1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2009 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 #include <linux/pci.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_transport_fc.h> 32 33 #include "lpfc_version.h" 34 #include "lpfc_hw4.h" 35 #include "lpfc_hw.h" 36 #include "lpfc_sli.h" 37 #include "lpfc_sli4.h" 38 #include "lpfc_nl.h" 39 #include "lpfc_disc.h" 40 #include "lpfc_scsi.h" 41 #include "lpfc.h" 42 #include "lpfc_logmsg.h" 43 #include "lpfc_crtn.h" 44 #include "lpfc_vport.h" 45 46 #define LPFC_RESET_WAIT 2 47 #define LPFC_ABORT_WAIT 2 48 49 int _dump_buf_done; 50 51 static char *dif_op_str[] = { 52 "SCSI_PROT_NORMAL", 53 "SCSI_PROT_READ_INSERT", 54 "SCSI_PROT_WRITE_STRIP", 55 "SCSI_PROT_READ_STRIP", 56 "SCSI_PROT_WRITE_INSERT", 57 "SCSI_PROT_READ_PASS", 58 "SCSI_PROT_WRITE_PASS", 59 }; 60 static void 61 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 62 static void 63 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); 64 65 static void 66 lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) 67 { 68 void *src, *dst; 69 struct scatterlist *sgde = scsi_sglist(cmnd); 70 71 if (!_dump_buf_data) { 72 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 73 "9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n", 74 __func__); 75 return; 76 } 77 78 79 if (!sgde) { 80 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 81 "9051 BLKGRD: ERROR: data scatterlist is null\n"); 82 return; 83 } 84 85 dst = (void *) _dump_buf_data; 86 while (sgde) { 87 src = sg_virt(sgde); 88 memcpy(dst, src, sgde->length); 89 dst += sgde->length; 90 sgde = sg_next(sgde); 91 } 92 } 93 94 static void 95 lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) 96 { 97 void *src, *dst; 98 struct scatterlist *sgde = scsi_prot_sglist(cmnd); 99 100 if (!_dump_buf_dif) { 101 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 102 "9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n", 103 __func__); 104 return; 105 } 106 107 if (!sgde) { 108 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 109 "9053 BLKGRD: ERROR: prot scatterlist is null\n"); 110 return; 111 } 112 113 dst = _dump_buf_dif; 114 while (sgde) { 115 src = sg_virt(sgde); 116 memcpy(dst, src, sgde->length); 117 dst += sgde->length; 118 sgde = sg_next(sgde); 119 } 120 } 121 122 /** 123 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge. 124 * @phba: Pointer to HBA object. 125 * @lpfc_cmd: lpfc scsi command object pointer. 126 * 127 * This function is called from the lpfc_prep_task_mgmt_cmd function to 128 * set the last bit in the response sge entry. 129 **/ 130 static void 131 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba, 132 struct lpfc_scsi_buf *lpfc_cmd) 133 { 134 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 135 if (sgl) { 136 sgl += 1; 137 sgl->word2 = le32_to_cpu(sgl->word2); 138 bf_set(lpfc_sli4_sge_last, sgl, 1); 139 sgl->word2 = cpu_to_le32(sgl->word2); 140 } 141 } 142 143 /** 144 * lpfc_update_stats - Update statistical data for the command completion 145 * @phba: Pointer to HBA object. 146 * @lpfc_cmd: lpfc scsi command object pointer. 147 * 148 * This function is called when there is a command completion and this 149 * function updates the statistical data for the command completion. 150 **/ 151 static void 152 lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 153 { 154 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 155 struct lpfc_nodelist *pnode = rdata->pnode; 156 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 157 unsigned long flags; 158 struct Scsi_Host *shost = cmd->device->host; 159 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 160 unsigned long latency; 161 int i; 162 163 if (cmd->result) 164 return; 165 166 latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time); 167 168 spin_lock_irqsave(shost->host_lock, flags); 169 if (!vport->stat_data_enabled || 170 vport->stat_data_blocked || 171 !pnode->lat_data || 172 (phba->bucket_type == LPFC_NO_BUCKET)) { 173 spin_unlock_irqrestore(shost->host_lock, flags); 174 return; 175 } 176 177 if (phba->bucket_type == LPFC_LINEAR_BUCKET) { 178 i = (latency + phba->bucket_step - 1 - phba->bucket_base)/ 179 phba->bucket_step; 180 /* check array subscript bounds */ 181 if (i < 0) 182 i = 0; 183 else if (i >= LPFC_MAX_BUCKET_COUNT) 184 i = LPFC_MAX_BUCKET_COUNT - 1; 185 } else { 186 for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++) 187 if (latency <= (phba->bucket_base + 188 ((1<<i)*phba->bucket_step))) 189 break; 190 } 191 192 pnode->lat_data[i].cmd_count++; 193 spin_unlock_irqrestore(shost->host_lock, flags); 194 } 195 196 /** 197 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event 198 * @phba: Pointer to HBA context object. 199 * @vport: Pointer to vport object. 200 * @ndlp: Pointer to FC node associated with the target. 201 * @lun: Lun number of the scsi device. 202 * @old_val: Old value of the queue depth. 203 * @new_val: New value of the queue depth. 204 * 205 * This function sends an event to the mgmt application indicating 206 * there is a change in the scsi device queue depth. 207 **/ 208 static void 209 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba, 210 struct lpfc_vport *vport, 211 struct lpfc_nodelist *ndlp, 212 uint32_t lun, 213 uint32_t old_val, 214 uint32_t new_val) 215 { 216 struct lpfc_fast_path_event *fast_path_evt; 217 unsigned long flags; 218 219 fast_path_evt = lpfc_alloc_fast_evt(phba); 220 if (!fast_path_evt) 221 return; 222 223 fast_path_evt->un.queue_depth_evt.scsi_event.event_type = 224 FC_REG_SCSI_EVENT; 225 fast_path_evt->un.queue_depth_evt.scsi_event.subcategory = 226 LPFC_EVENT_VARQUEDEPTH; 227 228 /* Report all luns with change in queue depth */ 229 fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun; 230 if (ndlp && NLP_CHK_NODE_ACT(ndlp)) { 231 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn, 232 &ndlp->nlp_portname, sizeof(struct lpfc_name)); 233 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn, 234 &ndlp->nlp_nodename, sizeof(struct lpfc_name)); 235 } 236 237 fast_path_evt->un.queue_depth_evt.oldval = old_val; 238 fast_path_evt->un.queue_depth_evt.newval = new_val; 239 fast_path_evt->vport = vport; 240 241 fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; 242 spin_lock_irqsave(&phba->hbalock, flags); 243 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 244 spin_unlock_irqrestore(&phba->hbalock, flags); 245 lpfc_worker_wake_up(phba); 246 247 return; 248 } 249 250 /** 251 * lpfc_change_queue_depth - Alter scsi device queue depth 252 * @sdev: Pointer the scsi device on which to change the queue depth. 253 * @qdepth: New queue depth to set the sdev to. 254 * @reason: The reason for the queue depth change. 255 * 256 * This function is called by the midlayer and the LLD to alter the queue 257 * depth for a scsi device. This function sets the queue depth to the new 258 * value and sends an event out to log the queue depth change. 259 **/ 260 int 261 lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason) 262 { 263 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 264 struct lpfc_hba *phba = vport->phba; 265 struct lpfc_rport_data *rdata; 266 unsigned long new_queue_depth, old_queue_depth; 267 268 old_queue_depth = sdev->queue_depth; 269 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 270 new_queue_depth = sdev->queue_depth; 271 rdata = sdev->hostdata; 272 if (rdata) 273 lpfc_send_sdev_queuedepth_change_event(phba, vport, 274 rdata->pnode, sdev->lun, 275 old_queue_depth, 276 new_queue_depth); 277 return sdev->queue_depth; 278 } 279 280 /** 281 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread 282 * @phba: The Hba for which this call is being executed. 283 * 284 * This routine is called when there is resource error in driver or firmware. 285 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine 286 * posts at most 1 event each second. This routine wakes up worker thread of 287 * @phba to process WORKER_RAM_DOWN_EVENT event. 288 * 289 * This routine should be called with no lock held. 290 **/ 291 void 292 lpfc_rampdown_queue_depth(struct lpfc_hba *phba) 293 { 294 unsigned long flags; 295 uint32_t evt_posted; 296 297 spin_lock_irqsave(&phba->hbalock, flags); 298 atomic_inc(&phba->num_rsrc_err); 299 phba->last_rsrc_error_time = jiffies; 300 301 if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) { 302 spin_unlock_irqrestore(&phba->hbalock, flags); 303 return; 304 } 305 306 phba->last_ramp_down_time = jiffies; 307 308 spin_unlock_irqrestore(&phba->hbalock, flags); 309 310 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 311 evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE; 312 if (!evt_posted) 313 phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE; 314 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 315 316 if (!evt_posted) 317 lpfc_worker_wake_up(phba); 318 return; 319 } 320 321 /** 322 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread 323 * @phba: The Hba for which this call is being executed. 324 * 325 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine 326 * post at most 1 event every 5 minute after last_ramp_up_time or 327 * last_rsrc_error_time. This routine wakes up worker thread of @phba 328 * to process WORKER_RAM_DOWN_EVENT event. 329 * 330 * This routine should be called with no lock held. 331 **/ 332 static inline void 333 lpfc_rampup_queue_depth(struct lpfc_vport *vport, 334 uint32_t queue_depth) 335 { 336 unsigned long flags; 337 struct lpfc_hba *phba = vport->phba; 338 uint32_t evt_posted; 339 atomic_inc(&phba->num_cmd_success); 340 341 if (vport->cfg_lun_queue_depth <= queue_depth) 342 return; 343 spin_lock_irqsave(&phba->hbalock, flags); 344 if (time_before(jiffies, 345 phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) || 346 time_before(jiffies, 347 phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) { 348 spin_unlock_irqrestore(&phba->hbalock, flags); 349 return; 350 } 351 phba->last_ramp_up_time = jiffies; 352 spin_unlock_irqrestore(&phba->hbalock, flags); 353 354 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 355 evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE; 356 if (!evt_posted) 357 phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE; 358 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 359 360 if (!evt_posted) 361 lpfc_worker_wake_up(phba); 362 return; 363 } 364 365 /** 366 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler 367 * @phba: The Hba for which this call is being executed. 368 * 369 * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker 370 * thread.This routine reduces queue depth for all scsi device on each vport 371 * associated with @phba. 372 **/ 373 void 374 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba) 375 { 376 struct lpfc_vport **vports; 377 struct Scsi_Host *shost; 378 struct scsi_device *sdev; 379 unsigned long new_queue_depth; 380 unsigned long num_rsrc_err, num_cmd_success; 381 int i; 382 383 num_rsrc_err = atomic_read(&phba->num_rsrc_err); 384 num_cmd_success = atomic_read(&phba->num_cmd_success); 385 386 vports = lpfc_create_vport_work_array(phba); 387 if (vports != NULL) 388 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 389 shost = lpfc_shost_from_vport(vports[i]); 390 shost_for_each_device(sdev, shost) { 391 new_queue_depth = 392 sdev->queue_depth * num_rsrc_err / 393 (num_rsrc_err + num_cmd_success); 394 if (!new_queue_depth) 395 new_queue_depth = sdev->queue_depth - 1; 396 else 397 new_queue_depth = sdev->queue_depth - 398 new_queue_depth; 399 lpfc_change_queue_depth(sdev, new_queue_depth, 400 SCSI_QDEPTH_DEFAULT); 401 } 402 } 403 lpfc_destroy_vport_work_array(phba, vports); 404 atomic_set(&phba->num_rsrc_err, 0); 405 atomic_set(&phba->num_cmd_success, 0); 406 } 407 408 /** 409 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler 410 * @phba: The Hba for which this call is being executed. 411 * 412 * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker 413 * thread.This routine increases queue depth for all scsi device on each vport 414 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and 415 * num_cmd_success to zero. 416 **/ 417 void 418 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba) 419 { 420 struct lpfc_vport **vports; 421 struct Scsi_Host *shost; 422 struct scsi_device *sdev; 423 int i; 424 425 vports = lpfc_create_vport_work_array(phba); 426 if (vports != NULL) 427 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 428 shost = lpfc_shost_from_vport(vports[i]); 429 shost_for_each_device(sdev, shost) { 430 if (vports[i]->cfg_lun_queue_depth <= 431 sdev->queue_depth) 432 continue; 433 lpfc_change_queue_depth(sdev, 434 sdev->queue_depth+1, 435 SCSI_QDEPTH_RAMP_UP); 436 } 437 } 438 lpfc_destroy_vport_work_array(phba, vports); 439 atomic_set(&phba->num_rsrc_err, 0); 440 atomic_set(&phba->num_cmd_success, 0); 441 } 442 443 /** 444 * lpfc_scsi_dev_block - set all scsi hosts to block state 445 * @phba: Pointer to HBA context object. 446 * 447 * This function walks vport list and set each SCSI host to block state 448 * by invoking fc_remote_port_delete() routine. This function is invoked 449 * with EEH when device's PCI slot has been permanently disabled. 450 **/ 451 void 452 lpfc_scsi_dev_block(struct lpfc_hba *phba) 453 { 454 struct lpfc_vport **vports; 455 struct Scsi_Host *shost; 456 struct scsi_device *sdev; 457 struct fc_rport *rport; 458 int i; 459 460 vports = lpfc_create_vport_work_array(phba); 461 if (vports != NULL) 462 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 463 shost = lpfc_shost_from_vport(vports[i]); 464 shost_for_each_device(sdev, shost) { 465 rport = starget_to_rport(scsi_target(sdev)); 466 fc_remote_port_delete(rport); 467 } 468 } 469 lpfc_destroy_vport_work_array(phba, vports); 470 } 471 472 /** 473 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec 474 * @vport: The virtual port for which this call being executed. 475 * @num_to_allocate: The requested number of buffers to allocate. 476 * 477 * This routine allocates a scsi buffer for device with SLI-3 interface spec, 478 * the scsi buffer contains all the necessary information needed to initiate 479 * a SCSI I/O. The non-DMAable buffer region contains information to build 480 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP, 481 * and the initial BPL. In addition to allocating memory, the FCP CMND and 482 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB. 483 * 484 * Return codes: 485 * int - number of scsi buffers that were allocated. 486 * 0 = failure, less than num_to_alloc is a partial failure. 487 **/ 488 static int 489 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc) 490 { 491 struct lpfc_hba *phba = vport->phba; 492 struct lpfc_scsi_buf *psb; 493 struct ulp_bde64 *bpl; 494 IOCB_t *iocb; 495 dma_addr_t pdma_phys_fcp_cmd; 496 dma_addr_t pdma_phys_fcp_rsp; 497 dma_addr_t pdma_phys_bpl; 498 uint16_t iotag; 499 int bcnt; 500 501 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 502 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 503 if (!psb) 504 break; 505 506 /* 507 * Get memory from the pci pool to map the virt space to pci 508 * bus space for an I/O. The DMA buffer includes space for the 509 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 510 * necessary to support the sg_tablesize. 511 */ 512 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 513 GFP_KERNEL, &psb->dma_handle); 514 if (!psb->data) { 515 kfree(psb); 516 break; 517 } 518 519 /* Initialize virtual ptrs to dma_buf region. */ 520 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 521 522 /* Allocate iotag for psb->cur_iocbq. */ 523 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 524 if (iotag == 0) { 525 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 526 psb->data, psb->dma_handle); 527 kfree(psb); 528 break; 529 } 530 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 531 532 psb->fcp_cmnd = psb->data; 533 psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd); 534 psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) + 535 sizeof(struct fcp_rsp); 536 537 /* Initialize local short-hand pointers. */ 538 bpl = psb->fcp_bpl; 539 pdma_phys_fcp_cmd = psb->dma_handle; 540 pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd); 541 pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) + 542 sizeof(struct fcp_rsp); 543 544 /* 545 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 546 * are sg list bdes. Initialize the first two and leave the 547 * rest for queuecommand. 548 */ 549 bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd)); 550 bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd)); 551 bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd); 552 bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 553 bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w); 554 555 /* Setup the physical region for the FCP RSP */ 556 bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp)); 557 bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp)); 558 bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp); 559 bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64; 560 bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w); 561 562 /* 563 * Since the IOCB for the FCP I/O is built into this 564 * lpfc_scsi_buf, initialize it with all known data now. 565 */ 566 iocb = &psb->cur_iocbq.iocb; 567 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 568 if ((phba->sli_rev == 3) && 569 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { 570 /* fill in immediate fcp command BDE */ 571 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED; 572 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 573 iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t, 574 unsli3.fcp_ext.icd); 575 iocb->un.fcpi64.bdl.addrHigh = 0; 576 iocb->ulpBdeCount = 0; 577 iocb->ulpLe = 0; 578 /* fill in responce BDE */ 579 iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags = 580 BUFF_TYPE_BDE_64; 581 iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize = 582 sizeof(struct fcp_rsp); 583 iocb->unsli3.fcp_ext.rbde.addrLow = 584 putPaddrLow(pdma_phys_fcp_rsp); 585 iocb->unsli3.fcp_ext.rbde.addrHigh = 586 putPaddrHigh(pdma_phys_fcp_rsp); 587 } else { 588 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 589 iocb->un.fcpi64.bdl.bdeSize = 590 (2 * sizeof(struct ulp_bde64)); 591 iocb->un.fcpi64.bdl.addrLow = 592 putPaddrLow(pdma_phys_bpl); 593 iocb->un.fcpi64.bdl.addrHigh = 594 putPaddrHigh(pdma_phys_bpl); 595 iocb->ulpBdeCount = 1; 596 iocb->ulpLe = 1; 597 } 598 iocb->ulpClass = CLASS3; 599 psb->status = IOSTAT_SUCCESS; 600 /* Put it back into the SCSI buffer list */ 601 lpfc_release_scsi_buf_s3(phba, psb); 602 603 } 604 605 return bcnt; 606 } 607 608 /** 609 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort 610 * @phba: pointer to lpfc hba data structure. 611 * @axri: pointer to the fcp xri abort wcqe structure. 612 * 613 * This routine is invoked by the worker thread to process a SLI4 fast-path 614 * FCP aborted xri. 615 **/ 616 void 617 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba, 618 struct sli4_wcqe_xri_aborted *axri) 619 { 620 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 621 struct lpfc_scsi_buf *psb, *next_psb; 622 unsigned long iflag = 0; 623 624 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, iflag); 625 list_for_each_entry_safe(psb, next_psb, 626 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { 627 if (psb->cur_iocbq.sli4_xritag == xri) { 628 list_del(&psb->list); 629 psb->status = IOSTAT_SUCCESS; 630 spin_unlock_irqrestore( 631 &phba->sli4_hba.abts_scsi_buf_list_lock, 632 iflag); 633 lpfc_release_scsi_buf_s4(phba, psb); 634 return; 635 } 636 } 637 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock, 638 iflag); 639 } 640 641 /** 642 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block 643 * @phba: pointer to lpfc hba data structure. 644 * 645 * This routine walks the list of scsi buffers that have been allocated and 646 * repost them to the HBA by using SGL block post. This is needed after a 647 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 648 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list 649 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers. 650 * 651 * Returns: 0 = success, non-zero failure. 652 **/ 653 int 654 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba) 655 { 656 struct lpfc_scsi_buf *psb; 657 int index, status, bcnt = 0, rcnt = 0, rc = 0; 658 LIST_HEAD(sblist); 659 660 for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) { 661 psb = phba->sli4_hba.lpfc_scsi_psb_array[index]; 662 if (psb) { 663 /* Remove from SCSI buffer list */ 664 list_del(&psb->list); 665 /* Add it to a local SCSI buffer list */ 666 list_add_tail(&psb->list, &sblist); 667 if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) { 668 bcnt = rcnt; 669 rcnt = 0; 670 } 671 } else 672 /* A hole present in the XRI array, need to skip */ 673 bcnt = rcnt; 674 675 if (index == phba->sli4_hba.scsi_xri_cnt - 1) 676 /* End of XRI array for SCSI buffer, complete */ 677 bcnt = rcnt; 678 679 /* Continue until collect up to a nembed page worth of sgls */ 680 if (bcnt == 0) 681 continue; 682 /* Now, post the SCSI buffer list sgls as a block */ 683 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt); 684 /* Reset SCSI buffer count for next round of posting */ 685 bcnt = 0; 686 while (!list_empty(&sblist)) { 687 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 688 list); 689 if (status) { 690 /* Put this back on the abort scsi list */ 691 psb->status = IOSTAT_LOCAL_REJECT; 692 psb->result = IOERR_ABORT_REQUESTED; 693 rc++; 694 } else 695 psb->status = IOSTAT_SUCCESS; 696 /* Put it back into the SCSI buffer list */ 697 lpfc_release_scsi_buf_s4(phba, psb); 698 } 699 } 700 return rc; 701 } 702 703 /** 704 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec 705 * @vport: The virtual port for which this call being executed. 706 * @num_to_allocate: The requested number of buffers to allocate. 707 * 708 * This routine allocates a scsi buffer for device with SLI-4 interface spec, 709 * the scsi buffer contains all the necessary information needed to initiate 710 * a SCSI I/O. 711 * 712 * Return codes: 713 * int - number of scsi buffers that were allocated. 714 * 0 = failure, less than num_to_alloc is a partial failure. 715 **/ 716 static int 717 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc) 718 { 719 struct lpfc_hba *phba = vport->phba; 720 struct lpfc_scsi_buf *psb; 721 struct sli4_sge *sgl; 722 IOCB_t *iocb; 723 dma_addr_t pdma_phys_fcp_cmd; 724 dma_addr_t pdma_phys_fcp_rsp; 725 dma_addr_t pdma_phys_bpl, pdma_phys_bpl1; 726 uint16_t iotag, last_xritag = NO_XRI; 727 int status = 0, index; 728 int bcnt; 729 int non_sequential_xri = 0; 730 int rc = 0; 731 LIST_HEAD(sblist); 732 733 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 734 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); 735 if (!psb) 736 break; 737 738 /* 739 * Get memory from the pci pool to map the virt space to pci bus 740 * space for an I/O. The DMA buffer includes space for the 741 * struct fcp_cmnd, struct fcp_rsp and the number of bde's 742 * necessary to support the sg_tablesize. 743 */ 744 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, 745 GFP_KERNEL, &psb->dma_handle); 746 if (!psb->data) { 747 kfree(psb); 748 break; 749 } 750 751 /* Initialize virtual ptrs to dma_buf region. */ 752 memset(psb->data, 0, phba->cfg_sg_dma_buf_size); 753 754 /* Allocate iotag for psb->cur_iocbq. */ 755 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); 756 if (iotag == 0) { 757 kfree(psb); 758 break; 759 } 760 761 psb->cur_iocbq.sli4_xritag = lpfc_sli4_next_xritag(phba); 762 if (psb->cur_iocbq.sli4_xritag == NO_XRI) { 763 pci_pool_free(phba->lpfc_scsi_dma_buf_pool, 764 psb->data, psb->dma_handle); 765 kfree(psb); 766 break; 767 } 768 if (last_xritag != NO_XRI 769 && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) { 770 non_sequential_xri = 1; 771 } else 772 list_add_tail(&psb->list, &sblist); 773 last_xritag = psb->cur_iocbq.sli4_xritag; 774 775 index = phba->sli4_hba.scsi_xri_cnt++; 776 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; 777 778 psb->fcp_bpl = psb->data; 779 psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size) 780 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 781 psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd + 782 sizeof(struct fcp_cmnd)); 783 784 /* Initialize local short-hand pointers. */ 785 sgl = (struct sli4_sge *)psb->fcp_bpl; 786 pdma_phys_bpl = psb->dma_handle; 787 pdma_phys_fcp_cmd = 788 (psb->dma_handle + phba->cfg_sg_dma_buf_size) 789 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); 790 pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd); 791 792 /* 793 * The first two bdes are the FCP_CMD and FCP_RSP. The balance 794 * are sg list bdes. Initialize the first two and leave the 795 * rest for queuecommand. 796 */ 797 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd)); 798 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd)); 799 bf_set(lpfc_sli4_sge_len, sgl, sizeof(struct fcp_cmnd)); 800 bf_set(lpfc_sli4_sge_last, sgl, 0); 801 sgl->word2 = cpu_to_le32(sgl->word2); 802 sgl->word3 = cpu_to_le32(sgl->word3); 803 sgl++; 804 805 /* Setup the physical region for the FCP RSP */ 806 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp)); 807 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp)); 808 bf_set(lpfc_sli4_sge_len, sgl, sizeof(struct fcp_rsp)); 809 bf_set(lpfc_sli4_sge_last, sgl, 1); 810 sgl->word2 = cpu_to_le32(sgl->word2); 811 sgl->word3 = cpu_to_le32(sgl->word3); 812 813 /* 814 * Since the IOCB for the FCP I/O is built into this 815 * lpfc_scsi_buf, initialize it with all known data now. 816 */ 817 iocb = &psb->cur_iocbq.iocb; 818 iocb->un.fcpi64.bdl.ulpIoTag32 = 0; 819 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 820 /* setting the BLP size to 2 * sizeof BDE may not be correct. 821 * We are setting the bpl to point to out sgl. An sgl's 822 * entries are 16 bytes, a bpl entries are 12 bytes. 823 */ 824 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); 825 iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd); 826 iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd); 827 iocb->ulpBdeCount = 1; 828 iocb->ulpLe = 1; 829 iocb->ulpClass = CLASS3; 830 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 831 pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE; 832 else 833 pdma_phys_bpl1 = 0; 834 psb->dma_phys_bpl = pdma_phys_bpl; 835 phba->sli4_hba.lpfc_scsi_psb_array[index] = psb; 836 if (non_sequential_xri) { 837 status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl, 838 pdma_phys_bpl1, 839 psb->cur_iocbq.sli4_xritag); 840 if (status) { 841 /* Put this back on the abort scsi list */ 842 psb->status = IOSTAT_LOCAL_REJECT; 843 psb->result = IOERR_ABORT_REQUESTED; 844 rc++; 845 } else 846 psb->status = IOSTAT_SUCCESS; 847 /* Put it back into the SCSI buffer list */ 848 lpfc_release_scsi_buf_s4(phba, psb); 849 break; 850 } 851 } 852 if (bcnt) { 853 status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt); 854 /* Reset SCSI buffer count for next round of posting */ 855 while (!list_empty(&sblist)) { 856 list_remove_head(&sblist, psb, struct lpfc_scsi_buf, 857 list); 858 if (status) { 859 /* Put this back on the abort scsi list */ 860 psb->status = IOSTAT_LOCAL_REJECT; 861 psb->result = IOERR_ABORT_REQUESTED; 862 rc++; 863 } else 864 psb->status = IOSTAT_SUCCESS; 865 /* Put it back into the SCSI buffer list */ 866 lpfc_release_scsi_buf_s4(phba, psb); 867 } 868 } 869 870 return bcnt + non_sequential_xri - rc; 871 } 872 873 /** 874 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator 875 * @vport: The virtual port for which this call being executed. 876 * @num_to_allocate: The requested number of buffers to allocate. 877 * 878 * This routine wraps the actual SCSI buffer allocator function pointer from 879 * the lpfc_hba struct. 880 * 881 * Return codes: 882 * int - number of scsi buffers that were allocated. 883 * 0 = failure, less than num_to_alloc is a partial failure. 884 **/ 885 static inline int 886 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc) 887 { 888 return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc); 889 } 890 891 /** 892 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA 893 * @phba: The HBA for which this call is being executed. 894 * 895 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list 896 * and returns to caller. 897 * 898 * Return codes: 899 * NULL - Error 900 * Pointer to lpfc_scsi_buf - Success 901 **/ 902 static struct lpfc_scsi_buf* 903 lpfc_get_scsi_buf(struct lpfc_hba * phba) 904 { 905 struct lpfc_scsi_buf * lpfc_cmd = NULL; 906 struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list; 907 unsigned long iflag = 0; 908 909 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 910 list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list); 911 if (lpfc_cmd) { 912 lpfc_cmd->seg_cnt = 0; 913 lpfc_cmd->nonsg_phys = 0; 914 lpfc_cmd->prot_seg_cnt = 0; 915 } 916 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 917 return lpfc_cmd; 918 } 919 920 /** 921 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list 922 * @phba: The Hba for which this call is being executed. 923 * @psb: The scsi buffer which is being released. 924 * 925 * This routine releases @psb scsi buffer by adding it to tail of @phba 926 * lpfc_scsi_buf_list list. 927 **/ 928 static void 929 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 930 { 931 unsigned long iflag = 0; 932 933 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 934 psb->pCmd = NULL; 935 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 936 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 937 } 938 939 /** 940 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list. 941 * @phba: The Hba for which this call is being executed. 942 * @psb: The scsi buffer which is being released. 943 * 944 * This routine releases @psb scsi buffer by adding it to tail of @phba 945 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer 946 * and cannot be reused for at least RA_TOV amount of time if it was 947 * aborted. 948 **/ 949 static void 950 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 951 { 952 unsigned long iflag = 0; 953 954 if (psb->status == IOSTAT_LOCAL_REJECT 955 && psb->result == IOERR_ABORT_REQUESTED) { 956 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, 957 iflag); 958 psb->pCmd = NULL; 959 list_add_tail(&psb->list, 960 &phba->sli4_hba.lpfc_abts_scsi_buf_list); 961 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock, 962 iflag); 963 } else { 964 965 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); 966 psb->pCmd = NULL; 967 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); 968 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); 969 } 970 } 971 972 /** 973 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list. 974 * @phba: The Hba for which this call is being executed. 975 * @psb: The scsi buffer which is being released. 976 * 977 * This routine releases @psb scsi buffer by adding it to tail of @phba 978 * lpfc_scsi_buf_list list. 979 **/ 980 static void 981 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 982 { 983 984 phba->lpfc_release_scsi_buf(phba, psb); 985 } 986 987 /** 988 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec 989 * @phba: The Hba for which this call is being executed. 990 * @lpfc_cmd: The scsi buffer which is going to be mapped. 991 * 992 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 993 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans 994 * through sg elements and format the bdea. This routine also initializes all 995 * IOCB fields which are dependent on scsi command request buffer. 996 * 997 * Return codes: 998 * 1 - Error 999 * 0 - Success 1000 **/ 1001 static int 1002 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 1003 { 1004 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1005 struct scatterlist *sgel = NULL; 1006 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1007 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1008 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1009 struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde; 1010 dma_addr_t physaddr; 1011 uint32_t num_bde = 0; 1012 int nseg, datadir = scsi_cmnd->sc_data_direction; 1013 1014 /* 1015 * There are three possibilities here - use scatter-gather segment, use 1016 * the single mapping, or neither. Start the lpfc command prep by 1017 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 1018 * data bde entry. 1019 */ 1020 bpl += 2; 1021 if (scsi_sg_count(scsi_cmnd)) { 1022 /* 1023 * The driver stores the segment count returned from pci_map_sg 1024 * because this a count of dma-mappings used to map the use_sg 1025 * pages. They are not guaranteed to be the same for those 1026 * architectures that implement an IOMMU. 1027 */ 1028 1029 nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), 1030 scsi_sg_count(scsi_cmnd), datadir); 1031 if (unlikely(!nseg)) 1032 return 1; 1033 1034 lpfc_cmd->seg_cnt = nseg; 1035 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1036 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1037 "9064 BLKGRD: %s: Too many sg segments from " 1038 "dma_map_sg. Config %d, seg_cnt %d\n", 1039 __func__, phba->cfg_sg_seg_cnt, 1040 lpfc_cmd->seg_cnt); 1041 scsi_dma_unmap(scsi_cmnd); 1042 return 1; 1043 } 1044 1045 /* 1046 * The driver established a maximum scatter-gather segment count 1047 * during probe that limits the number of sg elements in any 1048 * single scsi command. Just run through the seg_cnt and format 1049 * the bde's. 1050 * When using SLI-3 the driver will try to fit all the BDEs into 1051 * the IOCB. If it can't then the BDEs get added to a BPL as it 1052 * does for SLI-2 mode. 1053 */ 1054 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 1055 physaddr = sg_dma_address(sgel); 1056 if (phba->sli_rev == 3 && 1057 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 1058 nseg <= LPFC_EXT_DATA_BDE_COUNT) { 1059 data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1060 data_bde->tus.f.bdeSize = sg_dma_len(sgel); 1061 data_bde->addrLow = putPaddrLow(physaddr); 1062 data_bde->addrHigh = putPaddrHigh(physaddr); 1063 data_bde++; 1064 } else { 1065 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1066 bpl->tus.f.bdeSize = sg_dma_len(sgel); 1067 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1068 bpl->addrLow = 1069 le32_to_cpu(putPaddrLow(physaddr)); 1070 bpl->addrHigh = 1071 le32_to_cpu(putPaddrHigh(physaddr)); 1072 bpl++; 1073 } 1074 } 1075 } 1076 1077 /* 1078 * Finish initializing those IOCB fields that are dependent on the 1079 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 1080 * explicitly reinitialized and for SLI-3 the extended bde count is 1081 * explicitly reinitialized since all iocb memory resources are reused. 1082 */ 1083 if (phba->sli_rev == 3 && 1084 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { 1085 if (num_bde > LPFC_EXT_DATA_BDE_COUNT) { 1086 /* 1087 * The extended IOCB format can only fit 3 BDE or a BPL. 1088 * This I/O has more than 3 BDE so the 1st data bde will 1089 * be a BPL that is filled in here. 1090 */ 1091 physaddr = lpfc_cmd->dma_handle; 1092 data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64; 1093 data_bde->tus.f.bdeSize = (num_bde * 1094 sizeof(struct ulp_bde64)); 1095 physaddr += (sizeof(struct fcp_cmnd) + 1096 sizeof(struct fcp_rsp) + 1097 (2 * sizeof(struct ulp_bde64))); 1098 data_bde->addrHigh = putPaddrHigh(physaddr); 1099 data_bde->addrLow = putPaddrLow(physaddr); 1100 /* ebde count includes the responce bde and data bpl */ 1101 iocb_cmd->unsli3.fcp_ext.ebde_count = 2; 1102 } else { 1103 /* ebde count includes the responce bde and data bdes */ 1104 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); 1105 } 1106 } else { 1107 iocb_cmd->un.fcpi64.bdl.bdeSize = 1108 ((num_bde + 2) * sizeof(struct ulp_bde64)); 1109 } 1110 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 1111 1112 /* 1113 * Due to difference in data length between DIF/non-DIF paths, 1114 * we need to set word 4 of IOCB here 1115 */ 1116 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 1117 return 0; 1118 } 1119 1120 /* 1121 * Given a scsi cmnd, determine the BlockGuard profile to be used 1122 * with the cmd 1123 */ 1124 static int 1125 lpfc_sc_to_sli_prof(struct lpfc_hba *phba, struct scsi_cmnd *sc) 1126 { 1127 uint8_t guard_type = scsi_host_get_guard(sc->device->host); 1128 uint8_t ret_prof = LPFC_PROF_INVALID; 1129 1130 if (guard_type == SHOST_DIX_GUARD_IP) { 1131 switch (scsi_get_prot_op(sc)) { 1132 case SCSI_PROT_READ_INSERT: 1133 case SCSI_PROT_WRITE_STRIP: 1134 ret_prof = LPFC_PROF_AST2; 1135 break; 1136 1137 case SCSI_PROT_READ_STRIP: 1138 case SCSI_PROT_WRITE_INSERT: 1139 ret_prof = LPFC_PROF_A1; 1140 break; 1141 1142 case SCSI_PROT_READ_PASS: 1143 case SCSI_PROT_WRITE_PASS: 1144 ret_prof = LPFC_PROF_AST1; 1145 break; 1146 1147 case SCSI_PROT_NORMAL: 1148 default: 1149 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1150 "9063 BLKGRD:Bad op/guard:%d/%d combination\n", 1151 scsi_get_prot_op(sc), guard_type); 1152 break; 1153 1154 } 1155 } else if (guard_type == SHOST_DIX_GUARD_CRC) { 1156 switch (scsi_get_prot_op(sc)) { 1157 case SCSI_PROT_READ_STRIP: 1158 case SCSI_PROT_WRITE_INSERT: 1159 ret_prof = LPFC_PROF_A1; 1160 break; 1161 1162 case SCSI_PROT_READ_PASS: 1163 case SCSI_PROT_WRITE_PASS: 1164 ret_prof = LPFC_PROF_C1; 1165 break; 1166 1167 case SCSI_PROT_READ_INSERT: 1168 case SCSI_PROT_WRITE_STRIP: 1169 case SCSI_PROT_NORMAL: 1170 default: 1171 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1172 "9075 BLKGRD: Bad op/guard:%d/%d combination\n", 1173 scsi_get_prot_op(sc), guard_type); 1174 break; 1175 } 1176 } else { 1177 /* unsupported format */ 1178 BUG(); 1179 } 1180 1181 return ret_prof; 1182 } 1183 1184 struct scsi_dif_tuple { 1185 __be16 guard_tag; /* Checksum */ 1186 __be16 app_tag; /* Opaque storage */ 1187 __be32 ref_tag; /* Target LBA or indirect LBA */ 1188 }; 1189 1190 static inline unsigned 1191 lpfc_cmd_blksize(struct scsi_cmnd *sc) 1192 { 1193 return sc->device->sector_size; 1194 } 1195 1196 /** 1197 * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command 1198 * @sc: in: SCSI command 1199 * @apptagmask: out: app tag mask 1200 * @apptagval: out: app tag value 1201 * @reftag: out: ref tag (reference tag) 1202 * 1203 * Description: 1204 * Extract DIF parameters from the command if possible. Otherwise, 1205 * use default parameters. 1206 * 1207 **/ 1208 static inline void 1209 lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask, 1210 uint16_t *apptagval, uint32_t *reftag) 1211 { 1212 struct scsi_dif_tuple *spt; 1213 unsigned char op = scsi_get_prot_op(sc); 1214 unsigned int protcnt = scsi_prot_sg_count(sc); 1215 static int cnt; 1216 1217 if (protcnt && (op == SCSI_PROT_WRITE_STRIP || 1218 op == SCSI_PROT_WRITE_PASS)) { 1219 1220 cnt++; 1221 spt = page_address(sg_page(scsi_prot_sglist(sc))) + 1222 scsi_prot_sglist(sc)[0].offset; 1223 *apptagmask = 0; 1224 *apptagval = 0; 1225 *reftag = cpu_to_be32(spt->ref_tag); 1226 1227 } else { 1228 /* SBC defines ref tag to be lower 32bits of LBA */ 1229 *reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc)); 1230 *apptagmask = 0; 1231 *apptagval = 0; 1232 } 1233 } 1234 1235 /* 1236 * This function sets up buffer list for protection groups of 1237 * type LPFC_PG_TYPE_NO_DIF 1238 * 1239 * This is usually used when the HBA is instructed to generate 1240 * DIFs and insert them into data stream (or strip DIF from 1241 * incoming data stream) 1242 * 1243 * The buffer list consists of just one protection group described 1244 * below: 1245 * +-------------------------+ 1246 * start of prot group --> | PDE_1 | 1247 * +-------------------------+ 1248 * | Data BDE | 1249 * +-------------------------+ 1250 * |more Data BDE's ... (opt)| 1251 * +-------------------------+ 1252 * 1253 * @sc: pointer to scsi command we're working on 1254 * @bpl: pointer to buffer list for protection groups 1255 * @datacnt: number of segments of data that have been dma mapped 1256 * 1257 * Note: Data s/g buffers have been dma mapped 1258 */ 1259 static int 1260 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1261 struct ulp_bde64 *bpl, int datasegcnt) 1262 { 1263 struct scatterlist *sgde = NULL; /* s/g data entry */ 1264 struct lpfc_pde *pde1 = NULL; 1265 dma_addr_t physaddr; 1266 int i = 0, num_bde = 0; 1267 int datadir = sc->sc_data_direction; 1268 int prof = LPFC_PROF_INVALID; 1269 unsigned blksize; 1270 uint32_t reftag; 1271 uint16_t apptagmask, apptagval; 1272 1273 pde1 = (struct lpfc_pde *) bpl; 1274 prof = lpfc_sc_to_sli_prof(phba, sc); 1275 1276 if (prof == LPFC_PROF_INVALID) 1277 goto out; 1278 1279 /* extract some info from the scsi command for PDE1*/ 1280 blksize = lpfc_cmd_blksize(sc); 1281 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag); 1282 1283 /* setup PDE1 with what we have */ 1284 lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize, 1285 BG_EC_STOP_ERR); 1286 lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag); 1287 1288 num_bde++; 1289 bpl++; 1290 1291 /* assumption: caller has already run dma_map_sg on command data */ 1292 scsi_for_each_sg(sc, sgde, datasegcnt, i) { 1293 physaddr = sg_dma_address(sgde); 1294 bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1295 bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1296 bpl->tus.f.bdeSize = sg_dma_len(sgde); 1297 if (datadir == DMA_TO_DEVICE) 1298 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1299 else 1300 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1301 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1302 bpl++; 1303 num_bde++; 1304 } 1305 1306 out: 1307 return num_bde; 1308 } 1309 1310 /* 1311 * This function sets up buffer list for protection groups of 1312 * type LPFC_PG_TYPE_DIF_BUF 1313 * 1314 * This is usually used when DIFs are in their own buffers, 1315 * separate from the data. The HBA can then by instructed 1316 * to place the DIFs in the outgoing stream. For read operations, 1317 * The HBA could extract the DIFs and place it in DIF buffers. 1318 * 1319 * The buffer list for this type consists of one or more of the 1320 * protection groups described below: 1321 * +-------------------------+ 1322 * start of first prot group --> | PDE_1 | 1323 * +-------------------------+ 1324 * | PDE_3 (Prot BDE) | 1325 * +-------------------------+ 1326 * | Data BDE | 1327 * +-------------------------+ 1328 * |more Data BDE's ... (opt)| 1329 * +-------------------------+ 1330 * start of new prot group --> | PDE_1 | 1331 * +-------------------------+ 1332 * | ... | 1333 * +-------------------------+ 1334 * 1335 * @sc: pointer to scsi command we're working on 1336 * @bpl: pointer to buffer list for protection groups 1337 * @datacnt: number of segments of data that have been dma mapped 1338 * @protcnt: number of segment of protection data that have been dma mapped 1339 * 1340 * Note: It is assumed that both data and protection s/g buffers have been 1341 * mapped for DMA 1342 */ 1343 static int 1344 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, 1345 struct ulp_bde64 *bpl, int datacnt, int protcnt) 1346 { 1347 struct scatterlist *sgde = NULL; /* s/g data entry */ 1348 struct scatterlist *sgpe = NULL; /* s/g prot entry */ 1349 struct lpfc_pde *pde1 = NULL; 1350 struct ulp_bde64 *prot_bde = NULL; 1351 dma_addr_t dataphysaddr, protphysaddr; 1352 unsigned short curr_data = 0, curr_prot = 0; 1353 unsigned int split_offset, protgroup_len; 1354 unsigned int protgrp_blks, protgrp_bytes; 1355 unsigned int remainder, subtotal; 1356 int prof = LPFC_PROF_INVALID; 1357 int datadir = sc->sc_data_direction; 1358 unsigned char pgdone = 0, alldone = 0; 1359 unsigned blksize; 1360 uint32_t reftag; 1361 uint16_t apptagmask, apptagval; 1362 int num_bde = 0; 1363 1364 sgpe = scsi_prot_sglist(sc); 1365 sgde = scsi_sglist(sc); 1366 1367 if (!sgpe || !sgde) { 1368 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1369 "9020 Invalid s/g entry: data=0x%p prot=0x%p\n", 1370 sgpe, sgde); 1371 return 0; 1372 } 1373 1374 prof = lpfc_sc_to_sli_prof(phba, sc); 1375 if (prof == LPFC_PROF_INVALID) 1376 goto out; 1377 1378 /* extract some info from the scsi command for PDE1*/ 1379 blksize = lpfc_cmd_blksize(sc); 1380 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag); 1381 1382 split_offset = 0; 1383 do { 1384 /* setup the first PDE_1 */ 1385 pde1 = (struct lpfc_pde *) bpl; 1386 1387 lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize, 1388 BG_EC_STOP_ERR); 1389 lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag); 1390 1391 num_bde++; 1392 bpl++; 1393 1394 /* setup the first BDE that points to protection buffer */ 1395 prot_bde = (struct ulp_bde64 *) bpl; 1396 protphysaddr = sg_dma_address(sgpe); 1397 prot_bde->addrLow = le32_to_cpu(putPaddrLow(protphysaddr)); 1398 prot_bde->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr)); 1399 protgroup_len = sg_dma_len(sgpe); 1400 1401 1402 /* must be integer multiple of the DIF block length */ 1403 BUG_ON(protgroup_len % 8); 1404 1405 protgrp_blks = protgroup_len / 8; 1406 protgrp_bytes = protgrp_blks * blksize; 1407 1408 prot_bde->tus.f.bdeSize = protgroup_len; 1409 if (datadir == DMA_TO_DEVICE) 1410 prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1411 else 1412 prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1413 prot_bde->tus.w = le32_to_cpu(bpl->tus.w); 1414 1415 curr_prot++; 1416 num_bde++; 1417 1418 /* setup BDE's for data blocks associated with DIF data */ 1419 pgdone = 0; 1420 subtotal = 0; /* total bytes processed for current prot grp */ 1421 while (!pgdone) { 1422 if (!sgde) { 1423 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1424 "9065 BLKGRD:%s Invalid data segment\n", 1425 __func__); 1426 return 0; 1427 } 1428 bpl++; 1429 dataphysaddr = sg_dma_address(sgde) + split_offset; 1430 bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr)); 1431 bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr)); 1432 1433 remainder = sg_dma_len(sgde) - split_offset; 1434 1435 if ((subtotal + remainder) <= protgrp_bytes) { 1436 /* we can use this whole buffer */ 1437 bpl->tus.f.bdeSize = remainder; 1438 split_offset = 0; 1439 1440 if ((subtotal + remainder) == protgrp_bytes) 1441 pgdone = 1; 1442 } else { 1443 /* must split this buffer with next prot grp */ 1444 bpl->tus.f.bdeSize = protgrp_bytes - subtotal; 1445 split_offset += bpl->tus.f.bdeSize; 1446 } 1447 1448 subtotal += bpl->tus.f.bdeSize; 1449 1450 if (datadir == DMA_TO_DEVICE) 1451 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1452 else 1453 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; 1454 bpl->tus.w = le32_to_cpu(bpl->tus.w); 1455 1456 num_bde++; 1457 curr_data++; 1458 1459 if (split_offset) 1460 break; 1461 1462 /* Move to the next s/g segment if possible */ 1463 sgde = sg_next(sgde); 1464 } 1465 1466 /* are we done ? */ 1467 if (curr_prot == protcnt) { 1468 alldone = 1; 1469 } else if (curr_prot < protcnt) { 1470 /* advance to next prot buffer */ 1471 sgpe = sg_next(sgpe); 1472 bpl++; 1473 1474 /* update the reference tag */ 1475 reftag += protgrp_blks; 1476 } else { 1477 /* if we're here, we have a bug */ 1478 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1479 "9054 BLKGRD: bug in %s\n", __func__); 1480 } 1481 1482 } while (!alldone); 1483 1484 out: 1485 1486 1487 return num_bde; 1488 } 1489 /* 1490 * Given a SCSI command that supports DIF, determine composition of protection 1491 * groups involved in setting up buffer lists 1492 * 1493 * Returns: 1494 * for DIF (for both read and write) 1495 * */ 1496 static int 1497 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc) 1498 { 1499 int ret = LPFC_PG_TYPE_INVALID; 1500 unsigned char op = scsi_get_prot_op(sc); 1501 1502 switch (op) { 1503 case SCSI_PROT_READ_STRIP: 1504 case SCSI_PROT_WRITE_INSERT: 1505 ret = LPFC_PG_TYPE_NO_DIF; 1506 break; 1507 case SCSI_PROT_READ_INSERT: 1508 case SCSI_PROT_WRITE_STRIP: 1509 case SCSI_PROT_READ_PASS: 1510 case SCSI_PROT_WRITE_PASS: 1511 ret = LPFC_PG_TYPE_DIF_BUF; 1512 break; 1513 default: 1514 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1515 "9021 Unsupported protection op:%d\n", op); 1516 break; 1517 } 1518 1519 return ret; 1520 } 1521 1522 /* 1523 * This is the protection/DIF aware version of 1524 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the 1525 * two functions eventually, but for now, it's here 1526 */ 1527 static int 1528 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba, 1529 struct lpfc_scsi_buf *lpfc_cmd) 1530 { 1531 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1532 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1533 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; 1534 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1535 uint32_t num_bde = 0; 1536 int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; 1537 int prot_group_type = 0; 1538 int diflen, fcpdl; 1539 unsigned blksize; 1540 1541 /* 1542 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd 1543 * fcp_rsp regions to the first data bde entry 1544 */ 1545 bpl += 2; 1546 if (scsi_sg_count(scsi_cmnd)) { 1547 /* 1548 * The driver stores the segment count returned from pci_map_sg 1549 * because this a count of dma-mappings used to map the use_sg 1550 * pages. They are not guaranteed to be the same for those 1551 * architectures that implement an IOMMU. 1552 */ 1553 datasegcnt = dma_map_sg(&phba->pcidev->dev, 1554 scsi_sglist(scsi_cmnd), 1555 scsi_sg_count(scsi_cmnd), datadir); 1556 if (unlikely(!datasegcnt)) 1557 return 1; 1558 1559 lpfc_cmd->seg_cnt = datasegcnt; 1560 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1561 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1562 "9067 BLKGRD: %s: Too many sg segments" 1563 " from dma_map_sg. Config %d, seg_cnt" 1564 " %d\n", 1565 __func__, phba->cfg_sg_seg_cnt, 1566 lpfc_cmd->seg_cnt); 1567 scsi_dma_unmap(scsi_cmnd); 1568 return 1; 1569 } 1570 1571 prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); 1572 1573 switch (prot_group_type) { 1574 case LPFC_PG_TYPE_NO_DIF: 1575 num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl, 1576 datasegcnt); 1577 /* we shoud have 2 or more entries in buffer list */ 1578 if (num_bde < 2) 1579 goto err; 1580 break; 1581 case LPFC_PG_TYPE_DIF_BUF:{ 1582 /* 1583 * This type indicates that protection buffers are 1584 * passed to the driver, so that needs to be prepared 1585 * for DMA 1586 */ 1587 protsegcnt = dma_map_sg(&phba->pcidev->dev, 1588 scsi_prot_sglist(scsi_cmnd), 1589 scsi_prot_sg_count(scsi_cmnd), datadir); 1590 if (unlikely(!protsegcnt)) { 1591 scsi_dma_unmap(scsi_cmnd); 1592 return 1; 1593 } 1594 1595 lpfc_cmd->prot_seg_cnt = protsegcnt; 1596 if (lpfc_cmd->prot_seg_cnt 1597 > phba->cfg_prot_sg_seg_cnt) { 1598 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1599 "9068 BLKGRD: %s: Too many prot sg " 1600 "segments from dma_map_sg. Config %d," 1601 "prot_seg_cnt %d\n", __func__, 1602 phba->cfg_prot_sg_seg_cnt, 1603 lpfc_cmd->prot_seg_cnt); 1604 dma_unmap_sg(&phba->pcidev->dev, 1605 scsi_prot_sglist(scsi_cmnd), 1606 scsi_prot_sg_count(scsi_cmnd), 1607 datadir); 1608 scsi_dma_unmap(scsi_cmnd); 1609 return 1; 1610 } 1611 1612 num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl, 1613 datasegcnt, protsegcnt); 1614 /* we shoud have 3 or more entries in buffer list */ 1615 if (num_bde < 3) 1616 goto err; 1617 break; 1618 } 1619 case LPFC_PG_TYPE_INVALID: 1620 default: 1621 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1622 "9022 Unexpected protection group %i\n", 1623 prot_group_type); 1624 return 1; 1625 } 1626 } 1627 1628 /* 1629 * Finish initializing those IOCB fields that are dependent on the 1630 * scsi_cmnd request_buffer. Note that the bdeSize is explicitly 1631 * reinitialized since all iocb memory resources are used many times 1632 * for transmit, receive, and continuation bpl's. 1633 */ 1634 iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 1635 iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64)); 1636 iocb_cmd->ulpBdeCount = 1; 1637 iocb_cmd->ulpLe = 1; 1638 1639 fcpdl = scsi_bufflen(scsi_cmnd); 1640 1641 if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) { 1642 /* 1643 * We are in DIF Type 1 mode 1644 * Every data block has a 8 byte DIF (trailer) 1645 * attached to it. Must ajust FCP data length 1646 */ 1647 blksize = lpfc_cmd_blksize(scsi_cmnd); 1648 diflen = (fcpdl / blksize) * 8; 1649 fcpdl += diflen; 1650 } 1651 fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); 1652 1653 /* 1654 * Due to difference in data length between DIF/non-DIF paths, 1655 * we need to set word 4 of IOCB here 1656 */ 1657 iocb_cmd->un.fcpi.fcpi_parm = fcpdl; 1658 1659 return 0; 1660 err: 1661 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 1662 "9023 Could not setup all needed BDE's" 1663 "prot_group_type=%d, num_bde=%d\n", 1664 prot_group_type, num_bde); 1665 return 1; 1666 } 1667 1668 /* 1669 * This function checks for BlockGuard errors detected by 1670 * the HBA. In case of errors, the ASC/ASCQ fields in the 1671 * sense buffer will be set accordingly, paired with 1672 * ILLEGAL_REQUEST to signal to the kernel that the HBA 1673 * detected corruption. 1674 * 1675 * Returns: 1676 * 0 - No error found 1677 * 1 - BlockGuard error found 1678 * -1 - Internal error (bad profile, ...etc) 1679 */ 1680 static int 1681 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd, 1682 struct lpfc_iocbq *pIocbOut) 1683 { 1684 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 1685 struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg; 1686 int ret = 0; 1687 uint32_t bghm = bgf->bghm; 1688 uint32_t bgstat = bgf->bgstat; 1689 uint64_t failing_sector = 0; 1690 1691 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd" 1692 " 0x%x lba 0x%llx blk cnt 0x%x " 1693 "bgstat=0x%x bghm=0x%x\n", 1694 cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd), 1695 blk_rq_sectors(cmd->request), bgstat, bghm); 1696 1697 spin_lock(&_dump_buf_lock); 1698 if (!_dump_buf_done) { 1699 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9070 BLKGRD: Saving" 1700 " Data for %u blocks to debugfs\n", 1701 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 1702 lpfc_debug_save_data(phba, cmd); 1703 1704 /* If we have a prot sgl, save the DIF buffer */ 1705 if (lpfc_prot_group_type(phba, cmd) == 1706 LPFC_PG_TYPE_DIF_BUF) { 1707 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: " 1708 "Saving DIF for %u blocks to debugfs\n", 1709 (cmd->cmnd[7] << 8 | cmd->cmnd[8])); 1710 lpfc_debug_save_dif(phba, cmd); 1711 } 1712 1713 _dump_buf_done = 1; 1714 } 1715 spin_unlock(&_dump_buf_lock); 1716 1717 if (lpfc_bgs_get_invalid_prof(bgstat)) { 1718 cmd->result = ScsiResult(DID_ERROR, 0); 1719 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid" 1720 " BlockGuard profile. bgstat:0x%x\n", 1721 bgstat); 1722 ret = (-1); 1723 goto out; 1724 } 1725 1726 if (lpfc_bgs_get_uninit_dif_block(bgstat)) { 1727 cmd->result = ScsiResult(DID_ERROR, 0); 1728 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: " 1729 "Invalid BlockGuard DIF Block. bgstat:0x%x\n", 1730 bgstat); 1731 ret = (-1); 1732 goto out; 1733 } 1734 1735 if (lpfc_bgs_get_guard_err(bgstat)) { 1736 ret = 1; 1737 1738 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1739 0x10, 0x1); 1740 cmd->result = DRIVER_SENSE << 24 1741 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1742 phba->bg_guard_err_cnt++; 1743 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1744 "9055 BLKGRD: guard_tag error\n"); 1745 } 1746 1747 if (lpfc_bgs_get_reftag_err(bgstat)) { 1748 ret = 1; 1749 1750 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1751 0x10, 0x3); 1752 cmd->result = DRIVER_SENSE << 24 1753 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1754 1755 phba->bg_reftag_err_cnt++; 1756 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1757 "9056 BLKGRD: ref_tag error\n"); 1758 } 1759 1760 if (lpfc_bgs_get_apptag_err(bgstat)) { 1761 ret = 1; 1762 1763 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 1764 0x10, 0x2); 1765 cmd->result = DRIVER_SENSE << 24 1766 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); 1767 1768 phba->bg_apptag_err_cnt++; 1769 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1770 "9061 BLKGRD: app_tag error\n"); 1771 } 1772 1773 if (lpfc_bgs_get_hi_water_mark_present(bgstat)) { 1774 /* 1775 * setup sense data descriptor 0 per SPC-4 as an information 1776 * field, and put the failing LBA in it 1777 */ 1778 cmd->sense_buffer[8] = 0; /* Information */ 1779 cmd->sense_buffer[9] = 0xa; /* Add. length */ 1780 bghm /= cmd->device->sector_size; 1781 1782 failing_sector = scsi_get_lba(cmd); 1783 failing_sector += bghm; 1784 1785 put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]); 1786 } 1787 1788 if (!ret) { 1789 /* No error was reported - problem in FW? */ 1790 cmd->result = ScsiResult(DID_ERROR, 0); 1791 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 1792 "9057 BLKGRD: no errors reported!\n"); 1793 } 1794 1795 out: 1796 return ret; 1797 } 1798 1799 /** 1800 * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec 1801 * @phba: The Hba for which this call is being executed. 1802 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1803 * 1804 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd 1805 * field of @lpfc_cmd for device with SLI-4 interface spec. 1806 * 1807 * Return codes: 1808 * 1 - Error 1809 * 0 - Success 1810 **/ 1811 static int 1812 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 1813 { 1814 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 1815 struct scatterlist *sgel = NULL; 1816 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 1817 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 1818 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 1819 dma_addr_t physaddr; 1820 uint32_t num_bde = 0; 1821 uint32_t dma_len; 1822 uint32_t dma_offset = 0; 1823 int nseg; 1824 1825 /* 1826 * There are three possibilities here - use scatter-gather segment, use 1827 * the single mapping, or neither. Start the lpfc command prep by 1828 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 1829 * data bde entry. 1830 */ 1831 if (scsi_sg_count(scsi_cmnd)) { 1832 /* 1833 * The driver stores the segment count returned from pci_map_sg 1834 * because this a count of dma-mappings used to map the use_sg 1835 * pages. They are not guaranteed to be the same for those 1836 * architectures that implement an IOMMU. 1837 */ 1838 1839 nseg = scsi_dma_map(scsi_cmnd); 1840 if (unlikely(!nseg)) 1841 return 1; 1842 sgl += 1; 1843 /* clear the last flag in the fcp_rsp map entry */ 1844 sgl->word2 = le32_to_cpu(sgl->word2); 1845 bf_set(lpfc_sli4_sge_last, sgl, 0); 1846 sgl->word2 = cpu_to_le32(sgl->word2); 1847 sgl += 1; 1848 1849 lpfc_cmd->seg_cnt = nseg; 1850 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { 1851 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:" 1852 " %s: Too many sg segments from " 1853 "dma_map_sg. Config %d, seg_cnt %d\n", 1854 __func__, phba->cfg_sg_seg_cnt, 1855 lpfc_cmd->seg_cnt); 1856 scsi_dma_unmap(scsi_cmnd); 1857 return 1; 1858 } 1859 1860 /* 1861 * The driver established a maximum scatter-gather segment count 1862 * during probe that limits the number of sg elements in any 1863 * single scsi command. Just run through the seg_cnt and format 1864 * the sge's. 1865 * When using SLI-3 the driver will try to fit all the BDEs into 1866 * the IOCB. If it can't then the BDEs get added to a BPL as it 1867 * does for SLI-2 mode. 1868 */ 1869 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { 1870 physaddr = sg_dma_address(sgel); 1871 dma_len = sg_dma_len(sgel); 1872 bf_set(lpfc_sli4_sge_len, sgl, sg_dma_len(sgel)); 1873 sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr)); 1874 sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr)); 1875 if ((num_bde + 1) == nseg) 1876 bf_set(lpfc_sli4_sge_last, sgl, 1); 1877 else 1878 bf_set(lpfc_sli4_sge_last, sgl, 0); 1879 bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); 1880 sgl->word2 = cpu_to_le32(sgl->word2); 1881 sgl->word3 = cpu_to_le32(sgl->word3); 1882 dma_offset += dma_len; 1883 sgl++; 1884 } 1885 } else { 1886 sgl += 1; 1887 /* clear the last flag in the fcp_rsp map entry */ 1888 sgl->word2 = le32_to_cpu(sgl->word2); 1889 bf_set(lpfc_sli4_sge_last, sgl, 1); 1890 sgl->word2 = cpu_to_le32(sgl->word2); 1891 } 1892 1893 /* 1894 * Finish initializing those IOCB fields that are dependent on the 1895 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is 1896 * explicitly reinitialized. 1897 * all iocb memory resources are reused. 1898 */ 1899 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); 1900 1901 /* 1902 * Due to difference in data length between DIF/non-DIF paths, 1903 * we need to set word 4 of IOCB here 1904 */ 1905 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); 1906 return 0; 1907 } 1908 1909 /** 1910 * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer 1911 * @phba: The Hba for which this call is being executed. 1912 * @lpfc_cmd: The scsi buffer which is going to be mapped. 1913 * 1914 * This routine wraps the actual DMA mapping function pointer from the 1915 * lpfc_hba struct. 1916 * 1917 * Return codes: 1918 * 1 - Error 1919 * 0 - Success 1920 **/ 1921 static inline int 1922 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) 1923 { 1924 return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 1925 } 1926 1927 /** 1928 * lpfc_send_scsi_error_event - Posts an event when there is SCSI error 1929 * @phba: Pointer to hba context object. 1930 * @vport: Pointer to vport object. 1931 * @lpfc_cmd: Pointer to lpfc scsi command which reported the error. 1932 * @rsp_iocb: Pointer to response iocb object which reported error. 1933 * 1934 * This function posts an event when there is a SCSI command reporting 1935 * error from the scsi device. 1936 **/ 1937 static void 1938 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport, 1939 struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) { 1940 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 1941 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 1942 uint32_t resp_info = fcprsp->rspStatus2; 1943 uint32_t scsi_status = fcprsp->rspStatus3; 1944 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 1945 struct lpfc_fast_path_event *fast_path_evt = NULL; 1946 struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode; 1947 unsigned long flags; 1948 1949 /* If there is queuefull or busy condition send a scsi event */ 1950 if ((cmnd->result == SAM_STAT_TASK_SET_FULL) || 1951 (cmnd->result == SAM_STAT_BUSY)) { 1952 fast_path_evt = lpfc_alloc_fast_evt(phba); 1953 if (!fast_path_evt) 1954 return; 1955 fast_path_evt->un.scsi_evt.event_type = 1956 FC_REG_SCSI_EVENT; 1957 fast_path_evt->un.scsi_evt.subcategory = 1958 (cmnd->result == SAM_STAT_TASK_SET_FULL) ? 1959 LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY; 1960 fast_path_evt->un.scsi_evt.lun = cmnd->device->lun; 1961 memcpy(&fast_path_evt->un.scsi_evt.wwpn, 1962 &pnode->nlp_portname, sizeof(struct lpfc_name)); 1963 memcpy(&fast_path_evt->un.scsi_evt.wwnn, 1964 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 1965 } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen && 1966 ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) { 1967 fast_path_evt = lpfc_alloc_fast_evt(phba); 1968 if (!fast_path_evt) 1969 return; 1970 fast_path_evt->un.check_cond_evt.scsi_event.event_type = 1971 FC_REG_SCSI_EVENT; 1972 fast_path_evt->un.check_cond_evt.scsi_event.subcategory = 1973 LPFC_EVENT_CHECK_COND; 1974 fast_path_evt->un.check_cond_evt.scsi_event.lun = 1975 cmnd->device->lun; 1976 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn, 1977 &pnode->nlp_portname, sizeof(struct lpfc_name)); 1978 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn, 1979 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 1980 fast_path_evt->un.check_cond_evt.sense_key = 1981 cmnd->sense_buffer[2] & 0xf; 1982 fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12]; 1983 fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13]; 1984 } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 1985 fcpi_parm && 1986 ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) || 1987 ((scsi_status == SAM_STAT_GOOD) && 1988 !(resp_info & (RESID_UNDER | RESID_OVER))))) { 1989 /* 1990 * If status is good or resid does not match with fcp_param and 1991 * there is valid fcpi_parm, then there is a read_check error 1992 */ 1993 fast_path_evt = lpfc_alloc_fast_evt(phba); 1994 if (!fast_path_evt) 1995 return; 1996 fast_path_evt->un.read_check_error.header.event_type = 1997 FC_REG_FABRIC_EVENT; 1998 fast_path_evt->un.read_check_error.header.subcategory = 1999 LPFC_EVENT_FCPRDCHKERR; 2000 memcpy(&fast_path_evt->un.read_check_error.header.wwpn, 2001 &pnode->nlp_portname, sizeof(struct lpfc_name)); 2002 memcpy(&fast_path_evt->un.read_check_error.header.wwnn, 2003 &pnode->nlp_nodename, sizeof(struct lpfc_name)); 2004 fast_path_evt->un.read_check_error.lun = cmnd->device->lun; 2005 fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0]; 2006 fast_path_evt->un.read_check_error.fcpiparam = 2007 fcpi_parm; 2008 } else 2009 return; 2010 2011 fast_path_evt->vport = vport; 2012 spin_lock_irqsave(&phba->hbalock, flags); 2013 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); 2014 spin_unlock_irqrestore(&phba->hbalock, flags); 2015 lpfc_worker_wake_up(phba); 2016 return; 2017 } 2018 2019 /** 2020 * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev 2021 * @phba: The HBA for which this call is being executed. 2022 * @psb: The scsi buffer which is going to be un-mapped. 2023 * 2024 * This routine does DMA un-mapping of scatter gather list of scsi command 2025 * field of @lpfc_cmd for device with SLI-3 interface spec. 2026 **/ 2027 static void 2028 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) 2029 { 2030 /* 2031 * There are only two special cases to consider. (1) the scsi command 2032 * requested scatter-gather usage or (2) the scsi command allocated 2033 * a request buffer, but did not request use_sg. There is a third 2034 * case, but it does not require resource deallocation. 2035 */ 2036 if (psb->seg_cnt > 0) 2037 scsi_dma_unmap(psb->pCmd); 2038 if (psb->prot_seg_cnt > 0) 2039 dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd), 2040 scsi_prot_sg_count(psb->pCmd), 2041 psb->pCmd->sc_data_direction); 2042 } 2043 2044 /** 2045 * lpfc_handler_fcp_err - FCP response handler 2046 * @vport: The virtual port for which this call is being executed. 2047 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2048 * @rsp_iocb: The response IOCB which contains FCP error. 2049 * 2050 * This routine is called to process response IOCB with status field 2051 * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command 2052 * based upon SCSI and FCP error. 2053 **/ 2054 static void 2055 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2056 struct lpfc_iocbq *rsp_iocb) 2057 { 2058 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; 2059 struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd; 2060 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; 2061 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; 2062 uint32_t resp_info = fcprsp->rspStatus2; 2063 uint32_t scsi_status = fcprsp->rspStatus3; 2064 uint32_t *lp; 2065 uint32_t host_status = DID_OK; 2066 uint32_t rsplen = 0; 2067 uint32_t logit = LOG_FCP | LOG_FCP_ERROR; 2068 2069 2070 /* 2071 * If this is a task management command, there is no 2072 * scsi packet associated with this lpfc_cmd. The driver 2073 * consumes it. 2074 */ 2075 if (fcpcmd->fcpCntl2) { 2076 scsi_status = 0; 2077 goto out; 2078 } 2079 2080 if (resp_info & RSP_LEN_VALID) { 2081 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2082 if ((rsplen != 0 && rsplen != 4 && rsplen != 8) || 2083 (fcprsp->rspInfo3 != RSP_NO_FAILURE)) { 2084 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 2085 "2719 Invalid response length: " 2086 "tgt x%x lun x%x cmnd x%x rsplen x%x\n", 2087 cmnd->device->id, 2088 cmnd->device->lun, cmnd->cmnd[0], 2089 rsplen); 2090 host_status = DID_ERROR; 2091 goto out; 2092 } 2093 } 2094 2095 if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) { 2096 uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen); 2097 if (snslen > SCSI_SENSE_BUFFERSIZE) 2098 snslen = SCSI_SENSE_BUFFERSIZE; 2099 2100 if (resp_info & RSP_LEN_VALID) 2101 rsplen = be32_to_cpu(fcprsp->rspRspLen); 2102 memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen); 2103 } 2104 lp = (uint32_t *)cmnd->sense_buffer; 2105 2106 if (!scsi_status && (resp_info & RESID_UNDER)) 2107 logit = LOG_FCP; 2108 2109 lpfc_printf_vlog(vport, KERN_WARNING, logit, 2110 "9024 FCP command x%x failed: x%x SNS x%x x%x " 2111 "Data: x%x x%x x%x x%x x%x\n", 2112 cmnd->cmnd[0], scsi_status, 2113 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info, 2114 be32_to_cpu(fcprsp->rspResId), 2115 be32_to_cpu(fcprsp->rspSnsLen), 2116 be32_to_cpu(fcprsp->rspRspLen), 2117 fcprsp->rspInfo3); 2118 2119 scsi_set_resid(cmnd, 0); 2120 if (resp_info & RESID_UNDER) { 2121 scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId)); 2122 2123 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2124 "9025 FCP Read Underrun, expected %d, " 2125 "residual %d Data: x%x x%x x%x\n", 2126 be32_to_cpu(fcpcmd->fcpDl), 2127 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0], 2128 cmnd->underflow); 2129 2130 /* 2131 * If there is an under run check if under run reported by 2132 * storage array is same as the under run reported by HBA. 2133 * If this is not same, there is a dropped frame. 2134 */ 2135 if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && 2136 fcpi_parm && 2137 (scsi_get_resid(cmnd) != fcpi_parm)) { 2138 lpfc_printf_vlog(vport, KERN_WARNING, 2139 LOG_FCP | LOG_FCP_ERROR, 2140 "9026 FCP Read Check Error " 2141 "and Underrun Data: x%x x%x x%x x%x\n", 2142 be32_to_cpu(fcpcmd->fcpDl), 2143 scsi_get_resid(cmnd), fcpi_parm, 2144 cmnd->cmnd[0]); 2145 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2146 host_status = DID_ERROR; 2147 } 2148 /* 2149 * The cmnd->underflow is the minimum number of bytes that must 2150 * be transfered for this command. Provided a sense condition 2151 * is not present, make sure the actual amount transferred is at 2152 * least the underflow value or fail. 2153 */ 2154 if (!(resp_info & SNS_LEN_VALID) && 2155 (scsi_status == SAM_STAT_GOOD) && 2156 (scsi_bufflen(cmnd) - scsi_get_resid(cmnd) 2157 < cmnd->underflow)) { 2158 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2159 "9027 FCP command x%x residual " 2160 "underrun converted to error " 2161 "Data: x%x x%x x%x\n", 2162 cmnd->cmnd[0], scsi_bufflen(cmnd), 2163 scsi_get_resid(cmnd), cmnd->underflow); 2164 host_status = DID_ERROR; 2165 } 2166 } else if (resp_info & RESID_OVER) { 2167 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2168 "9028 FCP command x%x residual overrun error. " 2169 "Data: x%x x%x\n", cmnd->cmnd[0], 2170 scsi_bufflen(cmnd), scsi_get_resid(cmnd)); 2171 host_status = DID_ERROR; 2172 2173 /* 2174 * Check SLI validation that all the transfer was actually done 2175 * (fcpi_parm should be zero). Apply check only to reads. 2176 */ 2177 } else if ((scsi_status == SAM_STAT_GOOD) && fcpi_parm && 2178 (cmnd->sc_data_direction == DMA_FROM_DEVICE)) { 2179 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, 2180 "9029 FCP Read Check Error Data: " 2181 "x%x x%x x%x x%x\n", 2182 be32_to_cpu(fcpcmd->fcpDl), 2183 be32_to_cpu(fcprsp->rspResId), 2184 fcpi_parm, cmnd->cmnd[0]); 2185 host_status = DID_ERROR; 2186 scsi_set_resid(cmnd, scsi_bufflen(cmnd)); 2187 } 2188 2189 out: 2190 cmnd->result = ScsiResult(host_status, scsi_status); 2191 lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb); 2192 } 2193 2194 /** 2195 * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine 2196 * @phba: The Hba for which this call is being executed. 2197 * @pIocbIn: The command IOCBQ for the scsi cmnd. 2198 * @pIocbOut: The response IOCBQ for the scsi cmnd. 2199 * 2200 * This routine assigns scsi command result by looking into response IOCB 2201 * status field appropriately. This routine handles QUEUE FULL condition as 2202 * well by ramping down device queue depth. 2203 **/ 2204 static void 2205 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn, 2206 struct lpfc_iocbq *pIocbOut) 2207 { 2208 struct lpfc_scsi_buf *lpfc_cmd = 2209 (struct lpfc_scsi_buf *) pIocbIn->context1; 2210 struct lpfc_vport *vport = pIocbIn->vport; 2211 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2212 struct lpfc_nodelist *pnode = rdata->pnode; 2213 struct scsi_cmnd *cmd = lpfc_cmd->pCmd; 2214 int result; 2215 struct scsi_device *tmp_sdev; 2216 int depth; 2217 unsigned long flags; 2218 struct lpfc_fast_path_event *fast_path_evt; 2219 struct Scsi_Host *shost = cmd->device->host; 2220 uint32_t queue_depth, scsi_id; 2221 2222 lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4]; 2223 lpfc_cmd->status = pIocbOut->iocb.ulpStatus; 2224 if (pnode && NLP_CHK_NODE_ACT(pnode)) 2225 atomic_dec(&pnode->cmd_pending); 2226 2227 if (lpfc_cmd->status) { 2228 if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT && 2229 (lpfc_cmd->result & IOERR_DRVR_MASK)) 2230 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 2231 else if (lpfc_cmd->status >= IOSTAT_CNT) 2232 lpfc_cmd->status = IOSTAT_DEFAULT; 2233 2234 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2235 "9030 FCP cmd x%x failed <%d/%d> " 2236 "status: x%x result: x%x Data: x%x x%x\n", 2237 cmd->cmnd[0], 2238 cmd->device ? cmd->device->id : 0xffff, 2239 cmd->device ? cmd->device->lun : 0xffff, 2240 lpfc_cmd->status, lpfc_cmd->result, 2241 pIocbOut->iocb.ulpContext, 2242 lpfc_cmd->cur_iocbq.iocb.ulpIoTag); 2243 2244 switch (lpfc_cmd->status) { 2245 case IOSTAT_FCP_RSP_ERROR: 2246 /* Call FCP RSP handler to determine result */ 2247 lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut); 2248 break; 2249 case IOSTAT_NPORT_BSY: 2250 case IOSTAT_FABRIC_BSY: 2251 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); 2252 fast_path_evt = lpfc_alloc_fast_evt(phba); 2253 if (!fast_path_evt) 2254 break; 2255 fast_path_evt->un.fabric_evt.event_type = 2256 FC_REG_FABRIC_EVENT; 2257 fast_path_evt->un.fabric_evt.subcategory = 2258 (lpfc_cmd->status == IOSTAT_NPORT_BSY) ? 2259 LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY; 2260 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2261 memcpy(&fast_path_evt->un.fabric_evt.wwpn, 2262 &pnode->nlp_portname, 2263 sizeof(struct lpfc_name)); 2264 memcpy(&fast_path_evt->un.fabric_evt.wwnn, 2265 &pnode->nlp_nodename, 2266 sizeof(struct lpfc_name)); 2267 } 2268 fast_path_evt->vport = vport; 2269 fast_path_evt->work_evt.evt = 2270 LPFC_EVT_FASTPATH_MGMT_EVT; 2271 spin_lock_irqsave(&phba->hbalock, flags); 2272 list_add_tail(&fast_path_evt->work_evt.evt_listp, 2273 &phba->work_list); 2274 spin_unlock_irqrestore(&phba->hbalock, flags); 2275 lpfc_worker_wake_up(phba); 2276 break; 2277 case IOSTAT_LOCAL_REJECT: 2278 if (lpfc_cmd->result == IOERR_INVALID_RPI || 2279 lpfc_cmd->result == IOERR_NO_RESOURCES || 2280 lpfc_cmd->result == IOERR_ABORT_REQUESTED) { 2281 cmd->result = ScsiResult(DID_REQUEUE, 0); 2282 break; 2283 } 2284 2285 if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED || 2286 lpfc_cmd->result == IOERR_TX_DMA_FAILED) && 2287 pIocbOut->iocb.unsli3.sli3_bg.bgstat) { 2288 if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) { 2289 /* 2290 * This is a response for a BG enabled 2291 * cmd. Parse BG error 2292 */ 2293 lpfc_parse_bg_err(phba, lpfc_cmd, 2294 pIocbOut); 2295 break; 2296 } else { 2297 lpfc_printf_vlog(vport, KERN_WARNING, 2298 LOG_BG, 2299 "9031 non-zero BGSTAT " 2300 "on unprotected cmd\n"); 2301 } 2302 } 2303 2304 /* else: fall through */ 2305 default: 2306 cmd->result = ScsiResult(DID_ERROR, 0); 2307 break; 2308 } 2309 2310 if (!pnode || !NLP_CHK_NODE_ACT(pnode) 2311 || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 2312 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 2313 SAM_STAT_BUSY); 2314 } else { 2315 cmd->result = ScsiResult(DID_OK, 0); 2316 } 2317 2318 if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) { 2319 uint32_t *lp = (uint32_t *)cmd->sense_buffer; 2320 2321 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2322 "0710 Iodone <%d/%d> cmd %p, error " 2323 "x%x SNS x%x x%x Data: x%x x%x\n", 2324 cmd->device->id, cmd->device->lun, cmd, 2325 cmd->result, *lp, *(lp + 3), cmd->retries, 2326 scsi_get_resid(cmd)); 2327 } 2328 2329 lpfc_update_stats(phba, lpfc_cmd); 2330 result = cmd->result; 2331 if (vport->cfg_max_scsicmpl_time && 2332 time_after(jiffies, lpfc_cmd->start_time + 2333 msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) { 2334 spin_lock_irqsave(shost->host_lock, flags); 2335 if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2336 if (pnode->cmd_qdepth > 2337 atomic_read(&pnode->cmd_pending) && 2338 (atomic_read(&pnode->cmd_pending) > 2339 LPFC_MIN_TGT_QDEPTH) && 2340 ((cmd->cmnd[0] == READ_10) || 2341 (cmd->cmnd[0] == WRITE_10))) 2342 pnode->cmd_qdepth = 2343 atomic_read(&pnode->cmd_pending); 2344 2345 pnode->last_change_time = jiffies; 2346 } 2347 spin_unlock_irqrestore(shost->host_lock, flags); 2348 } else if (pnode && NLP_CHK_NODE_ACT(pnode)) { 2349 if ((pnode->cmd_qdepth < LPFC_MAX_TGT_QDEPTH) && 2350 time_after(jiffies, pnode->last_change_time + 2351 msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) { 2352 spin_lock_irqsave(shost->host_lock, flags); 2353 pnode->cmd_qdepth += pnode->cmd_qdepth * 2354 LPFC_TGTQ_RAMPUP_PCENT / 100; 2355 if (pnode->cmd_qdepth > LPFC_MAX_TGT_QDEPTH) 2356 pnode->cmd_qdepth = LPFC_MAX_TGT_QDEPTH; 2357 pnode->last_change_time = jiffies; 2358 spin_unlock_irqrestore(shost->host_lock, flags); 2359 } 2360 } 2361 2362 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 2363 2364 /* The sdev is not guaranteed to be valid post scsi_done upcall. */ 2365 queue_depth = cmd->device->queue_depth; 2366 scsi_id = cmd->device->id; 2367 cmd->scsi_done(cmd); 2368 2369 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2370 /* 2371 * If there is a thread waiting for command completion 2372 * wake up the thread. 2373 */ 2374 spin_lock_irqsave(shost->host_lock, flags); 2375 lpfc_cmd->pCmd = NULL; 2376 if (lpfc_cmd->waitq) 2377 wake_up(lpfc_cmd->waitq); 2378 spin_unlock_irqrestore(shost->host_lock, flags); 2379 lpfc_release_scsi_buf(phba, lpfc_cmd); 2380 return; 2381 } 2382 2383 if (!result) 2384 lpfc_rampup_queue_depth(vport, queue_depth); 2385 2386 /* 2387 * Check for queue full. If the lun is reporting queue full, then 2388 * back off the lun queue depth to prevent target overloads. 2389 */ 2390 if (result == SAM_STAT_TASK_SET_FULL && pnode && 2391 NLP_CHK_NODE_ACT(pnode)) { 2392 shost_for_each_device(tmp_sdev, shost) { 2393 if (tmp_sdev->id != scsi_id) 2394 continue; 2395 depth = scsi_track_queue_full(tmp_sdev, 2396 tmp_sdev->queue_depth-1); 2397 if (depth <= 0) 2398 continue; 2399 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 2400 "0711 detected queue full - lun queue " 2401 "depth adjusted to %d.\n", depth); 2402 lpfc_send_sdev_queuedepth_change_event(phba, vport, 2403 pnode, 2404 tmp_sdev->lun, 2405 depth+1, depth); 2406 } 2407 } 2408 2409 /* 2410 * If there is a thread waiting for command completion 2411 * wake up the thread. 2412 */ 2413 spin_lock_irqsave(shost->host_lock, flags); 2414 lpfc_cmd->pCmd = NULL; 2415 if (lpfc_cmd->waitq) 2416 wake_up(lpfc_cmd->waitq); 2417 spin_unlock_irqrestore(shost->host_lock, flags); 2418 2419 lpfc_release_scsi_buf(phba, lpfc_cmd); 2420 } 2421 2422 /** 2423 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB 2424 * @data: A pointer to the immediate command data portion of the IOCB. 2425 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer. 2426 * 2427 * The routine copies the entire FCP command from @fcp_cmnd to @data while 2428 * byte swapping the data to big endian format for transmission on the wire. 2429 **/ 2430 static void 2431 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd) 2432 { 2433 int i, j; 2434 for (i = 0, j = 0; i < sizeof(struct fcp_cmnd); 2435 i += sizeof(uint32_t), j++) { 2436 ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]); 2437 } 2438 } 2439 2440 /** 2441 * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit 2442 * @vport: The virtual port for which this call is being executed. 2443 * @lpfc_cmd: The scsi command which needs to send. 2444 * @pnode: Pointer to lpfc_nodelist. 2445 * 2446 * This routine initializes fcp_cmnd and iocb data structure from scsi command 2447 * to transfer for device with SLI3 interface spec. 2448 **/ 2449 static void 2450 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, 2451 struct lpfc_nodelist *pnode) 2452 { 2453 struct lpfc_hba *phba = vport->phba; 2454 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; 2455 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; 2456 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; 2457 struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq); 2458 int datadir = scsi_cmnd->sc_data_direction; 2459 char tag[2]; 2460 2461 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 2462 return; 2463 2464 lpfc_cmd->fcp_rsp->rspSnsLen = 0; 2465 /* clear task management bits */ 2466 lpfc_cmd->fcp_cmnd->fcpCntl2 = 0; 2467 2468 int_to_scsilun(lpfc_cmd->pCmd->device->lun, 2469 &lpfc_cmd->fcp_cmnd->fcp_lun); 2470 2471 memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16); 2472 2473 if (scsi_populate_tag_msg(scsi_cmnd, tag)) { 2474 switch (tag[0]) { 2475 case HEAD_OF_QUEUE_TAG: 2476 fcp_cmnd->fcpCntl1 = HEAD_OF_Q; 2477 break; 2478 case ORDERED_QUEUE_TAG: 2479 fcp_cmnd->fcpCntl1 = ORDERED_Q; 2480 break; 2481 default: 2482 fcp_cmnd->fcpCntl1 = SIMPLE_Q; 2483 break; 2484 } 2485 } else 2486 fcp_cmnd->fcpCntl1 = 0; 2487 2488 /* 2489 * There are three possibilities here - use scatter-gather segment, use 2490 * the single mapping, or neither. Start the lpfc command prep by 2491 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first 2492 * data bde entry. 2493 */ 2494 if (scsi_sg_count(scsi_cmnd)) { 2495 if (datadir == DMA_TO_DEVICE) { 2496 iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR; 2497 if (phba->sli_rev < LPFC_SLI_REV4) { 2498 iocb_cmd->un.fcpi.fcpi_parm = 0; 2499 iocb_cmd->ulpPU = 0; 2500 } else 2501 iocb_cmd->ulpPU = PARM_READ_CHECK; 2502 fcp_cmnd->fcpCntl3 = WRITE_DATA; 2503 phba->fc4OutputRequests++; 2504 } else { 2505 iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR; 2506 iocb_cmd->ulpPU = PARM_READ_CHECK; 2507 fcp_cmnd->fcpCntl3 = READ_DATA; 2508 phba->fc4InputRequests++; 2509 } 2510 } else { 2511 iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR; 2512 iocb_cmd->un.fcpi.fcpi_parm = 0; 2513 iocb_cmd->ulpPU = 0; 2514 fcp_cmnd->fcpCntl3 = 0; 2515 phba->fc4ControlRequests++; 2516 } 2517 if (phba->sli_rev == 3 && 2518 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2519 lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd); 2520 /* 2521 * Finish initializing those IOCB fields that are independent 2522 * of the scsi_cmnd request_buffer 2523 */ 2524 piocbq->iocb.ulpContext = pnode->nlp_rpi; 2525 if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE) 2526 piocbq->iocb.ulpFCP2Rcvy = 1; 2527 else 2528 piocbq->iocb.ulpFCP2Rcvy = 0; 2529 2530 piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f); 2531 piocbq->context1 = lpfc_cmd; 2532 piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; 2533 piocbq->iocb.ulpTimeout = lpfc_cmd->timeout; 2534 piocbq->vport = vport; 2535 } 2536 2537 /** 2538 * lpfc_scsi_prep_task_mgmt_cmnd - Convert SLI3 scsi TM cmd to FCP info unit 2539 * @vport: The virtual port for which this call is being executed. 2540 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. 2541 * @lun: Logical unit number. 2542 * @task_mgmt_cmd: SCSI task management command. 2543 * 2544 * This routine creates FCP information unit corresponding to @task_mgmt_cmd 2545 * for device with SLI-3 interface spec. 2546 * 2547 * Return codes: 2548 * 0 - Error 2549 * 1 - Success 2550 **/ 2551 static int 2552 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport, 2553 struct lpfc_scsi_buf *lpfc_cmd, 2554 unsigned int lun, 2555 uint8_t task_mgmt_cmd) 2556 { 2557 struct lpfc_iocbq *piocbq; 2558 IOCB_t *piocb; 2559 struct fcp_cmnd *fcp_cmnd; 2560 struct lpfc_rport_data *rdata = lpfc_cmd->rdata; 2561 struct lpfc_nodelist *ndlp = rdata->pnode; 2562 2563 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2564 ndlp->nlp_state != NLP_STE_MAPPED_NODE) 2565 return 0; 2566 2567 piocbq = &(lpfc_cmd->cur_iocbq); 2568 piocbq->vport = vport; 2569 2570 piocb = &piocbq->iocb; 2571 2572 fcp_cmnd = lpfc_cmd->fcp_cmnd; 2573 /* Clear out any old data in the FCP command area */ 2574 memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); 2575 int_to_scsilun(lun, &fcp_cmnd->fcp_lun); 2576 fcp_cmnd->fcpCntl2 = task_mgmt_cmd; 2577 if (vport->phba->sli_rev == 3 && 2578 !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED)) 2579 lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd); 2580 piocb->ulpCommand = CMD_FCP_ICMND64_CR; 2581 piocb->ulpContext = ndlp->nlp_rpi; 2582 if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) { 2583 piocb->ulpFCP2Rcvy = 1; 2584 } 2585 piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f); 2586 2587 /* ulpTimeout is only one byte */ 2588 if (lpfc_cmd->timeout > 0xff) { 2589 /* 2590 * Do not timeout the command at the firmware level. 2591 * The driver will provide the timeout mechanism. 2592 */ 2593 piocb->ulpTimeout = 0; 2594 } else 2595 piocb->ulpTimeout = lpfc_cmd->timeout; 2596 2597 if (vport->phba->sli_rev == LPFC_SLI_REV4) 2598 lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd); 2599 2600 return 1; 2601 } 2602 2603 /** 2604 * lpfc_scsi_api_table_setup - Set up scsi api fucntion jump table 2605 * @phba: The hba struct for which this call is being executed. 2606 * @dev_grp: The HBA PCI-Device group number. 2607 * 2608 * This routine sets up the SCSI interface API function jump table in @phba 2609 * struct. 2610 * Returns: 0 - success, -ENODEV - failure. 2611 **/ 2612 int 2613 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 2614 { 2615 2616 phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf; 2617 phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd; 2618 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf; 2619 2620 switch (dev_grp) { 2621 case LPFC_PCI_DEV_LP: 2622 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3; 2623 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3; 2624 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3; 2625 break; 2626 case LPFC_PCI_DEV_OC: 2627 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4; 2628 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4; 2629 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4; 2630 break; 2631 default: 2632 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 2633 "1418 Invalid HBA PCI-device group: 0x%x\n", 2634 dev_grp); 2635 return -ENODEV; 2636 break; 2637 } 2638 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf; 2639 phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth; 2640 return 0; 2641 } 2642 2643 /** 2644 * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command 2645 * @phba: The Hba for which this call is being executed. 2646 * @cmdiocbq: Pointer to lpfc_iocbq data structure. 2647 * @rspiocbq: Pointer to lpfc_iocbq data structure. 2648 * 2649 * This routine is IOCB completion routine for device reset and target reset 2650 * routine. This routine release scsi buffer associated with lpfc_cmd. 2651 **/ 2652 static void 2653 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba, 2654 struct lpfc_iocbq *cmdiocbq, 2655 struct lpfc_iocbq *rspiocbq) 2656 { 2657 struct lpfc_scsi_buf *lpfc_cmd = 2658 (struct lpfc_scsi_buf *) cmdiocbq->context1; 2659 if (lpfc_cmd) 2660 lpfc_release_scsi_buf(phba, lpfc_cmd); 2661 return; 2662 } 2663 2664 /** 2665 * lpfc_info - Info entry point of scsi_host_template data structure 2666 * @host: The scsi host for which this call is being executed. 2667 * 2668 * This routine provides module information about hba. 2669 * 2670 * Reutrn code: 2671 * Pointer to char - Success. 2672 **/ 2673 const char * 2674 lpfc_info(struct Scsi_Host *host) 2675 { 2676 struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata; 2677 struct lpfc_hba *phba = vport->phba; 2678 int len; 2679 static char lpfcinfobuf[384]; 2680 2681 memset(lpfcinfobuf,0,384); 2682 if (phba && phba->pcidev){ 2683 strncpy(lpfcinfobuf, phba->ModelDesc, 256); 2684 len = strlen(lpfcinfobuf); 2685 snprintf(lpfcinfobuf + len, 2686 384-len, 2687 " on PCI bus %02x device %02x irq %d", 2688 phba->pcidev->bus->number, 2689 phba->pcidev->devfn, 2690 phba->pcidev->irq); 2691 len = strlen(lpfcinfobuf); 2692 if (phba->Port[0]) { 2693 snprintf(lpfcinfobuf + len, 2694 384-len, 2695 " port %s", 2696 phba->Port); 2697 } 2698 } 2699 return lpfcinfobuf; 2700 } 2701 2702 /** 2703 * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba 2704 * @phba: The Hba for which this call is being executed. 2705 * 2706 * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo. 2707 * The default value of cfg_poll_tmo is 10 milliseconds. 2708 **/ 2709 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba) 2710 { 2711 unsigned long poll_tmo_expires = 2712 (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo)); 2713 2714 if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt) 2715 mod_timer(&phba->fcp_poll_timer, 2716 poll_tmo_expires); 2717 } 2718 2719 /** 2720 * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA 2721 * @phba: The Hba for which this call is being executed. 2722 * 2723 * This routine starts the fcp_poll_timer of @phba. 2724 **/ 2725 void lpfc_poll_start_timer(struct lpfc_hba * phba) 2726 { 2727 lpfc_poll_rearm_timer(phba); 2728 } 2729 2730 /** 2731 * lpfc_poll_timeout - Restart polling timer 2732 * @ptr: Map to lpfc_hba data structure pointer. 2733 * 2734 * This routine restarts fcp_poll timer, when FCP ring polling is enable 2735 * and FCP Ring interrupt is disable. 2736 **/ 2737 2738 void lpfc_poll_timeout(unsigned long ptr) 2739 { 2740 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 2741 2742 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2743 lpfc_sli_handle_fast_ring_event(phba, 2744 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 2745 2746 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 2747 lpfc_poll_rearm_timer(phba); 2748 } 2749 } 2750 2751 /** 2752 * lpfc_queuecommand - scsi_host_template queuecommand entry point 2753 * @cmnd: Pointer to scsi_cmnd data structure. 2754 * @done: Pointer to done routine. 2755 * 2756 * Driver registers this routine to scsi midlayer to submit a @cmd to process. 2757 * This routine prepares an IOCB from scsi command and provides to firmware. 2758 * The @done callback is invoked after driver finished processing the command. 2759 * 2760 * Return value : 2761 * 0 - Success 2762 * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily. 2763 **/ 2764 static int 2765 lpfc_queuecommand(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *)) 2766 { 2767 struct Scsi_Host *shost = cmnd->device->host; 2768 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 2769 struct lpfc_hba *phba = vport->phba; 2770 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 2771 struct lpfc_nodelist *ndlp; 2772 struct lpfc_scsi_buf *lpfc_cmd; 2773 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); 2774 int err; 2775 2776 err = fc_remote_port_chkready(rport); 2777 if (err) { 2778 cmnd->result = err; 2779 goto out_fail_command; 2780 } 2781 ndlp = rdata->pnode; 2782 2783 if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 2784 scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 2785 2786 lpfc_printf_log(phba, KERN_ERR, LOG_BG, 2787 "9058 BLKGRD: ERROR: rcvd protected cmd:%02x" 2788 " op:%02x str=%s without registering for" 2789 " BlockGuard - Rejecting command\n", 2790 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 2791 dif_op_str[scsi_get_prot_op(cmnd)]); 2792 goto out_fail_command; 2793 } 2794 2795 /* 2796 * Catch race where our node has transitioned, but the 2797 * transport is still transitioning. 2798 */ 2799 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 2800 cmnd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); 2801 goto out_fail_command; 2802 } 2803 if (vport->cfg_max_scsicmpl_time && 2804 (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth)) 2805 goto out_host_busy; 2806 2807 lpfc_cmd = lpfc_get_scsi_buf(phba); 2808 if (lpfc_cmd == NULL) { 2809 lpfc_rampdown_queue_depth(phba); 2810 2811 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 2812 "0707 driver's buffer pool is empty, " 2813 "IO busied\n"); 2814 goto out_host_busy; 2815 } 2816 2817 /* 2818 * Store the midlayer's command structure for the completion phase 2819 * and complete the command initialization. 2820 */ 2821 lpfc_cmd->pCmd = cmnd; 2822 lpfc_cmd->rdata = rdata; 2823 lpfc_cmd->timeout = 0; 2824 lpfc_cmd->start_time = jiffies; 2825 cmnd->host_scribble = (unsigned char *)lpfc_cmd; 2826 cmnd->scsi_done = done; 2827 2828 if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { 2829 if (vport->phba->cfg_enable_bg) { 2830 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2831 "9033 BLKGRD: rcvd protected cmd:%02x op:%02x " 2832 "str=%s\n", 2833 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 2834 dif_op_str[scsi_get_prot_op(cmnd)]); 2835 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2836 "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x " 2837 "%02x %02x %02x %02x %02x\n", 2838 cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2], 2839 cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5], 2840 cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8], 2841 cmnd->cmnd[9]); 2842 if (cmnd->cmnd[0] == READ_10) 2843 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2844 "9035 BLKGRD: READ @ sector %llu, " 2845 "count %u\n", 2846 (unsigned long long)scsi_get_lba(cmnd), 2847 blk_rq_sectors(cmnd->request)); 2848 else if (cmnd->cmnd[0] == WRITE_10) 2849 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2850 "9036 BLKGRD: WRITE @ sector %llu, " 2851 "count %u cmd=%p\n", 2852 (unsigned long long)scsi_get_lba(cmnd), 2853 blk_rq_sectors(cmnd->request), 2854 cmnd); 2855 } 2856 2857 err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); 2858 } else { 2859 if (vport->phba->cfg_enable_bg) { 2860 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2861 "9038 BLKGRD: rcvd unprotected cmd:" 2862 "%02x op:%02x str=%s\n", 2863 cmnd->cmnd[0], scsi_get_prot_op(cmnd), 2864 dif_op_str[scsi_get_prot_op(cmnd)]); 2865 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2866 "9039 BLKGRD: CDB: %02x %02x %02x " 2867 "%02x %02x %02x %02x %02x %02x %02x\n", 2868 cmnd->cmnd[0], cmnd->cmnd[1], 2869 cmnd->cmnd[2], cmnd->cmnd[3], 2870 cmnd->cmnd[4], cmnd->cmnd[5], 2871 cmnd->cmnd[6], cmnd->cmnd[7], 2872 cmnd->cmnd[8], cmnd->cmnd[9]); 2873 if (cmnd->cmnd[0] == READ_10) 2874 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2875 "9040 dbg: READ @ sector %llu, " 2876 "count %u\n", 2877 (unsigned long long)scsi_get_lba(cmnd), 2878 blk_rq_sectors(cmnd->request)); 2879 else if (cmnd->cmnd[0] == WRITE_10) 2880 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2881 "9041 dbg: WRITE @ sector %llu, " 2882 "count %u cmd=%p\n", 2883 (unsigned long long)scsi_get_lba(cmnd), 2884 blk_rq_sectors(cmnd->request), cmnd); 2885 else 2886 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, 2887 "9042 dbg: parser not implemented\n"); 2888 } 2889 err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); 2890 } 2891 2892 if (err) 2893 goto out_host_busy_free_buf; 2894 2895 lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp); 2896 2897 atomic_inc(&ndlp->cmd_pending); 2898 err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, 2899 &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB); 2900 if (err) { 2901 atomic_dec(&ndlp->cmd_pending); 2902 goto out_host_busy_free_buf; 2903 } 2904 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 2905 spin_unlock(shost->host_lock); 2906 lpfc_sli_handle_fast_ring_event(phba, 2907 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 2908 2909 spin_lock(shost->host_lock); 2910 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 2911 lpfc_poll_rearm_timer(phba); 2912 } 2913 2914 return 0; 2915 2916 out_host_busy_free_buf: 2917 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); 2918 lpfc_release_scsi_buf(phba, lpfc_cmd); 2919 out_host_busy: 2920 return SCSI_MLQUEUE_HOST_BUSY; 2921 2922 out_fail_command: 2923 done(cmnd); 2924 return 0; 2925 } 2926 2927 /** 2928 * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point 2929 * @cmnd: Pointer to scsi_cmnd data structure. 2930 * 2931 * This routine aborts @cmnd pending in base driver. 2932 * 2933 * Return code : 2934 * 0x2003 - Error 2935 * 0x2002 - Success 2936 **/ 2937 static int 2938 lpfc_abort_handler(struct scsi_cmnd *cmnd) 2939 { 2940 struct Scsi_Host *shost = cmnd->device->host; 2941 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 2942 struct lpfc_hba *phba = vport->phba; 2943 struct lpfc_iocbq *iocb; 2944 struct lpfc_iocbq *abtsiocb; 2945 struct lpfc_scsi_buf *lpfc_cmd; 2946 IOCB_t *cmd, *icmd; 2947 int ret = SUCCESS; 2948 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq); 2949 2950 fc_block_scsi_eh(cmnd); 2951 lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble; 2952 BUG_ON(!lpfc_cmd); 2953 2954 /* 2955 * If pCmd field of the corresponding lpfc_scsi_buf structure 2956 * points to a different SCSI command, then the driver has 2957 * already completed this command, but the midlayer did not 2958 * see the completion before the eh fired. Just return 2959 * SUCCESS. 2960 */ 2961 iocb = &lpfc_cmd->cur_iocbq; 2962 if (lpfc_cmd->pCmd != cmnd) 2963 goto out; 2964 2965 BUG_ON(iocb->context1 != lpfc_cmd); 2966 2967 abtsiocb = lpfc_sli_get_iocbq(phba); 2968 if (abtsiocb == NULL) { 2969 ret = FAILED; 2970 goto out; 2971 } 2972 2973 /* 2974 * The scsi command can not be in txq and it is in flight because the 2975 * pCmd is still pointig at the SCSI command we have to abort. There 2976 * is no need to search the txcmplq. Just send an abort to the FW. 2977 */ 2978 2979 cmd = &iocb->iocb; 2980 icmd = &abtsiocb->iocb; 2981 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 2982 icmd->un.acxri.abortContextTag = cmd->ulpContext; 2983 if (phba->sli_rev == LPFC_SLI_REV4) 2984 icmd->un.acxri.abortIoTag = iocb->sli4_xritag; 2985 else 2986 icmd->un.acxri.abortIoTag = cmd->ulpIoTag; 2987 2988 icmd->ulpLe = 1; 2989 icmd->ulpClass = cmd->ulpClass; 2990 2991 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 2992 abtsiocb->fcp_wqidx = iocb->fcp_wqidx; 2993 2994 if (lpfc_is_link_up(phba)) 2995 icmd->ulpCommand = CMD_ABORT_XRI_CN; 2996 else 2997 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 2998 2999 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 3000 abtsiocb->vport = vport; 3001 if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) == 3002 IOCB_ERROR) { 3003 lpfc_sli_release_iocbq(phba, abtsiocb); 3004 ret = FAILED; 3005 goto out; 3006 } 3007 3008 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3009 lpfc_sli_handle_fast_ring_event(phba, 3010 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3011 3012 lpfc_cmd->waitq = &waitq; 3013 /* Wait for abort to complete */ 3014 wait_event_timeout(waitq, 3015 (lpfc_cmd->pCmd != cmnd), 3016 (2*vport->cfg_devloss_tmo*HZ)); 3017 3018 spin_lock_irq(shost->host_lock); 3019 lpfc_cmd->waitq = NULL; 3020 spin_unlock_irq(shost->host_lock); 3021 3022 if (lpfc_cmd->pCmd == cmnd) { 3023 ret = FAILED; 3024 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3025 "0748 abort handler timed out waiting " 3026 "for abort to complete: ret %#x, ID %d, " 3027 "LUN %d, snum %#lx\n", 3028 ret, cmnd->device->id, cmnd->device->lun, 3029 cmnd->serial_number); 3030 } 3031 3032 out: 3033 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3034 "0749 SCSI Layer I/O Abort Request Status x%x ID %d " 3035 "LUN %d snum %#lx\n", ret, cmnd->device->id, 3036 cmnd->device->lun, cmnd->serial_number); 3037 return ret; 3038 } 3039 3040 static char * 3041 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd) 3042 { 3043 switch (task_mgmt_cmd) { 3044 case FCP_ABORT_TASK_SET: 3045 return "ABORT_TASK_SET"; 3046 case FCP_CLEAR_TASK_SET: 3047 return "FCP_CLEAR_TASK_SET"; 3048 case FCP_BUS_RESET: 3049 return "FCP_BUS_RESET"; 3050 case FCP_LUN_RESET: 3051 return "FCP_LUN_RESET"; 3052 case FCP_TARGET_RESET: 3053 return "FCP_TARGET_RESET"; 3054 case FCP_CLEAR_ACA: 3055 return "FCP_CLEAR_ACA"; 3056 case FCP_TERMINATE_TASK: 3057 return "FCP_TERMINATE_TASK"; 3058 default: 3059 return "unknown"; 3060 } 3061 } 3062 3063 /** 3064 * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler 3065 * @vport: The virtual port for which this call is being executed. 3066 * @rdata: Pointer to remote port local data 3067 * @tgt_id: Target ID of remote device. 3068 * @lun_id: Lun number for the TMF 3069 * @task_mgmt_cmd: type of TMF to send 3070 * 3071 * This routine builds and sends a TMF (SCSI Task Mgmt Function) to 3072 * a remote port. 3073 * 3074 * Return Code: 3075 * 0x2003 - Error 3076 * 0x2002 - Success. 3077 **/ 3078 static int 3079 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata, 3080 unsigned tgt_id, unsigned int lun_id, 3081 uint8_t task_mgmt_cmd) 3082 { 3083 struct lpfc_hba *phba = vport->phba; 3084 struct lpfc_scsi_buf *lpfc_cmd; 3085 struct lpfc_iocbq *iocbq; 3086 struct lpfc_iocbq *iocbqrsp; 3087 int ret; 3088 int status; 3089 3090 if (!rdata->pnode || !NLP_CHK_NODE_ACT(rdata->pnode)) 3091 return FAILED; 3092 3093 lpfc_cmd = lpfc_get_scsi_buf(phba); 3094 if (lpfc_cmd == NULL) 3095 return FAILED; 3096 lpfc_cmd->timeout = 60; 3097 lpfc_cmd->rdata = rdata; 3098 3099 status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id, 3100 task_mgmt_cmd); 3101 if (!status) { 3102 lpfc_release_scsi_buf(phba, lpfc_cmd); 3103 return FAILED; 3104 } 3105 3106 iocbq = &lpfc_cmd->cur_iocbq; 3107 iocbqrsp = lpfc_sli_get_iocbq(phba); 3108 if (iocbqrsp == NULL) { 3109 lpfc_release_scsi_buf(phba, lpfc_cmd); 3110 return FAILED; 3111 } 3112 3113 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3114 "0702 Issue %s to TGT %d LUN %d " 3115 "rpi x%x nlp_flag x%x\n", 3116 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id, 3117 rdata->pnode->nlp_rpi, rdata->pnode->nlp_flag); 3118 3119 status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING, 3120 iocbq, iocbqrsp, lpfc_cmd->timeout); 3121 if (status != IOCB_SUCCESS) { 3122 if (status == IOCB_TIMEDOUT) { 3123 iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl; 3124 ret = TIMEOUT_ERROR; 3125 } else 3126 ret = FAILED; 3127 lpfc_cmd->status = IOSTAT_DRIVER_REJECT; 3128 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3129 "0727 TMF %s to TGT %d LUN %d failed (%d, %d)\n", 3130 lpfc_taskmgmt_name(task_mgmt_cmd), 3131 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus, 3132 iocbqrsp->iocb.un.ulpWord[4]); 3133 } else 3134 ret = SUCCESS; 3135 3136 lpfc_sli_release_iocbq(phba, iocbqrsp); 3137 3138 if (ret != TIMEOUT_ERROR) 3139 lpfc_release_scsi_buf(phba, lpfc_cmd); 3140 3141 return ret; 3142 } 3143 3144 /** 3145 * lpfc_chk_tgt_mapped - 3146 * @vport: The virtual port to check on 3147 * @cmnd: Pointer to scsi_cmnd data structure. 3148 * 3149 * This routine delays until the scsi target (aka rport) for the 3150 * command exists (is present and logged in) or we declare it non-existent. 3151 * 3152 * Return code : 3153 * 0x2003 - Error 3154 * 0x2002 - Success 3155 **/ 3156 static int 3157 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd) 3158 { 3159 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3160 struct lpfc_nodelist *pnode; 3161 unsigned long later; 3162 3163 if (!rdata) { 3164 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, 3165 "0797 Tgt Map rport failure: rdata x%p\n", rdata); 3166 return FAILED; 3167 } 3168 pnode = rdata->pnode; 3169 /* 3170 * If target is not in a MAPPED state, delay until 3171 * target is rediscovered or devloss timeout expires. 3172 */ 3173 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3174 while (time_after(later, jiffies)) { 3175 if (!pnode || !NLP_CHK_NODE_ACT(pnode)) 3176 return FAILED; 3177 if (pnode->nlp_state == NLP_STE_MAPPED_NODE) 3178 return SUCCESS; 3179 schedule_timeout_uninterruptible(msecs_to_jiffies(500)); 3180 rdata = cmnd->device->hostdata; 3181 if (!rdata) 3182 return FAILED; 3183 pnode = rdata->pnode; 3184 } 3185 if (!pnode || !NLP_CHK_NODE_ACT(pnode) || 3186 (pnode->nlp_state != NLP_STE_MAPPED_NODE)) 3187 return FAILED; 3188 return SUCCESS; 3189 } 3190 3191 /** 3192 * lpfc_reset_flush_io_context - 3193 * @vport: The virtual port (scsi_host) for the flush context 3194 * @tgt_id: If aborting by Target contect - specifies the target id 3195 * @lun_id: If aborting by Lun context - specifies the lun id 3196 * @context: specifies the context level to flush at. 3197 * 3198 * After a reset condition via TMF, we need to flush orphaned i/o 3199 * contexts from the adapter. This routine aborts any contexts 3200 * outstanding, then waits for their completions. The wait is 3201 * bounded by devloss_tmo though. 3202 * 3203 * Return code : 3204 * 0x2003 - Error 3205 * 0x2002 - Success 3206 **/ 3207 static int 3208 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id, 3209 uint64_t lun_id, lpfc_ctx_cmd context) 3210 { 3211 struct lpfc_hba *phba = vport->phba; 3212 unsigned long later; 3213 int cnt; 3214 3215 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3216 if (cnt) 3217 lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring], 3218 tgt_id, lun_id, context); 3219 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; 3220 while (time_after(later, jiffies) && cnt) { 3221 schedule_timeout_uninterruptible(msecs_to_jiffies(20)); 3222 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); 3223 } 3224 if (cnt) { 3225 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3226 "0724 I/O flush failure for context %s : cnt x%x\n", 3227 ((context == LPFC_CTX_LUN) ? "LUN" : 3228 ((context == LPFC_CTX_TGT) ? "TGT" : 3229 ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))), 3230 cnt); 3231 return FAILED; 3232 } 3233 return SUCCESS; 3234 } 3235 3236 /** 3237 * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point 3238 * @cmnd: Pointer to scsi_cmnd data structure. 3239 * 3240 * This routine does a device reset by sending a LUN_RESET task management 3241 * command. 3242 * 3243 * Return code : 3244 * 0x2003 - Error 3245 * 0x2002 - Success 3246 **/ 3247 static int 3248 lpfc_device_reset_handler(struct scsi_cmnd *cmnd) 3249 { 3250 struct Scsi_Host *shost = cmnd->device->host; 3251 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3252 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3253 struct lpfc_nodelist *pnode; 3254 unsigned tgt_id = cmnd->device->id; 3255 unsigned int lun_id = cmnd->device->lun; 3256 struct lpfc_scsi_event_header scsi_event; 3257 int status; 3258 3259 if (!rdata) { 3260 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3261 "0798 Device Reset rport failure: rdata x%p\n", rdata); 3262 return FAILED; 3263 } 3264 pnode = rdata->pnode; 3265 fc_block_scsi_eh(cmnd); 3266 3267 status = lpfc_chk_tgt_mapped(vport, cmnd); 3268 if (status == FAILED) { 3269 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3270 "0721 Device Reset rport failure: rdata x%p\n", rdata); 3271 return FAILED; 3272 } 3273 3274 scsi_event.event_type = FC_REG_SCSI_EVENT; 3275 scsi_event.subcategory = LPFC_EVENT_LUNRESET; 3276 scsi_event.lun = lun_id; 3277 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3278 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3279 3280 fc_host_post_vendor_event(shost, fc_get_event_number(), 3281 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3282 3283 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3284 FCP_LUN_RESET); 3285 3286 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3287 "0713 SCSI layer issued Device Reset (%d, %d) " 3288 "return x%x\n", tgt_id, lun_id, status); 3289 3290 /* 3291 * We have to clean up i/o as : they may be orphaned by the TMF; 3292 * or if the TMF failed, they may be in an indeterminate state. 3293 * So, continue on. 3294 * We will report success if all the i/o aborts successfully. 3295 */ 3296 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3297 LPFC_CTX_LUN); 3298 return status; 3299 } 3300 3301 /** 3302 * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point 3303 * @cmnd: Pointer to scsi_cmnd data structure. 3304 * 3305 * This routine does a target reset by sending a TARGET_RESET task management 3306 * command. 3307 * 3308 * Return code : 3309 * 0x2003 - Error 3310 * 0x2002 - Success 3311 **/ 3312 static int 3313 lpfc_target_reset_handler(struct scsi_cmnd *cmnd) 3314 { 3315 struct Scsi_Host *shost = cmnd->device->host; 3316 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3317 struct lpfc_rport_data *rdata = cmnd->device->hostdata; 3318 struct lpfc_nodelist *pnode; 3319 unsigned tgt_id = cmnd->device->id; 3320 unsigned int lun_id = cmnd->device->lun; 3321 struct lpfc_scsi_event_header scsi_event; 3322 int status; 3323 3324 if (!rdata) { 3325 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3326 "0799 Target Reset rport failure: rdata x%p\n", rdata); 3327 return FAILED; 3328 } 3329 pnode = rdata->pnode; 3330 fc_block_scsi_eh(cmnd); 3331 3332 status = lpfc_chk_tgt_mapped(vport, cmnd); 3333 if (status == FAILED) { 3334 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3335 "0722 Target Reset rport failure: rdata x%p\n", rdata); 3336 return FAILED; 3337 } 3338 3339 scsi_event.event_type = FC_REG_SCSI_EVENT; 3340 scsi_event.subcategory = LPFC_EVENT_TGTRESET; 3341 scsi_event.lun = 0; 3342 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); 3343 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); 3344 3345 fc_host_post_vendor_event(shost, fc_get_event_number(), 3346 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3347 3348 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, 3349 FCP_TARGET_RESET); 3350 3351 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3352 "0723 SCSI layer issued Target Reset (%d, %d) " 3353 "return x%x\n", tgt_id, lun_id, status); 3354 3355 /* 3356 * We have to clean up i/o as : they may be orphaned by the TMF; 3357 * or if the TMF failed, they may be in an indeterminate state. 3358 * So, continue on. 3359 * We will report success if all the i/o aborts successfully. 3360 */ 3361 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, 3362 LPFC_CTX_TGT); 3363 return status; 3364 } 3365 3366 /** 3367 * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point 3368 * @cmnd: Pointer to scsi_cmnd data structure. 3369 * 3370 * This routine does target reset to all targets on @cmnd->device->host. 3371 * This emulates Parallel SCSI Bus Reset Semantics. 3372 * 3373 * Return code : 3374 * 0x2003 - Error 3375 * 0x2002 - Success 3376 **/ 3377 static int 3378 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd) 3379 { 3380 struct Scsi_Host *shost = cmnd->device->host; 3381 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 3382 struct lpfc_nodelist *ndlp = NULL; 3383 struct lpfc_scsi_event_header scsi_event; 3384 int match; 3385 int ret = SUCCESS, status, i; 3386 3387 scsi_event.event_type = FC_REG_SCSI_EVENT; 3388 scsi_event.subcategory = LPFC_EVENT_BUSRESET; 3389 scsi_event.lun = 0; 3390 memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name)); 3391 memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name)); 3392 3393 fc_host_post_vendor_event(shost, fc_get_event_number(), 3394 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); 3395 3396 fc_block_scsi_eh(cmnd); 3397 3398 /* 3399 * Since the driver manages a single bus device, reset all 3400 * targets known to the driver. Should any target reset 3401 * fail, this routine returns failure to the midlayer. 3402 */ 3403 for (i = 0; i < LPFC_MAX_TARGET; i++) { 3404 /* Search for mapped node by target ID */ 3405 match = 0; 3406 spin_lock_irq(shost->host_lock); 3407 list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { 3408 if (!NLP_CHK_NODE_ACT(ndlp)) 3409 continue; 3410 if (ndlp->nlp_state == NLP_STE_MAPPED_NODE && 3411 ndlp->nlp_sid == i && 3412 ndlp->rport) { 3413 match = 1; 3414 break; 3415 } 3416 } 3417 spin_unlock_irq(shost->host_lock); 3418 if (!match) 3419 continue; 3420 3421 status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data, 3422 i, 0, FCP_TARGET_RESET); 3423 3424 if (status != SUCCESS) { 3425 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3426 "0700 Bus Reset on target %d failed\n", 3427 i); 3428 ret = FAILED; 3429 } 3430 } 3431 /* 3432 * We have to clean up i/o as : they may be orphaned by the TMFs 3433 * above; or if any of the TMFs failed, they may be in an 3434 * indeterminate state. 3435 * We will report success if all the i/o aborts successfully. 3436 */ 3437 3438 status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST); 3439 if (status != SUCCESS) 3440 ret = FAILED; 3441 3442 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, 3443 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret); 3444 return ret; 3445 } 3446 3447 /** 3448 * lpfc_slave_alloc - scsi_host_template slave_alloc entry point 3449 * @sdev: Pointer to scsi_device. 3450 * 3451 * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's 3452 * globally available list of scsi buffers. This routine also makes sure scsi 3453 * buffer is not allocated more than HBA limit conveyed to midlayer. This list 3454 * of scsi buffer exists for the lifetime of the driver. 3455 * 3456 * Return codes: 3457 * non-0 - Error 3458 * 0 - Success 3459 **/ 3460 static int 3461 lpfc_slave_alloc(struct scsi_device *sdev) 3462 { 3463 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3464 struct lpfc_hba *phba = vport->phba; 3465 struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); 3466 uint32_t total = 0; 3467 uint32_t num_to_alloc = 0; 3468 int num_allocated = 0; 3469 3470 if (!rport || fc_remote_port_chkready(rport)) 3471 return -ENXIO; 3472 3473 sdev->hostdata = rport->dd_data; 3474 3475 /* 3476 * Populate the cmds_per_lun count scsi_bufs into this host's globally 3477 * available list of scsi buffers. Don't allocate more than the 3478 * HBA limit conveyed to the midlayer via the host structure. The 3479 * formula accounts for the lun_queue_depth + error handlers + 1 3480 * extra. This list of scsi bufs exists for the lifetime of the driver. 3481 */ 3482 total = phba->total_scsi_bufs; 3483 num_to_alloc = vport->cfg_lun_queue_depth + 2; 3484 3485 /* Allow some exchanges to be available always to complete discovery */ 3486 if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3487 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3488 "0704 At limitation of %d preallocated " 3489 "command buffers\n", total); 3490 return 0; 3491 /* Allow some exchanges to be available always to complete discovery */ 3492 } else if (total + num_to_alloc > 3493 phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { 3494 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3495 "0705 Allocation request of %d " 3496 "command buffers will exceed max of %d. " 3497 "Reducing allocation request to %d.\n", 3498 num_to_alloc, phba->cfg_hba_queue_depth, 3499 (phba->cfg_hba_queue_depth - total)); 3500 num_to_alloc = phba->cfg_hba_queue_depth - total; 3501 } 3502 num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc); 3503 if (num_to_alloc != num_allocated) { 3504 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, 3505 "0708 Allocation request of %d " 3506 "command buffers did not succeed. " 3507 "Allocated %d buffers.\n", 3508 num_to_alloc, num_allocated); 3509 } 3510 if (num_allocated > 0) 3511 phba->total_scsi_bufs += num_allocated; 3512 return 0; 3513 } 3514 3515 /** 3516 * lpfc_slave_configure - scsi_host_template slave_configure entry point 3517 * @sdev: Pointer to scsi_device. 3518 * 3519 * This routine configures following items 3520 * - Tag command queuing support for @sdev if supported. 3521 * - Dev loss time out value of fc_rport. 3522 * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set. 3523 * 3524 * Return codes: 3525 * 0 - Success 3526 **/ 3527 static int 3528 lpfc_slave_configure(struct scsi_device *sdev) 3529 { 3530 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; 3531 struct lpfc_hba *phba = vport->phba; 3532 struct fc_rport *rport = starget_to_rport(sdev->sdev_target); 3533 3534 if (sdev->tagged_supported) 3535 scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth); 3536 else 3537 scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth); 3538 3539 /* 3540 * Initialize the fc transport attributes for the target 3541 * containing this scsi device. Also note that the driver's 3542 * target pointer is stored in the starget_data for the 3543 * driver's sysfs entry point functions. 3544 */ 3545 rport->dev_loss_tmo = vport->cfg_devloss_tmo; 3546 3547 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { 3548 lpfc_sli_handle_fast_ring_event(phba, 3549 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); 3550 if (phba->cfg_poll & DISABLE_FCP_RING_INT) 3551 lpfc_poll_rearm_timer(phba); 3552 } 3553 3554 return 0; 3555 } 3556 3557 /** 3558 * lpfc_slave_destroy - slave_destroy entry point of SHT data structure 3559 * @sdev: Pointer to scsi_device. 3560 * 3561 * This routine sets @sdev hostatdata filed to null. 3562 **/ 3563 static void 3564 lpfc_slave_destroy(struct scsi_device *sdev) 3565 { 3566 sdev->hostdata = NULL; 3567 return; 3568 } 3569 3570 3571 struct scsi_host_template lpfc_template = { 3572 .module = THIS_MODULE, 3573 .name = LPFC_DRIVER_NAME, 3574 .info = lpfc_info, 3575 .queuecommand = lpfc_queuecommand, 3576 .eh_abort_handler = lpfc_abort_handler, 3577 .eh_device_reset_handler = lpfc_device_reset_handler, 3578 .eh_target_reset_handler = lpfc_target_reset_handler, 3579 .eh_bus_reset_handler = lpfc_bus_reset_handler, 3580 .slave_alloc = lpfc_slave_alloc, 3581 .slave_configure = lpfc_slave_configure, 3582 .slave_destroy = lpfc_slave_destroy, 3583 .scan_finished = lpfc_scan_finished, 3584 .this_id = -1, 3585 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 3586 .cmd_per_lun = LPFC_CMD_PER_LUN, 3587 .use_clustering = ENABLE_CLUSTERING, 3588 .shost_attrs = lpfc_hba_attrs, 3589 .max_sectors = 0xFFFF, 3590 .vendor_id = LPFC_NL_VENDOR_ID, 3591 .change_queue_depth = lpfc_change_queue_depth, 3592 }; 3593 3594 struct scsi_host_template lpfc_vport_template = { 3595 .module = THIS_MODULE, 3596 .name = LPFC_DRIVER_NAME, 3597 .info = lpfc_info, 3598 .queuecommand = lpfc_queuecommand, 3599 .eh_abort_handler = lpfc_abort_handler, 3600 .eh_device_reset_handler = lpfc_device_reset_handler, 3601 .eh_target_reset_handler = lpfc_target_reset_handler, 3602 .eh_bus_reset_handler = lpfc_bus_reset_handler, 3603 .slave_alloc = lpfc_slave_alloc, 3604 .slave_configure = lpfc_slave_configure, 3605 .slave_destroy = lpfc_slave_destroy, 3606 .scan_finished = lpfc_scan_finished, 3607 .this_id = -1, 3608 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, 3609 .cmd_per_lun = LPFC_CMD_PER_LUN, 3610 .use_clustering = ENABLE_CLUSTERING, 3611 .shost_attrs = lpfc_vport_attrs, 3612 .max_sectors = 0xFFFF, 3613 .change_queue_depth = lpfc_change_queue_depth, 3614 }; 3615