1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channsel Host Bus Adapters. * 4 * Copyright (C) 2017 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Limited and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <asm/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include <../drivers/nvme/host/nvme.h> 40 #include <linux/nvme-fc-driver.h> 41 42 #include "lpfc_version.h" 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_nvmet.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_crtn.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_debugfs.h" 57 58 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 59 struct lpfc_nvmet_rcv_ctx *, 60 dma_addr_t rspbuf, 61 uint16_t rspsize); 62 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 63 struct lpfc_nvmet_rcv_ctx *); 64 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 65 struct lpfc_nvmet_rcv_ctx *, 66 uint32_t, uint16_t); 67 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 68 struct lpfc_nvmet_rcv_ctx *, 69 uint32_t, uint16_t); 70 static int lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *, 71 struct lpfc_nvmet_rcv_ctx *, 72 uint32_t, uint16_t); 73 74 void 75 lpfc_nvmet_defer_release(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp) 76 { 77 unsigned long iflag; 78 79 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 80 "6313 NVMET Defer ctx release xri x%x flg x%x\n", 81 ctxp->oxid, ctxp->flag); 82 83 spin_lock_irqsave(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag); 84 if (ctxp->flag & LPFC_NVMET_CTX_RLS) { 85 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, 86 iflag); 87 return; 88 } 89 ctxp->flag |= LPFC_NVMET_CTX_RLS; 90 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 91 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag); 92 } 93 94 /** 95 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 96 * @phba: Pointer to HBA context object. 97 * @cmdwqe: Pointer to driver command WQE object. 98 * @wcqe: Pointer to driver response CQE object. 99 * 100 * The function is called from SLI ring event handler with no 101 * lock held. This function is the completion handler for NVME LS commands 102 * The function frees memory resources used for the NVME commands. 103 **/ 104 static void 105 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 106 struct lpfc_wcqe_complete *wcqe) 107 { 108 struct lpfc_nvmet_tgtport *tgtp; 109 struct nvmefc_tgt_ls_req *rsp; 110 struct lpfc_nvmet_rcv_ctx *ctxp; 111 uint32_t status, result; 112 113 status = bf_get(lpfc_wcqe_c_status, wcqe); 114 result = wcqe->parameter; 115 ctxp = cmdwqe->context2; 116 117 if (ctxp->state != LPFC_NVMET_STE_LS_RSP || ctxp->entry_cnt != 2) { 118 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 119 "6410 NVMET LS cmpl state mismatch IO x%x: " 120 "%d %d\n", 121 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 122 } 123 124 if (!phba->targetport) 125 goto out; 126 127 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 128 129 if (status) 130 atomic_inc(&tgtp->xmt_ls_rsp_error); 131 else 132 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 133 134 out: 135 rsp = &ctxp->ctx.ls_req; 136 137 lpfc_nvmeio_data(phba, "NVMET LS CMPL: xri x%x stat x%x result x%x\n", 138 ctxp->oxid, status, result); 139 140 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 141 "6038 NVMET LS rsp cmpl: %d %d oxid x%x\n", 142 status, result, ctxp->oxid); 143 144 lpfc_nlp_put(cmdwqe->context1); 145 cmdwqe->context2 = NULL; 146 cmdwqe->context3 = NULL; 147 lpfc_sli_release_iocbq(phba, cmdwqe); 148 rsp->done(rsp); 149 kfree(ctxp); 150 } 151 152 /** 153 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 154 * @phba: HBA buffer is associated with 155 * @ctxp: context to clean up 156 * @mp: Buffer to free 157 * 158 * Description: Frees the given DMA buffer in the appropriate way given by 159 * reposting it to its associated RQ so it can be reused. 160 * 161 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 162 * 163 * Returns: None 164 **/ 165 void 166 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 167 { 168 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 169 struct lpfc_nvmet_rcv_ctx *ctxp = ctx_buf->context; 170 struct lpfc_nvmet_tgtport *tgtp; 171 struct fc_frame_header *fc_hdr; 172 struct rqb_dmabuf *nvmebuf; 173 struct lpfc_nvmet_ctx_info *infop; 174 uint32_t *payload; 175 uint32_t size, oxid, sid, rc; 176 int cpu; 177 unsigned long iflag; 178 179 if (ctxp->txrdy) { 180 dma_pool_free(phba->txrdy_payload_pool, ctxp->txrdy, 181 ctxp->txrdy_phys); 182 ctxp->txrdy = NULL; 183 ctxp->txrdy_phys = 0; 184 } 185 186 if (ctxp->state == LPFC_NVMET_STE_FREE) { 187 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 188 "6411 NVMET free, already free IO x%x: %d %d\n", 189 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 190 } 191 ctxp->state = LPFC_NVMET_STE_FREE; 192 193 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 194 if (phba->sli4_hba.nvmet_io_wait_cnt) { 195 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 196 nvmebuf, struct rqb_dmabuf, 197 hbuf.list); 198 phba->sli4_hba.nvmet_io_wait_cnt--; 199 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 200 iflag); 201 202 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 203 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 204 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 205 payload = (uint32_t *)(nvmebuf->dbuf.virt); 206 size = nvmebuf->bytes_recv; 207 sid = sli4_sid_from_fc_hdr(fc_hdr); 208 209 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context; 210 ctxp->wqeq = NULL; 211 ctxp->txrdy = NULL; 212 ctxp->offset = 0; 213 ctxp->phba = phba; 214 ctxp->size = size; 215 ctxp->oxid = oxid; 216 ctxp->sid = sid; 217 ctxp->state = LPFC_NVMET_STE_RCV; 218 ctxp->entry_cnt = 1; 219 ctxp->flag = 0; 220 ctxp->ctxbuf = ctx_buf; 221 spin_lock_init(&ctxp->ctxlock); 222 223 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 224 if (phba->ktime_on) { 225 ctxp->ts_cmd_nvme = ktime_get_ns(); 226 ctxp->ts_isr_cmd = ctxp->ts_cmd_nvme; 227 ctxp->ts_nvme_data = 0; 228 ctxp->ts_data_wqput = 0; 229 ctxp->ts_isr_data = 0; 230 ctxp->ts_data_nvme = 0; 231 ctxp->ts_nvme_status = 0; 232 ctxp->ts_status_wqput = 0; 233 ctxp->ts_isr_status = 0; 234 ctxp->ts_status_nvme = 0; 235 } 236 #endif 237 atomic_inc(&tgtp->rcv_fcp_cmd_in); 238 /* 239 * The calling sequence should be: 240 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 241 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 242 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 243 * the NVME command / FC header is stored. 244 * A buffer has already been reposted for this IO, so just free 245 * the nvmebuf. 246 */ 247 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req, 248 payload, size); 249 250 /* Process FCP command */ 251 if (rc == 0) { 252 atomic_inc(&tgtp->rcv_fcp_cmd_out); 253 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 254 return; 255 } 256 257 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 258 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 259 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 260 ctxp->oxid, rc, 261 atomic_read(&tgtp->rcv_fcp_cmd_in), 262 atomic_read(&tgtp->rcv_fcp_cmd_out), 263 atomic_read(&tgtp->xmt_fcp_release)); 264 265 lpfc_nvmet_defer_release(phba, ctxp); 266 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 267 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 268 return; 269 } 270 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 271 272 /* 273 * Use the CPU context list, from the MRQ the IO was received on 274 * (ctxp->idx), to save context structure. 275 */ 276 cpu = smp_processor_id(); 277 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 278 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 279 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 280 infop->nvmet_ctx_list_cnt++; 281 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 282 #endif 283 } 284 285 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 286 static void 287 lpfc_nvmet_ktime(struct lpfc_hba *phba, 288 struct lpfc_nvmet_rcv_ctx *ctxp) 289 { 290 uint64_t seg1, seg2, seg3, seg4, seg5; 291 uint64_t seg6, seg7, seg8, seg9, seg10; 292 293 if (!phba->ktime_on) 294 return; 295 296 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 297 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 298 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 299 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 300 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 301 return; 302 303 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 304 return; 305 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 306 return; 307 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 308 return; 309 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 310 return; 311 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 312 return; 313 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 314 return; 315 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 316 return; 317 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 318 return; 319 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 320 return; 321 /* 322 * Segment 1 - Time from FCP command received by MSI-X ISR 323 * to FCP command is passed to NVME Layer. 324 * Segment 2 - Time from FCP command payload handed 325 * off to NVME Layer to Driver receives a Command op 326 * from NVME Layer. 327 * Segment 3 - Time from Driver receives a Command op 328 * from NVME Layer to Command is put on WQ. 329 * Segment 4 - Time from Driver WQ put is done 330 * to MSI-X ISR for Command cmpl. 331 * Segment 5 - Time from MSI-X ISR for Command cmpl to 332 * Command cmpl is passed to NVME Layer. 333 * Segment 6 - Time from Command cmpl is passed to NVME 334 * Layer to Driver receives a RSP op from NVME Layer. 335 * Segment 7 - Time from Driver receives a RSP op from 336 * NVME Layer to WQ put is done on TRSP FCP Status. 337 * Segment 8 - Time from Driver WQ put is done on TRSP 338 * FCP Status to MSI-X ISR for TRSP cmpl. 339 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 340 * TRSP cmpl is passed to NVME Layer. 341 * Segment 10 - Time from FCP command received by 342 * MSI-X ISR to command is completed on wire. 343 * (Segments 1 thru 8) for READDATA / WRITEDATA 344 * (Segments 1 thru 4) for READDATA_RSP 345 */ 346 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 347 seg2 = (ctxp->ts_nvme_data - ctxp->ts_isr_cmd) - seg1; 348 seg3 = (ctxp->ts_data_wqput - ctxp->ts_isr_cmd) - 349 seg1 - seg2; 350 seg4 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd) - 351 seg1 - seg2 - seg3; 352 seg5 = (ctxp->ts_data_nvme - ctxp->ts_isr_cmd) - 353 seg1 - seg2 - seg3 - seg4; 354 355 /* For auto rsp commands seg6 thru seg10 will be 0 */ 356 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 357 seg6 = (ctxp->ts_nvme_status - 358 ctxp->ts_isr_cmd) - 359 seg1 - seg2 - seg3 - seg4 - seg5; 360 seg7 = (ctxp->ts_status_wqput - 361 ctxp->ts_isr_cmd) - 362 seg1 - seg2 - seg3 - 363 seg4 - seg5 - seg6; 364 seg8 = (ctxp->ts_isr_status - 365 ctxp->ts_isr_cmd) - 366 seg1 - seg2 - seg3 - seg4 - 367 seg5 - seg6 - seg7; 368 seg9 = (ctxp->ts_status_nvme - 369 ctxp->ts_isr_cmd) - 370 seg1 - seg2 - seg3 - seg4 - 371 seg5 - seg6 - seg7 - seg8; 372 seg10 = (ctxp->ts_isr_status - 373 ctxp->ts_isr_cmd); 374 } else { 375 seg6 = 0; 376 seg7 = 0; 377 seg8 = 0; 378 seg9 = 0; 379 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 380 } 381 382 phba->ktime_seg1_total += seg1; 383 if (seg1 < phba->ktime_seg1_min) 384 phba->ktime_seg1_min = seg1; 385 else if (seg1 > phba->ktime_seg1_max) 386 phba->ktime_seg1_max = seg1; 387 388 phba->ktime_seg2_total += seg2; 389 if (seg2 < phba->ktime_seg2_min) 390 phba->ktime_seg2_min = seg2; 391 else if (seg2 > phba->ktime_seg2_max) 392 phba->ktime_seg2_max = seg2; 393 394 phba->ktime_seg3_total += seg3; 395 if (seg3 < phba->ktime_seg3_min) 396 phba->ktime_seg3_min = seg3; 397 else if (seg3 > phba->ktime_seg3_max) 398 phba->ktime_seg3_max = seg3; 399 400 phba->ktime_seg4_total += seg4; 401 if (seg4 < phba->ktime_seg4_min) 402 phba->ktime_seg4_min = seg4; 403 else if (seg4 > phba->ktime_seg4_max) 404 phba->ktime_seg4_max = seg4; 405 406 phba->ktime_seg5_total += seg5; 407 if (seg5 < phba->ktime_seg5_min) 408 phba->ktime_seg5_min = seg5; 409 else if (seg5 > phba->ktime_seg5_max) 410 phba->ktime_seg5_max = seg5; 411 412 phba->ktime_data_samples++; 413 if (!seg6) 414 goto out; 415 416 phba->ktime_seg6_total += seg6; 417 if (seg6 < phba->ktime_seg6_min) 418 phba->ktime_seg6_min = seg6; 419 else if (seg6 > phba->ktime_seg6_max) 420 phba->ktime_seg6_max = seg6; 421 422 phba->ktime_seg7_total += seg7; 423 if (seg7 < phba->ktime_seg7_min) 424 phba->ktime_seg7_min = seg7; 425 else if (seg7 > phba->ktime_seg7_max) 426 phba->ktime_seg7_max = seg7; 427 428 phba->ktime_seg8_total += seg8; 429 if (seg8 < phba->ktime_seg8_min) 430 phba->ktime_seg8_min = seg8; 431 else if (seg8 > phba->ktime_seg8_max) 432 phba->ktime_seg8_max = seg8; 433 434 phba->ktime_seg9_total += seg9; 435 if (seg9 < phba->ktime_seg9_min) 436 phba->ktime_seg9_min = seg9; 437 else if (seg9 > phba->ktime_seg9_max) 438 phba->ktime_seg9_max = seg9; 439 out: 440 phba->ktime_seg10_total += seg10; 441 if (seg10 < phba->ktime_seg10_min) 442 phba->ktime_seg10_min = seg10; 443 else if (seg10 > phba->ktime_seg10_max) 444 phba->ktime_seg10_max = seg10; 445 phba->ktime_status_samples++; 446 } 447 #endif 448 449 /** 450 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 451 * @phba: Pointer to HBA context object. 452 * @cmdwqe: Pointer to driver command WQE object. 453 * @wcqe: Pointer to driver response CQE object. 454 * 455 * The function is called from SLI ring event handler with no 456 * lock held. This function is the completion handler for NVME FCP commands 457 * The function frees memory resources used for the NVME commands. 458 **/ 459 static void 460 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 461 struct lpfc_wcqe_complete *wcqe) 462 { 463 struct lpfc_nvmet_tgtport *tgtp; 464 struct nvmefc_tgt_fcp_req *rsp; 465 struct lpfc_nvmet_rcv_ctx *ctxp; 466 uint32_t status, result, op, start_clean; 467 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 468 uint32_t id; 469 #endif 470 471 ctxp = cmdwqe->context2; 472 ctxp->flag &= ~LPFC_NVMET_IO_INP; 473 474 rsp = &ctxp->ctx.fcp_req; 475 op = rsp->op; 476 477 status = bf_get(lpfc_wcqe_c_status, wcqe); 478 result = wcqe->parameter; 479 480 if (phba->targetport) 481 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 482 else 483 tgtp = NULL; 484 485 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 486 ctxp->oxid, op, status); 487 488 if (status) { 489 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 490 rsp->transferred_length = 0; 491 if (tgtp) 492 atomic_inc(&tgtp->xmt_fcp_rsp_error); 493 494 /* pick up SLI4 exhange busy condition */ 495 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 496 ctxp->flag |= LPFC_NVMET_XBUSY; 497 498 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 499 "6315 IO Cmpl XBUSY: xri x%x: %x/%x\n", 500 ctxp->oxid, status, result); 501 } else { 502 ctxp->flag &= ~LPFC_NVMET_XBUSY; 503 } 504 505 } else { 506 rsp->fcp_error = NVME_SC_SUCCESS; 507 if (op == NVMET_FCOP_RSP) 508 rsp->transferred_length = rsp->rsplen; 509 else 510 rsp->transferred_length = rsp->transfer_length; 511 if (tgtp) 512 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 513 } 514 515 if ((op == NVMET_FCOP_READDATA_RSP) || 516 (op == NVMET_FCOP_RSP)) { 517 /* Sanity check */ 518 ctxp->state = LPFC_NVMET_STE_DONE; 519 ctxp->entry_cnt++; 520 521 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 522 if (phba->ktime_on) { 523 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 524 ctxp->ts_isr_data = 525 cmdwqe->isr_timestamp; 526 ctxp->ts_data_nvme = 527 ktime_get_ns(); 528 ctxp->ts_nvme_status = 529 ctxp->ts_data_nvme; 530 ctxp->ts_status_wqput = 531 ctxp->ts_data_nvme; 532 ctxp->ts_isr_status = 533 ctxp->ts_data_nvme; 534 ctxp->ts_status_nvme = 535 ctxp->ts_data_nvme; 536 } else { 537 ctxp->ts_isr_status = 538 cmdwqe->isr_timestamp; 539 ctxp->ts_status_nvme = 540 ktime_get_ns(); 541 } 542 } 543 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 544 id = smp_processor_id(); 545 if (ctxp->cpu != id) 546 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 547 "6703 CPU Check cmpl: " 548 "cpu %d expect %d\n", 549 id, ctxp->cpu); 550 if (ctxp->cpu < LPFC_CHECK_CPU_CNT) 551 phba->cpucheck_cmpl_io[id]++; 552 } 553 #endif 554 rsp->done(rsp); 555 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 556 if (phba->ktime_on) 557 lpfc_nvmet_ktime(phba, ctxp); 558 #endif 559 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 560 } else { 561 ctxp->entry_cnt++; 562 start_clean = offsetof(struct lpfc_iocbq, iocb_flag); 563 memset(((char *)cmdwqe) + start_clean, 0, 564 (sizeof(struct lpfc_iocbq) - start_clean)); 565 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 566 if (phba->ktime_on) { 567 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 568 ctxp->ts_data_nvme = ktime_get_ns(); 569 } 570 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 571 id = smp_processor_id(); 572 if (ctxp->cpu != id) 573 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 574 "6704 CPU Check cmdcmpl: " 575 "cpu %d expect %d\n", 576 id, ctxp->cpu); 577 if (ctxp->cpu < LPFC_CHECK_CPU_CNT) 578 phba->cpucheck_ccmpl_io[id]++; 579 } 580 #endif 581 rsp->done(rsp); 582 } 583 } 584 585 static int 586 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 587 struct nvmefc_tgt_ls_req *rsp) 588 { 589 struct lpfc_nvmet_rcv_ctx *ctxp = 590 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_req); 591 struct lpfc_hba *phba = ctxp->phba; 592 struct hbq_dmabuf *nvmebuf = 593 (struct hbq_dmabuf *)ctxp->rqb_buffer; 594 struct lpfc_iocbq *nvmewqeq; 595 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 596 struct lpfc_dmabuf dmabuf; 597 struct ulp_bde64 bpl; 598 int rc; 599 600 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 601 "6023 NVMET LS rsp oxid x%x\n", ctxp->oxid); 602 603 if ((ctxp->state != LPFC_NVMET_STE_LS_RCV) || 604 (ctxp->entry_cnt != 1)) { 605 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 606 "6412 NVMET LS rsp state mismatch " 607 "oxid x%x: %d %d\n", 608 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 609 } 610 ctxp->state = LPFC_NVMET_STE_LS_RSP; 611 ctxp->entry_cnt++; 612 613 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, ctxp, rsp->rspdma, 614 rsp->rsplen); 615 if (nvmewqeq == NULL) { 616 atomic_inc(&nvmep->xmt_ls_drop); 617 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 618 "6150 LS Drop IO x%x: Prep\n", 619 ctxp->oxid); 620 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 621 atomic_inc(&nvmep->xmt_ls_abort); 622 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, 623 ctxp->sid, ctxp->oxid); 624 return -ENOMEM; 625 } 626 627 /* Save numBdes for bpl2sgl */ 628 nvmewqeq->rsvd2 = 1; 629 nvmewqeq->hba_wqidx = 0; 630 nvmewqeq->context3 = &dmabuf; 631 dmabuf.virt = &bpl; 632 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 633 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 634 bpl.tus.f.bdeSize = rsp->rsplen; 635 bpl.tus.f.bdeFlags = 0; 636 bpl.tus.w = le32_to_cpu(bpl.tus.w); 637 638 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_rsp_cmp; 639 nvmewqeq->iocb_cmpl = NULL; 640 nvmewqeq->context2 = ctxp; 641 642 lpfc_nvmeio_data(phba, "NVMET LS RESP: xri x%x wqidx x%x len x%x\n", 643 ctxp->oxid, nvmewqeq->hba_wqidx, rsp->rsplen); 644 645 rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, nvmewqeq); 646 if (rc == WQE_SUCCESS) { 647 /* 648 * Okay to repost buffer here, but wait till cmpl 649 * before freeing ctxp and iocbq. 650 */ 651 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 652 ctxp->rqb_buffer = 0; 653 atomic_inc(&nvmep->xmt_ls_rsp); 654 return 0; 655 } 656 /* Give back resources */ 657 atomic_inc(&nvmep->xmt_ls_drop); 658 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 659 "6151 LS Drop IO x%x: Issue %d\n", 660 ctxp->oxid, rc); 661 662 lpfc_nlp_put(nvmewqeq->context1); 663 664 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 665 atomic_inc(&nvmep->xmt_ls_abort); 666 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 667 return -ENXIO; 668 } 669 670 static int 671 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 672 struct nvmefc_tgt_fcp_req *rsp) 673 { 674 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 675 struct lpfc_nvmet_rcv_ctx *ctxp = 676 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 677 struct lpfc_hba *phba = ctxp->phba; 678 struct lpfc_iocbq *nvmewqeq; 679 int rc; 680 681 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 682 if (phba->ktime_on) { 683 if (rsp->op == NVMET_FCOP_RSP) 684 ctxp->ts_nvme_status = ktime_get_ns(); 685 else 686 ctxp->ts_nvme_data = ktime_get_ns(); 687 } 688 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 689 int id = smp_processor_id(); 690 ctxp->cpu = id; 691 if (id < LPFC_CHECK_CPU_CNT) 692 phba->cpucheck_xmt_io[id]++; 693 if (rsp->hwqid != id) { 694 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 695 "6705 CPU Check OP: " 696 "cpu %d expect %d\n", 697 id, rsp->hwqid); 698 ctxp->cpu = rsp->hwqid; 699 } 700 } 701 #endif 702 703 /* Sanity check */ 704 if ((ctxp->flag & LPFC_NVMET_ABTS_RCV) || 705 (ctxp->state == LPFC_NVMET_STE_ABORT)) { 706 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 707 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 708 "6102 IO xri x%x aborted\n", 709 ctxp->oxid); 710 rc = -ENXIO; 711 goto aerr; 712 } 713 714 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 715 if (nvmewqeq == NULL) { 716 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 717 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 718 "6152 FCP Drop IO x%x: Prep\n", 719 ctxp->oxid); 720 rc = -ENXIO; 721 goto aerr; 722 } 723 724 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 725 nvmewqeq->iocb_cmpl = NULL; 726 nvmewqeq->context2 = ctxp; 727 nvmewqeq->iocb_flag |= LPFC_IO_NVMET; 728 ctxp->wqeq->hba_wqidx = rsp->hwqid; 729 730 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 731 ctxp->oxid, rsp->op, rsp->rsplen); 732 733 ctxp->flag |= LPFC_NVMET_IO_INP; 734 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq); 735 if (rc == WQE_SUCCESS) { 736 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 737 if (!phba->ktime_on) 738 return 0; 739 if (rsp->op == NVMET_FCOP_RSP) 740 ctxp->ts_status_wqput = ktime_get_ns(); 741 else 742 ctxp->ts_data_wqput = ktime_get_ns(); 743 #endif 744 return 0; 745 } 746 747 /* Give back resources */ 748 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 749 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 750 "6153 FCP Drop IO x%x: Issue: %d\n", 751 ctxp->oxid, rc); 752 753 ctxp->wqeq->hba_wqidx = 0; 754 nvmewqeq->context2 = NULL; 755 nvmewqeq->context3 = NULL; 756 rc = -EBUSY; 757 aerr: 758 return rc; 759 } 760 761 static void 762 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 763 { 764 struct lpfc_nvmet_tgtport *tport = targetport->private; 765 766 /* release any threads waiting for the unreg to complete */ 767 complete(&tport->tport_unreg_done); 768 } 769 770 static void 771 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 772 struct nvmefc_tgt_fcp_req *req) 773 { 774 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 775 struct lpfc_nvmet_rcv_ctx *ctxp = 776 container_of(req, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 777 struct lpfc_hba *phba = ctxp->phba; 778 unsigned long flags; 779 780 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 781 "6103 NVMET Abort op: oxri x%x flg x%x ste %d\n", 782 ctxp->oxid, ctxp->flag, ctxp->state); 783 784 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 785 ctxp->oxid, ctxp->flag, ctxp->state); 786 787 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 788 789 spin_lock_irqsave(&ctxp->ctxlock, flags); 790 791 /* Since iaab/iaar are NOT set, we need to check 792 * if the firmware is in process of aborting IO 793 */ 794 if (ctxp->flag & LPFC_NVMET_XBUSY) { 795 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 796 return; 797 } 798 ctxp->flag |= LPFC_NVMET_ABORT_OP; 799 800 /* An state of LPFC_NVMET_STE_RCV means we have just received 801 * the NVME command and have not started processing it. 802 * (by issuing any IO WQEs on this exchange yet) 803 */ 804 if (ctxp->state == LPFC_NVMET_STE_RCV) 805 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 806 ctxp->oxid); 807 else 808 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 809 ctxp->oxid); 810 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 811 } 812 813 static void 814 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 815 struct nvmefc_tgt_fcp_req *rsp) 816 { 817 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 818 struct lpfc_nvmet_rcv_ctx *ctxp = 819 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 820 struct lpfc_hba *phba = ctxp->phba; 821 unsigned long flags; 822 bool aborting = false; 823 824 if (ctxp->state != LPFC_NVMET_STE_DONE && 825 ctxp->state != LPFC_NVMET_STE_ABORT) { 826 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 827 "6413 NVMET release bad state %d %d oxid x%x\n", 828 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 829 } 830 831 spin_lock_irqsave(&ctxp->ctxlock, flags); 832 if ((ctxp->flag & LPFC_NVMET_ABORT_OP) || 833 (ctxp->flag & LPFC_NVMET_XBUSY)) { 834 aborting = true; 835 /* let the abort path do the real release */ 836 lpfc_nvmet_defer_release(phba, ctxp); 837 } 838 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 839 840 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 841 ctxp->state, aborting); 842 843 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 844 845 if (aborting) 846 return; 847 848 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 849 } 850 851 static void 852 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 853 struct nvmefc_tgt_fcp_req *rsp) 854 { 855 struct lpfc_nvmet_tgtport *tgtp; 856 struct lpfc_nvmet_rcv_ctx *ctxp = 857 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 858 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 859 struct lpfc_hba *phba = ctxp->phba; 860 861 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 862 ctxp->oxid, ctxp->size, smp_processor_id()); 863 864 tgtp = phba->targetport->private; 865 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 866 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 867 } 868 869 static struct nvmet_fc_target_template lpfc_tgttemplate = { 870 .targetport_delete = lpfc_nvmet_targetport_delete, 871 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 872 .fcp_op = lpfc_nvmet_xmt_fcp_op, 873 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 874 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 875 .defer_rcv = lpfc_nvmet_defer_rcv, 876 877 .max_hw_queues = 1, 878 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 879 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 880 .dma_boundary = 0xFFFFFFFF, 881 882 /* optional features */ 883 .target_features = 0, 884 /* sizes of additional private data for data structures */ 885 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 886 }; 887 888 static void 889 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 890 struct lpfc_nvmet_ctx_info *infop) 891 { 892 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 893 unsigned long flags; 894 895 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 896 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 897 &infop->nvmet_ctx_list, list) { 898 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); 899 list_del_init(&ctx_buf->list); 900 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 901 902 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 903 ctx_buf->sglq->state = SGL_FREED; 904 ctx_buf->sglq->ndlp = NULL; 905 906 spin_lock(&phba->sli4_hba.sgl_list_lock); 907 list_add_tail(&ctx_buf->sglq->list, 908 &phba->sli4_hba.lpfc_nvmet_sgl_list); 909 spin_unlock(&phba->sli4_hba.sgl_list_lock); 910 911 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 912 kfree(ctx_buf->context); 913 } 914 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 915 } 916 917 static void 918 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 919 { 920 struct lpfc_nvmet_ctx_info *infop; 921 int i, j; 922 923 /* The first context list, MRQ 0 CPU 0 */ 924 infop = phba->sli4_hba.nvmet_ctx_info; 925 if (!infop) 926 return; 927 928 /* Cycle the the entire CPU context list for every MRQ */ 929 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 930 for (j = 0; j < phba->sli4_hba.num_present_cpu; j++) { 931 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 932 infop++; /* next */ 933 } 934 } 935 kfree(phba->sli4_hba.nvmet_ctx_info); 936 phba->sli4_hba.nvmet_ctx_info = NULL; 937 } 938 939 static int 940 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 941 { 942 struct lpfc_nvmet_ctxbuf *ctx_buf; 943 struct lpfc_iocbq *nvmewqe; 944 union lpfc_wqe128 *wqe; 945 struct lpfc_nvmet_ctx_info *last_infop; 946 struct lpfc_nvmet_ctx_info *infop; 947 int i, j, idx; 948 949 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 950 "6403 Allocate NVMET resources for %d XRIs\n", 951 phba->sli4_hba.nvmet_xri_cnt); 952 953 phba->sli4_hba.nvmet_ctx_info = kcalloc( 954 phba->sli4_hba.num_present_cpu * phba->cfg_nvmet_mrq, 955 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 956 if (!phba->sli4_hba.nvmet_ctx_info) { 957 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 958 "6419 Failed allocate memory for " 959 "nvmet context lists\n"); 960 return -ENOMEM; 961 } 962 963 /* 964 * Assuming X CPUs in the system, and Y MRQs, allocate some 965 * lpfc_nvmet_ctx_info structures as follows: 966 * 967 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 968 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 969 * ... 970 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 971 * 972 * Each line represents a MRQ "silo" containing an entry for 973 * every CPU. 974 * 975 * MRQ X is initially assumed to be associated with CPU X, thus 976 * contexts are initially distributed across all MRQs using 977 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 978 * freed, the are freed to the MRQ silo based on the CPU number 979 * of the IO completion. Thus a context that was allocated for MRQ A 980 * whose IO completed on CPU B will be freed to cpuB/mrqA. 981 */ 982 infop = phba->sli4_hba.nvmet_ctx_info; 983 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 984 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 985 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 986 spin_lock_init(&infop->nvmet_ctx_list_lock); 987 infop->nvmet_ctx_list_cnt = 0; 988 infop++; 989 } 990 } 991 992 /* 993 * Setup the next CPU context info ptr for each MRQ. 994 * MRQ 0 will cycle thru CPUs 0 - X separately from 995 * MRQ 1 cycling thru CPUs 0 - X, and so on. 996 */ 997 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 998 last_infop = lpfc_get_ctx_list(phba, 0, j); 999 for (i = phba->sli4_hba.num_present_cpu - 1; i >= 0; i--) { 1000 infop = lpfc_get_ctx_list(phba, i, j); 1001 infop->nvmet_ctx_next_cpu = last_infop; 1002 last_infop = infop; 1003 } 1004 } 1005 1006 /* For all nvmet xris, allocate resources needed to process a 1007 * received command on a per xri basis. 1008 */ 1009 idx = 0; 1010 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1011 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1012 if (!ctx_buf) { 1013 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1014 "6404 Ran out of memory for NVMET\n"); 1015 return -ENOMEM; 1016 } 1017 1018 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1019 GFP_KERNEL); 1020 if (!ctx_buf->context) { 1021 kfree(ctx_buf); 1022 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1023 "6405 Ran out of NVMET " 1024 "context memory\n"); 1025 return -ENOMEM; 1026 } 1027 ctx_buf->context->ctxbuf = ctx_buf; 1028 ctx_buf->context->state = LPFC_NVMET_STE_FREE; 1029 1030 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1031 if (!ctx_buf->iocbq) { 1032 kfree(ctx_buf->context); 1033 kfree(ctx_buf); 1034 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1035 "6406 Ran out of NVMET iocb/WQEs\n"); 1036 return -ENOMEM; 1037 } 1038 ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET; 1039 nvmewqe = ctx_buf->iocbq; 1040 wqe = (union lpfc_wqe128 *)&nvmewqe->wqe; 1041 /* Initialize WQE */ 1042 memset(wqe, 0, sizeof(union lpfc_wqe)); 1043 /* Word 7 */ 1044 bf_set(wqe_ct, &wqe->generic.wqe_com, SLI4_CT_RPI); 1045 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 1046 /* Word 10 */ 1047 bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1); 1048 bf_set(wqe_ebde_cnt, &wqe->generic.wqe_com, 0); 1049 bf_set(wqe_qosd, &wqe->generic.wqe_com, 0); 1050 1051 ctx_buf->iocbq->context1 = NULL; 1052 spin_lock(&phba->sli4_hba.sgl_list_lock); 1053 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1054 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1055 if (!ctx_buf->sglq) { 1056 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1057 kfree(ctx_buf->context); 1058 kfree(ctx_buf); 1059 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1060 "6407 Ran out of NVMET XRIs\n"); 1061 return -ENOMEM; 1062 } 1063 1064 /* 1065 * Add ctx to MRQidx context list. Our initial assumption 1066 * is MRQidx will be associated with CPUidx. This association 1067 * can change on the fly. 1068 */ 1069 infop = lpfc_get_ctx_list(phba, idx, idx); 1070 spin_lock(&infop->nvmet_ctx_list_lock); 1071 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1072 infop->nvmet_ctx_list_cnt++; 1073 spin_unlock(&infop->nvmet_ctx_list_lock); 1074 1075 /* Spread ctx structures evenly across all MRQs */ 1076 idx++; 1077 if (idx >= phba->cfg_nvmet_mrq) 1078 idx = 0; 1079 } 1080 1081 infop = phba->sli4_hba.nvmet_ctx_info; 1082 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1083 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 1084 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1085 "6408 TOTAL NVMET ctx for CPU %d " 1086 "MRQ %d: cnt %d nextcpu %p\n", 1087 i, j, infop->nvmet_ctx_list_cnt, 1088 infop->nvmet_ctx_next_cpu); 1089 infop++; 1090 } 1091 } 1092 return 0; 1093 } 1094 1095 int 1096 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1097 { 1098 struct lpfc_vport *vport = phba->pport; 1099 struct lpfc_nvmet_tgtport *tgtp; 1100 struct nvmet_fc_port_info pinfo; 1101 int error; 1102 1103 if (phba->targetport) 1104 return 0; 1105 1106 error = lpfc_nvmet_setup_io_context(phba); 1107 if (error) 1108 return error; 1109 1110 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1111 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1112 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1113 pinfo.port_id = vport->fc_myDID; 1114 1115 /* Limit to LPFC_MAX_NVME_SEG_CNT. 1116 * For now need + 1 to get around NVME transport logic. 1117 */ 1118 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 1119 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1120 "6400 Reducing sg segment cnt to %d\n", 1121 LPFC_MAX_NVME_SEG_CNT); 1122 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 1123 } else { 1124 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 1125 } 1126 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1127 lpfc_tgttemplate.max_hw_queues = phba->cfg_nvme_io_channel; 1128 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP | 1129 NVMET_FCTGTFEAT_CMD_IN_ISR | 1130 NVMET_FCTGTFEAT_OPDONE_IN_ISR; 1131 1132 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1133 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1134 &phba->pcidev->dev, 1135 &phba->targetport); 1136 #else 1137 error = -ENOENT; 1138 #endif 1139 if (error) { 1140 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 1141 "6025 Cannot register NVME targetport " 1142 "x%x\n", error); 1143 phba->targetport = NULL; 1144 1145 lpfc_nvmet_cleanup_io_context(phba); 1146 1147 } else { 1148 tgtp = (struct lpfc_nvmet_tgtport *) 1149 phba->targetport->private; 1150 tgtp->phba = phba; 1151 1152 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1153 "6026 Registered NVME " 1154 "targetport: %p, private %p " 1155 "portnm %llx nodenm %llx\n", 1156 phba->targetport, tgtp, 1157 pinfo.port_name, pinfo.node_name); 1158 1159 atomic_set(&tgtp->rcv_ls_req_in, 0); 1160 atomic_set(&tgtp->rcv_ls_req_out, 0); 1161 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1162 atomic_set(&tgtp->xmt_ls_abort, 0); 1163 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1164 atomic_set(&tgtp->xmt_ls_rsp, 0); 1165 atomic_set(&tgtp->xmt_ls_drop, 0); 1166 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1167 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1168 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1169 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1170 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1171 atomic_set(&tgtp->xmt_fcp_drop, 0); 1172 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1173 atomic_set(&tgtp->xmt_fcp_read, 0); 1174 atomic_set(&tgtp->xmt_fcp_write, 0); 1175 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1176 atomic_set(&tgtp->xmt_fcp_release, 0); 1177 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1178 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1179 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1180 atomic_set(&tgtp->xmt_fcp_abort, 0); 1181 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1182 atomic_set(&tgtp->xmt_abort_unsol, 0); 1183 atomic_set(&tgtp->xmt_abort_sol, 0); 1184 atomic_set(&tgtp->xmt_abort_rsp, 0); 1185 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1186 } 1187 return error; 1188 } 1189 1190 int 1191 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1192 { 1193 struct lpfc_vport *vport = phba->pport; 1194 1195 if (!phba->targetport) 1196 return 0; 1197 1198 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1199 "6007 Update NVMET port %p did x%x\n", 1200 phba->targetport, vport->fc_myDID); 1201 1202 phba->targetport->port_id = vport->fc_myDID; 1203 return 0; 1204 } 1205 1206 /** 1207 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1208 * @phba: pointer to lpfc hba data structure. 1209 * @axri: pointer to the nvmet xri abort wcqe structure. 1210 * 1211 * This routine is invoked by the worker thread to process a SLI4 fast-path 1212 * NVMET aborted xri. 1213 **/ 1214 void 1215 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1216 struct sli4_wcqe_xri_aborted *axri) 1217 { 1218 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1219 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1220 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; 1221 struct lpfc_nodelist *ndlp; 1222 unsigned long iflag = 0; 1223 int rrq_empty = 0; 1224 bool released = false; 1225 1226 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1227 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1228 1229 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1230 return; 1231 spin_lock_irqsave(&phba->hbalock, iflag); 1232 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1233 list_for_each_entry_safe(ctxp, next_ctxp, 1234 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1235 list) { 1236 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1237 continue; 1238 1239 /* Check if we already received a free context call 1240 * and we have completed processing an abort situation. 1241 */ 1242 if (ctxp->flag & LPFC_NVMET_CTX_RLS && 1243 !(ctxp->flag & LPFC_NVMET_ABORT_OP)) { 1244 list_del(&ctxp->list); 1245 released = true; 1246 } 1247 ctxp->flag &= ~LPFC_NVMET_XBUSY; 1248 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1249 1250 rrq_empty = list_empty(&phba->active_rrq_list); 1251 spin_unlock_irqrestore(&phba->hbalock, iflag); 1252 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1253 if (ndlp && NLP_CHK_NODE_ACT(ndlp) && 1254 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1255 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1256 lpfc_set_rrq_active(phba, ndlp, 1257 ctxp->ctxbuf->sglq->sli4_lxritag, 1258 rxid, 1); 1259 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1260 } 1261 1262 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1263 "6318 XB aborted oxid %x flg x%x (%x)\n", 1264 ctxp->oxid, ctxp->flag, released); 1265 if (released) 1266 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1267 1268 if (rrq_empty) 1269 lpfc_worker_wake_up(phba); 1270 return; 1271 } 1272 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1273 spin_unlock_irqrestore(&phba->hbalock, iflag); 1274 } 1275 1276 int 1277 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1278 struct fc_frame_header *fc_hdr) 1279 1280 { 1281 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1282 struct lpfc_hba *phba = vport->phba; 1283 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; 1284 struct nvmefc_tgt_fcp_req *rsp; 1285 uint16_t xri; 1286 unsigned long iflag = 0; 1287 1288 xri = be16_to_cpu(fc_hdr->fh_ox_id); 1289 1290 spin_lock_irqsave(&phba->hbalock, iflag); 1291 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1292 list_for_each_entry_safe(ctxp, next_ctxp, 1293 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1294 list) { 1295 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1296 continue; 1297 1298 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1299 spin_unlock_irqrestore(&phba->hbalock, iflag); 1300 1301 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1302 ctxp->flag |= LPFC_NVMET_ABTS_RCV; 1303 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1304 1305 lpfc_nvmeio_data(phba, 1306 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1307 xri, smp_processor_id(), 0); 1308 1309 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1310 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1311 1312 rsp = &ctxp->ctx.fcp_req; 1313 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1314 1315 /* Respond with BA_ACC accordingly */ 1316 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1317 return 0; 1318 } 1319 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1320 spin_unlock_irqrestore(&phba->hbalock, iflag); 1321 1322 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1323 xri, smp_processor_id(), 1); 1324 1325 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1326 "6320 NVMET Rcv ABTS:rjt xri x%x\n", xri); 1327 1328 /* Respond with BA_RJT accordingly */ 1329 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 1330 #endif 1331 return 0; 1332 } 1333 1334 void 1335 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 1336 { 1337 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1338 struct lpfc_nvmet_tgtport *tgtp; 1339 1340 if (phba->nvmet_support == 0) 1341 return; 1342 if (phba->targetport) { 1343 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1344 init_completion(&tgtp->tport_unreg_done); 1345 nvmet_fc_unregister_targetport(phba->targetport); 1346 wait_for_completion_timeout(&tgtp->tport_unreg_done, 5); 1347 lpfc_nvmet_cleanup_io_context(phba); 1348 } 1349 phba->targetport = NULL; 1350 #endif 1351 } 1352 1353 /** 1354 * lpfc_nvmet_unsol_ls_buffer - Process an unsolicited event data buffer 1355 * @phba: pointer to lpfc hba data structure. 1356 * @pring: pointer to a SLI ring. 1357 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 1358 * 1359 * This routine is used for processing the WQE associated with a unsolicited 1360 * event. It first determines whether there is an existing ndlp that matches 1361 * the DID from the unsolicited WQE. If not, it will create a new one with 1362 * the DID from the unsolicited WQE. The ELS command from the unsolicited 1363 * WQE is then used to invoke the proper routine and to set up proper state 1364 * of the discovery state machine. 1365 **/ 1366 static void 1367 lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1368 struct hbq_dmabuf *nvmebuf) 1369 { 1370 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1371 struct lpfc_nvmet_tgtport *tgtp; 1372 struct fc_frame_header *fc_hdr; 1373 struct lpfc_nvmet_rcv_ctx *ctxp; 1374 uint32_t *payload; 1375 uint32_t size, oxid, sid, rc; 1376 1377 if (!nvmebuf || !phba->targetport) { 1378 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1379 "6154 LS Drop IO\n"); 1380 oxid = 0; 1381 size = 0; 1382 sid = 0; 1383 ctxp = NULL; 1384 goto dropit; 1385 } 1386 1387 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1388 payload = (uint32_t *)(nvmebuf->dbuf.virt); 1389 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 1390 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 1391 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1392 sid = sli4_sid_from_fc_hdr(fc_hdr); 1393 1394 ctxp = kzalloc(sizeof(struct lpfc_nvmet_rcv_ctx), GFP_ATOMIC); 1395 if (ctxp == NULL) { 1396 atomic_inc(&tgtp->rcv_ls_req_drop); 1397 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1398 "6155 LS Drop IO x%x: Alloc\n", 1399 oxid); 1400 dropit: 1401 lpfc_nvmeio_data(phba, "NVMET LS DROP: " 1402 "xri x%x sz %d from %06x\n", 1403 oxid, size, sid); 1404 if (nvmebuf) 1405 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 1406 return; 1407 } 1408 ctxp->phba = phba; 1409 ctxp->size = size; 1410 ctxp->oxid = oxid; 1411 ctxp->sid = sid; 1412 ctxp->wqeq = NULL; 1413 ctxp->state = LPFC_NVMET_STE_LS_RCV; 1414 ctxp->entry_cnt = 1; 1415 ctxp->rqb_buffer = (void *)nvmebuf; 1416 1417 lpfc_nvmeio_data(phba, "NVMET LS RCV: xri x%x sz %d from %06x\n", 1418 oxid, size, sid); 1419 /* 1420 * The calling sequence should be: 1421 * nvmet_fc_rcv_ls_req -> lpfc_nvmet_xmt_ls_rsp/cmp ->_req->done 1422 * lpfc_nvmet_xmt_ls_rsp_cmp should free the allocated ctxp. 1423 */ 1424 atomic_inc(&tgtp->rcv_ls_req_in); 1425 rc = nvmet_fc_rcv_ls_req(phba->targetport, &ctxp->ctx.ls_req, 1426 payload, size); 1427 1428 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1429 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 1430 "%08x %08x %08x\n", size, rc, 1431 *payload, *(payload+1), *(payload+2), 1432 *(payload+3), *(payload+4), *(payload+5)); 1433 1434 if (rc == 0) { 1435 atomic_inc(&tgtp->rcv_ls_req_out); 1436 return; 1437 } 1438 1439 lpfc_nvmeio_data(phba, "NVMET LS DROP: xri x%x sz %d from %06x\n", 1440 oxid, size, sid); 1441 1442 atomic_inc(&tgtp->rcv_ls_req_drop); 1443 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1444 "6156 LS Drop IO x%x: nvmet_fc_rcv_ls_req %d\n", 1445 ctxp->oxid, rc); 1446 1447 /* We assume a rcv'ed cmd ALWAYs fits into 1 buffer */ 1448 if (nvmebuf) 1449 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 1450 1451 atomic_inc(&tgtp->xmt_ls_abort); 1452 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, sid, oxid); 1453 #endif 1454 } 1455 1456 static struct lpfc_nvmet_ctxbuf * 1457 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 1458 struct lpfc_nvmet_ctx_info *current_infop) 1459 { 1460 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 1461 struct lpfc_nvmet_ctx_info *get_infop; 1462 int i; 1463 1464 /* 1465 * The current_infop for the MRQ a NVME command IU was received 1466 * on is empty. Our goal is to replenish this MRQs context 1467 * list from a another CPUs. 1468 * 1469 * First we need to pick a context list to start looking on. 1470 * nvmet_ctx_start_cpu has available context the last time 1471 * we needed to replenish this CPU where nvmet_ctx_next_cpu 1472 * is just the next sequential CPU for this MRQ. 1473 */ 1474 if (current_infop->nvmet_ctx_start_cpu) 1475 get_infop = current_infop->nvmet_ctx_start_cpu; 1476 else 1477 get_infop = current_infop->nvmet_ctx_next_cpu; 1478 1479 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 1480 if (get_infop == current_infop) { 1481 get_infop = get_infop->nvmet_ctx_next_cpu; 1482 continue; 1483 } 1484 spin_lock(&get_infop->nvmet_ctx_list_lock); 1485 1486 /* Just take the entire context list, if there are any */ 1487 if (get_infop->nvmet_ctx_list_cnt) { 1488 list_splice_init(&get_infop->nvmet_ctx_list, 1489 ¤t_infop->nvmet_ctx_list); 1490 current_infop->nvmet_ctx_list_cnt = 1491 get_infop->nvmet_ctx_list_cnt - 1; 1492 get_infop->nvmet_ctx_list_cnt = 0; 1493 spin_unlock(&get_infop->nvmet_ctx_list_lock); 1494 1495 current_infop->nvmet_ctx_start_cpu = get_infop; 1496 list_remove_head(¤t_infop->nvmet_ctx_list, 1497 ctx_buf, struct lpfc_nvmet_ctxbuf, 1498 list); 1499 return ctx_buf; 1500 } 1501 1502 /* Otherwise, move on to the next CPU for this MRQ */ 1503 spin_unlock(&get_infop->nvmet_ctx_list_lock); 1504 get_infop = get_infop->nvmet_ctx_next_cpu; 1505 } 1506 1507 /* Nothing found, all contexts for the MRQ are in-flight */ 1508 return NULL; 1509 } 1510 1511 /** 1512 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 1513 * @phba: pointer to lpfc hba data structure. 1514 * @idx: relative index of MRQ vector 1515 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 1516 * 1517 * This routine is used for processing the WQE associated with a unsolicited 1518 * event. It first determines whether there is an existing ndlp that matches 1519 * the DID from the unsolicited WQE. If not, it will create a new one with 1520 * the DID from the unsolicited WQE. The ELS command from the unsolicited 1521 * WQE is then used to invoke the proper routine and to set up proper state 1522 * of the discovery state machine. 1523 **/ 1524 static void 1525 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 1526 uint32_t idx, 1527 struct rqb_dmabuf *nvmebuf, 1528 uint64_t isr_timestamp) 1529 { 1530 struct lpfc_nvmet_rcv_ctx *ctxp; 1531 struct lpfc_nvmet_tgtport *tgtp; 1532 struct fc_frame_header *fc_hdr; 1533 struct lpfc_nvmet_ctxbuf *ctx_buf; 1534 struct lpfc_nvmet_ctx_info *current_infop; 1535 uint32_t *payload; 1536 uint32_t size, oxid, sid, rc, qno; 1537 unsigned long iflag; 1538 int current_cpu; 1539 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1540 uint32_t id; 1541 #endif 1542 1543 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1544 return; 1545 1546 ctx_buf = NULL; 1547 if (!nvmebuf || !phba->targetport) { 1548 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1549 "6157 NVMET FCP Drop IO\n"); 1550 oxid = 0; 1551 size = 0; 1552 sid = 0; 1553 ctxp = NULL; 1554 goto dropit; 1555 } 1556 1557 /* 1558 * Get a pointer to the context list for this MRQ based on 1559 * the CPU this MRQ IRQ is associated with. If the CPU association 1560 * changes from our initial assumption, the context list could 1561 * be empty, thus it would need to be replenished with the 1562 * context list from another CPU for this MRQ. 1563 */ 1564 current_cpu = smp_processor_id(); 1565 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 1566 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 1567 if (current_infop->nvmet_ctx_list_cnt) { 1568 list_remove_head(¤t_infop->nvmet_ctx_list, 1569 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 1570 current_infop->nvmet_ctx_list_cnt--; 1571 } else { 1572 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 1573 } 1574 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 1575 1576 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 1577 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1578 size = nvmebuf->bytes_recv; 1579 1580 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1581 if (phba->cpucheck_on & LPFC_CHECK_NVMET_RCV) { 1582 id = smp_processor_id(); 1583 if (id < LPFC_CHECK_CPU_CNT) 1584 phba->cpucheck_rcv_io[id]++; 1585 } 1586 #endif 1587 1588 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 1589 oxid, size, smp_processor_id()); 1590 1591 if (!ctx_buf) { 1592 /* Queue this NVME IO to process later */ 1593 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1594 list_add_tail(&nvmebuf->hbuf.list, 1595 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 1596 phba->sli4_hba.nvmet_io_wait_cnt++; 1597 phba->sli4_hba.nvmet_io_wait_total++; 1598 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1599 iflag); 1600 1601 /* Post a brand new DMA buffer to RQ */ 1602 qno = nvmebuf->idx; 1603 lpfc_post_rq_buffer( 1604 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 1605 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 1606 return; 1607 } 1608 1609 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1610 payload = (uint32_t *)(nvmebuf->dbuf.virt); 1611 sid = sli4_sid_from_fc_hdr(fc_hdr); 1612 1613 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context; 1614 if (ctxp->state != LPFC_NVMET_STE_FREE) { 1615 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1616 "6414 NVMET Context corrupt %d %d oxid x%x\n", 1617 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1618 } 1619 ctxp->wqeq = NULL; 1620 ctxp->txrdy = NULL; 1621 ctxp->offset = 0; 1622 ctxp->phba = phba; 1623 ctxp->size = size; 1624 ctxp->oxid = oxid; 1625 ctxp->sid = sid; 1626 ctxp->idx = idx; 1627 ctxp->state = LPFC_NVMET_STE_RCV; 1628 ctxp->entry_cnt = 1; 1629 ctxp->flag = 0; 1630 ctxp->ctxbuf = ctx_buf; 1631 spin_lock_init(&ctxp->ctxlock); 1632 1633 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1634 if (phba->ktime_on) { 1635 ctxp->ts_isr_cmd = isr_timestamp; 1636 ctxp->ts_cmd_nvme = ktime_get_ns(); 1637 ctxp->ts_nvme_data = 0; 1638 ctxp->ts_data_wqput = 0; 1639 ctxp->ts_isr_data = 0; 1640 ctxp->ts_data_nvme = 0; 1641 ctxp->ts_nvme_status = 0; 1642 ctxp->ts_status_wqput = 0; 1643 ctxp->ts_isr_status = 0; 1644 ctxp->ts_status_nvme = 0; 1645 } 1646 #endif 1647 1648 atomic_inc(&tgtp->rcv_fcp_cmd_in); 1649 /* 1650 * The calling sequence should be: 1651 * nvmet_fc_rcv_fcp_req -> lpfc_nvmet_xmt_fcp_op/cmp -> req->done 1652 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 1653 * When we return from nvmet_fc_rcv_fcp_req, all relevant info in 1654 * the NVME command / FC header is stored, so we are free to repost 1655 * the buffer. 1656 */ 1657 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req, 1658 payload, size); 1659 1660 /* Process FCP command */ 1661 if (rc == 0) { 1662 atomic_inc(&tgtp->rcv_fcp_cmd_out); 1663 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 1664 return; 1665 } 1666 1667 /* Processing of FCP command is deferred */ 1668 if (rc == -EOVERFLOW) { 1669 lpfc_nvmeio_data(phba, 1670 "NVMET RCV BUSY: xri x%x sz %d from %06x\n", 1671 oxid, size, sid); 1672 /* defer reposting rcv buffer till .defer_rcv callback */ 1673 ctxp->rqb_buffer = nvmebuf; 1674 atomic_inc(&tgtp->rcv_fcp_cmd_out); 1675 return; 1676 } 1677 1678 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 1679 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1680 "6159 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 1681 ctxp->oxid, rc, 1682 atomic_read(&tgtp->rcv_fcp_cmd_in), 1683 atomic_read(&tgtp->rcv_fcp_cmd_out), 1684 atomic_read(&tgtp->xmt_fcp_release)); 1685 dropit: 1686 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 1687 oxid, size, sid); 1688 if (oxid) { 1689 lpfc_nvmet_defer_release(phba, ctxp); 1690 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 1691 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 1692 return; 1693 } 1694 1695 if (ctx_buf) 1696 lpfc_nvmet_ctxbuf_post(phba, ctx_buf); 1697 1698 if (nvmebuf) 1699 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 1700 } 1701 1702 /** 1703 * lpfc_nvmet_unsol_ls_event - Process an unsolicited event from an nvme nport 1704 * @phba: pointer to lpfc hba data structure. 1705 * @pring: pointer to a SLI ring. 1706 * @nvmebuf: pointer to received nvme data structure. 1707 * 1708 * This routine is used to process an unsolicited event received from a SLI 1709 * (Service Level Interface) ring. The actual processing of the data buffer 1710 * associated with the unsolicited event is done by invoking the routine 1711 * lpfc_nvmet_unsol_ls_buffer() after properly set up the buffer from the 1712 * SLI RQ on which the unsolicited event was received. 1713 **/ 1714 void 1715 lpfc_nvmet_unsol_ls_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1716 struct lpfc_iocbq *piocb) 1717 { 1718 struct lpfc_dmabuf *d_buf; 1719 struct hbq_dmabuf *nvmebuf; 1720 1721 d_buf = piocb->context2; 1722 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 1723 1724 if (phba->nvmet_support == 0) { 1725 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 1726 return; 1727 } 1728 lpfc_nvmet_unsol_ls_buffer(phba, pring, nvmebuf); 1729 } 1730 1731 /** 1732 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 1733 * @phba: pointer to lpfc hba data structure. 1734 * @idx: relative index of MRQ vector 1735 * @nvmebuf: pointer to received nvme data structure. 1736 * 1737 * This routine is used to process an unsolicited event received from a SLI 1738 * (Service Level Interface) ring. The actual processing of the data buffer 1739 * associated with the unsolicited event is done by invoking the routine 1740 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 1741 * SLI RQ on which the unsolicited event was received. 1742 **/ 1743 void 1744 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 1745 uint32_t idx, 1746 struct rqb_dmabuf *nvmebuf, 1747 uint64_t isr_timestamp) 1748 { 1749 if (phba->nvmet_support == 0) { 1750 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 1751 return; 1752 } 1753 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, 1754 isr_timestamp); 1755 } 1756 1757 /** 1758 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 1759 * @phba: pointer to a host N_Port data structure. 1760 * @ctxp: Context info for NVME LS Request 1761 * @rspbuf: DMA buffer of NVME command. 1762 * @rspsize: size of the NVME command. 1763 * 1764 * This routine is used for allocating a lpfc-WQE data structure from 1765 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 1766 * passed into the routine for discovery state machine to issue an Extended 1767 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 1768 * and preparation routine that is used by all the discovery state machine 1769 * routines and the NVME command-specific fields will be later set up by 1770 * the individual discovery machine routines after calling this routine 1771 * allocating and preparing a generic WQE data structure. It fills in the 1772 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 1773 * payload and response payload (if expected). The reference count on the 1774 * ndlp is incremented by 1 and the reference to the ndlp is put into 1775 * context1 of the WQE data structure for this WQE to hold the ndlp 1776 * reference for the command's callback function to access later. 1777 * 1778 * Return code 1779 * Pointer to the newly allocated/prepared nvme wqe data structure 1780 * NULL - when nvme wqe data structure allocation/preparation failed 1781 **/ 1782 static struct lpfc_iocbq * 1783 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 1784 struct lpfc_nvmet_rcv_ctx *ctxp, 1785 dma_addr_t rspbuf, uint16_t rspsize) 1786 { 1787 struct lpfc_nodelist *ndlp; 1788 struct lpfc_iocbq *nvmewqe; 1789 union lpfc_wqe *wqe; 1790 1791 if (!lpfc_is_link_up(phba)) { 1792 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 1793 "6104 NVMET prep LS wqe: link err: " 1794 "NPORT x%x oxid:x%x ste %d\n", 1795 ctxp->sid, ctxp->oxid, ctxp->state); 1796 return NULL; 1797 } 1798 1799 /* Allocate buffer for command wqe */ 1800 nvmewqe = lpfc_sli_get_iocbq(phba); 1801 if (nvmewqe == NULL) { 1802 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 1803 "6105 NVMET prep LS wqe: No WQE: " 1804 "NPORT x%x oxid x%x ste %d\n", 1805 ctxp->sid, ctxp->oxid, ctxp->state); 1806 return NULL; 1807 } 1808 1809 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1810 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 1811 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 1812 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 1813 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 1814 "6106 NVMET prep LS wqe: No ndlp: " 1815 "NPORT x%x oxid x%x ste %d\n", 1816 ctxp->sid, ctxp->oxid, ctxp->state); 1817 goto nvme_wqe_free_wqeq_exit; 1818 } 1819 ctxp->wqeq = nvmewqe; 1820 1821 /* prevent preparing wqe with NULL ndlp reference */ 1822 nvmewqe->context1 = lpfc_nlp_get(ndlp); 1823 if (nvmewqe->context1 == NULL) 1824 goto nvme_wqe_free_wqeq_exit; 1825 nvmewqe->context2 = ctxp; 1826 1827 wqe = &nvmewqe->wqe; 1828 memset(wqe, 0, sizeof(union lpfc_wqe)); 1829 1830 /* Words 0 - 2 */ 1831 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1832 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 1833 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 1834 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 1835 1836 /* Word 3 */ 1837 1838 /* Word 4 */ 1839 1840 /* Word 5 */ 1841 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 1842 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 1843 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 1844 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 1845 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 1846 1847 /* Word 6 */ 1848 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 1849 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 1850 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 1851 1852 /* Word 7 */ 1853 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 1854 CMD_XMIT_SEQUENCE64_WQE); 1855 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 1856 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 1857 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 1858 1859 /* Word 8 */ 1860 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 1861 1862 /* Word 9 */ 1863 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 1864 /* Needs to be set by caller */ 1865 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 1866 1867 /* Word 10 */ 1868 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 1869 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 1870 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 1871 LPFC_WQE_LENLOC_WORD12); 1872 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 1873 1874 /* Word 11 */ 1875 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 1876 LPFC_WQE_CQ_ID_DEFAULT); 1877 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 1878 OTHER_COMMAND); 1879 1880 /* Word 12 */ 1881 wqe->xmit_sequence.xmit_len = rspsize; 1882 1883 nvmewqe->retry = 1; 1884 nvmewqe->vport = phba->pport; 1885 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 1886 nvmewqe->iocb_flag |= LPFC_IO_NVME_LS; 1887 1888 /* Xmit NVMET response to remote NPORT <did> */ 1889 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1890 "6039 Xmit NVMET LS response to remote " 1891 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 1892 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 1893 rspsize); 1894 return nvmewqe; 1895 1896 nvme_wqe_free_wqeq_exit: 1897 nvmewqe->context2 = NULL; 1898 nvmewqe->context3 = NULL; 1899 lpfc_sli_release_iocbq(phba, nvmewqe); 1900 return NULL; 1901 } 1902 1903 1904 static struct lpfc_iocbq * 1905 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 1906 struct lpfc_nvmet_rcv_ctx *ctxp) 1907 { 1908 struct nvmefc_tgt_fcp_req *rsp = &ctxp->ctx.fcp_req; 1909 struct lpfc_nvmet_tgtport *tgtp; 1910 struct sli4_sge *sgl; 1911 struct lpfc_nodelist *ndlp; 1912 struct lpfc_iocbq *nvmewqe; 1913 struct scatterlist *sgel; 1914 union lpfc_wqe128 *wqe; 1915 uint32_t *txrdy; 1916 dma_addr_t physaddr; 1917 int i, cnt; 1918 int xc = 1; 1919 1920 if (!lpfc_is_link_up(phba)) { 1921 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1922 "6107 NVMET prep FCP wqe: link err:" 1923 "NPORT x%x oxid x%x ste %d\n", 1924 ctxp->sid, ctxp->oxid, ctxp->state); 1925 return NULL; 1926 } 1927 1928 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1929 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 1930 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 1931 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 1932 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1933 "6108 NVMET prep FCP wqe: no ndlp: " 1934 "NPORT x%x oxid x%x ste %d\n", 1935 ctxp->sid, ctxp->oxid, ctxp->state); 1936 return NULL; 1937 } 1938 1939 if (rsp->sg_cnt > phba->cfg_nvme_seg_cnt) { 1940 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1941 "6109 NVMET prep FCP wqe: seg cnt err: " 1942 "NPORT x%x oxid x%x ste %d cnt %d\n", 1943 ctxp->sid, ctxp->oxid, ctxp->state, 1944 phba->cfg_nvme_seg_cnt); 1945 return NULL; 1946 } 1947 1948 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1949 nvmewqe = ctxp->wqeq; 1950 if (nvmewqe == NULL) { 1951 /* Allocate buffer for command wqe */ 1952 nvmewqe = ctxp->ctxbuf->iocbq; 1953 if (nvmewqe == NULL) { 1954 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1955 "6110 NVMET prep FCP wqe: No " 1956 "WQE: NPORT x%x oxid x%x ste %d\n", 1957 ctxp->sid, ctxp->oxid, ctxp->state); 1958 return NULL; 1959 } 1960 ctxp->wqeq = nvmewqe; 1961 xc = 0; /* create new XRI */ 1962 nvmewqe->sli4_lxritag = NO_XRI; 1963 nvmewqe->sli4_xritag = NO_XRI; 1964 } 1965 1966 /* Sanity check */ 1967 if (((ctxp->state == LPFC_NVMET_STE_RCV) && 1968 (ctxp->entry_cnt == 1)) || 1969 (ctxp->state == LPFC_NVMET_STE_DATA)) { 1970 wqe = (union lpfc_wqe128 *)&nvmewqe->wqe; 1971 } else { 1972 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1973 "6111 Wrong state NVMET FCP: %d cnt %d\n", 1974 ctxp->state, ctxp->entry_cnt); 1975 return NULL; 1976 } 1977 1978 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 1979 switch (rsp->op) { 1980 case NVMET_FCOP_READDATA: 1981 case NVMET_FCOP_READDATA_RSP: 1982 /* Words 0 - 2 : The first sg segment */ 1983 sgel = &rsp->sg[0]; 1984 physaddr = sg_dma_address(sgel); 1985 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 1986 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 1987 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 1988 wqe->fcp_tsend.bde.addrHigh = 1989 cpu_to_le32(putPaddrHigh(physaddr)); 1990 1991 /* Word 3 */ 1992 wqe->fcp_tsend.payload_offset_len = 0; 1993 1994 /* Word 4 */ 1995 wqe->fcp_tsend.relative_offset = ctxp->offset; 1996 1997 /* Word 5 */ 1998 1999 /* Word 6 */ 2000 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2001 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2002 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2003 nvmewqe->sli4_xritag); 2004 2005 /* Word 7 */ 2006 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, 1); 2007 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 2008 2009 /* Word 8 */ 2010 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2011 2012 /* Word 9 */ 2013 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2014 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2015 2016 /* Word 10 */ 2017 bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1); 2018 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 2019 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 2020 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, 2021 LPFC_WQE_LENLOC_WORD12); 2022 bf_set(wqe_ebde_cnt, &wqe->fcp_tsend.wqe_com, 0); 2023 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, xc); 2024 bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1); 2025 if (phba->cfg_nvme_oas) 2026 bf_set(wqe_oas, &wqe->fcp_tsend.wqe_com, 1); 2027 2028 /* Word 11 */ 2029 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, 2030 LPFC_WQE_CQ_ID_DEFAULT); 2031 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, 2032 FCP_COMMAND_TSEND); 2033 2034 /* Word 12 */ 2035 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2036 2037 /* Setup 2 SKIP SGEs */ 2038 sgl->addr_hi = 0; 2039 sgl->addr_lo = 0; 2040 sgl->word2 = 0; 2041 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2042 sgl->word2 = cpu_to_le32(sgl->word2); 2043 sgl->sge_len = 0; 2044 sgl++; 2045 sgl->addr_hi = 0; 2046 sgl->addr_lo = 0; 2047 sgl->word2 = 0; 2048 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2049 sgl->word2 = cpu_to_le32(sgl->word2); 2050 sgl->sge_len = 0; 2051 sgl++; 2052 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2053 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2054 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 2055 if ((ndlp->nlp_flag & NLP_SUPPRESS_RSP) && 2056 (rsp->rsplen == 12)) { 2057 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 1); 2058 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 2059 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 2060 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 2061 } else { 2062 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 2063 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2064 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2065 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2066 ((rsp->rsplen >> 2) - 1)); 2067 memcpy(&wqe->words[16], rsp->rspaddr, 2068 rsp->rsplen); 2069 } 2070 } else { 2071 atomic_inc(&tgtp->xmt_fcp_read); 2072 2073 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 2074 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 2075 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 2076 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2077 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 2078 } 2079 break; 2080 2081 case NVMET_FCOP_WRITEDATA: 2082 /* Words 0 - 2 : The first sg segment */ 2083 txrdy = dma_pool_alloc(phba->txrdy_payload_pool, 2084 GFP_KERNEL, &physaddr); 2085 if (!txrdy) { 2086 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2087 "6041 Bad txrdy buffer: oxid x%x\n", 2088 ctxp->oxid); 2089 return NULL; 2090 } 2091 ctxp->txrdy = txrdy; 2092 ctxp->txrdy_phys = physaddr; 2093 wqe->fcp_treceive.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2094 wqe->fcp_treceive.bde.tus.f.bdeSize = TXRDY_PAYLOAD_LEN; 2095 wqe->fcp_treceive.bde.addrLow = 2096 cpu_to_le32(putPaddrLow(physaddr)); 2097 wqe->fcp_treceive.bde.addrHigh = 2098 cpu_to_le32(putPaddrHigh(physaddr)); 2099 2100 /* Word 3 */ 2101 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 2102 2103 /* Word 4 */ 2104 wqe->fcp_treceive.relative_offset = ctxp->offset; 2105 2106 /* Word 5 */ 2107 2108 /* Word 6 */ 2109 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2110 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2111 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2112 nvmewqe->sli4_xritag); 2113 2114 /* Word 7 */ 2115 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, 1); 2116 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 2117 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, 2118 CMD_FCP_TRECEIVE64_WQE); 2119 2120 /* Word 8 */ 2121 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2122 2123 /* Word 9 */ 2124 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2125 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2126 2127 /* Word 10 */ 2128 bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1); 2129 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 2130 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 2131 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, 2132 LPFC_WQE_LENLOC_WORD12); 2133 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, xc); 2134 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 2135 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 2136 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 2137 bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1); 2138 if (phba->cfg_nvme_oas) 2139 bf_set(wqe_oas, &wqe->fcp_treceive.wqe_com, 1); 2140 2141 /* Word 11 */ 2142 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, 2143 LPFC_WQE_CQ_ID_DEFAULT); 2144 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, 2145 FCP_COMMAND_TRECEIVE); 2146 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 2147 2148 /* Word 12 */ 2149 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2150 2151 /* Setup 1 TXRDY and 1 SKIP SGE */ 2152 txrdy[0] = 0; 2153 txrdy[1] = cpu_to_be32(rsp->transfer_length); 2154 txrdy[2] = 0; 2155 2156 sgl->addr_hi = putPaddrHigh(physaddr); 2157 sgl->addr_lo = putPaddrLow(physaddr); 2158 sgl->word2 = 0; 2159 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 2160 sgl->word2 = cpu_to_le32(sgl->word2); 2161 sgl->sge_len = cpu_to_le32(TXRDY_PAYLOAD_LEN); 2162 sgl++; 2163 sgl->addr_hi = 0; 2164 sgl->addr_lo = 0; 2165 sgl->word2 = 0; 2166 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2167 sgl->word2 = cpu_to_le32(sgl->word2); 2168 sgl->sge_len = 0; 2169 sgl++; 2170 atomic_inc(&tgtp->xmt_fcp_write); 2171 break; 2172 2173 case NVMET_FCOP_RSP: 2174 /* Words 0 - 2 */ 2175 physaddr = rsp->rspdma; 2176 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2177 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2178 wqe->fcp_trsp.bde.addrLow = 2179 cpu_to_le32(putPaddrLow(physaddr)); 2180 wqe->fcp_trsp.bde.addrHigh = 2181 cpu_to_le32(putPaddrHigh(physaddr)); 2182 2183 /* Word 3 */ 2184 wqe->fcp_trsp.response_len = rsp->rsplen; 2185 2186 /* Word 4 */ 2187 wqe->fcp_trsp.rsvd_4_5[0] = 0; 2188 2189 2190 /* Word 5 */ 2191 2192 /* Word 6 */ 2193 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2194 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2195 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2196 nvmewqe->sli4_xritag); 2197 2198 /* Word 7 */ 2199 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, 0); 2200 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); 2201 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 2202 2203 /* Word 8 */ 2204 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2205 2206 /* Word 9 */ 2207 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2208 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2209 2210 /* Word 10 */ 2211 bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1); 2212 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 0); 2213 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_WRITE); 2214 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, 2215 LPFC_WQE_LENLOC_WORD3); 2216 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, xc); 2217 bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1); 2218 if (phba->cfg_nvme_oas) 2219 bf_set(wqe_oas, &wqe->fcp_trsp.wqe_com, 1); 2220 2221 /* Word 11 */ 2222 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, 2223 LPFC_WQE_CQ_ID_DEFAULT); 2224 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, 2225 FCP_COMMAND_TRSP); 2226 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 2227 2228 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2229 /* Good response - all zero's on wire */ 2230 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 2231 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 2232 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 2233 } else { 2234 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2235 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2236 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2237 ((rsp->rsplen >> 2) - 1)); 2238 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2239 } 2240 2241 /* Use rspbuf, NOT sg list */ 2242 rsp->sg_cnt = 0; 2243 sgl->word2 = 0; 2244 atomic_inc(&tgtp->xmt_fcp_rsp); 2245 break; 2246 2247 default: 2248 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2249 "6064 Unknown Rsp Op %d\n", 2250 rsp->op); 2251 return NULL; 2252 } 2253 2254 nvmewqe->retry = 1; 2255 nvmewqe->vport = phba->pport; 2256 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2257 nvmewqe->context1 = ndlp; 2258 2259 for (i = 0; i < rsp->sg_cnt; i++) { 2260 sgel = &rsp->sg[i]; 2261 physaddr = sg_dma_address(sgel); 2262 cnt = sg_dma_len(sgel); 2263 sgl->addr_hi = putPaddrHigh(physaddr); 2264 sgl->addr_lo = putPaddrLow(physaddr); 2265 sgl->word2 = 0; 2266 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 2267 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 2268 if ((i+1) == rsp->sg_cnt) 2269 bf_set(lpfc_sli4_sge_last, sgl, 1); 2270 sgl->word2 = cpu_to_le32(sgl->word2); 2271 sgl->sge_len = cpu_to_le32(cnt); 2272 sgl++; 2273 ctxp->offset += cnt; 2274 } 2275 ctxp->state = LPFC_NVMET_STE_DATA; 2276 ctxp->entry_cnt++; 2277 return nvmewqe; 2278 } 2279 2280 /** 2281 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 2282 * @phba: Pointer to HBA context object. 2283 * @cmdwqe: Pointer to driver command WQE object. 2284 * @wcqe: Pointer to driver response CQE object. 2285 * 2286 * The function is called from SLI ring event handler with no 2287 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 2288 * The function frees memory resources used for the NVME commands. 2289 **/ 2290 static void 2291 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 2292 struct lpfc_wcqe_complete *wcqe) 2293 { 2294 struct lpfc_nvmet_rcv_ctx *ctxp; 2295 struct lpfc_nvmet_tgtport *tgtp; 2296 uint32_t status, result; 2297 unsigned long flags; 2298 bool released = false; 2299 2300 ctxp = cmdwqe->context2; 2301 status = bf_get(lpfc_wcqe_c_status, wcqe); 2302 result = wcqe->parameter; 2303 2304 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2305 if (ctxp->flag & LPFC_NVMET_ABORT_OP) 2306 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 2307 2308 ctxp->state = LPFC_NVMET_STE_DONE; 2309 2310 /* Check if we already received a free context call 2311 * and we have completed processing an abort situation. 2312 */ 2313 spin_lock_irqsave(&ctxp->ctxlock, flags); 2314 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) && 2315 !(ctxp->flag & LPFC_NVMET_XBUSY)) { 2316 list_del(&ctxp->list); 2317 released = true; 2318 } 2319 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2320 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 2321 atomic_inc(&tgtp->xmt_abort_rsp); 2322 2323 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2324 "6165 ABORT cmpl: xri x%x flg x%x (%d) " 2325 "WCQE: %08x %08x %08x %08x\n", 2326 ctxp->oxid, ctxp->flag, released, 2327 wcqe->word0, wcqe->total_data_placed, 2328 result, wcqe->word3); 2329 2330 cmdwqe->context2 = NULL; 2331 cmdwqe->context3 = NULL; 2332 /* 2333 * if transport has released ctx, then can reuse it. Otherwise, 2334 * will be recycled by transport release call. 2335 */ 2336 if (released) 2337 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 2338 2339 /* This is the iocbq for the abort, not the command */ 2340 lpfc_sli_release_iocbq(phba, cmdwqe); 2341 2342 /* Since iaab/iaar are NOT set, there is no work left. 2343 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted 2344 * should have been called already. 2345 */ 2346 } 2347 2348 /** 2349 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 2350 * @phba: Pointer to HBA context object. 2351 * @cmdwqe: Pointer to driver command WQE object. 2352 * @wcqe: Pointer to driver response CQE object. 2353 * 2354 * The function is called from SLI ring event handler with no 2355 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 2356 * The function frees memory resources used for the NVME commands. 2357 **/ 2358 static void 2359 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 2360 struct lpfc_wcqe_complete *wcqe) 2361 { 2362 struct lpfc_nvmet_rcv_ctx *ctxp; 2363 struct lpfc_nvmet_tgtport *tgtp; 2364 unsigned long flags; 2365 uint32_t status, result; 2366 bool released = false; 2367 2368 ctxp = cmdwqe->context2; 2369 status = bf_get(lpfc_wcqe_c_status, wcqe); 2370 result = wcqe->parameter; 2371 2372 if (!ctxp) { 2373 /* if context is clear, related io alrady complete */ 2374 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2375 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 2376 wcqe->word0, wcqe->total_data_placed, 2377 result, wcqe->word3); 2378 return; 2379 } 2380 2381 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2382 if (ctxp->flag & LPFC_NVMET_ABORT_OP) 2383 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 2384 2385 /* Sanity check */ 2386 if (ctxp->state != LPFC_NVMET_STE_ABORT) { 2387 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2388 "6112 ABTS Wrong state:%d oxid x%x\n", 2389 ctxp->state, ctxp->oxid); 2390 } 2391 2392 /* Check if we already received a free context call 2393 * and we have completed processing an abort situation. 2394 */ 2395 ctxp->state = LPFC_NVMET_STE_DONE; 2396 spin_lock_irqsave(&ctxp->ctxlock, flags); 2397 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) && 2398 !(ctxp->flag & LPFC_NVMET_XBUSY)) { 2399 list_del(&ctxp->list); 2400 released = true; 2401 } 2402 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2403 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 2404 atomic_inc(&tgtp->xmt_abort_rsp); 2405 2406 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2407 "6316 ABTS cmpl xri x%x flg x%x (%x) " 2408 "WCQE: %08x %08x %08x %08x\n", 2409 ctxp->oxid, ctxp->flag, released, 2410 wcqe->word0, wcqe->total_data_placed, 2411 result, wcqe->word3); 2412 2413 cmdwqe->context2 = NULL; 2414 cmdwqe->context3 = NULL; 2415 /* 2416 * if transport has released ctx, then can reuse it. Otherwise, 2417 * will be recycled by transport release call. 2418 */ 2419 if (released) 2420 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 2421 2422 /* Since iaab/iaar are NOT set, there is no work left. 2423 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted 2424 * should have been called already. 2425 */ 2426 } 2427 2428 /** 2429 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 2430 * @phba: Pointer to HBA context object. 2431 * @cmdwqe: Pointer to driver command WQE object. 2432 * @wcqe: Pointer to driver response CQE object. 2433 * 2434 * The function is called from SLI ring event handler with no 2435 * lock held. This function is the completion handler for NVME ABTS for LS cmds 2436 * The function frees memory resources used for the NVME commands. 2437 **/ 2438 static void 2439 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 2440 struct lpfc_wcqe_complete *wcqe) 2441 { 2442 struct lpfc_nvmet_rcv_ctx *ctxp; 2443 struct lpfc_nvmet_tgtport *tgtp; 2444 uint32_t status, result; 2445 2446 ctxp = cmdwqe->context2; 2447 status = bf_get(lpfc_wcqe_c_status, wcqe); 2448 result = wcqe->parameter; 2449 2450 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2451 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 2452 2453 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2454 "6083 Abort cmpl: ctx %p WCQE:%08x %08x %08x %08x\n", 2455 ctxp, wcqe->word0, wcqe->total_data_placed, 2456 result, wcqe->word3); 2457 2458 if (!ctxp) { 2459 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2460 "6415 NVMET LS Abort No ctx: WCQE: " 2461 "%08x %08x %08x %08x\n", 2462 wcqe->word0, wcqe->total_data_placed, 2463 result, wcqe->word3); 2464 2465 lpfc_sli_release_iocbq(phba, cmdwqe); 2466 return; 2467 } 2468 2469 if (ctxp->state != LPFC_NVMET_STE_LS_ABORT) { 2470 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2471 "6416 NVMET LS abort cmpl state mismatch: " 2472 "oxid x%x: %d %d\n", 2473 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 2474 } 2475 2476 cmdwqe->context2 = NULL; 2477 cmdwqe->context3 = NULL; 2478 lpfc_sli_release_iocbq(phba, cmdwqe); 2479 kfree(ctxp); 2480 } 2481 2482 static int 2483 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 2484 struct lpfc_nvmet_rcv_ctx *ctxp, 2485 uint32_t sid, uint16_t xri) 2486 { 2487 struct lpfc_nvmet_tgtport *tgtp; 2488 struct lpfc_iocbq *abts_wqeq; 2489 union lpfc_wqe *wqe_abts; 2490 struct lpfc_nodelist *ndlp; 2491 2492 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2493 "6067 ABTS: sid %x xri x%x/x%x\n", 2494 sid, xri, ctxp->wqeq->sli4_xritag); 2495 2496 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2497 2498 ndlp = lpfc_findnode_did(phba->pport, sid); 2499 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2500 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2501 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2502 atomic_inc(&tgtp->xmt_abort_rsp_error); 2503 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2504 "6134 Drop ABTS - wrong NDLP state x%x.\n", 2505 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 2506 2507 /* No failure to an ABTS request. */ 2508 return 0; 2509 } 2510 2511 abts_wqeq = ctxp->wqeq; 2512 wqe_abts = &abts_wqeq->wqe; 2513 2514 /* 2515 * Since we zero the whole WQE, we need to ensure we set the WQE fields 2516 * that were initialized in lpfc_sli4_nvmet_alloc. 2517 */ 2518 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 2519 2520 /* Word 5 */ 2521 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 2522 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 2523 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 2524 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 2525 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 2526 2527 /* Word 6 */ 2528 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 2529 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2530 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 2531 abts_wqeq->sli4_xritag); 2532 2533 /* Word 7 */ 2534 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 2535 CMD_XMIT_SEQUENCE64_WQE); 2536 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 2537 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 2538 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 2539 2540 /* Word 8 */ 2541 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 2542 2543 /* Word 9 */ 2544 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 2545 /* Needs to be set by caller */ 2546 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 2547 2548 /* Word 10 */ 2549 bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1); 2550 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2551 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 2552 LPFC_WQE_LENLOC_WORD12); 2553 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 2554 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 2555 2556 /* Word 11 */ 2557 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 2558 LPFC_WQE_CQ_ID_DEFAULT); 2559 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 2560 OTHER_COMMAND); 2561 2562 abts_wqeq->vport = phba->pport; 2563 abts_wqeq->context1 = ndlp; 2564 abts_wqeq->context2 = ctxp; 2565 abts_wqeq->context3 = NULL; 2566 abts_wqeq->rsvd2 = 0; 2567 /* hba_wqidx should already be setup from command we are aborting */ 2568 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 2569 abts_wqeq->iocb.ulpLe = 1; 2570 2571 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2572 "6069 Issue ABTS to xri x%x reqtag x%x\n", 2573 xri, abts_wqeq->iotag); 2574 return 1; 2575 } 2576 2577 static int 2578 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 2579 struct lpfc_nvmet_rcv_ctx *ctxp, 2580 uint32_t sid, uint16_t xri) 2581 { 2582 struct lpfc_nvmet_tgtport *tgtp; 2583 struct lpfc_iocbq *abts_wqeq; 2584 union lpfc_wqe *abts_wqe; 2585 struct lpfc_nodelist *ndlp; 2586 unsigned long flags; 2587 int rc; 2588 2589 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2590 if (!ctxp->wqeq) { 2591 ctxp->wqeq = ctxp->ctxbuf->iocbq; 2592 ctxp->wqeq->hba_wqidx = 0; 2593 } 2594 2595 ndlp = lpfc_findnode_did(phba->pport, sid); 2596 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2597 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2598 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2599 atomic_inc(&tgtp->xmt_abort_rsp_error); 2600 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2601 "6160 Drop ABORT - wrong NDLP state x%x.\n", 2602 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 2603 2604 /* No failure to an ABTS request. */ 2605 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2606 return 0; 2607 } 2608 2609 /* Issue ABTS for this WQE based on iotag */ 2610 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 2611 if (!ctxp->abort_wqeq) { 2612 atomic_inc(&tgtp->xmt_abort_rsp_error); 2613 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2614 "6161 ABORT failed: No wqeqs: " 2615 "xri: x%x\n", ctxp->oxid); 2616 /* No failure to an ABTS request. */ 2617 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2618 return 0; 2619 } 2620 abts_wqeq = ctxp->abort_wqeq; 2621 abts_wqe = &abts_wqeq->wqe; 2622 ctxp->state = LPFC_NVMET_STE_ABORT; 2623 2624 /* Announce entry to new IO submit field. */ 2625 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2626 "6162 ABORT Request to rport DID x%06x " 2627 "for xri x%x x%x\n", 2628 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 2629 2630 /* If the hba is getting reset, this flag is set. It is 2631 * cleared when the reset is complete and rings reestablished. 2632 */ 2633 spin_lock_irqsave(&phba->hbalock, flags); 2634 /* driver queued commands are in process of being flushed */ 2635 if (phba->hba_flag & HBA_NVME_IOQ_FLUSH) { 2636 spin_unlock_irqrestore(&phba->hbalock, flags); 2637 atomic_inc(&tgtp->xmt_abort_rsp_error); 2638 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 2639 "6163 Driver in reset cleanup - flushing " 2640 "NVME Req now. hba_flag x%x oxid x%x\n", 2641 phba->hba_flag, ctxp->oxid); 2642 lpfc_sli_release_iocbq(phba, abts_wqeq); 2643 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2644 return 0; 2645 } 2646 2647 /* Outstanding abort is in progress */ 2648 if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) { 2649 spin_unlock_irqrestore(&phba->hbalock, flags); 2650 atomic_inc(&tgtp->xmt_abort_rsp_error); 2651 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 2652 "6164 Outstanding NVME I/O Abort Request " 2653 "still pending on oxid x%x\n", 2654 ctxp->oxid); 2655 lpfc_sli_release_iocbq(phba, abts_wqeq); 2656 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2657 return 0; 2658 } 2659 2660 /* Ready - mark outstanding as aborted by driver. */ 2661 abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED; 2662 2663 /* WQEs are reused. Clear stale data and set key fields to 2664 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag. 2665 */ 2666 memset(abts_wqe, 0, sizeof(union lpfc_wqe)); 2667 2668 /* word 3 */ 2669 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 2670 2671 /* word 7 */ 2672 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 2673 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 2674 2675 /* word 8 - tell the FW to abort the IO associated with this 2676 * outstanding exchange ID. 2677 */ 2678 abts_wqe->abort_cmd.wqe_com.abort_tag = ctxp->wqeq->sli4_xritag; 2679 2680 /* word 9 - this is the iotag for the abts_wqe completion. */ 2681 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 2682 abts_wqeq->iotag); 2683 2684 /* word 10 */ 2685 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 2686 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 2687 2688 /* word 11 */ 2689 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 2690 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 2691 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 2692 2693 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 2694 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 2695 abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 2696 abts_wqeq->iocb_cmpl = 0; 2697 abts_wqeq->iocb_flag |= LPFC_IO_NVME; 2698 abts_wqeq->context2 = ctxp; 2699 abts_wqeq->vport = phba->pport; 2700 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq); 2701 spin_unlock_irqrestore(&phba->hbalock, flags); 2702 if (rc == WQE_SUCCESS) { 2703 atomic_inc(&tgtp->xmt_abort_sol); 2704 return 0; 2705 } 2706 2707 atomic_inc(&tgtp->xmt_abort_rsp_error); 2708 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2709 lpfc_sli_release_iocbq(phba, abts_wqeq); 2710 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2711 "6166 Failed ABORT issue_wqe with status x%x " 2712 "for oxid x%x.\n", 2713 rc, ctxp->oxid); 2714 return 1; 2715 } 2716 2717 2718 static int 2719 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 2720 struct lpfc_nvmet_rcv_ctx *ctxp, 2721 uint32_t sid, uint16_t xri) 2722 { 2723 struct lpfc_nvmet_tgtport *tgtp; 2724 struct lpfc_iocbq *abts_wqeq; 2725 unsigned long flags; 2726 int rc; 2727 2728 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2729 if (!ctxp->wqeq) { 2730 ctxp->wqeq = ctxp->ctxbuf->iocbq; 2731 ctxp->wqeq->hba_wqidx = 0; 2732 } 2733 2734 if (ctxp->state == LPFC_NVMET_STE_FREE) { 2735 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2736 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 2737 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 2738 rc = WQE_BUSY; 2739 goto aerr; 2740 } 2741 ctxp->state = LPFC_NVMET_STE_ABORT; 2742 ctxp->entry_cnt++; 2743 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 2744 if (rc == 0) 2745 goto aerr; 2746 2747 spin_lock_irqsave(&phba->hbalock, flags); 2748 abts_wqeq = ctxp->wqeq; 2749 abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 2750 abts_wqeq->iocb_cmpl = NULL; 2751 abts_wqeq->iocb_flag |= LPFC_IO_NVMET; 2752 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq); 2753 spin_unlock_irqrestore(&phba->hbalock, flags); 2754 if (rc == WQE_SUCCESS) { 2755 return 0; 2756 } 2757 2758 aerr: 2759 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2760 atomic_inc(&tgtp->xmt_abort_rsp_error); 2761 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2762 "6135 Failed to Issue ABTS for oxid x%x. Status x%x\n", 2763 ctxp->oxid, rc); 2764 return 1; 2765 } 2766 2767 static int 2768 lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *phba, 2769 struct lpfc_nvmet_rcv_ctx *ctxp, 2770 uint32_t sid, uint16_t xri) 2771 { 2772 struct lpfc_nvmet_tgtport *tgtp; 2773 struct lpfc_iocbq *abts_wqeq; 2774 union lpfc_wqe *wqe_abts; 2775 unsigned long flags; 2776 int rc; 2777 2778 if ((ctxp->state == LPFC_NVMET_STE_LS_RCV && ctxp->entry_cnt == 1) || 2779 (ctxp->state == LPFC_NVMET_STE_LS_RSP && ctxp->entry_cnt == 2)) { 2780 ctxp->state = LPFC_NVMET_STE_LS_ABORT; 2781 ctxp->entry_cnt++; 2782 } else { 2783 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2784 "6418 NVMET LS abort state mismatch " 2785 "IO x%x: %d %d\n", 2786 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 2787 ctxp->state = LPFC_NVMET_STE_LS_ABORT; 2788 } 2789 2790 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2791 if (!ctxp->wqeq) { 2792 /* Issue ABTS for this WQE based on iotag */ 2793 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 2794 if (!ctxp->wqeq) { 2795 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2796 "6068 Abort failed: No wqeqs: " 2797 "xri: x%x\n", xri); 2798 /* No failure to an ABTS request. */ 2799 kfree(ctxp); 2800 return 0; 2801 } 2802 } 2803 abts_wqeq = ctxp->wqeq; 2804 wqe_abts = &abts_wqeq->wqe; 2805 2806 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 2807 rc = WQE_BUSY; 2808 goto out; 2809 } 2810 2811 spin_lock_irqsave(&phba->hbalock, flags); 2812 abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 2813 abts_wqeq->iocb_cmpl = 0; 2814 abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS; 2815 rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, abts_wqeq); 2816 spin_unlock_irqrestore(&phba->hbalock, flags); 2817 if (rc == WQE_SUCCESS) { 2818 atomic_inc(&tgtp->xmt_abort_unsol); 2819 return 0; 2820 } 2821 out: 2822 atomic_inc(&tgtp->xmt_abort_rsp_error); 2823 abts_wqeq->context2 = NULL; 2824 abts_wqeq->context3 = NULL; 2825 lpfc_sli_release_iocbq(phba, abts_wqeq); 2826 kfree(ctxp); 2827 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2828 "6056 Failed to Issue ABTS. Status x%x\n", rc); 2829 return 0; 2830 } 2831