xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_nvmet.c (revision 92614ad5)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channsel Host Bus Adapters.                               *
4  * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.     *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  ********************************************************************/
23 #include <linux/pci.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <asm/unaligned.h>
28 #include <linux/crc-t10dif.h>
29 #include <net/checksum.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_device.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_tcq.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
38 
39 #include "lpfc_version.h"
40 #include "lpfc_hw4.h"
41 #include "lpfc_hw.h"
42 #include "lpfc_sli.h"
43 #include "lpfc_sli4.h"
44 #include "lpfc_nl.h"
45 #include "lpfc_disc.h"
46 #include "lpfc.h"
47 #include "lpfc_scsi.h"
48 #include "lpfc_nvme.h"
49 #include "lpfc_logmsg.h"
50 #include "lpfc_crtn.h"
51 #include "lpfc_vport.h"
52 #include "lpfc_debugfs.h"
53 
54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *,
55 						 struct lpfc_async_xchg_ctx *,
56 						 dma_addr_t rspbuf,
57 						 uint16_t rspsize);
58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *,
59 						  struct lpfc_async_xchg_ctx *);
60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *,
61 					  struct lpfc_async_xchg_ctx *,
62 					  uint32_t, uint16_t);
63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *,
64 					    struct lpfc_async_xchg_ctx *,
65 					    uint32_t, uint16_t);
66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *,
67 				    struct lpfc_async_xchg_ctx *);
68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *);
69 
70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf);
71 
72 static union lpfc_wqe128 lpfc_tsend_cmd_template;
73 static union lpfc_wqe128 lpfc_treceive_cmd_template;
74 static union lpfc_wqe128 lpfc_trsp_cmd_template;
75 
76 /* Setup WQE templates for NVME IOs */
77 void
78 lpfc_nvmet_cmd_template(void)
79 {
80 	union lpfc_wqe128 *wqe;
81 
82 	/* TSEND template */
83 	wqe = &lpfc_tsend_cmd_template;
84 	memset(wqe, 0, sizeof(union lpfc_wqe128));
85 
86 	/* Word 0, 1, 2 - BDE is variable */
87 
88 	/* Word 3 - payload_offset_len is zero */
89 
90 	/* Word 4 - relative_offset is variable */
91 
92 	/* Word 5 - is zero */
93 
94 	/* Word 6 - ctxt_tag, xri_tag is variable */
95 
96 	/* Word 7 - wqe_ar is variable */
97 	bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE);
98 	bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF);
99 	bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3);
100 	bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI);
101 	bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1);
102 
103 	/* Word 8 - abort_tag is variable */
104 
105 	/* Word 9  - reqtag, rcvoxid is variable */
106 
107 	/* Word 10 - wqes, xc is variable */
108 	bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG);
109 	bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1);
110 	bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
111 	bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
112 	bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE);
113 	bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12);
114 
115 	/* Word 11 - sup, irsp, irsplen is variable */
116 	bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND);
117 	bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
118 	bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
119 	bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
120 	bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
121 	bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0);
122 
123 	/* Word 12 - fcp_data_len is variable */
124 
125 	/* Word 13, 14, 15 - PBDE is zero */
126 
127 	/* TRECEIVE template */
128 	wqe = &lpfc_treceive_cmd_template;
129 	memset(wqe, 0, sizeof(union lpfc_wqe128));
130 
131 	/* Word 0, 1, 2 - BDE is variable */
132 
133 	/* Word 3 */
134 	wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN;
135 
136 	/* Word 4 - relative_offset is variable */
137 
138 	/* Word 5 - is zero */
139 
140 	/* Word 6 - ctxt_tag, xri_tag is variable */
141 
142 	/* Word 7 */
143 	bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE);
144 	bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF);
145 	bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3);
146 	bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI);
147 	bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0);
148 
149 	/* Word 8 - abort_tag is variable */
150 
151 	/* Word 9  - reqtag, rcvoxid is variable */
152 
153 	/* Word 10 - xc is variable */
154 	bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1);
155 	bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0);
156 	bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG);
157 	bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ);
158 	bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12);
159 	bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
160 
161 	/* Word 11 - pbde is variable */
162 	bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE);
163 	bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
164 	bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0);
165 	bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0);
166 	bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0);
167 	bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1);
168 
169 	/* Word 12 - fcp_data_len is variable */
170 
171 	/* Word 13, 14, 15 - PBDE is variable */
172 
173 	/* TRSP template */
174 	wqe = &lpfc_trsp_cmd_template;
175 	memset(wqe, 0, sizeof(union lpfc_wqe128));
176 
177 	/* Word 0, 1, 2 - BDE is variable */
178 
179 	/* Word 3 - response_len is variable */
180 
181 	/* Word 4, 5 - is zero */
182 
183 	/* Word 6 - ctxt_tag, xri_tag is variable */
184 
185 	/* Word 7 */
186 	bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE);
187 	bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED);
188 	bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3);
189 	bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI);
190 	bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */
191 
192 	/* Word 8 - abort_tag is variable */
193 
194 	/* Word 9  - reqtag is variable */
195 
196 	/* Word 10 wqes, xc is variable */
197 	bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1);
198 	bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG);
199 	bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0);
200 	bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0);
201 	bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE);
202 	bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3);
203 
204 	/* Word 11 irsp, irsplen is variable */
205 	bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP);
206 	bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
207 	bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0);
208 	bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0);
209 	bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0);
210 	bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0);
211 
212 	/* Word 12, 13, 14, 15 - is zero */
213 }
214 
215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
216 static struct lpfc_async_xchg_ctx *
217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri)
218 {
219 	struct lpfc_async_xchg_ctx *ctxp;
220 	unsigned long iflag;
221 	bool found = false;
222 
223 	spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
224 	list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
225 		if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
226 			continue;
227 
228 		found = true;
229 		break;
230 	}
231 	spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
232 	if (found)
233 		return ctxp;
234 
235 	return NULL;
236 }
237 
238 static struct lpfc_async_xchg_ctx *
239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid)
240 {
241 	struct lpfc_async_xchg_ctx *ctxp;
242 	unsigned long iflag;
243 	bool found = false;
244 
245 	spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
246 	list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
247 		if (ctxp->oxid != oxid || ctxp->sid != sid)
248 			continue;
249 
250 		found = true;
251 		break;
252 	}
253 	spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
254 	if (found)
255 		return ctxp;
256 
257 	return NULL;
258 }
259 #endif
260 
261 static void
262 lpfc_nvmet_defer_release(struct lpfc_hba *phba,
263 			struct lpfc_async_xchg_ctx *ctxp)
264 {
265 	lockdep_assert_held(&ctxp->ctxlock);
266 
267 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
268 			"6313 NVMET Defer ctx release oxid x%x flg x%x\n",
269 			ctxp->oxid, ctxp->flag);
270 
271 	if (ctxp->flag & LPFC_NVME_CTX_RLS)
272 		return;
273 
274 	ctxp->flag |= LPFC_NVME_CTX_RLS;
275 	spin_lock(&phba->sli4_hba.t_active_list_lock);
276 	list_del(&ctxp->list);
277 	spin_unlock(&phba->sli4_hba.t_active_list_lock);
278 	spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
279 	list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
280 	spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
281 }
282 
283 /**
284  * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the
285  *         transmission of an NVME LS response.
286  * @phba: Pointer to HBA context object.
287  * @cmdwqe: Pointer to driver command WQE object.
288  * @wcqe: Pointer to driver response CQE object.
289  *
290  * The function is called from SLI ring event handler with no
291  * lock held. The function frees memory resources used for the command
292  * used to send the NVME LS RSP.
293  **/
294 void
295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
296 			   struct lpfc_wcqe_complete *wcqe)
297 {
298 	struct lpfc_async_xchg_ctx *axchg = cmdwqe->context2;
299 	struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp;
300 	uint32_t status, result;
301 
302 	status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
303 	result = wcqe->parameter;
304 
305 	if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) {
306 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
307 				"6410 NVMEx LS cmpl state mismatch IO x%x: "
308 				"%d %d\n",
309 				axchg->oxid, axchg->state, axchg->entry_cnt);
310 	}
311 
312 	lpfc_nvmeio_data(phba, "NVMEx LS  CMPL: xri x%x stat x%x result x%x\n",
313 			 axchg->oxid, status, result);
314 
315 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
316 			"6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n",
317 			status, result, axchg->oxid);
318 
319 	lpfc_nlp_put(cmdwqe->context1);
320 	cmdwqe->context2 = NULL;
321 	cmdwqe->context3 = NULL;
322 	lpfc_sli_release_iocbq(phba, cmdwqe);
323 	ls_rsp->done(ls_rsp);
324 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
325 			"6200 NVMEx LS rsp cmpl done status %d oxid x%x\n",
326 			status, axchg->oxid);
327 	kfree(axchg);
328 }
329 
330 /**
331  * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response
332  * @phba: Pointer to HBA context object.
333  * @cmdwqe: Pointer to driver command WQE object.
334  * @wcqe: Pointer to driver response CQE object.
335  *
336  * The function is called from SLI ring event handler with no
337  * lock held. This function is the completion handler for NVME LS commands
338  * The function updates any states and statistics, then calls the
339  * generic completion handler to free resources.
340  **/
341 static void
342 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
343 			  struct lpfc_wcqe_complete *wcqe)
344 {
345 	struct lpfc_nvmet_tgtport *tgtp;
346 	uint32_t status, result;
347 
348 	if (!phba->targetport)
349 		goto finish;
350 
351 	status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
352 	result = wcqe->parameter;
353 
354 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
355 	if (tgtp) {
356 		if (status) {
357 			atomic_inc(&tgtp->xmt_ls_rsp_error);
358 			if (result == IOERR_ABORT_REQUESTED)
359 				atomic_inc(&tgtp->xmt_ls_rsp_aborted);
360 			if (bf_get(lpfc_wcqe_c_xb, wcqe))
361 				atomic_inc(&tgtp->xmt_ls_rsp_xb_set);
362 		} else {
363 			atomic_inc(&tgtp->xmt_ls_rsp_cmpl);
364 		}
365 	}
366 
367 finish:
368 	__lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, wcqe);
369 }
370 
371 /**
372  * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context
373  * @phba: HBA buffer is associated with
374  * @ctx_buf: ctx buffer context
375  *
376  * Description: Frees the given DMA buffer in the appropriate way given by
377  * reposting it to its associated RQ so it can be reused.
378  *
379  * Notes: Takes phba->hbalock.  Can be called with or without other locks held.
380  *
381  * Returns: None
382  **/
383 void
384 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf)
385 {
386 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
387 	struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
388 	struct lpfc_nvmet_tgtport *tgtp;
389 	struct fc_frame_header *fc_hdr;
390 	struct rqb_dmabuf *nvmebuf;
391 	struct lpfc_nvmet_ctx_info *infop;
392 	uint32_t size, oxid, sid;
393 	int cpu;
394 	unsigned long iflag;
395 
396 	if (ctxp->state == LPFC_NVME_STE_FREE) {
397 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
398 				"6411 NVMET free, already free IO x%x: %d %d\n",
399 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
400 	}
401 
402 	if (ctxp->rqb_buffer) {
403 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
404 		nvmebuf = ctxp->rqb_buffer;
405 		/* check if freed in another path whilst acquiring lock */
406 		if (nvmebuf) {
407 			ctxp->rqb_buffer = NULL;
408 			if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
409 				ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ;
410 				spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
411 				nvmebuf->hrq->rqbp->rqb_free_buffer(phba,
412 								    nvmebuf);
413 			} else {
414 				spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
415 				/* repost */
416 				lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
417 			}
418 		} else {
419 			spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
420 		}
421 	}
422 	ctxp->state = LPFC_NVME_STE_FREE;
423 
424 	spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
425 	if (phba->sli4_hba.nvmet_io_wait_cnt) {
426 		list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list,
427 				 nvmebuf, struct rqb_dmabuf,
428 				 hbuf.list);
429 		phba->sli4_hba.nvmet_io_wait_cnt--;
430 		spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
431 				       iflag);
432 
433 		fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
434 		oxid = be16_to_cpu(fc_hdr->fh_ox_id);
435 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
436 		size = nvmebuf->bytes_recv;
437 		sid = sli4_sid_from_fc_hdr(fc_hdr);
438 
439 		ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
440 		ctxp->wqeq = NULL;
441 		ctxp->offset = 0;
442 		ctxp->phba = phba;
443 		ctxp->size = size;
444 		ctxp->oxid = oxid;
445 		ctxp->sid = sid;
446 		ctxp->state = LPFC_NVME_STE_RCV;
447 		ctxp->entry_cnt = 1;
448 		ctxp->flag = 0;
449 		ctxp->ctxbuf = ctx_buf;
450 		ctxp->rqb_buffer = (void *)nvmebuf;
451 		spin_lock_init(&ctxp->ctxlock);
452 
453 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
454 		/* NOTE: isr time stamp is stale when context is re-assigned*/
455 		if (ctxp->ts_isr_cmd) {
456 			ctxp->ts_cmd_nvme = 0;
457 			ctxp->ts_nvme_data = 0;
458 			ctxp->ts_data_wqput = 0;
459 			ctxp->ts_isr_data = 0;
460 			ctxp->ts_data_nvme = 0;
461 			ctxp->ts_nvme_status = 0;
462 			ctxp->ts_status_wqput = 0;
463 			ctxp->ts_isr_status = 0;
464 			ctxp->ts_status_nvme = 0;
465 		}
466 #endif
467 		atomic_inc(&tgtp->rcv_fcp_cmd_in);
468 
469 		/* Indicate that a replacement buffer has been posted */
470 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
471 		ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ;
472 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
473 
474 		if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
475 			atomic_inc(&tgtp->rcv_fcp_cmd_drop);
476 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
477 					"6181 Unable to queue deferred work "
478 					"for oxid x%x. "
479 					"FCP Drop IO [x%x x%x x%x]\n",
480 					ctxp->oxid,
481 					atomic_read(&tgtp->rcv_fcp_cmd_in),
482 					atomic_read(&tgtp->rcv_fcp_cmd_out),
483 					atomic_read(&tgtp->xmt_fcp_release));
484 
485 			spin_lock_irqsave(&ctxp->ctxlock, iflag);
486 			lpfc_nvmet_defer_release(phba, ctxp);
487 			spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
488 			lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
489 		}
490 		return;
491 	}
492 	spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
493 
494 	/*
495 	 * Use the CPU context list, from the MRQ the IO was received on
496 	 * (ctxp->idx), to save context structure.
497 	 */
498 	spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
499 	list_del_init(&ctxp->list);
500 	spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
501 	cpu = raw_smp_processor_id();
502 	infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx);
503 	spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag);
504 	list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
505 	infop->nvmet_ctx_list_cnt++;
506 	spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag);
507 #endif
508 }
509 
510 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
511 static void
512 lpfc_nvmet_ktime(struct lpfc_hba *phba,
513 		 struct lpfc_async_xchg_ctx *ctxp)
514 {
515 	uint64_t seg1, seg2, seg3, seg4, seg5;
516 	uint64_t seg6, seg7, seg8, seg9, seg10;
517 	uint64_t segsum;
518 
519 	if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme ||
520 	    !ctxp->ts_nvme_data || !ctxp->ts_data_wqput ||
521 	    !ctxp->ts_isr_data || !ctxp->ts_data_nvme ||
522 	    !ctxp->ts_nvme_status || !ctxp->ts_status_wqput ||
523 	    !ctxp->ts_isr_status || !ctxp->ts_status_nvme)
524 		return;
525 
526 	if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd)
527 		return;
528 	if (ctxp->ts_isr_cmd  > ctxp->ts_cmd_nvme)
529 		return;
530 	if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data)
531 		return;
532 	if (ctxp->ts_nvme_data > ctxp->ts_data_wqput)
533 		return;
534 	if (ctxp->ts_data_wqput > ctxp->ts_isr_data)
535 		return;
536 	if (ctxp->ts_isr_data > ctxp->ts_data_nvme)
537 		return;
538 	if (ctxp->ts_data_nvme > ctxp->ts_nvme_status)
539 		return;
540 	if (ctxp->ts_nvme_status > ctxp->ts_status_wqput)
541 		return;
542 	if (ctxp->ts_status_wqput > ctxp->ts_isr_status)
543 		return;
544 	if (ctxp->ts_isr_status > ctxp->ts_status_nvme)
545 		return;
546 	/*
547 	 * Segment 1 - Time from FCP command received by MSI-X ISR
548 	 * to FCP command is passed to NVME Layer.
549 	 * Segment 2 - Time from FCP command payload handed
550 	 * off to NVME Layer to Driver receives a Command op
551 	 * from NVME Layer.
552 	 * Segment 3 - Time from Driver receives a Command op
553 	 * from NVME Layer to Command is put on WQ.
554 	 * Segment 4 - Time from Driver WQ put is done
555 	 * to MSI-X ISR for Command cmpl.
556 	 * Segment 5 - Time from MSI-X ISR for Command cmpl to
557 	 * Command cmpl is passed to NVME Layer.
558 	 * Segment 6 - Time from Command cmpl is passed to NVME
559 	 * Layer to Driver receives a RSP op from NVME Layer.
560 	 * Segment 7 - Time from Driver receives a RSP op from
561 	 * NVME Layer to WQ put is done on TRSP FCP Status.
562 	 * Segment 8 - Time from Driver WQ put is done on TRSP
563 	 * FCP Status to MSI-X ISR for TRSP cmpl.
564 	 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to
565 	 * TRSP cmpl is passed to NVME Layer.
566 	 * Segment 10 - Time from FCP command received by
567 	 * MSI-X ISR to command is completed on wire.
568 	 * (Segments 1 thru 8) for READDATA / WRITEDATA
569 	 * (Segments 1 thru 4) for READDATA_RSP
570 	 */
571 	seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd;
572 	segsum = seg1;
573 
574 	seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd;
575 	if (segsum > seg2)
576 		return;
577 	seg2 -= segsum;
578 	segsum += seg2;
579 
580 	seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd;
581 	if (segsum > seg3)
582 		return;
583 	seg3 -= segsum;
584 	segsum += seg3;
585 
586 	seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd;
587 	if (segsum > seg4)
588 		return;
589 	seg4 -= segsum;
590 	segsum += seg4;
591 
592 	seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd;
593 	if (segsum > seg5)
594 		return;
595 	seg5 -= segsum;
596 	segsum += seg5;
597 
598 
599 	/* For auto rsp commands seg6 thru seg10 will be 0 */
600 	if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) {
601 		seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd;
602 		if (segsum > seg6)
603 			return;
604 		seg6 -= segsum;
605 		segsum += seg6;
606 
607 		seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd;
608 		if (segsum > seg7)
609 			return;
610 		seg7 -= segsum;
611 		segsum += seg7;
612 
613 		seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd;
614 		if (segsum > seg8)
615 			return;
616 		seg8 -= segsum;
617 		segsum += seg8;
618 
619 		seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd;
620 		if (segsum > seg9)
621 			return;
622 		seg9 -= segsum;
623 		segsum += seg9;
624 
625 		if (ctxp->ts_isr_status < ctxp->ts_isr_cmd)
626 			return;
627 		seg10 = (ctxp->ts_isr_status -
628 			ctxp->ts_isr_cmd);
629 	} else {
630 		if (ctxp->ts_isr_data < ctxp->ts_isr_cmd)
631 			return;
632 		seg6 =  0;
633 		seg7 =  0;
634 		seg8 =  0;
635 		seg9 =  0;
636 		seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd);
637 	}
638 
639 	phba->ktime_seg1_total += seg1;
640 	if (seg1 < phba->ktime_seg1_min)
641 		phba->ktime_seg1_min = seg1;
642 	else if (seg1 > phba->ktime_seg1_max)
643 		phba->ktime_seg1_max = seg1;
644 
645 	phba->ktime_seg2_total += seg2;
646 	if (seg2 < phba->ktime_seg2_min)
647 		phba->ktime_seg2_min = seg2;
648 	else if (seg2 > phba->ktime_seg2_max)
649 		phba->ktime_seg2_max = seg2;
650 
651 	phba->ktime_seg3_total += seg3;
652 	if (seg3 < phba->ktime_seg3_min)
653 		phba->ktime_seg3_min = seg3;
654 	else if (seg3 > phba->ktime_seg3_max)
655 		phba->ktime_seg3_max = seg3;
656 
657 	phba->ktime_seg4_total += seg4;
658 	if (seg4 < phba->ktime_seg4_min)
659 		phba->ktime_seg4_min = seg4;
660 	else if (seg4 > phba->ktime_seg4_max)
661 		phba->ktime_seg4_max = seg4;
662 
663 	phba->ktime_seg5_total += seg5;
664 	if (seg5 < phba->ktime_seg5_min)
665 		phba->ktime_seg5_min = seg5;
666 	else if (seg5 > phba->ktime_seg5_max)
667 		phba->ktime_seg5_max = seg5;
668 
669 	phba->ktime_data_samples++;
670 	if (!seg6)
671 		goto out;
672 
673 	phba->ktime_seg6_total += seg6;
674 	if (seg6 < phba->ktime_seg6_min)
675 		phba->ktime_seg6_min = seg6;
676 	else if (seg6 > phba->ktime_seg6_max)
677 		phba->ktime_seg6_max = seg6;
678 
679 	phba->ktime_seg7_total += seg7;
680 	if (seg7 < phba->ktime_seg7_min)
681 		phba->ktime_seg7_min = seg7;
682 	else if (seg7 > phba->ktime_seg7_max)
683 		phba->ktime_seg7_max = seg7;
684 
685 	phba->ktime_seg8_total += seg8;
686 	if (seg8 < phba->ktime_seg8_min)
687 		phba->ktime_seg8_min = seg8;
688 	else if (seg8 > phba->ktime_seg8_max)
689 		phba->ktime_seg8_max = seg8;
690 
691 	phba->ktime_seg9_total += seg9;
692 	if (seg9 < phba->ktime_seg9_min)
693 		phba->ktime_seg9_min = seg9;
694 	else if (seg9 > phba->ktime_seg9_max)
695 		phba->ktime_seg9_max = seg9;
696 out:
697 	phba->ktime_seg10_total += seg10;
698 	if (seg10 < phba->ktime_seg10_min)
699 		phba->ktime_seg10_min = seg10;
700 	else if (seg10 > phba->ktime_seg10_max)
701 		phba->ktime_seg10_max = seg10;
702 	phba->ktime_status_samples++;
703 }
704 #endif
705 
706 /**
707  * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response
708  * @phba: Pointer to HBA context object.
709  * @cmdwqe: Pointer to driver command WQE object.
710  * @wcqe: Pointer to driver response CQE object.
711  *
712  * The function is called from SLI ring event handler with no
713  * lock held. This function is the completion handler for NVME FCP commands
714  * The function frees memory resources used for the NVME commands.
715  **/
716 static void
717 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
718 			  struct lpfc_wcqe_complete *wcqe)
719 {
720 	struct lpfc_nvmet_tgtport *tgtp;
721 	struct nvmefc_tgt_fcp_req *rsp;
722 	struct lpfc_async_xchg_ctx *ctxp;
723 	uint32_t status, result, op, start_clean, logerr;
724 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
725 	int id;
726 #endif
727 
728 	ctxp = cmdwqe->context2;
729 	ctxp->flag &= ~LPFC_NVME_IO_INP;
730 
731 	rsp = &ctxp->hdlrctx.fcp_req;
732 	op = rsp->op;
733 
734 	status = bf_get(lpfc_wcqe_c_status, wcqe);
735 	result = wcqe->parameter;
736 
737 	if (phba->targetport)
738 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
739 	else
740 		tgtp = NULL;
741 
742 	lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n",
743 			 ctxp->oxid, op, status);
744 
745 	if (status) {
746 		rsp->fcp_error = NVME_SC_DATA_XFER_ERROR;
747 		rsp->transferred_length = 0;
748 		if (tgtp) {
749 			atomic_inc(&tgtp->xmt_fcp_rsp_error);
750 			if (result == IOERR_ABORT_REQUESTED)
751 				atomic_inc(&tgtp->xmt_fcp_rsp_aborted);
752 		}
753 
754 		logerr = LOG_NVME_IOERR;
755 
756 		/* pick up SLI4 exhange busy condition */
757 		if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
758 			ctxp->flag |= LPFC_NVME_XBUSY;
759 			logerr |= LOG_NVME_ABTS;
760 			if (tgtp)
761 				atomic_inc(&tgtp->xmt_fcp_rsp_xb_set);
762 
763 		} else {
764 			ctxp->flag &= ~LPFC_NVME_XBUSY;
765 		}
766 
767 		lpfc_printf_log(phba, KERN_INFO, logerr,
768 				"6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x "
769 				"XBUSY:x%x\n",
770 				ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag,
771 				status, result, ctxp->flag);
772 
773 	} else {
774 		rsp->fcp_error = NVME_SC_SUCCESS;
775 		if (op == NVMET_FCOP_RSP)
776 			rsp->transferred_length = rsp->rsplen;
777 		else
778 			rsp->transferred_length = rsp->transfer_length;
779 		if (tgtp)
780 			atomic_inc(&tgtp->xmt_fcp_rsp_cmpl);
781 	}
782 
783 	if ((op == NVMET_FCOP_READDATA_RSP) ||
784 	    (op == NVMET_FCOP_RSP)) {
785 		/* Sanity check */
786 		ctxp->state = LPFC_NVME_STE_DONE;
787 		ctxp->entry_cnt++;
788 
789 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
790 		if (ctxp->ts_cmd_nvme) {
791 			if (rsp->op == NVMET_FCOP_READDATA_RSP) {
792 				ctxp->ts_isr_data =
793 					cmdwqe->isr_timestamp;
794 				ctxp->ts_data_nvme =
795 					ktime_get_ns();
796 				ctxp->ts_nvme_status =
797 					ctxp->ts_data_nvme;
798 				ctxp->ts_status_wqput =
799 					ctxp->ts_data_nvme;
800 				ctxp->ts_isr_status =
801 					ctxp->ts_data_nvme;
802 				ctxp->ts_status_nvme =
803 					ctxp->ts_data_nvme;
804 			} else {
805 				ctxp->ts_isr_status =
806 					cmdwqe->isr_timestamp;
807 				ctxp->ts_status_nvme =
808 					ktime_get_ns();
809 			}
810 		}
811 #endif
812 		rsp->done(rsp);
813 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
814 		if (ctxp->ts_cmd_nvme)
815 			lpfc_nvmet_ktime(phba, ctxp);
816 #endif
817 		/* lpfc_nvmet_xmt_fcp_release() will recycle the context */
818 	} else {
819 		ctxp->entry_cnt++;
820 		start_clean = offsetof(struct lpfc_iocbq, iocb_flag);
821 		memset(((char *)cmdwqe) + start_clean, 0,
822 		       (sizeof(struct lpfc_iocbq) - start_clean));
823 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
824 		if (ctxp->ts_cmd_nvme) {
825 			ctxp->ts_isr_data = cmdwqe->isr_timestamp;
826 			ctxp->ts_data_nvme = ktime_get_ns();
827 		}
828 #endif
829 		rsp->done(rsp);
830 	}
831 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
832 	if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
833 		id = raw_smp_processor_id();
834 		this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io);
835 		if (ctxp->cpu != id)
836 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
837 					"6704 CPU Check cmdcmpl: "
838 					"cpu %d expect %d\n",
839 					id, ctxp->cpu);
840 	}
841 #endif
842 }
843 
844 /**
845  * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit
846  *         an NVME LS rsp for a prior NVME LS request that was received.
847  * @axchg: pointer to exchange context for the NVME LS request the response
848  *         is for.
849  * @ls_rsp: pointer to the transport LS RSP that is to be sent
850  * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done
851  *
852  * This routine is used to format and send a WQE to transmit a NVME LS
853  * Response.  The response is for a prior NVME LS request that was
854  * received and posted to the transport.
855  *
856  * Returns:
857  *  0 : if response successfully transmit
858  *  non-zero : if response failed to transmit, of the form -Exxx.
859  **/
860 int
861 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg,
862 			struct nvmefc_ls_rsp *ls_rsp,
863 			void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba,
864 				struct lpfc_iocbq *cmdwqe,
865 				struct lpfc_wcqe_complete *wcqe))
866 {
867 	struct lpfc_hba *phba = axchg->phba;
868 	struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer;
869 	struct lpfc_iocbq *nvmewqeq;
870 	struct lpfc_dmabuf dmabuf;
871 	struct ulp_bde64 bpl;
872 	int rc;
873 
874 	if (phba->pport->load_flag & FC_UNLOADING)
875 		return -ENODEV;
876 
877 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
878 			"6023 NVMEx LS rsp oxid x%x\n", axchg->oxid);
879 
880 	if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) {
881 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
882 				"6412 NVMEx LS rsp state mismatch "
883 				"oxid x%x: %d %d\n",
884 				axchg->oxid, axchg->state, axchg->entry_cnt);
885 		return -EALREADY;
886 	}
887 	axchg->state = LPFC_NVME_STE_LS_RSP;
888 	axchg->entry_cnt++;
889 
890 	nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma,
891 					 ls_rsp->rsplen);
892 	if (nvmewqeq == NULL) {
893 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
894 				"6150 NVMEx LS Drop Rsp x%x: Prep\n",
895 				axchg->oxid);
896 		rc = -ENOMEM;
897 		goto out_free_buf;
898 	}
899 
900 	/* Save numBdes for bpl2sgl */
901 	nvmewqeq->rsvd2 = 1;
902 	nvmewqeq->hba_wqidx = 0;
903 	nvmewqeq->context3 = &dmabuf;
904 	dmabuf.virt = &bpl;
905 	bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow;
906 	bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh;
907 	bpl.tus.f.bdeSize = ls_rsp->rsplen;
908 	bpl.tus.f.bdeFlags = 0;
909 	bpl.tus.w = le32_to_cpu(bpl.tus.w);
910 	/*
911 	 * Note: although we're using stack space for the dmabuf, the
912 	 * call to lpfc_sli4_issue_wqe is synchronous, so it will not
913 	 * be referenced after it returns back to this routine.
914 	 */
915 
916 	nvmewqeq->wqe_cmpl = xmt_ls_rsp_cmp;
917 	nvmewqeq->iocb_cmpl = NULL;
918 	nvmewqeq->context2 = axchg;
919 
920 	lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n",
921 			 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen);
922 
923 	rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq);
924 
925 	/* clear to be sure there's no reference */
926 	nvmewqeq->context3 = NULL;
927 
928 	if (rc == WQE_SUCCESS) {
929 		/*
930 		 * Okay to repost buffer here, but wait till cmpl
931 		 * before freeing ctxp and iocbq.
932 		 */
933 		lpfc_in_buf_free(phba, &nvmebuf->dbuf);
934 		return 0;
935 	}
936 
937 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
938 			"6151 NVMEx LS RSP x%x: failed to transmit %d\n",
939 			axchg->oxid, rc);
940 
941 	rc = -ENXIO;
942 
943 	lpfc_nlp_put(nvmewqeq->context1);
944 
945 out_free_buf:
946 	/* Give back resources */
947 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
948 
949 	/*
950 	 * As transport doesn't track completions of responses, if the rsp
951 	 * fails to send, the transport will effectively ignore the rsp
952 	 * and consider the LS done. However, the driver has an active
953 	 * exchange open for the LS - so be sure to abort the exchange
954 	 * if the response isn't sent.
955 	 */
956 	lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid);
957 	return rc;
958 }
959 
960 /**
961  * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response
962  * @tgtport: pointer to target port that NVME LS is to be transmit from.
963  * @ls_rsp: pointer to the transport LS RSP that is to be sent
964  *
965  * Driver registers this routine to transmit responses for received NVME
966  * LS requests.
967  *
968  * This routine is used to format and send a WQE to transmit a NVME LS
969  * Response. The ls_rsp is used to reverse-map the LS to the original
970  * NVME LS request sequence, which provides addressing information for
971  * the remote port the LS to be sent to, as well as the exchange id
972  * that is the LS is bound to.
973  *
974  * Returns:
975  *  0 : if response successfully transmit
976  *  non-zero : if response failed to transmit, of the form -Exxx.
977  **/
978 static int
979 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
980 		      struct nvmefc_ls_rsp *ls_rsp)
981 {
982 	struct lpfc_async_xchg_ctx *axchg =
983 		container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp);
984 	struct lpfc_nvmet_tgtport *nvmep = tgtport->private;
985 	int rc;
986 
987 	if (axchg->phba->pport->load_flag & FC_UNLOADING)
988 		return -ENODEV;
989 
990 	rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp);
991 
992 	if (rc) {
993 		atomic_inc(&nvmep->xmt_ls_drop);
994 		/*
995 		 * unless the failure is due to having already sent
996 		 * the response, an abort will be generated for the
997 		 * exchange if the rsp can't be sent.
998 		 */
999 		if (rc != -EALREADY)
1000 			atomic_inc(&nvmep->xmt_ls_abort);
1001 		return rc;
1002 	}
1003 
1004 	atomic_inc(&nvmep->xmt_ls_rsp);
1005 	return 0;
1006 }
1007 
1008 static int
1009 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
1010 		      struct nvmefc_tgt_fcp_req *rsp)
1011 {
1012 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1013 	struct lpfc_async_xchg_ctx *ctxp =
1014 		container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1015 	struct lpfc_hba *phba = ctxp->phba;
1016 	struct lpfc_queue *wq;
1017 	struct lpfc_iocbq *nvmewqeq;
1018 	struct lpfc_sli_ring *pring;
1019 	unsigned long iflags;
1020 	int rc;
1021 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1022 	int id;
1023 #endif
1024 
1025 	if (phba->pport->load_flag & FC_UNLOADING) {
1026 		rc = -ENODEV;
1027 		goto aerr;
1028 	}
1029 
1030 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1031 	if (ctxp->ts_cmd_nvme) {
1032 		if (rsp->op == NVMET_FCOP_RSP)
1033 			ctxp->ts_nvme_status = ktime_get_ns();
1034 		else
1035 			ctxp->ts_nvme_data = ktime_get_ns();
1036 	}
1037 
1038 	/* Setup the hdw queue if not already set */
1039 	if (!ctxp->hdwq)
1040 		ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid];
1041 
1042 	if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
1043 		id = raw_smp_processor_id();
1044 		this_cpu_inc(phba->sli4_hba.c_stat->xmt_io);
1045 		if (rsp->hwqid != id)
1046 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1047 					"6705 CPU Check OP: "
1048 					"cpu %d expect %d\n",
1049 					id, rsp->hwqid);
1050 		ctxp->cpu = id; /* Setup cpu for cmpl check */
1051 	}
1052 #endif
1053 
1054 	/* Sanity check */
1055 	if ((ctxp->flag & LPFC_NVME_ABTS_RCV) ||
1056 	    (ctxp->state == LPFC_NVME_STE_ABORT)) {
1057 		atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1058 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1059 				"6102 IO oxid x%x aborted\n",
1060 				ctxp->oxid);
1061 		rc = -ENXIO;
1062 		goto aerr;
1063 	}
1064 
1065 	nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp);
1066 	if (nvmewqeq == NULL) {
1067 		atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1068 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1069 				"6152 FCP Drop IO x%x: Prep\n",
1070 				ctxp->oxid);
1071 		rc = -ENXIO;
1072 		goto aerr;
1073 	}
1074 
1075 	nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp;
1076 	nvmewqeq->iocb_cmpl = NULL;
1077 	nvmewqeq->context2 = ctxp;
1078 	nvmewqeq->iocb_flag |=  LPFC_IO_NVMET;
1079 	ctxp->wqeq->hba_wqidx = rsp->hwqid;
1080 
1081 	lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n",
1082 			 ctxp->oxid, rsp->op, rsp->rsplen);
1083 
1084 	ctxp->flag |= LPFC_NVME_IO_INP;
1085 	rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
1086 	if (rc == WQE_SUCCESS) {
1087 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1088 		if (!ctxp->ts_cmd_nvme)
1089 			return 0;
1090 		if (rsp->op == NVMET_FCOP_RSP)
1091 			ctxp->ts_status_wqput = ktime_get_ns();
1092 		else
1093 			ctxp->ts_data_wqput = ktime_get_ns();
1094 #endif
1095 		return 0;
1096 	}
1097 
1098 	if (rc == -EBUSY) {
1099 		/*
1100 		 * WQ was full, so queue nvmewqeq to be sent after
1101 		 * WQE release CQE
1102 		 */
1103 		ctxp->flag |= LPFC_NVME_DEFER_WQFULL;
1104 		wq = ctxp->hdwq->io_wq;
1105 		pring = wq->pring;
1106 		spin_lock_irqsave(&pring->ring_lock, iflags);
1107 		list_add_tail(&nvmewqeq->list, &wq->wqfull_list);
1108 		wq->q_flag |= HBA_NVMET_WQFULL;
1109 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
1110 		atomic_inc(&lpfc_nvmep->defer_wqfull);
1111 		return 0;
1112 	}
1113 
1114 	/* Give back resources */
1115 	atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1116 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1117 			"6153 FCP Drop IO x%x: Issue: %d\n",
1118 			ctxp->oxid, rc);
1119 
1120 	ctxp->wqeq->hba_wqidx = 0;
1121 	nvmewqeq->context2 = NULL;
1122 	nvmewqeq->context3 = NULL;
1123 	rc = -EBUSY;
1124 aerr:
1125 	return rc;
1126 }
1127 
1128 static void
1129 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
1130 {
1131 	struct lpfc_nvmet_tgtport *tport = targetport->private;
1132 
1133 	/* release any threads waiting for the unreg to complete */
1134 	if (tport->phba->targetport)
1135 		complete(tport->tport_unreg_cmp);
1136 }
1137 
1138 static void
1139 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
1140 			 struct nvmefc_tgt_fcp_req *req)
1141 {
1142 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1143 	struct lpfc_async_xchg_ctx *ctxp =
1144 		container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1145 	struct lpfc_hba *phba = ctxp->phba;
1146 	struct lpfc_queue *wq;
1147 	unsigned long flags;
1148 
1149 	if (phba->pport->load_flag & FC_UNLOADING)
1150 		return;
1151 
1152 	if (!ctxp->hdwq)
1153 		ctxp->hdwq = &phba->sli4_hba.hdwq[0];
1154 
1155 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1156 			"6103 NVMET Abort op: oxid x%x flg x%x ste %d\n",
1157 			ctxp->oxid, ctxp->flag, ctxp->state);
1158 
1159 	lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n",
1160 			 ctxp->oxid, ctxp->flag, ctxp->state);
1161 
1162 	atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
1163 
1164 	spin_lock_irqsave(&ctxp->ctxlock, flags);
1165 
1166 	/* Since iaab/iaar are NOT set, we need to check
1167 	 * if the firmware is in process of aborting IO
1168 	 */
1169 	if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) {
1170 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1171 		return;
1172 	}
1173 	ctxp->flag |= LPFC_NVME_ABORT_OP;
1174 
1175 	if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) {
1176 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1177 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1178 						 ctxp->oxid);
1179 		wq = ctxp->hdwq->io_wq;
1180 		lpfc_nvmet_wqfull_flush(phba, wq, ctxp);
1181 		return;
1182 	}
1183 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1184 
1185 	/* A state of LPFC_NVME_STE_RCV means we have just received
1186 	 * the NVME command and have not started processing it.
1187 	 * (by issuing any IO WQEs on this exchange yet)
1188 	 */
1189 	if (ctxp->state == LPFC_NVME_STE_RCV)
1190 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1191 						 ctxp->oxid);
1192 	else
1193 		lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1194 					       ctxp->oxid);
1195 }
1196 
1197 static void
1198 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
1199 			   struct nvmefc_tgt_fcp_req *rsp)
1200 {
1201 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1202 	struct lpfc_async_xchg_ctx *ctxp =
1203 		container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1204 	struct lpfc_hba *phba = ctxp->phba;
1205 	unsigned long flags;
1206 	bool aborting = false;
1207 
1208 	spin_lock_irqsave(&ctxp->ctxlock, flags);
1209 	if (ctxp->flag & LPFC_NVME_XBUSY)
1210 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1211 				"6027 NVMET release with XBUSY flag x%x"
1212 				" oxid x%x\n",
1213 				ctxp->flag, ctxp->oxid);
1214 	else if (ctxp->state != LPFC_NVME_STE_DONE &&
1215 		 ctxp->state != LPFC_NVME_STE_ABORT)
1216 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1217 				"6413 NVMET release bad state %d %d oxid x%x\n",
1218 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1219 
1220 	if ((ctxp->flag & LPFC_NVME_ABORT_OP) ||
1221 	    (ctxp->flag & LPFC_NVME_XBUSY)) {
1222 		aborting = true;
1223 		/* let the abort path do the real release */
1224 		lpfc_nvmet_defer_release(phba, ctxp);
1225 	}
1226 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1227 
1228 	lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid,
1229 			 ctxp->state, aborting);
1230 
1231 	atomic_inc(&lpfc_nvmep->xmt_fcp_release);
1232 	ctxp->flag &= ~LPFC_NVME_TNOTIFY;
1233 
1234 	if (aborting)
1235 		return;
1236 
1237 	lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1238 }
1239 
1240 static void
1241 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport,
1242 		     struct nvmefc_tgt_fcp_req *rsp)
1243 {
1244 	struct lpfc_nvmet_tgtport *tgtp;
1245 	struct lpfc_async_xchg_ctx *ctxp =
1246 		container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1247 	struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
1248 	struct lpfc_hba *phba = ctxp->phba;
1249 	unsigned long iflag;
1250 
1251 
1252 	lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n",
1253 			 ctxp->oxid, ctxp->size, raw_smp_processor_id());
1254 
1255 	if (!nvmebuf) {
1256 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1257 				"6425 Defer rcv: no buffer oxid x%x: "
1258 				"flg %x ste %x\n",
1259 				ctxp->oxid, ctxp->flag, ctxp->state);
1260 		return;
1261 	}
1262 
1263 	tgtp = phba->targetport->private;
1264 	if (tgtp)
1265 		atomic_inc(&tgtp->rcv_fcp_cmd_defer);
1266 
1267 	/* Free the nvmebuf since a new buffer already replaced it */
1268 	nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1269 	spin_lock_irqsave(&ctxp->ctxlock, iflag);
1270 	ctxp->rqb_buffer = NULL;
1271 	spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1272 }
1273 
1274 /**
1275  * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request
1276  * @phba: Pointer to HBA context object
1277  * @cmdwqe: Pointer to driver command WQE object.
1278  * @wcqe: Pointer to driver response CQE object.
1279  *
1280  * This function is the completion handler for NVME LS requests.
1281  * The function updates any states and statistics, then calls the
1282  * generic completion handler to finish completion of the request.
1283  **/
1284 static void
1285 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
1286 		       struct lpfc_wcqe_complete *wcqe)
1287 {
1288 	__lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe);
1289 }
1290 
1291 /**
1292  * lpfc_nvmet_ls_req - Issue an Link Service request
1293  * @targetport: pointer to target instance registered with nvmet transport.
1294  * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv.
1295  *               Driver sets this value to the ndlp pointer.
1296  * @pnvme_lsreq: the transport nvme_ls_req structure for the LS
1297  *
1298  * Driver registers this routine to handle any link service request
1299  * from the nvme_fc transport to a remote nvme-aware port.
1300  *
1301  * Return value :
1302  *   0 - Success
1303  *   non-zero: various error codes, in form of -Exxx
1304  **/
1305 static int
1306 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport,
1307 		  void *hosthandle,
1308 		  struct nvmefc_ls_req *pnvme_lsreq)
1309 {
1310 	struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
1311 	struct lpfc_hba *phba;
1312 	struct lpfc_nodelist *ndlp;
1313 	int ret;
1314 	u32 hstate;
1315 
1316 	if (!lpfc_nvmet)
1317 		return -EINVAL;
1318 
1319 	phba = lpfc_nvmet->phba;
1320 	if (phba->pport->load_flag & FC_UNLOADING)
1321 		return -EINVAL;
1322 
1323 	hstate = atomic_read(&lpfc_nvmet->state);
1324 	if (hstate == LPFC_NVMET_INV_HOST_ACTIVE)
1325 		return -EACCES;
1326 
1327 	ndlp = (struct lpfc_nodelist *)hosthandle;
1328 
1329 	ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq,
1330 				 lpfc_nvmet_ls_req_cmp);
1331 
1332 	return ret;
1333 }
1334 
1335 /**
1336  * lpfc_nvmet_ls_abort - Abort a prior NVME LS request
1337  * @targetport: Transport targetport, that LS was issued from.
1338  * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv.
1339  *               Driver sets this value to the ndlp pointer.
1340  * @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted
1341  *
1342  * Driver registers this routine to abort an NVME LS request that is
1343  * in progress (from the transports perspective).
1344  **/
1345 static void
1346 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport,
1347 		    void *hosthandle,
1348 		    struct nvmefc_ls_req *pnvme_lsreq)
1349 {
1350 	struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
1351 	struct lpfc_hba *phba;
1352 	struct lpfc_nodelist *ndlp;
1353 	int ret;
1354 
1355 	phba = lpfc_nvmet->phba;
1356 	if (phba->pport->load_flag & FC_UNLOADING)
1357 		return;
1358 
1359 	ndlp = (struct lpfc_nodelist *)hosthandle;
1360 
1361 	ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq);
1362 	if (!ret)
1363 		atomic_inc(&lpfc_nvmet->xmt_ls_abort);
1364 }
1365 
1366 static void
1367 lpfc_nvmet_host_release(void *hosthandle)
1368 {
1369 	struct lpfc_nodelist *ndlp = hosthandle;
1370 	struct lpfc_hba *phba = NULL;
1371 	struct lpfc_nvmet_tgtport *tgtp;
1372 
1373 	phba = ndlp->phba;
1374 	if (!phba->targetport || !phba->targetport->private)
1375 		return;
1376 
1377 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1378 			"6202 NVMET XPT releasing hosthandle x%px\n",
1379 			hosthandle);
1380 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1381 	atomic_set(&tgtp->state, 0);
1382 }
1383 
1384 static void
1385 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport)
1386 {
1387 	struct lpfc_nvmet_tgtport *tgtp;
1388 	struct lpfc_hba *phba;
1389 	uint32_t rc;
1390 
1391 	tgtp = tgtport->private;
1392 	phba = tgtp->phba;
1393 
1394 	rc = lpfc_issue_els_rscn(phba->pport, 0);
1395 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1396 			"6420 NVMET subsystem change: Notification %s\n",
1397 			(rc) ? "Failed" : "Sent");
1398 }
1399 
1400 static struct nvmet_fc_target_template lpfc_tgttemplate = {
1401 	.targetport_delete = lpfc_nvmet_targetport_delete,
1402 	.xmt_ls_rsp     = lpfc_nvmet_xmt_ls_rsp,
1403 	.fcp_op         = lpfc_nvmet_xmt_fcp_op,
1404 	.fcp_abort      = lpfc_nvmet_xmt_fcp_abort,
1405 	.fcp_req_release = lpfc_nvmet_xmt_fcp_release,
1406 	.defer_rcv	= lpfc_nvmet_defer_rcv,
1407 	.discovery_event = lpfc_nvmet_discovery_event,
1408 	.ls_req         = lpfc_nvmet_ls_req,
1409 	.ls_abort       = lpfc_nvmet_ls_abort,
1410 	.host_release   = lpfc_nvmet_host_release,
1411 
1412 	.max_hw_queues  = 1,
1413 	.max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1414 	.max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1415 	.dma_boundary = 0xFFFFFFFF,
1416 
1417 	/* optional features */
1418 	.target_features = 0,
1419 	/* sizes of additional private data for data structures */
1420 	.target_priv_sz = sizeof(struct lpfc_nvmet_tgtport),
1421 	.lsrqst_priv_sz = 0,
1422 };
1423 
1424 static void
1425 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba,
1426 		struct lpfc_nvmet_ctx_info *infop)
1427 {
1428 	struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf;
1429 	unsigned long flags;
1430 
1431 	spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags);
1432 	list_for_each_entry_safe(ctx_buf, next_ctx_buf,
1433 				&infop->nvmet_ctx_list, list) {
1434 		spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1435 		list_del_init(&ctx_buf->list);
1436 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1437 
1438 		__lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag);
1439 		ctx_buf->sglq->state = SGL_FREED;
1440 		ctx_buf->sglq->ndlp = NULL;
1441 
1442 		spin_lock(&phba->sli4_hba.sgl_list_lock);
1443 		list_add_tail(&ctx_buf->sglq->list,
1444 				&phba->sli4_hba.lpfc_nvmet_sgl_list);
1445 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
1446 
1447 		lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1448 		kfree(ctx_buf->context);
1449 	}
1450 	spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags);
1451 }
1452 
1453 static void
1454 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba)
1455 {
1456 	struct lpfc_nvmet_ctx_info *infop;
1457 	int i, j;
1458 
1459 	/* The first context list, MRQ 0 CPU 0 */
1460 	infop = phba->sli4_hba.nvmet_ctx_info;
1461 	if (!infop)
1462 		return;
1463 
1464 	/* Cycle the the entire CPU context list for every MRQ */
1465 	for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
1466 		for_each_present_cpu(j) {
1467 			infop = lpfc_get_ctx_list(phba, j, i);
1468 			__lpfc_nvmet_clean_io_for_cpu(phba, infop);
1469 		}
1470 	}
1471 	kfree(phba->sli4_hba.nvmet_ctx_info);
1472 	phba->sli4_hba.nvmet_ctx_info = NULL;
1473 }
1474 
1475 static int
1476 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba)
1477 {
1478 	struct lpfc_nvmet_ctxbuf *ctx_buf;
1479 	struct lpfc_iocbq *nvmewqe;
1480 	union lpfc_wqe128 *wqe;
1481 	struct lpfc_nvmet_ctx_info *last_infop;
1482 	struct lpfc_nvmet_ctx_info *infop;
1483 	int i, j, idx, cpu;
1484 
1485 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
1486 			"6403 Allocate NVMET resources for %d XRIs\n",
1487 			phba->sli4_hba.nvmet_xri_cnt);
1488 
1489 	phba->sli4_hba.nvmet_ctx_info = kcalloc(
1490 		phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq,
1491 		sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL);
1492 	if (!phba->sli4_hba.nvmet_ctx_info) {
1493 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1494 				"6419 Failed allocate memory for "
1495 				"nvmet context lists\n");
1496 		return -ENOMEM;
1497 	}
1498 
1499 	/*
1500 	 * Assuming X CPUs in the system, and Y MRQs, allocate some
1501 	 * lpfc_nvmet_ctx_info structures as follows:
1502 	 *
1503 	 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0
1504 	 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1
1505 	 * ...
1506 	 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY
1507 	 *
1508 	 * Each line represents a MRQ "silo" containing an entry for
1509 	 * every CPU.
1510 	 *
1511 	 * MRQ X is initially assumed to be associated with CPU X, thus
1512 	 * contexts are initially distributed across all MRQs using
1513 	 * the MRQ index (N) as follows cpuN/mrqN. When contexts are
1514 	 * freed, the are freed to the MRQ silo based on the CPU number
1515 	 * of the IO completion. Thus a context that was allocated for MRQ A
1516 	 * whose IO completed on CPU B will be freed to cpuB/mrqA.
1517 	 */
1518 	for_each_possible_cpu(i) {
1519 		for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1520 			infop = lpfc_get_ctx_list(phba, i, j);
1521 			INIT_LIST_HEAD(&infop->nvmet_ctx_list);
1522 			spin_lock_init(&infop->nvmet_ctx_list_lock);
1523 			infop->nvmet_ctx_list_cnt = 0;
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Setup the next CPU context info ptr for each MRQ.
1529 	 * MRQ 0 will cycle thru CPUs 0 - X separately from
1530 	 * MRQ 1 cycling thru CPUs 0 - X, and so on.
1531 	 */
1532 	for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1533 		last_infop = lpfc_get_ctx_list(phba,
1534 					       cpumask_first(cpu_present_mask),
1535 					       j);
1536 		for (i = phba->sli4_hba.num_possible_cpu - 1;  i >= 0; i--) {
1537 			infop = lpfc_get_ctx_list(phba, i, j);
1538 			infop->nvmet_ctx_next_cpu = last_infop;
1539 			last_infop = infop;
1540 		}
1541 	}
1542 
1543 	/* For all nvmet xris, allocate resources needed to process a
1544 	 * received command on a per xri basis.
1545 	 */
1546 	idx = 0;
1547 	cpu = cpumask_first(cpu_present_mask);
1548 	for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) {
1549 		ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL);
1550 		if (!ctx_buf) {
1551 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1552 					"6404 Ran out of memory for NVMET\n");
1553 			return -ENOMEM;
1554 		}
1555 
1556 		ctx_buf->context = kzalloc(sizeof(*ctx_buf->context),
1557 					   GFP_KERNEL);
1558 		if (!ctx_buf->context) {
1559 			kfree(ctx_buf);
1560 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1561 					"6405 Ran out of NVMET "
1562 					"context memory\n");
1563 			return -ENOMEM;
1564 		}
1565 		ctx_buf->context->ctxbuf = ctx_buf;
1566 		ctx_buf->context->state = LPFC_NVME_STE_FREE;
1567 
1568 		ctx_buf->iocbq = lpfc_sli_get_iocbq(phba);
1569 		if (!ctx_buf->iocbq) {
1570 			kfree(ctx_buf->context);
1571 			kfree(ctx_buf);
1572 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1573 					"6406 Ran out of NVMET iocb/WQEs\n");
1574 			return -ENOMEM;
1575 		}
1576 		ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET;
1577 		nvmewqe = ctx_buf->iocbq;
1578 		wqe = &nvmewqe->wqe;
1579 
1580 		/* Initialize WQE */
1581 		memset(wqe, 0, sizeof(union lpfc_wqe));
1582 
1583 		ctx_buf->iocbq->context1 = NULL;
1584 		spin_lock(&phba->sli4_hba.sgl_list_lock);
1585 		ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq);
1586 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
1587 		if (!ctx_buf->sglq) {
1588 			lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1589 			kfree(ctx_buf->context);
1590 			kfree(ctx_buf);
1591 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1592 					"6407 Ran out of NVMET XRIs\n");
1593 			return -ENOMEM;
1594 		}
1595 		INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work);
1596 
1597 		/*
1598 		 * Add ctx to MRQidx context list. Our initial assumption
1599 		 * is MRQidx will be associated with CPUidx. This association
1600 		 * can change on the fly.
1601 		 */
1602 		infop = lpfc_get_ctx_list(phba, cpu, idx);
1603 		spin_lock(&infop->nvmet_ctx_list_lock);
1604 		list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
1605 		infop->nvmet_ctx_list_cnt++;
1606 		spin_unlock(&infop->nvmet_ctx_list_lock);
1607 
1608 		/* Spread ctx structures evenly across all MRQs */
1609 		idx++;
1610 		if (idx >= phba->cfg_nvmet_mrq) {
1611 			idx = 0;
1612 			cpu = cpumask_first(cpu_present_mask);
1613 			continue;
1614 		}
1615 		cpu = cpumask_next(cpu, cpu_present_mask);
1616 		if (cpu == nr_cpu_ids)
1617 			cpu = cpumask_first(cpu_present_mask);
1618 
1619 	}
1620 
1621 	for_each_present_cpu(i) {
1622 		for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1623 			infop = lpfc_get_ctx_list(phba, i, j);
1624 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1625 					"6408 TOTAL NVMET ctx for CPU %d "
1626 					"MRQ %d: cnt %d nextcpu x%px\n",
1627 					i, j, infop->nvmet_ctx_list_cnt,
1628 					infop->nvmet_ctx_next_cpu);
1629 		}
1630 	}
1631 	return 0;
1632 }
1633 
1634 int
1635 lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
1636 {
1637 	struct lpfc_vport  *vport = phba->pport;
1638 	struct lpfc_nvmet_tgtport *tgtp;
1639 	struct nvmet_fc_port_info pinfo;
1640 	int error;
1641 
1642 	if (phba->targetport)
1643 		return 0;
1644 
1645 	error = lpfc_nvmet_setup_io_context(phba);
1646 	if (error)
1647 		return error;
1648 
1649 	memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info));
1650 	pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
1651 	pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
1652 	pinfo.port_id = vport->fc_myDID;
1653 
1654 	/* We need to tell the transport layer + 1 because it takes page
1655 	 * alignment into account. When space for the SGL is allocated we
1656 	 * allocate + 3, one for cmd, one for rsp and one for this alignment
1657 	 */
1658 	lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
1659 	lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue;
1660 	lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP;
1661 
1662 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1663 	error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
1664 					     &phba->pcidev->dev,
1665 					     &phba->targetport);
1666 #else
1667 	error = -ENOENT;
1668 #endif
1669 	if (error) {
1670 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1671 				"6025 Cannot register NVME targetport x%x: "
1672 				"portnm %llx nodenm %llx segs %d qs %d\n",
1673 				error,
1674 				pinfo.port_name, pinfo.node_name,
1675 				lpfc_tgttemplate.max_sgl_segments,
1676 				lpfc_tgttemplate.max_hw_queues);
1677 		phba->targetport = NULL;
1678 		phba->nvmet_support = 0;
1679 
1680 		lpfc_nvmet_cleanup_io_context(phba);
1681 
1682 	} else {
1683 		tgtp = (struct lpfc_nvmet_tgtport *)
1684 			phba->targetport->private;
1685 		tgtp->phba = phba;
1686 
1687 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1688 				"6026 Registered NVME "
1689 				"targetport: x%px, private x%px "
1690 				"portnm %llx nodenm %llx segs %d qs %d\n",
1691 				phba->targetport, tgtp,
1692 				pinfo.port_name, pinfo.node_name,
1693 				lpfc_tgttemplate.max_sgl_segments,
1694 				lpfc_tgttemplate.max_hw_queues);
1695 
1696 		atomic_set(&tgtp->rcv_ls_req_in, 0);
1697 		atomic_set(&tgtp->rcv_ls_req_out, 0);
1698 		atomic_set(&tgtp->rcv_ls_req_drop, 0);
1699 		atomic_set(&tgtp->xmt_ls_abort, 0);
1700 		atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
1701 		atomic_set(&tgtp->xmt_ls_rsp, 0);
1702 		atomic_set(&tgtp->xmt_ls_drop, 0);
1703 		atomic_set(&tgtp->xmt_ls_rsp_error, 0);
1704 		atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0);
1705 		atomic_set(&tgtp->xmt_ls_rsp_aborted, 0);
1706 		atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
1707 		atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
1708 		atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
1709 		atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
1710 		atomic_set(&tgtp->xmt_fcp_drop, 0);
1711 		atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
1712 		atomic_set(&tgtp->xmt_fcp_read, 0);
1713 		atomic_set(&tgtp->xmt_fcp_write, 0);
1714 		atomic_set(&tgtp->xmt_fcp_rsp, 0);
1715 		atomic_set(&tgtp->xmt_fcp_release, 0);
1716 		atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
1717 		atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
1718 		atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0);
1719 		atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0);
1720 		atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
1721 		atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0);
1722 		atomic_set(&tgtp->xmt_fcp_abort, 0);
1723 		atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
1724 		atomic_set(&tgtp->xmt_abort_unsol, 0);
1725 		atomic_set(&tgtp->xmt_abort_sol, 0);
1726 		atomic_set(&tgtp->xmt_abort_rsp, 0);
1727 		atomic_set(&tgtp->xmt_abort_rsp_error, 0);
1728 		atomic_set(&tgtp->defer_ctx, 0);
1729 		atomic_set(&tgtp->defer_fod, 0);
1730 		atomic_set(&tgtp->defer_wqfull, 0);
1731 	}
1732 	return error;
1733 }
1734 
1735 int
1736 lpfc_nvmet_update_targetport(struct lpfc_hba *phba)
1737 {
1738 	struct lpfc_vport  *vport = phba->pport;
1739 
1740 	if (!phba->targetport)
1741 		return 0;
1742 
1743 	lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
1744 			 "6007 Update NVMET port x%px did x%x\n",
1745 			 phba->targetport, vport->fc_myDID);
1746 
1747 	phba->targetport->port_id = vport->fc_myDID;
1748 	return 0;
1749 }
1750 
1751 /**
1752  * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort
1753  * @phba: pointer to lpfc hba data structure.
1754  * @axri: pointer to the nvmet xri abort wcqe structure.
1755  *
1756  * This routine is invoked by the worker thread to process a SLI4 fast-path
1757  * NVMET aborted xri.
1758  **/
1759 void
1760 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba,
1761 			    struct sli4_wcqe_xri_aborted *axri)
1762 {
1763 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1764 	uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
1765 	uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
1766 	struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
1767 	struct lpfc_nvmet_tgtport *tgtp;
1768 	struct nvmefc_tgt_fcp_req *req = NULL;
1769 	struct lpfc_nodelist *ndlp;
1770 	unsigned long iflag = 0;
1771 	int rrq_empty = 0;
1772 	bool released = false;
1773 
1774 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1775 			"6317 XB aborted xri x%x rxid x%x\n", xri, rxid);
1776 
1777 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
1778 		return;
1779 
1780 	if (phba->targetport) {
1781 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1782 		atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe);
1783 	}
1784 
1785 	spin_lock_irqsave(&phba->hbalock, iflag);
1786 	spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1787 	list_for_each_entry_safe(ctxp, next_ctxp,
1788 				 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1789 				 list) {
1790 		if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1791 			continue;
1792 
1793 		spin_lock(&ctxp->ctxlock);
1794 		/* Check if we already received a free context call
1795 		 * and we have completed processing an abort situation.
1796 		 */
1797 		if (ctxp->flag & LPFC_NVME_CTX_RLS &&
1798 		    !(ctxp->flag & LPFC_NVME_ABORT_OP)) {
1799 			list_del_init(&ctxp->list);
1800 			released = true;
1801 		}
1802 		ctxp->flag &= ~LPFC_NVME_XBUSY;
1803 		spin_unlock(&ctxp->ctxlock);
1804 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1805 
1806 		rrq_empty = list_empty(&phba->active_rrq_list);
1807 		spin_unlock_irqrestore(&phba->hbalock, iflag);
1808 		ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1809 		if (ndlp &&
1810 		    (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE ||
1811 		     ndlp->nlp_state == NLP_STE_MAPPED_NODE)) {
1812 			lpfc_set_rrq_active(phba, ndlp,
1813 				ctxp->ctxbuf->sglq->sli4_lxritag,
1814 				rxid, 1);
1815 			lpfc_sli4_abts_err_handler(phba, ndlp, axri);
1816 		}
1817 
1818 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1819 				"6318 XB aborted oxid x%x flg x%x (%x)\n",
1820 				ctxp->oxid, ctxp->flag, released);
1821 		if (released)
1822 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1823 
1824 		if (rrq_empty)
1825 			lpfc_worker_wake_up(phba);
1826 		return;
1827 	}
1828 	spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1829 	spin_unlock_irqrestore(&phba->hbalock, iflag);
1830 
1831 	ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri);
1832 	if (ctxp) {
1833 		/*
1834 		 *  Abort already done by FW, so BA_ACC sent.
1835 		 *  However, the transport may be unaware.
1836 		 */
1837 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1838 				"6323 NVMET Rcv ABTS xri x%x ctxp state x%x "
1839 				"flag x%x oxid x%x rxid x%x\n",
1840 				xri, ctxp->state, ctxp->flag, ctxp->oxid,
1841 				rxid);
1842 
1843 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
1844 		ctxp->flag |= LPFC_NVME_ABTS_RCV;
1845 		ctxp->state = LPFC_NVME_STE_ABORT;
1846 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1847 
1848 		lpfc_nvmeio_data(phba,
1849 				 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1850 				 xri, raw_smp_processor_id(), 0);
1851 
1852 		req = &ctxp->hdlrctx.fcp_req;
1853 		if (req)
1854 			nvmet_fc_rcv_fcp_abort(phba->targetport, req);
1855 	}
1856 #endif
1857 }
1858 
1859 int
1860 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport,
1861 			   struct fc_frame_header *fc_hdr)
1862 {
1863 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1864 	struct lpfc_hba *phba = vport->phba;
1865 	struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
1866 	struct nvmefc_tgt_fcp_req *rsp;
1867 	uint32_t sid;
1868 	uint16_t oxid, xri;
1869 	unsigned long iflag = 0;
1870 
1871 	sid = sli4_sid_from_fc_hdr(fc_hdr);
1872 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1873 
1874 	spin_lock_irqsave(&phba->hbalock, iflag);
1875 	spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1876 	list_for_each_entry_safe(ctxp, next_ctxp,
1877 				 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1878 				 list) {
1879 		if (ctxp->oxid != oxid || ctxp->sid != sid)
1880 			continue;
1881 
1882 		xri = ctxp->ctxbuf->sglq->sli4_xritag;
1883 
1884 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1885 		spin_unlock_irqrestore(&phba->hbalock, iflag);
1886 
1887 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
1888 		ctxp->flag |= LPFC_NVME_ABTS_RCV;
1889 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1890 
1891 		lpfc_nvmeio_data(phba,
1892 			"NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1893 			xri, raw_smp_processor_id(), 0);
1894 
1895 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1896 				"6319 NVMET Rcv ABTS:acc xri x%x\n", xri);
1897 
1898 		rsp = &ctxp->hdlrctx.fcp_req;
1899 		nvmet_fc_rcv_fcp_abort(phba->targetport, rsp);
1900 
1901 		/* Respond with BA_ACC accordingly */
1902 		lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1903 		return 0;
1904 	}
1905 	spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1906 	spin_unlock_irqrestore(&phba->hbalock, iflag);
1907 
1908 	/* check the wait list */
1909 	if (phba->sli4_hba.nvmet_io_wait_cnt) {
1910 		struct rqb_dmabuf *nvmebuf;
1911 		struct fc_frame_header *fc_hdr_tmp;
1912 		u32 sid_tmp;
1913 		u16 oxid_tmp;
1914 		bool found = false;
1915 
1916 		spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
1917 
1918 		/* match by oxid and s_id */
1919 		list_for_each_entry(nvmebuf,
1920 				    &phba->sli4_hba.lpfc_nvmet_io_wait_list,
1921 				    hbuf.list) {
1922 			fc_hdr_tmp = (struct fc_frame_header *)
1923 					(nvmebuf->hbuf.virt);
1924 			oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id);
1925 			sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp);
1926 			if (oxid_tmp != oxid || sid_tmp != sid)
1927 				continue;
1928 
1929 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1930 					"6321 NVMET Rcv ABTS oxid x%x from x%x "
1931 					"is waiting for a ctxp\n",
1932 					oxid, sid);
1933 
1934 			list_del_init(&nvmebuf->hbuf.list);
1935 			phba->sli4_hba.nvmet_io_wait_cnt--;
1936 			found = true;
1937 			break;
1938 		}
1939 		spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
1940 				       iflag);
1941 
1942 		/* free buffer since already posted a new DMA buffer to RQ */
1943 		if (found) {
1944 			nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1945 			/* Respond with BA_ACC accordingly */
1946 			lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1947 			return 0;
1948 		}
1949 	}
1950 
1951 	/* check active list */
1952 	ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid);
1953 	if (ctxp) {
1954 		xri = ctxp->ctxbuf->sglq->sli4_xritag;
1955 
1956 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
1957 		ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP);
1958 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1959 
1960 		lpfc_nvmeio_data(phba,
1961 				 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1962 				 xri, raw_smp_processor_id(), 0);
1963 
1964 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1965 				"6322 NVMET Rcv ABTS:acc oxid x%x xri x%x "
1966 				"flag x%x state x%x\n",
1967 				ctxp->oxid, xri, ctxp->flag, ctxp->state);
1968 
1969 		if (ctxp->flag & LPFC_NVME_TNOTIFY) {
1970 			/* Notify the transport */
1971 			nvmet_fc_rcv_fcp_abort(phba->targetport,
1972 					       &ctxp->hdlrctx.fcp_req);
1973 		} else {
1974 			cancel_work_sync(&ctxp->ctxbuf->defer_work);
1975 			spin_lock_irqsave(&ctxp->ctxlock, iflag);
1976 			lpfc_nvmet_defer_release(phba, ctxp);
1977 			spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1978 		}
1979 		lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1980 					       ctxp->oxid);
1981 
1982 		lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1983 		return 0;
1984 	}
1985 
1986 	lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n",
1987 			 oxid, raw_smp_processor_id(), 1);
1988 
1989 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1990 			"6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid);
1991 
1992 	/* Respond with BA_RJT accordingly */
1993 	lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0);
1994 #endif
1995 	return 0;
1996 }
1997 
1998 static void
1999 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq,
2000 			struct lpfc_async_xchg_ctx *ctxp)
2001 {
2002 	struct lpfc_sli_ring *pring;
2003 	struct lpfc_iocbq *nvmewqeq;
2004 	struct lpfc_iocbq *next_nvmewqeq;
2005 	unsigned long iflags;
2006 	struct lpfc_wcqe_complete wcqe;
2007 	struct lpfc_wcqe_complete *wcqep;
2008 
2009 	pring = wq->pring;
2010 	wcqep = &wcqe;
2011 
2012 	/* Fake an ABORT error code back to cmpl routine */
2013 	memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete));
2014 	bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT);
2015 	wcqep->parameter = IOERR_ABORT_REQUESTED;
2016 
2017 	spin_lock_irqsave(&pring->ring_lock, iflags);
2018 	list_for_each_entry_safe(nvmewqeq, next_nvmewqeq,
2019 				 &wq->wqfull_list, list) {
2020 		if (ctxp) {
2021 			/* Checking for a specific IO to flush */
2022 			if (nvmewqeq->context2 == ctxp) {
2023 				list_del(&nvmewqeq->list);
2024 				spin_unlock_irqrestore(&pring->ring_lock,
2025 						       iflags);
2026 				lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq,
2027 							  wcqep);
2028 				return;
2029 			}
2030 			continue;
2031 		} else {
2032 			/* Flush all IOs */
2033 			list_del(&nvmewqeq->list);
2034 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
2035 			lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep);
2036 			spin_lock_irqsave(&pring->ring_lock, iflags);
2037 		}
2038 	}
2039 	if (!ctxp)
2040 		wq->q_flag &= ~HBA_NVMET_WQFULL;
2041 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
2042 }
2043 
2044 void
2045 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba,
2046 			  struct lpfc_queue *wq)
2047 {
2048 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2049 	struct lpfc_sli_ring *pring;
2050 	struct lpfc_iocbq *nvmewqeq;
2051 	struct lpfc_async_xchg_ctx *ctxp;
2052 	unsigned long iflags;
2053 	int rc;
2054 
2055 	/*
2056 	 * Some WQE slots are available, so try to re-issue anything
2057 	 * on the WQ wqfull_list.
2058 	 */
2059 	pring = wq->pring;
2060 	spin_lock_irqsave(&pring->ring_lock, iflags);
2061 	while (!list_empty(&wq->wqfull_list)) {
2062 		list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq,
2063 				 list);
2064 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
2065 		ctxp = (struct lpfc_async_xchg_ctx *)nvmewqeq->context2;
2066 		rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
2067 		spin_lock_irqsave(&pring->ring_lock, iflags);
2068 		if (rc == -EBUSY) {
2069 			/* WQ was full again, so put it back on the list */
2070 			list_add(&nvmewqeq->list, &wq->wqfull_list);
2071 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
2072 			return;
2073 		}
2074 		if (rc == WQE_SUCCESS) {
2075 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2076 			if (ctxp->ts_cmd_nvme) {
2077 				if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP)
2078 					ctxp->ts_status_wqput = ktime_get_ns();
2079 				else
2080 					ctxp->ts_data_wqput = ktime_get_ns();
2081 			}
2082 #endif
2083 		} else {
2084 			WARN_ON(rc);
2085 		}
2086 	}
2087 	wq->q_flag &= ~HBA_NVMET_WQFULL;
2088 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
2089 
2090 #endif
2091 }
2092 
2093 void
2094 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba)
2095 {
2096 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2097 	struct lpfc_nvmet_tgtport *tgtp;
2098 	struct lpfc_queue *wq;
2099 	uint32_t qidx;
2100 	DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp);
2101 
2102 	if (phba->nvmet_support == 0)
2103 		return;
2104 	if (phba->targetport) {
2105 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2106 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
2107 			wq = phba->sli4_hba.hdwq[qidx].io_wq;
2108 			lpfc_nvmet_wqfull_flush(phba, wq, NULL);
2109 		}
2110 		tgtp->tport_unreg_cmp = &tport_unreg_cmp;
2111 		nvmet_fc_unregister_targetport(phba->targetport);
2112 		if (!wait_for_completion_timeout(&tport_unreg_cmp,
2113 					msecs_to_jiffies(LPFC_NVMET_WAIT_TMO)))
2114 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2115 					"6179 Unreg targetport x%px timeout "
2116 					"reached.\n", phba->targetport);
2117 		lpfc_nvmet_cleanup_io_context(phba);
2118 	}
2119 	phba->targetport = NULL;
2120 #endif
2121 }
2122 
2123 /**
2124  * lpfc_nvmet_handle_lsreq - Process an NVME LS request
2125  * @phba: pointer to lpfc hba data structure.
2126  * @axchg: pointer to exchange context for the NVME LS request
2127  *
2128  * This routine is used for processing an asychronously received NVME LS
2129  * request. Any remaining validation is done and the LS is then forwarded
2130  * to the nvmet-fc transport via nvmet_fc_rcv_ls_req().
2131  *
2132  * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing)
2133  * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done.
2134  * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg.
2135  *
2136  * Returns 0 if LS was handled and delivered to the transport
2137  * Returns 1 if LS failed to be handled and should be dropped
2138  */
2139 int
2140 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba,
2141 			struct lpfc_async_xchg_ctx *axchg)
2142 {
2143 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2144 	struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private;
2145 	uint32_t *payload = axchg->payload;
2146 	int rc;
2147 
2148 	atomic_inc(&tgtp->rcv_ls_req_in);
2149 
2150 	/*
2151 	 * Driver passes the ndlp as the hosthandle argument allowing
2152 	 * the transport to generate LS requests for any associateions
2153 	 * that are created.
2154 	 */
2155 	rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp,
2156 				 axchg->payload, axchg->size);
2157 
2158 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2159 			"6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x "
2160 			"%08x %08x %08x\n", axchg->size, rc,
2161 			*payload, *(payload+1), *(payload+2),
2162 			*(payload+3), *(payload+4), *(payload+5));
2163 
2164 	if (!rc) {
2165 		atomic_inc(&tgtp->rcv_ls_req_out);
2166 		return 0;
2167 	}
2168 
2169 	atomic_inc(&tgtp->rcv_ls_req_drop);
2170 #endif
2171 	return 1;
2172 }
2173 
2174 static void
2175 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf)
2176 {
2177 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2178 	struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
2179 	struct lpfc_hba *phba = ctxp->phba;
2180 	struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
2181 	struct lpfc_nvmet_tgtport *tgtp;
2182 	uint32_t *payload, qno;
2183 	uint32_t rc;
2184 	unsigned long iflags;
2185 
2186 	if (!nvmebuf) {
2187 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2188 			"6159 process_rcv_fcp_req, nvmebuf is NULL, "
2189 			"oxid: x%x flg: x%x state: x%x\n",
2190 			ctxp->oxid, ctxp->flag, ctxp->state);
2191 		spin_lock_irqsave(&ctxp->ctxlock, iflags);
2192 		lpfc_nvmet_defer_release(phba, ctxp);
2193 		spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2194 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
2195 						 ctxp->oxid);
2196 		return;
2197 	}
2198 
2199 	if (ctxp->flag & LPFC_NVME_ABTS_RCV) {
2200 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2201 				"6324 IO oxid x%x aborted\n",
2202 				ctxp->oxid);
2203 		return;
2204 	}
2205 
2206 	payload = (uint32_t *)(nvmebuf->dbuf.virt);
2207 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2208 	ctxp->flag |= LPFC_NVME_TNOTIFY;
2209 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2210 	if (ctxp->ts_isr_cmd)
2211 		ctxp->ts_cmd_nvme = ktime_get_ns();
2212 #endif
2213 	/*
2214 	 * The calling sequence should be:
2215 	 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done
2216 	 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
2217 	 * When we return from nvmet_fc_rcv_fcp_req, all relevant info
2218 	 * the NVME command / FC header is stored.
2219 	 * A buffer has already been reposted for this IO, so just free
2220 	 * the nvmebuf.
2221 	 */
2222 	rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req,
2223 				  payload, ctxp->size);
2224 	/* Process FCP command */
2225 	if (rc == 0) {
2226 		atomic_inc(&tgtp->rcv_fcp_cmd_out);
2227 		spin_lock_irqsave(&ctxp->ctxlock, iflags);
2228 		if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) ||
2229 		    (nvmebuf != ctxp->rqb_buffer)) {
2230 			spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2231 			return;
2232 		}
2233 		ctxp->rqb_buffer = NULL;
2234 		spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2235 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2236 		return;
2237 	}
2238 
2239 	/* Processing of FCP command is deferred */
2240 	if (rc == -EOVERFLOW) {
2241 		lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d "
2242 				 "from %06x\n",
2243 				 ctxp->oxid, ctxp->size, ctxp->sid);
2244 		atomic_inc(&tgtp->rcv_fcp_cmd_out);
2245 		atomic_inc(&tgtp->defer_fod);
2246 		spin_lock_irqsave(&ctxp->ctxlock, iflags);
2247 		if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
2248 			spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2249 			return;
2250 		}
2251 		spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2252 		/*
2253 		 * Post a replacement DMA buffer to RQ and defer
2254 		 * freeing rcv buffer till .defer_rcv callback
2255 		 */
2256 		qno = nvmebuf->idx;
2257 		lpfc_post_rq_buffer(
2258 			phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2259 			phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2260 		return;
2261 	}
2262 	ctxp->flag &= ~LPFC_NVME_TNOTIFY;
2263 	atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2264 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2265 			"2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
2266 			ctxp->oxid, rc,
2267 			atomic_read(&tgtp->rcv_fcp_cmd_in),
2268 			atomic_read(&tgtp->rcv_fcp_cmd_out),
2269 			atomic_read(&tgtp->xmt_fcp_release));
2270 	lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n",
2271 			 ctxp->oxid, ctxp->size, ctxp->sid);
2272 	spin_lock_irqsave(&ctxp->ctxlock, iflags);
2273 	lpfc_nvmet_defer_release(phba, ctxp);
2274 	spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2275 	lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid);
2276 #endif
2277 }
2278 
2279 static void
2280 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work)
2281 {
2282 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2283 	struct lpfc_nvmet_ctxbuf *ctx_buf =
2284 		container_of(work, struct lpfc_nvmet_ctxbuf, defer_work);
2285 
2286 	lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
2287 #endif
2288 }
2289 
2290 static struct lpfc_nvmet_ctxbuf *
2291 lpfc_nvmet_replenish_context(struct lpfc_hba *phba,
2292 			     struct lpfc_nvmet_ctx_info *current_infop)
2293 {
2294 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2295 	struct lpfc_nvmet_ctxbuf *ctx_buf = NULL;
2296 	struct lpfc_nvmet_ctx_info *get_infop;
2297 	int i;
2298 
2299 	/*
2300 	 * The current_infop for the MRQ a NVME command IU was received
2301 	 * on is empty. Our goal is to replenish this MRQs context
2302 	 * list from a another CPUs.
2303 	 *
2304 	 * First we need to pick a context list to start looking on.
2305 	 * nvmet_ctx_start_cpu has available context the last time
2306 	 * we needed to replenish this CPU where nvmet_ctx_next_cpu
2307 	 * is just the next sequential CPU for this MRQ.
2308 	 */
2309 	if (current_infop->nvmet_ctx_start_cpu)
2310 		get_infop = current_infop->nvmet_ctx_start_cpu;
2311 	else
2312 		get_infop = current_infop->nvmet_ctx_next_cpu;
2313 
2314 	for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) {
2315 		if (get_infop == current_infop) {
2316 			get_infop = get_infop->nvmet_ctx_next_cpu;
2317 			continue;
2318 		}
2319 		spin_lock(&get_infop->nvmet_ctx_list_lock);
2320 
2321 		/* Just take the entire context list, if there are any */
2322 		if (get_infop->nvmet_ctx_list_cnt) {
2323 			list_splice_init(&get_infop->nvmet_ctx_list,
2324 				    &current_infop->nvmet_ctx_list);
2325 			current_infop->nvmet_ctx_list_cnt =
2326 				get_infop->nvmet_ctx_list_cnt - 1;
2327 			get_infop->nvmet_ctx_list_cnt = 0;
2328 			spin_unlock(&get_infop->nvmet_ctx_list_lock);
2329 
2330 			current_infop->nvmet_ctx_start_cpu = get_infop;
2331 			list_remove_head(&current_infop->nvmet_ctx_list,
2332 					 ctx_buf, struct lpfc_nvmet_ctxbuf,
2333 					 list);
2334 			return ctx_buf;
2335 		}
2336 
2337 		/* Otherwise, move on to the next CPU for this MRQ */
2338 		spin_unlock(&get_infop->nvmet_ctx_list_lock);
2339 		get_infop = get_infop->nvmet_ctx_next_cpu;
2340 	}
2341 
2342 #endif
2343 	/* Nothing found, all contexts for the MRQ are in-flight */
2344 	return NULL;
2345 }
2346 
2347 /**
2348  * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer
2349  * @phba: pointer to lpfc hba data structure.
2350  * @idx: relative index of MRQ vector
2351  * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
2352  * @isr_timestamp: in jiffies.
2353  * @cqflag: cq processing information regarding workload.
2354  *
2355  * This routine is used for processing the WQE associated with a unsolicited
2356  * event. It first determines whether there is an existing ndlp that matches
2357  * the DID from the unsolicited WQE. If not, it will create a new one with
2358  * the DID from the unsolicited WQE. The ELS command from the unsolicited
2359  * WQE is then used to invoke the proper routine and to set up proper state
2360  * of the discovery state machine.
2361  **/
2362 static void
2363 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba,
2364 			    uint32_t idx,
2365 			    struct rqb_dmabuf *nvmebuf,
2366 			    uint64_t isr_timestamp,
2367 			    uint8_t cqflag)
2368 {
2369 	struct lpfc_async_xchg_ctx *ctxp;
2370 	struct lpfc_nvmet_tgtport *tgtp;
2371 	struct fc_frame_header *fc_hdr;
2372 	struct lpfc_nvmet_ctxbuf *ctx_buf;
2373 	struct lpfc_nvmet_ctx_info *current_infop;
2374 	uint32_t size, oxid, sid, qno;
2375 	unsigned long iflag;
2376 	int current_cpu;
2377 
2378 	if (!IS_ENABLED(CONFIG_NVME_TARGET_FC))
2379 		return;
2380 
2381 	ctx_buf = NULL;
2382 	if (!nvmebuf || !phba->targetport) {
2383 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2384 				"6157 NVMET FCP Drop IO\n");
2385 		if (nvmebuf)
2386 			lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2387 		return;
2388 	}
2389 
2390 	/*
2391 	 * Get a pointer to the context list for this MRQ based on
2392 	 * the CPU this MRQ IRQ is associated with. If the CPU association
2393 	 * changes from our initial assumption, the context list could
2394 	 * be empty, thus it would need to be replenished with the
2395 	 * context list from another CPU for this MRQ.
2396 	 */
2397 	current_cpu = raw_smp_processor_id();
2398 	current_infop = lpfc_get_ctx_list(phba, current_cpu, idx);
2399 	spin_lock_irqsave(&current_infop->nvmet_ctx_list_lock, iflag);
2400 	if (current_infop->nvmet_ctx_list_cnt) {
2401 		list_remove_head(&current_infop->nvmet_ctx_list,
2402 				 ctx_buf, struct lpfc_nvmet_ctxbuf, list);
2403 		current_infop->nvmet_ctx_list_cnt--;
2404 	} else {
2405 		ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop);
2406 	}
2407 	spin_unlock_irqrestore(&current_infop->nvmet_ctx_list_lock, iflag);
2408 
2409 	fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
2410 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2411 	size = nvmebuf->bytes_recv;
2412 
2413 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2414 	if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
2415 		this_cpu_inc(phba->sli4_hba.c_stat->rcv_io);
2416 		if (idx != current_cpu)
2417 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2418 					"6703 CPU Check rcv: "
2419 					"cpu %d expect %d\n",
2420 					current_cpu, idx);
2421 	}
2422 #endif
2423 
2424 	lpfc_nvmeio_data(phba, "NVMET FCP  RCV: xri x%x sz %d CPU %02x\n",
2425 			 oxid, size, raw_smp_processor_id());
2426 
2427 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2428 
2429 	if (!ctx_buf) {
2430 		/* Queue this NVME IO to process later */
2431 		spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
2432 		list_add_tail(&nvmebuf->hbuf.list,
2433 			      &phba->sli4_hba.lpfc_nvmet_io_wait_list);
2434 		phba->sli4_hba.nvmet_io_wait_cnt++;
2435 		phba->sli4_hba.nvmet_io_wait_total++;
2436 		spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
2437 				       iflag);
2438 
2439 		/* Post a brand new DMA buffer to RQ */
2440 		qno = nvmebuf->idx;
2441 		lpfc_post_rq_buffer(
2442 			phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2443 			phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2444 
2445 		atomic_inc(&tgtp->defer_ctx);
2446 		return;
2447 	}
2448 
2449 	sid = sli4_sid_from_fc_hdr(fc_hdr);
2450 
2451 	ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
2452 	spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
2453 	list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list);
2454 	spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
2455 	if (ctxp->state != LPFC_NVME_STE_FREE) {
2456 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2457 				"6414 NVMET Context corrupt %d %d oxid x%x\n",
2458 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
2459 	}
2460 	ctxp->wqeq = NULL;
2461 	ctxp->offset = 0;
2462 	ctxp->phba = phba;
2463 	ctxp->size = size;
2464 	ctxp->oxid = oxid;
2465 	ctxp->sid = sid;
2466 	ctxp->idx = idx;
2467 	ctxp->state = LPFC_NVME_STE_RCV;
2468 	ctxp->entry_cnt = 1;
2469 	ctxp->flag = 0;
2470 	ctxp->ctxbuf = ctx_buf;
2471 	ctxp->rqb_buffer = (void *)nvmebuf;
2472 	ctxp->hdwq = NULL;
2473 	spin_lock_init(&ctxp->ctxlock);
2474 
2475 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2476 	if (isr_timestamp)
2477 		ctxp->ts_isr_cmd = isr_timestamp;
2478 	ctxp->ts_cmd_nvme = 0;
2479 	ctxp->ts_nvme_data = 0;
2480 	ctxp->ts_data_wqput = 0;
2481 	ctxp->ts_isr_data = 0;
2482 	ctxp->ts_data_nvme = 0;
2483 	ctxp->ts_nvme_status = 0;
2484 	ctxp->ts_status_wqput = 0;
2485 	ctxp->ts_isr_status = 0;
2486 	ctxp->ts_status_nvme = 0;
2487 #endif
2488 
2489 	atomic_inc(&tgtp->rcv_fcp_cmd_in);
2490 	/* check for cq processing load */
2491 	if (!cqflag) {
2492 		lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
2493 		return;
2494 	}
2495 
2496 	if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
2497 		atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2498 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2499 				"6325 Unable to queue work for oxid x%x. "
2500 				"FCP Drop IO [x%x x%x x%x]\n",
2501 				ctxp->oxid,
2502 				atomic_read(&tgtp->rcv_fcp_cmd_in),
2503 				atomic_read(&tgtp->rcv_fcp_cmd_out),
2504 				atomic_read(&tgtp->xmt_fcp_release));
2505 
2506 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
2507 		lpfc_nvmet_defer_release(phba, ctxp);
2508 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
2509 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
2510 	}
2511 }
2512 
2513 /**
2514  * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport
2515  * @phba: pointer to lpfc hba data structure.
2516  * @idx: relative index of MRQ vector
2517  * @nvmebuf: pointer to received nvme data structure.
2518  * @isr_timestamp: in jiffies.
2519  * @cqflag: cq processing information regarding workload.
2520  *
2521  * This routine is used to process an unsolicited event received from a SLI
2522  * (Service Level Interface) ring. The actual processing of the data buffer
2523  * associated with the unsolicited event is done by invoking the routine
2524  * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the
2525  * SLI RQ on which the unsolicited event was received.
2526  **/
2527 void
2528 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba,
2529 			   uint32_t idx,
2530 			   struct rqb_dmabuf *nvmebuf,
2531 			   uint64_t isr_timestamp,
2532 			   uint8_t cqflag)
2533 {
2534 	if (!nvmebuf) {
2535 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2536 				"3167 NVMET FCP Drop IO\n");
2537 		return;
2538 	}
2539 	if (phba->nvmet_support == 0) {
2540 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2541 		return;
2542 	}
2543 	lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag);
2544 }
2545 
2546 /**
2547  * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure
2548  * @phba: pointer to a host N_Port data structure.
2549  * @ctxp: Context info for NVME LS Request
2550  * @rspbuf: DMA buffer of NVME command.
2551  * @rspsize: size of the NVME command.
2552  *
2553  * This routine is used for allocating a lpfc-WQE data structure from
2554  * the driver lpfc-WQE free-list and prepare the WQE with the parameters
2555  * passed into the routine for discovery state machine to issue an Extended
2556  * Link Service (NVME) commands. It is a generic lpfc-WQE allocation
2557  * and preparation routine that is used by all the discovery state machine
2558  * routines and the NVME command-specific fields will be later set up by
2559  * the individual discovery machine routines after calling this routine
2560  * allocating and preparing a generic WQE data structure. It fills in the
2561  * Buffer Descriptor Entries (BDEs), allocates buffers for both command
2562  * payload and response payload (if expected). The reference count on the
2563  * ndlp is incremented by 1 and the reference to the ndlp is put into
2564  * context1 of the WQE data structure for this WQE to hold the ndlp
2565  * reference for the command's callback function to access later.
2566  *
2567  * Return code
2568  *   Pointer to the newly allocated/prepared nvme wqe data structure
2569  *   NULL - when nvme wqe data structure allocation/preparation failed
2570  **/
2571 static struct lpfc_iocbq *
2572 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba,
2573 		       struct lpfc_async_xchg_ctx *ctxp,
2574 		       dma_addr_t rspbuf, uint16_t rspsize)
2575 {
2576 	struct lpfc_nodelist *ndlp;
2577 	struct lpfc_iocbq *nvmewqe;
2578 	union lpfc_wqe128 *wqe;
2579 
2580 	if (!lpfc_is_link_up(phba)) {
2581 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2582 				"6104 NVMET prep LS wqe: link err: "
2583 				"NPORT x%x oxid:x%x ste %d\n",
2584 				ctxp->sid, ctxp->oxid, ctxp->state);
2585 		return NULL;
2586 	}
2587 
2588 	/* Allocate buffer for  command wqe */
2589 	nvmewqe = lpfc_sli_get_iocbq(phba);
2590 	if (nvmewqe == NULL) {
2591 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2592 				"6105 NVMET prep LS wqe: No WQE: "
2593 				"NPORT x%x oxid x%x ste %d\n",
2594 				ctxp->sid, ctxp->oxid, ctxp->state);
2595 		return NULL;
2596 	}
2597 
2598 	ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2599 	if (!ndlp ||
2600 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2601 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2602 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2603 				"6106 NVMET prep LS wqe: No ndlp: "
2604 				"NPORT x%x oxid x%x ste %d\n",
2605 				ctxp->sid, ctxp->oxid, ctxp->state);
2606 		goto nvme_wqe_free_wqeq_exit;
2607 	}
2608 	ctxp->wqeq = nvmewqe;
2609 
2610 	/* prevent preparing wqe with NULL ndlp reference */
2611 	nvmewqe->context1 = lpfc_nlp_get(ndlp);
2612 	if (nvmewqe->context1 == NULL)
2613 		goto nvme_wqe_free_wqeq_exit;
2614 	nvmewqe->context2 = ctxp;
2615 
2616 	wqe = &nvmewqe->wqe;
2617 	memset(wqe, 0, sizeof(union lpfc_wqe));
2618 
2619 	/* Words 0 - 2 */
2620 	wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2621 	wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize;
2622 	wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf));
2623 	wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf));
2624 
2625 	/* Word 3 */
2626 
2627 	/* Word 4 */
2628 
2629 	/* Word 5 */
2630 	bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
2631 	bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1);
2632 	bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0);
2633 	bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP);
2634 	bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME);
2635 
2636 	/* Word 6 */
2637 	bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
2638 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2639 	bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag);
2640 
2641 	/* Word 7 */
2642 	bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
2643 	       CMD_XMIT_SEQUENCE64_WQE);
2644 	bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI);
2645 	bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
2646 	bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
2647 
2648 	/* Word 8 */
2649 	wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag;
2650 
2651 	/* Word 9 */
2652 	bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag);
2653 	/* Needs to be set by caller */
2654 	bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid);
2655 
2656 	/* Word 10 */
2657 	bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
2658 	bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2659 	bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
2660 	       LPFC_WQE_LENLOC_WORD12);
2661 	bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
2662 
2663 	/* Word 11 */
2664 	bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com,
2665 	       LPFC_WQE_CQ_ID_DEFAULT);
2666 	bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com,
2667 	       OTHER_COMMAND);
2668 
2669 	/* Word 12 */
2670 	wqe->xmit_sequence.xmit_len = rspsize;
2671 
2672 	nvmewqe->retry = 1;
2673 	nvmewqe->vport = phba->pport;
2674 	nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2675 	nvmewqe->iocb_flag |= LPFC_IO_NVME_LS;
2676 
2677 	/* Xmit NVMET response to remote NPORT <did> */
2678 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2679 			"6039 Xmit NVMET LS response to remote "
2680 			"NPORT x%x iotag:x%x oxid:x%x size:x%x\n",
2681 			ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid,
2682 			rspsize);
2683 	return nvmewqe;
2684 
2685 nvme_wqe_free_wqeq_exit:
2686 	nvmewqe->context2 = NULL;
2687 	nvmewqe->context3 = NULL;
2688 	lpfc_sli_release_iocbq(phba, nvmewqe);
2689 	return NULL;
2690 }
2691 
2692 
2693 static struct lpfc_iocbq *
2694 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba,
2695 			struct lpfc_async_xchg_ctx *ctxp)
2696 {
2697 	struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req;
2698 	struct lpfc_nvmet_tgtport *tgtp;
2699 	struct sli4_sge *sgl;
2700 	struct lpfc_nodelist *ndlp;
2701 	struct lpfc_iocbq *nvmewqe;
2702 	struct scatterlist *sgel;
2703 	union lpfc_wqe128 *wqe;
2704 	struct ulp_bde64 *bde;
2705 	dma_addr_t physaddr;
2706 	int i, cnt, nsegs;
2707 	int do_pbde;
2708 	int xc = 1;
2709 
2710 	if (!lpfc_is_link_up(phba)) {
2711 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2712 				"6107 NVMET prep FCP wqe: link err:"
2713 				"NPORT x%x oxid x%x ste %d\n",
2714 				ctxp->sid, ctxp->oxid, ctxp->state);
2715 		return NULL;
2716 	}
2717 
2718 	ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2719 	if (!ndlp ||
2720 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2721 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2722 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2723 				"6108 NVMET prep FCP wqe: no ndlp: "
2724 				"NPORT x%x oxid x%x ste %d\n",
2725 				ctxp->sid, ctxp->oxid, ctxp->state);
2726 		return NULL;
2727 	}
2728 
2729 	if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) {
2730 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2731 				"6109 NVMET prep FCP wqe: seg cnt err: "
2732 				"NPORT x%x oxid x%x ste %d cnt %d\n",
2733 				ctxp->sid, ctxp->oxid, ctxp->state,
2734 				phba->cfg_nvme_seg_cnt);
2735 		return NULL;
2736 	}
2737 	nsegs = rsp->sg_cnt;
2738 
2739 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2740 	nvmewqe = ctxp->wqeq;
2741 	if (nvmewqe == NULL) {
2742 		/* Allocate buffer for  command wqe */
2743 		nvmewqe = ctxp->ctxbuf->iocbq;
2744 		if (nvmewqe == NULL) {
2745 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2746 					"6110 NVMET prep FCP wqe: No "
2747 					"WQE: NPORT x%x oxid x%x ste %d\n",
2748 					ctxp->sid, ctxp->oxid, ctxp->state);
2749 			return NULL;
2750 		}
2751 		ctxp->wqeq = nvmewqe;
2752 		xc = 0; /* create new XRI */
2753 		nvmewqe->sli4_lxritag = NO_XRI;
2754 		nvmewqe->sli4_xritag = NO_XRI;
2755 	}
2756 
2757 	/* Sanity check */
2758 	if (((ctxp->state == LPFC_NVME_STE_RCV) &&
2759 	    (ctxp->entry_cnt == 1)) ||
2760 	    (ctxp->state == LPFC_NVME_STE_DATA)) {
2761 		wqe = &nvmewqe->wqe;
2762 	} else {
2763 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2764 				"6111 Wrong state NVMET FCP: %d  cnt %d\n",
2765 				ctxp->state, ctxp->entry_cnt);
2766 		return NULL;
2767 	}
2768 
2769 	sgl  = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl;
2770 	switch (rsp->op) {
2771 	case NVMET_FCOP_READDATA:
2772 	case NVMET_FCOP_READDATA_RSP:
2773 		/* From the tsend template, initialize words 7 - 11 */
2774 		memcpy(&wqe->words[7],
2775 		       &lpfc_tsend_cmd_template.words[7],
2776 		       sizeof(uint32_t) * 5);
2777 
2778 		/* Words 0 - 2 : The first sg segment */
2779 		sgel = &rsp->sg[0];
2780 		physaddr = sg_dma_address(sgel);
2781 		wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2782 		wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel);
2783 		wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr));
2784 		wqe->fcp_tsend.bde.addrHigh =
2785 			cpu_to_le32(putPaddrHigh(physaddr));
2786 
2787 		/* Word 3 */
2788 		wqe->fcp_tsend.payload_offset_len = 0;
2789 
2790 		/* Word 4 */
2791 		wqe->fcp_tsend.relative_offset = ctxp->offset;
2792 
2793 		/* Word 5 */
2794 		wqe->fcp_tsend.reserved = 0;
2795 
2796 		/* Word 6 */
2797 		bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com,
2798 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2799 		bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com,
2800 		       nvmewqe->sli4_xritag);
2801 
2802 		/* Word 7 - set ar later */
2803 
2804 		/* Word 8 */
2805 		wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag;
2806 
2807 		/* Word 9 */
2808 		bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag);
2809 		bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid);
2810 
2811 		/* Word 10 - set wqes later, in template xc=1 */
2812 		if (!xc)
2813 			bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0);
2814 
2815 		/* Word 11 - set sup, irsp, irsplen later */
2816 		do_pbde = 0;
2817 
2818 		/* Word 12 */
2819 		wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2820 
2821 		/* Setup 2 SKIP SGEs */
2822 		sgl->addr_hi = 0;
2823 		sgl->addr_lo = 0;
2824 		sgl->word2 = 0;
2825 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2826 		sgl->word2 = cpu_to_le32(sgl->word2);
2827 		sgl->sge_len = 0;
2828 		sgl++;
2829 		sgl->addr_hi = 0;
2830 		sgl->addr_lo = 0;
2831 		sgl->word2 = 0;
2832 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2833 		sgl->word2 = cpu_to_le32(sgl->word2);
2834 		sgl->sge_len = 0;
2835 		sgl++;
2836 		if (rsp->op == NVMET_FCOP_READDATA_RSP) {
2837 			atomic_inc(&tgtp->xmt_fcp_read_rsp);
2838 
2839 			/* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2840 
2841 			if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) {
2842 				if (ndlp->nlp_flag & NLP_SUPPRESS_RSP)
2843 					bf_set(wqe_sup,
2844 					       &wqe->fcp_tsend.wqe_com, 1);
2845 			} else {
2846 				bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1);
2847 				bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1);
2848 				bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com,
2849 				       ((rsp->rsplen >> 2) - 1));
2850 				memcpy(&wqe->words[16], rsp->rspaddr,
2851 				       rsp->rsplen);
2852 			}
2853 		} else {
2854 			atomic_inc(&tgtp->xmt_fcp_read);
2855 
2856 			/* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2857 			bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0);
2858 		}
2859 		break;
2860 
2861 	case NVMET_FCOP_WRITEDATA:
2862 		/* From the treceive template, initialize words 3 - 11 */
2863 		memcpy(&wqe->words[3],
2864 		       &lpfc_treceive_cmd_template.words[3],
2865 		       sizeof(uint32_t) * 9);
2866 
2867 		/* Words 0 - 2 : First SGE is skipped, set invalid BDE type */
2868 		wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP;
2869 		wqe->fcp_treceive.bde.tus.f.bdeSize = 0;
2870 		wqe->fcp_treceive.bde.addrLow = 0;
2871 		wqe->fcp_treceive.bde.addrHigh = 0;
2872 
2873 		/* Word 4 */
2874 		wqe->fcp_treceive.relative_offset = ctxp->offset;
2875 
2876 		/* Word 6 */
2877 		bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com,
2878 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2879 		bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com,
2880 		       nvmewqe->sli4_xritag);
2881 
2882 		/* Word 7 */
2883 
2884 		/* Word 8 */
2885 		wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag;
2886 
2887 		/* Word 9 */
2888 		bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag);
2889 		bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid);
2890 
2891 		/* Word 10 - in template xc=1 */
2892 		if (!xc)
2893 			bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0);
2894 
2895 		/* Word 11 - set pbde later */
2896 		if (phba->cfg_enable_pbde) {
2897 			do_pbde = 1;
2898 		} else {
2899 			bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0);
2900 			do_pbde = 0;
2901 		}
2902 
2903 		/* Word 12 */
2904 		wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2905 
2906 		/* Setup 2 SKIP SGEs */
2907 		sgl->addr_hi = 0;
2908 		sgl->addr_lo = 0;
2909 		sgl->word2 = 0;
2910 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2911 		sgl->word2 = cpu_to_le32(sgl->word2);
2912 		sgl->sge_len = 0;
2913 		sgl++;
2914 		sgl->addr_hi = 0;
2915 		sgl->addr_lo = 0;
2916 		sgl->word2 = 0;
2917 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2918 		sgl->word2 = cpu_to_le32(sgl->word2);
2919 		sgl->sge_len = 0;
2920 		sgl++;
2921 		atomic_inc(&tgtp->xmt_fcp_write);
2922 		break;
2923 
2924 	case NVMET_FCOP_RSP:
2925 		/* From the treceive template, initialize words 4 - 11 */
2926 		memcpy(&wqe->words[4],
2927 		       &lpfc_trsp_cmd_template.words[4],
2928 		       sizeof(uint32_t) * 8);
2929 
2930 		/* Words 0 - 2 */
2931 		physaddr = rsp->rspdma;
2932 		wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2933 		wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen;
2934 		wqe->fcp_trsp.bde.addrLow =
2935 			cpu_to_le32(putPaddrLow(physaddr));
2936 		wqe->fcp_trsp.bde.addrHigh =
2937 			cpu_to_le32(putPaddrHigh(physaddr));
2938 
2939 		/* Word 3 */
2940 		wqe->fcp_trsp.response_len = rsp->rsplen;
2941 
2942 		/* Word 6 */
2943 		bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com,
2944 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2945 		bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com,
2946 		       nvmewqe->sli4_xritag);
2947 
2948 		/* Word 7 */
2949 
2950 		/* Word 8 */
2951 		wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag;
2952 
2953 		/* Word 9 */
2954 		bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag);
2955 		bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid);
2956 
2957 		/* Word 10 */
2958 		if (xc)
2959 			bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1);
2960 
2961 		/* Word 11 */
2962 		/* In template wqes=0 irsp=0 irsplen=0 - good response */
2963 		if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) {
2964 			/* Bad response - embed it */
2965 			bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1);
2966 			bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1);
2967 			bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com,
2968 			       ((rsp->rsplen >> 2) - 1));
2969 			memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen);
2970 		}
2971 		do_pbde = 0;
2972 
2973 		/* Word 12 */
2974 		wqe->fcp_trsp.rsvd_12_15[0] = 0;
2975 
2976 		/* Use rspbuf, NOT sg list */
2977 		nsegs = 0;
2978 		sgl->word2 = 0;
2979 		atomic_inc(&tgtp->xmt_fcp_rsp);
2980 		break;
2981 
2982 	default:
2983 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2984 				"6064 Unknown Rsp Op %d\n",
2985 				rsp->op);
2986 		return NULL;
2987 	}
2988 
2989 	nvmewqe->retry = 1;
2990 	nvmewqe->vport = phba->pport;
2991 	nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2992 	nvmewqe->context1 = ndlp;
2993 
2994 	for_each_sg(rsp->sg, sgel, nsegs, i) {
2995 		physaddr = sg_dma_address(sgel);
2996 		cnt = sg_dma_len(sgel);
2997 		sgl->addr_hi = putPaddrHigh(physaddr);
2998 		sgl->addr_lo = putPaddrLow(physaddr);
2999 		sgl->word2 = 0;
3000 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
3001 		bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset);
3002 		if ((i+1) == rsp->sg_cnt)
3003 			bf_set(lpfc_sli4_sge_last, sgl, 1);
3004 		sgl->word2 = cpu_to_le32(sgl->word2);
3005 		sgl->sge_len = cpu_to_le32(cnt);
3006 		if (i == 0) {
3007 			bde = (struct ulp_bde64 *)&wqe->words[13];
3008 			if (do_pbde) {
3009 				/* Words 13-15  (PBDE) */
3010 				bde->addrLow = sgl->addr_lo;
3011 				bde->addrHigh = sgl->addr_hi;
3012 				bde->tus.f.bdeSize =
3013 					le32_to_cpu(sgl->sge_len);
3014 				bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
3015 				bde->tus.w = cpu_to_le32(bde->tus.w);
3016 			} else {
3017 				memset(bde, 0, sizeof(struct ulp_bde64));
3018 			}
3019 		}
3020 		sgl++;
3021 		ctxp->offset += cnt;
3022 	}
3023 	ctxp->state = LPFC_NVME_STE_DATA;
3024 	ctxp->entry_cnt++;
3025 	return nvmewqe;
3026 }
3027 
3028 /**
3029  * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS
3030  * @phba: Pointer to HBA context object.
3031  * @cmdwqe: Pointer to driver command WQE object.
3032  * @wcqe: Pointer to driver response CQE object.
3033  *
3034  * The function is called from SLI ring event handler with no
3035  * lock held. This function is the completion handler for NVME ABTS for FCP cmds
3036  * The function frees memory resources used for the NVME commands.
3037  **/
3038 static void
3039 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3040 			     struct lpfc_wcqe_complete *wcqe)
3041 {
3042 	struct lpfc_async_xchg_ctx *ctxp;
3043 	struct lpfc_nvmet_tgtport *tgtp;
3044 	uint32_t result;
3045 	unsigned long flags;
3046 	bool released = false;
3047 
3048 	ctxp = cmdwqe->context2;
3049 	result = wcqe->parameter;
3050 
3051 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3052 	if (ctxp->flag & LPFC_NVME_ABORT_OP)
3053 		atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
3054 
3055 	spin_lock_irqsave(&ctxp->ctxlock, flags);
3056 	ctxp->state = LPFC_NVME_STE_DONE;
3057 
3058 	/* Check if we already received a free context call
3059 	 * and we have completed processing an abort situation.
3060 	 */
3061 	if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
3062 	    !(ctxp->flag & LPFC_NVME_XBUSY)) {
3063 		spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3064 		list_del_init(&ctxp->list);
3065 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3066 		released = true;
3067 	}
3068 	ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3069 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3070 	atomic_inc(&tgtp->xmt_abort_rsp);
3071 
3072 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3073 			"6165 ABORT cmpl: oxid x%x flg x%x (%d) "
3074 			"WCQE: %08x %08x %08x %08x\n",
3075 			ctxp->oxid, ctxp->flag, released,
3076 			wcqe->word0, wcqe->total_data_placed,
3077 			result, wcqe->word3);
3078 
3079 	cmdwqe->context2 = NULL;
3080 	cmdwqe->context3 = NULL;
3081 	/*
3082 	 * if transport has released ctx, then can reuse it. Otherwise,
3083 	 * will be recycled by transport release call.
3084 	 */
3085 	if (released)
3086 		lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3087 
3088 	/* This is the iocbq for the abort, not the command */
3089 	lpfc_sli_release_iocbq(phba, cmdwqe);
3090 
3091 	/* Since iaab/iaar are NOT set, there is no work left.
3092 	 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
3093 	 * should have been called already.
3094 	 */
3095 }
3096 
3097 /**
3098  * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS
3099  * @phba: Pointer to HBA context object.
3100  * @cmdwqe: Pointer to driver command WQE object.
3101  * @wcqe: Pointer to driver response CQE object.
3102  *
3103  * The function is called from SLI ring event handler with no
3104  * lock held. This function is the completion handler for NVME ABTS for FCP cmds
3105  * The function frees memory resources used for the NVME commands.
3106  **/
3107 static void
3108 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3109 			       struct lpfc_wcqe_complete *wcqe)
3110 {
3111 	struct lpfc_async_xchg_ctx *ctxp;
3112 	struct lpfc_nvmet_tgtport *tgtp;
3113 	unsigned long flags;
3114 	uint32_t result;
3115 	bool released = false;
3116 
3117 	ctxp = cmdwqe->context2;
3118 	result = wcqe->parameter;
3119 
3120 	if (!ctxp) {
3121 		/* if context is clear, related io alrady complete */
3122 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3123 				"6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n",
3124 				wcqe->word0, wcqe->total_data_placed,
3125 				result, wcqe->word3);
3126 		return;
3127 	}
3128 
3129 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3130 	spin_lock_irqsave(&ctxp->ctxlock, flags);
3131 	if (ctxp->flag & LPFC_NVME_ABORT_OP)
3132 		atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
3133 
3134 	/* Sanity check */
3135 	if (ctxp->state != LPFC_NVME_STE_ABORT) {
3136 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3137 				"6112 ABTS Wrong state:%d oxid x%x\n",
3138 				ctxp->state, ctxp->oxid);
3139 	}
3140 
3141 	/* Check if we already received a free context call
3142 	 * and we have completed processing an abort situation.
3143 	 */
3144 	ctxp->state = LPFC_NVME_STE_DONE;
3145 	if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
3146 	    !(ctxp->flag & LPFC_NVME_XBUSY)) {
3147 		spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3148 		list_del_init(&ctxp->list);
3149 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3150 		released = true;
3151 	}
3152 	ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3153 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3154 	atomic_inc(&tgtp->xmt_abort_rsp);
3155 
3156 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3157 			"6316 ABTS cmpl oxid x%x flg x%x (%x) "
3158 			"WCQE: %08x %08x %08x %08x\n",
3159 			ctxp->oxid, ctxp->flag, released,
3160 			wcqe->word0, wcqe->total_data_placed,
3161 			result, wcqe->word3);
3162 
3163 	cmdwqe->context2 = NULL;
3164 	cmdwqe->context3 = NULL;
3165 	/*
3166 	 * if transport has released ctx, then can reuse it. Otherwise,
3167 	 * will be recycled by transport release call.
3168 	 */
3169 	if (released)
3170 		lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3171 
3172 	/* Since iaab/iaar are NOT set, there is no work left.
3173 	 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
3174 	 * should have been called already.
3175 	 */
3176 }
3177 
3178 /**
3179  * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS
3180  * @phba: Pointer to HBA context object.
3181  * @cmdwqe: Pointer to driver command WQE object.
3182  * @wcqe: Pointer to driver response CQE object.
3183  *
3184  * The function is called from SLI ring event handler with no
3185  * lock held. This function is the completion handler for NVME ABTS for LS cmds
3186  * The function frees memory resources used for the NVME commands.
3187  **/
3188 static void
3189 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3190 			    struct lpfc_wcqe_complete *wcqe)
3191 {
3192 	struct lpfc_async_xchg_ctx *ctxp;
3193 	struct lpfc_nvmet_tgtport *tgtp;
3194 	uint32_t result;
3195 
3196 	ctxp = cmdwqe->context2;
3197 	result = wcqe->parameter;
3198 
3199 	if (phba->nvmet_support) {
3200 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3201 		atomic_inc(&tgtp->xmt_ls_abort_cmpl);
3202 	}
3203 
3204 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3205 			"6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n",
3206 			ctxp, wcqe->word0, wcqe->total_data_placed,
3207 			result, wcqe->word3);
3208 
3209 	if (!ctxp) {
3210 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3211 				"6415 NVMET LS Abort No ctx: WCQE: "
3212 				 "%08x %08x %08x %08x\n",
3213 				wcqe->word0, wcqe->total_data_placed,
3214 				result, wcqe->word3);
3215 
3216 		lpfc_sli_release_iocbq(phba, cmdwqe);
3217 		return;
3218 	}
3219 
3220 	if (ctxp->state != LPFC_NVME_STE_LS_ABORT) {
3221 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3222 				"6416 NVMET LS abort cmpl state mismatch: "
3223 				"oxid x%x: %d %d\n",
3224 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3225 	}
3226 
3227 	cmdwqe->context2 = NULL;
3228 	cmdwqe->context3 = NULL;
3229 	lpfc_sli_release_iocbq(phba, cmdwqe);
3230 	kfree(ctxp);
3231 }
3232 
3233 static int
3234 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba,
3235 			     struct lpfc_async_xchg_ctx *ctxp,
3236 			     uint32_t sid, uint16_t xri)
3237 {
3238 	struct lpfc_nvmet_tgtport *tgtp = NULL;
3239 	struct lpfc_iocbq *abts_wqeq;
3240 	union lpfc_wqe128 *wqe_abts;
3241 	struct lpfc_nodelist *ndlp;
3242 
3243 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3244 			"6067 ABTS: sid %x xri x%x/x%x\n",
3245 			sid, xri, ctxp->wqeq->sli4_xritag);
3246 
3247 	if (phba->nvmet_support && phba->targetport)
3248 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3249 
3250 	ndlp = lpfc_findnode_did(phba->pport, sid);
3251 	if (!ndlp ||
3252 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3253 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3254 		if (tgtp)
3255 			atomic_inc(&tgtp->xmt_abort_rsp_error);
3256 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3257 				"6134 Drop ABTS - wrong NDLP state x%x.\n",
3258 				(ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
3259 
3260 		/* No failure to an ABTS request. */
3261 		return 0;
3262 	}
3263 
3264 	abts_wqeq = ctxp->wqeq;
3265 	wqe_abts = &abts_wqeq->wqe;
3266 
3267 	/*
3268 	 * Since we zero the whole WQE, we need to ensure we set the WQE fields
3269 	 * that were initialized in lpfc_sli4_nvmet_alloc.
3270 	 */
3271 	memset(wqe_abts, 0, sizeof(union lpfc_wqe));
3272 
3273 	/* Word 5 */
3274 	bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0);
3275 	bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1);
3276 	bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0);
3277 	bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS);
3278 	bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS);
3279 
3280 	/* Word 6 */
3281 	bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com,
3282 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
3283 	bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com,
3284 	       abts_wqeq->sli4_xritag);
3285 
3286 	/* Word 7 */
3287 	bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com,
3288 	       CMD_XMIT_SEQUENCE64_WQE);
3289 	bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI);
3290 	bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3);
3291 	bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0);
3292 
3293 	/* Word 8 */
3294 	wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag;
3295 
3296 	/* Word 9 */
3297 	bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag);
3298 	/* Needs to be set by caller */
3299 	bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri);
3300 
3301 	/* Word 10 */
3302 	bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1);
3303 	bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
3304 	bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com,
3305 	       LPFC_WQE_LENLOC_WORD12);
3306 	bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0);
3307 	bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0);
3308 
3309 	/* Word 11 */
3310 	bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com,
3311 	       LPFC_WQE_CQ_ID_DEFAULT);
3312 	bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com,
3313 	       OTHER_COMMAND);
3314 
3315 	abts_wqeq->vport = phba->pport;
3316 	abts_wqeq->context1 = ndlp;
3317 	abts_wqeq->context2 = ctxp;
3318 	abts_wqeq->context3 = NULL;
3319 	abts_wqeq->rsvd2 = 0;
3320 	/* hba_wqidx should already be setup from command we are aborting */
3321 	abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR;
3322 	abts_wqeq->iocb.ulpLe = 1;
3323 
3324 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3325 			"6069 Issue ABTS to xri x%x reqtag x%x\n",
3326 			xri, abts_wqeq->iotag);
3327 	return 1;
3328 }
3329 
3330 /**
3331  * lpfc_nvmet_prep_abort_wqe - set up 'abort' work queue entry.
3332  * @pwqeq: Pointer to command iocb.
3333  * @xritag: Tag that  uniqely identifies the local exchange resource.
3334  * @opt: Option bits -
3335  *		bit 0 = inhibit sending abts on the link
3336  *
3337  * This function is called with hbalock held.
3338  **/
3339 static void
3340 lpfc_nvmet_prep_abort_wqe(struct lpfc_iocbq *pwqeq, u16 xritag, u8 opt)
3341 {
3342 	union lpfc_wqe128 *wqe = &pwqeq->wqe;
3343 
3344 	/* WQEs are reused.  Clear stale data and set key fields to
3345 	 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag.
3346 	 */
3347 	memset(wqe, 0, sizeof(*wqe));
3348 
3349 	if (opt & INHIBIT_ABORT)
3350 		bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
3351 	/* Abort specified xri tag, with the mask deliberately zeroed */
3352 	bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
3353 
3354 	bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
3355 
3356 	/* Abort the I/O associated with this outstanding exchange ID. */
3357 	wqe->abort_cmd.wqe_com.abort_tag = xritag;
3358 
3359 	/* iotag for the wqe completion. */
3360 	bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, pwqeq->iotag);
3361 
3362 	bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
3363 	bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
3364 
3365 	bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND);
3366 	bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1);
3367 	bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
3368 }
3369 
3370 static int
3371 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba,
3372 			       struct lpfc_async_xchg_ctx *ctxp,
3373 			       uint32_t sid, uint16_t xri)
3374 {
3375 	struct lpfc_nvmet_tgtport *tgtp;
3376 	struct lpfc_iocbq *abts_wqeq;
3377 	struct lpfc_nodelist *ndlp;
3378 	unsigned long flags;
3379 	u8 opt;
3380 	int rc;
3381 
3382 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3383 	if (!ctxp->wqeq) {
3384 		ctxp->wqeq = ctxp->ctxbuf->iocbq;
3385 		ctxp->wqeq->hba_wqidx = 0;
3386 	}
3387 
3388 	ndlp = lpfc_findnode_did(phba->pport, sid);
3389 	if (!ndlp ||
3390 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3391 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3392 		atomic_inc(&tgtp->xmt_abort_rsp_error);
3393 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3394 				"6160 Drop ABORT - wrong NDLP state x%x.\n",
3395 				(ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
3396 
3397 		/* No failure to an ABTS request. */
3398 		spin_lock_irqsave(&ctxp->ctxlock, flags);
3399 		ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3400 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3401 		return 0;
3402 	}
3403 
3404 	/* Issue ABTS for this WQE based on iotag */
3405 	ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba);
3406 	spin_lock_irqsave(&ctxp->ctxlock, flags);
3407 	if (!ctxp->abort_wqeq) {
3408 		atomic_inc(&tgtp->xmt_abort_rsp_error);
3409 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3410 				"6161 ABORT failed: No wqeqs: "
3411 				"xri: x%x\n", ctxp->oxid);
3412 		/* No failure to an ABTS request. */
3413 		ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3414 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3415 		return 0;
3416 	}
3417 	abts_wqeq = ctxp->abort_wqeq;
3418 	ctxp->state = LPFC_NVME_STE_ABORT;
3419 	opt = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? INHIBIT_ABORT : 0;
3420 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3421 
3422 	/* Announce entry to new IO submit field. */
3423 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3424 			"6162 ABORT Request to rport DID x%06x "
3425 			"for xri x%x x%x\n",
3426 			ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag);
3427 
3428 	/* If the hba is getting reset, this flag is set.  It is
3429 	 * cleared when the reset is complete and rings reestablished.
3430 	 */
3431 	spin_lock_irqsave(&phba->hbalock, flags);
3432 	/* driver queued commands are in process of being flushed */
3433 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
3434 		spin_unlock_irqrestore(&phba->hbalock, flags);
3435 		atomic_inc(&tgtp->xmt_abort_rsp_error);
3436 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3437 				"6163 Driver in reset cleanup - flushing "
3438 				"NVME Req now. hba_flag x%x oxid x%x\n",
3439 				phba->hba_flag, ctxp->oxid);
3440 		lpfc_sli_release_iocbq(phba, abts_wqeq);
3441 		spin_lock_irqsave(&ctxp->ctxlock, flags);
3442 		ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3443 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3444 		return 0;
3445 	}
3446 
3447 	/* Outstanding abort is in progress */
3448 	if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) {
3449 		spin_unlock_irqrestore(&phba->hbalock, flags);
3450 		atomic_inc(&tgtp->xmt_abort_rsp_error);
3451 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3452 				"6164 Outstanding NVME I/O Abort Request "
3453 				"still pending on oxid x%x\n",
3454 				ctxp->oxid);
3455 		lpfc_sli_release_iocbq(phba, abts_wqeq);
3456 		spin_lock_irqsave(&ctxp->ctxlock, flags);
3457 		ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3458 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3459 		return 0;
3460 	}
3461 
3462 	/* Ready - mark outstanding as aborted by driver. */
3463 	abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED;
3464 
3465 	lpfc_nvmet_prep_abort_wqe(abts_wqeq, ctxp->wqeq->sli4_xritag, opt);
3466 
3467 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
3468 	abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx;
3469 	abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp;
3470 	abts_wqeq->iocb_cmpl = NULL;
3471 	abts_wqeq->iocb_flag |= LPFC_IO_NVME;
3472 	abts_wqeq->context2 = ctxp;
3473 	abts_wqeq->vport = phba->pport;
3474 	if (!ctxp->hdwq)
3475 		ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
3476 
3477 	rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3478 	spin_unlock_irqrestore(&phba->hbalock, flags);
3479 	if (rc == WQE_SUCCESS) {
3480 		atomic_inc(&tgtp->xmt_abort_sol);
3481 		return 0;
3482 	}
3483 
3484 	atomic_inc(&tgtp->xmt_abort_rsp_error);
3485 	spin_lock_irqsave(&ctxp->ctxlock, flags);
3486 	ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3487 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3488 	lpfc_sli_release_iocbq(phba, abts_wqeq);
3489 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3490 			"6166 Failed ABORT issue_wqe with status x%x "
3491 			"for oxid x%x.\n",
3492 			rc, ctxp->oxid);
3493 	return 1;
3494 }
3495 
3496 static int
3497 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba,
3498 				 struct lpfc_async_xchg_ctx *ctxp,
3499 				 uint32_t sid, uint16_t xri)
3500 {
3501 	struct lpfc_nvmet_tgtport *tgtp;
3502 	struct lpfc_iocbq *abts_wqeq;
3503 	unsigned long flags;
3504 	bool released = false;
3505 	int rc;
3506 
3507 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3508 	if (!ctxp->wqeq) {
3509 		ctxp->wqeq = ctxp->ctxbuf->iocbq;
3510 		ctxp->wqeq->hba_wqidx = 0;
3511 	}
3512 
3513 	if (ctxp->state == LPFC_NVME_STE_FREE) {
3514 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3515 				"6417 NVMET ABORT ctx freed %d %d oxid x%x\n",
3516 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
3517 		rc = WQE_BUSY;
3518 		goto aerr;
3519 	}
3520 	ctxp->state = LPFC_NVME_STE_ABORT;
3521 	ctxp->entry_cnt++;
3522 	rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri);
3523 	if (rc == 0)
3524 		goto aerr;
3525 
3526 	spin_lock_irqsave(&phba->hbalock, flags);
3527 	abts_wqeq = ctxp->wqeq;
3528 	abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp;
3529 	abts_wqeq->iocb_cmpl = NULL;
3530 	abts_wqeq->iocb_flag |= LPFC_IO_NVMET;
3531 	if (!ctxp->hdwq)
3532 		ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
3533 
3534 	rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3535 	spin_unlock_irqrestore(&phba->hbalock, flags);
3536 	if (rc == WQE_SUCCESS) {
3537 		return 0;
3538 	}
3539 
3540 aerr:
3541 	spin_lock_irqsave(&ctxp->ctxlock, flags);
3542 	if (ctxp->flag & LPFC_NVME_CTX_RLS) {
3543 		spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3544 		list_del_init(&ctxp->list);
3545 		spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3546 		released = true;
3547 	}
3548 	ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS);
3549 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3550 
3551 	atomic_inc(&tgtp->xmt_abort_rsp_error);
3552 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3553 			"6135 Failed to Issue ABTS for oxid x%x. Status x%x "
3554 			"(%x)\n",
3555 			ctxp->oxid, rc, released);
3556 	if (released)
3557 		lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3558 	return 1;
3559 }
3560 
3561 /**
3562  * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received
3563  *        via async frame receive where the frame is not handled.
3564  * @phba: pointer to adapter structure
3565  * @ctxp: pointer to the asynchronously received received sequence
3566  * @sid: address of the remote port to send the ABTS to
3567  * @xri: oxid value to for the ABTS (other side's exchange id).
3568  **/
3569 int
3570 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba,
3571 				struct lpfc_async_xchg_ctx *ctxp,
3572 				uint32_t sid, uint16_t xri)
3573 {
3574 	struct lpfc_nvmet_tgtport *tgtp = NULL;
3575 	struct lpfc_iocbq *abts_wqeq;
3576 	unsigned long flags;
3577 	int rc;
3578 
3579 	if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) ||
3580 	    (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) {
3581 		ctxp->state = LPFC_NVME_STE_LS_ABORT;
3582 		ctxp->entry_cnt++;
3583 	} else {
3584 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3585 				"6418 NVMET LS abort state mismatch "
3586 				"IO x%x: %d %d\n",
3587 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3588 		ctxp->state = LPFC_NVME_STE_LS_ABORT;
3589 	}
3590 
3591 	if (phba->nvmet_support && phba->targetport)
3592 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3593 
3594 	if (!ctxp->wqeq) {
3595 		/* Issue ABTS for this WQE based on iotag */
3596 		ctxp->wqeq = lpfc_sli_get_iocbq(phba);
3597 		if (!ctxp->wqeq) {
3598 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3599 					"6068 Abort failed: No wqeqs: "
3600 					"xri: x%x\n", xri);
3601 			/* No failure to an ABTS request. */
3602 			kfree(ctxp);
3603 			return 0;
3604 		}
3605 	}
3606 	abts_wqeq = ctxp->wqeq;
3607 
3608 	if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) {
3609 		rc = WQE_BUSY;
3610 		goto out;
3611 	}
3612 
3613 	spin_lock_irqsave(&phba->hbalock, flags);
3614 	abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp;
3615 	abts_wqeq->iocb_cmpl = NULL;
3616 	abts_wqeq->iocb_flag |=  LPFC_IO_NVME_LS;
3617 	rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3618 	spin_unlock_irqrestore(&phba->hbalock, flags);
3619 	if (rc == WQE_SUCCESS) {
3620 		if (tgtp)
3621 			atomic_inc(&tgtp->xmt_abort_unsol);
3622 		return 0;
3623 	}
3624 out:
3625 	if (tgtp)
3626 		atomic_inc(&tgtp->xmt_abort_rsp_error);
3627 	abts_wqeq->context2 = NULL;
3628 	abts_wqeq->context3 = NULL;
3629 	lpfc_sli_release_iocbq(phba, abts_wqeq);
3630 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3631 			"6056 Failed to Issue ABTS. Status x%x\n", rc);
3632 	return 1;
3633 }
3634 
3635 /**
3636  * lpfc_nvmet_invalidate_host
3637  *
3638  * @phba: pointer to the driver instance bound to an adapter port.
3639  * @ndlp: pointer to an lpfc_nodelist type
3640  *
3641  * This routine upcalls the nvmet transport to invalidate an NVME
3642  * host to which this target instance had active connections.
3643  */
3644 void
3645 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
3646 {
3647 	struct lpfc_nvmet_tgtport *tgtp;
3648 
3649 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_NVME_ABTS,
3650 			"6203 Invalidating hosthandle x%px\n",
3651 			ndlp);
3652 
3653 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3654 	atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE);
3655 
3656 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
3657 	/* Need to get the nvmet_fc_target_port pointer here.*/
3658 	nvmet_fc_invalidate_host(phba->targetport, ndlp);
3659 #endif
3660 }
3661