1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channsel Host Bus Adapters. * 4 * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <asm/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include <linux/nvme.h> 40 #include <linux/nvme-fc-driver.h> 41 #include <linux/nvme-fc.h> 42 43 #include "lpfc_version.h" 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_nvmet.h" 54 #include "lpfc_logmsg.h" 55 #include "lpfc_crtn.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_debugfs.h" 58 59 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 60 struct lpfc_nvmet_rcv_ctx *, 61 dma_addr_t rspbuf, 62 uint16_t rspsize); 63 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 64 struct lpfc_nvmet_rcv_ctx *); 65 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 66 struct lpfc_nvmet_rcv_ctx *, 67 uint32_t, uint16_t); 68 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 69 struct lpfc_nvmet_rcv_ctx *, 70 uint32_t, uint16_t); 71 static int lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *, 72 struct lpfc_nvmet_rcv_ctx *, 73 uint32_t, uint16_t); 74 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, 75 struct lpfc_nvmet_rcv_ctx *); 76 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *); 77 78 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf); 79 80 static union lpfc_wqe128 lpfc_tsend_cmd_template; 81 static union lpfc_wqe128 lpfc_treceive_cmd_template; 82 static union lpfc_wqe128 lpfc_trsp_cmd_template; 83 84 /* Setup WQE templates for NVME IOs */ 85 void 86 lpfc_nvmet_cmd_template(void) 87 { 88 union lpfc_wqe128 *wqe; 89 90 /* TSEND template */ 91 wqe = &lpfc_tsend_cmd_template; 92 memset(wqe, 0, sizeof(union lpfc_wqe128)); 93 94 /* Word 0, 1, 2 - BDE is variable */ 95 96 /* Word 3 - payload_offset_len is zero */ 97 98 /* Word 4 - relative_offset is variable */ 99 100 /* Word 5 - is zero */ 101 102 /* Word 6 - ctxt_tag, xri_tag is variable */ 103 104 /* Word 7 - wqe_ar is variable */ 105 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 106 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); 107 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); 108 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); 109 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 110 111 /* Word 8 - abort_tag is variable */ 112 113 /* Word 9 - reqtag, rcvoxid is variable */ 114 115 /* Word 10 - wqes, xc is variable */ 116 bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1); 117 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 118 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 119 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 120 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 121 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); 122 123 /* Word 11 - sup, irsp, irsplen is variable */ 124 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); 125 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 126 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 127 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 128 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 129 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); 130 131 /* Word 12 - fcp_data_len is variable */ 132 133 /* Word 13, 14, 15 - PBDE is zero */ 134 135 /* TRECEIVE template */ 136 wqe = &lpfc_treceive_cmd_template; 137 memset(wqe, 0, sizeof(union lpfc_wqe128)); 138 139 /* Word 0, 1, 2 - BDE is variable */ 140 141 /* Word 3 */ 142 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 143 144 /* Word 4 - relative_offset is variable */ 145 146 /* Word 5 - is zero */ 147 148 /* Word 6 - ctxt_tag, xri_tag is variable */ 149 150 /* Word 7 */ 151 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); 152 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); 153 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); 154 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); 155 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 156 157 /* Word 8 - abort_tag is variable */ 158 159 /* Word 9 - reqtag, rcvoxid is variable */ 160 161 /* Word 10 - xc is variable */ 162 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 163 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 164 bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1); 165 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 166 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); 167 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 168 169 /* Word 11 - pbde is variable */ 170 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); 171 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 172 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); 173 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 174 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 175 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); 176 177 /* Word 12 - fcp_data_len is variable */ 178 179 /* Word 13, 14, 15 - PBDE is variable */ 180 181 /* TRSP template */ 182 wqe = &lpfc_trsp_cmd_template; 183 memset(wqe, 0, sizeof(union lpfc_wqe128)); 184 185 /* Word 0, 1, 2 - BDE is variable */ 186 187 /* Word 3 - response_len is variable */ 188 189 /* Word 4, 5 - is zero */ 190 191 /* Word 6 - ctxt_tag, xri_tag is variable */ 192 193 /* Word 7 */ 194 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 195 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); 196 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); 197 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); 198 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ 199 200 /* Word 8 - abort_tag is variable */ 201 202 /* Word 9 - reqtag is variable */ 203 204 /* Word 10 wqes, xc is variable */ 205 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); 206 bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1); 207 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 208 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); 209 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); 210 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); 211 212 /* Word 11 irsp, irsplen is variable */ 213 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); 214 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 215 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); 216 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 217 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 218 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 224 static struct lpfc_nvmet_rcv_ctx * 225 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri) 226 { 227 struct lpfc_nvmet_rcv_ctx *ctxp; 228 unsigned long iflag; 229 bool found = false; 230 231 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 232 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 233 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 234 continue; 235 236 found = true; 237 break; 238 } 239 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 240 if (found) 241 return ctxp; 242 243 return NULL; 244 } 245 246 static struct lpfc_nvmet_rcv_ctx * 247 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid) 248 { 249 struct lpfc_nvmet_rcv_ctx *ctxp; 250 unsigned long iflag; 251 bool found = false; 252 253 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 254 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 255 if (ctxp->oxid != oxid || ctxp->sid != sid) 256 continue; 257 258 found = true; 259 break; 260 } 261 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 262 if (found) 263 return ctxp; 264 265 return NULL; 266 } 267 #endif 268 269 static void 270 lpfc_nvmet_defer_release(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp) 271 { 272 lockdep_assert_held(&ctxp->ctxlock); 273 274 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 275 "6313 NVMET Defer ctx release oxid x%x flg x%x\n", 276 ctxp->oxid, ctxp->flag); 277 278 if (ctxp->flag & LPFC_NVMET_CTX_RLS) 279 return; 280 281 ctxp->flag |= LPFC_NVMET_CTX_RLS; 282 spin_lock(&phba->sli4_hba.t_active_list_lock); 283 list_del(&ctxp->list); 284 spin_unlock(&phba->sli4_hba.t_active_list_lock); 285 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 286 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 287 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 288 } 289 290 /** 291 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 292 * @phba: Pointer to HBA context object. 293 * @cmdwqe: Pointer to driver command WQE object. 294 * @wcqe: Pointer to driver response CQE object. 295 * 296 * The function is called from SLI ring event handler with no 297 * lock held. This function is the completion handler for NVME LS commands 298 * The function frees memory resources used for the NVME commands. 299 **/ 300 static void 301 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 302 struct lpfc_wcqe_complete *wcqe) 303 { 304 struct lpfc_nvmet_tgtport *tgtp; 305 struct nvmefc_tgt_ls_req *rsp; 306 struct lpfc_nvmet_rcv_ctx *ctxp; 307 uint32_t status, result; 308 309 status = bf_get(lpfc_wcqe_c_status, wcqe); 310 result = wcqe->parameter; 311 ctxp = cmdwqe->context2; 312 313 if (ctxp->state != LPFC_NVMET_STE_LS_RSP || ctxp->entry_cnt != 2) { 314 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 315 "6410 NVMET LS cmpl state mismatch IO x%x: " 316 "%d %d\n", 317 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 318 } 319 320 if (!phba->targetport) 321 goto out; 322 323 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 324 325 if (tgtp) { 326 if (status) { 327 atomic_inc(&tgtp->xmt_ls_rsp_error); 328 if (result == IOERR_ABORT_REQUESTED) 329 atomic_inc(&tgtp->xmt_ls_rsp_aborted); 330 if (bf_get(lpfc_wcqe_c_xb, wcqe)) 331 atomic_inc(&tgtp->xmt_ls_rsp_xb_set); 332 } else { 333 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 334 } 335 } 336 337 out: 338 rsp = &ctxp->ctx.ls_req; 339 340 lpfc_nvmeio_data(phba, "NVMET LS CMPL: xri x%x stat x%x result x%x\n", 341 ctxp->oxid, status, result); 342 343 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 344 "6038 NVMET LS rsp cmpl: %d %d oxid x%x\n", 345 status, result, ctxp->oxid); 346 347 lpfc_nlp_put(cmdwqe->context1); 348 cmdwqe->context2 = NULL; 349 cmdwqe->context3 = NULL; 350 lpfc_sli_release_iocbq(phba, cmdwqe); 351 rsp->done(rsp); 352 kfree(ctxp); 353 } 354 355 /** 356 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 357 * @phba: HBA buffer is associated with 358 * @ctxp: context to clean up 359 * @mp: Buffer to free 360 * 361 * Description: Frees the given DMA buffer in the appropriate way given by 362 * reposting it to its associated RQ so it can be reused. 363 * 364 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 365 * 366 * Returns: None 367 **/ 368 void 369 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 370 { 371 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 372 struct lpfc_nvmet_rcv_ctx *ctxp = ctx_buf->context; 373 struct lpfc_nvmet_tgtport *tgtp; 374 struct fc_frame_header *fc_hdr; 375 struct rqb_dmabuf *nvmebuf; 376 struct lpfc_nvmet_ctx_info *infop; 377 uint32_t size, oxid, sid; 378 int cpu; 379 unsigned long iflag; 380 381 if (ctxp->txrdy) { 382 dma_pool_free(phba->txrdy_payload_pool, ctxp->txrdy, 383 ctxp->txrdy_phys); 384 ctxp->txrdy = NULL; 385 ctxp->txrdy_phys = 0; 386 } 387 388 if (ctxp->state == LPFC_NVMET_STE_FREE) { 389 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 390 "6411 NVMET free, already free IO x%x: %d %d\n", 391 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 392 } 393 394 if (ctxp->rqb_buffer) { 395 spin_lock_irqsave(&ctxp->ctxlock, iflag); 396 nvmebuf = ctxp->rqb_buffer; 397 /* check if freed in another path whilst acquiring lock */ 398 if (nvmebuf) { 399 ctxp->rqb_buffer = NULL; 400 if (ctxp->flag & LPFC_NVMET_CTX_REUSE_WQ) { 401 ctxp->flag &= ~LPFC_NVMET_CTX_REUSE_WQ; 402 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 403 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, 404 nvmebuf); 405 } else { 406 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 407 /* repost */ 408 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 409 } 410 } else { 411 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 412 } 413 } 414 ctxp->state = LPFC_NVMET_STE_FREE; 415 416 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 417 if (phba->sli4_hba.nvmet_io_wait_cnt) { 418 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 419 nvmebuf, struct rqb_dmabuf, 420 hbuf.list); 421 phba->sli4_hba.nvmet_io_wait_cnt--; 422 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 423 iflag); 424 425 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 426 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 427 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 428 size = nvmebuf->bytes_recv; 429 sid = sli4_sid_from_fc_hdr(fc_hdr); 430 431 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context; 432 ctxp->wqeq = NULL; 433 ctxp->txrdy = NULL; 434 ctxp->offset = 0; 435 ctxp->phba = phba; 436 ctxp->size = size; 437 ctxp->oxid = oxid; 438 ctxp->sid = sid; 439 ctxp->state = LPFC_NVMET_STE_RCV; 440 ctxp->entry_cnt = 1; 441 ctxp->flag = 0; 442 ctxp->ctxbuf = ctx_buf; 443 ctxp->rqb_buffer = (void *)nvmebuf; 444 spin_lock_init(&ctxp->ctxlock); 445 446 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 447 /* NOTE: isr time stamp is stale when context is re-assigned*/ 448 if (ctxp->ts_isr_cmd) { 449 ctxp->ts_cmd_nvme = 0; 450 ctxp->ts_nvme_data = 0; 451 ctxp->ts_data_wqput = 0; 452 ctxp->ts_isr_data = 0; 453 ctxp->ts_data_nvme = 0; 454 ctxp->ts_nvme_status = 0; 455 ctxp->ts_status_wqput = 0; 456 ctxp->ts_isr_status = 0; 457 ctxp->ts_status_nvme = 0; 458 } 459 #endif 460 atomic_inc(&tgtp->rcv_fcp_cmd_in); 461 462 /* Indicate that a replacement buffer has been posted */ 463 spin_lock_irqsave(&ctxp->ctxlock, iflag); 464 ctxp->flag |= LPFC_NVMET_CTX_REUSE_WQ; 465 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 466 467 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 468 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 469 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 470 "6181 Unable to queue deferred work " 471 "for oxid x%x. " 472 "FCP Drop IO [x%x x%x x%x]\n", 473 ctxp->oxid, 474 atomic_read(&tgtp->rcv_fcp_cmd_in), 475 atomic_read(&tgtp->rcv_fcp_cmd_out), 476 atomic_read(&tgtp->xmt_fcp_release)); 477 478 spin_lock_irqsave(&ctxp->ctxlock, iflag); 479 lpfc_nvmet_defer_release(phba, ctxp); 480 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 481 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 482 } 483 return; 484 } 485 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 486 487 /* 488 * Use the CPU context list, from the MRQ the IO was received on 489 * (ctxp->idx), to save context structure. 490 */ 491 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 492 list_del_init(&ctxp->list); 493 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 494 cpu = raw_smp_processor_id(); 495 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 496 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 497 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 498 infop->nvmet_ctx_list_cnt++; 499 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 500 #endif 501 } 502 503 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 504 static void 505 lpfc_nvmet_ktime(struct lpfc_hba *phba, 506 struct lpfc_nvmet_rcv_ctx *ctxp) 507 { 508 uint64_t seg1, seg2, seg3, seg4, seg5; 509 uint64_t seg6, seg7, seg8, seg9, seg10; 510 uint64_t segsum; 511 512 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 513 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 514 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 515 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 516 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 517 return; 518 519 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) 520 return; 521 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 522 return; 523 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 524 return; 525 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 526 return; 527 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 528 return; 529 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 530 return; 531 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 532 return; 533 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 534 return; 535 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 536 return; 537 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 538 return; 539 /* 540 * Segment 1 - Time from FCP command received by MSI-X ISR 541 * to FCP command is passed to NVME Layer. 542 * Segment 2 - Time from FCP command payload handed 543 * off to NVME Layer to Driver receives a Command op 544 * from NVME Layer. 545 * Segment 3 - Time from Driver receives a Command op 546 * from NVME Layer to Command is put on WQ. 547 * Segment 4 - Time from Driver WQ put is done 548 * to MSI-X ISR for Command cmpl. 549 * Segment 5 - Time from MSI-X ISR for Command cmpl to 550 * Command cmpl is passed to NVME Layer. 551 * Segment 6 - Time from Command cmpl is passed to NVME 552 * Layer to Driver receives a RSP op from NVME Layer. 553 * Segment 7 - Time from Driver receives a RSP op from 554 * NVME Layer to WQ put is done on TRSP FCP Status. 555 * Segment 8 - Time from Driver WQ put is done on TRSP 556 * FCP Status to MSI-X ISR for TRSP cmpl. 557 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 558 * TRSP cmpl is passed to NVME Layer. 559 * Segment 10 - Time from FCP command received by 560 * MSI-X ISR to command is completed on wire. 561 * (Segments 1 thru 8) for READDATA / WRITEDATA 562 * (Segments 1 thru 4) for READDATA_RSP 563 */ 564 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 565 segsum = seg1; 566 567 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; 568 if (segsum > seg2) 569 return; 570 seg2 -= segsum; 571 segsum += seg2; 572 573 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; 574 if (segsum > seg3) 575 return; 576 seg3 -= segsum; 577 segsum += seg3; 578 579 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; 580 if (segsum > seg4) 581 return; 582 seg4 -= segsum; 583 segsum += seg4; 584 585 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; 586 if (segsum > seg5) 587 return; 588 seg5 -= segsum; 589 segsum += seg5; 590 591 592 /* For auto rsp commands seg6 thru seg10 will be 0 */ 593 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 594 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; 595 if (segsum > seg6) 596 return; 597 seg6 -= segsum; 598 segsum += seg6; 599 600 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; 601 if (segsum > seg7) 602 return; 603 seg7 -= segsum; 604 segsum += seg7; 605 606 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; 607 if (segsum > seg8) 608 return; 609 seg8 -= segsum; 610 segsum += seg8; 611 612 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; 613 if (segsum > seg9) 614 return; 615 seg9 -= segsum; 616 segsum += seg9; 617 618 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) 619 return; 620 seg10 = (ctxp->ts_isr_status - 621 ctxp->ts_isr_cmd); 622 } else { 623 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) 624 return; 625 seg6 = 0; 626 seg7 = 0; 627 seg8 = 0; 628 seg9 = 0; 629 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 630 } 631 632 phba->ktime_seg1_total += seg1; 633 if (seg1 < phba->ktime_seg1_min) 634 phba->ktime_seg1_min = seg1; 635 else if (seg1 > phba->ktime_seg1_max) 636 phba->ktime_seg1_max = seg1; 637 638 phba->ktime_seg2_total += seg2; 639 if (seg2 < phba->ktime_seg2_min) 640 phba->ktime_seg2_min = seg2; 641 else if (seg2 > phba->ktime_seg2_max) 642 phba->ktime_seg2_max = seg2; 643 644 phba->ktime_seg3_total += seg3; 645 if (seg3 < phba->ktime_seg3_min) 646 phba->ktime_seg3_min = seg3; 647 else if (seg3 > phba->ktime_seg3_max) 648 phba->ktime_seg3_max = seg3; 649 650 phba->ktime_seg4_total += seg4; 651 if (seg4 < phba->ktime_seg4_min) 652 phba->ktime_seg4_min = seg4; 653 else if (seg4 > phba->ktime_seg4_max) 654 phba->ktime_seg4_max = seg4; 655 656 phba->ktime_seg5_total += seg5; 657 if (seg5 < phba->ktime_seg5_min) 658 phba->ktime_seg5_min = seg5; 659 else if (seg5 > phba->ktime_seg5_max) 660 phba->ktime_seg5_max = seg5; 661 662 phba->ktime_data_samples++; 663 if (!seg6) 664 goto out; 665 666 phba->ktime_seg6_total += seg6; 667 if (seg6 < phba->ktime_seg6_min) 668 phba->ktime_seg6_min = seg6; 669 else if (seg6 > phba->ktime_seg6_max) 670 phba->ktime_seg6_max = seg6; 671 672 phba->ktime_seg7_total += seg7; 673 if (seg7 < phba->ktime_seg7_min) 674 phba->ktime_seg7_min = seg7; 675 else if (seg7 > phba->ktime_seg7_max) 676 phba->ktime_seg7_max = seg7; 677 678 phba->ktime_seg8_total += seg8; 679 if (seg8 < phba->ktime_seg8_min) 680 phba->ktime_seg8_min = seg8; 681 else if (seg8 > phba->ktime_seg8_max) 682 phba->ktime_seg8_max = seg8; 683 684 phba->ktime_seg9_total += seg9; 685 if (seg9 < phba->ktime_seg9_min) 686 phba->ktime_seg9_min = seg9; 687 else if (seg9 > phba->ktime_seg9_max) 688 phba->ktime_seg9_max = seg9; 689 out: 690 phba->ktime_seg10_total += seg10; 691 if (seg10 < phba->ktime_seg10_min) 692 phba->ktime_seg10_min = seg10; 693 else if (seg10 > phba->ktime_seg10_max) 694 phba->ktime_seg10_max = seg10; 695 phba->ktime_status_samples++; 696 } 697 #endif 698 699 /** 700 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 701 * @phba: Pointer to HBA context object. 702 * @cmdwqe: Pointer to driver command WQE object. 703 * @wcqe: Pointer to driver response CQE object. 704 * 705 * The function is called from SLI ring event handler with no 706 * lock held. This function is the completion handler for NVME FCP commands 707 * The function frees memory resources used for the NVME commands. 708 **/ 709 static void 710 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 711 struct lpfc_wcqe_complete *wcqe) 712 { 713 struct lpfc_nvmet_tgtport *tgtp; 714 struct nvmefc_tgt_fcp_req *rsp; 715 struct lpfc_nvmet_rcv_ctx *ctxp; 716 uint32_t status, result, op, start_clean, logerr; 717 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 718 uint32_t id; 719 #endif 720 721 ctxp = cmdwqe->context2; 722 ctxp->flag &= ~LPFC_NVMET_IO_INP; 723 724 rsp = &ctxp->ctx.fcp_req; 725 op = rsp->op; 726 727 status = bf_get(lpfc_wcqe_c_status, wcqe); 728 result = wcqe->parameter; 729 730 if (phba->targetport) 731 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 732 else 733 tgtp = NULL; 734 735 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 736 ctxp->oxid, op, status); 737 738 if (status) { 739 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 740 rsp->transferred_length = 0; 741 if (tgtp) { 742 atomic_inc(&tgtp->xmt_fcp_rsp_error); 743 if (result == IOERR_ABORT_REQUESTED) 744 atomic_inc(&tgtp->xmt_fcp_rsp_aborted); 745 } 746 747 logerr = LOG_NVME_IOERR; 748 749 /* pick up SLI4 exhange busy condition */ 750 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 751 ctxp->flag |= LPFC_NVMET_XBUSY; 752 logerr |= LOG_NVME_ABTS; 753 if (tgtp) 754 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); 755 756 } else { 757 ctxp->flag &= ~LPFC_NVMET_XBUSY; 758 } 759 760 lpfc_printf_log(phba, KERN_INFO, logerr, 761 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x " 762 "XBUSY:x%x\n", 763 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag, 764 status, result, ctxp->flag); 765 766 } else { 767 rsp->fcp_error = NVME_SC_SUCCESS; 768 if (op == NVMET_FCOP_RSP) 769 rsp->transferred_length = rsp->rsplen; 770 else 771 rsp->transferred_length = rsp->transfer_length; 772 if (tgtp) 773 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 774 } 775 776 if ((op == NVMET_FCOP_READDATA_RSP) || 777 (op == NVMET_FCOP_RSP)) { 778 /* Sanity check */ 779 ctxp->state = LPFC_NVMET_STE_DONE; 780 ctxp->entry_cnt++; 781 782 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 783 if (ctxp->ts_cmd_nvme) { 784 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 785 ctxp->ts_isr_data = 786 cmdwqe->isr_timestamp; 787 ctxp->ts_data_nvme = 788 ktime_get_ns(); 789 ctxp->ts_nvme_status = 790 ctxp->ts_data_nvme; 791 ctxp->ts_status_wqput = 792 ctxp->ts_data_nvme; 793 ctxp->ts_isr_status = 794 ctxp->ts_data_nvme; 795 ctxp->ts_status_nvme = 796 ctxp->ts_data_nvme; 797 } else { 798 ctxp->ts_isr_status = 799 cmdwqe->isr_timestamp; 800 ctxp->ts_status_nvme = 801 ktime_get_ns(); 802 } 803 } 804 #endif 805 rsp->done(rsp); 806 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 807 if (ctxp->ts_cmd_nvme) 808 lpfc_nvmet_ktime(phba, ctxp); 809 #endif 810 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 811 } else { 812 ctxp->entry_cnt++; 813 start_clean = offsetof(struct lpfc_iocbq, iocb_flag); 814 memset(((char *)cmdwqe) + start_clean, 0, 815 (sizeof(struct lpfc_iocbq) - start_clean)); 816 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 817 if (ctxp->ts_cmd_nvme) { 818 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 819 ctxp->ts_data_nvme = ktime_get_ns(); 820 } 821 #endif 822 rsp->done(rsp); 823 } 824 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 825 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 826 id = raw_smp_processor_id(); 827 if (id < LPFC_CHECK_CPU_CNT) { 828 if (ctxp->cpu != id) 829 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 830 "6704 CPU Check cmdcmpl: " 831 "cpu %d expect %d\n", 832 id, ctxp->cpu); 833 phba->sli4_hba.hdwq[rsp->hwqid].cpucheck_cmpl_io[id]++; 834 } 835 } 836 #endif 837 } 838 839 static int 840 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 841 struct nvmefc_tgt_ls_req *rsp) 842 { 843 struct lpfc_nvmet_rcv_ctx *ctxp = 844 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_req); 845 struct lpfc_hba *phba = ctxp->phba; 846 struct hbq_dmabuf *nvmebuf = 847 (struct hbq_dmabuf *)ctxp->rqb_buffer; 848 struct lpfc_iocbq *nvmewqeq; 849 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 850 struct lpfc_dmabuf dmabuf; 851 struct ulp_bde64 bpl; 852 int rc; 853 854 if (phba->pport->load_flag & FC_UNLOADING) 855 return -ENODEV; 856 857 if (phba->pport->load_flag & FC_UNLOADING) 858 return -ENODEV; 859 860 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 861 "6023 NVMET LS rsp oxid x%x\n", ctxp->oxid); 862 863 if ((ctxp->state != LPFC_NVMET_STE_LS_RCV) || 864 (ctxp->entry_cnt != 1)) { 865 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 866 "6412 NVMET LS rsp state mismatch " 867 "oxid x%x: %d %d\n", 868 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 869 } 870 ctxp->state = LPFC_NVMET_STE_LS_RSP; 871 ctxp->entry_cnt++; 872 873 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, ctxp, rsp->rspdma, 874 rsp->rsplen); 875 if (nvmewqeq == NULL) { 876 atomic_inc(&nvmep->xmt_ls_drop); 877 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 878 "6150 LS Drop IO x%x: Prep\n", 879 ctxp->oxid); 880 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 881 atomic_inc(&nvmep->xmt_ls_abort); 882 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, 883 ctxp->sid, ctxp->oxid); 884 return -ENOMEM; 885 } 886 887 /* Save numBdes for bpl2sgl */ 888 nvmewqeq->rsvd2 = 1; 889 nvmewqeq->hba_wqidx = 0; 890 nvmewqeq->context3 = &dmabuf; 891 dmabuf.virt = &bpl; 892 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 893 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 894 bpl.tus.f.bdeSize = rsp->rsplen; 895 bpl.tus.f.bdeFlags = 0; 896 bpl.tus.w = le32_to_cpu(bpl.tus.w); 897 898 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_rsp_cmp; 899 nvmewqeq->iocb_cmpl = NULL; 900 nvmewqeq->context2 = ctxp; 901 902 lpfc_nvmeio_data(phba, "NVMET LS RESP: xri x%x wqidx x%x len x%x\n", 903 ctxp->oxid, nvmewqeq->hba_wqidx, rsp->rsplen); 904 905 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 906 if (rc == WQE_SUCCESS) { 907 /* 908 * Okay to repost buffer here, but wait till cmpl 909 * before freeing ctxp and iocbq. 910 */ 911 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 912 atomic_inc(&nvmep->xmt_ls_rsp); 913 return 0; 914 } 915 /* Give back resources */ 916 atomic_inc(&nvmep->xmt_ls_drop); 917 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 918 "6151 LS Drop IO x%x: Issue %d\n", 919 ctxp->oxid, rc); 920 921 lpfc_nlp_put(nvmewqeq->context1); 922 923 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 924 atomic_inc(&nvmep->xmt_ls_abort); 925 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 926 return -ENXIO; 927 } 928 929 static int 930 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 931 struct nvmefc_tgt_fcp_req *rsp) 932 { 933 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 934 struct lpfc_nvmet_rcv_ctx *ctxp = 935 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 936 struct lpfc_hba *phba = ctxp->phba; 937 struct lpfc_queue *wq; 938 struct lpfc_iocbq *nvmewqeq; 939 struct lpfc_sli_ring *pring; 940 unsigned long iflags; 941 int rc; 942 943 if (phba->pport->load_flag & FC_UNLOADING) { 944 rc = -ENODEV; 945 goto aerr; 946 } 947 948 if (phba->pport->load_flag & FC_UNLOADING) { 949 rc = -ENODEV; 950 goto aerr; 951 } 952 953 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 954 if (ctxp->ts_cmd_nvme) { 955 if (rsp->op == NVMET_FCOP_RSP) 956 ctxp->ts_nvme_status = ktime_get_ns(); 957 else 958 ctxp->ts_nvme_data = ktime_get_ns(); 959 } 960 961 /* Setup the hdw queue if not already set */ 962 if (!ctxp->hdwq) 963 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid]; 964 965 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 966 int id = raw_smp_processor_id(); 967 if (id < LPFC_CHECK_CPU_CNT) { 968 if (rsp->hwqid != id) 969 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 970 "6705 CPU Check OP: " 971 "cpu %d expect %d\n", 972 id, rsp->hwqid); 973 phba->sli4_hba.hdwq[rsp->hwqid].cpucheck_xmt_io[id]++; 974 } 975 ctxp->cpu = id; /* Setup cpu for cmpl check */ 976 } 977 #endif 978 979 /* Sanity check */ 980 if ((ctxp->flag & LPFC_NVMET_ABTS_RCV) || 981 (ctxp->state == LPFC_NVMET_STE_ABORT)) { 982 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 983 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 984 "6102 IO oxid x%x aborted\n", 985 ctxp->oxid); 986 rc = -ENXIO; 987 goto aerr; 988 } 989 990 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 991 if (nvmewqeq == NULL) { 992 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 993 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 994 "6152 FCP Drop IO x%x: Prep\n", 995 ctxp->oxid); 996 rc = -ENXIO; 997 goto aerr; 998 } 999 1000 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 1001 nvmewqeq->iocb_cmpl = NULL; 1002 nvmewqeq->context2 = ctxp; 1003 nvmewqeq->iocb_flag |= LPFC_IO_NVMET; 1004 ctxp->wqeq->hba_wqidx = rsp->hwqid; 1005 1006 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 1007 ctxp->oxid, rsp->op, rsp->rsplen); 1008 1009 ctxp->flag |= LPFC_NVMET_IO_INP; 1010 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 1011 if (rc == WQE_SUCCESS) { 1012 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1013 if (!ctxp->ts_cmd_nvme) 1014 return 0; 1015 if (rsp->op == NVMET_FCOP_RSP) 1016 ctxp->ts_status_wqput = ktime_get_ns(); 1017 else 1018 ctxp->ts_data_wqput = ktime_get_ns(); 1019 #endif 1020 return 0; 1021 } 1022 1023 if (rc == -EBUSY) { 1024 /* 1025 * WQ was full, so queue nvmewqeq to be sent after 1026 * WQE release CQE 1027 */ 1028 ctxp->flag |= LPFC_NVMET_DEFER_WQFULL; 1029 wq = ctxp->hdwq->nvme_wq; 1030 pring = wq->pring; 1031 spin_lock_irqsave(&pring->ring_lock, iflags); 1032 list_add_tail(&nvmewqeq->list, &wq->wqfull_list); 1033 wq->q_flag |= HBA_NVMET_WQFULL; 1034 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1035 atomic_inc(&lpfc_nvmep->defer_wqfull); 1036 return 0; 1037 } 1038 1039 /* Give back resources */ 1040 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1041 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1042 "6153 FCP Drop IO x%x: Issue: %d\n", 1043 ctxp->oxid, rc); 1044 1045 ctxp->wqeq->hba_wqidx = 0; 1046 nvmewqeq->context2 = NULL; 1047 nvmewqeq->context3 = NULL; 1048 rc = -EBUSY; 1049 aerr: 1050 return rc; 1051 } 1052 1053 static void 1054 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 1055 { 1056 struct lpfc_nvmet_tgtport *tport = targetport->private; 1057 1058 /* release any threads waiting for the unreg to complete */ 1059 if (tport->phba->targetport) 1060 complete(tport->tport_unreg_cmp); 1061 } 1062 1063 static void 1064 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 1065 struct nvmefc_tgt_fcp_req *req) 1066 { 1067 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1068 struct lpfc_nvmet_rcv_ctx *ctxp = 1069 container_of(req, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 1070 struct lpfc_hba *phba = ctxp->phba; 1071 struct lpfc_queue *wq; 1072 unsigned long flags; 1073 1074 if (phba->pport->load_flag & FC_UNLOADING) 1075 return; 1076 1077 if (phba->pport->load_flag & FC_UNLOADING) 1078 return; 1079 1080 if (!ctxp->hdwq) 1081 ctxp->hdwq = &phba->sli4_hba.hdwq[0]; 1082 1083 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1084 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n", 1085 ctxp->oxid, ctxp->flag, ctxp->state); 1086 1087 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 1088 ctxp->oxid, ctxp->flag, ctxp->state); 1089 1090 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 1091 1092 spin_lock_irqsave(&ctxp->ctxlock, flags); 1093 1094 /* Since iaab/iaar are NOT set, we need to check 1095 * if the firmware is in process of aborting IO 1096 */ 1097 if (ctxp->flag & (LPFC_NVMET_XBUSY | LPFC_NVMET_ABORT_OP)) { 1098 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1099 return; 1100 } 1101 ctxp->flag |= LPFC_NVMET_ABORT_OP; 1102 1103 if (ctxp->flag & LPFC_NVMET_DEFER_WQFULL) { 1104 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1105 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1106 ctxp->oxid); 1107 wq = ctxp->hdwq->nvme_wq; 1108 lpfc_nvmet_wqfull_flush(phba, wq, ctxp); 1109 return; 1110 } 1111 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1112 1113 /* An state of LPFC_NVMET_STE_RCV means we have just received 1114 * the NVME command and have not started processing it. 1115 * (by issuing any IO WQEs on this exchange yet) 1116 */ 1117 if (ctxp->state == LPFC_NVMET_STE_RCV) 1118 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1119 ctxp->oxid); 1120 else 1121 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1122 ctxp->oxid); 1123 } 1124 1125 static void 1126 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 1127 struct nvmefc_tgt_fcp_req *rsp) 1128 { 1129 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1130 struct lpfc_nvmet_rcv_ctx *ctxp = 1131 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 1132 struct lpfc_hba *phba = ctxp->phba; 1133 unsigned long flags; 1134 bool aborting = false; 1135 1136 spin_lock_irqsave(&ctxp->ctxlock, flags); 1137 if (ctxp->flag & LPFC_NVMET_XBUSY) 1138 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1139 "6027 NVMET release with XBUSY flag x%x" 1140 " oxid x%x\n", 1141 ctxp->flag, ctxp->oxid); 1142 else if (ctxp->state != LPFC_NVMET_STE_DONE && 1143 ctxp->state != LPFC_NVMET_STE_ABORT) 1144 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1145 "6413 NVMET release bad state %d %d oxid x%x\n", 1146 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1147 1148 if ((ctxp->flag & LPFC_NVMET_ABORT_OP) || 1149 (ctxp->flag & LPFC_NVMET_XBUSY)) { 1150 aborting = true; 1151 /* let the abort path do the real release */ 1152 lpfc_nvmet_defer_release(phba, ctxp); 1153 } 1154 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1155 1156 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 1157 ctxp->state, aborting); 1158 1159 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 1160 ctxp->flag &= ~LPFC_NVMET_TNOTIFY; 1161 1162 if (aborting) 1163 return; 1164 1165 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1166 } 1167 1168 static void 1169 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 1170 struct nvmefc_tgt_fcp_req *rsp) 1171 { 1172 struct lpfc_nvmet_tgtport *tgtp; 1173 struct lpfc_nvmet_rcv_ctx *ctxp = 1174 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 1175 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 1176 struct lpfc_hba *phba = ctxp->phba; 1177 unsigned long iflag; 1178 1179 1180 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 1181 ctxp->oxid, ctxp->size, raw_smp_processor_id()); 1182 1183 if (!nvmebuf) { 1184 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1185 "6425 Defer rcv: no buffer oxid x%x: " 1186 "flg %x ste %x\n", 1187 ctxp->oxid, ctxp->flag, ctxp->state); 1188 return; 1189 } 1190 1191 tgtp = phba->targetport->private; 1192 if (tgtp) 1193 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 1194 1195 /* Free the nvmebuf since a new buffer already replaced it */ 1196 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1197 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1198 ctxp->rqb_buffer = NULL; 1199 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1200 } 1201 1202 static void 1203 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport) 1204 { 1205 struct lpfc_nvmet_tgtport *tgtp; 1206 struct lpfc_hba *phba; 1207 uint32_t rc; 1208 1209 tgtp = tgtport->private; 1210 phba = tgtp->phba; 1211 1212 rc = lpfc_issue_els_rscn(phba->pport, 0); 1213 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1214 "6420 NVMET subsystem change: Notification %s\n", 1215 (rc) ? "Failed" : "Sent"); 1216 } 1217 1218 static struct nvmet_fc_target_template lpfc_tgttemplate = { 1219 .targetport_delete = lpfc_nvmet_targetport_delete, 1220 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 1221 .fcp_op = lpfc_nvmet_xmt_fcp_op, 1222 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 1223 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 1224 .defer_rcv = lpfc_nvmet_defer_rcv, 1225 .discovery_event = lpfc_nvmet_discovery_event, 1226 1227 .max_hw_queues = 1, 1228 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1229 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1230 .dma_boundary = 0xFFFFFFFF, 1231 1232 /* optional features */ 1233 .target_features = 0, 1234 /* sizes of additional private data for data structures */ 1235 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 1236 }; 1237 1238 static void 1239 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 1240 struct lpfc_nvmet_ctx_info *infop) 1241 { 1242 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 1243 unsigned long flags; 1244 1245 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 1246 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 1247 &infop->nvmet_ctx_list, list) { 1248 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1249 list_del_init(&ctx_buf->list); 1250 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1251 1252 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 1253 ctx_buf->sglq->state = SGL_FREED; 1254 ctx_buf->sglq->ndlp = NULL; 1255 1256 spin_lock(&phba->sli4_hba.sgl_list_lock); 1257 list_add_tail(&ctx_buf->sglq->list, 1258 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1259 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1260 1261 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1262 kfree(ctx_buf->context); 1263 } 1264 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 1265 } 1266 1267 static void 1268 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 1269 { 1270 struct lpfc_nvmet_ctx_info *infop; 1271 int i, j; 1272 1273 /* The first context list, MRQ 0 CPU 0 */ 1274 infop = phba->sli4_hba.nvmet_ctx_info; 1275 if (!infop) 1276 return; 1277 1278 /* Cycle the the entire CPU context list for every MRQ */ 1279 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 1280 for_each_present_cpu(j) { 1281 infop = lpfc_get_ctx_list(phba, j, i); 1282 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 1283 } 1284 } 1285 kfree(phba->sli4_hba.nvmet_ctx_info); 1286 phba->sli4_hba.nvmet_ctx_info = NULL; 1287 } 1288 1289 static int 1290 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 1291 { 1292 struct lpfc_nvmet_ctxbuf *ctx_buf; 1293 struct lpfc_iocbq *nvmewqe; 1294 union lpfc_wqe128 *wqe; 1295 struct lpfc_nvmet_ctx_info *last_infop; 1296 struct lpfc_nvmet_ctx_info *infop; 1297 int i, j, idx, cpu; 1298 1299 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 1300 "6403 Allocate NVMET resources for %d XRIs\n", 1301 phba->sli4_hba.nvmet_xri_cnt); 1302 1303 phba->sli4_hba.nvmet_ctx_info = kcalloc( 1304 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq, 1305 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 1306 if (!phba->sli4_hba.nvmet_ctx_info) { 1307 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1308 "6419 Failed allocate memory for " 1309 "nvmet context lists\n"); 1310 return -ENOMEM; 1311 } 1312 1313 /* 1314 * Assuming X CPUs in the system, and Y MRQs, allocate some 1315 * lpfc_nvmet_ctx_info structures as follows: 1316 * 1317 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 1318 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 1319 * ... 1320 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 1321 * 1322 * Each line represents a MRQ "silo" containing an entry for 1323 * every CPU. 1324 * 1325 * MRQ X is initially assumed to be associated with CPU X, thus 1326 * contexts are initially distributed across all MRQs using 1327 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 1328 * freed, the are freed to the MRQ silo based on the CPU number 1329 * of the IO completion. Thus a context that was allocated for MRQ A 1330 * whose IO completed on CPU B will be freed to cpuB/mrqA. 1331 */ 1332 for_each_possible_cpu(i) { 1333 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1334 infop = lpfc_get_ctx_list(phba, i, j); 1335 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 1336 spin_lock_init(&infop->nvmet_ctx_list_lock); 1337 infop->nvmet_ctx_list_cnt = 0; 1338 } 1339 } 1340 1341 /* 1342 * Setup the next CPU context info ptr for each MRQ. 1343 * MRQ 0 will cycle thru CPUs 0 - X separately from 1344 * MRQ 1 cycling thru CPUs 0 - X, and so on. 1345 */ 1346 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1347 last_infop = lpfc_get_ctx_list(phba, 1348 cpumask_first(cpu_present_mask), 1349 j); 1350 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) { 1351 infop = lpfc_get_ctx_list(phba, i, j); 1352 infop->nvmet_ctx_next_cpu = last_infop; 1353 last_infop = infop; 1354 } 1355 } 1356 1357 /* For all nvmet xris, allocate resources needed to process a 1358 * received command on a per xri basis. 1359 */ 1360 idx = 0; 1361 cpu = cpumask_first(cpu_present_mask); 1362 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1363 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1364 if (!ctx_buf) { 1365 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1366 "6404 Ran out of memory for NVMET\n"); 1367 return -ENOMEM; 1368 } 1369 1370 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1371 GFP_KERNEL); 1372 if (!ctx_buf->context) { 1373 kfree(ctx_buf); 1374 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1375 "6405 Ran out of NVMET " 1376 "context memory\n"); 1377 return -ENOMEM; 1378 } 1379 ctx_buf->context->ctxbuf = ctx_buf; 1380 ctx_buf->context->state = LPFC_NVMET_STE_FREE; 1381 1382 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1383 if (!ctx_buf->iocbq) { 1384 kfree(ctx_buf->context); 1385 kfree(ctx_buf); 1386 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1387 "6406 Ran out of NVMET iocb/WQEs\n"); 1388 return -ENOMEM; 1389 } 1390 ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET; 1391 nvmewqe = ctx_buf->iocbq; 1392 wqe = &nvmewqe->wqe; 1393 1394 /* Initialize WQE */ 1395 memset(wqe, 0, sizeof(union lpfc_wqe)); 1396 1397 ctx_buf->iocbq->context1 = NULL; 1398 spin_lock(&phba->sli4_hba.sgl_list_lock); 1399 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1400 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1401 if (!ctx_buf->sglq) { 1402 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1403 kfree(ctx_buf->context); 1404 kfree(ctx_buf); 1405 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1406 "6407 Ran out of NVMET XRIs\n"); 1407 return -ENOMEM; 1408 } 1409 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work); 1410 1411 /* 1412 * Add ctx to MRQidx context list. Our initial assumption 1413 * is MRQidx will be associated with CPUidx. This association 1414 * can change on the fly. 1415 */ 1416 infop = lpfc_get_ctx_list(phba, cpu, idx); 1417 spin_lock(&infop->nvmet_ctx_list_lock); 1418 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1419 infop->nvmet_ctx_list_cnt++; 1420 spin_unlock(&infop->nvmet_ctx_list_lock); 1421 1422 /* Spread ctx structures evenly across all MRQs */ 1423 idx++; 1424 if (idx >= phba->cfg_nvmet_mrq) { 1425 idx = 0; 1426 cpu = cpumask_first(cpu_present_mask); 1427 continue; 1428 } 1429 cpu = cpumask_next(cpu, cpu_present_mask); 1430 if (cpu == nr_cpu_ids) 1431 cpu = cpumask_first(cpu_present_mask); 1432 1433 } 1434 1435 for_each_present_cpu(i) { 1436 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1437 infop = lpfc_get_ctx_list(phba, i, j); 1438 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1439 "6408 TOTAL NVMET ctx for CPU %d " 1440 "MRQ %d: cnt %d nextcpu %p\n", 1441 i, j, infop->nvmet_ctx_list_cnt, 1442 infop->nvmet_ctx_next_cpu); 1443 } 1444 } 1445 return 0; 1446 } 1447 1448 int 1449 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1450 { 1451 struct lpfc_vport *vport = phba->pport; 1452 struct lpfc_nvmet_tgtport *tgtp; 1453 struct nvmet_fc_port_info pinfo; 1454 int error; 1455 1456 if (phba->targetport) 1457 return 0; 1458 1459 error = lpfc_nvmet_setup_io_context(phba); 1460 if (error) 1461 return error; 1462 1463 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1464 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1465 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1466 pinfo.port_id = vport->fc_myDID; 1467 1468 /* We need to tell the transport layer + 1 because it takes page 1469 * alignment into account. When space for the SGL is allocated we 1470 * allocate + 3, one for cmd, one for rsp and one for this alignment 1471 */ 1472 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1473 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue; 1474 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; 1475 1476 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1477 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1478 &phba->pcidev->dev, 1479 &phba->targetport); 1480 #else 1481 error = -ENOENT; 1482 #endif 1483 if (error) { 1484 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 1485 "6025 Cannot register NVME targetport x%x: " 1486 "portnm %llx nodenm %llx segs %d qs %d\n", 1487 error, 1488 pinfo.port_name, pinfo.node_name, 1489 lpfc_tgttemplate.max_sgl_segments, 1490 lpfc_tgttemplate.max_hw_queues); 1491 phba->targetport = NULL; 1492 phba->nvmet_support = 0; 1493 1494 lpfc_nvmet_cleanup_io_context(phba); 1495 1496 } else { 1497 tgtp = (struct lpfc_nvmet_tgtport *) 1498 phba->targetport->private; 1499 tgtp->phba = phba; 1500 1501 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1502 "6026 Registered NVME " 1503 "targetport: %p, private %p " 1504 "portnm %llx nodenm %llx segs %d qs %d\n", 1505 phba->targetport, tgtp, 1506 pinfo.port_name, pinfo.node_name, 1507 lpfc_tgttemplate.max_sgl_segments, 1508 lpfc_tgttemplate.max_hw_queues); 1509 1510 atomic_set(&tgtp->rcv_ls_req_in, 0); 1511 atomic_set(&tgtp->rcv_ls_req_out, 0); 1512 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1513 atomic_set(&tgtp->xmt_ls_abort, 0); 1514 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1515 atomic_set(&tgtp->xmt_ls_rsp, 0); 1516 atomic_set(&tgtp->xmt_ls_drop, 0); 1517 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1518 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); 1519 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); 1520 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1521 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1522 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1523 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1524 atomic_set(&tgtp->xmt_fcp_drop, 0); 1525 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1526 atomic_set(&tgtp->xmt_fcp_read, 0); 1527 atomic_set(&tgtp->xmt_fcp_write, 0); 1528 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1529 atomic_set(&tgtp->xmt_fcp_release, 0); 1530 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1531 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1532 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); 1533 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); 1534 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1535 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); 1536 atomic_set(&tgtp->xmt_fcp_abort, 0); 1537 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1538 atomic_set(&tgtp->xmt_abort_unsol, 0); 1539 atomic_set(&tgtp->xmt_abort_sol, 0); 1540 atomic_set(&tgtp->xmt_abort_rsp, 0); 1541 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1542 atomic_set(&tgtp->defer_ctx, 0); 1543 atomic_set(&tgtp->defer_fod, 0); 1544 atomic_set(&tgtp->defer_wqfull, 0); 1545 } 1546 return error; 1547 } 1548 1549 int 1550 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1551 { 1552 struct lpfc_vport *vport = phba->pport; 1553 1554 if (!phba->targetport) 1555 return 0; 1556 1557 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1558 "6007 Update NVMET port %p did x%x\n", 1559 phba->targetport, vport->fc_myDID); 1560 1561 phba->targetport->port_id = vport->fc_myDID; 1562 return 0; 1563 } 1564 1565 /** 1566 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1567 * @phba: pointer to lpfc hba data structure. 1568 * @axri: pointer to the nvmet xri abort wcqe structure. 1569 * 1570 * This routine is invoked by the worker thread to process a SLI4 fast-path 1571 * NVMET aborted xri. 1572 **/ 1573 void 1574 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1575 struct sli4_wcqe_xri_aborted *axri) 1576 { 1577 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1578 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1579 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1580 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; 1581 struct lpfc_nvmet_tgtport *tgtp; 1582 struct nvmefc_tgt_fcp_req *req = NULL; 1583 struct lpfc_nodelist *ndlp; 1584 unsigned long iflag = 0; 1585 int rrq_empty = 0; 1586 bool released = false; 1587 1588 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1589 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1590 1591 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1592 return; 1593 1594 if (phba->targetport) { 1595 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1596 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); 1597 } 1598 1599 spin_lock_irqsave(&phba->hbalock, iflag); 1600 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1601 list_for_each_entry_safe(ctxp, next_ctxp, 1602 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1603 list) { 1604 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1605 continue; 1606 1607 spin_lock(&ctxp->ctxlock); 1608 /* Check if we already received a free context call 1609 * and we have completed processing an abort situation. 1610 */ 1611 if (ctxp->flag & LPFC_NVMET_CTX_RLS && 1612 !(ctxp->flag & LPFC_NVMET_ABORT_OP)) { 1613 list_del_init(&ctxp->list); 1614 released = true; 1615 } 1616 ctxp->flag &= ~LPFC_NVMET_XBUSY; 1617 spin_unlock(&ctxp->ctxlock); 1618 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1619 1620 rrq_empty = list_empty(&phba->active_rrq_list); 1621 spin_unlock_irqrestore(&phba->hbalock, iflag); 1622 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1623 if (ndlp && NLP_CHK_NODE_ACT(ndlp) && 1624 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1625 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1626 lpfc_set_rrq_active(phba, ndlp, 1627 ctxp->ctxbuf->sglq->sli4_lxritag, 1628 rxid, 1); 1629 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1630 } 1631 1632 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1633 "6318 XB aborted oxid x%x flg x%x (%x)\n", 1634 ctxp->oxid, ctxp->flag, released); 1635 if (released) 1636 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1637 1638 if (rrq_empty) 1639 lpfc_worker_wake_up(phba); 1640 return; 1641 } 1642 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1643 spin_unlock_irqrestore(&phba->hbalock, iflag); 1644 1645 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri); 1646 if (ctxp) { 1647 /* 1648 * Abort already done by FW, so BA_ACC sent. 1649 * However, the transport may be unaware. 1650 */ 1651 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1652 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x " 1653 "flag x%x oxid x%x rxid x%x\n", 1654 xri, ctxp->state, ctxp->flag, ctxp->oxid, 1655 rxid); 1656 1657 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1658 ctxp->flag |= LPFC_NVMET_ABTS_RCV; 1659 ctxp->state = LPFC_NVMET_STE_ABORT; 1660 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1661 1662 lpfc_nvmeio_data(phba, 1663 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1664 xri, raw_smp_processor_id(), 0); 1665 1666 req = &ctxp->ctx.fcp_req; 1667 if (req) 1668 nvmet_fc_rcv_fcp_abort(phba->targetport, req); 1669 } 1670 #endif 1671 } 1672 1673 int 1674 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1675 struct fc_frame_header *fc_hdr) 1676 { 1677 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1678 struct lpfc_hba *phba = vport->phba; 1679 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; 1680 struct nvmefc_tgt_fcp_req *rsp; 1681 uint32_t sid; 1682 uint16_t oxid, xri; 1683 unsigned long iflag = 0; 1684 1685 sid = sli4_sid_from_fc_hdr(fc_hdr); 1686 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1687 1688 spin_lock_irqsave(&phba->hbalock, iflag); 1689 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1690 list_for_each_entry_safe(ctxp, next_ctxp, 1691 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1692 list) { 1693 if (ctxp->oxid != oxid || ctxp->sid != sid) 1694 continue; 1695 1696 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1697 1698 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1699 spin_unlock_irqrestore(&phba->hbalock, iflag); 1700 1701 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1702 ctxp->flag |= LPFC_NVMET_ABTS_RCV; 1703 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1704 1705 lpfc_nvmeio_data(phba, 1706 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1707 xri, raw_smp_processor_id(), 0); 1708 1709 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1710 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1711 1712 rsp = &ctxp->ctx.fcp_req; 1713 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1714 1715 /* Respond with BA_ACC accordingly */ 1716 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1717 return 0; 1718 } 1719 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1720 spin_unlock_irqrestore(&phba->hbalock, iflag); 1721 1722 /* check the wait list */ 1723 if (phba->sli4_hba.nvmet_io_wait_cnt) { 1724 struct rqb_dmabuf *nvmebuf; 1725 struct fc_frame_header *fc_hdr_tmp; 1726 u32 sid_tmp; 1727 u16 oxid_tmp; 1728 bool found = false; 1729 1730 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1731 1732 /* match by oxid and s_id */ 1733 list_for_each_entry(nvmebuf, 1734 &phba->sli4_hba.lpfc_nvmet_io_wait_list, 1735 hbuf.list) { 1736 fc_hdr_tmp = (struct fc_frame_header *) 1737 (nvmebuf->hbuf.virt); 1738 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id); 1739 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp); 1740 if (oxid_tmp != oxid || sid_tmp != sid) 1741 continue; 1742 1743 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1744 "6321 NVMET Rcv ABTS oxid x%x from x%x " 1745 "is waiting for a ctxp\n", 1746 oxid, sid); 1747 1748 list_del_init(&nvmebuf->hbuf.list); 1749 phba->sli4_hba.nvmet_io_wait_cnt--; 1750 found = true; 1751 break; 1752 } 1753 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1754 iflag); 1755 1756 /* free buffer since already posted a new DMA buffer to RQ */ 1757 if (found) { 1758 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1759 /* Respond with BA_ACC accordingly */ 1760 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1761 return 0; 1762 } 1763 } 1764 1765 /* check active list */ 1766 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid); 1767 if (ctxp) { 1768 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1769 1770 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1771 ctxp->flag |= (LPFC_NVMET_ABTS_RCV | LPFC_NVMET_ABORT_OP); 1772 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1773 1774 lpfc_nvmeio_data(phba, 1775 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1776 xri, raw_smp_processor_id(), 0); 1777 1778 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1779 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x " 1780 "flag x%x state x%x\n", 1781 ctxp->oxid, xri, ctxp->flag, ctxp->state); 1782 1783 if (ctxp->flag & LPFC_NVMET_TNOTIFY) { 1784 /* Notify the transport */ 1785 nvmet_fc_rcv_fcp_abort(phba->targetport, 1786 &ctxp->ctx.fcp_req); 1787 } else { 1788 cancel_work_sync(&ctxp->ctxbuf->defer_work); 1789 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1790 lpfc_nvmet_defer_release(phba, ctxp); 1791 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1792 } 1793 if (ctxp->state == LPFC_NVMET_STE_RCV) 1794 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1795 ctxp->oxid); 1796 else 1797 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1798 ctxp->oxid); 1799 1800 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1801 return 0; 1802 } 1803 1804 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n", 1805 oxid, raw_smp_processor_id(), 1); 1806 1807 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1808 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid); 1809 1810 /* Respond with BA_RJT accordingly */ 1811 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 1812 #endif 1813 return 0; 1814 } 1815 1816 static void 1817 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, 1818 struct lpfc_nvmet_rcv_ctx *ctxp) 1819 { 1820 struct lpfc_sli_ring *pring; 1821 struct lpfc_iocbq *nvmewqeq; 1822 struct lpfc_iocbq *next_nvmewqeq; 1823 unsigned long iflags; 1824 struct lpfc_wcqe_complete wcqe; 1825 struct lpfc_wcqe_complete *wcqep; 1826 1827 pring = wq->pring; 1828 wcqep = &wcqe; 1829 1830 /* Fake an ABORT error code back to cmpl routine */ 1831 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); 1832 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); 1833 wcqep->parameter = IOERR_ABORT_REQUESTED; 1834 1835 spin_lock_irqsave(&pring->ring_lock, iflags); 1836 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, 1837 &wq->wqfull_list, list) { 1838 if (ctxp) { 1839 /* Checking for a specific IO to flush */ 1840 if (nvmewqeq->context2 == ctxp) { 1841 list_del(&nvmewqeq->list); 1842 spin_unlock_irqrestore(&pring->ring_lock, 1843 iflags); 1844 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, 1845 wcqep); 1846 return; 1847 } 1848 continue; 1849 } else { 1850 /* Flush all IOs */ 1851 list_del(&nvmewqeq->list); 1852 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1853 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep); 1854 spin_lock_irqsave(&pring->ring_lock, iflags); 1855 } 1856 } 1857 if (!ctxp) 1858 wq->q_flag &= ~HBA_NVMET_WQFULL; 1859 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1860 } 1861 1862 void 1863 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, 1864 struct lpfc_queue *wq) 1865 { 1866 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1867 struct lpfc_sli_ring *pring; 1868 struct lpfc_iocbq *nvmewqeq; 1869 struct lpfc_nvmet_rcv_ctx *ctxp; 1870 unsigned long iflags; 1871 int rc; 1872 1873 /* 1874 * Some WQE slots are available, so try to re-issue anything 1875 * on the WQ wqfull_list. 1876 */ 1877 pring = wq->pring; 1878 spin_lock_irqsave(&pring->ring_lock, iflags); 1879 while (!list_empty(&wq->wqfull_list)) { 1880 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, 1881 list); 1882 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1883 ctxp = (struct lpfc_nvmet_rcv_ctx *)nvmewqeq->context2; 1884 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 1885 spin_lock_irqsave(&pring->ring_lock, iflags); 1886 if (rc == -EBUSY) { 1887 /* WQ was full again, so put it back on the list */ 1888 list_add(&nvmewqeq->list, &wq->wqfull_list); 1889 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1890 return; 1891 } 1892 if (rc == WQE_SUCCESS) { 1893 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1894 if (ctxp->ts_cmd_nvme) { 1895 if (ctxp->ctx.fcp_req.op == NVMET_FCOP_RSP) 1896 ctxp->ts_status_wqput = ktime_get_ns(); 1897 else 1898 ctxp->ts_data_wqput = ktime_get_ns(); 1899 } 1900 #endif 1901 } else { 1902 WARN_ON(rc); 1903 } 1904 } 1905 wq->q_flag &= ~HBA_NVMET_WQFULL; 1906 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1907 1908 #endif 1909 } 1910 1911 void 1912 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 1913 { 1914 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1915 struct lpfc_nvmet_tgtport *tgtp; 1916 struct lpfc_queue *wq; 1917 uint32_t qidx; 1918 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp); 1919 1920 if (phba->nvmet_support == 0) 1921 return; 1922 if (phba->targetport) { 1923 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1924 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 1925 wq = phba->sli4_hba.hdwq[qidx].nvme_wq; 1926 lpfc_nvmet_wqfull_flush(phba, wq, NULL); 1927 } 1928 tgtp->tport_unreg_cmp = &tport_unreg_cmp; 1929 nvmet_fc_unregister_targetport(phba->targetport); 1930 if (!wait_for_completion_timeout(tgtp->tport_unreg_cmp, 1931 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO))) 1932 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1933 "6179 Unreg targetport %p timeout " 1934 "reached.\n", phba->targetport); 1935 lpfc_nvmet_cleanup_io_context(phba); 1936 } 1937 phba->targetport = NULL; 1938 #endif 1939 } 1940 1941 /** 1942 * lpfc_nvmet_unsol_ls_buffer - Process an unsolicited event data buffer 1943 * @phba: pointer to lpfc hba data structure. 1944 * @pring: pointer to a SLI ring. 1945 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 1946 * 1947 * This routine is used for processing the WQE associated with a unsolicited 1948 * event. It first determines whether there is an existing ndlp that matches 1949 * the DID from the unsolicited WQE. If not, it will create a new one with 1950 * the DID from the unsolicited WQE. The ELS command from the unsolicited 1951 * WQE is then used to invoke the proper routine and to set up proper state 1952 * of the discovery state machine. 1953 **/ 1954 static void 1955 lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1956 struct hbq_dmabuf *nvmebuf) 1957 { 1958 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1959 struct lpfc_nvmet_tgtport *tgtp; 1960 struct fc_frame_header *fc_hdr; 1961 struct lpfc_nvmet_rcv_ctx *ctxp; 1962 uint32_t *payload; 1963 uint32_t size, oxid, sid, rc; 1964 1965 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 1966 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1967 1968 if (!phba->targetport) { 1969 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1970 "6154 LS Drop IO x%x\n", oxid); 1971 oxid = 0; 1972 size = 0; 1973 sid = 0; 1974 ctxp = NULL; 1975 goto dropit; 1976 } 1977 1978 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1979 payload = (uint32_t *)(nvmebuf->dbuf.virt); 1980 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 1981 sid = sli4_sid_from_fc_hdr(fc_hdr); 1982 1983 ctxp = kzalloc(sizeof(struct lpfc_nvmet_rcv_ctx), GFP_ATOMIC); 1984 if (ctxp == NULL) { 1985 atomic_inc(&tgtp->rcv_ls_req_drop); 1986 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1987 "6155 LS Drop IO x%x: Alloc\n", 1988 oxid); 1989 dropit: 1990 lpfc_nvmeio_data(phba, "NVMET LS DROP: " 1991 "xri x%x sz %d from %06x\n", 1992 oxid, size, sid); 1993 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 1994 return; 1995 } 1996 ctxp->phba = phba; 1997 ctxp->size = size; 1998 ctxp->oxid = oxid; 1999 ctxp->sid = sid; 2000 ctxp->wqeq = NULL; 2001 ctxp->state = LPFC_NVMET_STE_LS_RCV; 2002 ctxp->entry_cnt = 1; 2003 ctxp->rqb_buffer = (void *)nvmebuf; 2004 ctxp->hdwq = &phba->sli4_hba.hdwq[0]; 2005 2006 lpfc_nvmeio_data(phba, "NVMET LS RCV: xri x%x sz %d from %06x\n", 2007 oxid, size, sid); 2008 /* 2009 * The calling sequence should be: 2010 * nvmet_fc_rcv_ls_req -> lpfc_nvmet_xmt_ls_rsp/cmp ->_req->done 2011 * lpfc_nvmet_xmt_ls_rsp_cmp should free the allocated ctxp. 2012 */ 2013 atomic_inc(&tgtp->rcv_ls_req_in); 2014 rc = nvmet_fc_rcv_ls_req(phba->targetport, &ctxp->ctx.ls_req, 2015 payload, size); 2016 2017 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2018 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 2019 "%08x %08x %08x\n", size, rc, 2020 *payload, *(payload+1), *(payload+2), 2021 *(payload+3), *(payload+4), *(payload+5)); 2022 2023 if (rc == 0) { 2024 atomic_inc(&tgtp->rcv_ls_req_out); 2025 return; 2026 } 2027 2028 lpfc_nvmeio_data(phba, "NVMET LS DROP: xri x%x sz %d from %06x\n", 2029 oxid, size, sid); 2030 2031 atomic_inc(&tgtp->rcv_ls_req_drop); 2032 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2033 "6156 LS Drop IO x%x: nvmet_fc_rcv_ls_req %d\n", 2034 ctxp->oxid, rc); 2035 2036 /* We assume a rcv'ed cmd ALWAYs fits into 1 buffer */ 2037 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 2038 2039 atomic_inc(&tgtp->xmt_ls_abort); 2040 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, sid, oxid); 2041 #endif 2042 } 2043 2044 static void 2045 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf) 2046 { 2047 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2048 struct lpfc_nvmet_rcv_ctx *ctxp = ctx_buf->context; 2049 struct lpfc_hba *phba = ctxp->phba; 2050 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 2051 struct lpfc_nvmet_tgtport *tgtp; 2052 uint32_t *payload, qno; 2053 uint32_t rc; 2054 unsigned long iflags; 2055 2056 if (!nvmebuf) { 2057 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2058 "6159 process_rcv_fcp_req, nvmebuf is NULL, " 2059 "oxid: x%x flg: x%x state: x%x\n", 2060 ctxp->oxid, ctxp->flag, ctxp->state); 2061 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2062 lpfc_nvmet_defer_release(phba, ctxp); 2063 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2064 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 2065 ctxp->oxid); 2066 return; 2067 } 2068 2069 if (ctxp->flag & LPFC_NVMET_ABTS_RCV) { 2070 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2071 "6324 IO oxid x%x aborted\n", 2072 ctxp->oxid); 2073 return; 2074 } 2075 2076 payload = (uint32_t *)(nvmebuf->dbuf.virt); 2077 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2078 ctxp->flag |= LPFC_NVMET_TNOTIFY; 2079 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2080 if (ctxp->ts_isr_cmd) 2081 ctxp->ts_cmd_nvme = ktime_get_ns(); 2082 #endif 2083 /* 2084 * The calling sequence should be: 2085 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 2086 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 2087 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 2088 * the NVME command / FC header is stored. 2089 * A buffer has already been reposted for this IO, so just free 2090 * the nvmebuf. 2091 */ 2092 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req, 2093 payload, ctxp->size); 2094 /* Process FCP command */ 2095 if (rc == 0) { 2096 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2097 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2098 if ((ctxp->flag & LPFC_NVMET_CTX_REUSE_WQ) || 2099 (nvmebuf != ctxp->rqb_buffer)) { 2100 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2101 return; 2102 } 2103 ctxp->rqb_buffer = NULL; 2104 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2105 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2106 return; 2107 } 2108 2109 /* Processing of FCP command is deferred */ 2110 if (rc == -EOVERFLOW) { 2111 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d " 2112 "from %06x\n", 2113 ctxp->oxid, ctxp->size, ctxp->sid); 2114 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2115 atomic_inc(&tgtp->defer_fod); 2116 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2117 if (ctxp->flag & LPFC_NVMET_CTX_REUSE_WQ) { 2118 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2119 return; 2120 } 2121 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2122 /* 2123 * Post a replacement DMA buffer to RQ and defer 2124 * freeing rcv buffer till .defer_rcv callback 2125 */ 2126 qno = nvmebuf->idx; 2127 lpfc_post_rq_buffer( 2128 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2129 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2130 return; 2131 } 2132 ctxp->flag &= ~LPFC_NVMET_TNOTIFY; 2133 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2134 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2135 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 2136 ctxp->oxid, rc, 2137 atomic_read(&tgtp->rcv_fcp_cmd_in), 2138 atomic_read(&tgtp->rcv_fcp_cmd_out), 2139 atomic_read(&tgtp->xmt_fcp_release)); 2140 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 2141 ctxp->oxid, ctxp->size, ctxp->sid); 2142 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2143 lpfc_nvmet_defer_release(phba, ctxp); 2144 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2145 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 2146 #endif 2147 } 2148 2149 static void 2150 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work) 2151 { 2152 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2153 struct lpfc_nvmet_ctxbuf *ctx_buf = 2154 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work); 2155 2156 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2157 #endif 2158 } 2159 2160 static struct lpfc_nvmet_ctxbuf * 2161 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 2162 struct lpfc_nvmet_ctx_info *current_infop) 2163 { 2164 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2165 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 2166 struct lpfc_nvmet_ctx_info *get_infop; 2167 int i; 2168 2169 /* 2170 * The current_infop for the MRQ a NVME command IU was received 2171 * on is empty. Our goal is to replenish this MRQs context 2172 * list from a another CPUs. 2173 * 2174 * First we need to pick a context list to start looking on. 2175 * nvmet_ctx_start_cpu has available context the last time 2176 * we needed to replenish this CPU where nvmet_ctx_next_cpu 2177 * is just the next sequential CPU for this MRQ. 2178 */ 2179 if (current_infop->nvmet_ctx_start_cpu) 2180 get_infop = current_infop->nvmet_ctx_start_cpu; 2181 else 2182 get_infop = current_infop->nvmet_ctx_next_cpu; 2183 2184 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) { 2185 if (get_infop == current_infop) { 2186 get_infop = get_infop->nvmet_ctx_next_cpu; 2187 continue; 2188 } 2189 spin_lock(&get_infop->nvmet_ctx_list_lock); 2190 2191 /* Just take the entire context list, if there are any */ 2192 if (get_infop->nvmet_ctx_list_cnt) { 2193 list_splice_init(&get_infop->nvmet_ctx_list, 2194 ¤t_infop->nvmet_ctx_list); 2195 current_infop->nvmet_ctx_list_cnt = 2196 get_infop->nvmet_ctx_list_cnt - 1; 2197 get_infop->nvmet_ctx_list_cnt = 0; 2198 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2199 2200 current_infop->nvmet_ctx_start_cpu = get_infop; 2201 list_remove_head(¤t_infop->nvmet_ctx_list, 2202 ctx_buf, struct lpfc_nvmet_ctxbuf, 2203 list); 2204 return ctx_buf; 2205 } 2206 2207 /* Otherwise, move on to the next CPU for this MRQ */ 2208 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2209 get_infop = get_infop->nvmet_ctx_next_cpu; 2210 } 2211 2212 #endif 2213 /* Nothing found, all contexts for the MRQ are in-flight */ 2214 return NULL; 2215 } 2216 2217 /** 2218 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 2219 * @phba: pointer to lpfc hba data structure. 2220 * @idx: relative index of MRQ vector 2221 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 2222 * @isr_timestamp: in jiffies. 2223 * @cqflag: cq processing information regarding workload. 2224 * 2225 * This routine is used for processing the WQE associated with a unsolicited 2226 * event. It first determines whether there is an existing ndlp that matches 2227 * the DID from the unsolicited WQE. If not, it will create a new one with 2228 * the DID from the unsolicited WQE. The ELS command from the unsolicited 2229 * WQE is then used to invoke the proper routine and to set up proper state 2230 * of the discovery state machine. 2231 **/ 2232 static void 2233 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 2234 uint32_t idx, 2235 struct rqb_dmabuf *nvmebuf, 2236 uint64_t isr_timestamp, 2237 uint8_t cqflag) 2238 { 2239 struct lpfc_nvmet_rcv_ctx *ctxp; 2240 struct lpfc_nvmet_tgtport *tgtp; 2241 struct fc_frame_header *fc_hdr; 2242 struct lpfc_nvmet_ctxbuf *ctx_buf; 2243 struct lpfc_nvmet_ctx_info *current_infop; 2244 uint32_t size, oxid, sid, qno; 2245 unsigned long iflag; 2246 int current_cpu; 2247 2248 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2249 return; 2250 2251 ctx_buf = NULL; 2252 if (!nvmebuf || !phba->targetport) { 2253 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2254 "6157 NVMET FCP Drop IO\n"); 2255 if (nvmebuf) 2256 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2257 return; 2258 } 2259 2260 /* 2261 * Get a pointer to the context list for this MRQ based on 2262 * the CPU this MRQ IRQ is associated with. If the CPU association 2263 * changes from our initial assumption, the context list could 2264 * be empty, thus it would need to be replenished with the 2265 * context list from another CPU for this MRQ. 2266 */ 2267 current_cpu = raw_smp_processor_id(); 2268 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 2269 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 2270 if (current_infop->nvmet_ctx_list_cnt) { 2271 list_remove_head(¤t_infop->nvmet_ctx_list, 2272 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 2273 current_infop->nvmet_ctx_list_cnt--; 2274 } else { 2275 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 2276 } 2277 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 2278 2279 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 2280 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2281 size = nvmebuf->bytes_recv; 2282 2283 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2284 if (phba->cpucheck_on & LPFC_CHECK_NVMET_RCV) { 2285 if (current_cpu < LPFC_CHECK_CPU_CNT) { 2286 if (idx != current_cpu) 2287 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2288 "6703 CPU Check rcv: " 2289 "cpu %d expect %d\n", 2290 current_cpu, idx); 2291 phba->sli4_hba.hdwq[idx].cpucheck_rcv_io[current_cpu]++; 2292 } 2293 } 2294 #endif 2295 2296 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 2297 oxid, size, raw_smp_processor_id()); 2298 2299 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2300 2301 if (!ctx_buf) { 2302 /* Queue this NVME IO to process later */ 2303 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 2304 list_add_tail(&nvmebuf->hbuf.list, 2305 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 2306 phba->sli4_hba.nvmet_io_wait_cnt++; 2307 phba->sli4_hba.nvmet_io_wait_total++; 2308 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 2309 iflag); 2310 2311 /* Post a brand new DMA buffer to RQ */ 2312 qno = nvmebuf->idx; 2313 lpfc_post_rq_buffer( 2314 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2315 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2316 2317 atomic_inc(&tgtp->defer_ctx); 2318 return; 2319 } 2320 2321 sid = sli4_sid_from_fc_hdr(fc_hdr); 2322 2323 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context; 2324 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 2325 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list); 2326 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 2327 if (ctxp->state != LPFC_NVMET_STE_FREE) { 2328 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2329 "6414 NVMET Context corrupt %d %d oxid x%x\n", 2330 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 2331 } 2332 ctxp->wqeq = NULL; 2333 ctxp->txrdy = NULL; 2334 ctxp->offset = 0; 2335 ctxp->phba = phba; 2336 ctxp->size = size; 2337 ctxp->oxid = oxid; 2338 ctxp->sid = sid; 2339 ctxp->idx = idx; 2340 ctxp->state = LPFC_NVMET_STE_RCV; 2341 ctxp->entry_cnt = 1; 2342 ctxp->flag = 0; 2343 ctxp->ctxbuf = ctx_buf; 2344 ctxp->rqb_buffer = (void *)nvmebuf; 2345 ctxp->hdwq = NULL; 2346 spin_lock_init(&ctxp->ctxlock); 2347 2348 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2349 if (isr_timestamp) 2350 ctxp->ts_isr_cmd = isr_timestamp; 2351 ctxp->ts_cmd_nvme = 0; 2352 ctxp->ts_nvme_data = 0; 2353 ctxp->ts_data_wqput = 0; 2354 ctxp->ts_isr_data = 0; 2355 ctxp->ts_data_nvme = 0; 2356 ctxp->ts_nvme_status = 0; 2357 ctxp->ts_status_wqput = 0; 2358 ctxp->ts_isr_status = 0; 2359 ctxp->ts_status_nvme = 0; 2360 #endif 2361 2362 atomic_inc(&tgtp->rcv_fcp_cmd_in); 2363 /* check for cq processing load */ 2364 if (!cqflag) { 2365 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2366 return; 2367 } 2368 2369 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 2370 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2371 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 2372 "6325 Unable to queue work for oxid x%x. " 2373 "FCP Drop IO [x%x x%x x%x]\n", 2374 ctxp->oxid, 2375 atomic_read(&tgtp->rcv_fcp_cmd_in), 2376 atomic_read(&tgtp->rcv_fcp_cmd_out), 2377 atomic_read(&tgtp->xmt_fcp_release)); 2378 2379 spin_lock_irqsave(&ctxp->ctxlock, iflag); 2380 lpfc_nvmet_defer_release(phba, ctxp); 2381 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 2382 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 2383 } 2384 } 2385 2386 /** 2387 * lpfc_nvmet_unsol_ls_event - Process an unsolicited event from an nvme nport 2388 * @phba: pointer to lpfc hba data structure. 2389 * @pring: pointer to a SLI ring. 2390 * @nvmebuf: pointer to received nvme data structure. 2391 * 2392 * This routine is used to process an unsolicited event received from a SLI 2393 * (Service Level Interface) ring. The actual processing of the data buffer 2394 * associated with the unsolicited event is done by invoking the routine 2395 * lpfc_nvmet_unsol_ls_buffer() after properly set up the buffer from the 2396 * SLI RQ on which the unsolicited event was received. 2397 **/ 2398 void 2399 lpfc_nvmet_unsol_ls_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2400 struct lpfc_iocbq *piocb) 2401 { 2402 struct lpfc_dmabuf *d_buf; 2403 struct hbq_dmabuf *nvmebuf; 2404 2405 d_buf = piocb->context2; 2406 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2407 2408 if (phba->nvmet_support == 0) { 2409 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 2410 return; 2411 } 2412 lpfc_nvmet_unsol_ls_buffer(phba, pring, nvmebuf); 2413 } 2414 2415 /** 2416 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 2417 * @phba: pointer to lpfc hba data structure. 2418 * @idx: relative index of MRQ vector 2419 * @nvmebuf: pointer to received nvme data structure. 2420 * @isr_timestamp: in jiffies. 2421 * @cqflag: cq processing information regarding workload. 2422 * 2423 * This routine is used to process an unsolicited event received from a SLI 2424 * (Service Level Interface) ring. The actual processing of the data buffer 2425 * associated with the unsolicited event is done by invoking the routine 2426 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 2427 * SLI RQ on which the unsolicited event was received. 2428 **/ 2429 void 2430 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 2431 uint32_t idx, 2432 struct rqb_dmabuf *nvmebuf, 2433 uint64_t isr_timestamp, 2434 uint8_t cqflag) 2435 { 2436 if (phba->nvmet_support == 0) { 2437 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2438 return; 2439 } 2440 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag); 2441 } 2442 2443 /** 2444 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 2445 * @phba: pointer to a host N_Port data structure. 2446 * @ctxp: Context info for NVME LS Request 2447 * @rspbuf: DMA buffer of NVME command. 2448 * @rspsize: size of the NVME command. 2449 * 2450 * This routine is used for allocating a lpfc-WQE data structure from 2451 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 2452 * passed into the routine for discovery state machine to issue an Extended 2453 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 2454 * and preparation routine that is used by all the discovery state machine 2455 * routines and the NVME command-specific fields will be later set up by 2456 * the individual discovery machine routines after calling this routine 2457 * allocating and preparing a generic WQE data structure. It fills in the 2458 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 2459 * payload and response payload (if expected). The reference count on the 2460 * ndlp is incremented by 1 and the reference to the ndlp is put into 2461 * context1 of the WQE data structure for this WQE to hold the ndlp 2462 * reference for the command's callback function to access later. 2463 * 2464 * Return code 2465 * Pointer to the newly allocated/prepared nvme wqe data structure 2466 * NULL - when nvme wqe data structure allocation/preparation failed 2467 **/ 2468 static struct lpfc_iocbq * 2469 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 2470 struct lpfc_nvmet_rcv_ctx *ctxp, 2471 dma_addr_t rspbuf, uint16_t rspsize) 2472 { 2473 struct lpfc_nodelist *ndlp; 2474 struct lpfc_iocbq *nvmewqe; 2475 union lpfc_wqe128 *wqe; 2476 2477 if (!lpfc_is_link_up(phba)) { 2478 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2479 "6104 NVMET prep LS wqe: link err: " 2480 "NPORT x%x oxid:x%x ste %d\n", 2481 ctxp->sid, ctxp->oxid, ctxp->state); 2482 return NULL; 2483 } 2484 2485 /* Allocate buffer for command wqe */ 2486 nvmewqe = lpfc_sli_get_iocbq(phba); 2487 if (nvmewqe == NULL) { 2488 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2489 "6105 NVMET prep LS wqe: No WQE: " 2490 "NPORT x%x oxid x%x ste %d\n", 2491 ctxp->sid, ctxp->oxid, ctxp->state); 2492 return NULL; 2493 } 2494 2495 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2496 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2497 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2498 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2499 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2500 "6106 NVMET prep LS wqe: No ndlp: " 2501 "NPORT x%x oxid x%x ste %d\n", 2502 ctxp->sid, ctxp->oxid, ctxp->state); 2503 goto nvme_wqe_free_wqeq_exit; 2504 } 2505 ctxp->wqeq = nvmewqe; 2506 2507 /* prevent preparing wqe with NULL ndlp reference */ 2508 nvmewqe->context1 = lpfc_nlp_get(ndlp); 2509 if (nvmewqe->context1 == NULL) 2510 goto nvme_wqe_free_wqeq_exit; 2511 nvmewqe->context2 = ctxp; 2512 2513 wqe = &nvmewqe->wqe; 2514 memset(wqe, 0, sizeof(union lpfc_wqe)); 2515 2516 /* Words 0 - 2 */ 2517 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2518 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 2519 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 2520 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 2521 2522 /* Word 3 */ 2523 2524 /* Word 4 */ 2525 2526 /* Word 5 */ 2527 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 2528 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 2529 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 2530 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 2531 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 2532 2533 /* Word 6 */ 2534 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 2535 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2536 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 2537 2538 /* Word 7 */ 2539 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 2540 CMD_XMIT_SEQUENCE64_WQE); 2541 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 2542 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 2543 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 2544 2545 /* Word 8 */ 2546 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 2547 2548 /* Word 9 */ 2549 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 2550 /* Needs to be set by caller */ 2551 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 2552 2553 /* Word 10 */ 2554 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 2555 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2556 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 2557 LPFC_WQE_LENLOC_WORD12); 2558 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 2559 2560 /* Word 11 */ 2561 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 2562 LPFC_WQE_CQ_ID_DEFAULT); 2563 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 2564 OTHER_COMMAND); 2565 2566 /* Word 12 */ 2567 wqe->xmit_sequence.xmit_len = rspsize; 2568 2569 nvmewqe->retry = 1; 2570 nvmewqe->vport = phba->pport; 2571 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2572 nvmewqe->iocb_flag |= LPFC_IO_NVME_LS; 2573 2574 /* Xmit NVMET response to remote NPORT <did> */ 2575 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2576 "6039 Xmit NVMET LS response to remote " 2577 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 2578 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 2579 rspsize); 2580 return nvmewqe; 2581 2582 nvme_wqe_free_wqeq_exit: 2583 nvmewqe->context2 = NULL; 2584 nvmewqe->context3 = NULL; 2585 lpfc_sli_release_iocbq(phba, nvmewqe); 2586 return NULL; 2587 } 2588 2589 2590 static struct lpfc_iocbq * 2591 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 2592 struct lpfc_nvmet_rcv_ctx *ctxp) 2593 { 2594 struct nvmefc_tgt_fcp_req *rsp = &ctxp->ctx.fcp_req; 2595 struct lpfc_nvmet_tgtport *tgtp; 2596 struct sli4_sge *sgl; 2597 struct lpfc_nodelist *ndlp; 2598 struct lpfc_iocbq *nvmewqe; 2599 struct scatterlist *sgel; 2600 union lpfc_wqe128 *wqe; 2601 struct ulp_bde64 *bde; 2602 uint32_t *txrdy; 2603 dma_addr_t physaddr; 2604 int i, cnt; 2605 int do_pbde; 2606 int xc = 1; 2607 2608 if (!lpfc_is_link_up(phba)) { 2609 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2610 "6107 NVMET prep FCP wqe: link err:" 2611 "NPORT x%x oxid x%x ste %d\n", 2612 ctxp->sid, ctxp->oxid, ctxp->state); 2613 return NULL; 2614 } 2615 2616 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2617 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2618 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2619 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2620 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2621 "6108 NVMET prep FCP wqe: no ndlp: " 2622 "NPORT x%x oxid x%x ste %d\n", 2623 ctxp->sid, ctxp->oxid, ctxp->state); 2624 return NULL; 2625 } 2626 2627 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { 2628 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2629 "6109 NVMET prep FCP wqe: seg cnt err: " 2630 "NPORT x%x oxid x%x ste %d cnt %d\n", 2631 ctxp->sid, ctxp->oxid, ctxp->state, 2632 phba->cfg_nvme_seg_cnt); 2633 return NULL; 2634 } 2635 2636 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2637 nvmewqe = ctxp->wqeq; 2638 if (nvmewqe == NULL) { 2639 /* Allocate buffer for command wqe */ 2640 nvmewqe = ctxp->ctxbuf->iocbq; 2641 if (nvmewqe == NULL) { 2642 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2643 "6110 NVMET prep FCP wqe: No " 2644 "WQE: NPORT x%x oxid x%x ste %d\n", 2645 ctxp->sid, ctxp->oxid, ctxp->state); 2646 return NULL; 2647 } 2648 ctxp->wqeq = nvmewqe; 2649 xc = 0; /* create new XRI */ 2650 nvmewqe->sli4_lxritag = NO_XRI; 2651 nvmewqe->sli4_xritag = NO_XRI; 2652 } 2653 2654 /* Sanity check */ 2655 if (((ctxp->state == LPFC_NVMET_STE_RCV) && 2656 (ctxp->entry_cnt == 1)) || 2657 (ctxp->state == LPFC_NVMET_STE_DATA)) { 2658 wqe = &nvmewqe->wqe; 2659 } else { 2660 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2661 "6111 Wrong state NVMET FCP: %d cnt %d\n", 2662 ctxp->state, ctxp->entry_cnt); 2663 return NULL; 2664 } 2665 2666 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 2667 switch (rsp->op) { 2668 case NVMET_FCOP_READDATA: 2669 case NVMET_FCOP_READDATA_RSP: 2670 /* From the tsend template, initialize words 7 - 11 */ 2671 memcpy(&wqe->words[7], 2672 &lpfc_tsend_cmd_template.words[7], 2673 sizeof(uint32_t) * 5); 2674 2675 /* Words 0 - 2 : The first sg segment */ 2676 sgel = &rsp->sg[0]; 2677 physaddr = sg_dma_address(sgel); 2678 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2679 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 2680 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 2681 wqe->fcp_tsend.bde.addrHigh = 2682 cpu_to_le32(putPaddrHigh(physaddr)); 2683 2684 /* Word 3 */ 2685 wqe->fcp_tsend.payload_offset_len = 0; 2686 2687 /* Word 4 */ 2688 wqe->fcp_tsend.relative_offset = ctxp->offset; 2689 2690 /* Word 5 */ 2691 wqe->fcp_tsend.reserved = 0; 2692 2693 /* Word 6 */ 2694 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2695 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2696 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2697 nvmewqe->sli4_xritag); 2698 2699 /* Word 7 - set ar later */ 2700 2701 /* Word 8 */ 2702 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2703 2704 /* Word 9 */ 2705 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2706 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2707 2708 /* Word 10 - set wqes later, in template xc=1 */ 2709 if (!xc) 2710 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); 2711 2712 /* Word 11 - set sup, irsp, irsplen later */ 2713 do_pbde = 0; 2714 2715 /* Word 12 */ 2716 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2717 2718 /* Setup 2 SKIP SGEs */ 2719 sgl->addr_hi = 0; 2720 sgl->addr_lo = 0; 2721 sgl->word2 = 0; 2722 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2723 sgl->word2 = cpu_to_le32(sgl->word2); 2724 sgl->sge_len = 0; 2725 sgl++; 2726 sgl->addr_hi = 0; 2727 sgl->addr_lo = 0; 2728 sgl->word2 = 0; 2729 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2730 sgl->word2 = cpu_to_le32(sgl->word2); 2731 sgl->sge_len = 0; 2732 sgl++; 2733 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2734 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2735 2736 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2737 2738 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2739 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP) 2740 bf_set(wqe_sup, 2741 &wqe->fcp_tsend.wqe_com, 1); 2742 } else { 2743 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2744 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2745 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2746 ((rsp->rsplen >> 2) - 1)); 2747 memcpy(&wqe->words[16], rsp->rspaddr, 2748 rsp->rsplen); 2749 } 2750 } else { 2751 atomic_inc(&tgtp->xmt_fcp_read); 2752 2753 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2754 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2755 } 2756 break; 2757 2758 case NVMET_FCOP_WRITEDATA: 2759 /* From the treceive template, initialize words 3 - 11 */ 2760 memcpy(&wqe->words[3], 2761 &lpfc_treceive_cmd_template.words[3], 2762 sizeof(uint32_t) * 9); 2763 2764 /* Words 0 - 2 : The first sg segment */ 2765 txrdy = dma_pool_alloc(phba->txrdy_payload_pool, 2766 GFP_KERNEL, &physaddr); 2767 if (!txrdy) { 2768 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2769 "6041 Bad txrdy buffer: oxid x%x\n", 2770 ctxp->oxid); 2771 return NULL; 2772 } 2773 ctxp->txrdy = txrdy; 2774 ctxp->txrdy_phys = physaddr; 2775 wqe->fcp_treceive.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2776 wqe->fcp_treceive.bde.tus.f.bdeSize = TXRDY_PAYLOAD_LEN; 2777 wqe->fcp_treceive.bde.addrLow = 2778 cpu_to_le32(putPaddrLow(physaddr)); 2779 wqe->fcp_treceive.bde.addrHigh = 2780 cpu_to_le32(putPaddrHigh(physaddr)); 2781 2782 /* Word 4 */ 2783 wqe->fcp_treceive.relative_offset = ctxp->offset; 2784 2785 /* Word 6 */ 2786 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2787 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2788 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2789 nvmewqe->sli4_xritag); 2790 2791 /* Word 7 */ 2792 2793 /* Word 8 */ 2794 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2795 2796 /* Word 9 */ 2797 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2798 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2799 2800 /* Word 10 - in template xc=1 */ 2801 if (!xc) 2802 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); 2803 2804 /* Word 11 - set pbde later */ 2805 if (phba->cfg_enable_pbde) { 2806 do_pbde = 1; 2807 } else { 2808 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); 2809 do_pbde = 0; 2810 } 2811 2812 /* Word 12 */ 2813 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2814 2815 /* Setup 1 TXRDY and 1 SKIP SGE */ 2816 txrdy[0] = 0; 2817 txrdy[1] = cpu_to_be32(rsp->transfer_length); 2818 txrdy[2] = 0; 2819 2820 sgl->addr_hi = putPaddrHigh(physaddr); 2821 sgl->addr_lo = putPaddrLow(physaddr); 2822 sgl->word2 = 0; 2823 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 2824 sgl->word2 = cpu_to_le32(sgl->word2); 2825 sgl->sge_len = cpu_to_le32(TXRDY_PAYLOAD_LEN); 2826 sgl++; 2827 sgl->addr_hi = 0; 2828 sgl->addr_lo = 0; 2829 sgl->word2 = 0; 2830 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2831 sgl->word2 = cpu_to_le32(sgl->word2); 2832 sgl->sge_len = 0; 2833 sgl++; 2834 atomic_inc(&tgtp->xmt_fcp_write); 2835 break; 2836 2837 case NVMET_FCOP_RSP: 2838 /* From the treceive template, initialize words 4 - 11 */ 2839 memcpy(&wqe->words[4], 2840 &lpfc_trsp_cmd_template.words[4], 2841 sizeof(uint32_t) * 8); 2842 2843 /* Words 0 - 2 */ 2844 physaddr = rsp->rspdma; 2845 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2846 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2847 wqe->fcp_trsp.bde.addrLow = 2848 cpu_to_le32(putPaddrLow(physaddr)); 2849 wqe->fcp_trsp.bde.addrHigh = 2850 cpu_to_le32(putPaddrHigh(physaddr)); 2851 2852 /* Word 3 */ 2853 wqe->fcp_trsp.response_len = rsp->rsplen; 2854 2855 /* Word 6 */ 2856 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2857 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2858 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2859 nvmewqe->sli4_xritag); 2860 2861 /* Word 7 */ 2862 2863 /* Word 8 */ 2864 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2865 2866 /* Word 9 */ 2867 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2868 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2869 2870 /* Word 10 */ 2871 if (xc) 2872 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); 2873 2874 /* Word 11 */ 2875 /* In template wqes=0 irsp=0 irsplen=0 - good response */ 2876 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { 2877 /* Bad response - embed it */ 2878 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2879 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2880 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2881 ((rsp->rsplen >> 2) - 1)); 2882 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2883 } 2884 do_pbde = 0; 2885 2886 /* Word 12 */ 2887 wqe->fcp_trsp.rsvd_12_15[0] = 0; 2888 2889 /* Use rspbuf, NOT sg list */ 2890 rsp->sg_cnt = 0; 2891 sgl->word2 = 0; 2892 atomic_inc(&tgtp->xmt_fcp_rsp); 2893 break; 2894 2895 default: 2896 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2897 "6064 Unknown Rsp Op %d\n", 2898 rsp->op); 2899 return NULL; 2900 } 2901 2902 nvmewqe->retry = 1; 2903 nvmewqe->vport = phba->pport; 2904 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2905 nvmewqe->context1 = ndlp; 2906 2907 for_each_sg(rsp->sg, sgel, rsp->sg_cnt, i) { 2908 physaddr = sg_dma_address(sgel); 2909 cnt = sg_dma_len(sgel); 2910 sgl->addr_hi = putPaddrHigh(physaddr); 2911 sgl->addr_lo = putPaddrLow(physaddr); 2912 sgl->word2 = 0; 2913 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 2914 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 2915 if ((i+1) == rsp->sg_cnt) 2916 bf_set(lpfc_sli4_sge_last, sgl, 1); 2917 sgl->word2 = cpu_to_le32(sgl->word2); 2918 sgl->sge_len = cpu_to_le32(cnt); 2919 if (i == 0) { 2920 bde = (struct ulp_bde64 *)&wqe->words[13]; 2921 if (do_pbde) { 2922 /* Words 13-15 (PBDE) */ 2923 bde->addrLow = sgl->addr_lo; 2924 bde->addrHigh = sgl->addr_hi; 2925 bde->tus.f.bdeSize = 2926 le32_to_cpu(sgl->sge_len); 2927 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2928 bde->tus.w = cpu_to_le32(bde->tus.w); 2929 } else { 2930 memset(bde, 0, sizeof(struct ulp_bde64)); 2931 } 2932 } 2933 sgl++; 2934 ctxp->offset += cnt; 2935 } 2936 ctxp->state = LPFC_NVMET_STE_DATA; 2937 ctxp->entry_cnt++; 2938 return nvmewqe; 2939 } 2940 2941 /** 2942 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 2943 * @phba: Pointer to HBA context object. 2944 * @cmdwqe: Pointer to driver command WQE object. 2945 * @wcqe: Pointer to driver response CQE object. 2946 * 2947 * The function is called from SLI ring event handler with no 2948 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 2949 * The function frees memory resources used for the NVME commands. 2950 **/ 2951 static void 2952 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 2953 struct lpfc_wcqe_complete *wcqe) 2954 { 2955 struct lpfc_nvmet_rcv_ctx *ctxp; 2956 struct lpfc_nvmet_tgtport *tgtp; 2957 uint32_t result; 2958 unsigned long flags; 2959 bool released = false; 2960 2961 ctxp = cmdwqe->context2; 2962 result = wcqe->parameter; 2963 2964 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2965 if (ctxp->flag & LPFC_NVMET_ABORT_OP) 2966 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 2967 2968 spin_lock_irqsave(&ctxp->ctxlock, flags); 2969 ctxp->state = LPFC_NVMET_STE_DONE; 2970 2971 /* Check if we already received a free context call 2972 * and we have completed processing an abort situation. 2973 */ 2974 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) && 2975 !(ctxp->flag & LPFC_NVMET_XBUSY)) { 2976 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 2977 list_del_init(&ctxp->list); 2978 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 2979 released = true; 2980 } 2981 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2982 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 2983 atomic_inc(&tgtp->xmt_abort_rsp); 2984 2985 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2986 "6165 ABORT cmpl: oxid x%x flg x%x (%d) " 2987 "WCQE: %08x %08x %08x %08x\n", 2988 ctxp->oxid, ctxp->flag, released, 2989 wcqe->word0, wcqe->total_data_placed, 2990 result, wcqe->word3); 2991 2992 cmdwqe->context2 = NULL; 2993 cmdwqe->context3 = NULL; 2994 /* 2995 * if transport has released ctx, then can reuse it. Otherwise, 2996 * will be recycled by transport release call. 2997 */ 2998 if (released) 2999 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3000 3001 /* This is the iocbq for the abort, not the command */ 3002 lpfc_sli_release_iocbq(phba, cmdwqe); 3003 3004 /* Since iaab/iaar are NOT set, there is no work left. 3005 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted 3006 * should have been called already. 3007 */ 3008 } 3009 3010 /** 3011 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 3012 * @phba: Pointer to HBA context object. 3013 * @cmdwqe: Pointer to driver command WQE object. 3014 * @wcqe: Pointer to driver response CQE object. 3015 * 3016 * The function is called from SLI ring event handler with no 3017 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3018 * The function frees memory resources used for the NVME commands. 3019 **/ 3020 static void 3021 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3022 struct lpfc_wcqe_complete *wcqe) 3023 { 3024 struct lpfc_nvmet_rcv_ctx *ctxp; 3025 struct lpfc_nvmet_tgtport *tgtp; 3026 unsigned long flags; 3027 uint32_t result; 3028 bool released = false; 3029 3030 ctxp = cmdwqe->context2; 3031 result = wcqe->parameter; 3032 3033 if (!ctxp) { 3034 /* if context is clear, related io alrady complete */ 3035 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3036 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 3037 wcqe->word0, wcqe->total_data_placed, 3038 result, wcqe->word3); 3039 return; 3040 } 3041 3042 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3043 spin_lock_irqsave(&ctxp->ctxlock, flags); 3044 if (ctxp->flag & LPFC_NVMET_ABORT_OP) 3045 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3046 3047 /* Sanity check */ 3048 if (ctxp->state != LPFC_NVMET_STE_ABORT) { 3049 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3050 "6112 ABTS Wrong state:%d oxid x%x\n", 3051 ctxp->state, ctxp->oxid); 3052 } 3053 3054 /* Check if we already received a free context call 3055 * and we have completed processing an abort situation. 3056 */ 3057 ctxp->state = LPFC_NVMET_STE_DONE; 3058 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) && 3059 !(ctxp->flag & LPFC_NVMET_XBUSY)) { 3060 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3061 list_del_init(&ctxp->list); 3062 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3063 released = true; 3064 } 3065 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 3066 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3067 atomic_inc(&tgtp->xmt_abort_rsp); 3068 3069 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3070 "6316 ABTS cmpl oxid x%x flg x%x (%x) " 3071 "WCQE: %08x %08x %08x %08x\n", 3072 ctxp->oxid, ctxp->flag, released, 3073 wcqe->word0, wcqe->total_data_placed, 3074 result, wcqe->word3); 3075 3076 cmdwqe->context2 = NULL; 3077 cmdwqe->context3 = NULL; 3078 /* 3079 * if transport has released ctx, then can reuse it. Otherwise, 3080 * will be recycled by transport release call. 3081 */ 3082 if (released) 3083 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3084 3085 /* Since iaab/iaar are NOT set, there is no work left. 3086 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted 3087 * should have been called already. 3088 */ 3089 } 3090 3091 /** 3092 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 3093 * @phba: Pointer to HBA context object. 3094 * @cmdwqe: Pointer to driver command WQE object. 3095 * @wcqe: Pointer to driver response CQE object. 3096 * 3097 * The function is called from SLI ring event handler with no 3098 * lock held. This function is the completion handler for NVME ABTS for LS cmds 3099 * The function frees memory resources used for the NVME commands. 3100 **/ 3101 static void 3102 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3103 struct lpfc_wcqe_complete *wcqe) 3104 { 3105 struct lpfc_nvmet_rcv_ctx *ctxp; 3106 struct lpfc_nvmet_tgtport *tgtp; 3107 uint32_t result; 3108 3109 ctxp = cmdwqe->context2; 3110 result = wcqe->parameter; 3111 3112 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3113 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 3114 3115 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3116 "6083 Abort cmpl: ctx %p WCQE:%08x %08x %08x %08x\n", 3117 ctxp, wcqe->word0, wcqe->total_data_placed, 3118 result, wcqe->word3); 3119 3120 if (!ctxp) { 3121 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3122 "6415 NVMET LS Abort No ctx: WCQE: " 3123 "%08x %08x %08x %08x\n", 3124 wcqe->word0, wcqe->total_data_placed, 3125 result, wcqe->word3); 3126 3127 lpfc_sli_release_iocbq(phba, cmdwqe); 3128 return; 3129 } 3130 3131 if (ctxp->state != LPFC_NVMET_STE_LS_ABORT) { 3132 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 3133 "6416 NVMET LS abort cmpl state mismatch: " 3134 "oxid x%x: %d %d\n", 3135 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3136 } 3137 3138 cmdwqe->context2 = NULL; 3139 cmdwqe->context3 = NULL; 3140 lpfc_sli_release_iocbq(phba, cmdwqe); 3141 kfree(ctxp); 3142 } 3143 3144 static int 3145 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 3146 struct lpfc_nvmet_rcv_ctx *ctxp, 3147 uint32_t sid, uint16_t xri) 3148 { 3149 struct lpfc_nvmet_tgtport *tgtp; 3150 struct lpfc_iocbq *abts_wqeq; 3151 union lpfc_wqe128 *wqe_abts; 3152 struct lpfc_nodelist *ndlp; 3153 3154 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3155 "6067 ABTS: sid %x xri x%x/x%x\n", 3156 sid, xri, ctxp->wqeq->sli4_xritag); 3157 3158 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3159 3160 ndlp = lpfc_findnode_did(phba->pport, sid); 3161 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 3162 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3163 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3164 atomic_inc(&tgtp->xmt_abort_rsp_error); 3165 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3166 "6134 Drop ABTS - wrong NDLP state x%x.\n", 3167 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3168 3169 /* No failure to an ABTS request. */ 3170 return 0; 3171 } 3172 3173 abts_wqeq = ctxp->wqeq; 3174 wqe_abts = &abts_wqeq->wqe; 3175 3176 /* 3177 * Since we zero the whole WQE, we need to ensure we set the WQE fields 3178 * that were initialized in lpfc_sli4_nvmet_alloc. 3179 */ 3180 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 3181 3182 /* Word 5 */ 3183 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 3184 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 3185 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 3186 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 3187 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 3188 3189 /* Word 6 */ 3190 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 3191 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 3192 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 3193 abts_wqeq->sli4_xritag); 3194 3195 /* Word 7 */ 3196 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 3197 CMD_XMIT_SEQUENCE64_WQE); 3198 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 3199 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 3200 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 3201 3202 /* Word 8 */ 3203 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 3204 3205 /* Word 9 */ 3206 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 3207 /* Needs to be set by caller */ 3208 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 3209 3210 /* Word 10 */ 3211 bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1); 3212 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 3213 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 3214 LPFC_WQE_LENLOC_WORD12); 3215 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 3216 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 3217 3218 /* Word 11 */ 3219 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 3220 LPFC_WQE_CQ_ID_DEFAULT); 3221 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 3222 OTHER_COMMAND); 3223 3224 abts_wqeq->vport = phba->pport; 3225 abts_wqeq->context1 = ndlp; 3226 abts_wqeq->context2 = ctxp; 3227 abts_wqeq->context3 = NULL; 3228 abts_wqeq->rsvd2 = 0; 3229 /* hba_wqidx should already be setup from command we are aborting */ 3230 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 3231 abts_wqeq->iocb.ulpLe = 1; 3232 3233 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3234 "6069 Issue ABTS to xri x%x reqtag x%x\n", 3235 xri, abts_wqeq->iotag); 3236 return 1; 3237 } 3238 3239 static int 3240 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 3241 struct lpfc_nvmet_rcv_ctx *ctxp, 3242 uint32_t sid, uint16_t xri) 3243 { 3244 struct lpfc_nvmet_tgtport *tgtp; 3245 struct lpfc_iocbq *abts_wqeq; 3246 union lpfc_wqe128 *abts_wqe; 3247 struct lpfc_nodelist *ndlp; 3248 unsigned long flags; 3249 int rc; 3250 3251 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3252 if (!ctxp->wqeq) { 3253 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3254 ctxp->wqeq->hba_wqidx = 0; 3255 } 3256 3257 ndlp = lpfc_findnode_did(phba->pport, sid); 3258 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 3259 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3260 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3261 atomic_inc(&tgtp->xmt_abort_rsp_error); 3262 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3263 "6160 Drop ABORT - wrong NDLP state x%x.\n", 3264 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3265 3266 /* No failure to an ABTS request. */ 3267 spin_lock_irqsave(&ctxp->ctxlock, flags); 3268 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 3269 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3270 return 0; 3271 } 3272 3273 /* Issue ABTS for this WQE based on iotag */ 3274 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 3275 spin_lock_irqsave(&ctxp->ctxlock, flags); 3276 if (!ctxp->abort_wqeq) { 3277 atomic_inc(&tgtp->xmt_abort_rsp_error); 3278 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3279 "6161 ABORT failed: No wqeqs: " 3280 "xri: x%x\n", ctxp->oxid); 3281 /* No failure to an ABTS request. */ 3282 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 3283 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3284 return 0; 3285 } 3286 abts_wqeq = ctxp->abort_wqeq; 3287 abts_wqe = &abts_wqeq->wqe; 3288 ctxp->state = LPFC_NVMET_STE_ABORT; 3289 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3290 3291 /* Announce entry to new IO submit field. */ 3292 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3293 "6162 ABORT Request to rport DID x%06x " 3294 "for xri x%x x%x\n", 3295 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 3296 3297 /* If the hba is getting reset, this flag is set. It is 3298 * cleared when the reset is complete and rings reestablished. 3299 */ 3300 spin_lock_irqsave(&phba->hbalock, flags); 3301 /* driver queued commands are in process of being flushed */ 3302 if (phba->hba_flag & HBA_NVME_IOQ_FLUSH) { 3303 spin_unlock_irqrestore(&phba->hbalock, flags); 3304 atomic_inc(&tgtp->xmt_abort_rsp_error); 3305 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 3306 "6163 Driver in reset cleanup - flushing " 3307 "NVME Req now. hba_flag x%x oxid x%x\n", 3308 phba->hba_flag, ctxp->oxid); 3309 lpfc_sli_release_iocbq(phba, abts_wqeq); 3310 spin_lock_irqsave(&ctxp->ctxlock, flags); 3311 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 3312 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3313 return 0; 3314 } 3315 3316 /* Outstanding abort is in progress */ 3317 if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) { 3318 spin_unlock_irqrestore(&phba->hbalock, flags); 3319 atomic_inc(&tgtp->xmt_abort_rsp_error); 3320 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 3321 "6164 Outstanding NVME I/O Abort Request " 3322 "still pending on oxid x%x\n", 3323 ctxp->oxid); 3324 lpfc_sli_release_iocbq(phba, abts_wqeq); 3325 spin_lock_irqsave(&ctxp->ctxlock, flags); 3326 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 3327 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3328 return 0; 3329 } 3330 3331 /* Ready - mark outstanding as aborted by driver. */ 3332 abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED; 3333 3334 /* WQEs are reused. Clear stale data and set key fields to 3335 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag. 3336 */ 3337 memset(abts_wqe, 0, sizeof(union lpfc_wqe)); 3338 3339 /* word 3 */ 3340 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 3341 3342 /* word 7 */ 3343 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 3344 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 3345 3346 /* word 8 - tell the FW to abort the IO associated with this 3347 * outstanding exchange ID. 3348 */ 3349 abts_wqe->abort_cmd.wqe_com.abort_tag = ctxp->wqeq->sli4_xritag; 3350 3351 /* word 9 - this is the iotag for the abts_wqe completion. */ 3352 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 3353 abts_wqeq->iotag); 3354 3355 /* word 10 */ 3356 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 3357 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 3358 3359 /* word 11 */ 3360 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 3361 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 3362 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 3363 3364 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3365 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 3366 abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 3367 abts_wqeq->iocb_cmpl = 0; 3368 abts_wqeq->iocb_flag |= LPFC_IO_NVME; 3369 abts_wqeq->context2 = ctxp; 3370 abts_wqeq->vport = phba->pport; 3371 if (!ctxp->hdwq) 3372 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3373 3374 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3375 spin_unlock_irqrestore(&phba->hbalock, flags); 3376 if (rc == WQE_SUCCESS) { 3377 atomic_inc(&tgtp->xmt_abort_sol); 3378 return 0; 3379 } 3380 3381 atomic_inc(&tgtp->xmt_abort_rsp_error); 3382 spin_lock_irqsave(&ctxp->ctxlock, flags); 3383 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 3384 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3385 lpfc_sli_release_iocbq(phba, abts_wqeq); 3386 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3387 "6166 Failed ABORT issue_wqe with status x%x " 3388 "for oxid x%x.\n", 3389 rc, ctxp->oxid); 3390 return 1; 3391 } 3392 3393 static int 3394 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 3395 struct lpfc_nvmet_rcv_ctx *ctxp, 3396 uint32_t sid, uint16_t xri) 3397 { 3398 struct lpfc_nvmet_tgtport *tgtp; 3399 struct lpfc_iocbq *abts_wqeq; 3400 unsigned long flags; 3401 bool released = false; 3402 int rc; 3403 3404 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3405 if (!ctxp->wqeq) { 3406 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3407 ctxp->wqeq->hba_wqidx = 0; 3408 } 3409 3410 if (ctxp->state == LPFC_NVMET_STE_FREE) { 3411 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 3412 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 3413 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 3414 rc = WQE_BUSY; 3415 goto aerr; 3416 } 3417 ctxp->state = LPFC_NVMET_STE_ABORT; 3418 ctxp->entry_cnt++; 3419 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 3420 if (rc == 0) 3421 goto aerr; 3422 3423 spin_lock_irqsave(&phba->hbalock, flags); 3424 abts_wqeq = ctxp->wqeq; 3425 abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 3426 abts_wqeq->iocb_cmpl = NULL; 3427 abts_wqeq->iocb_flag |= LPFC_IO_NVMET; 3428 if (!ctxp->hdwq) 3429 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3430 3431 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3432 spin_unlock_irqrestore(&phba->hbalock, flags); 3433 if (rc == WQE_SUCCESS) { 3434 return 0; 3435 } 3436 3437 aerr: 3438 spin_lock_irqsave(&ctxp->ctxlock, flags); 3439 if (ctxp->flag & LPFC_NVMET_CTX_RLS) { 3440 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3441 list_del_init(&ctxp->list); 3442 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3443 released = true; 3444 } 3445 ctxp->flag &= ~(LPFC_NVMET_ABORT_OP | LPFC_NVMET_CTX_RLS); 3446 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3447 3448 atomic_inc(&tgtp->xmt_abort_rsp_error); 3449 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3450 "6135 Failed to Issue ABTS for oxid x%x. Status x%x " 3451 "(%x)\n", 3452 ctxp->oxid, rc, released); 3453 if (released) 3454 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3455 return 1; 3456 } 3457 3458 static int 3459 lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *phba, 3460 struct lpfc_nvmet_rcv_ctx *ctxp, 3461 uint32_t sid, uint16_t xri) 3462 { 3463 struct lpfc_nvmet_tgtport *tgtp; 3464 struct lpfc_iocbq *abts_wqeq; 3465 unsigned long flags; 3466 int rc; 3467 3468 if ((ctxp->state == LPFC_NVMET_STE_LS_RCV && ctxp->entry_cnt == 1) || 3469 (ctxp->state == LPFC_NVMET_STE_LS_RSP && ctxp->entry_cnt == 2)) { 3470 ctxp->state = LPFC_NVMET_STE_LS_ABORT; 3471 ctxp->entry_cnt++; 3472 } else { 3473 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 3474 "6418 NVMET LS abort state mismatch " 3475 "IO x%x: %d %d\n", 3476 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3477 ctxp->state = LPFC_NVMET_STE_LS_ABORT; 3478 } 3479 3480 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3481 if (!ctxp->wqeq) { 3482 /* Issue ABTS for this WQE based on iotag */ 3483 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 3484 if (!ctxp->wqeq) { 3485 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3486 "6068 Abort failed: No wqeqs: " 3487 "xri: x%x\n", xri); 3488 /* No failure to an ABTS request. */ 3489 kfree(ctxp); 3490 return 0; 3491 } 3492 } 3493 abts_wqeq = ctxp->wqeq; 3494 3495 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 3496 rc = WQE_BUSY; 3497 goto out; 3498 } 3499 3500 spin_lock_irqsave(&phba->hbalock, flags); 3501 abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 3502 abts_wqeq->iocb_cmpl = 0; 3503 abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS; 3504 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3505 spin_unlock_irqrestore(&phba->hbalock, flags); 3506 if (rc == WQE_SUCCESS) { 3507 atomic_inc(&tgtp->xmt_abort_unsol); 3508 return 0; 3509 } 3510 out: 3511 atomic_inc(&tgtp->xmt_abort_rsp_error); 3512 abts_wqeq->context2 = NULL; 3513 abts_wqeq->context3 = NULL; 3514 lpfc_sli_release_iocbq(phba, abts_wqeq); 3515 kfree(ctxp); 3516 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3517 "6056 Failed to Issue ABTS. Status x%x\n", rc); 3518 return 0; 3519 } 3520