1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channsel Host Bus Adapters. * 4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <asm/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include <linux/nvme.h> 40 #include <linux/nvme-fc-driver.h> 41 #include <linux/nvme-fc.h> 42 43 #include "lpfc_version.h" 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_nvmet.h" 54 #include "lpfc_logmsg.h" 55 #include "lpfc_crtn.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_debugfs.h" 58 59 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 60 struct lpfc_nvmet_rcv_ctx *, 61 dma_addr_t rspbuf, 62 uint16_t rspsize); 63 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 64 struct lpfc_nvmet_rcv_ctx *); 65 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 66 struct lpfc_nvmet_rcv_ctx *, 67 uint32_t, uint16_t); 68 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 69 struct lpfc_nvmet_rcv_ctx *, 70 uint32_t, uint16_t); 71 static int lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *, 72 struct lpfc_nvmet_rcv_ctx *, 73 uint32_t, uint16_t); 74 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, 75 struct lpfc_nvmet_rcv_ctx *); 76 77 static union lpfc_wqe128 lpfc_tsend_cmd_template; 78 static union lpfc_wqe128 lpfc_treceive_cmd_template; 79 static union lpfc_wqe128 lpfc_trsp_cmd_template; 80 81 /* Setup WQE templates for NVME IOs */ 82 void 83 lpfc_nvmet_cmd_template(void) 84 { 85 union lpfc_wqe128 *wqe; 86 87 /* TSEND template */ 88 wqe = &lpfc_tsend_cmd_template; 89 memset(wqe, 0, sizeof(union lpfc_wqe128)); 90 91 /* Word 0, 1, 2 - BDE is variable */ 92 93 /* Word 3 - payload_offset_len is zero */ 94 95 /* Word 4 - relative_offset is variable */ 96 97 /* Word 5 - is zero */ 98 99 /* Word 6 - ctxt_tag, xri_tag is variable */ 100 101 /* Word 7 - wqe_ar is variable */ 102 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 103 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); 104 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); 105 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); 106 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 107 108 /* Word 8 - abort_tag is variable */ 109 110 /* Word 9 - reqtag, rcvoxid is variable */ 111 112 /* Word 10 - wqes, xc is variable */ 113 bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1); 114 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 115 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 116 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 117 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 118 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); 119 120 /* Word 11 - sup, irsp, irsplen is variable */ 121 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); 122 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 123 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 124 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 125 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 126 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); 127 128 /* Word 12 - fcp_data_len is variable */ 129 130 /* Word 13, 14, 15 - PBDE is zero */ 131 132 /* TRECEIVE template */ 133 wqe = &lpfc_treceive_cmd_template; 134 memset(wqe, 0, sizeof(union lpfc_wqe128)); 135 136 /* Word 0, 1, 2 - BDE is variable */ 137 138 /* Word 3 */ 139 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 140 141 /* Word 4 - relative_offset is variable */ 142 143 /* Word 5 - is zero */ 144 145 /* Word 6 - ctxt_tag, xri_tag is variable */ 146 147 /* Word 7 */ 148 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); 149 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); 150 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); 151 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); 152 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 153 154 /* Word 8 - abort_tag is variable */ 155 156 /* Word 9 - reqtag, rcvoxid is variable */ 157 158 /* Word 10 - xc is variable */ 159 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 160 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 161 bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1); 162 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 163 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); 164 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 165 166 /* Word 11 - pbde is variable */ 167 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); 168 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 169 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); 170 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 171 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 172 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); 173 174 /* Word 12 - fcp_data_len is variable */ 175 176 /* Word 13, 14, 15 - PBDE is variable */ 177 178 /* TRSP template */ 179 wqe = &lpfc_trsp_cmd_template; 180 memset(wqe, 0, sizeof(union lpfc_wqe128)); 181 182 /* Word 0, 1, 2 - BDE is variable */ 183 184 /* Word 3 - response_len is variable */ 185 186 /* Word 4, 5 - is zero */ 187 188 /* Word 6 - ctxt_tag, xri_tag is variable */ 189 190 /* Word 7 */ 191 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 192 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); 193 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); 194 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); 195 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ 196 197 /* Word 8 - abort_tag is variable */ 198 199 /* Word 9 - reqtag is variable */ 200 201 /* Word 10 wqes, xc is variable */ 202 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); 203 bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1); 204 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 205 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); 206 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); 207 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); 208 209 /* Word 11 irsp, irsplen is variable */ 210 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); 211 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 212 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); 213 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 214 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 215 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); 216 217 /* Word 12, 13, 14, 15 - is zero */ 218 } 219 220 void 221 lpfc_nvmet_defer_release(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp) 222 { 223 unsigned long iflag; 224 225 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 226 "6313 NVMET Defer ctx release xri x%x flg x%x\n", 227 ctxp->oxid, ctxp->flag); 228 229 spin_lock_irqsave(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag); 230 if (ctxp->flag & LPFC_NVMET_CTX_RLS) { 231 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, 232 iflag); 233 return; 234 } 235 ctxp->flag |= LPFC_NVMET_CTX_RLS; 236 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 237 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag); 238 } 239 240 /** 241 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 242 * @phba: Pointer to HBA context object. 243 * @cmdwqe: Pointer to driver command WQE object. 244 * @wcqe: Pointer to driver response CQE object. 245 * 246 * The function is called from SLI ring event handler with no 247 * lock held. This function is the completion handler for NVME LS commands 248 * The function frees memory resources used for the NVME commands. 249 **/ 250 static void 251 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 252 struct lpfc_wcqe_complete *wcqe) 253 { 254 struct lpfc_nvmet_tgtport *tgtp; 255 struct nvmefc_tgt_ls_req *rsp; 256 struct lpfc_nvmet_rcv_ctx *ctxp; 257 uint32_t status, result; 258 259 status = bf_get(lpfc_wcqe_c_status, wcqe); 260 result = wcqe->parameter; 261 ctxp = cmdwqe->context2; 262 263 if (ctxp->state != LPFC_NVMET_STE_LS_RSP || ctxp->entry_cnt != 2) { 264 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 265 "6410 NVMET LS cmpl state mismatch IO x%x: " 266 "%d %d\n", 267 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 268 } 269 270 if (!phba->targetport) 271 goto out; 272 273 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 274 275 if (tgtp) { 276 if (status) { 277 atomic_inc(&tgtp->xmt_ls_rsp_error); 278 if (result == IOERR_ABORT_REQUESTED) 279 atomic_inc(&tgtp->xmt_ls_rsp_aborted); 280 if (bf_get(lpfc_wcqe_c_xb, wcqe)) 281 atomic_inc(&tgtp->xmt_ls_rsp_xb_set); 282 } else { 283 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 284 } 285 } 286 287 out: 288 rsp = &ctxp->ctx.ls_req; 289 290 lpfc_nvmeio_data(phba, "NVMET LS CMPL: xri x%x stat x%x result x%x\n", 291 ctxp->oxid, status, result); 292 293 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 294 "6038 NVMET LS rsp cmpl: %d %d oxid x%x\n", 295 status, result, ctxp->oxid); 296 297 lpfc_nlp_put(cmdwqe->context1); 298 cmdwqe->context2 = NULL; 299 cmdwqe->context3 = NULL; 300 lpfc_sli_release_iocbq(phba, cmdwqe); 301 rsp->done(rsp); 302 kfree(ctxp); 303 } 304 305 /** 306 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 307 * @phba: HBA buffer is associated with 308 * @ctxp: context to clean up 309 * @mp: Buffer to free 310 * 311 * Description: Frees the given DMA buffer in the appropriate way given by 312 * reposting it to its associated RQ so it can be reused. 313 * 314 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 315 * 316 * Returns: None 317 **/ 318 void 319 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 320 { 321 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 322 struct lpfc_nvmet_rcv_ctx *ctxp = ctx_buf->context; 323 struct lpfc_nvmet_tgtport *tgtp; 324 struct fc_frame_header *fc_hdr; 325 struct rqb_dmabuf *nvmebuf; 326 struct lpfc_nvmet_ctx_info *infop; 327 uint32_t *payload; 328 uint32_t size, oxid, sid, rc; 329 int cpu; 330 unsigned long iflag; 331 332 if (ctxp->txrdy) { 333 dma_pool_free(phba->txrdy_payload_pool, ctxp->txrdy, 334 ctxp->txrdy_phys); 335 ctxp->txrdy = NULL; 336 ctxp->txrdy_phys = 0; 337 } 338 339 if (ctxp->state == LPFC_NVMET_STE_FREE) { 340 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 341 "6411 NVMET free, already free IO x%x: %d %d\n", 342 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 343 } 344 ctxp->state = LPFC_NVMET_STE_FREE; 345 346 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 347 if (phba->sli4_hba.nvmet_io_wait_cnt) { 348 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 349 nvmebuf, struct rqb_dmabuf, 350 hbuf.list); 351 phba->sli4_hba.nvmet_io_wait_cnt--; 352 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 353 iflag); 354 355 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 356 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 357 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 358 payload = (uint32_t *)(nvmebuf->dbuf.virt); 359 size = nvmebuf->bytes_recv; 360 sid = sli4_sid_from_fc_hdr(fc_hdr); 361 362 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context; 363 ctxp->wqeq = NULL; 364 ctxp->txrdy = NULL; 365 ctxp->offset = 0; 366 ctxp->phba = phba; 367 ctxp->size = size; 368 ctxp->oxid = oxid; 369 ctxp->sid = sid; 370 ctxp->state = LPFC_NVMET_STE_RCV; 371 ctxp->entry_cnt = 1; 372 ctxp->flag = 0; 373 ctxp->ctxbuf = ctx_buf; 374 ctxp->rqb_buffer = (void *)nvmebuf; 375 spin_lock_init(&ctxp->ctxlock); 376 377 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 378 if (ctxp->ts_cmd_nvme) { 379 ctxp->ts_cmd_nvme = ktime_get_ns(); 380 ctxp->ts_nvme_data = 0; 381 ctxp->ts_data_wqput = 0; 382 ctxp->ts_isr_data = 0; 383 ctxp->ts_data_nvme = 0; 384 ctxp->ts_nvme_status = 0; 385 ctxp->ts_status_wqput = 0; 386 ctxp->ts_isr_status = 0; 387 ctxp->ts_status_nvme = 0; 388 } 389 #endif 390 atomic_inc(&tgtp->rcv_fcp_cmd_in); 391 /* 392 * The calling sequence should be: 393 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 394 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 395 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 396 * the NVME command / FC header is stored. 397 * A buffer has already been reposted for this IO, so just free 398 * the nvmebuf. 399 */ 400 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req, 401 payload, size); 402 403 /* Process FCP command */ 404 if (rc == 0) { 405 ctxp->rqb_buffer = NULL; 406 atomic_inc(&tgtp->rcv_fcp_cmd_out); 407 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 408 return; 409 } 410 411 /* Processing of FCP command is deferred */ 412 if (rc == -EOVERFLOW) { 413 lpfc_nvmeio_data(phba, 414 "NVMET RCV BUSY: xri x%x sz %d " 415 "from %06x\n", 416 oxid, size, sid); 417 atomic_inc(&tgtp->rcv_fcp_cmd_out); 418 return; 419 } 420 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 421 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 422 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 423 ctxp->oxid, rc, 424 atomic_read(&tgtp->rcv_fcp_cmd_in), 425 atomic_read(&tgtp->rcv_fcp_cmd_out), 426 atomic_read(&tgtp->xmt_fcp_release)); 427 428 lpfc_nvmet_defer_release(phba, ctxp); 429 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 430 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 431 return; 432 } 433 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 434 435 /* 436 * Use the CPU context list, from the MRQ the IO was received on 437 * (ctxp->idx), to save context structure. 438 */ 439 cpu = smp_processor_id(); 440 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 441 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 442 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 443 infop->nvmet_ctx_list_cnt++; 444 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 445 #endif 446 } 447 448 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 449 static void 450 lpfc_nvmet_ktime(struct lpfc_hba *phba, 451 struct lpfc_nvmet_rcv_ctx *ctxp) 452 { 453 uint64_t seg1, seg2, seg3, seg4, seg5; 454 uint64_t seg6, seg7, seg8, seg9, seg10; 455 uint64_t segsum; 456 457 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 458 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 459 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 460 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 461 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 462 return; 463 464 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) 465 return; 466 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 467 return; 468 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 469 return; 470 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 471 return; 472 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 473 return; 474 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 475 return; 476 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 477 return; 478 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 479 return; 480 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 481 return; 482 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 483 return; 484 /* 485 * Segment 1 - Time from FCP command received by MSI-X ISR 486 * to FCP command is passed to NVME Layer. 487 * Segment 2 - Time from FCP command payload handed 488 * off to NVME Layer to Driver receives a Command op 489 * from NVME Layer. 490 * Segment 3 - Time from Driver receives a Command op 491 * from NVME Layer to Command is put on WQ. 492 * Segment 4 - Time from Driver WQ put is done 493 * to MSI-X ISR for Command cmpl. 494 * Segment 5 - Time from MSI-X ISR for Command cmpl to 495 * Command cmpl is passed to NVME Layer. 496 * Segment 6 - Time from Command cmpl is passed to NVME 497 * Layer to Driver receives a RSP op from NVME Layer. 498 * Segment 7 - Time from Driver receives a RSP op from 499 * NVME Layer to WQ put is done on TRSP FCP Status. 500 * Segment 8 - Time from Driver WQ put is done on TRSP 501 * FCP Status to MSI-X ISR for TRSP cmpl. 502 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 503 * TRSP cmpl is passed to NVME Layer. 504 * Segment 10 - Time from FCP command received by 505 * MSI-X ISR to command is completed on wire. 506 * (Segments 1 thru 8) for READDATA / WRITEDATA 507 * (Segments 1 thru 4) for READDATA_RSP 508 */ 509 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 510 segsum = seg1; 511 512 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; 513 if (segsum > seg2) 514 return; 515 seg2 -= segsum; 516 segsum += seg2; 517 518 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; 519 if (segsum > seg3) 520 return; 521 seg3 -= segsum; 522 segsum += seg3; 523 524 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; 525 if (segsum > seg4) 526 return; 527 seg4 -= segsum; 528 segsum += seg4; 529 530 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; 531 if (segsum > seg5) 532 return; 533 seg5 -= segsum; 534 segsum += seg5; 535 536 537 /* For auto rsp commands seg6 thru seg10 will be 0 */ 538 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 539 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; 540 if (segsum > seg6) 541 return; 542 seg6 -= segsum; 543 segsum += seg6; 544 545 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; 546 if (segsum > seg7) 547 return; 548 seg7 -= segsum; 549 segsum += seg7; 550 551 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; 552 if (segsum > seg8) 553 return; 554 seg8 -= segsum; 555 segsum += seg8; 556 557 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; 558 if (segsum > seg9) 559 return; 560 seg9 -= segsum; 561 segsum += seg9; 562 563 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) 564 return; 565 seg10 = (ctxp->ts_isr_status - 566 ctxp->ts_isr_cmd); 567 } else { 568 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) 569 return; 570 seg6 = 0; 571 seg7 = 0; 572 seg8 = 0; 573 seg9 = 0; 574 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 575 } 576 577 phba->ktime_seg1_total += seg1; 578 if (seg1 < phba->ktime_seg1_min) 579 phba->ktime_seg1_min = seg1; 580 else if (seg1 > phba->ktime_seg1_max) 581 phba->ktime_seg1_max = seg1; 582 583 phba->ktime_seg2_total += seg2; 584 if (seg2 < phba->ktime_seg2_min) 585 phba->ktime_seg2_min = seg2; 586 else if (seg2 > phba->ktime_seg2_max) 587 phba->ktime_seg2_max = seg2; 588 589 phba->ktime_seg3_total += seg3; 590 if (seg3 < phba->ktime_seg3_min) 591 phba->ktime_seg3_min = seg3; 592 else if (seg3 > phba->ktime_seg3_max) 593 phba->ktime_seg3_max = seg3; 594 595 phba->ktime_seg4_total += seg4; 596 if (seg4 < phba->ktime_seg4_min) 597 phba->ktime_seg4_min = seg4; 598 else if (seg4 > phba->ktime_seg4_max) 599 phba->ktime_seg4_max = seg4; 600 601 phba->ktime_seg5_total += seg5; 602 if (seg5 < phba->ktime_seg5_min) 603 phba->ktime_seg5_min = seg5; 604 else if (seg5 > phba->ktime_seg5_max) 605 phba->ktime_seg5_max = seg5; 606 607 phba->ktime_data_samples++; 608 if (!seg6) 609 goto out; 610 611 phba->ktime_seg6_total += seg6; 612 if (seg6 < phba->ktime_seg6_min) 613 phba->ktime_seg6_min = seg6; 614 else if (seg6 > phba->ktime_seg6_max) 615 phba->ktime_seg6_max = seg6; 616 617 phba->ktime_seg7_total += seg7; 618 if (seg7 < phba->ktime_seg7_min) 619 phba->ktime_seg7_min = seg7; 620 else if (seg7 > phba->ktime_seg7_max) 621 phba->ktime_seg7_max = seg7; 622 623 phba->ktime_seg8_total += seg8; 624 if (seg8 < phba->ktime_seg8_min) 625 phba->ktime_seg8_min = seg8; 626 else if (seg8 > phba->ktime_seg8_max) 627 phba->ktime_seg8_max = seg8; 628 629 phba->ktime_seg9_total += seg9; 630 if (seg9 < phba->ktime_seg9_min) 631 phba->ktime_seg9_min = seg9; 632 else if (seg9 > phba->ktime_seg9_max) 633 phba->ktime_seg9_max = seg9; 634 out: 635 phba->ktime_seg10_total += seg10; 636 if (seg10 < phba->ktime_seg10_min) 637 phba->ktime_seg10_min = seg10; 638 else if (seg10 > phba->ktime_seg10_max) 639 phba->ktime_seg10_max = seg10; 640 phba->ktime_status_samples++; 641 } 642 #endif 643 644 /** 645 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 646 * @phba: Pointer to HBA context object. 647 * @cmdwqe: Pointer to driver command WQE object. 648 * @wcqe: Pointer to driver response CQE object. 649 * 650 * The function is called from SLI ring event handler with no 651 * lock held. This function is the completion handler for NVME FCP commands 652 * The function frees memory resources used for the NVME commands. 653 **/ 654 static void 655 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 656 struct lpfc_wcqe_complete *wcqe) 657 { 658 struct lpfc_nvmet_tgtport *tgtp; 659 struct nvmefc_tgt_fcp_req *rsp; 660 struct lpfc_nvmet_rcv_ctx *ctxp; 661 uint32_t status, result, op, start_clean, logerr; 662 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 663 uint32_t id; 664 #endif 665 666 ctxp = cmdwqe->context2; 667 ctxp->flag &= ~LPFC_NVMET_IO_INP; 668 669 rsp = &ctxp->ctx.fcp_req; 670 op = rsp->op; 671 672 status = bf_get(lpfc_wcqe_c_status, wcqe); 673 result = wcqe->parameter; 674 675 if (phba->targetport) 676 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 677 else 678 tgtp = NULL; 679 680 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 681 ctxp->oxid, op, status); 682 683 if (status) { 684 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 685 rsp->transferred_length = 0; 686 if (tgtp) { 687 atomic_inc(&tgtp->xmt_fcp_rsp_error); 688 if (result == IOERR_ABORT_REQUESTED) 689 atomic_inc(&tgtp->xmt_fcp_rsp_aborted); 690 } 691 692 logerr = LOG_NVME_IOERR; 693 694 /* pick up SLI4 exhange busy condition */ 695 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 696 ctxp->flag |= LPFC_NVMET_XBUSY; 697 logerr |= LOG_NVME_ABTS; 698 if (tgtp) 699 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); 700 701 } else { 702 ctxp->flag &= ~LPFC_NVMET_XBUSY; 703 } 704 705 lpfc_printf_log(phba, KERN_INFO, logerr, 706 "6315 IO Error Cmpl xri x%x: %x/%x XBUSY:x%x\n", 707 ctxp->oxid, status, result, ctxp->flag); 708 709 } else { 710 rsp->fcp_error = NVME_SC_SUCCESS; 711 if (op == NVMET_FCOP_RSP) 712 rsp->transferred_length = rsp->rsplen; 713 else 714 rsp->transferred_length = rsp->transfer_length; 715 if (tgtp) 716 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 717 } 718 719 if ((op == NVMET_FCOP_READDATA_RSP) || 720 (op == NVMET_FCOP_RSP)) { 721 /* Sanity check */ 722 ctxp->state = LPFC_NVMET_STE_DONE; 723 ctxp->entry_cnt++; 724 725 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 726 if (ctxp->ts_cmd_nvme) { 727 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 728 ctxp->ts_isr_data = 729 cmdwqe->isr_timestamp; 730 ctxp->ts_data_nvme = 731 ktime_get_ns(); 732 ctxp->ts_nvme_status = 733 ctxp->ts_data_nvme; 734 ctxp->ts_status_wqput = 735 ctxp->ts_data_nvme; 736 ctxp->ts_isr_status = 737 ctxp->ts_data_nvme; 738 ctxp->ts_status_nvme = 739 ctxp->ts_data_nvme; 740 } else { 741 ctxp->ts_isr_status = 742 cmdwqe->isr_timestamp; 743 ctxp->ts_status_nvme = 744 ktime_get_ns(); 745 } 746 } 747 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 748 id = smp_processor_id(); 749 if (ctxp->cpu != id) 750 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 751 "6703 CPU Check cmpl: " 752 "cpu %d expect %d\n", 753 id, ctxp->cpu); 754 if (ctxp->cpu < LPFC_CHECK_CPU_CNT) 755 phba->cpucheck_cmpl_io[id]++; 756 } 757 #endif 758 rsp->done(rsp); 759 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 760 if (ctxp->ts_cmd_nvme) 761 lpfc_nvmet_ktime(phba, ctxp); 762 #endif 763 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 764 } else { 765 ctxp->entry_cnt++; 766 start_clean = offsetof(struct lpfc_iocbq, iocb_flag); 767 memset(((char *)cmdwqe) + start_clean, 0, 768 (sizeof(struct lpfc_iocbq) - start_clean)); 769 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 770 if (ctxp->ts_cmd_nvme) { 771 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 772 ctxp->ts_data_nvme = ktime_get_ns(); 773 } 774 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 775 id = smp_processor_id(); 776 if (ctxp->cpu != id) 777 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 778 "6704 CPU Check cmdcmpl: " 779 "cpu %d expect %d\n", 780 id, ctxp->cpu); 781 if (ctxp->cpu < LPFC_CHECK_CPU_CNT) 782 phba->cpucheck_ccmpl_io[id]++; 783 } 784 #endif 785 rsp->done(rsp); 786 } 787 } 788 789 static int 790 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 791 struct nvmefc_tgt_ls_req *rsp) 792 { 793 struct lpfc_nvmet_rcv_ctx *ctxp = 794 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_req); 795 struct lpfc_hba *phba = ctxp->phba; 796 struct hbq_dmabuf *nvmebuf = 797 (struct hbq_dmabuf *)ctxp->rqb_buffer; 798 struct lpfc_iocbq *nvmewqeq; 799 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 800 struct lpfc_dmabuf dmabuf; 801 struct ulp_bde64 bpl; 802 int rc; 803 804 if (phba->pport->load_flag & FC_UNLOADING) 805 return -ENODEV; 806 807 if (phba->pport->load_flag & FC_UNLOADING) 808 return -ENODEV; 809 810 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 811 "6023 NVMET LS rsp oxid x%x\n", ctxp->oxid); 812 813 if ((ctxp->state != LPFC_NVMET_STE_LS_RCV) || 814 (ctxp->entry_cnt != 1)) { 815 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 816 "6412 NVMET LS rsp state mismatch " 817 "oxid x%x: %d %d\n", 818 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 819 } 820 ctxp->state = LPFC_NVMET_STE_LS_RSP; 821 ctxp->entry_cnt++; 822 823 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, ctxp, rsp->rspdma, 824 rsp->rsplen); 825 if (nvmewqeq == NULL) { 826 atomic_inc(&nvmep->xmt_ls_drop); 827 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 828 "6150 LS Drop IO x%x: Prep\n", 829 ctxp->oxid); 830 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 831 atomic_inc(&nvmep->xmt_ls_abort); 832 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, 833 ctxp->sid, ctxp->oxid); 834 return -ENOMEM; 835 } 836 837 /* Save numBdes for bpl2sgl */ 838 nvmewqeq->rsvd2 = 1; 839 nvmewqeq->hba_wqidx = 0; 840 nvmewqeq->context3 = &dmabuf; 841 dmabuf.virt = &bpl; 842 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 843 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 844 bpl.tus.f.bdeSize = rsp->rsplen; 845 bpl.tus.f.bdeFlags = 0; 846 bpl.tus.w = le32_to_cpu(bpl.tus.w); 847 848 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_rsp_cmp; 849 nvmewqeq->iocb_cmpl = NULL; 850 nvmewqeq->context2 = ctxp; 851 852 lpfc_nvmeio_data(phba, "NVMET LS RESP: xri x%x wqidx x%x len x%x\n", 853 ctxp->oxid, nvmewqeq->hba_wqidx, rsp->rsplen); 854 855 rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, nvmewqeq); 856 if (rc == WQE_SUCCESS) { 857 /* 858 * Okay to repost buffer here, but wait till cmpl 859 * before freeing ctxp and iocbq. 860 */ 861 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 862 ctxp->rqb_buffer = 0; 863 atomic_inc(&nvmep->xmt_ls_rsp); 864 return 0; 865 } 866 /* Give back resources */ 867 atomic_inc(&nvmep->xmt_ls_drop); 868 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 869 "6151 LS Drop IO x%x: Issue %d\n", 870 ctxp->oxid, rc); 871 872 lpfc_nlp_put(nvmewqeq->context1); 873 874 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 875 atomic_inc(&nvmep->xmt_ls_abort); 876 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 877 return -ENXIO; 878 } 879 880 static int 881 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 882 struct nvmefc_tgt_fcp_req *rsp) 883 { 884 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 885 struct lpfc_nvmet_rcv_ctx *ctxp = 886 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 887 struct lpfc_hba *phba = ctxp->phba; 888 struct lpfc_queue *wq; 889 struct lpfc_iocbq *nvmewqeq; 890 struct lpfc_sli_ring *pring; 891 unsigned long iflags; 892 int rc; 893 894 if (phba->pport->load_flag & FC_UNLOADING) { 895 rc = -ENODEV; 896 goto aerr; 897 } 898 899 if (phba->pport->load_flag & FC_UNLOADING) { 900 rc = -ENODEV; 901 goto aerr; 902 } 903 904 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 905 if (ctxp->ts_cmd_nvme) { 906 if (rsp->op == NVMET_FCOP_RSP) 907 ctxp->ts_nvme_status = ktime_get_ns(); 908 else 909 ctxp->ts_nvme_data = ktime_get_ns(); 910 } 911 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 912 int id = smp_processor_id(); 913 ctxp->cpu = id; 914 if (id < LPFC_CHECK_CPU_CNT) 915 phba->cpucheck_xmt_io[id]++; 916 if (rsp->hwqid != id) { 917 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 918 "6705 CPU Check OP: " 919 "cpu %d expect %d\n", 920 id, rsp->hwqid); 921 ctxp->cpu = rsp->hwqid; 922 } 923 } 924 #endif 925 926 /* Sanity check */ 927 if ((ctxp->flag & LPFC_NVMET_ABTS_RCV) || 928 (ctxp->state == LPFC_NVMET_STE_ABORT)) { 929 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 930 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 931 "6102 IO xri x%x aborted\n", 932 ctxp->oxid); 933 rc = -ENXIO; 934 goto aerr; 935 } 936 937 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 938 if (nvmewqeq == NULL) { 939 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 940 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 941 "6152 FCP Drop IO x%x: Prep\n", 942 ctxp->oxid); 943 rc = -ENXIO; 944 goto aerr; 945 } 946 947 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 948 nvmewqeq->iocb_cmpl = NULL; 949 nvmewqeq->context2 = ctxp; 950 nvmewqeq->iocb_flag |= LPFC_IO_NVMET; 951 ctxp->wqeq->hba_wqidx = rsp->hwqid; 952 953 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 954 ctxp->oxid, rsp->op, rsp->rsplen); 955 956 ctxp->flag |= LPFC_NVMET_IO_INP; 957 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq); 958 if (rc == WQE_SUCCESS) { 959 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 960 if (!ctxp->ts_cmd_nvme) 961 return 0; 962 if (rsp->op == NVMET_FCOP_RSP) 963 ctxp->ts_status_wqput = ktime_get_ns(); 964 else 965 ctxp->ts_data_wqput = ktime_get_ns(); 966 #endif 967 return 0; 968 } 969 970 if (rc == -EBUSY) { 971 /* 972 * WQ was full, so queue nvmewqeq to be sent after 973 * WQE release CQE 974 */ 975 ctxp->flag |= LPFC_NVMET_DEFER_WQFULL; 976 wq = phba->sli4_hba.nvme_wq[rsp->hwqid]; 977 pring = wq->pring; 978 spin_lock_irqsave(&pring->ring_lock, iflags); 979 list_add_tail(&nvmewqeq->list, &wq->wqfull_list); 980 wq->q_flag |= HBA_NVMET_WQFULL; 981 spin_unlock_irqrestore(&pring->ring_lock, iflags); 982 atomic_inc(&lpfc_nvmep->defer_wqfull); 983 return 0; 984 } 985 986 /* Give back resources */ 987 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 988 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 989 "6153 FCP Drop IO x%x: Issue: %d\n", 990 ctxp->oxid, rc); 991 992 ctxp->wqeq->hba_wqidx = 0; 993 nvmewqeq->context2 = NULL; 994 nvmewqeq->context3 = NULL; 995 rc = -EBUSY; 996 aerr: 997 return rc; 998 } 999 1000 static void 1001 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 1002 { 1003 struct lpfc_nvmet_tgtport *tport = targetport->private; 1004 1005 /* release any threads waiting for the unreg to complete */ 1006 if (tport->phba->targetport) 1007 complete(tport->tport_unreg_cmp); 1008 } 1009 1010 static void 1011 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 1012 struct nvmefc_tgt_fcp_req *req) 1013 { 1014 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1015 struct lpfc_nvmet_rcv_ctx *ctxp = 1016 container_of(req, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 1017 struct lpfc_hba *phba = ctxp->phba; 1018 struct lpfc_queue *wq; 1019 unsigned long flags; 1020 1021 if (phba->pport->load_flag & FC_UNLOADING) 1022 return; 1023 1024 if (phba->pport->load_flag & FC_UNLOADING) 1025 return; 1026 1027 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1028 "6103 NVMET Abort op: oxri x%x flg x%x ste %d\n", 1029 ctxp->oxid, ctxp->flag, ctxp->state); 1030 1031 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 1032 ctxp->oxid, ctxp->flag, ctxp->state); 1033 1034 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 1035 1036 spin_lock_irqsave(&ctxp->ctxlock, flags); 1037 ctxp->state = LPFC_NVMET_STE_ABORT; 1038 1039 /* Since iaab/iaar are NOT set, we need to check 1040 * if the firmware is in process of aborting IO 1041 */ 1042 if (ctxp->flag & LPFC_NVMET_XBUSY) { 1043 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1044 return; 1045 } 1046 ctxp->flag |= LPFC_NVMET_ABORT_OP; 1047 1048 if (ctxp->flag & LPFC_NVMET_DEFER_WQFULL) { 1049 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1050 ctxp->oxid); 1051 wq = phba->sli4_hba.nvme_wq[ctxp->wqeq->hba_wqidx]; 1052 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1053 lpfc_nvmet_wqfull_flush(phba, wq, ctxp); 1054 return; 1055 } 1056 1057 /* An state of LPFC_NVMET_STE_RCV means we have just received 1058 * the NVME command and have not started processing it. 1059 * (by issuing any IO WQEs on this exchange yet) 1060 */ 1061 if (ctxp->state == LPFC_NVMET_STE_RCV) 1062 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1063 ctxp->oxid); 1064 else 1065 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1066 ctxp->oxid); 1067 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1068 } 1069 1070 static void 1071 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 1072 struct nvmefc_tgt_fcp_req *rsp) 1073 { 1074 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1075 struct lpfc_nvmet_rcv_ctx *ctxp = 1076 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 1077 struct lpfc_hba *phba = ctxp->phba; 1078 unsigned long flags; 1079 bool aborting = false; 1080 1081 if (ctxp->state != LPFC_NVMET_STE_DONE && 1082 ctxp->state != LPFC_NVMET_STE_ABORT) { 1083 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1084 "6413 NVMET release bad state %d %d oxid x%x\n", 1085 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1086 } 1087 1088 spin_lock_irqsave(&ctxp->ctxlock, flags); 1089 if ((ctxp->flag & LPFC_NVMET_ABORT_OP) || 1090 (ctxp->flag & LPFC_NVMET_XBUSY)) { 1091 aborting = true; 1092 /* let the abort path do the real release */ 1093 lpfc_nvmet_defer_release(phba, ctxp); 1094 } 1095 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1096 1097 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 1098 ctxp->state, aborting); 1099 1100 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 1101 1102 if (aborting) 1103 return; 1104 1105 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1106 } 1107 1108 static void 1109 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 1110 struct nvmefc_tgt_fcp_req *rsp) 1111 { 1112 struct lpfc_nvmet_tgtport *tgtp; 1113 struct lpfc_nvmet_rcv_ctx *ctxp = 1114 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 1115 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 1116 struct lpfc_hba *phba = ctxp->phba; 1117 1118 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 1119 ctxp->oxid, ctxp->size, smp_processor_id()); 1120 1121 if (!nvmebuf) { 1122 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1123 "6425 Defer rcv: no buffer xri x%x: " 1124 "flg %x ste %x\n", 1125 ctxp->oxid, ctxp->flag, ctxp->state); 1126 return; 1127 } 1128 1129 tgtp = phba->targetport->private; 1130 if (tgtp) 1131 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 1132 1133 /* Free the nvmebuf since a new buffer already replaced it */ 1134 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1135 } 1136 1137 static struct nvmet_fc_target_template lpfc_tgttemplate = { 1138 .targetport_delete = lpfc_nvmet_targetport_delete, 1139 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 1140 .fcp_op = lpfc_nvmet_xmt_fcp_op, 1141 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 1142 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 1143 .defer_rcv = lpfc_nvmet_defer_rcv, 1144 1145 .max_hw_queues = 1, 1146 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1147 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1148 .dma_boundary = 0xFFFFFFFF, 1149 1150 /* optional features */ 1151 .target_features = 0, 1152 /* sizes of additional private data for data structures */ 1153 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 1154 }; 1155 1156 static void 1157 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 1158 struct lpfc_nvmet_ctx_info *infop) 1159 { 1160 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 1161 unsigned long flags; 1162 1163 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 1164 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 1165 &infop->nvmet_ctx_list, list) { 1166 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1167 list_del_init(&ctx_buf->list); 1168 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1169 1170 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 1171 ctx_buf->sglq->state = SGL_FREED; 1172 ctx_buf->sglq->ndlp = NULL; 1173 1174 spin_lock(&phba->sli4_hba.sgl_list_lock); 1175 list_add_tail(&ctx_buf->sglq->list, 1176 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1177 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1178 1179 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1180 kfree(ctx_buf->context); 1181 } 1182 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 1183 } 1184 1185 static void 1186 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 1187 { 1188 struct lpfc_nvmet_ctx_info *infop; 1189 int i, j; 1190 1191 /* The first context list, MRQ 0 CPU 0 */ 1192 infop = phba->sli4_hba.nvmet_ctx_info; 1193 if (!infop) 1194 return; 1195 1196 /* Cycle the the entire CPU context list for every MRQ */ 1197 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 1198 for (j = 0; j < phba->sli4_hba.num_present_cpu; j++) { 1199 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 1200 infop++; /* next */ 1201 } 1202 } 1203 kfree(phba->sli4_hba.nvmet_ctx_info); 1204 phba->sli4_hba.nvmet_ctx_info = NULL; 1205 } 1206 1207 static int 1208 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 1209 { 1210 struct lpfc_nvmet_ctxbuf *ctx_buf; 1211 struct lpfc_iocbq *nvmewqe; 1212 union lpfc_wqe128 *wqe; 1213 struct lpfc_nvmet_ctx_info *last_infop; 1214 struct lpfc_nvmet_ctx_info *infop; 1215 int i, j, idx; 1216 1217 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 1218 "6403 Allocate NVMET resources for %d XRIs\n", 1219 phba->sli4_hba.nvmet_xri_cnt); 1220 1221 phba->sli4_hba.nvmet_ctx_info = kcalloc( 1222 phba->sli4_hba.num_present_cpu * phba->cfg_nvmet_mrq, 1223 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 1224 if (!phba->sli4_hba.nvmet_ctx_info) { 1225 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1226 "6419 Failed allocate memory for " 1227 "nvmet context lists\n"); 1228 return -ENOMEM; 1229 } 1230 1231 /* 1232 * Assuming X CPUs in the system, and Y MRQs, allocate some 1233 * lpfc_nvmet_ctx_info structures as follows: 1234 * 1235 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 1236 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 1237 * ... 1238 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 1239 * 1240 * Each line represents a MRQ "silo" containing an entry for 1241 * every CPU. 1242 * 1243 * MRQ X is initially assumed to be associated with CPU X, thus 1244 * contexts are initially distributed across all MRQs using 1245 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 1246 * freed, the are freed to the MRQ silo based on the CPU number 1247 * of the IO completion. Thus a context that was allocated for MRQ A 1248 * whose IO completed on CPU B will be freed to cpuB/mrqA. 1249 */ 1250 infop = phba->sli4_hba.nvmet_ctx_info; 1251 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 1252 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1253 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 1254 spin_lock_init(&infop->nvmet_ctx_list_lock); 1255 infop->nvmet_ctx_list_cnt = 0; 1256 infop++; 1257 } 1258 } 1259 1260 /* 1261 * Setup the next CPU context info ptr for each MRQ. 1262 * MRQ 0 will cycle thru CPUs 0 - X separately from 1263 * MRQ 1 cycling thru CPUs 0 - X, and so on. 1264 */ 1265 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1266 last_infop = lpfc_get_ctx_list(phba, 0, j); 1267 for (i = phba->sli4_hba.num_present_cpu - 1; i >= 0; i--) { 1268 infop = lpfc_get_ctx_list(phba, i, j); 1269 infop->nvmet_ctx_next_cpu = last_infop; 1270 last_infop = infop; 1271 } 1272 } 1273 1274 /* For all nvmet xris, allocate resources needed to process a 1275 * received command on a per xri basis. 1276 */ 1277 idx = 0; 1278 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1279 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1280 if (!ctx_buf) { 1281 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1282 "6404 Ran out of memory for NVMET\n"); 1283 return -ENOMEM; 1284 } 1285 1286 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1287 GFP_KERNEL); 1288 if (!ctx_buf->context) { 1289 kfree(ctx_buf); 1290 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1291 "6405 Ran out of NVMET " 1292 "context memory\n"); 1293 return -ENOMEM; 1294 } 1295 ctx_buf->context->ctxbuf = ctx_buf; 1296 ctx_buf->context->state = LPFC_NVMET_STE_FREE; 1297 1298 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1299 if (!ctx_buf->iocbq) { 1300 kfree(ctx_buf->context); 1301 kfree(ctx_buf); 1302 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1303 "6406 Ran out of NVMET iocb/WQEs\n"); 1304 return -ENOMEM; 1305 } 1306 ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET; 1307 nvmewqe = ctx_buf->iocbq; 1308 wqe = &nvmewqe->wqe; 1309 1310 /* Initialize WQE */ 1311 memset(wqe, 0, sizeof(union lpfc_wqe)); 1312 1313 ctx_buf->iocbq->context1 = NULL; 1314 spin_lock(&phba->sli4_hba.sgl_list_lock); 1315 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1316 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1317 if (!ctx_buf->sglq) { 1318 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1319 kfree(ctx_buf->context); 1320 kfree(ctx_buf); 1321 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1322 "6407 Ran out of NVMET XRIs\n"); 1323 return -ENOMEM; 1324 } 1325 1326 /* 1327 * Add ctx to MRQidx context list. Our initial assumption 1328 * is MRQidx will be associated with CPUidx. This association 1329 * can change on the fly. 1330 */ 1331 infop = lpfc_get_ctx_list(phba, idx, idx); 1332 spin_lock(&infop->nvmet_ctx_list_lock); 1333 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1334 infop->nvmet_ctx_list_cnt++; 1335 spin_unlock(&infop->nvmet_ctx_list_lock); 1336 1337 /* Spread ctx structures evenly across all MRQs */ 1338 idx++; 1339 if (idx >= phba->cfg_nvmet_mrq) 1340 idx = 0; 1341 } 1342 1343 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 1344 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1345 infop = lpfc_get_ctx_list(phba, i, j); 1346 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1347 "6408 TOTAL NVMET ctx for CPU %d " 1348 "MRQ %d: cnt %d nextcpu %p\n", 1349 i, j, infop->nvmet_ctx_list_cnt, 1350 infop->nvmet_ctx_next_cpu); 1351 } 1352 } 1353 return 0; 1354 } 1355 1356 int 1357 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1358 { 1359 struct lpfc_vport *vport = phba->pport; 1360 struct lpfc_nvmet_tgtport *tgtp; 1361 struct nvmet_fc_port_info pinfo; 1362 int error; 1363 1364 if (phba->targetport) 1365 return 0; 1366 1367 error = lpfc_nvmet_setup_io_context(phba); 1368 if (error) 1369 return error; 1370 1371 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1372 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1373 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1374 pinfo.port_id = vport->fc_myDID; 1375 1376 /* We need to tell the transport layer + 1 because it takes page 1377 * alignment into account. When space for the SGL is allocated we 1378 * allocate + 3, one for cmd, one for rsp and one for this alignment 1379 */ 1380 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1381 lpfc_tgttemplate.max_hw_queues = phba->cfg_nvme_io_channel; 1382 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; 1383 1384 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1385 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1386 &phba->pcidev->dev, 1387 &phba->targetport); 1388 #else 1389 error = -ENOENT; 1390 #endif 1391 if (error) { 1392 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 1393 "6025 Cannot register NVME targetport x%x: " 1394 "portnm %llx nodenm %llx segs %d qs %d\n", 1395 error, 1396 pinfo.port_name, pinfo.node_name, 1397 lpfc_tgttemplate.max_sgl_segments, 1398 lpfc_tgttemplate.max_hw_queues); 1399 phba->targetport = NULL; 1400 phba->nvmet_support = 0; 1401 1402 lpfc_nvmet_cleanup_io_context(phba); 1403 1404 } else { 1405 tgtp = (struct lpfc_nvmet_tgtport *) 1406 phba->targetport->private; 1407 tgtp->phba = phba; 1408 1409 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1410 "6026 Registered NVME " 1411 "targetport: %p, private %p " 1412 "portnm %llx nodenm %llx segs %d qs %d\n", 1413 phba->targetport, tgtp, 1414 pinfo.port_name, pinfo.node_name, 1415 lpfc_tgttemplate.max_sgl_segments, 1416 lpfc_tgttemplate.max_hw_queues); 1417 1418 atomic_set(&tgtp->rcv_ls_req_in, 0); 1419 atomic_set(&tgtp->rcv_ls_req_out, 0); 1420 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1421 atomic_set(&tgtp->xmt_ls_abort, 0); 1422 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1423 atomic_set(&tgtp->xmt_ls_rsp, 0); 1424 atomic_set(&tgtp->xmt_ls_drop, 0); 1425 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1426 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); 1427 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); 1428 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1429 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1430 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1431 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1432 atomic_set(&tgtp->xmt_fcp_drop, 0); 1433 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1434 atomic_set(&tgtp->xmt_fcp_read, 0); 1435 atomic_set(&tgtp->xmt_fcp_write, 0); 1436 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1437 atomic_set(&tgtp->xmt_fcp_release, 0); 1438 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1439 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1440 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); 1441 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); 1442 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1443 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); 1444 atomic_set(&tgtp->xmt_fcp_abort, 0); 1445 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1446 atomic_set(&tgtp->xmt_abort_unsol, 0); 1447 atomic_set(&tgtp->xmt_abort_sol, 0); 1448 atomic_set(&tgtp->xmt_abort_rsp, 0); 1449 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1450 atomic_set(&tgtp->defer_ctx, 0); 1451 atomic_set(&tgtp->defer_fod, 0); 1452 atomic_set(&tgtp->defer_wqfull, 0); 1453 } 1454 return error; 1455 } 1456 1457 int 1458 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1459 { 1460 struct lpfc_vport *vport = phba->pport; 1461 1462 if (!phba->targetport) 1463 return 0; 1464 1465 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1466 "6007 Update NVMET port %p did x%x\n", 1467 phba->targetport, vport->fc_myDID); 1468 1469 phba->targetport->port_id = vport->fc_myDID; 1470 return 0; 1471 } 1472 1473 /** 1474 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1475 * @phba: pointer to lpfc hba data structure. 1476 * @axri: pointer to the nvmet xri abort wcqe structure. 1477 * 1478 * This routine is invoked by the worker thread to process a SLI4 fast-path 1479 * NVMET aborted xri. 1480 **/ 1481 void 1482 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1483 struct sli4_wcqe_xri_aborted *axri) 1484 { 1485 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1486 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1487 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; 1488 struct lpfc_nvmet_tgtport *tgtp; 1489 struct lpfc_nodelist *ndlp; 1490 unsigned long iflag = 0; 1491 int rrq_empty = 0; 1492 bool released = false; 1493 1494 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1495 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1496 1497 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1498 return; 1499 1500 if (phba->targetport) { 1501 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1502 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); 1503 } 1504 1505 spin_lock_irqsave(&phba->hbalock, iflag); 1506 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1507 list_for_each_entry_safe(ctxp, next_ctxp, 1508 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1509 list) { 1510 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1511 continue; 1512 1513 /* Check if we already received a free context call 1514 * and we have completed processing an abort situation. 1515 */ 1516 if (ctxp->flag & LPFC_NVMET_CTX_RLS && 1517 !(ctxp->flag & LPFC_NVMET_ABORT_OP)) { 1518 list_del(&ctxp->list); 1519 released = true; 1520 } 1521 ctxp->flag &= ~LPFC_NVMET_XBUSY; 1522 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1523 1524 rrq_empty = list_empty(&phba->active_rrq_list); 1525 spin_unlock_irqrestore(&phba->hbalock, iflag); 1526 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1527 if (ndlp && NLP_CHK_NODE_ACT(ndlp) && 1528 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1529 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1530 lpfc_set_rrq_active(phba, ndlp, 1531 ctxp->ctxbuf->sglq->sli4_lxritag, 1532 rxid, 1); 1533 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1534 } 1535 1536 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1537 "6318 XB aborted oxid %x flg x%x (%x)\n", 1538 ctxp->oxid, ctxp->flag, released); 1539 if (released) 1540 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1541 1542 if (rrq_empty) 1543 lpfc_worker_wake_up(phba); 1544 return; 1545 } 1546 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1547 spin_unlock_irqrestore(&phba->hbalock, iflag); 1548 } 1549 1550 int 1551 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1552 struct fc_frame_header *fc_hdr) 1553 1554 { 1555 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1556 struct lpfc_hba *phba = vport->phba; 1557 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; 1558 struct nvmefc_tgt_fcp_req *rsp; 1559 uint16_t xri; 1560 unsigned long iflag = 0; 1561 1562 xri = be16_to_cpu(fc_hdr->fh_ox_id); 1563 1564 spin_lock_irqsave(&phba->hbalock, iflag); 1565 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1566 list_for_each_entry_safe(ctxp, next_ctxp, 1567 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1568 list) { 1569 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1570 continue; 1571 1572 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1573 spin_unlock_irqrestore(&phba->hbalock, iflag); 1574 1575 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1576 ctxp->flag |= LPFC_NVMET_ABTS_RCV; 1577 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1578 1579 lpfc_nvmeio_data(phba, 1580 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1581 xri, smp_processor_id(), 0); 1582 1583 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1584 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1585 1586 rsp = &ctxp->ctx.fcp_req; 1587 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1588 1589 /* Respond with BA_ACC accordingly */ 1590 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1591 return 0; 1592 } 1593 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1594 spin_unlock_irqrestore(&phba->hbalock, iflag); 1595 1596 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1597 xri, smp_processor_id(), 1); 1598 1599 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1600 "6320 NVMET Rcv ABTS:rjt xri x%x\n", xri); 1601 1602 /* Respond with BA_RJT accordingly */ 1603 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 1604 #endif 1605 return 0; 1606 } 1607 1608 static void 1609 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, 1610 struct lpfc_nvmet_rcv_ctx *ctxp) 1611 { 1612 struct lpfc_sli_ring *pring; 1613 struct lpfc_iocbq *nvmewqeq; 1614 struct lpfc_iocbq *next_nvmewqeq; 1615 unsigned long iflags; 1616 struct lpfc_wcqe_complete wcqe; 1617 struct lpfc_wcqe_complete *wcqep; 1618 1619 pring = wq->pring; 1620 wcqep = &wcqe; 1621 1622 /* Fake an ABORT error code back to cmpl routine */ 1623 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); 1624 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); 1625 wcqep->parameter = IOERR_ABORT_REQUESTED; 1626 1627 spin_lock_irqsave(&pring->ring_lock, iflags); 1628 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, 1629 &wq->wqfull_list, list) { 1630 if (ctxp) { 1631 /* Checking for a specific IO to flush */ 1632 if (nvmewqeq->context2 == ctxp) { 1633 list_del(&nvmewqeq->list); 1634 spin_unlock_irqrestore(&pring->ring_lock, 1635 iflags); 1636 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, 1637 wcqep); 1638 return; 1639 } 1640 continue; 1641 } else { 1642 /* Flush all IOs */ 1643 list_del(&nvmewqeq->list); 1644 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1645 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep); 1646 spin_lock_irqsave(&pring->ring_lock, iflags); 1647 } 1648 } 1649 if (!ctxp) 1650 wq->q_flag &= ~HBA_NVMET_WQFULL; 1651 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1652 } 1653 1654 void 1655 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, 1656 struct lpfc_queue *wq) 1657 { 1658 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1659 struct lpfc_sli_ring *pring; 1660 struct lpfc_iocbq *nvmewqeq; 1661 unsigned long iflags; 1662 int rc; 1663 1664 /* 1665 * Some WQE slots are available, so try to re-issue anything 1666 * on the WQ wqfull_list. 1667 */ 1668 pring = wq->pring; 1669 spin_lock_irqsave(&pring->ring_lock, iflags); 1670 while (!list_empty(&wq->wqfull_list)) { 1671 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, 1672 list); 1673 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1674 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq); 1675 spin_lock_irqsave(&pring->ring_lock, iflags); 1676 if (rc == -EBUSY) { 1677 /* WQ was full again, so put it back on the list */ 1678 list_add(&nvmewqeq->list, &wq->wqfull_list); 1679 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1680 return; 1681 } 1682 } 1683 wq->q_flag &= ~HBA_NVMET_WQFULL; 1684 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1685 1686 #endif 1687 } 1688 1689 void 1690 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 1691 { 1692 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1693 struct lpfc_nvmet_tgtport *tgtp; 1694 struct lpfc_queue *wq; 1695 uint32_t qidx; 1696 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp); 1697 1698 if (phba->nvmet_support == 0) 1699 return; 1700 if (phba->targetport) { 1701 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1702 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) { 1703 wq = phba->sli4_hba.nvme_wq[qidx]; 1704 lpfc_nvmet_wqfull_flush(phba, wq, NULL); 1705 } 1706 tgtp->tport_unreg_cmp = &tport_unreg_cmp; 1707 nvmet_fc_unregister_targetport(phba->targetport); 1708 wait_for_completion_timeout(&tport_unreg_cmp, 5); 1709 lpfc_nvmet_cleanup_io_context(phba); 1710 } 1711 phba->targetport = NULL; 1712 #endif 1713 } 1714 1715 /** 1716 * lpfc_nvmet_unsol_ls_buffer - Process an unsolicited event data buffer 1717 * @phba: pointer to lpfc hba data structure. 1718 * @pring: pointer to a SLI ring. 1719 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 1720 * 1721 * This routine is used for processing the WQE associated with a unsolicited 1722 * event. It first determines whether there is an existing ndlp that matches 1723 * the DID from the unsolicited WQE. If not, it will create a new one with 1724 * the DID from the unsolicited WQE. The ELS command from the unsolicited 1725 * WQE is then used to invoke the proper routine and to set up proper state 1726 * of the discovery state machine. 1727 **/ 1728 static void 1729 lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1730 struct hbq_dmabuf *nvmebuf) 1731 { 1732 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1733 struct lpfc_nvmet_tgtport *tgtp; 1734 struct fc_frame_header *fc_hdr; 1735 struct lpfc_nvmet_rcv_ctx *ctxp; 1736 uint32_t *payload; 1737 uint32_t size, oxid, sid, rc; 1738 1739 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 1740 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1741 1742 if (!phba->targetport) { 1743 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1744 "6154 LS Drop IO x%x\n", oxid); 1745 oxid = 0; 1746 size = 0; 1747 sid = 0; 1748 ctxp = NULL; 1749 goto dropit; 1750 } 1751 1752 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1753 payload = (uint32_t *)(nvmebuf->dbuf.virt); 1754 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 1755 sid = sli4_sid_from_fc_hdr(fc_hdr); 1756 1757 ctxp = kzalloc(sizeof(struct lpfc_nvmet_rcv_ctx), GFP_ATOMIC); 1758 if (ctxp == NULL) { 1759 atomic_inc(&tgtp->rcv_ls_req_drop); 1760 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1761 "6155 LS Drop IO x%x: Alloc\n", 1762 oxid); 1763 dropit: 1764 lpfc_nvmeio_data(phba, "NVMET LS DROP: " 1765 "xri x%x sz %d from %06x\n", 1766 oxid, size, sid); 1767 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 1768 return; 1769 } 1770 ctxp->phba = phba; 1771 ctxp->size = size; 1772 ctxp->oxid = oxid; 1773 ctxp->sid = sid; 1774 ctxp->wqeq = NULL; 1775 ctxp->state = LPFC_NVMET_STE_LS_RCV; 1776 ctxp->entry_cnt = 1; 1777 ctxp->rqb_buffer = (void *)nvmebuf; 1778 1779 lpfc_nvmeio_data(phba, "NVMET LS RCV: xri x%x sz %d from %06x\n", 1780 oxid, size, sid); 1781 /* 1782 * The calling sequence should be: 1783 * nvmet_fc_rcv_ls_req -> lpfc_nvmet_xmt_ls_rsp/cmp ->_req->done 1784 * lpfc_nvmet_xmt_ls_rsp_cmp should free the allocated ctxp. 1785 */ 1786 atomic_inc(&tgtp->rcv_ls_req_in); 1787 rc = nvmet_fc_rcv_ls_req(phba->targetport, &ctxp->ctx.ls_req, 1788 payload, size); 1789 1790 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1791 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 1792 "%08x %08x %08x\n", size, rc, 1793 *payload, *(payload+1), *(payload+2), 1794 *(payload+3), *(payload+4), *(payload+5)); 1795 1796 if (rc == 0) { 1797 atomic_inc(&tgtp->rcv_ls_req_out); 1798 return; 1799 } 1800 1801 lpfc_nvmeio_data(phba, "NVMET LS DROP: xri x%x sz %d from %06x\n", 1802 oxid, size, sid); 1803 1804 atomic_inc(&tgtp->rcv_ls_req_drop); 1805 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1806 "6156 LS Drop IO x%x: nvmet_fc_rcv_ls_req %d\n", 1807 ctxp->oxid, rc); 1808 1809 /* We assume a rcv'ed cmd ALWAYs fits into 1 buffer */ 1810 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 1811 1812 atomic_inc(&tgtp->xmt_ls_abort); 1813 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, sid, oxid); 1814 #endif 1815 } 1816 1817 static struct lpfc_nvmet_ctxbuf * 1818 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 1819 struct lpfc_nvmet_ctx_info *current_infop) 1820 { 1821 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1822 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 1823 struct lpfc_nvmet_ctx_info *get_infop; 1824 int i; 1825 1826 /* 1827 * The current_infop for the MRQ a NVME command IU was received 1828 * on is empty. Our goal is to replenish this MRQs context 1829 * list from a another CPUs. 1830 * 1831 * First we need to pick a context list to start looking on. 1832 * nvmet_ctx_start_cpu has available context the last time 1833 * we needed to replenish this CPU where nvmet_ctx_next_cpu 1834 * is just the next sequential CPU for this MRQ. 1835 */ 1836 if (current_infop->nvmet_ctx_start_cpu) 1837 get_infop = current_infop->nvmet_ctx_start_cpu; 1838 else 1839 get_infop = current_infop->nvmet_ctx_next_cpu; 1840 1841 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 1842 if (get_infop == current_infop) { 1843 get_infop = get_infop->nvmet_ctx_next_cpu; 1844 continue; 1845 } 1846 spin_lock(&get_infop->nvmet_ctx_list_lock); 1847 1848 /* Just take the entire context list, if there are any */ 1849 if (get_infop->nvmet_ctx_list_cnt) { 1850 list_splice_init(&get_infop->nvmet_ctx_list, 1851 ¤t_infop->nvmet_ctx_list); 1852 current_infop->nvmet_ctx_list_cnt = 1853 get_infop->nvmet_ctx_list_cnt - 1; 1854 get_infop->nvmet_ctx_list_cnt = 0; 1855 spin_unlock(&get_infop->nvmet_ctx_list_lock); 1856 1857 current_infop->nvmet_ctx_start_cpu = get_infop; 1858 list_remove_head(¤t_infop->nvmet_ctx_list, 1859 ctx_buf, struct lpfc_nvmet_ctxbuf, 1860 list); 1861 return ctx_buf; 1862 } 1863 1864 /* Otherwise, move on to the next CPU for this MRQ */ 1865 spin_unlock(&get_infop->nvmet_ctx_list_lock); 1866 get_infop = get_infop->nvmet_ctx_next_cpu; 1867 } 1868 1869 #endif 1870 /* Nothing found, all contexts for the MRQ are in-flight */ 1871 return NULL; 1872 } 1873 1874 /** 1875 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 1876 * @phba: pointer to lpfc hba data structure. 1877 * @idx: relative index of MRQ vector 1878 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 1879 * 1880 * This routine is used for processing the WQE associated with a unsolicited 1881 * event. It first determines whether there is an existing ndlp that matches 1882 * the DID from the unsolicited WQE. If not, it will create a new one with 1883 * the DID from the unsolicited WQE. The ELS command from the unsolicited 1884 * WQE is then used to invoke the proper routine and to set up proper state 1885 * of the discovery state machine. 1886 **/ 1887 static void 1888 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 1889 uint32_t idx, 1890 struct rqb_dmabuf *nvmebuf, 1891 uint64_t isr_timestamp) 1892 { 1893 struct lpfc_nvmet_rcv_ctx *ctxp; 1894 struct lpfc_nvmet_tgtport *tgtp; 1895 struct fc_frame_header *fc_hdr; 1896 struct lpfc_nvmet_ctxbuf *ctx_buf; 1897 struct lpfc_nvmet_ctx_info *current_infop; 1898 uint32_t *payload; 1899 uint32_t size, oxid, sid, rc, qno; 1900 unsigned long iflag; 1901 int current_cpu; 1902 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1903 uint32_t id; 1904 #endif 1905 1906 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1907 return; 1908 1909 ctx_buf = NULL; 1910 if (!nvmebuf || !phba->targetport) { 1911 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1912 "6157 NVMET FCP Drop IO\n"); 1913 oxid = 0; 1914 size = 0; 1915 sid = 0; 1916 ctxp = NULL; 1917 goto dropit; 1918 } 1919 1920 /* 1921 * Get a pointer to the context list for this MRQ based on 1922 * the CPU this MRQ IRQ is associated with. If the CPU association 1923 * changes from our initial assumption, the context list could 1924 * be empty, thus it would need to be replenished with the 1925 * context list from another CPU for this MRQ. 1926 */ 1927 current_cpu = smp_processor_id(); 1928 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 1929 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 1930 if (current_infop->nvmet_ctx_list_cnt) { 1931 list_remove_head(¤t_infop->nvmet_ctx_list, 1932 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 1933 current_infop->nvmet_ctx_list_cnt--; 1934 } else { 1935 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 1936 } 1937 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 1938 1939 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 1940 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1941 size = nvmebuf->bytes_recv; 1942 1943 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1944 if (phba->cpucheck_on & LPFC_CHECK_NVMET_RCV) { 1945 id = smp_processor_id(); 1946 if (id < LPFC_CHECK_CPU_CNT) 1947 phba->cpucheck_rcv_io[id]++; 1948 } 1949 #endif 1950 1951 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 1952 oxid, size, smp_processor_id()); 1953 1954 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1955 1956 if (!ctx_buf) { 1957 /* Queue this NVME IO to process later */ 1958 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1959 list_add_tail(&nvmebuf->hbuf.list, 1960 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 1961 phba->sli4_hba.nvmet_io_wait_cnt++; 1962 phba->sli4_hba.nvmet_io_wait_total++; 1963 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1964 iflag); 1965 1966 /* Post a brand new DMA buffer to RQ */ 1967 qno = nvmebuf->idx; 1968 lpfc_post_rq_buffer( 1969 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 1970 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 1971 1972 atomic_inc(&tgtp->defer_ctx); 1973 return; 1974 } 1975 1976 payload = (uint32_t *)(nvmebuf->dbuf.virt); 1977 sid = sli4_sid_from_fc_hdr(fc_hdr); 1978 1979 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context; 1980 if (ctxp->state != LPFC_NVMET_STE_FREE) { 1981 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1982 "6414 NVMET Context corrupt %d %d oxid x%x\n", 1983 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1984 } 1985 ctxp->wqeq = NULL; 1986 ctxp->txrdy = NULL; 1987 ctxp->offset = 0; 1988 ctxp->phba = phba; 1989 ctxp->size = size; 1990 ctxp->oxid = oxid; 1991 ctxp->sid = sid; 1992 ctxp->idx = idx; 1993 ctxp->state = LPFC_NVMET_STE_RCV; 1994 ctxp->entry_cnt = 1; 1995 ctxp->flag = 0; 1996 ctxp->ctxbuf = ctx_buf; 1997 ctxp->rqb_buffer = (void *)nvmebuf; 1998 spin_lock_init(&ctxp->ctxlock); 1999 2000 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2001 if (isr_timestamp) { 2002 ctxp->ts_isr_cmd = isr_timestamp; 2003 ctxp->ts_cmd_nvme = ktime_get_ns(); 2004 ctxp->ts_nvme_data = 0; 2005 ctxp->ts_data_wqput = 0; 2006 ctxp->ts_isr_data = 0; 2007 ctxp->ts_data_nvme = 0; 2008 ctxp->ts_nvme_status = 0; 2009 ctxp->ts_status_wqput = 0; 2010 ctxp->ts_isr_status = 0; 2011 ctxp->ts_status_nvme = 0; 2012 } else { 2013 ctxp->ts_cmd_nvme = 0; 2014 } 2015 #endif 2016 2017 atomic_inc(&tgtp->rcv_fcp_cmd_in); 2018 /* 2019 * The calling sequence should be: 2020 * nvmet_fc_rcv_fcp_req -> lpfc_nvmet_xmt_fcp_op/cmp -> req->done 2021 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 2022 * When we return from nvmet_fc_rcv_fcp_req, all relevant info in 2023 * the NVME command / FC header is stored, so we are free to repost 2024 * the buffer. 2025 */ 2026 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req, 2027 payload, size); 2028 2029 /* Process FCP command */ 2030 if (rc == 0) { 2031 ctxp->rqb_buffer = NULL; 2032 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2033 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2034 return; 2035 } 2036 2037 /* Processing of FCP command is deferred */ 2038 if (rc == -EOVERFLOW) { 2039 /* 2040 * Post a brand new DMA buffer to RQ and defer 2041 * freeing rcv buffer till .defer_rcv callback 2042 */ 2043 qno = nvmebuf->idx; 2044 lpfc_post_rq_buffer( 2045 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2046 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2047 2048 lpfc_nvmeio_data(phba, 2049 "NVMET RCV BUSY: xri x%x sz %d from %06x\n", 2050 oxid, size, sid); 2051 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2052 atomic_inc(&tgtp->defer_fod); 2053 return; 2054 } 2055 ctxp->rqb_buffer = nvmebuf; 2056 2057 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2058 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2059 "6159 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 2060 ctxp->oxid, rc, 2061 atomic_read(&tgtp->rcv_fcp_cmd_in), 2062 atomic_read(&tgtp->rcv_fcp_cmd_out), 2063 atomic_read(&tgtp->xmt_fcp_release)); 2064 dropit: 2065 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 2066 oxid, size, sid); 2067 if (oxid) { 2068 lpfc_nvmet_defer_release(phba, ctxp); 2069 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 2070 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2071 return; 2072 } 2073 2074 if (ctx_buf) 2075 lpfc_nvmet_ctxbuf_post(phba, ctx_buf); 2076 2077 if (nvmebuf) 2078 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2079 } 2080 2081 /** 2082 * lpfc_nvmet_unsol_ls_event - Process an unsolicited event from an nvme nport 2083 * @phba: pointer to lpfc hba data structure. 2084 * @pring: pointer to a SLI ring. 2085 * @nvmebuf: pointer to received nvme data structure. 2086 * 2087 * This routine is used to process an unsolicited event received from a SLI 2088 * (Service Level Interface) ring. The actual processing of the data buffer 2089 * associated with the unsolicited event is done by invoking the routine 2090 * lpfc_nvmet_unsol_ls_buffer() after properly set up the buffer from the 2091 * SLI RQ on which the unsolicited event was received. 2092 **/ 2093 void 2094 lpfc_nvmet_unsol_ls_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2095 struct lpfc_iocbq *piocb) 2096 { 2097 struct lpfc_dmabuf *d_buf; 2098 struct hbq_dmabuf *nvmebuf; 2099 2100 d_buf = piocb->context2; 2101 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2102 2103 if (phba->nvmet_support == 0) { 2104 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 2105 return; 2106 } 2107 lpfc_nvmet_unsol_ls_buffer(phba, pring, nvmebuf); 2108 } 2109 2110 /** 2111 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 2112 * @phba: pointer to lpfc hba data structure. 2113 * @idx: relative index of MRQ vector 2114 * @nvmebuf: pointer to received nvme data structure. 2115 * 2116 * This routine is used to process an unsolicited event received from a SLI 2117 * (Service Level Interface) ring. The actual processing of the data buffer 2118 * associated with the unsolicited event is done by invoking the routine 2119 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 2120 * SLI RQ on which the unsolicited event was received. 2121 **/ 2122 void 2123 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 2124 uint32_t idx, 2125 struct rqb_dmabuf *nvmebuf, 2126 uint64_t isr_timestamp) 2127 { 2128 if (phba->nvmet_support == 0) { 2129 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2130 return; 2131 } 2132 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, 2133 isr_timestamp); 2134 } 2135 2136 /** 2137 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 2138 * @phba: pointer to a host N_Port data structure. 2139 * @ctxp: Context info for NVME LS Request 2140 * @rspbuf: DMA buffer of NVME command. 2141 * @rspsize: size of the NVME command. 2142 * 2143 * This routine is used for allocating a lpfc-WQE data structure from 2144 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 2145 * passed into the routine for discovery state machine to issue an Extended 2146 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 2147 * and preparation routine that is used by all the discovery state machine 2148 * routines and the NVME command-specific fields will be later set up by 2149 * the individual discovery machine routines after calling this routine 2150 * allocating and preparing a generic WQE data structure. It fills in the 2151 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 2152 * payload and response payload (if expected). The reference count on the 2153 * ndlp is incremented by 1 and the reference to the ndlp is put into 2154 * context1 of the WQE data structure for this WQE to hold the ndlp 2155 * reference for the command's callback function to access later. 2156 * 2157 * Return code 2158 * Pointer to the newly allocated/prepared nvme wqe data structure 2159 * NULL - when nvme wqe data structure allocation/preparation failed 2160 **/ 2161 static struct lpfc_iocbq * 2162 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 2163 struct lpfc_nvmet_rcv_ctx *ctxp, 2164 dma_addr_t rspbuf, uint16_t rspsize) 2165 { 2166 struct lpfc_nodelist *ndlp; 2167 struct lpfc_iocbq *nvmewqe; 2168 union lpfc_wqe128 *wqe; 2169 2170 if (!lpfc_is_link_up(phba)) { 2171 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2172 "6104 NVMET prep LS wqe: link err: " 2173 "NPORT x%x oxid:x%x ste %d\n", 2174 ctxp->sid, ctxp->oxid, ctxp->state); 2175 return NULL; 2176 } 2177 2178 /* Allocate buffer for command wqe */ 2179 nvmewqe = lpfc_sli_get_iocbq(phba); 2180 if (nvmewqe == NULL) { 2181 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2182 "6105 NVMET prep LS wqe: No WQE: " 2183 "NPORT x%x oxid x%x ste %d\n", 2184 ctxp->sid, ctxp->oxid, ctxp->state); 2185 return NULL; 2186 } 2187 2188 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2189 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2190 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2191 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2192 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2193 "6106 NVMET prep LS wqe: No ndlp: " 2194 "NPORT x%x oxid x%x ste %d\n", 2195 ctxp->sid, ctxp->oxid, ctxp->state); 2196 goto nvme_wqe_free_wqeq_exit; 2197 } 2198 ctxp->wqeq = nvmewqe; 2199 2200 /* prevent preparing wqe with NULL ndlp reference */ 2201 nvmewqe->context1 = lpfc_nlp_get(ndlp); 2202 if (nvmewqe->context1 == NULL) 2203 goto nvme_wqe_free_wqeq_exit; 2204 nvmewqe->context2 = ctxp; 2205 2206 wqe = &nvmewqe->wqe; 2207 memset(wqe, 0, sizeof(union lpfc_wqe)); 2208 2209 /* Words 0 - 2 */ 2210 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2211 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 2212 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 2213 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 2214 2215 /* Word 3 */ 2216 2217 /* Word 4 */ 2218 2219 /* Word 5 */ 2220 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 2221 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 2222 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 2223 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 2224 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 2225 2226 /* Word 6 */ 2227 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 2228 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2229 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 2230 2231 /* Word 7 */ 2232 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 2233 CMD_XMIT_SEQUENCE64_WQE); 2234 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 2235 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 2236 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 2237 2238 /* Word 8 */ 2239 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 2240 2241 /* Word 9 */ 2242 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 2243 /* Needs to be set by caller */ 2244 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 2245 2246 /* Word 10 */ 2247 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 2248 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2249 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 2250 LPFC_WQE_LENLOC_WORD12); 2251 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 2252 2253 /* Word 11 */ 2254 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 2255 LPFC_WQE_CQ_ID_DEFAULT); 2256 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 2257 OTHER_COMMAND); 2258 2259 /* Word 12 */ 2260 wqe->xmit_sequence.xmit_len = rspsize; 2261 2262 nvmewqe->retry = 1; 2263 nvmewqe->vport = phba->pport; 2264 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2265 nvmewqe->iocb_flag |= LPFC_IO_NVME_LS; 2266 2267 /* Xmit NVMET response to remote NPORT <did> */ 2268 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2269 "6039 Xmit NVMET LS response to remote " 2270 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 2271 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 2272 rspsize); 2273 return nvmewqe; 2274 2275 nvme_wqe_free_wqeq_exit: 2276 nvmewqe->context2 = NULL; 2277 nvmewqe->context3 = NULL; 2278 lpfc_sli_release_iocbq(phba, nvmewqe); 2279 return NULL; 2280 } 2281 2282 2283 static struct lpfc_iocbq * 2284 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 2285 struct lpfc_nvmet_rcv_ctx *ctxp) 2286 { 2287 struct nvmefc_tgt_fcp_req *rsp = &ctxp->ctx.fcp_req; 2288 struct lpfc_nvmet_tgtport *tgtp; 2289 struct sli4_sge *sgl; 2290 struct lpfc_nodelist *ndlp; 2291 struct lpfc_iocbq *nvmewqe; 2292 struct scatterlist *sgel; 2293 union lpfc_wqe128 *wqe; 2294 struct ulp_bde64 *bde; 2295 uint32_t *txrdy; 2296 dma_addr_t physaddr; 2297 int i, cnt; 2298 int do_pbde; 2299 int xc = 1; 2300 2301 if (!lpfc_is_link_up(phba)) { 2302 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2303 "6107 NVMET prep FCP wqe: link err:" 2304 "NPORT x%x oxid x%x ste %d\n", 2305 ctxp->sid, ctxp->oxid, ctxp->state); 2306 return NULL; 2307 } 2308 2309 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2310 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2311 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2312 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2313 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2314 "6108 NVMET prep FCP wqe: no ndlp: " 2315 "NPORT x%x oxid x%x ste %d\n", 2316 ctxp->sid, ctxp->oxid, ctxp->state); 2317 return NULL; 2318 } 2319 2320 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { 2321 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2322 "6109 NVMET prep FCP wqe: seg cnt err: " 2323 "NPORT x%x oxid x%x ste %d cnt %d\n", 2324 ctxp->sid, ctxp->oxid, ctxp->state, 2325 phba->cfg_nvme_seg_cnt); 2326 return NULL; 2327 } 2328 2329 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2330 nvmewqe = ctxp->wqeq; 2331 if (nvmewqe == NULL) { 2332 /* Allocate buffer for command wqe */ 2333 nvmewqe = ctxp->ctxbuf->iocbq; 2334 if (nvmewqe == NULL) { 2335 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2336 "6110 NVMET prep FCP wqe: No " 2337 "WQE: NPORT x%x oxid x%x ste %d\n", 2338 ctxp->sid, ctxp->oxid, ctxp->state); 2339 return NULL; 2340 } 2341 ctxp->wqeq = nvmewqe; 2342 xc = 0; /* create new XRI */ 2343 nvmewqe->sli4_lxritag = NO_XRI; 2344 nvmewqe->sli4_xritag = NO_XRI; 2345 } 2346 2347 /* Sanity check */ 2348 if (((ctxp->state == LPFC_NVMET_STE_RCV) && 2349 (ctxp->entry_cnt == 1)) || 2350 (ctxp->state == LPFC_NVMET_STE_DATA)) { 2351 wqe = &nvmewqe->wqe; 2352 } else { 2353 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2354 "6111 Wrong state NVMET FCP: %d cnt %d\n", 2355 ctxp->state, ctxp->entry_cnt); 2356 return NULL; 2357 } 2358 2359 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 2360 switch (rsp->op) { 2361 case NVMET_FCOP_READDATA: 2362 case NVMET_FCOP_READDATA_RSP: 2363 /* From the tsend template, initialize words 7 - 11 */ 2364 memcpy(&wqe->words[7], 2365 &lpfc_tsend_cmd_template.words[7], 2366 sizeof(uint32_t) * 5); 2367 2368 /* Words 0 - 2 : The first sg segment */ 2369 sgel = &rsp->sg[0]; 2370 physaddr = sg_dma_address(sgel); 2371 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2372 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 2373 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 2374 wqe->fcp_tsend.bde.addrHigh = 2375 cpu_to_le32(putPaddrHigh(physaddr)); 2376 2377 /* Word 3 */ 2378 wqe->fcp_tsend.payload_offset_len = 0; 2379 2380 /* Word 4 */ 2381 wqe->fcp_tsend.relative_offset = ctxp->offset; 2382 2383 /* Word 5 */ 2384 wqe->fcp_tsend.reserved = 0; 2385 2386 /* Word 6 */ 2387 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2388 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2389 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2390 nvmewqe->sli4_xritag); 2391 2392 /* Word 7 - set ar later */ 2393 2394 /* Word 8 */ 2395 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2396 2397 /* Word 9 */ 2398 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2399 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2400 2401 /* Word 10 - set wqes later, in template xc=1 */ 2402 if (!xc) 2403 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); 2404 2405 /* Word 11 - set sup, irsp, irsplen later */ 2406 do_pbde = 0; 2407 2408 /* Word 12 */ 2409 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2410 2411 /* Setup 2 SKIP SGEs */ 2412 sgl->addr_hi = 0; 2413 sgl->addr_lo = 0; 2414 sgl->word2 = 0; 2415 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2416 sgl->word2 = cpu_to_le32(sgl->word2); 2417 sgl->sge_len = 0; 2418 sgl++; 2419 sgl->addr_hi = 0; 2420 sgl->addr_lo = 0; 2421 sgl->word2 = 0; 2422 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2423 sgl->word2 = cpu_to_le32(sgl->word2); 2424 sgl->sge_len = 0; 2425 sgl++; 2426 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2427 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2428 2429 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2430 2431 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2432 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP) 2433 bf_set(wqe_sup, 2434 &wqe->fcp_tsend.wqe_com, 1); 2435 } else { 2436 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2437 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2438 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2439 ((rsp->rsplen >> 2) - 1)); 2440 memcpy(&wqe->words[16], rsp->rspaddr, 2441 rsp->rsplen); 2442 } 2443 } else { 2444 atomic_inc(&tgtp->xmt_fcp_read); 2445 2446 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2447 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2448 } 2449 break; 2450 2451 case NVMET_FCOP_WRITEDATA: 2452 /* From the treceive template, initialize words 3 - 11 */ 2453 memcpy(&wqe->words[3], 2454 &lpfc_treceive_cmd_template.words[3], 2455 sizeof(uint32_t) * 9); 2456 2457 /* Words 0 - 2 : The first sg segment */ 2458 txrdy = dma_pool_alloc(phba->txrdy_payload_pool, 2459 GFP_KERNEL, &physaddr); 2460 if (!txrdy) { 2461 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2462 "6041 Bad txrdy buffer: oxid x%x\n", 2463 ctxp->oxid); 2464 return NULL; 2465 } 2466 ctxp->txrdy = txrdy; 2467 ctxp->txrdy_phys = physaddr; 2468 wqe->fcp_treceive.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2469 wqe->fcp_treceive.bde.tus.f.bdeSize = TXRDY_PAYLOAD_LEN; 2470 wqe->fcp_treceive.bde.addrLow = 2471 cpu_to_le32(putPaddrLow(physaddr)); 2472 wqe->fcp_treceive.bde.addrHigh = 2473 cpu_to_le32(putPaddrHigh(physaddr)); 2474 2475 /* Word 4 */ 2476 wqe->fcp_treceive.relative_offset = ctxp->offset; 2477 2478 /* Word 6 */ 2479 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2480 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2481 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2482 nvmewqe->sli4_xritag); 2483 2484 /* Word 7 */ 2485 2486 /* Word 8 */ 2487 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2488 2489 /* Word 9 */ 2490 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2491 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2492 2493 /* Word 10 - in template xc=1 */ 2494 if (!xc) 2495 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); 2496 2497 /* Word 11 - set pbde later */ 2498 if (phba->cfg_enable_pbde) { 2499 do_pbde = 1; 2500 } else { 2501 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); 2502 do_pbde = 0; 2503 } 2504 2505 /* Word 12 */ 2506 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2507 2508 /* Setup 1 TXRDY and 1 SKIP SGE */ 2509 txrdy[0] = 0; 2510 txrdy[1] = cpu_to_be32(rsp->transfer_length); 2511 txrdy[2] = 0; 2512 2513 sgl->addr_hi = putPaddrHigh(physaddr); 2514 sgl->addr_lo = putPaddrLow(physaddr); 2515 sgl->word2 = 0; 2516 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 2517 sgl->word2 = cpu_to_le32(sgl->word2); 2518 sgl->sge_len = cpu_to_le32(TXRDY_PAYLOAD_LEN); 2519 sgl++; 2520 sgl->addr_hi = 0; 2521 sgl->addr_lo = 0; 2522 sgl->word2 = 0; 2523 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2524 sgl->word2 = cpu_to_le32(sgl->word2); 2525 sgl->sge_len = 0; 2526 sgl++; 2527 atomic_inc(&tgtp->xmt_fcp_write); 2528 break; 2529 2530 case NVMET_FCOP_RSP: 2531 /* From the treceive template, initialize words 4 - 11 */ 2532 memcpy(&wqe->words[4], 2533 &lpfc_trsp_cmd_template.words[4], 2534 sizeof(uint32_t) * 8); 2535 2536 /* Words 0 - 2 */ 2537 physaddr = rsp->rspdma; 2538 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2539 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2540 wqe->fcp_trsp.bde.addrLow = 2541 cpu_to_le32(putPaddrLow(physaddr)); 2542 wqe->fcp_trsp.bde.addrHigh = 2543 cpu_to_le32(putPaddrHigh(physaddr)); 2544 2545 /* Word 3 */ 2546 wqe->fcp_trsp.response_len = rsp->rsplen; 2547 2548 /* Word 6 */ 2549 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2550 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2551 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2552 nvmewqe->sli4_xritag); 2553 2554 /* Word 7 */ 2555 2556 /* Word 8 */ 2557 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2558 2559 /* Word 9 */ 2560 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2561 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2562 2563 /* Word 10 */ 2564 if (xc) 2565 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); 2566 2567 /* Word 11 */ 2568 /* In template wqes=0 irsp=0 irsplen=0 - good response */ 2569 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { 2570 /* Bad response - embed it */ 2571 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2572 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2573 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2574 ((rsp->rsplen >> 2) - 1)); 2575 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2576 } 2577 do_pbde = 0; 2578 2579 /* Word 12 */ 2580 wqe->fcp_trsp.rsvd_12_15[0] = 0; 2581 2582 /* Use rspbuf, NOT sg list */ 2583 rsp->sg_cnt = 0; 2584 sgl->word2 = 0; 2585 atomic_inc(&tgtp->xmt_fcp_rsp); 2586 break; 2587 2588 default: 2589 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2590 "6064 Unknown Rsp Op %d\n", 2591 rsp->op); 2592 return NULL; 2593 } 2594 2595 nvmewqe->retry = 1; 2596 nvmewqe->vport = phba->pport; 2597 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2598 nvmewqe->context1 = ndlp; 2599 2600 for (i = 0; i < rsp->sg_cnt; i++) { 2601 sgel = &rsp->sg[i]; 2602 physaddr = sg_dma_address(sgel); 2603 cnt = sg_dma_len(sgel); 2604 sgl->addr_hi = putPaddrHigh(physaddr); 2605 sgl->addr_lo = putPaddrLow(physaddr); 2606 sgl->word2 = 0; 2607 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 2608 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 2609 if ((i+1) == rsp->sg_cnt) 2610 bf_set(lpfc_sli4_sge_last, sgl, 1); 2611 sgl->word2 = cpu_to_le32(sgl->word2); 2612 sgl->sge_len = cpu_to_le32(cnt); 2613 if (i == 0) { 2614 bde = (struct ulp_bde64 *)&wqe->words[13]; 2615 if (do_pbde) { 2616 /* Words 13-15 (PBDE) */ 2617 bde->addrLow = sgl->addr_lo; 2618 bde->addrHigh = sgl->addr_hi; 2619 bde->tus.f.bdeSize = 2620 le32_to_cpu(sgl->sge_len); 2621 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2622 bde->tus.w = cpu_to_le32(bde->tus.w); 2623 } else { 2624 memset(bde, 0, sizeof(struct ulp_bde64)); 2625 } 2626 } 2627 sgl++; 2628 ctxp->offset += cnt; 2629 } 2630 ctxp->state = LPFC_NVMET_STE_DATA; 2631 ctxp->entry_cnt++; 2632 return nvmewqe; 2633 } 2634 2635 /** 2636 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 2637 * @phba: Pointer to HBA context object. 2638 * @cmdwqe: Pointer to driver command WQE object. 2639 * @wcqe: Pointer to driver response CQE object. 2640 * 2641 * The function is called from SLI ring event handler with no 2642 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 2643 * The function frees memory resources used for the NVME commands. 2644 **/ 2645 static void 2646 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 2647 struct lpfc_wcqe_complete *wcqe) 2648 { 2649 struct lpfc_nvmet_rcv_ctx *ctxp; 2650 struct lpfc_nvmet_tgtport *tgtp; 2651 uint32_t status, result; 2652 unsigned long flags; 2653 bool released = false; 2654 2655 ctxp = cmdwqe->context2; 2656 status = bf_get(lpfc_wcqe_c_status, wcqe); 2657 result = wcqe->parameter; 2658 2659 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2660 if (ctxp->flag & LPFC_NVMET_ABORT_OP) 2661 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 2662 2663 ctxp->state = LPFC_NVMET_STE_DONE; 2664 2665 /* Check if we already received a free context call 2666 * and we have completed processing an abort situation. 2667 */ 2668 spin_lock_irqsave(&ctxp->ctxlock, flags); 2669 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) && 2670 !(ctxp->flag & LPFC_NVMET_XBUSY)) { 2671 list_del(&ctxp->list); 2672 released = true; 2673 } 2674 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2675 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 2676 atomic_inc(&tgtp->xmt_abort_rsp); 2677 2678 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2679 "6165 ABORT cmpl: xri x%x flg x%x (%d) " 2680 "WCQE: %08x %08x %08x %08x\n", 2681 ctxp->oxid, ctxp->flag, released, 2682 wcqe->word0, wcqe->total_data_placed, 2683 result, wcqe->word3); 2684 2685 cmdwqe->context2 = NULL; 2686 cmdwqe->context3 = NULL; 2687 /* 2688 * if transport has released ctx, then can reuse it. Otherwise, 2689 * will be recycled by transport release call. 2690 */ 2691 if (released) 2692 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 2693 2694 /* This is the iocbq for the abort, not the command */ 2695 lpfc_sli_release_iocbq(phba, cmdwqe); 2696 2697 /* Since iaab/iaar are NOT set, there is no work left. 2698 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted 2699 * should have been called already. 2700 */ 2701 } 2702 2703 /** 2704 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 2705 * @phba: Pointer to HBA context object. 2706 * @cmdwqe: Pointer to driver command WQE object. 2707 * @wcqe: Pointer to driver response CQE object. 2708 * 2709 * The function is called from SLI ring event handler with no 2710 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 2711 * The function frees memory resources used for the NVME commands. 2712 **/ 2713 static void 2714 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 2715 struct lpfc_wcqe_complete *wcqe) 2716 { 2717 struct lpfc_nvmet_rcv_ctx *ctxp; 2718 struct lpfc_nvmet_tgtport *tgtp; 2719 unsigned long flags; 2720 uint32_t status, result; 2721 bool released = false; 2722 2723 ctxp = cmdwqe->context2; 2724 status = bf_get(lpfc_wcqe_c_status, wcqe); 2725 result = wcqe->parameter; 2726 2727 if (!ctxp) { 2728 /* if context is clear, related io alrady complete */ 2729 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2730 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 2731 wcqe->word0, wcqe->total_data_placed, 2732 result, wcqe->word3); 2733 return; 2734 } 2735 2736 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2737 if (ctxp->flag & LPFC_NVMET_ABORT_OP) 2738 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 2739 2740 /* Sanity check */ 2741 if (ctxp->state != LPFC_NVMET_STE_ABORT) { 2742 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2743 "6112 ABTS Wrong state:%d oxid x%x\n", 2744 ctxp->state, ctxp->oxid); 2745 } 2746 2747 /* Check if we already received a free context call 2748 * and we have completed processing an abort situation. 2749 */ 2750 ctxp->state = LPFC_NVMET_STE_DONE; 2751 spin_lock_irqsave(&ctxp->ctxlock, flags); 2752 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) && 2753 !(ctxp->flag & LPFC_NVMET_XBUSY)) { 2754 list_del(&ctxp->list); 2755 released = true; 2756 } 2757 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2758 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 2759 atomic_inc(&tgtp->xmt_abort_rsp); 2760 2761 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2762 "6316 ABTS cmpl xri x%x flg x%x (%x) " 2763 "WCQE: %08x %08x %08x %08x\n", 2764 ctxp->oxid, ctxp->flag, released, 2765 wcqe->word0, wcqe->total_data_placed, 2766 result, wcqe->word3); 2767 2768 cmdwqe->context2 = NULL; 2769 cmdwqe->context3 = NULL; 2770 /* 2771 * if transport has released ctx, then can reuse it. Otherwise, 2772 * will be recycled by transport release call. 2773 */ 2774 if (released) 2775 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 2776 2777 /* Since iaab/iaar are NOT set, there is no work left. 2778 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted 2779 * should have been called already. 2780 */ 2781 } 2782 2783 /** 2784 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 2785 * @phba: Pointer to HBA context object. 2786 * @cmdwqe: Pointer to driver command WQE object. 2787 * @wcqe: Pointer to driver response CQE object. 2788 * 2789 * The function is called from SLI ring event handler with no 2790 * lock held. This function is the completion handler for NVME ABTS for LS cmds 2791 * The function frees memory resources used for the NVME commands. 2792 **/ 2793 static void 2794 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 2795 struct lpfc_wcqe_complete *wcqe) 2796 { 2797 struct lpfc_nvmet_rcv_ctx *ctxp; 2798 struct lpfc_nvmet_tgtport *tgtp; 2799 uint32_t status, result; 2800 2801 ctxp = cmdwqe->context2; 2802 status = bf_get(lpfc_wcqe_c_status, wcqe); 2803 result = wcqe->parameter; 2804 2805 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2806 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 2807 2808 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2809 "6083 Abort cmpl: ctx %p WCQE:%08x %08x %08x %08x\n", 2810 ctxp, wcqe->word0, wcqe->total_data_placed, 2811 result, wcqe->word3); 2812 2813 if (!ctxp) { 2814 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2815 "6415 NVMET LS Abort No ctx: WCQE: " 2816 "%08x %08x %08x %08x\n", 2817 wcqe->word0, wcqe->total_data_placed, 2818 result, wcqe->word3); 2819 2820 lpfc_sli_release_iocbq(phba, cmdwqe); 2821 return; 2822 } 2823 2824 if (ctxp->state != LPFC_NVMET_STE_LS_ABORT) { 2825 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2826 "6416 NVMET LS abort cmpl state mismatch: " 2827 "oxid x%x: %d %d\n", 2828 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 2829 } 2830 2831 cmdwqe->context2 = NULL; 2832 cmdwqe->context3 = NULL; 2833 lpfc_sli_release_iocbq(phba, cmdwqe); 2834 kfree(ctxp); 2835 } 2836 2837 static int 2838 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 2839 struct lpfc_nvmet_rcv_ctx *ctxp, 2840 uint32_t sid, uint16_t xri) 2841 { 2842 struct lpfc_nvmet_tgtport *tgtp; 2843 struct lpfc_iocbq *abts_wqeq; 2844 union lpfc_wqe128 *wqe_abts; 2845 struct lpfc_nodelist *ndlp; 2846 2847 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2848 "6067 ABTS: sid %x xri x%x/x%x\n", 2849 sid, xri, ctxp->wqeq->sli4_xritag); 2850 2851 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2852 2853 ndlp = lpfc_findnode_did(phba->pport, sid); 2854 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2855 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2856 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2857 atomic_inc(&tgtp->xmt_abort_rsp_error); 2858 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2859 "6134 Drop ABTS - wrong NDLP state x%x.\n", 2860 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 2861 2862 /* No failure to an ABTS request. */ 2863 return 0; 2864 } 2865 2866 abts_wqeq = ctxp->wqeq; 2867 wqe_abts = &abts_wqeq->wqe; 2868 2869 /* 2870 * Since we zero the whole WQE, we need to ensure we set the WQE fields 2871 * that were initialized in lpfc_sli4_nvmet_alloc. 2872 */ 2873 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 2874 2875 /* Word 5 */ 2876 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 2877 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 2878 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 2879 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 2880 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 2881 2882 /* Word 6 */ 2883 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 2884 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2885 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 2886 abts_wqeq->sli4_xritag); 2887 2888 /* Word 7 */ 2889 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 2890 CMD_XMIT_SEQUENCE64_WQE); 2891 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 2892 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 2893 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 2894 2895 /* Word 8 */ 2896 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 2897 2898 /* Word 9 */ 2899 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 2900 /* Needs to be set by caller */ 2901 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 2902 2903 /* Word 10 */ 2904 bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1); 2905 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2906 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 2907 LPFC_WQE_LENLOC_WORD12); 2908 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 2909 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 2910 2911 /* Word 11 */ 2912 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 2913 LPFC_WQE_CQ_ID_DEFAULT); 2914 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 2915 OTHER_COMMAND); 2916 2917 abts_wqeq->vport = phba->pport; 2918 abts_wqeq->context1 = ndlp; 2919 abts_wqeq->context2 = ctxp; 2920 abts_wqeq->context3 = NULL; 2921 abts_wqeq->rsvd2 = 0; 2922 /* hba_wqidx should already be setup from command we are aborting */ 2923 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 2924 abts_wqeq->iocb.ulpLe = 1; 2925 2926 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2927 "6069 Issue ABTS to xri x%x reqtag x%x\n", 2928 xri, abts_wqeq->iotag); 2929 return 1; 2930 } 2931 2932 static int 2933 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 2934 struct lpfc_nvmet_rcv_ctx *ctxp, 2935 uint32_t sid, uint16_t xri) 2936 { 2937 struct lpfc_nvmet_tgtport *tgtp; 2938 struct lpfc_iocbq *abts_wqeq; 2939 union lpfc_wqe128 *abts_wqe; 2940 struct lpfc_nodelist *ndlp; 2941 unsigned long flags; 2942 int rc; 2943 2944 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2945 if (!ctxp->wqeq) { 2946 ctxp->wqeq = ctxp->ctxbuf->iocbq; 2947 ctxp->wqeq->hba_wqidx = 0; 2948 } 2949 2950 ndlp = lpfc_findnode_did(phba->pport, sid); 2951 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2952 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2953 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2954 atomic_inc(&tgtp->xmt_abort_rsp_error); 2955 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2956 "6160 Drop ABORT - wrong NDLP state x%x.\n", 2957 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 2958 2959 /* No failure to an ABTS request. */ 2960 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2961 return 0; 2962 } 2963 2964 /* Issue ABTS for this WQE based on iotag */ 2965 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 2966 if (!ctxp->abort_wqeq) { 2967 atomic_inc(&tgtp->xmt_abort_rsp_error); 2968 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2969 "6161 ABORT failed: No wqeqs: " 2970 "xri: x%x\n", ctxp->oxid); 2971 /* No failure to an ABTS request. */ 2972 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2973 return 0; 2974 } 2975 abts_wqeq = ctxp->abort_wqeq; 2976 abts_wqe = &abts_wqeq->wqe; 2977 ctxp->state = LPFC_NVMET_STE_ABORT; 2978 2979 /* Announce entry to new IO submit field. */ 2980 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2981 "6162 ABORT Request to rport DID x%06x " 2982 "for xri x%x x%x\n", 2983 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 2984 2985 /* If the hba is getting reset, this flag is set. It is 2986 * cleared when the reset is complete and rings reestablished. 2987 */ 2988 spin_lock_irqsave(&phba->hbalock, flags); 2989 /* driver queued commands are in process of being flushed */ 2990 if (phba->hba_flag & HBA_NVME_IOQ_FLUSH) { 2991 spin_unlock_irqrestore(&phba->hbalock, flags); 2992 atomic_inc(&tgtp->xmt_abort_rsp_error); 2993 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 2994 "6163 Driver in reset cleanup - flushing " 2995 "NVME Req now. hba_flag x%x oxid x%x\n", 2996 phba->hba_flag, ctxp->oxid); 2997 lpfc_sli_release_iocbq(phba, abts_wqeq); 2998 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2999 return 0; 3000 } 3001 3002 /* Outstanding abort is in progress */ 3003 if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) { 3004 spin_unlock_irqrestore(&phba->hbalock, flags); 3005 atomic_inc(&tgtp->xmt_abort_rsp_error); 3006 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 3007 "6164 Outstanding NVME I/O Abort Request " 3008 "still pending on oxid x%x\n", 3009 ctxp->oxid); 3010 lpfc_sli_release_iocbq(phba, abts_wqeq); 3011 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 3012 return 0; 3013 } 3014 3015 /* Ready - mark outstanding as aborted by driver. */ 3016 abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED; 3017 3018 /* WQEs are reused. Clear stale data and set key fields to 3019 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag. 3020 */ 3021 memset(abts_wqe, 0, sizeof(union lpfc_wqe)); 3022 3023 /* word 3 */ 3024 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 3025 3026 /* word 7 */ 3027 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 3028 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 3029 3030 /* word 8 - tell the FW to abort the IO associated with this 3031 * outstanding exchange ID. 3032 */ 3033 abts_wqe->abort_cmd.wqe_com.abort_tag = ctxp->wqeq->sli4_xritag; 3034 3035 /* word 9 - this is the iotag for the abts_wqe completion. */ 3036 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 3037 abts_wqeq->iotag); 3038 3039 /* word 10 */ 3040 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 3041 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 3042 3043 /* word 11 */ 3044 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 3045 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 3046 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 3047 3048 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3049 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 3050 abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 3051 abts_wqeq->iocb_cmpl = 0; 3052 abts_wqeq->iocb_flag |= LPFC_IO_NVME; 3053 abts_wqeq->context2 = ctxp; 3054 abts_wqeq->vport = phba->pport; 3055 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq); 3056 spin_unlock_irqrestore(&phba->hbalock, flags); 3057 if (rc == WQE_SUCCESS) { 3058 atomic_inc(&tgtp->xmt_abort_sol); 3059 return 0; 3060 } 3061 3062 atomic_inc(&tgtp->xmt_abort_rsp_error); 3063 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 3064 lpfc_sli_release_iocbq(phba, abts_wqeq); 3065 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3066 "6166 Failed ABORT issue_wqe with status x%x " 3067 "for oxid x%x.\n", 3068 rc, ctxp->oxid); 3069 return 1; 3070 } 3071 3072 3073 static int 3074 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 3075 struct lpfc_nvmet_rcv_ctx *ctxp, 3076 uint32_t sid, uint16_t xri) 3077 { 3078 struct lpfc_nvmet_tgtport *tgtp; 3079 struct lpfc_iocbq *abts_wqeq; 3080 unsigned long flags; 3081 int rc; 3082 3083 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3084 if (!ctxp->wqeq) { 3085 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3086 ctxp->wqeq->hba_wqidx = 0; 3087 } 3088 3089 if (ctxp->state == LPFC_NVMET_STE_FREE) { 3090 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 3091 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 3092 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 3093 rc = WQE_BUSY; 3094 goto aerr; 3095 } 3096 ctxp->state = LPFC_NVMET_STE_ABORT; 3097 ctxp->entry_cnt++; 3098 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 3099 if (rc == 0) 3100 goto aerr; 3101 3102 spin_lock_irqsave(&phba->hbalock, flags); 3103 abts_wqeq = ctxp->wqeq; 3104 abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 3105 abts_wqeq->iocb_cmpl = NULL; 3106 abts_wqeq->iocb_flag |= LPFC_IO_NVMET; 3107 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq); 3108 spin_unlock_irqrestore(&phba->hbalock, flags); 3109 if (rc == WQE_SUCCESS) { 3110 return 0; 3111 } 3112 3113 aerr: 3114 spin_lock_irqsave(&ctxp->ctxlock, flags); 3115 if (ctxp->flag & LPFC_NVMET_CTX_RLS) 3116 list_del(&ctxp->list); 3117 ctxp->flag &= ~(LPFC_NVMET_ABORT_OP | LPFC_NVMET_CTX_RLS); 3118 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3119 3120 atomic_inc(&tgtp->xmt_abort_rsp_error); 3121 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3122 "6135 Failed to Issue ABTS for oxid x%x. Status x%x\n", 3123 ctxp->oxid, rc); 3124 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3125 return 1; 3126 } 3127 3128 static int 3129 lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *phba, 3130 struct lpfc_nvmet_rcv_ctx *ctxp, 3131 uint32_t sid, uint16_t xri) 3132 { 3133 struct lpfc_nvmet_tgtport *tgtp; 3134 struct lpfc_iocbq *abts_wqeq; 3135 union lpfc_wqe128 *wqe_abts; 3136 unsigned long flags; 3137 int rc; 3138 3139 if ((ctxp->state == LPFC_NVMET_STE_LS_RCV && ctxp->entry_cnt == 1) || 3140 (ctxp->state == LPFC_NVMET_STE_LS_RSP && ctxp->entry_cnt == 2)) { 3141 ctxp->state = LPFC_NVMET_STE_LS_ABORT; 3142 ctxp->entry_cnt++; 3143 } else { 3144 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 3145 "6418 NVMET LS abort state mismatch " 3146 "IO x%x: %d %d\n", 3147 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3148 ctxp->state = LPFC_NVMET_STE_LS_ABORT; 3149 } 3150 3151 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3152 if (!ctxp->wqeq) { 3153 /* Issue ABTS for this WQE based on iotag */ 3154 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 3155 if (!ctxp->wqeq) { 3156 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3157 "6068 Abort failed: No wqeqs: " 3158 "xri: x%x\n", xri); 3159 /* No failure to an ABTS request. */ 3160 kfree(ctxp); 3161 return 0; 3162 } 3163 } 3164 abts_wqeq = ctxp->wqeq; 3165 wqe_abts = &abts_wqeq->wqe; 3166 3167 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 3168 rc = WQE_BUSY; 3169 goto out; 3170 } 3171 3172 spin_lock_irqsave(&phba->hbalock, flags); 3173 abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 3174 abts_wqeq->iocb_cmpl = 0; 3175 abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS; 3176 rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, abts_wqeq); 3177 spin_unlock_irqrestore(&phba->hbalock, flags); 3178 if (rc == WQE_SUCCESS) { 3179 atomic_inc(&tgtp->xmt_abort_unsol); 3180 return 0; 3181 } 3182 out: 3183 atomic_inc(&tgtp->xmt_abort_rsp_error); 3184 abts_wqeq->context2 = NULL; 3185 abts_wqeq->context3 = NULL; 3186 lpfc_sli_release_iocbq(phba, abts_wqeq); 3187 kfree(ctxp); 3188 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3189 "6056 Failed to Issue ABTS. Status x%x\n", rc); 3190 return 0; 3191 } 3192