1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channsel Host Bus Adapters. * 4 * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <asm/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include "lpfc_version.h" 40 #include "lpfc_hw4.h" 41 #include "lpfc_hw.h" 42 #include "lpfc_sli.h" 43 #include "lpfc_sli4.h" 44 #include "lpfc_nl.h" 45 #include "lpfc_disc.h" 46 #include "lpfc.h" 47 #include "lpfc_scsi.h" 48 #include "lpfc_nvme.h" 49 #include "lpfc_logmsg.h" 50 #include "lpfc_crtn.h" 51 #include "lpfc_vport.h" 52 #include "lpfc_debugfs.h" 53 54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 55 struct lpfc_async_xchg_ctx *, 56 dma_addr_t rspbuf, 57 uint16_t rspsize); 58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 59 struct lpfc_async_xchg_ctx *); 60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 61 struct lpfc_async_xchg_ctx *, 62 uint32_t, uint16_t); 63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 64 struct lpfc_async_xchg_ctx *, 65 uint32_t, uint16_t); 66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, 67 struct lpfc_async_xchg_ctx *); 68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *); 69 70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf); 71 72 static union lpfc_wqe128 lpfc_tsend_cmd_template; 73 static union lpfc_wqe128 lpfc_treceive_cmd_template; 74 static union lpfc_wqe128 lpfc_trsp_cmd_template; 75 76 /* Setup WQE templates for NVME IOs */ 77 void 78 lpfc_nvmet_cmd_template(void) 79 { 80 union lpfc_wqe128 *wqe; 81 82 /* TSEND template */ 83 wqe = &lpfc_tsend_cmd_template; 84 memset(wqe, 0, sizeof(union lpfc_wqe128)); 85 86 /* Word 0, 1, 2 - BDE is variable */ 87 88 /* Word 3 - payload_offset_len is zero */ 89 90 /* Word 4 - relative_offset is variable */ 91 92 /* Word 5 - is zero */ 93 94 /* Word 6 - ctxt_tag, xri_tag is variable */ 95 96 /* Word 7 - wqe_ar is variable */ 97 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 98 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); 99 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); 100 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); 101 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 102 103 /* Word 8 - abort_tag is variable */ 104 105 /* Word 9 - reqtag, rcvoxid is variable */ 106 107 /* Word 10 - wqes, xc is variable */ 108 bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1); 109 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 110 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 111 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 112 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 113 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); 114 115 /* Word 11 - sup, irsp, irsplen is variable */ 116 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); 117 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 118 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 119 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 120 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 121 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); 122 123 /* Word 12 - fcp_data_len is variable */ 124 125 /* Word 13, 14, 15 - PBDE is zero */ 126 127 /* TRECEIVE template */ 128 wqe = &lpfc_treceive_cmd_template; 129 memset(wqe, 0, sizeof(union lpfc_wqe128)); 130 131 /* Word 0, 1, 2 - BDE is variable */ 132 133 /* Word 3 */ 134 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 135 136 /* Word 4 - relative_offset is variable */ 137 138 /* Word 5 - is zero */ 139 140 /* Word 6 - ctxt_tag, xri_tag is variable */ 141 142 /* Word 7 */ 143 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); 144 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); 145 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); 146 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); 147 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 148 149 /* Word 8 - abort_tag is variable */ 150 151 /* Word 9 - reqtag, rcvoxid is variable */ 152 153 /* Word 10 - xc is variable */ 154 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 155 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 156 bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1); 157 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 158 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); 159 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 160 161 /* Word 11 - pbde is variable */ 162 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); 163 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 164 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); 165 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 166 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 167 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); 168 169 /* Word 12 - fcp_data_len is variable */ 170 171 /* Word 13, 14, 15 - PBDE is variable */ 172 173 /* TRSP template */ 174 wqe = &lpfc_trsp_cmd_template; 175 memset(wqe, 0, sizeof(union lpfc_wqe128)); 176 177 /* Word 0, 1, 2 - BDE is variable */ 178 179 /* Word 3 - response_len is variable */ 180 181 /* Word 4, 5 - is zero */ 182 183 /* Word 6 - ctxt_tag, xri_tag is variable */ 184 185 /* Word 7 */ 186 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 187 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); 188 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); 189 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); 190 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ 191 192 /* Word 8 - abort_tag is variable */ 193 194 /* Word 9 - reqtag is variable */ 195 196 /* Word 10 wqes, xc is variable */ 197 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); 198 bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1); 199 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 200 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); 201 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); 202 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); 203 204 /* Word 11 irsp, irsplen is variable */ 205 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); 206 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 207 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); 208 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 209 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 210 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); 211 212 /* Word 12, 13, 14, 15 - is zero */ 213 } 214 215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 216 static struct lpfc_async_xchg_ctx * 217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri) 218 { 219 struct lpfc_async_xchg_ctx *ctxp; 220 unsigned long iflag; 221 bool found = false; 222 223 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 224 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 225 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 226 continue; 227 228 found = true; 229 break; 230 } 231 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 232 if (found) 233 return ctxp; 234 235 return NULL; 236 } 237 238 static struct lpfc_async_xchg_ctx * 239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid) 240 { 241 struct lpfc_async_xchg_ctx *ctxp; 242 unsigned long iflag; 243 bool found = false; 244 245 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 246 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 247 if (ctxp->oxid != oxid || ctxp->sid != sid) 248 continue; 249 250 found = true; 251 break; 252 } 253 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 254 if (found) 255 return ctxp; 256 257 return NULL; 258 } 259 #endif 260 261 static void 262 lpfc_nvmet_defer_release(struct lpfc_hba *phba, 263 struct lpfc_async_xchg_ctx *ctxp) 264 { 265 lockdep_assert_held(&ctxp->ctxlock); 266 267 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 268 "6313 NVMET Defer ctx release oxid x%x flg x%x\n", 269 ctxp->oxid, ctxp->flag); 270 271 if (ctxp->flag & LPFC_NVME_CTX_RLS) 272 return; 273 274 ctxp->flag |= LPFC_NVME_CTX_RLS; 275 spin_lock(&phba->sli4_hba.t_active_list_lock); 276 list_del(&ctxp->list); 277 spin_unlock(&phba->sli4_hba.t_active_list_lock); 278 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 279 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 280 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 281 } 282 283 /** 284 * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the 285 * transmission of an NVME LS response. 286 * @phba: Pointer to HBA context object. 287 * @cmdwqe: Pointer to driver command WQE object. 288 * @wcqe: Pointer to driver response CQE object. 289 * 290 * The function is called from SLI ring event handler with no 291 * lock held. The function frees memory resources used for the command 292 * used to send the NVME LS RSP. 293 **/ 294 void 295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 296 struct lpfc_wcqe_complete *wcqe) 297 { 298 struct lpfc_async_xchg_ctx *axchg = cmdwqe->context2; 299 struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp; 300 uint32_t status, result; 301 302 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; 303 result = wcqe->parameter; 304 305 if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) { 306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 307 "6410 NVMEx LS cmpl state mismatch IO x%x: " 308 "%d %d\n", 309 axchg->oxid, axchg->state, axchg->entry_cnt); 310 } 311 312 lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n", 313 axchg->oxid, status, result); 314 315 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 316 "6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n", 317 status, result, axchg->oxid); 318 319 lpfc_nlp_put(cmdwqe->context1); 320 cmdwqe->context2 = NULL; 321 cmdwqe->context3 = NULL; 322 lpfc_sli_release_iocbq(phba, cmdwqe); 323 ls_rsp->done(ls_rsp); 324 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 325 "6200 NVMEx LS rsp cmpl done status %d oxid x%x\n", 326 status, axchg->oxid); 327 kfree(axchg); 328 } 329 330 /** 331 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 332 * @phba: Pointer to HBA context object. 333 * @cmdwqe: Pointer to driver command WQE object. 334 * @wcqe: Pointer to driver response CQE object. 335 * 336 * The function is called from SLI ring event handler with no 337 * lock held. This function is the completion handler for NVME LS commands 338 * The function updates any states and statistics, then calls the 339 * generic completion handler to free resources. 340 **/ 341 static void 342 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 343 struct lpfc_wcqe_complete *wcqe) 344 { 345 struct lpfc_nvmet_tgtport *tgtp; 346 uint32_t status, result; 347 348 if (!phba->targetport) 349 goto finish; 350 351 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; 352 result = wcqe->parameter; 353 354 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 355 if (tgtp) { 356 if (status) { 357 atomic_inc(&tgtp->xmt_ls_rsp_error); 358 if (result == IOERR_ABORT_REQUESTED) 359 atomic_inc(&tgtp->xmt_ls_rsp_aborted); 360 if (bf_get(lpfc_wcqe_c_xb, wcqe)) 361 atomic_inc(&tgtp->xmt_ls_rsp_xb_set); 362 } else { 363 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 364 } 365 } 366 367 finish: 368 __lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, wcqe); 369 } 370 371 /** 372 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 373 * @phba: HBA buffer is associated with 374 * @ctxp: context to clean up 375 * @mp: Buffer to free 376 * 377 * Description: Frees the given DMA buffer in the appropriate way given by 378 * reposting it to its associated RQ so it can be reused. 379 * 380 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 381 * 382 * Returns: None 383 **/ 384 void 385 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 386 { 387 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 388 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 389 struct lpfc_nvmet_tgtport *tgtp; 390 struct fc_frame_header *fc_hdr; 391 struct rqb_dmabuf *nvmebuf; 392 struct lpfc_nvmet_ctx_info *infop; 393 uint32_t size, oxid, sid; 394 int cpu; 395 unsigned long iflag; 396 397 if (ctxp->state == LPFC_NVME_STE_FREE) { 398 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 399 "6411 NVMET free, already free IO x%x: %d %d\n", 400 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 401 } 402 403 if (ctxp->rqb_buffer) { 404 spin_lock_irqsave(&ctxp->ctxlock, iflag); 405 nvmebuf = ctxp->rqb_buffer; 406 /* check if freed in another path whilst acquiring lock */ 407 if (nvmebuf) { 408 ctxp->rqb_buffer = NULL; 409 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 410 ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ; 411 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 412 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, 413 nvmebuf); 414 } else { 415 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 416 /* repost */ 417 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 418 } 419 } else { 420 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 421 } 422 } 423 ctxp->state = LPFC_NVME_STE_FREE; 424 425 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 426 if (phba->sli4_hba.nvmet_io_wait_cnt) { 427 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 428 nvmebuf, struct rqb_dmabuf, 429 hbuf.list); 430 phba->sli4_hba.nvmet_io_wait_cnt--; 431 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 432 iflag); 433 434 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 435 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 436 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 437 size = nvmebuf->bytes_recv; 438 sid = sli4_sid_from_fc_hdr(fc_hdr); 439 440 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 441 ctxp->wqeq = NULL; 442 ctxp->offset = 0; 443 ctxp->phba = phba; 444 ctxp->size = size; 445 ctxp->oxid = oxid; 446 ctxp->sid = sid; 447 ctxp->state = LPFC_NVME_STE_RCV; 448 ctxp->entry_cnt = 1; 449 ctxp->flag = 0; 450 ctxp->ctxbuf = ctx_buf; 451 ctxp->rqb_buffer = (void *)nvmebuf; 452 spin_lock_init(&ctxp->ctxlock); 453 454 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 455 /* NOTE: isr time stamp is stale when context is re-assigned*/ 456 if (ctxp->ts_isr_cmd) { 457 ctxp->ts_cmd_nvme = 0; 458 ctxp->ts_nvme_data = 0; 459 ctxp->ts_data_wqput = 0; 460 ctxp->ts_isr_data = 0; 461 ctxp->ts_data_nvme = 0; 462 ctxp->ts_nvme_status = 0; 463 ctxp->ts_status_wqput = 0; 464 ctxp->ts_isr_status = 0; 465 ctxp->ts_status_nvme = 0; 466 } 467 #endif 468 atomic_inc(&tgtp->rcv_fcp_cmd_in); 469 470 /* Indicate that a replacement buffer has been posted */ 471 spin_lock_irqsave(&ctxp->ctxlock, iflag); 472 ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ; 473 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 474 475 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 476 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 477 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 478 "6181 Unable to queue deferred work " 479 "for oxid x%x. " 480 "FCP Drop IO [x%x x%x x%x]\n", 481 ctxp->oxid, 482 atomic_read(&tgtp->rcv_fcp_cmd_in), 483 atomic_read(&tgtp->rcv_fcp_cmd_out), 484 atomic_read(&tgtp->xmt_fcp_release)); 485 486 spin_lock_irqsave(&ctxp->ctxlock, iflag); 487 lpfc_nvmet_defer_release(phba, ctxp); 488 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 489 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 490 } 491 return; 492 } 493 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 494 495 /* 496 * Use the CPU context list, from the MRQ the IO was received on 497 * (ctxp->idx), to save context structure. 498 */ 499 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 500 list_del_init(&ctxp->list); 501 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 502 cpu = raw_smp_processor_id(); 503 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 504 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 505 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 506 infop->nvmet_ctx_list_cnt++; 507 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 508 #endif 509 } 510 511 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 512 static void 513 lpfc_nvmet_ktime(struct lpfc_hba *phba, 514 struct lpfc_async_xchg_ctx *ctxp) 515 { 516 uint64_t seg1, seg2, seg3, seg4, seg5; 517 uint64_t seg6, seg7, seg8, seg9, seg10; 518 uint64_t segsum; 519 520 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 521 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 522 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 523 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 524 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 525 return; 526 527 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) 528 return; 529 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 530 return; 531 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 532 return; 533 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 534 return; 535 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 536 return; 537 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 538 return; 539 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 540 return; 541 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 542 return; 543 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 544 return; 545 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 546 return; 547 /* 548 * Segment 1 - Time from FCP command received by MSI-X ISR 549 * to FCP command is passed to NVME Layer. 550 * Segment 2 - Time from FCP command payload handed 551 * off to NVME Layer to Driver receives a Command op 552 * from NVME Layer. 553 * Segment 3 - Time from Driver receives a Command op 554 * from NVME Layer to Command is put on WQ. 555 * Segment 4 - Time from Driver WQ put is done 556 * to MSI-X ISR for Command cmpl. 557 * Segment 5 - Time from MSI-X ISR for Command cmpl to 558 * Command cmpl is passed to NVME Layer. 559 * Segment 6 - Time from Command cmpl is passed to NVME 560 * Layer to Driver receives a RSP op from NVME Layer. 561 * Segment 7 - Time from Driver receives a RSP op from 562 * NVME Layer to WQ put is done on TRSP FCP Status. 563 * Segment 8 - Time from Driver WQ put is done on TRSP 564 * FCP Status to MSI-X ISR for TRSP cmpl. 565 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 566 * TRSP cmpl is passed to NVME Layer. 567 * Segment 10 - Time from FCP command received by 568 * MSI-X ISR to command is completed on wire. 569 * (Segments 1 thru 8) for READDATA / WRITEDATA 570 * (Segments 1 thru 4) for READDATA_RSP 571 */ 572 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 573 segsum = seg1; 574 575 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; 576 if (segsum > seg2) 577 return; 578 seg2 -= segsum; 579 segsum += seg2; 580 581 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; 582 if (segsum > seg3) 583 return; 584 seg3 -= segsum; 585 segsum += seg3; 586 587 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; 588 if (segsum > seg4) 589 return; 590 seg4 -= segsum; 591 segsum += seg4; 592 593 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; 594 if (segsum > seg5) 595 return; 596 seg5 -= segsum; 597 segsum += seg5; 598 599 600 /* For auto rsp commands seg6 thru seg10 will be 0 */ 601 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 602 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; 603 if (segsum > seg6) 604 return; 605 seg6 -= segsum; 606 segsum += seg6; 607 608 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; 609 if (segsum > seg7) 610 return; 611 seg7 -= segsum; 612 segsum += seg7; 613 614 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; 615 if (segsum > seg8) 616 return; 617 seg8 -= segsum; 618 segsum += seg8; 619 620 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; 621 if (segsum > seg9) 622 return; 623 seg9 -= segsum; 624 segsum += seg9; 625 626 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) 627 return; 628 seg10 = (ctxp->ts_isr_status - 629 ctxp->ts_isr_cmd); 630 } else { 631 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) 632 return; 633 seg6 = 0; 634 seg7 = 0; 635 seg8 = 0; 636 seg9 = 0; 637 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 638 } 639 640 phba->ktime_seg1_total += seg1; 641 if (seg1 < phba->ktime_seg1_min) 642 phba->ktime_seg1_min = seg1; 643 else if (seg1 > phba->ktime_seg1_max) 644 phba->ktime_seg1_max = seg1; 645 646 phba->ktime_seg2_total += seg2; 647 if (seg2 < phba->ktime_seg2_min) 648 phba->ktime_seg2_min = seg2; 649 else if (seg2 > phba->ktime_seg2_max) 650 phba->ktime_seg2_max = seg2; 651 652 phba->ktime_seg3_total += seg3; 653 if (seg3 < phba->ktime_seg3_min) 654 phba->ktime_seg3_min = seg3; 655 else if (seg3 > phba->ktime_seg3_max) 656 phba->ktime_seg3_max = seg3; 657 658 phba->ktime_seg4_total += seg4; 659 if (seg4 < phba->ktime_seg4_min) 660 phba->ktime_seg4_min = seg4; 661 else if (seg4 > phba->ktime_seg4_max) 662 phba->ktime_seg4_max = seg4; 663 664 phba->ktime_seg5_total += seg5; 665 if (seg5 < phba->ktime_seg5_min) 666 phba->ktime_seg5_min = seg5; 667 else if (seg5 > phba->ktime_seg5_max) 668 phba->ktime_seg5_max = seg5; 669 670 phba->ktime_data_samples++; 671 if (!seg6) 672 goto out; 673 674 phba->ktime_seg6_total += seg6; 675 if (seg6 < phba->ktime_seg6_min) 676 phba->ktime_seg6_min = seg6; 677 else if (seg6 > phba->ktime_seg6_max) 678 phba->ktime_seg6_max = seg6; 679 680 phba->ktime_seg7_total += seg7; 681 if (seg7 < phba->ktime_seg7_min) 682 phba->ktime_seg7_min = seg7; 683 else if (seg7 > phba->ktime_seg7_max) 684 phba->ktime_seg7_max = seg7; 685 686 phba->ktime_seg8_total += seg8; 687 if (seg8 < phba->ktime_seg8_min) 688 phba->ktime_seg8_min = seg8; 689 else if (seg8 > phba->ktime_seg8_max) 690 phba->ktime_seg8_max = seg8; 691 692 phba->ktime_seg9_total += seg9; 693 if (seg9 < phba->ktime_seg9_min) 694 phba->ktime_seg9_min = seg9; 695 else if (seg9 > phba->ktime_seg9_max) 696 phba->ktime_seg9_max = seg9; 697 out: 698 phba->ktime_seg10_total += seg10; 699 if (seg10 < phba->ktime_seg10_min) 700 phba->ktime_seg10_min = seg10; 701 else if (seg10 > phba->ktime_seg10_max) 702 phba->ktime_seg10_max = seg10; 703 phba->ktime_status_samples++; 704 } 705 #endif 706 707 /** 708 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 709 * @phba: Pointer to HBA context object. 710 * @cmdwqe: Pointer to driver command WQE object. 711 * @wcqe: Pointer to driver response CQE object. 712 * 713 * The function is called from SLI ring event handler with no 714 * lock held. This function is the completion handler for NVME FCP commands 715 * The function frees memory resources used for the NVME commands. 716 **/ 717 static void 718 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 719 struct lpfc_wcqe_complete *wcqe) 720 { 721 struct lpfc_nvmet_tgtport *tgtp; 722 struct nvmefc_tgt_fcp_req *rsp; 723 struct lpfc_async_xchg_ctx *ctxp; 724 uint32_t status, result, op, start_clean, logerr; 725 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 726 int id; 727 #endif 728 729 ctxp = cmdwqe->context2; 730 ctxp->flag &= ~LPFC_NVME_IO_INP; 731 732 rsp = &ctxp->hdlrctx.fcp_req; 733 op = rsp->op; 734 735 status = bf_get(lpfc_wcqe_c_status, wcqe); 736 result = wcqe->parameter; 737 738 if (phba->targetport) 739 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 740 else 741 tgtp = NULL; 742 743 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 744 ctxp->oxid, op, status); 745 746 if (status) { 747 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 748 rsp->transferred_length = 0; 749 if (tgtp) { 750 atomic_inc(&tgtp->xmt_fcp_rsp_error); 751 if (result == IOERR_ABORT_REQUESTED) 752 atomic_inc(&tgtp->xmt_fcp_rsp_aborted); 753 } 754 755 logerr = LOG_NVME_IOERR; 756 757 /* pick up SLI4 exhange busy condition */ 758 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 759 ctxp->flag |= LPFC_NVME_XBUSY; 760 logerr |= LOG_NVME_ABTS; 761 if (tgtp) 762 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); 763 764 } else { 765 ctxp->flag &= ~LPFC_NVME_XBUSY; 766 } 767 768 lpfc_printf_log(phba, KERN_INFO, logerr, 769 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x " 770 "XBUSY:x%x\n", 771 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag, 772 status, result, ctxp->flag); 773 774 } else { 775 rsp->fcp_error = NVME_SC_SUCCESS; 776 if (op == NVMET_FCOP_RSP) 777 rsp->transferred_length = rsp->rsplen; 778 else 779 rsp->transferred_length = rsp->transfer_length; 780 if (tgtp) 781 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 782 } 783 784 if ((op == NVMET_FCOP_READDATA_RSP) || 785 (op == NVMET_FCOP_RSP)) { 786 /* Sanity check */ 787 ctxp->state = LPFC_NVME_STE_DONE; 788 ctxp->entry_cnt++; 789 790 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 791 if (ctxp->ts_cmd_nvme) { 792 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 793 ctxp->ts_isr_data = 794 cmdwqe->isr_timestamp; 795 ctxp->ts_data_nvme = 796 ktime_get_ns(); 797 ctxp->ts_nvme_status = 798 ctxp->ts_data_nvme; 799 ctxp->ts_status_wqput = 800 ctxp->ts_data_nvme; 801 ctxp->ts_isr_status = 802 ctxp->ts_data_nvme; 803 ctxp->ts_status_nvme = 804 ctxp->ts_data_nvme; 805 } else { 806 ctxp->ts_isr_status = 807 cmdwqe->isr_timestamp; 808 ctxp->ts_status_nvme = 809 ktime_get_ns(); 810 } 811 } 812 #endif 813 rsp->done(rsp); 814 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 815 if (ctxp->ts_cmd_nvme) 816 lpfc_nvmet_ktime(phba, ctxp); 817 #endif 818 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 819 } else { 820 ctxp->entry_cnt++; 821 start_clean = offsetof(struct lpfc_iocbq, iocb_flag); 822 memset(((char *)cmdwqe) + start_clean, 0, 823 (sizeof(struct lpfc_iocbq) - start_clean)); 824 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 825 if (ctxp->ts_cmd_nvme) { 826 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 827 ctxp->ts_data_nvme = ktime_get_ns(); 828 } 829 #endif 830 rsp->done(rsp); 831 } 832 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 833 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 834 id = raw_smp_processor_id(); 835 this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io); 836 if (ctxp->cpu != id) 837 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 838 "6704 CPU Check cmdcmpl: " 839 "cpu %d expect %d\n", 840 id, ctxp->cpu); 841 } 842 #endif 843 } 844 845 /** 846 * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit 847 * an NVME LS rsp for a prior NVME LS request that was received. 848 * @axchg: pointer to exchange context for the NVME LS request the response 849 * is for. 850 * @ls_rsp: pointer to the transport LS RSP that is to be sent 851 * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done 852 * 853 * This routine is used to format and send a WQE to transmit a NVME LS 854 * Response. The response is for a prior NVME LS request that was 855 * received and posted to the transport. 856 * 857 * Returns: 858 * 0 : if response successfully transmit 859 * non-zero : if response failed to transmit, of the form -Exxx. 860 **/ 861 int 862 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg, 863 struct nvmefc_ls_rsp *ls_rsp, 864 void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba, 865 struct lpfc_iocbq *cmdwqe, 866 struct lpfc_wcqe_complete *wcqe)) 867 { 868 struct lpfc_hba *phba = axchg->phba; 869 struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer; 870 struct lpfc_iocbq *nvmewqeq; 871 struct lpfc_dmabuf dmabuf; 872 struct ulp_bde64 bpl; 873 int rc; 874 875 if (phba->pport->load_flag & FC_UNLOADING) 876 return -ENODEV; 877 878 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 879 "6023 NVMEx LS rsp oxid x%x\n", axchg->oxid); 880 881 if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) { 882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 883 "6412 NVMEx LS rsp state mismatch " 884 "oxid x%x: %d %d\n", 885 axchg->oxid, axchg->state, axchg->entry_cnt); 886 return -EALREADY; 887 } 888 axchg->state = LPFC_NVME_STE_LS_RSP; 889 axchg->entry_cnt++; 890 891 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma, 892 ls_rsp->rsplen); 893 if (nvmewqeq == NULL) { 894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 895 "6150 NVMEx LS Drop Rsp x%x: Prep\n", 896 axchg->oxid); 897 rc = -ENOMEM; 898 goto out_free_buf; 899 } 900 901 /* Save numBdes for bpl2sgl */ 902 nvmewqeq->rsvd2 = 1; 903 nvmewqeq->hba_wqidx = 0; 904 nvmewqeq->context3 = &dmabuf; 905 dmabuf.virt = &bpl; 906 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 907 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 908 bpl.tus.f.bdeSize = ls_rsp->rsplen; 909 bpl.tus.f.bdeFlags = 0; 910 bpl.tus.w = le32_to_cpu(bpl.tus.w); 911 /* 912 * Note: although we're using stack space for the dmabuf, the 913 * call to lpfc_sli4_issue_wqe is synchronous, so it will not 914 * be referenced after it returns back to this routine. 915 */ 916 917 nvmewqeq->wqe_cmpl = xmt_ls_rsp_cmp; 918 nvmewqeq->iocb_cmpl = NULL; 919 nvmewqeq->context2 = axchg; 920 921 lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n", 922 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen); 923 924 rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq); 925 926 /* clear to be sure there's no reference */ 927 nvmewqeq->context3 = NULL; 928 929 if (rc == WQE_SUCCESS) { 930 /* 931 * Okay to repost buffer here, but wait till cmpl 932 * before freeing ctxp and iocbq. 933 */ 934 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 935 return 0; 936 } 937 938 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 939 "6151 NVMEx LS RSP x%x: failed to transmit %d\n", 940 axchg->oxid, rc); 941 942 rc = -ENXIO; 943 944 lpfc_nlp_put(nvmewqeq->context1); 945 946 out_free_buf: 947 /* Give back resources */ 948 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 949 950 /* 951 * As transport doesn't track completions of responses, if the rsp 952 * fails to send, the transport will effectively ignore the rsp 953 * and consider the LS done. However, the driver has an active 954 * exchange open for the LS - so be sure to abort the exchange 955 * if the response isn't sent. 956 */ 957 lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid); 958 return rc; 959 } 960 961 /** 962 * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response 963 * @tgtport: pointer to target port that NVME LS is to be transmit from. 964 * @ls_rsp: pointer to the transport LS RSP that is to be sent 965 * 966 * Driver registers this routine to transmit responses for received NVME 967 * LS requests. 968 * 969 * This routine is used to format and send a WQE to transmit a NVME LS 970 * Response. The ls_rsp is used to reverse-map the LS to the original 971 * NVME LS request sequence, which provides addressing information for 972 * the remote port the LS to be sent to, as well as the exchange id 973 * that is the LS is bound to. 974 * 975 * Returns: 976 * 0 : if response successfully transmit 977 * non-zero : if response failed to transmit, of the form -Exxx. 978 **/ 979 static int 980 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 981 struct nvmefc_ls_rsp *ls_rsp) 982 { 983 struct lpfc_async_xchg_ctx *axchg = 984 container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp); 985 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 986 int rc; 987 988 if (axchg->phba->pport->load_flag & FC_UNLOADING) 989 return -ENODEV; 990 991 rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp); 992 993 if (rc) { 994 atomic_inc(&nvmep->xmt_ls_drop); 995 /* 996 * unless the failure is due to having already sent 997 * the response, an abort will be generated for the 998 * exchange if the rsp can't be sent. 999 */ 1000 if (rc != -EALREADY) 1001 atomic_inc(&nvmep->xmt_ls_abort); 1002 return rc; 1003 } 1004 1005 atomic_inc(&nvmep->xmt_ls_rsp); 1006 return 0; 1007 } 1008 1009 static int 1010 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 1011 struct nvmefc_tgt_fcp_req *rsp) 1012 { 1013 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1014 struct lpfc_async_xchg_ctx *ctxp = 1015 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1016 struct lpfc_hba *phba = ctxp->phba; 1017 struct lpfc_queue *wq; 1018 struct lpfc_iocbq *nvmewqeq; 1019 struct lpfc_sli_ring *pring; 1020 unsigned long iflags; 1021 int rc; 1022 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1023 int id; 1024 #endif 1025 1026 if (phba->pport->load_flag & FC_UNLOADING) { 1027 rc = -ENODEV; 1028 goto aerr; 1029 } 1030 1031 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1032 if (ctxp->ts_cmd_nvme) { 1033 if (rsp->op == NVMET_FCOP_RSP) 1034 ctxp->ts_nvme_status = ktime_get_ns(); 1035 else 1036 ctxp->ts_nvme_data = ktime_get_ns(); 1037 } 1038 1039 /* Setup the hdw queue if not already set */ 1040 if (!ctxp->hdwq) 1041 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid]; 1042 1043 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 1044 id = raw_smp_processor_id(); 1045 this_cpu_inc(phba->sli4_hba.c_stat->xmt_io); 1046 if (rsp->hwqid != id) 1047 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1048 "6705 CPU Check OP: " 1049 "cpu %d expect %d\n", 1050 id, rsp->hwqid); 1051 ctxp->cpu = id; /* Setup cpu for cmpl check */ 1052 } 1053 #endif 1054 1055 /* Sanity check */ 1056 if ((ctxp->flag & LPFC_NVME_ABTS_RCV) || 1057 (ctxp->state == LPFC_NVME_STE_ABORT)) { 1058 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1059 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1060 "6102 IO oxid x%x aborted\n", 1061 ctxp->oxid); 1062 rc = -ENXIO; 1063 goto aerr; 1064 } 1065 1066 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 1067 if (nvmewqeq == NULL) { 1068 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1069 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1070 "6152 FCP Drop IO x%x: Prep\n", 1071 ctxp->oxid); 1072 rc = -ENXIO; 1073 goto aerr; 1074 } 1075 1076 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 1077 nvmewqeq->iocb_cmpl = NULL; 1078 nvmewqeq->context2 = ctxp; 1079 nvmewqeq->iocb_flag |= LPFC_IO_NVMET; 1080 ctxp->wqeq->hba_wqidx = rsp->hwqid; 1081 1082 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 1083 ctxp->oxid, rsp->op, rsp->rsplen); 1084 1085 ctxp->flag |= LPFC_NVME_IO_INP; 1086 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 1087 if (rc == WQE_SUCCESS) { 1088 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1089 if (!ctxp->ts_cmd_nvme) 1090 return 0; 1091 if (rsp->op == NVMET_FCOP_RSP) 1092 ctxp->ts_status_wqput = ktime_get_ns(); 1093 else 1094 ctxp->ts_data_wqput = ktime_get_ns(); 1095 #endif 1096 return 0; 1097 } 1098 1099 if (rc == -EBUSY) { 1100 /* 1101 * WQ was full, so queue nvmewqeq to be sent after 1102 * WQE release CQE 1103 */ 1104 ctxp->flag |= LPFC_NVME_DEFER_WQFULL; 1105 wq = ctxp->hdwq->io_wq; 1106 pring = wq->pring; 1107 spin_lock_irqsave(&pring->ring_lock, iflags); 1108 list_add_tail(&nvmewqeq->list, &wq->wqfull_list); 1109 wq->q_flag |= HBA_NVMET_WQFULL; 1110 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1111 atomic_inc(&lpfc_nvmep->defer_wqfull); 1112 return 0; 1113 } 1114 1115 /* Give back resources */ 1116 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1118 "6153 FCP Drop IO x%x: Issue: %d\n", 1119 ctxp->oxid, rc); 1120 1121 ctxp->wqeq->hba_wqidx = 0; 1122 nvmewqeq->context2 = NULL; 1123 nvmewqeq->context3 = NULL; 1124 rc = -EBUSY; 1125 aerr: 1126 return rc; 1127 } 1128 1129 static void 1130 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 1131 { 1132 struct lpfc_nvmet_tgtport *tport = targetport->private; 1133 1134 /* release any threads waiting for the unreg to complete */ 1135 if (tport->phba->targetport) 1136 complete(tport->tport_unreg_cmp); 1137 } 1138 1139 static void 1140 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 1141 struct nvmefc_tgt_fcp_req *req) 1142 { 1143 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1144 struct lpfc_async_xchg_ctx *ctxp = 1145 container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1146 struct lpfc_hba *phba = ctxp->phba; 1147 struct lpfc_queue *wq; 1148 unsigned long flags; 1149 1150 if (phba->pport->load_flag & FC_UNLOADING) 1151 return; 1152 1153 if (!ctxp->hdwq) 1154 ctxp->hdwq = &phba->sli4_hba.hdwq[0]; 1155 1156 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1157 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n", 1158 ctxp->oxid, ctxp->flag, ctxp->state); 1159 1160 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 1161 ctxp->oxid, ctxp->flag, ctxp->state); 1162 1163 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 1164 1165 spin_lock_irqsave(&ctxp->ctxlock, flags); 1166 1167 /* Since iaab/iaar are NOT set, we need to check 1168 * if the firmware is in process of aborting IO 1169 */ 1170 if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) { 1171 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1172 return; 1173 } 1174 ctxp->flag |= LPFC_NVME_ABORT_OP; 1175 1176 if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) { 1177 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1178 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1179 ctxp->oxid); 1180 wq = ctxp->hdwq->io_wq; 1181 lpfc_nvmet_wqfull_flush(phba, wq, ctxp); 1182 return; 1183 } 1184 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1185 1186 /* A state of LPFC_NVME_STE_RCV means we have just received 1187 * the NVME command and have not started processing it. 1188 * (by issuing any IO WQEs on this exchange yet) 1189 */ 1190 if (ctxp->state == LPFC_NVME_STE_RCV) 1191 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1192 ctxp->oxid); 1193 else 1194 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1195 ctxp->oxid); 1196 } 1197 1198 static void 1199 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 1200 struct nvmefc_tgt_fcp_req *rsp) 1201 { 1202 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1203 struct lpfc_async_xchg_ctx *ctxp = 1204 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1205 struct lpfc_hba *phba = ctxp->phba; 1206 unsigned long flags; 1207 bool aborting = false; 1208 1209 spin_lock_irqsave(&ctxp->ctxlock, flags); 1210 if (ctxp->flag & LPFC_NVME_XBUSY) 1211 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1212 "6027 NVMET release with XBUSY flag x%x" 1213 " oxid x%x\n", 1214 ctxp->flag, ctxp->oxid); 1215 else if (ctxp->state != LPFC_NVME_STE_DONE && 1216 ctxp->state != LPFC_NVME_STE_ABORT) 1217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1218 "6413 NVMET release bad state %d %d oxid x%x\n", 1219 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1220 1221 if ((ctxp->flag & LPFC_NVME_ABORT_OP) || 1222 (ctxp->flag & LPFC_NVME_XBUSY)) { 1223 aborting = true; 1224 /* let the abort path do the real release */ 1225 lpfc_nvmet_defer_release(phba, ctxp); 1226 } 1227 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1228 1229 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 1230 ctxp->state, aborting); 1231 1232 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 1233 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 1234 1235 if (aborting) 1236 return; 1237 1238 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1239 } 1240 1241 static void 1242 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 1243 struct nvmefc_tgt_fcp_req *rsp) 1244 { 1245 struct lpfc_nvmet_tgtport *tgtp; 1246 struct lpfc_async_xchg_ctx *ctxp = 1247 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1248 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 1249 struct lpfc_hba *phba = ctxp->phba; 1250 unsigned long iflag; 1251 1252 1253 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 1254 ctxp->oxid, ctxp->size, raw_smp_processor_id()); 1255 1256 if (!nvmebuf) { 1257 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1258 "6425 Defer rcv: no buffer oxid x%x: " 1259 "flg %x ste %x\n", 1260 ctxp->oxid, ctxp->flag, ctxp->state); 1261 return; 1262 } 1263 1264 tgtp = phba->targetport->private; 1265 if (tgtp) 1266 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 1267 1268 /* Free the nvmebuf since a new buffer already replaced it */ 1269 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1270 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1271 ctxp->rqb_buffer = NULL; 1272 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1273 } 1274 1275 /** 1276 * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request 1277 * @phba: Pointer to HBA context object 1278 * @cmdwqe: Pointer to driver command WQE object. 1279 * @wcqe: Pointer to driver response CQE object. 1280 * 1281 * This function is the completion handler for NVME LS requests. 1282 * The function updates any states and statistics, then calls the 1283 * generic completion handler to finish completion of the request. 1284 **/ 1285 static void 1286 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 1287 struct lpfc_wcqe_complete *wcqe) 1288 { 1289 __lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe); 1290 } 1291 1292 /** 1293 * lpfc_nvmet_ls_req - Issue an Link Service request 1294 * @targetport - pointer to target instance registered with nvmet transport. 1295 * @hosthandle - hosthandle set by the driver in a prior ls_rqst_rcv. 1296 * Driver sets this value to the ndlp pointer. 1297 * @pnvme_lsreq - the transport nvme_ls_req structure for the LS 1298 * 1299 * Driver registers this routine to handle any link service request 1300 * from the nvme_fc transport to a remote nvme-aware port. 1301 * 1302 * Return value : 1303 * 0 - Success 1304 * non-zero: various error codes, in form of -Exxx 1305 **/ 1306 static int 1307 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport, 1308 void *hosthandle, 1309 struct nvmefc_ls_req *pnvme_lsreq) 1310 { 1311 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1312 struct lpfc_hba *phba; 1313 struct lpfc_nodelist *ndlp; 1314 int ret; 1315 u32 hstate; 1316 1317 if (!lpfc_nvmet) 1318 return -EINVAL; 1319 1320 phba = lpfc_nvmet->phba; 1321 if (phba->pport->load_flag & FC_UNLOADING) 1322 return -EINVAL; 1323 1324 hstate = atomic_read(&lpfc_nvmet->state); 1325 if (hstate == LPFC_NVMET_INV_HOST_ACTIVE) 1326 return -EACCES; 1327 1328 ndlp = (struct lpfc_nodelist *)hosthandle; 1329 1330 ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq, 1331 lpfc_nvmet_ls_req_cmp); 1332 1333 return ret; 1334 } 1335 1336 /** 1337 * lpfc_nvmet_ls_abort - Abort a prior NVME LS request 1338 * @targetport: Transport targetport, that LS was issued from. 1339 * @hosthandle - hosthandle set by the driver in a prior ls_rqst_rcv. 1340 * Driver sets this value to the ndlp pointer. 1341 * @pnvme_lsreq - the transport nvme_ls_req structure for LS to be aborted 1342 * 1343 * Driver registers this routine to abort an NVME LS request that is 1344 * in progress (from the transports perspective). 1345 **/ 1346 static void 1347 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport, 1348 void *hosthandle, 1349 struct nvmefc_ls_req *pnvme_lsreq) 1350 { 1351 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1352 struct lpfc_hba *phba; 1353 struct lpfc_nodelist *ndlp; 1354 int ret; 1355 1356 phba = lpfc_nvmet->phba; 1357 if (phba->pport->load_flag & FC_UNLOADING) 1358 return; 1359 1360 ndlp = (struct lpfc_nodelist *)hosthandle; 1361 1362 ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq); 1363 if (!ret) 1364 atomic_inc(&lpfc_nvmet->xmt_ls_abort); 1365 } 1366 1367 static void 1368 lpfc_nvmet_host_release(void *hosthandle) 1369 { 1370 struct lpfc_nodelist *ndlp = hosthandle; 1371 struct lpfc_hba *phba = NULL; 1372 struct lpfc_nvmet_tgtport *tgtp; 1373 1374 phba = ndlp->phba; 1375 if (!phba->targetport || !phba->targetport->private) 1376 return; 1377 1378 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1379 "6202 NVMET XPT releasing hosthandle x%px\n", 1380 hosthandle); 1381 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1382 atomic_set(&tgtp->state, 0); 1383 } 1384 1385 static void 1386 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport) 1387 { 1388 struct lpfc_nvmet_tgtport *tgtp; 1389 struct lpfc_hba *phba; 1390 uint32_t rc; 1391 1392 tgtp = tgtport->private; 1393 phba = tgtp->phba; 1394 1395 rc = lpfc_issue_els_rscn(phba->pport, 0); 1396 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1397 "6420 NVMET subsystem change: Notification %s\n", 1398 (rc) ? "Failed" : "Sent"); 1399 } 1400 1401 static struct nvmet_fc_target_template lpfc_tgttemplate = { 1402 .targetport_delete = lpfc_nvmet_targetport_delete, 1403 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 1404 .fcp_op = lpfc_nvmet_xmt_fcp_op, 1405 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 1406 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 1407 .defer_rcv = lpfc_nvmet_defer_rcv, 1408 .discovery_event = lpfc_nvmet_discovery_event, 1409 .ls_req = lpfc_nvmet_ls_req, 1410 .ls_abort = lpfc_nvmet_ls_abort, 1411 .host_release = lpfc_nvmet_host_release, 1412 1413 .max_hw_queues = 1, 1414 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1415 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1416 .dma_boundary = 0xFFFFFFFF, 1417 1418 /* optional features */ 1419 .target_features = 0, 1420 /* sizes of additional private data for data structures */ 1421 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 1422 .lsrqst_priv_sz = 0, 1423 }; 1424 1425 static void 1426 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 1427 struct lpfc_nvmet_ctx_info *infop) 1428 { 1429 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 1430 unsigned long flags; 1431 1432 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 1433 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 1434 &infop->nvmet_ctx_list, list) { 1435 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1436 list_del_init(&ctx_buf->list); 1437 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1438 1439 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 1440 ctx_buf->sglq->state = SGL_FREED; 1441 ctx_buf->sglq->ndlp = NULL; 1442 1443 spin_lock(&phba->sli4_hba.sgl_list_lock); 1444 list_add_tail(&ctx_buf->sglq->list, 1445 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1446 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1447 1448 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1449 kfree(ctx_buf->context); 1450 } 1451 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 1452 } 1453 1454 static void 1455 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 1456 { 1457 struct lpfc_nvmet_ctx_info *infop; 1458 int i, j; 1459 1460 /* The first context list, MRQ 0 CPU 0 */ 1461 infop = phba->sli4_hba.nvmet_ctx_info; 1462 if (!infop) 1463 return; 1464 1465 /* Cycle the the entire CPU context list for every MRQ */ 1466 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 1467 for_each_present_cpu(j) { 1468 infop = lpfc_get_ctx_list(phba, j, i); 1469 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 1470 } 1471 } 1472 kfree(phba->sli4_hba.nvmet_ctx_info); 1473 phba->sli4_hba.nvmet_ctx_info = NULL; 1474 } 1475 1476 static int 1477 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 1478 { 1479 struct lpfc_nvmet_ctxbuf *ctx_buf; 1480 struct lpfc_iocbq *nvmewqe; 1481 union lpfc_wqe128 *wqe; 1482 struct lpfc_nvmet_ctx_info *last_infop; 1483 struct lpfc_nvmet_ctx_info *infop; 1484 int i, j, idx, cpu; 1485 1486 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 1487 "6403 Allocate NVMET resources for %d XRIs\n", 1488 phba->sli4_hba.nvmet_xri_cnt); 1489 1490 phba->sli4_hba.nvmet_ctx_info = kcalloc( 1491 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq, 1492 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 1493 if (!phba->sli4_hba.nvmet_ctx_info) { 1494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1495 "6419 Failed allocate memory for " 1496 "nvmet context lists\n"); 1497 return -ENOMEM; 1498 } 1499 1500 /* 1501 * Assuming X CPUs in the system, and Y MRQs, allocate some 1502 * lpfc_nvmet_ctx_info structures as follows: 1503 * 1504 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 1505 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 1506 * ... 1507 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 1508 * 1509 * Each line represents a MRQ "silo" containing an entry for 1510 * every CPU. 1511 * 1512 * MRQ X is initially assumed to be associated with CPU X, thus 1513 * contexts are initially distributed across all MRQs using 1514 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 1515 * freed, the are freed to the MRQ silo based on the CPU number 1516 * of the IO completion. Thus a context that was allocated for MRQ A 1517 * whose IO completed on CPU B will be freed to cpuB/mrqA. 1518 */ 1519 for_each_possible_cpu(i) { 1520 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1521 infop = lpfc_get_ctx_list(phba, i, j); 1522 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 1523 spin_lock_init(&infop->nvmet_ctx_list_lock); 1524 infop->nvmet_ctx_list_cnt = 0; 1525 } 1526 } 1527 1528 /* 1529 * Setup the next CPU context info ptr for each MRQ. 1530 * MRQ 0 will cycle thru CPUs 0 - X separately from 1531 * MRQ 1 cycling thru CPUs 0 - X, and so on. 1532 */ 1533 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1534 last_infop = lpfc_get_ctx_list(phba, 1535 cpumask_first(cpu_present_mask), 1536 j); 1537 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) { 1538 infop = lpfc_get_ctx_list(phba, i, j); 1539 infop->nvmet_ctx_next_cpu = last_infop; 1540 last_infop = infop; 1541 } 1542 } 1543 1544 /* For all nvmet xris, allocate resources needed to process a 1545 * received command on a per xri basis. 1546 */ 1547 idx = 0; 1548 cpu = cpumask_first(cpu_present_mask); 1549 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1550 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1551 if (!ctx_buf) { 1552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1553 "6404 Ran out of memory for NVMET\n"); 1554 return -ENOMEM; 1555 } 1556 1557 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1558 GFP_KERNEL); 1559 if (!ctx_buf->context) { 1560 kfree(ctx_buf); 1561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1562 "6405 Ran out of NVMET " 1563 "context memory\n"); 1564 return -ENOMEM; 1565 } 1566 ctx_buf->context->ctxbuf = ctx_buf; 1567 ctx_buf->context->state = LPFC_NVME_STE_FREE; 1568 1569 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1570 if (!ctx_buf->iocbq) { 1571 kfree(ctx_buf->context); 1572 kfree(ctx_buf); 1573 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1574 "6406 Ran out of NVMET iocb/WQEs\n"); 1575 return -ENOMEM; 1576 } 1577 ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET; 1578 nvmewqe = ctx_buf->iocbq; 1579 wqe = &nvmewqe->wqe; 1580 1581 /* Initialize WQE */ 1582 memset(wqe, 0, sizeof(union lpfc_wqe)); 1583 1584 ctx_buf->iocbq->context1 = NULL; 1585 spin_lock(&phba->sli4_hba.sgl_list_lock); 1586 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1587 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1588 if (!ctx_buf->sglq) { 1589 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1590 kfree(ctx_buf->context); 1591 kfree(ctx_buf); 1592 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1593 "6407 Ran out of NVMET XRIs\n"); 1594 return -ENOMEM; 1595 } 1596 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work); 1597 1598 /* 1599 * Add ctx to MRQidx context list. Our initial assumption 1600 * is MRQidx will be associated with CPUidx. This association 1601 * can change on the fly. 1602 */ 1603 infop = lpfc_get_ctx_list(phba, cpu, idx); 1604 spin_lock(&infop->nvmet_ctx_list_lock); 1605 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1606 infop->nvmet_ctx_list_cnt++; 1607 spin_unlock(&infop->nvmet_ctx_list_lock); 1608 1609 /* Spread ctx structures evenly across all MRQs */ 1610 idx++; 1611 if (idx >= phba->cfg_nvmet_mrq) { 1612 idx = 0; 1613 cpu = cpumask_first(cpu_present_mask); 1614 continue; 1615 } 1616 cpu = cpumask_next(cpu, cpu_present_mask); 1617 if (cpu == nr_cpu_ids) 1618 cpu = cpumask_first(cpu_present_mask); 1619 1620 } 1621 1622 for_each_present_cpu(i) { 1623 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1624 infop = lpfc_get_ctx_list(phba, i, j); 1625 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1626 "6408 TOTAL NVMET ctx for CPU %d " 1627 "MRQ %d: cnt %d nextcpu x%px\n", 1628 i, j, infop->nvmet_ctx_list_cnt, 1629 infop->nvmet_ctx_next_cpu); 1630 } 1631 } 1632 return 0; 1633 } 1634 1635 int 1636 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1637 { 1638 struct lpfc_vport *vport = phba->pport; 1639 struct lpfc_nvmet_tgtport *tgtp; 1640 struct nvmet_fc_port_info pinfo; 1641 int error; 1642 1643 if (phba->targetport) 1644 return 0; 1645 1646 error = lpfc_nvmet_setup_io_context(phba); 1647 if (error) 1648 return error; 1649 1650 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1651 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1652 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1653 pinfo.port_id = vport->fc_myDID; 1654 1655 /* We need to tell the transport layer + 1 because it takes page 1656 * alignment into account. When space for the SGL is allocated we 1657 * allocate + 3, one for cmd, one for rsp and one for this alignment 1658 */ 1659 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1660 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue; 1661 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; 1662 1663 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1664 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1665 &phba->pcidev->dev, 1666 &phba->targetport); 1667 #else 1668 error = -ENOENT; 1669 #endif 1670 if (error) { 1671 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1672 "6025 Cannot register NVME targetport x%x: " 1673 "portnm %llx nodenm %llx segs %d qs %d\n", 1674 error, 1675 pinfo.port_name, pinfo.node_name, 1676 lpfc_tgttemplate.max_sgl_segments, 1677 lpfc_tgttemplate.max_hw_queues); 1678 phba->targetport = NULL; 1679 phba->nvmet_support = 0; 1680 1681 lpfc_nvmet_cleanup_io_context(phba); 1682 1683 } else { 1684 tgtp = (struct lpfc_nvmet_tgtport *) 1685 phba->targetport->private; 1686 tgtp->phba = phba; 1687 1688 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1689 "6026 Registered NVME " 1690 "targetport: x%px, private x%px " 1691 "portnm %llx nodenm %llx segs %d qs %d\n", 1692 phba->targetport, tgtp, 1693 pinfo.port_name, pinfo.node_name, 1694 lpfc_tgttemplate.max_sgl_segments, 1695 lpfc_tgttemplate.max_hw_queues); 1696 1697 atomic_set(&tgtp->rcv_ls_req_in, 0); 1698 atomic_set(&tgtp->rcv_ls_req_out, 0); 1699 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1700 atomic_set(&tgtp->xmt_ls_abort, 0); 1701 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1702 atomic_set(&tgtp->xmt_ls_rsp, 0); 1703 atomic_set(&tgtp->xmt_ls_drop, 0); 1704 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1705 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); 1706 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); 1707 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1708 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1709 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1710 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1711 atomic_set(&tgtp->xmt_fcp_drop, 0); 1712 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1713 atomic_set(&tgtp->xmt_fcp_read, 0); 1714 atomic_set(&tgtp->xmt_fcp_write, 0); 1715 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1716 atomic_set(&tgtp->xmt_fcp_release, 0); 1717 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1718 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1719 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); 1720 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); 1721 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1722 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); 1723 atomic_set(&tgtp->xmt_fcp_abort, 0); 1724 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1725 atomic_set(&tgtp->xmt_abort_unsol, 0); 1726 atomic_set(&tgtp->xmt_abort_sol, 0); 1727 atomic_set(&tgtp->xmt_abort_rsp, 0); 1728 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1729 atomic_set(&tgtp->defer_ctx, 0); 1730 atomic_set(&tgtp->defer_fod, 0); 1731 atomic_set(&tgtp->defer_wqfull, 0); 1732 } 1733 return error; 1734 } 1735 1736 int 1737 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1738 { 1739 struct lpfc_vport *vport = phba->pport; 1740 1741 if (!phba->targetport) 1742 return 0; 1743 1744 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1745 "6007 Update NVMET port x%px did x%x\n", 1746 phba->targetport, vport->fc_myDID); 1747 1748 phba->targetport->port_id = vport->fc_myDID; 1749 return 0; 1750 } 1751 1752 /** 1753 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1754 * @phba: pointer to lpfc hba data structure. 1755 * @axri: pointer to the nvmet xri abort wcqe structure. 1756 * 1757 * This routine is invoked by the worker thread to process a SLI4 fast-path 1758 * NVMET aborted xri. 1759 **/ 1760 void 1761 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1762 struct sli4_wcqe_xri_aborted *axri) 1763 { 1764 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1765 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1766 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1767 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1768 struct lpfc_nvmet_tgtport *tgtp; 1769 struct nvmefc_tgt_fcp_req *req = NULL; 1770 struct lpfc_nodelist *ndlp; 1771 unsigned long iflag = 0; 1772 int rrq_empty = 0; 1773 bool released = false; 1774 1775 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1776 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1777 1778 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1779 return; 1780 1781 if (phba->targetport) { 1782 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1783 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); 1784 } 1785 1786 spin_lock_irqsave(&phba->hbalock, iflag); 1787 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1788 list_for_each_entry_safe(ctxp, next_ctxp, 1789 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1790 list) { 1791 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1792 continue; 1793 1794 spin_lock(&ctxp->ctxlock); 1795 /* Check if we already received a free context call 1796 * and we have completed processing an abort situation. 1797 */ 1798 if (ctxp->flag & LPFC_NVME_CTX_RLS && 1799 !(ctxp->flag & LPFC_NVME_ABORT_OP)) { 1800 list_del_init(&ctxp->list); 1801 released = true; 1802 } 1803 ctxp->flag &= ~LPFC_NVME_XBUSY; 1804 spin_unlock(&ctxp->ctxlock); 1805 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1806 1807 rrq_empty = list_empty(&phba->active_rrq_list); 1808 spin_unlock_irqrestore(&phba->hbalock, iflag); 1809 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1810 if (ndlp && NLP_CHK_NODE_ACT(ndlp) && 1811 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1812 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1813 lpfc_set_rrq_active(phba, ndlp, 1814 ctxp->ctxbuf->sglq->sli4_lxritag, 1815 rxid, 1); 1816 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1817 } 1818 1819 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1820 "6318 XB aborted oxid x%x flg x%x (%x)\n", 1821 ctxp->oxid, ctxp->flag, released); 1822 if (released) 1823 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1824 1825 if (rrq_empty) 1826 lpfc_worker_wake_up(phba); 1827 return; 1828 } 1829 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1830 spin_unlock_irqrestore(&phba->hbalock, iflag); 1831 1832 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri); 1833 if (ctxp) { 1834 /* 1835 * Abort already done by FW, so BA_ACC sent. 1836 * However, the transport may be unaware. 1837 */ 1838 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1839 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x " 1840 "flag x%x oxid x%x rxid x%x\n", 1841 xri, ctxp->state, ctxp->flag, ctxp->oxid, 1842 rxid); 1843 1844 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1845 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1846 ctxp->state = LPFC_NVME_STE_ABORT; 1847 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1848 1849 lpfc_nvmeio_data(phba, 1850 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1851 xri, raw_smp_processor_id(), 0); 1852 1853 req = &ctxp->hdlrctx.fcp_req; 1854 if (req) 1855 nvmet_fc_rcv_fcp_abort(phba->targetport, req); 1856 } 1857 #endif 1858 } 1859 1860 int 1861 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1862 struct fc_frame_header *fc_hdr) 1863 { 1864 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1865 struct lpfc_hba *phba = vport->phba; 1866 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1867 struct nvmefc_tgt_fcp_req *rsp; 1868 uint32_t sid; 1869 uint16_t oxid, xri; 1870 unsigned long iflag = 0; 1871 1872 sid = sli4_sid_from_fc_hdr(fc_hdr); 1873 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1874 1875 spin_lock_irqsave(&phba->hbalock, iflag); 1876 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1877 list_for_each_entry_safe(ctxp, next_ctxp, 1878 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1879 list) { 1880 if (ctxp->oxid != oxid || ctxp->sid != sid) 1881 continue; 1882 1883 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1884 1885 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1886 spin_unlock_irqrestore(&phba->hbalock, iflag); 1887 1888 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1889 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1890 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1891 1892 lpfc_nvmeio_data(phba, 1893 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1894 xri, raw_smp_processor_id(), 0); 1895 1896 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1897 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1898 1899 rsp = &ctxp->hdlrctx.fcp_req; 1900 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1901 1902 /* Respond with BA_ACC accordingly */ 1903 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1904 return 0; 1905 } 1906 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1907 spin_unlock_irqrestore(&phba->hbalock, iflag); 1908 1909 /* check the wait list */ 1910 if (phba->sli4_hba.nvmet_io_wait_cnt) { 1911 struct rqb_dmabuf *nvmebuf; 1912 struct fc_frame_header *fc_hdr_tmp; 1913 u32 sid_tmp; 1914 u16 oxid_tmp; 1915 bool found = false; 1916 1917 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1918 1919 /* match by oxid and s_id */ 1920 list_for_each_entry(nvmebuf, 1921 &phba->sli4_hba.lpfc_nvmet_io_wait_list, 1922 hbuf.list) { 1923 fc_hdr_tmp = (struct fc_frame_header *) 1924 (nvmebuf->hbuf.virt); 1925 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id); 1926 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp); 1927 if (oxid_tmp != oxid || sid_tmp != sid) 1928 continue; 1929 1930 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1931 "6321 NVMET Rcv ABTS oxid x%x from x%x " 1932 "is waiting for a ctxp\n", 1933 oxid, sid); 1934 1935 list_del_init(&nvmebuf->hbuf.list); 1936 phba->sli4_hba.nvmet_io_wait_cnt--; 1937 found = true; 1938 break; 1939 } 1940 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1941 iflag); 1942 1943 /* free buffer since already posted a new DMA buffer to RQ */ 1944 if (found) { 1945 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1946 /* Respond with BA_ACC accordingly */ 1947 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1948 return 0; 1949 } 1950 } 1951 1952 /* check active list */ 1953 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid); 1954 if (ctxp) { 1955 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1956 1957 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1958 ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP); 1959 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1960 1961 lpfc_nvmeio_data(phba, 1962 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1963 xri, raw_smp_processor_id(), 0); 1964 1965 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1966 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x " 1967 "flag x%x state x%x\n", 1968 ctxp->oxid, xri, ctxp->flag, ctxp->state); 1969 1970 if (ctxp->flag & LPFC_NVME_TNOTIFY) { 1971 /* Notify the transport */ 1972 nvmet_fc_rcv_fcp_abort(phba->targetport, 1973 &ctxp->hdlrctx.fcp_req); 1974 } else { 1975 cancel_work_sync(&ctxp->ctxbuf->defer_work); 1976 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1977 lpfc_nvmet_defer_release(phba, ctxp); 1978 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1979 } 1980 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1981 ctxp->oxid); 1982 1983 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1984 return 0; 1985 } 1986 1987 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n", 1988 oxid, raw_smp_processor_id(), 1); 1989 1990 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1991 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid); 1992 1993 /* Respond with BA_RJT accordingly */ 1994 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 1995 #endif 1996 return 0; 1997 } 1998 1999 static void 2000 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, 2001 struct lpfc_async_xchg_ctx *ctxp) 2002 { 2003 struct lpfc_sli_ring *pring; 2004 struct lpfc_iocbq *nvmewqeq; 2005 struct lpfc_iocbq *next_nvmewqeq; 2006 unsigned long iflags; 2007 struct lpfc_wcqe_complete wcqe; 2008 struct lpfc_wcqe_complete *wcqep; 2009 2010 pring = wq->pring; 2011 wcqep = &wcqe; 2012 2013 /* Fake an ABORT error code back to cmpl routine */ 2014 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); 2015 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); 2016 wcqep->parameter = IOERR_ABORT_REQUESTED; 2017 2018 spin_lock_irqsave(&pring->ring_lock, iflags); 2019 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, 2020 &wq->wqfull_list, list) { 2021 if (ctxp) { 2022 /* Checking for a specific IO to flush */ 2023 if (nvmewqeq->context2 == ctxp) { 2024 list_del(&nvmewqeq->list); 2025 spin_unlock_irqrestore(&pring->ring_lock, 2026 iflags); 2027 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, 2028 wcqep); 2029 return; 2030 } 2031 continue; 2032 } else { 2033 /* Flush all IOs */ 2034 list_del(&nvmewqeq->list); 2035 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2036 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep); 2037 spin_lock_irqsave(&pring->ring_lock, iflags); 2038 } 2039 } 2040 if (!ctxp) 2041 wq->q_flag &= ~HBA_NVMET_WQFULL; 2042 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2043 } 2044 2045 void 2046 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, 2047 struct lpfc_queue *wq) 2048 { 2049 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2050 struct lpfc_sli_ring *pring; 2051 struct lpfc_iocbq *nvmewqeq; 2052 struct lpfc_async_xchg_ctx *ctxp; 2053 unsigned long iflags; 2054 int rc; 2055 2056 /* 2057 * Some WQE slots are available, so try to re-issue anything 2058 * on the WQ wqfull_list. 2059 */ 2060 pring = wq->pring; 2061 spin_lock_irqsave(&pring->ring_lock, iflags); 2062 while (!list_empty(&wq->wqfull_list)) { 2063 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, 2064 list); 2065 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2066 ctxp = (struct lpfc_async_xchg_ctx *)nvmewqeq->context2; 2067 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 2068 spin_lock_irqsave(&pring->ring_lock, iflags); 2069 if (rc == -EBUSY) { 2070 /* WQ was full again, so put it back on the list */ 2071 list_add(&nvmewqeq->list, &wq->wqfull_list); 2072 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2073 return; 2074 } 2075 if (rc == WQE_SUCCESS) { 2076 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2077 if (ctxp->ts_cmd_nvme) { 2078 if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP) 2079 ctxp->ts_status_wqput = ktime_get_ns(); 2080 else 2081 ctxp->ts_data_wqput = ktime_get_ns(); 2082 } 2083 #endif 2084 } else { 2085 WARN_ON(rc); 2086 } 2087 } 2088 wq->q_flag &= ~HBA_NVMET_WQFULL; 2089 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2090 2091 #endif 2092 } 2093 2094 void 2095 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 2096 { 2097 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2098 struct lpfc_nvmet_tgtport *tgtp; 2099 struct lpfc_queue *wq; 2100 uint32_t qidx; 2101 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp); 2102 2103 if (phba->nvmet_support == 0) 2104 return; 2105 if (phba->targetport) { 2106 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2107 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 2108 wq = phba->sli4_hba.hdwq[qidx].io_wq; 2109 lpfc_nvmet_wqfull_flush(phba, wq, NULL); 2110 } 2111 tgtp->tport_unreg_cmp = &tport_unreg_cmp; 2112 nvmet_fc_unregister_targetport(phba->targetport); 2113 if (!wait_for_completion_timeout(&tport_unreg_cmp, 2114 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO))) 2115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2116 "6179 Unreg targetport x%px timeout " 2117 "reached.\n", phba->targetport); 2118 lpfc_nvmet_cleanup_io_context(phba); 2119 } 2120 phba->targetport = NULL; 2121 #endif 2122 } 2123 2124 /** 2125 * lpfc_nvmet_handle_lsreq - Process an NVME LS request 2126 * @phba: pointer to lpfc hba data structure. 2127 * @axchg: pointer to exchange context for the NVME LS request 2128 * 2129 * This routine is used for processing an asychronously received NVME LS 2130 * request. Any remaining validation is done and the LS is then forwarded 2131 * to the nvmet-fc transport via nvmet_fc_rcv_ls_req(). 2132 * 2133 * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing) 2134 * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done. 2135 * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg. 2136 * 2137 * Returns 0 if LS was handled and delivered to the transport 2138 * Returns 1 if LS failed to be handled and should be dropped 2139 */ 2140 int 2141 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba, 2142 struct lpfc_async_xchg_ctx *axchg) 2143 { 2144 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2145 struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private; 2146 uint32_t *payload = axchg->payload; 2147 int rc; 2148 2149 atomic_inc(&tgtp->rcv_ls_req_in); 2150 2151 /* 2152 * Driver passes the ndlp as the hosthandle argument allowing 2153 * the transport to generate LS requests for any associateions 2154 * that are created. 2155 */ 2156 rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp, 2157 axchg->payload, axchg->size); 2158 2159 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2160 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 2161 "%08x %08x %08x\n", axchg->size, rc, 2162 *payload, *(payload+1), *(payload+2), 2163 *(payload+3), *(payload+4), *(payload+5)); 2164 2165 if (!rc) { 2166 atomic_inc(&tgtp->rcv_ls_req_out); 2167 return 0; 2168 } 2169 2170 atomic_inc(&tgtp->rcv_ls_req_drop); 2171 #endif 2172 return 1; 2173 } 2174 2175 static void 2176 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf) 2177 { 2178 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2179 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 2180 struct lpfc_hba *phba = ctxp->phba; 2181 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 2182 struct lpfc_nvmet_tgtport *tgtp; 2183 uint32_t *payload, qno; 2184 uint32_t rc; 2185 unsigned long iflags; 2186 2187 if (!nvmebuf) { 2188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2189 "6159 process_rcv_fcp_req, nvmebuf is NULL, " 2190 "oxid: x%x flg: x%x state: x%x\n", 2191 ctxp->oxid, ctxp->flag, ctxp->state); 2192 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2193 lpfc_nvmet_defer_release(phba, ctxp); 2194 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2195 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 2196 ctxp->oxid); 2197 return; 2198 } 2199 2200 if (ctxp->flag & LPFC_NVME_ABTS_RCV) { 2201 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2202 "6324 IO oxid x%x aborted\n", 2203 ctxp->oxid); 2204 return; 2205 } 2206 2207 payload = (uint32_t *)(nvmebuf->dbuf.virt); 2208 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2209 ctxp->flag |= LPFC_NVME_TNOTIFY; 2210 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2211 if (ctxp->ts_isr_cmd) 2212 ctxp->ts_cmd_nvme = ktime_get_ns(); 2213 #endif 2214 /* 2215 * The calling sequence should be: 2216 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 2217 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 2218 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 2219 * the NVME command / FC header is stored. 2220 * A buffer has already been reposted for this IO, so just free 2221 * the nvmebuf. 2222 */ 2223 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req, 2224 payload, ctxp->size); 2225 /* Process FCP command */ 2226 if (rc == 0) { 2227 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2228 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2229 if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) || 2230 (nvmebuf != ctxp->rqb_buffer)) { 2231 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2232 return; 2233 } 2234 ctxp->rqb_buffer = NULL; 2235 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2236 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2237 return; 2238 } 2239 2240 /* Processing of FCP command is deferred */ 2241 if (rc == -EOVERFLOW) { 2242 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d " 2243 "from %06x\n", 2244 ctxp->oxid, ctxp->size, ctxp->sid); 2245 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2246 atomic_inc(&tgtp->defer_fod); 2247 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2248 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 2249 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2250 return; 2251 } 2252 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2253 /* 2254 * Post a replacement DMA buffer to RQ and defer 2255 * freeing rcv buffer till .defer_rcv callback 2256 */ 2257 qno = nvmebuf->idx; 2258 lpfc_post_rq_buffer( 2259 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2260 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2261 return; 2262 } 2263 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 2264 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2266 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 2267 ctxp->oxid, rc, 2268 atomic_read(&tgtp->rcv_fcp_cmd_in), 2269 atomic_read(&tgtp->rcv_fcp_cmd_out), 2270 atomic_read(&tgtp->xmt_fcp_release)); 2271 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 2272 ctxp->oxid, ctxp->size, ctxp->sid); 2273 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2274 lpfc_nvmet_defer_release(phba, ctxp); 2275 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2276 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 2277 #endif 2278 } 2279 2280 static void 2281 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work) 2282 { 2283 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2284 struct lpfc_nvmet_ctxbuf *ctx_buf = 2285 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work); 2286 2287 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2288 #endif 2289 } 2290 2291 static struct lpfc_nvmet_ctxbuf * 2292 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 2293 struct lpfc_nvmet_ctx_info *current_infop) 2294 { 2295 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2296 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 2297 struct lpfc_nvmet_ctx_info *get_infop; 2298 int i; 2299 2300 /* 2301 * The current_infop for the MRQ a NVME command IU was received 2302 * on is empty. Our goal is to replenish this MRQs context 2303 * list from a another CPUs. 2304 * 2305 * First we need to pick a context list to start looking on. 2306 * nvmet_ctx_start_cpu has available context the last time 2307 * we needed to replenish this CPU where nvmet_ctx_next_cpu 2308 * is just the next sequential CPU for this MRQ. 2309 */ 2310 if (current_infop->nvmet_ctx_start_cpu) 2311 get_infop = current_infop->nvmet_ctx_start_cpu; 2312 else 2313 get_infop = current_infop->nvmet_ctx_next_cpu; 2314 2315 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) { 2316 if (get_infop == current_infop) { 2317 get_infop = get_infop->nvmet_ctx_next_cpu; 2318 continue; 2319 } 2320 spin_lock(&get_infop->nvmet_ctx_list_lock); 2321 2322 /* Just take the entire context list, if there are any */ 2323 if (get_infop->nvmet_ctx_list_cnt) { 2324 list_splice_init(&get_infop->nvmet_ctx_list, 2325 ¤t_infop->nvmet_ctx_list); 2326 current_infop->nvmet_ctx_list_cnt = 2327 get_infop->nvmet_ctx_list_cnt - 1; 2328 get_infop->nvmet_ctx_list_cnt = 0; 2329 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2330 2331 current_infop->nvmet_ctx_start_cpu = get_infop; 2332 list_remove_head(¤t_infop->nvmet_ctx_list, 2333 ctx_buf, struct lpfc_nvmet_ctxbuf, 2334 list); 2335 return ctx_buf; 2336 } 2337 2338 /* Otherwise, move on to the next CPU for this MRQ */ 2339 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2340 get_infop = get_infop->nvmet_ctx_next_cpu; 2341 } 2342 2343 #endif 2344 /* Nothing found, all contexts for the MRQ are in-flight */ 2345 return NULL; 2346 } 2347 2348 /** 2349 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 2350 * @phba: pointer to lpfc hba data structure. 2351 * @idx: relative index of MRQ vector 2352 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 2353 * @isr_timestamp: in jiffies. 2354 * @cqflag: cq processing information regarding workload. 2355 * 2356 * This routine is used for processing the WQE associated with a unsolicited 2357 * event. It first determines whether there is an existing ndlp that matches 2358 * the DID from the unsolicited WQE. If not, it will create a new one with 2359 * the DID from the unsolicited WQE. The ELS command from the unsolicited 2360 * WQE is then used to invoke the proper routine and to set up proper state 2361 * of the discovery state machine. 2362 **/ 2363 static void 2364 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 2365 uint32_t idx, 2366 struct rqb_dmabuf *nvmebuf, 2367 uint64_t isr_timestamp, 2368 uint8_t cqflag) 2369 { 2370 struct lpfc_async_xchg_ctx *ctxp; 2371 struct lpfc_nvmet_tgtport *tgtp; 2372 struct fc_frame_header *fc_hdr; 2373 struct lpfc_nvmet_ctxbuf *ctx_buf; 2374 struct lpfc_nvmet_ctx_info *current_infop; 2375 uint32_t size, oxid, sid, qno; 2376 unsigned long iflag; 2377 int current_cpu; 2378 2379 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2380 return; 2381 2382 ctx_buf = NULL; 2383 if (!nvmebuf || !phba->targetport) { 2384 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2385 "6157 NVMET FCP Drop IO\n"); 2386 if (nvmebuf) 2387 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2388 return; 2389 } 2390 2391 /* 2392 * Get a pointer to the context list for this MRQ based on 2393 * the CPU this MRQ IRQ is associated with. If the CPU association 2394 * changes from our initial assumption, the context list could 2395 * be empty, thus it would need to be replenished with the 2396 * context list from another CPU for this MRQ. 2397 */ 2398 current_cpu = raw_smp_processor_id(); 2399 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 2400 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 2401 if (current_infop->nvmet_ctx_list_cnt) { 2402 list_remove_head(¤t_infop->nvmet_ctx_list, 2403 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 2404 current_infop->nvmet_ctx_list_cnt--; 2405 } else { 2406 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 2407 } 2408 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 2409 2410 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 2411 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2412 size = nvmebuf->bytes_recv; 2413 2414 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2415 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 2416 this_cpu_inc(phba->sli4_hba.c_stat->rcv_io); 2417 if (idx != current_cpu) 2418 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2419 "6703 CPU Check rcv: " 2420 "cpu %d expect %d\n", 2421 current_cpu, idx); 2422 } 2423 #endif 2424 2425 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 2426 oxid, size, raw_smp_processor_id()); 2427 2428 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2429 2430 if (!ctx_buf) { 2431 /* Queue this NVME IO to process later */ 2432 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 2433 list_add_tail(&nvmebuf->hbuf.list, 2434 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 2435 phba->sli4_hba.nvmet_io_wait_cnt++; 2436 phba->sli4_hba.nvmet_io_wait_total++; 2437 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 2438 iflag); 2439 2440 /* Post a brand new DMA buffer to RQ */ 2441 qno = nvmebuf->idx; 2442 lpfc_post_rq_buffer( 2443 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2444 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2445 2446 atomic_inc(&tgtp->defer_ctx); 2447 return; 2448 } 2449 2450 sid = sli4_sid_from_fc_hdr(fc_hdr); 2451 2452 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 2453 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 2454 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list); 2455 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 2456 if (ctxp->state != LPFC_NVME_STE_FREE) { 2457 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2458 "6414 NVMET Context corrupt %d %d oxid x%x\n", 2459 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 2460 } 2461 ctxp->wqeq = NULL; 2462 ctxp->offset = 0; 2463 ctxp->phba = phba; 2464 ctxp->size = size; 2465 ctxp->oxid = oxid; 2466 ctxp->sid = sid; 2467 ctxp->idx = idx; 2468 ctxp->state = LPFC_NVME_STE_RCV; 2469 ctxp->entry_cnt = 1; 2470 ctxp->flag = 0; 2471 ctxp->ctxbuf = ctx_buf; 2472 ctxp->rqb_buffer = (void *)nvmebuf; 2473 ctxp->hdwq = NULL; 2474 spin_lock_init(&ctxp->ctxlock); 2475 2476 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2477 if (isr_timestamp) 2478 ctxp->ts_isr_cmd = isr_timestamp; 2479 ctxp->ts_cmd_nvme = 0; 2480 ctxp->ts_nvme_data = 0; 2481 ctxp->ts_data_wqput = 0; 2482 ctxp->ts_isr_data = 0; 2483 ctxp->ts_data_nvme = 0; 2484 ctxp->ts_nvme_status = 0; 2485 ctxp->ts_status_wqput = 0; 2486 ctxp->ts_isr_status = 0; 2487 ctxp->ts_status_nvme = 0; 2488 #endif 2489 2490 atomic_inc(&tgtp->rcv_fcp_cmd_in); 2491 /* check for cq processing load */ 2492 if (!cqflag) { 2493 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2494 return; 2495 } 2496 2497 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 2498 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2500 "6325 Unable to queue work for oxid x%x. " 2501 "FCP Drop IO [x%x x%x x%x]\n", 2502 ctxp->oxid, 2503 atomic_read(&tgtp->rcv_fcp_cmd_in), 2504 atomic_read(&tgtp->rcv_fcp_cmd_out), 2505 atomic_read(&tgtp->xmt_fcp_release)); 2506 2507 spin_lock_irqsave(&ctxp->ctxlock, iflag); 2508 lpfc_nvmet_defer_release(phba, ctxp); 2509 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 2510 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 2511 } 2512 } 2513 2514 /** 2515 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 2516 * @phba: pointer to lpfc hba data structure. 2517 * @idx: relative index of MRQ vector 2518 * @nvmebuf: pointer to received nvme data structure. 2519 * @isr_timestamp: in jiffies. 2520 * @cqflag: cq processing information regarding workload. 2521 * 2522 * This routine is used to process an unsolicited event received from a SLI 2523 * (Service Level Interface) ring. The actual processing of the data buffer 2524 * associated with the unsolicited event is done by invoking the routine 2525 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 2526 * SLI RQ on which the unsolicited event was received. 2527 **/ 2528 void 2529 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 2530 uint32_t idx, 2531 struct rqb_dmabuf *nvmebuf, 2532 uint64_t isr_timestamp, 2533 uint8_t cqflag) 2534 { 2535 if (!nvmebuf) { 2536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2537 "3167 NVMET FCP Drop IO\n"); 2538 return; 2539 } 2540 if (phba->nvmet_support == 0) { 2541 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2542 return; 2543 } 2544 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag); 2545 } 2546 2547 /** 2548 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 2549 * @phba: pointer to a host N_Port data structure. 2550 * @ctxp: Context info for NVME LS Request 2551 * @rspbuf: DMA buffer of NVME command. 2552 * @rspsize: size of the NVME command. 2553 * 2554 * This routine is used for allocating a lpfc-WQE data structure from 2555 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 2556 * passed into the routine for discovery state machine to issue an Extended 2557 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 2558 * and preparation routine that is used by all the discovery state machine 2559 * routines and the NVME command-specific fields will be later set up by 2560 * the individual discovery machine routines after calling this routine 2561 * allocating and preparing a generic WQE data structure. It fills in the 2562 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 2563 * payload and response payload (if expected). The reference count on the 2564 * ndlp is incremented by 1 and the reference to the ndlp is put into 2565 * context1 of the WQE data structure for this WQE to hold the ndlp 2566 * reference for the command's callback function to access later. 2567 * 2568 * Return code 2569 * Pointer to the newly allocated/prepared nvme wqe data structure 2570 * NULL - when nvme wqe data structure allocation/preparation failed 2571 **/ 2572 static struct lpfc_iocbq * 2573 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 2574 struct lpfc_async_xchg_ctx *ctxp, 2575 dma_addr_t rspbuf, uint16_t rspsize) 2576 { 2577 struct lpfc_nodelist *ndlp; 2578 struct lpfc_iocbq *nvmewqe; 2579 union lpfc_wqe128 *wqe; 2580 2581 if (!lpfc_is_link_up(phba)) { 2582 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2583 "6104 NVMET prep LS wqe: link err: " 2584 "NPORT x%x oxid:x%x ste %d\n", 2585 ctxp->sid, ctxp->oxid, ctxp->state); 2586 return NULL; 2587 } 2588 2589 /* Allocate buffer for command wqe */ 2590 nvmewqe = lpfc_sli_get_iocbq(phba); 2591 if (nvmewqe == NULL) { 2592 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2593 "6105 NVMET prep LS wqe: No WQE: " 2594 "NPORT x%x oxid x%x ste %d\n", 2595 ctxp->sid, ctxp->oxid, ctxp->state); 2596 return NULL; 2597 } 2598 2599 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2600 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2601 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2602 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2603 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2604 "6106 NVMET prep LS wqe: No ndlp: " 2605 "NPORT x%x oxid x%x ste %d\n", 2606 ctxp->sid, ctxp->oxid, ctxp->state); 2607 goto nvme_wqe_free_wqeq_exit; 2608 } 2609 ctxp->wqeq = nvmewqe; 2610 2611 /* prevent preparing wqe with NULL ndlp reference */ 2612 nvmewqe->context1 = lpfc_nlp_get(ndlp); 2613 if (nvmewqe->context1 == NULL) 2614 goto nvme_wqe_free_wqeq_exit; 2615 nvmewqe->context2 = ctxp; 2616 2617 wqe = &nvmewqe->wqe; 2618 memset(wqe, 0, sizeof(union lpfc_wqe)); 2619 2620 /* Words 0 - 2 */ 2621 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2622 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 2623 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 2624 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 2625 2626 /* Word 3 */ 2627 2628 /* Word 4 */ 2629 2630 /* Word 5 */ 2631 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 2632 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 2633 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 2634 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 2635 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 2636 2637 /* Word 6 */ 2638 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 2639 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2640 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 2641 2642 /* Word 7 */ 2643 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 2644 CMD_XMIT_SEQUENCE64_WQE); 2645 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 2646 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 2647 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 2648 2649 /* Word 8 */ 2650 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 2651 2652 /* Word 9 */ 2653 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 2654 /* Needs to be set by caller */ 2655 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 2656 2657 /* Word 10 */ 2658 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 2659 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2660 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 2661 LPFC_WQE_LENLOC_WORD12); 2662 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 2663 2664 /* Word 11 */ 2665 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 2666 LPFC_WQE_CQ_ID_DEFAULT); 2667 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 2668 OTHER_COMMAND); 2669 2670 /* Word 12 */ 2671 wqe->xmit_sequence.xmit_len = rspsize; 2672 2673 nvmewqe->retry = 1; 2674 nvmewqe->vport = phba->pport; 2675 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2676 nvmewqe->iocb_flag |= LPFC_IO_NVME_LS; 2677 2678 /* Xmit NVMET response to remote NPORT <did> */ 2679 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2680 "6039 Xmit NVMET LS response to remote " 2681 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 2682 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 2683 rspsize); 2684 return nvmewqe; 2685 2686 nvme_wqe_free_wqeq_exit: 2687 nvmewqe->context2 = NULL; 2688 nvmewqe->context3 = NULL; 2689 lpfc_sli_release_iocbq(phba, nvmewqe); 2690 return NULL; 2691 } 2692 2693 2694 static struct lpfc_iocbq * 2695 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 2696 struct lpfc_async_xchg_ctx *ctxp) 2697 { 2698 struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req; 2699 struct lpfc_nvmet_tgtport *tgtp; 2700 struct sli4_sge *sgl; 2701 struct lpfc_nodelist *ndlp; 2702 struct lpfc_iocbq *nvmewqe; 2703 struct scatterlist *sgel; 2704 union lpfc_wqe128 *wqe; 2705 struct ulp_bde64 *bde; 2706 dma_addr_t physaddr; 2707 int i, cnt, nsegs; 2708 int do_pbde; 2709 int xc = 1; 2710 2711 if (!lpfc_is_link_up(phba)) { 2712 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2713 "6107 NVMET prep FCP wqe: link err:" 2714 "NPORT x%x oxid x%x ste %d\n", 2715 ctxp->sid, ctxp->oxid, ctxp->state); 2716 return NULL; 2717 } 2718 2719 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2720 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2721 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2722 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2723 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2724 "6108 NVMET prep FCP wqe: no ndlp: " 2725 "NPORT x%x oxid x%x ste %d\n", 2726 ctxp->sid, ctxp->oxid, ctxp->state); 2727 return NULL; 2728 } 2729 2730 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { 2731 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2732 "6109 NVMET prep FCP wqe: seg cnt err: " 2733 "NPORT x%x oxid x%x ste %d cnt %d\n", 2734 ctxp->sid, ctxp->oxid, ctxp->state, 2735 phba->cfg_nvme_seg_cnt); 2736 return NULL; 2737 } 2738 nsegs = rsp->sg_cnt; 2739 2740 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2741 nvmewqe = ctxp->wqeq; 2742 if (nvmewqe == NULL) { 2743 /* Allocate buffer for command wqe */ 2744 nvmewqe = ctxp->ctxbuf->iocbq; 2745 if (nvmewqe == NULL) { 2746 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2747 "6110 NVMET prep FCP wqe: No " 2748 "WQE: NPORT x%x oxid x%x ste %d\n", 2749 ctxp->sid, ctxp->oxid, ctxp->state); 2750 return NULL; 2751 } 2752 ctxp->wqeq = nvmewqe; 2753 xc = 0; /* create new XRI */ 2754 nvmewqe->sli4_lxritag = NO_XRI; 2755 nvmewqe->sli4_xritag = NO_XRI; 2756 } 2757 2758 /* Sanity check */ 2759 if (((ctxp->state == LPFC_NVME_STE_RCV) && 2760 (ctxp->entry_cnt == 1)) || 2761 (ctxp->state == LPFC_NVME_STE_DATA)) { 2762 wqe = &nvmewqe->wqe; 2763 } else { 2764 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2765 "6111 Wrong state NVMET FCP: %d cnt %d\n", 2766 ctxp->state, ctxp->entry_cnt); 2767 return NULL; 2768 } 2769 2770 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 2771 switch (rsp->op) { 2772 case NVMET_FCOP_READDATA: 2773 case NVMET_FCOP_READDATA_RSP: 2774 /* From the tsend template, initialize words 7 - 11 */ 2775 memcpy(&wqe->words[7], 2776 &lpfc_tsend_cmd_template.words[7], 2777 sizeof(uint32_t) * 5); 2778 2779 /* Words 0 - 2 : The first sg segment */ 2780 sgel = &rsp->sg[0]; 2781 physaddr = sg_dma_address(sgel); 2782 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2783 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 2784 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 2785 wqe->fcp_tsend.bde.addrHigh = 2786 cpu_to_le32(putPaddrHigh(physaddr)); 2787 2788 /* Word 3 */ 2789 wqe->fcp_tsend.payload_offset_len = 0; 2790 2791 /* Word 4 */ 2792 wqe->fcp_tsend.relative_offset = ctxp->offset; 2793 2794 /* Word 5 */ 2795 wqe->fcp_tsend.reserved = 0; 2796 2797 /* Word 6 */ 2798 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2799 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2800 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2801 nvmewqe->sli4_xritag); 2802 2803 /* Word 7 - set ar later */ 2804 2805 /* Word 8 */ 2806 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2807 2808 /* Word 9 */ 2809 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2810 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2811 2812 /* Word 10 - set wqes later, in template xc=1 */ 2813 if (!xc) 2814 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); 2815 2816 /* Word 11 - set sup, irsp, irsplen later */ 2817 do_pbde = 0; 2818 2819 /* Word 12 */ 2820 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2821 2822 /* Setup 2 SKIP SGEs */ 2823 sgl->addr_hi = 0; 2824 sgl->addr_lo = 0; 2825 sgl->word2 = 0; 2826 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2827 sgl->word2 = cpu_to_le32(sgl->word2); 2828 sgl->sge_len = 0; 2829 sgl++; 2830 sgl->addr_hi = 0; 2831 sgl->addr_lo = 0; 2832 sgl->word2 = 0; 2833 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2834 sgl->word2 = cpu_to_le32(sgl->word2); 2835 sgl->sge_len = 0; 2836 sgl++; 2837 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2838 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2839 2840 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2841 2842 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2843 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP) 2844 bf_set(wqe_sup, 2845 &wqe->fcp_tsend.wqe_com, 1); 2846 } else { 2847 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2848 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2849 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2850 ((rsp->rsplen >> 2) - 1)); 2851 memcpy(&wqe->words[16], rsp->rspaddr, 2852 rsp->rsplen); 2853 } 2854 } else { 2855 atomic_inc(&tgtp->xmt_fcp_read); 2856 2857 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2858 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2859 } 2860 break; 2861 2862 case NVMET_FCOP_WRITEDATA: 2863 /* From the treceive template, initialize words 3 - 11 */ 2864 memcpy(&wqe->words[3], 2865 &lpfc_treceive_cmd_template.words[3], 2866 sizeof(uint32_t) * 9); 2867 2868 /* Words 0 - 2 : First SGE is skipped, set invalid BDE type */ 2869 wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP; 2870 wqe->fcp_treceive.bde.tus.f.bdeSize = 0; 2871 wqe->fcp_treceive.bde.addrLow = 0; 2872 wqe->fcp_treceive.bde.addrHigh = 0; 2873 2874 /* Word 4 */ 2875 wqe->fcp_treceive.relative_offset = ctxp->offset; 2876 2877 /* Word 6 */ 2878 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2879 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2880 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2881 nvmewqe->sli4_xritag); 2882 2883 /* Word 7 */ 2884 2885 /* Word 8 */ 2886 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2887 2888 /* Word 9 */ 2889 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2890 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2891 2892 /* Word 10 - in template xc=1 */ 2893 if (!xc) 2894 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); 2895 2896 /* Word 11 - set pbde later */ 2897 if (phba->cfg_enable_pbde) { 2898 do_pbde = 1; 2899 } else { 2900 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); 2901 do_pbde = 0; 2902 } 2903 2904 /* Word 12 */ 2905 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2906 2907 /* Setup 2 SKIP SGEs */ 2908 sgl->addr_hi = 0; 2909 sgl->addr_lo = 0; 2910 sgl->word2 = 0; 2911 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2912 sgl->word2 = cpu_to_le32(sgl->word2); 2913 sgl->sge_len = 0; 2914 sgl++; 2915 sgl->addr_hi = 0; 2916 sgl->addr_lo = 0; 2917 sgl->word2 = 0; 2918 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2919 sgl->word2 = cpu_to_le32(sgl->word2); 2920 sgl->sge_len = 0; 2921 sgl++; 2922 atomic_inc(&tgtp->xmt_fcp_write); 2923 break; 2924 2925 case NVMET_FCOP_RSP: 2926 /* From the treceive template, initialize words 4 - 11 */ 2927 memcpy(&wqe->words[4], 2928 &lpfc_trsp_cmd_template.words[4], 2929 sizeof(uint32_t) * 8); 2930 2931 /* Words 0 - 2 */ 2932 physaddr = rsp->rspdma; 2933 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2934 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2935 wqe->fcp_trsp.bde.addrLow = 2936 cpu_to_le32(putPaddrLow(physaddr)); 2937 wqe->fcp_trsp.bde.addrHigh = 2938 cpu_to_le32(putPaddrHigh(physaddr)); 2939 2940 /* Word 3 */ 2941 wqe->fcp_trsp.response_len = rsp->rsplen; 2942 2943 /* Word 6 */ 2944 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2945 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2946 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2947 nvmewqe->sli4_xritag); 2948 2949 /* Word 7 */ 2950 2951 /* Word 8 */ 2952 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2953 2954 /* Word 9 */ 2955 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2956 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2957 2958 /* Word 10 */ 2959 if (xc) 2960 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); 2961 2962 /* Word 11 */ 2963 /* In template wqes=0 irsp=0 irsplen=0 - good response */ 2964 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { 2965 /* Bad response - embed it */ 2966 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2967 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2968 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2969 ((rsp->rsplen >> 2) - 1)); 2970 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2971 } 2972 do_pbde = 0; 2973 2974 /* Word 12 */ 2975 wqe->fcp_trsp.rsvd_12_15[0] = 0; 2976 2977 /* Use rspbuf, NOT sg list */ 2978 nsegs = 0; 2979 sgl->word2 = 0; 2980 atomic_inc(&tgtp->xmt_fcp_rsp); 2981 break; 2982 2983 default: 2984 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2985 "6064 Unknown Rsp Op %d\n", 2986 rsp->op); 2987 return NULL; 2988 } 2989 2990 nvmewqe->retry = 1; 2991 nvmewqe->vport = phba->pport; 2992 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2993 nvmewqe->context1 = ndlp; 2994 2995 for_each_sg(rsp->sg, sgel, nsegs, i) { 2996 physaddr = sg_dma_address(sgel); 2997 cnt = sg_dma_len(sgel); 2998 sgl->addr_hi = putPaddrHigh(physaddr); 2999 sgl->addr_lo = putPaddrLow(physaddr); 3000 sgl->word2 = 0; 3001 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 3002 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 3003 if ((i+1) == rsp->sg_cnt) 3004 bf_set(lpfc_sli4_sge_last, sgl, 1); 3005 sgl->word2 = cpu_to_le32(sgl->word2); 3006 sgl->sge_len = cpu_to_le32(cnt); 3007 if (i == 0) { 3008 bde = (struct ulp_bde64 *)&wqe->words[13]; 3009 if (do_pbde) { 3010 /* Words 13-15 (PBDE) */ 3011 bde->addrLow = sgl->addr_lo; 3012 bde->addrHigh = sgl->addr_hi; 3013 bde->tus.f.bdeSize = 3014 le32_to_cpu(sgl->sge_len); 3015 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 3016 bde->tus.w = cpu_to_le32(bde->tus.w); 3017 } else { 3018 memset(bde, 0, sizeof(struct ulp_bde64)); 3019 } 3020 } 3021 sgl++; 3022 ctxp->offset += cnt; 3023 } 3024 ctxp->state = LPFC_NVME_STE_DATA; 3025 ctxp->entry_cnt++; 3026 return nvmewqe; 3027 } 3028 3029 /** 3030 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 3031 * @phba: Pointer to HBA context object. 3032 * @cmdwqe: Pointer to driver command WQE object. 3033 * @wcqe: Pointer to driver response CQE object. 3034 * 3035 * The function is called from SLI ring event handler with no 3036 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3037 * The function frees memory resources used for the NVME commands. 3038 **/ 3039 static void 3040 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3041 struct lpfc_wcqe_complete *wcqe) 3042 { 3043 struct lpfc_async_xchg_ctx *ctxp; 3044 struct lpfc_nvmet_tgtport *tgtp; 3045 uint32_t result; 3046 unsigned long flags; 3047 bool released = false; 3048 3049 ctxp = cmdwqe->context2; 3050 result = wcqe->parameter; 3051 3052 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3053 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3054 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3055 3056 spin_lock_irqsave(&ctxp->ctxlock, flags); 3057 ctxp->state = LPFC_NVME_STE_DONE; 3058 3059 /* Check if we already received a free context call 3060 * and we have completed processing an abort situation. 3061 */ 3062 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3063 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3064 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3065 list_del_init(&ctxp->list); 3066 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3067 released = true; 3068 } 3069 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3070 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3071 atomic_inc(&tgtp->xmt_abort_rsp); 3072 3073 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3074 "6165 ABORT cmpl: oxid x%x flg x%x (%d) " 3075 "WCQE: %08x %08x %08x %08x\n", 3076 ctxp->oxid, ctxp->flag, released, 3077 wcqe->word0, wcqe->total_data_placed, 3078 result, wcqe->word3); 3079 3080 cmdwqe->context2 = NULL; 3081 cmdwqe->context3 = NULL; 3082 /* 3083 * if transport has released ctx, then can reuse it. Otherwise, 3084 * will be recycled by transport release call. 3085 */ 3086 if (released) 3087 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3088 3089 /* This is the iocbq for the abort, not the command */ 3090 lpfc_sli_release_iocbq(phba, cmdwqe); 3091 3092 /* Since iaab/iaar are NOT set, there is no work left. 3093 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3094 * should have been called already. 3095 */ 3096 } 3097 3098 /** 3099 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 3100 * @phba: Pointer to HBA context object. 3101 * @cmdwqe: Pointer to driver command WQE object. 3102 * @wcqe: Pointer to driver response CQE object. 3103 * 3104 * The function is called from SLI ring event handler with no 3105 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3106 * The function frees memory resources used for the NVME commands. 3107 **/ 3108 static void 3109 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3110 struct lpfc_wcqe_complete *wcqe) 3111 { 3112 struct lpfc_async_xchg_ctx *ctxp; 3113 struct lpfc_nvmet_tgtport *tgtp; 3114 unsigned long flags; 3115 uint32_t result; 3116 bool released = false; 3117 3118 ctxp = cmdwqe->context2; 3119 result = wcqe->parameter; 3120 3121 if (!ctxp) { 3122 /* if context is clear, related io alrady complete */ 3123 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3124 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 3125 wcqe->word0, wcqe->total_data_placed, 3126 result, wcqe->word3); 3127 return; 3128 } 3129 3130 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3131 spin_lock_irqsave(&ctxp->ctxlock, flags); 3132 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3133 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3134 3135 /* Sanity check */ 3136 if (ctxp->state != LPFC_NVME_STE_ABORT) { 3137 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3138 "6112 ABTS Wrong state:%d oxid x%x\n", 3139 ctxp->state, ctxp->oxid); 3140 } 3141 3142 /* Check if we already received a free context call 3143 * and we have completed processing an abort situation. 3144 */ 3145 ctxp->state = LPFC_NVME_STE_DONE; 3146 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3147 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3148 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3149 list_del_init(&ctxp->list); 3150 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3151 released = true; 3152 } 3153 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3154 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3155 atomic_inc(&tgtp->xmt_abort_rsp); 3156 3157 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3158 "6316 ABTS cmpl oxid x%x flg x%x (%x) " 3159 "WCQE: %08x %08x %08x %08x\n", 3160 ctxp->oxid, ctxp->flag, released, 3161 wcqe->word0, wcqe->total_data_placed, 3162 result, wcqe->word3); 3163 3164 cmdwqe->context2 = NULL; 3165 cmdwqe->context3 = NULL; 3166 /* 3167 * if transport has released ctx, then can reuse it. Otherwise, 3168 * will be recycled by transport release call. 3169 */ 3170 if (released) 3171 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3172 3173 /* Since iaab/iaar are NOT set, there is no work left. 3174 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3175 * should have been called already. 3176 */ 3177 } 3178 3179 /** 3180 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 3181 * @phba: Pointer to HBA context object. 3182 * @cmdwqe: Pointer to driver command WQE object. 3183 * @wcqe: Pointer to driver response CQE object. 3184 * 3185 * The function is called from SLI ring event handler with no 3186 * lock held. This function is the completion handler for NVME ABTS for LS cmds 3187 * The function frees memory resources used for the NVME commands. 3188 **/ 3189 static void 3190 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3191 struct lpfc_wcqe_complete *wcqe) 3192 { 3193 struct lpfc_async_xchg_ctx *ctxp; 3194 struct lpfc_nvmet_tgtport *tgtp; 3195 uint32_t result; 3196 3197 ctxp = cmdwqe->context2; 3198 result = wcqe->parameter; 3199 3200 if (phba->nvmet_support) { 3201 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3202 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 3203 } 3204 3205 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3206 "6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n", 3207 ctxp, wcqe->word0, wcqe->total_data_placed, 3208 result, wcqe->word3); 3209 3210 if (!ctxp) { 3211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3212 "6415 NVMET LS Abort No ctx: WCQE: " 3213 "%08x %08x %08x %08x\n", 3214 wcqe->word0, wcqe->total_data_placed, 3215 result, wcqe->word3); 3216 3217 lpfc_sli_release_iocbq(phba, cmdwqe); 3218 return; 3219 } 3220 3221 if (ctxp->state != LPFC_NVME_STE_LS_ABORT) { 3222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3223 "6416 NVMET LS abort cmpl state mismatch: " 3224 "oxid x%x: %d %d\n", 3225 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3226 } 3227 3228 cmdwqe->context2 = NULL; 3229 cmdwqe->context3 = NULL; 3230 lpfc_sli_release_iocbq(phba, cmdwqe); 3231 kfree(ctxp); 3232 } 3233 3234 static int 3235 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 3236 struct lpfc_async_xchg_ctx *ctxp, 3237 uint32_t sid, uint16_t xri) 3238 { 3239 struct lpfc_nvmet_tgtport *tgtp = NULL; 3240 struct lpfc_iocbq *abts_wqeq; 3241 union lpfc_wqe128 *wqe_abts; 3242 struct lpfc_nodelist *ndlp; 3243 3244 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3245 "6067 ABTS: sid %x xri x%x/x%x\n", 3246 sid, xri, ctxp->wqeq->sli4_xritag); 3247 3248 if (phba->nvmet_support && phba->targetport) 3249 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3250 3251 ndlp = lpfc_findnode_did(phba->pport, sid); 3252 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 3253 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3254 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3255 if (tgtp) 3256 atomic_inc(&tgtp->xmt_abort_rsp_error); 3257 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3258 "6134 Drop ABTS - wrong NDLP state x%x.\n", 3259 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3260 3261 /* No failure to an ABTS request. */ 3262 return 0; 3263 } 3264 3265 abts_wqeq = ctxp->wqeq; 3266 wqe_abts = &abts_wqeq->wqe; 3267 3268 /* 3269 * Since we zero the whole WQE, we need to ensure we set the WQE fields 3270 * that were initialized in lpfc_sli4_nvmet_alloc. 3271 */ 3272 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 3273 3274 /* Word 5 */ 3275 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 3276 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 3277 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 3278 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 3279 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 3280 3281 /* Word 6 */ 3282 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 3283 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 3284 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 3285 abts_wqeq->sli4_xritag); 3286 3287 /* Word 7 */ 3288 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 3289 CMD_XMIT_SEQUENCE64_WQE); 3290 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 3291 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 3292 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 3293 3294 /* Word 8 */ 3295 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 3296 3297 /* Word 9 */ 3298 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 3299 /* Needs to be set by caller */ 3300 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 3301 3302 /* Word 10 */ 3303 bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1); 3304 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 3305 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 3306 LPFC_WQE_LENLOC_WORD12); 3307 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 3308 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 3309 3310 /* Word 11 */ 3311 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 3312 LPFC_WQE_CQ_ID_DEFAULT); 3313 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 3314 OTHER_COMMAND); 3315 3316 abts_wqeq->vport = phba->pport; 3317 abts_wqeq->context1 = ndlp; 3318 abts_wqeq->context2 = ctxp; 3319 abts_wqeq->context3 = NULL; 3320 abts_wqeq->rsvd2 = 0; 3321 /* hba_wqidx should already be setup from command we are aborting */ 3322 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 3323 abts_wqeq->iocb.ulpLe = 1; 3324 3325 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3326 "6069 Issue ABTS to xri x%x reqtag x%x\n", 3327 xri, abts_wqeq->iotag); 3328 return 1; 3329 } 3330 3331 static int 3332 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 3333 struct lpfc_async_xchg_ctx *ctxp, 3334 uint32_t sid, uint16_t xri) 3335 { 3336 struct lpfc_nvmet_tgtport *tgtp; 3337 struct lpfc_iocbq *abts_wqeq; 3338 struct lpfc_nodelist *ndlp; 3339 unsigned long flags; 3340 u8 opt; 3341 int rc; 3342 3343 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3344 if (!ctxp->wqeq) { 3345 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3346 ctxp->wqeq->hba_wqidx = 0; 3347 } 3348 3349 ndlp = lpfc_findnode_did(phba->pport, sid); 3350 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 3351 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3352 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3353 atomic_inc(&tgtp->xmt_abort_rsp_error); 3354 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3355 "6160 Drop ABORT - wrong NDLP state x%x.\n", 3356 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3357 3358 /* No failure to an ABTS request. */ 3359 spin_lock_irqsave(&ctxp->ctxlock, flags); 3360 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3361 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3362 return 0; 3363 } 3364 3365 /* Issue ABTS for this WQE based on iotag */ 3366 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 3367 spin_lock_irqsave(&ctxp->ctxlock, flags); 3368 if (!ctxp->abort_wqeq) { 3369 atomic_inc(&tgtp->xmt_abort_rsp_error); 3370 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3371 "6161 ABORT failed: No wqeqs: " 3372 "xri: x%x\n", ctxp->oxid); 3373 /* No failure to an ABTS request. */ 3374 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3375 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3376 return 0; 3377 } 3378 abts_wqeq = ctxp->abort_wqeq; 3379 ctxp->state = LPFC_NVME_STE_ABORT; 3380 opt = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? INHIBIT_ABORT : 0; 3381 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3382 3383 /* Announce entry to new IO submit field. */ 3384 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3385 "6162 ABORT Request to rport DID x%06x " 3386 "for xri x%x x%x\n", 3387 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 3388 3389 /* If the hba is getting reset, this flag is set. It is 3390 * cleared when the reset is complete and rings reestablished. 3391 */ 3392 spin_lock_irqsave(&phba->hbalock, flags); 3393 /* driver queued commands are in process of being flushed */ 3394 if (phba->hba_flag & HBA_IOQ_FLUSH) { 3395 spin_unlock_irqrestore(&phba->hbalock, flags); 3396 atomic_inc(&tgtp->xmt_abort_rsp_error); 3397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3398 "6163 Driver in reset cleanup - flushing " 3399 "NVME Req now. hba_flag x%x oxid x%x\n", 3400 phba->hba_flag, ctxp->oxid); 3401 lpfc_sli_release_iocbq(phba, abts_wqeq); 3402 spin_lock_irqsave(&ctxp->ctxlock, flags); 3403 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3404 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3405 return 0; 3406 } 3407 3408 /* Outstanding abort is in progress */ 3409 if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) { 3410 spin_unlock_irqrestore(&phba->hbalock, flags); 3411 atomic_inc(&tgtp->xmt_abort_rsp_error); 3412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3413 "6164 Outstanding NVME I/O Abort Request " 3414 "still pending on oxid x%x\n", 3415 ctxp->oxid); 3416 lpfc_sli_release_iocbq(phba, abts_wqeq); 3417 spin_lock_irqsave(&ctxp->ctxlock, flags); 3418 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3419 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3420 return 0; 3421 } 3422 3423 /* Ready - mark outstanding as aborted by driver. */ 3424 abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED; 3425 3426 lpfc_nvme_prep_abort_wqe(abts_wqeq, ctxp->wqeq->sli4_xritag, opt); 3427 3428 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3429 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 3430 abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 3431 abts_wqeq->iocb_cmpl = NULL; 3432 abts_wqeq->iocb_flag |= LPFC_IO_NVME; 3433 abts_wqeq->context2 = ctxp; 3434 abts_wqeq->vport = phba->pport; 3435 if (!ctxp->hdwq) 3436 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3437 3438 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3439 spin_unlock_irqrestore(&phba->hbalock, flags); 3440 if (rc == WQE_SUCCESS) { 3441 atomic_inc(&tgtp->xmt_abort_sol); 3442 return 0; 3443 } 3444 3445 atomic_inc(&tgtp->xmt_abort_rsp_error); 3446 spin_lock_irqsave(&ctxp->ctxlock, flags); 3447 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3448 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3449 lpfc_sli_release_iocbq(phba, abts_wqeq); 3450 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3451 "6166 Failed ABORT issue_wqe with status x%x " 3452 "for oxid x%x.\n", 3453 rc, ctxp->oxid); 3454 return 1; 3455 } 3456 3457 static int 3458 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 3459 struct lpfc_async_xchg_ctx *ctxp, 3460 uint32_t sid, uint16_t xri) 3461 { 3462 struct lpfc_nvmet_tgtport *tgtp; 3463 struct lpfc_iocbq *abts_wqeq; 3464 unsigned long flags; 3465 bool released = false; 3466 int rc; 3467 3468 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3469 if (!ctxp->wqeq) { 3470 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3471 ctxp->wqeq->hba_wqidx = 0; 3472 } 3473 3474 if (ctxp->state == LPFC_NVME_STE_FREE) { 3475 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3476 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 3477 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 3478 rc = WQE_BUSY; 3479 goto aerr; 3480 } 3481 ctxp->state = LPFC_NVME_STE_ABORT; 3482 ctxp->entry_cnt++; 3483 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 3484 if (rc == 0) 3485 goto aerr; 3486 3487 spin_lock_irqsave(&phba->hbalock, flags); 3488 abts_wqeq = ctxp->wqeq; 3489 abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 3490 abts_wqeq->iocb_cmpl = NULL; 3491 abts_wqeq->iocb_flag |= LPFC_IO_NVMET; 3492 if (!ctxp->hdwq) 3493 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3494 3495 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3496 spin_unlock_irqrestore(&phba->hbalock, flags); 3497 if (rc == WQE_SUCCESS) { 3498 return 0; 3499 } 3500 3501 aerr: 3502 spin_lock_irqsave(&ctxp->ctxlock, flags); 3503 if (ctxp->flag & LPFC_NVME_CTX_RLS) { 3504 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3505 list_del_init(&ctxp->list); 3506 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3507 released = true; 3508 } 3509 ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS); 3510 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3511 3512 atomic_inc(&tgtp->xmt_abort_rsp_error); 3513 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3514 "6135 Failed to Issue ABTS for oxid x%x. Status x%x " 3515 "(%x)\n", 3516 ctxp->oxid, rc, released); 3517 if (released) 3518 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3519 return 1; 3520 } 3521 3522 /** 3523 * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received 3524 * via async frame receive where the frame is not handled. 3525 * @phba: pointer to adapter structure 3526 * @ctxp: pointer to the asynchronously received received sequence 3527 * @sid: address of the remote port to send the ABTS to 3528 * @xri: oxid value to for the ABTS (other side's exchange id). 3529 **/ 3530 int 3531 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba, 3532 struct lpfc_async_xchg_ctx *ctxp, 3533 uint32_t sid, uint16_t xri) 3534 { 3535 struct lpfc_nvmet_tgtport *tgtp = NULL; 3536 struct lpfc_iocbq *abts_wqeq; 3537 unsigned long flags; 3538 int rc; 3539 3540 if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) || 3541 (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) { 3542 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3543 ctxp->entry_cnt++; 3544 } else { 3545 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3546 "6418 NVMET LS abort state mismatch " 3547 "IO x%x: %d %d\n", 3548 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3549 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3550 } 3551 3552 if (phba->nvmet_support && phba->targetport) 3553 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3554 3555 if (!ctxp->wqeq) { 3556 /* Issue ABTS for this WQE based on iotag */ 3557 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 3558 if (!ctxp->wqeq) { 3559 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3560 "6068 Abort failed: No wqeqs: " 3561 "xri: x%x\n", xri); 3562 /* No failure to an ABTS request. */ 3563 kfree(ctxp); 3564 return 0; 3565 } 3566 } 3567 abts_wqeq = ctxp->wqeq; 3568 3569 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 3570 rc = WQE_BUSY; 3571 goto out; 3572 } 3573 3574 spin_lock_irqsave(&phba->hbalock, flags); 3575 abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 3576 abts_wqeq->iocb_cmpl = NULL; 3577 abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS; 3578 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3579 spin_unlock_irqrestore(&phba->hbalock, flags); 3580 if (rc == WQE_SUCCESS) { 3581 if (tgtp) 3582 atomic_inc(&tgtp->xmt_abort_unsol); 3583 return 0; 3584 } 3585 out: 3586 if (tgtp) 3587 atomic_inc(&tgtp->xmt_abort_rsp_error); 3588 abts_wqeq->context2 = NULL; 3589 abts_wqeq->context3 = NULL; 3590 lpfc_sli_release_iocbq(phba, abts_wqeq); 3591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3592 "6056 Failed to Issue ABTS. Status x%x\n", rc); 3593 return 1; 3594 } 3595 3596 /** 3597 * lpfc_nvmet_invalidate_host 3598 * 3599 * @phba - pointer to the driver instance bound to an adapter port. 3600 * @ndlp - pointer to an lpfc_nodelist type 3601 * 3602 * This routine upcalls the nvmet transport to invalidate an NVME 3603 * host to which this target instance had active connections. 3604 */ 3605 void 3606 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 3607 { 3608 struct lpfc_nvmet_tgtport *tgtp; 3609 3610 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_NVME_ABTS, 3611 "6203 Invalidating hosthandle x%px\n", 3612 ndlp); 3613 3614 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3615 atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE); 3616 3617 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 3618 /* Need to get the nvmet_fc_target_port pointer here.*/ 3619 nvmet_fc_invalidate_host(phba->targetport, ndlp); 3620 #endif 3621 } 3622