xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_nvmet.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channsel Host Bus Adapters.                               *
4  * Copyright (C) 2017 Broadcom. All Rights Reserved. The term      *
5  * “Broadcom” refers to Broadcom Limited and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  ********************************************************************/
23 #include <linux/pci.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <asm/unaligned.h>
28 #include <linux/crc-t10dif.h>
29 #include <net/checksum.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_device.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_tcq.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
38 
39 #include <../drivers/nvme/host/nvme.h>
40 #include <linux/nvme-fc-driver.h>
41 #include <linux/nvme-fc.h>
42 
43 #include "lpfc_version.h"
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_logmsg.h"
55 #include "lpfc_crtn.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_debugfs.h"
58 
59 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *,
60 						 struct lpfc_nvmet_rcv_ctx *,
61 						 dma_addr_t rspbuf,
62 						 uint16_t rspsize);
63 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *,
64 						  struct lpfc_nvmet_rcv_ctx *);
65 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *,
66 					  struct lpfc_nvmet_rcv_ctx *,
67 					  uint32_t, uint16_t);
68 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *,
69 					    struct lpfc_nvmet_rcv_ctx *,
70 					    uint32_t, uint16_t);
71 static int lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *,
72 					   struct lpfc_nvmet_rcv_ctx *,
73 					   uint32_t, uint16_t);
74 
75 void
76 lpfc_nvmet_defer_release(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp)
77 {
78 	unsigned long iflag;
79 
80 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
81 			"6313 NVMET Defer ctx release xri x%x flg x%x\n",
82 			ctxp->oxid, ctxp->flag);
83 
84 	spin_lock_irqsave(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag);
85 	if (ctxp->flag & LPFC_NVMET_CTX_RLS) {
86 		spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock,
87 				       iflag);
88 		return;
89 	}
90 	ctxp->flag |= LPFC_NVMET_CTX_RLS;
91 	list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
92 	spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag);
93 }
94 
95 /**
96  * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response
97  * @phba: Pointer to HBA context object.
98  * @cmdwqe: Pointer to driver command WQE object.
99  * @wcqe: Pointer to driver response CQE object.
100  *
101  * The function is called from SLI ring event handler with no
102  * lock held. This function is the completion handler for NVME LS commands
103  * The function frees memory resources used for the NVME commands.
104  **/
105 static void
106 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
107 			  struct lpfc_wcqe_complete *wcqe)
108 {
109 	struct lpfc_nvmet_tgtport *tgtp;
110 	struct nvmefc_tgt_ls_req *rsp;
111 	struct lpfc_nvmet_rcv_ctx *ctxp;
112 	uint32_t status, result;
113 
114 	status = bf_get(lpfc_wcqe_c_status, wcqe);
115 	result = wcqe->parameter;
116 	ctxp = cmdwqe->context2;
117 
118 	if (ctxp->state != LPFC_NVMET_STE_LS_RSP || ctxp->entry_cnt != 2) {
119 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
120 				"6410 NVMET LS cmpl state mismatch IO x%x: "
121 				"%d %d\n",
122 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
123 	}
124 
125 	if (!phba->targetport)
126 		goto out;
127 
128 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
129 
130 	if (tgtp) {
131 		if (status) {
132 			atomic_inc(&tgtp->xmt_ls_rsp_error);
133 			if (status == IOERR_ABORT_REQUESTED)
134 				atomic_inc(&tgtp->xmt_ls_rsp_aborted);
135 			if (bf_get(lpfc_wcqe_c_xb, wcqe))
136 				atomic_inc(&tgtp->xmt_ls_rsp_xb_set);
137 		} else {
138 			atomic_inc(&tgtp->xmt_ls_rsp_cmpl);
139 		}
140 	}
141 
142 out:
143 	rsp = &ctxp->ctx.ls_req;
144 
145 	lpfc_nvmeio_data(phba, "NVMET LS  CMPL: xri x%x stat x%x result x%x\n",
146 			 ctxp->oxid, status, result);
147 
148 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
149 			"6038 NVMET LS rsp cmpl: %d %d oxid x%x\n",
150 			status, result, ctxp->oxid);
151 
152 	lpfc_nlp_put(cmdwqe->context1);
153 	cmdwqe->context2 = NULL;
154 	cmdwqe->context3 = NULL;
155 	lpfc_sli_release_iocbq(phba, cmdwqe);
156 	rsp->done(rsp);
157 	kfree(ctxp);
158 }
159 
160 /**
161  * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context
162  * @phba: HBA buffer is associated with
163  * @ctxp: context to clean up
164  * @mp: Buffer to free
165  *
166  * Description: Frees the given DMA buffer in the appropriate way given by
167  * reposting it to its associated RQ so it can be reused.
168  *
169  * Notes: Takes phba->hbalock.  Can be called with or without other locks held.
170  *
171  * Returns: None
172  **/
173 void
174 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf)
175 {
176 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
177 	struct lpfc_nvmet_rcv_ctx *ctxp = ctx_buf->context;
178 	struct lpfc_nvmet_tgtport *tgtp;
179 	struct fc_frame_header *fc_hdr;
180 	struct rqb_dmabuf *nvmebuf;
181 	struct lpfc_nvmet_ctx_info *infop;
182 	uint32_t *payload;
183 	uint32_t size, oxid, sid, rc;
184 	int cpu;
185 	unsigned long iflag;
186 
187 	if (ctxp->txrdy) {
188 		dma_pool_free(phba->txrdy_payload_pool, ctxp->txrdy,
189 			      ctxp->txrdy_phys);
190 		ctxp->txrdy = NULL;
191 		ctxp->txrdy_phys = 0;
192 	}
193 
194 	if (ctxp->state == LPFC_NVMET_STE_FREE) {
195 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
196 				"6411 NVMET free, already free IO x%x: %d %d\n",
197 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
198 	}
199 	ctxp->state = LPFC_NVMET_STE_FREE;
200 
201 	spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
202 	if (phba->sli4_hba.nvmet_io_wait_cnt) {
203 		list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list,
204 				 nvmebuf, struct rqb_dmabuf,
205 				 hbuf.list);
206 		phba->sli4_hba.nvmet_io_wait_cnt--;
207 		spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
208 				       iflag);
209 
210 		fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
211 		oxid = be16_to_cpu(fc_hdr->fh_ox_id);
212 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
213 		payload = (uint32_t *)(nvmebuf->dbuf.virt);
214 		size = nvmebuf->bytes_recv;
215 		sid = sli4_sid_from_fc_hdr(fc_hdr);
216 
217 		ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context;
218 		ctxp->wqeq = NULL;
219 		ctxp->txrdy = NULL;
220 		ctxp->offset = 0;
221 		ctxp->phba = phba;
222 		ctxp->size = size;
223 		ctxp->oxid = oxid;
224 		ctxp->sid = sid;
225 		ctxp->state = LPFC_NVMET_STE_RCV;
226 		ctxp->entry_cnt = 1;
227 		ctxp->flag = 0;
228 		ctxp->ctxbuf = ctx_buf;
229 		ctxp->rqb_buffer = (void *)nvmebuf;
230 		spin_lock_init(&ctxp->ctxlock);
231 
232 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
233 		if (ctxp->ts_cmd_nvme) {
234 			ctxp->ts_cmd_nvme = ktime_get_ns();
235 			ctxp->ts_nvme_data = 0;
236 			ctxp->ts_data_wqput = 0;
237 			ctxp->ts_isr_data = 0;
238 			ctxp->ts_data_nvme = 0;
239 			ctxp->ts_nvme_status = 0;
240 			ctxp->ts_status_wqput = 0;
241 			ctxp->ts_isr_status = 0;
242 			ctxp->ts_status_nvme = 0;
243 		}
244 #endif
245 		atomic_inc(&tgtp->rcv_fcp_cmd_in);
246 		/*
247 		 * The calling sequence should be:
248 		 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done
249 		 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
250 		 * When we return from nvmet_fc_rcv_fcp_req, all relevant info
251 		 * the NVME command / FC header is stored.
252 		 * A buffer has already been reposted for this IO, so just free
253 		 * the nvmebuf.
254 		 */
255 		rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req,
256 					  payload, size);
257 
258 		/* Process FCP command */
259 		if (rc == 0) {
260 			atomic_inc(&tgtp->rcv_fcp_cmd_out);
261 			nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
262 			return;
263 		}
264 
265 		/* Processing of FCP command is deferred */
266 		if (rc == -EOVERFLOW) {
267 			lpfc_nvmeio_data(phba,
268 					 "NVMET RCV BUSY: xri x%x sz %d "
269 					 "from %06x\n",
270 					 oxid, size, sid);
271 			/* defer repost rcv buffer till .defer_rcv callback */
272 			ctxp->flag &= ~LPFC_NVMET_DEFER_RCV_REPOST;
273 			atomic_inc(&tgtp->rcv_fcp_cmd_out);
274 			return;
275 		}
276 		atomic_inc(&tgtp->rcv_fcp_cmd_drop);
277 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
278 				"2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
279 				ctxp->oxid, rc,
280 				atomic_read(&tgtp->rcv_fcp_cmd_in),
281 				atomic_read(&tgtp->rcv_fcp_cmd_out),
282 				atomic_read(&tgtp->xmt_fcp_release));
283 
284 		lpfc_nvmet_defer_release(phba, ctxp);
285 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
286 		nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
287 		return;
288 	}
289 	spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
290 
291 	/*
292 	 * Use the CPU context list, from the MRQ the IO was received on
293 	 * (ctxp->idx), to save context structure.
294 	 */
295 	cpu = smp_processor_id();
296 	infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx);
297 	spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag);
298 	list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
299 	infop->nvmet_ctx_list_cnt++;
300 	spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag);
301 #endif
302 }
303 
304 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
305 static void
306 lpfc_nvmet_ktime(struct lpfc_hba *phba,
307 		 struct lpfc_nvmet_rcv_ctx *ctxp)
308 {
309 	uint64_t seg1, seg2, seg3, seg4, seg5;
310 	uint64_t seg6, seg7, seg8, seg9, seg10;
311 	uint64_t segsum;
312 
313 	if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme ||
314 	    !ctxp->ts_nvme_data || !ctxp->ts_data_wqput ||
315 	    !ctxp->ts_isr_data || !ctxp->ts_data_nvme ||
316 	    !ctxp->ts_nvme_status || !ctxp->ts_status_wqput ||
317 	    !ctxp->ts_isr_status || !ctxp->ts_status_nvme)
318 		return;
319 
320 	if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd)
321 		return;
322 	if (ctxp->ts_isr_cmd  > ctxp->ts_cmd_nvme)
323 		return;
324 	if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data)
325 		return;
326 	if (ctxp->ts_nvme_data > ctxp->ts_data_wqput)
327 		return;
328 	if (ctxp->ts_data_wqput > ctxp->ts_isr_data)
329 		return;
330 	if (ctxp->ts_isr_data > ctxp->ts_data_nvme)
331 		return;
332 	if (ctxp->ts_data_nvme > ctxp->ts_nvme_status)
333 		return;
334 	if (ctxp->ts_nvme_status > ctxp->ts_status_wqput)
335 		return;
336 	if (ctxp->ts_status_wqput > ctxp->ts_isr_status)
337 		return;
338 	if (ctxp->ts_isr_status > ctxp->ts_status_nvme)
339 		return;
340 	/*
341 	 * Segment 1 - Time from FCP command received by MSI-X ISR
342 	 * to FCP command is passed to NVME Layer.
343 	 * Segment 2 - Time from FCP command payload handed
344 	 * off to NVME Layer to Driver receives a Command op
345 	 * from NVME Layer.
346 	 * Segment 3 - Time from Driver receives a Command op
347 	 * from NVME Layer to Command is put on WQ.
348 	 * Segment 4 - Time from Driver WQ put is done
349 	 * to MSI-X ISR for Command cmpl.
350 	 * Segment 5 - Time from MSI-X ISR for Command cmpl to
351 	 * Command cmpl is passed to NVME Layer.
352 	 * Segment 6 - Time from Command cmpl is passed to NVME
353 	 * Layer to Driver receives a RSP op from NVME Layer.
354 	 * Segment 7 - Time from Driver receives a RSP op from
355 	 * NVME Layer to WQ put is done on TRSP FCP Status.
356 	 * Segment 8 - Time from Driver WQ put is done on TRSP
357 	 * FCP Status to MSI-X ISR for TRSP cmpl.
358 	 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to
359 	 * TRSP cmpl is passed to NVME Layer.
360 	 * Segment 10 - Time from FCP command received by
361 	 * MSI-X ISR to command is completed on wire.
362 	 * (Segments 1 thru 8) for READDATA / WRITEDATA
363 	 * (Segments 1 thru 4) for READDATA_RSP
364 	 */
365 	seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd;
366 	segsum = seg1;
367 
368 	seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd;
369 	if (segsum > seg2)
370 		return;
371 	seg2 -= segsum;
372 	segsum += seg2;
373 
374 	seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd;
375 	if (segsum > seg3)
376 		return;
377 	seg3 -= segsum;
378 	segsum += seg3;
379 
380 	seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd;
381 	if (segsum > seg4)
382 		return;
383 	seg4 -= segsum;
384 	segsum += seg4;
385 
386 	seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd;
387 	if (segsum > seg5)
388 		return;
389 	seg5 -= segsum;
390 	segsum += seg5;
391 
392 
393 	/* For auto rsp commands seg6 thru seg10 will be 0 */
394 	if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) {
395 		seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd;
396 		if (segsum > seg6)
397 			return;
398 		seg6 -= segsum;
399 		segsum += seg6;
400 
401 		seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd;
402 		if (segsum > seg7)
403 			return;
404 		seg7 -= segsum;
405 		segsum += seg7;
406 
407 		seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd;
408 		if (segsum > seg8)
409 			return;
410 		seg8 -= segsum;
411 		segsum += seg8;
412 
413 		seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd;
414 		if (segsum > seg9)
415 			return;
416 		seg9 -= segsum;
417 		segsum += seg9;
418 
419 		if (ctxp->ts_isr_status < ctxp->ts_isr_cmd)
420 			return;
421 		seg10 = (ctxp->ts_isr_status -
422 			ctxp->ts_isr_cmd);
423 	} else {
424 		if (ctxp->ts_isr_data < ctxp->ts_isr_cmd)
425 			return;
426 		seg6 =  0;
427 		seg7 =  0;
428 		seg8 =  0;
429 		seg9 =  0;
430 		seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd);
431 	}
432 
433 	phba->ktime_seg1_total += seg1;
434 	if (seg1 < phba->ktime_seg1_min)
435 		phba->ktime_seg1_min = seg1;
436 	else if (seg1 > phba->ktime_seg1_max)
437 		phba->ktime_seg1_max = seg1;
438 
439 	phba->ktime_seg2_total += seg2;
440 	if (seg2 < phba->ktime_seg2_min)
441 		phba->ktime_seg2_min = seg2;
442 	else if (seg2 > phba->ktime_seg2_max)
443 		phba->ktime_seg2_max = seg2;
444 
445 	phba->ktime_seg3_total += seg3;
446 	if (seg3 < phba->ktime_seg3_min)
447 		phba->ktime_seg3_min = seg3;
448 	else if (seg3 > phba->ktime_seg3_max)
449 		phba->ktime_seg3_max = seg3;
450 
451 	phba->ktime_seg4_total += seg4;
452 	if (seg4 < phba->ktime_seg4_min)
453 		phba->ktime_seg4_min = seg4;
454 	else if (seg4 > phba->ktime_seg4_max)
455 		phba->ktime_seg4_max = seg4;
456 
457 	phba->ktime_seg5_total += seg5;
458 	if (seg5 < phba->ktime_seg5_min)
459 		phba->ktime_seg5_min = seg5;
460 	else if (seg5 > phba->ktime_seg5_max)
461 		phba->ktime_seg5_max = seg5;
462 
463 	phba->ktime_data_samples++;
464 	if (!seg6)
465 		goto out;
466 
467 	phba->ktime_seg6_total += seg6;
468 	if (seg6 < phba->ktime_seg6_min)
469 		phba->ktime_seg6_min = seg6;
470 	else if (seg6 > phba->ktime_seg6_max)
471 		phba->ktime_seg6_max = seg6;
472 
473 	phba->ktime_seg7_total += seg7;
474 	if (seg7 < phba->ktime_seg7_min)
475 		phba->ktime_seg7_min = seg7;
476 	else if (seg7 > phba->ktime_seg7_max)
477 		phba->ktime_seg7_max = seg7;
478 
479 	phba->ktime_seg8_total += seg8;
480 	if (seg8 < phba->ktime_seg8_min)
481 		phba->ktime_seg8_min = seg8;
482 	else if (seg8 > phba->ktime_seg8_max)
483 		phba->ktime_seg8_max = seg8;
484 
485 	phba->ktime_seg9_total += seg9;
486 	if (seg9 < phba->ktime_seg9_min)
487 		phba->ktime_seg9_min = seg9;
488 	else if (seg9 > phba->ktime_seg9_max)
489 		phba->ktime_seg9_max = seg9;
490 out:
491 	phba->ktime_seg10_total += seg10;
492 	if (seg10 < phba->ktime_seg10_min)
493 		phba->ktime_seg10_min = seg10;
494 	else if (seg10 > phba->ktime_seg10_max)
495 		phba->ktime_seg10_max = seg10;
496 	phba->ktime_status_samples++;
497 }
498 #endif
499 
500 /**
501  * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response
502  * @phba: Pointer to HBA context object.
503  * @cmdwqe: Pointer to driver command WQE object.
504  * @wcqe: Pointer to driver response CQE object.
505  *
506  * The function is called from SLI ring event handler with no
507  * lock held. This function is the completion handler for NVME FCP commands
508  * The function frees memory resources used for the NVME commands.
509  **/
510 static void
511 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
512 			  struct lpfc_wcqe_complete *wcqe)
513 {
514 	struct lpfc_nvmet_tgtport *tgtp;
515 	struct nvmefc_tgt_fcp_req *rsp;
516 	struct lpfc_nvmet_rcv_ctx *ctxp;
517 	uint32_t status, result, op, start_clean, logerr;
518 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
519 	uint32_t id;
520 #endif
521 
522 	ctxp = cmdwqe->context2;
523 	ctxp->flag &= ~LPFC_NVMET_IO_INP;
524 
525 	rsp = &ctxp->ctx.fcp_req;
526 	op = rsp->op;
527 
528 	status = bf_get(lpfc_wcqe_c_status, wcqe);
529 	result = wcqe->parameter;
530 
531 	if (phba->targetport)
532 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
533 	else
534 		tgtp = NULL;
535 
536 	lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n",
537 			 ctxp->oxid, op, status);
538 
539 	if (status) {
540 		rsp->fcp_error = NVME_SC_DATA_XFER_ERROR;
541 		rsp->transferred_length = 0;
542 		if (tgtp) {
543 			atomic_inc(&tgtp->xmt_fcp_rsp_error);
544 			if (status == IOERR_ABORT_REQUESTED)
545 				atomic_inc(&tgtp->xmt_fcp_rsp_aborted);
546 		}
547 
548 		logerr = LOG_NVME_IOERR;
549 
550 		/* pick up SLI4 exhange busy condition */
551 		if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
552 			ctxp->flag |= LPFC_NVMET_XBUSY;
553 			logerr |= LOG_NVME_ABTS;
554 			if (tgtp)
555 				atomic_inc(&tgtp->xmt_fcp_rsp_xb_set);
556 
557 		} else {
558 			ctxp->flag &= ~LPFC_NVMET_XBUSY;
559 		}
560 
561 		lpfc_printf_log(phba, KERN_INFO, logerr,
562 				"6315 IO Error Cmpl xri x%x: %x/%x XBUSY:x%x\n",
563 				ctxp->oxid, status, result, ctxp->flag);
564 
565 	} else {
566 		rsp->fcp_error = NVME_SC_SUCCESS;
567 		if (op == NVMET_FCOP_RSP)
568 			rsp->transferred_length = rsp->rsplen;
569 		else
570 			rsp->transferred_length = rsp->transfer_length;
571 		if (tgtp)
572 			atomic_inc(&tgtp->xmt_fcp_rsp_cmpl);
573 	}
574 
575 	if ((op == NVMET_FCOP_READDATA_RSP) ||
576 	    (op == NVMET_FCOP_RSP)) {
577 		/* Sanity check */
578 		ctxp->state = LPFC_NVMET_STE_DONE;
579 		ctxp->entry_cnt++;
580 
581 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
582 		if (ctxp->ts_cmd_nvme) {
583 			if (rsp->op == NVMET_FCOP_READDATA_RSP) {
584 				ctxp->ts_isr_data =
585 					cmdwqe->isr_timestamp;
586 				ctxp->ts_data_nvme =
587 					ktime_get_ns();
588 				ctxp->ts_nvme_status =
589 					ctxp->ts_data_nvme;
590 				ctxp->ts_status_wqput =
591 					ctxp->ts_data_nvme;
592 				ctxp->ts_isr_status =
593 					ctxp->ts_data_nvme;
594 				ctxp->ts_status_nvme =
595 					ctxp->ts_data_nvme;
596 			} else {
597 				ctxp->ts_isr_status =
598 					cmdwqe->isr_timestamp;
599 				ctxp->ts_status_nvme =
600 					ktime_get_ns();
601 			}
602 		}
603 		if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
604 			id = smp_processor_id();
605 			if (ctxp->cpu != id)
606 				lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
607 						"6703 CPU Check cmpl: "
608 						"cpu %d expect %d\n",
609 						id, ctxp->cpu);
610 			if (ctxp->cpu < LPFC_CHECK_CPU_CNT)
611 				phba->cpucheck_cmpl_io[id]++;
612 		}
613 #endif
614 		rsp->done(rsp);
615 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
616 		if (ctxp->ts_cmd_nvme)
617 			lpfc_nvmet_ktime(phba, ctxp);
618 #endif
619 		/* lpfc_nvmet_xmt_fcp_release() will recycle the context */
620 	} else {
621 		ctxp->entry_cnt++;
622 		start_clean = offsetof(struct lpfc_iocbq, iocb_flag);
623 		memset(((char *)cmdwqe) + start_clean, 0,
624 		       (sizeof(struct lpfc_iocbq) - start_clean));
625 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
626 		if (ctxp->ts_cmd_nvme) {
627 			ctxp->ts_isr_data = cmdwqe->isr_timestamp;
628 			ctxp->ts_data_nvme = ktime_get_ns();
629 		}
630 		if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
631 			id = smp_processor_id();
632 			if (ctxp->cpu != id)
633 				lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
634 						"6704 CPU Check cmdcmpl: "
635 						"cpu %d expect %d\n",
636 						id, ctxp->cpu);
637 			if (ctxp->cpu < LPFC_CHECK_CPU_CNT)
638 				phba->cpucheck_ccmpl_io[id]++;
639 		}
640 #endif
641 		rsp->done(rsp);
642 	}
643 }
644 
645 static int
646 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
647 		      struct nvmefc_tgt_ls_req *rsp)
648 {
649 	struct lpfc_nvmet_rcv_ctx *ctxp =
650 		container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_req);
651 	struct lpfc_hba *phba = ctxp->phba;
652 	struct hbq_dmabuf *nvmebuf =
653 		(struct hbq_dmabuf *)ctxp->rqb_buffer;
654 	struct lpfc_iocbq *nvmewqeq;
655 	struct lpfc_nvmet_tgtport *nvmep = tgtport->private;
656 	struct lpfc_dmabuf dmabuf;
657 	struct ulp_bde64 bpl;
658 	int rc;
659 
660 	if (phba->pport->load_flag & FC_UNLOADING)
661 		return -ENODEV;
662 
663 	if (phba->pport->load_flag & FC_UNLOADING)
664 		return -ENODEV;
665 
666 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
667 			"6023 NVMET LS rsp oxid x%x\n", ctxp->oxid);
668 
669 	if ((ctxp->state != LPFC_NVMET_STE_LS_RCV) ||
670 	    (ctxp->entry_cnt != 1)) {
671 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
672 				"6412 NVMET LS rsp state mismatch "
673 				"oxid x%x: %d %d\n",
674 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
675 	}
676 	ctxp->state = LPFC_NVMET_STE_LS_RSP;
677 	ctxp->entry_cnt++;
678 
679 	nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, ctxp, rsp->rspdma,
680 				      rsp->rsplen);
681 	if (nvmewqeq == NULL) {
682 		atomic_inc(&nvmep->xmt_ls_drop);
683 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
684 				"6150 LS Drop IO x%x: Prep\n",
685 				ctxp->oxid);
686 		lpfc_in_buf_free(phba, &nvmebuf->dbuf);
687 		atomic_inc(&nvmep->xmt_ls_abort);
688 		lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp,
689 						ctxp->sid, ctxp->oxid);
690 		return -ENOMEM;
691 	}
692 
693 	/* Save numBdes for bpl2sgl */
694 	nvmewqeq->rsvd2 = 1;
695 	nvmewqeq->hba_wqidx = 0;
696 	nvmewqeq->context3 = &dmabuf;
697 	dmabuf.virt = &bpl;
698 	bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow;
699 	bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh;
700 	bpl.tus.f.bdeSize = rsp->rsplen;
701 	bpl.tus.f.bdeFlags = 0;
702 	bpl.tus.w = le32_to_cpu(bpl.tus.w);
703 
704 	nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_rsp_cmp;
705 	nvmewqeq->iocb_cmpl = NULL;
706 	nvmewqeq->context2 = ctxp;
707 
708 	lpfc_nvmeio_data(phba, "NVMET LS  RESP: xri x%x wqidx x%x len x%x\n",
709 			 ctxp->oxid, nvmewqeq->hba_wqidx, rsp->rsplen);
710 
711 	rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, nvmewqeq);
712 	if (rc == WQE_SUCCESS) {
713 		/*
714 		 * Okay to repost buffer here, but wait till cmpl
715 		 * before freeing ctxp and iocbq.
716 		 */
717 		lpfc_in_buf_free(phba, &nvmebuf->dbuf);
718 		ctxp->rqb_buffer = 0;
719 		atomic_inc(&nvmep->xmt_ls_rsp);
720 		return 0;
721 	}
722 	/* Give back resources */
723 	atomic_inc(&nvmep->xmt_ls_drop);
724 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
725 			"6151 LS Drop IO x%x: Issue %d\n",
726 			ctxp->oxid, rc);
727 
728 	lpfc_nlp_put(nvmewqeq->context1);
729 
730 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
731 	atomic_inc(&nvmep->xmt_ls_abort);
732 	lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid);
733 	return -ENXIO;
734 }
735 
736 static int
737 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
738 		      struct nvmefc_tgt_fcp_req *rsp)
739 {
740 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
741 	struct lpfc_nvmet_rcv_ctx *ctxp =
742 		container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
743 	struct lpfc_hba *phba = ctxp->phba;
744 	struct lpfc_iocbq *nvmewqeq;
745 	int rc;
746 
747 	if (phba->pport->load_flag & FC_UNLOADING) {
748 		rc = -ENODEV;
749 		goto aerr;
750 	}
751 
752 	if (phba->pport->load_flag & FC_UNLOADING) {
753 		rc = -ENODEV;
754 		goto aerr;
755 	}
756 
757 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
758 	if (ctxp->ts_cmd_nvme) {
759 		if (rsp->op == NVMET_FCOP_RSP)
760 			ctxp->ts_nvme_status = ktime_get_ns();
761 		else
762 			ctxp->ts_nvme_data = ktime_get_ns();
763 	}
764 	if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
765 		int id = smp_processor_id();
766 		ctxp->cpu = id;
767 		if (id < LPFC_CHECK_CPU_CNT)
768 			phba->cpucheck_xmt_io[id]++;
769 		if (rsp->hwqid != id) {
770 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
771 					"6705 CPU Check OP: "
772 					"cpu %d expect %d\n",
773 					id, rsp->hwqid);
774 			ctxp->cpu = rsp->hwqid;
775 		}
776 	}
777 #endif
778 
779 	/* Sanity check */
780 	if ((ctxp->flag & LPFC_NVMET_ABTS_RCV) ||
781 	    (ctxp->state == LPFC_NVMET_STE_ABORT)) {
782 		atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
783 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
784 				"6102 IO xri x%x aborted\n",
785 				ctxp->oxid);
786 		rc = -ENXIO;
787 		goto aerr;
788 	}
789 
790 	nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp);
791 	if (nvmewqeq == NULL) {
792 		atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
793 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
794 				"6152 FCP Drop IO x%x: Prep\n",
795 				ctxp->oxid);
796 		rc = -ENXIO;
797 		goto aerr;
798 	}
799 
800 	nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp;
801 	nvmewqeq->iocb_cmpl = NULL;
802 	nvmewqeq->context2 = ctxp;
803 	nvmewqeq->iocb_flag |=  LPFC_IO_NVMET;
804 	ctxp->wqeq->hba_wqidx = rsp->hwqid;
805 
806 	lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n",
807 			 ctxp->oxid, rsp->op, rsp->rsplen);
808 
809 	ctxp->flag |= LPFC_NVMET_IO_INP;
810 	rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq);
811 	if (rc == WQE_SUCCESS) {
812 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
813 		if (!ctxp->ts_cmd_nvme)
814 			return 0;
815 		if (rsp->op == NVMET_FCOP_RSP)
816 			ctxp->ts_status_wqput = ktime_get_ns();
817 		else
818 			ctxp->ts_data_wqput = ktime_get_ns();
819 #endif
820 		return 0;
821 	}
822 
823 	/* Give back resources */
824 	atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
825 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
826 			"6153 FCP Drop IO x%x: Issue: %d\n",
827 			ctxp->oxid, rc);
828 
829 	ctxp->wqeq->hba_wqidx = 0;
830 	nvmewqeq->context2 = NULL;
831 	nvmewqeq->context3 = NULL;
832 	rc = -EBUSY;
833 aerr:
834 	return rc;
835 }
836 
837 static void
838 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
839 {
840 	struct lpfc_nvmet_tgtport *tport = targetport->private;
841 
842 	/* release any threads waiting for the unreg to complete */
843 	complete(&tport->tport_unreg_done);
844 }
845 
846 static void
847 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
848 			 struct nvmefc_tgt_fcp_req *req)
849 {
850 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
851 	struct lpfc_nvmet_rcv_ctx *ctxp =
852 		container_of(req, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
853 	struct lpfc_hba *phba = ctxp->phba;
854 	unsigned long flags;
855 
856 	if (phba->pport->load_flag & FC_UNLOADING)
857 		return;
858 
859 	if (phba->pport->load_flag & FC_UNLOADING)
860 		return;
861 
862 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
863 			"6103 NVMET Abort op: oxri x%x flg x%x ste %d\n",
864 			ctxp->oxid, ctxp->flag, ctxp->state);
865 
866 	lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n",
867 			 ctxp->oxid, ctxp->flag, ctxp->state);
868 
869 	atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
870 
871 	spin_lock_irqsave(&ctxp->ctxlock, flags);
872 	ctxp->state = LPFC_NVMET_STE_ABORT;
873 
874 	/* Since iaab/iaar are NOT set, we need to check
875 	 * if the firmware is in process of aborting IO
876 	 */
877 	if (ctxp->flag & LPFC_NVMET_XBUSY) {
878 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
879 		return;
880 	}
881 	ctxp->flag |= LPFC_NVMET_ABORT_OP;
882 
883 	/* An state of LPFC_NVMET_STE_RCV means we have just received
884 	 * the NVME command and have not started processing it.
885 	 * (by issuing any IO WQEs on this exchange yet)
886 	 */
887 	if (ctxp->state == LPFC_NVMET_STE_RCV)
888 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
889 						 ctxp->oxid);
890 	else
891 		lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
892 					       ctxp->oxid);
893 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
894 }
895 
896 static void
897 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
898 			   struct nvmefc_tgt_fcp_req *rsp)
899 {
900 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
901 	struct lpfc_nvmet_rcv_ctx *ctxp =
902 		container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
903 	struct lpfc_hba *phba = ctxp->phba;
904 	unsigned long flags;
905 	bool aborting = false;
906 
907 	if (ctxp->state != LPFC_NVMET_STE_DONE &&
908 	    ctxp->state != LPFC_NVMET_STE_ABORT) {
909 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
910 				"6413 NVMET release bad state %d %d oxid x%x\n",
911 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
912 	}
913 
914 	spin_lock_irqsave(&ctxp->ctxlock, flags);
915 	if ((ctxp->flag & LPFC_NVMET_ABORT_OP) ||
916 	    (ctxp->flag & LPFC_NVMET_XBUSY)) {
917 		aborting = true;
918 		/* let the abort path do the real release */
919 		lpfc_nvmet_defer_release(phba, ctxp);
920 	}
921 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
922 
923 	lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid,
924 			 ctxp->state, aborting);
925 
926 	atomic_inc(&lpfc_nvmep->xmt_fcp_release);
927 
928 	if (aborting)
929 		return;
930 
931 	lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
932 }
933 
934 static void
935 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport,
936 		     struct nvmefc_tgt_fcp_req *rsp)
937 {
938 	struct lpfc_nvmet_tgtport *tgtp;
939 	struct lpfc_nvmet_rcv_ctx *ctxp =
940 		container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
941 	struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
942 	struct lpfc_hba *phba = ctxp->phba;
943 
944 	lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n",
945 			 ctxp->oxid, ctxp->size, smp_processor_id());
946 
947 	tgtp = phba->targetport->private;
948 	atomic_inc(&tgtp->rcv_fcp_cmd_defer);
949 	if (ctxp->flag & LPFC_NVMET_DEFER_RCV_REPOST)
950 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
951 	else
952 		nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
953 	ctxp->flag &= ~LPFC_NVMET_DEFER_RCV_REPOST;
954 }
955 
956 static struct nvmet_fc_target_template lpfc_tgttemplate = {
957 	.targetport_delete = lpfc_nvmet_targetport_delete,
958 	.xmt_ls_rsp     = lpfc_nvmet_xmt_ls_rsp,
959 	.fcp_op         = lpfc_nvmet_xmt_fcp_op,
960 	.fcp_abort      = lpfc_nvmet_xmt_fcp_abort,
961 	.fcp_req_release = lpfc_nvmet_xmt_fcp_release,
962 	.defer_rcv	= lpfc_nvmet_defer_rcv,
963 
964 	.max_hw_queues  = 1,
965 	.max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
966 	.max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
967 	.dma_boundary = 0xFFFFFFFF,
968 
969 	/* optional features */
970 	.target_features = 0,
971 	/* sizes of additional private data for data structures */
972 	.target_priv_sz = sizeof(struct lpfc_nvmet_tgtport),
973 };
974 
975 static void
976 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba,
977 		struct lpfc_nvmet_ctx_info *infop)
978 {
979 	struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf;
980 	unsigned long flags;
981 
982 	spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags);
983 	list_for_each_entry_safe(ctx_buf, next_ctx_buf,
984 				&infop->nvmet_ctx_list, list) {
985 		spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
986 		list_del_init(&ctx_buf->list);
987 		spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
988 
989 		__lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag);
990 		ctx_buf->sglq->state = SGL_FREED;
991 		ctx_buf->sglq->ndlp = NULL;
992 
993 		spin_lock(&phba->sli4_hba.sgl_list_lock);
994 		list_add_tail(&ctx_buf->sglq->list,
995 				&phba->sli4_hba.lpfc_nvmet_sgl_list);
996 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
997 
998 		lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
999 		kfree(ctx_buf->context);
1000 	}
1001 	spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags);
1002 }
1003 
1004 static void
1005 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba)
1006 {
1007 	struct lpfc_nvmet_ctx_info *infop;
1008 	int i, j;
1009 
1010 	/* The first context list, MRQ 0 CPU 0 */
1011 	infop = phba->sli4_hba.nvmet_ctx_info;
1012 	if (!infop)
1013 		return;
1014 
1015 	/* Cycle the the entire CPU context list for every MRQ */
1016 	for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
1017 		for (j = 0; j < phba->sli4_hba.num_present_cpu; j++) {
1018 			__lpfc_nvmet_clean_io_for_cpu(phba, infop);
1019 			infop++; /* next */
1020 		}
1021 	}
1022 	kfree(phba->sli4_hba.nvmet_ctx_info);
1023 	phba->sli4_hba.nvmet_ctx_info = NULL;
1024 }
1025 
1026 static int
1027 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba)
1028 {
1029 	struct lpfc_nvmet_ctxbuf *ctx_buf;
1030 	struct lpfc_iocbq *nvmewqe;
1031 	union lpfc_wqe128 *wqe;
1032 	struct lpfc_nvmet_ctx_info *last_infop;
1033 	struct lpfc_nvmet_ctx_info *infop;
1034 	int i, j, idx;
1035 
1036 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
1037 			"6403 Allocate NVMET resources for %d XRIs\n",
1038 			phba->sli4_hba.nvmet_xri_cnt);
1039 
1040 	phba->sli4_hba.nvmet_ctx_info = kcalloc(
1041 		phba->sli4_hba.num_present_cpu * phba->cfg_nvmet_mrq,
1042 		sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL);
1043 	if (!phba->sli4_hba.nvmet_ctx_info) {
1044 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1045 				"6419 Failed allocate memory for "
1046 				"nvmet context lists\n");
1047 		return -ENOMEM;
1048 	}
1049 
1050 	/*
1051 	 * Assuming X CPUs in the system, and Y MRQs, allocate some
1052 	 * lpfc_nvmet_ctx_info structures as follows:
1053 	 *
1054 	 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0
1055 	 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1
1056 	 * ...
1057 	 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY
1058 	 *
1059 	 * Each line represents a MRQ "silo" containing an entry for
1060 	 * every CPU.
1061 	 *
1062 	 * MRQ X is initially assumed to be associated with CPU X, thus
1063 	 * contexts are initially distributed across all MRQs using
1064 	 * the MRQ index (N) as follows cpuN/mrqN. When contexts are
1065 	 * freed, the are freed to the MRQ silo based on the CPU number
1066 	 * of the IO completion. Thus a context that was allocated for MRQ A
1067 	 * whose IO completed on CPU B will be freed to cpuB/mrqA.
1068 	 */
1069 	infop = phba->sli4_hba.nvmet_ctx_info;
1070 	for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1071 		for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1072 			INIT_LIST_HEAD(&infop->nvmet_ctx_list);
1073 			spin_lock_init(&infop->nvmet_ctx_list_lock);
1074 			infop->nvmet_ctx_list_cnt = 0;
1075 			infop++;
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * Setup the next CPU context info ptr for each MRQ.
1081 	 * MRQ 0 will cycle thru CPUs 0 - X separately from
1082 	 * MRQ 1 cycling thru CPUs 0 - X, and so on.
1083 	 */
1084 	for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1085 		last_infop = lpfc_get_ctx_list(phba, 0, j);
1086 		for (i = phba->sli4_hba.num_present_cpu - 1;  i >= 0; i--) {
1087 			infop = lpfc_get_ctx_list(phba, i, j);
1088 			infop->nvmet_ctx_next_cpu = last_infop;
1089 			last_infop = infop;
1090 		}
1091 	}
1092 
1093 	/* For all nvmet xris, allocate resources needed to process a
1094 	 * received command on a per xri basis.
1095 	 */
1096 	idx = 0;
1097 	for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) {
1098 		ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL);
1099 		if (!ctx_buf) {
1100 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1101 					"6404 Ran out of memory for NVMET\n");
1102 			return -ENOMEM;
1103 		}
1104 
1105 		ctx_buf->context = kzalloc(sizeof(*ctx_buf->context),
1106 					   GFP_KERNEL);
1107 		if (!ctx_buf->context) {
1108 			kfree(ctx_buf);
1109 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1110 					"6405 Ran out of NVMET "
1111 					"context memory\n");
1112 			return -ENOMEM;
1113 		}
1114 		ctx_buf->context->ctxbuf = ctx_buf;
1115 		ctx_buf->context->state = LPFC_NVMET_STE_FREE;
1116 
1117 		ctx_buf->iocbq = lpfc_sli_get_iocbq(phba);
1118 		if (!ctx_buf->iocbq) {
1119 			kfree(ctx_buf->context);
1120 			kfree(ctx_buf);
1121 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1122 					"6406 Ran out of NVMET iocb/WQEs\n");
1123 			return -ENOMEM;
1124 		}
1125 		ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET;
1126 		nvmewqe = ctx_buf->iocbq;
1127 		wqe = (union lpfc_wqe128 *)&nvmewqe->wqe;
1128 		/* Initialize WQE */
1129 		memset(wqe, 0, sizeof(union lpfc_wqe));
1130 		/* Word 7 */
1131 		bf_set(wqe_ct, &wqe->generic.wqe_com, SLI4_CT_RPI);
1132 		bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3);
1133 		/* Word 10 */
1134 		bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1);
1135 		bf_set(wqe_ebde_cnt, &wqe->generic.wqe_com, 0);
1136 		bf_set(wqe_qosd, &wqe->generic.wqe_com, 0);
1137 
1138 		ctx_buf->iocbq->context1 = NULL;
1139 		spin_lock(&phba->sli4_hba.sgl_list_lock);
1140 		ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq);
1141 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
1142 		if (!ctx_buf->sglq) {
1143 			lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1144 			kfree(ctx_buf->context);
1145 			kfree(ctx_buf);
1146 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1147 					"6407 Ran out of NVMET XRIs\n");
1148 			return -ENOMEM;
1149 		}
1150 
1151 		/*
1152 		 * Add ctx to MRQidx context list. Our initial assumption
1153 		 * is MRQidx will be associated with CPUidx. This association
1154 		 * can change on the fly.
1155 		 */
1156 		infop = lpfc_get_ctx_list(phba, idx, idx);
1157 		spin_lock(&infop->nvmet_ctx_list_lock);
1158 		list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
1159 		infop->nvmet_ctx_list_cnt++;
1160 		spin_unlock(&infop->nvmet_ctx_list_lock);
1161 
1162 		/* Spread ctx structures evenly across all MRQs */
1163 		idx++;
1164 		if (idx >= phba->cfg_nvmet_mrq)
1165 			idx = 0;
1166 	}
1167 
1168 	infop = phba->sli4_hba.nvmet_ctx_info;
1169 	for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1170 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1171 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1172 					"6408 TOTAL NVMET ctx for CPU %d "
1173 					"MRQ %d: cnt %d nextcpu %p\n",
1174 					i, j, infop->nvmet_ctx_list_cnt,
1175 					infop->nvmet_ctx_next_cpu);
1176 			infop++;
1177 		}
1178 	}
1179 	return 0;
1180 }
1181 
1182 int
1183 lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
1184 {
1185 	struct lpfc_vport  *vport = phba->pport;
1186 	struct lpfc_nvmet_tgtport *tgtp;
1187 	struct nvmet_fc_port_info pinfo;
1188 	int error;
1189 
1190 	if (phba->targetport)
1191 		return 0;
1192 
1193 	error = lpfc_nvmet_setup_io_context(phba);
1194 	if (error)
1195 		return error;
1196 
1197 	memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info));
1198 	pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
1199 	pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
1200 	pinfo.port_id = vport->fc_myDID;
1201 
1202 	/* Limit to LPFC_MAX_NVME_SEG_CNT.
1203 	 * For now need + 1 to get around NVME transport logic.
1204 	 */
1205 	if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
1206 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1207 				"6400 Reducing sg segment cnt to %d\n",
1208 				LPFC_MAX_NVME_SEG_CNT);
1209 		phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
1210 	} else {
1211 		phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
1212 	}
1213 	lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
1214 	lpfc_tgttemplate.max_hw_queues = phba->cfg_nvme_io_channel;
1215 	lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP;
1216 
1217 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1218 	error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
1219 					     &phba->pcidev->dev,
1220 					     &phba->targetport);
1221 #else
1222 	error = -ENOENT;
1223 #endif
1224 	if (error) {
1225 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
1226 				"6025 Cannot register NVME targetport x%x: "
1227 				"portnm %llx nodenm %llx segs %d qs %d\n",
1228 				error,
1229 				pinfo.port_name, pinfo.node_name,
1230 				lpfc_tgttemplate.max_sgl_segments,
1231 				lpfc_tgttemplate.max_hw_queues);
1232 		phba->targetport = NULL;
1233 		phba->nvmet_support = 0;
1234 
1235 		lpfc_nvmet_cleanup_io_context(phba);
1236 
1237 	} else {
1238 		tgtp = (struct lpfc_nvmet_tgtport *)
1239 			phba->targetport->private;
1240 		tgtp->phba = phba;
1241 
1242 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1243 				"6026 Registered NVME "
1244 				"targetport: %p, private %p "
1245 				"portnm %llx nodenm %llx segs %d qs %d\n",
1246 				phba->targetport, tgtp,
1247 				pinfo.port_name, pinfo.node_name,
1248 				lpfc_tgttemplate.max_sgl_segments,
1249 				lpfc_tgttemplate.max_hw_queues);
1250 
1251 		atomic_set(&tgtp->rcv_ls_req_in, 0);
1252 		atomic_set(&tgtp->rcv_ls_req_out, 0);
1253 		atomic_set(&tgtp->rcv_ls_req_drop, 0);
1254 		atomic_set(&tgtp->xmt_ls_abort, 0);
1255 		atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
1256 		atomic_set(&tgtp->xmt_ls_rsp, 0);
1257 		atomic_set(&tgtp->xmt_ls_drop, 0);
1258 		atomic_set(&tgtp->xmt_ls_rsp_error, 0);
1259 		atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0);
1260 		atomic_set(&tgtp->xmt_ls_rsp_aborted, 0);
1261 		atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
1262 		atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
1263 		atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
1264 		atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
1265 		atomic_set(&tgtp->xmt_fcp_drop, 0);
1266 		atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
1267 		atomic_set(&tgtp->xmt_fcp_read, 0);
1268 		atomic_set(&tgtp->xmt_fcp_write, 0);
1269 		atomic_set(&tgtp->xmt_fcp_rsp, 0);
1270 		atomic_set(&tgtp->xmt_fcp_release, 0);
1271 		atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
1272 		atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
1273 		atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0);
1274 		atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0);
1275 		atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
1276 		atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0);
1277 		atomic_set(&tgtp->xmt_fcp_abort, 0);
1278 		atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
1279 		atomic_set(&tgtp->xmt_abort_unsol, 0);
1280 		atomic_set(&tgtp->xmt_abort_sol, 0);
1281 		atomic_set(&tgtp->xmt_abort_rsp, 0);
1282 		atomic_set(&tgtp->xmt_abort_rsp_error, 0);
1283 	}
1284 	return error;
1285 }
1286 
1287 int
1288 lpfc_nvmet_update_targetport(struct lpfc_hba *phba)
1289 {
1290 	struct lpfc_vport  *vport = phba->pport;
1291 
1292 	if (!phba->targetport)
1293 		return 0;
1294 
1295 	lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
1296 			 "6007 Update NVMET port %p did x%x\n",
1297 			 phba->targetport, vport->fc_myDID);
1298 
1299 	phba->targetport->port_id = vport->fc_myDID;
1300 	return 0;
1301 }
1302 
1303 /**
1304  * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort
1305  * @phba: pointer to lpfc hba data structure.
1306  * @axri: pointer to the nvmet xri abort wcqe structure.
1307  *
1308  * This routine is invoked by the worker thread to process a SLI4 fast-path
1309  * NVMET aborted xri.
1310  **/
1311 void
1312 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba,
1313 			    struct sli4_wcqe_xri_aborted *axri)
1314 {
1315 	uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
1316 	uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
1317 	struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp;
1318 	struct lpfc_nvmet_tgtport *tgtp;
1319 	struct lpfc_nodelist *ndlp;
1320 	unsigned long iflag = 0;
1321 	int rrq_empty = 0;
1322 	bool released = false;
1323 
1324 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1325 			"6317 XB aborted xri x%x rxid x%x\n", xri, rxid);
1326 
1327 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
1328 		return;
1329 
1330 	if (phba->targetport) {
1331 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1332 		atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe);
1333 	}
1334 
1335 	spin_lock_irqsave(&phba->hbalock, iflag);
1336 	spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1337 	list_for_each_entry_safe(ctxp, next_ctxp,
1338 				 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1339 				 list) {
1340 		if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1341 			continue;
1342 
1343 		/* Check if we already received a free context call
1344 		 * and we have completed processing an abort situation.
1345 		 */
1346 		if (ctxp->flag & LPFC_NVMET_CTX_RLS &&
1347 		    !(ctxp->flag & LPFC_NVMET_ABORT_OP)) {
1348 			list_del(&ctxp->list);
1349 			released = true;
1350 		}
1351 		ctxp->flag &= ~LPFC_NVMET_XBUSY;
1352 		spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1353 
1354 		rrq_empty = list_empty(&phba->active_rrq_list);
1355 		spin_unlock_irqrestore(&phba->hbalock, iflag);
1356 		ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1357 		if (ndlp && NLP_CHK_NODE_ACT(ndlp) &&
1358 		    (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE ||
1359 		     ndlp->nlp_state == NLP_STE_MAPPED_NODE)) {
1360 			lpfc_set_rrq_active(phba, ndlp,
1361 				ctxp->ctxbuf->sglq->sli4_lxritag,
1362 				rxid, 1);
1363 			lpfc_sli4_abts_err_handler(phba, ndlp, axri);
1364 		}
1365 
1366 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1367 				"6318 XB aborted oxid %x flg x%x (%x)\n",
1368 				ctxp->oxid, ctxp->flag, released);
1369 		if (released)
1370 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1371 
1372 		if (rrq_empty)
1373 			lpfc_worker_wake_up(phba);
1374 		return;
1375 	}
1376 	spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1377 	spin_unlock_irqrestore(&phba->hbalock, iflag);
1378 }
1379 
1380 int
1381 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport,
1382 			   struct fc_frame_header *fc_hdr)
1383 
1384 {
1385 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1386 	struct lpfc_hba *phba = vport->phba;
1387 	struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp;
1388 	struct nvmefc_tgt_fcp_req *rsp;
1389 	uint16_t xri;
1390 	unsigned long iflag = 0;
1391 
1392 	xri = be16_to_cpu(fc_hdr->fh_ox_id);
1393 
1394 	spin_lock_irqsave(&phba->hbalock, iflag);
1395 	spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1396 	list_for_each_entry_safe(ctxp, next_ctxp,
1397 				 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1398 				 list) {
1399 		if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1400 			continue;
1401 
1402 		spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1403 		spin_unlock_irqrestore(&phba->hbalock, iflag);
1404 
1405 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
1406 		ctxp->flag |= LPFC_NVMET_ABTS_RCV;
1407 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1408 
1409 		lpfc_nvmeio_data(phba,
1410 			"NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1411 			xri, smp_processor_id(), 0);
1412 
1413 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1414 				"6319 NVMET Rcv ABTS:acc xri x%x\n", xri);
1415 
1416 		rsp = &ctxp->ctx.fcp_req;
1417 		nvmet_fc_rcv_fcp_abort(phba->targetport, rsp);
1418 
1419 		/* Respond with BA_ACC accordingly */
1420 		lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1421 		return 0;
1422 	}
1423 	spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1424 	spin_unlock_irqrestore(&phba->hbalock, iflag);
1425 
1426 	lpfc_nvmeio_data(phba, "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1427 			 xri, smp_processor_id(), 1);
1428 
1429 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1430 			"6320 NVMET Rcv ABTS:rjt xri x%x\n", xri);
1431 
1432 	/* Respond with BA_RJT accordingly */
1433 	lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0);
1434 #endif
1435 	return 0;
1436 }
1437 
1438 void
1439 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba)
1440 {
1441 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1442 	struct lpfc_nvmet_tgtport *tgtp;
1443 
1444 	if (phba->nvmet_support == 0)
1445 		return;
1446 	if (phba->targetport) {
1447 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1448 		init_completion(&tgtp->tport_unreg_done);
1449 		nvmet_fc_unregister_targetport(phba->targetport);
1450 		wait_for_completion_timeout(&tgtp->tport_unreg_done, 5);
1451 		lpfc_nvmet_cleanup_io_context(phba);
1452 	}
1453 	phba->targetport = NULL;
1454 #endif
1455 }
1456 
1457 /**
1458  * lpfc_nvmet_unsol_ls_buffer - Process an unsolicited event data buffer
1459  * @phba: pointer to lpfc hba data structure.
1460  * @pring: pointer to a SLI ring.
1461  * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
1462  *
1463  * This routine is used for processing the WQE associated with a unsolicited
1464  * event. It first determines whether there is an existing ndlp that matches
1465  * the DID from the unsolicited WQE. If not, it will create a new one with
1466  * the DID from the unsolicited WQE. The ELS command from the unsolicited
1467  * WQE is then used to invoke the proper routine and to set up proper state
1468  * of the discovery state machine.
1469  **/
1470 static void
1471 lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1472 			   struct hbq_dmabuf *nvmebuf)
1473 {
1474 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1475 	struct lpfc_nvmet_tgtport *tgtp;
1476 	struct fc_frame_header *fc_hdr;
1477 	struct lpfc_nvmet_rcv_ctx *ctxp;
1478 	uint32_t *payload;
1479 	uint32_t size, oxid, sid, rc;
1480 
1481 	if (!nvmebuf || !phba->targetport) {
1482 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1483 				"6154 LS Drop IO\n");
1484 		oxid = 0;
1485 		size = 0;
1486 		sid = 0;
1487 		ctxp = NULL;
1488 		goto dropit;
1489 	}
1490 
1491 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1492 	payload = (uint32_t *)(nvmebuf->dbuf.virt);
1493 	fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
1494 	size = bf_get(lpfc_rcqe_length,  &nvmebuf->cq_event.cqe.rcqe_cmpl);
1495 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1496 	sid = sli4_sid_from_fc_hdr(fc_hdr);
1497 
1498 	ctxp = kzalloc(sizeof(struct lpfc_nvmet_rcv_ctx), GFP_ATOMIC);
1499 	if (ctxp == NULL) {
1500 		atomic_inc(&tgtp->rcv_ls_req_drop);
1501 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1502 				"6155 LS Drop IO x%x: Alloc\n",
1503 				oxid);
1504 dropit:
1505 		lpfc_nvmeio_data(phba, "NVMET LS  DROP: "
1506 				 "xri x%x sz %d from %06x\n",
1507 				 oxid, size, sid);
1508 		if (nvmebuf)
1509 			lpfc_in_buf_free(phba, &nvmebuf->dbuf);
1510 		return;
1511 	}
1512 	ctxp->phba = phba;
1513 	ctxp->size = size;
1514 	ctxp->oxid = oxid;
1515 	ctxp->sid = sid;
1516 	ctxp->wqeq = NULL;
1517 	ctxp->state = LPFC_NVMET_STE_LS_RCV;
1518 	ctxp->entry_cnt = 1;
1519 	ctxp->rqb_buffer = (void *)nvmebuf;
1520 
1521 	lpfc_nvmeio_data(phba, "NVMET LS   RCV: xri x%x sz %d from %06x\n",
1522 			 oxid, size, sid);
1523 	/*
1524 	 * The calling sequence should be:
1525 	 * nvmet_fc_rcv_ls_req -> lpfc_nvmet_xmt_ls_rsp/cmp ->_req->done
1526 	 * lpfc_nvmet_xmt_ls_rsp_cmp should free the allocated ctxp.
1527 	 */
1528 	atomic_inc(&tgtp->rcv_ls_req_in);
1529 	rc = nvmet_fc_rcv_ls_req(phba->targetport, &ctxp->ctx.ls_req,
1530 				 payload, size);
1531 
1532 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1533 			"6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x "
1534 			"%08x %08x %08x\n", size, rc,
1535 			*payload, *(payload+1), *(payload+2),
1536 			*(payload+3), *(payload+4), *(payload+5));
1537 
1538 	if (rc == 0) {
1539 		atomic_inc(&tgtp->rcv_ls_req_out);
1540 		return;
1541 	}
1542 
1543 	lpfc_nvmeio_data(phba, "NVMET LS  DROP: xri x%x sz %d from %06x\n",
1544 			 oxid, size, sid);
1545 
1546 	atomic_inc(&tgtp->rcv_ls_req_drop);
1547 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1548 			"6156 LS Drop IO x%x: nvmet_fc_rcv_ls_req %d\n",
1549 			ctxp->oxid, rc);
1550 
1551 	/* We assume a rcv'ed cmd ALWAYs fits into 1 buffer */
1552 	if (nvmebuf)
1553 		lpfc_in_buf_free(phba, &nvmebuf->dbuf);
1554 
1555 	atomic_inc(&tgtp->xmt_ls_abort);
1556 	lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, sid, oxid);
1557 #endif
1558 }
1559 
1560 static struct lpfc_nvmet_ctxbuf *
1561 lpfc_nvmet_replenish_context(struct lpfc_hba *phba,
1562 			     struct lpfc_nvmet_ctx_info *current_infop)
1563 {
1564 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1565 	struct lpfc_nvmet_ctxbuf *ctx_buf = NULL;
1566 	struct lpfc_nvmet_ctx_info *get_infop;
1567 	int i;
1568 
1569 	/*
1570 	 * The current_infop for the MRQ a NVME command IU was received
1571 	 * on is empty. Our goal is to replenish this MRQs context
1572 	 * list from a another CPUs.
1573 	 *
1574 	 * First we need to pick a context list to start looking on.
1575 	 * nvmet_ctx_start_cpu has available context the last time
1576 	 * we needed to replenish this CPU where nvmet_ctx_next_cpu
1577 	 * is just the next sequential CPU for this MRQ.
1578 	 */
1579 	if (current_infop->nvmet_ctx_start_cpu)
1580 		get_infop = current_infop->nvmet_ctx_start_cpu;
1581 	else
1582 		get_infop = current_infop->nvmet_ctx_next_cpu;
1583 
1584 	for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1585 		if (get_infop == current_infop) {
1586 			get_infop = get_infop->nvmet_ctx_next_cpu;
1587 			continue;
1588 		}
1589 		spin_lock(&get_infop->nvmet_ctx_list_lock);
1590 
1591 		/* Just take the entire context list, if there are any */
1592 		if (get_infop->nvmet_ctx_list_cnt) {
1593 			list_splice_init(&get_infop->nvmet_ctx_list,
1594 				    &current_infop->nvmet_ctx_list);
1595 			current_infop->nvmet_ctx_list_cnt =
1596 				get_infop->nvmet_ctx_list_cnt - 1;
1597 			get_infop->nvmet_ctx_list_cnt = 0;
1598 			spin_unlock(&get_infop->nvmet_ctx_list_lock);
1599 
1600 			current_infop->nvmet_ctx_start_cpu = get_infop;
1601 			list_remove_head(&current_infop->nvmet_ctx_list,
1602 					 ctx_buf, struct lpfc_nvmet_ctxbuf,
1603 					 list);
1604 			return ctx_buf;
1605 		}
1606 
1607 		/* Otherwise, move on to the next CPU for this MRQ */
1608 		spin_unlock(&get_infop->nvmet_ctx_list_lock);
1609 		get_infop = get_infop->nvmet_ctx_next_cpu;
1610 	}
1611 
1612 #endif
1613 	/* Nothing found, all contexts for the MRQ are in-flight */
1614 	return NULL;
1615 }
1616 
1617 /**
1618  * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer
1619  * @phba: pointer to lpfc hba data structure.
1620  * @idx: relative index of MRQ vector
1621  * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
1622  *
1623  * This routine is used for processing the WQE associated with a unsolicited
1624  * event. It first determines whether there is an existing ndlp that matches
1625  * the DID from the unsolicited WQE. If not, it will create a new one with
1626  * the DID from the unsolicited WQE. The ELS command from the unsolicited
1627  * WQE is then used to invoke the proper routine and to set up proper state
1628  * of the discovery state machine.
1629  **/
1630 static void
1631 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba,
1632 			    uint32_t idx,
1633 			    struct rqb_dmabuf *nvmebuf,
1634 			    uint64_t isr_timestamp)
1635 {
1636 	struct lpfc_nvmet_rcv_ctx *ctxp;
1637 	struct lpfc_nvmet_tgtport *tgtp;
1638 	struct fc_frame_header *fc_hdr;
1639 	struct lpfc_nvmet_ctxbuf *ctx_buf;
1640 	struct lpfc_nvmet_ctx_info *current_infop;
1641 	uint32_t *payload;
1642 	uint32_t size, oxid, sid, rc, qno;
1643 	unsigned long iflag;
1644 	int current_cpu;
1645 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1646 	uint32_t id;
1647 #endif
1648 
1649 	if (!IS_ENABLED(CONFIG_NVME_TARGET_FC))
1650 		return;
1651 
1652 	ctx_buf = NULL;
1653 	if (!nvmebuf || !phba->targetport) {
1654 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1655 				"6157 NVMET FCP Drop IO\n");
1656 		oxid = 0;
1657 		size = 0;
1658 		sid = 0;
1659 		ctxp = NULL;
1660 		goto dropit;
1661 	}
1662 
1663 	/*
1664 	 * Get a pointer to the context list for this MRQ based on
1665 	 * the CPU this MRQ IRQ is associated with. If the CPU association
1666 	 * changes from our initial assumption, the context list could
1667 	 * be empty, thus it would need to be replenished with the
1668 	 * context list from another CPU for this MRQ.
1669 	 */
1670 	current_cpu = smp_processor_id();
1671 	current_infop = lpfc_get_ctx_list(phba, current_cpu, idx);
1672 	spin_lock_irqsave(&current_infop->nvmet_ctx_list_lock, iflag);
1673 	if (current_infop->nvmet_ctx_list_cnt) {
1674 		list_remove_head(&current_infop->nvmet_ctx_list,
1675 				 ctx_buf, struct lpfc_nvmet_ctxbuf, list);
1676 		current_infop->nvmet_ctx_list_cnt--;
1677 	} else {
1678 		ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop);
1679 	}
1680 	spin_unlock_irqrestore(&current_infop->nvmet_ctx_list_lock, iflag);
1681 
1682 	fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
1683 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1684 	size = nvmebuf->bytes_recv;
1685 
1686 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1687 	if (phba->cpucheck_on & LPFC_CHECK_NVMET_RCV) {
1688 		id = smp_processor_id();
1689 		if (id < LPFC_CHECK_CPU_CNT)
1690 			phba->cpucheck_rcv_io[id]++;
1691 	}
1692 #endif
1693 
1694 	lpfc_nvmeio_data(phba, "NVMET FCP  RCV: xri x%x sz %d CPU %02x\n",
1695 			 oxid, size, smp_processor_id());
1696 
1697 	if (!ctx_buf) {
1698 		/* Queue this NVME IO to process later */
1699 		spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
1700 		list_add_tail(&nvmebuf->hbuf.list,
1701 			      &phba->sli4_hba.lpfc_nvmet_io_wait_list);
1702 		phba->sli4_hba.nvmet_io_wait_cnt++;
1703 		phba->sli4_hba.nvmet_io_wait_total++;
1704 		spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
1705 				       iflag);
1706 
1707 		/* Post a brand new DMA buffer to RQ */
1708 		qno = nvmebuf->idx;
1709 		lpfc_post_rq_buffer(
1710 			phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
1711 			phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
1712 		return;
1713 	}
1714 
1715 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1716 	payload = (uint32_t *)(nvmebuf->dbuf.virt);
1717 	sid = sli4_sid_from_fc_hdr(fc_hdr);
1718 
1719 	ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context;
1720 	if (ctxp->state != LPFC_NVMET_STE_FREE) {
1721 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1722 				"6414 NVMET Context corrupt %d %d oxid x%x\n",
1723 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1724 	}
1725 	ctxp->wqeq = NULL;
1726 	ctxp->txrdy = NULL;
1727 	ctxp->offset = 0;
1728 	ctxp->phba = phba;
1729 	ctxp->size = size;
1730 	ctxp->oxid = oxid;
1731 	ctxp->sid = sid;
1732 	ctxp->idx = idx;
1733 	ctxp->state = LPFC_NVMET_STE_RCV;
1734 	ctxp->entry_cnt = 1;
1735 	ctxp->flag = 0;
1736 	ctxp->ctxbuf = ctx_buf;
1737 	ctxp->rqb_buffer = (void *)nvmebuf;
1738 	spin_lock_init(&ctxp->ctxlock);
1739 
1740 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1741 	if (isr_timestamp) {
1742 		ctxp->ts_isr_cmd = isr_timestamp;
1743 		ctxp->ts_cmd_nvme = ktime_get_ns();
1744 		ctxp->ts_nvme_data = 0;
1745 		ctxp->ts_data_wqput = 0;
1746 		ctxp->ts_isr_data = 0;
1747 		ctxp->ts_data_nvme = 0;
1748 		ctxp->ts_nvme_status = 0;
1749 		ctxp->ts_status_wqput = 0;
1750 		ctxp->ts_isr_status = 0;
1751 		ctxp->ts_status_nvme = 0;
1752 	} else {
1753 		ctxp->ts_cmd_nvme = 0;
1754 	}
1755 #endif
1756 
1757 	atomic_inc(&tgtp->rcv_fcp_cmd_in);
1758 	/*
1759 	 * The calling sequence should be:
1760 	 * nvmet_fc_rcv_fcp_req -> lpfc_nvmet_xmt_fcp_op/cmp -> req->done
1761 	 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
1762 	 * When we return from nvmet_fc_rcv_fcp_req, all relevant info in
1763 	 * the NVME command / FC header is stored, so we are free to repost
1764 	 * the buffer.
1765 	 */
1766 	rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req,
1767 				  payload, size);
1768 
1769 	/* Process FCP command */
1770 	if (rc == 0) {
1771 		ctxp->rqb_buffer = NULL;
1772 		atomic_inc(&tgtp->rcv_fcp_cmd_out);
1773 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
1774 		return;
1775 	}
1776 
1777 	/* Processing of FCP command is deferred */
1778 	if (rc == -EOVERFLOW) {
1779 		lpfc_nvmeio_data(phba,
1780 				 "NVMET RCV BUSY: xri x%x sz %d from %06x\n",
1781 				 oxid, size, sid);
1782 		/* defer reposting rcv buffer till .defer_rcv callback */
1783 		ctxp->flag |= LPFC_NVMET_DEFER_RCV_REPOST;
1784 		atomic_inc(&tgtp->rcv_fcp_cmd_out);
1785 		return;
1786 	}
1787 	ctxp->rqb_buffer = nvmebuf;
1788 
1789 	atomic_inc(&tgtp->rcv_fcp_cmd_drop);
1790 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1791 			"6159 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
1792 			ctxp->oxid, rc,
1793 			atomic_read(&tgtp->rcv_fcp_cmd_in),
1794 			atomic_read(&tgtp->rcv_fcp_cmd_out),
1795 			atomic_read(&tgtp->xmt_fcp_release));
1796 dropit:
1797 	lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n",
1798 			 oxid, size, sid);
1799 	if (oxid) {
1800 		lpfc_nvmet_defer_release(phba, ctxp);
1801 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
1802 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
1803 		return;
1804 	}
1805 
1806 	if (ctx_buf)
1807 		lpfc_nvmet_ctxbuf_post(phba, ctx_buf);
1808 
1809 	if (nvmebuf)
1810 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
1811 }
1812 
1813 /**
1814  * lpfc_nvmet_unsol_ls_event - Process an unsolicited event from an nvme nport
1815  * @phba: pointer to lpfc hba data structure.
1816  * @pring: pointer to a SLI ring.
1817  * @nvmebuf: pointer to received nvme data structure.
1818  *
1819  * This routine is used to process an unsolicited event received from a SLI
1820  * (Service Level Interface) ring. The actual processing of the data buffer
1821  * associated with the unsolicited event is done by invoking the routine
1822  * lpfc_nvmet_unsol_ls_buffer() after properly set up the buffer from the
1823  * SLI RQ on which the unsolicited event was received.
1824  **/
1825 void
1826 lpfc_nvmet_unsol_ls_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1827 			  struct lpfc_iocbq *piocb)
1828 {
1829 	struct lpfc_dmabuf *d_buf;
1830 	struct hbq_dmabuf *nvmebuf;
1831 
1832 	d_buf = piocb->context2;
1833 	nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
1834 
1835 	if (phba->nvmet_support == 0) {
1836 		lpfc_in_buf_free(phba, &nvmebuf->dbuf);
1837 		return;
1838 	}
1839 	lpfc_nvmet_unsol_ls_buffer(phba, pring, nvmebuf);
1840 }
1841 
1842 /**
1843  * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport
1844  * @phba: pointer to lpfc hba data structure.
1845  * @idx: relative index of MRQ vector
1846  * @nvmebuf: pointer to received nvme data structure.
1847  *
1848  * This routine is used to process an unsolicited event received from a SLI
1849  * (Service Level Interface) ring. The actual processing of the data buffer
1850  * associated with the unsolicited event is done by invoking the routine
1851  * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the
1852  * SLI RQ on which the unsolicited event was received.
1853  **/
1854 void
1855 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba,
1856 			   uint32_t idx,
1857 			   struct rqb_dmabuf *nvmebuf,
1858 			   uint64_t isr_timestamp)
1859 {
1860 	if (phba->nvmet_support == 0) {
1861 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
1862 		return;
1863 	}
1864 	lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf,
1865 				    isr_timestamp);
1866 }
1867 
1868 /**
1869  * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure
1870  * @phba: pointer to a host N_Port data structure.
1871  * @ctxp: Context info for NVME LS Request
1872  * @rspbuf: DMA buffer of NVME command.
1873  * @rspsize: size of the NVME command.
1874  *
1875  * This routine is used for allocating a lpfc-WQE data structure from
1876  * the driver lpfc-WQE free-list and prepare the WQE with the parameters
1877  * passed into the routine for discovery state machine to issue an Extended
1878  * Link Service (NVME) commands. It is a generic lpfc-WQE allocation
1879  * and preparation routine that is used by all the discovery state machine
1880  * routines and the NVME command-specific fields will be later set up by
1881  * the individual discovery machine routines after calling this routine
1882  * allocating and preparing a generic WQE data structure. It fills in the
1883  * Buffer Descriptor Entries (BDEs), allocates buffers for both command
1884  * payload and response payload (if expected). The reference count on the
1885  * ndlp is incremented by 1 and the reference to the ndlp is put into
1886  * context1 of the WQE data structure for this WQE to hold the ndlp
1887  * reference for the command's callback function to access later.
1888  *
1889  * Return code
1890  *   Pointer to the newly allocated/prepared nvme wqe data structure
1891  *   NULL - when nvme wqe data structure allocation/preparation failed
1892  **/
1893 static struct lpfc_iocbq *
1894 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba,
1895 		       struct lpfc_nvmet_rcv_ctx *ctxp,
1896 		       dma_addr_t rspbuf, uint16_t rspsize)
1897 {
1898 	struct lpfc_nodelist *ndlp;
1899 	struct lpfc_iocbq *nvmewqe;
1900 	union lpfc_wqe *wqe;
1901 
1902 	if (!lpfc_is_link_up(phba)) {
1903 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
1904 				"6104 NVMET prep LS wqe: link err: "
1905 				"NPORT x%x oxid:x%x ste %d\n",
1906 				ctxp->sid, ctxp->oxid, ctxp->state);
1907 		return NULL;
1908 	}
1909 
1910 	/* Allocate buffer for  command wqe */
1911 	nvmewqe = lpfc_sli_get_iocbq(phba);
1912 	if (nvmewqe == NULL) {
1913 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
1914 				"6105 NVMET prep LS wqe: No WQE: "
1915 				"NPORT x%x oxid x%x ste %d\n",
1916 				ctxp->sid, ctxp->oxid, ctxp->state);
1917 		return NULL;
1918 	}
1919 
1920 	ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1921 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
1922 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
1923 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
1924 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
1925 				"6106 NVMET prep LS wqe: No ndlp: "
1926 				"NPORT x%x oxid x%x ste %d\n",
1927 				ctxp->sid, ctxp->oxid, ctxp->state);
1928 		goto nvme_wqe_free_wqeq_exit;
1929 	}
1930 	ctxp->wqeq = nvmewqe;
1931 
1932 	/* prevent preparing wqe with NULL ndlp reference */
1933 	nvmewqe->context1 = lpfc_nlp_get(ndlp);
1934 	if (nvmewqe->context1 == NULL)
1935 		goto nvme_wqe_free_wqeq_exit;
1936 	nvmewqe->context2 = ctxp;
1937 
1938 	wqe = &nvmewqe->wqe;
1939 	memset(wqe, 0, sizeof(union lpfc_wqe));
1940 
1941 	/* Words 0 - 2 */
1942 	wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1943 	wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize;
1944 	wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf));
1945 	wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf));
1946 
1947 	/* Word 3 */
1948 
1949 	/* Word 4 */
1950 
1951 	/* Word 5 */
1952 	bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
1953 	bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1);
1954 	bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0);
1955 	bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP);
1956 	bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME);
1957 
1958 	/* Word 6 */
1959 	bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
1960 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
1961 	bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag);
1962 
1963 	/* Word 7 */
1964 	bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
1965 	       CMD_XMIT_SEQUENCE64_WQE);
1966 	bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI);
1967 	bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
1968 	bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
1969 
1970 	/* Word 8 */
1971 	wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag;
1972 
1973 	/* Word 9 */
1974 	bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag);
1975 	/* Needs to be set by caller */
1976 	bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid);
1977 
1978 	/* Word 10 */
1979 	bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
1980 	bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
1981 	bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
1982 	       LPFC_WQE_LENLOC_WORD12);
1983 	bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
1984 
1985 	/* Word 11 */
1986 	bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com,
1987 	       LPFC_WQE_CQ_ID_DEFAULT);
1988 	bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com,
1989 	       OTHER_COMMAND);
1990 
1991 	/* Word 12 */
1992 	wqe->xmit_sequence.xmit_len = rspsize;
1993 
1994 	nvmewqe->retry = 1;
1995 	nvmewqe->vport = phba->pport;
1996 	nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
1997 	nvmewqe->iocb_flag |= LPFC_IO_NVME_LS;
1998 
1999 	/* Xmit NVMET response to remote NPORT <did> */
2000 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2001 			"6039 Xmit NVMET LS response to remote "
2002 			"NPORT x%x iotag:x%x oxid:x%x size:x%x\n",
2003 			ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid,
2004 			rspsize);
2005 	return nvmewqe;
2006 
2007 nvme_wqe_free_wqeq_exit:
2008 	nvmewqe->context2 = NULL;
2009 	nvmewqe->context3 = NULL;
2010 	lpfc_sli_release_iocbq(phba, nvmewqe);
2011 	return NULL;
2012 }
2013 
2014 
2015 static struct lpfc_iocbq *
2016 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba,
2017 			struct lpfc_nvmet_rcv_ctx *ctxp)
2018 {
2019 	struct nvmefc_tgt_fcp_req *rsp = &ctxp->ctx.fcp_req;
2020 	struct lpfc_nvmet_tgtport *tgtp;
2021 	struct sli4_sge *sgl;
2022 	struct lpfc_nodelist *ndlp;
2023 	struct lpfc_iocbq *nvmewqe;
2024 	struct scatterlist *sgel;
2025 	union lpfc_wqe128 *wqe;
2026 	uint32_t *txrdy;
2027 	dma_addr_t physaddr;
2028 	int i, cnt;
2029 	int xc = 1;
2030 
2031 	if (!lpfc_is_link_up(phba)) {
2032 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2033 				"6107 NVMET prep FCP wqe: link err:"
2034 				"NPORT x%x oxid x%x ste %d\n",
2035 				ctxp->sid, ctxp->oxid, ctxp->state);
2036 		return NULL;
2037 	}
2038 
2039 	ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2040 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2041 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2042 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2043 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2044 				"6108 NVMET prep FCP wqe: no ndlp: "
2045 				"NPORT x%x oxid x%x ste %d\n",
2046 				ctxp->sid, ctxp->oxid, ctxp->state);
2047 		return NULL;
2048 	}
2049 
2050 	if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) {
2051 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2052 				"6109 NVMET prep FCP wqe: seg cnt err: "
2053 				"NPORT x%x oxid x%x ste %d cnt %d\n",
2054 				ctxp->sid, ctxp->oxid, ctxp->state,
2055 				phba->cfg_nvme_seg_cnt);
2056 		return NULL;
2057 	}
2058 
2059 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2060 	nvmewqe = ctxp->wqeq;
2061 	if (nvmewqe == NULL) {
2062 		/* Allocate buffer for  command wqe */
2063 		nvmewqe = ctxp->ctxbuf->iocbq;
2064 		if (nvmewqe == NULL) {
2065 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2066 					"6110 NVMET prep FCP wqe: No "
2067 					"WQE: NPORT x%x oxid x%x ste %d\n",
2068 					ctxp->sid, ctxp->oxid, ctxp->state);
2069 			return NULL;
2070 		}
2071 		ctxp->wqeq = nvmewqe;
2072 		xc = 0; /* create new XRI */
2073 		nvmewqe->sli4_lxritag = NO_XRI;
2074 		nvmewqe->sli4_xritag = NO_XRI;
2075 	}
2076 
2077 	/* Sanity check */
2078 	if (((ctxp->state == LPFC_NVMET_STE_RCV) &&
2079 	    (ctxp->entry_cnt == 1)) ||
2080 	    (ctxp->state == LPFC_NVMET_STE_DATA)) {
2081 		wqe = (union lpfc_wqe128 *)&nvmewqe->wqe;
2082 	} else {
2083 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2084 				"6111 Wrong state NVMET FCP: %d  cnt %d\n",
2085 				ctxp->state, ctxp->entry_cnt);
2086 		return NULL;
2087 	}
2088 
2089 	sgl  = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl;
2090 	switch (rsp->op) {
2091 	case NVMET_FCOP_READDATA:
2092 	case NVMET_FCOP_READDATA_RSP:
2093 		/* Words 0 - 2 : The first sg segment */
2094 		sgel = &rsp->sg[0];
2095 		physaddr = sg_dma_address(sgel);
2096 		wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2097 		wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel);
2098 		wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr));
2099 		wqe->fcp_tsend.bde.addrHigh =
2100 			cpu_to_le32(putPaddrHigh(physaddr));
2101 
2102 		/* Word 3 */
2103 		wqe->fcp_tsend.payload_offset_len = 0;
2104 
2105 		/* Word 4 */
2106 		wqe->fcp_tsend.relative_offset = ctxp->offset;
2107 
2108 		/* Word 5 */
2109 
2110 		/* Word 6 */
2111 		bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com,
2112 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2113 		bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com,
2114 		       nvmewqe->sli4_xritag);
2115 
2116 		/* Word 7 */
2117 		bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, 1);
2118 		bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE);
2119 
2120 		/* Word 8 */
2121 		wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag;
2122 
2123 		/* Word 9 */
2124 		bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag);
2125 		bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid);
2126 
2127 		/* Word 10 */
2128 		bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1);
2129 		bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1);
2130 		bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE);
2131 		bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com,
2132 		       LPFC_WQE_LENLOC_WORD12);
2133 		bf_set(wqe_ebde_cnt, &wqe->fcp_tsend.wqe_com, 0);
2134 		bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, xc);
2135 		bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1);
2136 		if (phba->cfg_nvme_oas)
2137 			bf_set(wqe_oas, &wqe->fcp_tsend.wqe_com, 1);
2138 
2139 		/* Word 11 */
2140 		bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com,
2141 		       LPFC_WQE_CQ_ID_DEFAULT);
2142 		bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com,
2143 		       FCP_COMMAND_TSEND);
2144 
2145 		/* Word 12 */
2146 		wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2147 
2148 		/* Setup 2 SKIP SGEs */
2149 		sgl->addr_hi = 0;
2150 		sgl->addr_lo = 0;
2151 		sgl->word2 = 0;
2152 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2153 		sgl->word2 = cpu_to_le32(sgl->word2);
2154 		sgl->sge_len = 0;
2155 		sgl++;
2156 		sgl->addr_hi = 0;
2157 		sgl->addr_lo = 0;
2158 		sgl->word2 = 0;
2159 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2160 		sgl->word2 = cpu_to_le32(sgl->word2);
2161 		sgl->sge_len = 0;
2162 		sgl++;
2163 		if (rsp->op == NVMET_FCOP_READDATA_RSP) {
2164 			atomic_inc(&tgtp->xmt_fcp_read_rsp);
2165 			bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1);
2166 			if ((ndlp->nlp_flag & NLP_SUPPRESS_RSP) &&
2167 			    (rsp->rsplen == 12)) {
2168 				bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 1);
2169 				bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
2170 				bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
2171 				bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
2172 			} else {
2173 				bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
2174 				bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1);
2175 				bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1);
2176 				bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com,
2177 				       ((rsp->rsplen >> 2) - 1));
2178 				memcpy(&wqe->words[16], rsp->rspaddr,
2179 				       rsp->rsplen);
2180 			}
2181 		} else {
2182 			atomic_inc(&tgtp->xmt_fcp_read);
2183 
2184 			bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
2185 			bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
2186 			bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
2187 			bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0);
2188 			bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
2189 		}
2190 		break;
2191 
2192 	case NVMET_FCOP_WRITEDATA:
2193 		/* Words 0 - 2 : The first sg segment */
2194 		txrdy = dma_pool_alloc(phba->txrdy_payload_pool,
2195 				       GFP_KERNEL, &physaddr);
2196 		if (!txrdy) {
2197 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2198 					"6041 Bad txrdy buffer: oxid x%x\n",
2199 					ctxp->oxid);
2200 			return NULL;
2201 		}
2202 		ctxp->txrdy = txrdy;
2203 		ctxp->txrdy_phys = physaddr;
2204 		wqe->fcp_treceive.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2205 		wqe->fcp_treceive.bde.tus.f.bdeSize = TXRDY_PAYLOAD_LEN;
2206 		wqe->fcp_treceive.bde.addrLow =
2207 			cpu_to_le32(putPaddrLow(physaddr));
2208 		wqe->fcp_treceive.bde.addrHigh =
2209 			cpu_to_le32(putPaddrHigh(physaddr));
2210 
2211 		/* Word 3 */
2212 		wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN;
2213 
2214 		/* Word 4 */
2215 		wqe->fcp_treceive.relative_offset = ctxp->offset;
2216 
2217 		/* Word 5 */
2218 
2219 		/* Word 6 */
2220 		bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com,
2221 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2222 		bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com,
2223 		       nvmewqe->sli4_xritag);
2224 
2225 		/* Word 7 */
2226 		bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, 1);
2227 		bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0);
2228 		bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com,
2229 		       CMD_FCP_TRECEIVE64_WQE);
2230 
2231 		/* Word 8 */
2232 		wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag;
2233 
2234 		/* Word 9 */
2235 		bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag);
2236 		bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid);
2237 
2238 		/* Word 10 */
2239 		bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1);
2240 		bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1);
2241 		bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ);
2242 		bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com,
2243 		       LPFC_WQE_LENLOC_WORD12);
2244 		bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, xc);
2245 		bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0);
2246 		bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0);
2247 		bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0);
2248 		bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1);
2249 		if (phba->cfg_nvme_oas)
2250 			bf_set(wqe_oas, &wqe->fcp_treceive.wqe_com, 1);
2251 
2252 		/* Word 11 */
2253 		bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com,
2254 		       LPFC_WQE_CQ_ID_DEFAULT);
2255 		bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com,
2256 		       FCP_COMMAND_TRECEIVE);
2257 		bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
2258 
2259 		/* Word 12 */
2260 		wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2261 
2262 		/* Setup 1 TXRDY and 1 SKIP SGE */
2263 		txrdy[0] = 0;
2264 		txrdy[1] = cpu_to_be32(rsp->transfer_length);
2265 		txrdy[2] = 0;
2266 
2267 		sgl->addr_hi = putPaddrHigh(physaddr);
2268 		sgl->addr_lo = putPaddrLow(physaddr);
2269 		sgl->word2 = 0;
2270 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
2271 		sgl->word2 = cpu_to_le32(sgl->word2);
2272 		sgl->sge_len = cpu_to_le32(TXRDY_PAYLOAD_LEN);
2273 		sgl++;
2274 		sgl->addr_hi = 0;
2275 		sgl->addr_lo = 0;
2276 		sgl->word2 = 0;
2277 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2278 		sgl->word2 = cpu_to_le32(sgl->word2);
2279 		sgl->sge_len = 0;
2280 		sgl++;
2281 		atomic_inc(&tgtp->xmt_fcp_write);
2282 		break;
2283 
2284 	case NVMET_FCOP_RSP:
2285 		/* Words 0 - 2 */
2286 		physaddr = rsp->rspdma;
2287 		wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2288 		wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen;
2289 		wqe->fcp_trsp.bde.addrLow =
2290 			cpu_to_le32(putPaddrLow(physaddr));
2291 		wqe->fcp_trsp.bde.addrHigh =
2292 			cpu_to_le32(putPaddrHigh(physaddr));
2293 
2294 		/* Word 3 */
2295 		wqe->fcp_trsp.response_len = rsp->rsplen;
2296 
2297 		/* Word 4 */
2298 		wqe->fcp_trsp.rsvd_4_5[0] = 0;
2299 
2300 
2301 		/* Word 5 */
2302 
2303 		/* Word 6 */
2304 		bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com,
2305 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2306 		bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com,
2307 		       nvmewqe->sli4_xritag);
2308 
2309 		/* Word 7 */
2310 		bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, 0);
2311 		bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1);
2312 		bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE);
2313 
2314 		/* Word 8 */
2315 		wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag;
2316 
2317 		/* Word 9 */
2318 		bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag);
2319 		bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid);
2320 
2321 		/* Word 10 */
2322 		bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1);
2323 		bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 0);
2324 		bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_WRITE);
2325 		bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com,
2326 		       LPFC_WQE_LENLOC_WORD3);
2327 		bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, xc);
2328 		bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1);
2329 		if (phba->cfg_nvme_oas)
2330 			bf_set(wqe_oas, &wqe->fcp_trsp.wqe_com, 1);
2331 
2332 		/* Word 11 */
2333 		bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com,
2334 		       LPFC_WQE_CQ_ID_DEFAULT);
2335 		bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com,
2336 		       FCP_COMMAND_TRSP);
2337 		bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
2338 
2339 		if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) {
2340 			/* Good response - all zero's on wire */
2341 			bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0);
2342 			bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0);
2343 			bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0);
2344 		} else {
2345 			bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1);
2346 			bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1);
2347 			bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com,
2348 			       ((rsp->rsplen >> 2) - 1));
2349 			memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen);
2350 		}
2351 
2352 		/* Use rspbuf, NOT sg list */
2353 		rsp->sg_cnt = 0;
2354 		sgl->word2 = 0;
2355 		atomic_inc(&tgtp->xmt_fcp_rsp);
2356 		break;
2357 
2358 	default:
2359 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2360 				"6064 Unknown Rsp Op %d\n",
2361 				rsp->op);
2362 		return NULL;
2363 	}
2364 
2365 	nvmewqe->retry = 1;
2366 	nvmewqe->vport = phba->pport;
2367 	nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2368 	nvmewqe->context1 = ndlp;
2369 
2370 	for (i = 0; i < rsp->sg_cnt; i++) {
2371 		sgel = &rsp->sg[i];
2372 		physaddr = sg_dma_address(sgel);
2373 		cnt = sg_dma_len(sgel);
2374 		sgl->addr_hi = putPaddrHigh(physaddr);
2375 		sgl->addr_lo = putPaddrLow(physaddr);
2376 		sgl->word2 = 0;
2377 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
2378 		bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset);
2379 		if ((i+1) == rsp->sg_cnt)
2380 			bf_set(lpfc_sli4_sge_last, sgl, 1);
2381 		sgl->word2 = cpu_to_le32(sgl->word2);
2382 		sgl->sge_len = cpu_to_le32(cnt);
2383 		sgl++;
2384 		ctxp->offset += cnt;
2385 	}
2386 	ctxp->state = LPFC_NVMET_STE_DATA;
2387 	ctxp->entry_cnt++;
2388 	return nvmewqe;
2389 }
2390 
2391 /**
2392  * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS
2393  * @phba: Pointer to HBA context object.
2394  * @cmdwqe: Pointer to driver command WQE object.
2395  * @wcqe: Pointer to driver response CQE object.
2396  *
2397  * The function is called from SLI ring event handler with no
2398  * lock held. This function is the completion handler for NVME ABTS for FCP cmds
2399  * The function frees memory resources used for the NVME commands.
2400  **/
2401 static void
2402 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2403 			     struct lpfc_wcqe_complete *wcqe)
2404 {
2405 	struct lpfc_nvmet_rcv_ctx *ctxp;
2406 	struct lpfc_nvmet_tgtport *tgtp;
2407 	uint32_t status, result;
2408 	unsigned long flags;
2409 	bool released = false;
2410 
2411 	ctxp = cmdwqe->context2;
2412 	status = bf_get(lpfc_wcqe_c_status, wcqe);
2413 	result = wcqe->parameter;
2414 
2415 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2416 	if (ctxp->flag & LPFC_NVMET_ABORT_OP)
2417 		atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
2418 
2419 	ctxp->state = LPFC_NVMET_STE_DONE;
2420 
2421 	/* Check if we already received a free context call
2422 	 * and we have completed processing an abort situation.
2423 	 */
2424 	spin_lock_irqsave(&ctxp->ctxlock, flags);
2425 	if ((ctxp->flag & LPFC_NVMET_CTX_RLS) &&
2426 	    !(ctxp->flag & LPFC_NVMET_XBUSY)) {
2427 		list_del(&ctxp->list);
2428 		released = true;
2429 	}
2430 	ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2431 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
2432 	atomic_inc(&tgtp->xmt_abort_rsp);
2433 
2434 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2435 			"6165 ABORT cmpl: xri x%x flg x%x (%d) "
2436 			"WCQE: %08x %08x %08x %08x\n",
2437 			ctxp->oxid, ctxp->flag, released,
2438 			wcqe->word0, wcqe->total_data_placed,
2439 			result, wcqe->word3);
2440 
2441 	cmdwqe->context2 = NULL;
2442 	cmdwqe->context3 = NULL;
2443 	/*
2444 	 * if transport has released ctx, then can reuse it. Otherwise,
2445 	 * will be recycled by transport release call.
2446 	 */
2447 	if (released)
2448 		lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
2449 
2450 	/* This is the iocbq for the abort, not the command */
2451 	lpfc_sli_release_iocbq(phba, cmdwqe);
2452 
2453 	/* Since iaab/iaar are NOT set, there is no work left.
2454 	 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted
2455 	 * should have been called already.
2456 	 */
2457 }
2458 
2459 /**
2460  * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS
2461  * @phba: Pointer to HBA context object.
2462  * @cmdwqe: Pointer to driver command WQE object.
2463  * @wcqe: Pointer to driver response CQE object.
2464  *
2465  * The function is called from SLI ring event handler with no
2466  * lock held. This function is the completion handler for NVME ABTS for FCP cmds
2467  * The function frees memory resources used for the NVME commands.
2468  **/
2469 static void
2470 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2471 			       struct lpfc_wcqe_complete *wcqe)
2472 {
2473 	struct lpfc_nvmet_rcv_ctx *ctxp;
2474 	struct lpfc_nvmet_tgtport *tgtp;
2475 	unsigned long flags;
2476 	uint32_t status, result;
2477 	bool released = false;
2478 
2479 	ctxp = cmdwqe->context2;
2480 	status = bf_get(lpfc_wcqe_c_status, wcqe);
2481 	result = wcqe->parameter;
2482 
2483 	if (!ctxp) {
2484 		/* if context is clear, related io alrady complete */
2485 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2486 				"6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n",
2487 				wcqe->word0, wcqe->total_data_placed,
2488 				result, wcqe->word3);
2489 		return;
2490 	}
2491 
2492 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2493 	if (ctxp->flag & LPFC_NVMET_ABORT_OP)
2494 		atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
2495 
2496 	/* Sanity check */
2497 	if (ctxp->state != LPFC_NVMET_STE_ABORT) {
2498 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2499 				"6112 ABTS Wrong state:%d oxid x%x\n",
2500 				ctxp->state, ctxp->oxid);
2501 	}
2502 
2503 	/* Check if we already received a free context call
2504 	 * and we have completed processing an abort situation.
2505 	 */
2506 	ctxp->state = LPFC_NVMET_STE_DONE;
2507 	spin_lock_irqsave(&ctxp->ctxlock, flags);
2508 	if ((ctxp->flag & LPFC_NVMET_CTX_RLS) &&
2509 	    !(ctxp->flag & LPFC_NVMET_XBUSY)) {
2510 		list_del(&ctxp->list);
2511 		released = true;
2512 	}
2513 	ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2514 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
2515 	atomic_inc(&tgtp->xmt_abort_rsp);
2516 
2517 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2518 			"6316 ABTS cmpl xri x%x flg x%x (%x) "
2519 			"WCQE: %08x %08x %08x %08x\n",
2520 			ctxp->oxid, ctxp->flag, released,
2521 			wcqe->word0, wcqe->total_data_placed,
2522 			result, wcqe->word3);
2523 
2524 	cmdwqe->context2 = NULL;
2525 	cmdwqe->context3 = NULL;
2526 	/*
2527 	 * if transport has released ctx, then can reuse it. Otherwise,
2528 	 * will be recycled by transport release call.
2529 	 */
2530 	if (released)
2531 		lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
2532 
2533 	/* Since iaab/iaar are NOT set, there is no work left.
2534 	 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted
2535 	 * should have been called already.
2536 	 */
2537 }
2538 
2539 /**
2540  * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS
2541  * @phba: Pointer to HBA context object.
2542  * @cmdwqe: Pointer to driver command WQE object.
2543  * @wcqe: Pointer to driver response CQE object.
2544  *
2545  * The function is called from SLI ring event handler with no
2546  * lock held. This function is the completion handler for NVME ABTS for LS cmds
2547  * The function frees memory resources used for the NVME commands.
2548  **/
2549 static void
2550 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2551 			    struct lpfc_wcqe_complete *wcqe)
2552 {
2553 	struct lpfc_nvmet_rcv_ctx *ctxp;
2554 	struct lpfc_nvmet_tgtport *tgtp;
2555 	uint32_t status, result;
2556 
2557 	ctxp = cmdwqe->context2;
2558 	status = bf_get(lpfc_wcqe_c_status, wcqe);
2559 	result = wcqe->parameter;
2560 
2561 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2562 	atomic_inc(&tgtp->xmt_ls_abort_cmpl);
2563 
2564 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2565 			"6083 Abort cmpl: ctx %p WCQE:%08x %08x %08x %08x\n",
2566 			ctxp, wcqe->word0, wcqe->total_data_placed,
2567 			result, wcqe->word3);
2568 
2569 	if (!ctxp) {
2570 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2571 				"6415 NVMET LS Abort No ctx: WCQE: "
2572 				 "%08x %08x %08x %08x\n",
2573 				wcqe->word0, wcqe->total_data_placed,
2574 				result, wcqe->word3);
2575 
2576 		lpfc_sli_release_iocbq(phba, cmdwqe);
2577 		return;
2578 	}
2579 
2580 	if (ctxp->state != LPFC_NVMET_STE_LS_ABORT) {
2581 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2582 				"6416 NVMET LS abort cmpl state mismatch: "
2583 				"oxid x%x: %d %d\n",
2584 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
2585 	}
2586 
2587 	cmdwqe->context2 = NULL;
2588 	cmdwqe->context3 = NULL;
2589 	lpfc_sli_release_iocbq(phba, cmdwqe);
2590 	kfree(ctxp);
2591 }
2592 
2593 static int
2594 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba,
2595 			     struct lpfc_nvmet_rcv_ctx *ctxp,
2596 			     uint32_t sid, uint16_t xri)
2597 {
2598 	struct lpfc_nvmet_tgtport *tgtp;
2599 	struct lpfc_iocbq *abts_wqeq;
2600 	union lpfc_wqe *wqe_abts;
2601 	struct lpfc_nodelist *ndlp;
2602 
2603 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2604 			"6067 ABTS: sid %x xri x%x/x%x\n",
2605 			sid, xri, ctxp->wqeq->sli4_xritag);
2606 
2607 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2608 
2609 	ndlp = lpfc_findnode_did(phba->pport, sid);
2610 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2611 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2612 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2613 		atomic_inc(&tgtp->xmt_abort_rsp_error);
2614 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2615 				"6134 Drop ABTS - wrong NDLP state x%x.\n",
2616 				(ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
2617 
2618 		/* No failure to an ABTS request. */
2619 		return 0;
2620 	}
2621 
2622 	abts_wqeq = ctxp->wqeq;
2623 	wqe_abts = &abts_wqeq->wqe;
2624 
2625 	/*
2626 	 * Since we zero the whole WQE, we need to ensure we set the WQE fields
2627 	 * that were initialized in lpfc_sli4_nvmet_alloc.
2628 	 */
2629 	memset(wqe_abts, 0, sizeof(union lpfc_wqe));
2630 
2631 	/* Word 5 */
2632 	bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0);
2633 	bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1);
2634 	bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0);
2635 	bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS);
2636 	bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS);
2637 
2638 	/* Word 6 */
2639 	bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com,
2640 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2641 	bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com,
2642 	       abts_wqeq->sli4_xritag);
2643 
2644 	/* Word 7 */
2645 	bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com,
2646 	       CMD_XMIT_SEQUENCE64_WQE);
2647 	bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI);
2648 	bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3);
2649 	bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0);
2650 
2651 	/* Word 8 */
2652 	wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag;
2653 
2654 	/* Word 9 */
2655 	bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag);
2656 	/* Needs to be set by caller */
2657 	bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri);
2658 
2659 	/* Word 10 */
2660 	bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1);
2661 	bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2662 	bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com,
2663 	       LPFC_WQE_LENLOC_WORD12);
2664 	bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0);
2665 	bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0);
2666 
2667 	/* Word 11 */
2668 	bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com,
2669 	       LPFC_WQE_CQ_ID_DEFAULT);
2670 	bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com,
2671 	       OTHER_COMMAND);
2672 
2673 	abts_wqeq->vport = phba->pport;
2674 	abts_wqeq->context1 = ndlp;
2675 	abts_wqeq->context2 = ctxp;
2676 	abts_wqeq->context3 = NULL;
2677 	abts_wqeq->rsvd2 = 0;
2678 	/* hba_wqidx should already be setup from command we are aborting */
2679 	abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR;
2680 	abts_wqeq->iocb.ulpLe = 1;
2681 
2682 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2683 			"6069 Issue ABTS to xri x%x reqtag x%x\n",
2684 			xri, abts_wqeq->iotag);
2685 	return 1;
2686 }
2687 
2688 static int
2689 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba,
2690 			       struct lpfc_nvmet_rcv_ctx *ctxp,
2691 			       uint32_t sid, uint16_t xri)
2692 {
2693 	struct lpfc_nvmet_tgtport *tgtp;
2694 	struct lpfc_iocbq *abts_wqeq;
2695 	union lpfc_wqe *abts_wqe;
2696 	struct lpfc_nodelist *ndlp;
2697 	unsigned long flags;
2698 	int rc;
2699 
2700 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2701 	if (!ctxp->wqeq) {
2702 		ctxp->wqeq = ctxp->ctxbuf->iocbq;
2703 		ctxp->wqeq->hba_wqidx = 0;
2704 	}
2705 
2706 	ndlp = lpfc_findnode_did(phba->pport, sid);
2707 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2708 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2709 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2710 		atomic_inc(&tgtp->xmt_abort_rsp_error);
2711 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2712 				"6160 Drop ABORT - wrong NDLP state x%x.\n",
2713 				(ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
2714 
2715 		/* No failure to an ABTS request. */
2716 		ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2717 		return 0;
2718 	}
2719 
2720 	/* Issue ABTS for this WQE based on iotag */
2721 	ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba);
2722 	if (!ctxp->abort_wqeq) {
2723 		atomic_inc(&tgtp->xmt_abort_rsp_error);
2724 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2725 				"6161 ABORT failed: No wqeqs: "
2726 				"xri: x%x\n", ctxp->oxid);
2727 		/* No failure to an ABTS request. */
2728 		ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2729 		return 0;
2730 	}
2731 	abts_wqeq = ctxp->abort_wqeq;
2732 	abts_wqe = &abts_wqeq->wqe;
2733 	ctxp->state = LPFC_NVMET_STE_ABORT;
2734 
2735 	/* Announce entry to new IO submit field. */
2736 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2737 			"6162 ABORT Request to rport DID x%06x "
2738 			"for xri x%x x%x\n",
2739 			ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag);
2740 
2741 	/* If the hba is getting reset, this flag is set.  It is
2742 	 * cleared when the reset is complete and rings reestablished.
2743 	 */
2744 	spin_lock_irqsave(&phba->hbalock, flags);
2745 	/* driver queued commands are in process of being flushed */
2746 	if (phba->hba_flag & HBA_NVME_IOQ_FLUSH) {
2747 		spin_unlock_irqrestore(&phba->hbalock, flags);
2748 		atomic_inc(&tgtp->xmt_abort_rsp_error);
2749 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
2750 				"6163 Driver in reset cleanup - flushing "
2751 				"NVME Req now. hba_flag x%x oxid x%x\n",
2752 				phba->hba_flag, ctxp->oxid);
2753 		lpfc_sli_release_iocbq(phba, abts_wqeq);
2754 		ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2755 		return 0;
2756 	}
2757 
2758 	/* Outstanding abort is in progress */
2759 	if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) {
2760 		spin_unlock_irqrestore(&phba->hbalock, flags);
2761 		atomic_inc(&tgtp->xmt_abort_rsp_error);
2762 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
2763 				"6164 Outstanding NVME I/O Abort Request "
2764 				"still pending on oxid x%x\n",
2765 				ctxp->oxid);
2766 		lpfc_sli_release_iocbq(phba, abts_wqeq);
2767 		ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2768 		return 0;
2769 	}
2770 
2771 	/* Ready - mark outstanding as aborted by driver. */
2772 	abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED;
2773 
2774 	/* WQEs are reused.  Clear stale data and set key fields to
2775 	 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag.
2776 	 */
2777 	memset(abts_wqe, 0, sizeof(union lpfc_wqe));
2778 
2779 	/* word 3 */
2780 	bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
2781 
2782 	/* word 7 */
2783 	bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0);
2784 	bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
2785 
2786 	/* word 8 - tell the FW to abort the IO associated with this
2787 	 * outstanding exchange ID.
2788 	 */
2789 	abts_wqe->abort_cmd.wqe_com.abort_tag = ctxp->wqeq->sli4_xritag;
2790 
2791 	/* word 9 - this is the iotag for the abts_wqe completion. */
2792 	bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
2793 	       abts_wqeq->iotag);
2794 
2795 	/* word 10 */
2796 	bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
2797 	bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
2798 
2799 	/* word 11 */
2800 	bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
2801 	bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
2802 	bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
2803 
2804 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
2805 	abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx;
2806 	abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp;
2807 	abts_wqeq->iocb_cmpl = 0;
2808 	abts_wqeq->iocb_flag |= LPFC_IO_NVME;
2809 	abts_wqeq->context2 = ctxp;
2810 	abts_wqeq->vport = phba->pport;
2811 	rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq);
2812 	spin_unlock_irqrestore(&phba->hbalock, flags);
2813 	if (rc == WQE_SUCCESS) {
2814 		atomic_inc(&tgtp->xmt_abort_sol);
2815 		return 0;
2816 	}
2817 
2818 	atomic_inc(&tgtp->xmt_abort_rsp_error);
2819 	ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2820 	lpfc_sli_release_iocbq(phba, abts_wqeq);
2821 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2822 			"6166 Failed ABORT issue_wqe with status x%x "
2823 			"for oxid x%x.\n",
2824 			rc, ctxp->oxid);
2825 	return 1;
2826 }
2827 
2828 
2829 static int
2830 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba,
2831 				 struct lpfc_nvmet_rcv_ctx *ctxp,
2832 				 uint32_t sid, uint16_t xri)
2833 {
2834 	struct lpfc_nvmet_tgtport *tgtp;
2835 	struct lpfc_iocbq *abts_wqeq;
2836 	unsigned long flags;
2837 	int rc;
2838 
2839 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2840 	if (!ctxp->wqeq) {
2841 		ctxp->wqeq = ctxp->ctxbuf->iocbq;
2842 		ctxp->wqeq->hba_wqidx = 0;
2843 	}
2844 
2845 	if (ctxp->state == LPFC_NVMET_STE_FREE) {
2846 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2847 				"6417 NVMET ABORT ctx freed %d %d oxid x%x\n",
2848 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
2849 		rc = WQE_BUSY;
2850 		goto aerr;
2851 	}
2852 	ctxp->state = LPFC_NVMET_STE_ABORT;
2853 	ctxp->entry_cnt++;
2854 	rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri);
2855 	if (rc == 0)
2856 		goto aerr;
2857 
2858 	spin_lock_irqsave(&phba->hbalock, flags);
2859 	abts_wqeq = ctxp->wqeq;
2860 	abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp;
2861 	abts_wqeq->iocb_cmpl = NULL;
2862 	abts_wqeq->iocb_flag |= LPFC_IO_NVMET;
2863 	rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq);
2864 	spin_unlock_irqrestore(&phba->hbalock, flags);
2865 	if (rc == WQE_SUCCESS) {
2866 		return 0;
2867 	}
2868 
2869 aerr:
2870 	ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2871 	atomic_inc(&tgtp->xmt_abort_rsp_error);
2872 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2873 			"6135 Failed to Issue ABTS for oxid x%x. Status x%x\n",
2874 			ctxp->oxid, rc);
2875 	return 1;
2876 }
2877 
2878 static int
2879 lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *phba,
2880 				struct lpfc_nvmet_rcv_ctx *ctxp,
2881 				uint32_t sid, uint16_t xri)
2882 {
2883 	struct lpfc_nvmet_tgtport *tgtp;
2884 	struct lpfc_iocbq *abts_wqeq;
2885 	union lpfc_wqe *wqe_abts;
2886 	unsigned long flags;
2887 	int rc;
2888 
2889 	if ((ctxp->state == LPFC_NVMET_STE_LS_RCV && ctxp->entry_cnt == 1) ||
2890 	    (ctxp->state == LPFC_NVMET_STE_LS_RSP && ctxp->entry_cnt == 2)) {
2891 		ctxp->state = LPFC_NVMET_STE_LS_ABORT;
2892 		ctxp->entry_cnt++;
2893 	} else {
2894 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2895 				"6418 NVMET LS abort state mismatch "
2896 				"IO x%x: %d %d\n",
2897 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
2898 		ctxp->state = LPFC_NVMET_STE_LS_ABORT;
2899 	}
2900 
2901 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2902 	if (!ctxp->wqeq) {
2903 		/* Issue ABTS for this WQE based on iotag */
2904 		ctxp->wqeq = lpfc_sli_get_iocbq(phba);
2905 		if (!ctxp->wqeq) {
2906 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2907 					"6068 Abort failed: No wqeqs: "
2908 					"xri: x%x\n", xri);
2909 			/* No failure to an ABTS request. */
2910 			kfree(ctxp);
2911 			return 0;
2912 		}
2913 	}
2914 	abts_wqeq = ctxp->wqeq;
2915 	wqe_abts = &abts_wqeq->wqe;
2916 
2917 	if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) {
2918 		rc = WQE_BUSY;
2919 		goto out;
2920 	}
2921 
2922 	spin_lock_irqsave(&phba->hbalock, flags);
2923 	abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp;
2924 	abts_wqeq->iocb_cmpl = 0;
2925 	abts_wqeq->iocb_flag |=  LPFC_IO_NVME_LS;
2926 	rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, abts_wqeq);
2927 	spin_unlock_irqrestore(&phba->hbalock, flags);
2928 	if (rc == WQE_SUCCESS) {
2929 		atomic_inc(&tgtp->xmt_abort_unsol);
2930 		return 0;
2931 	}
2932 out:
2933 	atomic_inc(&tgtp->xmt_abort_rsp_error);
2934 	abts_wqeq->context2 = NULL;
2935 	abts_wqeq->context3 = NULL;
2936 	lpfc_sli_release_iocbq(phba, abts_wqeq);
2937 	kfree(ctxp);
2938 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2939 			"6056 Failed to Issue ABTS. Status x%x\n", rc);
2940 	return 0;
2941 }
2942