xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_nvmet.c (revision e953aeaa)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channsel Host Bus Adapters.                               *
4  * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.     *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  ********************************************************************/
23 #include <linux/pci.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <asm/unaligned.h>
28 #include <linux/crc-t10dif.h>
29 #include <net/checksum.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_device.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_tcq.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
38 
39 #include "lpfc_version.h"
40 #include "lpfc_hw4.h"
41 #include "lpfc_hw.h"
42 #include "lpfc_sli.h"
43 #include "lpfc_sli4.h"
44 #include "lpfc_nl.h"
45 #include "lpfc_disc.h"
46 #include "lpfc.h"
47 #include "lpfc_scsi.h"
48 #include "lpfc_nvme.h"
49 #include "lpfc_logmsg.h"
50 #include "lpfc_crtn.h"
51 #include "lpfc_vport.h"
52 #include "lpfc_debugfs.h"
53 
54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *,
55 						 struct lpfc_async_xchg_ctx *,
56 						 dma_addr_t rspbuf,
57 						 uint16_t rspsize);
58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *,
59 						  struct lpfc_async_xchg_ctx *);
60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *,
61 					  struct lpfc_async_xchg_ctx *,
62 					  uint32_t, uint16_t);
63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *,
64 					    struct lpfc_async_xchg_ctx *,
65 					    uint32_t, uint16_t);
66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *,
67 				    struct lpfc_async_xchg_ctx *);
68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *);
69 
70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf);
71 
72 static union lpfc_wqe128 lpfc_tsend_cmd_template;
73 static union lpfc_wqe128 lpfc_treceive_cmd_template;
74 static union lpfc_wqe128 lpfc_trsp_cmd_template;
75 
76 /* Setup WQE templates for NVME IOs */
77 void
78 lpfc_nvmet_cmd_template(void)
79 {
80 	union lpfc_wqe128 *wqe;
81 
82 	/* TSEND template */
83 	wqe = &lpfc_tsend_cmd_template;
84 	memset(wqe, 0, sizeof(union lpfc_wqe128));
85 
86 	/* Word 0, 1, 2 - BDE is variable */
87 
88 	/* Word 3 - payload_offset_len is zero */
89 
90 	/* Word 4 - relative_offset is variable */
91 
92 	/* Word 5 - is zero */
93 
94 	/* Word 6 - ctxt_tag, xri_tag is variable */
95 
96 	/* Word 7 - wqe_ar is variable */
97 	bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE);
98 	bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF);
99 	bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3);
100 	bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI);
101 	bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1);
102 
103 	/* Word 8 - abort_tag is variable */
104 
105 	/* Word 9  - reqtag, rcvoxid is variable */
106 
107 	/* Word 10 - wqes, xc is variable */
108 	bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1);
109 	bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1);
110 	bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
111 	bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
112 	bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE);
113 	bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12);
114 
115 	/* Word 11 - sup, irsp, irsplen is variable */
116 	bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND);
117 	bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
118 	bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
119 	bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
120 	bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
121 	bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0);
122 
123 	/* Word 12 - fcp_data_len is variable */
124 
125 	/* Word 13, 14, 15 - PBDE is zero */
126 
127 	/* TRECEIVE template */
128 	wqe = &lpfc_treceive_cmd_template;
129 	memset(wqe, 0, sizeof(union lpfc_wqe128));
130 
131 	/* Word 0, 1, 2 - BDE is variable */
132 
133 	/* Word 3 */
134 	wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN;
135 
136 	/* Word 4 - relative_offset is variable */
137 
138 	/* Word 5 - is zero */
139 
140 	/* Word 6 - ctxt_tag, xri_tag is variable */
141 
142 	/* Word 7 */
143 	bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE);
144 	bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF);
145 	bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3);
146 	bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI);
147 	bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0);
148 
149 	/* Word 8 - abort_tag is variable */
150 
151 	/* Word 9  - reqtag, rcvoxid is variable */
152 
153 	/* Word 10 - xc is variable */
154 	bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1);
155 	bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0);
156 	bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1);
157 	bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ);
158 	bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12);
159 	bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
160 
161 	/* Word 11 - pbde is variable */
162 	bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE);
163 	bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
164 	bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0);
165 	bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0);
166 	bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0);
167 	bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1);
168 
169 	/* Word 12 - fcp_data_len is variable */
170 
171 	/* Word 13, 14, 15 - PBDE is variable */
172 
173 	/* TRSP template */
174 	wqe = &lpfc_trsp_cmd_template;
175 	memset(wqe, 0, sizeof(union lpfc_wqe128));
176 
177 	/* Word 0, 1, 2 - BDE is variable */
178 
179 	/* Word 3 - response_len is variable */
180 
181 	/* Word 4, 5 - is zero */
182 
183 	/* Word 6 - ctxt_tag, xri_tag is variable */
184 
185 	/* Word 7 */
186 	bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE);
187 	bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED);
188 	bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3);
189 	bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI);
190 	bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */
191 
192 	/* Word 8 - abort_tag is variable */
193 
194 	/* Word 9  - reqtag is variable */
195 
196 	/* Word 10 wqes, xc is variable */
197 	bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1);
198 	bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1);
199 	bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0);
200 	bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0);
201 	bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE);
202 	bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3);
203 
204 	/* Word 11 irsp, irsplen is variable */
205 	bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP);
206 	bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
207 	bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0);
208 	bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0);
209 	bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0);
210 	bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0);
211 
212 	/* Word 12, 13, 14, 15 - is zero */
213 }
214 
215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
216 static struct lpfc_async_xchg_ctx *
217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri)
218 {
219 	struct lpfc_async_xchg_ctx *ctxp;
220 	unsigned long iflag;
221 	bool found = false;
222 
223 	spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
224 	list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
225 		if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
226 			continue;
227 
228 		found = true;
229 		break;
230 	}
231 	spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
232 	if (found)
233 		return ctxp;
234 
235 	return NULL;
236 }
237 
238 static struct lpfc_async_xchg_ctx *
239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid)
240 {
241 	struct lpfc_async_xchg_ctx *ctxp;
242 	unsigned long iflag;
243 	bool found = false;
244 
245 	spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
246 	list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
247 		if (ctxp->oxid != oxid || ctxp->sid != sid)
248 			continue;
249 
250 		found = true;
251 		break;
252 	}
253 	spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
254 	if (found)
255 		return ctxp;
256 
257 	return NULL;
258 }
259 #endif
260 
261 static void
262 lpfc_nvmet_defer_release(struct lpfc_hba *phba,
263 			struct lpfc_async_xchg_ctx *ctxp)
264 {
265 	lockdep_assert_held(&ctxp->ctxlock);
266 
267 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
268 			"6313 NVMET Defer ctx release oxid x%x flg x%x\n",
269 			ctxp->oxid, ctxp->flag);
270 
271 	if (ctxp->flag & LPFC_NVME_CTX_RLS)
272 		return;
273 
274 	ctxp->flag |= LPFC_NVME_CTX_RLS;
275 	spin_lock(&phba->sli4_hba.t_active_list_lock);
276 	list_del(&ctxp->list);
277 	spin_unlock(&phba->sli4_hba.t_active_list_lock);
278 	spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
279 	list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
280 	spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
281 }
282 
283 /**
284  * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the
285  *         transmission of an NVME LS response.
286  * @phba: Pointer to HBA context object.
287  * @cmdwqe: Pointer to driver command WQE object.
288  * @wcqe: Pointer to driver response CQE object.
289  *
290  * The function is called from SLI ring event handler with no
291  * lock held. The function frees memory resources used for the command
292  * used to send the NVME LS RSP.
293  **/
294 void
295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
296 			   struct lpfc_wcqe_complete *wcqe)
297 {
298 	struct lpfc_async_xchg_ctx *axchg = cmdwqe->context2;
299 	struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp;
300 	uint32_t status, result;
301 
302 	status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
303 	result = wcqe->parameter;
304 
305 	if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) {
306 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
307 				"6410 NVMEx LS cmpl state mismatch IO x%x: "
308 				"%d %d\n",
309 				axchg->oxid, axchg->state, axchg->entry_cnt);
310 	}
311 
312 	lpfc_nvmeio_data(phba, "NVMEx LS  CMPL: xri x%x stat x%x result x%x\n",
313 			 axchg->oxid, status, result);
314 
315 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
316 			"6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n",
317 			status, result, axchg->oxid);
318 
319 	lpfc_nlp_put(cmdwqe->context1);
320 	cmdwqe->context2 = NULL;
321 	cmdwqe->context3 = NULL;
322 	lpfc_sli_release_iocbq(phba, cmdwqe);
323 	ls_rsp->done(ls_rsp);
324 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
325 			"6200 NVMEx LS rsp cmpl done status %d oxid x%x\n",
326 			status, axchg->oxid);
327 	kfree(axchg);
328 }
329 
330 /**
331  * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response
332  * @phba: Pointer to HBA context object.
333  * @cmdwqe: Pointer to driver command WQE object.
334  * @wcqe: Pointer to driver response CQE object.
335  *
336  * The function is called from SLI ring event handler with no
337  * lock held. This function is the completion handler for NVME LS commands
338  * The function updates any states and statistics, then calls the
339  * generic completion handler to free resources.
340  **/
341 static void
342 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
343 			  struct lpfc_wcqe_complete *wcqe)
344 {
345 	struct lpfc_nvmet_tgtport *tgtp;
346 	uint32_t status, result;
347 
348 	if (!phba->targetport)
349 		goto finish;
350 
351 	status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
352 	result = wcqe->parameter;
353 
354 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
355 	if (tgtp) {
356 		if (status) {
357 			atomic_inc(&tgtp->xmt_ls_rsp_error);
358 			if (result == IOERR_ABORT_REQUESTED)
359 				atomic_inc(&tgtp->xmt_ls_rsp_aborted);
360 			if (bf_get(lpfc_wcqe_c_xb, wcqe))
361 				atomic_inc(&tgtp->xmt_ls_rsp_xb_set);
362 		} else {
363 			atomic_inc(&tgtp->xmt_ls_rsp_cmpl);
364 		}
365 	}
366 
367 finish:
368 	__lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, wcqe);
369 }
370 
371 /**
372  * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context
373  * @phba: HBA buffer is associated with
374  * @ctxp: context to clean up
375  * @mp: Buffer to free
376  *
377  * Description: Frees the given DMA buffer in the appropriate way given by
378  * reposting it to its associated RQ so it can be reused.
379  *
380  * Notes: Takes phba->hbalock.  Can be called with or without other locks held.
381  *
382  * Returns: None
383  **/
384 void
385 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf)
386 {
387 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
388 	struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
389 	struct lpfc_nvmet_tgtport *tgtp;
390 	struct fc_frame_header *fc_hdr;
391 	struct rqb_dmabuf *nvmebuf;
392 	struct lpfc_nvmet_ctx_info *infop;
393 	uint32_t size, oxid, sid;
394 	int cpu;
395 	unsigned long iflag;
396 
397 	if (ctxp->state == LPFC_NVME_STE_FREE) {
398 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
399 				"6411 NVMET free, already free IO x%x: %d %d\n",
400 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
401 	}
402 
403 	if (ctxp->rqb_buffer) {
404 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
405 		nvmebuf = ctxp->rqb_buffer;
406 		/* check if freed in another path whilst acquiring lock */
407 		if (nvmebuf) {
408 			ctxp->rqb_buffer = NULL;
409 			if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
410 				ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ;
411 				spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
412 				nvmebuf->hrq->rqbp->rqb_free_buffer(phba,
413 								    nvmebuf);
414 			} else {
415 				spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
416 				/* repost */
417 				lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
418 			}
419 		} else {
420 			spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
421 		}
422 	}
423 	ctxp->state = LPFC_NVME_STE_FREE;
424 
425 	spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
426 	if (phba->sli4_hba.nvmet_io_wait_cnt) {
427 		list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list,
428 				 nvmebuf, struct rqb_dmabuf,
429 				 hbuf.list);
430 		phba->sli4_hba.nvmet_io_wait_cnt--;
431 		spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
432 				       iflag);
433 
434 		fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
435 		oxid = be16_to_cpu(fc_hdr->fh_ox_id);
436 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
437 		size = nvmebuf->bytes_recv;
438 		sid = sli4_sid_from_fc_hdr(fc_hdr);
439 
440 		ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
441 		ctxp->wqeq = NULL;
442 		ctxp->offset = 0;
443 		ctxp->phba = phba;
444 		ctxp->size = size;
445 		ctxp->oxid = oxid;
446 		ctxp->sid = sid;
447 		ctxp->state = LPFC_NVME_STE_RCV;
448 		ctxp->entry_cnt = 1;
449 		ctxp->flag = 0;
450 		ctxp->ctxbuf = ctx_buf;
451 		ctxp->rqb_buffer = (void *)nvmebuf;
452 		spin_lock_init(&ctxp->ctxlock);
453 
454 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
455 		/* NOTE: isr time stamp is stale when context is re-assigned*/
456 		if (ctxp->ts_isr_cmd) {
457 			ctxp->ts_cmd_nvme = 0;
458 			ctxp->ts_nvme_data = 0;
459 			ctxp->ts_data_wqput = 0;
460 			ctxp->ts_isr_data = 0;
461 			ctxp->ts_data_nvme = 0;
462 			ctxp->ts_nvme_status = 0;
463 			ctxp->ts_status_wqput = 0;
464 			ctxp->ts_isr_status = 0;
465 			ctxp->ts_status_nvme = 0;
466 		}
467 #endif
468 		atomic_inc(&tgtp->rcv_fcp_cmd_in);
469 
470 		/* Indicate that a replacement buffer has been posted */
471 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
472 		ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ;
473 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
474 
475 		if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
476 			atomic_inc(&tgtp->rcv_fcp_cmd_drop);
477 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
478 					"6181 Unable to queue deferred work "
479 					"for oxid x%x. "
480 					"FCP Drop IO [x%x x%x x%x]\n",
481 					ctxp->oxid,
482 					atomic_read(&tgtp->rcv_fcp_cmd_in),
483 					atomic_read(&tgtp->rcv_fcp_cmd_out),
484 					atomic_read(&tgtp->xmt_fcp_release));
485 
486 			spin_lock_irqsave(&ctxp->ctxlock, iflag);
487 			lpfc_nvmet_defer_release(phba, ctxp);
488 			spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
489 			lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
490 		}
491 		return;
492 	}
493 	spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
494 
495 	/*
496 	 * Use the CPU context list, from the MRQ the IO was received on
497 	 * (ctxp->idx), to save context structure.
498 	 */
499 	spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
500 	list_del_init(&ctxp->list);
501 	spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
502 	cpu = raw_smp_processor_id();
503 	infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx);
504 	spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag);
505 	list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
506 	infop->nvmet_ctx_list_cnt++;
507 	spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag);
508 #endif
509 }
510 
511 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
512 static void
513 lpfc_nvmet_ktime(struct lpfc_hba *phba,
514 		 struct lpfc_async_xchg_ctx *ctxp)
515 {
516 	uint64_t seg1, seg2, seg3, seg4, seg5;
517 	uint64_t seg6, seg7, seg8, seg9, seg10;
518 	uint64_t segsum;
519 
520 	if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme ||
521 	    !ctxp->ts_nvme_data || !ctxp->ts_data_wqput ||
522 	    !ctxp->ts_isr_data || !ctxp->ts_data_nvme ||
523 	    !ctxp->ts_nvme_status || !ctxp->ts_status_wqput ||
524 	    !ctxp->ts_isr_status || !ctxp->ts_status_nvme)
525 		return;
526 
527 	if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd)
528 		return;
529 	if (ctxp->ts_isr_cmd  > ctxp->ts_cmd_nvme)
530 		return;
531 	if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data)
532 		return;
533 	if (ctxp->ts_nvme_data > ctxp->ts_data_wqput)
534 		return;
535 	if (ctxp->ts_data_wqput > ctxp->ts_isr_data)
536 		return;
537 	if (ctxp->ts_isr_data > ctxp->ts_data_nvme)
538 		return;
539 	if (ctxp->ts_data_nvme > ctxp->ts_nvme_status)
540 		return;
541 	if (ctxp->ts_nvme_status > ctxp->ts_status_wqput)
542 		return;
543 	if (ctxp->ts_status_wqput > ctxp->ts_isr_status)
544 		return;
545 	if (ctxp->ts_isr_status > ctxp->ts_status_nvme)
546 		return;
547 	/*
548 	 * Segment 1 - Time from FCP command received by MSI-X ISR
549 	 * to FCP command is passed to NVME Layer.
550 	 * Segment 2 - Time from FCP command payload handed
551 	 * off to NVME Layer to Driver receives a Command op
552 	 * from NVME Layer.
553 	 * Segment 3 - Time from Driver receives a Command op
554 	 * from NVME Layer to Command is put on WQ.
555 	 * Segment 4 - Time from Driver WQ put is done
556 	 * to MSI-X ISR for Command cmpl.
557 	 * Segment 5 - Time from MSI-X ISR for Command cmpl to
558 	 * Command cmpl is passed to NVME Layer.
559 	 * Segment 6 - Time from Command cmpl is passed to NVME
560 	 * Layer to Driver receives a RSP op from NVME Layer.
561 	 * Segment 7 - Time from Driver receives a RSP op from
562 	 * NVME Layer to WQ put is done on TRSP FCP Status.
563 	 * Segment 8 - Time from Driver WQ put is done on TRSP
564 	 * FCP Status to MSI-X ISR for TRSP cmpl.
565 	 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to
566 	 * TRSP cmpl is passed to NVME Layer.
567 	 * Segment 10 - Time from FCP command received by
568 	 * MSI-X ISR to command is completed on wire.
569 	 * (Segments 1 thru 8) for READDATA / WRITEDATA
570 	 * (Segments 1 thru 4) for READDATA_RSP
571 	 */
572 	seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd;
573 	segsum = seg1;
574 
575 	seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd;
576 	if (segsum > seg2)
577 		return;
578 	seg2 -= segsum;
579 	segsum += seg2;
580 
581 	seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd;
582 	if (segsum > seg3)
583 		return;
584 	seg3 -= segsum;
585 	segsum += seg3;
586 
587 	seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd;
588 	if (segsum > seg4)
589 		return;
590 	seg4 -= segsum;
591 	segsum += seg4;
592 
593 	seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd;
594 	if (segsum > seg5)
595 		return;
596 	seg5 -= segsum;
597 	segsum += seg5;
598 
599 
600 	/* For auto rsp commands seg6 thru seg10 will be 0 */
601 	if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) {
602 		seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd;
603 		if (segsum > seg6)
604 			return;
605 		seg6 -= segsum;
606 		segsum += seg6;
607 
608 		seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd;
609 		if (segsum > seg7)
610 			return;
611 		seg7 -= segsum;
612 		segsum += seg7;
613 
614 		seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd;
615 		if (segsum > seg8)
616 			return;
617 		seg8 -= segsum;
618 		segsum += seg8;
619 
620 		seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd;
621 		if (segsum > seg9)
622 			return;
623 		seg9 -= segsum;
624 		segsum += seg9;
625 
626 		if (ctxp->ts_isr_status < ctxp->ts_isr_cmd)
627 			return;
628 		seg10 = (ctxp->ts_isr_status -
629 			ctxp->ts_isr_cmd);
630 	} else {
631 		if (ctxp->ts_isr_data < ctxp->ts_isr_cmd)
632 			return;
633 		seg6 =  0;
634 		seg7 =  0;
635 		seg8 =  0;
636 		seg9 =  0;
637 		seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd);
638 	}
639 
640 	phba->ktime_seg1_total += seg1;
641 	if (seg1 < phba->ktime_seg1_min)
642 		phba->ktime_seg1_min = seg1;
643 	else if (seg1 > phba->ktime_seg1_max)
644 		phba->ktime_seg1_max = seg1;
645 
646 	phba->ktime_seg2_total += seg2;
647 	if (seg2 < phba->ktime_seg2_min)
648 		phba->ktime_seg2_min = seg2;
649 	else if (seg2 > phba->ktime_seg2_max)
650 		phba->ktime_seg2_max = seg2;
651 
652 	phba->ktime_seg3_total += seg3;
653 	if (seg3 < phba->ktime_seg3_min)
654 		phba->ktime_seg3_min = seg3;
655 	else if (seg3 > phba->ktime_seg3_max)
656 		phba->ktime_seg3_max = seg3;
657 
658 	phba->ktime_seg4_total += seg4;
659 	if (seg4 < phba->ktime_seg4_min)
660 		phba->ktime_seg4_min = seg4;
661 	else if (seg4 > phba->ktime_seg4_max)
662 		phba->ktime_seg4_max = seg4;
663 
664 	phba->ktime_seg5_total += seg5;
665 	if (seg5 < phba->ktime_seg5_min)
666 		phba->ktime_seg5_min = seg5;
667 	else if (seg5 > phba->ktime_seg5_max)
668 		phba->ktime_seg5_max = seg5;
669 
670 	phba->ktime_data_samples++;
671 	if (!seg6)
672 		goto out;
673 
674 	phba->ktime_seg6_total += seg6;
675 	if (seg6 < phba->ktime_seg6_min)
676 		phba->ktime_seg6_min = seg6;
677 	else if (seg6 > phba->ktime_seg6_max)
678 		phba->ktime_seg6_max = seg6;
679 
680 	phba->ktime_seg7_total += seg7;
681 	if (seg7 < phba->ktime_seg7_min)
682 		phba->ktime_seg7_min = seg7;
683 	else if (seg7 > phba->ktime_seg7_max)
684 		phba->ktime_seg7_max = seg7;
685 
686 	phba->ktime_seg8_total += seg8;
687 	if (seg8 < phba->ktime_seg8_min)
688 		phba->ktime_seg8_min = seg8;
689 	else if (seg8 > phba->ktime_seg8_max)
690 		phba->ktime_seg8_max = seg8;
691 
692 	phba->ktime_seg9_total += seg9;
693 	if (seg9 < phba->ktime_seg9_min)
694 		phba->ktime_seg9_min = seg9;
695 	else if (seg9 > phba->ktime_seg9_max)
696 		phba->ktime_seg9_max = seg9;
697 out:
698 	phba->ktime_seg10_total += seg10;
699 	if (seg10 < phba->ktime_seg10_min)
700 		phba->ktime_seg10_min = seg10;
701 	else if (seg10 > phba->ktime_seg10_max)
702 		phba->ktime_seg10_max = seg10;
703 	phba->ktime_status_samples++;
704 }
705 #endif
706 
707 /**
708  * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response
709  * @phba: Pointer to HBA context object.
710  * @cmdwqe: Pointer to driver command WQE object.
711  * @wcqe: Pointer to driver response CQE object.
712  *
713  * The function is called from SLI ring event handler with no
714  * lock held. This function is the completion handler for NVME FCP commands
715  * The function frees memory resources used for the NVME commands.
716  **/
717 static void
718 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
719 			  struct lpfc_wcqe_complete *wcqe)
720 {
721 	struct lpfc_nvmet_tgtport *tgtp;
722 	struct nvmefc_tgt_fcp_req *rsp;
723 	struct lpfc_async_xchg_ctx *ctxp;
724 	uint32_t status, result, op, start_clean, logerr;
725 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
726 	int id;
727 #endif
728 
729 	ctxp = cmdwqe->context2;
730 	ctxp->flag &= ~LPFC_NVME_IO_INP;
731 
732 	rsp = &ctxp->hdlrctx.fcp_req;
733 	op = rsp->op;
734 
735 	status = bf_get(lpfc_wcqe_c_status, wcqe);
736 	result = wcqe->parameter;
737 
738 	if (phba->targetport)
739 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
740 	else
741 		tgtp = NULL;
742 
743 	lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n",
744 			 ctxp->oxid, op, status);
745 
746 	if (status) {
747 		rsp->fcp_error = NVME_SC_DATA_XFER_ERROR;
748 		rsp->transferred_length = 0;
749 		if (tgtp) {
750 			atomic_inc(&tgtp->xmt_fcp_rsp_error);
751 			if (result == IOERR_ABORT_REQUESTED)
752 				atomic_inc(&tgtp->xmt_fcp_rsp_aborted);
753 		}
754 
755 		logerr = LOG_NVME_IOERR;
756 
757 		/* pick up SLI4 exhange busy condition */
758 		if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
759 			ctxp->flag |= LPFC_NVME_XBUSY;
760 			logerr |= LOG_NVME_ABTS;
761 			if (tgtp)
762 				atomic_inc(&tgtp->xmt_fcp_rsp_xb_set);
763 
764 		} else {
765 			ctxp->flag &= ~LPFC_NVME_XBUSY;
766 		}
767 
768 		lpfc_printf_log(phba, KERN_INFO, logerr,
769 				"6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x "
770 				"XBUSY:x%x\n",
771 				ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag,
772 				status, result, ctxp->flag);
773 
774 	} else {
775 		rsp->fcp_error = NVME_SC_SUCCESS;
776 		if (op == NVMET_FCOP_RSP)
777 			rsp->transferred_length = rsp->rsplen;
778 		else
779 			rsp->transferred_length = rsp->transfer_length;
780 		if (tgtp)
781 			atomic_inc(&tgtp->xmt_fcp_rsp_cmpl);
782 	}
783 
784 	if ((op == NVMET_FCOP_READDATA_RSP) ||
785 	    (op == NVMET_FCOP_RSP)) {
786 		/* Sanity check */
787 		ctxp->state = LPFC_NVME_STE_DONE;
788 		ctxp->entry_cnt++;
789 
790 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
791 		if (ctxp->ts_cmd_nvme) {
792 			if (rsp->op == NVMET_FCOP_READDATA_RSP) {
793 				ctxp->ts_isr_data =
794 					cmdwqe->isr_timestamp;
795 				ctxp->ts_data_nvme =
796 					ktime_get_ns();
797 				ctxp->ts_nvme_status =
798 					ctxp->ts_data_nvme;
799 				ctxp->ts_status_wqput =
800 					ctxp->ts_data_nvme;
801 				ctxp->ts_isr_status =
802 					ctxp->ts_data_nvme;
803 				ctxp->ts_status_nvme =
804 					ctxp->ts_data_nvme;
805 			} else {
806 				ctxp->ts_isr_status =
807 					cmdwqe->isr_timestamp;
808 				ctxp->ts_status_nvme =
809 					ktime_get_ns();
810 			}
811 		}
812 #endif
813 		rsp->done(rsp);
814 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
815 		if (ctxp->ts_cmd_nvme)
816 			lpfc_nvmet_ktime(phba, ctxp);
817 #endif
818 		/* lpfc_nvmet_xmt_fcp_release() will recycle the context */
819 	} else {
820 		ctxp->entry_cnt++;
821 		start_clean = offsetof(struct lpfc_iocbq, iocb_flag);
822 		memset(((char *)cmdwqe) + start_clean, 0,
823 		       (sizeof(struct lpfc_iocbq) - start_clean));
824 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
825 		if (ctxp->ts_cmd_nvme) {
826 			ctxp->ts_isr_data = cmdwqe->isr_timestamp;
827 			ctxp->ts_data_nvme = ktime_get_ns();
828 		}
829 #endif
830 		rsp->done(rsp);
831 	}
832 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
833 	if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
834 		id = raw_smp_processor_id();
835 		this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io);
836 		if (ctxp->cpu != id)
837 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
838 					"6704 CPU Check cmdcmpl: "
839 					"cpu %d expect %d\n",
840 					id, ctxp->cpu);
841 	}
842 #endif
843 }
844 
845 /**
846  * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit
847  *         an NVME LS rsp for a prior NVME LS request that was received.
848  * @axchg: pointer to exchange context for the NVME LS request the response
849  *         is for.
850  * @ls_rsp: pointer to the transport LS RSP that is to be sent
851  * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done
852  *
853  * This routine is used to format and send a WQE to transmit a NVME LS
854  * Response.  The response is for a prior NVME LS request that was
855  * received and posted to the transport.
856  *
857  * Returns:
858  *  0 : if response successfully transmit
859  *  non-zero : if response failed to transmit, of the form -Exxx.
860  **/
861 int
862 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg,
863 			struct nvmefc_ls_rsp *ls_rsp,
864 			void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba,
865 				struct lpfc_iocbq *cmdwqe,
866 				struct lpfc_wcqe_complete *wcqe))
867 {
868 	struct lpfc_hba *phba = axchg->phba;
869 	struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer;
870 	struct lpfc_iocbq *nvmewqeq;
871 	struct lpfc_dmabuf dmabuf;
872 	struct ulp_bde64 bpl;
873 	int rc;
874 
875 	if (phba->pport->load_flag & FC_UNLOADING)
876 		return -ENODEV;
877 
878 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
879 			"6023 NVMEx LS rsp oxid x%x\n", axchg->oxid);
880 
881 	if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) {
882 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
883 				"6412 NVMEx LS rsp state mismatch "
884 				"oxid x%x: %d %d\n",
885 				axchg->oxid, axchg->state, axchg->entry_cnt);
886 		return -EALREADY;
887 	}
888 	axchg->state = LPFC_NVME_STE_LS_RSP;
889 	axchg->entry_cnt++;
890 
891 	nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma,
892 					 ls_rsp->rsplen);
893 	if (nvmewqeq == NULL) {
894 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
895 				"6150 NVMEx LS Drop Rsp x%x: Prep\n",
896 				axchg->oxid);
897 		rc = -ENOMEM;
898 		goto out_free_buf;
899 	}
900 
901 	/* Save numBdes for bpl2sgl */
902 	nvmewqeq->rsvd2 = 1;
903 	nvmewqeq->hba_wqidx = 0;
904 	nvmewqeq->context3 = &dmabuf;
905 	dmabuf.virt = &bpl;
906 	bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow;
907 	bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh;
908 	bpl.tus.f.bdeSize = ls_rsp->rsplen;
909 	bpl.tus.f.bdeFlags = 0;
910 	bpl.tus.w = le32_to_cpu(bpl.tus.w);
911 	/*
912 	 * Note: although we're using stack space for the dmabuf, the
913 	 * call to lpfc_sli4_issue_wqe is synchronous, so it will not
914 	 * be referenced after it returns back to this routine.
915 	 */
916 
917 	nvmewqeq->wqe_cmpl = xmt_ls_rsp_cmp;
918 	nvmewqeq->iocb_cmpl = NULL;
919 	nvmewqeq->context2 = axchg;
920 
921 	lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n",
922 			 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen);
923 
924 	rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq);
925 
926 	/* clear to be sure there's no reference */
927 	nvmewqeq->context3 = NULL;
928 
929 	if (rc == WQE_SUCCESS) {
930 		/*
931 		 * Okay to repost buffer here, but wait till cmpl
932 		 * before freeing ctxp and iocbq.
933 		 */
934 		lpfc_in_buf_free(phba, &nvmebuf->dbuf);
935 		return 0;
936 	}
937 
938 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
939 			"6151 NVMEx LS RSP x%x: failed to transmit %d\n",
940 			axchg->oxid, rc);
941 
942 	rc = -ENXIO;
943 
944 	lpfc_nlp_put(nvmewqeq->context1);
945 
946 out_free_buf:
947 	/* Give back resources */
948 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
949 
950 	/*
951 	 * As transport doesn't track completions of responses, if the rsp
952 	 * fails to send, the transport will effectively ignore the rsp
953 	 * and consider the LS done. However, the driver has an active
954 	 * exchange open for the LS - so be sure to abort the exchange
955 	 * if the response isn't sent.
956 	 */
957 	lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid);
958 	return rc;
959 }
960 
961 /**
962  * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response
963  * @tgtport: pointer to target port that NVME LS is to be transmit from.
964  * @ls_rsp: pointer to the transport LS RSP that is to be sent
965  *
966  * Driver registers this routine to transmit responses for received NVME
967  * LS requests.
968  *
969  * This routine is used to format and send a WQE to transmit a NVME LS
970  * Response. The ls_rsp is used to reverse-map the LS to the original
971  * NVME LS request sequence, which provides addressing information for
972  * the remote port the LS to be sent to, as well as the exchange id
973  * that is the LS is bound to.
974  *
975  * Returns:
976  *  0 : if response successfully transmit
977  *  non-zero : if response failed to transmit, of the form -Exxx.
978  **/
979 static int
980 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
981 		      struct nvmefc_ls_rsp *ls_rsp)
982 {
983 	struct lpfc_async_xchg_ctx *axchg =
984 		container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp);
985 	struct lpfc_nvmet_tgtport *nvmep = tgtport->private;
986 	int rc;
987 
988 	if (axchg->phba->pport->load_flag & FC_UNLOADING)
989 		return -ENODEV;
990 
991 	rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp);
992 
993 	if (rc) {
994 		atomic_inc(&nvmep->xmt_ls_drop);
995 		/*
996 		 * unless the failure is due to having already sent
997 		 * the response, an abort will be generated for the
998 		 * exchange if the rsp can't be sent.
999 		 */
1000 		if (rc != -EALREADY)
1001 			atomic_inc(&nvmep->xmt_ls_abort);
1002 		return rc;
1003 	}
1004 
1005 	atomic_inc(&nvmep->xmt_ls_rsp);
1006 	return 0;
1007 }
1008 
1009 static int
1010 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
1011 		      struct nvmefc_tgt_fcp_req *rsp)
1012 {
1013 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1014 	struct lpfc_async_xchg_ctx *ctxp =
1015 		container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1016 	struct lpfc_hba *phba = ctxp->phba;
1017 	struct lpfc_queue *wq;
1018 	struct lpfc_iocbq *nvmewqeq;
1019 	struct lpfc_sli_ring *pring;
1020 	unsigned long iflags;
1021 	int rc;
1022 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1023 	int id;
1024 #endif
1025 
1026 	if (phba->pport->load_flag & FC_UNLOADING) {
1027 		rc = -ENODEV;
1028 		goto aerr;
1029 	}
1030 
1031 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1032 	if (ctxp->ts_cmd_nvme) {
1033 		if (rsp->op == NVMET_FCOP_RSP)
1034 			ctxp->ts_nvme_status = ktime_get_ns();
1035 		else
1036 			ctxp->ts_nvme_data = ktime_get_ns();
1037 	}
1038 
1039 	/* Setup the hdw queue if not already set */
1040 	if (!ctxp->hdwq)
1041 		ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid];
1042 
1043 	if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
1044 		id = raw_smp_processor_id();
1045 		this_cpu_inc(phba->sli4_hba.c_stat->xmt_io);
1046 		if (rsp->hwqid != id)
1047 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1048 					"6705 CPU Check OP: "
1049 					"cpu %d expect %d\n",
1050 					id, rsp->hwqid);
1051 		ctxp->cpu = id; /* Setup cpu for cmpl check */
1052 	}
1053 #endif
1054 
1055 	/* Sanity check */
1056 	if ((ctxp->flag & LPFC_NVME_ABTS_RCV) ||
1057 	    (ctxp->state == LPFC_NVME_STE_ABORT)) {
1058 		atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1059 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1060 				"6102 IO oxid x%x aborted\n",
1061 				ctxp->oxid);
1062 		rc = -ENXIO;
1063 		goto aerr;
1064 	}
1065 
1066 	nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp);
1067 	if (nvmewqeq == NULL) {
1068 		atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1069 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1070 				"6152 FCP Drop IO x%x: Prep\n",
1071 				ctxp->oxid);
1072 		rc = -ENXIO;
1073 		goto aerr;
1074 	}
1075 
1076 	nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp;
1077 	nvmewqeq->iocb_cmpl = NULL;
1078 	nvmewqeq->context2 = ctxp;
1079 	nvmewqeq->iocb_flag |=  LPFC_IO_NVMET;
1080 	ctxp->wqeq->hba_wqidx = rsp->hwqid;
1081 
1082 	lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n",
1083 			 ctxp->oxid, rsp->op, rsp->rsplen);
1084 
1085 	ctxp->flag |= LPFC_NVME_IO_INP;
1086 	rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
1087 	if (rc == WQE_SUCCESS) {
1088 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1089 		if (!ctxp->ts_cmd_nvme)
1090 			return 0;
1091 		if (rsp->op == NVMET_FCOP_RSP)
1092 			ctxp->ts_status_wqput = ktime_get_ns();
1093 		else
1094 			ctxp->ts_data_wqput = ktime_get_ns();
1095 #endif
1096 		return 0;
1097 	}
1098 
1099 	if (rc == -EBUSY) {
1100 		/*
1101 		 * WQ was full, so queue nvmewqeq to be sent after
1102 		 * WQE release CQE
1103 		 */
1104 		ctxp->flag |= LPFC_NVME_DEFER_WQFULL;
1105 		wq = ctxp->hdwq->io_wq;
1106 		pring = wq->pring;
1107 		spin_lock_irqsave(&pring->ring_lock, iflags);
1108 		list_add_tail(&nvmewqeq->list, &wq->wqfull_list);
1109 		wq->q_flag |= HBA_NVMET_WQFULL;
1110 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
1111 		atomic_inc(&lpfc_nvmep->defer_wqfull);
1112 		return 0;
1113 	}
1114 
1115 	/* Give back resources */
1116 	atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1117 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1118 			"6153 FCP Drop IO x%x: Issue: %d\n",
1119 			ctxp->oxid, rc);
1120 
1121 	ctxp->wqeq->hba_wqidx = 0;
1122 	nvmewqeq->context2 = NULL;
1123 	nvmewqeq->context3 = NULL;
1124 	rc = -EBUSY;
1125 aerr:
1126 	return rc;
1127 }
1128 
1129 static void
1130 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
1131 {
1132 	struct lpfc_nvmet_tgtport *tport = targetport->private;
1133 
1134 	/* release any threads waiting for the unreg to complete */
1135 	if (tport->phba->targetport)
1136 		complete(tport->tport_unreg_cmp);
1137 }
1138 
1139 static void
1140 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
1141 			 struct nvmefc_tgt_fcp_req *req)
1142 {
1143 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1144 	struct lpfc_async_xchg_ctx *ctxp =
1145 		container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1146 	struct lpfc_hba *phba = ctxp->phba;
1147 	struct lpfc_queue *wq;
1148 	unsigned long flags;
1149 
1150 	if (phba->pport->load_flag & FC_UNLOADING)
1151 		return;
1152 
1153 	if (!ctxp->hdwq)
1154 		ctxp->hdwq = &phba->sli4_hba.hdwq[0];
1155 
1156 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1157 			"6103 NVMET Abort op: oxid x%x flg x%x ste %d\n",
1158 			ctxp->oxid, ctxp->flag, ctxp->state);
1159 
1160 	lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n",
1161 			 ctxp->oxid, ctxp->flag, ctxp->state);
1162 
1163 	atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
1164 
1165 	spin_lock_irqsave(&ctxp->ctxlock, flags);
1166 
1167 	/* Since iaab/iaar are NOT set, we need to check
1168 	 * if the firmware is in process of aborting IO
1169 	 */
1170 	if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) {
1171 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1172 		return;
1173 	}
1174 	ctxp->flag |= LPFC_NVME_ABORT_OP;
1175 
1176 	if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) {
1177 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1178 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1179 						 ctxp->oxid);
1180 		wq = ctxp->hdwq->io_wq;
1181 		lpfc_nvmet_wqfull_flush(phba, wq, ctxp);
1182 		return;
1183 	}
1184 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1185 
1186 	/* A state of LPFC_NVME_STE_RCV means we have just received
1187 	 * the NVME command and have not started processing it.
1188 	 * (by issuing any IO WQEs on this exchange yet)
1189 	 */
1190 	if (ctxp->state == LPFC_NVME_STE_RCV)
1191 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1192 						 ctxp->oxid);
1193 	else
1194 		lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1195 					       ctxp->oxid);
1196 }
1197 
1198 static void
1199 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
1200 			   struct nvmefc_tgt_fcp_req *rsp)
1201 {
1202 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1203 	struct lpfc_async_xchg_ctx *ctxp =
1204 		container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1205 	struct lpfc_hba *phba = ctxp->phba;
1206 	unsigned long flags;
1207 	bool aborting = false;
1208 
1209 	spin_lock_irqsave(&ctxp->ctxlock, flags);
1210 	if (ctxp->flag & LPFC_NVME_XBUSY)
1211 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1212 				"6027 NVMET release with XBUSY flag x%x"
1213 				" oxid x%x\n",
1214 				ctxp->flag, ctxp->oxid);
1215 	else if (ctxp->state != LPFC_NVME_STE_DONE &&
1216 		 ctxp->state != LPFC_NVME_STE_ABORT)
1217 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1218 				"6413 NVMET release bad state %d %d oxid x%x\n",
1219 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1220 
1221 	if ((ctxp->flag & LPFC_NVME_ABORT_OP) ||
1222 	    (ctxp->flag & LPFC_NVME_XBUSY)) {
1223 		aborting = true;
1224 		/* let the abort path do the real release */
1225 		lpfc_nvmet_defer_release(phba, ctxp);
1226 	}
1227 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1228 
1229 	lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid,
1230 			 ctxp->state, aborting);
1231 
1232 	atomic_inc(&lpfc_nvmep->xmt_fcp_release);
1233 	ctxp->flag &= ~LPFC_NVME_TNOTIFY;
1234 
1235 	if (aborting)
1236 		return;
1237 
1238 	lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1239 }
1240 
1241 static void
1242 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport,
1243 		     struct nvmefc_tgt_fcp_req *rsp)
1244 {
1245 	struct lpfc_nvmet_tgtport *tgtp;
1246 	struct lpfc_async_xchg_ctx *ctxp =
1247 		container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1248 	struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
1249 	struct lpfc_hba *phba = ctxp->phba;
1250 	unsigned long iflag;
1251 
1252 
1253 	lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n",
1254 			 ctxp->oxid, ctxp->size, raw_smp_processor_id());
1255 
1256 	if (!nvmebuf) {
1257 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1258 				"6425 Defer rcv: no buffer oxid x%x: "
1259 				"flg %x ste %x\n",
1260 				ctxp->oxid, ctxp->flag, ctxp->state);
1261 		return;
1262 	}
1263 
1264 	tgtp = phba->targetport->private;
1265 	if (tgtp)
1266 		atomic_inc(&tgtp->rcv_fcp_cmd_defer);
1267 
1268 	/* Free the nvmebuf since a new buffer already replaced it */
1269 	nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1270 	spin_lock_irqsave(&ctxp->ctxlock, iflag);
1271 	ctxp->rqb_buffer = NULL;
1272 	spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1273 }
1274 
1275 /**
1276  * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request
1277  * @phba: Pointer to HBA context object
1278  * @cmdwqe: Pointer to driver command WQE object.
1279  * @wcqe: Pointer to driver response CQE object.
1280  *
1281  * This function is the completion handler for NVME LS requests.
1282  * The function updates any states and statistics, then calls the
1283  * generic completion handler to finish completion of the request.
1284  **/
1285 static void
1286 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
1287 		       struct lpfc_wcqe_complete *wcqe)
1288 {
1289 	__lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe);
1290 }
1291 
1292 /**
1293  * lpfc_nvmet_ls_req - Issue an Link Service request
1294  * @targetport - pointer to target instance registered with nvmet transport.
1295  * @hosthandle - hosthandle set by the driver in a prior ls_rqst_rcv.
1296  *               Driver sets this value to the ndlp pointer.
1297  * @pnvme_lsreq - the transport nvme_ls_req structure for the LS
1298  *
1299  * Driver registers this routine to handle any link service request
1300  * from the nvme_fc transport to a remote nvme-aware port.
1301  *
1302  * Return value :
1303  *   0 - Success
1304  *   non-zero: various error codes, in form of -Exxx
1305  **/
1306 static int
1307 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport,
1308 		  void *hosthandle,
1309 		  struct nvmefc_ls_req *pnvme_lsreq)
1310 {
1311 	struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
1312 	struct lpfc_hba *phba;
1313 	struct lpfc_nodelist *ndlp;
1314 	int ret;
1315 	u32 hstate;
1316 
1317 	if (!lpfc_nvmet)
1318 		return -EINVAL;
1319 
1320 	phba = lpfc_nvmet->phba;
1321 	if (phba->pport->load_flag & FC_UNLOADING)
1322 		return -EINVAL;
1323 
1324 	hstate = atomic_read(&lpfc_nvmet->state);
1325 	if (hstate == LPFC_NVMET_INV_HOST_ACTIVE)
1326 		return -EACCES;
1327 
1328 	ndlp = (struct lpfc_nodelist *)hosthandle;
1329 
1330 	ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq,
1331 				 lpfc_nvmet_ls_req_cmp);
1332 
1333 	return ret;
1334 }
1335 
1336 /**
1337  * lpfc_nvmet_ls_abort - Abort a prior NVME LS request
1338  * @targetport: Transport targetport, that LS was issued from.
1339  * @hosthandle - hosthandle set by the driver in a prior ls_rqst_rcv.
1340  *               Driver sets this value to the ndlp pointer.
1341  * @pnvme_lsreq - the transport nvme_ls_req structure for LS to be aborted
1342  *
1343  * Driver registers this routine to abort an NVME LS request that is
1344  * in progress (from the transports perspective).
1345  **/
1346 static void
1347 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport,
1348 		    void *hosthandle,
1349 		    struct nvmefc_ls_req *pnvme_lsreq)
1350 {
1351 	struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
1352 	struct lpfc_hba *phba;
1353 	struct lpfc_nodelist *ndlp;
1354 	int ret;
1355 
1356 	phba = lpfc_nvmet->phba;
1357 	if (phba->pport->load_flag & FC_UNLOADING)
1358 		return;
1359 
1360 	ndlp = (struct lpfc_nodelist *)hosthandle;
1361 
1362 	ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq);
1363 	if (!ret)
1364 		atomic_inc(&lpfc_nvmet->xmt_ls_abort);
1365 }
1366 
1367 static void
1368 lpfc_nvmet_host_release(void *hosthandle)
1369 {
1370 	struct lpfc_nodelist *ndlp = hosthandle;
1371 	struct lpfc_hba *phba = NULL;
1372 	struct lpfc_nvmet_tgtport *tgtp;
1373 
1374 	phba = ndlp->phba;
1375 	if (!phba->targetport || !phba->targetport->private)
1376 		return;
1377 
1378 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1379 			"6202 NVMET XPT releasing hosthandle x%px\n",
1380 			hosthandle);
1381 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1382 	atomic_set(&tgtp->state, 0);
1383 }
1384 
1385 static void
1386 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport)
1387 {
1388 	struct lpfc_nvmet_tgtport *tgtp;
1389 	struct lpfc_hba *phba;
1390 	uint32_t rc;
1391 
1392 	tgtp = tgtport->private;
1393 	phba = tgtp->phba;
1394 
1395 	rc = lpfc_issue_els_rscn(phba->pport, 0);
1396 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1397 			"6420 NVMET subsystem change: Notification %s\n",
1398 			(rc) ? "Failed" : "Sent");
1399 }
1400 
1401 static struct nvmet_fc_target_template lpfc_tgttemplate = {
1402 	.targetport_delete = lpfc_nvmet_targetport_delete,
1403 	.xmt_ls_rsp     = lpfc_nvmet_xmt_ls_rsp,
1404 	.fcp_op         = lpfc_nvmet_xmt_fcp_op,
1405 	.fcp_abort      = lpfc_nvmet_xmt_fcp_abort,
1406 	.fcp_req_release = lpfc_nvmet_xmt_fcp_release,
1407 	.defer_rcv	= lpfc_nvmet_defer_rcv,
1408 	.discovery_event = lpfc_nvmet_discovery_event,
1409 	.ls_req         = lpfc_nvmet_ls_req,
1410 	.ls_abort       = lpfc_nvmet_ls_abort,
1411 	.host_release   = lpfc_nvmet_host_release,
1412 
1413 	.max_hw_queues  = 1,
1414 	.max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1415 	.max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1416 	.dma_boundary = 0xFFFFFFFF,
1417 
1418 	/* optional features */
1419 	.target_features = 0,
1420 	/* sizes of additional private data for data structures */
1421 	.target_priv_sz = sizeof(struct lpfc_nvmet_tgtport),
1422 	.lsrqst_priv_sz = 0,
1423 };
1424 
1425 static void
1426 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba,
1427 		struct lpfc_nvmet_ctx_info *infop)
1428 {
1429 	struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf;
1430 	unsigned long flags;
1431 
1432 	spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags);
1433 	list_for_each_entry_safe(ctx_buf, next_ctx_buf,
1434 				&infop->nvmet_ctx_list, list) {
1435 		spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1436 		list_del_init(&ctx_buf->list);
1437 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1438 
1439 		__lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag);
1440 		ctx_buf->sglq->state = SGL_FREED;
1441 		ctx_buf->sglq->ndlp = NULL;
1442 
1443 		spin_lock(&phba->sli4_hba.sgl_list_lock);
1444 		list_add_tail(&ctx_buf->sglq->list,
1445 				&phba->sli4_hba.lpfc_nvmet_sgl_list);
1446 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
1447 
1448 		lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1449 		kfree(ctx_buf->context);
1450 	}
1451 	spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags);
1452 }
1453 
1454 static void
1455 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba)
1456 {
1457 	struct lpfc_nvmet_ctx_info *infop;
1458 	int i, j;
1459 
1460 	/* The first context list, MRQ 0 CPU 0 */
1461 	infop = phba->sli4_hba.nvmet_ctx_info;
1462 	if (!infop)
1463 		return;
1464 
1465 	/* Cycle the the entire CPU context list for every MRQ */
1466 	for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
1467 		for_each_present_cpu(j) {
1468 			infop = lpfc_get_ctx_list(phba, j, i);
1469 			__lpfc_nvmet_clean_io_for_cpu(phba, infop);
1470 		}
1471 	}
1472 	kfree(phba->sli4_hba.nvmet_ctx_info);
1473 	phba->sli4_hba.nvmet_ctx_info = NULL;
1474 }
1475 
1476 static int
1477 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba)
1478 {
1479 	struct lpfc_nvmet_ctxbuf *ctx_buf;
1480 	struct lpfc_iocbq *nvmewqe;
1481 	union lpfc_wqe128 *wqe;
1482 	struct lpfc_nvmet_ctx_info *last_infop;
1483 	struct lpfc_nvmet_ctx_info *infop;
1484 	int i, j, idx, cpu;
1485 
1486 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
1487 			"6403 Allocate NVMET resources for %d XRIs\n",
1488 			phba->sli4_hba.nvmet_xri_cnt);
1489 
1490 	phba->sli4_hba.nvmet_ctx_info = kcalloc(
1491 		phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq,
1492 		sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL);
1493 	if (!phba->sli4_hba.nvmet_ctx_info) {
1494 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1495 				"6419 Failed allocate memory for "
1496 				"nvmet context lists\n");
1497 		return -ENOMEM;
1498 	}
1499 
1500 	/*
1501 	 * Assuming X CPUs in the system, and Y MRQs, allocate some
1502 	 * lpfc_nvmet_ctx_info structures as follows:
1503 	 *
1504 	 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0
1505 	 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1
1506 	 * ...
1507 	 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY
1508 	 *
1509 	 * Each line represents a MRQ "silo" containing an entry for
1510 	 * every CPU.
1511 	 *
1512 	 * MRQ X is initially assumed to be associated with CPU X, thus
1513 	 * contexts are initially distributed across all MRQs using
1514 	 * the MRQ index (N) as follows cpuN/mrqN. When contexts are
1515 	 * freed, the are freed to the MRQ silo based on the CPU number
1516 	 * of the IO completion. Thus a context that was allocated for MRQ A
1517 	 * whose IO completed on CPU B will be freed to cpuB/mrqA.
1518 	 */
1519 	for_each_possible_cpu(i) {
1520 		for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1521 			infop = lpfc_get_ctx_list(phba, i, j);
1522 			INIT_LIST_HEAD(&infop->nvmet_ctx_list);
1523 			spin_lock_init(&infop->nvmet_ctx_list_lock);
1524 			infop->nvmet_ctx_list_cnt = 0;
1525 		}
1526 	}
1527 
1528 	/*
1529 	 * Setup the next CPU context info ptr for each MRQ.
1530 	 * MRQ 0 will cycle thru CPUs 0 - X separately from
1531 	 * MRQ 1 cycling thru CPUs 0 - X, and so on.
1532 	 */
1533 	for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1534 		last_infop = lpfc_get_ctx_list(phba,
1535 					       cpumask_first(cpu_present_mask),
1536 					       j);
1537 		for (i = phba->sli4_hba.num_possible_cpu - 1;  i >= 0; i--) {
1538 			infop = lpfc_get_ctx_list(phba, i, j);
1539 			infop->nvmet_ctx_next_cpu = last_infop;
1540 			last_infop = infop;
1541 		}
1542 	}
1543 
1544 	/* For all nvmet xris, allocate resources needed to process a
1545 	 * received command on a per xri basis.
1546 	 */
1547 	idx = 0;
1548 	cpu = cpumask_first(cpu_present_mask);
1549 	for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) {
1550 		ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL);
1551 		if (!ctx_buf) {
1552 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1553 					"6404 Ran out of memory for NVMET\n");
1554 			return -ENOMEM;
1555 		}
1556 
1557 		ctx_buf->context = kzalloc(sizeof(*ctx_buf->context),
1558 					   GFP_KERNEL);
1559 		if (!ctx_buf->context) {
1560 			kfree(ctx_buf);
1561 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1562 					"6405 Ran out of NVMET "
1563 					"context memory\n");
1564 			return -ENOMEM;
1565 		}
1566 		ctx_buf->context->ctxbuf = ctx_buf;
1567 		ctx_buf->context->state = LPFC_NVME_STE_FREE;
1568 
1569 		ctx_buf->iocbq = lpfc_sli_get_iocbq(phba);
1570 		if (!ctx_buf->iocbq) {
1571 			kfree(ctx_buf->context);
1572 			kfree(ctx_buf);
1573 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1574 					"6406 Ran out of NVMET iocb/WQEs\n");
1575 			return -ENOMEM;
1576 		}
1577 		ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET;
1578 		nvmewqe = ctx_buf->iocbq;
1579 		wqe = &nvmewqe->wqe;
1580 
1581 		/* Initialize WQE */
1582 		memset(wqe, 0, sizeof(union lpfc_wqe));
1583 
1584 		ctx_buf->iocbq->context1 = NULL;
1585 		spin_lock(&phba->sli4_hba.sgl_list_lock);
1586 		ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq);
1587 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
1588 		if (!ctx_buf->sglq) {
1589 			lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1590 			kfree(ctx_buf->context);
1591 			kfree(ctx_buf);
1592 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1593 					"6407 Ran out of NVMET XRIs\n");
1594 			return -ENOMEM;
1595 		}
1596 		INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work);
1597 
1598 		/*
1599 		 * Add ctx to MRQidx context list. Our initial assumption
1600 		 * is MRQidx will be associated with CPUidx. This association
1601 		 * can change on the fly.
1602 		 */
1603 		infop = lpfc_get_ctx_list(phba, cpu, idx);
1604 		spin_lock(&infop->nvmet_ctx_list_lock);
1605 		list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
1606 		infop->nvmet_ctx_list_cnt++;
1607 		spin_unlock(&infop->nvmet_ctx_list_lock);
1608 
1609 		/* Spread ctx structures evenly across all MRQs */
1610 		idx++;
1611 		if (idx >= phba->cfg_nvmet_mrq) {
1612 			idx = 0;
1613 			cpu = cpumask_first(cpu_present_mask);
1614 			continue;
1615 		}
1616 		cpu = cpumask_next(cpu, cpu_present_mask);
1617 		if (cpu == nr_cpu_ids)
1618 			cpu = cpumask_first(cpu_present_mask);
1619 
1620 	}
1621 
1622 	for_each_present_cpu(i) {
1623 		for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1624 			infop = lpfc_get_ctx_list(phba, i, j);
1625 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1626 					"6408 TOTAL NVMET ctx for CPU %d "
1627 					"MRQ %d: cnt %d nextcpu x%px\n",
1628 					i, j, infop->nvmet_ctx_list_cnt,
1629 					infop->nvmet_ctx_next_cpu);
1630 		}
1631 	}
1632 	return 0;
1633 }
1634 
1635 int
1636 lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
1637 {
1638 	struct lpfc_vport  *vport = phba->pport;
1639 	struct lpfc_nvmet_tgtport *tgtp;
1640 	struct nvmet_fc_port_info pinfo;
1641 	int error;
1642 
1643 	if (phba->targetport)
1644 		return 0;
1645 
1646 	error = lpfc_nvmet_setup_io_context(phba);
1647 	if (error)
1648 		return error;
1649 
1650 	memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info));
1651 	pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
1652 	pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
1653 	pinfo.port_id = vport->fc_myDID;
1654 
1655 	/* We need to tell the transport layer + 1 because it takes page
1656 	 * alignment into account. When space for the SGL is allocated we
1657 	 * allocate + 3, one for cmd, one for rsp and one for this alignment
1658 	 */
1659 	lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
1660 	lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue;
1661 	lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP;
1662 
1663 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1664 	error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
1665 					     &phba->pcidev->dev,
1666 					     &phba->targetport);
1667 #else
1668 	error = -ENOENT;
1669 #endif
1670 	if (error) {
1671 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1672 				"6025 Cannot register NVME targetport x%x: "
1673 				"portnm %llx nodenm %llx segs %d qs %d\n",
1674 				error,
1675 				pinfo.port_name, pinfo.node_name,
1676 				lpfc_tgttemplate.max_sgl_segments,
1677 				lpfc_tgttemplate.max_hw_queues);
1678 		phba->targetport = NULL;
1679 		phba->nvmet_support = 0;
1680 
1681 		lpfc_nvmet_cleanup_io_context(phba);
1682 
1683 	} else {
1684 		tgtp = (struct lpfc_nvmet_tgtport *)
1685 			phba->targetport->private;
1686 		tgtp->phba = phba;
1687 
1688 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1689 				"6026 Registered NVME "
1690 				"targetport: x%px, private x%px "
1691 				"portnm %llx nodenm %llx segs %d qs %d\n",
1692 				phba->targetport, tgtp,
1693 				pinfo.port_name, pinfo.node_name,
1694 				lpfc_tgttemplate.max_sgl_segments,
1695 				lpfc_tgttemplate.max_hw_queues);
1696 
1697 		atomic_set(&tgtp->rcv_ls_req_in, 0);
1698 		atomic_set(&tgtp->rcv_ls_req_out, 0);
1699 		atomic_set(&tgtp->rcv_ls_req_drop, 0);
1700 		atomic_set(&tgtp->xmt_ls_abort, 0);
1701 		atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
1702 		atomic_set(&tgtp->xmt_ls_rsp, 0);
1703 		atomic_set(&tgtp->xmt_ls_drop, 0);
1704 		atomic_set(&tgtp->xmt_ls_rsp_error, 0);
1705 		atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0);
1706 		atomic_set(&tgtp->xmt_ls_rsp_aborted, 0);
1707 		atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
1708 		atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
1709 		atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
1710 		atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
1711 		atomic_set(&tgtp->xmt_fcp_drop, 0);
1712 		atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
1713 		atomic_set(&tgtp->xmt_fcp_read, 0);
1714 		atomic_set(&tgtp->xmt_fcp_write, 0);
1715 		atomic_set(&tgtp->xmt_fcp_rsp, 0);
1716 		atomic_set(&tgtp->xmt_fcp_release, 0);
1717 		atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
1718 		atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
1719 		atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0);
1720 		atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0);
1721 		atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
1722 		atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0);
1723 		atomic_set(&tgtp->xmt_fcp_abort, 0);
1724 		atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
1725 		atomic_set(&tgtp->xmt_abort_unsol, 0);
1726 		atomic_set(&tgtp->xmt_abort_sol, 0);
1727 		atomic_set(&tgtp->xmt_abort_rsp, 0);
1728 		atomic_set(&tgtp->xmt_abort_rsp_error, 0);
1729 		atomic_set(&tgtp->defer_ctx, 0);
1730 		atomic_set(&tgtp->defer_fod, 0);
1731 		atomic_set(&tgtp->defer_wqfull, 0);
1732 	}
1733 	return error;
1734 }
1735 
1736 int
1737 lpfc_nvmet_update_targetport(struct lpfc_hba *phba)
1738 {
1739 	struct lpfc_vport  *vport = phba->pport;
1740 
1741 	if (!phba->targetport)
1742 		return 0;
1743 
1744 	lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
1745 			 "6007 Update NVMET port x%px did x%x\n",
1746 			 phba->targetport, vport->fc_myDID);
1747 
1748 	phba->targetport->port_id = vport->fc_myDID;
1749 	return 0;
1750 }
1751 
1752 /**
1753  * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort
1754  * @phba: pointer to lpfc hba data structure.
1755  * @axri: pointer to the nvmet xri abort wcqe structure.
1756  *
1757  * This routine is invoked by the worker thread to process a SLI4 fast-path
1758  * NVMET aborted xri.
1759  **/
1760 void
1761 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba,
1762 			    struct sli4_wcqe_xri_aborted *axri)
1763 {
1764 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1765 	uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
1766 	uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
1767 	struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
1768 	struct lpfc_nvmet_tgtport *tgtp;
1769 	struct nvmefc_tgt_fcp_req *req = NULL;
1770 	struct lpfc_nodelist *ndlp;
1771 	unsigned long iflag = 0;
1772 	int rrq_empty = 0;
1773 	bool released = false;
1774 
1775 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1776 			"6317 XB aborted xri x%x rxid x%x\n", xri, rxid);
1777 
1778 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
1779 		return;
1780 
1781 	if (phba->targetport) {
1782 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1783 		atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe);
1784 	}
1785 
1786 	spin_lock_irqsave(&phba->hbalock, iflag);
1787 	spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1788 	list_for_each_entry_safe(ctxp, next_ctxp,
1789 				 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1790 				 list) {
1791 		if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1792 			continue;
1793 
1794 		spin_lock(&ctxp->ctxlock);
1795 		/* Check if we already received a free context call
1796 		 * and we have completed processing an abort situation.
1797 		 */
1798 		if (ctxp->flag & LPFC_NVME_CTX_RLS &&
1799 		    !(ctxp->flag & LPFC_NVME_ABORT_OP)) {
1800 			list_del_init(&ctxp->list);
1801 			released = true;
1802 		}
1803 		ctxp->flag &= ~LPFC_NVME_XBUSY;
1804 		spin_unlock(&ctxp->ctxlock);
1805 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1806 
1807 		rrq_empty = list_empty(&phba->active_rrq_list);
1808 		spin_unlock_irqrestore(&phba->hbalock, iflag);
1809 		ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1810 		if (ndlp && NLP_CHK_NODE_ACT(ndlp) &&
1811 		    (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE ||
1812 		     ndlp->nlp_state == NLP_STE_MAPPED_NODE)) {
1813 			lpfc_set_rrq_active(phba, ndlp,
1814 				ctxp->ctxbuf->sglq->sli4_lxritag,
1815 				rxid, 1);
1816 			lpfc_sli4_abts_err_handler(phba, ndlp, axri);
1817 		}
1818 
1819 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1820 				"6318 XB aborted oxid x%x flg x%x (%x)\n",
1821 				ctxp->oxid, ctxp->flag, released);
1822 		if (released)
1823 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1824 
1825 		if (rrq_empty)
1826 			lpfc_worker_wake_up(phba);
1827 		return;
1828 	}
1829 	spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1830 	spin_unlock_irqrestore(&phba->hbalock, iflag);
1831 
1832 	ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri);
1833 	if (ctxp) {
1834 		/*
1835 		 *  Abort already done by FW, so BA_ACC sent.
1836 		 *  However, the transport may be unaware.
1837 		 */
1838 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1839 				"6323 NVMET Rcv ABTS xri x%x ctxp state x%x "
1840 				"flag x%x oxid x%x rxid x%x\n",
1841 				xri, ctxp->state, ctxp->flag, ctxp->oxid,
1842 				rxid);
1843 
1844 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
1845 		ctxp->flag |= LPFC_NVME_ABTS_RCV;
1846 		ctxp->state = LPFC_NVME_STE_ABORT;
1847 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1848 
1849 		lpfc_nvmeio_data(phba,
1850 				 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1851 				 xri, raw_smp_processor_id(), 0);
1852 
1853 		req = &ctxp->hdlrctx.fcp_req;
1854 		if (req)
1855 			nvmet_fc_rcv_fcp_abort(phba->targetport, req);
1856 	}
1857 #endif
1858 }
1859 
1860 int
1861 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport,
1862 			   struct fc_frame_header *fc_hdr)
1863 {
1864 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1865 	struct lpfc_hba *phba = vport->phba;
1866 	struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
1867 	struct nvmefc_tgt_fcp_req *rsp;
1868 	uint32_t sid;
1869 	uint16_t oxid, xri;
1870 	unsigned long iflag = 0;
1871 
1872 	sid = sli4_sid_from_fc_hdr(fc_hdr);
1873 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1874 
1875 	spin_lock_irqsave(&phba->hbalock, iflag);
1876 	spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1877 	list_for_each_entry_safe(ctxp, next_ctxp,
1878 				 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1879 				 list) {
1880 		if (ctxp->oxid != oxid || ctxp->sid != sid)
1881 			continue;
1882 
1883 		xri = ctxp->ctxbuf->sglq->sli4_xritag;
1884 
1885 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1886 		spin_unlock_irqrestore(&phba->hbalock, iflag);
1887 
1888 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
1889 		ctxp->flag |= LPFC_NVME_ABTS_RCV;
1890 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1891 
1892 		lpfc_nvmeio_data(phba,
1893 			"NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1894 			xri, raw_smp_processor_id(), 0);
1895 
1896 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1897 				"6319 NVMET Rcv ABTS:acc xri x%x\n", xri);
1898 
1899 		rsp = &ctxp->hdlrctx.fcp_req;
1900 		nvmet_fc_rcv_fcp_abort(phba->targetport, rsp);
1901 
1902 		/* Respond with BA_ACC accordingly */
1903 		lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1904 		return 0;
1905 	}
1906 	spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1907 	spin_unlock_irqrestore(&phba->hbalock, iflag);
1908 
1909 	/* check the wait list */
1910 	if (phba->sli4_hba.nvmet_io_wait_cnt) {
1911 		struct rqb_dmabuf *nvmebuf;
1912 		struct fc_frame_header *fc_hdr_tmp;
1913 		u32 sid_tmp;
1914 		u16 oxid_tmp;
1915 		bool found = false;
1916 
1917 		spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
1918 
1919 		/* match by oxid and s_id */
1920 		list_for_each_entry(nvmebuf,
1921 				    &phba->sli4_hba.lpfc_nvmet_io_wait_list,
1922 				    hbuf.list) {
1923 			fc_hdr_tmp = (struct fc_frame_header *)
1924 					(nvmebuf->hbuf.virt);
1925 			oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id);
1926 			sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp);
1927 			if (oxid_tmp != oxid || sid_tmp != sid)
1928 				continue;
1929 
1930 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1931 					"6321 NVMET Rcv ABTS oxid x%x from x%x "
1932 					"is waiting for a ctxp\n",
1933 					oxid, sid);
1934 
1935 			list_del_init(&nvmebuf->hbuf.list);
1936 			phba->sli4_hba.nvmet_io_wait_cnt--;
1937 			found = true;
1938 			break;
1939 		}
1940 		spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
1941 				       iflag);
1942 
1943 		/* free buffer since already posted a new DMA buffer to RQ */
1944 		if (found) {
1945 			nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1946 			/* Respond with BA_ACC accordingly */
1947 			lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1948 			return 0;
1949 		}
1950 	}
1951 
1952 	/* check active list */
1953 	ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid);
1954 	if (ctxp) {
1955 		xri = ctxp->ctxbuf->sglq->sli4_xritag;
1956 
1957 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
1958 		ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP);
1959 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1960 
1961 		lpfc_nvmeio_data(phba,
1962 				 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1963 				 xri, raw_smp_processor_id(), 0);
1964 
1965 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1966 				"6322 NVMET Rcv ABTS:acc oxid x%x xri x%x "
1967 				"flag x%x state x%x\n",
1968 				ctxp->oxid, xri, ctxp->flag, ctxp->state);
1969 
1970 		if (ctxp->flag & LPFC_NVME_TNOTIFY) {
1971 			/* Notify the transport */
1972 			nvmet_fc_rcv_fcp_abort(phba->targetport,
1973 					       &ctxp->hdlrctx.fcp_req);
1974 		} else {
1975 			cancel_work_sync(&ctxp->ctxbuf->defer_work);
1976 			spin_lock_irqsave(&ctxp->ctxlock, iflag);
1977 			lpfc_nvmet_defer_release(phba, ctxp);
1978 			spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1979 		}
1980 		lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1981 					       ctxp->oxid);
1982 
1983 		lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1984 		return 0;
1985 	}
1986 
1987 	lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n",
1988 			 oxid, raw_smp_processor_id(), 1);
1989 
1990 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1991 			"6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid);
1992 
1993 	/* Respond with BA_RJT accordingly */
1994 	lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0);
1995 #endif
1996 	return 0;
1997 }
1998 
1999 static void
2000 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq,
2001 			struct lpfc_async_xchg_ctx *ctxp)
2002 {
2003 	struct lpfc_sli_ring *pring;
2004 	struct lpfc_iocbq *nvmewqeq;
2005 	struct lpfc_iocbq *next_nvmewqeq;
2006 	unsigned long iflags;
2007 	struct lpfc_wcqe_complete wcqe;
2008 	struct lpfc_wcqe_complete *wcqep;
2009 
2010 	pring = wq->pring;
2011 	wcqep = &wcqe;
2012 
2013 	/* Fake an ABORT error code back to cmpl routine */
2014 	memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete));
2015 	bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT);
2016 	wcqep->parameter = IOERR_ABORT_REQUESTED;
2017 
2018 	spin_lock_irqsave(&pring->ring_lock, iflags);
2019 	list_for_each_entry_safe(nvmewqeq, next_nvmewqeq,
2020 				 &wq->wqfull_list, list) {
2021 		if (ctxp) {
2022 			/* Checking for a specific IO to flush */
2023 			if (nvmewqeq->context2 == ctxp) {
2024 				list_del(&nvmewqeq->list);
2025 				spin_unlock_irqrestore(&pring->ring_lock,
2026 						       iflags);
2027 				lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq,
2028 							  wcqep);
2029 				return;
2030 			}
2031 			continue;
2032 		} else {
2033 			/* Flush all IOs */
2034 			list_del(&nvmewqeq->list);
2035 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
2036 			lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep);
2037 			spin_lock_irqsave(&pring->ring_lock, iflags);
2038 		}
2039 	}
2040 	if (!ctxp)
2041 		wq->q_flag &= ~HBA_NVMET_WQFULL;
2042 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
2043 }
2044 
2045 void
2046 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba,
2047 			  struct lpfc_queue *wq)
2048 {
2049 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2050 	struct lpfc_sli_ring *pring;
2051 	struct lpfc_iocbq *nvmewqeq;
2052 	struct lpfc_async_xchg_ctx *ctxp;
2053 	unsigned long iflags;
2054 	int rc;
2055 
2056 	/*
2057 	 * Some WQE slots are available, so try to re-issue anything
2058 	 * on the WQ wqfull_list.
2059 	 */
2060 	pring = wq->pring;
2061 	spin_lock_irqsave(&pring->ring_lock, iflags);
2062 	while (!list_empty(&wq->wqfull_list)) {
2063 		list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq,
2064 				 list);
2065 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
2066 		ctxp = (struct lpfc_async_xchg_ctx *)nvmewqeq->context2;
2067 		rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
2068 		spin_lock_irqsave(&pring->ring_lock, iflags);
2069 		if (rc == -EBUSY) {
2070 			/* WQ was full again, so put it back on the list */
2071 			list_add(&nvmewqeq->list, &wq->wqfull_list);
2072 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
2073 			return;
2074 		}
2075 		if (rc == WQE_SUCCESS) {
2076 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2077 			if (ctxp->ts_cmd_nvme) {
2078 				if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP)
2079 					ctxp->ts_status_wqput = ktime_get_ns();
2080 				else
2081 					ctxp->ts_data_wqput = ktime_get_ns();
2082 			}
2083 #endif
2084 		} else {
2085 			WARN_ON(rc);
2086 		}
2087 	}
2088 	wq->q_flag &= ~HBA_NVMET_WQFULL;
2089 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
2090 
2091 #endif
2092 }
2093 
2094 void
2095 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba)
2096 {
2097 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2098 	struct lpfc_nvmet_tgtport *tgtp;
2099 	struct lpfc_queue *wq;
2100 	uint32_t qidx;
2101 	DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp);
2102 
2103 	if (phba->nvmet_support == 0)
2104 		return;
2105 	if (phba->targetport) {
2106 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2107 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
2108 			wq = phba->sli4_hba.hdwq[qidx].io_wq;
2109 			lpfc_nvmet_wqfull_flush(phba, wq, NULL);
2110 		}
2111 		tgtp->tport_unreg_cmp = &tport_unreg_cmp;
2112 		nvmet_fc_unregister_targetport(phba->targetport);
2113 		if (!wait_for_completion_timeout(&tport_unreg_cmp,
2114 					msecs_to_jiffies(LPFC_NVMET_WAIT_TMO)))
2115 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2116 					"6179 Unreg targetport x%px timeout "
2117 					"reached.\n", phba->targetport);
2118 		lpfc_nvmet_cleanup_io_context(phba);
2119 	}
2120 	phba->targetport = NULL;
2121 #endif
2122 }
2123 
2124 /**
2125  * lpfc_nvmet_handle_lsreq - Process an NVME LS request
2126  * @phba: pointer to lpfc hba data structure.
2127  * @axchg: pointer to exchange context for the NVME LS request
2128  *
2129  * This routine is used for processing an asychronously received NVME LS
2130  * request. Any remaining validation is done and the LS is then forwarded
2131  * to the nvmet-fc transport via nvmet_fc_rcv_ls_req().
2132  *
2133  * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing)
2134  * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done.
2135  * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg.
2136  *
2137  * Returns 0 if LS was handled and delivered to the transport
2138  * Returns 1 if LS failed to be handled and should be dropped
2139  */
2140 int
2141 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba,
2142 			struct lpfc_async_xchg_ctx *axchg)
2143 {
2144 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2145 	struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private;
2146 	uint32_t *payload = axchg->payload;
2147 	int rc;
2148 
2149 	atomic_inc(&tgtp->rcv_ls_req_in);
2150 
2151 	/*
2152 	 * Driver passes the ndlp as the hosthandle argument allowing
2153 	 * the transport to generate LS requests for any associateions
2154 	 * that are created.
2155 	 */
2156 	rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp,
2157 				 axchg->payload, axchg->size);
2158 
2159 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2160 			"6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x "
2161 			"%08x %08x %08x\n", axchg->size, rc,
2162 			*payload, *(payload+1), *(payload+2),
2163 			*(payload+3), *(payload+4), *(payload+5));
2164 
2165 	if (!rc) {
2166 		atomic_inc(&tgtp->rcv_ls_req_out);
2167 		return 0;
2168 	}
2169 
2170 	atomic_inc(&tgtp->rcv_ls_req_drop);
2171 #endif
2172 	return 1;
2173 }
2174 
2175 static void
2176 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf)
2177 {
2178 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2179 	struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
2180 	struct lpfc_hba *phba = ctxp->phba;
2181 	struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
2182 	struct lpfc_nvmet_tgtport *tgtp;
2183 	uint32_t *payload, qno;
2184 	uint32_t rc;
2185 	unsigned long iflags;
2186 
2187 	if (!nvmebuf) {
2188 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2189 			"6159 process_rcv_fcp_req, nvmebuf is NULL, "
2190 			"oxid: x%x flg: x%x state: x%x\n",
2191 			ctxp->oxid, ctxp->flag, ctxp->state);
2192 		spin_lock_irqsave(&ctxp->ctxlock, iflags);
2193 		lpfc_nvmet_defer_release(phba, ctxp);
2194 		spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2195 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
2196 						 ctxp->oxid);
2197 		return;
2198 	}
2199 
2200 	if (ctxp->flag & LPFC_NVME_ABTS_RCV) {
2201 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2202 				"6324 IO oxid x%x aborted\n",
2203 				ctxp->oxid);
2204 		return;
2205 	}
2206 
2207 	payload = (uint32_t *)(nvmebuf->dbuf.virt);
2208 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2209 	ctxp->flag |= LPFC_NVME_TNOTIFY;
2210 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2211 	if (ctxp->ts_isr_cmd)
2212 		ctxp->ts_cmd_nvme = ktime_get_ns();
2213 #endif
2214 	/*
2215 	 * The calling sequence should be:
2216 	 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done
2217 	 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
2218 	 * When we return from nvmet_fc_rcv_fcp_req, all relevant info
2219 	 * the NVME command / FC header is stored.
2220 	 * A buffer has already been reposted for this IO, so just free
2221 	 * the nvmebuf.
2222 	 */
2223 	rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req,
2224 				  payload, ctxp->size);
2225 	/* Process FCP command */
2226 	if (rc == 0) {
2227 		atomic_inc(&tgtp->rcv_fcp_cmd_out);
2228 		spin_lock_irqsave(&ctxp->ctxlock, iflags);
2229 		if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) ||
2230 		    (nvmebuf != ctxp->rqb_buffer)) {
2231 			spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2232 			return;
2233 		}
2234 		ctxp->rqb_buffer = NULL;
2235 		spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2236 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2237 		return;
2238 	}
2239 
2240 	/* Processing of FCP command is deferred */
2241 	if (rc == -EOVERFLOW) {
2242 		lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d "
2243 				 "from %06x\n",
2244 				 ctxp->oxid, ctxp->size, ctxp->sid);
2245 		atomic_inc(&tgtp->rcv_fcp_cmd_out);
2246 		atomic_inc(&tgtp->defer_fod);
2247 		spin_lock_irqsave(&ctxp->ctxlock, iflags);
2248 		if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
2249 			spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2250 			return;
2251 		}
2252 		spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2253 		/*
2254 		 * Post a replacement DMA buffer to RQ and defer
2255 		 * freeing rcv buffer till .defer_rcv callback
2256 		 */
2257 		qno = nvmebuf->idx;
2258 		lpfc_post_rq_buffer(
2259 			phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2260 			phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2261 		return;
2262 	}
2263 	ctxp->flag &= ~LPFC_NVME_TNOTIFY;
2264 	atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2265 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2266 			"2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
2267 			ctxp->oxid, rc,
2268 			atomic_read(&tgtp->rcv_fcp_cmd_in),
2269 			atomic_read(&tgtp->rcv_fcp_cmd_out),
2270 			atomic_read(&tgtp->xmt_fcp_release));
2271 	lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n",
2272 			 ctxp->oxid, ctxp->size, ctxp->sid);
2273 	spin_lock_irqsave(&ctxp->ctxlock, iflags);
2274 	lpfc_nvmet_defer_release(phba, ctxp);
2275 	spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2276 	lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid);
2277 #endif
2278 }
2279 
2280 static void
2281 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work)
2282 {
2283 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2284 	struct lpfc_nvmet_ctxbuf *ctx_buf =
2285 		container_of(work, struct lpfc_nvmet_ctxbuf, defer_work);
2286 
2287 	lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
2288 #endif
2289 }
2290 
2291 static struct lpfc_nvmet_ctxbuf *
2292 lpfc_nvmet_replenish_context(struct lpfc_hba *phba,
2293 			     struct lpfc_nvmet_ctx_info *current_infop)
2294 {
2295 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2296 	struct lpfc_nvmet_ctxbuf *ctx_buf = NULL;
2297 	struct lpfc_nvmet_ctx_info *get_infop;
2298 	int i;
2299 
2300 	/*
2301 	 * The current_infop for the MRQ a NVME command IU was received
2302 	 * on is empty. Our goal is to replenish this MRQs context
2303 	 * list from a another CPUs.
2304 	 *
2305 	 * First we need to pick a context list to start looking on.
2306 	 * nvmet_ctx_start_cpu has available context the last time
2307 	 * we needed to replenish this CPU where nvmet_ctx_next_cpu
2308 	 * is just the next sequential CPU for this MRQ.
2309 	 */
2310 	if (current_infop->nvmet_ctx_start_cpu)
2311 		get_infop = current_infop->nvmet_ctx_start_cpu;
2312 	else
2313 		get_infop = current_infop->nvmet_ctx_next_cpu;
2314 
2315 	for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) {
2316 		if (get_infop == current_infop) {
2317 			get_infop = get_infop->nvmet_ctx_next_cpu;
2318 			continue;
2319 		}
2320 		spin_lock(&get_infop->nvmet_ctx_list_lock);
2321 
2322 		/* Just take the entire context list, if there are any */
2323 		if (get_infop->nvmet_ctx_list_cnt) {
2324 			list_splice_init(&get_infop->nvmet_ctx_list,
2325 				    &current_infop->nvmet_ctx_list);
2326 			current_infop->nvmet_ctx_list_cnt =
2327 				get_infop->nvmet_ctx_list_cnt - 1;
2328 			get_infop->nvmet_ctx_list_cnt = 0;
2329 			spin_unlock(&get_infop->nvmet_ctx_list_lock);
2330 
2331 			current_infop->nvmet_ctx_start_cpu = get_infop;
2332 			list_remove_head(&current_infop->nvmet_ctx_list,
2333 					 ctx_buf, struct lpfc_nvmet_ctxbuf,
2334 					 list);
2335 			return ctx_buf;
2336 		}
2337 
2338 		/* Otherwise, move on to the next CPU for this MRQ */
2339 		spin_unlock(&get_infop->nvmet_ctx_list_lock);
2340 		get_infop = get_infop->nvmet_ctx_next_cpu;
2341 	}
2342 
2343 #endif
2344 	/* Nothing found, all contexts for the MRQ are in-flight */
2345 	return NULL;
2346 }
2347 
2348 /**
2349  * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer
2350  * @phba: pointer to lpfc hba data structure.
2351  * @idx: relative index of MRQ vector
2352  * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
2353  * @isr_timestamp: in jiffies.
2354  * @cqflag: cq processing information regarding workload.
2355  *
2356  * This routine is used for processing the WQE associated with a unsolicited
2357  * event. It first determines whether there is an existing ndlp that matches
2358  * the DID from the unsolicited WQE. If not, it will create a new one with
2359  * the DID from the unsolicited WQE. The ELS command from the unsolicited
2360  * WQE is then used to invoke the proper routine and to set up proper state
2361  * of the discovery state machine.
2362  **/
2363 static void
2364 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba,
2365 			    uint32_t idx,
2366 			    struct rqb_dmabuf *nvmebuf,
2367 			    uint64_t isr_timestamp,
2368 			    uint8_t cqflag)
2369 {
2370 	struct lpfc_async_xchg_ctx *ctxp;
2371 	struct lpfc_nvmet_tgtport *tgtp;
2372 	struct fc_frame_header *fc_hdr;
2373 	struct lpfc_nvmet_ctxbuf *ctx_buf;
2374 	struct lpfc_nvmet_ctx_info *current_infop;
2375 	uint32_t size, oxid, sid, qno;
2376 	unsigned long iflag;
2377 	int current_cpu;
2378 
2379 	if (!IS_ENABLED(CONFIG_NVME_TARGET_FC))
2380 		return;
2381 
2382 	ctx_buf = NULL;
2383 	if (!nvmebuf || !phba->targetport) {
2384 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2385 				"6157 NVMET FCP Drop IO\n");
2386 		if (nvmebuf)
2387 			lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2388 		return;
2389 	}
2390 
2391 	/*
2392 	 * Get a pointer to the context list for this MRQ based on
2393 	 * the CPU this MRQ IRQ is associated with. If the CPU association
2394 	 * changes from our initial assumption, the context list could
2395 	 * be empty, thus it would need to be replenished with the
2396 	 * context list from another CPU for this MRQ.
2397 	 */
2398 	current_cpu = raw_smp_processor_id();
2399 	current_infop = lpfc_get_ctx_list(phba, current_cpu, idx);
2400 	spin_lock_irqsave(&current_infop->nvmet_ctx_list_lock, iflag);
2401 	if (current_infop->nvmet_ctx_list_cnt) {
2402 		list_remove_head(&current_infop->nvmet_ctx_list,
2403 				 ctx_buf, struct lpfc_nvmet_ctxbuf, list);
2404 		current_infop->nvmet_ctx_list_cnt--;
2405 	} else {
2406 		ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop);
2407 	}
2408 	spin_unlock_irqrestore(&current_infop->nvmet_ctx_list_lock, iflag);
2409 
2410 	fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
2411 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2412 	size = nvmebuf->bytes_recv;
2413 
2414 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2415 	if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
2416 		this_cpu_inc(phba->sli4_hba.c_stat->rcv_io);
2417 		if (idx != current_cpu)
2418 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2419 					"6703 CPU Check rcv: "
2420 					"cpu %d expect %d\n",
2421 					current_cpu, idx);
2422 	}
2423 #endif
2424 
2425 	lpfc_nvmeio_data(phba, "NVMET FCP  RCV: xri x%x sz %d CPU %02x\n",
2426 			 oxid, size, raw_smp_processor_id());
2427 
2428 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2429 
2430 	if (!ctx_buf) {
2431 		/* Queue this NVME IO to process later */
2432 		spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
2433 		list_add_tail(&nvmebuf->hbuf.list,
2434 			      &phba->sli4_hba.lpfc_nvmet_io_wait_list);
2435 		phba->sli4_hba.nvmet_io_wait_cnt++;
2436 		phba->sli4_hba.nvmet_io_wait_total++;
2437 		spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
2438 				       iflag);
2439 
2440 		/* Post a brand new DMA buffer to RQ */
2441 		qno = nvmebuf->idx;
2442 		lpfc_post_rq_buffer(
2443 			phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2444 			phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2445 
2446 		atomic_inc(&tgtp->defer_ctx);
2447 		return;
2448 	}
2449 
2450 	sid = sli4_sid_from_fc_hdr(fc_hdr);
2451 
2452 	ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
2453 	spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
2454 	list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list);
2455 	spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
2456 	if (ctxp->state != LPFC_NVME_STE_FREE) {
2457 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2458 				"6414 NVMET Context corrupt %d %d oxid x%x\n",
2459 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
2460 	}
2461 	ctxp->wqeq = NULL;
2462 	ctxp->offset = 0;
2463 	ctxp->phba = phba;
2464 	ctxp->size = size;
2465 	ctxp->oxid = oxid;
2466 	ctxp->sid = sid;
2467 	ctxp->idx = idx;
2468 	ctxp->state = LPFC_NVME_STE_RCV;
2469 	ctxp->entry_cnt = 1;
2470 	ctxp->flag = 0;
2471 	ctxp->ctxbuf = ctx_buf;
2472 	ctxp->rqb_buffer = (void *)nvmebuf;
2473 	ctxp->hdwq = NULL;
2474 	spin_lock_init(&ctxp->ctxlock);
2475 
2476 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2477 	if (isr_timestamp)
2478 		ctxp->ts_isr_cmd = isr_timestamp;
2479 	ctxp->ts_cmd_nvme = 0;
2480 	ctxp->ts_nvme_data = 0;
2481 	ctxp->ts_data_wqput = 0;
2482 	ctxp->ts_isr_data = 0;
2483 	ctxp->ts_data_nvme = 0;
2484 	ctxp->ts_nvme_status = 0;
2485 	ctxp->ts_status_wqput = 0;
2486 	ctxp->ts_isr_status = 0;
2487 	ctxp->ts_status_nvme = 0;
2488 #endif
2489 
2490 	atomic_inc(&tgtp->rcv_fcp_cmd_in);
2491 	/* check for cq processing load */
2492 	if (!cqflag) {
2493 		lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
2494 		return;
2495 	}
2496 
2497 	if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
2498 		atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2499 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2500 				"6325 Unable to queue work for oxid x%x. "
2501 				"FCP Drop IO [x%x x%x x%x]\n",
2502 				ctxp->oxid,
2503 				atomic_read(&tgtp->rcv_fcp_cmd_in),
2504 				atomic_read(&tgtp->rcv_fcp_cmd_out),
2505 				atomic_read(&tgtp->xmt_fcp_release));
2506 
2507 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
2508 		lpfc_nvmet_defer_release(phba, ctxp);
2509 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
2510 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
2511 	}
2512 }
2513 
2514 /**
2515  * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport
2516  * @phba: pointer to lpfc hba data structure.
2517  * @idx: relative index of MRQ vector
2518  * @nvmebuf: pointer to received nvme data structure.
2519  * @isr_timestamp: in jiffies.
2520  * @cqflag: cq processing information regarding workload.
2521  *
2522  * This routine is used to process an unsolicited event received from a SLI
2523  * (Service Level Interface) ring. The actual processing of the data buffer
2524  * associated with the unsolicited event is done by invoking the routine
2525  * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the
2526  * SLI RQ on which the unsolicited event was received.
2527  **/
2528 void
2529 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba,
2530 			   uint32_t idx,
2531 			   struct rqb_dmabuf *nvmebuf,
2532 			   uint64_t isr_timestamp,
2533 			   uint8_t cqflag)
2534 {
2535 	if (!nvmebuf) {
2536 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2537 				"3167 NVMET FCP Drop IO\n");
2538 		return;
2539 	}
2540 	if (phba->nvmet_support == 0) {
2541 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2542 		return;
2543 	}
2544 	lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag);
2545 }
2546 
2547 /**
2548  * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure
2549  * @phba: pointer to a host N_Port data structure.
2550  * @ctxp: Context info for NVME LS Request
2551  * @rspbuf: DMA buffer of NVME command.
2552  * @rspsize: size of the NVME command.
2553  *
2554  * This routine is used for allocating a lpfc-WQE data structure from
2555  * the driver lpfc-WQE free-list and prepare the WQE with the parameters
2556  * passed into the routine for discovery state machine to issue an Extended
2557  * Link Service (NVME) commands. It is a generic lpfc-WQE allocation
2558  * and preparation routine that is used by all the discovery state machine
2559  * routines and the NVME command-specific fields will be later set up by
2560  * the individual discovery machine routines after calling this routine
2561  * allocating and preparing a generic WQE data structure. It fills in the
2562  * Buffer Descriptor Entries (BDEs), allocates buffers for both command
2563  * payload and response payload (if expected). The reference count on the
2564  * ndlp is incremented by 1 and the reference to the ndlp is put into
2565  * context1 of the WQE data structure for this WQE to hold the ndlp
2566  * reference for the command's callback function to access later.
2567  *
2568  * Return code
2569  *   Pointer to the newly allocated/prepared nvme wqe data structure
2570  *   NULL - when nvme wqe data structure allocation/preparation failed
2571  **/
2572 static struct lpfc_iocbq *
2573 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba,
2574 		       struct lpfc_async_xchg_ctx *ctxp,
2575 		       dma_addr_t rspbuf, uint16_t rspsize)
2576 {
2577 	struct lpfc_nodelist *ndlp;
2578 	struct lpfc_iocbq *nvmewqe;
2579 	union lpfc_wqe128 *wqe;
2580 
2581 	if (!lpfc_is_link_up(phba)) {
2582 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2583 				"6104 NVMET prep LS wqe: link err: "
2584 				"NPORT x%x oxid:x%x ste %d\n",
2585 				ctxp->sid, ctxp->oxid, ctxp->state);
2586 		return NULL;
2587 	}
2588 
2589 	/* Allocate buffer for  command wqe */
2590 	nvmewqe = lpfc_sli_get_iocbq(phba);
2591 	if (nvmewqe == NULL) {
2592 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2593 				"6105 NVMET prep LS wqe: No WQE: "
2594 				"NPORT x%x oxid x%x ste %d\n",
2595 				ctxp->sid, ctxp->oxid, ctxp->state);
2596 		return NULL;
2597 	}
2598 
2599 	ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2600 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2601 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2602 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2603 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2604 				"6106 NVMET prep LS wqe: No ndlp: "
2605 				"NPORT x%x oxid x%x ste %d\n",
2606 				ctxp->sid, ctxp->oxid, ctxp->state);
2607 		goto nvme_wqe_free_wqeq_exit;
2608 	}
2609 	ctxp->wqeq = nvmewqe;
2610 
2611 	/* prevent preparing wqe with NULL ndlp reference */
2612 	nvmewqe->context1 = lpfc_nlp_get(ndlp);
2613 	if (nvmewqe->context1 == NULL)
2614 		goto nvme_wqe_free_wqeq_exit;
2615 	nvmewqe->context2 = ctxp;
2616 
2617 	wqe = &nvmewqe->wqe;
2618 	memset(wqe, 0, sizeof(union lpfc_wqe));
2619 
2620 	/* Words 0 - 2 */
2621 	wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2622 	wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize;
2623 	wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf));
2624 	wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf));
2625 
2626 	/* Word 3 */
2627 
2628 	/* Word 4 */
2629 
2630 	/* Word 5 */
2631 	bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
2632 	bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1);
2633 	bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0);
2634 	bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP);
2635 	bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME);
2636 
2637 	/* Word 6 */
2638 	bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
2639 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2640 	bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag);
2641 
2642 	/* Word 7 */
2643 	bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
2644 	       CMD_XMIT_SEQUENCE64_WQE);
2645 	bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI);
2646 	bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
2647 	bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
2648 
2649 	/* Word 8 */
2650 	wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag;
2651 
2652 	/* Word 9 */
2653 	bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag);
2654 	/* Needs to be set by caller */
2655 	bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid);
2656 
2657 	/* Word 10 */
2658 	bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
2659 	bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2660 	bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
2661 	       LPFC_WQE_LENLOC_WORD12);
2662 	bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
2663 
2664 	/* Word 11 */
2665 	bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com,
2666 	       LPFC_WQE_CQ_ID_DEFAULT);
2667 	bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com,
2668 	       OTHER_COMMAND);
2669 
2670 	/* Word 12 */
2671 	wqe->xmit_sequence.xmit_len = rspsize;
2672 
2673 	nvmewqe->retry = 1;
2674 	nvmewqe->vport = phba->pport;
2675 	nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2676 	nvmewqe->iocb_flag |= LPFC_IO_NVME_LS;
2677 
2678 	/* Xmit NVMET response to remote NPORT <did> */
2679 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2680 			"6039 Xmit NVMET LS response to remote "
2681 			"NPORT x%x iotag:x%x oxid:x%x size:x%x\n",
2682 			ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid,
2683 			rspsize);
2684 	return nvmewqe;
2685 
2686 nvme_wqe_free_wqeq_exit:
2687 	nvmewqe->context2 = NULL;
2688 	nvmewqe->context3 = NULL;
2689 	lpfc_sli_release_iocbq(phba, nvmewqe);
2690 	return NULL;
2691 }
2692 
2693 
2694 static struct lpfc_iocbq *
2695 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba,
2696 			struct lpfc_async_xchg_ctx *ctxp)
2697 {
2698 	struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req;
2699 	struct lpfc_nvmet_tgtport *tgtp;
2700 	struct sli4_sge *sgl;
2701 	struct lpfc_nodelist *ndlp;
2702 	struct lpfc_iocbq *nvmewqe;
2703 	struct scatterlist *sgel;
2704 	union lpfc_wqe128 *wqe;
2705 	struct ulp_bde64 *bde;
2706 	dma_addr_t physaddr;
2707 	int i, cnt, nsegs;
2708 	int do_pbde;
2709 	int xc = 1;
2710 
2711 	if (!lpfc_is_link_up(phba)) {
2712 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2713 				"6107 NVMET prep FCP wqe: link err:"
2714 				"NPORT x%x oxid x%x ste %d\n",
2715 				ctxp->sid, ctxp->oxid, ctxp->state);
2716 		return NULL;
2717 	}
2718 
2719 	ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2720 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2721 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2722 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2723 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2724 				"6108 NVMET prep FCP wqe: no ndlp: "
2725 				"NPORT x%x oxid x%x ste %d\n",
2726 				ctxp->sid, ctxp->oxid, ctxp->state);
2727 		return NULL;
2728 	}
2729 
2730 	if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) {
2731 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2732 				"6109 NVMET prep FCP wqe: seg cnt err: "
2733 				"NPORT x%x oxid x%x ste %d cnt %d\n",
2734 				ctxp->sid, ctxp->oxid, ctxp->state,
2735 				phba->cfg_nvme_seg_cnt);
2736 		return NULL;
2737 	}
2738 	nsegs = rsp->sg_cnt;
2739 
2740 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2741 	nvmewqe = ctxp->wqeq;
2742 	if (nvmewqe == NULL) {
2743 		/* Allocate buffer for  command wqe */
2744 		nvmewqe = ctxp->ctxbuf->iocbq;
2745 		if (nvmewqe == NULL) {
2746 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2747 					"6110 NVMET prep FCP wqe: No "
2748 					"WQE: NPORT x%x oxid x%x ste %d\n",
2749 					ctxp->sid, ctxp->oxid, ctxp->state);
2750 			return NULL;
2751 		}
2752 		ctxp->wqeq = nvmewqe;
2753 		xc = 0; /* create new XRI */
2754 		nvmewqe->sli4_lxritag = NO_XRI;
2755 		nvmewqe->sli4_xritag = NO_XRI;
2756 	}
2757 
2758 	/* Sanity check */
2759 	if (((ctxp->state == LPFC_NVME_STE_RCV) &&
2760 	    (ctxp->entry_cnt == 1)) ||
2761 	    (ctxp->state == LPFC_NVME_STE_DATA)) {
2762 		wqe = &nvmewqe->wqe;
2763 	} else {
2764 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2765 				"6111 Wrong state NVMET FCP: %d  cnt %d\n",
2766 				ctxp->state, ctxp->entry_cnt);
2767 		return NULL;
2768 	}
2769 
2770 	sgl  = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl;
2771 	switch (rsp->op) {
2772 	case NVMET_FCOP_READDATA:
2773 	case NVMET_FCOP_READDATA_RSP:
2774 		/* From the tsend template, initialize words 7 - 11 */
2775 		memcpy(&wqe->words[7],
2776 		       &lpfc_tsend_cmd_template.words[7],
2777 		       sizeof(uint32_t) * 5);
2778 
2779 		/* Words 0 - 2 : The first sg segment */
2780 		sgel = &rsp->sg[0];
2781 		physaddr = sg_dma_address(sgel);
2782 		wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2783 		wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel);
2784 		wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr));
2785 		wqe->fcp_tsend.bde.addrHigh =
2786 			cpu_to_le32(putPaddrHigh(physaddr));
2787 
2788 		/* Word 3 */
2789 		wqe->fcp_tsend.payload_offset_len = 0;
2790 
2791 		/* Word 4 */
2792 		wqe->fcp_tsend.relative_offset = ctxp->offset;
2793 
2794 		/* Word 5 */
2795 		wqe->fcp_tsend.reserved = 0;
2796 
2797 		/* Word 6 */
2798 		bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com,
2799 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2800 		bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com,
2801 		       nvmewqe->sli4_xritag);
2802 
2803 		/* Word 7 - set ar later */
2804 
2805 		/* Word 8 */
2806 		wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag;
2807 
2808 		/* Word 9 */
2809 		bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag);
2810 		bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid);
2811 
2812 		/* Word 10 - set wqes later, in template xc=1 */
2813 		if (!xc)
2814 			bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0);
2815 
2816 		/* Word 11 - set sup, irsp, irsplen later */
2817 		do_pbde = 0;
2818 
2819 		/* Word 12 */
2820 		wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2821 
2822 		/* Setup 2 SKIP SGEs */
2823 		sgl->addr_hi = 0;
2824 		sgl->addr_lo = 0;
2825 		sgl->word2 = 0;
2826 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2827 		sgl->word2 = cpu_to_le32(sgl->word2);
2828 		sgl->sge_len = 0;
2829 		sgl++;
2830 		sgl->addr_hi = 0;
2831 		sgl->addr_lo = 0;
2832 		sgl->word2 = 0;
2833 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2834 		sgl->word2 = cpu_to_le32(sgl->word2);
2835 		sgl->sge_len = 0;
2836 		sgl++;
2837 		if (rsp->op == NVMET_FCOP_READDATA_RSP) {
2838 			atomic_inc(&tgtp->xmt_fcp_read_rsp);
2839 
2840 			/* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2841 
2842 			if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) {
2843 				if (ndlp->nlp_flag & NLP_SUPPRESS_RSP)
2844 					bf_set(wqe_sup,
2845 					       &wqe->fcp_tsend.wqe_com, 1);
2846 			} else {
2847 				bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1);
2848 				bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1);
2849 				bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com,
2850 				       ((rsp->rsplen >> 2) - 1));
2851 				memcpy(&wqe->words[16], rsp->rspaddr,
2852 				       rsp->rsplen);
2853 			}
2854 		} else {
2855 			atomic_inc(&tgtp->xmt_fcp_read);
2856 
2857 			/* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2858 			bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0);
2859 		}
2860 		break;
2861 
2862 	case NVMET_FCOP_WRITEDATA:
2863 		/* From the treceive template, initialize words 3 - 11 */
2864 		memcpy(&wqe->words[3],
2865 		       &lpfc_treceive_cmd_template.words[3],
2866 		       sizeof(uint32_t) * 9);
2867 
2868 		/* Words 0 - 2 : First SGE is skipped, set invalid BDE type */
2869 		wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP;
2870 		wqe->fcp_treceive.bde.tus.f.bdeSize = 0;
2871 		wqe->fcp_treceive.bde.addrLow = 0;
2872 		wqe->fcp_treceive.bde.addrHigh = 0;
2873 
2874 		/* Word 4 */
2875 		wqe->fcp_treceive.relative_offset = ctxp->offset;
2876 
2877 		/* Word 6 */
2878 		bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com,
2879 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2880 		bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com,
2881 		       nvmewqe->sli4_xritag);
2882 
2883 		/* Word 7 */
2884 
2885 		/* Word 8 */
2886 		wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag;
2887 
2888 		/* Word 9 */
2889 		bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag);
2890 		bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid);
2891 
2892 		/* Word 10 - in template xc=1 */
2893 		if (!xc)
2894 			bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0);
2895 
2896 		/* Word 11 - set pbde later */
2897 		if (phba->cfg_enable_pbde) {
2898 			do_pbde = 1;
2899 		} else {
2900 			bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0);
2901 			do_pbde = 0;
2902 		}
2903 
2904 		/* Word 12 */
2905 		wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2906 
2907 		/* Setup 2 SKIP SGEs */
2908 		sgl->addr_hi = 0;
2909 		sgl->addr_lo = 0;
2910 		sgl->word2 = 0;
2911 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2912 		sgl->word2 = cpu_to_le32(sgl->word2);
2913 		sgl->sge_len = 0;
2914 		sgl++;
2915 		sgl->addr_hi = 0;
2916 		sgl->addr_lo = 0;
2917 		sgl->word2 = 0;
2918 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2919 		sgl->word2 = cpu_to_le32(sgl->word2);
2920 		sgl->sge_len = 0;
2921 		sgl++;
2922 		atomic_inc(&tgtp->xmt_fcp_write);
2923 		break;
2924 
2925 	case NVMET_FCOP_RSP:
2926 		/* From the treceive template, initialize words 4 - 11 */
2927 		memcpy(&wqe->words[4],
2928 		       &lpfc_trsp_cmd_template.words[4],
2929 		       sizeof(uint32_t) * 8);
2930 
2931 		/* Words 0 - 2 */
2932 		physaddr = rsp->rspdma;
2933 		wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2934 		wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen;
2935 		wqe->fcp_trsp.bde.addrLow =
2936 			cpu_to_le32(putPaddrLow(physaddr));
2937 		wqe->fcp_trsp.bde.addrHigh =
2938 			cpu_to_le32(putPaddrHigh(physaddr));
2939 
2940 		/* Word 3 */
2941 		wqe->fcp_trsp.response_len = rsp->rsplen;
2942 
2943 		/* Word 6 */
2944 		bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com,
2945 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2946 		bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com,
2947 		       nvmewqe->sli4_xritag);
2948 
2949 		/* Word 7 */
2950 
2951 		/* Word 8 */
2952 		wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag;
2953 
2954 		/* Word 9 */
2955 		bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag);
2956 		bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid);
2957 
2958 		/* Word 10 */
2959 		if (xc)
2960 			bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1);
2961 
2962 		/* Word 11 */
2963 		/* In template wqes=0 irsp=0 irsplen=0 - good response */
2964 		if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) {
2965 			/* Bad response - embed it */
2966 			bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1);
2967 			bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1);
2968 			bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com,
2969 			       ((rsp->rsplen >> 2) - 1));
2970 			memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen);
2971 		}
2972 		do_pbde = 0;
2973 
2974 		/* Word 12 */
2975 		wqe->fcp_trsp.rsvd_12_15[0] = 0;
2976 
2977 		/* Use rspbuf, NOT sg list */
2978 		nsegs = 0;
2979 		sgl->word2 = 0;
2980 		atomic_inc(&tgtp->xmt_fcp_rsp);
2981 		break;
2982 
2983 	default:
2984 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2985 				"6064 Unknown Rsp Op %d\n",
2986 				rsp->op);
2987 		return NULL;
2988 	}
2989 
2990 	nvmewqe->retry = 1;
2991 	nvmewqe->vport = phba->pport;
2992 	nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2993 	nvmewqe->context1 = ndlp;
2994 
2995 	for_each_sg(rsp->sg, sgel, nsegs, i) {
2996 		physaddr = sg_dma_address(sgel);
2997 		cnt = sg_dma_len(sgel);
2998 		sgl->addr_hi = putPaddrHigh(physaddr);
2999 		sgl->addr_lo = putPaddrLow(physaddr);
3000 		sgl->word2 = 0;
3001 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
3002 		bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset);
3003 		if ((i+1) == rsp->sg_cnt)
3004 			bf_set(lpfc_sli4_sge_last, sgl, 1);
3005 		sgl->word2 = cpu_to_le32(sgl->word2);
3006 		sgl->sge_len = cpu_to_le32(cnt);
3007 		if (i == 0) {
3008 			bde = (struct ulp_bde64 *)&wqe->words[13];
3009 			if (do_pbde) {
3010 				/* Words 13-15  (PBDE) */
3011 				bde->addrLow = sgl->addr_lo;
3012 				bde->addrHigh = sgl->addr_hi;
3013 				bde->tus.f.bdeSize =
3014 					le32_to_cpu(sgl->sge_len);
3015 				bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
3016 				bde->tus.w = cpu_to_le32(bde->tus.w);
3017 			} else {
3018 				memset(bde, 0, sizeof(struct ulp_bde64));
3019 			}
3020 		}
3021 		sgl++;
3022 		ctxp->offset += cnt;
3023 	}
3024 	ctxp->state = LPFC_NVME_STE_DATA;
3025 	ctxp->entry_cnt++;
3026 	return nvmewqe;
3027 }
3028 
3029 /**
3030  * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS
3031  * @phba: Pointer to HBA context object.
3032  * @cmdwqe: Pointer to driver command WQE object.
3033  * @wcqe: Pointer to driver response CQE object.
3034  *
3035  * The function is called from SLI ring event handler with no
3036  * lock held. This function is the completion handler for NVME ABTS for FCP cmds
3037  * The function frees memory resources used for the NVME commands.
3038  **/
3039 static void
3040 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3041 			     struct lpfc_wcqe_complete *wcqe)
3042 {
3043 	struct lpfc_async_xchg_ctx *ctxp;
3044 	struct lpfc_nvmet_tgtport *tgtp;
3045 	uint32_t result;
3046 	unsigned long flags;
3047 	bool released = false;
3048 
3049 	ctxp = cmdwqe->context2;
3050 	result = wcqe->parameter;
3051 
3052 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3053 	if (ctxp->flag & LPFC_NVME_ABORT_OP)
3054 		atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
3055 
3056 	spin_lock_irqsave(&ctxp->ctxlock, flags);
3057 	ctxp->state = LPFC_NVME_STE_DONE;
3058 
3059 	/* Check if we already received a free context call
3060 	 * and we have completed processing an abort situation.
3061 	 */
3062 	if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
3063 	    !(ctxp->flag & LPFC_NVME_XBUSY)) {
3064 		spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3065 		list_del_init(&ctxp->list);
3066 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3067 		released = true;
3068 	}
3069 	ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3070 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3071 	atomic_inc(&tgtp->xmt_abort_rsp);
3072 
3073 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3074 			"6165 ABORT cmpl: oxid x%x flg x%x (%d) "
3075 			"WCQE: %08x %08x %08x %08x\n",
3076 			ctxp->oxid, ctxp->flag, released,
3077 			wcqe->word0, wcqe->total_data_placed,
3078 			result, wcqe->word3);
3079 
3080 	cmdwqe->context2 = NULL;
3081 	cmdwqe->context3 = NULL;
3082 	/*
3083 	 * if transport has released ctx, then can reuse it. Otherwise,
3084 	 * will be recycled by transport release call.
3085 	 */
3086 	if (released)
3087 		lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3088 
3089 	/* This is the iocbq for the abort, not the command */
3090 	lpfc_sli_release_iocbq(phba, cmdwqe);
3091 
3092 	/* Since iaab/iaar are NOT set, there is no work left.
3093 	 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
3094 	 * should have been called already.
3095 	 */
3096 }
3097 
3098 /**
3099  * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS
3100  * @phba: Pointer to HBA context object.
3101  * @cmdwqe: Pointer to driver command WQE object.
3102  * @wcqe: Pointer to driver response CQE object.
3103  *
3104  * The function is called from SLI ring event handler with no
3105  * lock held. This function is the completion handler for NVME ABTS for FCP cmds
3106  * The function frees memory resources used for the NVME commands.
3107  **/
3108 static void
3109 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3110 			       struct lpfc_wcqe_complete *wcqe)
3111 {
3112 	struct lpfc_async_xchg_ctx *ctxp;
3113 	struct lpfc_nvmet_tgtport *tgtp;
3114 	unsigned long flags;
3115 	uint32_t result;
3116 	bool released = false;
3117 
3118 	ctxp = cmdwqe->context2;
3119 	result = wcqe->parameter;
3120 
3121 	if (!ctxp) {
3122 		/* if context is clear, related io alrady complete */
3123 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3124 				"6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n",
3125 				wcqe->word0, wcqe->total_data_placed,
3126 				result, wcqe->word3);
3127 		return;
3128 	}
3129 
3130 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3131 	spin_lock_irqsave(&ctxp->ctxlock, flags);
3132 	if (ctxp->flag & LPFC_NVME_ABORT_OP)
3133 		atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
3134 
3135 	/* Sanity check */
3136 	if (ctxp->state != LPFC_NVME_STE_ABORT) {
3137 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3138 				"6112 ABTS Wrong state:%d oxid x%x\n",
3139 				ctxp->state, ctxp->oxid);
3140 	}
3141 
3142 	/* Check if we already received a free context call
3143 	 * and we have completed processing an abort situation.
3144 	 */
3145 	ctxp->state = LPFC_NVME_STE_DONE;
3146 	if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
3147 	    !(ctxp->flag & LPFC_NVME_XBUSY)) {
3148 		spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3149 		list_del_init(&ctxp->list);
3150 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3151 		released = true;
3152 	}
3153 	ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3154 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3155 	atomic_inc(&tgtp->xmt_abort_rsp);
3156 
3157 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3158 			"6316 ABTS cmpl oxid x%x flg x%x (%x) "
3159 			"WCQE: %08x %08x %08x %08x\n",
3160 			ctxp->oxid, ctxp->flag, released,
3161 			wcqe->word0, wcqe->total_data_placed,
3162 			result, wcqe->word3);
3163 
3164 	cmdwqe->context2 = NULL;
3165 	cmdwqe->context3 = NULL;
3166 	/*
3167 	 * if transport has released ctx, then can reuse it. Otherwise,
3168 	 * will be recycled by transport release call.
3169 	 */
3170 	if (released)
3171 		lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3172 
3173 	/* Since iaab/iaar are NOT set, there is no work left.
3174 	 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
3175 	 * should have been called already.
3176 	 */
3177 }
3178 
3179 /**
3180  * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS
3181  * @phba: Pointer to HBA context object.
3182  * @cmdwqe: Pointer to driver command WQE object.
3183  * @wcqe: Pointer to driver response CQE object.
3184  *
3185  * The function is called from SLI ring event handler with no
3186  * lock held. This function is the completion handler for NVME ABTS for LS cmds
3187  * The function frees memory resources used for the NVME commands.
3188  **/
3189 static void
3190 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3191 			    struct lpfc_wcqe_complete *wcqe)
3192 {
3193 	struct lpfc_async_xchg_ctx *ctxp;
3194 	struct lpfc_nvmet_tgtport *tgtp;
3195 	uint32_t result;
3196 
3197 	ctxp = cmdwqe->context2;
3198 	result = wcqe->parameter;
3199 
3200 	if (phba->nvmet_support) {
3201 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3202 		atomic_inc(&tgtp->xmt_ls_abort_cmpl);
3203 	}
3204 
3205 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3206 			"6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n",
3207 			ctxp, wcqe->word0, wcqe->total_data_placed,
3208 			result, wcqe->word3);
3209 
3210 	if (!ctxp) {
3211 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3212 				"6415 NVMET LS Abort No ctx: WCQE: "
3213 				 "%08x %08x %08x %08x\n",
3214 				wcqe->word0, wcqe->total_data_placed,
3215 				result, wcqe->word3);
3216 
3217 		lpfc_sli_release_iocbq(phba, cmdwqe);
3218 		return;
3219 	}
3220 
3221 	if (ctxp->state != LPFC_NVME_STE_LS_ABORT) {
3222 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3223 				"6416 NVMET LS abort cmpl state mismatch: "
3224 				"oxid x%x: %d %d\n",
3225 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3226 	}
3227 
3228 	cmdwqe->context2 = NULL;
3229 	cmdwqe->context3 = NULL;
3230 	lpfc_sli_release_iocbq(phba, cmdwqe);
3231 	kfree(ctxp);
3232 }
3233 
3234 static int
3235 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba,
3236 			     struct lpfc_async_xchg_ctx *ctxp,
3237 			     uint32_t sid, uint16_t xri)
3238 {
3239 	struct lpfc_nvmet_tgtport *tgtp = NULL;
3240 	struct lpfc_iocbq *abts_wqeq;
3241 	union lpfc_wqe128 *wqe_abts;
3242 	struct lpfc_nodelist *ndlp;
3243 
3244 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3245 			"6067 ABTS: sid %x xri x%x/x%x\n",
3246 			sid, xri, ctxp->wqeq->sli4_xritag);
3247 
3248 	if (phba->nvmet_support && phba->targetport)
3249 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3250 
3251 	ndlp = lpfc_findnode_did(phba->pport, sid);
3252 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
3253 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3254 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3255 		if (tgtp)
3256 			atomic_inc(&tgtp->xmt_abort_rsp_error);
3257 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3258 				"6134 Drop ABTS - wrong NDLP state x%x.\n",
3259 				(ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
3260 
3261 		/* No failure to an ABTS request. */
3262 		return 0;
3263 	}
3264 
3265 	abts_wqeq = ctxp->wqeq;
3266 	wqe_abts = &abts_wqeq->wqe;
3267 
3268 	/*
3269 	 * Since we zero the whole WQE, we need to ensure we set the WQE fields
3270 	 * that were initialized in lpfc_sli4_nvmet_alloc.
3271 	 */
3272 	memset(wqe_abts, 0, sizeof(union lpfc_wqe));
3273 
3274 	/* Word 5 */
3275 	bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0);
3276 	bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1);
3277 	bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0);
3278 	bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS);
3279 	bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS);
3280 
3281 	/* Word 6 */
3282 	bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com,
3283 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
3284 	bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com,
3285 	       abts_wqeq->sli4_xritag);
3286 
3287 	/* Word 7 */
3288 	bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com,
3289 	       CMD_XMIT_SEQUENCE64_WQE);
3290 	bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI);
3291 	bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3);
3292 	bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0);
3293 
3294 	/* Word 8 */
3295 	wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag;
3296 
3297 	/* Word 9 */
3298 	bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag);
3299 	/* Needs to be set by caller */
3300 	bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri);
3301 
3302 	/* Word 10 */
3303 	bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1);
3304 	bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
3305 	bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com,
3306 	       LPFC_WQE_LENLOC_WORD12);
3307 	bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0);
3308 	bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0);
3309 
3310 	/* Word 11 */
3311 	bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com,
3312 	       LPFC_WQE_CQ_ID_DEFAULT);
3313 	bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com,
3314 	       OTHER_COMMAND);
3315 
3316 	abts_wqeq->vport = phba->pport;
3317 	abts_wqeq->context1 = ndlp;
3318 	abts_wqeq->context2 = ctxp;
3319 	abts_wqeq->context3 = NULL;
3320 	abts_wqeq->rsvd2 = 0;
3321 	/* hba_wqidx should already be setup from command we are aborting */
3322 	abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR;
3323 	abts_wqeq->iocb.ulpLe = 1;
3324 
3325 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3326 			"6069 Issue ABTS to xri x%x reqtag x%x\n",
3327 			xri, abts_wqeq->iotag);
3328 	return 1;
3329 }
3330 
3331 static int
3332 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba,
3333 			       struct lpfc_async_xchg_ctx *ctxp,
3334 			       uint32_t sid, uint16_t xri)
3335 {
3336 	struct lpfc_nvmet_tgtport *tgtp;
3337 	struct lpfc_iocbq *abts_wqeq;
3338 	struct lpfc_nodelist *ndlp;
3339 	unsigned long flags;
3340 	u8 opt;
3341 	int rc;
3342 
3343 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3344 	if (!ctxp->wqeq) {
3345 		ctxp->wqeq = ctxp->ctxbuf->iocbq;
3346 		ctxp->wqeq->hba_wqidx = 0;
3347 	}
3348 
3349 	ndlp = lpfc_findnode_did(phba->pport, sid);
3350 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
3351 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3352 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3353 		atomic_inc(&tgtp->xmt_abort_rsp_error);
3354 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3355 				"6160 Drop ABORT - wrong NDLP state x%x.\n",
3356 				(ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
3357 
3358 		/* No failure to an ABTS request. */
3359 		spin_lock_irqsave(&ctxp->ctxlock, flags);
3360 		ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3361 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3362 		return 0;
3363 	}
3364 
3365 	/* Issue ABTS for this WQE based on iotag */
3366 	ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba);
3367 	spin_lock_irqsave(&ctxp->ctxlock, flags);
3368 	if (!ctxp->abort_wqeq) {
3369 		atomic_inc(&tgtp->xmt_abort_rsp_error);
3370 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3371 				"6161 ABORT failed: No wqeqs: "
3372 				"xri: x%x\n", ctxp->oxid);
3373 		/* No failure to an ABTS request. */
3374 		ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3375 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3376 		return 0;
3377 	}
3378 	abts_wqeq = ctxp->abort_wqeq;
3379 	ctxp->state = LPFC_NVME_STE_ABORT;
3380 	opt = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? INHIBIT_ABORT : 0;
3381 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3382 
3383 	/* Announce entry to new IO submit field. */
3384 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3385 			"6162 ABORT Request to rport DID x%06x "
3386 			"for xri x%x x%x\n",
3387 			ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag);
3388 
3389 	/* If the hba is getting reset, this flag is set.  It is
3390 	 * cleared when the reset is complete and rings reestablished.
3391 	 */
3392 	spin_lock_irqsave(&phba->hbalock, flags);
3393 	/* driver queued commands are in process of being flushed */
3394 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
3395 		spin_unlock_irqrestore(&phba->hbalock, flags);
3396 		atomic_inc(&tgtp->xmt_abort_rsp_error);
3397 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3398 				"6163 Driver in reset cleanup - flushing "
3399 				"NVME Req now. hba_flag x%x oxid x%x\n",
3400 				phba->hba_flag, ctxp->oxid);
3401 		lpfc_sli_release_iocbq(phba, abts_wqeq);
3402 		spin_lock_irqsave(&ctxp->ctxlock, flags);
3403 		ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3404 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3405 		return 0;
3406 	}
3407 
3408 	/* Outstanding abort is in progress */
3409 	if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) {
3410 		spin_unlock_irqrestore(&phba->hbalock, flags);
3411 		atomic_inc(&tgtp->xmt_abort_rsp_error);
3412 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3413 				"6164 Outstanding NVME I/O Abort Request "
3414 				"still pending on oxid x%x\n",
3415 				ctxp->oxid);
3416 		lpfc_sli_release_iocbq(phba, abts_wqeq);
3417 		spin_lock_irqsave(&ctxp->ctxlock, flags);
3418 		ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3419 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3420 		return 0;
3421 	}
3422 
3423 	/* Ready - mark outstanding as aborted by driver. */
3424 	abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED;
3425 
3426 	lpfc_nvme_prep_abort_wqe(abts_wqeq, ctxp->wqeq->sli4_xritag, opt);
3427 
3428 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
3429 	abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx;
3430 	abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp;
3431 	abts_wqeq->iocb_cmpl = NULL;
3432 	abts_wqeq->iocb_flag |= LPFC_IO_NVME;
3433 	abts_wqeq->context2 = ctxp;
3434 	abts_wqeq->vport = phba->pport;
3435 	if (!ctxp->hdwq)
3436 		ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
3437 
3438 	rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3439 	spin_unlock_irqrestore(&phba->hbalock, flags);
3440 	if (rc == WQE_SUCCESS) {
3441 		atomic_inc(&tgtp->xmt_abort_sol);
3442 		return 0;
3443 	}
3444 
3445 	atomic_inc(&tgtp->xmt_abort_rsp_error);
3446 	spin_lock_irqsave(&ctxp->ctxlock, flags);
3447 	ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3448 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3449 	lpfc_sli_release_iocbq(phba, abts_wqeq);
3450 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3451 			"6166 Failed ABORT issue_wqe with status x%x "
3452 			"for oxid x%x.\n",
3453 			rc, ctxp->oxid);
3454 	return 1;
3455 }
3456 
3457 static int
3458 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba,
3459 				 struct lpfc_async_xchg_ctx *ctxp,
3460 				 uint32_t sid, uint16_t xri)
3461 {
3462 	struct lpfc_nvmet_tgtport *tgtp;
3463 	struct lpfc_iocbq *abts_wqeq;
3464 	unsigned long flags;
3465 	bool released = false;
3466 	int rc;
3467 
3468 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3469 	if (!ctxp->wqeq) {
3470 		ctxp->wqeq = ctxp->ctxbuf->iocbq;
3471 		ctxp->wqeq->hba_wqidx = 0;
3472 	}
3473 
3474 	if (ctxp->state == LPFC_NVME_STE_FREE) {
3475 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3476 				"6417 NVMET ABORT ctx freed %d %d oxid x%x\n",
3477 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
3478 		rc = WQE_BUSY;
3479 		goto aerr;
3480 	}
3481 	ctxp->state = LPFC_NVME_STE_ABORT;
3482 	ctxp->entry_cnt++;
3483 	rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri);
3484 	if (rc == 0)
3485 		goto aerr;
3486 
3487 	spin_lock_irqsave(&phba->hbalock, flags);
3488 	abts_wqeq = ctxp->wqeq;
3489 	abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp;
3490 	abts_wqeq->iocb_cmpl = NULL;
3491 	abts_wqeq->iocb_flag |= LPFC_IO_NVMET;
3492 	if (!ctxp->hdwq)
3493 		ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
3494 
3495 	rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3496 	spin_unlock_irqrestore(&phba->hbalock, flags);
3497 	if (rc == WQE_SUCCESS) {
3498 		return 0;
3499 	}
3500 
3501 aerr:
3502 	spin_lock_irqsave(&ctxp->ctxlock, flags);
3503 	if (ctxp->flag & LPFC_NVME_CTX_RLS) {
3504 		spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3505 		list_del_init(&ctxp->list);
3506 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3507 		released = true;
3508 	}
3509 	ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS);
3510 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3511 
3512 	atomic_inc(&tgtp->xmt_abort_rsp_error);
3513 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3514 			"6135 Failed to Issue ABTS for oxid x%x. Status x%x "
3515 			"(%x)\n",
3516 			ctxp->oxid, rc, released);
3517 	if (released)
3518 		lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3519 	return 1;
3520 }
3521 
3522 /**
3523  * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received
3524  *        via async frame receive where the frame is not handled.
3525  * @phba: pointer to adapter structure
3526  * @ctxp: pointer to the asynchronously received received sequence
3527  * @sid: address of the remote port to send the ABTS to
3528  * @xri: oxid value to for the ABTS (other side's exchange id).
3529  **/
3530 int
3531 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba,
3532 				struct lpfc_async_xchg_ctx *ctxp,
3533 				uint32_t sid, uint16_t xri)
3534 {
3535 	struct lpfc_nvmet_tgtport *tgtp = NULL;
3536 	struct lpfc_iocbq *abts_wqeq;
3537 	unsigned long flags;
3538 	int rc;
3539 
3540 	if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) ||
3541 	    (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) {
3542 		ctxp->state = LPFC_NVME_STE_LS_ABORT;
3543 		ctxp->entry_cnt++;
3544 	} else {
3545 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3546 				"6418 NVMET LS abort state mismatch "
3547 				"IO x%x: %d %d\n",
3548 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3549 		ctxp->state = LPFC_NVME_STE_LS_ABORT;
3550 	}
3551 
3552 	if (phba->nvmet_support && phba->targetport)
3553 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3554 
3555 	if (!ctxp->wqeq) {
3556 		/* Issue ABTS for this WQE based on iotag */
3557 		ctxp->wqeq = lpfc_sli_get_iocbq(phba);
3558 		if (!ctxp->wqeq) {
3559 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3560 					"6068 Abort failed: No wqeqs: "
3561 					"xri: x%x\n", xri);
3562 			/* No failure to an ABTS request. */
3563 			kfree(ctxp);
3564 			return 0;
3565 		}
3566 	}
3567 	abts_wqeq = ctxp->wqeq;
3568 
3569 	if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) {
3570 		rc = WQE_BUSY;
3571 		goto out;
3572 	}
3573 
3574 	spin_lock_irqsave(&phba->hbalock, flags);
3575 	abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp;
3576 	abts_wqeq->iocb_cmpl = NULL;
3577 	abts_wqeq->iocb_flag |=  LPFC_IO_NVME_LS;
3578 	rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3579 	spin_unlock_irqrestore(&phba->hbalock, flags);
3580 	if (rc == WQE_SUCCESS) {
3581 		if (tgtp)
3582 			atomic_inc(&tgtp->xmt_abort_unsol);
3583 		return 0;
3584 	}
3585 out:
3586 	if (tgtp)
3587 		atomic_inc(&tgtp->xmt_abort_rsp_error);
3588 	abts_wqeq->context2 = NULL;
3589 	abts_wqeq->context3 = NULL;
3590 	lpfc_sli_release_iocbq(phba, abts_wqeq);
3591 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3592 			"6056 Failed to Issue ABTS. Status x%x\n", rc);
3593 	return 1;
3594 }
3595 
3596 /**
3597  * lpfc_nvmet_invalidate_host
3598  *
3599  * @phba - pointer to the driver instance bound to an adapter port.
3600  * @ndlp - pointer to an lpfc_nodelist type
3601  *
3602  * This routine upcalls the nvmet transport to invalidate an NVME
3603  * host to which this target instance had active connections.
3604  */
3605 void
3606 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
3607 {
3608 	struct lpfc_nvmet_tgtport *tgtp;
3609 
3610 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_NVME_ABTS,
3611 			"6203 Invalidating hosthandle x%px\n",
3612 			ndlp);
3613 
3614 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3615 	atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE);
3616 
3617 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
3618 	/* Need to get the nvmet_fc_target_port pointer here.*/
3619 	nvmet_fc_invalidate_host(phba->targetport, ndlp);
3620 #endif
3621 }
3622