xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_nvmet.c (revision 2f828fb2)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channsel Host Bus Adapters.                               *
4  * Copyright (C) 2017 Broadcom. All Rights Reserved. The term      *
5  * “Broadcom” refers to Broadcom Limited and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  ********************************************************************/
23 #include <linux/pci.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <asm/unaligned.h>
28 #include <linux/crc-t10dif.h>
29 #include <net/checksum.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_device.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_tcq.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
38 
39 #include <../drivers/nvme/host/nvme.h>
40 #include <linux/nvme-fc-driver.h>
41 
42 #include "lpfc_version.h"
43 #include "lpfc_hw4.h"
44 #include "lpfc_hw.h"
45 #include "lpfc_sli.h"
46 #include "lpfc_sli4.h"
47 #include "lpfc_nl.h"
48 #include "lpfc_disc.h"
49 #include "lpfc.h"
50 #include "lpfc_scsi.h"
51 #include "lpfc_nvme.h"
52 #include "lpfc_nvmet.h"
53 #include "lpfc_logmsg.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_vport.h"
56 #include "lpfc_debugfs.h"
57 
58 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *,
59 						 struct lpfc_nvmet_rcv_ctx *,
60 						 dma_addr_t rspbuf,
61 						 uint16_t rspsize);
62 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *,
63 						  struct lpfc_nvmet_rcv_ctx *);
64 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *,
65 					  struct lpfc_nvmet_rcv_ctx *,
66 					  uint32_t, uint16_t);
67 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *,
68 					    struct lpfc_nvmet_rcv_ctx *,
69 					    uint32_t, uint16_t);
70 static int lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *,
71 					   struct lpfc_nvmet_rcv_ctx *,
72 					   uint32_t, uint16_t);
73 
74 void
75 lpfc_nvmet_defer_release(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp)
76 {
77 	unsigned long iflag;
78 
79 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
80 			"6313 NVMET Defer ctx release xri x%x flg x%x\n",
81 			ctxp->oxid, ctxp->flag);
82 
83 	spin_lock_irqsave(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag);
84 	if (ctxp->flag & LPFC_NVMET_CTX_RLS) {
85 		spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock,
86 				       iflag);
87 		return;
88 	}
89 	ctxp->flag |= LPFC_NVMET_CTX_RLS;
90 	list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
91 	spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag);
92 }
93 
94 /**
95  * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response
96  * @phba: Pointer to HBA context object.
97  * @cmdwqe: Pointer to driver command WQE object.
98  * @wcqe: Pointer to driver response CQE object.
99  *
100  * The function is called from SLI ring event handler with no
101  * lock held. This function is the completion handler for NVME LS commands
102  * The function frees memory resources used for the NVME commands.
103  **/
104 static void
105 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
106 			  struct lpfc_wcqe_complete *wcqe)
107 {
108 	struct lpfc_nvmet_tgtport *tgtp;
109 	struct nvmefc_tgt_ls_req *rsp;
110 	struct lpfc_nvmet_rcv_ctx *ctxp;
111 	uint32_t status, result;
112 
113 	status = bf_get(lpfc_wcqe_c_status, wcqe);
114 	result = wcqe->parameter;
115 	ctxp = cmdwqe->context2;
116 
117 	if (ctxp->state != LPFC_NVMET_STE_LS_RSP || ctxp->entry_cnt != 2) {
118 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
119 				"6410 NVMET LS cmpl state mismatch IO x%x: "
120 				"%d %d\n",
121 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
122 	}
123 
124 	if (!phba->targetport)
125 		goto out;
126 
127 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
128 
129 	if (status)
130 		atomic_inc(&tgtp->xmt_ls_rsp_error);
131 	else
132 		atomic_inc(&tgtp->xmt_ls_rsp_cmpl);
133 
134 out:
135 	rsp = &ctxp->ctx.ls_req;
136 
137 	lpfc_nvmeio_data(phba, "NVMET LS  CMPL: xri x%x stat x%x result x%x\n",
138 			 ctxp->oxid, status, result);
139 
140 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
141 			"6038 NVMET LS rsp cmpl: %d %d oxid x%x\n",
142 			status, result, ctxp->oxid);
143 
144 	lpfc_nlp_put(cmdwqe->context1);
145 	cmdwqe->context2 = NULL;
146 	cmdwqe->context3 = NULL;
147 	lpfc_sli_release_iocbq(phba, cmdwqe);
148 	rsp->done(rsp);
149 	kfree(ctxp);
150 }
151 
152 /**
153  * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context
154  * @phba: HBA buffer is associated with
155  * @ctxp: context to clean up
156  * @mp: Buffer to free
157  *
158  * Description: Frees the given DMA buffer in the appropriate way given by
159  * reposting it to its associated RQ so it can be reused.
160  *
161  * Notes: Takes phba->hbalock.  Can be called with or without other locks held.
162  *
163  * Returns: None
164  **/
165 void
166 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf)
167 {
168 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
169 	struct lpfc_nvmet_rcv_ctx *ctxp = ctx_buf->context;
170 	struct lpfc_nvmet_tgtport *tgtp;
171 	struct fc_frame_header *fc_hdr;
172 	struct rqb_dmabuf *nvmebuf;
173 	struct lpfc_nvmet_ctx_info *infop;
174 	uint32_t *payload;
175 	uint32_t size, oxid, sid, rc;
176 	int cpu;
177 	unsigned long iflag;
178 
179 	if (ctxp->txrdy) {
180 		dma_pool_free(phba->txrdy_payload_pool, ctxp->txrdy,
181 			      ctxp->txrdy_phys);
182 		ctxp->txrdy = NULL;
183 		ctxp->txrdy_phys = 0;
184 	}
185 
186 	if (ctxp->state == LPFC_NVMET_STE_FREE) {
187 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
188 				"6411 NVMET free, already free IO x%x: %d %d\n",
189 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
190 	}
191 	ctxp->state = LPFC_NVMET_STE_FREE;
192 
193 	spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
194 	if (phba->sli4_hba.nvmet_io_wait_cnt) {
195 		list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list,
196 				 nvmebuf, struct rqb_dmabuf,
197 				 hbuf.list);
198 		phba->sli4_hba.nvmet_io_wait_cnt--;
199 		spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
200 				       iflag);
201 
202 		fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
203 		oxid = be16_to_cpu(fc_hdr->fh_ox_id);
204 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
205 		payload = (uint32_t *)(nvmebuf->dbuf.virt);
206 		size = nvmebuf->bytes_recv;
207 		sid = sli4_sid_from_fc_hdr(fc_hdr);
208 
209 		ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context;
210 		ctxp->wqeq = NULL;
211 		ctxp->txrdy = NULL;
212 		ctxp->offset = 0;
213 		ctxp->phba = phba;
214 		ctxp->size = size;
215 		ctxp->oxid = oxid;
216 		ctxp->sid = sid;
217 		ctxp->state = LPFC_NVMET_STE_RCV;
218 		ctxp->entry_cnt = 1;
219 		ctxp->flag = 0;
220 		ctxp->ctxbuf = ctx_buf;
221 		spin_lock_init(&ctxp->ctxlock);
222 
223 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
224 		if (ctxp->ts_cmd_nvme) {
225 			ctxp->ts_cmd_nvme = ktime_get_ns();
226 			ctxp->ts_nvme_data = 0;
227 			ctxp->ts_data_wqput = 0;
228 			ctxp->ts_isr_data = 0;
229 			ctxp->ts_data_nvme = 0;
230 			ctxp->ts_nvme_status = 0;
231 			ctxp->ts_status_wqput = 0;
232 			ctxp->ts_isr_status = 0;
233 			ctxp->ts_status_nvme = 0;
234 		}
235 #endif
236 		atomic_inc(&tgtp->rcv_fcp_cmd_in);
237 		/*
238 		 * The calling sequence should be:
239 		 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done
240 		 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
241 		 * When we return from nvmet_fc_rcv_fcp_req, all relevant info
242 		 * the NVME command / FC header is stored.
243 		 * A buffer has already been reposted for this IO, so just free
244 		 * the nvmebuf.
245 		 */
246 		rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req,
247 					  payload, size);
248 
249 		/* Process FCP command */
250 		if (rc == 0) {
251 			atomic_inc(&tgtp->rcv_fcp_cmd_out);
252 			nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
253 			return;
254 		}
255 
256 		atomic_inc(&tgtp->rcv_fcp_cmd_drop);
257 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
258 				"2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
259 				ctxp->oxid, rc,
260 				atomic_read(&tgtp->rcv_fcp_cmd_in),
261 				atomic_read(&tgtp->rcv_fcp_cmd_out),
262 				atomic_read(&tgtp->xmt_fcp_release));
263 
264 		lpfc_nvmet_defer_release(phba, ctxp);
265 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
266 		nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
267 		return;
268 	}
269 	spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
270 
271 	/*
272 	 * Use the CPU context list, from the MRQ the IO was received on
273 	 * (ctxp->idx), to save context structure.
274 	 */
275 	cpu = smp_processor_id();
276 	infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx);
277 	spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag);
278 	list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
279 	infop->nvmet_ctx_list_cnt++;
280 	spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag);
281 #endif
282 }
283 
284 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
285 static void
286 lpfc_nvmet_ktime(struct lpfc_hba *phba,
287 		 struct lpfc_nvmet_rcv_ctx *ctxp)
288 {
289 	uint64_t seg1, seg2, seg3, seg4, seg5;
290 	uint64_t seg6, seg7, seg8, seg9, seg10;
291 	uint64_t segsum;
292 
293 	if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme ||
294 	    !ctxp->ts_nvme_data || !ctxp->ts_data_wqput ||
295 	    !ctxp->ts_isr_data || !ctxp->ts_data_nvme ||
296 	    !ctxp->ts_nvme_status || !ctxp->ts_status_wqput ||
297 	    !ctxp->ts_isr_status || !ctxp->ts_status_nvme)
298 		return;
299 
300 	if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd)
301 		return;
302 	if (ctxp->ts_isr_cmd  > ctxp->ts_cmd_nvme)
303 		return;
304 	if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data)
305 		return;
306 	if (ctxp->ts_nvme_data > ctxp->ts_data_wqput)
307 		return;
308 	if (ctxp->ts_data_wqput > ctxp->ts_isr_data)
309 		return;
310 	if (ctxp->ts_isr_data > ctxp->ts_data_nvme)
311 		return;
312 	if (ctxp->ts_data_nvme > ctxp->ts_nvme_status)
313 		return;
314 	if (ctxp->ts_nvme_status > ctxp->ts_status_wqput)
315 		return;
316 	if (ctxp->ts_status_wqput > ctxp->ts_isr_status)
317 		return;
318 	if (ctxp->ts_isr_status > ctxp->ts_status_nvme)
319 		return;
320 	/*
321 	 * Segment 1 - Time from FCP command received by MSI-X ISR
322 	 * to FCP command is passed to NVME Layer.
323 	 * Segment 2 - Time from FCP command payload handed
324 	 * off to NVME Layer to Driver receives a Command op
325 	 * from NVME Layer.
326 	 * Segment 3 - Time from Driver receives a Command op
327 	 * from NVME Layer to Command is put on WQ.
328 	 * Segment 4 - Time from Driver WQ put is done
329 	 * to MSI-X ISR for Command cmpl.
330 	 * Segment 5 - Time from MSI-X ISR for Command cmpl to
331 	 * Command cmpl is passed to NVME Layer.
332 	 * Segment 6 - Time from Command cmpl is passed to NVME
333 	 * Layer to Driver receives a RSP op from NVME Layer.
334 	 * Segment 7 - Time from Driver receives a RSP op from
335 	 * NVME Layer to WQ put is done on TRSP FCP Status.
336 	 * Segment 8 - Time from Driver WQ put is done on TRSP
337 	 * FCP Status to MSI-X ISR for TRSP cmpl.
338 	 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to
339 	 * TRSP cmpl is passed to NVME Layer.
340 	 * Segment 10 - Time from FCP command received by
341 	 * MSI-X ISR to command is completed on wire.
342 	 * (Segments 1 thru 8) for READDATA / WRITEDATA
343 	 * (Segments 1 thru 4) for READDATA_RSP
344 	 */
345 	seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd;
346 	segsum = seg1;
347 
348 	seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd;
349 	if (segsum > seg2)
350 		return;
351 	seg2 -= segsum;
352 	segsum += seg2;
353 
354 	seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd;
355 	if (segsum > seg3)
356 		return;
357 	seg3 -= segsum;
358 	segsum += seg3;
359 
360 	seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd;
361 	if (segsum > seg4)
362 		return;
363 	seg4 -= segsum;
364 	segsum += seg4;
365 
366 	seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd;
367 	if (segsum > seg5)
368 		return;
369 	seg5 -= segsum;
370 	segsum += seg5;
371 
372 
373 	/* For auto rsp commands seg6 thru seg10 will be 0 */
374 	if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) {
375 		seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd;
376 		if (segsum > seg6)
377 			return;
378 		seg6 -= segsum;
379 		segsum += seg6;
380 
381 		seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd;
382 		if (segsum > seg7)
383 			return;
384 		seg7 -= segsum;
385 		segsum += seg7;
386 
387 		seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd;
388 		if (segsum > seg8)
389 			return;
390 		seg8 -= segsum;
391 		segsum += seg8;
392 
393 		seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd;
394 		if (segsum > seg9)
395 			return;
396 		seg9 -= segsum;
397 		segsum += seg9;
398 
399 		if (ctxp->ts_isr_status < ctxp->ts_isr_cmd)
400 			return;
401 		seg10 = (ctxp->ts_isr_status -
402 			ctxp->ts_isr_cmd);
403 	} else {
404 		if (ctxp->ts_isr_data < ctxp->ts_isr_cmd)
405 			return;
406 		seg6 =  0;
407 		seg7 =  0;
408 		seg8 =  0;
409 		seg9 =  0;
410 		seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd);
411 	}
412 
413 	phba->ktime_seg1_total += seg1;
414 	if (seg1 < phba->ktime_seg1_min)
415 		phba->ktime_seg1_min = seg1;
416 	else if (seg1 > phba->ktime_seg1_max)
417 		phba->ktime_seg1_max = seg1;
418 
419 	phba->ktime_seg2_total += seg2;
420 	if (seg2 < phba->ktime_seg2_min)
421 		phba->ktime_seg2_min = seg2;
422 	else if (seg2 > phba->ktime_seg2_max)
423 		phba->ktime_seg2_max = seg2;
424 
425 	phba->ktime_seg3_total += seg3;
426 	if (seg3 < phba->ktime_seg3_min)
427 		phba->ktime_seg3_min = seg3;
428 	else if (seg3 > phba->ktime_seg3_max)
429 		phba->ktime_seg3_max = seg3;
430 
431 	phba->ktime_seg4_total += seg4;
432 	if (seg4 < phba->ktime_seg4_min)
433 		phba->ktime_seg4_min = seg4;
434 	else if (seg4 > phba->ktime_seg4_max)
435 		phba->ktime_seg4_max = seg4;
436 
437 	phba->ktime_seg5_total += seg5;
438 	if (seg5 < phba->ktime_seg5_min)
439 		phba->ktime_seg5_min = seg5;
440 	else if (seg5 > phba->ktime_seg5_max)
441 		phba->ktime_seg5_max = seg5;
442 
443 	phba->ktime_data_samples++;
444 	if (!seg6)
445 		goto out;
446 
447 	phba->ktime_seg6_total += seg6;
448 	if (seg6 < phba->ktime_seg6_min)
449 		phba->ktime_seg6_min = seg6;
450 	else if (seg6 > phba->ktime_seg6_max)
451 		phba->ktime_seg6_max = seg6;
452 
453 	phba->ktime_seg7_total += seg7;
454 	if (seg7 < phba->ktime_seg7_min)
455 		phba->ktime_seg7_min = seg7;
456 	else if (seg7 > phba->ktime_seg7_max)
457 		phba->ktime_seg7_max = seg7;
458 
459 	phba->ktime_seg8_total += seg8;
460 	if (seg8 < phba->ktime_seg8_min)
461 		phba->ktime_seg8_min = seg8;
462 	else if (seg8 > phba->ktime_seg8_max)
463 		phba->ktime_seg8_max = seg8;
464 
465 	phba->ktime_seg9_total += seg9;
466 	if (seg9 < phba->ktime_seg9_min)
467 		phba->ktime_seg9_min = seg9;
468 	else if (seg9 > phba->ktime_seg9_max)
469 		phba->ktime_seg9_max = seg9;
470 out:
471 	phba->ktime_seg10_total += seg10;
472 	if (seg10 < phba->ktime_seg10_min)
473 		phba->ktime_seg10_min = seg10;
474 	else if (seg10 > phba->ktime_seg10_max)
475 		phba->ktime_seg10_max = seg10;
476 	phba->ktime_status_samples++;
477 }
478 #endif
479 
480 /**
481  * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response
482  * @phba: Pointer to HBA context object.
483  * @cmdwqe: Pointer to driver command WQE object.
484  * @wcqe: Pointer to driver response CQE object.
485  *
486  * The function is called from SLI ring event handler with no
487  * lock held. This function is the completion handler for NVME FCP commands
488  * The function frees memory resources used for the NVME commands.
489  **/
490 static void
491 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
492 			  struct lpfc_wcqe_complete *wcqe)
493 {
494 	struct lpfc_nvmet_tgtport *tgtp;
495 	struct nvmefc_tgt_fcp_req *rsp;
496 	struct lpfc_nvmet_rcv_ctx *ctxp;
497 	uint32_t status, result, op, start_clean, logerr;
498 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
499 	uint32_t id;
500 #endif
501 
502 	ctxp = cmdwqe->context2;
503 	ctxp->flag &= ~LPFC_NVMET_IO_INP;
504 
505 	rsp = &ctxp->ctx.fcp_req;
506 	op = rsp->op;
507 
508 	status = bf_get(lpfc_wcqe_c_status, wcqe);
509 	result = wcqe->parameter;
510 
511 	if (phba->targetport)
512 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
513 	else
514 		tgtp = NULL;
515 
516 	lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n",
517 			 ctxp->oxid, op, status);
518 
519 	if (status) {
520 		rsp->fcp_error = NVME_SC_DATA_XFER_ERROR;
521 		rsp->transferred_length = 0;
522 		if (tgtp)
523 			atomic_inc(&tgtp->xmt_fcp_rsp_error);
524 
525 		logerr = LOG_NVME_IOERR;
526 
527 		/* pick up SLI4 exhange busy condition */
528 		if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
529 			ctxp->flag |= LPFC_NVMET_XBUSY;
530 			logerr |= LOG_NVME_ABTS;
531 
532 		} else {
533 			ctxp->flag &= ~LPFC_NVMET_XBUSY;
534 		}
535 
536 		lpfc_printf_log(phba, KERN_INFO, logerr,
537 				"6315 IO Error Cmpl xri x%x: %x/%x XBUSY:x%x\n",
538 				ctxp->oxid, status, result, ctxp->flag);
539 
540 	} else {
541 		rsp->fcp_error = NVME_SC_SUCCESS;
542 		if (op == NVMET_FCOP_RSP)
543 			rsp->transferred_length = rsp->rsplen;
544 		else
545 			rsp->transferred_length = rsp->transfer_length;
546 		if (tgtp)
547 			atomic_inc(&tgtp->xmt_fcp_rsp_cmpl);
548 	}
549 
550 	if ((op == NVMET_FCOP_READDATA_RSP) ||
551 	    (op == NVMET_FCOP_RSP)) {
552 		/* Sanity check */
553 		ctxp->state = LPFC_NVMET_STE_DONE;
554 		ctxp->entry_cnt++;
555 
556 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
557 		if (ctxp->ts_cmd_nvme) {
558 			if (rsp->op == NVMET_FCOP_READDATA_RSP) {
559 				ctxp->ts_isr_data =
560 					cmdwqe->isr_timestamp;
561 				ctxp->ts_data_nvme =
562 					ktime_get_ns();
563 				ctxp->ts_nvme_status =
564 					ctxp->ts_data_nvme;
565 				ctxp->ts_status_wqput =
566 					ctxp->ts_data_nvme;
567 				ctxp->ts_isr_status =
568 					ctxp->ts_data_nvme;
569 				ctxp->ts_status_nvme =
570 					ctxp->ts_data_nvme;
571 			} else {
572 				ctxp->ts_isr_status =
573 					cmdwqe->isr_timestamp;
574 				ctxp->ts_status_nvme =
575 					ktime_get_ns();
576 			}
577 		}
578 		if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
579 			id = smp_processor_id();
580 			if (ctxp->cpu != id)
581 				lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
582 						"6703 CPU Check cmpl: "
583 						"cpu %d expect %d\n",
584 						id, ctxp->cpu);
585 			if (ctxp->cpu < LPFC_CHECK_CPU_CNT)
586 				phba->cpucheck_cmpl_io[id]++;
587 		}
588 #endif
589 		rsp->done(rsp);
590 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
591 		if (ctxp->ts_cmd_nvme)
592 			lpfc_nvmet_ktime(phba, ctxp);
593 #endif
594 		/* lpfc_nvmet_xmt_fcp_release() will recycle the context */
595 	} else {
596 		ctxp->entry_cnt++;
597 		start_clean = offsetof(struct lpfc_iocbq, iocb_flag);
598 		memset(((char *)cmdwqe) + start_clean, 0,
599 		       (sizeof(struct lpfc_iocbq) - start_clean));
600 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
601 		if (ctxp->ts_cmd_nvme) {
602 			ctxp->ts_isr_data = cmdwqe->isr_timestamp;
603 			ctxp->ts_data_nvme = ktime_get_ns();
604 		}
605 		if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
606 			id = smp_processor_id();
607 			if (ctxp->cpu != id)
608 				lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
609 						"6704 CPU Check cmdcmpl: "
610 						"cpu %d expect %d\n",
611 						id, ctxp->cpu);
612 			if (ctxp->cpu < LPFC_CHECK_CPU_CNT)
613 				phba->cpucheck_ccmpl_io[id]++;
614 		}
615 #endif
616 		rsp->done(rsp);
617 	}
618 }
619 
620 static int
621 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
622 		      struct nvmefc_tgt_ls_req *rsp)
623 {
624 	struct lpfc_nvmet_rcv_ctx *ctxp =
625 		container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_req);
626 	struct lpfc_hba *phba = ctxp->phba;
627 	struct hbq_dmabuf *nvmebuf =
628 		(struct hbq_dmabuf *)ctxp->rqb_buffer;
629 	struct lpfc_iocbq *nvmewqeq;
630 	struct lpfc_nvmet_tgtport *nvmep = tgtport->private;
631 	struct lpfc_dmabuf dmabuf;
632 	struct ulp_bde64 bpl;
633 	int rc;
634 
635 	if (phba->pport->load_flag & FC_UNLOADING)
636 		return -ENODEV;
637 
638 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
639 			"6023 NVMET LS rsp oxid x%x\n", ctxp->oxid);
640 
641 	if ((ctxp->state != LPFC_NVMET_STE_LS_RCV) ||
642 	    (ctxp->entry_cnt != 1)) {
643 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
644 				"6412 NVMET LS rsp state mismatch "
645 				"oxid x%x: %d %d\n",
646 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
647 	}
648 	ctxp->state = LPFC_NVMET_STE_LS_RSP;
649 	ctxp->entry_cnt++;
650 
651 	nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, ctxp, rsp->rspdma,
652 				      rsp->rsplen);
653 	if (nvmewqeq == NULL) {
654 		atomic_inc(&nvmep->xmt_ls_drop);
655 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
656 				"6150 LS Drop IO x%x: Prep\n",
657 				ctxp->oxid);
658 		lpfc_in_buf_free(phba, &nvmebuf->dbuf);
659 		atomic_inc(&nvmep->xmt_ls_abort);
660 		lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp,
661 						ctxp->sid, ctxp->oxid);
662 		return -ENOMEM;
663 	}
664 
665 	/* Save numBdes for bpl2sgl */
666 	nvmewqeq->rsvd2 = 1;
667 	nvmewqeq->hba_wqidx = 0;
668 	nvmewqeq->context3 = &dmabuf;
669 	dmabuf.virt = &bpl;
670 	bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow;
671 	bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh;
672 	bpl.tus.f.bdeSize = rsp->rsplen;
673 	bpl.tus.f.bdeFlags = 0;
674 	bpl.tus.w = le32_to_cpu(bpl.tus.w);
675 
676 	nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_rsp_cmp;
677 	nvmewqeq->iocb_cmpl = NULL;
678 	nvmewqeq->context2 = ctxp;
679 
680 	lpfc_nvmeio_data(phba, "NVMET LS  RESP: xri x%x wqidx x%x len x%x\n",
681 			 ctxp->oxid, nvmewqeq->hba_wqidx, rsp->rsplen);
682 
683 	rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, nvmewqeq);
684 	if (rc == WQE_SUCCESS) {
685 		/*
686 		 * Okay to repost buffer here, but wait till cmpl
687 		 * before freeing ctxp and iocbq.
688 		 */
689 		lpfc_in_buf_free(phba, &nvmebuf->dbuf);
690 		ctxp->rqb_buffer = 0;
691 		atomic_inc(&nvmep->xmt_ls_rsp);
692 		return 0;
693 	}
694 	/* Give back resources */
695 	atomic_inc(&nvmep->xmt_ls_drop);
696 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
697 			"6151 LS Drop IO x%x: Issue %d\n",
698 			ctxp->oxid, rc);
699 
700 	lpfc_nlp_put(nvmewqeq->context1);
701 
702 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
703 	atomic_inc(&nvmep->xmt_ls_abort);
704 	lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid);
705 	return -ENXIO;
706 }
707 
708 static int
709 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
710 		      struct nvmefc_tgt_fcp_req *rsp)
711 {
712 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
713 	struct lpfc_nvmet_rcv_ctx *ctxp =
714 		container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
715 	struct lpfc_hba *phba = ctxp->phba;
716 	struct lpfc_iocbq *nvmewqeq;
717 	int rc;
718 
719 	if (phba->pport->load_flag & FC_UNLOADING) {
720 		rc = -ENODEV;
721 		goto aerr;
722 	}
723 
724 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
725 	if (ctxp->ts_cmd_nvme) {
726 		if (rsp->op == NVMET_FCOP_RSP)
727 			ctxp->ts_nvme_status = ktime_get_ns();
728 		else
729 			ctxp->ts_nvme_data = ktime_get_ns();
730 	}
731 	if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
732 		int id = smp_processor_id();
733 		ctxp->cpu = id;
734 		if (id < LPFC_CHECK_CPU_CNT)
735 			phba->cpucheck_xmt_io[id]++;
736 		if (rsp->hwqid != id) {
737 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
738 					"6705 CPU Check OP: "
739 					"cpu %d expect %d\n",
740 					id, rsp->hwqid);
741 			ctxp->cpu = rsp->hwqid;
742 		}
743 	}
744 #endif
745 
746 	/* Sanity check */
747 	if ((ctxp->flag & LPFC_NVMET_ABTS_RCV) ||
748 	    (ctxp->state == LPFC_NVMET_STE_ABORT)) {
749 		atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
750 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
751 				"6102 IO xri x%x aborted\n",
752 				ctxp->oxid);
753 		rc = -ENXIO;
754 		goto aerr;
755 	}
756 
757 	nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp);
758 	if (nvmewqeq == NULL) {
759 		atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
760 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
761 				"6152 FCP Drop IO x%x: Prep\n",
762 				ctxp->oxid);
763 		rc = -ENXIO;
764 		goto aerr;
765 	}
766 
767 	nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp;
768 	nvmewqeq->iocb_cmpl = NULL;
769 	nvmewqeq->context2 = ctxp;
770 	nvmewqeq->iocb_flag |=  LPFC_IO_NVMET;
771 	ctxp->wqeq->hba_wqidx = rsp->hwqid;
772 
773 	lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n",
774 			 ctxp->oxid, rsp->op, rsp->rsplen);
775 
776 	ctxp->flag |= LPFC_NVMET_IO_INP;
777 	rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq);
778 	if (rc == WQE_SUCCESS) {
779 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
780 		if (!ctxp->ts_cmd_nvme)
781 			return 0;
782 		if (rsp->op == NVMET_FCOP_RSP)
783 			ctxp->ts_status_wqput = ktime_get_ns();
784 		else
785 			ctxp->ts_data_wqput = ktime_get_ns();
786 #endif
787 		return 0;
788 	}
789 
790 	/* Give back resources */
791 	atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
792 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
793 			"6153 FCP Drop IO x%x: Issue: %d\n",
794 			ctxp->oxid, rc);
795 
796 	ctxp->wqeq->hba_wqidx = 0;
797 	nvmewqeq->context2 = NULL;
798 	nvmewqeq->context3 = NULL;
799 	rc = -EBUSY;
800 aerr:
801 	return rc;
802 }
803 
804 static void
805 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
806 {
807 	struct lpfc_nvmet_tgtport *tport = targetport->private;
808 
809 	/* release any threads waiting for the unreg to complete */
810 	complete(&tport->tport_unreg_done);
811 }
812 
813 static void
814 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
815 			 struct nvmefc_tgt_fcp_req *req)
816 {
817 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
818 	struct lpfc_nvmet_rcv_ctx *ctxp =
819 		container_of(req, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
820 	struct lpfc_hba *phba = ctxp->phba;
821 	unsigned long flags;
822 
823 	if (phba->pport->load_flag & FC_UNLOADING)
824 		return;
825 
826 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
827 			"6103 NVMET Abort op: oxri x%x flg x%x ste %d\n",
828 			ctxp->oxid, ctxp->flag, ctxp->state);
829 
830 	lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n",
831 			 ctxp->oxid, ctxp->flag, ctxp->state);
832 
833 	atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
834 
835 	spin_lock_irqsave(&ctxp->ctxlock, flags);
836 	ctxp->state = LPFC_NVMET_STE_ABORT;
837 
838 	/* Since iaab/iaar are NOT set, we need to check
839 	 * if the firmware is in process of aborting IO
840 	 */
841 	if (ctxp->flag & LPFC_NVMET_XBUSY) {
842 		spin_unlock_irqrestore(&ctxp->ctxlock, flags);
843 		return;
844 	}
845 	ctxp->flag |= LPFC_NVMET_ABORT_OP;
846 
847 	/* An state of LPFC_NVMET_STE_RCV means we have just received
848 	 * the NVME command and have not started processing it.
849 	 * (by issuing any IO WQEs on this exchange yet)
850 	 */
851 	if (ctxp->state == LPFC_NVMET_STE_RCV)
852 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
853 						 ctxp->oxid);
854 	else
855 		lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
856 					       ctxp->oxid);
857 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
858 }
859 
860 static void
861 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
862 			   struct nvmefc_tgt_fcp_req *rsp)
863 {
864 	struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
865 	struct lpfc_nvmet_rcv_ctx *ctxp =
866 		container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
867 	struct lpfc_hba *phba = ctxp->phba;
868 	unsigned long flags;
869 	bool aborting = false;
870 
871 	if (ctxp->state != LPFC_NVMET_STE_DONE &&
872 	    ctxp->state != LPFC_NVMET_STE_ABORT) {
873 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
874 				"6413 NVMET release bad state %d %d oxid x%x\n",
875 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
876 	}
877 
878 	spin_lock_irqsave(&ctxp->ctxlock, flags);
879 	if ((ctxp->flag & LPFC_NVMET_ABORT_OP) ||
880 	    (ctxp->flag & LPFC_NVMET_XBUSY)) {
881 		aborting = true;
882 		/* let the abort path do the real release */
883 		lpfc_nvmet_defer_release(phba, ctxp);
884 	}
885 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
886 
887 	lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid,
888 			 ctxp->state, aborting);
889 
890 	atomic_inc(&lpfc_nvmep->xmt_fcp_release);
891 
892 	if (aborting)
893 		return;
894 
895 	lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
896 }
897 
898 static void
899 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport,
900 		     struct nvmefc_tgt_fcp_req *rsp)
901 {
902 	struct lpfc_nvmet_tgtport *tgtp;
903 	struct lpfc_nvmet_rcv_ctx *ctxp =
904 		container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
905 	struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
906 	struct lpfc_hba *phba = ctxp->phba;
907 
908 	lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n",
909 			 ctxp->oxid, ctxp->size, smp_processor_id());
910 
911 	tgtp = phba->targetport->private;
912 	atomic_inc(&tgtp->rcv_fcp_cmd_defer);
913 	lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
914 }
915 
916 static struct nvmet_fc_target_template lpfc_tgttemplate = {
917 	.targetport_delete = lpfc_nvmet_targetport_delete,
918 	.xmt_ls_rsp     = lpfc_nvmet_xmt_ls_rsp,
919 	.fcp_op         = lpfc_nvmet_xmt_fcp_op,
920 	.fcp_abort      = lpfc_nvmet_xmt_fcp_abort,
921 	.fcp_req_release = lpfc_nvmet_xmt_fcp_release,
922 	.defer_rcv	= lpfc_nvmet_defer_rcv,
923 
924 	.max_hw_queues  = 1,
925 	.max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
926 	.max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
927 	.dma_boundary = 0xFFFFFFFF,
928 
929 	/* optional features */
930 	.target_features = 0,
931 	/* sizes of additional private data for data structures */
932 	.target_priv_sz = sizeof(struct lpfc_nvmet_tgtport),
933 };
934 
935 static void
936 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba,
937 		struct lpfc_nvmet_ctx_info *infop)
938 {
939 	struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf;
940 	unsigned long flags;
941 
942 	spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags);
943 	list_for_each_entry_safe(ctx_buf, next_ctx_buf,
944 				&infop->nvmet_ctx_list, list) {
945 		spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
946 		list_del_init(&ctx_buf->list);
947 		spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
948 
949 		__lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag);
950 		ctx_buf->sglq->state = SGL_FREED;
951 		ctx_buf->sglq->ndlp = NULL;
952 
953 		spin_lock(&phba->sli4_hba.sgl_list_lock);
954 		list_add_tail(&ctx_buf->sglq->list,
955 				&phba->sli4_hba.lpfc_nvmet_sgl_list);
956 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
957 
958 		lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
959 		kfree(ctx_buf->context);
960 	}
961 	spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags);
962 }
963 
964 static void
965 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba)
966 {
967 	struct lpfc_nvmet_ctx_info *infop;
968 	int i, j;
969 
970 	/* The first context list, MRQ 0 CPU 0 */
971 	infop = phba->sli4_hba.nvmet_ctx_info;
972 	if (!infop)
973 		return;
974 
975 	/* Cycle the the entire CPU context list for every MRQ */
976 	for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
977 		for (j = 0; j < phba->sli4_hba.num_present_cpu; j++) {
978 			__lpfc_nvmet_clean_io_for_cpu(phba, infop);
979 			infop++; /* next */
980 		}
981 	}
982 	kfree(phba->sli4_hba.nvmet_ctx_info);
983 	phba->sli4_hba.nvmet_ctx_info = NULL;
984 }
985 
986 static int
987 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba)
988 {
989 	struct lpfc_nvmet_ctxbuf *ctx_buf;
990 	struct lpfc_iocbq *nvmewqe;
991 	union lpfc_wqe128 *wqe;
992 	struct lpfc_nvmet_ctx_info *last_infop;
993 	struct lpfc_nvmet_ctx_info *infop;
994 	int i, j, idx;
995 
996 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
997 			"6403 Allocate NVMET resources for %d XRIs\n",
998 			phba->sli4_hba.nvmet_xri_cnt);
999 
1000 	phba->sli4_hba.nvmet_ctx_info = kcalloc(
1001 		phba->sli4_hba.num_present_cpu * phba->cfg_nvmet_mrq,
1002 		sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL);
1003 	if (!phba->sli4_hba.nvmet_ctx_info) {
1004 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1005 				"6419 Failed allocate memory for "
1006 				"nvmet context lists\n");
1007 		return -ENOMEM;
1008 	}
1009 
1010 	/*
1011 	 * Assuming X CPUs in the system, and Y MRQs, allocate some
1012 	 * lpfc_nvmet_ctx_info structures as follows:
1013 	 *
1014 	 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0
1015 	 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1
1016 	 * ...
1017 	 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY
1018 	 *
1019 	 * Each line represents a MRQ "silo" containing an entry for
1020 	 * every CPU.
1021 	 *
1022 	 * MRQ X is initially assumed to be associated with CPU X, thus
1023 	 * contexts are initially distributed across all MRQs using
1024 	 * the MRQ index (N) as follows cpuN/mrqN. When contexts are
1025 	 * freed, the are freed to the MRQ silo based on the CPU number
1026 	 * of the IO completion. Thus a context that was allocated for MRQ A
1027 	 * whose IO completed on CPU B will be freed to cpuB/mrqA.
1028 	 */
1029 	infop = phba->sli4_hba.nvmet_ctx_info;
1030 	for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1031 		for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1032 			INIT_LIST_HEAD(&infop->nvmet_ctx_list);
1033 			spin_lock_init(&infop->nvmet_ctx_list_lock);
1034 			infop->nvmet_ctx_list_cnt = 0;
1035 			infop++;
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * Setup the next CPU context info ptr for each MRQ.
1041 	 * MRQ 0 will cycle thru CPUs 0 - X separately from
1042 	 * MRQ 1 cycling thru CPUs 0 - X, and so on.
1043 	 */
1044 	for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1045 		last_infop = lpfc_get_ctx_list(phba, 0, j);
1046 		for (i = phba->sli4_hba.num_present_cpu - 1;  i >= 0; i--) {
1047 			infop = lpfc_get_ctx_list(phba, i, j);
1048 			infop->nvmet_ctx_next_cpu = last_infop;
1049 			last_infop = infop;
1050 		}
1051 	}
1052 
1053 	/* For all nvmet xris, allocate resources needed to process a
1054 	 * received command on a per xri basis.
1055 	 */
1056 	idx = 0;
1057 	for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) {
1058 		ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL);
1059 		if (!ctx_buf) {
1060 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1061 					"6404 Ran out of memory for NVMET\n");
1062 			return -ENOMEM;
1063 		}
1064 
1065 		ctx_buf->context = kzalloc(sizeof(*ctx_buf->context),
1066 					   GFP_KERNEL);
1067 		if (!ctx_buf->context) {
1068 			kfree(ctx_buf);
1069 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1070 					"6405 Ran out of NVMET "
1071 					"context memory\n");
1072 			return -ENOMEM;
1073 		}
1074 		ctx_buf->context->ctxbuf = ctx_buf;
1075 		ctx_buf->context->state = LPFC_NVMET_STE_FREE;
1076 
1077 		ctx_buf->iocbq = lpfc_sli_get_iocbq(phba);
1078 		if (!ctx_buf->iocbq) {
1079 			kfree(ctx_buf->context);
1080 			kfree(ctx_buf);
1081 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1082 					"6406 Ran out of NVMET iocb/WQEs\n");
1083 			return -ENOMEM;
1084 		}
1085 		ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET;
1086 		nvmewqe = ctx_buf->iocbq;
1087 		wqe = (union lpfc_wqe128 *)&nvmewqe->wqe;
1088 		/* Initialize WQE */
1089 		memset(wqe, 0, sizeof(union lpfc_wqe));
1090 		/* Word 7 */
1091 		bf_set(wqe_ct, &wqe->generic.wqe_com, SLI4_CT_RPI);
1092 		bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3);
1093 		/* Word 10 */
1094 		bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1);
1095 		bf_set(wqe_ebde_cnt, &wqe->generic.wqe_com, 0);
1096 		bf_set(wqe_qosd, &wqe->generic.wqe_com, 0);
1097 
1098 		ctx_buf->iocbq->context1 = NULL;
1099 		spin_lock(&phba->sli4_hba.sgl_list_lock);
1100 		ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq);
1101 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
1102 		if (!ctx_buf->sglq) {
1103 			lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1104 			kfree(ctx_buf->context);
1105 			kfree(ctx_buf);
1106 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1107 					"6407 Ran out of NVMET XRIs\n");
1108 			return -ENOMEM;
1109 		}
1110 
1111 		/*
1112 		 * Add ctx to MRQidx context list. Our initial assumption
1113 		 * is MRQidx will be associated with CPUidx. This association
1114 		 * can change on the fly.
1115 		 */
1116 		infop = lpfc_get_ctx_list(phba, idx, idx);
1117 		spin_lock(&infop->nvmet_ctx_list_lock);
1118 		list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
1119 		infop->nvmet_ctx_list_cnt++;
1120 		spin_unlock(&infop->nvmet_ctx_list_lock);
1121 
1122 		/* Spread ctx structures evenly across all MRQs */
1123 		idx++;
1124 		if (idx >= phba->cfg_nvmet_mrq)
1125 			idx = 0;
1126 	}
1127 
1128 	infop = phba->sli4_hba.nvmet_ctx_info;
1129 	for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1130 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1131 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1132 					"6408 TOTAL NVMET ctx for CPU %d "
1133 					"MRQ %d: cnt %d nextcpu %p\n",
1134 					i, j, infop->nvmet_ctx_list_cnt,
1135 					infop->nvmet_ctx_next_cpu);
1136 			infop++;
1137 		}
1138 	}
1139 	return 0;
1140 }
1141 
1142 int
1143 lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
1144 {
1145 	struct lpfc_vport  *vport = phba->pport;
1146 	struct lpfc_nvmet_tgtport *tgtp;
1147 	struct nvmet_fc_port_info pinfo;
1148 	int error;
1149 
1150 	if (phba->targetport)
1151 		return 0;
1152 
1153 	error = lpfc_nvmet_setup_io_context(phba);
1154 	if (error)
1155 		return error;
1156 
1157 	memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info));
1158 	pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
1159 	pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
1160 	pinfo.port_id = vport->fc_myDID;
1161 
1162 	/* Limit to LPFC_MAX_NVME_SEG_CNT.
1163 	 * For now need + 1 to get around NVME transport logic.
1164 	 */
1165 	if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
1166 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1167 				"6400 Reducing sg segment cnt to %d\n",
1168 				LPFC_MAX_NVME_SEG_CNT);
1169 		phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
1170 	} else {
1171 		phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
1172 	}
1173 	lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
1174 	lpfc_tgttemplate.max_hw_queues = phba->cfg_nvme_io_channel;
1175 	lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP;
1176 
1177 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1178 	error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
1179 					     &phba->pcidev->dev,
1180 					     &phba->targetport);
1181 #else
1182 	error = -ENOENT;
1183 #endif
1184 	if (error) {
1185 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
1186 				"6025 Cannot register NVME targetport x%x: "
1187 				"portnm %llx nodenm %llx segs %d qs %d\n",
1188 				error,
1189 				pinfo.port_name, pinfo.node_name,
1190 				lpfc_tgttemplate.max_sgl_segments,
1191 				lpfc_tgttemplate.max_hw_queues);
1192 		phba->targetport = NULL;
1193 		phba->nvmet_support = 0;
1194 
1195 		lpfc_nvmet_cleanup_io_context(phba);
1196 
1197 	} else {
1198 		tgtp = (struct lpfc_nvmet_tgtport *)
1199 			phba->targetport->private;
1200 		tgtp->phba = phba;
1201 
1202 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1203 				"6026 Registered NVME "
1204 				"targetport: %p, private %p "
1205 				"portnm %llx nodenm %llx segs %d qs %d\n",
1206 				phba->targetport, tgtp,
1207 				pinfo.port_name, pinfo.node_name,
1208 				lpfc_tgttemplate.max_sgl_segments,
1209 				lpfc_tgttemplate.max_hw_queues);
1210 
1211 		atomic_set(&tgtp->rcv_ls_req_in, 0);
1212 		atomic_set(&tgtp->rcv_ls_req_out, 0);
1213 		atomic_set(&tgtp->rcv_ls_req_drop, 0);
1214 		atomic_set(&tgtp->xmt_ls_abort, 0);
1215 		atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
1216 		atomic_set(&tgtp->xmt_ls_rsp, 0);
1217 		atomic_set(&tgtp->xmt_ls_drop, 0);
1218 		atomic_set(&tgtp->xmt_ls_rsp_error, 0);
1219 		atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
1220 		atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
1221 		atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
1222 		atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
1223 		atomic_set(&tgtp->xmt_fcp_drop, 0);
1224 		atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
1225 		atomic_set(&tgtp->xmt_fcp_read, 0);
1226 		atomic_set(&tgtp->xmt_fcp_write, 0);
1227 		atomic_set(&tgtp->xmt_fcp_rsp, 0);
1228 		atomic_set(&tgtp->xmt_fcp_release, 0);
1229 		atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
1230 		atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
1231 		atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
1232 		atomic_set(&tgtp->xmt_fcp_abort, 0);
1233 		atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
1234 		atomic_set(&tgtp->xmt_abort_unsol, 0);
1235 		atomic_set(&tgtp->xmt_abort_sol, 0);
1236 		atomic_set(&tgtp->xmt_abort_rsp, 0);
1237 		atomic_set(&tgtp->xmt_abort_rsp_error, 0);
1238 	}
1239 	return error;
1240 }
1241 
1242 int
1243 lpfc_nvmet_update_targetport(struct lpfc_hba *phba)
1244 {
1245 	struct lpfc_vport  *vport = phba->pport;
1246 
1247 	if (!phba->targetport)
1248 		return 0;
1249 
1250 	lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
1251 			 "6007 Update NVMET port %p did x%x\n",
1252 			 phba->targetport, vport->fc_myDID);
1253 
1254 	phba->targetport->port_id = vport->fc_myDID;
1255 	return 0;
1256 }
1257 
1258 /**
1259  * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort
1260  * @phba: pointer to lpfc hba data structure.
1261  * @axri: pointer to the nvmet xri abort wcqe structure.
1262  *
1263  * This routine is invoked by the worker thread to process a SLI4 fast-path
1264  * NVMET aborted xri.
1265  **/
1266 void
1267 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba,
1268 			    struct sli4_wcqe_xri_aborted *axri)
1269 {
1270 	uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
1271 	uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
1272 	struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp;
1273 	struct lpfc_nodelist *ndlp;
1274 	unsigned long iflag = 0;
1275 	int rrq_empty = 0;
1276 	bool released = false;
1277 
1278 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1279 			"6317 XB aborted xri x%x rxid x%x\n", xri, rxid);
1280 
1281 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
1282 		return;
1283 	spin_lock_irqsave(&phba->hbalock, iflag);
1284 	spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1285 	list_for_each_entry_safe(ctxp, next_ctxp,
1286 				 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1287 				 list) {
1288 		if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1289 			continue;
1290 
1291 		/* Check if we already received a free context call
1292 		 * and we have completed processing an abort situation.
1293 		 */
1294 		if (ctxp->flag & LPFC_NVMET_CTX_RLS &&
1295 		    !(ctxp->flag & LPFC_NVMET_ABORT_OP)) {
1296 			list_del(&ctxp->list);
1297 			released = true;
1298 		}
1299 		ctxp->flag &= ~LPFC_NVMET_XBUSY;
1300 		spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1301 
1302 		rrq_empty = list_empty(&phba->active_rrq_list);
1303 		spin_unlock_irqrestore(&phba->hbalock, iflag);
1304 		ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1305 		if (ndlp && NLP_CHK_NODE_ACT(ndlp) &&
1306 		    (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE ||
1307 		     ndlp->nlp_state == NLP_STE_MAPPED_NODE)) {
1308 			lpfc_set_rrq_active(phba, ndlp,
1309 				ctxp->ctxbuf->sglq->sli4_lxritag,
1310 				rxid, 1);
1311 			lpfc_sli4_abts_err_handler(phba, ndlp, axri);
1312 		}
1313 
1314 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1315 				"6318 XB aborted oxid %x flg x%x (%x)\n",
1316 				ctxp->oxid, ctxp->flag, released);
1317 		if (released)
1318 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1319 
1320 		if (rrq_empty)
1321 			lpfc_worker_wake_up(phba);
1322 		return;
1323 	}
1324 	spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1325 	spin_unlock_irqrestore(&phba->hbalock, iflag);
1326 }
1327 
1328 int
1329 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport,
1330 			   struct fc_frame_header *fc_hdr)
1331 
1332 {
1333 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1334 	struct lpfc_hba *phba = vport->phba;
1335 	struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp;
1336 	struct nvmefc_tgt_fcp_req *rsp;
1337 	uint16_t xri;
1338 	unsigned long iflag = 0;
1339 
1340 	xri = be16_to_cpu(fc_hdr->fh_ox_id);
1341 
1342 	spin_lock_irqsave(&phba->hbalock, iflag);
1343 	spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1344 	list_for_each_entry_safe(ctxp, next_ctxp,
1345 				 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1346 				 list) {
1347 		if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1348 			continue;
1349 
1350 		spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1351 		spin_unlock_irqrestore(&phba->hbalock, iflag);
1352 
1353 		spin_lock_irqsave(&ctxp->ctxlock, iflag);
1354 		ctxp->flag |= LPFC_NVMET_ABTS_RCV;
1355 		spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1356 
1357 		lpfc_nvmeio_data(phba,
1358 			"NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1359 			xri, smp_processor_id(), 0);
1360 
1361 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1362 				"6319 NVMET Rcv ABTS:acc xri x%x\n", xri);
1363 
1364 		rsp = &ctxp->ctx.fcp_req;
1365 		nvmet_fc_rcv_fcp_abort(phba->targetport, rsp);
1366 
1367 		/* Respond with BA_ACC accordingly */
1368 		lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1369 		return 0;
1370 	}
1371 	spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1372 	spin_unlock_irqrestore(&phba->hbalock, iflag);
1373 
1374 	lpfc_nvmeio_data(phba, "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1375 			 xri, smp_processor_id(), 1);
1376 
1377 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1378 			"6320 NVMET Rcv ABTS:rjt xri x%x\n", xri);
1379 
1380 	/* Respond with BA_RJT accordingly */
1381 	lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0);
1382 #endif
1383 	return 0;
1384 }
1385 
1386 void
1387 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba)
1388 {
1389 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1390 	struct lpfc_nvmet_tgtport *tgtp;
1391 
1392 	if (phba->nvmet_support == 0)
1393 		return;
1394 	if (phba->targetport) {
1395 		tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1396 		init_completion(&tgtp->tport_unreg_done);
1397 		nvmet_fc_unregister_targetport(phba->targetport);
1398 		wait_for_completion_timeout(&tgtp->tport_unreg_done, 5);
1399 		lpfc_nvmet_cleanup_io_context(phba);
1400 	}
1401 	phba->targetport = NULL;
1402 #endif
1403 }
1404 
1405 /**
1406  * lpfc_nvmet_unsol_ls_buffer - Process an unsolicited event data buffer
1407  * @phba: pointer to lpfc hba data structure.
1408  * @pring: pointer to a SLI ring.
1409  * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
1410  *
1411  * This routine is used for processing the WQE associated with a unsolicited
1412  * event. It first determines whether there is an existing ndlp that matches
1413  * the DID from the unsolicited WQE. If not, it will create a new one with
1414  * the DID from the unsolicited WQE. The ELS command from the unsolicited
1415  * WQE is then used to invoke the proper routine and to set up proper state
1416  * of the discovery state machine.
1417  **/
1418 static void
1419 lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1420 			   struct hbq_dmabuf *nvmebuf)
1421 {
1422 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1423 	struct lpfc_nvmet_tgtport *tgtp;
1424 	struct fc_frame_header *fc_hdr;
1425 	struct lpfc_nvmet_rcv_ctx *ctxp;
1426 	uint32_t *payload;
1427 	uint32_t size, oxid, sid, rc;
1428 
1429 	if (!nvmebuf || !phba->targetport) {
1430 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1431 				"6154 LS Drop IO\n");
1432 		oxid = 0;
1433 		size = 0;
1434 		sid = 0;
1435 		ctxp = NULL;
1436 		goto dropit;
1437 	}
1438 
1439 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1440 	payload = (uint32_t *)(nvmebuf->dbuf.virt);
1441 	fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
1442 	size = bf_get(lpfc_rcqe_length,  &nvmebuf->cq_event.cqe.rcqe_cmpl);
1443 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1444 	sid = sli4_sid_from_fc_hdr(fc_hdr);
1445 
1446 	ctxp = kzalloc(sizeof(struct lpfc_nvmet_rcv_ctx), GFP_ATOMIC);
1447 	if (ctxp == NULL) {
1448 		atomic_inc(&tgtp->rcv_ls_req_drop);
1449 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1450 				"6155 LS Drop IO x%x: Alloc\n",
1451 				oxid);
1452 dropit:
1453 		lpfc_nvmeio_data(phba, "NVMET LS  DROP: "
1454 				 "xri x%x sz %d from %06x\n",
1455 				 oxid, size, sid);
1456 		if (nvmebuf)
1457 			lpfc_in_buf_free(phba, &nvmebuf->dbuf);
1458 		return;
1459 	}
1460 	ctxp->phba = phba;
1461 	ctxp->size = size;
1462 	ctxp->oxid = oxid;
1463 	ctxp->sid = sid;
1464 	ctxp->wqeq = NULL;
1465 	ctxp->state = LPFC_NVMET_STE_LS_RCV;
1466 	ctxp->entry_cnt = 1;
1467 	ctxp->rqb_buffer = (void *)nvmebuf;
1468 
1469 	lpfc_nvmeio_data(phba, "NVMET LS   RCV: xri x%x sz %d from %06x\n",
1470 			 oxid, size, sid);
1471 	/*
1472 	 * The calling sequence should be:
1473 	 * nvmet_fc_rcv_ls_req -> lpfc_nvmet_xmt_ls_rsp/cmp ->_req->done
1474 	 * lpfc_nvmet_xmt_ls_rsp_cmp should free the allocated ctxp.
1475 	 */
1476 	atomic_inc(&tgtp->rcv_ls_req_in);
1477 	rc = nvmet_fc_rcv_ls_req(phba->targetport, &ctxp->ctx.ls_req,
1478 				 payload, size);
1479 
1480 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1481 			"6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x "
1482 			"%08x %08x %08x\n", size, rc,
1483 			*payload, *(payload+1), *(payload+2),
1484 			*(payload+3), *(payload+4), *(payload+5));
1485 
1486 	if (rc == 0) {
1487 		atomic_inc(&tgtp->rcv_ls_req_out);
1488 		return;
1489 	}
1490 
1491 	lpfc_nvmeio_data(phba, "NVMET LS  DROP: xri x%x sz %d from %06x\n",
1492 			 oxid, size, sid);
1493 
1494 	atomic_inc(&tgtp->rcv_ls_req_drop);
1495 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1496 			"6156 LS Drop IO x%x: nvmet_fc_rcv_ls_req %d\n",
1497 			ctxp->oxid, rc);
1498 
1499 	/* We assume a rcv'ed cmd ALWAYs fits into 1 buffer */
1500 	if (nvmebuf)
1501 		lpfc_in_buf_free(phba, &nvmebuf->dbuf);
1502 
1503 	atomic_inc(&tgtp->xmt_ls_abort);
1504 	lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, sid, oxid);
1505 #endif
1506 }
1507 
1508 static struct lpfc_nvmet_ctxbuf *
1509 lpfc_nvmet_replenish_context(struct lpfc_hba *phba,
1510 			     struct lpfc_nvmet_ctx_info *current_infop)
1511 {
1512 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1513 	struct lpfc_nvmet_ctxbuf *ctx_buf = NULL;
1514 	struct lpfc_nvmet_ctx_info *get_infop;
1515 	int i;
1516 
1517 	/*
1518 	 * The current_infop for the MRQ a NVME command IU was received
1519 	 * on is empty. Our goal is to replenish this MRQs context
1520 	 * list from a another CPUs.
1521 	 *
1522 	 * First we need to pick a context list to start looking on.
1523 	 * nvmet_ctx_start_cpu has available context the last time
1524 	 * we needed to replenish this CPU where nvmet_ctx_next_cpu
1525 	 * is just the next sequential CPU for this MRQ.
1526 	 */
1527 	if (current_infop->nvmet_ctx_start_cpu)
1528 		get_infop = current_infop->nvmet_ctx_start_cpu;
1529 	else
1530 		get_infop = current_infop->nvmet_ctx_next_cpu;
1531 
1532 	for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1533 		if (get_infop == current_infop) {
1534 			get_infop = get_infop->nvmet_ctx_next_cpu;
1535 			continue;
1536 		}
1537 		spin_lock(&get_infop->nvmet_ctx_list_lock);
1538 
1539 		/* Just take the entire context list, if there are any */
1540 		if (get_infop->nvmet_ctx_list_cnt) {
1541 			list_splice_init(&get_infop->nvmet_ctx_list,
1542 				    &current_infop->nvmet_ctx_list);
1543 			current_infop->nvmet_ctx_list_cnt =
1544 				get_infop->nvmet_ctx_list_cnt - 1;
1545 			get_infop->nvmet_ctx_list_cnt = 0;
1546 			spin_unlock(&get_infop->nvmet_ctx_list_lock);
1547 
1548 			current_infop->nvmet_ctx_start_cpu = get_infop;
1549 			list_remove_head(&current_infop->nvmet_ctx_list,
1550 					 ctx_buf, struct lpfc_nvmet_ctxbuf,
1551 					 list);
1552 			return ctx_buf;
1553 		}
1554 
1555 		/* Otherwise, move on to the next CPU for this MRQ */
1556 		spin_unlock(&get_infop->nvmet_ctx_list_lock);
1557 		get_infop = get_infop->nvmet_ctx_next_cpu;
1558 	}
1559 
1560 #endif
1561 	/* Nothing found, all contexts for the MRQ are in-flight */
1562 	return NULL;
1563 }
1564 
1565 /**
1566  * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer
1567  * @phba: pointer to lpfc hba data structure.
1568  * @idx: relative index of MRQ vector
1569  * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
1570  *
1571  * This routine is used for processing the WQE associated with a unsolicited
1572  * event. It first determines whether there is an existing ndlp that matches
1573  * the DID from the unsolicited WQE. If not, it will create a new one with
1574  * the DID from the unsolicited WQE. The ELS command from the unsolicited
1575  * WQE is then used to invoke the proper routine and to set up proper state
1576  * of the discovery state machine.
1577  **/
1578 static void
1579 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba,
1580 			    uint32_t idx,
1581 			    struct rqb_dmabuf *nvmebuf,
1582 			    uint64_t isr_timestamp)
1583 {
1584 	struct lpfc_nvmet_rcv_ctx *ctxp;
1585 	struct lpfc_nvmet_tgtport *tgtp;
1586 	struct fc_frame_header *fc_hdr;
1587 	struct lpfc_nvmet_ctxbuf *ctx_buf;
1588 	struct lpfc_nvmet_ctx_info *current_infop;
1589 	uint32_t *payload;
1590 	uint32_t size, oxid, sid, rc, qno;
1591 	unsigned long iflag;
1592 	int current_cpu;
1593 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1594 	uint32_t id;
1595 #endif
1596 
1597 	if (!IS_ENABLED(CONFIG_NVME_TARGET_FC))
1598 		return;
1599 
1600 	ctx_buf = NULL;
1601 	if (!nvmebuf || !phba->targetport) {
1602 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1603 				"6157 NVMET FCP Drop IO\n");
1604 		oxid = 0;
1605 		size = 0;
1606 		sid = 0;
1607 		ctxp = NULL;
1608 		goto dropit;
1609 	}
1610 
1611 	/*
1612 	 * Get a pointer to the context list for this MRQ based on
1613 	 * the CPU this MRQ IRQ is associated with. If the CPU association
1614 	 * changes from our initial assumption, the context list could
1615 	 * be empty, thus it would need to be replenished with the
1616 	 * context list from another CPU for this MRQ.
1617 	 */
1618 	current_cpu = smp_processor_id();
1619 	current_infop = lpfc_get_ctx_list(phba, current_cpu, idx);
1620 	spin_lock_irqsave(&current_infop->nvmet_ctx_list_lock, iflag);
1621 	if (current_infop->nvmet_ctx_list_cnt) {
1622 		list_remove_head(&current_infop->nvmet_ctx_list,
1623 				 ctx_buf, struct lpfc_nvmet_ctxbuf, list);
1624 		current_infop->nvmet_ctx_list_cnt--;
1625 	} else {
1626 		ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop);
1627 	}
1628 	spin_unlock_irqrestore(&current_infop->nvmet_ctx_list_lock, iflag);
1629 
1630 	fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
1631 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1632 	size = nvmebuf->bytes_recv;
1633 
1634 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1635 	if (phba->cpucheck_on & LPFC_CHECK_NVMET_RCV) {
1636 		id = smp_processor_id();
1637 		if (id < LPFC_CHECK_CPU_CNT)
1638 			phba->cpucheck_rcv_io[id]++;
1639 	}
1640 #endif
1641 
1642 	lpfc_nvmeio_data(phba, "NVMET FCP  RCV: xri x%x sz %d CPU %02x\n",
1643 			 oxid, size, smp_processor_id());
1644 
1645 	if (!ctx_buf) {
1646 		/* Queue this NVME IO to process later */
1647 		spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
1648 		list_add_tail(&nvmebuf->hbuf.list,
1649 			      &phba->sli4_hba.lpfc_nvmet_io_wait_list);
1650 		phba->sli4_hba.nvmet_io_wait_cnt++;
1651 		phba->sli4_hba.nvmet_io_wait_total++;
1652 		spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
1653 				       iflag);
1654 
1655 		/* Post a brand new DMA buffer to RQ */
1656 		qno = nvmebuf->idx;
1657 		lpfc_post_rq_buffer(
1658 			phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
1659 			phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
1660 		return;
1661 	}
1662 
1663 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1664 	payload = (uint32_t *)(nvmebuf->dbuf.virt);
1665 	sid = sli4_sid_from_fc_hdr(fc_hdr);
1666 
1667 	ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context;
1668 	if (ctxp->state != LPFC_NVMET_STE_FREE) {
1669 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1670 				"6414 NVMET Context corrupt %d %d oxid x%x\n",
1671 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1672 	}
1673 	ctxp->wqeq = NULL;
1674 	ctxp->txrdy = NULL;
1675 	ctxp->offset = 0;
1676 	ctxp->phba = phba;
1677 	ctxp->size = size;
1678 	ctxp->oxid = oxid;
1679 	ctxp->sid = sid;
1680 	ctxp->idx = idx;
1681 	ctxp->state = LPFC_NVMET_STE_RCV;
1682 	ctxp->entry_cnt = 1;
1683 	ctxp->flag = 0;
1684 	ctxp->ctxbuf = ctx_buf;
1685 	spin_lock_init(&ctxp->ctxlock);
1686 
1687 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1688 	if (isr_timestamp) {
1689 		ctxp->ts_isr_cmd = isr_timestamp;
1690 		ctxp->ts_cmd_nvme = ktime_get_ns();
1691 		ctxp->ts_nvme_data = 0;
1692 		ctxp->ts_data_wqput = 0;
1693 		ctxp->ts_isr_data = 0;
1694 		ctxp->ts_data_nvme = 0;
1695 		ctxp->ts_nvme_status = 0;
1696 		ctxp->ts_status_wqput = 0;
1697 		ctxp->ts_isr_status = 0;
1698 		ctxp->ts_status_nvme = 0;
1699 	} else {
1700 		ctxp->ts_cmd_nvme = 0;
1701 	}
1702 #endif
1703 
1704 	atomic_inc(&tgtp->rcv_fcp_cmd_in);
1705 	/*
1706 	 * The calling sequence should be:
1707 	 * nvmet_fc_rcv_fcp_req -> lpfc_nvmet_xmt_fcp_op/cmp -> req->done
1708 	 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
1709 	 * When we return from nvmet_fc_rcv_fcp_req, all relevant info in
1710 	 * the NVME command / FC header is stored, so we are free to repost
1711 	 * the buffer.
1712 	 */
1713 	rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req,
1714 				  payload, size);
1715 
1716 	/* Process FCP command */
1717 	if (rc == 0) {
1718 		atomic_inc(&tgtp->rcv_fcp_cmd_out);
1719 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
1720 		return;
1721 	}
1722 
1723 	/* Processing of FCP command is deferred */
1724 	if (rc == -EOVERFLOW) {
1725 		lpfc_nvmeio_data(phba,
1726 				 "NVMET RCV BUSY: xri x%x sz %d from %06x\n",
1727 				 oxid, size, sid);
1728 		/* defer reposting rcv buffer till .defer_rcv callback */
1729 		ctxp->rqb_buffer = nvmebuf;
1730 		atomic_inc(&tgtp->rcv_fcp_cmd_out);
1731 		return;
1732 	}
1733 
1734 	atomic_inc(&tgtp->rcv_fcp_cmd_drop);
1735 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1736 			"6159 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
1737 			ctxp->oxid, rc,
1738 			atomic_read(&tgtp->rcv_fcp_cmd_in),
1739 			atomic_read(&tgtp->rcv_fcp_cmd_out),
1740 			atomic_read(&tgtp->xmt_fcp_release));
1741 dropit:
1742 	lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n",
1743 			 oxid, size, sid);
1744 	if (oxid) {
1745 		lpfc_nvmet_defer_release(phba, ctxp);
1746 		lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
1747 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
1748 		return;
1749 	}
1750 
1751 	if (ctx_buf)
1752 		lpfc_nvmet_ctxbuf_post(phba, ctx_buf);
1753 
1754 	if (nvmebuf)
1755 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
1756 }
1757 
1758 /**
1759  * lpfc_nvmet_unsol_ls_event - Process an unsolicited event from an nvme nport
1760  * @phba: pointer to lpfc hba data structure.
1761  * @pring: pointer to a SLI ring.
1762  * @nvmebuf: pointer to received nvme data structure.
1763  *
1764  * This routine is used to process an unsolicited event received from a SLI
1765  * (Service Level Interface) ring. The actual processing of the data buffer
1766  * associated with the unsolicited event is done by invoking the routine
1767  * lpfc_nvmet_unsol_ls_buffer() after properly set up the buffer from the
1768  * SLI RQ on which the unsolicited event was received.
1769  **/
1770 void
1771 lpfc_nvmet_unsol_ls_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1772 			  struct lpfc_iocbq *piocb)
1773 {
1774 	struct lpfc_dmabuf *d_buf;
1775 	struct hbq_dmabuf *nvmebuf;
1776 
1777 	d_buf = piocb->context2;
1778 	nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
1779 
1780 	if (phba->nvmet_support == 0) {
1781 		lpfc_in_buf_free(phba, &nvmebuf->dbuf);
1782 		return;
1783 	}
1784 	lpfc_nvmet_unsol_ls_buffer(phba, pring, nvmebuf);
1785 }
1786 
1787 /**
1788  * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport
1789  * @phba: pointer to lpfc hba data structure.
1790  * @idx: relative index of MRQ vector
1791  * @nvmebuf: pointer to received nvme data structure.
1792  *
1793  * This routine is used to process an unsolicited event received from a SLI
1794  * (Service Level Interface) ring. The actual processing of the data buffer
1795  * associated with the unsolicited event is done by invoking the routine
1796  * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the
1797  * SLI RQ on which the unsolicited event was received.
1798  **/
1799 void
1800 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba,
1801 			   uint32_t idx,
1802 			   struct rqb_dmabuf *nvmebuf,
1803 			   uint64_t isr_timestamp)
1804 {
1805 	if (phba->nvmet_support == 0) {
1806 		lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
1807 		return;
1808 	}
1809 	lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf,
1810 				    isr_timestamp);
1811 }
1812 
1813 /**
1814  * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure
1815  * @phba: pointer to a host N_Port data structure.
1816  * @ctxp: Context info for NVME LS Request
1817  * @rspbuf: DMA buffer of NVME command.
1818  * @rspsize: size of the NVME command.
1819  *
1820  * This routine is used for allocating a lpfc-WQE data structure from
1821  * the driver lpfc-WQE free-list and prepare the WQE with the parameters
1822  * passed into the routine for discovery state machine to issue an Extended
1823  * Link Service (NVME) commands. It is a generic lpfc-WQE allocation
1824  * and preparation routine that is used by all the discovery state machine
1825  * routines and the NVME command-specific fields will be later set up by
1826  * the individual discovery machine routines after calling this routine
1827  * allocating and preparing a generic WQE data structure. It fills in the
1828  * Buffer Descriptor Entries (BDEs), allocates buffers for both command
1829  * payload and response payload (if expected). The reference count on the
1830  * ndlp is incremented by 1 and the reference to the ndlp is put into
1831  * context1 of the WQE data structure for this WQE to hold the ndlp
1832  * reference for the command's callback function to access later.
1833  *
1834  * Return code
1835  *   Pointer to the newly allocated/prepared nvme wqe data structure
1836  *   NULL - when nvme wqe data structure allocation/preparation failed
1837  **/
1838 static struct lpfc_iocbq *
1839 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba,
1840 		       struct lpfc_nvmet_rcv_ctx *ctxp,
1841 		       dma_addr_t rspbuf, uint16_t rspsize)
1842 {
1843 	struct lpfc_nodelist *ndlp;
1844 	struct lpfc_iocbq *nvmewqe;
1845 	union lpfc_wqe *wqe;
1846 
1847 	if (!lpfc_is_link_up(phba)) {
1848 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
1849 				"6104 NVMET prep LS wqe: link err: "
1850 				"NPORT x%x oxid:x%x ste %d\n",
1851 				ctxp->sid, ctxp->oxid, ctxp->state);
1852 		return NULL;
1853 	}
1854 
1855 	/* Allocate buffer for  command wqe */
1856 	nvmewqe = lpfc_sli_get_iocbq(phba);
1857 	if (nvmewqe == NULL) {
1858 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
1859 				"6105 NVMET prep LS wqe: No WQE: "
1860 				"NPORT x%x oxid x%x ste %d\n",
1861 				ctxp->sid, ctxp->oxid, ctxp->state);
1862 		return NULL;
1863 	}
1864 
1865 	ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1866 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
1867 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
1868 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
1869 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
1870 				"6106 NVMET prep LS wqe: No ndlp: "
1871 				"NPORT x%x oxid x%x ste %d\n",
1872 				ctxp->sid, ctxp->oxid, ctxp->state);
1873 		goto nvme_wqe_free_wqeq_exit;
1874 	}
1875 	ctxp->wqeq = nvmewqe;
1876 
1877 	/* prevent preparing wqe with NULL ndlp reference */
1878 	nvmewqe->context1 = lpfc_nlp_get(ndlp);
1879 	if (nvmewqe->context1 == NULL)
1880 		goto nvme_wqe_free_wqeq_exit;
1881 	nvmewqe->context2 = ctxp;
1882 
1883 	wqe = &nvmewqe->wqe;
1884 	memset(wqe, 0, sizeof(union lpfc_wqe));
1885 
1886 	/* Words 0 - 2 */
1887 	wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1888 	wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize;
1889 	wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf));
1890 	wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf));
1891 
1892 	/* Word 3 */
1893 
1894 	/* Word 4 */
1895 
1896 	/* Word 5 */
1897 	bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
1898 	bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1);
1899 	bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0);
1900 	bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP);
1901 	bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME);
1902 
1903 	/* Word 6 */
1904 	bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
1905 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
1906 	bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag);
1907 
1908 	/* Word 7 */
1909 	bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
1910 	       CMD_XMIT_SEQUENCE64_WQE);
1911 	bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI);
1912 	bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
1913 	bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
1914 
1915 	/* Word 8 */
1916 	wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag;
1917 
1918 	/* Word 9 */
1919 	bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag);
1920 	/* Needs to be set by caller */
1921 	bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid);
1922 
1923 	/* Word 10 */
1924 	bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
1925 	bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
1926 	bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
1927 	       LPFC_WQE_LENLOC_WORD12);
1928 	bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
1929 
1930 	/* Word 11 */
1931 	bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com,
1932 	       LPFC_WQE_CQ_ID_DEFAULT);
1933 	bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com,
1934 	       OTHER_COMMAND);
1935 
1936 	/* Word 12 */
1937 	wqe->xmit_sequence.xmit_len = rspsize;
1938 
1939 	nvmewqe->retry = 1;
1940 	nvmewqe->vport = phba->pport;
1941 	nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
1942 	nvmewqe->iocb_flag |= LPFC_IO_NVME_LS;
1943 
1944 	/* Xmit NVMET response to remote NPORT <did> */
1945 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1946 			"6039 Xmit NVMET LS response to remote "
1947 			"NPORT x%x iotag:x%x oxid:x%x size:x%x\n",
1948 			ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid,
1949 			rspsize);
1950 	return nvmewqe;
1951 
1952 nvme_wqe_free_wqeq_exit:
1953 	nvmewqe->context2 = NULL;
1954 	nvmewqe->context3 = NULL;
1955 	lpfc_sli_release_iocbq(phba, nvmewqe);
1956 	return NULL;
1957 }
1958 
1959 
1960 static struct lpfc_iocbq *
1961 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba,
1962 			struct lpfc_nvmet_rcv_ctx *ctxp)
1963 {
1964 	struct nvmefc_tgt_fcp_req *rsp = &ctxp->ctx.fcp_req;
1965 	struct lpfc_nvmet_tgtport *tgtp;
1966 	struct sli4_sge *sgl;
1967 	struct lpfc_nodelist *ndlp;
1968 	struct lpfc_iocbq *nvmewqe;
1969 	struct scatterlist *sgel;
1970 	union lpfc_wqe128 *wqe;
1971 	uint32_t *txrdy;
1972 	dma_addr_t physaddr;
1973 	int i, cnt;
1974 	int xc = 1;
1975 
1976 	if (!lpfc_is_link_up(phba)) {
1977 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1978 				"6107 NVMET prep FCP wqe: link err:"
1979 				"NPORT x%x oxid x%x ste %d\n",
1980 				ctxp->sid, ctxp->oxid, ctxp->state);
1981 		return NULL;
1982 	}
1983 
1984 	ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1985 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
1986 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
1987 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
1988 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1989 				"6108 NVMET prep FCP wqe: no ndlp: "
1990 				"NPORT x%x oxid x%x ste %d\n",
1991 				ctxp->sid, ctxp->oxid, ctxp->state);
1992 		return NULL;
1993 	}
1994 
1995 	if (rsp->sg_cnt > phba->cfg_nvme_seg_cnt) {
1996 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1997 				"6109 NVMET prep FCP wqe: seg cnt err: "
1998 				"NPORT x%x oxid x%x ste %d cnt %d\n",
1999 				ctxp->sid, ctxp->oxid, ctxp->state,
2000 				phba->cfg_nvme_seg_cnt);
2001 		return NULL;
2002 	}
2003 
2004 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2005 	nvmewqe = ctxp->wqeq;
2006 	if (nvmewqe == NULL) {
2007 		/* Allocate buffer for  command wqe */
2008 		nvmewqe = ctxp->ctxbuf->iocbq;
2009 		if (nvmewqe == NULL) {
2010 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2011 					"6110 NVMET prep FCP wqe: No "
2012 					"WQE: NPORT x%x oxid x%x ste %d\n",
2013 					ctxp->sid, ctxp->oxid, ctxp->state);
2014 			return NULL;
2015 		}
2016 		ctxp->wqeq = nvmewqe;
2017 		xc = 0; /* create new XRI */
2018 		nvmewqe->sli4_lxritag = NO_XRI;
2019 		nvmewqe->sli4_xritag = NO_XRI;
2020 	}
2021 
2022 	/* Sanity check */
2023 	if (((ctxp->state == LPFC_NVMET_STE_RCV) &&
2024 	    (ctxp->entry_cnt == 1)) ||
2025 	    (ctxp->state == LPFC_NVMET_STE_DATA)) {
2026 		wqe = (union lpfc_wqe128 *)&nvmewqe->wqe;
2027 	} else {
2028 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2029 				"6111 Wrong state NVMET FCP: %d  cnt %d\n",
2030 				ctxp->state, ctxp->entry_cnt);
2031 		return NULL;
2032 	}
2033 
2034 	sgl  = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl;
2035 	switch (rsp->op) {
2036 	case NVMET_FCOP_READDATA:
2037 	case NVMET_FCOP_READDATA_RSP:
2038 		/* Words 0 - 2 : The first sg segment */
2039 		sgel = &rsp->sg[0];
2040 		physaddr = sg_dma_address(sgel);
2041 		wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2042 		wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel);
2043 		wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr));
2044 		wqe->fcp_tsend.bde.addrHigh =
2045 			cpu_to_le32(putPaddrHigh(physaddr));
2046 
2047 		/* Word 3 */
2048 		wqe->fcp_tsend.payload_offset_len = 0;
2049 
2050 		/* Word 4 */
2051 		wqe->fcp_tsend.relative_offset = ctxp->offset;
2052 
2053 		/* Word 5 */
2054 
2055 		/* Word 6 */
2056 		bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com,
2057 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2058 		bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com,
2059 		       nvmewqe->sli4_xritag);
2060 
2061 		/* Word 7 */
2062 		bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, 1);
2063 		bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE);
2064 
2065 		/* Word 8 */
2066 		wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag;
2067 
2068 		/* Word 9 */
2069 		bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag);
2070 		bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid);
2071 
2072 		/* Word 10 */
2073 		bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1);
2074 		bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1);
2075 		bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE);
2076 		bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com,
2077 		       LPFC_WQE_LENLOC_WORD12);
2078 		bf_set(wqe_ebde_cnt, &wqe->fcp_tsend.wqe_com, 0);
2079 		bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, xc);
2080 		bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1);
2081 		if (phba->cfg_nvme_oas)
2082 			bf_set(wqe_oas, &wqe->fcp_tsend.wqe_com, 1);
2083 
2084 		/* Word 11 */
2085 		bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com,
2086 		       LPFC_WQE_CQ_ID_DEFAULT);
2087 		bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com,
2088 		       FCP_COMMAND_TSEND);
2089 
2090 		/* Word 12 */
2091 		wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2092 
2093 		/* Setup 2 SKIP SGEs */
2094 		sgl->addr_hi = 0;
2095 		sgl->addr_lo = 0;
2096 		sgl->word2 = 0;
2097 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2098 		sgl->word2 = cpu_to_le32(sgl->word2);
2099 		sgl->sge_len = 0;
2100 		sgl++;
2101 		sgl->addr_hi = 0;
2102 		sgl->addr_lo = 0;
2103 		sgl->word2 = 0;
2104 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2105 		sgl->word2 = cpu_to_le32(sgl->word2);
2106 		sgl->sge_len = 0;
2107 		sgl++;
2108 		if (rsp->op == NVMET_FCOP_READDATA_RSP) {
2109 			atomic_inc(&tgtp->xmt_fcp_read_rsp);
2110 			bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1);
2111 			if ((ndlp->nlp_flag & NLP_SUPPRESS_RSP) &&
2112 			    (rsp->rsplen == 12)) {
2113 				bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 1);
2114 				bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
2115 				bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
2116 				bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
2117 			} else {
2118 				bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
2119 				bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1);
2120 				bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1);
2121 				bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com,
2122 				       ((rsp->rsplen >> 2) - 1));
2123 				memcpy(&wqe->words[16], rsp->rspaddr,
2124 				       rsp->rsplen);
2125 			}
2126 		} else {
2127 			atomic_inc(&tgtp->xmt_fcp_read);
2128 
2129 			bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
2130 			bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
2131 			bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
2132 			bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0);
2133 			bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
2134 		}
2135 		break;
2136 
2137 	case NVMET_FCOP_WRITEDATA:
2138 		/* Words 0 - 2 : The first sg segment */
2139 		txrdy = dma_pool_alloc(phba->txrdy_payload_pool,
2140 				       GFP_KERNEL, &physaddr);
2141 		if (!txrdy) {
2142 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2143 					"6041 Bad txrdy buffer: oxid x%x\n",
2144 					ctxp->oxid);
2145 			return NULL;
2146 		}
2147 		ctxp->txrdy = txrdy;
2148 		ctxp->txrdy_phys = physaddr;
2149 		wqe->fcp_treceive.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2150 		wqe->fcp_treceive.bde.tus.f.bdeSize = TXRDY_PAYLOAD_LEN;
2151 		wqe->fcp_treceive.bde.addrLow =
2152 			cpu_to_le32(putPaddrLow(physaddr));
2153 		wqe->fcp_treceive.bde.addrHigh =
2154 			cpu_to_le32(putPaddrHigh(physaddr));
2155 
2156 		/* Word 3 */
2157 		wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN;
2158 
2159 		/* Word 4 */
2160 		wqe->fcp_treceive.relative_offset = ctxp->offset;
2161 
2162 		/* Word 5 */
2163 
2164 		/* Word 6 */
2165 		bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com,
2166 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2167 		bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com,
2168 		       nvmewqe->sli4_xritag);
2169 
2170 		/* Word 7 */
2171 		bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, 1);
2172 		bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0);
2173 		bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com,
2174 		       CMD_FCP_TRECEIVE64_WQE);
2175 
2176 		/* Word 8 */
2177 		wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag;
2178 
2179 		/* Word 9 */
2180 		bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag);
2181 		bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid);
2182 
2183 		/* Word 10 */
2184 		bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1);
2185 		bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1);
2186 		bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ);
2187 		bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com,
2188 		       LPFC_WQE_LENLOC_WORD12);
2189 		bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, xc);
2190 		bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0);
2191 		bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0);
2192 		bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0);
2193 		bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1);
2194 		if (phba->cfg_nvme_oas)
2195 			bf_set(wqe_oas, &wqe->fcp_treceive.wqe_com, 1);
2196 
2197 		/* Word 11 */
2198 		bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com,
2199 		       LPFC_WQE_CQ_ID_DEFAULT);
2200 		bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com,
2201 		       FCP_COMMAND_TRECEIVE);
2202 		bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
2203 
2204 		/* Word 12 */
2205 		wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2206 
2207 		/* Setup 1 TXRDY and 1 SKIP SGE */
2208 		txrdy[0] = 0;
2209 		txrdy[1] = cpu_to_be32(rsp->transfer_length);
2210 		txrdy[2] = 0;
2211 
2212 		sgl->addr_hi = putPaddrHigh(physaddr);
2213 		sgl->addr_lo = putPaddrLow(physaddr);
2214 		sgl->word2 = 0;
2215 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
2216 		sgl->word2 = cpu_to_le32(sgl->word2);
2217 		sgl->sge_len = cpu_to_le32(TXRDY_PAYLOAD_LEN);
2218 		sgl++;
2219 		sgl->addr_hi = 0;
2220 		sgl->addr_lo = 0;
2221 		sgl->word2 = 0;
2222 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2223 		sgl->word2 = cpu_to_le32(sgl->word2);
2224 		sgl->sge_len = 0;
2225 		sgl++;
2226 		atomic_inc(&tgtp->xmt_fcp_write);
2227 		break;
2228 
2229 	case NVMET_FCOP_RSP:
2230 		/* Words 0 - 2 */
2231 		physaddr = rsp->rspdma;
2232 		wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2233 		wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen;
2234 		wqe->fcp_trsp.bde.addrLow =
2235 			cpu_to_le32(putPaddrLow(physaddr));
2236 		wqe->fcp_trsp.bde.addrHigh =
2237 			cpu_to_le32(putPaddrHigh(physaddr));
2238 
2239 		/* Word 3 */
2240 		wqe->fcp_trsp.response_len = rsp->rsplen;
2241 
2242 		/* Word 4 */
2243 		wqe->fcp_trsp.rsvd_4_5[0] = 0;
2244 
2245 
2246 		/* Word 5 */
2247 
2248 		/* Word 6 */
2249 		bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com,
2250 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2251 		bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com,
2252 		       nvmewqe->sli4_xritag);
2253 
2254 		/* Word 7 */
2255 		bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, 0);
2256 		bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1);
2257 		bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE);
2258 
2259 		/* Word 8 */
2260 		wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag;
2261 
2262 		/* Word 9 */
2263 		bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag);
2264 		bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid);
2265 
2266 		/* Word 10 */
2267 		bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1);
2268 		bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 0);
2269 		bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_WRITE);
2270 		bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com,
2271 		       LPFC_WQE_LENLOC_WORD3);
2272 		bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, xc);
2273 		bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1);
2274 		if (phba->cfg_nvme_oas)
2275 			bf_set(wqe_oas, &wqe->fcp_trsp.wqe_com, 1);
2276 
2277 		/* Word 11 */
2278 		bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com,
2279 		       LPFC_WQE_CQ_ID_DEFAULT);
2280 		bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com,
2281 		       FCP_COMMAND_TRSP);
2282 		bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
2283 
2284 		if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) {
2285 			/* Good response - all zero's on wire */
2286 			bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0);
2287 			bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0);
2288 			bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0);
2289 		} else {
2290 			bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1);
2291 			bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1);
2292 			bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com,
2293 			       ((rsp->rsplen >> 2) - 1));
2294 			memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen);
2295 		}
2296 
2297 		/* Use rspbuf, NOT sg list */
2298 		rsp->sg_cnt = 0;
2299 		sgl->word2 = 0;
2300 		atomic_inc(&tgtp->xmt_fcp_rsp);
2301 		break;
2302 
2303 	default:
2304 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2305 				"6064 Unknown Rsp Op %d\n",
2306 				rsp->op);
2307 		return NULL;
2308 	}
2309 
2310 	nvmewqe->retry = 1;
2311 	nvmewqe->vport = phba->pport;
2312 	nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2313 	nvmewqe->context1 = ndlp;
2314 
2315 	for (i = 0; i < rsp->sg_cnt; i++) {
2316 		sgel = &rsp->sg[i];
2317 		physaddr = sg_dma_address(sgel);
2318 		cnt = sg_dma_len(sgel);
2319 		sgl->addr_hi = putPaddrHigh(physaddr);
2320 		sgl->addr_lo = putPaddrLow(physaddr);
2321 		sgl->word2 = 0;
2322 		bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
2323 		bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset);
2324 		if ((i+1) == rsp->sg_cnt)
2325 			bf_set(lpfc_sli4_sge_last, sgl, 1);
2326 		sgl->word2 = cpu_to_le32(sgl->word2);
2327 		sgl->sge_len = cpu_to_le32(cnt);
2328 		sgl++;
2329 		ctxp->offset += cnt;
2330 	}
2331 	ctxp->state = LPFC_NVMET_STE_DATA;
2332 	ctxp->entry_cnt++;
2333 	return nvmewqe;
2334 }
2335 
2336 /**
2337  * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS
2338  * @phba: Pointer to HBA context object.
2339  * @cmdwqe: Pointer to driver command WQE object.
2340  * @wcqe: Pointer to driver response CQE object.
2341  *
2342  * The function is called from SLI ring event handler with no
2343  * lock held. This function is the completion handler for NVME ABTS for FCP cmds
2344  * The function frees memory resources used for the NVME commands.
2345  **/
2346 static void
2347 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2348 			     struct lpfc_wcqe_complete *wcqe)
2349 {
2350 	struct lpfc_nvmet_rcv_ctx *ctxp;
2351 	struct lpfc_nvmet_tgtport *tgtp;
2352 	uint32_t status, result;
2353 	unsigned long flags;
2354 	bool released = false;
2355 
2356 	ctxp = cmdwqe->context2;
2357 	status = bf_get(lpfc_wcqe_c_status, wcqe);
2358 	result = wcqe->parameter;
2359 
2360 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2361 	if (ctxp->flag & LPFC_NVMET_ABORT_OP)
2362 		atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
2363 
2364 	ctxp->state = LPFC_NVMET_STE_DONE;
2365 
2366 	/* Check if we already received a free context call
2367 	 * and we have completed processing an abort situation.
2368 	 */
2369 	spin_lock_irqsave(&ctxp->ctxlock, flags);
2370 	if ((ctxp->flag & LPFC_NVMET_CTX_RLS) &&
2371 	    !(ctxp->flag & LPFC_NVMET_XBUSY)) {
2372 		list_del(&ctxp->list);
2373 		released = true;
2374 	}
2375 	ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2376 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
2377 	atomic_inc(&tgtp->xmt_abort_rsp);
2378 
2379 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2380 			"6165 ABORT cmpl: xri x%x flg x%x (%d) "
2381 			"WCQE: %08x %08x %08x %08x\n",
2382 			ctxp->oxid, ctxp->flag, released,
2383 			wcqe->word0, wcqe->total_data_placed,
2384 			result, wcqe->word3);
2385 
2386 	cmdwqe->context2 = NULL;
2387 	cmdwqe->context3 = NULL;
2388 	/*
2389 	 * if transport has released ctx, then can reuse it. Otherwise,
2390 	 * will be recycled by transport release call.
2391 	 */
2392 	if (released)
2393 		lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
2394 
2395 	/* This is the iocbq for the abort, not the command */
2396 	lpfc_sli_release_iocbq(phba, cmdwqe);
2397 
2398 	/* Since iaab/iaar are NOT set, there is no work left.
2399 	 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted
2400 	 * should have been called already.
2401 	 */
2402 }
2403 
2404 /**
2405  * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS
2406  * @phba: Pointer to HBA context object.
2407  * @cmdwqe: Pointer to driver command WQE object.
2408  * @wcqe: Pointer to driver response CQE object.
2409  *
2410  * The function is called from SLI ring event handler with no
2411  * lock held. This function is the completion handler for NVME ABTS for FCP cmds
2412  * The function frees memory resources used for the NVME commands.
2413  **/
2414 static void
2415 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2416 			       struct lpfc_wcqe_complete *wcqe)
2417 {
2418 	struct lpfc_nvmet_rcv_ctx *ctxp;
2419 	struct lpfc_nvmet_tgtport *tgtp;
2420 	unsigned long flags;
2421 	uint32_t status, result;
2422 	bool released = false;
2423 
2424 	ctxp = cmdwqe->context2;
2425 	status = bf_get(lpfc_wcqe_c_status, wcqe);
2426 	result = wcqe->parameter;
2427 
2428 	if (!ctxp) {
2429 		/* if context is clear, related io alrady complete */
2430 		lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2431 				"6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n",
2432 				wcqe->word0, wcqe->total_data_placed,
2433 				result, wcqe->word3);
2434 		return;
2435 	}
2436 
2437 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2438 	if (ctxp->flag & LPFC_NVMET_ABORT_OP)
2439 		atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
2440 
2441 	/* Sanity check */
2442 	if (ctxp->state != LPFC_NVMET_STE_ABORT) {
2443 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2444 				"6112 ABTS Wrong state:%d oxid x%x\n",
2445 				ctxp->state, ctxp->oxid);
2446 	}
2447 
2448 	/* Check if we already received a free context call
2449 	 * and we have completed processing an abort situation.
2450 	 */
2451 	ctxp->state = LPFC_NVMET_STE_DONE;
2452 	spin_lock_irqsave(&ctxp->ctxlock, flags);
2453 	if ((ctxp->flag & LPFC_NVMET_CTX_RLS) &&
2454 	    !(ctxp->flag & LPFC_NVMET_XBUSY)) {
2455 		list_del(&ctxp->list);
2456 		released = true;
2457 	}
2458 	ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2459 	spin_unlock_irqrestore(&ctxp->ctxlock, flags);
2460 	atomic_inc(&tgtp->xmt_abort_rsp);
2461 
2462 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2463 			"6316 ABTS cmpl xri x%x flg x%x (%x) "
2464 			"WCQE: %08x %08x %08x %08x\n",
2465 			ctxp->oxid, ctxp->flag, released,
2466 			wcqe->word0, wcqe->total_data_placed,
2467 			result, wcqe->word3);
2468 
2469 	cmdwqe->context2 = NULL;
2470 	cmdwqe->context3 = NULL;
2471 	/*
2472 	 * if transport has released ctx, then can reuse it. Otherwise,
2473 	 * will be recycled by transport release call.
2474 	 */
2475 	if (released)
2476 		lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
2477 
2478 	/* Since iaab/iaar are NOT set, there is no work left.
2479 	 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted
2480 	 * should have been called already.
2481 	 */
2482 }
2483 
2484 /**
2485  * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS
2486  * @phba: Pointer to HBA context object.
2487  * @cmdwqe: Pointer to driver command WQE object.
2488  * @wcqe: Pointer to driver response CQE object.
2489  *
2490  * The function is called from SLI ring event handler with no
2491  * lock held. This function is the completion handler for NVME ABTS for LS cmds
2492  * The function frees memory resources used for the NVME commands.
2493  **/
2494 static void
2495 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2496 			    struct lpfc_wcqe_complete *wcqe)
2497 {
2498 	struct lpfc_nvmet_rcv_ctx *ctxp;
2499 	struct lpfc_nvmet_tgtport *tgtp;
2500 	uint32_t status, result;
2501 
2502 	ctxp = cmdwqe->context2;
2503 	status = bf_get(lpfc_wcqe_c_status, wcqe);
2504 	result = wcqe->parameter;
2505 
2506 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2507 	atomic_inc(&tgtp->xmt_ls_abort_cmpl);
2508 
2509 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2510 			"6083 Abort cmpl: ctx %p WCQE:%08x %08x %08x %08x\n",
2511 			ctxp, wcqe->word0, wcqe->total_data_placed,
2512 			result, wcqe->word3);
2513 
2514 	if (!ctxp) {
2515 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2516 				"6415 NVMET LS Abort No ctx: WCQE: "
2517 				 "%08x %08x %08x %08x\n",
2518 				wcqe->word0, wcqe->total_data_placed,
2519 				result, wcqe->word3);
2520 
2521 		lpfc_sli_release_iocbq(phba, cmdwqe);
2522 		return;
2523 	}
2524 
2525 	if (ctxp->state != LPFC_NVMET_STE_LS_ABORT) {
2526 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2527 				"6416 NVMET LS abort cmpl state mismatch: "
2528 				"oxid x%x: %d %d\n",
2529 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
2530 	}
2531 
2532 	cmdwqe->context2 = NULL;
2533 	cmdwqe->context3 = NULL;
2534 	lpfc_sli_release_iocbq(phba, cmdwqe);
2535 	kfree(ctxp);
2536 }
2537 
2538 static int
2539 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba,
2540 			     struct lpfc_nvmet_rcv_ctx *ctxp,
2541 			     uint32_t sid, uint16_t xri)
2542 {
2543 	struct lpfc_nvmet_tgtport *tgtp;
2544 	struct lpfc_iocbq *abts_wqeq;
2545 	union lpfc_wqe *wqe_abts;
2546 	struct lpfc_nodelist *ndlp;
2547 
2548 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2549 			"6067 ABTS: sid %x xri x%x/x%x\n",
2550 			sid, xri, ctxp->wqeq->sli4_xritag);
2551 
2552 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2553 
2554 	ndlp = lpfc_findnode_did(phba->pport, sid);
2555 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2556 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2557 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2558 		atomic_inc(&tgtp->xmt_abort_rsp_error);
2559 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2560 				"6134 Drop ABTS - wrong NDLP state x%x.\n",
2561 				(ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
2562 
2563 		/* No failure to an ABTS request. */
2564 		return 0;
2565 	}
2566 
2567 	abts_wqeq = ctxp->wqeq;
2568 	wqe_abts = &abts_wqeq->wqe;
2569 
2570 	/*
2571 	 * Since we zero the whole WQE, we need to ensure we set the WQE fields
2572 	 * that were initialized in lpfc_sli4_nvmet_alloc.
2573 	 */
2574 	memset(wqe_abts, 0, sizeof(union lpfc_wqe));
2575 
2576 	/* Word 5 */
2577 	bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0);
2578 	bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1);
2579 	bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0);
2580 	bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS);
2581 	bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS);
2582 
2583 	/* Word 6 */
2584 	bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com,
2585 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2586 	bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com,
2587 	       abts_wqeq->sli4_xritag);
2588 
2589 	/* Word 7 */
2590 	bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com,
2591 	       CMD_XMIT_SEQUENCE64_WQE);
2592 	bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI);
2593 	bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3);
2594 	bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0);
2595 
2596 	/* Word 8 */
2597 	wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag;
2598 
2599 	/* Word 9 */
2600 	bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag);
2601 	/* Needs to be set by caller */
2602 	bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri);
2603 
2604 	/* Word 10 */
2605 	bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1);
2606 	bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2607 	bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com,
2608 	       LPFC_WQE_LENLOC_WORD12);
2609 	bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0);
2610 	bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0);
2611 
2612 	/* Word 11 */
2613 	bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com,
2614 	       LPFC_WQE_CQ_ID_DEFAULT);
2615 	bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com,
2616 	       OTHER_COMMAND);
2617 
2618 	abts_wqeq->vport = phba->pport;
2619 	abts_wqeq->context1 = ndlp;
2620 	abts_wqeq->context2 = ctxp;
2621 	abts_wqeq->context3 = NULL;
2622 	abts_wqeq->rsvd2 = 0;
2623 	/* hba_wqidx should already be setup from command we are aborting */
2624 	abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR;
2625 	abts_wqeq->iocb.ulpLe = 1;
2626 
2627 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2628 			"6069 Issue ABTS to xri x%x reqtag x%x\n",
2629 			xri, abts_wqeq->iotag);
2630 	return 1;
2631 }
2632 
2633 static int
2634 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba,
2635 			       struct lpfc_nvmet_rcv_ctx *ctxp,
2636 			       uint32_t sid, uint16_t xri)
2637 {
2638 	struct lpfc_nvmet_tgtport *tgtp;
2639 	struct lpfc_iocbq *abts_wqeq;
2640 	union lpfc_wqe *abts_wqe;
2641 	struct lpfc_nodelist *ndlp;
2642 	unsigned long flags;
2643 	int rc;
2644 
2645 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2646 	if (!ctxp->wqeq) {
2647 		ctxp->wqeq = ctxp->ctxbuf->iocbq;
2648 		ctxp->wqeq->hba_wqidx = 0;
2649 	}
2650 
2651 	ndlp = lpfc_findnode_did(phba->pport, sid);
2652 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2653 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2654 	    (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2655 		atomic_inc(&tgtp->xmt_abort_rsp_error);
2656 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2657 				"6160 Drop ABORT - wrong NDLP state x%x.\n",
2658 				(ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
2659 
2660 		/* No failure to an ABTS request. */
2661 		ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2662 		return 0;
2663 	}
2664 
2665 	/* Issue ABTS for this WQE based on iotag */
2666 	ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba);
2667 	if (!ctxp->abort_wqeq) {
2668 		atomic_inc(&tgtp->xmt_abort_rsp_error);
2669 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2670 				"6161 ABORT failed: No wqeqs: "
2671 				"xri: x%x\n", ctxp->oxid);
2672 		/* No failure to an ABTS request. */
2673 		ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2674 		return 0;
2675 	}
2676 	abts_wqeq = ctxp->abort_wqeq;
2677 	abts_wqe = &abts_wqeq->wqe;
2678 	ctxp->state = LPFC_NVMET_STE_ABORT;
2679 
2680 	/* Announce entry to new IO submit field. */
2681 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2682 			"6162 ABORT Request to rport DID x%06x "
2683 			"for xri x%x x%x\n",
2684 			ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag);
2685 
2686 	/* If the hba is getting reset, this flag is set.  It is
2687 	 * cleared when the reset is complete and rings reestablished.
2688 	 */
2689 	spin_lock_irqsave(&phba->hbalock, flags);
2690 	/* driver queued commands are in process of being flushed */
2691 	if (phba->hba_flag & HBA_NVME_IOQ_FLUSH) {
2692 		spin_unlock_irqrestore(&phba->hbalock, flags);
2693 		atomic_inc(&tgtp->xmt_abort_rsp_error);
2694 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
2695 				"6163 Driver in reset cleanup - flushing "
2696 				"NVME Req now. hba_flag x%x oxid x%x\n",
2697 				phba->hba_flag, ctxp->oxid);
2698 		lpfc_sli_release_iocbq(phba, abts_wqeq);
2699 		ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2700 		return 0;
2701 	}
2702 
2703 	/* Outstanding abort is in progress */
2704 	if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) {
2705 		spin_unlock_irqrestore(&phba->hbalock, flags);
2706 		atomic_inc(&tgtp->xmt_abort_rsp_error);
2707 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
2708 				"6164 Outstanding NVME I/O Abort Request "
2709 				"still pending on oxid x%x\n",
2710 				ctxp->oxid);
2711 		lpfc_sli_release_iocbq(phba, abts_wqeq);
2712 		ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2713 		return 0;
2714 	}
2715 
2716 	/* Ready - mark outstanding as aborted by driver. */
2717 	abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED;
2718 
2719 	/* WQEs are reused.  Clear stale data and set key fields to
2720 	 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag.
2721 	 */
2722 	memset(abts_wqe, 0, sizeof(union lpfc_wqe));
2723 
2724 	/* word 3 */
2725 	bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
2726 
2727 	/* word 7 */
2728 	bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0);
2729 	bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
2730 
2731 	/* word 8 - tell the FW to abort the IO associated with this
2732 	 * outstanding exchange ID.
2733 	 */
2734 	abts_wqe->abort_cmd.wqe_com.abort_tag = ctxp->wqeq->sli4_xritag;
2735 
2736 	/* word 9 - this is the iotag for the abts_wqe completion. */
2737 	bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
2738 	       abts_wqeq->iotag);
2739 
2740 	/* word 10 */
2741 	bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
2742 	bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
2743 
2744 	/* word 11 */
2745 	bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
2746 	bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
2747 	bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
2748 
2749 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
2750 	abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx;
2751 	abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp;
2752 	abts_wqeq->iocb_cmpl = 0;
2753 	abts_wqeq->iocb_flag |= LPFC_IO_NVME;
2754 	abts_wqeq->context2 = ctxp;
2755 	abts_wqeq->vport = phba->pport;
2756 	rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq);
2757 	spin_unlock_irqrestore(&phba->hbalock, flags);
2758 	if (rc == WQE_SUCCESS) {
2759 		atomic_inc(&tgtp->xmt_abort_sol);
2760 		return 0;
2761 	}
2762 
2763 	atomic_inc(&tgtp->xmt_abort_rsp_error);
2764 	ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2765 	lpfc_sli_release_iocbq(phba, abts_wqeq);
2766 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2767 			"6166 Failed ABORT issue_wqe with status x%x "
2768 			"for oxid x%x.\n",
2769 			rc, ctxp->oxid);
2770 	return 1;
2771 }
2772 
2773 
2774 static int
2775 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba,
2776 				 struct lpfc_nvmet_rcv_ctx *ctxp,
2777 				 uint32_t sid, uint16_t xri)
2778 {
2779 	struct lpfc_nvmet_tgtport *tgtp;
2780 	struct lpfc_iocbq *abts_wqeq;
2781 	unsigned long flags;
2782 	int rc;
2783 
2784 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2785 	if (!ctxp->wqeq) {
2786 		ctxp->wqeq = ctxp->ctxbuf->iocbq;
2787 		ctxp->wqeq->hba_wqidx = 0;
2788 	}
2789 
2790 	if (ctxp->state == LPFC_NVMET_STE_FREE) {
2791 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2792 				"6417 NVMET ABORT ctx freed %d %d oxid x%x\n",
2793 				ctxp->state, ctxp->entry_cnt, ctxp->oxid);
2794 		rc = WQE_BUSY;
2795 		goto aerr;
2796 	}
2797 	ctxp->state = LPFC_NVMET_STE_ABORT;
2798 	ctxp->entry_cnt++;
2799 	rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri);
2800 	if (rc == 0)
2801 		goto aerr;
2802 
2803 	spin_lock_irqsave(&phba->hbalock, flags);
2804 	abts_wqeq = ctxp->wqeq;
2805 	abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp;
2806 	abts_wqeq->iocb_cmpl = NULL;
2807 	abts_wqeq->iocb_flag |= LPFC_IO_NVMET;
2808 	rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq);
2809 	spin_unlock_irqrestore(&phba->hbalock, flags);
2810 	if (rc == WQE_SUCCESS) {
2811 		return 0;
2812 	}
2813 
2814 aerr:
2815 	ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2816 	atomic_inc(&tgtp->xmt_abort_rsp_error);
2817 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2818 			"6135 Failed to Issue ABTS for oxid x%x. Status x%x\n",
2819 			ctxp->oxid, rc);
2820 	return 1;
2821 }
2822 
2823 static int
2824 lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *phba,
2825 				struct lpfc_nvmet_rcv_ctx *ctxp,
2826 				uint32_t sid, uint16_t xri)
2827 {
2828 	struct lpfc_nvmet_tgtport *tgtp;
2829 	struct lpfc_iocbq *abts_wqeq;
2830 	union lpfc_wqe *wqe_abts;
2831 	unsigned long flags;
2832 	int rc;
2833 
2834 	if ((ctxp->state == LPFC_NVMET_STE_LS_RCV && ctxp->entry_cnt == 1) ||
2835 	    (ctxp->state == LPFC_NVMET_STE_LS_RSP && ctxp->entry_cnt == 2)) {
2836 		ctxp->state = LPFC_NVMET_STE_LS_ABORT;
2837 		ctxp->entry_cnt++;
2838 	} else {
2839 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2840 				"6418 NVMET LS abort state mismatch "
2841 				"IO x%x: %d %d\n",
2842 				ctxp->oxid, ctxp->state, ctxp->entry_cnt);
2843 		ctxp->state = LPFC_NVMET_STE_LS_ABORT;
2844 	}
2845 
2846 	tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2847 	if (!ctxp->wqeq) {
2848 		/* Issue ABTS for this WQE based on iotag */
2849 		ctxp->wqeq = lpfc_sli_get_iocbq(phba);
2850 		if (!ctxp->wqeq) {
2851 			lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2852 					"6068 Abort failed: No wqeqs: "
2853 					"xri: x%x\n", xri);
2854 			/* No failure to an ABTS request. */
2855 			kfree(ctxp);
2856 			return 0;
2857 		}
2858 	}
2859 	abts_wqeq = ctxp->wqeq;
2860 	wqe_abts = &abts_wqeq->wqe;
2861 
2862 	if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) {
2863 		rc = WQE_BUSY;
2864 		goto out;
2865 	}
2866 
2867 	spin_lock_irqsave(&phba->hbalock, flags);
2868 	abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp;
2869 	abts_wqeq->iocb_cmpl = 0;
2870 	abts_wqeq->iocb_flag |=  LPFC_IO_NVME_LS;
2871 	rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, abts_wqeq);
2872 	spin_unlock_irqrestore(&phba->hbalock, flags);
2873 	if (rc == WQE_SUCCESS) {
2874 		atomic_inc(&tgtp->xmt_abort_unsol);
2875 		return 0;
2876 	}
2877 out:
2878 	atomic_inc(&tgtp->xmt_abort_rsp_error);
2879 	abts_wqeq->context2 = NULL;
2880 	abts_wqeq->context3 = NULL;
2881 	lpfc_sli_release_iocbq(phba, abts_wqeq);
2882 	kfree(ctxp);
2883 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2884 			"6056 Failed to Issue ABTS. Status x%x\n", rc);
2885 	return 0;
2886 }
2887