1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <asm/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include "lpfc_version.h" 40 #include "lpfc_hw4.h" 41 #include "lpfc_hw.h" 42 #include "lpfc_sli.h" 43 #include "lpfc_sli4.h" 44 #include "lpfc_nl.h" 45 #include "lpfc_disc.h" 46 #include "lpfc.h" 47 #include "lpfc_scsi.h" 48 #include "lpfc_nvme.h" 49 #include "lpfc_logmsg.h" 50 #include "lpfc_crtn.h" 51 #include "lpfc_vport.h" 52 #include "lpfc_debugfs.h" 53 54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 55 struct lpfc_async_xchg_ctx *, 56 dma_addr_t rspbuf, 57 uint16_t rspsize); 58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 59 struct lpfc_async_xchg_ctx *); 60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 61 struct lpfc_async_xchg_ctx *, 62 uint32_t, uint16_t); 63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 64 struct lpfc_async_xchg_ctx *, 65 uint32_t, uint16_t); 66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, 67 struct lpfc_async_xchg_ctx *); 68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *); 69 70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf); 71 72 static union lpfc_wqe128 lpfc_tsend_cmd_template; 73 static union lpfc_wqe128 lpfc_treceive_cmd_template; 74 static union lpfc_wqe128 lpfc_trsp_cmd_template; 75 76 /* Setup WQE templates for NVME IOs */ 77 void 78 lpfc_nvmet_cmd_template(void) 79 { 80 union lpfc_wqe128 *wqe; 81 82 /* TSEND template */ 83 wqe = &lpfc_tsend_cmd_template; 84 memset(wqe, 0, sizeof(union lpfc_wqe128)); 85 86 /* Word 0, 1, 2 - BDE is variable */ 87 88 /* Word 3 - payload_offset_len is zero */ 89 90 /* Word 4 - relative_offset is variable */ 91 92 /* Word 5 - is zero */ 93 94 /* Word 6 - ctxt_tag, xri_tag is variable */ 95 96 /* Word 7 - wqe_ar is variable */ 97 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 98 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); 99 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); 100 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); 101 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 102 103 /* Word 8 - abort_tag is variable */ 104 105 /* Word 9 - reqtag, rcvoxid is variable */ 106 107 /* Word 10 - wqes, xc is variable */ 108 bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG); 109 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 110 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 111 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 112 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 113 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); 114 115 /* Word 11 - sup, irsp, irsplen is variable */ 116 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); 117 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 118 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 119 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 120 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 121 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); 122 123 /* Word 12 - fcp_data_len is variable */ 124 125 /* Word 13, 14, 15 - PBDE is zero */ 126 127 /* TRECEIVE template */ 128 wqe = &lpfc_treceive_cmd_template; 129 memset(wqe, 0, sizeof(union lpfc_wqe128)); 130 131 /* Word 0, 1, 2 - BDE is variable */ 132 133 /* Word 3 */ 134 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 135 136 /* Word 4 - relative_offset is variable */ 137 138 /* Word 5 - is zero */ 139 140 /* Word 6 - ctxt_tag, xri_tag is variable */ 141 142 /* Word 7 */ 143 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); 144 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); 145 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); 146 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); 147 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 148 149 /* Word 8 - abort_tag is variable */ 150 151 /* Word 9 - reqtag, rcvoxid is variable */ 152 153 /* Word 10 - xc is variable */ 154 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 155 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 156 bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG); 157 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 158 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); 159 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 160 161 /* Word 11 - pbde is variable */ 162 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); 163 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 164 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); 165 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 166 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 167 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); 168 169 /* Word 12 - fcp_data_len is variable */ 170 171 /* Word 13, 14, 15 - PBDE is variable */ 172 173 /* TRSP template */ 174 wqe = &lpfc_trsp_cmd_template; 175 memset(wqe, 0, sizeof(union lpfc_wqe128)); 176 177 /* Word 0, 1, 2 - BDE is variable */ 178 179 /* Word 3 - response_len is variable */ 180 181 /* Word 4, 5 - is zero */ 182 183 /* Word 6 - ctxt_tag, xri_tag is variable */ 184 185 /* Word 7 */ 186 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 187 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); 188 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); 189 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); 190 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ 191 192 /* Word 8 - abort_tag is variable */ 193 194 /* Word 9 - reqtag is variable */ 195 196 /* Word 10 wqes, xc is variable */ 197 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); 198 bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG); 199 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 200 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); 201 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); 202 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); 203 204 /* Word 11 irsp, irsplen is variable */ 205 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); 206 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 207 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); 208 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 209 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 210 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); 211 212 /* Word 12, 13, 14, 15 - is zero */ 213 } 214 215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 216 static struct lpfc_async_xchg_ctx * 217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri) 218 { 219 struct lpfc_async_xchg_ctx *ctxp; 220 unsigned long iflag; 221 bool found = false; 222 223 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 224 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 225 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 226 continue; 227 228 found = true; 229 break; 230 } 231 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 232 if (found) 233 return ctxp; 234 235 return NULL; 236 } 237 238 static struct lpfc_async_xchg_ctx * 239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid) 240 { 241 struct lpfc_async_xchg_ctx *ctxp; 242 unsigned long iflag; 243 bool found = false; 244 245 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 246 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 247 if (ctxp->oxid != oxid || ctxp->sid != sid) 248 continue; 249 250 found = true; 251 break; 252 } 253 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 254 if (found) 255 return ctxp; 256 257 return NULL; 258 } 259 #endif 260 261 static void 262 lpfc_nvmet_defer_release(struct lpfc_hba *phba, 263 struct lpfc_async_xchg_ctx *ctxp) 264 { 265 lockdep_assert_held(&ctxp->ctxlock); 266 267 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 268 "6313 NVMET Defer ctx release oxid x%x flg x%x\n", 269 ctxp->oxid, ctxp->flag); 270 271 if (ctxp->flag & LPFC_NVME_CTX_RLS) 272 return; 273 274 ctxp->flag |= LPFC_NVME_CTX_RLS; 275 spin_lock(&phba->sli4_hba.t_active_list_lock); 276 list_del(&ctxp->list); 277 spin_unlock(&phba->sli4_hba.t_active_list_lock); 278 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 279 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 280 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 281 } 282 283 /** 284 * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the 285 * transmission of an NVME LS response. 286 * @phba: Pointer to HBA context object. 287 * @cmdwqe: Pointer to driver command WQE object. 288 * @rspwqe: Pointer to driver response WQE object. 289 * 290 * The function is called from SLI ring event handler with no 291 * lock held. The function frees memory resources used for the command 292 * used to send the NVME LS RSP. 293 **/ 294 void 295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 296 struct lpfc_iocbq *rspwqe) 297 { 298 struct lpfc_async_xchg_ctx *axchg = cmdwqe->context_un.axchg; 299 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 300 struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp; 301 uint32_t status, result; 302 303 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; 304 result = wcqe->parameter; 305 306 if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) { 307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 308 "6410 NVMEx LS cmpl state mismatch IO x%x: " 309 "%d %d\n", 310 axchg->oxid, axchg->state, axchg->entry_cnt); 311 } 312 313 lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n", 314 axchg->oxid, status, result); 315 316 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 317 "6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n", 318 status, result, axchg->oxid); 319 320 lpfc_nlp_put(cmdwqe->ndlp); 321 cmdwqe->context_un.axchg = NULL; 322 cmdwqe->bpl_dmabuf = NULL; 323 lpfc_sli_release_iocbq(phba, cmdwqe); 324 ls_rsp->done(ls_rsp); 325 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 326 "6200 NVMEx LS rsp cmpl done status %d oxid x%x\n", 327 status, axchg->oxid); 328 kfree(axchg); 329 } 330 331 /** 332 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 333 * @phba: Pointer to HBA context object. 334 * @cmdwqe: Pointer to driver command WQE object. 335 * @rspwqe: Pointer to driver response WQE object. 336 * 337 * The function is called from SLI ring event handler with no 338 * lock held. This function is the completion handler for NVME LS commands 339 * The function updates any states and statistics, then calls the 340 * generic completion handler to free resources. 341 **/ 342 static void 343 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 344 struct lpfc_iocbq *rspwqe) 345 { 346 struct lpfc_nvmet_tgtport *tgtp; 347 uint32_t status, result; 348 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 349 350 if (!phba->targetport) 351 goto finish; 352 353 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; 354 result = wcqe->parameter; 355 356 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 357 if (tgtp) { 358 if (status) { 359 atomic_inc(&tgtp->xmt_ls_rsp_error); 360 if (result == IOERR_ABORT_REQUESTED) 361 atomic_inc(&tgtp->xmt_ls_rsp_aborted); 362 if (bf_get(lpfc_wcqe_c_xb, wcqe)) 363 atomic_inc(&tgtp->xmt_ls_rsp_xb_set); 364 } else { 365 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 366 } 367 } 368 369 finish: 370 __lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, rspwqe); 371 } 372 373 /** 374 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 375 * @phba: HBA buffer is associated with 376 * @ctx_buf: ctx buffer context 377 * 378 * Description: Frees the given DMA buffer in the appropriate way given by 379 * reposting it to its associated RQ so it can be reused. 380 * 381 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 382 * 383 * Returns: None 384 **/ 385 void 386 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 387 { 388 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 389 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 390 struct lpfc_nvmet_tgtport *tgtp; 391 struct fc_frame_header *fc_hdr; 392 struct rqb_dmabuf *nvmebuf; 393 struct lpfc_nvmet_ctx_info *infop; 394 uint32_t size, oxid, sid; 395 int cpu; 396 unsigned long iflag; 397 398 if (ctxp->state == LPFC_NVME_STE_FREE) { 399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 400 "6411 NVMET free, already free IO x%x: %d %d\n", 401 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 402 } 403 404 if (ctxp->rqb_buffer) { 405 spin_lock_irqsave(&ctxp->ctxlock, iflag); 406 nvmebuf = ctxp->rqb_buffer; 407 /* check if freed in another path whilst acquiring lock */ 408 if (nvmebuf) { 409 ctxp->rqb_buffer = NULL; 410 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 411 ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ; 412 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 413 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, 414 nvmebuf); 415 } else { 416 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 417 /* repost */ 418 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 419 } 420 } else { 421 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 422 } 423 } 424 ctxp->state = LPFC_NVME_STE_FREE; 425 426 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 427 if (phba->sli4_hba.nvmet_io_wait_cnt) { 428 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 429 nvmebuf, struct rqb_dmabuf, 430 hbuf.list); 431 phba->sli4_hba.nvmet_io_wait_cnt--; 432 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 433 iflag); 434 435 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 436 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 437 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 438 size = nvmebuf->bytes_recv; 439 sid = sli4_sid_from_fc_hdr(fc_hdr); 440 441 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 442 ctxp->wqeq = NULL; 443 ctxp->offset = 0; 444 ctxp->phba = phba; 445 ctxp->size = size; 446 ctxp->oxid = oxid; 447 ctxp->sid = sid; 448 ctxp->state = LPFC_NVME_STE_RCV; 449 ctxp->entry_cnt = 1; 450 ctxp->flag = 0; 451 ctxp->ctxbuf = ctx_buf; 452 ctxp->rqb_buffer = (void *)nvmebuf; 453 spin_lock_init(&ctxp->ctxlock); 454 455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 456 /* NOTE: isr time stamp is stale when context is re-assigned*/ 457 if (ctxp->ts_isr_cmd) { 458 ctxp->ts_cmd_nvme = 0; 459 ctxp->ts_nvme_data = 0; 460 ctxp->ts_data_wqput = 0; 461 ctxp->ts_isr_data = 0; 462 ctxp->ts_data_nvme = 0; 463 ctxp->ts_nvme_status = 0; 464 ctxp->ts_status_wqput = 0; 465 ctxp->ts_isr_status = 0; 466 ctxp->ts_status_nvme = 0; 467 } 468 #endif 469 atomic_inc(&tgtp->rcv_fcp_cmd_in); 470 471 /* Indicate that a replacement buffer has been posted */ 472 spin_lock_irqsave(&ctxp->ctxlock, iflag); 473 ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ; 474 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 475 476 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 477 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 479 "6181 Unable to queue deferred work " 480 "for oxid x%x. " 481 "FCP Drop IO [x%x x%x x%x]\n", 482 ctxp->oxid, 483 atomic_read(&tgtp->rcv_fcp_cmd_in), 484 atomic_read(&tgtp->rcv_fcp_cmd_out), 485 atomic_read(&tgtp->xmt_fcp_release)); 486 487 spin_lock_irqsave(&ctxp->ctxlock, iflag); 488 lpfc_nvmet_defer_release(phba, ctxp); 489 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 490 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 491 } 492 return; 493 } 494 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 495 496 /* 497 * Use the CPU context list, from the MRQ the IO was received on 498 * (ctxp->idx), to save context structure. 499 */ 500 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 501 list_del_init(&ctxp->list); 502 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 503 cpu = raw_smp_processor_id(); 504 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 505 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 506 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 507 infop->nvmet_ctx_list_cnt++; 508 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 509 #endif 510 } 511 512 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 513 static void 514 lpfc_nvmet_ktime(struct lpfc_hba *phba, 515 struct lpfc_async_xchg_ctx *ctxp) 516 { 517 uint64_t seg1, seg2, seg3, seg4, seg5; 518 uint64_t seg6, seg7, seg8, seg9, seg10; 519 uint64_t segsum; 520 521 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 522 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 523 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 524 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 525 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 526 return; 527 528 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) 529 return; 530 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 531 return; 532 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 533 return; 534 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 535 return; 536 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 537 return; 538 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 539 return; 540 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 541 return; 542 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 543 return; 544 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 545 return; 546 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 547 return; 548 /* 549 * Segment 1 - Time from FCP command received by MSI-X ISR 550 * to FCP command is passed to NVME Layer. 551 * Segment 2 - Time from FCP command payload handed 552 * off to NVME Layer to Driver receives a Command op 553 * from NVME Layer. 554 * Segment 3 - Time from Driver receives a Command op 555 * from NVME Layer to Command is put on WQ. 556 * Segment 4 - Time from Driver WQ put is done 557 * to MSI-X ISR for Command cmpl. 558 * Segment 5 - Time from MSI-X ISR for Command cmpl to 559 * Command cmpl is passed to NVME Layer. 560 * Segment 6 - Time from Command cmpl is passed to NVME 561 * Layer to Driver receives a RSP op from NVME Layer. 562 * Segment 7 - Time from Driver receives a RSP op from 563 * NVME Layer to WQ put is done on TRSP FCP Status. 564 * Segment 8 - Time from Driver WQ put is done on TRSP 565 * FCP Status to MSI-X ISR for TRSP cmpl. 566 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 567 * TRSP cmpl is passed to NVME Layer. 568 * Segment 10 - Time from FCP command received by 569 * MSI-X ISR to command is completed on wire. 570 * (Segments 1 thru 8) for READDATA / WRITEDATA 571 * (Segments 1 thru 4) for READDATA_RSP 572 */ 573 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 574 segsum = seg1; 575 576 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; 577 if (segsum > seg2) 578 return; 579 seg2 -= segsum; 580 segsum += seg2; 581 582 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; 583 if (segsum > seg3) 584 return; 585 seg3 -= segsum; 586 segsum += seg3; 587 588 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; 589 if (segsum > seg4) 590 return; 591 seg4 -= segsum; 592 segsum += seg4; 593 594 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; 595 if (segsum > seg5) 596 return; 597 seg5 -= segsum; 598 segsum += seg5; 599 600 601 /* For auto rsp commands seg6 thru seg10 will be 0 */ 602 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 603 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; 604 if (segsum > seg6) 605 return; 606 seg6 -= segsum; 607 segsum += seg6; 608 609 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; 610 if (segsum > seg7) 611 return; 612 seg7 -= segsum; 613 segsum += seg7; 614 615 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; 616 if (segsum > seg8) 617 return; 618 seg8 -= segsum; 619 segsum += seg8; 620 621 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; 622 if (segsum > seg9) 623 return; 624 seg9 -= segsum; 625 segsum += seg9; 626 627 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) 628 return; 629 seg10 = (ctxp->ts_isr_status - 630 ctxp->ts_isr_cmd); 631 } else { 632 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) 633 return; 634 seg6 = 0; 635 seg7 = 0; 636 seg8 = 0; 637 seg9 = 0; 638 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 639 } 640 641 phba->ktime_seg1_total += seg1; 642 if (seg1 < phba->ktime_seg1_min) 643 phba->ktime_seg1_min = seg1; 644 else if (seg1 > phba->ktime_seg1_max) 645 phba->ktime_seg1_max = seg1; 646 647 phba->ktime_seg2_total += seg2; 648 if (seg2 < phba->ktime_seg2_min) 649 phba->ktime_seg2_min = seg2; 650 else if (seg2 > phba->ktime_seg2_max) 651 phba->ktime_seg2_max = seg2; 652 653 phba->ktime_seg3_total += seg3; 654 if (seg3 < phba->ktime_seg3_min) 655 phba->ktime_seg3_min = seg3; 656 else if (seg3 > phba->ktime_seg3_max) 657 phba->ktime_seg3_max = seg3; 658 659 phba->ktime_seg4_total += seg4; 660 if (seg4 < phba->ktime_seg4_min) 661 phba->ktime_seg4_min = seg4; 662 else if (seg4 > phba->ktime_seg4_max) 663 phba->ktime_seg4_max = seg4; 664 665 phba->ktime_seg5_total += seg5; 666 if (seg5 < phba->ktime_seg5_min) 667 phba->ktime_seg5_min = seg5; 668 else if (seg5 > phba->ktime_seg5_max) 669 phba->ktime_seg5_max = seg5; 670 671 phba->ktime_data_samples++; 672 if (!seg6) 673 goto out; 674 675 phba->ktime_seg6_total += seg6; 676 if (seg6 < phba->ktime_seg6_min) 677 phba->ktime_seg6_min = seg6; 678 else if (seg6 > phba->ktime_seg6_max) 679 phba->ktime_seg6_max = seg6; 680 681 phba->ktime_seg7_total += seg7; 682 if (seg7 < phba->ktime_seg7_min) 683 phba->ktime_seg7_min = seg7; 684 else if (seg7 > phba->ktime_seg7_max) 685 phba->ktime_seg7_max = seg7; 686 687 phba->ktime_seg8_total += seg8; 688 if (seg8 < phba->ktime_seg8_min) 689 phba->ktime_seg8_min = seg8; 690 else if (seg8 > phba->ktime_seg8_max) 691 phba->ktime_seg8_max = seg8; 692 693 phba->ktime_seg9_total += seg9; 694 if (seg9 < phba->ktime_seg9_min) 695 phba->ktime_seg9_min = seg9; 696 else if (seg9 > phba->ktime_seg9_max) 697 phba->ktime_seg9_max = seg9; 698 out: 699 phba->ktime_seg10_total += seg10; 700 if (seg10 < phba->ktime_seg10_min) 701 phba->ktime_seg10_min = seg10; 702 else if (seg10 > phba->ktime_seg10_max) 703 phba->ktime_seg10_max = seg10; 704 phba->ktime_status_samples++; 705 } 706 #endif 707 708 /** 709 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 710 * @phba: Pointer to HBA context object. 711 * @cmdwqe: Pointer to driver command WQE object. 712 * @rspwqe: Pointer to driver response WQE object. 713 * 714 * The function is called from SLI ring event handler with no 715 * lock held. This function is the completion handler for NVME FCP commands 716 * The function frees memory resources used for the NVME commands. 717 **/ 718 static void 719 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 720 struct lpfc_iocbq *rspwqe) 721 { 722 struct lpfc_nvmet_tgtport *tgtp; 723 struct nvmefc_tgt_fcp_req *rsp; 724 struct lpfc_async_xchg_ctx *ctxp; 725 uint32_t status, result, op, logerr; 726 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 727 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 728 int id; 729 #endif 730 731 ctxp = cmdwqe->context_un.axchg; 732 ctxp->flag &= ~LPFC_NVME_IO_INP; 733 734 rsp = &ctxp->hdlrctx.fcp_req; 735 op = rsp->op; 736 737 status = bf_get(lpfc_wcqe_c_status, wcqe); 738 result = wcqe->parameter; 739 740 if (phba->targetport) 741 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 742 else 743 tgtp = NULL; 744 745 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 746 ctxp->oxid, op, status); 747 748 if (status) { 749 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 750 rsp->transferred_length = 0; 751 if (tgtp) { 752 atomic_inc(&tgtp->xmt_fcp_rsp_error); 753 if (result == IOERR_ABORT_REQUESTED) 754 atomic_inc(&tgtp->xmt_fcp_rsp_aborted); 755 } 756 757 logerr = LOG_NVME_IOERR; 758 759 /* pick up SLI4 exhange busy condition */ 760 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 761 ctxp->flag |= LPFC_NVME_XBUSY; 762 logerr |= LOG_NVME_ABTS; 763 if (tgtp) 764 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); 765 766 } else { 767 ctxp->flag &= ~LPFC_NVME_XBUSY; 768 } 769 770 lpfc_printf_log(phba, KERN_INFO, logerr, 771 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x " 772 "XBUSY:x%x\n", 773 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag, 774 status, result, ctxp->flag); 775 776 } else { 777 rsp->fcp_error = NVME_SC_SUCCESS; 778 if (op == NVMET_FCOP_RSP) 779 rsp->transferred_length = rsp->rsplen; 780 else 781 rsp->transferred_length = rsp->transfer_length; 782 if (tgtp) 783 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 784 } 785 786 if ((op == NVMET_FCOP_READDATA_RSP) || 787 (op == NVMET_FCOP_RSP)) { 788 /* Sanity check */ 789 ctxp->state = LPFC_NVME_STE_DONE; 790 ctxp->entry_cnt++; 791 792 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 793 if (ctxp->ts_cmd_nvme) { 794 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 795 ctxp->ts_isr_data = 796 cmdwqe->isr_timestamp; 797 ctxp->ts_data_nvme = 798 ktime_get_ns(); 799 ctxp->ts_nvme_status = 800 ctxp->ts_data_nvme; 801 ctxp->ts_status_wqput = 802 ctxp->ts_data_nvme; 803 ctxp->ts_isr_status = 804 ctxp->ts_data_nvme; 805 ctxp->ts_status_nvme = 806 ctxp->ts_data_nvme; 807 } else { 808 ctxp->ts_isr_status = 809 cmdwqe->isr_timestamp; 810 ctxp->ts_status_nvme = 811 ktime_get_ns(); 812 } 813 } 814 #endif 815 rsp->done(rsp); 816 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 817 if (ctxp->ts_cmd_nvme) 818 lpfc_nvmet_ktime(phba, ctxp); 819 #endif 820 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 821 } else { 822 ctxp->entry_cnt++; 823 memset_startat(cmdwqe, 0, cmd_flag); 824 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 825 if (ctxp->ts_cmd_nvme) { 826 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 827 ctxp->ts_data_nvme = ktime_get_ns(); 828 } 829 #endif 830 rsp->done(rsp); 831 } 832 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 833 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 834 id = raw_smp_processor_id(); 835 this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io); 836 if (ctxp->cpu != id) 837 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 838 "6704 CPU Check cmdcmpl: " 839 "cpu %d expect %d\n", 840 id, ctxp->cpu); 841 } 842 #endif 843 } 844 845 /** 846 * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit 847 * an NVME LS rsp for a prior NVME LS request that was received. 848 * @axchg: pointer to exchange context for the NVME LS request the response 849 * is for. 850 * @ls_rsp: pointer to the transport LS RSP that is to be sent 851 * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done 852 * 853 * This routine is used to format and send a WQE to transmit a NVME LS 854 * Response. The response is for a prior NVME LS request that was 855 * received and posted to the transport. 856 * 857 * Returns: 858 * 0 : if response successfully transmit 859 * non-zero : if response failed to transmit, of the form -Exxx. 860 **/ 861 int 862 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg, 863 struct nvmefc_ls_rsp *ls_rsp, 864 void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba, 865 struct lpfc_iocbq *cmdwqe, 866 struct lpfc_iocbq *rspwqe)) 867 { 868 struct lpfc_hba *phba = axchg->phba; 869 struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer; 870 struct lpfc_iocbq *nvmewqeq; 871 struct lpfc_dmabuf dmabuf; 872 struct ulp_bde64 bpl; 873 int rc; 874 875 if (phba->pport->load_flag & FC_UNLOADING) 876 return -ENODEV; 877 878 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 879 "6023 NVMEx LS rsp oxid x%x\n", axchg->oxid); 880 881 if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) { 882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 883 "6412 NVMEx LS rsp state mismatch " 884 "oxid x%x: %d %d\n", 885 axchg->oxid, axchg->state, axchg->entry_cnt); 886 return -EALREADY; 887 } 888 axchg->state = LPFC_NVME_STE_LS_RSP; 889 axchg->entry_cnt++; 890 891 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma, 892 ls_rsp->rsplen); 893 if (nvmewqeq == NULL) { 894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 895 "6150 NVMEx LS Drop Rsp x%x: Prep\n", 896 axchg->oxid); 897 rc = -ENOMEM; 898 goto out_free_buf; 899 } 900 901 /* Save numBdes for bpl2sgl */ 902 nvmewqeq->num_bdes = 1; 903 nvmewqeq->hba_wqidx = 0; 904 nvmewqeq->bpl_dmabuf = &dmabuf; 905 dmabuf.virt = &bpl; 906 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 907 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 908 bpl.tus.f.bdeSize = ls_rsp->rsplen; 909 bpl.tus.f.bdeFlags = 0; 910 bpl.tus.w = le32_to_cpu(bpl.tus.w); 911 /* 912 * Note: although we're using stack space for the dmabuf, the 913 * call to lpfc_sli4_issue_wqe is synchronous, so it will not 914 * be referenced after it returns back to this routine. 915 */ 916 917 nvmewqeq->cmd_cmpl = xmt_ls_rsp_cmp; 918 nvmewqeq->context_un.axchg = axchg; 919 920 lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n", 921 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen); 922 923 rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq); 924 925 /* clear to be sure there's no reference */ 926 nvmewqeq->bpl_dmabuf = NULL; 927 928 if (rc == WQE_SUCCESS) { 929 /* 930 * Okay to repost buffer here, but wait till cmpl 931 * before freeing ctxp and iocbq. 932 */ 933 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 934 return 0; 935 } 936 937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 938 "6151 NVMEx LS RSP x%x: failed to transmit %d\n", 939 axchg->oxid, rc); 940 941 rc = -ENXIO; 942 943 lpfc_nlp_put(nvmewqeq->ndlp); 944 945 out_free_buf: 946 /* Give back resources */ 947 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 948 949 /* 950 * As transport doesn't track completions of responses, if the rsp 951 * fails to send, the transport will effectively ignore the rsp 952 * and consider the LS done. However, the driver has an active 953 * exchange open for the LS - so be sure to abort the exchange 954 * if the response isn't sent. 955 */ 956 lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid); 957 return rc; 958 } 959 960 /** 961 * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response 962 * @tgtport: pointer to target port that NVME LS is to be transmit from. 963 * @ls_rsp: pointer to the transport LS RSP that is to be sent 964 * 965 * Driver registers this routine to transmit responses for received NVME 966 * LS requests. 967 * 968 * This routine is used to format and send a WQE to transmit a NVME LS 969 * Response. The ls_rsp is used to reverse-map the LS to the original 970 * NVME LS request sequence, which provides addressing information for 971 * the remote port the LS to be sent to, as well as the exchange id 972 * that is the LS is bound to. 973 * 974 * Returns: 975 * 0 : if response successfully transmit 976 * non-zero : if response failed to transmit, of the form -Exxx. 977 **/ 978 static int 979 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 980 struct nvmefc_ls_rsp *ls_rsp) 981 { 982 struct lpfc_async_xchg_ctx *axchg = 983 container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp); 984 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 985 int rc; 986 987 if (axchg->phba->pport->load_flag & FC_UNLOADING) 988 return -ENODEV; 989 990 rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp); 991 992 if (rc) { 993 atomic_inc(&nvmep->xmt_ls_drop); 994 /* 995 * unless the failure is due to having already sent 996 * the response, an abort will be generated for the 997 * exchange if the rsp can't be sent. 998 */ 999 if (rc != -EALREADY) 1000 atomic_inc(&nvmep->xmt_ls_abort); 1001 return rc; 1002 } 1003 1004 atomic_inc(&nvmep->xmt_ls_rsp); 1005 return 0; 1006 } 1007 1008 static int 1009 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 1010 struct nvmefc_tgt_fcp_req *rsp) 1011 { 1012 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1013 struct lpfc_async_xchg_ctx *ctxp = 1014 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1015 struct lpfc_hba *phba = ctxp->phba; 1016 struct lpfc_queue *wq; 1017 struct lpfc_iocbq *nvmewqeq; 1018 struct lpfc_sli_ring *pring; 1019 unsigned long iflags; 1020 int rc; 1021 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1022 int id; 1023 #endif 1024 1025 if (phba->pport->load_flag & FC_UNLOADING) { 1026 rc = -ENODEV; 1027 goto aerr; 1028 } 1029 1030 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1031 if (ctxp->ts_cmd_nvme) { 1032 if (rsp->op == NVMET_FCOP_RSP) 1033 ctxp->ts_nvme_status = ktime_get_ns(); 1034 else 1035 ctxp->ts_nvme_data = ktime_get_ns(); 1036 } 1037 1038 /* Setup the hdw queue if not already set */ 1039 if (!ctxp->hdwq) 1040 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid]; 1041 1042 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 1043 id = raw_smp_processor_id(); 1044 this_cpu_inc(phba->sli4_hba.c_stat->xmt_io); 1045 if (rsp->hwqid != id) 1046 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1047 "6705 CPU Check OP: " 1048 "cpu %d expect %d\n", 1049 id, rsp->hwqid); 1050 ctxp->cpu = id; /* Setup cpu for cmpl check */ 1051 } 1052 #endif 1053 1054 /* Sanity check */ 1055 if ((ctxp->flag & LPFC_NVME_ABTS_RCV) || 1056 (ctxp->state == LPFC_NVME_STE_ABORT)) { 1057 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1059 "6102 IO oxid x%x aborted\n", 1060 ctxp->oxid); 1061 rc = -ENXIO; 1062 goto aerr; 1063 } 1064 1065 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 1066 if (nvmewqeq == NULL) { 1067 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1069 "6152 FCP Drop IO x%x: Prep\n", 1070 ctxp->oxid); 1071 rc = -ENXIO; 1072 goto aerr; 1073 } 1074 1075 nvmewqeq->cmd_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 1076 nvmewqeq->context_un.axchg = ctxp; 1077 nvmewqeq->cmd_flag |= LPFC_IO_NVMET; 1078 ctxp->wqeq->hba_wqidx = rsp->hwqid; 1079 1080 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 1081 ctxp->oxid, rsp->op, rsp->rsplen); 1082 1083 ctxp->flag |= LPFC_NVME_IO_INP; 1084 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 1085 if (rc == WQE_SUCCESS) { 1086 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1087 if (!ctxp->ts_cmd_nvme) 1088 return 0; 1089 if (rsp->op == NVMET_FCOP_RSP) 1090 ctxp->ts_status_wqput = ktime_get_ns(); 1091 else 1092 ctxp->ts_data_wqput = ktime_get_ns(); 1093 #endif 1094 return 0; 1095 } 1096 1097 if (rc == -EBUSY) { 1098 /* 1099 * WQ was full, so queue nvmewqeq to be sent after 1100 * WQE release CQE 1101 */ 1102 ctxp->flag |= LPFC_NVME_DEFER_WQFULL; 1103 wq = ctxp->hdwq->io_wq; 1104 pring = wq->pring; 1105 spin_lock_irqsave(&pring->ring_lock, iflags); 1106 list_add_tail(&nvmewqeq->list, &wq->wqfull_list); 1107 wq->q_flag |= HBA_NVMET_WQFULL; 1108 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1109 atomic_inc(&lpfc_nvmep->defer_wqfull); 1110 return 0; 1111 } 1112 1113 /* Give back resources */ 1114 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1116 "6153 FCP Drop IO x%x: Issue: %d\n", 1117 ctxp->oxid, rc); 1118 1119 ctxp->wqeq->hba_wqidx = 0; 1120 nvmewqeq->context_un.axchg = NULL; 1121 nvmewqeq->bpl_dmabuf = NULL; 1122 rc = -EBUSY; 1123 aerr: 1124 return rc; 1125 } 1126 1127 static void 1128 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 1129 { 1130 struct lpfc_nvmet_tgtport *tport = targetport->private; 1131 1132 /* release any threads waiting for the unreg to complete */ 1133 if (tport->phba->targetport) 1134 complete(tport->tport_unreg_cmp); 1135 } 1136 1137 static void 1138 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 1139 struct nvmefc_tgt_fcp_req *req) 1140 { 1141 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1142 struct lpfc_async_xchg_ctx *ctxp = 1143 container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1144 struct lpfc_hba *phba = ctxp->phba; 1145 struct lpfc_queue *wq; 1146 unsigned long flags; 1147 1148 if (phba->pport->load_flag & FC_UNLOADING) 1149 return; 1150 1151 if (!ctxp->hdwq) 1152 ctxp->hdwq = &phba->sli4_hba.hdwq[0]; 1153 1154 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1155 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n", 1156 ctxp->oxid, ctxp->flag, ctxp->state); 1157 1158 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 1159 ctxp->oxid, ctxp->flag, ctxp->state); 1160 1161 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 1162 1163 spin_lock_irqsave(&ctxp->ctxlock, flags); 1164 1165 /* Since iaab/iaar are NOT set, we need to check 1166 * if the firmware is in process of aborting IO 1167 */ 1168 if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) { 1169 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1170 return; 1171 } 1172 ctxp->flag |= LPFC_NVME_ABORT_OP; 1173 1174 if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) { 1175 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1176 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1177 ctxp->oxid); 1178 wq = ctxp->hdwq->io_wq; 1179 lpfc_nvmet_wqfull_flush(phba, wq, ctxp); 1180 return; 1181 } 1182 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1183 1184 /* A state of LPFC_NVME_STE_RCV means we have just received 1185 * the NVME command and have not started processing it. 1186 * (by issuing any IO WQEs on this exchange yet) 1187 */ 1188 if (ctxp->state == LPFC_NVME_STE_RCV) 1189 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1190 ctxp->oxid); 1191 else 1192 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1193 ctxp->oxid); 1194 } 1195 1196 static void 1197 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 1198 struct nvmefc_tgt_fcp_req *rsp) 1199 { 1200 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1201 struct lpfc_async_xchg_ctx *ctxp = 1202 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1203 struct lpfc_hba *phba = ctxp->phba; 1204 unsigned long flags; 1205 bool aborting = false; 1206 1207 spin_lock_irqsave(&ctxp->ctxlock, flags); 1208 if (ctxp->flag & LPFC_NVME_XBUSY) 1209 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1210 "6027 NVMET release with XBUSY flag x%x" 1211 " oxid x%x\n", 1212 ctxp->flag, ctxp->oxid); 1213 else if (ctxp->state != LPFC_NVME_STE_DONE && 1214 ctxp->state != LPFC_NVME_STE_ABORT) 1215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1216 "6413 NVMET release bad state %d %d oxid x%x\n", 1217 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1218 1219 if ((ctxp->flag & LPFC_NVME_ABORT_OP) || 1220 (ctxp->flag & LPFC_NVME_XBUSY)) { 1221 aborting = true; 1222 /* let the abort path do the real release */ 1223 lpfc_nvmet_defer_release(phba, ctxp); 1224 } 1225 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1226 1227 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 1228 ctxp->state, aborting); 1229 1230 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 1231 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 1232 1233 if (aborting) 1234 return; 1235 1236 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1237 } 1238 1239 static void 1240 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 1241 struct nvmefc_tgt_fcp_req *rsp) 1242 { 1243 struct lpfc_nvmet_tgtport *tgtp; 1244 struct lpfc_async_xchg_ctx *ctxp = 1245 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1246 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 1247 struct lpfc_hba *phba = ctxp->phba; 1248 unsigned long iflag; 1249 1250 1251 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 1252 ctxp->oxid, ctxp->size, raw_smp_processor_id()); 1253 1254 if (!nvmebuf) { 1255 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1256 "6425 Defer rcv: no buffer oxid x%x: " 1257 "flg %x ste %x\n", 1258 ctxp->oxid, ctxp->flag, ctxp->state); 1259 return; 1260 } 1261 1262 tgtp = phba->targetport->private; 1263 if (tgtp) 1264 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 1265 1266 /* Free the nvmebuf since a new buffer already replaced it */ 1267 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1268 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1269 ctxp->rqb_buffer = NULL; 1270 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1271 } 1272 1273 /** 1274 * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request 1275 * @phba: Pointer to HBA context object 1276 * @cmdwqe: Pointer to driver command WQE object. 1277 * @rspwqe: Pointer to driver response WQE object. 1278 * 1279 * This function is the completion handler for NVME LS requests. 1280 * The function updates any states and statistics, then calls the 1281 * generic completion handler to finish completion of the request. 1282 **/ 1283 static void 1284 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 1285 struct lpfc_iocbq *rspwqe) 1286 { 1287 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 1288 __lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe); 1289 } 1290 1291 /** 1292 * lpfc_nvmet_ls_req - Issue an Link Service request 1293 * @targetport: pointer to target instance registered with nvmet transport. 1294 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1295 * Driver sets this value to the ndlp pointer. 1296 * @pnvme_lsreq: the transport nvme_ls_req structure for the LS 1297 * 1298 * Driver registers this routine to handle any link service request 1299 * from the nvme_fc transport to a remote nvme-aware port. 1300 * 1301 * Return value : 1302 * 0 - Success 1303 * non-zero: various error codes, in form of -Exxx 1304 **/ 1305 static int 1306 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport, 1307 void *hosthandle, 1308 struct nvmefc_ls_req *pnvme_lsreq) 1309 { 1310 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1311 struct lpfc_hba *phba; 1312 struct lpfc_nodelist *ndlp; 1313 int ret; 1314 u32 hstate; 1315 1316 if (!lpfc_nvmet) 1317 return -EINVAL; 1318 1319 phba = lpfc_nvmet->phba; 1320 if (phba->pport->load_flag & FC_UNLOADING) 1321 return -EINVAL; 1322 1323 hstate = atomic_read(&lpfc_nvmet->state); 1324 if (hstate == LPFC_NVMET_INV_HOST_ACTIVE) 1325 return -EACCES; 1326 1327 ndlp = (struct lpfc_nodelist *)hosthandle; 1328 1329 ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq, 1330 lpfc_nvmet_ls_req_cmp); 1331 1332 return ret; 1333 } 1334 1335 /** 1336 * lpfc_nvmet_ls_abort - Abort a prior NVME LS request 1337 * @targetport: Transport targetport, that LS was issued from. 1338 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1339 * Driver sets this value to the ndlp pointer. 1340 * @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted 1341 * 1342 * Driver registers this routine to abort an NVME LS request that is 1343 * in progress (from the transports perspective). 1344 **/ 1345 static void 1346 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport, 1347 void *hosthandle, 1348 struct nvmefc_ls_req *pnvme_lsreq) 1349 { 1350 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1351 struct lpfc_hba *phba; 1352 struct lpfc_nodelist *ndlp; 1353 int ret; 1354 1355 phba = lpfc_nvmet->phba; 1356 if (phba->pport->load_flag & FC_UNLOADING) 1357 return; 1358 1359 ndlp = (struct lpfc_nodelist *)hosthandle; 1360 1361 ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq); 1362 if (!ret) 1363 atomic_inc(&lpfc_nvmet->xmt_ls_abort); 1364 } 1365 1366 static void 1367 lpfc_nvmet_host_release(void *hosthandle) 1368 { 1369 struct lpfc_nodelist *ndlp = hosthandle; 1370 struct lpfc_hba *phba = ndlp->phba; 1371 struct lpfc_nvmet_tgtport *tgtp; 1372 1373 if (!phba->targetport || !phba->targetport->private) 1374 return; 1375 1376 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1377 "6202 NVMET XPT releasing hosthandle x%px " 1378 "DID x%x xflags x%x refcnt %d\n", 1379 hosthandle, ndlp->nlp_DID, ndlp->fc4_xpt_flags, 1380 kref_read(&ndlp->kref)); 1381 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1382 spin_lock_irq(&ndlp->lock); 1383 ndlp->fc4_xpt_flags &= ~NLP_XPT_HAS_HH; 1384 spin_unlock_irq(&ndlp->lock); 1385 lpfc_nlp_put(ndlp); 1386 atomic_set(&tgtp->state, 0); 1387 } 1388 1389 static void 1390 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport) 1391 { 1392 struct lpfc_nvmet_tgtport *tgtp; 1393 struct lpfc_hba *phba; 1394 uint32_t rc; 1395 1396 tgtp = tgtport->private; 1397 phba = tgtp->phba; 1398 1399 rc = lpfc_issue_els_rscn(phba->pport, 0); 1400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1401 "6420 NVMET subsystem change: Notification %s\n", 1402 (rc) ? "Failed" : "Sent"); 1403 } 1404 1405 static struct nvmet_fc_target_template lpfc_tgttemplate = { 1406 .targetport_delete = lpfc_nvmet_targetport_delete, 1407 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 1408 .fcp_op = lpfc_nvmet_xmt_fcp_op, 1409 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 1410 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 1411 .defer_rcv = lpfc_nvmet_defer_rcv, 1412 .discovery_event = lpfc_nvmet_discovery_event, 1413 .ls_req = lpfc_nvmet_ls_req, 1414 .ls_abort = lpfc_nvmet_ls_abort, 1415 .host_release = lpfc_nvmet_host_release, 1416 1417 .max_hw_queues = 1, 1418 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1419 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1420 .dma_boundary = 0xFFFFFFFF, 1421 1422 /* optional features */ 1423 .target_features = 0, 1424 /* sizes of additional private data for data structures */ 1425 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 1426 .lsrqst_priv_sz = 0, 1427 }; 1428 1429 static void 1430 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 1431 struct lpfc_nvmet_ctx_info *infop) 1432 { 1433 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 1434 unsigned long flags; 1435 1436 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 1437 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 1438 &infop->nvmet_ctx_list, list) { 1439 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1440 list_del_init(&ctx_buf->list); 1441 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1442 1443 spin_lock(&phba->hbalock); 1444 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 1445 spin_unlock(&phba->hbalock); 1446 1447 ctx_buf->sglq->state = SGL_FREED; 1448 ctx_buf->sglq->ndlp = NULL; 1449 1450 spin_lock(&phba->sli4_hba.sgl_list_lock); 1451 list_add_tail(&ctx_buf->sglq->list, 1452 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1453 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1454 1455 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1456 kfree(ctx_buf->context); 1457 } 1458 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 1459 } 1460 1461 static void 1462 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 1463 { 1464 struct lpfc_nvmet_ctx_info *infop; 1465 int i, j; 1466 1467 /* The first context list, MRQ 0 CPU 0 */ 1468 infop = phba->sli4_hba.nvmet_ctx_info; 1469 if (!infop) 1470 return; 1471 1472 /* Cycle the the entire CPU context list for every MRQ */ 1473 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 1474 for_each_present_cpu(j) { 1475 infop = lpfc_get_ctx_list(phba, j, i); 1476 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 1477 } 1478 } 1479 kfree(phba->sli4_hba.nvmet_ctx_info); 1480 phba->sli4_hba.nvmet_ctx_info = NULL; 1481 } 1482 1483 static int 1484 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 1485 { 1486 struct lpfc_nvmet_ctxbuf *ctx_buf; 1487 struct lpfc_iocbq *nvmewqe; 1488 union lpfc_wqe128 *wqe; 1489 struct lpfc_nvmet_ctx_info *last_infop; 1490 struct lpfc_nvmet_ctx_info *infop; 1491 int i, j, idx, cpu; 1492 1493 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 1494 "6403 Allocate NVMET resources for %d XRIs\n", 1495 phba->sli4_hba.nvmet_xri_cnt); 1496 1497 phba->sli4_hba.nvmet_ctx_info = kcalloc( 1498 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq, 1499 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 1500 if (!phba->sli4_hba.nvmet_ctx_info) { 1501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1502 "6419 Failed allocate memory for " 1503 "nvmet context lists\n"); 1504 return -ENOMEM; 1505 } 1506 1507 /* 1508 * Assuming X CPUs in the system, and Y MRQs, allocate some 1509 * lpfc_nvmet_ctx_info structures as follows: 1510 * 1511 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 1512 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 1513 * ... 1514 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 1515 * 1516 * Each line represents a MRQ "silo" containing an entry for 1517 * every CPU. 1518 * 1519 * MRQ X is initially assumed to be associated with CPU X, thus 1520 * contexts are initially distributed across all MRQs using 1521 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 1522 * freed, the are freed to the MRQ silo based on the CPU number 1523 * of the IO completion. Thus a context that was allocated for MRQ A 1524 * whose IO completed on CPU B will be freed to cpuB/mrqA. 1525 */ 1526 for_each_possible_cpu(i) { 1527 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1528 infop = lpfc_get_ctx_list(phba, i, j); 1529 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 1530 spin_lock_init(&infop->nvmet_ctx_list_lock); 1531 infop->nvmet_ctx_list_cnt = 0; 1532 } 1533 } 1534 1535 /* 1536 * Setup the next CPU context info ptr for each MRQ. 1537 * MRQ 0 will cycle thru CPUs 0 - X separately from 1538 * MRQ 1 cycling thru CPUs 0 - X, and so on. 1539 */ 1540 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1541 last_infop = lpfc_get_ctx_list(phba, 1542 cpumask_first(cpu_present_mask), 1543 j); 1544 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) { 1545 infop = lpfc_get_ctx_list(phba, i, j); 1546 infop->nvmet_ctx_next_cpu = last_infop; 1547 last_infop = infop; 1548 } 1549 } 1550 1551 /* For all nvmet xris, allocate resources needed to process a 1552 * received command on a per xri basis. 1553 */ 1554 idx = 0; 1555 cpu = cpumask_first(cpu_present_mask); 1556 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1557 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1558 if (!ctx_buf) { 1559 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1560 "6404 Ran out of memory for NVMET\n"); 1561 return -ENOMEM; 1562 } 1563 1564 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1565 GFP_KERNEL); 1566 if (!ctx_buf->context) { 1567 kfree(ctx_buf); 1568 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1569 "6405 Ran out of NVMET " 1570 "context memory\n"); 1571 return -ENOMEM; 1572 } 1573 ctx_buf->context->ctxbuf = ctx_buf; 1574 ctx_buf->context->state = LPFC_NVME_STE_FREE; 1575 1576 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1577 if (!ctx_buf->iocbq) { 1578 kfree(ctx_buf->context); 1579 kfree(ctx_buf); 1580 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1581 "6406 Ran out of NVMET iocb/WQEs\n"); 1582 return -ENOMEM; 1583 } 1584 ctx_buf->iocbq->cmd_flag = LPFC_IO_NVMET; 1585 nvmewqe = ctx_buf->iocbq; 1586 wqe = &nvmewqe->wqe; 1587 1588 /* Initialize WQE */ 1589 memset(wqe, 0, sizeof(union lpfc_wqe)); 1590 1591 ctx_buf->iocbq->cmd_dmabuf = NULL; 1592 spin_lock(&phba->sli4_hba.sgl_list_lock); 1593 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1594 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1595 if (!ctx_buf->sglq) { 1596 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1597 kfree(ctx_buf->context); 1598 kfree(ctx_buf); 1599 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1600 "6407 Ran out of NVMET XRIs\n"); 1601 return -ENOMEM; 1602 } 1603 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work); 1604 1605 /* 1606 * Add ctx to MRQidx context list. Our initial assumption 1607 * is MRQidx will be associated with CPUidx. This association 1608 * can change on the fly. 1609 */ 1610 infop = lpfc_get_ctx_list(phba, cpu, idx); 1611 spin_lock(&infop->nvmet_ctx_list_lock); 1612 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1613 infop->nvmet_ctx_list_cnt++; 1614 spin_unlock(&infop->nvmet_ctx_list_lock); 1615 1616 /* Spread ctx structures evenly across all MRQs */ 1617 idx++; 1618 if (idx >= phba->cfg_nvmet_mrq) { 1619 idx = 0; 1620 cpu = cpumask_first(cpu_present_mask); 1621 continue; 1622 } 1623 cpu = cpumask_next(cpu, cpu_present_mask); 1624 if (cpu == nr_cpu_ids) 1625 cpu = cpumask_first(cpu_present_mask); 1626 1627 } 1628 1629 for_each_present_cpu(i) { 1630 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1631 infop = lpfc_get_ctx_list(phba, i, j); 1632 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1633 "6408 TOTAL NVMET ctx for CPU %d " 1634 "MRQ %d: cnt %d nextcpu x%px\n", 1635 i, j, infop->nvmet_ctx_list_cnt, 1636 infop->nvmet_ctx_next_cpu); 1637 } 1638 } 1639 return 0; 1640 } 1641 1642 int 1643 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1644 { 1645 struct lpfc_vport *vport = phba->pport; 1646 struct lpfc_nvmet_tgtport *tgtp; 1647 struct nvmet_fc_port_info pinfo; 1648 int error; 1649 1650 if (phba->targetport) 1651 return 0; 1652 1653 error = lpfc_nvmet_setup_io_context(phba); 1654 if (error) 1655 return error; 1656 1657 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1658 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1659 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1660 pinfo.port_id = vport->fc_myDID; 1661 1662 /* We need to tell the transport layer + 1 because it takes page 1663 * alignment into account. When space for the SGL is allocated we 1664 * allocate + 3, one for cmd, one for rsp and one for this alignment 1665 */ 1666 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1667 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue; 1668 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; 1669 1670 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1671 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1672 &phba->pcidev->dev, 1673 &phba->targetport); 1674 #else 1675 error = -ENOENT; 1676 #endif 1677 if (error) { 1678 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1679 "6025 Cannot register NVME targetport x%x: " 1680 "portnm %llx nodenm %llx segs %d qs %d\n", 1681 error, 1682 pinfo.port_name, pinfo.node_name, 1683 lpfc_tgttemplate.max_sgl_segments, 1684 lpfc_tgttemplate.max_hw_queues); 1685 phba->targetport = NULL; 1686 phba->nvmet_support = 0; 1687 1688 lpfc_nvmet_cleanup_io_context(phba); 1689 1690 } else { 1691 tgtp = (struct lpfc_nvmet_tgtport *) 1692 phba->targetport->private; 1693 tgtp->phba = phba; 1694 1695 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1696 "6026 Registered NVME " 1697 "targetport: x%px, private x%px " 1698 "portnm %llx nodenm %llx segs %d qs %d\n", 1699 phba->targetport, tgtp, 1700 pinfo.port_name, pinfo.node_name, 1701 lpfc_tgttemplate.max_sgl_segments, 1702 lpfc_tgttemplate.max_hw_queues); 1703 1704 atomic_set(&tgtp->rcv_ls_req_in, 0); 1705 atomic_set(&tgtp->rcv_ls_req_out, 0); 1706 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1707 atomic_set(&tgtp->xmt_ls_abort, 0); 1708 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1709 atomic_set(&tgtp->xmt_ls_rsp, 0); 1710 atomic_set(&tgtp->xmt_ls_drop, 0); 1711 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1712 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); 1713 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); 1714 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1715 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1716 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1717 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1718 atomic_set(&tgtp->xmt_fcp_drop, 0); 1719 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1720 atomic_set(&tgtp->xmt_fcp_read, 0); 1721 atomic_set(&tgtp->xmt_fcp_write, 0); 1722 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1723 atomic_set(&tgtp->xmt_fcp_release, 0); 1724 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1725 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1726 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); 1727 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); 1728 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1729 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); 1730 atomic_set(&tgtp->xmt_fcp_abort, 0); 1731 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1732 atomic_set(&tgtp->xmt_abort_unsol, 0); 1733 atomic_set(&tgtp->xmt_abort_sol, 0); 1734 atomic_set(&tgtp->xmt_abort_rsp, 0); 1735 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1736 atomic_set(&tgtp->defer_ctx, 0); 1737 atomic_set(&tgtp->defer_fod, 0); 1738 atomic_set(&tgtp->defer_wqfull, 0); 1739 } 1740 return error; 1741 } 1742 1743 int 1744 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1745 { 1746 struct lpfc_vport *vport = phba->pport; 1747 1748 if (!phba->targetport) 1749 return 0; 1750 1751 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1752 "6007 Update NVMET port x%px did x%x\n", 1753 phba->targetport, vport->fc_myDID); 1754 1755 phba->targetport->port_id = vport->fc_myDID; 1756 return 0; 1757 } 1758 1759 /** 1760 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1761 * @phba: pointer to lpfc hba data structure. 1762 * @axri: pointer to the nvmet xri abort wcqe structure. 1763 * 1764 * This routine is invoked by the worker thread to process a SLI4 fast-path 1765 * NVMET aborted xri. 1766 **/ 1767 void 1768 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1769 struct sli4_wcqe_xri_aborted *axri) 1770 { 1771 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1772 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1773 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1774 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1775 struct lpfc_nvmet_tgtport *tgtp; 1776 struct nvmefc_tgt_fcp_req *req = NULL; 1777 struct lpfc_nodelist *ndlp; 1778 unsigned long iflag = 0; 1779 int rrq_empty = 0; 1780 bool released = false; 1781 1782 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1783 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1784 1785 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1786 return; 1787 1788 if (phba->targetport) { 1789 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1790 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); 1791 } 1792 1793 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1794 list_for_each_entry_safe(ctxp, next_ctxp, 1795 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1796 list) { 1797 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1798 continue; 1799 1800 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, 1801 iflag); 1802 1803 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1804 /* Check if we already received a free context call 1805 * and we have completed processing an abort situation. 1806 */ 1807 if (ctxp->flag & LPFC_NVME_CTX_RLS && 1808 !(ctxp->flag & LPFC_NVME_ABORT_OP)) { 1809 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1810 list_del_init(&ctxp->list); 1811 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1812 released = true; 1813 } 1814 ctxp->flag &= ~LPFC_NVME_XBUSY; 1815 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1816 1817 rrq_empty = list_empty(&phba->active_rrq_list); 1818 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1819 if (ndlp && 1820 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1821 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1822 lpfc_set_rrq_active(phba, ndlp, 1823 ctxp->ctxbuf->sglq->sli4_lxritag, 1824 rxid, 1); 1825 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1826 } 1827 1828 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1829 "6318 XB aborted oxid x%x flg x%x (%x)\n", 1830 ctxp->oxid, ctxp->flag, released); 1831 if (released) 1832 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1833 1834 if (rrq_empty) 1835 lpfc_worker_wake_up(phba); 1836 return; 1837 } 1838 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1839 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri); 1840 if (ctxp) { 1841 /* 1842 * Abort already done by FW, so BA_ACC sent. 1843 * However, the transport may be unaware. 1844 */ 1845 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1846 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x " 1847 "flag x%x oxid x%x rxid x%x\n", 1848 xri, ctxp->state, ctxp->flag, ctxp->oxid, 1849 rxid); 1850 1851 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1852 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1853 ctxp->state = LPFC_NVME_STE_ABORT; 1854 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1855 1856 lpfc_nvmeio_data(phba, 1857 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1858 xri, raw_smp_processor_id(), 0); 1859 1860 req = &ctxp->hdlrctx.fcp_req; 1861 if (req) 1862 nvmet_fc_rcv_fcp_abort(phba->targetport, req); 1863 } 1864 #endif 1865 } 1866 1867 int 1868 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1869 struct fc_frame_header *fc_hdr) 1870 { 1871 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1872 struct lpfc_hba *phba = vport->phba; 1873 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1874 struct nvmefc_tgt_fcp_req *rsp; 1875 uint32_t sid; 1876 uint16_t oxid, xri; 1877 unsigned long iflag = 0; 1878 1879 sid = sli4_sid_from_fc_hdr(fc_hdr); 1880 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1881 1882 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1883 list_for_each_entry_safe(ctxp, next_ctxp, 1884 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1885 list) { 1886 if (ctxp->oxid != oxid || ctxp->sid != sid) 1887 continue; 1888 1889 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1890 1891 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, 1892 iflag); 1893 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1894 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1895 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1896 1897 lpfc_nvmeio_data(phba, 1898 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1899 xri, raw_smp_processor_id(), 0); 1900 1901 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1902 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1903 1904 rsp = &ctxp->hdlrctx.fcp_req; 1905 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1906 1907 /* Respond with BA_ACC accordingly */ 1908 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1909 return 0; 1910 } 1911 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1912 /* check the wait list */ 1913 if (phba->sli4_hba.nvmet_io_wait_cnt) { 1914 struct rqb_dmabuf *nvmebuf; 1915 struct fc_frame_header *fc_hdr_tmp; 1916 u32 sid_tmp; 1917 u16 oxid_tmp; 1918 bool found = false; 1919 1920 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1921 1922 /* match by oxid and s_id */ 1923 list_for_each_entry(nvmebuf, 1924 &phba->sli4_hba.lpfc_nvmet_io_wait_list, 1925 hbuf.list) { 1926 fc_hdr_tmp = (struct fc_frame_header *) 1927 (nvmebuf->hbuf.virt); 1928 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id); 1929 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp); 1930 if (oxid_tmp != oxid || sid_tmp != sid) 1931 continue; 1932 1933 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1934 "6321 NVMET Rcv ABTS oxid x%x from x%x " 1935 "is waiting for a ctxp\n", 1936 oxid, sid); 1937 1938 list_del_init(&nvmebuf->hbuf.list); 1939 phba->sli4_hba.nvmet_io_wait_cnt--; 1940 found = true; 1941 break; 1942 } 1943 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1944 iflag); 1945 1946 /* free buffer since already posted a new DMA buffer to RQ */ 1947 if (found) { 1948 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1949 /* Respond with BA_ACC accordingly */ 1950 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1951 return 0; 1952 } 1953 } 1954 1955 /* check active list */ 1956 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid); 1957 if (ctxp) { 1958 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1959 1960 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1961 ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP); 1962 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1963 1964 lpfc_nvmeio_data(phba, 1965 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1966 xri, raw_smp_processor_id(), 0); 1967 1968 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1969 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x " 1970 "flag x%x state x%x\n", 1971 ctxp->oxid, xri, ctxp->flag, ctxp->state); 1972 1973 if (ctxp->flag & LPFC_NVME_TNOTIFY) { 1974 /* Notify the transport */ 1975 nvmet_fc_rcv_fcp_abort(phba->targetport, 1976 &ctxp->hdlrctx.fcp_req); 1977 } else { 1978 cancel_work_sync(&ctxp->ctxbuf->defer_work); 1979 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1980 lpfc_nvmet_defer_release(phba, ctxp); 1981 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1982 } 1983 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1984 ctxp->oxid); 1985 1986 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1987 return 0; 1988 } 1989 1990 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n", 1991 oxid, raw_smp_processor_id(), 1); 1992 1993 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1994 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid); 1995 1996 /* Respond with BA_RJT accordingly */ 1997 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 1998 #endif 1999 return 0; 2000 } 2001 2002 static void 2003 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, 2004 struct lpfc_async_xchg_ctx *ctxp) 2005 { 2006 struct lpfc_sli_ring *pring; 2007 struct lpfc_iocbq *nvmewqeq; 2008 struct lpfc_iocbq *next_nvmewqeq; 2009 unsigned long iflags; 2010 struct lpfc_wcqe_complete wcqe; 2011 struct lpfc_wcqe_complete *wcqep; 2012 2013 pring = wq->pring; 2014 wcqep = &wcqe; 2015 2016 /* Fake an ABORT error code back to cmpl routine */ 2017 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); 2018 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); 2019 wcqep->parameter = IOERR_ABORT_REQUESTED; 2020 2021 spin_lock_irqsave(&pring->ring_lock, iflags); 2022 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, 2023 &wq->wqfull_list, list) { 2024 if (ctxp) { 2025 /* Checking for a specific IO to flush */ 2026 if (nvmewqeq->context_un.axchg == ctxp) { 2027 list_del(&nvmewqeq->list); 2028 spin_unlock_irqrestore(&pring->ring_lock, 2029 iflags); 2030 memcpy(&nvmewqeq->wcqe_cmpl, wcqep, 2031 sizeof(*wcqep)); 2032 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, 2033 nvmewqeq); 2034 return; 2035 } 2036 continue; 2037 } else { 2038 /* Flush all IOs */ 2039 list_del(&nvmewqeq->list); 2040 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2041 memcpy(&nvmewqeq->wcqe_cmpl, wcqep, sizeof(*wcqep)); 2042 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, nvmewqeq); 2043 spin_lock_irqsave(&pring->ring_lock, iflags); 2044 } 2045 } 2046 if (!ctxp) 2047 wq->q_flag &= ~HBA_NVMET_WQFULL; 2048 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2049 } 2050 2051 void 2052 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, 2053 struct lpfc_queue *wq) 2054 { 2055 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2056 struct lpfc_sli_ring *pring; 2057 struct lpfc_iocbq *nvmewqeq; 2058 struct lpfc_async_xchg_ctx *ctxp; 2059 unsigned long iflags; 2060 int rc; 2061 2062 /* 2063 * Some WQE slots are available, so try to re-issue anything 2064 * on the WQ wqfull_list. 2065 */ 2066 pring = wq->pring; 2067 spin_lock_irqsave(&pring->ring_lock, iflags); 2068 while (!list_empty(&wq->wqfull_list)) { 2069 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, 2070 list); 2071 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2072 ctxp = nvmewqeq->context_un.axchg; 2073 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 2074 spin_lock_irqsave(&pring->ring_lock, iflags); 2075 if (rc == -EBUSY) { 2076 /* WQ was full again, so put it back on the list */ 2077 list_add(&nvmewqeq->list, &wq->wqfull_list); 2078 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2079 return; 2080 } 2081 if (rc == WQE_SUCCESS) { 2082 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2083 if (ctxp->ts_cmd_nvme) { 2084 if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP) 2085 ctxp->ts_status_wqput = ktime_get_ns(); 2086 else 2087 ctxp->ts_data_wqput = ktime_get_ns(); 2088 } 2089 #endif 2090 } else { 2091 WARN_ON(rc); 2092 } 2093 } 2094 wq->q_flag &= ~HBA_NVMET_WQFULL; 2095 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2096 2097 #endif 2098 } 2099 2100 void 2101 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 2102 { 2103 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2104 struct lpfc_nvmet_tgtport *tgtp; 2105 struct lpfc_queue *wq; 2106 uint32_t qidx; 2107 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp); 2108 2109 if (phba->nvmet_support == 0) 2110 return; 2111 if (phba->targetport) { 2112 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2113 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 2114 wq = phba->sli4_hba.hdwq[qidx].io_wq; 2115 lpfc_nvmet_wqfull_flush(phba, wq, NULL); 2116 } 2117 tgtp->tport_unreg_cmp = &tport_unreg_cmp; 2118 nvmet_fc_unregister_targetport(phba->targetport); 2119 if (!wait_for_completion_timeout(&tport_unreg_cmp, 2120 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO))) 2121 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2122 "6179 Unreg targetport x%px timeout " 2123 "reached.\n", phba->targetport); 2124 lpfc_nvmet_cleanup_io_context(phba); 2125 } 2126 phba->targetport = NULL; 2127 #endif 2128 } 2129 2130 /** 2131 * lpfc_nvmet_handle_lsreq - Process an NVME LS request 2132 * @phba: pointer to lpfc hba data structure. 2133 * @axchg: pointer to exchange context for the NVME LS request 2134 * 2135 * This routine is used for processing an asychronously received NVME LS 2136 * request. Any remaining validation is done and the LS is then forwarded 2137 * to the nvmet-fc transport via nvmet_fc_rcv_ls_req(). 2138 * 2139 * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing) 2140 * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done. 2141 * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg. 2142 * 2143 * Returns 0 if LS was handled and delivered to the transport 2144 * Returns 1 if LS failed to be handled and should be dropped 2145 */ 2146 int 2147 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba, 2148 struct lpfc_async_xchg_ctx *axchg) 2149 { 2150 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2151 struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private; 2152 uint32_t *payload = axchg->payload; 2153 int rc; 2154 2155 atomic_inc(&tgtp->rcv_ls_req_in); 2156 2157 /* 2158 * Driver passes the ndlp as the hosthandle argument allowing 2159 * the transport to generate LS requests for any associateions 2160 * that are created. 2161 */ 2162 rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp, 2163 axchg->payload, axchg->size); 2164 2165 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2166 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 2167 "%08x %08x %08x\n", axchg->size, rc, 2168 *payload, *(payload+1), *(payload+2), 2169 *(payload+3), *(payload+4), *(payload+5)); 2170 2171 if (!rc) { 2172 atomic_inc(&tgtp->rcv_ls_req_out); 2173 return 0; 2174 } 2175 2176 atomic_inc(&tgtp->rcv_ls_req_drop); 2177 #endif 2178 return 1; 2179 } 2180 2181 static void 2182 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf) 2183 { 2184 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2185 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 2186 struct lpfc_hba *phba = ctxp->phba; 2187 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 2188 struct lpfc_nvmet_tgtport *tgtp; 2189 uint32_t *payload, qno; 2190 uint32_t rc; 2191 unsigned long iflags; 2192 2193 if (!nvmebuf) { 2194 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2195 "6159 process_rcv_fcp_req, nvmebuf is NULL, " 2196 "oxid: x%x flg: x%x state: x%x\n", 2197 ctxp->oxid, ctxp->flag, ctxp->state); 2198 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2199 lpfc_nvmet_defer_release(phba, ctxp); 2200 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2201 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 2202 ctxp->oxid); 2203 return; 2204 } 2205 2206 if (ctxp->flag & LPFC_NVME_ABTS_RCV) { 2207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2208 "6324 IO oxid x%x aborted\n", 2209 ctxp->oxid); 2210 return; 2211 } 2212 2213 payload = (uint32_t *)(nvmebuf->dbuf.virt); 2214 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2215 ctxp->flag |= LPFC_NVME_TNOTIFY; 2216 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2217 if (ctxp->ts_isr_cmd) 2218 ctxp->ts_cmd_nvme = ktime_get_ns(); 2219 #endif 2220 /* 2221 * The calling sequence should be: 2222 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 2223 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 2224 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 2225 * the NVME command / FC header is stored. 2226 * A buffer has already been reposted for this IO, so just free 2227 * the nvmebuf. 2228 */ 2229 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req, 2230 payload, ctxp->size); 2231 /* Process FCP command */ 2232 if (rc == 0) { 2233 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2234 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2235 if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) || 2236 (nvmebuf != ctxp->rqb_buffer)) { 2237 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2238 return; 2239 } 2240 ctxp->rqb_buffer = NULL; 2241 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2242 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2243 return; 2244 } 2245 2246 /* Processing of FCP command is deferred */ 2247 if (rc == -EOVERFLOW) { 2248 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d " 2249 "from %06x\n", 2250 ctxp->oxid, ctxp->size, ctxp->sid); 2251 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2252 atomic_inc(&tgtp->defer_fod); 2253 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2254 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 2255 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2256 return; 2257 } 2258 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2259 /* 2260 * Post a replacement DMA buffer to RQ and defer 2261 * freeing rcv buffer till .defer_rcv callback 2262 */ 2263 qno = nvmebuf->idx; 2264 lpfc_post_rq_buffer( 2265 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2266 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2267 return; 2268 } 2269 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 2270 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2272 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 2273 ctxp->oxid, rc, 2274 atomic_read(&tgtp->rcv_fcp_cmd_in), 2275 atomic_read(&tgtp->rcv_fcp_cmd_out), 2276 atomic_read(&tgtp->xmt_fcp_release)); 2277 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 2278 ctxp->oxid, ctxp->size, ctxp->sid); 2279 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2280 lpfc_nvmet_defer_release(phba, ctxp); 2281 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2282 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 2283 #endif 2284 } 2285 2286 static void 2287 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work) 2288 { 2289 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2290 struct lpfc_nvmet_ctxbuf *ctx_buf = 2291 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work); 2292 2293 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2294 #endif 2295 } 2296 2297 static struct lpfc_nvmet_ctxbuf * 2298 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 2299 struct lpfc_nvmet_ctx_info *current_infop) 2300 { 2301 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2302 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 2303 struct lpfc_nvmet_ctx_info *get_infop; 2304 int i; 2305 2306 /* 2307 * The current_infop for the MRQ a NVME command IU was received 2308 * on is empty. Our goal is to replenish this MRQs context 2309 * list from a another CPUs. 2310 * 2311 * First we need to pick a context list to start looking on. 2312 * nvmet_ctx_start_cpu has available context the last time 2313 * we needed to replenish this CPU where nvmet_ctx_next_cpu 2314 * is just the next sequential CPU for this MRQ. 2315 */ 2316 if (current_infop->nvmet_ctx_start_cpu) 2317 get_infop = current_infop->nvmet_ctx_start_cpu; 2318 else 2319 get_infop = current_infop->nvmet_ctx_next_cpu; 2320 2321 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) { 2322 if (get_infop == current_infop) { 2323 get_infop = get_infop->nvmet_ctx_next_cpu; 2324 continue; 2325 } 2326 spin_lock(&get_infop->nvmet_ctx_list_lock); 2327 2328 /* Just take the entire context list, if there are any */ 2329 if (get_infop->nvmet_ctx_list_cnt) { 2330 list_splice_init(&get_infop->nvmet_ctx_list, 2331 ¤t_infop->nvmet_ctx_list); 2332 current_infop->nvmet_ctx_list_cnt = 2333 get_infop->nvmet_ctx_list_cnt - 1; 2334 get_infop->nvmet_ctx_list_cnt = 0; 2335 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2336 2337 current_infop->nvmet_ctx_start_cpu = get_infop; 2338 list_remove_head(¤t_infop->nvmet_ctx_list, 2339 ctx_buf, struct lpfc_nvmet_ctxbuf, 2340 list); 2341 return ctx_buf; 2342 } 2343 2344 /* Otherwise, move on to the next CPU for this MRQ */ 2345 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2346 get_infop = get_infop->nvmet_ctx_next_cpu; 2347 } 2348 2349 #endif 2350 /* Nothing found, all contexts for the MRQ are in-flight */ 2351 return NULL; 2352 } 2353 2354 /** 2355 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 2356 * @phba: pointer to lpfc hba data structure. 2357 * @idx: relative index of MRQ vector 2358 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 2359 * @isr_timestamp: in jiffies. 2360 * @cqflag: cq processing information regarding workload. 2361 * 2362 * This routine is used for processing the WQE associated with a unsolicited 2363 * event. It first determines whether there is an existing ndlp that matches 2364 * the DID from the unsolicited WQE. If not, it will create a new one with 2365 * the DID from the unsolicited WQE. The ELS command from the unsolicited 2366 * WQE is then used to invoke the proper routine and to set up proper state 2367 * of the discovery state machine. 2368 **/ 2369 static void 2370 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 2371 uint32_t idx, 2372 struct rqb_dmabuf *nvmebuf, 2373 uint64_t isr_timestamp, 2374 uint8_t cqflag) 2375 { 2376 struct lpfc_async_xchg_ctx *ctxp; 2377 struct lpfc_nvmet_tgtport *tgtp; 2378 struct fc_frame_header *fc_hdr; 2379 struct lpfc_nvmet_ctxbuf *ctx_buf; 2380 struct lpfc_nvmet_ctx_info *current_infop; 2381 uint32_t size, oxid, sid, qno; 2382 unsigned long iflag; 2383 int current_cpu; 2384 2385 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2386 return; 2387 2388 ctx_buf = NULL; 2389 if (!nvmebuf || !phba->targetport) { 2390 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2391 "6157 NVMET FCP Drop IO\n"); 2392 if (nvmebuf) 2393 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2394 return; 2395 } 2396 2397 /* 2398 * Get a pointer to the context list for this MRQ based on 2399 * the CPU this MRQ IRQ is associated with. If the CPU association 2400 * changes from our initial assumption, the context list could 2401 * be empty, thus it would need to be replenished with the 2402 * context list from another CPU for this MRQ. 2403 */ 2404 current_cpu = raw_smp_processor_id(); 2405 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 2406 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 2407 if (current_infop->nvmet_ctx_list_cnt) { 2408 list_remove_head(¤t_infop->nvmet_ctx_list, 2409 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 2410 current_infop->nvmet_ctx_list_cnt--; 2411 } else { 2412 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 2413 } 2414 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 2415 2416 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 2417 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2418 size = nvmebuf->bytes_recv; 2419 2420 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2421 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 2422 this_cpu_inc(phba->sli4_hba.c_stat->rcv_io); 2423 if (idx != current_cpu) 2424 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2425 "6703 CPU Check rcv: " 2426 "cpu %d expect %d\n", 2427 current_cpu, idx); 2428 } 2429 #endif 2430 2431 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 2432 oxid, size, raw_smp_processor_id()); 2433 2434 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2435 2436 if (!ctx_buf) { 2437 /* Queue this NVME IO to process later */ 2438 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 2439 list_add_tail(&nvmebuf->hbuf.list, 2440 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 2441 phba->sli4_hba.nvmet_io_wait_cnt++; 2442 phba->sli4_hba.nvmet_io_wait_total++; 2443 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 2444 iflag); 2445 2446 /* Post a brand new DMA buffer to RQ */ 2447 qno = nvmebuf->idx; 2448 lpfc_post_rq_buffer( 2449 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2450 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2451 2452 atomic_inc(&tgtp->defer_ctx); 2453 return; 2454 } 2455 2456 sid = sli4_sid_from_fc_hdr(fc_hdr); 2457 2458 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 2459 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 2460 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list); 2461 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 2462 if (ctxp->state != LPFC_NVME_STE_FREE) { 2463 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2464 "6414 NVMET Context corrupt %d %d oxid x%x\n", 2465 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 2466 } 2467 ctxp->wqeq = NULL; 2468 ctxp->offset = 0; 2469 ctxp->phba = phba; 2470 ctxp->size = size; 2471 ctxp->oxid = oxid; 2472 ctxp->sid = sid; 2473 ctxp->idx = idx; 2474 ctxp->state = LPFC_NVME_STE_RCV; 2475 ctxp->entry_cnt = 1; 2476 ctxp->flag = 0; 2477 ctxp->ctxbuf = ctx_buf; 2478 ctxp->rqb_buffer = (void *)nvmebuf; 2479 ctxp->hdwq = NULL; 2480 spin_lock_init(&ctxp->ctxlock); 2481 2482 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2483 if (isr_timestamp) 2484 ctxp->ts_isr_cmd = isr_timestamp; 2485 ctxp->ts_cmd_nvme = 0; 2486 ctxp->ts_nvme_data = 0; 2487 ctxp->ts_data_wqput = 0; 2488 ctxp->ts_isr_data = 0; 2489 ctxp->ts_data_nvme = 0; 2490 ctxp->ts_nvme_status = 0; 2491 ctxp->ts_status_wqput = 0; 2492 ctxp->ts_isr_status = 0; 2493 ctxp->ts_status_nvme = 0; 2494 #endif 2495 2496 atomic_inc(&tgtp->rcv_fcp_cmd_in); 2497 /* check for cq processing load */ 2498 if (!cqflag) { 2499 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2500 return; 2501 } 2502 2503 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 2504 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2505 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2506 "6325 Unable to queue work for oxid x%x. " 2507 "FCP Drop IO [x%x x%x x%x]\n", 2508 ctxp->oxid, 2509 atomic_read(&tgtp->rcv_fcp_cmd_in), 2510 atomic_read(&tgtp->rcv_fcp_cmd_out), 2511 atomic_read(&tgtp->xmt_fcp_release)); 2512 2513 spin_lock_irqsave(&ctxp->ctxlock, iflag); 2514 lpfc_nvmet_defer_release(phba, ctxp); 2515 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 2516 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 2517 } 2518 } 2519 2520 /** 2521 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 2522 * @phba: pointer to lpfc hba data structure. 2523 * @idx: relative index of MRQ vector 2524 * @nvmebuf: pointer to received nvme data structure. 2525 * @isr_timestamp: in jiffies. 2526 * @cqflag: cq processing information regarding workload. 2527 * 2528 * This routine is used to process an unsolicited event received from a SLI 2529 * (Service Level Interface) ring. The actual processing of the data buffer 2530 * associated with the unsolicited event is done by invoking the routine 2531 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 2532 * SLI RQ on which the unsolicited event was received. 2533 **/ 2534 void 2535 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 2536 uint32_t idx, 2537 struct rqb_dmabuf *nvmebuf, 2538 uint64_t isr_timestamp, 2539 uint8_t cqflag) 2540 { 2541 if (!nvmebuf) { 2542 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2543 "3167 NVMET FCP Drop IO\n"); 2544 return; 2545 } 2546 if (phba->nvmet_support == 0) { 2547 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2548 return; 2549 } 2550 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag); 2551 } 2552 2553 /** 2554 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 2555 * @phba: pointer to a host N_Port data structure. 2556 * @ctxp: Context info for NVME LS Request 2557 * @rspbuf: DMA buffer of NVME command. 2558 * @rspsize: size of the NVME command. 2559 * 2560 * This routine is used for allocating a lpfc-WQE data structure from 2561 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 2562 * passed into the routine for discovery state machine to issue an Extended 2563 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 2564 * and preparation routine that is used by all the discovery state machine 2565 * routines and the NVME command-specific fields will be later set up by 2566 * the individual discovery machine routines after calling this routine 2567 * allocating and preparing a generic WQE data structure. It fills in the 2568 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 2569 * payload and response payload (if expected). The reference count on the 2570 * ndlp is incremented by 1 and the reference to the ndlp is put into 2571 * context1 of the WQE data structure for this WQE to hold the ndlp 2572 * reference for the command's callback function to access later. 2573 * 2574 * Return code 2575 * Pointer to the newly allocated/prepared nvme wqe data structure 2576 * NULL - when nvme wqe data structure allocation/preparation failed 2577 **/ 2578 static struct lpfc_iocbq * 2579 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 2580 struct lpfc_async_xchg_ctx *ctxp, 2581 dma_addr_t rspbuf, uint16_t rspsize) 2582 { 2583 struct lpfc_nodelist *ndlp; 2584 struct lpfc_iocbq *nvmewqe; 2585 union lpfc_wqe128 *wqe; 2586 2587 if (!lpfc_is_link_up(phba)) { 2588 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2589 "6104 NVMET prep LS wqe: link err: " 2590 "NPORT x%x oxid:x%x ste %d\n", 2591 ctxp->sid, ctxp->oxid, ctxp->state); 2592 return NULL; 2593 } 2594 2595 /* Allocate buffer for command wqe */ 2596 nvmewqe = lpfc_sli_get_iocbq(phba); 2597 if (nvmewqe == NULL) { 2598 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2599 "6105 NVMET prep LS wqe: No WQE: " 2600 "NPORT x%x oxid x%x ste %d\n", 2601 ctxp->sid, ctxp->oxid, ctxp->state); 2602 return NULL; 2603 } 2604 2605 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2606 if (!ndlp || 2607 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2608 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2609 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2610 "6106 NVMET prep LS wqe: No ndlp: " 2611 "NPORT x%x oxid x%x ste %d\n", 2612 ctxp->sid, ctxp->oxid, ctxp->state); 2613 goto nvme_wqe_free_wqeq_exit; 2614 } 2615 ctxp->wqeq = nvmewqe; 2616 2617 /* prevent preparing wqe with NULL ndlp reference */ 2618 nvmewqe->ndlp = lpfc_nlp_get(ndlp); 2619 if (!nvmewqe->ndlp) 2620 goto nvme_wqe_free_wqeq_exit; 2621 nvmewqe->context_un.axchg = ctxp; 2622 2623 wqe = &nvmewqe->wqe; 2624 memset(wqe, 0, sizeof(union lpfc_wqe)); 2625 2626 /* Words 0 - 2 */ 2627 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2628 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 2629 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 2630 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 2631 2632 /* Word 3 */ 2633 2634 /* Word 4 */ 2635 2636 /* Word 5 */ 2637 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 2638 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 2639 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 2640 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 2641 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 2642 2643 /* Word 6 */ 2644 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 2645 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2646 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 2647 2648 /* Word 7 */ 2649 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 2650 CMD_XMIT_SEQUENCE64_WQE); 2651 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 2652 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 2653 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 2654 2655 /* Word 8 */ 2656 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 2657 2658 /* Word 9 */ 2659 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 2660 /* Needs to be set by caller */ 2661 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 2662 2663 /* Word 10 */ 2664 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 2665 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2666 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 2667 LPFC_WQE_LENLOC_WORD12); 2668 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 2669 2670 /* Word 11 */ 2671 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 2672 LPFC_WQE_CQ_ID_DEFAULT); 2673 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 2674 OTHER_COMMAND); 2675 2676 /* Word 12 */ 2677 wqe->xmit_sequence.xmit_len = rspsize; 2678 2679 nvmewqe->retry = 1; 2680 nvmewqe->vport = phba->pport; 2681 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2682 nvmewqe->cmd_flag |= LPFC_IO_NVME_LS; 2683 2684 /* Xmit NVMET response to remote NPORT <did> */ 2685 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2686 "6039 Xmit NVMET LS response to remote " 2687 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 2688 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 2689 rspsize); 2690 return nvmewqe; 2691 2692 nvme_wqe_free_wqeq_exit: 2693 nvmewqe->context_un.axchg = NULL; 2694 nvmewqe->ndlp = NULL; 2695 nvmewqe->bpl_dmabuf = NULL; 2696 lpfc_sli_release_iocbq(phba, nvmewqe); 2697 return NULL; 2698 } 2699 2700 2701 static struct lpfc_iocbq * 2702 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 2703 struct lpfc_async_xchg_ctx *ctxp) 2704 { 2705 struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req; 2706 struct lpfc_nvmet_tgtport *tgtp; 2707 struct sli4_sge *sgl; 2708 struct lpfc_nodelist *ndlp; 2709 struct lpfc_iocbq *nvmewqe; 2710 struct scatterlist *sgel; 2711 union lpfc_wqe128 *wqe; 2712 struct ulp_bde64 *bde; 2713 dma_addr_t physaddr; 2714 int i, cnt, nsegs; 2715 bool use_pbde = false; 2716 int xc = 1; 2717 2718 if (!lpfc_is_link_up(phba)) { 2719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2720 "6107 NVMET prep FCP wqe: link err:" 2721 "NPORT x%x oxid x%x ste %d\n", 2722 ctxp->sid, ctxp->oxid, ctxp->state); 2723 return NULL; 2724 } 2725 2726 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2727 if (!ndlp || 2728 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2729 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2730 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2731 "6108 NVMET prep FCP wqe: no ndlp: " 2732 "NPORT x%x oxid x%x ste %d\n", 2733 ctxp->sid, ctxp->oxid, ctxp->state); 2734 return NULL; 2735 } 2736 2737 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { 2738 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2739 "6109 NVMET prep FCP wqe: seg cnt err: " 2740 "NPORT x%x oxid x%x ste %d cnt %d\n", 2741 ctxp->sid, ctxp->oxid, ctxp->state, 2742 phba->cfg_nvme_seg_cnt); 2743 return NULL; 2744 } 2745 nsegs = rsp->sg_cnt; 2746 2747 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2748 nvmewqe = ctxp->wqeq; 2749 if (nvmewqe == NULL) { 2750 /* Allocate buffer for command wqe */ 2751 nvmewqe = ctxp->ctxbuf->iocbq; 2752 if (nvmewqe == NULL) { 2753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2754 "6110 NVMET prep FCP wqe: No " 2755 "WQE: NPORT x%x oxid x%x ste %d\n", 2756 ctxp->sid, ctxp->oxid, ctxp->state); 2757 return NULL; 2758 } 2759 ctxp->wqeq = nvmewqe; 2760 xc = 0; /* create new XRI */ 2761 nvmewqe->sli4_lxritag = NO_XRI; 2762 nvmewqe->sli4_xritag = NO_XRI; 2763 } 2764 2765 /* Sanity check */ 2766 if (((ctxp->state == LPFC_NVME_STE_RCV) && 2767 (ctxp->entry_cnt == 1)) || 2768 (ctxp->state == LPFC_NVME_STE_DATA)) { 2769 wqe = &nvmewqe->wqe; 2770 } else { 2771 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2772 "6111 Wrong state NVMET FCP: %d cnt %d\n", 2773 ctxp->state, ctxp->entry_cnt); 2774 return NULL; 2775 } 2776 2777 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 2778 switch (rsp->op) { 2779 case NVMET_FCOP_READDATA: 2780 case NVMET_FCOP_READDATA_RSP: 2781 /* From the tsend template, initialize words 7 - 11 */ 2782 memcpy(&wqe->words[7], 2783 &lpfc_tsend_cmd_template.words[7], 2784 sizeof(uint32_t) * 5); 2785 2786 /* Words 0 - 2 : The first sg segment */ 2787 sgel = &rsp->sg[0]; 2788 physaddr = sg_dma_address(sgel); 2789 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2790 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 2791 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 2792 wqe->fcp_tsend.bde.addrHigh = 2793 cpu_to_le32(putPaddrHigh(physaddr)); 2794 2795 /* Word 3 */ 2796 wqe->fcp_tsend.payload_offset_len = 0; 2797 2798 /* Word 4 */ 2799 wqe->fcp_tsend.relative_offset = ctxp->offset; 2800 2801 /* Word 5 */ 2802 wqe->fcp_tsend.reserved = 0; 2803 2804 /* Word 6 */ 2805 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2806 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2807 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2808 nvmewqe->sli4_xritag); 2809 2810 /* Word 7 - set ar later */ 2811 2812 /* Word 8 */ 2813 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2814 2815 /* Word 9 */ 2816 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2817 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2818 2819 /* Word 10 - set wqes later, in template xc=1 */ 2820 if (!xc) 2821 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); 2822 2823 /* Word 12 */ 2824 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2825 2826 /* Setup 2 SKIP SGEs */ 2827 sgl->addr_hi = 0; 2828 sgl->addr_lo = 0; 2829 sgl->word2 = 0; 2830 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2831 sgl->word2 = cpu_to_le32(sgl->word2); 2832 sgl->sge_len = 0; 2833 sgl++; 2834 sgl->addr_hi = 0; 2835 sgl->addr_lo = 0; 2836 sgl->word2 = 0; 2837 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2838 sgl->word2 = cpu_to_le32(sgl->word2); 2839 sgl->sge_len = 0; 2840 sgl++; 2841 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2842 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2843 2844 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2845 2846 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2847 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP) 2848 bf_set(wqe_sup, 2849 &wqe->fcp_tsend.wqe_com, 1); 2850 } else { 2851 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2852 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2853 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2854 ((rsp->rsplen >> 2) - 1)); 2855 memcpy(&wqe->words[16], rsp->rspaddr, 2856 rsp->rsplen); 2857 } 2858 } else { 2859 atomic_inc(&tgtp->xmt_fcp_read); 2860 2861 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2862 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2863 } 2864 break; 2865 2866 case NVMET_FCOP_WRITEDATA: 2867 /* From the treceive template, initialize words 3 - 11 */ 2868 memcpy(&wqe->words[3], 2869 &lpfc_treceive_cmd_template.words[3], 2870 sizeof(uint32_t) * 9); 2871 2872 /* Words 0 - 2 : First SGE is skipped, set invalid BDE type */ 2873 wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP; 2874 wqe->fcp_treceive.bde.tus.f.bdeSize = 0; 2875 wqe->fcp_treceive.bde.addrLow = 0; 2876 wqe->fcp_treceive.bde.addrHigh = 0; 2877 2878 /* Word 4 */ 2879 wqe->fcp_treceive.relative_offset = ctxp->offset; 2880 2881 /* Word 6 */ 2882 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2883 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2884 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2885 nvmewqe->sli4_xritag); 2886 2887 /* Word 7 */ 2888 2889 /* Word 8 */ 2890 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2891 2892 /* Word 9 */ 2893 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2894 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2895 2896 /* Word 10 - in template xc=1 */ 2897 if (!xc) 2898 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); 2899 2900 /* Word 11 - check for pbde */ 2901 if (nsegs == 1 && phba->cfg_enable_pbde) { 2902 use_pbde = true; 2903 /* Word 11 - PBDE bit already preset by template */ 2904 } else { 2905 /* Overwrite default template setting */ 2906 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); 2907 } 2908 2909 /* Word 12 */ 2910 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2911 2912 /* Setup 2 SKIP SGEs */ 2913 sgl->addr_hi = 0; 2914 sgl->addr_lo = 0; 2915 sgl->word2 = 0; 2916 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2917 sgl->word2 = cpu_to_le32(sgl->word2); 2918 sgl->sge_len = 0; 2919 sgl++; 2920 sgl->addr_hi = 0; 2921 sgl->addr_lo = 0; 2922 sgl->word2 = 0; 2923 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2924 sgl->word2 = cpu_to_le32(sgl->word2); 2925 sgl->sge_len = 0; 2926 sgl++; 2927 atomic_inc(&tgtp->xmt_fcp_write); 2928 break; 2929 2930 case NVMET_FCOP_RSP: 2931 /* From the treceive template, initialize words 4 - 11 */ 2932 memcpy(&wqe->words[4], 2933 &lpfc_trsp_cmd_template.words[4], 2934 sizeof(uint32_t) * 8); 2935 2936 /* Words 0 - 2 */ 2937 physaddr = rsp->rspdma; 2938 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2939 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2940 wqe->fcp_trsp.bde.addrLow = 2941 cpu_to_le32(putPaddrLow(physaddr)); 2942 wqe->fcp_trsp.bde.addrHigh = 2943 cpu_to_le32(putPaddrHigh(physaddr)); 2944 2945 /* Word 3 */ 2946 wqe->fcp_trsp.response_len = rsp->rsplen; 2947 2948 /* Word 6 */ 2949 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2950 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2951 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2952 nvmewqe->sli4_xritag); 2953 2954 /* Word 7 */ 2955 2956 /* Word 8 */ 2957 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2958 2959 /* Word 9 */ 2960 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2961 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2962 2963 /* Word 10 */ 2964 if (xc) 2965 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); 2966 2967 /* Word 11 */ 2968 /* In template wqes=0 irsp=0 irsplen=0 - good response */ 2969 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { 2970 /* Bad response - embed it */ 2971 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2972 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2973 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2974 ((rsp->rsplen >> 2) - 1)); 2975 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2976 } 2977 2978 /* Word 12 */ 2979 wqe->fcp_trsp.rsvd_12_15[0] = 0; 2980 2981 /* Use rspbuf, NOT sg list */ 2982 nsegs = 0; 2983 sgl->word2 = 0; 2984 atomic_inc(&tgtp->xmt_fcp_rsp); 2985 break; 2986 2987 default: 2988 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2989 "6064 Unknown Rsp Op %d\n", 2990 rsp->op); 2991 return NULL; 2992 } 2993 2994 nvmewqe->retry = 1; 2995 nvmewqe->vport = phba->pport; 2996 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2997 nvmewqe->ndlp = ndlp; 2998 2999 for_each_sg(rsp->sg, sgel, nsegs, i) { 3000 physaddr = sg_dma_address(sgel); 3001 cnt = sg_dma_len(sgel); 3002 sgl->addr_hi = putPaddrHigh(physaddr); 3003 sgl->addr_lo = putPaddrLow(physaddr); 3004 sgl->word2 = 0; 3005 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 3006 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 3007 if ((i+1) == rsp->sg_cnt) 3008 bf_set(lpfc_sli4_sge_last, sgl, 1); 3009 sgl->word2 = cpu_to_le32(sgl->word2); 3010 sgl->sge_len = cpu_to_le32(cnt); 3011 sgl++; 3012 ctxp->offset += cnt; 3013 } 3014 3015 bde = (struct ulp_bde64 *)&wqe->words[13]; 3016 if (use_pbde) { 3017 /* decrement sgl ptr backwards once to first data sge */ 3018 sgl--; 3019 3020 /* Words 13-15 (PBDE) */ 3021 bde->addrLow = sgl->addr_lo; 3022 bde->addrHigh = sgl->addr_hi; 3023 bde->tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 3024 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 3025 bde->tus.w = cpu_to_le32(bde->tus.w); 3026 } else { 3027 memset(bde, 0, sizeof(struct ulp_bde64)); 3028 } 3029 ctxp->state = LPFC_NVME_STE_DATA; 3030 ctxp->entry_cnt++; 3031 return nvmewqe; 3032 } 3033 3034 /** 3035 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 3036 * @phba: Pointer to HBA context object. 3037 * @cmdwqe: Pointer to driver command WQE object. 3038 * @rspwqe: Pointer to driver response WQE object. 3039 * 3040 * The function is called from SLI ring event handler with no 3041 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3042 * The function frees memory resources used for the NVME commands. 3043 **/ 3044 static void 3045 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3046 struct lpfc_iocbq *rspwqe) 3047 { 3048 struct lpfc_async_xchg_ctx *ctxp; 3049 struct lpfc_nvmet_tgtport *tgtp; 3050 uint32_t result; 3051 unsigned long flags; 3052 bool released = false; 3053 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3054 3055 ctxp = cmdwqe->context_un.axchg; 3056 result = wcqe->parameter; 3057 3058 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3059 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3060 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3061 3062 spin_lock_irqsave(&ctxp->ctxlock, flags); 3063 ctxp->state = LPFC_NVME_STE_DONE; 3064 3065 /* Check if we already received a free context call 3066 * and we have completed processing an abort situation. 3067 */ 3068 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3069 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3070 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3071 list_del_init(&ctxp->list); 3072 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3073 released = true; 3074 } 3075 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3076 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3077 atomic_inc(&tgtp->xmt_abort_rsp); 3078 3079 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3080 "6165 ABORT cmpl: oxid x%x flg x%x (%d) " 3081 "WCQE: %08x %08x %08x %08x\n", 3082 ctxp->oxid, ctxp->flag, released, 3083 wcqe->word0, wcqe->total_data_placed, 3084 result, wcqe->word3); 3085 3086 cmdwqe->rsp_dmabuf = NULL; 3087 cmdwqe->bpl_dmabuf = NULL; 3088 /* 3089 * if transport has released ctx, then can reuse it. Otherwise, 3090 * will be recycled by transport release call. 3091 */ 3092 if (released) 3093 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3094 3095 /* This is the iocbq for the abort, not the command */ 3096 lpfc_sli_release_iocbq(phba, cmdwqe); 3097 3098 /* Since iaab/iaar are NOT set, there is no work left. 3099 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3100 * should have been called already. 3101 */ 3102 } 3103 3104 /** 3105 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 3106 * @phba: Pointer to HBA context object. 3107 * @cmdwqe: Pointer to driver command WQE object. 3108 * @rspwqe: Pointer to driver response WQE object. 3109 * 3110 * The function is called from SLI ring event handler with no 3111 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3112 * The function frees memory resources used for the NVME commands. 3113 **/ 3114 static void 3115 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3116 struct lpfc_iocbq *rspwqe) 3117 { 3118 struct lpfc_async_xchg_ctx *ctxp; 3119 struct lpfc_nvmet_tgtport *tgtp; 3120 unsigned long flags; 3121 uint32_t result; 3122 bool released = false; 3123 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3124 3125 ctxp = cmdwqe->context_un.axchg; 3126 result = wcqe->parameter; 3127 3128 if (!ctxp) { 3129 /* if context is clear, related io alrady complete */ 3130 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3131 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 3132 wcqe->word0, wcqe->total_data_placed, 3133 result, wcqe->word3); 3134 return; 3135 } 3136 3137 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3138 spin_lock_irqsave(&ctxp->ctxlock, flags); 3139 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3140 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3141 3142 /* Sanity check */ 3143 if (ctxp->state != LPFC_NVME_STE_ABORT) { 3144 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3145 "6112 ABTS Wrong state:%d oxid x%x\n", 3146 ctxp->state, ctxp->oxid); 3147 } 3148 3149 /* Check if we already received a free context call 3150 * and we have completed processing an abort situation. 3151 */ 3152 ctxp->state = LPFC_NVME_STE_DONE; 3153 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3154 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3155 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3156 list_del_init(&ctxp->list); 3157 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3158 released = true; 3159 } 3160 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3161 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3162 atomic_inc(&tgtp->xmt_abort_rsp); 3163 3164 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3165 "6316 ABTS cmpl oxid x%x flg x%x (%x) " 3166 "WCQE: %08x %08x %08x %08x\n", 3167 ctxp->oxid, ctxp->flag, released, 3168 wcqe->word0, wcqe->total_data_placed, 3169 result, wcqe->word3); 3170 3171 cmdwqe->rsp_dmabuf = NULL; 3172 cmdwqe->bpl_dmabuf = NULL; 3173 /* 3174 * if transport has released ctx, then can reuse it. Otherwise, 3175 * will be recycled by transport release call. 3176 */ 3177 if (released) 3178 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3179 3180 /* Since iaab/iaar are NOT set, there is no work left. 3181 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3182 * should have been called already. 3183 */ 3184 } 3185 3186 /** 3187 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 3188 * @phba: Pointer to HBA context object. 3189 * @cmdwqe: Pointer to driver command WQE object. 3190 * @rspwqe: Pointer to driver response WQE object. 3191 * 3192 * The function is called from SLI ring event handler with no 3193 * lock held. This function is the completion handler for NVME ABTS for LS cmds 3194 * The function frees memory resources used for the NVME commands. 3195 **/ 3196 static void 3197 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3198 struct lpfc_iocbq *rspwqe) 3199 { 3200 struct lpfc_async_xchg_ctx *ctxp; 3201 struct lpfc_nvmet_tgtport *tgtp; 3202 uint32_t result; 3203 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3204 3205 ctxp = cmdwqe->context_un.axchg; 3206 result = wcqe->parameter; 3207 3208 if (phba->nvmet_support) { 3209 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3210 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 3211 } 3212 3213 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3214 "6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n", 3215 ctxp, wcqe->word0, wcqe->total_data_placed, 3216 result, wcqe->word3); 3217 3218 if (!ctxp) { 3219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3220 "6415 NVMET LS Abort No ctx: WCQE: " 3221 "%08x %08x %08x %08x\n", 3222 wcqe->word0, wcqe->total_data_placed, 3223 result, wcqe->word3); 3224 3225 lpfc_sli_release_iocbq(phba, cmdwqe); 3226 return; 3227 } 3228 3229 if (ctxp->state != LPFC_NVME_STE_LS_ABORT) { 3230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3231 "6416 NVMET LS abort cmpl state mismatch: " 3232 "oxid x%x: %d %d\n", 3233 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3234 } 3235 3236 cmdwqe->rsp_dmabuf = NULL; 3237 cmdwqe->bpl_dmabuf = NULL; 3238 lpfc_sli_release_iocbq(phba, cmdwqe); 3239 kfree(ctxp); 3240 } 3241 3242 static int 3243 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 3244 struct lpfc_async_xchg_ctx *ctxp, 3245 uint32_t sid, uint16_t xri) 3246 { 3247 struct lpfc_nvmet_tgtport *tgtp = NULL; 3248 struct lpfc_iocbq *abts_wqeq; 3249 union lpfc_wqe128 *wqe_abts; 3250 struct lpfc_nodelist *ndlp; 3251 3252 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3253 "6067 ABTS: sid %x xri x%x/x%x\n", 3254 sid, xri, ctxp->wqeq->sli4_xritag); 3255 3256 if (phba->nvmet_support && phba->targetport) 3257 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3258 3259 ndlp = lpfc_findnode_did(phba->pport, sid); 3260 if (!ndlp || 3261 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3262 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3263 if (tgtp) 3264 atomic_inc(&tgtp->xmt_abort_rsp_error); 3265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3266 "6134 Drop ABTS - wrong NDLP state x%x.\n", 3267 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3268 3269 /* No failure to an ABTS request. */ 3270 return 0; 3271 } 3272 3273 abts_wqeq = ctxp->wqeq; 3274 wqe_abts = &abts_wqeq->wqe; 3275 3276 /* 3277 * Since we zero the whole WQE, we need to ensure we set the WQE fields 3278 * that were initialized in lpfc_sli4_nvmet_alloc. 3279 */ 3280 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 3281 3282 /* Word 5 */ 3283 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 3284 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 3285 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 3286 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 3287 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 3288 3289 /* Word 6 */ 3290 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 3291 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 3292 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 3293 abts_wqeq->sli4_xritag); 3294 3295 /* Word 7 */ 3296 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 3297 CMD_XMIT_SEQUENCE64_WQE); 3298 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 3299 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 3300 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 3301 3302 /* Word 8 */ 3303 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 3304 3305 /* Word 9 */ 3306 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 3307 /* Needs to be set by caller */ 3308 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 3309 3310 /* Word 10 */ 3311 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 3312 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 3313 LPFC_WQE_LENLOC_WORD12); 3314 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 3315 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 3316 3317 /* Word 11 */ 3318 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 3319 LPFC_WQE_CQ_ID_DEFAULT); 3320 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 3321 OTHER_COMMAND); 3322 3323 abts_wqeq->vport = phba->pport; 3324 abts_wqeq->ndlp = ndlp; 3325 abts_wqeq->context_un.axchg = ctxp; 3326 abts_wqeq->bpl_dmabuf = NULL; 3327 abts_wqeq->num_bdes = 0; 3328 /* hba_wqidx should already be setup from command we are aborting */ 3329 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 3330 abts_wqeq->iocb.ulpLe = 1; 3331 3332 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3333 "6069 Issue ABTS to xri x%x reqtag x%x\n", 3334 xri, abts_wqeq->iotag); 3335 return 1; 3336 } 3337 3338 /** 3339 * lpfc_nvmet_prep_abort_wqe - set up 'abort' work queue entry. 3340 * @pwqeq: Pointer to command iocb. 3341 * @xritag: Tag that uniqely identifies the local exchange resource. 3342 * @opt: Option bits - 3343 * bit 0 = inhibit sending abts on the link 3344 * 3345 * This function is called with hbalock held. 3346 **/ 3347 static void 3348 lpfc_nvmet_prep_abort_wqe(struct lpfc_iocbq *pwqeq, u16 xritag, u8 opt) 3349 { 3350 union lpfc_wqe128 *wqe = &pwqeq->wqe; 3351 3352 /* WQEs are reused. Clear stale data and set key fields to 3353 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag. 3354 */ 3355 memset(wqe, 0, sizeof(*wqe)); 3356 3357 if (opt & INHIBIT_ABORT) 3358 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 3359 /* Abort specified xri tag, with the mask deliberately zeroed */ 3360 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 3361 3362 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 3363 3364 /* Abort the I/O associated with this outstanding exchange ID. */ 3365 wqe->abort_cmd.wqe_com.abort_tag = xritag; 3366 3367 /* iotag for the wqe completion. */ 3368 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, pwqeq->iotag); 3369 3370 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 3371 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 3372 3373 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 3374 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 3375 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 3376 } 3377 3378 static int 3379 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 3380 struct lpfc_async_xchg_ctx *ctxp, 3381 uint32_t sid, uint16_t xri) 3382 { 3383 struct lpfc_nvmet_tgtport *tgtp; 3384 struct lpfc_iocbq *abts_wqeq; 3385 struct lpfc_nodelist *ndlp; 3386 unsigned long flags; 3387 u8 opt; 3388 int rc; 3389 3390 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3391 if (!ctxp->wqeq) { 3392 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3393 ctxp->wqeq->hba_wqidx = 0; 3394 } 3395 3396 ndlp = lpfc_findnode_did(phba->pport, sid); 3397 if (!ndlp || 3398 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3399 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3400 atomic_inc(&tgtp->xmt_abort_rsp_error); 3401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3402 "6160 Drop ABORT - wrong NDLP state x%x.\n", 3403 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3404 3405 /* No failure to an ABTS request. */ 3406 spin_lock_irqsave(&ctxp->ctxlock, flags); 3407 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3408 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3409 return 0; 3410 } 3411 3412 /* Issue ABTS for this WQE based on iotag */ 3413 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 3414 spin_lock_irqsave(&ctxp->ctxlock, flags); 3415 if (!ctxp->abort_wqeq) { 3416 atomic_inc(&tgtp->xmt_abort_rsp_error); 3417 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3418 "6161 ABORT failed: No wqeqs: " 3419 "xri: x%x\n", ctxp->oxid); 3420 /* No failure to an ABTS request. */ 3421 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3422 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3423 return 0; 3424 } 3425 abts_wqeq = ctxp->abort_wqeq; 3426 ctxp->state = LPFC_NVME_STE_ABORT; 3427 opt = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? INHIBIT_ABORT : 0; 3428 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3429 3430 /* Announce entry to new IO submit field. */ 3431 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3432 "6162 ABORT Request to rport DID x%06x " 3433 "for xri x%x x%x\n", 3434 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 3435 3436 /* If the hba is getting reset, this flag is set. It is 3437 * cleared when the reset is complete and rings reestablished. 3438 */ 3439 spin_lock_irqsave(&phba->hbalock, flags); 3440 /* driver queued commands are in process of being flushed */ 3441 if (phba->hba_flag & HBA_IOQ_FLUSH) { 3442 spin_unlock_irqrestore(&phba->hbalock, flags); 3443 atomic_inc(&tgtp->xmt_abort_rsp_error); 3444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3445 "6163 Driver in reset cleanup - flushing " 3446 "NVME Req now. hba_flag x%x oxid x%x\n", 3447 phba->hba_flag, ctxp->oxid); 3448 lpfc_sli_release_iocbq(phba, abts_wqeq); 3449 spin_lock_irqsave(&ctxp->ctxlock, flags); 3450 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3451 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3452 return 0; 3453 } 3454 3455 /* Outstanding abort is in progress */ 3456 if (abts_wqeq->cmd_flag & LPFC_DRIVER_ABORTED) { 3457 spin_unlock_irqrestore(&phba->hbalock, flags); 3458 atomic_inc(&tgtp->xmt_abort_rsp_error); 3459 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3460 "6164 Outstanding NVME I/O Abort Request " 3461 "still pending on oxid x%x\n", 3462 ctxp->oxid); 3463 lpfc_sli_release_iocbq(phba, abts_wqeq); 3464 spin_lock_irqsave(&ctxp->ctxlock, flags); 3465 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3466 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3467 return 0; 3468 } 3469 3470 /* Ready - mark outstanding as aborted by driver. */ 3471 abts_wqeq->cmd_flag |= LPFC_DRIVER_ABORTED; 3472 3473 lpfc_nvmet_prep_abort_wqe(abts_wqeq, ctxp->wqeq->sli4_xritag, opt); 3474 3475 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3476 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 3477 abts_wqeq->cmd_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 3478 abts_wqeq->cmd_flag |= LPFC_IO_NVME; 3479 abts_wqeq->context_un.axchg = ctxp; 3480 abts_wqeq->vport = phba->pport; 3481 if (!ctxp->hdwq) 3482 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3483 3484 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3485 spin_unlock_irqrestore(&phba->hbalock, flags); 3486 if (rc == WQE_SUCCESS) { 3487 atomic_inc(&tgtp->xmt_abort_sol); 3488 return 0; 3489 } 3490 3491 atomic_inc(&tgtp->xmt_abort_rsp_error); 3492 spin_lock_irqsave(&ctxp->ctxlock, flags); 3493 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3494 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3495 lpfc_sli_release_iocbq(phba, abts_wqeq); 3496 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3497 "6166 Failed ABORT issue_wqe with status x%x " 3498 "for oxid x%x.\n", 3499 rc, ctxp->oxid); 3500 return 1; 3501 } 3502 3503 static int 3504 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 3505 struct lpfc_async_xchg_ctx *ctxp, 3506 uint32_t sid, uint16_t xri) 3507 { 3508 struct lpfc_nvmet_tgtport *tgtp; 3509 struct lpfc_iocbq *abts_wqeq; 3510 unsigned long flags; 3511 bool released = false; 3512 int rc; 3513 3514 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3515 if (!ctxp->wqeq) { 3516 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3517 ctxp->wqeq->hba_wqidx = 0; 3518 } 3519 3520 if (ctxp->state == LPFC_NVME_STE_FREE) { 3521 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3522 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 3523 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 3524 rc = WQE_BUSY; 3525 goto aerr; 3526 } 3527 ctxp->state = LPFC_NVME_STE_ABORT; 3528 ctxp->entry_cnt++; 3529 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 3530 if (rc == 0) 3531 goto aerr; 3532 3533 spin_lock_irqsave(&phba->hbalock, flags); 3534 abts_wqeq = ctxp->wqeq; 3535 abts_wqeq->cmd_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 3536 abts_wqeq->cmd_flag |= LPFC_IO_NVMET; 3537 if (!ctxp->hdwq) 3538 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3539 3540 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3541 spin_unlock_irqrestore(&phba->hbalock, flags); 3542 if (rc == WQE_SUCCESS) { 3543 return 0; 3544 } 3545 3546 aerr: 3547 spin_lock_irqsave(&ctxp->ctxlock, flags); 3548 if (ctxp->flag & LPFC_NVME_CTX_RLS) { 3549 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3550 list_del_init(&ctxp->list); 3551 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3552 released = true; 3553 } 3554 ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS); 3555 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3556 3557 atomic_inc(&tgtp->xmt_abort_rsp_error); 3558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3559 "6135 Failed to Issue ABTS for oxid x%x. Status x%x " 3560 "(%x)\n", 3561 ctxp->oxid, rc, released); 3562 if (released) 3563 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3564 return 1; 3565 } 3566 3567 /** 3568 * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received 3569 * via async frame receive where the frame is not handled. 3570 * @phba: pointer to adapter structure 3571 * @ctxp: pointer to the asynchronously received received sequence 3572 * @sid: address of the remote port to send the ABTS to 3573 * @xri: oxid value to for the ABTS (other side's exchange id). 3574 **/ 3575 int 3576 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba, 3577 struct lpfc_async_xchg_ctx *ctxp, 3578 uint32_t sid, uint16_t xri) 3579 { 3580 struct lpfc_nvmet_tgtport *tgtp = NULL; 3581 struct lpfc_iocbq *abts_wqeq; 3582 unsigned long flags; 3583 int rc; 3584 3585 if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) || 3586 (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) { 3587 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3588 ctxp->entry_cnt++; 3589 } else { 3590 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3591 "6418 NVMET LS abort state mismatch " 3592 "IO x%x: %d %d\n", 3593 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3594 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3595 } 3596 3597 if (phba->nvmet_support && phba->targetport) 3598 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3599 3600 if (!ctxp->wqeq) { 3601 /* Issue ABTS for this WQE based on iotag */ 3602 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 3603 if (!ctxp->wqeq) { 3604 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3605 "6068 Abort failed: No wqeqs: " 3606 "xri: x%x\n", xri); 3607 /* No failure to an ABTS request. */ 3608 kfree(ctxp); 3609 return 0; 3610 } 3611 } 3612 abts_wqeq = ctxp->wqeq; 3613 3614 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 3615 rc = WQE_BUSY; 3616 goto out; 3617 } 3618 3619 spin_lock_irqsave(&phba->hbalock, flags); 3620 abts_wqeq->cmd_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 3621 abts_wqeq->cmd_flag |= LPFC_IO_NVME_LS; 3622 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3623 spin_unlock_irqrestore(&phba->hbalock, flags); 3624 if (rc == WQE_SUCCESS) { 3625 if (tgtp) 3626 atomic_inc(&tgtp->xmt_abort_unsol); 3627 return 0; 3628 } 3629 out: 3630 if (tgtp) 3631 atomic_inc(&tgtp->xmt_abort_rsp_error); 3632 abts_wqeq->rsp_dmabuf = NULL; 3633 abts_wqeq->bpl_dmabuf = NULL; 3634 lpfc_sli_release_iocbq(phba, abts_wqeq); 3635 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3636 "6056 Failed to Issue ABTS. Status x%x\n", rc); 3637 return 1; 3638 } 3639 3640 /** 3641 * lpfc_nvmet_invalidate_host 3642 * 3643 * @phba: pointer to the driver instance bound to an adapter port. 3644 * @ndlp: pointer to an lpfc_nodelist type 3645 * 3646 * This routine upcalls the nvmet transport to invalidate an NVME 3647 * host to which this target instance had active connections. 3648 */ 3649 void 3650 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 3651 { 3652 u32 ndlp_has_hh; 3653 struct lpfc_nvmet_tgtport *tgtp; 3654 3655 lpfc_printf_log(phba, KERN_INFO, 3656 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC, 3657 "6203 Invalidating hosthandle x%px\n", 3658 ndlp); 3659 3660 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3661 atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE); 3662 3663 spin_lock_irq(&ndlp->lock); 3664 ndlp_has_hh = ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH; 3665 spin_unlock_irq(&ndlp->lock); 3666 3667 /* Do not invalidate any nodes that do not have a hosthandle. 3668 * The host_release callbk will cause a node reference 3669 * count imbalance and a crash. 3670 */ 3671 if (!ndlp_has_hh) { 3672 lpfc_printf_log(phba, KERN_INFO, 3673 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC, 3674 "6204 Skip invalidate on node x%px DID x%x\n", 3675 ndlp, ndlp->nlp_DID); 3676 return; 3677 } 3678 3679 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 3680 /* Need to get the nvmet_fc_target_port pointer here.*/ 3681 nvmet_fc_invalidate_host(phba->targetport, ndlp); 3682 #endif 3683 } 3684