struct lpfc_pde5 *) bpl; 1327 memset(pde5, 0, sizeof(struct lpfc_pde5)); 1328 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); 1329 pde5->reftag = reftag; 1330 1331 /* Endianness conversion if necessary for PDE5 */ 1332 pde5->word0 = cpu_to_le32(pde5->word0); 1333 pde5->reftag = cpu_to_le32(pde5->reftag); 1334 1335 /* advance bpl and increment bde count */ 1336 num_bde++; 1337 bpl++; 1338 pde6 = (struct lpfc_pde6 *) bpl; 1339 1340 /* setup PDE6 with the rest of the info */ 1341 memset(pde6, 0, sizeof(struct lpfc_pde6)); 1342 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); 1343 bf_set(pde6_optx, pde6, txop); 1344 bf_set(pde6_oprx, pde6, rxop); 1345 if (datadir == DMA_FROM_DEVICE) { 1346 bf_set(pde6_ce, pde6, 1); 1347 bf_set(pde6_re, pde6, 1); 1348 bf_set(pde6_ae, pde6, 1); 1349 } 1350 bf_set(pde6_ai, pde6, 1); 1351 bf_set(pde6_apptagval, pde6, apptagval); 1352 1353 /* Endianness conversion if necessary for PDE6 */ 1354 pde6->word0 = cpu_to_le32(pde6->word0); 1355 pde6->word1 = cpu_to_le32(pde6->word1); 1356 pde6->word2 = cpu_to_le32(pde6->word2); 1357 1358 /* advance bpl and increment bde count */ 1359 num_bde++; 1360 bpl++; 1361 1362 /* assumption: caller has already run dma_map_sg on command data */ 1363 scsi_for_each_sg(sc, sgde, datasegcnt, i) { 1364 physaddr = sg_dma_address(sgde); 1365 bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1366 bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1367 bpl->tus.f.bdeSize = sg_dma_len(sgde); 1368 if (datadir == DMA_TO_DEVICE) 1369 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1370 else 1371 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1372 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1373 bpl++; 1374 num_bde++; 1375 } 1376 1377 out: 1378 return num_bde; 1379 } 1380 1381 /* 1382 * This function sets up buffer list for protection groups of 1383 * type LPFC_PG_TYPE_DIF_BUF 1384 * 1385 * This is usually used when DIFs are in their own buffers, 1386 * separate from the data. The HBA can then by instructed 1387 * to place the DIFs in the outgoing stream. For read operations, 1388 * The HBA could extract the DIFs and place it in DIF buffers. 1389 * 1390 * The buffer list for this type consists of one or more of the 1391 * protection groups described below: 1392 * +-------------------------+ 1393 * start of first prot group --> | PDE_5 | 1394 * +-------------------------+ 1395 * | PDE_6 | 1396 * +-------------------------+ 1397 * | PDE_7 (Prot BDE) | 1398 * +-------------------------+ 1399 * | Data BDE | 1400 * +-------------------------+ 1401 * |more Data BDE's ... (opt)| 1402 * +-------------------------+ 1403 * start of new prot group --> | PDE_5 | 1404 * +-------------------------+ 1405 * | ... | 1406 * +-------------------------+ 1407 * 1408 * @sc: pointer to scsi command we're working on 1409 * @bpl: pointer to buffer list for protection groups 1410 * @datacnt: number of segments of data that have been dma mapped 1411 * @protcnt: number of segment of protection data that have been dma mapped 1412 * 1413 * Note: It is assumed that both data and protection s/g buffers have been 1414 * mapped for DMA 1415 */ 1416 static int 1417 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1418 struct ulp_bde64 *bpl, int datacnt, int protcnt) 1419 { 1420 struct scatterlist *sgde = NULL; /* s/g data entry */ 1421 struct scatterlist *sgpe = NULL; /* s/g prot entry */ 1422 struct lpfc_pde5 *pde5 = NULL; 1423 struct lpfc_pde6 *pde6 = NULL; 1424 struct ulp_bde64 *prot_bde = NULL; 1425 dma_addr_t dataphysaddr, protphysaddr; 1426 unsigned short curr_data = 0, curr_prot = 0; 1427 unsigned int split_offset, protgroup_len; 1428 unsigned int protgrp_blks, protgrp_bytes; 1429 unsigned int remainder, subtotal; 1430 int status; 1431 int datadir = sc->sc_data_direction; 1432 unsigned char pgdone = 0, alldone = 0; 1433 unsigned blksize; 1434 uint32_t reftag; 1435 uint16_t apptagmask, apptagval; 1436 uint8_t txop, rxop; 1437 int num_bde = 0; 1438 1439 sgpe = scsi_prot_sglist(sc); 1440 sgde = scsi_sglist(sc); 1441 1442 if (!sgpe || !sgde) { 1443 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1444 "9020 Invalid s/g entry: data=0x%p prot=0x%p\n", 1445 sgpe, sgde); 1446 return 0; 1447 } 1448 1449 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); 1450 if (status) 1451 goto out; 1452 1453 /* extract some info from the scsi command */ 1454 blksize = lpfc_cmd_blksize(sc); 1455 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag); 1456 1457 split_offset = 0; 1458 do { 1459 /* setup PDE5 with what we have */ 1460 pde5 = (struct lpfc_pde5 *) bpl; 1461 memset(pde5, 0, sizeof(struct lpfc_pde5)); 1462 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); 1463 pde5->reftag = reftag; 1464 1465 /* Endianness conversion if necessary for PDE5 */ 1466 pde5->word0 = cpu_to_le32(pde5->word0); 1467 pde5->reftag = cpu_to_le32(pde5->reftag); 1468 1469 /* advance bpl and increment bde count */ 1470 num_bde++; 1471 bpl++; 1472 pde6 = (struct lpfc_pde6 *) bpl; 1473 1474 /* setup PDE6 with the rest of the info */ 1475 memset(pde6, 0, sizeof(struct lpfc_pde6)); 1476 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); 1477 bf_set(pde6_optx, pde6, txop); 1478 bf_set(pde6_oprx, pde6, rxop); 1479 bf_set(pde6_ce, pde6, 1); 1480 bf_set(pde6_re, pde6, 1); 1481 bf_set(pde6_ae, pde6, 1); 1482 bf_set(pde6_ai, pde6, 1); 1483 bf_set(pde6_apptagval, pde6, apptagval); 1484 1485 /* Endianness conversion if necessary for PDE6 */ 1486 pde6->word0 = cpu_to_le32(pde6->word0); 1487 pde6->word1 = cpu_to_le32(pde6->word1); 1488 pde6->word2 = cpu_to_le32(pde6->word2); 1489 1490 /* advance bpl and increment bde count */ 1491 num_bde++; 1492 bpl++; 1493 1494 /* setup the first BDE that points to protection buffer */ 1495 prot_bde = (struct ulp_bde64 *) bpl; 1496 protphysaddr = sg_dma_address(sgpe); 1497 prot_bde->addrHigh = le32_to_cpu(putPaddrLow(protphysaddr)); 1498 prot_bde->addrLow = le32_to_cpu(putPaddrHigh(protphysaddr)); 1499 protgroup_len = sg_dma_len(sgpe); 1500 1501 /* must be integer multiple of the DIF block length */ 1502 BUG_ON(protgroup_len % 8); 1503 1504 protgrp_blks = protgroup_len / 8; 1505 protgrp_bytes = protgrp_blks * blksize; 1506 1507 prot_bde->tus.f.bdeSize = protgroup_len; 1508 prot_bde->tus.f.bdeFlags = LPFC_PDE7_DESCRIPTOR; 1509 prot_bde->tus.w = le32_to_cpu(bpl->tus.w); 1510 1511 curr_prot++; 1512 num_bde++; 1513 1514 /* setup BDE's for data blocks associated with DIF data */ 1515 pgdone = 0; 1516 subtotal = 0; /* total bytes processed for current prot grp */ 1517 while (!pgdone) { 1518 if (!sgde) { 1519 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1520 "9065 BLKGRD:%s Invalid data segment\n", 1521 __func__); 1522 return 0; 1523 } 1524 bpl++; 1525 dataphysaddr = sg_dma_address(sgde) + split_offset; 1526 bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr)); 1527 bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr)); 1528 1529 remainder = sg_dma_len(sgde) - split_offset; 1530 1531 if ((subtotal + remainder) <= protgrp_bytes) { 1532 /* we can use this whole buffer */ 1533 bpl->tus.f.bdeSize = remainder; 1534 split_offset = 0; 1535 1536 if ((subtotal + remainder) == protgrp_bytes) 1537 pgdone = 1; 1538 } else { 1539 /* must split this buffer with next prot grp */ 1540 bpl->tus.f.bdeSize = protgrp_bytes - subtotal; 1541 split_offset += bpl->tus.f.bdeSize; 1542 } 1543 1544 subtotal += bpl->tus.f.bdeSize; 1545 1546 if (datadir == DMA_TO_DEVICE) 1547 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1548 else 1549 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1550 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1551 1552 num_bde++; 1553 curr_data++; 1554 1555 if (split_offset) 1556 break; 1557 1558 /* Move to the next s/g segment if possible */ 1559 sgde = sg_next(sgde); 1560 1561 } 1562 1563 /* are we done ? */ 1564 if (curr_prot == protcnt) { 1565 alldone = 1; 1566 } else if (curr_prot < protcnt) { 1567 /* advance to next prot buffer */ 1568 sgpe = sg_next(sgpe); 1569 bpl++; 1570 1571 /* update the reference tag */ 1572 reftag += protgrp_blks; 1573 } else { 1574 /* if we're here, we have a bug */ 1575 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1576 "9054 BLKGRD: bug in %s\n", __func__); 1577 } 1578 1579 } while (!alldone); 1580 1581 out: 1582 1583 return num_bde; 1584 } 1585 /* 1586 * Given a SCSI command that supports DIF, determine composition of protection 1587 * groups involved in setting up buffer lists 1588 * 1589 * Returns: 1590 * for DIF (for both read and write) 1591 * */ 1592 static int 1593 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc) 1594 { 1595 int ret = LPFC_PG_TYPE_INVALID; 1596 unsigned char op = scsi_get_prot_op(sc); 1597 1598 switch (op) { 1599 case SCSI_PROT_READ_STRIP: 1600 case SCSI_PROT_WRITE_INSERT: 1601 ret = LPFC_PG_TYPE_NO_DIF; 1602 break; 1603 case SCSI_PROT_READ_INSERT: 1604 case SCSI_PROT_WRITE_STRIP: 1605 case SCSI_PROT_READ_PASS: 1606 case SCSI_PROT_WRITE_PASS: 1607 ret = LPFC_PG_TYPE_DIF_BUF; 1608 break; 1609 default: 1610 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1611 "9021 Unsupported protection op:%d\n", op); 1612 break; 1613 } 1614 1615 return ret; 1616 } 1617 1618 /* 1619 * This is the protection/DIF aware version of 1620 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the 1621 * two functions eventually, but for now, it's here 1622 */ 1623 static int 1624 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba, 1625 struct lpfc_scsi_buf *lpfc_cmd) 1626 { 1627 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1628 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1629 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1630 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1631 uint32_t num_bde = 0; 1632 int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; 1633 int prot_group_type = 0; 1634 int diflen, fcpdl; 1635 unsigned blksize; 1636 1637 /* 1638 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd 1639 * fcp_rsp regions to the first data bde entry 1640 */ 1641 bpl += 2; 1642 if (scsi_sg_count(scsi_cmnd)) { 1643 /* 1644 * The driver stores the segment count returned from pci_map_sg 1645 * because this a count of dma-mappings used to map the use_sg 1646 * pages. They are not guaranteed to be the same for those 1647 * architectures that implement an IOMMU. 1648 */ 1649 datasegcnt = dma_map_sg(&phba->pcidev->dev, 1650 scsi_sglist(scsi_cmnd), 1651 scsi_sg_count(scsi_cmnd), datadir); 1652 if (unlikely(!datasegcnt)) 1653 return 1; 1654 1655 lpfc_cmd->seg_cnt = datasegcnt; 1656 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1657 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1658 "9067 BLKGRD: %s: Too many sg segments" 1659 " from dma_map_sg. Config %d, seg_cnt" 1660 " %d\n", 1661 __func__, phba->cfg_sg_seg_cnt, 1662 lpfc_cmd->seg_cnt); 1663 scsi_dma_unmap(scsi_cmnd); 1664 return 1; 1665 } 1666 1667 prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); 1668 1669 switch (prot_group_type) { 1670 case LPFC_PG_TYPE_NO_DIF: 1671 num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl, 1672 datasegcnt); 1673 /* we should have 2 or more entries in buffer list */ 1674 if (num_bde < 2) 1675 goto err; 1676 break; 1677 case LPFC_PG_TYPE_DIF_BUF:{ 1678 /* 1679 * This type indicates that protection buffers are 1680 * passed to the driver, so that needs to be prepared 1681 * for DMA 1682 */ 1683 protsegcnt = dma_map_sg(&phba->pcidev->dev, 1684 scsi_prot_sglist(scsi_cmnd), 1685 scsi_prot_sg_count(scsi_cmnd), datadir); 1686 if (unlikely(!protsegcnt)) { 1687 scsi_dma_unmap(scsi_cmnd); 1688 return 1; 1689 } 1690 1691 lpfc_cmd->prot_seg_cnt = protsegcnt; 1692 if (lpfc_cmd->prot_seg_cnt 1693 > phba->cfg_prot_sg_seg_cnt) { 1694 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1695 "9068 BLKGRD: %s: Too many prot sg " 1696 "segments from dma_map_sg. Config %d," 1697 "prot_seg_cnt %d\n", __func__, 1698 phba->cfg_prot_sg_seg_cnt, 1699 lpfc_cmd->prot_seg_cnt); 1700 dma_unmap_sg(&phba->pcidev->dev, 1701 scsi_prot_sglist(scsi_cmnd), 1702 scsi_prot_sg_count(scsi_cmnd), 1703 datadir); 1704 scsi_dma_unmap(scsi_cmnd); 1705 return 1; 1706 } 1707 1708 num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl, 1709 datasegcnt, protsegcnt); 1710 /* we should have 3 or more entries in buffer list */ 1711 if (num_bde < 3) 1712 goto err; 1713 break; 1714 } 1715 case LPFC_PG_TYPE_INVALID: 1716 default: 1717 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1718 "9022 Unexpected protection group %i\n", 1719 prot_group_type); 1720 return 1; 1721 } 1722 } 1723 1724 /* 1725 * Finish initializing those IOCB fields that are dependent on the 1726 * scsi_cmnd request_buffer. Note that the bdeSize is explicitly 1727 * reinitialized since all iocb memory resources are used many times 1728 * for transmit, receive, and continuation bpl's. 1729 */ 1730 iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 1731 iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64)); 1732 iocb_cmd->ulpBdeCount = 1; 1733 iocb_cmd->ulpLe = 1; 1734 1735 fcpdl = scsi_bufflen(scsi_cmnd); 1736 1737 if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) { 1738 /* 1739 * We are in DIF Type 1 mode 1740 * Every data block has a 8 byte DIF (trailer) 1741 * attached to it. Must ajust FCP data length 1742 */ 1743 blksize = lpfc_cmd_blksize(scsi_cmnd); 1744 diflen = (fcpdl / blksize) * 8; 1745 fcpdl += diflen; 1746 } 1747 fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); 1748 1749 /* 1750 * Due to difference in data length between DIF/non-DIF paths, 1751 * we need to set word 4 of IOCB here 1752 */ 1753 iocb_cmd->un.fcpi.fcpi_parm = fcpdl; 1754 1755 return 0; 1756 err: 1757 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1758 "9023 Could not setup all needed BDE's" 1759 "prot_group_type=%d, num_bde=%d\n", 1760 prot_group_type, num_bde); 1761 return 1; 1762 } 1763 1764 /* 1765 * This function checks for BlockGuard errors detected by 1766 * the HBA. In case of errors, the ASC/ASCQ fields in the 1767 * sense buffer will be set accordingly, paired with 1768 * ILLEGAL_REQUEST to signal to the kernel that the HBA 1769 * detected corruption. 1770 * 1771 * Returns: 1772 * 0 - No error found 1773 * 1 - BlockGuard error found 1774 * -1 - Internal error (bad profile, ...etc) 1775 */ 1776 static int 1777 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd, 1778 struct lpfc_iocbq *pIocbOut) 1779 { 1780 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 1781 struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg; 1782 int ret = 0; 1783 uint32_t bghm = bgf->bghm; 1784 uint32_t bgstat = bgf->bgstat; 1785 uint64_t failing_sector = 0; 1786 1787 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd" 1788 " 0x%x lba 0x%llx blk cnt 0x%x " 1789 "bgstat=0x%x bghm=0x%x\n", 1790 cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd), 1791 blk_rq_sectors(cmd->request), bgstat, bghm); 1792 1793 spin_lock(&_dump_buf_lock); 1794 if (!_dump_buf_done) { 1795 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9070 BLKGRD: Saving" 1796 " Data for %u blocks to debugfs\n", 1797 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 1798 lpfc_debug_save_data(phba, cmd); 1799 1800 /* If we have a prot sgl, save the DIF buffer */ 1801 if (lpfc_prot_group_type(phba, cmd) == 1802 LPFC_PG_TYPE_DIF_BUF) { 1803 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: " 1804 "Saving DIF for %u blocks to debugfs\n", 1805 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 1806 lpfc_debug_save_dif(phba, cmd); 1807 } 1808 1809 _dump_buf_done = 1; 1810 } 1811 spin_unlock(&_dump_buf_lock); 1812 1813 if (lpfc_bgs_get_invalid_prof(bgstat)) { 1814 cmd->result = ScsiResult(DID_ERROR, 0); 1815 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid" 1816 " BlockGuard profile. bgstat:0x%x\n", 1817 bgstat); 1818 ret = (-1); 1819 goto out; 1820 } 1821 1822 if (lpfc_bgs_get_uninit_dif_block(bgstat)) { 1823 cmd->result = ScsiResult(DID_ERROR, 0); 1824 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: " 1825 "Invalid BlockGuard DIF Block. bgstat:0x%x\n", 1826 bgstat); 1827 ret = (-1); 1828 goto out; 1829 } 1830 1831 if (lpfc_bgs_get_guard_err(bgstat)) { 1832 ret = 1; 1833 1834 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1835 0x10, 0x1); 1836 cmd->result = DRIVER_SENSE << 24 1837 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1838 phba->bg_guard_err_cnt++; 1839 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1840 "9055 BLKGRD: guard_tag error\n"); 1841 } 1842 1843 if (lpfc_bgs_get_reftag_err(bgstat)) { 1844 ret = 1; 1845 1846 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1847 0x10, 0x3); 1848 cmd->result = DRIVER_SENSE << 24 1849 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1850 1851 phba->bg_reftag_err_cnt++; 1852 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1853 "9056 BLKGRD: ref_tag error\n"); 1854 } 1855 1856 if (lpfc_bgs_get_apptag_err(bgstat)) { 1857 ret = 1; 1858 1859 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1860 0x10, 0x2); 1861 cmd->result = DRIVER_SENSE << 24 1862 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1863 1864 phba->bg_apptag_err_cnt++; 1865 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1866 "9061 BLKGRD: app_tag error\n"); 1867 } 1868 1869 if (lpfc_bgs_get_hi_water_mark_present(bgstat)) { 1870 /* 1871 * setup sense data descriptor 0 per SPC-4 as an information 1872 * field, and put the failing LBA in it 1873 */ 1874 cmd->sense_buffer[8] = 0; /* Information */ 1875 cmd->sense_buffer[9] = 0xa; /* Add. length */ 1876 bghm /= cmd->device->sector_size; 1877 1878 failing_sector = scsi_get_lba(cmd); 1879 failing_sector += bghm; 1880 1881 put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]); 1882 } 1883 1884 if (!ret) { 1885 /* No error was reported - problem in FW? */ 1886 cmd->result = ScsiResult(DID_ERROR, 0); 1887 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1888 "9057 BLKGRD: no errors reported!\n"); 1889 } 1890 1891 out: 1892 return ret; 1893 } 1894 1895 /** 1896 * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec 1897 * @phba: The Hba for which this call is being executed. 1898 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1899 * 1900 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 1901 * field of @lpfc_cmd for device with SLI-4 interface spec. 1902 * 1903 * Return codes: 1904 * 1 - Error 1905 * 0 - Success 1906 **/ 1907 static int 1908 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 1909 { 1910 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1911 struct scatterlist *sgel = NULL; 1912 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1913 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 1914 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1915 dma_addr_t physaddr; 1916 uint32_t num_bde = 0; 1917 uint32_t dma_len; 1918 uint32_t dma_offset = 0; 1919 int nseg; 1920 1921 /* 1922 * There are three possibilities here - use scatter-gather segment, use 1923 * the single mapping, or neither. Start the lpfc command prep by 1924 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 1925 * data bde entry. 1926 */ 1927 if (scsi_sg_count(scsi_cmnd)) { 1928 /* 1929 * The driver stores the segment count returned from pci_map_sg 1930 * because this a count of dma-mappings used to map the use_sg 1931 * pages. They are not guaranteed to be the same for those 1932 * architectures that implement an IOMMU. 1933 */ 1934 1935 nseg = scsi_dma_map(scsi_cmnd); 1936 if (unlikely(!nseg)) 1937 return 1; 1938 sgl += 1; 1939 /* clear the last flag in the fcp_rsp map entry */ 1940 sgl->word2 = le32_to_cpu(sgl->word2); 1941 bf_set(lpfc_sli4_sge_last, sgl, 0); 1942 sgl->word2 = cpu_to_le32(sgl->word2); 1943 sgl += 1; 1944 1945 lpfc_cmd->seg_cnt = nseg; 1946 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1947 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:" 1948 " %s: Too many sg segments from " 1949 "dma_map_sg. Config %d, seg_cnt %d\n", 1950 __func__, phba->cfg_sg_seg_cnt, 1951 lpfc_cmd->seg_cnt); 1952 scsi_dma_unmap(scsi_cmnd); 1953 return 1; 1954 } 1955 1956 /* 1957 * The driver established a maximum scatter-gather segment count 1958 * during probe that limits the number of sg elements in any 1959 * single scsi command. Just run through the seg_cnt and format 1960 * the sge's. 1961 * When using SLI-3 the driver will try to fit all the BDEs into 1962 * the IOCB. If it can't then the BDEs get added to a BPL as it 1963 * does for SLI-2 mode. 1964 */ 1965 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 1966 physaddr = sg_dma_address(sgel); 1967 dma_len = sg_dma_len(sgel); 1968 sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr)); 1969 sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr)); 1970 if ((num_bde + 1) == nseg) 1971 bf_set(lpfc_sli4_sge_last, sgl, 1); 1972 else 1973 bf_set(lpfc_sli4_sge_last, sgl, 0); 1974 bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); 1975 sgl->word2 = cpu_to_le32(sgl->word2); 1976 sgl->sge_len = cpu_to_le32(dma_len); 1977 dma_offset += dma_len; 1978 sgl++; 1979 } 1980 } else { 1981 sgl += 1; 1982 /* clear the last flag in the fcp_rsp map entry */ 1983 sgl->word2 = le32_to_cpu(sgl->word2); 1984 bf_set(lpfc_sli4_sge_last, sgl, 1); 1985 sgl->word2 = cpu_to_le32(sgl->word2); 1986 } 1987 1988 /* 1989 * Finish initializing those IOCB fields that are dependent on the 1990 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 1991 * explicitly reinitialized. 1992 * all iocb memory resources are reused. 1993 */ 1994 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 1995 1996 /* 1997 * Due to difference in data length between DIF/non-DIF paths, 1998 * we need to set word 4 of IOCB here 1999 */ 2000 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 2001 return 0; 2002 } 2003 2004 /** 2005 * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer 2006 * @phba: The Hba for which this call is being executed. 2007 * @lpfc_cmd: The scsi buffer which is going to be mapped. 2008 * 2009 * This routine wraps the actual DMA mapping function pointer from the 2010 * lpfc_hba struct. 2011 * 2012 * Return codes: 2013 * 1 - Error 2014 * 0 - Success 2015 **/ 2016 static inline int 2017 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 2018 { 2019 return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 2020 } 2021 2022 /** 2023 * lpfc_send_scsi_error_event - Posts an event when there is SCSI error 2024 * @phba: Pointer to hba context object. 2025 * @vport: Pointer to vport object. 2026 * @lpfc_cmd: Pointer to lpfc scsi command which reported the error. 2027 * @rsp_iocb: Pointer to response iocb object which reported error. 2028 * 2029 * This function posts an event when there is a SCSI command reporting 2030 * error from the scsi device. 2031 **/ 2032 static void 2033 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport, 2034 struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) { 2035 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 2036 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 2037 uint32_t resp_info = fcprsp->rspStatus2; 2038 uint32_t scsi_status = fcprsp->rspStatus3; 2039 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 2040 struct lpfc_fast_path_event *fast_path_evt = NULL; 2041 struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode; 2042 unsigned long flags; 2043 2044 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 2045 return; 2046 2047 /* If there is queuefull or busy condition send a scsi event */ 2048 if ((cmnd->result == SAM_STAT_TASK_SET_FULL) || 2049 (cmnd->result == SAM_STAT_BUSY)) { 2050 fast_path_evt = lpfc_alloc_fast_evt(phba); 2051 if (!fast_path_evt) 2052 return; 2053 fast_path_evt->un.scsi_evt.event_type = 2054 FC_REG_SCSI_EVENT; 2055 fast_path_evt->un.scsi_evt.subcategory = 2056 (cmnd->result == SAM_STAT_TASK_SET_FULL) ? 2057 LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY; 2058 fast_path_evt->un.scsi_evt.lun = cmnd->device->lun; 2059 memcpy(&fast_path_evt->un.scsi_evt.wwpn, 2060 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2061 memcpy(&fast_path_evt->un.scsi_evt.wwnn, 2062 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2063 } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen && 2064 ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) { 2065 fast_path_evt = lpfc_alloc_fast_evt(phba); 2066 if (!fast_path_evt) 2067 return; 2068 fast_path_evt->un.check_cond_evt.scsi_event.event_type = 2069 FC_REG_SCSI_EVENT; 2070 fast_path_evt->un.check_cond_evt.scsi_event.subcategory = 2071 LPFC_EVENT_CHECK_COND; 2072 fast_path_evt->un.check_cond_evt.scsi_event.lun = 2073 cmnd->device->lun; 2074 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn, 2075 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2076 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn, 2077 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2078 fast_path_evt->un.check_cond_evt.sense_key = 2079 cmnd->sense_buffer[2] & 0xf; 2080 fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12]; 2081 fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13]; 2082 } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 2083 fcpi_parm && 2084 ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) || 2085 ((scsi_status == SAM_STAT_GOOD) && 2086 !(resp_info & (RESID_UNDER | RESID_OVER))))) { 2087 /* 2088 * If status is good or resid does not match with fcp_param and 2089 * there is valid fcpi_parm, then there is a read_check error 2090 */ 2091 fast_path_evt = lpfc_alloc_fast_evt(phba); 2092 if (!fast_path_evt) 2093 return; 2094 fast_path_evt->un.read_check_error.header.event_type = 2095 FC_REG_FABRIC_EVENT; 2096 fast_path_evt->un.read_check_error.header.subcategory = 2097 LPFC_EVENT_FCPRDCHKERR; 2098 memcpy(&fast_path_evt->un.read_check_error.header.wwpn, 2099 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2100 memcpy(&fast_path_evt->un.read_check_error.header.wwnn, 2101 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2102 fast_path_evt->un.read_check_error.lun = cmnd->device->lun; 2103 fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0]; 2104 fast_path_evt->un.read_check_error.fcpiparam = 2105 fcpi_parm; 2106 } else 2107 return; 2108 2109 fast_path_evt->vport = vport; 2110 spin_lock_irqsave(&phba->hbalock, flags); 2111 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 2112 spin_unlock_irqrestore(&phba->hbalock, flags); 2113 lpfc_worker_wake_up(phba); 2114 return; 2115 } 2116 2117 /** 2118 * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev 2119 * @phba: The HBA for which this call is being executed. 2120 * @psb: The scsi buffer which is going to be un-mapped. 2121 * 2122 * This routine does DMA un-mapping of scatter gather list of scsi command 2123 * field of @lpfc_cmd for device with SLI-3 interface spec. 2124 **/ 2125 static void 2126 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 2127 { 2128 /* 2129 * There are only two special cases to consider. (1) the scsi command 2130 * requested scatter-gather usage or (2) the scsi command allocated 2131 * a request buffer, but did not request use_sg. There is a third 2132 * case, but it does not require resource deallocation. 2133 */ 2134 if (psb->seg_cnt > 0) 2135 scsi_dma_unmap(psb->pCmd); 2136 if (psb->prot_seg_cnt > 0) 2137 dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd), 2138 scsi_prot_sg_count(psb->pCmd), 2139 psb->pCmd->sc_data_direction); 2140 } 2141 2142 /** 2143 * lpfc_handler_fcp_err - FCP response handler 2144 * @vport: The virtual port for which this call is being executed. 2145 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2146 * @rsp_iocb: The response IOCB which contains FCP error. 2147 * 2148 * This routine is called to process response IOCB with status field 2149 * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command 2150 * based upon SCSI and FCP error. 2151 **/ 2152 static void 2153 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2154 struct lpfc_iocbq *rsp_iocb) 2155 { 2156 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 2157 struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd; 2158 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 2159 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 2160 uint32_t resp_info = fcprsp->rspStatus2; 2161 uint32_t scsi_status = fcprsp->rspStatus3; 2162 uint32_t *lp; 2163 uint32_t host_status = DID_OK; 2164 uint32_t rsplen = 0; 2165 uint32_t logit = LOG_FCP | LOG_FCP_ERROR; 2166 2167 2168 /* 2169 * If this is a task management command, there is no 2170 * scsi packet associated with this lpfc_cmd. The driver 2171 * consumes it. 2172 */ 2173 if (fcpcmd->fcpCntl2) { 2174 scsi_status = 0; 2175 goto out; 2176 } 2177 2178 if (resp_info & RSP_LEN_VALID) { 2179 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2180 if (rsplen != 0 && rsplen != 4 && rsplen != 8) { 2181 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 2182 "2719 Invalid response length: " 2183 "tgt x%x lun x%x cmnd x%x rsplen x%x\n", 2184 cmnd->device->id, 2185 cmnd->device->lun, cmnd->cmnd[0], 2186 rsplen); 2187 host_status = DID_ERROR; 2188 goto out; 2189 } 2190 if (fcprsp->rspInfo3 != RSP_NO_FAILURE) { 2191 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 2192 "2757 Protocol failure detected during " 2193 "processing of FCP I/O op: " 2194 "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n", 2195 cmnd->device->id, 2196 cmnd->device->lun, cmnd->cmnd[0], 2197 fcprsp->rspInfo3); 2198 host_status = DID_ERROR; 2199 goto out; 2200 } 2201 } 2202 2203 if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) { 2204 uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen); 2205 if (snslen > SCSI_SENSE_BUFFERSIZE) 2206 snslen = SCSI_SENSE_BUFFERSIZE; 2207 2208 if (resp_info & RSP_LEN_VALID) 2209 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2210 memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen); 2211 } 2212 lp = (uint32_t *)cmnd->sense_buffer; 2213 2214 if (!scsi_status && (resp_info & RESID_UNDER)) 2215 logit = LOG_FCP; 2216 2217 lpfc_printf_vlog(vport, KERN_WARNING, logit, 2218 "9024 FCP command x%x failed: x%x SNS x%x x%x " 2219 "Data: x%x x%x x%x x%x x%x\n", 2220 cmnd->cmnd[0], scsi_status, 2221 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info, 2222 be32_to_cpu(fcprsp->rspResId), 2223 be32_to_cpu(fcprsp->rspSnsLen), 2224 be32_to_cpu(fcprsp->rspRspLen), 2225 fcprsp->rspInfo3); 2226 2227 scsi_set_resid(cmnd, 0); 2228 if (resp_info & RESID_UNDER) { 2229 scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId)); 2230 2231 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2232 "9025 FCP Read Underrun, expected %d, " 2233 "residual %d Data: x%x x%x x%x\n", 2234 be32_to_cpu(fcpcmd->fcpDl), 2235 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0], 2236 cmnd->underflow); 2237 2238 /* 2239 * If there is an under run check if under run reported by 2240 * storage array is same as the under run reported by HBA. 2241 * If this is not same, there is a dropped frame. 2242 */ 2243 if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 2244 fcpi_parm && 2245 (scsi_get_resid(cmnd) != fcpi_parm)) { 2246 lpfc_printf_vlog(vport, KERN_WARNING, 2247 LOG_FCP | LOG_FCP_ERROR, 2248 "9026 FCP Read Check Error " 2249 "and Underrun Data: x%x x%x x%x x%x\n", 2250 be32_to_cpu(fcpcmd->fcpDl), 2251 scsi_get_resid(cmnd), fcpi_parm, 2252 cmnd->cmnd[0]); 2253 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2254 host_status = DID_ERROR; 2255 } 2256 /* 2257 * The cmnd->underflow is the minimum number of bytes that must 2258 * be transfered for this command. Provided a sense condition 2259 * is not present, make sure the actual amount transferred is at 2260 * least the underflow value or fail. 2261 */ 2262 if (!(resp_info & SNS_LEN_VALID) && 2263 (scsi_status == SAM_STAT_GOOD) && 2264 (scsi_bufflen(cmnd) - scsi_get_resid(cmnd) 2265 < cmnd->underflow)) { 2266 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2267 "9027 FCP command x%x residual " 2268 "underrun converted to error " 2269 "Data: x%x x%x x%x\n", 2270 cmnd->cmnd[0], scsi_bufflen(cmnd), 2271 scsi_get_resid(cmnd), cmnd->underflow); 2272 host_status = DID_ERROR; 2273 } 2274 } else if (resp_info & RESID_OVER) { 2275 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2276 "9028 FCP command x%x residual overrun error. " 2277 "Data: x%x x%x\n", cmnd->cmnd[0], 2278 scsi_bufflen(cmnd), scsi_get_resid(cmnd)); 2279 host_status = DID_ERROR; 2280 2281 /* 2282 * Check SLI validation that all the transfer was actually done 2283 * (fcpi_parm should be zero). Apply check only to reads. 2284 */ 2285 } else if (fcpi_parm && (cmnd->sc_data_direction == DMA_FROM_DEVICE)) { 2286 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, 2287 "9029 FCP Read Check Error Data: " 2288 "x%x x%x x%x x%x x%x\n", 2289 be32_to_cpu(fcpcmd->fcpDl), 2290 be32_to_cpu(fcprsp->rspResId), 2291 fcpi_parm, cmnd->cmnd[0], scsi_status); 2292 switch (scsi_status) { 2293 case SAM_STAT_GOOD: 2294 case SAM_STAT_CHECK_CONDITION: 2295 /* Fabric dropped a data frame. Fail any successful 2296 * command in which we detected dropped frames. 2297 * A status of good or some check conditions could 2298 * be considered a successful command. 2299 */ 2300 host_status = DID_ERROR; 2301 break; 2302 } 2303 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2304 } 2305 2306 out: 2307 cmnd->result = ScsiResult(host_status, scsi_status); 2308 lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb); 2309 } 2310 2311 /** 2312 * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine 2313 * @phba: The Hba for which this call is being executed. 2314 * @pIocbIn: The command IOCBQ for the scsi cmnd. 2315 * @pIocbOut: The response IOCBQ for the scsi cmnd. 2316 * 2317 * This routine assigns scsi command result by looking into response IOCB 2318 * status field appropriately. This routine handles QUEUE FULL condition as 2319 * well by ramping down device queue depth. 2320 **/ 2321 static void 2322 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn, 2323 struct lpfc_iocbq *pIocbOut) 2324 { 2325 struct lpfc_scsi_buf *lpfc_cmd = 2326 (struct lpfc_scsi_buf *) pIocbIn->context1; 2327 struct lpfc_vport *vport = pIocbIn->vport; 2328 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2329 struct lpfc_nodelist *pnode = rdata->pnode; 2330 struct scsi_cmnd *cmd; 2331 int result; 2332 struct scsi_device *tmp_sdev; 2333 int depth; 2334 unsigned long flags; 2335 struct lpfc_fast_path_event *fast_path_evt; 2336 struct Scsi_Host *shost; 2337 uint32_t queue_depth, scsi_id; 2338 2339 /* Sanity check on return of outstanding command */ 2340 if (!(lpfc_cmd->pCmd)) 2341 return; 2342 cmd = lpfc_cmd->pCmd; 2343 shost = cmd->device->host; 2344 2345 lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4]; 2346 lpfc_cmd->status = pIocbOut->iocb.ulpStatus; 2347 /* pick up SLI4 exhange busy status from HBA */ 2348 lpfc_cmd->exch_busy = pIocbOut->iocb_flag & LPFC_EXCHANGE_BUSY; 2349 2350 if (pnode && NLP_CHK_NODE_ACT(pnode)) 2351 atomic_dec(&pnode->cmd_pending); 2352 2353 if (lpfc_cmd->status) { 2354 if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT && 2355 (lpfc_cmd->result & IOERR_DRVR_MASK)) 2356 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 2357 else if (lpfc_cmd->status >= IOSTAT_CNT) 2358 lpfc_cmd->status = IOSTAT_DEFAULT; 2359 2360 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2361 "9030 FCP cmd x%x failed <%d/%d> " 2362 "status: x%x result: x%x Data: x%x x%x\n", 2363 cmd->cmnd[0], 2364 cmd->device ? cmd->device->id : 0xffff, 2365 cmd->device ? cmd->device->lun : 0xffff, 2366 lpfc_cmd->status, lpfc_cmd->result, 2367 pIocbOut->iocb.ulpContext, 2368 lpfc_cmd->cur_iocbq.iocb.ulpIoTag); 2369 2370 switch (lpfc_cmd->status) { 2371 case IOSTAT_FCP_RSP_ERROR: 2372 /* Call FCP RSP handler to determine result */ 2373 lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut); 2374 break; 2375 case IOSTAT_NPORT_BSY: 2376 case IOSTAT_FABRIC_BSY: 2377 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); 2378 fast_path_evt = lpfc_alloc_fast_evt(phba); 2379 if (!fast_path_evt) 2380 break; 2381 fast_path_evt->un.fabric_evt.event_type = 2382 FC_REG_FABRIC_EVENT; 2383 fast_path_evt->un.fabric_evt.subcategory = 2384 (lpfc_cmd->status == IOSTAT_NPORT_BSY) ? 2385 LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY; 2386 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2387 memcpy(&fast_path_evt->un.fabric_evt.wwpn, 2388 &pnode->nlp_portname, 2389 sizeof(struct lpfc_name)); 2390 memcpy(&fast_path_evt->un.fabric_evt.wwnn, 2391 &pnode->nlp_nodename, 2392 sizeof(struct lpfc_name)); 2393 } 2394 fast_path_evt->vport = vport; 2395 fast_path_evt->work_evt.evt = 2396 LPFC_EVT_FASTPATH_MGMT_EVT; 2397 spin_lock_irqsave(&phba->hbalock, flags); 2398 list_add_tail(&fast_path_evt->work_evt.evt_listp, 2399 &phba->work_list); 2400 spin_unlock_irqrestore(&phba->hbalock, flags); 2401 lpfc_worker_wake_up(phba); 2402 break; 2403 case IOSTAT_LOCAL_REJECT: 2404 if (lpfc_cmd->result == IOERR_INVALID_RPI || 2405 lpfc_cmd->result == IOERR_NO_RESOURCES || 2406 lpfc_cmd->result == IOERR_ABORT_REQUESTED || 2407 lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) { 2408 cmd->result = ScsiResult(DID_REQUEUE, 0); 2409 break; 2410 } 2411 2412 if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED || 2413 lpfc_cmd->result == IOERR_TX_DMA_FAILED) && 2414 pIocbOut->iocb.unsli3.sli3_bg.bgstat) { 2415 if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) { 2416 /* 2417 * This is a response for a BG enabled 2418 * cmd. Parse BG error 2419 */ 2420 lpfc_parse_bg_err(phba, lpfc_cmd, 2421 pIocbOut); 2422 break; 2423 } else { 2424 lpfc_printf_vlog(vport, KERN_WARNING, 2425 LOG_BG, 2426 "9031 non-zero BGSTAT " 2427 "on unprotected cmd\n"); 2428 } 2429 } 2430 2431 /* else: fall through */ 2432 default: 2433 cmd->result = ScsiResult(DID_ERROR, 0); 2434 break; 2435 } 2436 2437 if (!pnode || !NLP_CHK_NODE_ACT(pnode) 2438 || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 2439 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 2440 SAM_STAT_BUSY); 2441 } else { 2442 cmd->result = ScsiResult(DID_OK, 0); 2443 } 2444 2445 if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) { 2446 uint32_t *lp = (uint32_t *)cmd->sense_buffer; 2447 2448 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2449 "0710 Iodone <%d/%d> cmd %p, error " 2450 "x%x SNS x%x x%x Data: x%x x%x\n", 2451 cmd->device->id, cmd->device->lun, cmd, 2452 cmd->result, *lp, *(lp + 3), cmd->retries, 2453 scsi_get_resid(cmd)); 2454 } 2455 2456 lpfc_update_stats(phba, lpfc_cmd); 2457 result = cmd->result; 2458 if (vport->cfg_max_scsicmpl_time && 2459 time_after(jiffies, lpfc_cmd->start_time + 2460 msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) { 2461 spin_lock_irqsave(shost->host_lock, flags); 2462 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2463 if (pnode->cmd_qdepth > 2464 atomic_read(&pnode->cmd_pending) && 2465 (atomic_read(&pnode->cmd_pending) > 2466 LPFC_MIN_TGT_QDEPTH) && 2467 ((cmd->cmnd[0] == READ_10) || 2468 (cmd->cmnd[0] == WRITE_10))) 2469 pnode->cmd_qdepth = 2470 atomic_read(&pnode->cmd_pending); 2471 2472 pnode->last_change_time = jiffies; 2473 } 2474 spin_unlock_irqrestore(shost->host_lock, flags); 2475 } else if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2476 if ((pnode->cmd_qdepth < vport->cfg_tgt_queue_depth) && 2477 time_after(jiffies, pnode->last_change_time + 2478 msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) { 2479 spin_lock_irqsave(shost->host_lock, flags); 2480 depth = pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT 2481 / 100; 2482 depth = depth ? depth : 1; 2483 pnode->cmd_qdepth += depth; 2484 if (pnode->cmd_qdepth > vport->cfg_tgt_queue_depth) 2485 pnode->cmd_qdepth = vport->cfg_tgt_queue_depth; 2486 pnode->last_change_time = jiffies; 2487 spin_unlock_irqrestore(shost->host_lock, flags); 2488 } 2489 } 2490 2491 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 2492 2493 /* The sdev is not guaranteed to be valid post scsi_done upcall. */ 2494 queue_depth = cmd->device->queue_depth; 2495 scsi_id = cmd->device->id; 2496 cmd->scsi_done(cmd); 2497 2498 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2499 /* 2500 * If there is a thread waiting for command completion 2501 * wake up the thread. 2502 */ 2503 spin_lock_irqsave(shost->host_lock, flags); 2504 lpfc_cmd->pCmd = NULL; 2505 if (lpfc_cmd->waitq) 2506 wake_up(lpfc_cmd->waitq); 2507 spin_unlock_irqrestore(shost->host_lock, flags); 2508 lpfc_release_scsi_buf(phba, lpfc_cmd); 2509 return; 2510 } 2511 2512 if (!result) 2513 lpfc_rampup_queue_depth(vport, queue_depth); 2514 2515 /* 2516 * Check for queue full. If the lun is reporting queue full, then 2517 * back off the lun queue depth to prevent target overloads. 2518 */ 2519 if (result == SAM_STAT_TASK_SET_FULL && pnode && 2520 NLP_CHK_NODE_ACT(pnode)) { 2521 shost_for_each_device(tmp_sdev, shost) { 2522 if (tmp_sdev->id != scsi_id) 2523 continue; 2524 depth = scsi_track_queue_full(tmp_sdev, 2525 tmp_sdev->queue_depth-1); 2526 if (depth <= 0) 2527 continue; 2528 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2529 "0711 detected queue full - lun queue " 2530 "depth adjusted to %d.\n", depth); 2531 lpfc_send_sdev_queuedepth_change_event(phba, vport, 2532 pnode, 2533 tmp_sdev->lun, 2534 depth+1, depth); 2535 } 2536 } 2537 2538 /* 2539 * If there is a thread waiting for command completion 2540 * wake up the thread. 2541 */ 2542 spin_lock_irqsave(shost->host_lock, flags); 2543 lpfc_cmd->pCmd = NULL; 2544 if (lpfc_cmd->waitq) 2545 wake_up(lpfc_cmd->waitq); 2546 spin_unlock_irqrestore(shost->host_lock, flags); 2547 2548 lpfc_release_scsi_buf(phba, lpfc_cmd); 2549 } 2550 2551 /** 2552 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB 2553 * @data: A pointer to the immediate command data portion of the IOCB. 2554 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer. 2555 * 2556 * The routine copies the entire FCP command from @fcp_cmnd to @data while 2557 * byte swapping the data to big endian format for transmission on the wire. 2558 **/ 2559 static void 2560 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd) 2561 { 2562 int i, j; 2563 for (i = 0, j = 0; i < sizeof(struct fcp_cmnd); 2564 i += sizeof(uint32_t), j++) { 2565 ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]); 2566 } 2567 } 2568 2569 /** 2570 * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit 2571 * @vport: The virtual port for which this call is being executed. 2572 * @lpfc_cmd: The scsi command which needs to send. 2573 * @pnode: Pointer to lpfc_nodelist. 2574 * 2575 * This routine initializes fcp_cmnd and iocb data structure from scsi command 2576 * to transfer for device with SLI3 interface spec. 2577 **/ 2578 static void 2579 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2580 struct lpfc_nodelist *pnode) 2581 { 2582 struct lpfc_hba *phba = vport->phba; 2583 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 2584 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 2585 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 2586 struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq); 2587 int datadir = scsi_cmnd->sc_data_direction; 2588 char tag[2]; 2589 2590 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 2591 return; 2592 2593 lpfc_cmd->fcp_rsp->rspSnsLen = 0; 2594 /* clear task management bits */ 2595 lpfc_cmd->fcp_cmnd->fcpCntl2 = 0; 2596 2597 int_to_scsilun(lpfc_cmd->pCmd->device->lun, 2598 &lpfc_cmd->fcp_cmnd->fcp_lun); 2599 2600 memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16); 2601 2602 if (scsi_populate_tag_msg(scsi_cmnd, tag)) { 2603 switch (tag[0]) { 2604 case HEAD_OF_QUEUE_TAG: 2605 fcp_cmnd->fcpCntl1 = HEAD_OF_Q; 2606 break; 2607 case ORDERED_QUEUE_TAG: 2608 fcp_cmnd->fcpCntl1 = ORDERED_Q; 2609 break; 2610 default: 2611 fcp_cmnd->fcpCntl1 = SIMPLE_Q; 2612 break; 2613 } 2614 } else 2615 fcp_cmnd->fcpCntl1 = 0; 2616 2617 /* 2618 * There are three possibilities here - use scatter-gather segment, use 2619 * the single mapping, or neither. Start the lpfc command prep by 2620 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 2621 * data bde entry. 2622 */ 2623 if (scsi_sg_count(scsi_cmnd)) { 2624 if (datadir == DMA_TO_DEVICE) { 2625 iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR; 2626 if (phba->sli_rev < LPFC_SLI_REV4) { 2627 iocb_cmd->un.fcpi.fcpi_parm = 0; 2628 iocb_cmd->ulpPU = 0; 2629 } else 2630 iocb_cmd->ulpPU = PARM_READ_CHECK; 2631 fcp_cmnd->fcpCntl3 = WRITE_DATA; 2632 phba->fc4OutputRequests++; 2633 } else { 2634 iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR; 2635 iocb_cmd->ulpPU = PARM_READ_CHECK; 2636 fcp_cmnd->fcpCntl3 = READ_DATA; 2637 phba->fc4InputRequests++; 2638 } 2639 } else { 2640 iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR; 2641 iocb_cmd->un.fcpi.fcpi_parm = 0; 2642 iocb_cmd->ulpPU = 0; 2643 fcp_cmnd->fcpCntl3 = 0; 2644 phba->fc4ControlRequests++; 2645 } 2646 if (phba->sli_rev == 3 && 2647 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2648 lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd); 2649 /* 2650 * Finish initializing those IOCB fields that are independent 2651 * of the scsi_cmnd request_buffer 2652 */ 2653 piocbq->iocb.ulpContext = pnode->nlp_rpi; 2654 if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE) 2655 piocbq->iocb.ulpFCP2Rcvy = 1; 2656 else 2657 piocbq->iocb.ulpFCP2Rcvy = 0; 2658 2659 piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f); 2660 piocbq->context1 = lpfc_cmd; 2661 piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; 2662 piocbq->iocb.ulpTimeout = lpfc_cmd->timeout; 2663 piocbq->vport = vport; 2664 } 2665 2666 /** 2667 * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit 2668 * @vport: The virtual port for which this call is being executed. 2669 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2670 * @lun: Logical unit number. 2671 * @task_mgmt_cmd: SCSI task management command. 2672 * 2673 * This routine creates FCP information unit corresponding to @task_mgmt_cmd 2674 * for device with SLI-3 interface spec. 2675 * 2676 * Return codes: 2677 * 0 - Error 2678 * 1 - Success 2679 **/ 2680 static int 2681 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport, 2682 struct lpfc_scsi_buf *lpfc_cmd, 2683 unsigned int lun, 2684 uint8_t task_mgmt_cmd) 2685 { 2686 struct lpfc_iocbq *piocbq; 2687 IOCB_t *piocb; 2688 struct fcp_cmnd *fcp_cmnd; 2689 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2690 struct lpfc_nodelist *ndlp = rdata->pnode; 2691 2692 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2693 ndlp->nlp_state != NLP_STE_MAPPED_NODE) 2694 return 0; 2695 2696 piocbq = &(lpfc_cmd->cur_iocbq); 2697 piocbq->vport = vport; 2698 2699 piocb = &piocbq->iocb; 2700 2701 fcp_cmnd = lpfc_cmd->fcp_cmnd; 2702 /* Clear out any old data in the FCP command area */ 2703 memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); 2704 int_to_scsilun(lun, &fcp_cmnd->fcp_lun); 2705 fcp_cmnd->fcpCntl2 = task_mgmt_cmd; 2706 if (vport->phba->sli_rev == 3 && 2707 !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2708 lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd); 2709 piocb->ulpCommand = CMD_FCP_ICMND64_CR; 2710 piocb->ulpContext = ndlp->nlp_rpi; 2711 if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) { 2712 piocb->ulpFCP2Rcvy = 1; 2713 } 2714 piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f); 2715 2716 /* ulpTimeout is only one byte */ 2717 if (lpfc_cmd->timeout > 0xff) { 2718 /* 2719 * Do not timeout the command at the firmware level. 2720 * The driver will provide the timeout mechanism. 2721 */ 2722 piocb->ulpTimeout = 0; 2723 } else 2724 piocb->ulpTimeout = lpfc_cmd->timeout; 2725 2726 if (vport->phba->sli_rev == LPFC_SLI_REV4) 2727 lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd); 2728 2729 return 1; 2730 } 2731 2732 /** 2733 * lpfc_scsi_api_table_setup - Set up scsi api fucntion jump table 2734 * @phba: The hba struct for which this call is being executed. 2735 * @dev_grp: The HBA PCI-Device group number. 2736 * 2737 * This routine sets up the SCSI interface API function jump table in @phba 2738 * struct. 2739 * Returns: 0 - success, -ENODEV - failure. 2740 **/ 2741 int 2742 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 2743 { 2744 2745 phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf; 2746 phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd; 2747 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf; 2748 2749 switch (dev_grp) { 2750 case LPFC_PCI_DEV_LP: 2751 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3; 2752 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3; 2753 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3; 2754 break; 2755 case LPFC_PCI_DEV_OC: 2756 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4; 2757 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4; 2758 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4; 2759 break; 2760 default: 2761 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 2762 "1418 Invalid HBA PCI-device group: 0x%x\n", 2763 dev_grp); 2764 return -ENODEV; 2765 break; 2766 } 2767 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf; 2768 phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth; 2769 phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; 2770 return 0; 2771 } 2772 2773 /** 2774 * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command 2775 * @phba: The Hba for which this call is being executed. 2776 * @cmdiocbq: Pointer to lpfc_iocbq data structure. 2777 * @rspiocbq: Pointer to lpfc_iocbq data structure. 2778 * 2779 * This routine is IOCB completion routine for device reset and target reset 2780 * routine. This routine release scsi buffer associated with lpfc_cmd. 2781 **/ 2782 static void 2783 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba, 2784 struct lpfc_iocbq *cmdiocbq, 2785 struct lpfc_iocbq *rspiocbq) 2786 { 2787 struct lpfc_scsi_buf *lpfc_cmd = 2788 (struct lpfc_scsi_buf *) cmdiocbq->context1; 2789 if (lpfc_cmd) 2790 lpfc_release_scsi_buf(phba, lpfc_cmd); 2791 return; 2792 } 2793 2794 /** 2795 * lpfc_info - Info entry point of scsi_host_template data structure 2796 * @host: The scsi host for which this call is being executed. 2797 * 2798 * This routine provides module information about hba. 2799 * 2800 * Reutrn code: 2801 * Pointer to char - Success. 2802 **/ 2803 const char * 2804 lpfc_info(struct Scsi_Host *host) 2805 { 2806 struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata; 2807 struct lpfc_hba *phba = vport->phba; 2808 int len; 2809 static char lpfcinfobuf[384]; 2810 2811 memset(lpfcinfobuf,0,384); 2812 if (phba && phba->pcidev){ 2813 strncpy(lpfcinfobuf, phba->ModelDesc, 256); 2814 len = strlen(lpfcinfobuf); 2815 snprintf(lpfcinfobuf + len, 2816 384-len, 2817 " on PCI bus %02x device %02x irq %d", 2818 phba->pcidev->bus->number, 2819 phba->pcidev->devfn, 2820 phba->pcidev->irq); 2821 len = strlen(lpfcinfobuf); 2822 if (phba->Port[0]) { 2823 snprintf(lpfcinfobuf + len, 2824 384-len, 2825 " port %s", 2826 phba->Port); 2827 } 2828 len = strlen(lpfcinfobuf); 2829 if (phba->sli4_hba.link_state.logical_speed) { 2830 snprintf(lpfcinfobuf + len, 2831 384-len, 2832 " Logical Link Speed: %d Mbps", 2833 phba->sli4_hba.link_state.logical_speed * 10); 2834 } 2835 } 2836 return lpfcinfobuf; 2837 } 2838 2839 /** 2840 * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba 2841 * @phba: The Hba for which this call is being executed. 2842 * 2843 * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo. 2844 * The default value of cfg_poll_tmo is 10 milliseconds. 2845 **/ 2846 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba) 2847 { 2848 unsigned long poll_tmo_expires = 2849 (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo)); 2850 2851 if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt) 2852 mod_timer(&phba->fcp_poll_timer, 2853 poll_tmo_expires); 2854 } 2855 2856 /** 2857 * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA 2858 * @phba: The Hba for which this call is being executed. 2859 * 2860 * This routine starts the fcp_poll_timer of @phba. 2861 **/ 2862 void lpfc_poll_start_timer(struct lpfc_hba * phba) 2863 { 2864 lpfc_poll_rearm_timer(phba); 2865 } 2866 2867 /** 2868 * lpfc_poll_timeout - Restart polling timer 2869 * @ptr: Map to lpfc_hba data structure pointer. 2870 * 2871 * This routine restarts fcp_poll timer, when FCP ring polling is enable 2872 * and FCP Ring interrupt is disable. 2873 **/ 2874 2875 void lpfc_poll_timeout(unsigned long ptr) 2876 { 2877 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 2878 2879 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2880 lpfc_sli_handle_fast_ring_event(phba, 2881 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 2882 2883 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 2884 lpfc_poll_rearm_timer(phba); 2885 } 2886 } 2887 2888 /** 2889 * lpfc_queuecommand - scsi_host_template queuecommand entry point 2890 * @cmnd: Pointer to scsi_cmnd data structure. 2891 * @done: Pointer to done routine. 2892 * 2893 * Driver registers this routine to scsi midlayer to submit a @cmd to process. 2894 * This routine prepares an IOCB from scsi command and provides to firmware. 2895 * The @done callback is invoked after driver finished processing the command. 2896 * 2897 * Return value : 2898 * 0 - Success 2899 * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily. 2900 **/ 2901 static int 2902 lpfc_queuecommand_lck(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *)) 2903 { 2904 struct Scsi_Host *shost = cmnd->device->host; 2905 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 2906 struct lpfc_hba *phba = vport->phba; 2907 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 2908 struct lpfc_nodelist *ndlp; 2909 struct lpfc_scsi_buf *lpfc_cmd; 2910 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); 2911 int err; 2912 2913 err = fc_remote_port_chkready(rport); 2914 if (err) { 2915 cmnd->result = err; 2916 goto out_fail_command; 2917 } 2918 ndlp = rdata->pnode; 2919 2920 if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 2921 scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 2922 2923 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 2924 "9058 BLKGRD: ERROR: rcvd protected cmd:%02x" 2925 " op:%02x str=%s without registering for" 2926 " BlockGuard - Rejecting command\n", 2927 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 2928 dif_op_str[scsi_get_prot_op(cmnd)]); 2929 goto out_fail_command; 2930 } 2931 2932 /* 2933 * Catch race where our node has transitioned, but the 2934 * transport is still transitioning. 2935 */ 2936 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 2937 cmnd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); 2938 goto out_fail_command; 2939 } 2940 if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth) 2941 goto out_host_busy; 2942 2943 lpfc_cmd = lpfc_get_scsi_buf(phba); 2944 if (lpfc_cmd == NULL) { 2945 lpfc_rampdown_queue_depth(phba); 2946 2947 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2948 "0707 driver's buffer pool is empty, " 2949 "IO busied\n"); 2950 goto out_host_busy; 2951 } 2952 2953 /* 2954 * Store the midlayer's command structure for the completion phase 2955 * and complete the command initialization. 2956 */ 2957 lpfc_cmd->pCmd = cmnd; 2958 lpfc_cmd->rdata = rdata; 2959 lpfc_cmd->timeout = 0; 2960 lpfc_cmd->start_time = jiffies; 2961 cmnd->host_scribble = (unsigned char *)lpfc_cmd; 2962 cmnd->scsi_done = done; 2963 2964 if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 2965 if (vport->phba->cfg_enable_bg) { 2966 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2967 "9033 BLKGRD: rcvd protected cmd:%02x op:%02x " 2968 "str=%s\n", 2969 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 2970 dif_op_str[scsi_get_prot_op(cmnd)]); 2971 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2972 "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x " 2973 "%02x %02x %02x %02x %02x\n", 2974 cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2], 2975 cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5], 2976 cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8], 2977 cmnd->cmnd[9]); 2978 if (cmnd->cmnd[0] == READ_10) 2979 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2980 "9035 BLKGRD: READ @ sector %llu, " 2981 "count %u\n", 2982 (unsigned long long)scsi_get_lba(cmnd), 2983 blk_rq_sectors(cmnd->request)); 2984 else if (cmnd->cmnd[0] == WRITE_10) 2985 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2986 "9036 BLKGRD: WRITE @ sector %llu, " 2987 "count %u cmd=%p\n", 2988 (unsigned long long)scsi_get_lba(cmnd), 2989 blk_rq_sectors(cmnd->request), 2990 cmnd); 2991 } 2992 2993 err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); 2994 } else { 2995 if (vport->phba->cfg_enable_bg) { 2996 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2997 "9038 BLKGRD: rcvd unprotected cmd:" 2998 "%02x op:%02x str=%s\n", 2999 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 3000 dif_op_str[scsi_get_prot_op(cmnd)]); 3001 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3002 "9039 BLKGRD: CDB: %02x %02x %02x " 3003 "%02x %02x %02x %02x %02x %02x %02x\n", 3004 cmnd->cmnd[0], cmnd->cmnd[1], 3005 cmnd->cmnd[2], cmnd->cmnd[3], 3006 cmnd->cmnd[4], cmnd->cmnd[5], 3007 cmnd->cmnd[6], cmnd->cmnd[7], 3008 cmnd->cmnd[8], cmnd->cmnd[9]); 3009 if (cmnd->cmnd[0] == READ_10) 3010 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3011 "9040 dbg: READ @ sector %llu, " 3012 "count %u\n", 3013 (unsigned long long)scsi_get_lba(cmnd), 3014 blk_rq_sectors(cmnd->request)); 3015 else if (cmnd->cmnd[0] == WRITE_10) 3016 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3017 "9041 dbg: WRITE @ sector %llu, " 3018 "count %u cmd=%p\n", 3019 (unsigned long long)scsi_get_lba(cmnd), 3020 blk_rq_sectors(cmnd->request), cmnd); 3021 else 3022 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 3023 "9042 dbg: parser not implemented\n"); 3024 } 3025 err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 3026 } 3027 3028 if (err) 3029 goto out_host_busy_free_buf; 3030 3031 lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp); 3032 3033 atomic_inc(&ndlp->cmd_pending); 3034 err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, 3035 &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB); 3036 if (err) { 3037 atomic_dec(&ndlp->cmd_pending); 3038 goto out_host_busy_free_buf; 3039 } 3040 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3041 spin_unlock(shost->host_lock); 3042 lpfc_sli_handle_fast_ring_event(phba, 3043 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3044 3045 spin_lock(shost->host_lock); 3046 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3047 lpfc_poll_rearm_timer(phba); 3048 } 3049 3050 return 0; 3051 3052 out_host_busy_free_buf: 3053 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 3054 lpfc_release_scsi_buf(phba, lpfc_cmd); 3055 out_host_busy: 3056 return SCSI_MLQUEUE_HOST_BUSY; 3057 3058 out_fail_command: 3059 done(cmnd); 3060 return 0; 3061 } 3062 3063 static DEF_SCSI_QCMD(lpfc_queuecommand) 3064 3065 /** 3066 * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point 3067 * @cmnd: Pointer to scsi_cmnd data structure. 3068 * 3069 * This routine aborts @cmnd pending in base driver. 3070 * 3071 * Return code : 3072 * 0x2003 - Error 3073 * 0x2002 - Success 3074 **/ 3075 static int 3076 lpfc_abort_handler(struct scsi_cmnd *cmnd) 3077 { 3078 struct Scsi_Host *shost = cmnd->device->host; 3079 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3080 struct lpfc_hba *phba = vport->phba; 3081 struct lpfc_iocbq *iocb; 3082 struct lpfc_iocbq *abtsiocb; 3083 struct lpfc_scsi_buf *lpfc_cmd; 3084 IOCB_t *cmd, *icmd; 3085 int ret = SUCCESS; 3086 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq); 3087 3088 ret = fc_block_scsi_eh(cmnd); 3089 if (ret) 3090 return ret; 3091 lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble; 3092 if (!lpfc_cmd) { 3093 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3094 "2873 SCSI Layer I/O Abort Request IO CMPL Status " 3095 "x%x ID %d " 3096 "LUN %d snum %#lx\n", ret, cmnd->device->id, 3097 cmnd->device->lun, cmnd->serial_number); 3098 return SUCCESS; 3099 } 3100 3101 /* 3102 * If pCmd field of the corresponding lpfc_scsi_buf structure 3103 * points to a different SCSI command, then the driver has 3104 * already completed this command, but the midlayer did not 3105 * see the completion before the eh fired. Just return 3106 * SUCCESS. 3107 */ 3108 iocb = &lpfc_cmd->cur_iocbq; 3109 if (lpfc_cmd->pCmd != cmnd) 3110 goto out; 3111 3112 BUG_ON(iocb->context1 != lpfc_cmd); 3113 3114 abtsiocb = lpfc_sli_get_iocbq(phba); 3115 if (abtsiocb == NULL) { 3116 ret = FAILED; 3117 goto out; 3118 } 3119 3120 /* 3121 * The scsi command can not be in txq and it is in flight because the 3122 * pCmd is still pointig at the SCSI command we have to abort. There 3123 * is no need to search the txcmplq. Just send an abort to the FW. 3124 */ 3125 3126 cmd = &iocb->iocb; 3127 icmd = &abtsiocb->iocb; 3128 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 3129 icmd->un.acxri.abortContextTag = cmd->ulpContext; 3130 if (phba->sli_rev == LPFC_SLI_REV4) 3131 icmd->un.acxri.abortIoTag = iocb->sli4_xritag; 3132 else 3133 icmd->un.acxri.abortIoTag = cmd->ulpIoTag; 3134 3135 icmd->ulpLe = 1; 3136 icmd->ulpClass = cmd->ulpClass; 3137 3138 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3139 abtsiocb->fcp_wqidx = iocb->fcp_wqidx; 3140 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 3141 3142 if (lpfc_is_link_up(phba)) 3143 icmd->ulpCommand = CMD_ABORT_XRI_CN; 3144 else 3145 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 3146 3147 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 3148 abtsiocb->vport = vport; 3149 if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) == 3150 IOCB_ERROR) { 3151 lpfc_sli_release_iocbq(phba, abtsiocb); 3152 ret = FAILED; 3153 goto out; 3154 } 3155 3156 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3157 lpfc_sli_handle_fast_ring_event(phba, 3158 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3159 3160 lpfc_cmd->waitq = &waitq; 3161 /* Wait for abort to complete */ 3162 wait_event_timeout(waitq, 3163 (lpfc_cmd->pCmd != cmnd), 3164 (2*vport->cfg_devloss_tmo*HZ)); 3165 3166 spin_lock_irq(shost->host_lock); 3167 lpfc_cmd->waitq = NULL; 3168 spin_unlock_irq(shost->host_lock); 3169 3170 if (lpfc_cmd->pCmd == cmnd) { 3171 ret = FAILED; 3172 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3173 "0748 abort handler timed out waiting " 3174 "for abort to complete: ret %#x, ID %d, " 3175 "LUN %d, snum %#lx\n", 3176 ret, cmnd->device->id, cmnd->device->lun, 3177 cmnd->serial_number); 3178 } 3179 3180 out: 3181 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3182 "0749 SCSI Layer I/O Abort Request Status x%x ID %d " 3183 "LUN %d snum %#lx\n", ret, cmnd->device->id, 3184 cmnd->device->lun, cmnd->serial_number); 3185 return ret; 3186 } 3187 3188 static char * 3189 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd) 3190 { 3191 switch (task_mgmt_cmd) { 3192 case FCP_ABORT_TASK_SET: 3193 return "ABORT_TASK_SET"; 3194 case FCP_CLEAR_TASK_SET: 3195 return "FCP_CLEAR_TASK_SET"; 3196 case FCP_BUS_RESET: 3197 return "FCP_BUS_RESET"; 3198 case FCP_LUN_RESET: 3199 return "FCP_LUN_RESET"; 3200 case FCP_TARGET_RESET: 3201 return "FCP_TARGET_RESET"; 3202 case FCP_CLEAR_ACA: 3203 return "FCP_CLEAR_ACA"; 3204 case FCP_TERMINATE_TASK: 3205 return "FCP_TERMINATE_TASK"; 3206 default: 3207 return "unknown"; 3208 } 3209 } 3210 3211 /** 3212 * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler 3213 * @vport: The virtual port for which this call is being executed. 3214 * @rdata: Pointer to remote port local data 3215 * @tgt_id: Target ID of remote device. 3216 * @lun_id: Lun number for the TMF 3217 * @task_mgmt_cmd: type of TMF to send 3218 * 3219 * This routine builds and sends a TMF (SCSI Task Mgmt Function) to 3220 * a remote port. 3221 * 3222 * Return Code: 3223 * 0x2003 - Error 3224 * 0x2002 - Success. 3225 **/ 3226 static int 3227 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata, 3228 unsigned tgt_id, unsigned int lun_id, 3229 uint8_t task_mgmt_cmd) 3230 { 3231 struct lpfc_hba *phba = vport->phba; 3232 struct lpfc_scsi_buf *lpfc_cmd; 3233 struct lpfc_iocbq *iocbq; 3234 struct lpfc_iocbq *iocbqrsp; 3235 struct lpfc_nodelist *pnode = rdata->pnode; 3236 int ret; 3237 int status; 3238 3239 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 3240 return FAILED; 3241 3242 lpfc_cmd = lpfc_get_scsi_buf(phba); 3243 if (lpfc_cmd == NULL) 3244 return FAILED; 3245 lpfc_cmd->timeout = 60; 3246 lpfc_cmd->rdata = rdata; 3247 3248 status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id, 3249 task_mgmt_cmd); 3250 if (!status) { 3251 lpfc_release_scsi_buf(phba, lpfc_cmd); 3252 return FAILED; 3253 } 3254 3255 iocbq = &lpfc_cmd->cur_iocbq; 3256 iocbqrsp = lpfc_sli_get_iocbq(phba); 3257 if (iocbqrsp == NULL) { 3258 lpfc_release_scsi_buf(phba, lpfc_cmd); 3259 return FAILED; 3260 } 3261 3262 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3263 "0702 Issue %s to TGT %d LUN %d " 3264 "rpi x%x nlp_flag x%x\n", 3265 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id, 3266 pnode->nlp_rpi, pnode->nlp_flag); 3267 3268 status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING, 3269 iocbq, iocbqrsp, lpfc_cmd->timeout); 3270 if (status != IOCB_SUCCESS) { 3271 if (status == IOCB_TIMEDOUT) { 3272 iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl; 3273 ret = TIMEOUT_ERROR; 3274 } else 3275 ret = FAILED; 3276 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 3277 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3278 "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n", 3279 lpfc_taskmgmt_name(task_mgmt_cmd), 3280 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus, 3281 iocbqrsp->iocb.un.ulpWord[4]); 3282 } else if (status == IOCB_BUSY) 3283 ret = FAILED; 3284 else 3285 ret = SUCCESS; 3286 3287 lpfc_sli_release_iocbq(phba, iocbqrsp); 3288 3289 if (ret != TIMEOUT_ERROR) 3290 lpfc_release_scsi_buf(phba, lpfc_cmd); 3291 3292 return ret; 3293 } 3294 3295 /** 3296 * lpfc_chk_tgt_mapped - 3297 * @vport: The virtual port to check on 3298 * @cmnd: Pointer to scsi_cmnd data structure. 3299 * 3300 * This routine delays until the scsi target (aka rport) for the 3301 * command exists (is present and logged in) or we declare it non-existent. 3302 * 3303 * Return code : 3304 * 0x2003 - Error 3305 * 0x2002 - Success 3306 **/ 3307 static int 3308 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd) 3309 { 3310 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3311 struct lpfc_nodelist *pnode; 3312 unsigned long later; 3313 3314 if (!rdata) { 3315 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3316 "0797 Tgt Map rport failure: rdata x%p\n", rdata); 3317 return FAILED; 3318 } 3319 pnode = rdata->pnode; 3320 /* 3321 * If target is not in a MAPPED state, delay until 3322 * target is rediscovered or devloss timeout expires. 3323 */ 3324 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3325 while (time_after(later, jiffies)) { 3326 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 3327 return FAILED; 3328 if (pnode->nlp_state == NLP_STE_MAPPED_NODE) 3329 return SUCCESS; 3330 schedule_timeout_uninterruptible(msecs_to_jiffies(500)); 3331 rdata = cmnd->device->hostdata; 3332 if (!rdata) 3333 return FAILED; 3334 pnode = rdata->pnode; 3335 } 3336 if (!pnode || !NLP_CHK_NODE_ACT(pnode) || 3337 (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 3338 return FAILED; 3339 return SUCCESS; 3340 } 3341 3342 /** 3343 * lpfc_reset_flush_io_context - 3344 * @vport: The virtual port (scsi_host) for the flush context 3345 * @tgt_id: If aborting by Target contect - specifies the target id 3346 * @lun_id: If aborting by Lun context - specifies the lun id 3347 * @context: specifies the context level to flush at. 3348 * 3349 * After a reset condition via TMF, we need to flush orphaned i/o 3350 * contexts from the adapter. This routine aborts any contexts 3351 * outstanding, then waits for their completions. The wait is 3352 * bounded by devloss_tmo though. 3353 * 3354 * Return code : 3355 * 0x2003 - Error 3356 * 0x2002 - Success 3357 **/ 3358 static int 3359 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id, 3360 uint64_t lun_id, lpfc_ctx_cmd context) 3361 { 3362 struct lpfc_hba *phba = vport->phba; 3363 unsigned long later; 3364 int cnt; 3365 3366 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3367 if (cnt) 3368 lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring], 3369 tgt_id, lun_id, context); 3370 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3371 while (time_after(later, jiffies) && cnt) { 3372 schedule_timeout_uninterruptible(msecs_to_jiffies(20)); 3373 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3374 } 3375 if (cnt) { 3376 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3377 "0724 I/O flush failure for context %s : cnt x%x\n", 3378 ((context == LPFC_CTX_LUN) ? "LUN" : 3379 ((context == LPFC_CTX_TGT) ? "TGT" : 3380 ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))), 3381 cnt); 3382 return FAILED; 3383 } 3384 return SUCCESS; 3385 } 3386 3387 /** 3388 * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point 3389 * @cmnd: Pointer to scsi_cmnd data structure. 3390 * 3391 * This routine does a device reset by sending a LUN_RESET task management 3392 * command. 3393 * 3394 * Return code : 3395 * 0x2003 - Error 3396 * 0x2002 - Success 3397 **/ 3398 static int 3399 lpfc_device_reset_handler(struct scsi_cmnd *cmnd) 3400 { 3401 struct Scsi_Host *shost = cmnd->device->host; 3402 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3403 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3404 struct lpfc_nodelist *pnode; 3405 unsigned tgt_id = cmnd->device->id; 3406 unsigned int lun_id = cmnd->device->lun; 3407 struct lpfc_scsi_event_header scsi_event; 3408 int status; 3409 3410 if (!rdata) { 3411 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3412 "0798 Device Reset rport failure: rdata x%p\n", rdata); 3413 return FAILED; 3414 } 3415 pnode = rdata->pnode; 3416 status = fc_block_scsi_eh(cmnd); 3417 if (status) 3418 return status; 3419 3420 status = lpfc_chk_tgt_mapped(vport, cmnd); 3421 if (status == FAILED) { 3422 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3423 "0721 Device Reset rport failure: rdata x%p\n", rdata); 3424 return FAILED; 3425 } 3426 3427 scsi_event.event_type = FC_REG_SCSI_EVENT; 3428 scsi_event.subcategory = LPFC_EVENT_LUNRESET; 3429 scsi_event.lun = lun_id; 3430 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3431 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3432 3433 fc_host_post_vendor_event(shost, fc_get_event_number(), 3434 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3435 3436 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3437 FCP_LUN_RESET); 3438 3439 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3440 "0713 SCSI layer issued Device Reset (%d, %d) " 3441 "return x%x\n", tgt_id, lun_id, status); 3442 3443 /* 3444 * We have to clean up i/o as : they may be orphaned by the TMF; 3445 * or if the TMF failed, they may be in an indeterminate state. 3446 * So, continue on. 3447 * We will report success if all the i/o aborts successfully. 3448 */ 3449 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3450 LPFC_CTX_LUN); 3451 return status; 3452 } 3453 3454 /** 3455 * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point 3456 * @cmnd: Pointer to scsi_cmnd data structure. 3457 * 3458 * This routine does a target reset by sending a TARGET_RESET task management 3459 * command. 3460 * 3461 * Return code : 3462 * 0x2003 - Error 3463 * 0x2002 - Success 3464 **/ 3465 static int 3466 lpfc_target_reset_handler(struct scsi_cmnd *cmnd) 3467 { 3468 struct Scsi_Host *shost = cmnd->device->host; 3469 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3470 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3471 struct lpfc_nodelist *pnode; 3472 unsigned tgt_id = cmnd->device->id; 3473 unsigned int lun_id = cmnd->device->lun; 3474 struct lpfc_scsi_event_header scsi_event; 3475 int status; 3476 3477 if (!rdata) { 3478 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3479 "0799 Target Reset rport failure: rdata x%p\n", rdata); 3480 return FAILED; 3481 } 3482 pnode = rdata->pnode; 3483 status = fc_block_scsi_eh(cmnd); 3484 if (status) 3485 return status; 3486 3487 status = lpfc_chk_tgt_mapped(vport, cmnd); 3488 if (status == FAILED) { 3489 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3490 "0722 Target Reset rport failure: rdata x%p\n", rdata); 3491 return FAILED; 3492 } 3493 3494 scsi_event.event_type = FC_REG_SCSI_EVENT; 3495 scsi_event.subcategory = LPFC_EVENT_TGTRESET; 3496 scsi_event.lun = 0; 3497 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3498 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3499 3500 fc_host_post_vendor_event(shost, fc_get_event_number(), 3501 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3502 3503 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3504 FCP_TARGET_RESET); 3505 3506 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3507 "0723 SCSI layer issued Target Reset (%d, %d) " 3508 "return x%x\n", tgt_id, lun_id, status); 3509 3510 /* 3511 * We have to clean up i/o as : they may be orphaned by the TMF; 3512 * or if the TMF failed, they may be in an indeterminate state. 3513 * So, continue on. 3514 * We will report success if all the i/o aborts successfully. 3515 */ 3516 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3517 LPFC_CTX_TGT); 3518 return status; 3519 } 3520 3521 /** 3522 * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point 3523 * @cmnd: Pointer to scsi_cmnd data structure. 3524 * 3525 * This routine does target reset to all targets on @cmnd->device->host. 3526 * This emulates Parallel SCSI Bus Reset Semantics. 3527 * 3528 * Return code : 3529 * 0x2003 - Error 3530 * 0x2002 - Success 3531 **/ 3532 static int 3533 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd) 3534 { 3535 struct Scsi_Host *shost = cmnd->device->host; 3536 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3537 struct lpfc_nodelist *ndlp = NULL; 3538 struct lpfc_scsi_event_header scsi_event; 3539 int match; 3540 int ret = SUCCESS, status, i; 3541 3542 scsi_event.event_type = FC_REG_SCSI_EVENT; 3543 scsi_event.subcategory = LPFC_EVENT_BUSRESET; 3544 scsi_event.lun = 0; 3545 memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name)); 3546 memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name)); 3547 3548 fc_host_post_vendor_event(shost, fc_get_event_number(), 3549 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3550 3551 ret = fc_block_scsi_eh(cmnd); 3552 if (ret) 3553 return ret; 3554 3555 /* 3556 * Since the driver manages a single bus device, reset all 3557 * targets known to the driver. Should any target reset 3558 * fail, this routine returns failure to the midlayer. 3559 */ 3560 for (i = 0; i < LPFC_MAX_TARGET; i++) { 3561 /* Search for mapped node by target ID */ 3562 match = 0; 3563 spin_lock_irq(shost->host_lock); 3564 list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { 3565 if (!NLP_CHK_NODE_ACT(ndlp)) 3566 continue; 3567 if (ndlp->nlp_state == NLP_STE_MAPPED_NODE && 3568 ndlp->nlp_sid == i && 3569 ndlp->rport) { 3570 match = 1; 3571 break; 3572 } 3573 } 3574 spin_unlock_irq(shost->host_lock); 3575 if (!match) 3576 continue; 3577 3578 status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data, 3579 i, 0, FCP_TARGET_RESET); 3580 3581 if (status != SUCCESS) { 3582 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3583 "0700 Bus Reset on target %d failed\n", 3584 i); 3585 ret = FAILED; 3586 } 3587 } 3588 /* 3589 * We have to clean up i/o as : they may be orphaned by the TMFs 3590 * above; or if any of the TMFs failed, they may be in an 3591 * indeterminate state. 3592 * We will report success if all the i/o aborts successfully. 3593 */ 3594 3595 status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST); 3596 if (status != SUCCESS) 3597 ret = FAILED; 3598 3599 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3600 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret); 3601 return ret; 3602 } 3603 3604 /** 3605 * lpfc_slave_alloc - scsi_host_template slave_alloc entry point 3606 * @sdev: Pointer to scsi_device. 3607 * 3608 * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's 3609 * globally available list of scsi buffers. This routine also makes sure scsi 3610 * buffer is not allocated more than HBA limit conveyed to midlayer. This list 3611 * of scsi buffer exists for the lifetime of the driver. 3612 * 3613 * Return codes: 3614 * non-0 - Error 3615 * 0 - Success 3616 **/ 3617 static int 3618 lpfc_slave_alloc(struct scsi_device *sdev) 3619 { 3620 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3621 struct lpfc_hba *phba = vport->phba; 3622 struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); 3623 uint32_t total = 0; 3624 uint32_t num_to_alloc = 0; 3625 int num_allocated = 0; 3626 uint32_t sdev_cnt; 3627 3628 if (!rport || fc_remote_port_chkready(rport)) 3629 return -ENXIO; 3630 3631 sdev->hostdata = rport->dd_data; 3632 sdev_cnt = atomic_inc_return(&phba->sdev_cnt); 3633 3634 /* 3635 * Populate the cmds_per_lun count scsi_bufs into this host's globally 3636 * available list of scsi buffers. Don't allocate more than the 3637 * HBA limit conveyed to the midlayer via the host structure. The 3638 * formula accounts for the lun_queue_depth + error handlers + 1 3639 * extra. This list of scsi bufs exists for the lifetime of the driver. 3640 */ 3641 total = phba->total_scsi_bufs; 3642 num_to_alloc = vport->cfg_lun_queue_depth + 2; 3643 3644 /* If allocated buffers are enough do nothing */ 3645 if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total) 3646 return 0; 3647 3648 /* Allow some exchanges to be available always to complete discovery */ 3649 if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3650 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3651 "0704 At limitation of %d preallocated " 3652 "command buffers\n", total); 3653 return 0; 3654 /* Allow some exchanges to be available always to complete discovery */ 3655 } else if (total + num_to_alloc > 3656 phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3657 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3658 "0705 Allocation request of %d " 3659 "command buffers will exceed max of %d. " 3660 "Reducing allocation request to %d.\n", 3661 num_to_alloc, phba->cfg_hba_queue_depth, 3662 (phba->cfg_hba_queue_depth - total)); 3663 num_to_alloc = phba->cfg_hba_queue_depth - total; 3664 } 3665 num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc); 3666 if (num_to_alloc != num_allocated) { 3667 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3668 "0708 Allocation request of %d " 3669 "command buffers did not succeed. " 3670 "Allocated %d buffers.\n", 3671 num_to_alloc, num_allocated); 3672 } 3673 if (num_allocated > 0) 3674 phba->total_scsi_bufs += num_allocated; 3675 return 0; 3676 } 3677 3678 /** 3679 * lpfc_slave_configure - scsi_host_template slave_configure entry point 3680 * @sdev: Pointer to scsi_device. 3681 * 3682 * This routine configures following items 3683 * - Tag command queuing support for @sdev if supported. 3684 * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set. 3685 * 3686 * Return codes: 3687 * 0 - Success 3688 **/ 3689 static int 3690 lpfc_slave_configure(struct scsi_device *sdev) 3691 { 3692 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3693 struct lpfc_hba *phba = vport->phba; 3694 3695 if (sdev->tagged_supported) 3696 scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth); 3697 else 3698 scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth); 3699 3700 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3701 lpfc_sli_handle_fast_ring_event(phba, 3702 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3703 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3704 lpfc_poll_rearm_timer(phba); 3705 } 3706 3707 return 0; 3708 } 3709 3710 /** 3711 * lpfc_slave_destroy - slave_destroy entry point of SHT data structure 3712 * @sdev: Pointer to scsi_device. 3713 * 3714 * This routine sets @sdev hostatdata filed to null. 3715 **/ 3716 static void 3717 lpfc_slave_destroy(struct scsi_device *sdev) 3718 { 3719 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3720 struct lpfc_hba *phba = vport->phba; 3721 atomic_dec(&phba->sdev_cnt); 3722 sdev->hostdata = NULL; 3723 return; 3724 } 3725 3726 3727 struct scsi_host_template lpfc_template = { 3728 .module = THIS_MODULE, 3729 .name = LPFC_DRIVER_NAME, 3730 .info = lpfc_info, 3731 .queuecommand = lpfc_queuecommand, 3732 .eh_abort_handler = lpfc_abort_handler, 3733 .eh_device_reset_handler = lpfc_device_reset_handler, 3734 .eh_target_reset_handler = lpfc_target_reset_handler, 3735 .eh_bus_reset_handler = lpfc_bus_reset_handler, 3736 .slave_alloc = lpfc_slave_alloc, 3737 .slave_configure = lpfc_slave_configure, 3738 .slave_destroy = lpfc_slave_destroy, 3739 .scan_finished = lpfc_scan_finished, 3740 .this_id = -1, 3741 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 3742 .cmd_per_lun = LPFC_CMD_PER_LUN, 3743 .use_clustering = ENABLE_CLUSTERING, 3744 .shost_attrs = lpfc_hba_attrs, 3745 .max_sectors = 0xFFFF, 3746 .vendor_id = LPFC_NL_VENDOR_ID, 3747 .change_queue_depth = lpfc_change_queue_depth, 3748 }; 3749 3750 struct scsi_host_template lpfc_vport_template = { 3751 .module = THIS_MODULE, 3752 .name = LPFC_DRIVER_NAME, 3753 .info = lpfc_info, 3754 .queuecommand = lpfc_queuecommand, 3755 .eh_abort_handler = lpfc_abort_handler, 3756 .eh_device_reset_handler = lpfc_device_reset_handler, 3757 .eh_target_reset_handler = lpfc_target_reset_handler, 3758 .eh_bus_reset_handler = lpfc_bus_reset_handler, 3759 .slave_alloc = lpfc_slave_alloc, 3760 .slave_configure = lpfc_slave_configure, 3761 .slave_destroy = lpfc_slave_destroy, 3762 .scan_finished = lpfc_scan_finished, 3763 .this_id = -1, 3764 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 3765 .cmd_per_lun = LPFC_CMD_PER_LUN, 3766 .use_clustering = ENABLE_CLUSTERING, 3767 .shost_attrs = lpfc_vport_attrs, 3768 .max_sectors = 0xFFFF, 3769 .change_queue_depth = lpfc_change_queue_depth, 3770 }; 3771