1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channsel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <asm/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include "lpfc_version.h" 40 #include "lpfc_hw4.h" 41 #include "lpfc_hw.h" 42 #include "lpfc_sli.h" 43 #include "lpfc_sli4.h" 44 #include "lpfc_nl.h" 45 #include "lpfc_disc.h" 46 #include "lpfc.h" 47 #include "lpfc_scsi.h" 48 #include "lpfc_nvme.h" 49 #include "lpfc_logmsg.h" 50 #include "lpfc_crtn.h" 51 #include "lpfc_vport.h" 52 #include "lpfc_debugfs.h" 53 54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 55 struct lpfc_async_xchg_ctx *, 56 dma_addr_t rspbuf, 57 uint16_t rspsize); 58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 59 struct lpfc_async_xchg_ctx *); 60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 61 struct lpfc_async_xchg_ctx *, 62 uint32_t, uint16_t); 63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 64 struct lpfc_async_xchg_ctx *, 65 uint32_t, uint16_t); 66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, 67 struct lpfc_async_xchg_ctx *); 68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *); 69 70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf); 71 72 static union lpfc_wqe128 lpfc_tsend_cmd_template; 73 static union lpfc_wqe128 lpfc_treceive_cmd_template; 74 static union lpfc_wqe128 lpfc_trsp_cmd_template; 75 76 /* Setup WQE templates for NVME IOs */ 77 void 78 lpfc_nvmet_cmd_template(void) 79 { 80 union lpfc_wqe128 *wqe; 81 82 /* TSEND template */ 83 wqe = &lpfc_tsend_cmd_template; 84 memset(wqe, 0, sizeof(union lpfc_wqe128)); 85 86 /* Word 0, 1, 2 - BDE is variable */ 87 88 /* Word 3 - payload_offset_len is zero */ 89 90 /* Word 4 - relative_offset is variable */ 91 92 /* Word 5 - is zero */ 93 94 /* Word 6 - ctxt_tag, xri_tag is variable */ 95 96 /* Word 7 - wqe_ar is variable */ 97 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 98 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); 99 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); 100 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); 101 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 102 103 /* Word 8 - abort_tag is variable */ 104 105 /* Word 9 - reqtag, rcvoxid is variable */ 106 107 /* Word 10 - wqes, xc is variable */ 108 bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG); 109 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 110 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 111 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 112 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 113 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); 114 115 /* Word 11 - sup, irsp, irsplen is variable */ 116 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); 117 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 118 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 119 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 120 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 121 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); 122 123 /* Word 12 - fcp_data_len is variable */ 124 125 /* Word 13, 14, 15 - PBDE is zero */ 126 127 /* TRECEIVE template */ 128 wqe = &lpfc_treceive_cmd_template; 129 memset(wqe, 0, sizeof(union lpfc_wqe128)); 130 131 /* Word 0, 1, 2 - BDE is variable */ 132 133 /* Word 3 */ 134 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 135 136 /* Word 4 - relative_offset is variable */ 137 138 /* Word 5 - is zero */ 139 140 /* Word 6 - ctxt_tag, xri_tag is variable */ 141 142 /* Word 7 */ 143 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); 144 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); 145 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); 146 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); 147 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 148 149 /* Word 8 - abort_tag is variable */ 150 151 /* Word 9 - reqtag, rcvoxid is variable */ 152 153 /* Word 10 - xc is variable */ 154 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 155 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 156 bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG); 157 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 158 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); 159 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 160 161 /* Word 11 - pbde is variable */ 162 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); 163 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 164 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); 165 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 166 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 167 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); 168 169 /* Word 12 - fcp_data_len is variable */ 170 171 /* Word 13, 14, 15 - PBDE is variable */ 172 173 /* TRSP template */ 174 wqe = &lpfc_trsp_cmd_template; 175 memset(wqe, 0, sizeof(union lpfc_wqe128)); 176 177 /* Word 0, 1, 2 - BDE is variable */ 178 179 /* Word 3 - response_len is variable */ 180 181 /* Word 4, 5 - is zero */ 182 183 /* Word 6 - ctxt_tag, xri_tag is variable */ 184 185 /* Word 7 */ 186 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 187 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); 188 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); 189 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); 190 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ 191 192 /* Word 8 - abort_tag is variable */ 193 194 /* Word 9 - reqtag is variable */ 195 196 /* Word 10 wqes, xc is variable */ 197 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); 198 bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG); 199 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 200 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); 201 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); 202 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); 203 204 /* Word 11 irsp, irsplen is variable */ 205 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); 206 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 207 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); 208 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 209 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 210 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); 211 212 /* Word 12, 13, 14, 15 - is zero */ 213 } 214 215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 216 static struct lpfc_async_xchg_ctx * 217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri) 218 { 219 struct lpfc_async_xchg_ctx *ctxp; 220 unsigned long iflag; 221 bool found = false; 222 223 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 224 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 225 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 226 continue; 227 228 found = true; 229 break; 230 } 231 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 232 if (found) 233 return ctxp; 234 235 return NULL; 236 } 237 238 static struct lpfc_async_xchg_ctx * 239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid) 240 { 241 struct lpfc_async_xchg_ctx *ctxp; 242 unsigned long iflag; 243 bool found = false; 244 245 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 246 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 247 if (ctxp->oxid != oxid || ctxp->sid != sid) 248 continue; 249 250 found = true; 251 break; 252 } 253 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 254 if (found) 255 return ctxp; 256 257 return NULL; 258 } 259 #endif 260 261 static void 262 lpfc_nvmet_defer_release(struct lpfc_hba *phba, 263 struct lpfc_async_xchg_ctx *ctxp) 264 { 265 lockdep_assert_held(&ctxp->ctxlock); 266 267 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 268 "6313 NVMET Defer ctx release oxid x%x flg x%x\n", 269 ctxp->oxid, ctxp->flag); 270 271 if (ctxp->flag & LPFC_NVME_CTX_RLS) 272 return; 273 274 ctxp->flag |= LPFC_NVME_CTX_RLS; 275 spin_lock(&phba->sli4_hba.t_active_list_lock); 276 list_del(&ctxp->list); 277 spin_unlock(&phba->sli4_hba.t_active_list_lock); 278 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 279 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 280 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 281 } 282 283 /** 284 * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the 285 * transmission of an NVME LS response. 286 * @phba: Pointer to HBA context object. 287 * @cmdwqe: Pointer to driver command WQE object. 288 * @wcqe: Pointer to driver response CQE object. 289 * 290 * The function is called from SLI ring event handler with no 291 * lock held. The function frees memory resources used for the command 292 * used to send the NVME LS RSP. 293 **/ 294 void 295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 296 struct lpfc_wcqe_complete *wcqe) 297 { 298 struct lpfc_async_xchg_ctx *axchg = cmdwqe->context2; 299 struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp; 300 uint32_t status, result; 301 302 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; 303 result = wcqe->parameter; 304 305 if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) { 306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 307 "6410 NVMEx LS cmpl state mismatch IO x%x: " 308 "%d %d\n", 309 axchg->oxid, axchg->state, axchg->entry_cnt); 310 } 311 312 lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n", 313 axchg->oxid, status, result); 314 315 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 316 "6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n", 317 status, result, axchg->oxid); 318 319 lpfc_nlp_put(cmdwqe->context1); 320 cmdwqe->context2 = NULL; 321 cmdwqe->context3 = NULL; 322 lpfc_sli_release_iocbq(phba, cmdwqe); 323 ls_rsp->done(ls_rsp); 324 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 325 "6200 NVMEx LS rsp cmpl done status %d oxid x%x\n", 326 status, axchg->oxid); 327 kfree(axchg); 328 } 329 330 /** 331 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 332 * @phba: Pointer to HBA context object. 333 * @cmdwqe: Pointer to driver command WQE object. 334 * @wcqe: Pointer to driver response CQE object. 335 * 336 * The function is called from SLI ring event handler with no 337 * lock held. This function is the completion handler for NVME LS commands 338 * The function updates any states and statistics, then calls the 339 * generic completion handler to free resources. 340 **/ 341 static void 342 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 343 struct lpfc_wcqe_complete *wcqe) 344 { 345 struct lpfc_nvmet_tgtport *tgtp; 346 uint32_t status, result; 347 348 if (!phba->targetport) 349 goto finish; 350 351 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; 352 result = wcqe->parameter; 353 354 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 355 if (tgtp) { 356 if (status) { 357 atomic_inc(&tgtp->xmt_ls_rsp_error); 358 if (result == IOERR_ABORT_REQUESTED) 359 atomic_inc(&tgtp->xmt_ls_rsp_aborted); 360 if (bf_get(lpfc_wcqe_c_xb, wcqe)) 361 atomic_inc(&tgtp->xmt_ls_rsp_xb_set); 362 } else { 363 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 364 } 365 } 366 367 finish: 368 __lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, wcqe); 369 } 370 371 /** 372 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 373 * @phba: HBA buffer is associated with 374 * @ctx_buf: ctx buffer context 375 * 376 * Description: Frees the given DMA buffer in the appropriate way given by 377 * reposting it to its associated RQ so it can be reused. 378 * 379 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 380 * 381 * Returns: None 382 **/ 383 void 384 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 385 { 386 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 387 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 388 struct lpfc_nvmet_tgtport *tgtp; 389 struct fc_frame_header *fc_hdr; 390 struct rqb_dmabuf *nvmebuf; 391 struct lpfc_nvmet_ctx_info *infop; 392 uint32_t size, oxid, sid; 393 int cpu; 394 unsigned long iflag; 395 396 if (ctxp->state == LPFC_NVME_STE_FREE) { 397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 398 "6411 NVMET free, already free IO x%x: %d %d\n", 399 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 400 } 401 402 if (ctxp->rqb_buffer) { 403 spin_lock_irqsave(&ctxp->ctxlock, iflag); 404 nvmebuf = ctxp->rqb_buffer; 405 /* check if freed in another path whilst acquiring lock */ 406 if (nvmebuf) { 407 ctxp->rqb_buffer = NULL; 408 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 409 ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ; 410 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 411 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, 412 nvmebuf); 413 } else { 414 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 415 /* repost */ 416 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 417 } 418 } else { 419 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 420 } 421 } 422 ctxp->state = LPFC_NVME_STE_FREE; 423 424 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 425 if (phba->sli4_hba.nvmet_io_wait_cnt) { 426 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 427 nvmebuf, struct rqb_dmabuf, 428 hbuf.list); 429 phba->sli4_hba.nvmet_io_wait_cnt--; 430 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 431 iflag); 432 433 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 434 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 435 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 436 size = nvmebuf->bytes_recv; 437 sid = sli4_sid_from_fc_hdr(fc_hdr); 438 439 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 440 ctxp->wqeq = NULL; 441 ctxp->offset = 0; 442 ctxp->phba = phba; 443 ctxp->size = size; 444 ctxp->oxid = oxid; 445 ctxp->sid = sid; 446 ctxp->state = LPFC_NVME_STE_RCV; 447 ctxp->entry_cnt = 1; 448 ctxp->flag = 0; 449 ctxp->ctxbuf = ctx_buf; 450 ctxp->rqb_buffer = (void *)nvmebuf; 451 spin_lock_init(&ctxp->ctxlock); 452 453 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 454 /* NOTE: isr time stamp is stale when context is re-assigned*/ 455 if (ctxp->ts_isr_cmd) { 456 ctxp->ts_cmd_nvme = 0; 457 ctxp->ts_nvme_data = 0; 458 ctxp->ts_data_wqput = 0; 459 ctxp->ts_isr_data = 0; 460 ctxp->ts_data_nvme = 0; 461 ctxp->ts_nvme_status = 0; 462 ctxp->ts_status_wqput = 0; 463 ctxp->ts_isr_status = 0; 464 ctxp->ts_status_nvme = 0; 465 } 466 #endif 467 atomic_inc(&tgtp->rcv_fcp_cmd_in); 468 469 /* Indicate that a replacement buffer has been posted */ 470 spin_lock_irqsave(&ctxp->ctxlock, iflag); 471 ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ; 472 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 473 474 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 475 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 476 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 477 "6181 Unable to queue deferred work " 478 "for oxid x%x. " 479 "FCP Drop IO [x%x x%x x%x]\n", 480 ctxp->oxid, 481 atomic_read(&tgtp->rcv_fcp_cmd_in), 482 atomic_read(&tgtp->rcv_fcp_cmd_out), 483 atomic_read(&tgtp->xmt_fcp_release)); 484 485 spin_lock_irqsave(&ctxp->ctxlock, iflag); 486 lpfc_nvmet_defer_release(phba, ctxp); 487 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 488 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 489 } 490 return; 491 } 492 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 493 494 /* 495 * Use the CPU context list, from the MRQ the IO was received on 496 * (ctxp->idx), to save context structure. 497 */ 498 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 499 list_del_init(&ctxp->list); 500 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 501 cpu = raw_smp_processor_id(); 502 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 503 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 504 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 505 infop->nvmet_ctx_list_cnt++; 506 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 507 #endif 508 } 509 510 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 511 static void 512 lpfc_nvmet_ktime(struct lpfc_hba *phba, 513 struct lpfc_async_xchg_ctx *ctxp) 514 { 515 uint64_t seg1, seg2, seg3, seg4, seg5; 516 uint64_t seg6, seg7, seg8, seg9, seg10; 517 uint64_t segsum; 518 519 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 520 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 521 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 522 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 523 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 524 return; 525 526 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) 527 return; 528 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 529 return; 530 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 531 return; 532 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 533 return; 534 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 535 return; 536 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 537 return; 538 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 539 return; 540 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 541 return; 542 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 543 return; 544 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 545 return; 546 /* 547 * Segment 1 - Time from FCP command received by MSI-X ISR 548 * to FCP command is passed to NVME Layer. 549 * Segment 2 - Time from FCP command payload handed 550 * off to NVME Layer to Driver receives a Command op 551 * from NVME Layer. 552 * Segment 3 - Time from Driver receives a Command op 553 * from NVME Layer to Command is put on WQ. 554 * Segment 4 - Time from Driver WQ put is done 555 * to MSI-X ISR for Command cmpl. 556 * Segment 5 - Time from MSI-X ISR for Command cmpl to 557 * Command cmpl is passed to NVME Layer. 558 * Segment 6 - Time from Command cmpl is passed to NVME 559 * Layer to Driver receives a RSP op from NVME Layer. 560 * Segment 7 - Time from Driver receives a RSP op from 561 * NVME Layer to WQ put is done on TRSP FCP Status. 562 * Segment 8 - Time from Driver WQ put is done on TRSP 563 * FCP Status to MSI-X ISR for TRSP cmpl. 564 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 565 * TRSP cmpl is passed to NVME Layer. 566 * Segment 10 - Time from FCP command received by 567 * MSI-X ISR to command is completed on wire. 568 * (Segments 1 thru 8) for READDATA / WRITEDATA 569 * (Segments 1 thru 4) for READDATA_RSP 570 */ 571 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 572 segsum = seg1; 573 574 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; 575 if (segsum > seg2) 576 return; 577 seg2 -= segsum; 578 segsum += seg2; 579 580 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; 581 if (segsum > seg3) 582 return; 583 seg3 -= segsum; 584 segsum += seg3; 585 586 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; 587 if (segsum > seg4) 588 return; 589 seg4 -= segsum; 590 segsum += seg4; 591 592 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; 593 if (segsum > seg5) 594 return; 595 seg5 -= segsum; 596 segsum += seg5; 597 598 599 /* For auto rsp commands seg6 thru seg10 will be 0 */ 600 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 601 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; 602 if (segsum > seg6) 603 return; 604 seg6 -= segsum; 605 segsum += seg6; 606 607 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; 608 if (segsum > seg7) 609 return; 610 seg7 -= segsum; 611 segsum += seg7; 612 613 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; 614 if (segsum > seg8) 615 return; 616 seg8 -= segsum; 617 segsum += seg8; 618 619 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; 620 if (segsum > seg9) 621 return; 622 seg9 -= segsum; 623 segsum += seg9; 624 625 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) 626 return; 627 seg10 = (ctxp->ts_isr_status - 628 ctxp->ts_isr_cmd); 629 } else { 630 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) 631 return; 632 seg6 = 0; 633 seg7 = 0; 634 seg8 = 0; 635 seg9 = 0; 636 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 637 } 638 639 phba->ktime_seg1_total += seg1; 640 if (seg1 < phba->ktime_seg1_min) 641 phba->ktime_seg1_min = seg1; 642 else if (seg1 > phba->ktime_seg1_max) 643 phba->ktime_seg1_max = seg1; 644 645 phba->ktime_seg2_total += seg2; 646 if (seg2 < phba->ktime_seg2_min) 647 phba->ktime_seg2_min = seg2; 648 else if (seg2 > phba->ktime_seg2_max) 649 phba->ktime_seg2_max = seg2; 650 651 phba->ktime_seg3_total += seg3; 652 if (seg3 < phba->ktime_seg3_min) 653 phba->ktime_seg3_min = seg3; 654 else if (seg3 > phba->ktime_seg3_max) 655 phba->ktime_seg3_max = seg3; 656 657 phba->ktime_seg4_total += seg4; 658 if (seg4 < phba->ktime_seg4_min) 659 phba->ktime_seg4_min = seg4; 660 else if (seg4 > phba->ktime_seg4_max) 661 phba->ktime_seg4_max = seg4; 662 663 phba->ktime_seg5_total += seg5; 664 if (seg5 < phba->ktime_seg5_min) 665 phba->ktime_seg5_min = seg5; 666 else if (seg5 > phba->ktime_seg5_max) 667 phba->ktime_seg5_max = seg5; 668 669 phba->ktime_data_samples++; 670 if (!seg6) 671 goto out; 672 673 phba->ktime_seg6_total += seg6; 674 if (seg6 < phba->ktime_seg6_min) 675 phba->ktime_seg6_min = seg6; 676 else if (seg6 > phba->ktime_seg6_max) 677 phba->ktime_seg6_max = seg6; 678 679 phba->ktime_seg7_total += seg7; 680 if (seg7 < phba->ktime_seg7_min) 681 phba->ktime_seg7_min = seg7; 682 else if (seg7 > phba->ktime_seg7_max) 683 phba->ktime_seg7_max = seg7; 684 685 phba->ktime_seg8_total += seg8; 686 if (seg8 < phba->ktime_seg8_min) 687 phba->ktime_seg8_min = seg8; 688 else if (seg8 > phba->ktime_seg8_max) 689 phba->ktime_seg8_max = seg8; 690 691 phba->ktime_seg9_total += seg9; 692 if (seg9 < phba->ktime_seg9_min) 693 phba->ktime_seg9_min = seg9; 694 else if (seg9 > phba->ktime_seg9_max) 695 phba->ktime_seg9_max = seg9; 696 out: 697 phba->ktime_seg10_total += seg10; 698 if (seg10 < phba->ktime_seg10_min) 699 phba->ktime_seg10_min = seg10; 700 else if (seg10 > phba->ktime_seg10_max) 701 phba->ktime_seg10_max = seg10; 702 phba->ktime_status_samples++; 703 } 704 #endif 705 706 /** 707 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 708 * @phba: Pointer to HBA context object. 709 * @cmdwqe: Pointer to driver command WQE object. 710 * @wcqe: Pointer to driver response CQE object. 711 * 712 * The function is called from SLI ring event handler with no 713 * lock held. This function is the completion handler for NVME FCP commands 714 * The function frees memory resources used for the NVME commands. 715 **/ 716 static void 717 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 718 struct lpfc_wcqe_complete *wcqe) 719 { 720 struct lpfc_nvmet_tgtport *tgtp; 721 struct nvmefc_tgt_fcp_req *rsp; 722 struct lpfc_async_xchg_ctx *ctxp; 723 uint32_t status, result, op, start_clean, logerr; 724 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 725 int id; 726 #endif 727 728 ctxp = cmdwqe->context2; 729 ctxp->flag &= ~LPFC_NVME_IO_INP; 730 731 rsp = &ctxp->hdlrctx.fcp_req; 732 op = rsp->op; 733 734 status = bf_get(lpfc_wcqe_c_status, wcqe); 735 result = wcqe->parameter; 736 737 if (phba->targetport) 738 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 739 else 740 tgtp = NULL; 741 742 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 743 ctxp->oxid, op, status); 744 745 if (status) { 746 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 747 rsp->transferred_length = 0; 748 if (tgtp) { 749 atomic_inc(&tgtp->xmt_fcp_rsp_error); 750 if (result == IOERR_ABORT_REQUESTED) 751 atomic_inc(&tgtp->xmt_fcp_rsp_aborted); 752 } 753 754 logerr = LOG_NVME_IOERR; 755 756 /* pick up SLI4 exhange busy condition */ 757 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 758 ctxp->flag |= LPFC_NVME_XBUSY; 759 logerr |= LOG_NVME_ABTS; 760 if (tgtp) 761 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); 762 763 } else { 764 ctxp->flag &= ~LPFC_NVME_XBUSY; 765 } 766 767 lpfc_printf_log(phba, KERN_INFO, logerr, 768 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x " 769 "XBUSY:x%x\n", 770 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag, 771 status, result, ctxp->flag); 772 773 } else { 774 rsp->fcp_error = NVME_SC_SUCCESS; 775 if (op == NVMET_FCOP_RSP) 776 rsp->transferred_length = rsp->rsplen; 777 else 778 rsp->transferred_length = rsp->transfer_length; 779 if (tgtp) 780 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 781 } 782 783 if ((op == NVMET_FCOP_READDATA_RSP) || 784 (op == NVMET_FCOP_RSP)) { 785 /* Sanity check */ 786 ctxp->state = LPFC_NVME_STE_DONE; 787 ctxp->entry_cnt++; 788 789 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 790 if (ctxp->ts_cmd_nvme) { 791 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 792 ctxp->ts_isr_data = 793 cmdwqe->isr_timestamp; 794 ctxp->ts_data_nvme = 795 ktime_get_ns(); 796 ctxp->ts_nvme_status = 797 ctxp->ts_data_nvme; 798 ctxp->ts_status_wqput = 799 ctxp->ts_data_nvme; 800 ctxp->ts_isr_status = 801 ctxp->ts_data_nvme; 802 ctxp->ts_status_nvme = 803 ctxp->ts_data_nvme; 804 } else { 805 ctxp->ts_isr_status = 806 cmdwqe->isr_timestamp; 807 ctxp->ts_status_nvme = 808 ktime_get_ns(); 809 } 810 } 811 #endif 812 rsp->done(rsp); 813 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 814 if (ctxp->ts_cmd_nvme) 815 lpfc_nvmet_ktime(phba, ctxp); 816 #endif 817 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 818 } else { 819 ctxp->entry_cnt++; 820 start_clean = offsetof(struct lpfc_iocbq, iocb_flag); 821 memset(((char *)cmdwqe) + start_clean, 0, 822 (sizeof(struct lpfc_iocbq) - start_clean)); 823 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 824 if (ctxp->ts_cmd_nvme) { 825 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 826 ctxp->ts_data_nvme = ktime_get_ns(); 827 } 828 #endif 829 rsp->done(rsp); 830 } 831 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 832 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 833 id = raw_smp_processor_id(); 834 this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io); 835 if (ctxp->cpu != id) 836 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 837 "6704 CPU Check cmdcmpl: " 838 "cpu %d expect %d\n", 839 id, ctxp->cpu); 840 } 841 #endif 842 } 843 844 /** 845 * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit 846 * an NVME LS rsp for a prior NVME LS request that was received. 847 * @axchg: pointer to exchange context for the NVME LS request the response 848 * is for. 849 * @ls_rsp: pointer to the transport LS RSP that is to be sent 850 * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done 851 * 852 * This routine is used to format and send a WQE to transmit a NVME LS 853 * Response. The response is for a prior NVME LS request that was 854 * received and posted to the transport. 855 * 856 * Returns: 857 * 0 : if response successfully transmit 858 * non-zero : if response failed to transmit, of the form -Exxx. 859 **/ 860 int 861 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg, 862 struct nvmefc_ls_rsp *ls_rsp, 863 void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba, 864 struct lpfc_iocbq *cmdwqe, 865 struct lpfc_wcqe_complete *wcqe)) 866 { 867 struct lpfc_hba *phba = axchg->phba; 868 struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer; 869 struct lpfc_iocbq *nvmewqeq; 870 struct lpfc_dmabuf dmabuf; 871 struct ulp_bde64 bpl; 872 int rc; 873 874 if (phba->pport->load_flag & FC_UNLOADING) 875 return -ENODEV; 876 877 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 878 "6023 NVMEx LS rsp oxid x%x\n", axchg->oxid); 879 880 if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) { 881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 882 "6412 NVMEx LS rsp state mismatch " 883 "oxid x%x: %d %d\n", 884 axchg->oxid, axchg->state, axchg->entry_cnt); 885 return -EALREADY; 886 } 887 axchg->state = LPFC_NVME_STE_LS_RSP; 888 axchg->entry_cnt++; 889 890 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma, 891 ls_rsp->rsplen); 892 if (nvmewqeq == NULL) { 893 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 894 "6150 NVMEx LS Drop Rsp x%x: Prep\n", 895 axchg->oxid); 896 rc = -ENOMEM; 897 goto out_free_buf; 898 } 899 900 /* Save numBdes for bpl2sgl */ 901 nvmewqeq->rsvd2 = 1; 902 nvmewqeq->hba_wqidx = 0; 903 nvmewqeq->context3 = &dmabuf; 904 dmabuf.virt = &bpl; 905 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 906 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 907 bpl.tus.f.bdeSize = ls_rsp->rsplen; 908 bpl.tus.f.bdeFlags = 0; 909 bpl.tus.w = le32_to_cpu(bpl.tus.w); 910 /* 911 * Note: although we're using stack space for the dmabuf, the 912 * call to lpfc_sli4_issue_wqe is synchronous, so it will not 913 * be referenced after it returns back to this routine. 914 */ 915 916 nvmewqeq->wqe_cmpl = xmt_ls_rsp_cmp; 917 nvmewqeq->iocb_cmpl = NULL; 918 nvmewqeq->context2 = axchg; 919 920 lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n", 921 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen); 922 923 rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq); 924 925 /* clear to be sure there's no reference */ 926 nvmewqeq->context3 = NULL; 927 928 if (rc == WQE_SUCCESS) { 929 /* 930 * Okay to repost buffer here, but wait till cmpl 931 * before freeing ctxp and iocbq. 932 */ 933 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 934 return 0; 935 } 936 937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 938 "6151 NVMEx LS RSP x%x: failed to transmit %d\n", 939 axchg->oxid, rc); 940 941 rc = -ENXIO; 942 943 lpfc_nlp_put(nvmewqeq->context1); 944 945 out_free_buf: 946 /* Give back resources */ 947 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 948 949 /* 950 * As transport doesn't track completions of responses, if the rsp 951 * fails to send, the transport will effectively ignore the rsp 952 * and consider the LS done. However, the driver has an active 953 * exchange open for the LS - so be sure to abort the exchange 954 * if the response isn't sent. 955 */ 956 lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid); 957 return rc; 958 } 959 960 /** 961 * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response 962 * @tgtport: pointer to target port that NVME LS is to be transmit from. 963 * @ls_rsp: pointer to the transport LS RSP that is to be sent 964 * 965 * Driver registers this routine to transmit responses for received NVME 966 * LS requests. 967 * 968 * This routine is used to format and send a WQE to transmit a NVME LS 969 * Response. The ls_rsp is used to reverse-map the LS to the original 970 * NVME LS request sequence, which provides addressing information for 971 * the remote port the LS to be sent to, as well as the exchange id 972 * that is the LS is bound to. 973 * 974 * Returns: 975 * 0 : if response successfully transmit 976 * non-zero : if response failed to transmit, of the form -Exxx. 977 **/ 978 static int 979 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 980 struct nvmefc_ls_rsp *ls_rsp) 981 { 982 struct lpfc_async_xchg_ctx *axchg = 983 container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp); 984 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 985 int rc; 986 987 if (axchg->phba->pport->load_flag & FC_UNLOADING) 988 return -ENODEV; 989 990 rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp); 991 992 if (rc) { 993 atomic_inc(&nvmep->xmt_ls_drop); 994 /* 995 * unless the failure is due to having already sent 996 * the response, an abort will be generated for the 997 * exchange if the rsp can't be sent. 998 */ 999 if (rc != -EALREADY) 1000 atomic_inc(&nvmep->xmt_ls_abort); 1001 return rc; 1002 } 1003 1004 atomic_inc(&nvmep->xmt_ls_rsp); 1005 return 0; 1006 } 1007 1008 static int 1009 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 1010 struct nvmefc_tgt_fcp_req *rsp) 1011 { 1012 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1013 struct lpfc_async_xchg_ctx *ctxp = 1014 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1015 struct lpfc_hba *phba = ctxp->phba; 1016 struct lpfc_queue *wq; 1017 struct lpfc_iocbq *nvmewqeq; 1018 struct lpfc_sli_ring *pring; 1019 unsigned long iflags; 1020 int rc; 1021 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1022 int id; 1023 #endif 1024 1025 if (phba->pport->load_flag & FC_UNLOADING) { 1026 rc = -ENODEV; 1027 goto aerr; 1028 } 1029 1030 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1031 if (ctxp->ts_cmd_nvme) { 1032 if (rsp->op == NVMET_FCOP_RSP) 1033 ctxp->ts_nvme_status = ktime_get_ns(); 1034 else 1035 ctxp->ts_nvme_data = ktime_get_ns(); 1036 } 1037 1038 /* Setup the hdw queue if not already set */ 1039 if (!ctxp->hdwq) 1040 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid]; 1041 1042 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 1043 id = raw_smp_processor_id(); 1044 this_cpu_inc(phba->sli4_hba.c_stat->xmt_io); 1045 if (rsp->hwqid != id) 1046 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1047 "6705 CPU Check OP: " 1048 "cpu %d expect %d\n", 1049 id, rsp->hwqid); 1050 ctxp->cpu = id; /* Setup cpu for cmpl check */ 1051 } 1052 #endif 1053 1054 /* Sanity check */ 1055 if ((ctxp->flag & LPFC_NVME_ABTS_RCV) || 1056 (ctxp->state == LPFC_NVME_STE_ABORT)) { 1057 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1059 "6102 IO oxid x%x aborted\n", 1060 ctxp->oxid); 1061 rc = -ENXIO; 1062 goto aerr; 1063 } 1064 1065 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 1066 if (nvmewqeq == NULL) { 1067 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1069 "6152 FCP Drop IO x%x: Prep\n", 1070 ctxp->oxid); 1071 rc = -ENXIO; 1072 goto aerr; 1073 } 1074 1075 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 1076 nvmewqeq->iocb_cmpl = NULL; 1077 nvmewqeq->context2 = ctxp; 1078 nvmewqeq->iocb_flag |= LPFC_IO_NVMET; 1079 ctxp->wqeq->hba_wqidx = rsp->hwqid; 1080 1081 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 1082 ctxp->oxid, rsp->op, rsp->rsplen); 1083 1084 ctxp->flag |= LPFC_NVME_IO_INP; 1085 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 1086 if (rc == WQE_SUCCESS) { 1087 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1088 if (!ctxp->ts_cmd_nvme) 1089 return 0; 1090 if (rsp->op == NVMET_FCOP_RSP) 1091 ctxp->ts_status_wqput = ktime_get_ns(); 1092 else 1093 ctxp->ts_data_wqput = ktime_get_ns(); 1094 #endif 1095 return 0; 1096 } 1097 1098 if (rc == -EBUSY) { 1099 /* 1100 * WQ was full, so queue nvmewqeq to be sent after 1101 * WQE release CQE 1102 */ 1103 ctxp->flag |= LPFC_NVME_DEFER_WQFULL; 1104 wq = ctxp->hdwq->io_wq; 1105 pring = wq->pring; 1106 spin_lock_irqsave(&pring->ring_lock, iflags); 1107 list_add_tail(&nvmewqeq->list, &wq->wqfull_list); 1108 wq->q_flag |= HBA_NVMET_WQFULL; 1109 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1110 atomic_inc(&lpfc_nvmep->defer_wqfull); 1111 return 0; 1112 } 1113 1114 /* Give back resources */ 1115 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1117 "6153 FCP Drop IO x%x: Issue: %d\n", 1118 ctxp->oxid, rc); 1119 1120 ctxp->wqeq->hba_wqidx = 0; 1121 nvmewqeq->context2 = NULL; 1122 nvmewqeq->context3 = NULL; 1123 rc = -EBUSY; 1124 aerr: 1125 return rc; 1126 } 1127 1128 static void 1129 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 1130 { 1131 struct lpfc_nvmet_tgtport *tport = targetport->private; 1132 1133 /* release any threads waiting for the unreg to complete */ 1134 if (tport->phba->targetport) 1135 complete(tport->tport_unreg_cmp); 1136 } 1137 1138 static void 1139 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 1140 struct nvmefc_tgt_fcp_req *req) 1141 { 1142 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1143 struct lpfc_async_xchg_ctx *ctxp = 1144 container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1145 struct lpfc_hba *phba = ctxp->phba; 1146 struct lpfc_queue *wq; 1147 unsigned long flags; 1148 1149 if (phba->pport->load_flag & FC_UNLOADING) 1150 return; 1151 1152 if (!ctxp->hdwq) 1153 ctxp->hdwq = &phba->sli4_hba.hdwq[0]; 1154 1155 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1156 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n", 1157 ctxp->oxid, ctxp->flag, ctxp->state); 1158 1159 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 1160 ctxp->oxid, ctxp->flag, ctxp->state); 1161 1162 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 1163 1164 spin_lock_irqsave(&ctxp->ctxlock, flags); 1165 1166 /* Since iaab/iaar are NOT set, we need to check 1167 * if the firmware is in process of aborting IO 1168 */ 1169 if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) { 1170 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1171 return; 1172 } 1173 ctxp->flag |= LPFC_NVME_ABORT_OP; 1174 1175 if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) { 1176 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1177 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1178 ctxp->oxid); 1179 wq = ctxp->hdwq->io_wq; 1180 lpfc_nvmet_wqfull_flush(phba, wq, ctxp); 1181 return; 1182 } 1183 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1184 1185 /* A state of LPFC_NVME_STE_RCV means we have just received 1186 * the NVME command and have not started processing it. 1187 * (by issuing any IO WQEs on this exchange yet) 1188 */ 1189 if (ctxp->state == LPFC_NVME_STE_RCV) 1190 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1191 ctxp->oxid); 1192 else 1193 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1194 ctxp->oxid); 1195 } 1196 1197 static void 1198 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 1199 struct nvmefc_tgt_fcp_req *rsp) 1200 { 1201 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1202 struct lpfc_async_xchg_ctx *ctxp = 1203 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1204 struct lpfc_hba *phba = ctxp->phba; 1205 unsigned long flags; 1206 bool aborting = false; 1207 1208 spin_lock_irqsave(&ctxp->ctxlock, flags); 1209 if (ctxp->flag & LPFC_NVME_XBUSY) 1210 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1211 "6027 NVMET release with XBUSY flag x%x" 1212 " oxid x%x\n", 1213 ctxp->flag, ctxp->oxid); 1214 else if (ctxp->state != LPFC_NVME_STE_DONE && 1215 ctxp->state != LPFC_NVME_STE_ABORT) 1216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1217 "6413 NVMET release bad state %d %d oxid x%x\n", 1218 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1219 1220 if ((ctxp->flag & LPFC_NVME_ABORT_OP) || 1221 (ctxp->flag & LPFC_NVME_XBUSY)) { 1222 aborting = true; 1223 /* let the abort path do the real release */ 1224 lpfc_nvmet_defer_release(phba, ctxp); 1225 } 1226 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1227 1228 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 1229 ctxp->state, aborting); 1230 1231 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 1232 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 1233 1234 if (aborting) 1235 return; 1236 1237 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1238 } 1239 1240 static void 1241 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 1242 struct nvmefc_tgt_fcp_req *rsp) 1243 { 1244 struct lpfc_nvmet_tgtport *tgtp; 1245 struct lpfc_async_xchg_ctx *ctxp = 1246 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1247 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 1248 struct lpfc_hba *phba = ctxp->phba; 1249 unsigned long iflag; 1250 1251 1252 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 1253 ctxp->oxid, ctxp->size, raw_smp_processor_id()); 1254 1255 if (!nvmebuf) { 1256 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1257 "6425 Defer rcv: no buffer oxid x%x: " 1258 "flg %x ste %x\n", 1259 ctxp->oxid, ctxp->flag, ctxp->state); 1260 return; 1261 } 1262 1263 tgtp = phba->targetport->private; 1264 if (tgtp) 1265 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 1266 1267 /* Free the nvmebuf since a new buffer already replaced it */ 1268 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1269 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1270 ctxp->rqb_buffer = NULL; 1271 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1272 } 1273 1274 /** 1275 * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request 1276 * @phba: Pointer to HBA context object 1277 * @cmdwqe: Pointer to driver command WQE object. 1278 * @wcqe: Pointer to driver response CQE object. 1279 * 1280 * This function is the completion handler for NVME LS requests. 1281 * The function updates any states and statistics, then calls the 1282 * generic completion handler to finish completion of the request. 1283 **/ 1284 static void 1285 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 1286 struct lpfc_wcqe_complete *wcqe) 1287 { 1288 __lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe); 1289 } 1290 1291 /** 1292 * lpfc_nvmet_ls_req - Issue an Link Service request 1293 * @targetport: pointer to target instance registered with nvmet transport. 1294 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1295 * Driver sets this value to the ndlp pointer. 1296 * @pnvme_lsreq: the transport nvme_ls_req structure for the LS 1297 * 1298 * Driver registers this routine to handle any link service request 1299 * from the nvme_fc transport to a remote nvme-aware port. 1300 * 1301 * Return value : 1302 * 0 - Success 1303 * non-zero: various error codes, in form of -Exxx 1304 **/ 1305 static int 1306 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport, 1307 void *hosthandle, 1308 struct nvmefc_ls_req *pnvme_lsreq) 1309 { 1310 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1311 struct lpfc_hba *phba; 1312 struct lpfc_nodelist *ndlp; 1313 int ret; 1314 u32 hstate; 1315 1316 if (!lpfc_nvmet) 1317 return -EINVAL; 1318 1319 phba = lpfc_nvmet->phba; 1320 if (phba->pport->load_flag & FC_UNLOADING) 1321 return -EINVAL; 1322 1323 hstate = atomic_read(&lpfc_nvmet->state); 1324 if (hstate == LPFC_NVMET_INV_HOST_ACTIVE) 1325 return -EACCES; 1326 1327 ndlp = (struct lpfc_nodelist *)hosthandle; 1328 1329 ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq, 1330 lpfc_nvmet_ls_req_cmp); 1331 1332 return ret; 1333 } 1334 1335 /** 1336 * lpfc_nvmet_ls_abort - Abort a prior NVME LS request 1337 * @targetport: Transport targetport, that LS was issued from. 1338 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1339 * Driver sets this value to the ndlp pointer. 1340 * @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted 1341 * 1342 * Driver registers this routine to abort an NVME LS request that is 1343 * in progress (from the transports perspective). 1344 **/ 1345 static void 1346 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport, 1347 void *hosthandle, 1348 struct nvmefc_ls_req *pnvme_lsreq) 1349 { 1350 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1351 struct lpfc_hba *phba; 1352 struct lpfc_nodelist *ndlp; 1353 int ret; 1354 1355 phba = lpfc_nvmet->phba; 1356 if (phba->pport->load_flag & FC_UNLOADING) 1357 return; 1358 1359 ndlp = (struct lpfc_nodelist *)hosthandle; 1360 1361 ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq); 1362 if (!ret) 1363 atomic_inc(&lpfc_nvmet->xmt_ls_abort); 1364 } 1365 1366 static void 1367 lpfc_nvmet_host_release(void *hosthandle) 1368 { 1369 struct lpfc_nodelist *ndlp = hosthandle; 1370 struct lpfc_hba *phba = NULL; 1371 struct lpfc_nvmet_tgtport *tgtp; 1372 1373 phba = ndlp->phba; 1374 if (!phba->targetport || !phba->targetport->private) 1375 return; 1376 1377 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1378 "6202 NVMET XPT releasing hosthandle x%px\n", 1379 hosthandle); 1380 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1381 atomic_set(&tgtp->state, 0); 1382 } 1383 1384 static void 1385 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport) 1386 { 1387 struct lpfc_nvmet_tgtport *tgtp; 1388 struct lpfc_hba *phba; 1389 uint32_t rc; 1390 1391 tgtp = tgtport->private; 1392 phba = tgtp->phba; 1393 1394 rc = lpfc_issue_els_rscn(phba->pport, 0); 1395 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1396 "6420 NVMET subsystem change: Notification %s\n", 1397 (rc) ? "Failed" : "Sent"); 1398 } 1399 1400 static struct nvmet_fc_target_template lpfc_tgttemplate = { 1401 .targetport_delete = lpfc_nvmet_targetport_delete, 1402 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 1403 .fcp_op = lpfc_nvmet_xmt_fcp_op, 1404 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 1405 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 1406 .defer_rcv = lpfc_nvmet_defer_rcv, 1407 .discovery_event = lpfc_nvmet_discovery_event, 1408 .ls_req = lpfc_nvmet_ls_req, 1409 .ls_abort = lpfc_nvmet_ls_abort, 1410 .host_release = lpfc_nvmet_host_release, 1411 1412 .max_hw_queues = 1, 1413 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1414 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1415 .dma_boundary = 0xFFFFFFFF, 1416 1417 /* optional features */ 1418 .target_features = 0, 1419 /* sizes of additional private data for data structures */ 1420 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 1421 .lsrqst_priv_sz = 0, 1422 }; 1423 1424 static void 1425 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 1426 struct lpfc_nvmet_ctx_info *infop) 1427 { 1428 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 1429 unsigned long flags; 1430 1431 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 1432 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 1433 &infop->nvmet_ctx_list, list) { 1434 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1435 list_del_init(&ctx_buf->list); 1436 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1437 1438 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 1439 ctx_buf->sglq->state = SGL_FREED; 1440 ctx_buf->sglq->ndlp = NULL; 1441 1442 spin_lock(&phba->sli4_hba.sgl_list_lock); 1443 list_add_tail(&ctx_buf->sglq->list, 1444 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1445 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1446 1447 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1448 kfree(ctx_buf->context); 1449 } 1450 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 1451 } 1452 1453 static void 1454 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 1455 { 1456 struct lpfc_nvmet_ctx_info *infop; 1457 int i, j; 1458 1459 /* The first context list, MRQ 0 CPU 0 */ 1460 infop = phba->sli4_hba.nvmet_ctx_info; 1461 if (!infop) 1462 return; 1463 1464 /* Cycle the the entire CPU context list for every MRQ */ 1465 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 1466 for_each_present_cpu(j) { 1467 infop = lpfc_get_ctx_list(phba, j, i); 1468 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 1469 } 1470 } 1471 kfree(phba->sli4_hba.nvmet_ctx_info); 1472 phba->sli4_hba.nvmet_ctx_info = NULL; 1473 } 1474 1475 static int 1476 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 1477 { 1478 struct lpfc_nvmet_ctxbuf *ctx_buf; 1479 struct lpfc_iocbq *nvmewqe; 1480 union lpfc_wqe128 *wqe; 1481 struct lpfc_nvmet_ctx_info *last_infop; 1482 struct lpfc_nvmet_ctx_info *infop; 1483 int i, j, idx, cpu; 1484 1485 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 1486 "6403 Allocate NVMET resources for %d XRIs\n", 1487 phba->sli4_hba.nvmet_xri_cnt); 1488 1489 phba->sli4_hba.nvmet_ctx_info = kcalloc( 1490 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq, 1491 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 1492 if (!phba->sli4_hba.nvmet_ctx_info) { 1493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1494 "6419 Failed allocate memory for " 1495 "nvmet context lists\n"); 1496 return -ENOMEM; 1497 } 1498 1499 /* 1500 * Assuming X CPUs in the system, and Y MRQs, allocate some 1501 * lpfc_nvmet_ctx_info structures as follows: 1502 * 1503 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 1504 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 1505 * ... 1506 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 1507 * 1508 * Each line represents a MRQ "silo" containing an entry for 1509 * every CPU. 1510 * 1511 * MRQ X is initially assumed to be associated with CPU X, thus 1512 * contexts are initially distributed across all MRQs using 1513 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 1514 * freed, the are freed to the MRQ silo based on the CPU number 1515 * of the IO completion. Thus a context that was allocated for MRQ A 1516 * whose IO completed on CPU B will be freed to cpuB/mrqA. 1517 */ 1518 for_each_possible_cpu(i) { 1519 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1520 infop = lpfc_get_ctx_list(phba, i, j); 1521 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 1522 spin_lock_init(&infop->nvmet_ctx_list_lock); 1523 infop->nvmet_ctx_list_cnt = 0; 1524 } 1525 } 1526 1527 /* 1528 * Setup the next CPU context info ptr for each MRQ. 1529 * MRQ 0 will cycle thru CPUs 0 - X separately from 1530 * MRQ 1 cycling thru CPUs 0 - X, and so on. 1531 */ 1532 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1533 last_infop = lpfc_get_ctx_list(phba, 1534 cpumask_first(cpu_present_mask), 1535 j); 1536 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) { 1537 infop = lpfc_get_ctx_list(phba, i, j); 1538 infop->nvmet_ctx_next_cpu = last_infop; 1539 last_infop = infop; 1540 } 1541 } 1542 1543 /* For all nvmet xris, allocate resources needed to process a 1544 * received command on a per xri basis. 1545 */ 1546 idx = 0; 1547 cpu = cpumask_first(cpu_present_mask); 1548 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1549 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1550 if (!ctx_buf) { 1551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1552 "6404 Ran out of memory for NVMET\n"); 1553 return -ENOMEM; 1554 } 1555 1556 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1557 GFP_KERNEL); 1558 if (!ctx_buf->context) { 1559 kfree(ctx_buf); 1560 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1561 "6405 Ran out of NVMET " 1562 "context memory\n"); 1563 return -ENOMEM; 1564 } 1565 ctx_buf->context->ctxbuf = ctx_buf; 1566 ctx_buf->context->state = LPFC_NVME_STE_FREE; 1567 1568 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1569 if (!ctx_buf->iocbq) { 1570 kfree(ctx_buf->context); 1571 kfree(ctx_buf); 1572 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1573 "6406 Ran out of NVMET iocb/WQEs\n"); 1574 return -ENOMEM; 1575 } 1576 ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET; 1577 nvmewqe = ctx_buf->iocbq; 1578 wqe = &nvmewqe->wqe; 1579 1580 /* Initialize WQE */ 1581 memset(wqe, 0, sizeof(union lpfc_wqe)); 1582 1583 ctx_buf->iocbq->context1 = NULL; 1584 spin_lock(&phba->sli4_hba.sgl_list_lock); 1585 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1586 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1587 if (!ctx_buf->sglq) { 1588 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1589 kfree(ctx_buf->context); 1590 kfree(ctx_buf); 1591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1592 "6407 Ran out of NVMET XRIs\n"); 1593 return -ENOMEM; 1594 } 1595 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work); 1596 1597 /* 1598 * Add ctx to MRQidx context list. Our initial assumption 1599 * is MRQidx will be associated with CPUidx. This association 1600 * can change on the fly. 1601 */ 1602 infop = lpfc_get_ctx_list(phba, cpu, idx); 1603 spin_lock(&infop->nvmet_ctx_list_lock); 1604 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1605 infop->nvmet_ctx_list_cnt++; 1606 spin_unlock(&infop->nvmet_ctx_list_lock); 1607 1608 /* Spread ctx structures evenly across all MRQs */ 1609 idx++; 1610 if (idx >= phba->cfg_nvmet_mrq) { 1611 idx = 0; 1612 cpu = cpumask_first(cpu_present_mask); 1613 continue; 1614 } 1615 cpu = cpumask_next(cpu, cpu_present_mask); 1616 if (cpu == nr_cpu_ids) 1617 cpu = cpumask_first(cpu_present_mask); 1618 1619 } 1620 1621 for_each_present_cpu(i) { 1622 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1623 infop = lpfc_get_ctx_list(phba, i, j); 1624 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1625 "6408 TOTAL NVMET ctx for CPU %d " 1626 "MRQ %d: cnt %d nextcpu x%px\n", 1627 i, j, infop->nvmet_ctx_list_cnt, 1628 infop->nvmet_ctx_next_cpu); 1629 } 1630 } 1631 return 0; 1632 } 1633 1634 int 1635 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1636 { 1637 struct lpfc_vport *vport = phba->pport; 1638 struct lpfc_nvmet_tgtport *tgtp; 1639 struct nvmet_fc_port_info pinfo; 1640 int error; 1641 1642 if (phba->targetport) 1643 return 0; 1644 1645 error = lpfc_nvmet_setup_io_context(phba); 1646 if (error) 1647 return error; 1648 1649 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1650 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1651 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1652 pinfo.port_id = vport->fc_myDID; 1653 1654 /* We need to tell the transport layer + 1 because it takes page 1655 * alignment into account. When space for the SGL is allocated we 1656 * allocate + 3, one for cmd, one for rsp and one for this alignment 1657 */ 1658 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1659 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue; 1660 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; 1661 1662 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1663 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1664 &phba->pcidev->dev, 1665 &phba->targetport); 1666 #else 1667 error = -ENOENT; 1668 #endif 1669 if (error) { 1670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1671 "6025 Cannot register NVME targetport x%x: " 1672 "portnm %llx nodenm %llx segs %d qs %d\n", 1673 error, 1674 pinfo.port_name, pinfo.node_name, 1675 lpfc_tgttemplate.max_sgl_segments, 1676 lpfc_tgttemplate.max_hw_queues); 1677 phba->targetport = NULL; 1678 phba->nvmet_support = 0; 1679 1680 lpfc_nvmet_cleanup_io_context(phba); 1681 1682 } else { 1683 tgtp = (struct lpfc_nvmet_tgtport *) 1684 phba->targetport->private; 1685 tgtp->phba = phba; 1686 1687 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1688 "6026 Registered NVME " 1689 "targetport: x%px, private x%px " 1690 "portnm %llx nodenm %llx segs %d qs %d\n", 1691 phba->targetport, tgtp, 1692 pinfo.port_name, pinfo.node_name, 1693 lpfc_tgttemplate.max_sgl_segments, 1694 lpfc_tgttemplate.max_hw_queues); 1695 1696 atomic_set(&tgtp->rcv_ls_req_in, 0); 1697 atomic_set(&tgtp->rcv_ls_req_out, 0); 1698 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1699 atomic_set(&tgtp->xmt_ls_abort, 0); 1700 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1701 atomic_set(&tgtp->xmt_ls_rsp, 0); 1702 atomic_set(&tgtp->xmt_ls_drop, 0); 1703 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1704 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); 1705 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); 1706 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1707 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1708 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1709 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1710 atomic_set(&tgtp->xmt_fcp_drop, 0); 1711 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1712 atomic_set(&tgtp->xmt_fcp_read, 0); 1713 atomic_set(&tgtp->xmt_fcp_write, 0); 1714 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1715 atomic_set(&tgtp->xmt_fcp_release, 0); 1716 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1717 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1718 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); 1719 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); 1720 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1721 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); 1722 atomic_set(&tgtp->xmt_fcp_abort, 0); 1723 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1724 atomic_set(&tgtp->xmt_abort_unsol, 0); 1725 atomic_set(&tgtp->xmt_abort_sol, 0); 1726 atomic_set(&tgtp->xmt_abort_rsp, 0); 1727 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1728 atomic_set(&tgtp->defer_ctx, 0); 1729 atomic_set(&tgtp->defer_fod, 0); 1730 atomic_set(&tgtp->defer_wqfull, 0); 1731 } 1732 return error; 1733 } 1734 1735 int 1736 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1737 { 1738 struct lpfc_vport *vport = phba->pport; 1739 1740 if (!phba->targetport) 1741 return 0; 1742 1743 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1744 "6007 Update NVMET port x%px did x%x\n", 1745 phba->targetport, vport->fc_myDID); 1746 1747 phba->targetport->port_id = vport->fc_myDID; 1748 return 0; 1749 } 1750 1751 /** 1752 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1753 * @phba: pointer to lpfc hba data structure. 1754 * @axri: pointer to the nvmet xri abort wcqe structure. 1755 * 1756 * This routine is invoked by the worker thread to process a SLI4 fast-path 1757 * NVMET aborted xri. 1758 **/ 1759 void 1760 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1761 struct sli4_wcqe_xri_aborted *axri) 1762 { 1763 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1764 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1765 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1766 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1767 struct lpfc_nvmet_tgtport *tgtp; 1768 struct nvmefc_tgt_fcp_req *req = NULL; 1769 struct lpfc_nodelist *ndlp; 1770 unsigned long iflag = 0; 1771 int rrq_empty = 0; 1772 bool released = false; 1773 1774 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1775 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1776 1777 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1778 return; 1779 1780 if (phba->targetport) { 1781 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1782 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); 1783 } 1784 1785 spin_lock_irqsave(&phba->hbalock, iflag); 1786 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1787 list_for_each_entry_safe(ctxp, next_ctxp, 1788 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1789 list) { 1790 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1791 continue; 1792 1793 spin_lock(&ctxp->ctxlock); 1794 /* Check if we already received a free context call 1795 * and we have completed processing an abort situation. 1796 */ 1797 if (ctxp->flag & LPFC_NVME_CTX_RLS && 1798 !(ctxp->flag & LPFC_NVME_ABORT_OP)) { 1799 list_del_init(&ctxp->list); 1800 released = true; 1801 } 1802 ctxp->flag &= ~LPFC_NVME_XBUSY; 1803 spin_unlock(&ctxp->ctxlock); 1804 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1805 1806 rrq_empty = list_empty(&phba->active_rrq_list); 1807 spin_unlock_irqrestore(&phba->hbalock, iflag); 1808 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1809 if (ndlp && 1810 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1811 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1812 lpfc_set_rrq_active(phba, ndlp, 1813 ctxp->ctxbuf->sglq->sli4_lxritag, 1814 rxid, 1); 1815 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1816 } 1817 1818 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1819 "6318 XB aborted oxid x%x flg x%x (%x)\n", 1820 ctxp->oxid, ctxp->flag, released); 1821 if (released) 1822 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1823 1824 if (rrq_empty) 1825 lpfc_worker_wake_up(phba); 1826 return; 1827 } 1828 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1829 spin_unlock_irqrestore(&phba->hbalock, iflag); 1830 1831 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri); 1832 if (ctxp) { 1833 /* 1834 * Abort already done by FW, so BA_ACC sent. 1835 * However, the transport may be unaware. 1836 */ 1837 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1838 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x " 1839 "flag x%x oxid x%x rxid x%x\n", 1840 xri, ctxp->state, ctxp->flag, ctxp->oxid, 1841 rxid); 1842 1843 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1844 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1845 ctxp->state = LPFC_NVME_STE_ABORT; 1846 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1847 1848 lpfc_nvmeio_data(phba, 1849 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1850 xri, raw_smp_processor_id(), 0); 1851 1852 req = &ctxp->hdlrctx.fcp_req; 1853 if (req) 1854 nvmet_fc_rcv_fcp_abort(phba->targetport, req); 1855 } 1856 #endif 1857 } 1858 1859 int 1860 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1861 struct fc_frame_header *fc_hdr) 1862 { 1863 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1864 struct lpfc_hba *phba = vport->phba; 1865 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1866 struct nvmefc_tgt_fcp_req *rsp; 1867 uint32_t sid; 1868 uint16_t oxid, xri; 1869 unsigned long iflag = 0; 1870 1871 sid = sli4_sid_from_fc_hdr(fc_hdr); 1872 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1873 1874 spin_lock_irqsave(&phba->hbalock, iflag); 1875 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1876 list_for_each_entry_safe(ctxp, next_ctxp, 1877 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1878 list) { 1879 if (ctxp->oxid != oxid || ctxp->sid != sid) 1880 continue; 1881 1882 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1883 1884 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1885 spin_unlock_irqrestore(&phba->hbalock, iflag); 1886 1887 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1888 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1889 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1890 1891 lpfc_nvmeio_data(phba, 1892 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1893 xri, raw_smp_processor_id(), 0); 1894 1895 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1896 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1897 1898 rsp = &ctxp->hdlrctx.fcp_req; 1899 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1900 1901 /* Respond with BA_ACC accordingly */ 1902 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1903 return 0; 1904 } 1905 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1906 spin_unlock_irqrestore(&phba->hbalock, iflag); 1907 1908 /* check the wait list */ 1909 if (phba->sli4_hba.nvmet_io_wait_cnt) { 1910 struct rqb_dmabuf *nvmebuf; 1911 struct fc_frame_header *fc_hdr_tmp; 1912 u32 sid_tmp; 1913 u16 oxid_tmp; 1914 bool found = false; 1915 1916 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1917 1918 /* match by oxid and s_id */ 1919 list_for_each_entry(nvmebuf, 1920 &phba->sli4_hba.lpfc_nvmet_io_wait_list, 1921 hbuf.list) { 1922 fc_hdr_tmp = (struct fc_frame_header *) 1923 (nvmebuf->hbuf.virt); 1924 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id); 1925 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp); 1926 if (oxid_tmp != oxid || sid_tmp != sid) 1927 continue; 1928 1929 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1930 "6321 NVMET Rcv ABTS oxid x%x from x%x " 1931 "is waiting for a ctxp\n", 1932 oxid, sid); 1933 1934 list_del_init(&nvmebuf->hbuf.list); 1935 phba->sli4_hba.nvmet_io_wait_cnt--; 1936 found = true; 1937 break; 1938 } 1939 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1940 iflag); 1941 1942 /* free buffer since already posted a new DMA buffer to RQ */ 1943 if (found) { 1944 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1945 /* Respond with BA_ACC accordingly */ 1946 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1947 return 0; 1948 } 1949 } 1950 1951 /* check active list */ 1952 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid); 1953 if (ctxp) { 1954 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1955 1956 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1957 ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP); 1958 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1959 1960 lpfc_nvmeio_data(phba, 1961 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1962 xri, raw_smp_processor_id(), 0); 1963 1964 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1965 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x " 1966 "flag x%x state x%x\n", 1967 ctxp->oxid, xri, ctxp->flag, ctxp->state); 1968 1969 if (ctxp->flag & LPFC_NVME_TNOTIFY) { 1970 /* Notify the transport */ 1971 nvmet_fc_rcv_fcp_abort(phba->targetport, 1972 &ctxp->hdlrctx.fcp_req); 1973 } else { 1974 cancel_work_sync(&ctxp->ctxbuf->defer_work); 1975 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1976 lpfc_nvmet_defer_release(phba, ctxp); 1977 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1978 } 1979 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1980 ctxp->oxid); 1981 1982 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1983 return 0; 1984 } 1985 1986 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n", 1987 oxid, raw_smp_processor_id(), 1); 1988 1989 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1990 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid); 1991 1992 /* Respond with BA_RJT accordingly */ 1993 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 1994 #endif 1995 return 0; 1996 } 1997 1998 static void 1999 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, 2000 struct lpfc_async_xchg_ctx *ctxp) 2001 { 2002 struct lpfc_sli_ring *pring; 2003 struct lpfc_iocbq *nvmewqeq; 2004 struct lpfc_iocbq *next_nvmewqeq; 2005 unsigned long iflags; 2006 struct lpfc_wcqe_complete wcqe; 2007 struct lpfc_wcqe_complete *wcqep; 2008 2009 pring = wq->pring; 2010 wcqep = &wcqe; 2011 2012 /* Fake an ABORT error code back to cmpl routine */ 2013 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); 2014 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); 2015 wcqep->parameter = IOERR_ABORT_REQUESTED; 2016 2017 spin_lock_irqsave(&pring->ring_lock, iflags); 2018 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, 2019 &wq->wqfull_list, list) { 2020 if (ctxp) { 2021 /* Checking for a specific IO to flush */ 2022 if (nvmewqeq->context2 == ctxp) { 2023 list_del(&nvmewqeq->list); 2024 spin_unlock_irqrestore(&pring->ring_lock, 2025 iflags); 2026 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, 2027 wcqep); 2028 return; 2029 } 2030 continue; 2031 } else { 2032 /* Flush all IOs */ 2033 list_del(&nvmewqeq->list); 2034 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2035 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep); 2036 spin_lock_irqsave(&pring->ring_lock, iflags); 2037 } 2038 } 2039 if (!ctxp) 2040 wq->q_flag &= ~HBA_NVMET_WQFULL; 2041 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2042 } 2043 2044 void 2045 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, 2046 struct lpfc_queue *wq) 2047 { 2048 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2049 struct lpfc_sli_ring *pring; 2050 struct lpfc_iocbq *nvmewqeq; 2051 struct lpfc_async_xchg_ctx *ctxp; 2052 unsigned long iflags; 2053 int rc; 2054 2055 /* 2056 * Some WQE slots are available, so try to re-issue anything 2057 * on the WQ wqfull_list. 2058 */ 2059 pring = wq->pring; 2060 spin_lock_irqsave(&pring->ring_lock, iflags); 2061 while (!list_empty(&wq->wqfull_list)) { 2062 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, 2063 list); 2064 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2065 ctxp = (struct lpfc_async_xchg_ctx *)nvmewqeq->context2; 2066 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 2067 spin_lock_irqsave(&pring->ring_lock, iflags); 2068 if (rc == -EBUSY) { 2069 /* WQ was full again, so put it back on the list */ 2070 list_add(&nvmewqeq->list, &wq->wqfull_list); 2071 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2072 return; 2073 } 2074 if (rc == WQE_SUCCESS) { 2075 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2076 if (ctxp->ts_cmd_nvme) { 2077 if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP) 2078 ctxp->ts_status_wqput = ktime_get_ns(); 2079 else 2080 ctxp->ts_data_wqput = ktime_get_ns(); 2081 } 2082 #endif 2083 } else { 2084 WARN_ON(rc); 2085 } 2086 } 2087 wq->q_flag &= ~HBA_NVMET_WQFULL; 2088 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2089 2090 #endif 2091 } 2092 2093 void 2094 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 2095 { 2096 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2097 struct lpfc_nvmet_tgtport *tgtp; 2098 struct lpfc_queue *wq; 2099 uint32_t qidx; 2100 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp); 2101 2102 if (phba->nvmet_support == 0) 2103 return; 2104 if (phba->targetport) { 2105 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2106 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 2107 wq = phba->sli4_hba.hdwq[qidx].io_wq; 2108 lpfc_nvmet_wqfull_flush(phba, wq, NULL); 2109 } 2110 tgtp->tport_unreg_cmp = &tport_unreg_cmp; 2111 nvmet_fc_unregister_targetport(phba->targetport); 2112 if (!wait_for_completion_timeout(&tport_unreg_cmp, 2113 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO))) 2114 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2115 "6179 Unreg targetport x%px timeout " 2116 "reached.\n", phba->targetport); 2117 lpfc_nvmet_cleanup_io_context(phba); 2118 } 2119 phba->targetport = NULL; 2120 #endif 2121 } 2122 2123 /** 2124 * lpfc_nvmet_handle_lsreq - Process an NVME LS request 2125 * @phba: pointer to lpfc hba data structure. 2126 * @axchg: pointer to exchange context for the NVME LS request 2127 * 2128 * This routine is used for processing an asychronously received NVME LS 2129 * request. Any remaining validation is done and the LS is then forwarded 2130 * to the nvmet-fc transport via nvmet_fc_rcv_ls_req(). 2131 * 2132 * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing) 2133 * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done. 2134 * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg. 2135 * 2136 * Returns 0 if LS was handled and delivered to the transport 2137 * Returns 1 if LS failed to be handled and should be dropped 2138 */ 2139 int 2140 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba, 2141 struct lpfc_async_xchg_ctx *axchg) 2142 { 2143 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2144 struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private; 2145 uint32_t *payload = axchg->payload; 2146 int rc; 2147 2148 atomic_inc(&tgtp->rcv_ls_req_in); 2149 2150 /* 2151 * Driver passes the ndlp as the hosthandle argument allowing 2152 * the transport to generate LS requests for any associateions 2153 * that are created. 2154 */ 2155 rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp, 2156 axchg->payload, axchg->size); 2157 2158 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2159 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 2160 "%08x %08x %08x\n", axchg->size, rc, 2161 *payload, *(payload+1), *(payload+2), 2162 *(payload+3), *(payload+4), *(payload+5)); 2163 2164 if (!rc) { 2165 atomic_inc(&tgtp->rcv_ls_req_out); 2166 return 0; 2167 } 2168 2169 atomic_inc(&tgtp->rcv_ls_req_drop); 2170 #endif 2171 return 1; 2172 } 2173 2174 static void 2175 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf) 2176 { 2177 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2178 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 2179 struct lpfc_hba *phba = ctxp->phba; 2180 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 2181 struct lpfc_nvmet_tgtport *tgtp; 2182 uint32_t *payload, qno; 2183 uint32_t rc; 2184 unsigned long iflags; 2185 2186 if (!nvmebuf) { 2187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2188 "6159 process_rcv_fcp_req, nvmebuf is NULL, " 2189 "oxid: x%x flg: x%x state: x%x\n", 2190 ctxp->oxid, ctxp->flag, ctxp->state); 2191 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2192 lpfc_nvmet_defer_release(phba, ctxp); 2193 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2194 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 2195 ctxp->oxid); 2196 return; 2197 } 2198 2199 if (ctxp->flag & LPFC_NVME_ABTS_RCV) { 2200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2201 "6324 IO oxid x%x aborted\n", 2202 ctxp->oxid); 2203 return; 2204 } 2205 2206 payload = (uint32_t *)(nvmebuf->dbuf.virt); 2207 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2208 ctxp->flag |= LPFC_NVME_TNOTIFY; 2209 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2210 if (ctxp->ts_isr_cmd) 2211 ctxp->ts_cmd_nvme = ktime_get_ns(); 2212 #endif 2213 /* 2214 * The calling sequence should be: 2215 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 2216 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 2217 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 2218 * the NVME command / FC header is stored. 2219 * A buffer has already been reposted for this IO, so just free 2220 * the nvmebuf. 2221 */ 2222 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req, 2223 payload, ctxp->size); 2224 /* Process FCP command */ 2225 if (rc == 0) { 2226 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2227 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2228 if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) || 2229 (nvmebuf != ctxp->rqb_buffer)) { 2230 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2231 return; 2232 } 2233 ctxp->rqb_buffer = NULL; 2234 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2235 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2236 return; 2237 } 2238 2239 /* Processing of FCP command is deferred */ 2240 if (rc == -EOVERFLOW) { 2241 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d " 2242 "from %06x\n", 2243 ctxp->oxid, ctxp->size, ctxp->sid); 2244 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2245 atomic_inc(&tgtp->defer_fod); 2246 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2247 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 2248 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2249 return; 2250 } 2251 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2252 /* 2253 * Post a replacement DMA buffer to RQ and defer 2254 * freeing rcv buffer till .defer_rcv callback 2255 */ 2256 qno = nvmebuf->idx; 2257 lpfc_post_rq_buffer( 2258 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2259 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2260 return; 2261 } 2262 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 2263 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2264 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2265 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 2266 ctxp->oxid, rc, 2267 atomic_read(&tgtp->rcv_fcp_cmd_in), 2268 atomic_read(&tgtp->rcv_fcp_cmd_out), 2269 atomic_read(&tgtp->xmt_fcp_release)); 2270 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 2271 ctxp->oxid, ctxp->size, ctxp->sid); 2272 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2273 lpfc_nvmet_defer_release(phba, ctxp); 2274 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2275 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 2276 #endif 2277 } 2278 2279 static void 2280 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work) 2281 { 2282 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2283 struct lpfc_nvmet_ctxbuf *ctx_buf = 2284 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work); 2285 2286 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2287 #endif 2288 } 2289 2290 static struct lpfc_nvmet_ctxbuf * 2291 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 2292 struct lpfc_nvmet_ctx_info *current_infop) 2293 { 2294 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2295 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 2296 struct lpfc_nvmet_ctx_info *get_infop; 2297 int i; 2298 2299 /* 2300 * The current_infop for the MRQ a NVME command IU was received 2301 * on is empty. Our goal is to replenish this MRQs context 2302 * list from a another CPUs. 2303 * 2304 * First we need to pick a context list to start looking on. 2305 * nvmet_ctx_start_cpu has available context the last time 2306 * we needed to replenish this CPU where nvmet_ctx_next_cpu 2307 * is just the next sequential CPU for this MRQ. 2308 */ 2309 if (current_infop->nvmet_ctx_start_cpu) 2310 get_infop = current_infop->nvmet_ctx_start_cpu; 2311 else 2312 get_infop = current_infop->nvmet_ctx_next_cpu; 2313 2314 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) { 2315 if (get_infop == current_infop) { 2316 get_infop = get_infop->nvmet_ctx_next_cpu; 2317 continue; 2318 } 2319 spin_lock(&get_infop->nvmet_ctx_list_lock); 2320 2321 /* Just take the entire context list, if there are any */ 2322 if (get_infop->nvmet_ctx_list_cnt) { 2323 list_splice_init(&get_infop->nvmet_ctx_list, 2324 ¤t_infop->nvmet_ctx_list); 2325 current_infop->nvmet_ctx_list_cnt = 2326 get_infop->nvmet_ctx_list_cnt - 1; 2327 get_infop->nvmet_ctx_list_cnt = 0; 2328 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2329 2330 current_infop->nvmet_ctx_start_cpu = get_infop; 2331 list_remove_head(¤t_infop->nvmet_ctx_list, 2332 ctx_buf, struct lpfc_nvmet_ctxbuf, 2333 list); 2334 return ctx_buf; 2335 } 2336 2337 /* Otherwise, move on to the next CPU for this MRQ */ 2338 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2339 get_infop = get_infop->nvmet_ctx_next_cpu; 2340 } 2341 2342 #endif 2343 /* Nothing found, all contexts for the MRQ are in-flight */ 2344 return NULL; 2345 } 2346 2347 /** 2348 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 2349 * @phba: pointer to lpfc hba data structure. 2350 * @idx: relative index of MRQ vector 2351 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 2352 * @isr_timestamp: in jiffies. 2353 * @cqflag: cq processing information regarding workload. 2354 * 2355 * This routine is used for processing the WQE associated with a unsolicited 2356 * event. It first determines whether there is an existing ndlp that matches 2357 * the DID from the unsolicited WQE. If not, it will create a new one with 2358 * the DID from the unsolicited WQE. The ELS command from the unsolicited 2359 * WQE is then used to invoke the proper routine and to set up proper state 2360 * of the discovery state machine. 2361 **/ 2362 static void 2363 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 2364 uint32_t idx, 2365 struct rqb_dmabuf *nvmebuf, 2366 uint64_t isr_timestamp, 2367 uint8_t cqflag) 2368 { 2369 struct lpfc_async_xchg_ctx *ctxp; 2370 struct lpfc_nvmet_tgtport *tgtp; 2371 struct fc_frame_header *fc_hdr; 2372 struct lpfc_nvmet_ctxbuf *ctx_buf; 2373 struct lpfc_nvmet_ctx_info *current_infop; 2374 uint32_t size, oxid, sid, qno; 2375 unsigned long iflag; 2376 int current_cpu; 2377 2378 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2379 return; 2380 2381 ctx_buf = NULL; 2382 if (!nvmebuf || !phba->targetport) { 2383 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2384 "6157 NVMET FCP Drop IO\n"); 2385 if (nvmebuf) 2386 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2387 return; 2388 } 2389 2390 /* 2391 * Get a pointer to the context list for this MRQ based on 2392 * the CPU this MRQ IRQ is associated with. If the CPU association 2393 * changes from our initial assumption, the context list could 2394 * be empty, thus it would need to be replenished with the 2395 * context list from another CPU for this MRQ. 2396 */ 2397 current_cpu = raw_smp_processor_id(); 2398 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 2399 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 2400 if (current_infop->nvmet_ctx_list_cnt) { 2401 list_remove_head(¤t_infop->nvmet_ctx_list, 2402 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 2403 current_infop->nvmet_ctx_list_cnt--; 2404 } else { 2405 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 2406 } 2407 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 2408 2409 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 2410 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2411 size = nvmebuf->bytes_recv; 2412 2413 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2414 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 2415 this_cpu_inc(phba->sli4_hba.c_stat->rcv_io); 2416 if (idx != current_cpu) 2417 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2418 "6703 CPU Check rcv: " 2419 "cpu %d expect %d\n", 2420 current_cpu, idx); 2421 } 2422 #endif 2423 2424 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 2425 oxid, size, raw_smp_processor_id()); 2426 2427 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2428 2429 if (!ctx_buf) { 2430 /* Queue this NVME IO to process later */ 2431 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 2432 list_add_tail(&nvmebuf->hbuf.list, 2433 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 2434 phba->sli4_hba.nvmet_io_wait_cnt++; 2435 phba->sli4_hba.nvmet_io_wait_total++; 2436 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 2437 iflag); 2438 2439 /* Post a brand new DMA buffer to RQ */ 2440 qno = nvmebuf->idx; 2441 lpfc_post_rq_buffer( 2442 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2443 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2444 2445 atomic_inc(&tgtp->defer_ctx); 2446 return; 2447 } 2448 2449 sid = sli4_sid_from_fc_hdr(fc_hdr); 2450 2451 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 2452 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 2453 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list); 2454 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 2455 if (ctxp->state != LPFC_NVME_STE_FREE) { 2456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2457 "6414 NVMET Context corrupt %d %d oxid x%x\n", 2458 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 2459 } 2460 ctxp->wqeq = NULL; 2461 ctxp->offset = 0; 2462 ctxp->phba = phba; 2463 ctxp->size = size; 2464 ctxp->oxid = oxid; 2465 ctxp->sid = sid; 2466 ctxp->idx = idx; 2467 ctxp->state = LPFC_NVME_STE_RCV; 2468 ctxp->entry_cnt = 1; 2469 ctxp->flag = 0; 2470 ctxp->ctxbuf = ctx_buf; 2471 ctxp->rqb_buffer = (void *)nvmebuf; 2472 ctxp->hdwq = NULL; 2473 spin_lock_init(&ctxp->ctxlock); 2474 2475 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2476 if (isr_timestamp) 2477 ctxp->ts_isr_cmd = isr_timestamp; 2478 ctxp->ts_cmd_nvme = 0; 2479 ctxp->ts_nvme_data = 0; 2480 ctxp->ts_data_wqput = 0; 2481 ctxp->ts_isr_data = 0; 2482 ctxp->ts_data_nvme = 0; 2483 ctxp->ts_nvme_status = 0; 2484 ctxp->ts_status_wqput = 0; 2485 ctxp->ts_isr_status = 0; 2486 ctxp->ts_status_nvme = 0; 2487 #endif 2488 2489 atomic_inc(&tgtp->rcv_fcp_cmd_in); 2490 /* check for cq processing load */ 2491 if (!cqflag) { 2492 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2493 return; 2494 } 2495 2496 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 2497 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2498 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2499 "6325 Unable to queue work for oxid x%x. " 2500 "FCP Drop IO [x%x x%x x%x]\n", 2501 ctxp->oxid, 2502 atomic_read(&tgtp->rcv_fcp_cmd_in), 2503 atomic_read(&tgtp->rcv_fcp_cmd_out), 2504 atomic_read(&tgtp->xmt_fcp_release)); 2505 2506 spin_lock_irqsave(&ctxp->ctxlock, iflag); 2507 lpfc_nvmet_defer_release(phba, ctxp); 2508 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 2509 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 2510 } 2511 } 2512 2513 /** 2514 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 2515 * @phba: pointer to lpfc hba data structure. 2516 * @idx: relative index of MRQ vector 2517 * @nvmebuf: pointer to received nvme data structure. 2518 * @isr_timestamp: in jiffies. 2519 * @cqflag: cq processing information regarding workload. 2520 * 2521 * This routine is used to process an unsolicited event received from a SLI 2522 * (Service Level Interface) ring. The actual processing of the data buffer 2523 * associated with the unsolicited event is done by invoking the routine 2524 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 2525 * SLI RQ on which the unsolicited event was received. 2526 **/ 2527 void 2528 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 2529 uint32_t idx, 2530 struct rqb_dmabuf *nvmebuf, 2531 uint64_t isr_timestamp, 2532 uint8_t cqflag) 2533 { 2534 if (!nvmebuf) { 2535 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2536 "3167 NVMET FCP Drop IO\n"); 2537 return; 2538 } 2539 if (phba->nvmet_support == 0) { 2540 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2541 return; 2542 } 2543 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag); 2544 } 2545 2546 /** 2547 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 2548 * @phba: pointer to a host N_Port data structure. 2549 * @ctxp: Context info for NVME LS Request 2550 * @rspbuf: DMA buffer of NVME command. 2551 * @rspsize: size of the NVME command. 2552 * 2553 * This routine is used for allocating a lpfc-WQE data structure from 2554 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 2555 * passed into the routine for discovery state machine to issue an Extended 2556 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 2557 * and preparation routine that is used by all the discovery state machine 2558 * routines and the NVME command-specific fields will be later set up by 2559 * the individual discovery machine routines after calling this routine 2560 * allocating and preparing a generic WQE data structure. It fills in the 2561 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 2562 * payload and response payload (if expected). The reference count on the 2563 * ndlp is incremented by 1 and the reference to the ndlp is put into 2564 * context1 of the WQE data structure for this WQE to hold the ndlp 2565 * reference for the command's callback function to access later. 2566 * 2567 * Return code 2568 * Pointer to the newly allocated/prepared nvme wqe data structure 2569 * NULL - when nvme wqe data structure allocation/preparation failed 2570 **/ 2571 static struct lpfc_iocbq * 2572 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 2573 struct lpfc_async_xchg_ctx *ctxp, 2574 dma_addr_t rspbuf, uint16_t rspsize) 2575 { 2576 struct lpfc_nodelist *ndlp; 2577 struct lpfc_iocbq *nvmewqe; 2578 union lpfc_wqe128 *wqe; 2579 2580 if (!lpfc_is_link_up(phba)) { 2581 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2582 "6104 NVMET prep LS wqe: link err: " 2583 "NPORT x%x oxid:x%x ste %d\n", 2584 ctxp->sid, ctxp->oxid, ctxp->state); 2585 return NULL; 2586 } 2587 2588 /* Allocate buffer for command wqe */ 2589 nvmewqe = lpfc_sli_get_iocbq(phba); 2590 if (nvmewqe == NULL) { 2591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2592 "6105 NVMET prep LS wqe: No WQE: " 2593 "NPORT x%x oxid x%x ste %d\n", 2594 ctxp->sid, ctxp->oxid, ctxp->state); 2595 return NULL; 2596 } 2597 2598 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2599 if (!ndlp || 2600 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2601 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2602 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2603 "6106 NVMET prep LS wqe: No ndlp: " 2604 "NPORT x%x oxid x%x ste %d\n", 2605 ctxp->sid, ctxp->oxid, ctxp->state); 2606 goto nvme_wqe_free_wqeq_exit; 2607 } 2608 ctxp->wqeq = nvmewqe; 2609 2610 /* prevent preparing wqe with NULL ndlp reference */ 2611 nvmewqe->context1 = lpfc_nlp_get(ndlp); 2612 if (nvmewqe->context1 == NULL) 2613 goto nvme_wqe_free_wqeq_exit; 2614 nvmewqe->context2 = ctxp; 2615 2616 wqe = &nvmewqe->wqe; 2617 memset(wqe, 0, sizeof(union lpfc_wqe)); 2618 2619 /* Words 0 - 2 */ 2620 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2621 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 2622 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 2623 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 2624 2625 /* Word 3 */ 2626 2627 /* Word 4 */ 2628 2629 /* Word 5 */ 2630 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 2631 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 2632 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 2633 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 2634 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 2635 2636 /* Word 6 */ 2637 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 2638 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2639 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 2640 2641 /* Word 7 */ 2642 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 2643 CMD_XMIT_SEQUENCE64_WQE); 2644 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 2645 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 2646 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 2647 2648 /* Word 8 */ 2649 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 2650 2651 /* Word 9 */ 2652 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 2653 /* Needs to be set by caller */ 2654 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 2655 2656 /* Word 10 */ 2657 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 2658 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2659 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 2660 LPFC_WQE_LENLOC_WORD12); 2661 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 2662 2663 /* Word 11 */ 2664 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 2665 LPFC_WQE_CQ_ID_DEFAULT); 2666 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 2667 OTHER_COMMAND); 2668 2669 /* Word 12 */ 2670 wqe->xmit_sequence.xmit_len = rspsize; 2671 2672 nvmewqe->retry = 1; 2673 nvmewqe->vport = phba->pport; 2674 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2675 nvmewqe->iocb_flag |= LPFC_IO_NVME_LS; 2676 2677 /* Xmit NVMET response to remote NPORT <did> */ 2678 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2679 "6039 Xmit NVMET LS response to remote " 2680 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 2681 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 2682 rspsize); 2683 return nvmewqe; 2684 2685 nvme_wqe_free_wqeq_exit: 2686 nvmewqe->context2 = NULL; 2687 nvmewqe->context3 = NULL; 2688 lpfc_sli_release_iocbq(phba, nvmewqe); 2689 return NULL; 2690 } 2691 2692 2693 static struct lpfc_iocbq * 2694 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 2695 struct lpfc_async_xchg_ctx *ctxp) 2696 { 2697 struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req; 2698 struct lpfc_nvmet_tgtport *tgtp; 2699 struct sli4_sge *sgl; 2700 struct lpfc_nodelist *ndlp; 2701 struct lpfc_iocbq *nvmewqe; 2702 struct scatterlist *sgel; 2703 union lpfc_wqe128 *wqe; 2704 struct ulp_bde64 *bde; 2705 dma_addr_t physaddr; 2706 int i, cnt, nsegs; 2707 int do_pbde; 2708 int xc = 1; 2709 2710 if (!lpfc_is_link_up(phba)) { 2711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2712 "6107 NVMET prep FCP wqe: link err:" 2713 "NPORT x%x oxid x%x ste %d\n", 2714 ctxp->sid, ctxp->oxid, ctxp->state); 2715 return NULL; 2716 } 2717 2718 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2719 if (!ndlp || 2720 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2721 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2722 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2723 "6108 NVMET prep FCP wqe: no ndlp: " 2724 "NPORT x%x oxid x%x ste %d\n", 2725 ctxp->sid, ctxp->oxid, ctxp->state); 2726 return NULL; 2727 } 2728 2729 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { 2730 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2731 "6109 NVMET prep FCP wqe: seg cnt err: " 2732 "NPORT x%x oxid x%x ste %d cnt %d\n", 2733 ctxp->sid, ctxp->oxid, ctxp->state, 2734 phba->cfg_nvme_seg_cnt); 2735 return NULL; 2736 } 2737 nsegs = rsp->sg_cnt; 2738 2739 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2740 nvmewqe = ctxp->wqeq; 2741 if (nvmewqe == NULL) { 2742 /* Allocate buffer for command wqe */ 2743 nvmewqe = ctxp->ctxbuf->iocbq; 2744 if (nvmewqe == NULL) { 2745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2746 "6110 NVMET prep FCP wqe: No " 2747 "WQE: NPORT x%x oxid x%x ste %d\n", 2748 ctxp->sid, ctxp->oxid, ctxp->state); 2749 return NULL; 2750 } 2751 ctxp->wqeq = nvmewqe; 2752 xc = 0; /* create new XRI */ 2753 nvmewqe->sli4_lxritag = NO_XRI; 2754 nvmewqe->sli4_xritag = NO_XRI; 2755 } 2756 2757 /* Sanity check */ 2758 if (((ctxp->state == LPFC_NVME_STE_RCV) && 2759 (ctxp->entry_cnt == 1)) || 2760 (ctxp->state == LPFC_NVME_STE_DATA)) { 2761 wqe = &nvmewqe->wqe; 2762 } else { 2763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2764 "6111 Wrong state NVMET FCP: %d cnt %d\n", 2765 ctxp->state, ctxp->entry_cnt); 2766 return NULL; 2767 } 2768 2769 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 2770 switch (rsp->op) { 2771 case NVMET_FCOP_READDATA: 2772 case NVMET_FCOP_READDATA_RSP: 2773 /* From the tsend template, initialize words 7 - 11 */ 2774 memcpy(&wqe->words[7], 2775 &lpfc_tsend_cmd_template.words[7], 2776 sizeof(uint32_t) * 5); 2777 2778 /* Words 0 - 2 : The first sg segment */ 2779 sgel = &rsp->sg[0]; 2780 physaddr = sg_dma_address(sgel); 2781 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2782 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 2783 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 2784 wqe->fcp_tsend.bde.addrHigh = 2785 cpu_to_le32(putPaddrHigh(physaddr)); 2786 2787 /* Word 3 */ 2788 wqe->fcp_tsend.payload_offset_len = 0; 2789 2790 /* Word 4 */ 2791 wqe->fcp_tsend.relative_offset = ctxp->offset; 2792 2793 /* Word 5 */ 2794 wqe->fcp_tsend.reserved = 0; 2795 2796 /* Word 6 */ 2797 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2798 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2799 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2800 nvmewqe->sli4_xritag); 2801 2802 /* Word 7 - set ar later */ 2803 2804 /* Word 8 */ 2805 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2806 2807 /* Word 9 */ 2808 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2809 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2810 2811 /* Word 10 - set wqes later, in template xc=1 */ 2812 if (!xc) 2813 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); 2814 2815 /* Word 11 - set sup, irsp, irsplen later */ 2816 do_pbde = 0; 2817 2818 /* Word 12 */ 2819 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2820 2821 /* Setup 2 SKIP SGEs */ 2822 sgl->addr_hi = 0; 2823 sgl->addr_lo = 0; 2824 sgl->word2 = 0; 2825 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2826 sgl->word2 = cpu_to_le32(sgl->word2); 2827 sgl->sge_len = 0; 2828 sgl++; 2829 sgl->addr_hi = 0; 2830 sgl->addr_lo = 0; 2831 sgl->word2 = 0; 2832 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2833 sgl->word2 = cpu_to_le32(sgl->word2); 2834 sgl->sge_len = 0; 2835 sgl++; 2836 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2837 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2838 2839 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2840 2841 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2842 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP) 2843 bf_set(wqe_sup, 2844 &wqe->fcp_tsend.wqe_com, 1); 2845 } else { 2846 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2847 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2848 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2849 ((rsp->rsplen >> 2) - 1)); 2850 memcpy(&wqe->words[16], rsp->rspaddr, 2851 rsp->rsplen); 2852 } 2853 } else { 2854 atomic_inc(&tgtp->xmt_fcp_read); 2855 2856 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2857 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2858 } 2859 break; 2860 2861 case NVMET_FCOP_WRITEDATA: 2862 /* From the treceive template, initialize words 3 - 11 */ 2863 memcpy(&wqe->words[3], 2864 &lpfc_treceive_cmd_template.words[3], 2865 sizeof(uint32_t) * 9); 2866 2867 /* Words 0 - 2 : First SGE is skipped, set invalid BDE type */ 2868 wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP; 2869 wqe->fcp_treceive.bde.tus.f.bdeSize = 0; 2870 wqe->fcp_treceive.bde.addrLow = 0; 2871 wqe->fcp_treceive.bde.addrHigh = 0; 2872 2873 /* Word 4 */ 2874 wqe->fcp_treceive.relative_offset = ctxp->offset; 2875 2876 /* Word 6 */ 2877 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2878 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2879 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2880 nvmewqe->sli4_xritag); 2881 2882 /* Word 7 */ 2883 2884 /* Word 8 */ 2885 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2886 2887 /* Word 9 */ 2888 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2889 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2890 2891 /* Word 10 - in template xc=1 */ 2892 if (!xc) 2893 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); 2894 2895 /* Word 11 - set pbde later */ 2896 if (phba->cfg_enable_pbde) { 2897 do_pbde = 1; 2898 } else { 2899 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); 2900 do_pbde = 0; 2901 } 2902 2903 /* Word 12 */ 2904 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2905 2906 /* Setup 2 SKIP SGEs */ 2907 sgl->addr_hi = 0; 2908 sgl->addr_lo = 0; 2909 sgl->word2 = 0; 2910 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2911 sgl->word2 = cpu_to_le32(sgl->word2); 2912 sgl->sge_len = 0; 2913 sgl++; 2914 sgl->addr_hi = 0; 2915 sgl->addr_lo = 0; 2916 sgl->word2 = 0; 2917 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2918 sgl->word2 = cpu_to_le32(sgl->word2); 2919 sgl->sge_len = 0; 2920 sgl++; 2921 atomic_inc(&tgtp->xmt_fcp_write); 2922 break; 2923 2924 case NVMET_FCOP_RSP: 2925 /* From the treceive template, initialize words 4 - 11 */ 2926 memcpy(&wqe->words[4], 2927 &lpfc_trsp_cmd_template.words[4], 2928 sizeof(uint32_t) * 8); 2929 2930 /* Words 0 - 2 */ 2931 physaddr = rsp->rspdma; 2932 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2933 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2934 wqe->fcp_trsp.bde.addrLow = 2935 cpu_to_le32(putPaddrLow(physaddr)); 2936 wqe->fcp_trsp.bde.addrHigh = 2937 cpu_to_le32(putPaddrHigh(physaddr)); 2938 2939 /* Word 3 */ 2940 wqe->fcp_trsp.response_len = rsp->rsplen; 2941 2942 /* Word 6 */ 2943 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2944 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2945 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2946 nvmewqe->sli4_xritag); 2947 2948 /* Word 7 */ 2949 2950 /* Word 8 */ 2951 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2952 2953 /* Word 9 */ 2954 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2955 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2956 2957 /* Word 10 */ 2958 if (xc) 2959 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); 2960 2961 /* Word 11 */ 2962 /* In template wqes=0 irsp=0 irsplen=0 - good response */ 2963 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { 2964 /* Bad response - embed it */ 2965 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2966 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2967 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2968 ((rsp->rsplen >> 2) - 1)); 2969 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2970 } 2971 do_pbde = 0; 2972 2973 /* Word 12 */ 2974 wqe->fcp_trsp.rsvd_12_15[0] = 0; 2975 2976 /* Use rspbuf, NOT sg list */ 2977 nsegs = 0; 2978 sgl->word2 = 0; 2979 atomic_inc(&tgtp->xmt_fcp_rsp); 2980 break; 2981 2982 default: 2983 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2984 "6064 Unknown Rsp Op %d\n", 2985 rsp->op); 2986 return NULL; 2987 } 2988 2989 nvmewqe->retry = 1; 2990 nvmewqe->vport = phba->pport; 2991 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2992 nvmewqe->context1 = ndlp; 2993 2994 for_each_sg(rsp->sg, sgel, nsegs, i) { 2995 physaddr = sg_dma_address(sgel); 2996 cnt = sg_dma_len(sgel); 2997 sgl->addr_hi = putPaddrHigh(physaddr); 2998 sgl->addr_lo = putPaddrLow(physaddr); 2999 sgl->word2 = 0; 3000 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 3001 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 3002 if ((i+1) == rsp->sg_cnt) 3003 bf_set(lpfc_sli4_sge_last, sgl, 1); 3004 sgl->word2 = cpu_to_le32(sgl->word2); 3005 sgl->sge_len = cpu_to_le32(cnt); 3006 if (i == 0) { 3007 bde = (struct ulp_bde64 *)&wqe->words[13]; 3008 if (do_pbde) { 3009 /* Words 13-15 (PBDE) */ 3010 bde->addrLow = sgl->addr_lo; 3011 bde->addrHigh = sgl->addr_hi; 3012 bde->tus.f.bdeSize = 3013 le32_to_cpu(sgl->sge_len); 3014 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 3015 bde->tus.w = cpu_to_le32(bde->tus.w); 3016 } else { 3017 memset(bde, 0, sizeof(struct ulp_bde64)); 3018 } 3019 } 3020 sgl++; 3021 ctxp->offset += cnt; 3022 } 3023 ctxp->state = LPFC_NVME_STE_DATA; 3024 ctxp->entry_cnt++; 3025 return nvmewqe; 3026 } 3027 3028 /** 3029 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 3030 * @phba: Pointer to HBA context object. 3031 * @cmdwqe: Pointer to driver command WQE object. 3032 * @wcqe: Pointer to driver response CQE object. 3033 * 3034 * The function is called from SLI ring event handler with no 3035 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3036 * The function frees memory resources used for the NVME commands. 3037 **/ 3038 static void 3039 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3040 struct lpfc_wcqe_complete *wcqe) 3041 { 3042 struct lpfc_async_xchg_ctx *ctxp; 3043 struct lpfc_nvmet_tgtport *tgtp; 3044 uint32_t result; 3045 unsigned long flags; 3046 bool released = false; 3047 3048 ctxp = cmdwqe->context2; 3049 result = wcqe->parameter; 3050 3051 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3052 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3053 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3054 3055 spin_lock_irqsave(&ctxp->ctxlock, flags); 3056 ctxp->state = LPFC_NVME_STE_DONE; 3057 3058 /* Check if we already received a free context call 3059 * and we have completed processing an abort situation. 3060 */ 3061 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3062 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3063 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3064 list_del_init(&ctxp->list); 3065 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3066 released = true; 3067 } 3068 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3069 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3070 atomic_inc(&tgtp->xmt_abort_rsp); 3071 3072 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3073 "6165 ABORT cmpl: oxid x%x flg x%x (%d) " 3074 "WCQE: %08x %08x %08x %08x\n", 3075 ctxp->oxid, ctxp->flag, released, 3076 wcqe->word0, wcqe->total_data_placed, 3077 result, wcqe->word3); 3078 3079 cmdwqe->context2 = NULL; 3080 cmdwqe->context3 = NULL; 3081 /* 3082 * if transport has released ctx, then can reuse it. Otherwise, 3083 * will be recycled by transport release call. 3084 */ 3085 if (released) 3086 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3087 3088 /* This is the iocbq for the abort, not the command */ 3089 lpfc_sli_release_iocbq(phba, cmdwqe); 3090 3091 /* Since iaab/iaar are NOT set, there is no work left. 3092 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3093 * should have been called already. 3094 */ 3095 } 3096 3097 /** 3098 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 3099 * @phba: Pointer to HBA context object. 3100 * @cmdwqe: Pointer to driver command WQE object. 3101 * @wcqe: Pointer to driver response CQE object. 3102 * 3103 * The function is called from SLI ring event handler with no 3104 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3105 * The function frees memory resources used for the NVME commands. 3106 **/ 3107 static void 3108 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3109 struct lpfc_wcqe_complete *wcqe) 3110 { 3111 struct lpfc_async_xchg_ctx *ctxp; 3112 struct lpfc_nvmet_tgtport *tgtp; 3113 unsigned long flags; 3114 uint32_t result; 3115 bool released = false; 3116 3117 ctxp = cmdwqe->context2; 3118 result = wcqe->parameter; 3119 3120 if (!ctxp) { 3121 /* if context is clear, related io alrady complete */ 3122 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3123 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 3124 wcqe->word0, wcqe->total_data_placed, 3125 result, wcqe->word3); 3126 return; 3127 } 3128 3129 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3130 spin_lock_irqsave(&ctxp->ctxlock, flags); 3131 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3132 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3133 3134 /* Sanity check */ 3135 if (ctxp->state != LPFC_NVME_STE_ABORT) { 3136 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3137 "6112 ABTS Wrong state:%d oxid x%x\n", 3138 ctxp->state, ctxp->oxid); 3139 } 3140 3141 /* Check if we already received a free context call 3142 * and we have completed processing an abort situation. 3143 */ 3144 ctxp->state = LPFC_NVME_STE_DONE; 3145 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3146 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3147 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3148 list_del_init(&ctxp->list); 3149 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3150 released = true; 3151 } 3152 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3153 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3154 atomic_inc(&tgtp->xmt_abort_rsp); 3155 3156 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3157 "6316 ABTS cmpl oxid x%x flg x%x (%x) " 3158 "WCQE: %08x %08x %08x %08x\n", 3159 ctxp->oxid, ctxp->flag, released, 3160 wcqe->word0, wcqe->total_data_placed, 3161 result, wcqe->word3); 3162 3163 cmdwqe->context2 = NULL; 3164 cmdwqe->context3 = NULL; 3165 /* 3166 * if transport has released ctx, then can reuse it. Otherwise, 3167 * will be recycled by transport release call. 3168 */ 3169 if (released) 3170 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3171 3172 /* Since iaab/iaar are NOT set, there is no work left. 3173 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3174 * should have been called already. 3175 */ 3176 } 3177 3178 /** 3179 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 3180 * @phba: Pointer to HBA context object. 3181 * @cmdwqe: Pointer to driver command WQE object. 3182 * @wcqe: Pointer to driver response CQE object. 3183 * 3184 * The function is called from SLI ring event handler with no 3185 * lock held. This function is the completion handler for NVME ABTS for LS cmds 3186 * The function frees memory resources used for the NVME commands. 3187 **/ 3188 static void 3189 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3190 struct lpfc_wcqe_complete *wcqe) 3191 { 3192 struct lpfc_async_xchg_ctx *ctxp; 3193 struct lpfc_nvmet_tgtport *tgtp; 3194 uint32_t result; 3195 3196 ctxp = cmdwqe->context2; 3197 result = wcqe->parameter; 3198 3199 if (phba->nvmet_support) { 3200 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3201 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 3202 } 3203 3204 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3205 "6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n", 3206 ctxp, wcqe->word0, wcqe->total_data_placed, 3207 result, wcqe->word3); 3208 3209 if (!ctxp) { 3210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3211 "6415 NVMET LS Abort No ctx: WCQE: " 3212 "%08x %08x %08x %08x\n", 3213 wcqe->word0, wcqe->total_data_placed, 3214 result, wcqe->word3); 3215 3216 lpfc_sli_release_iocbq(phba, cmdwqe); 3217 return; 3218 } 3219 3220 if (ctxp->state != LPFC_NVME_STE_LS_ABORT) { 3221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3222 "6416 NVMET LS abort cmpl state mismatch: " 3223 "oxid x%x: %d %d\n", 3224 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3225 } 3226 3227 cmdwqe->context2 = NULL; 3228 cmdwqe->context3 = NULL; 3229 lpfc_sli_release_iocbq(phba, cmdwqe); 3230 kfree(ctxp); 3231 } 3232 3233 static int 3234 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 3235 struct lpfc_async_xchg_ctx *ctxp, 3236 uint32_t sid, uint16_t xri) 3237 { 3238 struct lpfc_nvmet_tgtport *tgtp = NULL; 3239 struct lpfc_iocbq *abts_wqeq; 3240 union lpfc_wqe128 *wqe_abts; 3241 struct lpfc_nodelist *ndlp; 3242 3243 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3244 "6067 ABTS: sid %x xri x%x/x%x\n", 3245 sid, xri, ctxp->wqeq->sli4_xritag); 3246 3247 if (phba->nvmet_support && phba->targetport) 3248 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3249 3250 ndlp = lpfc_findnode_did(phba->pport, sid); 3251 if (!ndlp || 3252 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3253 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3254 if (tgtp) 3255 atomic_inc(&tgtp->xmt_abort_rsp_error); 3256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3257 "6134 Drop ABTS - wrong NDLP state x%x.\n", 3258 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3259 3260 /* No failure to an ABTS request. */ 3261 return 0; 3262 } 3263 3264 abts_wqeq = ctxp->wqeq; 3265 wqe_abts = &abts_wqeq->wqe; 3266 3267 /* 3268 * Since we zero the whole WQE, we need to ensure we set the WQE fields 3269 * that were initialized in lpfc_sli4_nvmet_alloc. 3270 */ 3271 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 3272 3273 /* Word 5 */ 3274 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 3275 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 3276 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 3277 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 3278 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 3279 3280 /* Word 6 */ 3281 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 3282 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 3283 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 3284 abts_wqeq->sli4_xritag); 3285 3286 /* Word 7 */ 3287 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 3288 CMD_XMIT_SEQUENCE64_WQE); 3289 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 3290 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 3291 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 3292 3293 /* Word 8 */ 3294 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 3295 3296 /* Word 9 */ 3297 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 3298 /* Needs to be set by caller */ 3299 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 3300 3301 /* Word 10 */ 3302 bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1); 3303 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 3304 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 3305 LPFC_WQE_LENLOC_WORD12); 3306 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 3307 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 3308 3309 /* Word 11 */ 3310 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 3311 LPFC_WQE_CQ_ID_DEFAULT); 3312 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 3313 OTHER_COMMAND); 3314 3315 abts_wqeq->vport = phba->pport; 3316 abts_wqeq->context1 = ndlp; 3317 abts_wqeq->context2 = ctxp; 3318 abts_wqeq->context3 = NULL; 3319 abts_wqeq->rsvd2 = 0; 3320 /* hba_wqidx should already be setup from command we are aborting */ 3321 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 3322 abts_wqeq->iocb.ulpLe = 1; 3323 3324 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3325 "6069 Issue ABTS to xri x%x reqtag x%x\n", 3326 xri, abts_wqeq->iotag); 3327 return 1; 3328 } 3329 3330 /** 3331 * lpfc_nvmet_prep_abort_wqe - set up 'abort' work queue entry. 3332 * @pwqeq: Pointer to command iocb. 3333 * @xritag: Tag that uniqely identifies the local exchange resource. 3334 * @opt: Option bits - 3335 * bit 0 = inhibit sending abts on the link 3336 * 3337 * This function is called with hbalock held. 3338 **/ 3339 static void 3340 lpfc_nvmet_prep_abort_wqe(struct lpfc_iocbq *pwqeq, u16 xritag, u8 opt) 3341 { 3342 union lpfc_wqe128 *wqe = &pwqeq->wqe; 3343 3344 /* WQEs are reused. Clear stale data and set key fields to 3345 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag. 3346 */ 3347 memset(wqe, 0, sizeof(*wqe)); 3348 3349 if (opt & INHIBIT_ABORT) 3350 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 3351 /* Abort specified xri tag, with the mask deliberately zeroed */ 3352 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 3353 3354 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 3355 3356 /* Abort the I/O associated with this outstanding exchange ID. */ 3357 wqe->abort_cmd.wqe_com.abort_tag = xritag; 3358 3359 /* iotag for the wqe completion. */ 3360 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, pwqeq->iotag); 3361 3362 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 3363 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 3364 3365 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 3366 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 3367 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 3368 } 3369 3370 static int 3371 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 3372 struct lpfc_async_xchg_ctx *ctxp, 3373 uint32_t sid, uint16_t xri) 3374 { 3375 struct lpfc_nvmet_tgtport *tgtp; 3376 struct lpfc_iocbq *abts_wqeq; 3377 struct lpfc_nodelist *ndlp; 3378 unsigned long flags; 3379 u8 opt; 3380 int rc; 3381 3382 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3383 if (!ctxp->wqeq) { 3384 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3385 ctxp->wqeq->hba_wqidx = 0; 3386 } 3387 3388 ndlp = lpfc_findnode_did(phba->pport, sid); 3389 if (!ndlp || 3390 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3391 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3392 atomic_inc(&tgtp->xmt_abort_rsp_error); 3393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3394 "6160 Drop ABORT - wrong NDLP state x%x.\n", 3395 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3396 3397 /* No failure to an ABTS request. */ 3398 spin_lock_irqsave(&ctxp->ctxlock, flags); 3399 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3400 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3401 return 0; 3402 } 3403 3404 /* Issue ABTS for this WQE based on iotag */ 3405 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 3406 spin_lock_irqsave(&ctxp->ctxlock, flags); 3407 if (!ctxp->abort_wqeq) { 3408 atomic_inc(&tgtp->xmt_abort_rsp_error); 3409 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3410 "6161 ABORT failed: No wqeqs: " 3411 "xri: x%x\n", ctxp->oxid); 3412 /* No failure to an ABTS request. */ 3413 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3414 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3415 return 0; 3416 } 3417 abts_wqeq = ctxp->abort_wqeq; 3418 ctxp->state = LPFC_NVME_STE_ABORT; 3419 opt = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? INHIBIT_ABORT : 0; 3420 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3421 3422 /* Announce entry to new IO submit field. */ 3423 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3424 "6162 ABORT Request to rport DID x%06x " 3425 "for xri x%x x%x\n", 3426 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 3427 3428 /* If the hba is getting reset, this flag is set. It is 3429 * cleared when the reset is complete and rings reestablished. 3430 */ 3431 spin_lock_irqsave(&phba->hbalock, flags); 3432 /* driver queued commands are in process of being flushed */ 3433 if (phba->hba_flag & HBA_IOQ_FLUSH) { 3434 spin_unlock_irqrestore(&phba->hbalock, flags); 3435 atomic_inc(&tgtp->xmt_abort_rsp_error); 3436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3437 "6163 Driver in reset cleanup - flushing " 3438 "NVME Req now. hba_flag x%x oxid x%x\n", 3439 phba->hba_flag, ctxp->oxid); 3440 lpfc_sli_release_iocbq(phba, abts_wqeq); 3441 spin_lock_irqsave(&ctxp->ctxlock, flags); 3442 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3443 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3444 return 0; 3445 } 3446 3447 /* Outstanding abort is in progress */ 3448 if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) { 3449 spin_unlock_irqrestore(&phba->hbalock, flags); 3450 atomic_inc(&tgtp->xmt_abort_rsp_error); 3451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3452 "6164 Outstanding NVME I/O Abort Request " 3453 "still pending on oxid x%x\n", 3454 ctxp->oxid); 3455 lpfc_sli_release_iocbq(phba, abts_wqeq); 3456 spin_lock_irqsave(&ctxp->ctxlock, flags); 3457 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3458 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3459 return 0; 3460 } 3461 3462 /* Ready - mark outstanding as aborted by driver. */ 3463 abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED; 3464 3465 lpfc_nvmet_prep_abort_wqe(abts_wqeq, ctxp->wqeq->sli4_xritag, opt); 3466 3467 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3468 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 3469 abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 3470 abts_wqeq->iocb_cmpl = NULL; 3471 abts_wqeq->iocb_flag |= LPFC_IO_NVME; 3472 abts_wqeq->context2 = ctxp; 3473 abts_wqeq->vport = phba->pport; 3474 if (!ctxp->hdwq) 3475 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3476 3477 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3478 spin_unlock_irqrestore(&phba->hbalock, flags); 3479 if (rc == WQE_SUCCESS) { 3480 atomic_inc(&tgtp->xmt_abort_sol); 3481 return 0; 3482 } 3483 3484 atomic_inc(&tgtp->xmt_abort_rsp_error); 3485 spin_lock_irqsave(&ctxp->ctxlock, flags); 3486 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3487 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3488 lpfc_sli_release_iocbq(phba, abts_wqeq); 3489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3490 "6166 Failed ABORT issue_wqe with status x%x " 3491 "for oxid x%x.\n", 3492 rc, ctxp->oxid); 3493 return 1; 3494 } 3495 3496 static int 3497 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 3498 struct lpfc_async_xchg_ctx *ctxp, 3499 uint32_t sid, uint16_t xri) 3500 { 3501 struct lpfc_nvmet_tgtport *tgtp; 3502 struct lpfc_iocbq *abts_wqeq; 3503 unsigned long flags; 3504 bool released = false; 3505 int rc; 3506 3507 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3508 if (!ctxp->wqeq) { 3509 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3510 ctxp->wqeq->hba_wqidx = 0; 3511 } 3512 3513 if (ctxp->state == LPFC_NVME_STE_FREE) { 3514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3515 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 3516 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 3517 rc = WQE_BUSY; 3518 goto aerr; 3519 } 3520 ctxp->state = LPFC_NVME_STE_ABORT; 3521 ctxp->entry_cnt++; 3522 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 3523 if (rc == 0) 3524 goto aerr; 3525 3526 spin_lock_irqsave(&phba->hbalock, flags); 3527 abts_wqeq = ctxp->wqeq; 3528 abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 3529 abts_wqeq->iocb_cmpl = NULL; 3530 abts_wqeq->iocb_flag |= LPFC_IO_NVMET; 3531 if (!ctxp->hdwq) 3532 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3533 3534 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3535 spin_unlock_irqrestore(&phba->hbalock, flags); 3536 if (rc == WQE_SUCCESS) { 3537 return 0; 3538 } 3539 3540 aerr: 3541 spin_lock_irqsave(&ctxp->ctxlock, flags); 3542 if (ctxp->flag & LPFC_NVME_CTX_RLS) { 3543 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3544 list_del_init(&ctxp->list); 3545 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3546 released = true; 3547 } 3548 ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS); 3549 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3550 3551 atomic_inc(&tgtp->xmt_abort_rsp_error); 3552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3553 "6135 Failed to Issue ABTS for oxid x%x. Status x%x " 3554 "(%x)\n", 3555 ctxp->oxid, rc, released); 3556 if (released) 3557 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3558 return 1; 3559 } 3560 3561 /** 3562 * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received 3563 * via async frame receive where the frame is not handled. 3564 * @phba: pointer to adapter structure 3565 * @ctxp: pointer to the asynchronously received received sequence 3566 * @sid: address of the remote port to send the ABTS to 3567 * @xri: oxid value to for the ABTS (other side's exchange id). 3568 **/ 3569 int 3570 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba, 3571 struct lpfc_async_xchg_ctx *ctxp, 3572 uint32_t sid, uint16_t xri) 3573 { 3574 struct lpfc_nvmet_tgtport *tgtp = NULL; 3575 struct lpfc_iocbq *abts_wqeq; 3576 unsigned long flags; 3577 int rc; 3578 3579 if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) || 3580 (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) { 3581 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3582 ctxp->entry_cnt++; 3583 } else { 3584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3585 "6418 NVMET LS abort state mismatch " 3586 "IO x%x: %d %d\n", 3587 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3588 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3589 } 3590 3591 if (phba->nvmet_support && phba->targetport) 3592 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3593 3594 if (!ctxp->wqeq) { 3595 /* Issue ABTS for this WQE based on iotag */ 3596 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 3597 if (!ctxp->wqeq) { 3598 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3599 "6068 Abort failed: No wqeqs: " 3600 "xri: x%x\n", xri); 3601 /* No failure to an ABTS request. */ 3602 kfree(ctxp); 3603 return 0; 3604 } 3605 } 3606 abts_wqeq = ctxp->wqeq; 3607 3608 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 3609 rc = WQE_BUSY; 3610 goto out; 3611 } 3612 3613 spin_lock_irqsave(&phba->hbalock, flags); 3614 abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 3615 abts_wqeq->iocb_cmpl = NULL; 3616 abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS; 3617 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3618 spin_unlock_irqrestore(&phba->hbalock, flags); 3619 if (rc == WQE_SUCCESS) { 3620 if (tgtp) 3621 atomic_inc(&tgtp->xmt_abort_unsol); 3622 return 0; 3623 } 3624 out: 3625 if (tgtp) 3626 atomic_inc(&tgtp->xmt_abort_rsp_error); 3627 abts_wqeq->context2 = NULL; 3628 abts_wqeq->context3 = NULL; 3629 lpfc_sli_release_iocbq(phba, abts_wqeq); 3630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3631 "6056 Failed to Issue ABTS. Status x%x\n", rc); 3632 return 1; 3633 } 3634 3635 /** 3636 * lpfc_nvmet_invalidate_host 3637 * 3638 * @phba: pointer to the driver instance bound to an adapter port. 3639 * @ndlp: pointer to an lpfc_nodelist type 3640 * 3641 * This routine upcalls the nvmet transport to invalidate an NVME 3642 * host to which this target instance had active connections. 3643 */ 3644 void 3645 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 3646 { 3647 struct lpfc_nvmet_tgtport *tgtp; 3648 3649 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_NVME_ABTS, 3650 "6203 Invalidating hosthandle x%px\n", 3651 ndlp); 3652 3653 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3654 atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE); 3655 3656 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 3657 /* Need to get the nvmet_fc_target_port pointer here.*/ 3658 nvmet_fc_invalidate_host(phba->targetport, ndlp); 3659 #endif 3660 } 3661