1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channsel Host Bus Adapters. * 4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <asm/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include <linux/nvme.h> 40 #include <linux/nvme-fc-driver.h> 41 #include <linux/nvme-fc.h> 42 43 #include "lpfc_version.h" 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_nvmet.h" 54 #include "lpfc_logmsg.h" 55 #include "lpfc_crtn.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_debugfs.h" 58 59 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 60 struct lpfc_nvmet_rcv_ctx *, 61 dma_addr_t rspbuf, 62 uint16_t rspsize); 63 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 64 struct lpfc_nvmet_rcv_ctx *); 65 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 66 struct lpfc_nvmet_rcv_ctx *, 67 uint32_t, uint16_t); 68 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 69 struct lpfc_nvmet_rcv_ctx *, 70 uint32_t, uint16_t); 71 static int lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *, 72 struct lpfc_nvmet_rcv_ctx *, 73 uint32_t, uint16_t); 74 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, 75 struct lpfc_nvmet_rcv_ctx *); 76 77 static union lpfc_wqe128 lpfc_tsend_cmd_template; 78 static union lpfc_wqe128 lpfc_treceive_cmd_template; 79 static union lpfc_wqe128 lpfc_trsp_cmd_template; 80 81 /* Setup WQE templates for NVME IOs */ 82 void 83 lpfc_nvmet_cmd_template(void) 84 { 85 union lpfc_wqe128 *wqe; 86 87 /* TSEND template */ 88 wqe = &lpfc_tsend_cmd_template; 89 memset(wqe, 0, sizeof(union lpfc_wqe128)); 90 91 /* Word 0, 1, 2 - BDE is variable */ 92 93 /* Word 3 - payload_offset_len is zero */ 94 95 /* Word 4 - relative_offset is variable */ 96 97 /* Word 5 - is zero */ 98 99 /* Word 6 - ctxt_tag, xri_tag is variable */ 100 101 /* Word 7 - wqe_ar is variable */ 102 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 103 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); 104 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); 105 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); 106 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 107 108 /* Word 8 - abort_tag is variable */ 109 110 /* Word 9 - reqtag, rcvoxid is variable */ 111 112 /* Word 10 - wqes, xc is variable */ 113 bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1); 114 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 115 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 116 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 117 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 118 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); 119 120 /* Word 11 - sup, irsp, irsplen is variable */ 121 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); 122 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 123 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 124 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 125 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 126 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); 127 128 /* Word 12 - fcp_data_len is variable */ 129 130 /* Word 13, 14, 15 - PBDE is zero */ 131 132 /* TRECEIVE template */ 133 wqe = &lpfc_treceive_cmd_template; 134 memset(wqe, 0, sizeof(union lpfc_wqe128)); 135 136 /* Word 0, 1, 2 - BDE is variable */ 137 138 /* Word 3 */ 139 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 140 141 /* Word 4 - relative_offset is variable */ 142 143 /* Word 5 - is zero */ 144 145 /* Word 6 - ctxt_tag, xri_tag is variable */ 146 147 /* Word 7 */ 148 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); 149 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); 150 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); 151 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); 152 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 153 154 /* Word 8 - abort_tag is variable */ 155 156 /* Word 9 - reqtag, rcvoxid is variable */ 157 158 /* Word 10 - xc is variable */ 159 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 160 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 161 bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1); 162 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 163 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); 164 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 165 166 /* Word 11 - pbde is variable */ 167 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); 168 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 169 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); 170 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 171 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 172 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); 173 174 /* Word 12 - fcp_data_len is variable */ 175 176 /* Word 13, 14, 15 - PBDE is variable */ 177 178 /* TRSP template */ 179 wqe = &lpfc_trsp_cmd_template; 180 memset(wqe, 0, sizeof(union lpfc_wqe128)); 181 182 /* Word 0, 1, 2 - BDE is variable */ 183 184 /* Word 3 - response_len is variable */ 185 186 /* Word 4, 5 - is zero */ 187 188 /* Word 6 - ctxt_tag, xri_tag is variable */ 189 190 /* Word 7 */ 191 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 192 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); 193 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); 194 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); 195 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ 196 197 /* Word 8 - abort_tag is variable */ 198 199 /* Word 9 - reqtag is variable */ 200 201 /* Word 10 wqes, xc is variable */ 202 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); 203 bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1); 204 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 205 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); 206 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); 207 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); 208 209 /* Word 11 irsp, irsplen is variable */ 210 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); 211 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 212 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); 213 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 214 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 215 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); 216 217 /* Word 12, 13, 14, 15 - is zero */ 218 } 219 220 void 221 lpfc_nvmet_defer_release(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp) 222 { 223 unsigned long iflag; 224 225 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 226 "6313 NVMET Defer ctx release xri x%x flg x%x\n", 227 ctxp->oxid, ctxp->flag); 228 229 spin_lock_irqsave(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag); 230 if (ctxp->flag & LPFC_NVMET_CTX_RLS) { 231 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, 232 iflag); 233 return; 234 } 235 ctxp->flag |= LPFC_NVMET_CTX_RLS; 236 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 237 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag); 238 } 239 240 /** 241 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 242 * @phba: Pointer to HBA context object. 243 * @cmdwqe: Pointer to driver command WQE object. 244 * @wcqe: Pointer to driver response CQE object. 245 * 246 * The function is called from SLI ring event handler with no 247 * lock held. This function is the completion handler for NVME LS commands 248 * The function frees memory resources used for the NVME commands. 249 **/ 250 static void 251 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 252 struct lpfc_wcqe_complete *wcqe) 253 { 254 struct lpfc_nvmet_tgtport *tgtp; 255 struct nvmefc_tgt_ls_req *rsp; 256 struct lpfc_nvmet_rcv_ctx *ctxp; 257 uint32_t status, result; 258 259 status = bf_get(lpfc_wcqe_c_status, wcqe); 260 result = wcqe->parameter; 261 ctxp = cmdwqe->context2; 262 263 if (ctxp->state != LPFC_NVMET_STE_LS_RSP || ctxp->entry_cnt != 2) { 264 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 265 "6410 NVMET LS cmpl state mismatch IO x%x: " 266 "%d %d\n", 267 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 268 } 269 270 if (!phba->targetport) 271 goto out; 272 273 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 274 275 if (tgtp) { 276 if (status) { 277 atomic_inc(&tgtp->xmt_ls_rsp_error); 278 if (result == IOERR_ABORT_REQUESTED) 279 atomic_inc(&tgtp->xmt_ls_rsp_aborted); 280 if (bf_get(lpfc_wcqe_c_xb, wcqe)) 281 atomic_inc(&tgtp->xmt_ls_rsp_xb_set); 282 } else { 283 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 284 } 285 } 286 287 out: 288 rsp = &ctxp->ctx.ls_req; 289 290 lpfc_nvmeio_data(phba, "NVMET LS CMPL: xri x%x stat x%x result x%x\n", 291 ctxp->oxid, status, result); 292 293 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 294 "6038 NVMET LS rsp cmpl: %d %d oxid x%x\n", 295 status, result, ctxp->oxid); 296 297 lpfc_nlp_put(cmdwqe->context1); 298 cmdwqe->context2 = NULL; 299 cmdwqe->context3 = NULL; 300 lpfc_sli_release_iocbq(phba, cmdwqe); 301 rsp->done(rsp); 302 kfree(ctxp); 303 } 304 305 /** 306 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 307 * @phba: HBA buffer is associated with 308 * @ctxp: context to clean up 309 * @mp: Buffer to free 310 * 311 * Description: Frees the given DMA buffer in the appropriate way given by 312 * reposting it to its associated RQ so it can be reused. 313 * 314 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 315 * 316 * Returns: None 317 **/ 318 void 319 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 320 { 321 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 322 struct lpfc_nvmet_rcv_ctx *ctxp = ctx_buf->context; 323 struct lpfc_nvmet_tgtport *tgtp; 324 struct fc_frame_header *fc_hdr; 325 struct rqb_dmabuf *nvmebuf; 326 struct lpfc_nvmet_ctx_info *infop; 327 uint32_t *payload; 328 uint32_t size, oxid, sid, rc; 329 int cpu; 330 unsigned long iflag; 331 332 if (ctxp->txrdy) { 333 dma_pool_free(phba->txrdy_payload_pool, ctxp->txrdy, 334 ctxp->txrdy_phys); 335 ctxp->txrdy = NULL; 336 ctxp->txrdy_phys = 0; 337 } 338 339 if (ctxp->state == LPFC_NVMET_STE_FREE) { 340 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 341 "6411 NVMET free, already free IO x%x: %d %d\n", 342 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 343 } 344 ctxp->state = LPFC_NVMET_STE_FREE; 345 346 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 347 if (phba->sli4_hba.nvmet_io_wait_cnt) { 348 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 349 nvmebuf, struct rqb_dmabuf, 350 hbuf.list); 351 phba->sli4_hba.nvmet_io_wait_cnt--; 352 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 353 iflag); 354 355 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 356 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 357 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 358 payload = (uint32_t *)(nvmebuf->dbuf.virt); 359 size = nvmebuf->bytes_recv; 360 sid = sli4_sid_from_fc_hdr(fc_hdr); 361 362 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context; 363 ctxp->wqeq = NULL; 364 ctxp->txrdy = NULL; 365 ctxp->offset = 0; 366 ctxp->phba = phba; 367 ctxp->size = size; 368 ctxp->oxid = oxid; 369 ctxp->sid = sid; 370 ctxp->state = LPFC_NVMET_STE_RCV; 371 ctxp->entry_cnt = 1; 372 ctxp->flag = 0; 373 ctxp->ctxbuf = ctx_buf; 374 ctxp->rqb_buffer = (void *)nvmebuf; 375 spin_lock_init(&ctxp->ctxlock); 376 377 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 378 if (ctxp->ts_cmd_nvme) { 379 ctxp->ts_cmd_nvme = ktime_get_ns(); 380 ctxp->ts_nvme_data = 0; 381 ctxp->ts_data_wqput = 0; 382 ctxp->ts_isr_data = 0; 383 ctxp->ts_data_nvme = 0; 384 ctxp->ts_nvme_status = 0; 385 ctxp->ts_status_wqput = 0; 386 ctxp->ts_isr_status = 0; 387 ctxp->ts_status_nvme = 0; 388 } 389 #endif 390 atomic_inc(&tgtp->rcv_fcp_cmd_in); 391 /* 392 * The calling sequence should be: 393 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 394 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 395 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 396 * the NVME command / FC header is stored. 397 * A buffer has already been reposted for this IO, so just free 398 * the nvmebuf. 399 */ 400 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req, 401 payload, size); 402 403 /* Process FCP command */ 404 if (rc == 0) { 405 ctxp->rqb_buffer = NULL; 406 atomic_inc(&tgtp->rcv_fcp_cmd_out); 407 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 408 return; 409 } 410 411 /* Processing of FCP command is deferred */ 412 if (rc == -EOVERFLOW) { 413 lpfc_nvmeio_data(phba, 414 "NVMET RCV BUSY: xri x%x sz %d " 415 "from %06x\n", 416 oxid, size, sid); 417 atomic_inc(&tgtp->rcv_fcp_cmd_out); 418 return; 419 } 420 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 421 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 422 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 423 ctxp->oxid, rc, 424 atomic_read(&tgtp->rcv_fcp_cmd_in), 425 atomic_read(&tgtp->rcv_fcp_cmd_out), 426 atomic_read(&tgtp->xmt_fcp_release)); 427 428 lpfc_nvmet_defer_release(phba, ctxp); 429 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 430 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 431 return; 432 } 433 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 434 435 /* 436 * Use the CPU context list, from the MRQ the IO was received on 437 * (ctxp->idx), to save context structure. 438 */ 439 cpu = smp_processor_id(); 440 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 441 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 442 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 443 infop->nvmet_ctx_list_cnt++; 444 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 445 #endif 446 } 447 448 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 449 static void 450 lpfc_nvmet_ktime(struct lpfc_hba *phba, 451 struct lpfc_nvmet_rcv_ctx *ctxp) 452 { 453 uint64_t seg1, seg2, seg3, seg4, seg5; 454 uint64_t seg6, seg7, seg8, seg9, seg10; 455 uint64_t segsum; 456 457 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 458 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 459 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 460 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 461 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 462 return; 463 464 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) 465 return; 466 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 467 return; 468 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 469 return; 470 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 471 return; 472 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 473 return; 474 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 475 return; 476 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 477 return; 478 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 479 return; 480 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 481 return; 482 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 483 return; 484 /* 485 * Segment 1 - Time from FCP command received by MSI-X ISR 486 * to FCP command is passed to NVME Layer. 487 * Segment 2 - Time from FCP command payload handed 488 * off to NVME Layer to Driver receives a Command op 489 * from NVME Layer. 490 * Segment 3 - Time from Driver receives a Command op 491 * from NVME Layer to Command is put on WQ. 492 * Segment 4 - Time from Driver WQ put is done 493 * to MSI-X ISR for Command cmpl. 494 * Segment 5 - Time from MSI-X ISR for Command cmpl to 495 * Command cmpl is passed to NVME Layer. 496 * Segment 6 - Time from Command cmpl is passed to NVME 497 * Layer to Driver receives a RSP op from NVME Layer. 498 * Segment 7 - Time from Driver receives a RSP op from 499 * NVME Layer to WQ put is done on TRSP FCP Status. 500 * Segment 8 - Time from Driver WQ put is done on TRSP 501 * FCP Status to MSI-X ISR for TRSP cmpl. 502 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 503 * TRSP cmpl is passed to NVME Layer. 504 * Segment 10 - Time from FCP command received by 505 * MSI-X ISR to command is completed on wire. 506 * (Segments 1 thru 8) for READDATA / WRITEDATA 507 * (Segments 1 thru 4) for READDATA_RSP 508 */ 509 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 510 segsum = seg1; 511 512 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; 513 if (segsum > seg2) 514 return; 515 seg2 -= segsum; 516 segsum += seg2; 517 518 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; 519 if (segsum > seg3) 520 return; 521 seg3 -= segsum; 522 segsum += seg3; 523 524 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; 525 if (segsum > seg4) 526 return; 527 seg4 -= segsum; 528 segsum += seg4; 529 530 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; 531 if (segsum > seg5) 532 return; 533 seg5 -= segsum; 534 segsum += seg5; 535 536 537 /* For auto rsp commands seg6 thru seg10 will be 0 */ 538 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 539 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; 540 if (segsum > seg6) 541 return; 542 seg6 -= segsum; 543 segsum += seg6; 544 545 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; 546 if (segsum > seg7) 547 return; 548 seg7 -= segsum; 549 segsum += seg7; 550 551 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; 552 if (segsum > seg8) 553 return; 554 seg8 -= segsum; 555 segsum += seg8; 556 557 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; 558 if (segsum > seg9) 559 return; 560 seg9 -= segsum; 561 segsum += seg9; 562 563 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) 564 return; 565 seg10 = (ctxp->ts_isr_status - 566 ctxp->ts_isr_cmd); 567 } else { 568 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) 569 return; 570 seg6 = 0; 571 seg7 = 0; 572 seg8 = 0; 573 seg9 = 0; 574 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 575 } 576 577 phba->ktime_seg1_total += seg1; 578 if (seg1 < phba->ktime_seg1_min) 579 phba->ktime_seg1_min = seg1; 580 else if (seg1 > phba->ktime_seg1_max) 581 phba->ktime_seg1_max = seg1; 582 583 phba->ktime_seg2_total += seg2; 584 if (seg2 < phba->ktime_seg2_min) 585 phba->ktime_seg2_min = seg2; 586 else if (seg2 > phba->ktime_seg2_max) 587 phba->ktime_seg2_max = seg2; 588 589 phba->ktime_seg3_total += seg3; 590 if (seg3 < phba->ktime_seg3_min) 591 phba->ktime_seg3_min = seg3; 592 else if (seg3 > phba->ktime_seg3_max) 593 phba->ktime_seg3_max = seg3; 594 595 phba->ktime_seg4_total += seg4; 596 if (seg4 < phba->ktime_seg4_min) 597 phba->ktime_seg4_min = seg4; 598 else if (seg4 > phba->ktime_seg4_max) 599 phba->ktime_seg4_max = seg4; 600 601 phba->ktime_seg5_total += seg5; 602 if (seg5 < phba->ktime_seg5_min) 603 phba->ktime_seg5_min = seg5; 604 else if (seg5 > phba->ktime_seg5_max) 605 phba->ktime_seg5_max = seg5; 606 607 phba->ktime_data_samples++; 608 if (!seg6) 609 goto out; 610 611 phba->ktime_seg6_total += seg6; 612 if (seg6 < phba->ktime_seg6_min) 613 phba->ktime_seg6_min = seg6; 614 else if (seg6 > phba->ktime_seg6_max) 615 phba->ktime_seg6_max = seg6; 616 617 phba->ktime_seg7_total += seg7; 618 if (seg7 < phba->ktime_seg7_min) 619 phba->ktime_seg7_min = seg7; 620 else if (seg7 > phba->ktime_seg7_max) 621 phba->ktime_seg7_max = seg7; 622 623 phba->ktime_seg8_total += seg8; 624 if (seg8 < phba->ktime_seg8_min) 625 phba->ktime_seg8_min = seg8; 626 else if (seg8 > phba->ktime_seg8_max) 627 phba->ktime_seg8_max = seg8; 628 629 phba->ktime_seg9_total += seg9; 630 if (seg9 < phba->ktime_seg9_min) 631 phba->ktime_seg9_min = seg9; 632 else if (seg9 > phba->ktime_seg9_max) 633 phba->ktime_seg9_max = seg9; 634 out: 635 phba->ktime_seg10_total += seg10; 636 if (seg10 < phba->ktime_seg10_min) 637 phba->ktime_seg10_min = seg10; 638 else if (seg10 > phba->ktime_seg10_max) 639 phba->ktime_seg10_max = seg10; 640 phba->ktime_status_samples++; 641 } 642 #endif 643 644 /** 645 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 646 * @phba: Pointer to HBA context object. 647 * @cmdwqe: Pointer to driver command WQE object. 648 * @wcqe: Pointer to driver response CQE object. 649 * 650 * The function is called from SLI ring event handler with no 651 * lock held. This function is the completion handler for NVME FCP commands 652 * The function frees memory resources used for the NVME commands. 653 **/ 654 static void 655 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 656 struct lpfc_wcqe_complete *wcqe) 657 { 658 struct lpfc_nvmet_tgtport *tgtp; 659 struct nvmefc_tgt_fcp_req *rsp; 660 struct lpfc_nvmet_rcv_ctx *ctxp; 661 uint32_t status, result, op, start_clean, logerr; 662 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 663 uint32_t id; 664 #endif 665 666 ctxp = cmdwqe->context2; 667 ctxp->flag &= ~LPFC_NVMET_IO_INP; 668 669 rsp = &ctxp->ctx.fcp_req; 670 op = rsp->op; 671 672 status = bf_get(lpfc_wcqe_c_status, wcqe); 673 result = wcqe->parameter; 674 675 if (phba->targetport) 676 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 677 else 678 tgtp = NULL; 679 680 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 681 ctxp->oxid, op, status); 682 683 if (status) { 684 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 685 rsp->transferred_length = 0; 686 if (tgtp) { 687 atomic_inc(&tgtp->xmt_fcp_rsp_error); 688 if (result == IOERR_ABORT_REQUESTED) 689 atomic_inc(&tgtp->xmt_fcp_rsp_aborted); 690 } 691 692 logerr = LOG_NVME_IOERR; 693 694 /* pick up SLI4 exhange busy condition */ 695 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 696 ctxp->flag |= LPFC_NVMET_XBUSY; 697 logerr |= LOG_NVME_ABTS; 698 if (tgtp) 699 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); 700 701 } else { 702 ctxp->flag &= ~LPFC_NVMET_XBUSY; 703 } 704 705 lpfc_printf_log(phba, KERN_INFO, logerr, 706 "6315 IO Error Cmpl xri x%x: %x/%x XBUSY:x%x\n", 707 ctxp->oxid, status, result, ctxp->flag); 708 709 } else { 710 rsp->fcp_error = NVME_SC_SUCCESS; 711 if (op == NVMET_FCOP_RSP) 712 rsp->transferred_length = rsp->rsplen; 713 else 714 rsp->transferred_length = rsp->transfer_length; 715 if (tgtp) 716 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 717 } 718 719 if ((op == NVMET_FCOP_READDATA_RSP) || 720 (op == NVMET_FCOP_RSP)) { 721 /* Sanity check */ 722 ctxp->state = LPFC_NVMET_STE_DONE; 723 ctxp->entry_cnt++; 724 725 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 726 if (ctxp->ts_cmd_nvme) { 727 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 728 ctxp->ts_isr_data = 729 cmdwqe->isr_timestamp; 730 ctxp->ts_data_nvme = 731 ktime_get_ns(); 732 ctxp->ts_nvme_status = 733 ctxp->ts_data_nvme; 734 ctxp->ts_status_wqput = 735 ctxp->ts_data_nvme; 736 ctxp->ts_isr_status = 737 ctxp->ts_data_nvme; 738 ctxp->ts_status_nvme = 739 ctxp->ts_data_nvme; 740 } else { 741 ctxp->ts_isr_status = 742 cmdwqe->isr_timestamp; 743 ctxp->ts_status_nvme = 744 ktime_get_ns(); 745 } 746 } 747 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 748 id = smp_processor_id(); 749 if (ctxp->cpu != id) 750 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 751 "6703 CPU Check cmpl: " 752 "cpu %d expect %d\n", 753 id, ctxp->cpu); 754 if (ctxp->cpu < LPFC_CHECK_CPU_CNT) 755 phba->cpucheck_cmpl_io[id]++; 756 } 757 #endif 758 rsp->done(rsp); 759 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 760 if (ctxp->ts_cmd_nvme) 761 lpfc_nvmet_ktime(phba, ctxp); 762 #endif 763 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 764 } else { 765 ctxp->entry_cnt++; 766 start_clean = offsetof(struct lpfc_iocbq, iocb_flag); 767 memset(((char *)cmdwqe) + start_clean, 0, 768 (sizeof(struct lpfc_iocbq) - start_clean)); 769 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 770 if (ctxp->ts_cmd_nvme) { 771 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 772 ctxp->ts_data_nvme = ktime_get_ns(); 773 } 774 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 775 id = smp_processor_id(); 776 if (ctxp->cpu != id) 777 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 778 "6704 CPU Check cmdcmpl: " 779 "cpu %d expect %d\n", 780 id, ctxp->cpu); 781 if (ctxp->cpu < LPFC_CHECK_CPU_CNT) 782 phba->cpucheck_ccmpl_io[id]++; 783 } 784 #endif 785 rsp->done(rsp); 786 } 787 } 788 789 static int 790 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 791 struct nvmefc_tgt_ls_req *rsp) 792 { 793 struct lpfc_nvmet_rcv_ctx *ctxp = 794 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_req); 795 struct lpfc_hba *phba = ctxp->phba; 796 struct hbq_dmabuf *nvmebuf = 797 (struct hbq_dmabuf *)ctxp->rqb_buffer; 798 struct lpfc_iocbq *nvmewqeq; 799 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 800 struct lpfc_dmabuf dmabuf; 801 struct ulp_bde64 bpl; 802 int rc; 803 804 if (phba->pport->load_flag & FC_UNLOADING) 805 return -ENODEV; 806 807 if (phba->pport->load_flag & FC_UNLOADING) 808 return -ENODEV; 809 810 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 811 "6023 NVMET LS rsp oxid x%x\n", ctxp->oxid); 812 813 if ((ctxp->state != LPFC_NVMET_STE_LS_RCV) || 814 (ctxp->entry_cnt != 1)) { 815 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 816 "6412 NVMET LS rsp state mismatch " 817 "oxid x%x: %d %d\n", 818 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 819 } 820 ctxp->state = LPFC_NVMET_STE_LS_RSP; 821 ctxp->entry_cnt++; 822 823 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, ctxp, rsp->rspdma, 824 rsp->rsplen); 825 if (nvmewqeq == NULL) { 826 atomic_inc(&nvmep->xmt_ls_drop); 827 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 828 "6150 LS Drop IO x%x: Prep\n", 829 ctxp->oxid); 830 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 831 atomic_inc(&nvmep->xmt_ls_abort); 832 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, 833 ctxp->sid, ctxp->oxid); 834 return -ENOMEM; 835 } 836 837 /* Save numBdes for bpl2sgl */ 838 nvmewqeq->rsvd2 = 1; 839 nvmewqeq->hba_wqidx = 0; 840 nvmewqeq->context3 = &dmabuf; 841 dmabuf.virt = &bpl; 842 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 843 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 844 bpl.tus.f.bdeSize = rsp->rsplen; 845 bpl.tus.f.bdeFlags = 0; 846 bpl.tus.w = le32_to_cpu(bpl.tus.w); 847 848 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_rsp_cmp; 849 nvmewqeq->iocb_cmpl = NULL; 850 nvmewqeq->context2 = ctxp; 851 852 lpfc_nvmeio_data(phba, "NVMET LS RESP: xri x%x wqidx x%x len x%x\n", 853 ctxp->oxid, nvmewqeq->hba_wqidx, rsp->rsplen); 854 855 rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, nvmewqeq); 856 if (rc == WQE_SUCCESS) { 857 /* 858 * Okay to repost buffer here, but wait till cmpl 859 * before freeing ctxp and iocbq. 860 */ 861 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 862 ctxp->rqb_buffer = 0; 863 atomic_inc(&nvmep->xmt_ls_rsp); 864 return 0; 865 } 866 /* Give back resources */ 867 atomic_inc(&nvmep->xmt_ls_drop); 868 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 869 "6151 LS Drop IO x%x: Issue %d\n", 870 ctxp->oxid, rc); 871 872 lpfc_nlp_put(nvmewqeq->context1); 873 874 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 875 atomic_inc(&nvmep->xmt_ls_abort); 876 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 877 return -ENXIO; 878 } 879 880 static int 881 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 882 struct nvmefc_tgt_fcp_req *rsp) 883 { 884 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 885 struct lpfc_nvmet_rcv_ctx *ctxp = 886 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 887 struct lpfc_hba *phba = ctxp->phba; 888 struct lpfc_queue *wq; 889 struct lpfc_iocbq *nvmewqeq; 890 struct lpfc_sli_ring *pring; 891 unsigned long iflags; 892 int rc; 893 894 if (phba->pport->load_flag & FC_UNLOADING) { 895 rc = -ENODEV; 896 goto aerr; 897 } 898 899 if (phba->pport->load_flag & FC_UNLOADING) { 900 rc = -ENODEV; 901 goto aerr; 902 } 903 904 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 905 if (ctxp->ts_cmd_nvme) { 906 if (rsp->op == NVMET_FCOP_RSP) 907 ctxp->ts_nvme_status = ktime_get_ns(); 908 else 909 ctxp->ts_nvme_data = ktime_get_ns(); 910 } 911 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) { 912 int id = smp_processor_id(); 913 ctxp->cpu = id; 914 if (id < LPFC_CHECK_CPU_CNT) 915 phba->cpucheck_xmt_io[id]++; 916 if (rsp->hwqid != id) { 917 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 918 "6705 CPU Check OP: " 919 "cpu %d expect %d\n", 920 id, rsp->hwqid); 921 ctxp->cpu = rsp->hwqid; 922 } 923 } 924 #endif 925 926 /* Sanity check */ 927 if ((ctxp->flag & LPFC_NVMET_ABTS_RCV) || 928 (ctxp->state == LPFC_NVMET_STE_ABORT)) { 929 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 930 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 931 "6102 IO xri x%x aborted\n", 932 ctxp->oxid); 933 rc = -ENXIO; 934 goto aerr; 935 } 936 937 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 938 if (nvmewqeq == NULL) { 939 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 940 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 941 "6152 FCP Drop IO x%x: Prep\n", 942 ctxp->oxid); 943 rc = -ENXIO; 944 goto aerr; 945 } 946 947 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 948 nvmewqeq->iocb_cmpl = NULL; 949 nvmewqeq->context2 = ctxp; 950 nvmewqeq->iocb_flag |= LPFC_IO_NVMET; 951 ctxp->wqeq->hba_wqidx = rsp->hwqid; 952 953 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 954 ctxp->oxid, rsp->op, rsp->rsplen); 955 956 ctxp->flag |= LPFC_NVMET_IO_INP; 957 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq); 958 if (rc == WQE_SUCCESS) { 959 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 960 if (!ctxp->ts_cmd_nvme) 961 return 0; 962 if (rsp->op == NVMET_FCOP_RSP) 963 ctxp->ts_status_wqput = ktime_get_ns(); 964 else 965 ctxp->ts_data_wqput = ktime_get_ns(); 966 #endif 967 return 0; 968 } 969 970 if (rc == -EBUSY) { 971 /* 972 * WQ was full, so queue nvmewqeq to be sent after 973 * WQE release CQE 974 */ 975 ctxp->flag |= LPFC_NVMET_DEFER_WQFULL; 976 wq = phba->sli4_hba.nvme_wq[rsp->hwqid]; 977 pring = wq->pring; 978 spin_lock_irqsave(&pring->ring_lock, iflags); 979 list_add_tail(&nvmewqeq->list, &wq->wqfull_list); 980 wq->q_flag |= HBA_NVMET_WQFULL; 981 spin_unlock_irqrestore(&pring->ring_lock, iflags); 982 atomic_inc(&lpfc_nvmep->defer_wqfull); 983 return 0; 984 } 985 986 /* Give back resources */ 987 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 988 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 989 "6153 FCP Drop IO x%x: Issue: %d\n", 990 ctxp->oxid, rc); 991 992 ctxp->wqeq->hba_wqidx = 0; 993 nvmewqeq->context2 = NULL; 994 nvmewqeq->context3 = NULL; 995 rc = -EBUSY; 996 aerr: 997 return rc; 998 } 999 1000 static void 1001 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 1002 { 1003 struct lpfc_nvmet_tgtport *tport = targetport->private; 1004 1005 /* release any threads waiting for the unreg to complete */ 1006 complete(&tport->tport_unreg_done); 1007 } 1008 1009 static void 1010 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 1011 struct nvmefc_tgt_fcp_req *req) 1012 { 1013 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1014 struct lpfc_nvmet_rcv_ctx *ctxp = 1015 container_of(req, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 1016 struct lpfc_hba *phba = ctxp->phba; 1017 struct lpfc_queue *wq; 1018 unsigned long flags; 1019 1020 if (phba->pport->load_flag & FC_UNLOADING) 1021 return; 1022 1023 if (phba->pport->load_flag & FC_UNLOADING) 1024 return; 1025 1026 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1027 "6103 NVMET Abort op: oxri x%x flg x%x ste %d\n", 1028 ctxp->oxid, ctxp->flag, ctxp->state); 1029 1030 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 1031 ctxp->oxid, ctxp->flag, ctxp->state); 1032 1033 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 1034 1035 spin_lock_irqsave(&ctxp->ctxlock, flags); 1036 ctxp->state = LPFC_NVMET_STE_ABORT; 1037 1038 /* Since iaab/iaar are NOT set, we need to check 1039 * if the firmware is in process of aborting IO 1040 */ 1041 if (ctxp->flag & LPFC_NVMET_XBUSY) { 1042 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1043 return; 1044 } 1045 ctxp->flag |= LPFC_NVMET_ABORT_OP; 1046 1047 if (ctxp->flag & LPFC_NVMET_DEFER_WQFULL) { 1048 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1049 ctxp->oxid); 1050 wq = phba->sli4_hba.nvme_wq[ctxp->wqeq->hba_wqidx]; 1051 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1052 lpfc_nvmet_wqfull_flush(phba, wq, ctxp); 1053 return; 1054 } 1055 1056 /* An state of LPFC_NVMET_STE_RCV means we have just received 1057 * the NVME command and have not started processing it. 1058 * (by issuing any IO WQEs on this exchange yet) 1059 */ 1060 if (ctxp->state == LPFC_NVMET_STE_RCV) 1061 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1062 ctxp->oxid); 1063 else 1064 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1065 ctxp->oxid); 1066 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1067 } 1068 1069 static void 1070 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 1071 struct nvmefc_tgt_fcp_req *rsp) 1072 { 1073 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1074 struct lpfc_nvmet_rcv_ctx *ctxp = 1075 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 1076 struct lpfc_hba *phba = ctxp->phba; 1077 unsigned long flags; 1078 bool aborting = false; 1079 1080 if (ctxp->state != LPFC_NVMET_STE_DONE && 1081 ctxp->state != LPFC_NVMET_STE_ABORT) { 1082 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1083 "6413 NVMET release bad state %d %d oxid x%x\n", 1084 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1085 } 1086 1087 spin_lock_irqsave(&ctxp->ctxlock, flags); 1088 if ((ctxp->flag & LPFC_NVMET_ABORT_OP) || 1089 (ctxp->flag & LPFC_NVMET_XBUSY)) { 1090 aborting = true; 1091 /* let the abort path do the real release */ 1092 lpfc_nvmet_defer_release(phba, ctxp); 1093 } 1094 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1095 1096 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 1097 ctxp->state, aborting); 1098 1099 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 1100 1101 if (aborting) 1102 return; 1103 1104 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1105 } 1106 1107 static void 1108 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 1109 struct nvmefc_tgt_fcp_req *rsp) 1110 { 1111 struct lpfc_nvmet_tgtport *tgtp; 1112 struct lpfc_nvmet_rcv_ctx *ctxp = 1113 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req); 1114 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 1115 struct lpfc_hba *phba = ctxp->phba; 1116 1117 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 1118 ctxp->oxid, ctxp->size, smp_processor_id()); 1119 1120 if (!nvmebuf) { 1121 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1122 "6425 Defer rcv: no buffer xri x%x: " 1123 "flg %x ste %x\n", 1124 ctxp->oxid, ctxp->flag, ctxp->state); 1125 return; 1126 } 1127 1128 tgtp = phba->targetport->private; 1129 if (tgtp) 1130 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 1131 1132 /* Free the nvmebuf since a new buffer already replaced it */ 1133 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1134 } 1135 1136 static struct nvmet_fc_target_template lpfc_tgttemplate = { 1137 .targetport_delete = lpfc_nvmet_targetport_delete, 1138 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 1139 .fcp_op = lpfc_nvmet_xmt_fcp_op, 1140 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 1141 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 1142 .defer_rcv = lpfc_nvmet_defer_rcv, 1143 1144 .max_hw_queues = 1, 1145 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1146 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1147 .dma_boundary = 0xFFFFFFFF, 1148 1149 /* optional features */ 1150 .target_features = 0, 1151 /* sizes of additional private data for data structures */ 1152 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 1153 }; 1154 1155 static void 1156 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 1157 struct lpfc_nvmet_ctx_info *infop) 1158 { 1159 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 1160 unsigned long flags; 1161 1162 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 1163 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 1164 &infop->nvmet_ctx_list, list) { 1165 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1166 list_del_init(&ctx_buf->list); 1167 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1168 1169 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 1170 ctx_buf->sglq->state = SGL_FREED; 1171 ctx_buf->sglq->ndlp = NULL; 1172 1173 spin_lock(&phba->sli4_hba.sgl_list_lock); 1174 list_add_tail(&ctx_buf->sglq->list, 1175 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1176 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1177 1178 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1179 kfree(ctx_buf->context); 1180 } 1181 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 1182 } 1183 1184 static void 1185 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 1186 { 1187 struct lpfc_nvmet_ctx_info *infop; 1188 int i, j; 1189 1190 /* The first context list, MRQ 0 CPU 0 */ 1191 infop = phba->sli4_hba.nvmet_ctx_info; 1192 if (!infop) 1193 return; 1194 1195 /* Cycle the the entire CPU context list for every MRQ */ 1196 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 1197 for (j = 0; j < phba->sli4_hba.num_present_cpu; j++) { 1198 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 1199 infop++; /* next */ 1200 } 1201 } 1202 kfree(phba->sli4_hba.nvmet_ctx_info); 1203 phba->sli4_hba.nvmet_ctx_info = NULL; 1204 } 1205 1206 static int 1207 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 1208 { 1209 struct lpfc_nvmet_ctxbuf *ctx_buf; 1210 struct lpfc_iocbq *nvmewqe; 1211 union lpfc_wqe128 *wqe; 1212 struct lpfc_nvmet_ctx_info *last_infop; 1213 struct lpfc_nvmet_ctx_info *infop; 1214 int i, j, idx; 1215 1216 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 1217 "6403 Allocate NVMET resources for %d XRIs\n", 1218 phba->sli4_hba.nvmet_xri_cnt); 1219 1220 phba->sli4_hba.nvmet_ctx_info = kcalloc( 1221 phba->sli4_hba.num_present_cpu * phba->cfg_nvmet_mrq, 1222 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 1223 if (!phba->sli4_hba.nvmet_ctx_info) { 1224 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1225 "6419 Failed allocate memory for " 1226 "nvmet context lists\n"); 1227 return -ENOMEM; 1228 } 1229 1230 /* 1231 * Assuming X CPUs in the system, and Y MRQs, allocate some 1232 * lpfc_nvmet_ctx_info structures as follows: 1233 * 1234 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 1235 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 1236 * ... 1237 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 1238 * 1239 * Each line represents a MRQ "silo" containing an entry for 1240 * every CPU. 1241 * 1242 * MRQ X is initially assumed to be associated with CPU X, thus 1243 * contexts are initially distributed across all MRQs using 1244 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 1245 * freed, the are freed to the MRQ silo based on the CPU number 1246 * of the IO completion. Thus a context that was allocated for MRQ A 1247 * whose IO completed on CPU B will be freed to cpuB/mrqA. 1248 */ 1249 infop = phba->sli4_hba.nvmet_ctx_info; 1250 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 1251 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1252 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 1253 spin_lock_init(&infop->nvmet_ctx_list_lock); 1254 infop->nvmet_ctx_list_cnt = 0; 1255 infop++; 1256 } 1257 } 1258 1259 /* 1260 * Setup the next CPU context info ptr for each MRQ. 1261 * MRQ 0 will cycle thru CPUs 0 - X separately from 1262 * MRQ 1 cycling thru CPUs 0 - X, and so on. 1263 */ 1264 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1265 last_infop = lpfc_get_ctx_list(phba, 0, j); 1266 for (i = phba->sli4_hba.num_present_cpu - 1; i >= 0; i--) { 1267 infop = lpfc_get_ctx_list(phba, i, j); 1268 infop->nvmet_ctx_next_cpu = last_infop; 1269 last_infop = infop; 1270 } 1271 } 1272 1273 /* For all nvmet xris, allocate resources needed to process a 1274 * received command on a per xri basis. 1275 */ 1276 idx = 0; 1277 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1278 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1279 if (!ctx_buf) { 1280 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1281 "6404 Ran out of memory for NVMET\n"); 1282 return -ENOMEM; 1283 } 1284 1285 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1286 GFP_KERNEL); 1287 if (!ctx_buf->context) { 1288 kfree(ctx_buf); 1289 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1290 "6405 Ran out of NVMET " 1291 "context memory\n"); 1292 return -ENOMEM; 1293 } 1294 ctx_buf->context->ctxbuf = ctx_buf; 1295 ctx_buf->context->state = LPFC_NVMET_STE_FREE; 1296 1297 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1298 if (!ctx_buf->iocbq) { 1299 kfree(ctx_buf->context); 1300 kfree(ctx_buf); 1301 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1302 "6406 Ran out of NVMET iocb/WQEs\n"); 1303 return -ENOMEM; 1304 } 1305 ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET; 1306 nvmewqe = ctx_buf->iocbq; 1307 wqe = &nvmewqe->wqe; 1308 1309 /* Initialize WQE */ 1310 memset(wqe, 0, sizeof(union lpfc_wqe)); 1311 1312 ctx_buf->iocbq->context1 = NULL; 1313 spin_lock(&phba->sli4_hba.sgl_list_lock); 1314 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1315 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1316 if (!ctx_buf->sglq) { 1317 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1318 kfree(ctx_buf->context); 1319 kfree(ctx_buf); 1320 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1321 "6407 Ran out of NVMET XRIs\n"); 1322 return -ENOMEM; 1323 } 1324 1325 /* 1326 * Add ctx to MRQidx context list. Our initial assumption 1327 * is MRQidx will be associated with CPUidx. This association 1328 * can change on the fly. 1329 */ 1330 infop = lpfc_get_ctx_list(phba, idx, idx); 1331 spin_lock(&infop->nvmet_ctx_list_lock); 1332 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1333 infop->nvmet_ctx_list_cnt++; 1334 spin_unlock(&infop->nvmet_ctx_list_lock); 1335 1336 /* Spread ctx structures evenly across all MRQs */ 1337 idx++; 1338 if (idx >= phba->cfg_nvmet_mrq) 1339 idx = 0; 1340 } 1341 1342 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 1343 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1344 infop = lpfc_get_ctx_list(phba, i, j); 1345 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1346 "6408 TOTAL NVMET ctx for CPU %d " 1347 "MRQ %d: cnt %d nextcpu %p\n", 1348 i, j, infop->nvmet_ctx_list_cnt, 1349 infop->nvmet_ctx_next_cpu); 1350 } 1351 } 1352 return 0; 1353 } 1354 1355 int 1356 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1357 { 1358 struct lpfc_vport *vport = phba->pport; 1359 struct lpfc_nvmet_tgtport *tgtp; 1360 struct nvmet_fc_port_info pinfo; 1361 int error; 1362 1363 if (phba->targetport) 1364 return 0; 1365 1366 error = lpfc_nvmet_setup_io_context(phba); 1367 if (error) 1368 return error; 1369 1370 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1371 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1372 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1373 pinfo.port_id = vport->fc_myDID; 1374 1375 /* We need to tell the transport layer + 1 because it takes page 1376 * alignment into account. When space for the SGL is allocated we 1377 * allocate + 3, one for cmd, one for rsp and one for this alignment 1378 */ 1379 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1380 lpfc_tgttemplate.max_hw_queues = phba->cfg_nvme_io_channel; 1381 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; 1382 1383 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1384 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1385 &phba->pcidev->dev, 1386 &phba->targetport); 1387 #else 1388 error = -ENOENT; 1389 #endif 1390 if (error) { 1391 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 1392 "6025 Cannot register NVME targetport x%x: " 1393 "portnm %llx nodenm %llx segs %d qs %d\n", 1394 error, 1395 pinfo.port_name, pinfo.node_name, 1396 lpfc_tgttemplate.max_sgl_segments, 1397 lpfc_tgttemplate.max_hw_queues); 1398 phba->targetport = NULL; 1399 phba->nvmet_support = 0; 1400 1401 lpfc_nvmet_cleanup_io_context(phba); 1402 1403 } else { 1404 tgtp = (struct lpfc_nvmet_tgtport *) 1405 phba->targetport->private; 1406 tgtp->phba = phba; 1407 1408 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1409 "6026 Registered NVME " 1410 "targetport: %p, private %p " 1411 "portnm %llx nodenm %llx segs %d qs %d\n", 1412 phba->targetport, tgtp, 1413 pinfo.port_name, pinfo.node_name, 1414 lpfc_tgttemplate.max_sgl_segments, 1415 lpfc_tgttemplate.max_hw_queues); 1416 1417 atomic_set(&tgtp->rcv_ls_req_in, 0); 1418 atomic_set(&tgtp->rcv_ls_req_out, 0); 1419 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1420 atomic_set(&tgtp->xmt_ls_abort, 0); 1421 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1422 atomic_set(&tgtp->xmt_ls_rsp, 0); 1423 atomic_set(&tgtp->xmt_ls_drop, 0); 1424 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1425 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); 1426 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); 1427 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1428 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1429 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1430 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1431 atomic_set(&tgtp->xmt_fcp_drop, 0); 1432 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1433 atomic_set(&tgtp->xmt_fcp_read, 0); 1434 atomic_set(&tgtp->xmt_fcp_write, 0); 1435 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1436 atomic_set(&tgtp->xmt_fcp_release, 0); 1437 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1438 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1439 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); 1440 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); 1441 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1442 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); 1443 atomic_set(&tgtp->xmt_fcp_abort, 0); 1444 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1445 atomic_set(&tgtp->xmt_abort_unsol, 0); 1446 atomic_set(&tgtp->xmt_abort_sol, 0); 1447 atomic_set(&tgtp->xmt_abort_rsp, 0); 1448 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1449 atomic_set(&tgtp->defer_ctx, 0); 1450 atomic_set(&tgtp->defer_fod, 0); 1451 atomic_set(&tgtp->defer_wqfull, 0); 1452 } 1453 return error; 1454 } 1455 1456 int 1457 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1458 { 1459 struct lpfc_vport *vport = phba->pport; 1460 1461 if (!phba->targetport) 1462 return 0; 1463 1464 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1465 "6007 Update NVMET port %p did x%x\n", 1466 phba->targetport, vport->fc_myDID); 1467 1468 phba->targetport->port_id = vport->fc_myDID; 1469 return 0; 1470 } 1471 1472 /** 1473 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1474 * @phba: pointer to lpfc hba data structure. 1475 * @axri: pointer to the nvmet xri abort wcqe structure. 1476 * 1477 * This routine is invoked by the worker thread to process a SLI4 fast-path 1478 * NVMET aborted xri. 1479 **/ 1480 void 1481 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1482 struct sli4_wcqe_xri_aborted *axri) 1483 { 1484 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1485 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1486 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; 1487 struct lpfc_nvmet_tgtport *tgtp; 1488 struct lpfc_nodelist *ndlp; 1489 unsigned long iflag = 0; 1490 int rrq_empty = 0; 1491 bool released = false; 1492 1493 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1494 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1495 1496 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1497 return; 1498 1499 if (phba->targetport) { 1500 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1501 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); 1502 } 1503 1504 spin_lock_irqsave(&phba->hbalock, iflag); 1505 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1506 list_for_each_entry_safe(ctxp, next_ctxp, 1507 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1508 list) { 1509 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1510 continue; 1511 1512 /* Check if we already received a free context call 1513 * and we have completed processing an abort situation. 1514 */ 1515 if (ctxp->flag & LPFC_NVMET_CTX_RLS && 1516 !(ctxp->flag & LPFC_NVMET_ABORT_OP)) { 1517 list_del(&ctxp->list); 1518 released = true; 1519 } 1520 ctxp->flag &= ~LPFC_NVMET_XBUSY; 1521 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1522 1523 rrq_empty = list_empty(&phba->active_rrq_list); 1524 spin_unlock_irqrestore(&phba->hbalock, iflag); 1525 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1526 if (ndlp && NLP_CHK_NODE_ACT(ndlp) && 1527 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1528 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1529 lpfc_set_rrq_active(phba, ndlp, 1530 ctxp->ctxbuf->sglq->sli4_lxritag, 1531 rxid, 1); 1532 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1533 } 1534 1535 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1536 "6318 XB aborted oxid %x flg x%x (%x)\n", 1537 ctxp->oxid, ctxp->flag, released); 1538 if (released) 1539 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1540 1541 if (rrq_empty) 1542 lpfc_worker_wake_up(phba); 1543 return; 1544 } 1545 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1546 spin_unlock_irqrestore(&phba->hbalock, iflag); 1547 } 1548 1549 int 1550 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1551 struct fc_frame_header *fc_hdr) 1552 1553 { 1554 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1555 struct lpfc_hba *phba = vport->phba; 1556 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp; 1557 struct nvmefc_tgt_fcp_req *rsp; 1558 uint16_t xri; 1559 unsigned long iflag = 0; 1560 1561 xri = be16_to_cpu(fc_hdr->fh_ox_id); 1562 1563 spin_lock_irqsave(&phba->hbalock, iflag); 1564 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1565 list_for_each_entry_safe(ctxp, next_ctxp, 1566 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1567 list) { 1568 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1569 continue; 1570 1571 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1572 spin_unlock_irqrestore(&phba->hbalock, iflag); 1573 1574 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1575 ctxp->flag |= LPFC_NVMET_ABTS_RCV; 1576 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1577 1578 lpfc_nvmeio_data(phba, 1579 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1580 xri, smp_processor_id(), 0); 1581 1582 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1583 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1584 1585 rsp = &ctxp->ctx.fcp_req; 1586 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1587 1588 /* Respond with BA_ACC accordingly */ 1589 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1590 return 0; 1591 } 1592 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock); 1593 spin_unlock_irqrestore(&phba->hbalock, iflag); 1594 1595 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1596 xri, smp_processor_id(), 1); 1597 1598 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1599 "6320 NVMET Rcv ABTS:rjt xri x%x\n", xri); 1600 1601 /* Respond with BA_RJT accordingly */ 1602 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 1603 #endif 1604 return 0; 1605 } 1606 1607 static void 1608 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, 1609 struct lpfc_nvmet_rcv_ctx *ctxp) 1610 { 1611 struct lpfc_sli_ring *pring; 1612 struct lpfc_iocbq *nvmewqeq; 1613 struct lpfc_iocbq *next_nvmewqeq; 1614 unsigned long iflags; 1615 struct lpfc_wcqe_complete wcqe; 1616 struct lpfc_wcqe_complete *wcqep; 1617 1618 pring = wq->pring; 1619 wcqep = &wcqe; 1620 1621 /* Fake an ABORT error code back to cmpl routine */ 1622 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); 1623 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); 1624 wcqep->parameter = IOERR_ABORT_REQUESTED; 1625 1626 spin_lock_irqsave(&pring->ring_lock, iflags); 1627 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, 1628 &wq->wqfull_list, list) { 1629 if (ctxp) { 1630 /* Checking for a specific IO to flush */ 1631 if (nvmewqeq->context2 == ctxp) { 1632 list_del(&nvmewqeq->list); 1633 spin_unlock_irqrestore(&pring->ring_lock, 1634 iflags); 1635 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, 1636 wcqep); 1637 return; 1638 } 1639 continue; 1640 } else { 1641 /* Flush all IOs */ 1642 list_del(&nvmewqeq->list); 1643 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1644 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep); 1645 spin_lock_irqsave(&pring->ring_lock, iflags); 1646 } 1647 } 1648 if (!ctxp) 1649 wq->q_flag &= ~HBA_NVMET_WQFULL; 1650 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1651 } 1652 1653 void 1654 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, 1655 struct lpfc_queue *wq) 1656 { 1657 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1658 struct lpfc_sli_ring *pring; 1659 struct lpfc_iocbq *nvmewqeq; 1660 unsigned long iflags; 1661 int rc; 1662 1663 /* 1664 * Some WQE slots are available, so try to re-issue anything 1665 * on the WQ wqfull_list. 1666 */ 1667 pring = wq->pring; 1668 spin_lock_irqsave(&pring->ring_lock, iflags); 1669 while (!list_empty(&wq->wqfull_list)) { 1670 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, 1671 list); 1672 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1673 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq); 1674 spin_lock_irqsave(&pring->ring_lock, iflags); 1675 if (rc == -EBUSY) { 1676 /* WQ was full again, so put it back on the list */ 1677 list_add(&nvmewqeq->list, &wq->wqfull_list); 1678 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1679 return; 1680 } 1681 } 1682 wq->q_flag &= ~HBA_NVMET_WQFULL; 1683 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1684 1685 #endif 1686 } 1687 1688 void 1689 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 1690 { 1691 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1692 struct lpfc_nvmet_tgtport *tgtp; 1693 struct lpfc_queue *wq; 1694 uint32_t qidx; 1695 1696 if (phba->nvmet_support == 0) 1697 return; 1698 if (phba->targetport) { 1699 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1700 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) { 1701 wq = phba->sli4_hba.nvme_wq[qidx]; 1702 lpfc_nvmet_wqfull_flush(phba, wq, NULL); 1703 } 1704 init_completion(&tgtp->tport_unreg_done); 1705 nvmet_fc_unregister_targetport(phba->targetport); 1706 wait_for_completion_timeout(&tgtp->tport_unreg_done, 5); 1707 lpfc_nvmet_cleanup_io_context(phba); 1708 } 1709 phba->targetport = NULL; 1710 #endif 1711 } 1712 1713 /** 1714 * lpfc_nvmet_unsol_ls_buffer - Process an unsolicited event data buffer 1715 * @phba: pointer to lpfc hba data structure. 1716 * @pring: pointer to a SLI ring. 1717 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 1718 * 1719 * This routine is used for processing the WQE associated with a unsolicited 1720 * event. It first determines whether there is an existing ndlp that matches 1721 * the DID from the unsolicited WQE. If not, it will create a new one with 1722 * the DID from the unsolicited WQE. The ELS command from the unsolicited 1723 * WQE is then used to invoke the proper routine and to set up proper state 1724 * of the discovery state machine. 1725 **/ 1726 static void 1727 lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1728 struct hbq_dmabuf *nvmebuf) 1729 { 1730 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1731 struct lpfc_nvmet_tgtport *tgtp; 1732 struct fc_frame_header *fc_hdr; 1733 struct lpfc_nvmet_rcv_ctx *ctxp; 1734 uint32_t *payload; 1735 uint32_t size, oxid, sid, rc; 1736 1737 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 1738 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1739 1740 if (!phba->targetport) { 1741 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1742 "6154 LS Drop IO x%x\n", oxid); 1743 oxid = 0; 1744 size = 0; 1745 sid = 0; 1746 ctxp = NULL; 1747 goto dropit; 1748 } 1749 1750 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1751 payload = (uint32_t *)(nvmebuf->dbuf.virt); 1752 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 1753 sid = sli4_sid_from_fc_hdr(fc_hdr); 1754 1755 ctxp = kzalloc(sizeof(struct lpfc_nvmet_rcv_ctx), GFP_ATOMIC); 1756 if (ctxp == NULL) { 1757 atomic_inc(&tgtp->rcv_ls_req_drop); 1758 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1759 "6155 LS Drop IO x%x: Alloc\n", 1760 oxid); 1761 dropit: 1762 lpfc_nvmeio_data(phba, "NVMET LS DROP: " 1763 "xri x%x sz %d from %06x\n", 1764 oxid, size, sid); 1765 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 1766 return; 1767 } 1768 ctxp->phba = phba; 1769 ctxp->size = size; 1770 ctxp->oxid = oxid; 1771 ctxp->sid = sid; 1772 ctxp->wqeq = NULL; 1773 ctxp->state = LPFC_NVMET_STE_LS_RCV; 1774 ctxp->entry_cnt = 1; 1775 ctxp->rqb_buffer = (void *)nvmebuf; 1776 1777 lpfc_nvmeio_data(phba, "NVMET LS RCV: xri x%x sz %d from %06x\n", 1778 oxid, size, sid); 1779 /* 1780 * The calling sequence should be: 1781 * nvmet_fc_rcv_ls_req -> lpfc_nvmet_xmt_ls_rsp/cmp ->_req->done 1782 * lpfc_nvmet_xmt_ls_rsp_cmp should free the allocated ctxp. 1783 */ 1784 atomic_inc(&tgtp->rcv_ls_req_in); 1785 rc = nvmet_fc_rcv_ls_req(phba->targetport, &ctxp->ctx.ls_req, 1786 payload, size); 1787 1788 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1789 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 1790 "%08x %08x %08x\n", size, rc, 1791 *payload, *(payload+1), *(payload+2), 1792 *(payload+3), *(payload+4), *(payload+5)); 1793 1794 if (rc == 0) { 1795 atomic_inc(&tgtp->rcv_ls_req_out); 1796 return; 1797 } 1798 1799 lpfc_nvmeio_data(phba, "NVMET LS DROP: xri x%x sz %d from %06x\n", 1800 oxid, size, sid); 1801 1802 atomic_inc(&tgtp->rcv_ls_req_drop); 1803 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1804 "6156 LS Drop IO x%x: nvmet_fc_rcv_ls_req %d\n", 1805 ctxp->oxid, rc); 1806 1807 /* We assume a rcv'ed cmd ALWAYs fits into 1 buffer */ 1808 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 1809 1810 atomic_inc(&tgtp->xmt_ls_abort); 1811 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, sid, oxid); 1812 #endif 1813 } 1814 1815 static struct lpfc_nvmet_ctxbuf * 1816 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 1817 struct lpfc_nvmet_ctx_info *current_infop) 1818 { 1819 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1820 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 1821 struct lpfc_nvmet_ctx_info *get_infop; 1822 int i; 1823 1824 /* 1825 * The current_infop for the MRQ a NVME command IU was received 1826 * on is empty. Our goal is to replenish this MRQs context 1827 * list from a another CPUs. 1828 * 1829 * First we need to pick a context list to start looking on. 1830 * nvmet_ctx_start_cpu has available context the last time 1831 * we needed to replenish this CPU where nvmet_ctx_next_cpu 1832 * is just the next sequential CPU for this MRQ. 1833 */ 1834 if (current_infop->nvmet_ctx_start_cpu) 1835 get_infop = current_infop->nvmet_ctx_start_cpu; 1836 else 1837 get_infop = current_infop->nvmet_ctx_next_cpu; 1838 1839 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 1840 if (get_infop == current_infop) { 1841 get_infop = get_infop->nvmet_ctx_next_cpu; 1842 continue; 1843 } 1844 spin_lock(&get_infop->nvmet_ctx_list_lock); 1845 1846 /* Just take the entire context list, if there are any */ 1847 if (get_infop->nvmet_ctx_list_cnt) { 1848 list_splice_init(&get_infop->nvmet_ctx_list, 1849 ¤t_infop->nvmet_ctx_list); 1850 current_infop->nvmet_ctx_list_cnt = 1851 get_infop->nvmet_ctx_list_cnt - 1; 1852 get_infop->nvmet_ctx_list_cnt = 0; 1853 spin_unlock(&get_infop->nvmet_ctx_list_lock); 1854 1855 current_infop->nvmet_ctx_start_cpu = get_infop; 1856 list_remove_head(¤t_infop->nvmet_ctx_list, 1857 ctx_buf, struct lpfc_nvmet_ctxbuf, 1858 list); 1859 return ctx_buf; 1860 } 1861 1862 /* Otherwise, move on to the next CPU for this MRQ */ 1863 spin_unlock(&get_infop->nvmet_ctx_list_lock); 1864 get_infop = get_infop->nvmet_ctx_next_cpu; 1865 } 1866 1867 #endif 1868 /* Nothing found, all contexts for the MRQ are in-flight */ 1869 return NULL; 1870 } 1871 1872 /** 1873 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 1874 * @phba: pointer to lpfc hba data structure. 1875 * @idx: relative index of MRQ vector 1876 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 1877 * 1878 * This routine is used for processing the WQE associated with a unsolicited 1879 * event. It first determines whether there is an existing ndlp that matches 1880 * the DID from the unsolicited WQE. If not, it will create a new one with 1881 * the DID from the unsolicited WQE. The ELS command from the unsolicited 1882 * WQE is then used to invoke the proper routine and to set up proper state 1883 * of the discovery state machine. 1884 **/ 1885 static void 1886 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 1887 uint32_t idx, 1888 struct rqb_dmabuf *nvmebuf, 1889 uint64_t isr_timestamp) 1890 { 1891 struct lpfc_nvmet_rcv_ctx *ctxp; 1892 struct lpfc_nvmet_tgtport *tgtp; 1893 struct fc_frame_header *fc_hdr; 1894 struct lpfc_nvmet_ctxbuf *ctx_buf; 1895 struct lpfc_nvmet_ctx_info *current_infop; 1896 uint32_t *payload; 1897 uint32_t size, oxid, sid, rc, qno; 1898 unsigned long iflag; 1899 int current_cpu; 1900 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1901 uint32_t id; 1902 #endif 1903 1904 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1905 return; 1906 1907 ctx_buf = NULL; 1908 if (!nvmebuf || !phba->targetport) { 1909 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1910 "6157 NVMET FCP Drop IO\n"); 1911 oxid = 0; 1912 size = 0; 1913 sid = 0; 1914 ctxp = NULL; 1915 goto dropit; 1916 } 1917 1918 /* 1919 * Get a pointer to the context list for this MRQ based on 1920 * the CPU this MRQ IRQ is associated with. If the CPU association 1921 * changes from our initial assumption, the context list could 1922 * be empty, thus it would need to be replenished with the 1923 * context list from another CPU for this MRQ. 1924 */ 1925 current_cpu = smp_processor_id(); 1926 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 1927 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 1928 if (current_infop->nvmet_ctx_list_cnt) { 1929 list_remove_head(¤t_infop->nvmet_ctx_list, 1930 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 1931 current_infop->nvmet_ctx_list_cnt--; 1932 } else { 1933 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 1934 } 1935 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 1936 1937 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 1938 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1939 size = nvmebuf->bytes_recv; 1940 1941 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1942 if (phba->cpucheck_on & LPFC_CHECK_NVMET_RCV) { 1943 id = smp_processor_id(); 1944 if (id < LPFC_CHECK_CPU_CNT) 1945 phba->cpucheck_rcv_io[id]++; 1946 } 1947 #endif 1948 1949 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 1950 oxid, size, smp_processor_id()); 1951 1952 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1953 1954 if (!ctx_buf) { 1955 /* Queue this NVME IO to process later */ 1956 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1957 list_add_tail(&nvmebuf->hbuf.list, 1958 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 1959 phba->sli4_hba.nvmet_io_wait_cnt++; 1960 phba->sli4_hba.nvmet_io_wait_total++; 1961 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1962 iflag); 1963 1964 /* Post a brand new DMA buffer to RQ */ 1965 qno = nvmebuf->idx; 1966 lpfc_post_rq_buffer( 1967 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 1968 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 1969 1970 atomic_inc(&tgtp->defer_ctx); 1971 return; 1972 } 1973 1974 payload = (uint32_t *)(nvmebuf->dbuf.virt); 1975 sid = sli4_sid_from_fc_hdr(fc_hdr); 1976 1977 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context; 1978 if (ctxp->state != LPFC_NVMET_STE_FREE) { 1979 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 1980 "6414 NVMET Context corrupt %d %d oxid x%x\n", 1981 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1982 } 1983 ctxp->wqeq = NULL; 1984 ctxp->txrdy = NULL; 1985 ctxp->offset = 0; 1986 ctxp->phba = phba; 1987 ctxp->size = size; 1988 ctxp->oxid = oxid; 1989 ctxp->sid = sid; 1990 ctxp->idx = idx; 1991 ctxp->state = LPFC_NVMET_STE_RCV; 1992 ctxp->entry_cnt = 1; 1993 ctxp->flag = 0; 1994 ctxp->ctxbuf = ctx_buf; 1995 ctxp->rqb_buffer = (void *)nvmebuf; 1996 spin_lock_init(&ctxp->ctxlock); 1997 1998 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1999 if (isr_timestamp) { 2000 ctxp->ts_isr_cmd = isr_timestamp; 2001 ctxp->ts_cmd_nvme = ktime_get_ns(); 2002 ctxp->ts_nvme_data = 0; 2003 ctxp->ts_data_wqput = 0; 2004 ctxp->ts_isr_data = 0; 2005 ctxp->ts_data_nvme = 0; 2006 ctxp->ts_nvme_status = 0; 2007 ctxp->ts_status_wqput = 0; 2008 ctxp->ts_isr_status = 0; 2009 ctxp->ts_status_nvme = 0; 2010 } else { 2011 ctxp->ts_cmd_nvme = 0; 2012 } 2013 #endif 2014 2015 atomic_inc(&tgtp->rcv_fcp_cmd_in); 2016 /* 2017 * The calling sequence should be: 2018 * nvmet_fc_rcv_fcp_req -> lpfc_nvmet_xmt_fcp_op/cmp -> req->done 2019 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 2020 * When we return from nvmet_fc_rcv_fcp_req, all relevant info in 2021 * the NVME command / FC header is stored, so we are free to repost 2022 * the buffer. 2023 */ 2024 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req, 2025 payload, size); 2026 2027 /* Process FCP command */ 2028 if (rc == 0) { 2029 ctxp->rqb_buffer = NULL; 2030 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2031 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2032 return; 2033 } 2034 2035 /* Processing of FCP command is deferred */ 2036 if (rc == -EOVERFLOW) { 2037 /* 2038 * Post a brand new DMA buffer to RQ and defer 2039 * freeing rcv buffer till .defer_rcv callback 2040 */ 2041 qno = nvmebuf->idx; 2042 lpfc_post_rq_buffer( 2043 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2044 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2045 2046 lpfc_nvmeio_data(phba, 2047 "NVMET RCV BUSY: xri x%x sz %d from %06x\n", 2048 oxid, size, sid); 2049 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2050 atomic_inc(&tgtp->defer_fod); 2051 return; 2052 } 2053 ctxp->rqb_buffer = nvmebuf; 2054 2055 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2056 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2057 "6159 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 2058 ctxp->oxid, rc, 2059 atomic_read(&tgtp->rcv_fcp_cmd_in), 2060 atomic_read(&tgtp->rcv_fcp_cmd_out), 2061 atomic_read(&tgtp->xmt_fcp_release)); 2062 dropit: 2063 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 2064 oxid, size, sid); 2065 if (oxid) { 2066 lpfc_nvmet_defer_release(phba, ctxp); 2067 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 2068 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2069 return; 2070 } 2071 2072 if (ctx_buf) 2073 lpfc_nvmet_ctxbuf_post(phba, ctx_buf); 2074 2075 if (nvmebuf) 2076 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2077 } 2078 2079 /** 2080 * lpfc_nvmet_unsol_ls_event - Process an unsolicited event from an nvme nport 2081 * @phba: pointer to lpfc hba data structure. 2082 * @pring: pointer to a SLI ring. 2083 * @nvmebuf: pointer to received nvme data structure. 2084 * 2085 * This routine is used to process an unsolicited event received from a SLI 2086 * (Service Level Interface) ring. The actual processing of the data buffer 2087 * associated with the unsolicited event is done by invoking the routine 2088 * lpfc_nvmet_unsol_ls_buffer() after properly set up the buffer from the 2089 * SLI RQ on which the unsolicited event was received. 2090 **/ 2091 void 2092 lpfc_nvmet_unsol_ls_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2093 struct lpfc_iocbq *piocb) 2094 { 2095 struct lpfc_dmabuf *d_buf; 2096 struct hbq_dmabuf *nvmebuf; 2097 2098 d_buf = piocb->context2; 2099 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2100 2101 if (phba->nvmet_support == 0) { 2102 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 2103 return; 2104 } 2105 lpfc_nvmet_unsol_ls_buffer(phba, pring, nvmebuf); 2106 } 2107 2108 /** 2109 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 2110 * @phba: pointer to lpfc hba data structure. 2111 * @idx: relative index of MRQ vector 2112 * @nvmebuf: pointer to received nvme data structure. 2113 * 2114 * This routine is used to process an unsolicited event received from a SLI 2115 * (Service Level Interface) ring. The actual processing of the data buffer 2116 * associated with the unsolicited event is done by invoking the routine 2117 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 2118 * SLI RQ on which the unsolicited event was received. 2119 **/ 2120 void 2121 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 2122 uint32_t idx, 2123 struct rqb_dmabuf *nvmebuf, 2124 uint64_t isr_timestamp) 2125 { 2126 if (phba->nvmet_support == 0) { 2127 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2128 return; 2129 } 2130 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, 2131 isr_timestamp); 2132 } 2133 2134 /** 2135 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 2136 * @phba: pointer to a host N_Port data structure. 2137 * @ctxp: Context info for NVME LS Request 2138 * @rspbuf: DMA buffer of NVME command. 2139 * @rspsize: size of the NVME command. 2140 * 2141 * This routine is used for allocating a lpfc-WQE data structure from 2142 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 2143 * passed into the routine for discovery state machine to issue an Extended 2144 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 2145 * and preparation routine that is used by all the discovery state machine 2146 * routines and the NVME command-specific fields will be later set up by 2147 * the individual discovery machine routines after calling this routine 2148 * allocating and preparing a generic WQE data structure. It fills in the 2149 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 2150 * payload and response payload (if expected). The reference count on the 2151 * ndlp is incremented by 1 and the reference to the ndlp is put into 2152 * context1 of the WQE data structure for this WQE to hold the ndlp 2153 * reference for the command's callback function to access later. 2154 * 2155 * Return code 2156 * Pointer to the newly allocated/prepared nvme wqe data structure 2157 * NULL - when nvme wqe data structure allocation/preparation failed 2158 **/ 2159 static struct lpfc_iocbq * 2160 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 2161 struct lpfc_nvmet_rcv_ctx *ctxp, 2162 dma_addr_t rspbuf, uint16_t rspsize) 2163 { 2164 struct lpfc_nodelist *ndlp; 2165 struct lpfc_iocbq *nvmewqe; 2166 union lpfc_wqe128 *wqe; 2167 2168 if (!lpfc_is_link_up(phba)) { 2169 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2170 "6104 NVMET prep LS wqe: link err: " 2171 "NPORT x%x oxid:x%x ste %d\n", 2172 ctxp->sid, ctxp->oxid, ctxp->state); 2173 return NULL; 2174 } 2175 2176 /* Allocate buffer for command wqe */ 2177 nvmewqe = lpfc_sli_get_iocbq(phba); 2178 if (nvmewqe == NULL) { 2179 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2180 "6105 NVMET prep LS wqe: No WQE: " 2181 "NPORT x%x oxid x%x ste %d\n", 2182 ctxp->sid, ctxp->oxid, ctxp->state); 2183 return NULL; 2184 } 2185 2186 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2187 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2188 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2189 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2190 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2191 "6106 NVMET prep LS wqe: No ndlp: " 2192 "NPORT x%x oxid x%x ste %d\n", 2193 ctxp->sid, ctxp->oxid, ctxp->state); 2194 goto nvme_wqe_free_wqeq_exit; 2195 } 2196 ctxp->wqeq = nvmewqe; 2197 2198 /* prevent preparing wqe with NULL ndlp reference */ 2199 nvmewqe->context1 = lpfc_nlp_get(ndlp); 2200 if (nvmewqe->context1 == NULL) 2201 goto nvme_wqe_free_wqeq_exit; 2202 nvmewqe->context2 = ctxp; 2203 2204 wqe = &nvmewqe->wqe; 2205 memset(wqe, 0, sizeof(union lpfc_wqe)); 2206 2207 /* Words 0 - 2 */ 2208 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2209 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 2210 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 2211 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 2212 2213 /* Word 3 */ 2214 2215 /* Word 4 */ 2216 2217 /* Word 5 */ 2218 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 2219 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 2220 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 2221 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 2222 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 2223 2224 /* Word 6 */ 2225 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 2226 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2227 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 2228 2229 /* Word 7 */ 2230 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 2231 CMD_XMIT_SEQUENCE64_WQE); 2232 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 2233 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 2234 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 2235 2236 /* Word 8 */ 2237 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 2238 2239 /* Word 9 */ 2240 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 2241 /* Needs to be set by caller */ 2242 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 2243 2244 /* Word 10 */ 2245 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 2246 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2247 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 2248 LPFC_WQE_LENLOC_WORD12); 2249 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 2250 2251 /* Word 11 */ 2252 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 2253 LPFC_WQE_CQ_ID_DEFAULT); 2254 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 2255 OTHER_COMMAND); 2256 2257 /* Word 12 */ 2258 wqe->xmit_sequence.xmit_len = rspsize; 2259 2260 nvmewqe->retry = 1; 2261 nvmewqe->vport = phba->pport; 2262 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2263 nvmewqe->iocb_flag |= LPFC_IO_NVME_LS; 2264 2265 /* Xmit NVMET response to remote NPORT <did> */ 2266 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2267 "6039 Xmit NVMET LS response to remote " 2268 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 2269 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 2270 rspsize); 2271 return nvmewqe; 2272 2273 nvme_wqe_free_wqeq_exit: 2274 nvmewqe->context2 = NULL; 2275 nvmewqe->context3 = NULL; 2276 lpfc_sli_release_iocbq(phba, nvmewqe); 2277 return NULL; 2278 } 2279 2280 2281 static struct lpfc_iocbq * 2282 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 2283 struct lpfc_nvmet_rcv_ctx *ctxp) 2284 { 2285 struct nvmefc_tgt_fcp_req *rsp = &ctxp->ctx.fcp_req; 2286 struct lpfc_nvmet_tgtport *tgtp; 2287 struct sli4_sge *sgl; 2288 struct lpfc_nodelist *ndlp; 2289 struct lpfc_iocbq *nvmewqe; 2290 struct scatterlist *sgel; 2291 union lpfc_wqe128 *wqe; 2292 struct ulp_bde64 *bde; 2293 uint32_t *txrdy; 2294 dma_addr_t physaddr; 2295 int i, cnt; 2296 int do_pbde; 2297 int xc = 1; 2298 2299 if (!lpfc_is_link_up(phba)) { 2300 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2301 "6107 NVMET prep FCP wqe: link err:" 2302 "NPORT x%x oxid x%x ste %d\n", 2303 ctxp->sid, ctxp->oxid, ctxp->state); 2304 return NULL; 2305 } 2306 2307 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2308 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2309 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2310 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2311 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2312 "6108 NVMET prep FCP wqe: no ndlp: " 2313 "NPORT x%x oxid x%x ste %d\n", 2314 ctxp->sid, ctxp->oxid, ctxp->state); 2315 return NULL; 2316 } 2317 2318 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { 2319 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2320 "6109 NVMET prep FCP wqe: seg cnt err: " 2321 "NPORT x%x oxid x%x ste %d cnt %d\n", 2322 ctxp->sid, ctxp->oxid, ctxp->state, 2323 phba->cfg_nvme_seg_cnt); 2324 return NULL; 2325 } 2326 2327 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2328 nvmewqe = ctxp->wqeq; 2329 if (nvmewqe == NULL) { 2330 /* Allocate buffer for command wqe */ 2331 nvmewqe = ctxp->ctxbuf->iocbq; 2332 if (nvmewqe == NULL) { 2333 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2334 "6110 NVMET prep FCP wqe: No " 2335 "WQE: NPORT x%x oxid x%x ste %d\n", 2336 ctxp->sid, ctxp->oxid, ctxp->state); 2337 return NULL; 2338 } 2339 ctxp->wqeq = nvmewqe; 2340 xc = 0; /* create new XRI */ 2341 nvmewqe->sli4_lxritag = NO_XRI; 2342 nvmewqe->sli4_xritag = NO_XRI; 2343 } 2344 2345 /* Sanity check */ 2346 if (((ctxp->state == LPFC_NVMET_STE_RCV) && 2347 (ctxp->entry_cnt == 1)) || 2348 (ctxp->state == LPFC_NVMET_STE_DATA)) { 2349 wqe = &nvmewqe->wqe; 2350 } else { 2351 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2352 "6111 Wrong state NVMET FCP: %d cnt %d\n", 2353 ctxp->state, ctxp->entry_cnt); 2354 return NULL; 2355 } 2356 2357 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 2358 switch (rsp->op) { 2359 case NVMET_FCOP_READDATA: 2360 case NVMET_FCOP_READDATA_RSP: 2361 /* From the tsend template, initialize words 7 - 11 */ 2362 memcpy(&wqe->words[7], 2363 &lpfc_tsend_cmd_template.words[7], 2364 sizeof(uint32_t) * 5); 2365 2366 /* Words 0 - 2 : The first sg segment */ 2367 sgel = &rsp->sg[0]; 2368 physaddr = sg_dma_address(sgel); 2369 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2370 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 2371 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 2372 wqe->fcp_tsend.bde.addrHigh = 2373 cpu_to_le32(putPaddrHigh(physaddr)); 2374 2375 /* Word 3 */ 2376 wqe->fcp_tsend.payload_offset_len = 0; 2377 2378 /* Word 4 */ 2379 wqe->fcp_tsend.relative_offset = ctxp->offset; 2380 2381 /* Word 5 */ 2382 wqe->fcp_tsend.reserved = 0; 2383 2384 /* Word 6 */ 2385 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2386 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2387 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2388 nvmewqe->sli4_xritag); 2389 2390 /* Word 7 - set ar later */ 2391 2392 /* Word 8 */ 2393 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2394 2395 /* Word 9 */ 2396 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2397 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2398 2399 /* Word 10 - set wqes later, in template xc=1 */ 2400 if (!xc) 2401 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); 2402 2403 /* Word 11 - set sup, irsp, irsplen later */ 2404 do_pbde = 0; 2405 2406 /* Word 12 */ 2407 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2408 2409 /* Setup 2 SKIP SGEs */ 2410 sgl->addr_hi = 0; 2411 sgl->addr_lo = 0; 2412 sgl->word2 = 0; 2413 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2414 sgl->word2 = cpu_to_le32(sgl->word2); 2415 sgl->sge_len = 0; 2416 sgl++; 2417 sgl->addr_hi = 0; 2418 sgl->addr_lo = 0; 2419 sgl->word2 = 0; 2420 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2421 sgl->word2 = cpu_to_le32(sgl->word2); 2422 sgl->sge_len = 0; 2423 sgl++; 2424 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2425 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2426 2427 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2428 2429 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2430 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP) 2431 bf_set(wqe_sup, 2432 &wqe->fcp_tsend.wqe_com, 1); 2433 } else { 2434 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2435 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2436 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2437 ((rsp->rsplen >> 2) - 1)); 2438 memcpy(&wqe->words[16], rsp->rspaddr, 2439 rsp->rsplen); 2440 } 2441 } else { 2442 atomic_inc(&tgtp->xmt_fcp_read); 2443 2444 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2445 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2446 } 2447 break; 2448 2449 case NVMET_FCOP_WRITEDATA: 2450 /* From the treceive template, initialize words 3 - 11 */ 2451 memcpy(&wqe->words[3], 2452 &lpfc_treceive_cmd_template.words[3], 2453 sizeof(uint32_t) * 9); 2454 2455 /* Words 0 - 2 : The first sg segment */ 2456 txrdy = dma_pool_alloc(phba->txrdy_payload_pool, 2457 GFP_KERNEL, &physaddr); 2458 if (!txrdy) { 2459 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2460 "6041 Bad txrdy buffer: oxid x%x\n", 2461 ctxp->oxid); 2462 return NULL; 2463 } 2464 ctxp->txrdy = txrdy; 2465 ctxp->txrdy_phys = physaddr; 2466 wqe->fcp_treceive.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2467 wqe->fcp_treceive.bde.tus.f.bdeSize = TXRDY_PAYLOAD_LEN; 2468 wqe->fcp_treceive.bde.addrLow = 2469 cpu_to_le32(putPaddrLow(physaddr)); 2470 wqe->fcp_treceive.bde.addrHigh = 2471 cpu_to_le32(putPaddrHigh(physaddr)); 2472 2473 /* Word 4 */ 2474 wqe->fcp_treceive.relative_offset = ctxp->offset; 2475 2476 /* Word 6 */ 2477 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2478 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2479 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2480 nvmewqe->sli4_xritag); 2481 2482 /* Word 7 */ 2483 2484 /* Word 8 */ 2485 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2486 2487 /* Word 9 */ 2488 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2489 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2490 2491 /* Word 10 - in template xc=1 */ 2492 if (!xc) 2493 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); 2494 2495 /* Word 11 - set pbde later */ 2496 if (phba->cfg_enable_pbde) { 2497 do_pbde = 1; 2498 } else { 2499 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); 2500 do_pbde = 0; 2501 } 2502 2503 /* Word 12 */ 2504 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2505 2506 /* Setup 1 TXRDY and 1 SKIP SGE */ 2507 txrdy[0] = 0; 2508 txrdy[1] = cpu_to_be32(rsp->transfer_length); 2509 txrdy[2] = 0; 2510 2511 sgl->addr_hi = putPaddrHigh(physaddr); 2512 sgl->addr_lo = putPaddrLow(physaddr); 2513 sgl->word2 = 0; 2514 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 2515 sgl->word2 = cpu_to_le32(sgl->word2); 2516 sgl->sge_len = cpu_to_le32(TXRDY_PAYLOAD_LEN); 2517 sgl++; 2518 sgl->addr_hi = 0; 2519 sgl->addr_lo = 0; 2520 sgl->word2 = 0; 2521 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2522 sgl->word2 = cpu_to_le32(sgl->word2); 2523 sgl->sge_len = 0; 2524 sgl++; 2525 atomic_inc(&tgtp->xmt_fcp_write); 2526 break; 2527 2528 case NVMET_FCOP_RSP: 2529 /* From the treceive template, initialize words 4 - 11 */ 2530 memcpy(&wqe->words[4], 2531 &lpfc_trsp_cmd_template.words[4], 2532 sizeof(uint32_t) * 8); 2533 2534 /* Words 0 - 2 */ 2535 physaddr = rsp->rspdma; 2536 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2537 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2538 wqe->fcp_trsp.bde.addrLow = 2539 cpu_to_le32(putPaddrLow(physaddr)); 2540 wqe->fcp_trsp.bde.addrHigh = 2541 cpu_to_le32(putPaddrHigh(physaddr)); 2542 2543 /* Word 3 */ 2544 wqe->fcp_trsp.response_len = rsp->rsplen; 2545 2546 /* Word 6 */ 2547 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2548 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2549 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2550 nvmewqe->sli4_xritag); 2551 2552 /* Word 7 */ 2553 2554 /* Word 8 */ 2555 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2556 2557 /* Word 9 */ 2558 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2559 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2560 2561 /* Word 10 */ 2562 if (xc) 2563 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); 2564 2565 /* Word 11 */ 2566 /* In template wqes=0 irsp=0 irsplen=0 - good response */ 2567 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { 2568 /* Bad response - embed it */ 2569 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2570 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2571 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2572 ((rsp->rsplen >> 2) - 1)); 2573 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2574 } 2575 do_pbde = 0; 2576 2577 /* Word 12 */ 2578 wqe->fcp_trsp.rsvd_12_15[0] = 0; 2579 2580 /* Use rspbuf, NOT sg list */ 2581 rsp->sg_cnt = 0; 2582 sgl->word2 = 0; 2583 atomic_inc(&tgtp->xmt_fcp_rsp); 2584 break; 2585 2586 default: 2587 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2588 "6064 Unknown Rsp Op %d\n", 2589 rsp->op); 2590 return NULL; 2591 } 2592 2593 nvmewqe->retry = 1; 2594 nvmewqe->vport = phba->pport; 2595 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2596 nvmewqe->context1 = ndlp; 2597 2598 for (i = 0; i < rsp->sg_cnt; i++) { 2599 sgel = &rsp->sg[i]; 2600 physaddr = sg_dma_address(sgel); 2601 cnt = sg_dma_len(sgel); 2602 sgl->addr_hi = putPaddrHigh(physaddr); 2603 sgl->addr_lo = putPaddrLow(physaddr); 2604 sgl->word2 = 0; 2605 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 2606 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 2607 if ((i+1) == rsp->sg_cnt) 2608 bf_set(lpfc_sli4_sge_last, sgl, 1); 2609 sgl->word2 = cpu_to_le32(sgl->word2); 2610 sgl->sge_len = cpu_to_le32(cnt); 2611 if (i == 0) { 2612 bde = (struct ulp_bde64 *)&wqe->words[13]; 2613 if (do_pbde) { 2614 /* Words 13-15 (PBDE) */ 2615 bde->addrLow = sgl->addr_lo; 2616 bde->addrHigh = sgl->addr_hi; 2617 bde->tus.f.bdeSize = 2618 le32_to_cpu(sgl->sge_len); 2619 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2620 bde->tus.w = cpu_to_le32(bde->tus.w); 2621 } else { 2622 memset(bde, 0, sizeof(struct ulp_bde64)); 2623 } 2624 } 2625 sgl++; 2626 ctxp->offset += cnt; 2627 } 2628 ctxp->state = LPFC_NVMET_STE_DATA; 2629 ctxp->entry_cnt++; 2630 return nvmewqe; 2631 } 2632 2633 /** 2634 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 2635 * @phba: Pointer to HBA context object. 2636 * @cmdwqe: Pointer to driver command WQE object. 2637 * @wcqe: Pointer to driver response CQE object. 2638 * 2639 * The function is called from SLI ring event handler with no 2640 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 2641 * The function frees memory resources used for the NVME commands. 2642 **/ 2643 static void 2644 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 2645 struct lpfc_wcqe_complete *wcqe) 2646 { 2647 struct lpfc_nvmet_rcv_ctx *ctxp; 2648 struct lpfc_nvmet_tgtport *tgtp; 2649 uint32_t status, result; 2650 unsigned long flags; 2651 bool released = false; 2652 2653 ctxp = cmdwqe->context2; 2654 status = bf_get(lpfc_wcqe_c_status, wcqe); 2655 result = wcqe->parameter; 2656 2657 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2658 if (ctxp->flag & LPFC_NVMET_ABORT_OP) 2659 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 2660 2661 ctxp->state = LPFC_NVMET_STE_DONE; 2662 2663 /* Check if we already received a free context call 2664 * and we have completed processing an abort situation. 2665 */ 2666 spin_lock_irqsave(&ctxp->ctxlock, flags); 2667 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) && 2668 !(ctxp->flag & LPFC_NVMET_XBUSY)) { 2669 list_del(&ctxp->list); 2670 released = true; 2671 } 2672 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2673 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 2674 atomic_inc(&tgtp->xmt_abort_rsp); 2675 2676 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2677 "6165 ABORT cmpl: xri x%x flg x%x (%d) " 2678 "WCQE: %08x %08x %08x %08x\n", 2679 ctxp->oxid, ctxp->flag, released, 2680 wcqe->word0, wcqe->total_data_placed, 2681 result, wcqe->word3); 2682 2683 cmdwqe->context2 = NULL; 2684 cmdwqe->context3 = NULL; 2685 /* 2686 * if transport has released ctx, then can reuse it. Otherwise, 2687 * will be recycled by transport release call. 2688 */ 2689 if (released) 2690 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 2691 2692 /* This is the iocbq for the abort, not the command */ 2693 lpfc_sli_release_iocbq(phba, cmdwqe); 2694 2695 /* Since iaab/iaar are NOT set, there is no work left. 2696 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted 2697 * should have been called already. 2698 */ 2699 } 2700 2701 /** 2702 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 2703 * @phba: Pointer to HBA context object. 2704 * @cmdwqe: Pointer to driver command WQE object. 2705 * @wcqe: Pointer to driver response CQE object. 2706 * 2707 * The function is called from SLI ring event handler with no 2708 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 2709 * The function frees memory resources used for the NVME commands. 2710 **/ 2711 static void 2712 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 2713 struct lpfc_wcqe_complete *wcqe) 2714 { 2715 struct lpfc_nvmet_rcv_ctx *ctxp; 2716 struct lpfc_nvmet_tgtport *tgtp; 2717 unsigned long flags; 2718 uint32_t status, result; 2719 bool released = false; 2720 2721 ctxp = cmdwqe->context2; 2722 status = bf_get(lpfc_wcqe_c_status, wcqe); 2723 result = wcqe->parameter; 2724 2725 if (!ctxp) { 2726 /* if context is clear, related io alrady complete */ 2727 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2728 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 2729 wcqe->word0, wcqe->total_data_placed, 2730 result, wcqe->word3); 2731 return; 2732 } 2733 2734 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2735 if (ctxp->flag & LPFC_NVMET_ABORT_OP) 2736 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 2737 2738 /* Sanity check */ 2739 if (ctxp->state != LPFC_NVMET_STE_ABORT) { 2740 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2741 "6112 ABTS Wrong state:%d oxid x%x\n", 2742 ctxp->state, ctxp->oxid); 2743 } 2744 2745 /* Check if we already received a free context call 2746 * and we have completed processing an abort situation. 2747 */ 2748 ctxp->state = LPFC_NVMET_STE_DONE; 2749 spin_lock_irqsave(&ctxp->ctxlock, flags); 2750 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) && 2751 !(ctxp->flag & LPFC_NVMET_XBUSY)) { 2752 list_del(&ctxp->list); 2753 released = true; 2754 } 2755 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2756 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 2757 atomic_inc(&tgtp->xmt_abort_rsp); 2758 2759 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2760 "6316 ABTS cmpl xri x%x flg x%x (%x) " 2761 "WCQE: %08x %08x %08x %08x\n", 2762 ctxp->oxid, ctxp->flag, released, 2763 wcqe->word0, wcqe->total_data_placed, 2764 result, wcqe->word3); 2765 2766 cmdwqe->context2 = NULL; 2767 cmdwqe->context3 = NULL; 2768 /* 2769 * if transport has released ctx, then can reuse it. Otherwise, 2770 * will be recycled by transport release call. 2771 */ 2772 if (released) 2773 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 2774 2775 /* Since iaab/iaar are NOT set, there is no work left. 2776 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted 2777 * should have been called already. 2778 */ 2779 } 2780 2781 /** 2782 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 2783 * @phba: Pointer to HBA context object. 2784 * @cmdwqe: Pointer to driver command WQE object. 2785 * @wcqe: Pointer to driver response CQE object. 2786 * 2787 * The function is called from SLI ring event handler with no 2788 * lock held. This function is the completion handler for NVME ABTS for LS cmds 2789 * The function frees memory resources used for the NVME commands. 2790 **/ 2791 static void 2792 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 2793 struct lpfc_wcqe_complete *wcqe) 2794 { 2795 struct lpfc_nvmet_rcv_ctx *ctxp; 2796 struct lpfc_nvmet_tgtport *tgtp; 2797 uint32_t status, result; 2798 2799 ctxp = cmdwqe->context2; 2800 status = bf_get(lpfc_wcqe_c_status, wcqe); 2801 result = wcqe->parameter; 2802 2803 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2804 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 2805 2806 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2807 "6083 Abort cmpl: ctx %p WCQE:%08x %08x %08x %08x\n", 2808 ctxp, wcqe->word0, wcqe->total_data_placed, 2809 result, wcqe->word3); 2810 2811 if (!ctxp) { 2812 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2813 "6415 NVMET LS Abort No ctx: WCQE: " 2814 "%08x %08x %08x %08x\n", 2815 wcqe->word0, wcqe->total_data_placed, 2816 result, wcqe->word3); 2817 2818 lpfc_sli_release_iocbq(phba, cmdwqe); 2819 return; 2820 } 2821 2822 if (ctxp->state != LPFC_NVMET_STE_LS_ABORT) { 2823 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 2824 "6416 NVMET LS abort cmpl state mismatch: " 2825 "oxid x%x: %d %d\n", 2826 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 2827 } 2828 2829 cmdwqe->context2 = NULL; 2830 cmdwqe->context3 = NULL; 2831 lpfc_sli_release_iocbq(phba, cmdwqe); 2832 kfree(ctxp); 2833 } 2834 2835 static int 2836 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 2837 struct lpfc_nvmet_rcv_ctx *ctxp, 2838 uint32_t sid, uint16_t xri) 2839 { 2840 struct lpfc_nvmet_tgtport *tgtp; 2841 struct lpfc_iocbq *abts_wqeq; 2842 union lpfc_wqe128 *wqe_abts; 2843 struct lpfc_nodelist *ndlp; 2844 2845 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2846 "6067 ABTS: sid %x xri x%x/x%x\n", 2847 sid, xri, ctxp->wqeq->sli4_xritag); 2848 2849 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2850 2851 ndlp = lpfc_findnode_did(phba->pport, sid); 2852 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2853 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2854 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2855 atomic_inc(&tgtp->xmt_abort_rsp_error); 2856 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2857 "6134 Drop ABTS - wrong NDLP state x%x.\n", 2858 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 2859 2860 /* No failure to an ABTS request. */ 2861 return 0; 2862 } 2863 2864 abts_wqeq = ctxp->wqeq; 2865 wqe_abts = &abts_wqeq->wqe; 2866 2867 /* 2868 * Since we zero the whole WQE, we need to ensure we set the WQE fields 2869 * that were initialized in lpfc_sli4_nvmet_alloc. 2870 */ 2871 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 2872 2873 /* Word 5 */ 2874 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 2875 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 2876 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 2877 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 2878 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 2879 2880 /* Word 6 */ 2881 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 2882 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2883 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 2884 abts_wqeq->sli4_xritag); 2885 2886 /* Word 7 */ 2887 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 2888 CMD_XMIT_SEQUENCE64_WQE); 2889 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 2890 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 2891 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 2892 2893 /* Word 8 */ 2894 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 2895 2896 /* Word 9 */ 2897 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 2898 /* Needs to be set by caller */ 2899 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 2900 2901 /* Word 10 */ 2902 bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1); 2903 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2904 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 2905 LPFC_WQE_LENLOC_WORD12); 2906 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 2907 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 2908 2909 /* Word 11 */ 2910 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 2911 LPFC_WQE_CQ_ID_DEFAULT); 2912 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 2913 OTHER_COMMAND); 2914 2915 abts_wqeq->vport = phba->pport; 2916 abts_wqeq->context1 = ndlp; 2917 abts_wqeq->context2 = ctxp; 2918 abts_wqeq->context3 = NULL; 2919 abts_wqeq->rsvd2 = 0; 2920 /* hba_wqidx should already be setup from command we are aborting */ 2921 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 2922 abts_wqeq->iocb.ulpLe = 1; 2923 2924 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2925 "6069 Issue ABTS to xri x%x reqtag x%x\n", 2926 xri, abts_wqeq->iotag); 2927 return 1; 2928 } 2929 2930 static int 2931 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 2932 struct lpfc_nvmet_rcv_ctx *ctxp, 2933 uint32_t sid, uint16_t xri) 2934 { 2935 struct lpfc_nvmet_tgtport *tgtp; 2936 struct lpfc_iocbq *abts_wqeq; 2937 union lpfc_wqe128 *abts_wqe; 2938 struct lpfc_nodelist *ndlp; 2939 unsigned long flags; 2940 int rc; 2941 2942 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2943 if (!ctxp->wqeq) { 2944 ctxp->wqeq = ctxp->ctxbuf->iocbq; 2945 ctxp->wqeq->hba_wqidx = 0; 2946 } 2947 2948 ndlp = lpfc_findnode_did(phba->pport, sid); 2949 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2950 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2951 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2952 atomic_inc(&tgtp->xmt_abort_rsp_error); 2953 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2954 "6160 Drop ABORT - wrong NDLP state x%x.\n", 2955 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 2956 2957 /* No failure to an ABTS request. */ 2958 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2959 return 0; 2960 } 2961 2962 /* Issue ABTS for this WQE based on iotag */ 2963 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 2964 if (!ctxp->abort_wqeq) { 2965 atomic_inc(&tgtp->xmt_abort_rsp_error); 2966 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 2967 "6161 ABORT failed: No wqeqs: " 2968 "xri: x%x\n", ctxp->oxid); 2969 /* No failure to an ABTS request. */ 2970 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2971 return 0; 2972 } 2973 abts_wqeq = ctxp->abort_wqeq; 2974 abts_wqe = &abts_wqeq->wqe; 2975 ctxp->state = LPFC_NVMET_STE_ABORT; 2976 2977 /* Announce entry to new IO submit field. */ 2978 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2979 "6162 ABORT Request to rport DID x%06x " 2980 "for xri x%x x%x\n", 2981 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 2982 2983 /* If the hba is getting reset, this flag is set. It is 2984 * cleared when the reset is complete and rings reestablished. 2985 */ 2986 spin_lock_irqsave(&phba->hbalock, flags); 2987 /* driver queued commands are in process of being flushed */ 2988 if (phba->hba_flag & HBA_NVME_IOQ_FLUSH) { 2989 spin_unlock_irqrestore(&phba->hbalock, flags); 2990 atomic_inc(&tgtp->xmt_abort_rsp_error); 2991 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 2992 "6163 Driver in reset cleanup - flushing " 2993 "NVME Req now. hba_flag x%x oxid x%x\n", 2994 phba->hba_flag, ctxp->oxid); 2995 lpfc_sli_release_iocbq(phba, abts_wqeq); 2996 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 2997 return 0; 2998 } 2999 3000 /* Outstanding abort is in progress */ 3001 if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) { 3002 spin_unlock_irqrestore(&phba->hbalock, flags); 3003 atomic_inc(&tgtp->xmt_abort_rsp_error); 3004 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 3005 "6164 Outstanding NVME I/O Abort Request " 3006 "still pending on oxid x%x\n", 3007 ctxp->oxid); 3008 lpfc_sli_release_iocbq(phba, abts_wqeq); 3009 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 3010 return 0; 3011 } 3012 3013 /* Ready - mark outstanding as aborted by driver. */ 3014 abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED; 3015 3016 /* WQEs are reused. Clear stale data and set key fields to 3017 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag. 3018 */ 3019 memset(abts_wqe, 0, sizeof(union lpfc_wqe)); 3020 3021 /* word 3 */ 3022 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 3023 3024 /* word 7 */ 3025 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 3026 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 3027 3028 /* word 8 - tell the FW to abort the IO associated with this 3029 * outstanding exchange ID. 3030 */ 3031 abts_wqe->abort_cmd.wqe_com.abort_tag = ctxp->wqeq->sli4_xritag; 3032 3033 /* word 9 - this is the iotag for the abts_wqe completion. */ 3034 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 3035 abts_wqeq->iotag); 3036 3037 /* word 10 */ 3038 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 3039 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 3040 3041 /* word 11 */ 3042 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 3043 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 3044 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 3045 3046 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3047 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 3048 abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 3049 abts_wqeq->iocb_cmpl = 0; 3050 abts_wqeq->iocb_flag |= LPFC_IO_NVME; 3051 abts_wqeq->context2 = ctxp; 3052 abts_wqeq->vport = phba->pport; 3053 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq); 3054 spin_unlock_irqrestore(&phba->hbalock, flags); 3055 if (rc == WQE_SUCCESS) { 3056 atomic_inc(&tgtp->xmt_abort_sol); 3057 return 0; 3058 } 3059 3060 atomic_inc(&tgtp->xmt_abort_rsp_error); 3061 ctxp->flag &= ~LPFC_NVMET_ABORT_OP; 3062 lpfc_sli_release_iocbq(phba, abts_wqeq); 3063 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3064 "6166 Failed ABORT issue_wqe with status x%x " 3065 "for oxid x%x.\n", 3066 rc, ctxp->oxid); 3067 return 1; 3068 } 3069 3070 3071 static int 3072 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 3073 struct lpfc_nvmet_rcv_ctx *ctxp, 3074 uint32_t sid, uint16_t xri) 3075 { 3076 struct lpfc_nvmet_tgtport *tgtp; 3077 struct lpfc_iocbq *abts_wqeq; 3078 unsigned long flags; 3079 int rc; 3080 3081 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3082 if (!ctxp->wqeq) { 3083 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3084 ctxp->wqeq->hba_wqidx = 0; 3085 } 3086 3087 if (ctxp->state == LPFC_NVMET_STE_FREE) { 3088 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 3089 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 3090 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 3091 rc = WQE_BUSY; 3092 goto aerr; 3093 } 3094 ctxp->state = LPFC_NVMET_STE_ABORT; 3095 ctxp->entry_cnt++; 3096 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 3097 if (rc == 0) 3098 goto aerr; 3099 3100 spin_lock_irqsave(&phba->hbalock, flags); 3101 abts_wqeq = ctxp->wqeq; 3102 abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 3103 abts_wqeq->iocb_cmpl = NULL; 3104 abts_wqeq->iocb_flag |= LPFC_IO_NVMET; 3105 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq); 3106 spin_unlock_irqrestore(&phba->hbalock, flags); 3107 if (rc == WQE_SUCCESS) { 3108 return 0; 3109 } 3110 3111 aerr: 3112 spin_lock_irqsave(&ctxp->ctxlock, flags); 3113 if (ctxp->flag & LPFC_NVMET_CTX_RLS) 3114 list_del(&ctxp->list); 3115 ctxp->flag &= ~(LPFC_NVMET_ABORT_OP | LPFC_NVMET_CTX_RLS); 3116 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3117 3118 atomic_inc(&tgtp->xmt_abort_rsp_error); 3119 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3120 "6135 Failed to Issue ABTS for oxid x%x. Status x%x\n", 3121 ctxp->oxid, rc); 3122 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3123 return 1; 3124 } 3125 3126 static int 3127 lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *phba, 3128 struct lpfc_nvmet_rcv_ctx *ctxp, 3129 uint32_t sid, uint16_t xri) 3130 { 3131 struct lpfc_nvmet_tgtport *tgtp; 3132 struct lpfc_iocbq *abts_wqeq; 3133 union lpfc_wqe128 *wqe_abts; 3134 unsigned long flags; 3135 int rc; 3136 3137 if ((ctxp->state == LPFC_NVMET_STE_LS_RCV && ctxp->entry_cnt == 1) || 3138 (ctxp->state == LPFC_NVMET_STE_LS_RSP && ctxp->entry_cnt == 2)) { 3139 ctxp->state = LPFC_NVMET_STE_LS_ABORT; 3140 ctxp->entry_cnt++; 3141 } else { 3142 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 3143 "6418 NVMET LS abort state mismatch " 3144 "IO x%x: %d %d\n", 3145 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3146 ctxp->state = LPFC_NVMET_STE_LS_ABORT; 3147 } 3148 3149 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3150 if (!ctxp->wqeq) { 3151 /* Issue ABTS for this WQE based on iotag */ 3152 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 3153 if (!ctxp->wqeq) { 3154 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3155 "6068 Abort failed: No wqeqs: " 3156 "xri: x%x\n", xri); 3157 /* No failure to an ABTS request. */ 3158 kfree(ctxp); 3159 return 0; 3160 } 3161 } 3162 abts_wqeq = ctxp->wqeq; 3163 wqe_abts = &abts_wqeq->wqe; 3164 3165 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 3166 rc = WQE_BUSY; 3167 goto out; 3168 } 3169 3170 spin_lock_irqsave(&phba->hbalock, flags); 3171 abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 3172 abts_wqeq->iocb_cmpl = 0; 3173 abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS; 3174 rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, abts_wqeq); 3175 spin_unlock_irqrestore(&phba->hbalock, flags); 3176 if (rc == WQE_SUCCESS) { 3177 atomic_inc(&tgtp->xmt_abort_unsol); 3178 return 0; 3179 } 3180 out: 3181 atomic_inc(&tgtp->xmt_abort_rsp_error); 3182 abts_wqeq->context2 = NULL; 3183 abts_wqeq->context3 = NULL; 3184 lpfc_sli_release_iocbq(phba, abts_wqeq); 3185 kfree(ctxp); 3186 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS, 3187 "6056 Failed to Issue ABTS. Status x%x\n", rc); 3188 return 0; 3189 } 3190