1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channsel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <asm/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include "lpfc_version.h" 40 #include "lpfc_hw4.h" 41 #include "lpfc_hw.h" 42 #include "lpfc_sli.h" 43 #include "lpfc_sli4.h" 44 #include "lpfc_nl.h" 45 #include "lpfc_disc.h" 46 #include "lpfc.h" 47 #include "lpfc_scsi.h" 48 #include "lpfc_nvme.h" 49 #include "lpfc_logmsg.h" 50 #include "lpfc_crtn.h" 51 #include "lpfc_vport.h" 52 #include "lpfc_debugfs.h" 53 54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 55 struct lpfc_async_xchg_ctx *, 56 dma_addr_t rspbuf, 57 uint16_t rspsize); 58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 59 struct lpfc_async_xchg_ctx *); 60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 61 struct lpfc_async_xchg_ctx *, 62 uint32_t, uint16_t); 63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 64 struct lpfc_async_xchg_ctx *, 65 uint32_t, uint16_t); 66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, 67 struct lpfc_async_xchg_ctx *); 68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *); 69 70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf); 71 72 static union lpfc_wqe128 lpfc_tsend_cmd_template; 73 static union lpfc_wqe128 lpfc_treceive_cmd_template; 74 static union lpfc_wqe128 lpfc_trsp_cmd_template; 75 76 /* Setup WQE templates for NVME IOs */ 77 void 78 lpfc_nvmet_cmd_template(void) 79 { 80 union lpfc_wqe128 *wqe; 81 82 /* TSEND template */ 83 wqe = &lpfc_tsend_cmd_template; 84 memset(wqe, 0, sizeof(union lpfc_wqe128)); 85 86 /* Word 0, 1, 2 - BDE is variable */ 87 88 /* Word 3 - payload_offset_len is zero */ 89 90 /* Word 4 - relative_offset is variable */ 91 92 /* Word 5 - is zero */ 93 94 /* Word 6 - ctxt_tag, xri_tag is variable */ 95 96 /* Word 7 - wqe_ar is variable */ 97 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 98 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); 99 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); 100 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); 101 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 102 103 /* Word 8 - abort_tag is variable */ 104 105 /* Word 9 - reqtag, rcvoxid is variable */ 106 107 /* Word 10 - wqes, xc is variable */ 108 bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG); 109 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 110 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 111 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 112 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 113 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); 114 115 /* Word 11 - sup, irsp, irsplen is variable */ 116 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); 117 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 118 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 119 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 120 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 121 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); 122 123 /* Word 12 - fcp_data_len is variable */ 124 125 /* Word 13, 14, 15 - PBDE is zero */ 126 127 /* TRECEIVE template */ 128 wqe = &lpfc_treceive_cmd_template; 129 memset(wqe, 0, sizeof(union lpfc_wqe128)); 130 131 /* Word 0, 1, 2 - BDE is variable */ 132 133 /* Word 3 */ 134 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 135 136 /* Word 4 - relative_offset is variable */ 137 138 /* Word 5 - is zero */ 139 140 /* Word 6 - ctxt_tag, xri_tag is variable */ 141 142 /* Word 7 */ 143 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); 144 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); 145 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); 146 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); 147 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 148 149 /* Word 8 - abort_tag is variable */ 150 151 /* Word 9 - reqtag, rcvoxid is variable */ 152 153 /* Word 10 - xc is variable */ 154 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 155 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 156 bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG); 157 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 158 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); 159 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 160 161 /* Word 11 - pbde is variable */ 162 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); 163 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 164 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); 165 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 166 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 167 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); 168 169 /* Word 12 - fcp_data_len is variable */ 170 171 /* Word 13, 14, 15 - PBDE is variable */ 172 173 /* TRSP template */ 174 wqe = &lpfc_trsp_cmd_template; 175 memset(wqe, 0, sizeof(union lpfc_wqe128)); 176 177 /* Word 0, 1, 2 - BDE is variable */ 178 179 /* Word 3 - response_len is variable */ 180 181 /* Word 4, 5 - is zero */ 182 183 /* Word 6 - ctxt_tag, xri_tag is variable */ 184 185 /* Word 7 */ 186 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 187 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); 188 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); 189 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); 190 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ 191 192 /* Word 8 - abort_tag is variable */ 193 194 /* Word 9 - reqtag is variable */ 195 196 /* Word 10 wqes, xc is variable */ 197 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); 198 bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG); 199 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 200 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); 201 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); 202 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); 203 204 /* Word 11 irsp, irsplen is variable */ 205 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); 206 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 207 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); 208 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 209 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 210 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); 211 212 /* Word 12, 13, 14, 15 - is zero */ 213 } 214 215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 216 static struct lpfc_async_xchg_ctx * 217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri) 218 { 219 struct lpfc_async_xchg_ctx *ctxp; 220 unsigned long iflag; 221 bool found = false; 222 223 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 224 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 225 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 226 continue; 227 228 found = true; 229 break; 230 } 231 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 232 if (found) 233 return ctxp; 234 235 return NULL; 236 } 237 238 static struct lpfc_async_xchg_ctx * 239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid) 240 { 241 struct lpfc_async_xchg_ctx *ctxp; 242 unsigned long iflag; 243 bool found = false; 244 245 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 246 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 247 if (ctxp->oxid != oxid || ctxp->sid != sid) 248 continue; 249 250 found = true; 251 break; 252 } 253 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 254 if (found) 255 return ctxp; 256 257 return NULL; 258 } 259 #endif 260 261 static void 262 lpfc_nvmet_defer_release(struct lpfc_hba *phba, 263 struct lpfc_async_xchg_ctx *ctxp) 264 { 265 lockdep_assert_held(&ctxp->ctxlock); 266 267 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 268 "6313 NVMET Defer ctx release oxid x%x flg x%x\n", 269 ctxp->oxid, ctxp->flag); 270 271 if (ctxp->flag & LPFC_NVME_CTX_RLS) 272 return; 273 274 ctxp->flag |= LPFC_NVME_CTX_RLS; 275 spin_lock(&phba->sli4_hba.t_active_list_lock); 276 list_del(&ctxp->list); 277 spin_unlock(&phba->sli4_hba.t_active_list_lock); 278 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 279 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 280 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 281 } 282 283 /** 284 * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the 285 * transmission of an NVME LS response. 286 * @phba: Pointer to HBA context object. 287 * @cmdwqe: Pointer to driver command WQE object. 288 * @wcqe: Pointer to driver response CQE object. 289 * 290 * The function is called from SLI ring event handler with no 291 * lock held. The function frees memory resources used for the command 292 * used to send the NVME LS RSP. 293 **/ 294 void 295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 296 struct lpfc_wcqe_complete *wcqe) 297 { 298 struct lpfc_async_xchg_ctx *axchg = cmdwqe->context2; 299 struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp; 300 uint32_t status, result; 301 302 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; 303 result = wcqe->parameter; 304 305 if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) { 306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 307 "6410 NVMEx LS cmpl state mismatch IO x%x: " 308 "%d %d\n", 309 axchg->oxid, axchg->state, axchg->entry_cnt); 310 } 311 312 lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n", 313 axchg->oxid, status, result); 314 315 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 316 "6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n", 317 status, result, axchg->oxid); 318 319 lpfc_nlp_put(cmdwqe->context1); 320 cmdwqe->context2 = NULL; 321 cmdwqe->context3 = NULL; 322 lpfc_sli_release_iocbq(phba, cmdwqe); 323 ls_rsp->done(ls_rsp); 324 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 325 "6200 NVMEx LS rsp cmpl done status %d oxid x%x\n", 326 status, axchg->oxid); 327 kfree(axchg); 328 } 329 330 /** 331 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 332 * @phba: Pointer to HBA context object. 333 * @cmdwqe: Pointer to driver command WQE object. 334 * @wcqe: Pointer to driver response CQE object. 335 * 336 * The function is called from SLI ring event handler with no 337 * lock held. This function is the completion handler for NVME LS commands 338 * The function updates any states and statistics, then calls the 339 * generic completion handler to free resources. 340 **/ 341 static void 342 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 343 struct lpfc_wcqe_complete *wcqe) 344 { 345 struct lpfc_nvmet_tgtport *tgtp; 346 uint32_t status, result; 347 348 if (!phba->targetport) 349 goto finish; 350 351 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; 352 result = wcqe->parameter; 353 354 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 355 if (tgtp) { 356 if (status) { 357 atomic_inc(&tgtp->xmt_ls_rsp_error); 358 if (result == IOERR_ABORT_REQUESTED) 359 atomic_inc(&tgtp->xmt_ls_rsp_aborted); 360 if (bf_get(lpfc_wcqe_c_xb, wcqe)) 361 atomic_inc(&tgtp->xmt_ls_rsp_xb_set); 362 } else { 363 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 364 } 365 } 366 367 finish: 368 __lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, wcqe); 369 } 370 371 /** 372 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 373 * @phba: HBA buffer is associated with 374 * @ctx_buf: ctx buffer context 375 * 376 * Description: Frees the given DMA buffer in the appropriate way given by 377 * reposting it to its associated RQ so it can be reused. 378 * 379 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 380 * 381 * Returns: None 382 **/ 383 void 384 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 385 { 386 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 387 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 388 struct lpfc_nvmet_tgtport *tgtp; 389 struct fc_frame_header *fc_hdr; 390 struct rqb_dmabuf *nvmebuf; 391 struct lpfc_nvmet_ctx_info *infop; 392 uint32_t size, oxid, sid; 393 int cpu; 394 unsigned long iflag; 395 396 if (ctxp->state == LPFC_NVME_STE_FREE) { 397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 398 "6411 NVMET free, already free IO x%x: %d %d\n", 399 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 400 } 401 402 if (ctxp->rqb_buffer) { 403 spin_lock_irqsave(&ctxp->ctxlock, iflag); 404 nvmebuf = ctxp->rqb_buffer; 405 /* check if freed in another path whilst acquiring lock */ 406 if (nvmebuf) { 407 ctxp->rqb_buffer = NULL; 408 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 409 ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ; 410 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 411 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, 412 nvmebuf); 413 } else { 414 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 415 /* repost */ 416 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 417 } 418 } else { 419 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 420 } 421 } 422 ctxp->state = LPFC_NVME_STE_FREE; 423 424 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 425 if (phba->sli4_hba.nvmet_io_wait_cnt) { 426 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 427 nvmebuf, struct rqb_dmabuf, 428 hbuf.list); 429 phba->sli4_hba.nvmet_io_wait_cnt--; 430 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 431 iflag); 432 433 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 434 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 435 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 436 size = nvmebuf->bytes_recv; 437 sid = sli4_sid_from_fc_hdr(fc_hdr); 438 439 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 440 ctxp->wqeq = NULL; 441 ctxp->offset = 0; 442 ctxp->phba = phba; 443 ctxp->size = size; 444 ctxp->oxid = oxid; 445 ctxp->sid = sid; 446 ctxp->state = LPFC_NVME_STE_RCV; 447 ctxp->entry_cnt = 1; 448 ctxp->flag = 0; 449 ctxp->ctxbuf = ctx_buf; 450 ctxp->rqb_buffer = (void *)nvmebuf; 451 spin_lock_init(&ctxp->ctxlock); 452 453 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 454 /* NOTE: isr time stamp is stale when context is re-assigned*/ 455 if (ctxp->ts_isr_cmd) { 456 ctxp->ts_cmd_nvme = 0; 457 ctxp->ts_nvme_data = 0; 458 ctxp->ts_data_wqput = 0; 459 ctxp->ts_isr_data = 0; 460 ctxp->ts_data_nvme = 0; 461 ctxp->ts_nvme_status = 0; 462 ctxp->ts_status_wqput = 0; 463 ctxp->ts_isr_status = 0; 464 ctxp->ts_status_nvme = 0; 465 } 466 #endif 467 atomic_inc(&tgtp->rcv_fcp_cmd_in); 468 469 /* Indicate that a replacement buffer has been posted */ 470 spin_lock_irqsave(&ctxp->ctxlock, iflag); 471 ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ; 472 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 473 474 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 475 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 476 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 477 "6181 Unable to queue deferred work " 478 "for oxid x%x. " 479 "FCP Drop IO [x%x x%x x%x]\n", 480 ctxp->oxid, 481 atomic_read(&tgtp->rcv_fcp_cmd_in), 482 atomic_read(&tgtp->rcv_fcp_cmd_out), 483 atomic_read(&tgtp->xmt_fcp_release)); 484 485 spin_lock_irqsave(&ctxp->ctxlock, iflag); 486 lpfc_nvmet_defer_release(phba, ctxp); 487 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 488 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 489 } 490 return; 491 } 492 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 493 494 /* 495 * Use the CPU context list, from the MRQ the IO was received on 496 * (ctxp->idx), to save context structure. 497 */ 498 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 499 list_del_init(&ctxp->list); 500 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 501 cpu = raw_smp_processor_id(); 502 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 503 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 504 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 505 infop->nvmet_ctx_list_cnt++; 506 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 507 #endif 508 } 509 510 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 511 static void 512 lpfc_nvmet_ktime(struct lpfc_hba *phba, 513 struct lpfc_async_xchg_ctx *ctxp) 514 { 515 uint64_t seg1, seg2, seg3, seg4, seg5; 516 uint64_t seg6, seg7, seg8, seg9, seg10; 517 uint64_t segsum; 518 519 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 520 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 521 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 522 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 523 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 524 return; 525 526 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) 527 return; 528 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 529 return; 530 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 531 return; 532 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 533 return; 534 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 535 return; 536 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 537 return; 538 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 539 return; 540 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 541 return; 542 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 543 return; 544 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 545 return; 546 /* 547 * Segment 1 - Time from FCP command received by MSI-X ISR 548 * to FCP command is passed to NVME Layer. 549 * Segment 2 - Time from FCP command payload handed 550 * off to NVME Layer to Driver receives a Command op 551 * from NVME Layer. 552 * Segment 3 - Time from Driver receives a Command op 553 * from NVME Layer to Command is put on WQ. 554 * Segment 4 - Time from Driver WQ put is done 555 * to MSI-X ISR for Command cmpl. 556 * Segment 5 - Time from MSI-X ISR for Command cmpl to 557 * Command cmpl is passed to NVME Layer. 558 * Segment 6 - Time from Command cmpl is passed to NVME 559 * Layer to Driver receives a RSP op from NVME Layer. 560 * Segment 7 - Time from Driver receives a RSP op from 561 * NVME Layer to WQ put is done on TRSP FCP Status. 562 * Segment 8 - Time from Driver WQ put is done on TRSP 563 * FCP Status to MSI-X ISR for TRSP cmpl. 564 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 565 * TRSP cmpl is passed to NVME Layer. 566 * Segment 10 - Time from FCP command received by 567 * MSI-X ISR to command is completed on wire. 568 * (Segments 1 thru 8) for READDATA / WRITEDATA 569 * (Segments 1 thru 4) for READDATA_RSP 570 */ 571 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 572 segsum = seg1; 573 574 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; 575 if (segsum > seg2) 576 return; 577 seg2 -= segsum; 578 segsum += seg2; 579 580 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; 581 if (segsum > seg3) 582 return; 583 seg3 -= segsum; 584 segsum += seg3; 585 586 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; 587 if (segsum > seg4) 588 return; 589 seg4 -= segsum; 590 segsum += seg4; 591 592 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; 593 if (segsum > seg5) 594 return; 595 seg5 -= segsum; 596 segsum += seg5; 597 598 599 /* For auto rsp commands seg6 thru seg10 will be 0 */ 600 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 601 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; 602 if (segsum > seg6) 603 return; 604 seg6 -= segsum; 605 segsum += seg6; 606 607 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; 608 if (segsum > seg7) 609 return; 610 seg7 -= segsum; 611 segsum += seg7; 612 613 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; 614 if (segsum > seg8) 615 return; 616 seg8 -= segsum; 617 segsum += seg8; 618 619 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; 620 if (segsum > seg9) 621 return; 622 seg9 -= segsum; 623 segsum += seg9; 624 625 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) 626 return; 627 seg10 = (ctxp->ts_isr_status - 628 ctxp->ts_isr_cmd); 629 } else { 630 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) 631 return; 632 seg6 = 0; 633 seg7 = 0; 634 seg8 = 0; 635 seg9 = 0; 636 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 637 } 638 639 phba->ktime_seg1_total += seg1; 640 if (seg1 < phba->ktime_seg1_min) 641 phba->ktime_seg1_min = seg1; 642 else if (seg1 > phba->ktime_seg1_max) 643 phba->ktime_seg1_max = seg1; 644 645 phba->ktime_seg2_total += seg2; 646 if (seg2 < phba->ktime_seg2_min) 647 phba->ktime_seg2_min = seg2; 648 else if (seg2 > phba->ktime_seg2_max) 649 phba->ktime_seg2_max = seg2; 650 651 phba->ktime_seg3_total += seg3; 652 if (seg3 < phba->ktime_seg3_min) 653 phba->ktime_seg3_min = seg3; 654 else if (seg3 > phba->ktime_seg3_max) 655 phba->ktime_seg3_max = seg3; 656 657 phba->ktime_seg4_total += seg4; 658 if (seg4 < phba->ktime_seg4_min) 659 phba->ktime_seg4_min = seg4; 660 else if (seg4 > phba->ktime_seg4_max) 661 phba->ktime_seg4_max = seg4; 662 663 phba->ktime_seg5_total += seg5; 664 if (seg5 < phba->ktime_seg5_min) 665 phba->ktime_seg5_min = seg5; 666 else if (seg5 > phba->ktime_seg5_max) 667 phba->ktime_seg5_max = seg5; 668 669 phba->ktime_data_samples++; 670 if (!seg6) 671 goto out; 672 673 phba->ktime_seg6_total += seg6; 674 if (seg6 < phba->ktime_seg6_min) 675 phba->ktime_seg6_min = seg6; 676 else if (seg6 > phba->ktime_seg6_max) 677 phba->ktime_seg6_max = seg6; 678 679 phba->ktime_seg7_total += seg7; 680 if (seg7 < phba->ktime_seg7_min) 681 phba->ktime_seg7_min = seg7; 682 else if (seg7 > phba->ktime_seg7_max) 683 phba->ktime_seg7_max = seg7; 684 685 phba->ktime_seg8_total += seg8; 686 if (seg8 < phba->ktime_seg8_min) 687 phba->ktime_seg8_min = seg8; 688 else if (seg8 > phba->ktime_seg8_max) 689 phba->ktime_seg8_max = seg8; 690 691 phba->ktime_seg9_total += seg9; 692 if (seg9 < phba->ktime_seg9_min) 693 phba->ktime_seg9_min = seg9; 694 else if (seg9 > phba->ktime_seg9_max) 695 phba->ktime_seg9_max = seg9; 696 out: 697 phba->ktime_seg10_total += seg10; 698 if (seg10 < phba->ktime_seg10_min) 699 phba->ktime_seg10_min = seg10; 700 else if (seg10 > phba->ktime_seg10_max) 701 phba->ktime_seg10_max = seg10; 702 phba->ktime_status_samples++; 703 } 704 #endif 705 706 /** 707 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 708 * @phba: Pointer to HBA context object. 709 * @cmdwqe: Pointer to driver command WQE object. 710 * @wcqe: Pointer to driver response CQE object. 711 * 712 * The function is called from SLI ring event handler with no 713 * lock held. This function is the completion handler for NVME FCP commands 714 * The function frees memory resources used for the NVME commands. 715 **/ 716 static void 717 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 718 struct lpfc_wcqe_complete *wcqe) 719 { 720 struct lpfc_nvmet_tgtport *tgtp; 721 struct nvmefc_tgt_fcp_req *rsp; 722 struct lpfc_async_xchg_ctx *ctxp; 723 uint32_t status, result, op, start_clean, logerr; 724 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 725 int id; 726 #endif 727 728 ctxp = cmdwqe->context2; 729 ctxp->flag &= ~LPFC_NVME_IO_INP; 730 731 rsp = &ctxp->hdlrctx.fcp_req; 732 op = rsp->op; 733 734 status = bf_get(lpfc_wcqe_c_status, wcqe); 735 result = wcqe->parameter; 736 737 if (phba->targetport) 738 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 739 else 740 tgtp = NULL; 741 742 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 743 ctxp->oxid, op, status); 744 745 if (status) { 746 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 747 rsp->transferred_length = 0; 748 if (tgtp) { 749 atomic_inc(&tgtp->xmt_fcp_rsp_error); 750 if (result == IOERR_ABORT_REQUESTED) 751 atomic_inc(&tgtp->xmt_fcp_rsp_aborted); 752 } 753 754 logerr = LOG_NVME_IOERR; 755 756 /* pick up SLI4 exhange busy condition */ 757 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 758 ctxp->flag |= LPFC_NVME_XBUSY; 759 logerr |= LOG_NVME_ABTS; 760 if (tgtp) 761 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); 762 763 } else { 764 ctxp->flag &= ~LPFC_NVME_XBUSY; 765 } 766 767 lpfc_printf_log(phba, KERN_INFO, logerr, 768 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x " 769 "XBUSY:x%x\n", 770 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag, 771 status, result, ctxp->flag); 772 773 } else { 774 rsp->fcp_error = NVME_SC_SUCCESS; 775 if (op == NVMET_FCOP_RSP) 776 rsp->transferred_length = rsp->rsplen; 777 else 778 rsp->transferred_length = rsp->transfer_length; 779 if (tgtp) 780 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 781 } 782 783 if ((op == NVMET_FCOP_READDATA_RSP) || 784 (op == NVMET_FCOP_RSP)) { 785 /* Sanity check */ 786 ctxp->state = LPFC_NVME_STE_DONE; 787 ctxp->entry_cnt++; 788 789 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 790 if (ctxp->ts_cmd_nvme) { 791 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 792 ctxp->ts_isr_data = 793 cmdwqe->isr_timestamp; 794 ctxp->ts_data_nvme = 795 ktime_get_ns(); 796 ctxp->ts_nvme_status = 797 ctxp->ts_data_nvme; 798 ctxp->ts_status_wqput = 799 ctxp->ts_data_nvme; 800 ctxp->ts_isr_status = 801 ctxp->ts_data_nvme; 802 ctxp->ts_status_nvme = 803 ctxp->ts_data_nvme; 804 } else { 805 ctxp->ts_isr_status = 806 cmdwqe->isr_timestamp; 807 ctxp->ts_status_nvme = 808 ktime_get_ns(); 809 } 810 } 811 #endif 812 rsp->done(rsp); 813 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 814 if (ctxp->ts_cmd_nvme) 815 lpfc_nvmet_ktime(phba, ctxp); 816 #endif 817 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 818 } else { 819 ctxp->entry_cnt++; 820 start_clean = offsetof(struct lpfc_iocbq, iocb_flag); 821 memset(((char *)cmdwqe) + start_clean, 0, 822 (sizeof(struct lpfc_iocbq) - start_clean)); 823 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 824 if (ctxp->ts_cmd_nvme) { 825 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 826 ctxp->ts_data_nvme = ktime_get_ns(); 827 } 828 #endif 829 rsp->done(rsp); 830 } 831 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 832 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 833 id = raw_smp_processor_id(); 834 this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io); 835 if (ctxp->cpu != id) 836 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 837 "6704 CPU Check cmdcmpl: " 838 "cpu %d expect %d\n", 839 id, ctxp->cpu); 840 } 841 #endif 842 } 843 844 /** 845 * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit 846 * an NVME LS rsp for a prior NVME LS request that was received. 847 * @axchg: pointer to exchange context for the NVME LS request the response 848 * is for. 849 * @ls_rsp: pointer to the transport LS RSP that is to be sent 850 * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done 851 * 852 * This routine is used to format and send a WQE to transmit a NVME LS 853 * Response. The response is for a prior NVME LS request that was 854 * received and posted to the transport. 855 * 856 * Returns: 857 * 0 : if response successfully transmit 858 * non-zero : if response failed to transmit, of the form -Exxx. 859 **/ 860 int 861 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg, 862 struct nvmefc_ls_rsp *ls_rsp, 863 void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba, 864 struct lpfc_iocbq *cmdwqe, 865 struct lpfc_wcqe_complete *wcqe)) 866 { 867 struct lpfc_hba *phba = axchg->phba; 868 struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer; 869 struct lpfc_iocbq *nvmewqeq; 870 struct lpfc_dmabuf dmabuf; 871 struct ulp_bde64 bpl; 872 int rc; 873 874 if (phba->pport->load_flag & FC_UNLOADING) 875 return -ENODEV; 876 877 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 878 "6023 NVMEx LS rsp oxid x%x\n", axchg->oxid); 879 880 if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) { 881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 882 "6412 NVMEx LS rsp state mismatch " 883 "oxid x%x: %d %d\n", 884 axchg->oxid, axchg->state, axchg->entry_cnt); 885 return -EALREADY; 886 } 887 axchg->state = LPFC_NVME_STE_LS_RSP; 888 axchg->entry_cnt++; 889 890 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma, 891 ls_rsp->rsplen); 892 if (nvmewqeq == NULL) { 893 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 894 "6150 NVMEx LS Drop Rsp x%x: Prep\n", 895 axchg->oxid); 896 rc = -ENOMEM; 897 goto out_free_buf; 898 } 899 900 /* Save numBdes for bpl2sgl */ 901 nvmewqeq->rsvd2 = 1; 902 nvmewqeq->hba_wqidx = 0; 903 nvmewqeq->context3 = &dmabuf; 904 dmabuf.virt = &bpl; 905 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 906 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 907 bpl.tus.f.bdeSize = ls_rsp->rsplen; 908 bpl.tus.f.bdeFlags = 0; 909 bpl.tus.w = le32_to_cpu(bpl.tus.w); 910 /* 911 * Note: although we're using stack space for the dmabuf, the 912 * call to lpfc_sli4_issue_wqe is synchronous, so it will not 913 * be referenced after it returns back to this routine. 914 */ 915 916 nvmewqeq->wqe_cmpl = xmt_ls_rsp_cmp; 917 nvmewqeq->iocb_cmpl = NULL; 918 nvmewqeq->context2 = axchg; 919 920 lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n", 921 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen); 922 923 rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq); 924 925 /* clear to be sure there's no reference */ 926 nvmewqeq->context3 = NULL; 927 928 if (rc == WQE_SUCCESS) { 929 /* 930 * Okay to repost buffer here, but wait till cmpl 931 * before freeing ctxp and iocbq. 932 */ 933 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 934 return 0; 935 } 936 937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 938 "6151 NVMEx LS RSP x%x: failed to transmit %d\n", 939 axchg->oxid, rc); 940 941 rc = -ENXIO; 942 943 lpfc_nlp_put(nvmewqeq->context1); 944 945 out_free_buf: 946 /* Give back resources */ 947 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 948 949 /* 950 * As transport doesn't track completions of responses, if the rsp 951 * fails to send, the transport will effectively ignore the rsp 952 * and consider the LS done. However, the driver has an active 953 * exchange open for the LS - so be sure to abort the exchange 954 * if the response isn't sent. 955 */ 956 lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid); 957 return rc; 958 } 959 960 /** 961 * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response 962 * @tgtport: pointer to target port that NVME LS is to be transmit from. 963 * @ls_rsp: pointer to the transport LS RSP that is to be sent 964 * 965 * Driver registers this routine to transmit responses for received NVME 966 * LS requests. 967 * 968 * This routine is used to format and send a WQE to transmit a NVME LS 969 * Response. The ls_rsp is used to reverse-map the LS to the original 970 * NVME LS request sequence, which provides addressing information for 971 * the remote port the LS to be sent to, as well as the exchange id 972 * that is the LS is bound to. 973 * 974 * Returns: 975 * 0 : if response successfully transmit 976 * non-zero : if response failed to transmit, of the form -Exxx. 977 **/ 978 static int 979 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 980 struct nvmefc_ls_rsp *ls_rsp) 981 { 982 struct lpfc_async_xchg_ctx *axchg = 983 container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp); 984 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 985 int rc; 986 987 if (axchg->phba->pport->load_flag & FC_UNLOADING) 988 return -ENODEV; 989 990 rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp); 991 992 if (rc) { 993 atomic_inc(&nvmep->xmt_ls_drop); 994 /* 995 * unless the failure is due to having already sent 996 * the response, an abort will be generated for the 997 * exchange if the rsp can't be sent. 998 */ 999 if (rc != -EALREADY) 1000 atomic_inc(&nvmep->xmt_ls_abort); 1001 return rc; 1002 } 1003 1004 atomic_inc(&nvmep->xmt_ls_rsp); 1005 return 0; 1006 } 1007 1008 static int 1009 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 1010 struct nvmefc_tgt_fcp_req *rsp) 1011 { 1012 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1013 struct lpfc_async_xchg_ctx *ctxp = 1014 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1015 struct lpfc_hba *phba = ctxp->phba; 1016 struct lpfc_queue *wq; 1017 struct lpfc_iocbq *nvmewqeq; 1018 struct lpfc_sli_ring *pring; 1019 unsigned long iflags; 1020 int rc; 1021 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1022 int id; 1023 #endif 1024 1025 if (phba->pport->load_flag & FC_UNLOADING) { 1026 rc = -ENODEV; 1027 goto aerr; 1028 } 1029 1030 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1031 if (ctxp->ts_cmd_nvme) { 1032 if (rsp->op == NVMET_FCOP_RSP) 1033 ctxp->ts_nvme_status = ktime_get_ns(); 1034 else 1035 ctxp->ts_nvme_data = ktime_get_ns(); 1036 } 1037 1038 /* Setup the hdw queue if not already set */ 1039 if (!ctxp->hdwq) 1040 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid]; 1041 1042 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 1043 id = raw_smp_processor_id(); 1044 this_cpu_inc(phba->sli4_hba.c_stat->xmt_io); 1045 if (rsp->hwqid != id) 1046 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1047 "6705 CPU Check OP: " 1048 "cpu %d expect %d\n", 1049 id, rsp->hwqid); 1050 ctxp->cpu = id; /* Setup cpu for cmpl check */ 1051 } 1052 #endif 1053 1054 /* Sanity check */ 1055 if ((ctxp->flag & LPFC_NVME_ABTS_RCV) || 1056 (ctxp->state == LPFC_NVME_STE_ABORT)) { 1057 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1059 "6102 IO oxid x%x aborted\n", 1060 ctxp->oxid); 1061 rc = -ENXIO; 1062 goto aerr; 1063 } 1064 1065 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 1066 if (nvmewqeq == NULL) { 1067 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1069 "6152 FCP Drop IO x%x: Prep\n", 1070 ctxp->oxid); 1071 rc = -ENXIO; 1072 goto aerr; 1073 } 1074 1075 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 1076 nvmewqeq->iocb_cmpl = NULL; 1077 nvmewqeq->context2 = ctxp; 1078 nvmewqeq->iocb_flag |= LPFC_IO_NVMET; 1079 ctxp->wqeq->hba_wqidx = rsp->hwqid; 1080 1081 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 1082 ctxp->oxid, rsp->op, rsp->rsplen); 1083 1084 ctxp->flag |= LPFC_NVME_IO_INP; 1085 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 1086 if (rc == WQE_SUCCESS) { 1087 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1088 if (!ctxp->ts_cmd_nvme) 1089 return 0; 1090 if (rsp->op == NVMET_FCOP_RSP) 1091 ctxp->ts_status_wqput = ktime_get_ns(); 1092 else 1093 ctxp->ts_data_wqput = ktime_get_ns(); 1094 #endif 1095 return 0; 1096 } 1097 1098 if (rc == -EBUSY) { 1099 /* 1100 * WQ was full, so queue nvmewqeq to be sent after 1101 * WQE release CQE 1102 */ 1103 ctxp->flag |= LPFC_NVME_DEFER_WQFULL; 1104 wq = ctxp->hdwq->io_wq; 1105 pring = wq->pring; 1106 spin_lock_irqsave(&pring->ring_lock, iflags); 1107 list_add_tail(&nvmewqeq->list, &wq->wqfull_list); 1108 wq->q_flag |= HBA_NVMET_WQFULL; 1109 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1110 atomic_inc(&lpfc_nvmep->defer_wqfull); 1111 return 0; 1112 } 1113 1114 /* Give back resources */ 1115 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1117 "6153 FCP Drop IO x%x: Issue: %d\n", 1118 ctxp->oxid, rc); 1119 1120 ctxp->wqeq->hba_wqidx = 0; 1121 nvmewqeq->context2 = NULL; 1122 nvmewqeq->context3 = NULL; 1123 rc = -EBUSY; 1124 aerr: 1125 return rc; 1126 } 1127 1128 static void 1129 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 1130 { 1131 struct lpfc_nvmet_tgtport *tport = targetport->private; 1132 1133 /* release any threads waiting for the unreg to complete */ 1134 if (tport->phba->targetport) 1135 complete(tport->tport_unreg_cmp); 1136 } 1137 1138 static void 1139 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 1140 struct nvmefc_tgt_fcp_req *req) 1141 { 1142 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1143 struct lpfc_async_xchg_ctx *ctxp = 1144 container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1145 struct lpfc_hba *phba = ctxp->phba; 1146 struct lpfc_queue *wq; 1147 unsigned long flags; 1148 1149 if (phba->pport->load_flag & FC_UNLOADING) 1150 return; 1151 1152 if (!ctxp->hdwq) 1153 ctxp->hdwq = &phba->sli4_hba.hdwq[0]; 1154 1155 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1156 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n", 1157 ctxp->oxid, ctxp->flag, ctxp->state); 1158 1159 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 1160 ctxp->oxid, ctxp->flag, ctxp->state); 1161 1162 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 1163 1164 spin_lock_irqsave(&ctxp->ctxlock, flags); 1165 1166 /* Since iaab/iaar are NOT set, we need to check 1167 * if the firmware is in process of aborting IO 1168 */ 1169 if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) { 1170 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1171 return; 1172 } 1173 ctxp->flag |= LPFC_NVME_ABORT_OP; 1174 1175 if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) { 1176 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1177 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1178 ctxp->oxid); 1179 wq = ctxp->hdwq->io_wq; 1180 lpfc_nvmet_wqfull_flush(phba, wq, ctxp); 1181 return; 1182 } 1183 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1184 1185 /* A state of LPFC_NVME_STE_RCV means we have just received 1186 * the NVME command and have not started processing it. 1187 * (by issuing any IO WQEs on this exchange yet) 1188 */ 1189 if (ctxp->state == LPFC_NVME_STE_RCV) 1190 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1191 ctxp->oxid); 1192 else 1193 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1194 ctxp->oxid); 1195 } 1196 1197 static void 1198 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 1199 struct nvmefc_tgt_fcp_req *rsp) 1200 { 1201 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1202 struct lpfc_async_xchg_ctx *ctxp = 1203 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1204 struct lpfc_hba *phba = ctxp->phba; 1205 unsigned long flags; 1206 bool aborting = false; 1207 1208 spin_lock_irqsave(&ctxp->ctxlock, flags); 1209 if (ctxp->flag & LPFC_NVME_XBUSY) 1210 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1211 "6027 NVMET release with XBUSY flag x%x" 1212 " oxid x%x\n", 1213 ctxp->flag, ctxp->oxid); 1214 else if (ctxp->state != LPFC_NVME_STE_DONE && 1215 ctxp->state != LPFC_NVME_STE_ABORT) 1216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1217 "6413 NVMET release bad state %d %d oxid x%x\n", 1218 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1219 1220 if ((ctxp->flag & LPFC_NVME_ABORT_OP) || 1221 (ctxp->flag & LPFC_NVME_XBUSY)) { 1222 aborting = true; 1223 /* let the abort path do the real release */ 1224 lpfc_nvmet_defer_release(phba, ctxp); 1225 } 1226 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1227 1228 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 1229 ctxp->state, aborting); 1230 1231 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 1232 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 1233 1234 if (aborting) 1235 return; 1236 1237 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1238 } 1239 1240 static void 1241 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 1242 struct nvmefc_tgt_fcp_req *rsp) 1243 { 1244 struct lpfc_nvmet_tgtport *tgtp; 1245 struct lpfc_async_xchg_ctx *ctxp = 1246 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1247 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 1248 struct lpfc_hba *phba = ctxp->phba; 1249 unsigned long iflag; 1250 1251 1252 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 1253 ctxp->oxid, ctxp->size, raw_smp_processor_id()); 1254 1255 if (!nvmebuf) { 1256 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1257 "6425 Defer rcv: no buffer oxid x%x: " 1258 "flg %x ste %x\n", 1259 ctxp->oxid, ctxp->flag, ctxp->state); 1260 return; 1261 } 1262 1263 tgtp = phba->targetport->private; 1264 if (tgtp) 1265 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 1266 1267 /* Free the nvmebuf since a new buffer already replaced it */ 1268 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1269 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1270 ctxp->rqb_buffer = NULL; 1271 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1272 } 1273 1274 /** 1275 * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request 1276 * @phba: Pointer to HBA context object 1277 * @cmdwqe: Pointer to driver command WQE object. 1278 * @wcqe: Pointer to driver response CQE object. 1279 * 1280 * This function is the completion handler for NVME LS requests. 1281 * The function updates any states and statistics, then calls the 1282 * generic completion handler to finish completion of the request. 1283 **/ 1284 static void 1285 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 1286 struct lpfc_wcqe_complete *wcqe) 1287 { 1288 __lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe); 1289 } 1290 1291 /** 1292 * lpfc_nvmet_ls_req - Issue an Link Service request 1293 * @targetport: pointer to target instance registered with nvmet transport. 1294 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1295 * Driver sets this value to the ndlp pointer. 1296 * @pnvme_lsreq: the transport nvme_ls_req structure for the LS 1297 * 1298 * Driver registers this routine to handle any link service request 1299 * from the nvme_fc transport to a remote nvme-aware port. 1300 * 1301 * Return value : 1302 * 0 - Success 1303 * non-zero: various error codes, in form of -Exxx 1304 **/ 1305 static int 1306 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport, 1307 void *hosthandle, 1308 struct nvmefc_ls_req *pnvme_lsreq) 1309 { 1310 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1311 struct lpfc_hba *phba; 1312 struct lpfc_nodelist *ndlp; 1313 int ret; 1314 u32 hstate; 1315 1316 if (!lpfc_nvmet) 1317 return -EINVAL; 1318 1319 phba = lpfc_nvmet->phba; 1320 if (phba->pport->load_flag & FC_UNLOADING) 1321 return -EINVAL; 1322 1323 hstate = atomic_read(&lpfc_nvmet->state); 1324 if (hstate == LPFC_NVMET_INV_HOST_ACTIVE) 1325 return -EACCES; 1326 1327 ndlp = (struct lpfc_nodelist *)hosthandle; 1328 1329 ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq, 1330 lpfc_nvmet_ls_req_cmp); 1331 1332 return ret; 1333 } 1334 1335 /** 1336 * lpfc_nvmet_ls_abort - Abort a prior NVME LS request 1337 * @targetport: Transport targetport, that LS was issued from. 1338 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1339 * Driver sets this value to the ndlp pointer. 1340 * @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted 1341 * 1342 * Driver registers this routine to abort an NVME LS request that is 1343 * in progress (from the transports perspective). 1344 **/ 1345 static void 1346 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport, 1347 void *hosthandle, 1348 struct nvmefc_ls_req *pnvme_lsreq) 1349 { 1350 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1351 struct lpfc_hba *phba; 1352 struct lpfc_nodelist *ndlp; 1353 int ret; 1354 1355 phba = lpfc_nvmet->phba; 1356 if (phba->pport->load_flag & FC_UNLOADING) 1357 return; 1358 1359 ndlp = (struct lpfc_nodelist *)hosthandle; 1360 1361 ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq); 1362 if (!ret) 1363 atomic_inc(&lpfc_nvmet->xmt_ls_abort); 1364 } 1365 1366 static void 1367 lpfc_nvmet_host_release(void *hosthandle) 1368 { 1369 struct lpfc_nodelist *ndlp = hosthandle; 1370 struct lpfc_hba *phba = ndlp->phba; 1371 struct lpfc_nvmet_tgtport *tgtp; 1372 1373 if (!phba->targetport || !phba->targetport->private) 1374 return; 1375 1376 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1377 "6202 NVMET XPT releasing hosthandle x%px " 1378 "DID x%x xflags x%x refcnt %d\n", 1379 hosthandle, ndlp->nlp_DID, ndlp->fc4_xpt_flags, 1380 kref_read(&ndlp->kref)); 1381 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1382 spin_lock_irq(&ndlp->lock); 1383 ndlp->fc4_xpt_flags &= ~NLP_XPT_HAS_HH; 1384 spin_unlock_irq(&ndlp->lock); 1385 lpfc_nlp_put(ndlp); 1386 atomic_set(&tgtp->state, 0); 1387 } 1388 1389 static void 1390 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport) 1391 { 1392 struct lpfc_nvmet_tgtport *tgtp; 1393 struct lpfc_hba *phba; 1394 uint32_t rc; 1395 1396 tgtp = tgtport->private; 1397 phba = tgtp->phba; 1398 1399 rc = lpfc_issue_els_rscn(phba->pport, 0); 1400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1401 "6420 NVMET subsystem change: Notification %s\n", 1402 (rc) ? "Failed" : "Sent"); 1403 } 1404 1405 static struct nvmet_fc_target_template lpfc_tgttemplate = { 1406 .targetport_delete = lpfc_nvmet_targetport_delete, 1407 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 1408 .fcp_op = lpfc_nvmet_xmt_fcp_op, 1409 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 1410 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 1411 .defer_rcv = lpfc_nvmet_defer_rcv, 1412 .discovery_event = lpfc_nvmet_discovery_event, 1413 .ls_req = lpfc_nvmet_ls_req, 1414 .ls_abort = lpfc_nvmet_ls_abort, 1415 .host_release = lpfc_nvmet_host_release, 1416 1417 .max_hw_queues = 1, 1418 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1419 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1420 .dma_boundary = 0xFFFFFFFF, 1421 1422 /* optional features */ 1423 .target_features = 0, 1424 /* sizes of additional private data for data structures */ 1425 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 1426 .lsrqst_priv_sz = 0, 1427 }; 1428 1429 static void 1430 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 1431 struct lpfc_nvmet_ctx_info *infop) 1432 { 1433 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 1434 unsigned long flags; 1435 1436 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 1437 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 1438 &infop->nvmet_ctx_list, list) { 1439 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1440 list_del_init(&ctx_buf->list); 1441 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1442 1443 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 1444 ctx_buf->sglq->state = SGL_FREED; 1445 ctx_buf->sglq->ndlp = NULL; 1446 1447 spin_lock(&phba->sli4_hba.sgl_list_lock); 1448 list_add_tail(&ctx_buf->sglq->list, 1449 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1450 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1451 1452 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1453 kfree(ctx_buf->context); 1454 } 1455 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 1456 } 1457 1458 static void 1459 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 1460 { 1461 struct lpfc_nvmet_ctx_info *infop; 1462 int i, j; 1463 1464 /* The first context list, MRQ 0 CPU 0 */ 1465 infop = phba->sli4_hba.nvmet_ctx_info; 1466 if (!infop) 1467 return; 1468 1469 /* Cycle the the entire CPU context list for every MRQ */ 1470 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 1471 for_each_present_cpu(j) { 1472 infop = lpfc_get_ctx_list(phba, j, i); 1473 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 1474 } 1475 } 1476 kfree(phba->sli4_hba.nvmet_ctx_info); 1477 phba->sli4_hba.nvmet_ctx_info = NULL; 1478 } 1479 1480 static int 1481 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 1482 { 1483 struct lpfc_nvmet_ctxbuf *ctx_buf; 1484 struct lpfc_iocbq *nvmewqe; 1485 union lpfc_wqe128 *wqe; 1486 struct lpfc_nvmet_ctx_info *last_infop; 1487 struct lpfc_nvmet_ctx_info *infop; 1488 int i, j, idx, cpu; 1489 1490 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 1491 "6403 Allocate NVMET resources for %d XRIs\n", 1492 phba->sli4_hba.nvmet_xri_cnt); 1493 1494 phba->sli4_hba.nvmet_ctx_info = kcalloc( 1495 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq, 1496 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 1497 if (!phba->sli4_hba.nvmet_ctx_info) { 1498 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1499 "6419 Failed allocate memory for " 1500 "nvmet context lists\n"); 1501 return -ENOMEM; 1502 } 1503 1504 /* 1505 * Assuming X CPUs in the system, and Y MRQs, allocate some 1506 * lpfc_nvmet_ctx_info structures as follows: 1507 * 1508 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 1509 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 1510 * ... 1511 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 1512 * 1513 * Each line represents a MRQ "silo" containing an entry for 1514 * every CPU. 1515 * 1516 * MRQ X is initially assumed to be associated with CPU X, thus 1517 * contexts are initially distributed across all MRQs using 1518 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 1519 * freed, the are freed to the MRQ silo based on the CPU number 1520 * of the IO completion. Thus a context that was allocated for MRQ A 1521 * whose IO completed on CPU B will be freed to cpuB/mrqA. 1522 */ 1523 for_each_possible_cpu(i) { 1524 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1525 infop = lpfc_get_ctx_list(phba, i, j); 1526 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 1527 spin_lock_init(&infop->nvmet_ctx_list_lock); 1528 infop->nvmet_ctx_list_cnt = 0; 1529 } 1530 } 1531 1532 /* 1533 * Setup the next CPU context info ptr for each MRQ. 1534 * MRQ 0 will cycle thru CPUs 0 - X separately from 1535 * MRQ 1 cycling thru CPUs 0 - X, and so on. 1536 */ 1537 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1538 last_infop = lpfc_get_ctx_list(phba, 1539 cpumask_first(cpu_present_mask), 1540 j); 1541 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) { 1542 infop = lpfc_get_ctx_list(phba, i, j); 1543 infop->nvmet_ctx_next_cpu = last_infop; 1544 last_infop = infop; 1545 } 1546 } 1547 1548 /* For all nvmet xris, allocate resources needed to process a 1549 * received command on a per xri basis. 1550 */ 1551 idx = 0; 1552 cpu = cpumask_first(cpu_present_mask); 1553 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1554 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1555 if (!ctx_buf) { 1556 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1557 "6404 Ran out of memory for NVMET\n"); 1558 return -ENOMEM; 1559 } 1560 1561 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1562 GFP_KERNEL); 1563 if (!ctx_buf->context) { 1564 kfree(ctx_buf); 1565 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1566 "6405 Ran out of NVMET " 1567 "context memory\n"); 1568 return -ENOMEM; 1569 } 1570 ctx_buf->context->ctxbuf = ctx_buf; 1571 ctx_buf->context->state = LPFC_NVME_STE_FREE; 1572 1573 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1574 if (!ctx_buf->iocbq) { 1575 kfree(ctx_buf->context); 1576 kfree(ctx_buf); 1577 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1578 "6406 Ran out of NVMET iocb/WQEs\n"); 1579 return -ENOMEM; 1580 } 1581 ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET; 1582 nvmewqe = ctx_buf->iocbq; 1583 wqe = &nvmewqe->wqe; 1584 1585 /* Initialize WQE */ 1586 memset(wqe, 0, sizeof(union lpfc_wqe)); 1587 1588 ctx_buf->iocbq->context1 = NULL; 1589 spin_lock(&phba->sli4_hba.sgl_list_lock); 1590 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1591 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1592 if (!ctx_buf->sglq) { 1593 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1594 kfree(ctx_buf->context); 1595 kfree(ctx_buf); 1596 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1597 "6407 Ran out of NVMET XRIs\n"); 1598 return -ENOMEM; 1599 } 1600 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work); 1601 1602 /* 1603 * Add ctx to MRQidx context list. Our initial assumption 1604 * is MRQidx will be associated with CPUidx. This association 1605 * can change on the fly. 1606 */ 1607 infop = lpfc_get_ctx_list(phba, cpu, idx); 1608 spin_lock(&infop->nvmet_ctx_list_lock); 1609 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1610 infop->nvmet_ctx_list_cnt++; 1611 spin_unlock(&infop->nvmet_ctx_list_lock); 1612 1613 /* Spread ctx structures evenly across all MRQs */ 1614 idx++; 1615 if (idx >= phba->cfg_nvmet_mrq) { 1616 idx = 0; 1617 cpu = cpumask_first(cpu_present_mask); 1618 continue; 1619 } 1620 cpu = cpumask_next(cpu, cpu_present_mask); 1621 if (cpu == nr_cpu_ids) 1622 cpu = cpumask_first(cpu_present_mask); 1623 1624 } 1625 1626 for_each_present_cpu(i) { 1627 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1628 infop = lpfc_get_ctx_list(phba, i, j); 1629 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1630 "6408 TOTAL NVMET ctx for CPU %d " 1631 "MRQ %d: cnt %d nextcpu x%px\n", 1632 i, j, infop->nvmet_ctx_list_cnt, 1633 infop->nvmet_ctx_next_cpu); 1634 } 1635 } 1636 return 0; 1637 } 1638 1639 int 1640 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1641 { 1642 struct lpfc_vport *vport = phba->pport; 1643 struct lpfc_nvmet_tgtport *tgtp; 1644 struct nvmet_fc_port_info pinfo; 1645 int error; 1646 1647 if (phba->targetport) 1648 return 0; 1649 1650 error = lpfc_nvmet_setup_io_context(phba); 1651 if (error) 1652 return error; 1653 1654 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1655 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1656 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1657 pinfo.port_id = vport->fc_myDID; 1658 1659 /* We need to tell the transport layer + 1 because it takes page 1660 * alignment into account. When space for the SGL is allocated we 1661 * allocate + 3, one for cmd, one for rsp and one for this alignment 1662 */ 1663 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1664 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue; 1665 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; 1666 1667 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1668 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1669 &phba->pcidev->dev, 1670 &phba->targetport); 1671 #else 1672 error = -ENOENT; 1673 #endif 1674 if (error) { 1675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1676 "6025 Cannot register NVME targetport x%x: " 1677 "portnm %llx nodenm %llx segs %d qs %d\n", 1678 error, 1679 pinfo.port_name, pinfo.node_name, 1680 lpfc_tgttemplate.max_sgl_segments, 1681 lpfc_tgttemplate.max_hw_queues); 1682 phba->targetport = NULL; 1683 phba->nvmet_support = 0; 1684 1685 lpfc_nvmet_cleanup_io_context(phba); 1686 1687 } else { 1688 tgtp = (struct lpfc_nvmet_tgtport *) 1689 phba->targetport->private; 1690 tgtp->phba = phba; 1691 1692 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1693 "6026 Registered NVME " 1694 "targetport: x%px, private x%px " 1695 "portnm %llx nodenm %llx segs %d qs %d\n", 1696 phba->targetport, tgtp, 1697 pinfo.port_name, pinfo.node_name, 1698 lpfc_tgttemplate.max_sgl_segments, 1699 lpfc_tgttemplate.max_hw_queues); 1700 1701 atomic_set(&tgtp->rcv_ls_req_in, 0); 1702 atomic_set(&tgtp->rcv_ls_req_out, 0); 1703 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1704 atomic_set(&tgtp->xmt_ls_abort, 0); 1705 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1706 atomic_set(&tgtp->xmt_ls_rsp, 0); 1707 atomic_set(&tgtp->xmt_ls_drop, 0); 1708 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1709 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); 1710 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); 1711 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1712 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1713 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1714 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1715 atomic_set(&tgtp->xmt_fcp_drop, 0); 1716 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1717 atomic_set(&tgtp->xmt_fcp_read, 0); 1718 atomic_set(&tgtp->xmt_fcp_write, 0); 1719 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1720 atomic_set(&tgtp->xmt_fcp_release, 0); 1721 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1722 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1723 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); 1724 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); 1725 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1726 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); 1727 atomic_set(&tgtp->xmt_fcp_abort, 0); 1728 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1729 atomic_set(&tgtp->xmt_abort_unsol, 0); 1730 atomic_set(&tgtp->xmt_abort_sol, 0); 1731 atomic_set(&tgtp->xmt_abort_rsp, 0); 1732 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1733 atomic_set(&tgtp->defer_ctx, 0); 1734 atomic_set(&tgtp->defer_fod, 0); 1735 atomic_set(&tgtp->defer_wqfull, 0); 1736 } 1737 return error; 1738 } 1739 1740 int 1741 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1742 { 1743 struct lpfc_vport *vport = phba->pport; 1744 1745 if (!phba->targetport) 1746 return 0; 1747 1748 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1749 "6007 Update NVMET port x%px did x%x\n", 1750 phba->targetport, vport->fc_myDID); 1751 1752 phba->targetport->port_id = vport->fc_myDID; 1753 return 0; 1754 } 1755 1756 /** 1757 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1758 * @phba: pointer to lpfc hba data structure. 1759 * @axri: pointer to the nvmet xri abort wcqe structure. 1760 * 1761 * This routine is invoked by the worker thread to process a SLI4 fast-path 1762 * NVMET aborted xri. 1763 **/ 1764 void 1765 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1766 struct sli4_wcqe_xri_aborted *axri) 1767 { 1768 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1769 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1770 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1771 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1772 struct lpfc_nvmet_tgtport *tgtp; 1773 struct nvmefc_tgt_fcp_req *req = NULL; 1774 struct lpfc_nodelist *ndlp; 1775 unsigned long iflag = 0; 1776 int rrq_empty = 0; 1777 bool released = false; 1778 1779 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1780 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1781 1782 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1783 return; 1784 1785 if (phba->targetport) { 1786 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1787 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); 1788 } 1789 1790 spin_lock_irqsave(&phba->hbalock, iflag); 1791 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1792 list_for_each_entry_safe(ctxp, next_ctxp, 1793 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1794 list) { 1795 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1796 continue; 1797 1798 spin_lock(&ctxp->ctxlock); 1799 /* Check if we already received a free context call 1800 * and we have completed processing an abort situation. 1801 */ 1802 if (ctxp->flag & LPFC_NVME_CTX_RLS && 1803 !(ctxp->flag & LPFC_NVME_ABORT_OP)) { 1804 list_del_init(&ctxp->list); 1805 released = true; 1806 } 1807 ctxp->flag &= ~LPFC_NVME_XBUSY; 1808 spin_unlock(&ctxp->ctxlock); 1809 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1810 1811 rrq_empty = list_empty(&phba->active_rrq_list); 1812 spin_unlock_irqrestore(&phba->hbalock, iflag); 1813 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1814 if (ndlp && 1815 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1816 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1817 lpfc_set_rrq_active(phba, ndlp, 1818 ctxp->ctxbuf->sglq->sli4_lxritag, 1819 rxid, 1); 1820 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1821 } 1822 1823 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1824 "6318 XB aborted oxid x%x flg x%x (%x)\n", 1825 ctxp->oxid, ctxp->flag, released); 1826 if (released) 1827 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1828 1829 if (rrq_empty) 1830 lpfc_worker_wake_up(phba); 1831 return; 1832 } 1833 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1834 spin_unlock_irqrestore(&phba->hbalock, iflag); 1835 1836 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri); 1837 if (ctxp) { 1838 /* 1839 * Abort already done by FW, so BA_ACC sent. 1840 * However, the transport may be unaware. 1841 */ 1842 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1843 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x " 1844 "flag x%x oxid x%x rxid x%x\n", 1845 xri, ctxp->state, ctxp->flag, ctxp->oxid, 1846 rxid); 1847 1848 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1849 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1850 ctxp->state = LPFC_NVME_STE_ABORT; 1851 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1852 1853 lpfc_nvmeio_data(phba, 1854 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1855 xri, raw_smp_processor_id(), 0); 1856 1857 req = &ctxp->hdlrctx.fcp_req; 1858 if (req) 1859 nvmet_fc_rcv_fcp_abort(phba->targetport, req); 1860 } 1861 #endif 1862 } 1863 1864 int 1865 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1866 struct fc_frame_header *fc_hdr) 1867 { 1868 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1869 struct lpfc_hba *phba = vport->phba; 1870 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1871 struct nvmefc_tgt_fcp_req *rsp; 1872 uint32_t sid; 1873 uint16_t oxid, xri; 1874 unsigned long iflag = 0; 1875 1876 sid = sli4_sid_from_fc_hdr(fc_hdr); 1877 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1878 1879 spin_lock_irqsave(&phba->hbalock, iflag); 1880 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1881 list_for_each_entry_safe(ctxp, next_ctxp, 1882 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1883 list) { 1884 if (ctxp->oxid != oxid || ctxp->sid != sid) 1885 continue; 1886 1887 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1888 1889 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1890 spin_unlock_irqrestore(&phba->hbalock, iflag); 1891 1892 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1893 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1894 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1895 1896 lpfc_nvmeio_data(phba, 1897 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1898 xri, raw_smp_processor_id(), 0); 1899 1900 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1901 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1902 1903 rsp = &ctxp->hdlrctx.fcp_req; 1904 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1905 1906 /* Respond with BA_ACC accordingly */ 1907 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1908 return 0; 1909 } 1910 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1911 spin_unlock_irqrestore(&phba->hbalock, iflag); 1912 1913 /* check the wait list */ 1914 if (phba->sli4_hba.nvmet_io_wait_cnt) { 1915 struct rqb_dmabuf *nvmebuf; 1916 struct fc_frame_header *fc_hdr_tmp; 1917 u32 sid_tmp; 1918 u16 oxid_tmp; 1919 bool found = false; 1920 1921 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1922 1923 /* match by oxid and s_id */ 1924 list_for_each_entry(nvmebuf, 1925 &phba->sli4_hba.lpfc_nvmet_io_wait_list, 1926 hbuf.list) { 1927 fc_hdr_tmp = (struct fc_frame_header *) 1928 (nvmebuf->hbuf.virt); 1929 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id); 1930 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp); 1931 if (oxid_tmp != oxid || sid_tmp != sid) 1932 continue; 1933 1934 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1935 "6321 NVMET Rcv ABTS oxid x%x from x%x " 1936 "is waiting for a ctxp\n", 1937 oxid, sid); 1938 1939 list_del_init(&nvmebuf->hbuf.list); 1940 phba->sli4_hba.nvmet_io_wait_cnt--; 1941 found = true; 1942 break; 1943 } 1944 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1945 iflag); 1946 1947 /* free buffer since already posted a new DMA buffer to RQ */ 1948 if (found) { 1949 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1950 /* Respond with BA_ACC accordingly */ 1951 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1952 return 0; 1953 } 1954 } 1955 1956 /* check active list */ 1957 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid); 1958 if (ctxp) { 1959 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1960 1961 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1962 ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP); 1963 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1964 1965 lpfc_nvmeio_data(phba, 1966 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1967 xri, raw_smp_processor_id(), 0); 1968 1969 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1970 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x " 1971 "flag x%x state x%x\n", 1972 ctxp->oxid, xri, ctxp->flag, ctxp->state); 1973 1974 if (ctxp->flag & LPFC_NVME_TNOTIFY) { 1975 /* Notify the transport */ 1976 nvmet_fc_rcv_fcp_abort(phba->targetport, 1977 &ctxp->hdlrctx.fcp_req); 1978 } else { 1979 cancel_work_sync(&ctxp->ctxbuf->defer_work); 1980 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1981 lpfc_nvmet_defer_release(phba, ctxp); 1982 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1983 } 1984 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1985 ctxp->oxid); 1986 1987 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1988 return 0; 1989 } 1990 1991 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n", 1992 oxid, raw_smp_processor_id(), 1); 1993 1994 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1995 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid); 1996 1997 /* Respond with BA_RJT accordingly */ 1998 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 1999 #endif 2000 return 0; 2001 } 2002 2003 static void 2004 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, 2005 struct lpfc_async_xchg_ctx *ctxp) 2006 { 2007 struct lpfc_sli_ring *pring; 2008 struct lpfc_iocbq *nvmewqeq; 2009 struct lpfc_iocbq *next_nvmewqeq; 2010 unsigned long iflags; 2011 struct lpfc_wcqe_complete wcqe; 2012 struct lpfc_wcqe_complete *wcqep; 2013 2014 pring = wq->pring; 2015 wcqep = &wcqe; 2016 2017 /* Fake an ABORT error code back to cmpl routine */ 2018 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); 2019 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); 2020 wcqep->parameter = IOERR_ABORT_REQUESTED; 2021 2022 spin_lock_irqsave(&pring->ring_lock, iflags); 2023 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, 2024 &wq->wqfull_list, list) { 2025 if (ctxp) { 2026 /* Checking for a specific IO to flush */ 2027 if (nvmewqeq->context2 == ctxp) { 2028 list_del(&nvmewqeq->list); 2029 spin_unlock_irqrestore(&pring->ring_lock, 2030 iflags); 2031 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, 2032 wcqep); 2033 return; 2034 } 2035 continue; 2036 } else { 2037 /* Flush all IOs */ 2038 list_del(&nvmewqeq->list); 2039 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2040 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep); 2041 spin_lock_irqsave(&pring->ring_lock, iflags); 2042 } 2043 } 2044 if (!ctxp) 2045 wq->q_flag &= ~HBA_NVMET_WQFULL; 2046 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2047 } 2048 2049 void 2050 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, 2051 struct lpfc_queue *wq) 2052 { 2053 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2054 struct lpfc_sli_ring *pring; 2055 struct lpfc_iocbq *nvmewqeq; 2056 struct lpfc_async_xchg_ctx *ctxp; 2057 unsigned long iflags; 2058 int rc; 2059 2060 /* 2061 * Some WQE slots are available, so try to re-issue anything 2062 * on the WQ wqfull_list. 2063 */ 2064 pring = wq->pring; 2065 spin_lock_irqsave(&pring->ring_lock, iflags); 2066 while (!list_empty(&wq->wqfull_list)) { 2067 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, 2068 list); 2069 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2070 ctxp = (struct lpfc_async_xchg_ctx *)nvmewqeq->context2; 2071 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 2072 spin_lock_irqsave(&pring->ring_lock, iflags); 2073 if (rc == -EBUSY) { 2074 /* WQ was full again, so put it back on the list */ 2075 list_add(&nvmewqeq->list, &wq->wqfull_list); 2076 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2077 return; 2078 } 2079 if (rc == WQE_SUCCESS) { 2080 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2081 if (ctxp->ts_cmd_nvme) { 2082 if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP) 2083 ctxp->ts_status_wqput = ktime_get_ns(); 2084 else 2085 ctxp->ts_data_wqput = ktime_get_ns(); 2086 } 2087 #endif 2088 } else { 2089 WARN_ON(rc); 2090 } 2091 } 2092 wq->q_flag &= ~HBA_NVMET_WQFULL; 2093 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2094 2095 #endif 2096 } 2097 2098 void 2099 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 2100 { 2101 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2102 struct lpfc_nvmet_tgtport *tgtp; 2103 struct lpfc_queue *wq; 2104 uint32_t qidx; 2105 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp); 2106 2107 if (phba->nvmet_support == 0) 2108 return; 2109 if (phba->targetport) { 2110 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2111 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 2112 wq = phba->sli4_hba.hdwq[qidx].io_wq; 2113 lpfc_nvmet_wqfull_flush(phba, wq, NULL); 2114 } 2115 tgtp->tport_unreg_cmp = &tport_unreg_cmp; 2116 nvmet_fc_unregister_targetport(phba->targetport); 2117 if (!wait_for_completion_timeout(&tport_unreg_cmp, 2118 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO))) 2119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2120 "6179 Unreg targetport x%px timeout " 2121 "reached.\n", phba->targetport); 2122 lpfc_nvmet_cleanup_io_context(phba); 2123 } 2124 phba->targetport = NULL; 2125 #endif 2126 } 2127 2128 /** 2129 * lpfc_nvmet_handle_lsreq - Process an NVME LS request 2130 * @phba: pointer to lpfc hba data structure. 2131 * @axchg: pointer to exchange context for the NVME LS request 2132 * 2133 * This routine is used for processing an asychronously received NVME LS 2134 * request. Any remaining validation is done and the LS is then forwarded 2135 * to the nvmet-fc transport via nvmet_fc_rcv_ls_req(). 2136 * 2137 * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing) 2138 * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done. 2139 * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg. 2140 * 2141 * Returns 0 if LS was handled and delivered to the transport 2142 * Returns 1 if LS failed to be handled and should be dropped 2143 */ 2144 int 2145 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba, 2146 struct lpfc_async_xchg_ctx *axchg) 2147 { 2148 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2149 struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private; 2150 uint32_t *payload = axchg->payload; 2151 int rc; 2152 2153 atomic_inc(&tgtp->rcv_ls_req_in); 2154 2155 /* 2156 * Driver passes the ndlp as the hosthandle argument allowing 2157 * the transport to generate LS requests for any associateions 2158 * that are created. 2159 */ 2160 rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp, 2161 axchg->payload, axchg->size); 2162 2163 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2164 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 2165 "%08x %08x %08x\n", axchg->size, rc, 2166 *payload, *(payload+1), *(payload+2), 2167 *(payload+3), *(payload+4), *(payload+5)); 2168 2169 if (!rc) { 2170 atomic_inc(&tgtp->rcv_ls_req_out); 2171 return 0; 2172 } 2173 2174 atomic_inc(&tgtp->rcv_ls_req_drop); 2175 #endif 2176 return 1; 2177 } 2178 2179 static void 2180 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf) 2181 { 2182 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2183 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 2184 struct lpfc_hba *phba = ctxp->phba; 2185 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 2186 struct lpfc_nvmet_tgtport *tgtp; 2187 uint32_t *payload, qno; 2188 uint32_t rc; 2189 unsigned long iflags; 2190 2191 if (!nvmebuf) { 2192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2193 "6159 process_rcv_fcp_req, nvmebuf is NULL, " 2194 "oxid: x%x flg: x%x state: x%x\n", 2195 ctxp->oxid, ctxp->flag, ctxp->state); 2196 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2197 lpfc_nvmet_defer_release(phba, ctxp); 2198 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2199 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 2200 ctxp->oxid); 2201 return; 2202 } 2203 2204 if (ctxp->flag & LPFC_NVME_ABTS_RCV) { 2205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2206 "6324 IO oxid x%x aborted\n", 2207 ctxp->oxid); 2208 return; 2209 } 2210 2211 payload = (uint32_t *)(nvmebuf->dbuf.virt); 2212 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2213 ctxp->flag |= LPFC_NVME_TNOTIFY; 2214 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2215 if (ctxp->ts_isr_cmd) 2216 ctxp->ts_cmd_nvme = ktime_get_ns(); 2217 #endif 2218 /* 2219 * The calling sequence should be: 2220 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 2221 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 2222 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 2223 * the NVME command / FC header is stored. 2224 * A buffer has already been reposted for this IO, so just free 2225 * the nvmebuf. 2226 */ 2227 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req, 2228 payload, ctxp->size); 2229 /* Process FCP command */ 2230 if (rc == 0) { 2231 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2232 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2233 if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) || 2234 (nvmebuf != ctxp->rqb_buffer)) { 2235 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2236 return; 2237 } 2238 ctxp->rqb_buffer = NULL; 2239 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2240 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2241 return; 2242 } 2243 2244 /* Processing of FCP command is deferred */ 2245 if (rc == -EOVERFLOW) { 2246 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d " 2247 "from %06x\n", 2248 ctxp->oxid, ctxp->size, ctxp->sid); 2249 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2250 atomic_inc(&tgtp->defer_fod); 2251 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2252 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 2253 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2254 return; 2255 } 2256 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2257 /* 2258 * Post a replacement DMA buffer to RQ and defer 2259 * freeing rcv buffer till .defer_rcv callback 2260 */ 2261 qno = nvmebuf->idx; 2262 lpfc_post_rq_buffer( 2263 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2264 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2265 return; 2266 } 2267 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 2268 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2269 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2270 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 2271 ctxp->oxid, rc, 2272 atomic_read(&tgtp->rcv_fcp_cmd_in), 2273 atomic_read(&tgtp->rcv_fcp_cmd_out), 2274 atomic_read(&tgtp->xmt_fcp_release)); 2275 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 2276 ctxp->oxid, ctxp->size, ctxp->sid); 2277 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2278 lpfc_nvmet_defer_release(phba, ctxp); 2279 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2280 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 2281 #endif 2282 } 2283 2284 static void 2285 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work) 2286 { 2287 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2288 struct lpfc_nvmet_ctxbuf *ctx_buf = 2289 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work); 2290 2291 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2292 #endif 2293 } 2294 2295 static struct lpfc_nvmet_ctxbuf * 2296 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 2297 struct lpfc_nvmet_ctx_info *current_infop) 2298 { 2299 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2300 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 2301 struct lpfc_nvmet_ctx_info *get_infop; 2302 int i; 2303 2304 /* 2305 * The current_infop for the MRQ a NVME command IU was received 2306 * on is empty. Our goal is to replenish this MRQs context 2307 * list from a another CPUs. 2308 * 2309 * First we need to pick a context list to start looking on. 2310 * nvmet_ctx_start_cpu has available context the last time 2311 * we needed to replenish this CPU where nvmet_ctx_next_cpu 2312 * is just the next sequential CPU for this MRQ. 2313 */ 2314 if (current_infop->nvmet_ctx_start_cpu) 2315 get_infop = current_infop->nvmet_ctx_start_cpu; 2316 else 2317 get_infop = current_infop->nvmet_ctx_next_cpu; 2318 2319 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) { 2320 if (get_infop == current_infop) { 2321 get_infop = get_infop->nvmet_ctx_next_cpu; 2322 continue; 2323 } 2324 spin_lock(&get_infop->nvmet_ctx_list_lock); 2325 2326 /* Just take the entire context list, if there are any */ 2327 if (get_infop->nvmet_ctx_list_cnt) { 2328 list_splice_init(&get_infop->nvmet_ctx_list, 2329 ¤t_infop->nvmet_ctx_list); 2330 current_infop->nvmet_ctx_list_cnt = 2331 get_infop->nvmet_ctx_list_cnt - 1; 2332 get_infop->nvmet_ctx_list_cnt = 0; 2333 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2334 2335 current_infop->nvmet_ctx_start_cpu = get_infop; 2336 list_remove_head(¤t_infop->nvmet_ctx_list, 2337 ctx_buf, struct lpfc_nvmet_ctxbuf, 2338 list); 2339 return ctx_buf; 2340 } 2341 2342 /* Otherwise, move on to the next CPU for this MRQ */ 2343 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2344 get_infop = get_infop->nvmet_ctx_next_cpu; 2345 } 2346 2347 #endif 2348 /* Nothing found, all contexts for the MRQ are in-flight */ 2349 return NULL; 2350 } 2351 2352 /** 2353 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 2354 * @phba: pointer to lpfc hba data structure. 2355 * @idx: relative index of MRQ vector 2356 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 2357 * @isr_timestamp: in jiffies. 2358 * @cqflag: cq processing information regarding workload. 2359 * 2360 * This routine is used for processing the WQE associated with a unsolicited 2361 * event. It first determines whether there is an existing ndlp that matches 2362 * the DID from the unsolicited WQE. If not, it will create a new one with 2363 * the DID from the unsolicited WQE. The ELS command from the unsolicited 2364 * WQE is then used to invoke the proper routine and to set up proper state 2365 * of the discovery state machine. 2366 **/ 2367 static void 2368 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 2369 uint32_t idx, 2370 struct rqb_dmabuf *nvmebuf, 2371 uint64_t isr_timestamp, 2372 uint8_t cqflag) 2373 { 2374 struct lpfc_async_xchg_ctx *ctxp; 2375 struct lpfc_nvmet_tgtport *tgtp; 2376 struct fc_frame_header *fc_hdr; 2377 struct lpfc_nvmet_ctxbuf *ctx_buf; 2378 struct lpfc_nvmet_ctx_info *current_infop; 2379 uint32_t size, oxid, sid, qno; 2380 unsigned long iflag; 2381 int current_cpu; 2382 2383 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2384 return; 2385 2386 ctx_buf = NULL; 2387 if (!nvmebuf || !phba->targetport) { 2388 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2389 "6157 NVMET FCP Drop IO\n"); 2390 if (nvmebuf) 2391 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2392 return; 2393 } 2394 2395 /* 2396 * Get a pointer to the context list for this MRQ based on 2397 * the CPU this MRQ IRQ is associated with. If the CPU association 2398 * changes from our initial assumption, the context list could 2399 * be empty, thus it would need to be replenished with the 2400 * context list from another CPU for this MRQ. 2401 */ 2402 current_cpu = raw_smp_processor_id(); 2403 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 2404 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 2405 if (current_infop->nvmet_ctx_list_cnt) { 2406 list_remove_head(¤t_infop->nvmet_ctx_list, 2407 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 2408 current_infop->nvmet_ctx_list_cnt--; 2409 } else { 2410 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 2411 } 2412 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 2413 2414 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 2415 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2416 size = nvmebuf->bytes_recv; 2417 2418 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2419 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 2420 this_cpu_inc(phba->sli4_hba.c_stat->rcv_io); 2421 if (idx != current_cpu) 2422 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2423 "6703 CPU Check rcv: " 2424 "cpu %d expect %d\n", 2425 current_cpu, idx); 2426 } 2427 #endif 2428 2429 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 2430 oxid, size, raw_smp_processor_id()); 2431 2432 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2433 2434 if (!ctx_buf) { 2435 /* Queue this NVME IO to process later */ 2436 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 2437 list_add_tail(&nvmebuf->hbuf.list, 2438 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 2439 phba->sli4_hba.nvmet_io_wait_cnt++; 2440 phba->sli4_hba.nvmet_io_wait_total++; 2441 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 2442 iflag); 2443 2444 /* Post a brand new DMA buffer to RQ */ 2445 qno = nvmebuf->idx; 2446 lpfc_post_rq_buffer( 2447 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2448 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2449 2450 atomic_inc(&tgtp->defer_ctx); 2451 return; 2452 } 2453 2454 sid = sli4_sid_from_fc_hdr(fc_hdr); 2455 2456 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 2457 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 2458 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list); 2459 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 2460 if (ctxp->state != LPFC_NVME_STE_FREE) { 2461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2462 "6414 NVMET Context corrupt %d %d oxid x%x\n", 2463 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 2464 } 2465 ctxp->wqeq = NULL; 2466 ctxp->offset = 0; 2467 ctxp->phba = phba; 2468 ctxp->size = size; 2469 ctxp->oxid = oxid; 2470 ctxp->sid = sid; 2471 ctxp->idx = idx; 2472 ctxp->state = LPFC_NVME_STE_RCV; 2473 ctxp->entry_cnt = 1; 2474 ctxp->flag = 0; 2475 ctxp->ctxbuf = ctx_buf; 2476 ctxp->rqb_buffer = (void *)nvmebuf; 2477 ctxp->hdwq = NULL; 2478 spin_lock_init(&ctxp->ctxlock); 2479 2480 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2481 if (isr_timestamp) 2482 ctxp->ts_isr_cmd = isr_timestamp; 2483 ctxp->ts_cmd_nvme = 0; 2484 ctxp->ts_nvme_data = 0; 2485 ctxp->ts_data_wqput = 0; 2486 ctxp->ts_isr_data = 0; 2487 ctxp->ts_data_nvme = 0; 2488 ctxp->ts_nvme_status = 0; 2489 ctxp->ts_status_wqput = 0; 2490 ctxp->ts_isr_status = 0; 2491 ctxp->ts_status_nvme = 0; 2492 #endif 2493 2494 atomic_inc(&tgtp->rcv_fcp_cmd_in); 2495 /* check for cq processing load */ 2496 if (!cqflag) { 2497 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2498 return; 2499 } 2500 2501 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 2502 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2504 "6325 Unable to queue work for oxid x%x. " 2505 "FCP Drop IO [x%x x%x x%x]\n", 2506 ctxp->oxid, 2507 atomic_read(&tgtp->rcv_fcp_cmd_in), 2508 atomic_read(&tgtp->rcv_fcp_cmd_out), 2509 atomic_read(&tgtp->xmt_fcp_release)); 2510 2511 spin_lock_irqsave(&ctxp->ctxlock, iflag); 2512 lpfc_nvmet_defer_release(phba, ctxp); 2513 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 2514 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 2515 } 2516 } 2517 2518 /** 2519 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 2520 * @phba: pointer to lpfc hba data structure. 2521 * @idx: relative index of MRQ vector 2522 * @nvmebuf: pointer to received nvme data structure. 2523 * @isr_timestamp: in jiffies. 2524 * @cqflag: cq processing information regarding workload. 2525 * 2526 * This routine is used to process an unsolicited event received from a SLI 2527 * (Service Level Interface) ring. The actual processing of the data buffer 2528 * associated with the unsolicited event is done by invoking the routine 2529 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 2530 * SLI RQ on which the unsolicited event was received. 2531 **/ 2532 void 2533 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 2534 uint32_t idx, 2535 struct rqb_dmabuf *nvmebuf, 2536 uint64_t isr_timestamp, 2537 uint8_t cqflag) 2538 { 2539 if (!nvmebuf) { 2540 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2541 "3167 NVMET FCP Drop IO\n"); 2542 return; 2543 } 2544 if (phba->nvmet_support == 0) { 2545 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2546 return; 2547 } 2548 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag); 2549 } 2550 2551 /** 2552 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 2553 * @phba: pointer to a host N_Port data structure. 2554 * @ctxp: Context info for NVME LS Request 2555 * @rspbuf: DMA buffer of NVME command. 2556 * @rspsize: size of the NVME command. 2557 * 2558 * This routine is used for allocating a lpfc-WQE data structure from 2559 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 2560 * passed into the routine for discovery state machine to issue an Extended 2561 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 2562 * and preparation routine that is used by all the discovery state machine 2563 * routines and the NVME command-specific fields will be later set up by 2564 * the individual discovery machine routines after calling this routine 2565 * allocating and preparing a generic WQE data structure. It fills in the 2566 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 2567 * payload and response payload (if expected). The reference count on the 2568 * ndlp is incremented by 1 and the reference to the ndlp is put into 2569 * context1 of the WQE data structure for this WQE to hold the ndlp 2570 * reference for the command's callback function to access later. 2571 * 2572 * Return code 2573 * Pointer to the newly allocated/prepared nvme wqe data structure 2574 * NULL - when nvme wqe data structure allocation/preparation failed 2575 **/ 2576 static struct lpfc_iocbq * 2577 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 2578 struct lpfc_async_xchg_ctx *ctxp, 2579 dma_addr_t rspbuf, uint16_t rspsize) 2580 { 2581 struct lpfc_nodelist *ndlp; 2582 struct lpfc_iocbq *nvmewqe; 2583 union lpfc_wqe128 *wqe; 2584 2585 if (!lpfc_is_link_up(phba)) { 2586 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2587 "6104 NVMET prep LS wqe: link err: " 2588 "NPORT x%x oxid:x%x ste %d\n", 2589 ctxp->sid, ctxp->oxid, ctxp->state); 2590 return NULL; 2591 } 2592 2593 /* Allocate buffer for command wqe */ 2594 nvmewqe = lpfc_sli_get_iocbq(phba); 2595 if (nvmewqe == NULL) { 2596 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2597 "6105 NVMET prep LS wqe: No WQE: " 2598 "NPORT x%x oxid x%x ste %d\n", 2599 ctxp->sid, ctxp->oxid, ctxp->state); 2600 return NULL; 2601 } 2602 2603 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2604 if (!ndlp || 2605 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2606 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2607 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2608 "6106 NVMET prep LS wqe: No ndlp: " 2609 "NPORT x%x oxid x%x ste %d\n", 2610 ctxp->sid, ctxp->oxid, ctxp->state); 2611 goto nvme_wqe_free_wqeq_exit; 2612 } 2613 ctxp->wqeq = nvmewqe; 2614 2615 /* prevent preparing wqe with NULL ndlp reference */ 2616 nvmewqe->context1 = lpfc_nlp_get(ndlp); 2617 if (nvmewqe->context1 == NULL) 2618 goto nvme_wqe_free_wqeq_exit; 2619 nvmewqe->context2 = ctxp; 2620 2621 wqe = &nvmewqe->wqe; 2622 memset(wqe, 0, sizeof(union lpfc_wqe)); 2623 2624 /* Words 0 - 2 */ 2625 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2626 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 2627 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 2628 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 2629 2630 /* Word 3 */ 2631 2632 /* Word 4 */ 2633 2634 /* Word 5 */ 2635 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 2636 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 2637 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 2638 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 2639 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 2640 2641 /* Word 6 */ 2642 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 2643 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2644 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 2645 2646 /* Word 7 */ 2647 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 2648 CMD_XMIT_SEQUENCE64_WQE); 2649 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 2650 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 2651 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 2652 2653 /* Word 8 */ 2654 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 2655 2656 /* Word 9 */ 2657 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 2658 /* Needs to be set by caller */ 2659 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 2660 2661 /* Word 10 */ 2662 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 2663 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2664 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 2665 LPFC_WQE_LENLOC_WORD12); 2666 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 2667 2668 /* Word 11 */ 2669 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 2670 LPFC_WQE_CQ_ID_DEFAULT); 2671 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 2672 OTHER_COMMAND); 2673 2674 /* Word 12 */ 2675 wqe->xmit_sequence.xmit_len = rspsize; 2676 2677 nvmewqe->retry = 1; 2678 nvmewqe->vport = phba->pport; 2679 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2680 nvmewqe->iocb_flag |= LPFC_IO_NVME_LS; 2681 2682 /* Xmit NVMET response to remote NPORT <did> */ 2683 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2684 "6039 Xmit NVMET LS response to remote " 2685 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 2686 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 2687 rspsize); 2688 return nvmewqe; 2689 2690 nvme_wqe_free_wqeq_exit: 2691 nvmewqe->context2 = NULL; 2692 nvmewqe->context3 = NULL; 2693 lpfc_sli_release_iocbq(phba, nvmewqe); 2694 return NULL; 2695 } 2696 2697 2698 static struct lpfc_iocbq * 2699 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 2700 struct lpfc_async_xchg_ctx *ctxp) 2701 { 2702 struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req; 2703 struct lpfc_nvmet_tgtport *tgtp; 2704 struct sli4_sge *sgl; 2705 struct lpfc_nodelist *ndlp; 2706 struct lpfc_iocbq *nvmewqe; 2707 struct scatterlist *sgel; 2708 union lpfc_wqe128 *wqe; 2709 struct ulp_bde64 *bde; 2710 dma_addr_t physaddr; 2711 int i, cnt, nsegs; 2712 int do_pbde; 2713 int xc = 1; 2714 2715 if (!lpfc_is_link_up(phba)) { 2716 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2717 "6107 NVMET prep FCP wqe: link err:" 2718 "NPORT x%x oxid x%x ste %d\n", 2719 ctxp->sid, ctxp->oxid, ctxp->state); 2720 return NULL; 2721 } 2722 2723 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2724 if (!ndlp || 2725 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2726 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2727 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2728 "6108 NVMET prep FCP wqe: no ndlp: " 2729 "NPORT x%x oxid x%x ste %d\n", 2730 ctxp->sid, ctxp->oxid, ctxp->state); 2731 return NULL; 2732 } 2733 2734 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { 2735 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2736 "6109 NVMET prep FCP wqe: seg cnt err: " 2737 "NPORT x%x oxid x%x ste %d cnt %d\n", 2738 ctxp->sid, ctxp->oxid, ctxp->state, 2739 phba->cfg_nvme_seg_cnt); 2740 return NULL; 2741 } 2742 nsegs = rsp->sg_cnt; 2743 2744 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2745 nvmewqe = ctxp->wqeq; 2746 if (nvmewqe == NULL) { 2747 /* Allocate buffer for command wqe */ 2748 nvmewqe = ctxp->ctxbuf->iocbq; 2749 if (nvmewqe == NULL) { 2750 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2751 "6110 NVMET prep FCP wqe: No " 2752 "WQE: NPORT x%x oxid x%x ste %d\n", 2753 ctxp->sid, ctxp->oxid, ctxp->state); 2754 return NULL; 2755 } 2756 ctxp->wqeq = nvmewqe; 2757 xc = 0; /* create new XRI */ 2758 nvmewqe->sli4_lxritag = NO_XRI; 2759 nvmewqe->sli4_xritag = NO_XRI; 2760 } 2761 2762 /* Sanity check */ 2763 if (((ctxp->state == LPFC_NVME_STE_RCV) && 2764 (ctxp->entry_cnt == 1)) || 2765 (ctxp->state == LPFC_NVME_STE_DATA)) { 2766 wqe = &nvmewqe->wqe; 2767 } else { 2768 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2769 "6111 Wrong state NVMET FCP: %d cnt %d\n", 2770 ctxp->state, ctxp->entry_cnt); 2771 return NULL; 2772 } 2773 2774 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 2775 switch (rsp->op) { 2776 case NVMET_FCOP_READDATA: 2777 case NVMET_FCOP_READDATA_RSP: 2778 /* From the tsend template, initialize words 7 - 11 */ 2779 memcpy(&wqe->words[7], 2780 &lpfc_tsend_cmd_template.words[7], 2781 sizeof(uint32_t) * 5); 2782 2783 /* Words 0 - 2 : The first sg segment */ 2784 sgel = &rsp->sg[0]; 2785 physaddr = sg_dma_address(sgel); 2786 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2787 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 2788 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 2789 wqe->fcp_tsend.bde.addrHigh = 2790 cpu_to_le32(putPaddrHigh(physaddr)); 2791 2792 /* Word 3 */ 2793 wqe->fcp_tsend.payload_offset_len = 0; 2794 2795 /* Word 4 */ 2796 wqe->fcp_tsend.relative_offset = ctxp->offset; 2797 2798 /* Word 5 */ 2799 wqe->fcp_tsend.reserved = 0; 2800 2801 /* Word 6 */ 2802 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2803 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2804 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2805 nvmewqe->sli4_xritag); 2806 2807 /* Word 7 - set ar later */ 2808 2809 /* Word 8 */ 2810 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2811 2812 /* Word 9 */ 2813 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2814 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2815 2816 /* Word 10 - set wqes later, in template xc=1 */ 2817 if (!xc) 2818 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); 2819 2820 /* Word 11 - set sup, irsp, irsplen later */ 2821 do_pbde = 0; 2822 2823 /* Word 12 */ 2824 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2825 2826 /* Setup 2 SKIP SGEs */ 2827 sgl->addr_hi = 0; 2828 sgl->addr_lo = 0; 2829 sgl->word2 = 0; 2830 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2831 sgl->word2 = cpu_to_le32(sgl->word2); 2832 sgl->sge_len = 0; 2833 sgl++; 2834 sgl->addr_hi = 0; 2835 sgl->addr_lo = 0; 2836 sgl->word2 = 0; 2837 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2838 sgl->word2 = cpu_to_le32(sgl->word2); 2839 sgl->sge_len = 0; 2840 sgl++; 2841 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2842 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2843 2844 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2845 2846 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2847 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP) 2848 bf_set(wqe_sup, 2849 &wqe->fcp_tsend.wqe_com, 1); 2850 } else { 2851 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2852 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2853 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2854 ((rsp->rsplen >> 2) - 1)); 2855 memcpy(&wqe->words[16], rsp->rspaddr, 2856 rsp->rsplen); 2857 } 2858 } else { 2859 atomic_inc(&tgtp->xmt_fcp_read); 2860 2861 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2862 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2863 } 2864 break; 2865 2866 case NVMET_FCOP_WRITEDATA: 2867 /* From the treceive template, initialize words 3 - 11 */ 2868 memcpy(&wqe->words[3], 2869 &lpfc_treceive_cmd_template.words[3], 2870 sizeof(uint32_t) * 9); 2871 2872 /* Words 0 - 2 : First SGE is skipped, set invalid BDE type */ 2873 wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP; 2874 wqe->fcp_treceive.bde.tus.f.bdeSize = 0; 2875 wqe->fcp_treceive.bde.addrLow = 0; 2876 wqe->fcp_treceive.bde.addrHigh = 0; 2877 2878 /* Word 4 */ 2879 wqe->fcp_treceive.relative_offset = ctxp->offset; 2880 2881 /* Word 6 */ 2882 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2883 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2884 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2885 nvmewqe->sli4_xritag); 2886 2887 /* Word 7 */ 2888 2889 /* Word 8 */ 2890 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2891 2892 /* Word 9 */ 2893 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2894 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2895 2896 /* Word 10 - in template xc=1 */ 2897 if (!xc) 2898 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); 2899 2900 /* Word 11 - set pbde later */ 2901 if (phba->cfg_enable_pbde) { 2902 do_pbde = 1; 2903 } else { 2904 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); 2905 do_pbde = 0; 2906 } 2907 2908 /* Word 12 */ 2909 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2910 2911 /* Setup 2 SKIP SGEs */ 2912 sgl->addr_hi = 0; 2913 sgl->addr_lo = 0; 2914 sgl->word2 = 0; 2915 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2916 sgl->word2 = cpu_to_le32(sgl->word2); 2917 sgl->sge_len = 0; 2918 sgl++; 2919 sgl->addr_hi = 0; 2920 sgl->addr_lo = 0; 2921 sgl->word2 = 0; 2922 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2923 sgl->word2 = cpu_to_le32(sgl->word2); 2924 sgl->sge_len = 0; 2925 sgl++; 2926 atomic_inc(&tgtp->xmt_fcp_write); 2927 break; 2928 2929 case NVMET_FCOP_RSP: 2930 /* From the treceive template, initialize words 4 - 11 */ 2931 memcpy(&wqe->words[4], 2932 &lpfc_trsp_cmd_template.words[4], 2933 sizeof(uint32_t) * 8); 2934 2935 /* Words 0 - 2 */ 2936 physaddr = rsp->rspdma; 2937 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2938 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2939 wqe->fcp_trsp.bde.addrLow = 2940 cpu_to_le32(putPaddrLow(physaddr)); 2941 wqe->fcp_trsp.bde.addrHigh = 2942 cpu_to_le32(putPaddrHigh(physaddr)); 2943 2944 /* Word 3 */ 2945 wqe->fcp_trsp.response_len = rsp->rsplen; 2946 2947 /* Word 6 */ 2948 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2949 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2950 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2951 nvmewqe->sli4_xritag); 2952 2953 /* Word 7 */ 2954 2955 /* Word 8 */ 2956 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2957 2958 /* Word 9 */ 2959 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2960 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2961 2962 /* Word 10 */ 2963 if (xc) 2964 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); 2965 2966 /* Word 11 */ 2967 /* In template wqes=0 irsp=0 irsplen=0 - good response */ 2968 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { 2969 /* Bad response - embed it */ 2970 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2971 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2972 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2973 ((rsp->rsplen >> 2) - 1)); 2974 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2975 } 2976 do_pbde = 0; 2977 2978 /* Word 12 */ 2979 wqe->fcp_trsp.rsvd_12_15[0] = 0; 2980 2981 /* Use rspbuf, NOT sg list */ 2982 nsegs = 0; 2983 sgl->word2 = 0; 2984 atomic_inc(&tgtp->xmt_fcp_rsp); 2985 break; 2986 2987 default: 2988 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2989 "6064 Unknown Rsp Op %d\n", 2990 rsp->op); 2991 return NULL; 2992 } 2993 2994 nvmewqe->retry = 1; 2995 nvmewqe->vport = phba->pport; 2996 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2997 nvmewqe->context1 = ndlp; 2998 2999 for_each_sg(rsp->sg, sgel, nsegs, i) { 3000 physaddr = sg_dma_address(sgel); 3001 cnt = sg_dma_len(sgel); 3002 sgl->addr_hi = putPaddrHigh(physaddr); 3003 sgl->addr_lo = putPaddrLow(physaddr); 3004 sgl->word2 = 0; 3005 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 3006 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 3007 if ((i+1) == rsp->sg_cnt) 3008 bf_set(lpfc_sli4_sge_last, sgl, 1); 3009 sgl->word2 = cpu_to_le32(sgl->word2); 3010 sgl->sge_len = cpu_to_le32(cnt); 3011 if (i == 0) { 3012 bde = (struct ulp_bde64 *)&wqe->words[13]; 3013 if (do_pbde) { 3014 /* Words 13-15 (PBDE) */ 3015 bde->addrLow = sgl->addr_lo; 3016 bde->addrHigh = sgl->addr_hi; 3017 bde->tus.f.bdeSize = 3018 le32_to_cpu(sgl->sge_len); 3019 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 3020 bde->tus.w = cpu_to_le32(bde->tus.w); 3021 } else { 3022 memset(bde, 0, sizeof(struct ulp_bde64)); 3023 } 3024 } 3025 sgl++; 3026 ctxp->offset += cnt; 3027 } 3028 ctxp->state = LPFC_NVME_STE_DATA; 3029 ctxp->entry_cnt++; 3030 return nvmewqe; 3031 } 3032 3033 /** 3034 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 3035 * @phba: Pointer to HBA context object. 3036 * @cmdwqe: Pointer to driver command WQE object. 3037 * @wcqe: Pointer to driver response CQE object. 3038 * 3039 * The function is called from SLI ring event handler with no 3040 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3041 * The function frees memory resources used for the NVME commands. 3042 **/ 3043 static void 3044 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3045 struct lpfc_wcqe_complete *wcqe) 3046 { 3047 struct lpfc_async_xchg_ctx *ctxp; 3048 struct lpfc_nvmet_tgtport *tgtp; 3049 uint32_t result; 3050 unsigned long flags; 3051 bool released = false; 3052 3053 ctxp = cmdwqe->context2; 3054 result = wcqe->parameter; 3055 3056 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3057 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3058 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3059 3060 spin_lock_irqsave(&ctxp->ctxlock, flags); 3061 ctxp->state = LPFC_NVME_STE_DONE; 3062 3063 /* Check if we already received a free context call 3064 * and we have completed processing an abort situation. 3065 */ 3066 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3067 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3068 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3069 list_del_init(&ctxp->list); 3070 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3071 released = true; 3072 } 3073 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3074 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3075 atomic_inc(&tgtp->xmt_abort_rsp); 3076 3077 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3078 "6165 ABORT cmpl: oxid x%x flg x%x (%d) " 3079 "WCQE: %08x %08x %08x %08x\n", 3080 ctxp->oxid, ctxp->flag, released, 3081 wcqe->word0, wcqe->total_data_placed, 3082 result, wcqe->word3); 3083 3084 cmdwqe->context2 = NULL; 3085 cmdwqe->context3 = NULL; 3086 /* 3087 * if transport has released ctx, then can reuse it. Otherwise, 3088 * will be recycled by transport release call. 3089 */ 3090 if (released) 3091 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3092 3093 /* This is the iocbq for the abort, not the command */ 3094 lpfc_sli_release_iocbq(phba, cmdwqe); 3095 3096 /* Since iaab/iaar are NOT set, there is no work left. 3097 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3098 * should have been called already. 3099 */ 3100 } 3101 3102 /** 3103 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 3104 * @phba: Pointer to HBA context object. 3105 * @cmdwqe: Pointer to driver command WQE object. 3106 * @wcqe: Pointer to driver response CQE object. 3107 * 3108 * The function is called from SLI ring event handler with no 3109 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3110 * The function frees memory resources used for the NVME commands. 3111 **/ 3112 static void 3113 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3114 struct lpfc_wcqe_complete *wcqe) 3115 { 3116 struct lpfc_async_xchg_ctx *ctxp; 3117 struct lpfc_nvmet_tgtport *tgtp; 3118 unsigned long flags; 3119 uint32_t result; 3120 bool released = false; 3121 3122 ctxp = cmdwqe->context2; 3123 result = wcqe->parameter; 3124 3125 if (!ctxp) { 3126 /* if context is clear, related io alrady complete */ 3127 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3128 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 3129 wcqe->word0, wcqe->total_data_placed, 3130 result, wcqe->word3); 3131 return; 3132 } 3133 3134 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3135 spin_lock_irqsave(&ctxp->ctxlock, flags); 3136 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3137 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3138 3139 /* Sanity check */ 3140 if (ctxp->state != LPFC_NVME_STE_ABORT) { 3141 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3142 "6112 ABTS Wrong state:%d oxid x%x\n", 3143 ctxp->state, ctxp->oxid); 3144 } 3145 3146 /* Check if we already received a free context call 3147 * and we have completed processing an abort situation. 3148 */ 3149 ctxp->state = LPFC_NVME_STE_DONE; 3150 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3151 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3152 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3153 list_del_init(&ctxp->list); 3154 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3155 released = true; 3156 } 3157 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3158 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3159 atomic_inc(&tgtp->xmt_abort_rsp); 3160 3161 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3162 "6316 ABTS cmpl oxid x%x flg x%x (%x) " 3163 "WCQE: %08x %08x %08x %08x\n", 3164 ctxp->oxid, ctxp->flag, released, 3165 wcqe->word0, wcqe->total_data_placed, 3166 result, wcqe->word3); 3167 3168 cmdwqe->context2 = NULL; 3169 cmdwqe->context3 = NULL; 3170 /* 3171 * if transport has released ctx, then can reuse it. Otherwise, 3172 * will be recycled by transport release call. 3173 */ 3174 if (released) 3175 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3176 3177 /* Since iaab/iaar are NOT set, there is no work left. 3178 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3179 * should have been called already. 3180 */ 3181 } 3182 3183 /** 3184 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 3185 * @phba: Pointer to HBA context object. 3186 * @cmdwqe: Pointer to driver command WQE object. 3187 * @wcqe: Pointer to driver response CQE object. 3188 * 3189 * The function is called from SLI ring event handler with no 3190 * lock held. This function is the completion handler for NVME ABTS for LS cmds 3191 * The function frees memory resources used for the NVME commands. 3192 **/ 3193 static void 3194 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3195 struct lpfc_wcqe_complete *wcqe) 3196 { 3197 struct lpfc_async_xchg_ctx *ctxp; 3198 struct lpfc_nvmet_tgtport *tgtp; 3199 uint32_t result; 3200 3201 ctxp = cmdwqe->context2; 3202 result = wcqe->parameter; 3203 3204 if (phba->nvmet_support) { 3205 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3206 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 3207 } 3208 3209 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3210 "6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n", 3211 ctxp, wcqe->word0, wcqe->total_data_placed, 3212 result, wcqe->word3); 3213 3214 if (!ctxp) { 3215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3216 "6415 NVMET LS Abort No ctx: WCQE: " 3217 "%08x %08x %08x %08x\n", 3218 wcqe->word0, wcqe->total_data_placed, 3219 result, wcqe->word3); 3220 3221 lpfc_sli_release_iocbq(phba, cmdwqe); 3222 return; 3223 } 3224 3225 if (ctxp->state != LPFC_NVME_STE_LS_ABORT) { 3226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3227 "6416 NVMET LS abort cmpl state mismatch: " 3228 "oxid x%x: %d %d\n", 3229 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3230 } 3231 3232 cmdwqe->context2 = NULL; 3233 cmdwqe->context3 = NULL; 3234 lpfc_sli_release_iocbq(phba, cmdwqe); 3235 kfree(ctxp); 3236 } 3237 3238 static int 3239 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 3240 struct lpfc_async_xchg_ctx *ctxp, 3241 uint32_t sid, uint16_t xri) 3242 { 3243 struct lpfc_nvmet_tgtport *tgtp = NULL; 3244 struct lpfc_iocbq *abts_wqeq; 3245 union lpfc_wqe128 *wqe_abts; 3246 struct lpfc_nodelist *ndlp; 3247 3248 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3249 "6067 ABTS: sid %x xri x%x/x%x\n", 3250 sid, xri, ctxp->wqeq->sli4_xritag); 3251 3252 if (phba->nvmet_support && phba->targetport) 3253 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3254 3255 ndlp = lpfc_findnode_did(phba->pport, sid); 3256 if (!ndlp || 3257 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3258 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3259 if (tgtp) 3260 atomic_inc(&tgtp->xmt_abort_rsp_error); 3261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3262 "6134 Drop ABTS - wrong NDLP state x%x.\n", 3263 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3264 3265 /* No failure to an ABTS request. */ 3266 return 0; 3267 } 3268 3269 abts_wqeq = ctxp->wqeq; 3270 wqe_abts = &abts_wqeq->wqe; 3271 3272 /* 3273 * Since we zero the whole WQE, we need to ensure we set the WQE fields 3274 * that were initialized in lpfc_sli4_nvmet_alloc. 3275 */ 3276 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 3277 3278 /* Word 5 */ 3279 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 3280 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 3281 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 3282 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 3283 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 3284 3285 /* Word 6 */ 3286 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 3287 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 3288 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 3289 abts_wqeq->sli4_xritag); 3290 3291 /* Word 7 */ 3292 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 3293 CMD_XMIT_SEQUENCE64_WQE); 3294 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 3295 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 3296 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 3297 3298 /* Word 8 */ 3299 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 3300 3301 /* Word 9 */ 3302 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 3303 /* Needs to be set by caller */ 3304 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 3305 3306 /* Word 10 */ 3307 bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1); 3308 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 3309 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 3310 LPFC_WQE_LENLOC_WORD12); 3311 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 3312 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 3313 3314 /* Word 11 */ 3315 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 3316 LPFC_WQE_CQ_ID_DEFAULT); 3317 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 3318 OTHER_COMMAND); 3319 3320 abts_wqeq->vport = phba->pport; 3321 abts_wqeq->context1 = ndlp; 3322 abts_wqeq->context2 = ctxp; 3323 abts_wqeq->context3 = NULL; 3324 abts_wqeq->rsvd2 = 0; 3325 /* hba_wqidx should already be setup from command we are aborting */ 3326 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 3327 abts_wqeq->iocb.ulpLe = 1; 3328 3329 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3330 "6069 Issue ABTS to xri x%x reqtag x%x\n", 3331 xri, abts_wqeq->iotag); 3332 return 1; 3333 } 3334 3335 /** 3336 * lpfc_nvmet_prep_abort_wqe - set up 'abort' work queue entry. 3337 * @pwqeq: Pointer to command iocb. 3338 * @xritag: Tag that uniqely identifies the local exchange resource. 3339 * @opt: Option bits - 3340 * bit 0 = inhibit sending abts on the link 3341 * 3342 * This function is called with hbalock held. 3343 **/ 3344 static void 3345 lpfc_nvmet_prep_abort_wqe(struct lpfc_iocbq *pwqeq, u16 xritag, u8 opt) 3346 { 3347 union lpfc_wqe128 *wqe = &pwqeq->wqe; 3348 3349 /* WQEs are reused. Clear stale data and set key fields to 3350 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag. 3351 */ 3352 memset(wqe, 0, sizeof(*wqe)); 3353 3354 if (opt & INHIBIT_ABORT) 3355 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 3356 /* Abort specified xri tag, with the mask deliberately zeroed */ 3357 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 3358 3359 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 3360 3361 /* Abort the I/O associated with this outstanding exchange ID. */ 3362 wqe->abort_cmd.wqe_com.abort_tag = xritag; 3363 3364 /* iotag for the wqe completion. */ 3365 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, pwqeq->iotag); 3366 3367 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 3368 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 3369 3370 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 3371 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 3372 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 3373 } 3374 3375 static int 3376 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 3377 struct lpfc_async_xchg_ctx *ctxp, 3378 uint32_t sid, uint16_t xri) 3379 { 3380 struct lpfc_nvmet_tgtport *tgtp; 3381 struct lpfc_iocbq *abts_wqeq; 3382 struct lpfc_nodelist *ndlp; 3383 unsigned long flags; 3384 u8 opt; 3385 int rc; 3386 3387 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3388 if (!ctxp->wqeq) { 3389 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3390 ctxp->wqeq->hba_wqidx = 0; 3391 } 3392 3393 ndlp = lpfc_findnode_did(phba->pport, sid); 3394 if (!ndlp || 3395 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3396 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3397 atomic_inc(&tgtp->xmt_abort_rsp_error); 3398 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3399 "6160 Drop ABORT - wrong NDLP state x%x.\n", 3400 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3401 3402 /* No failure to an ABTS request. */ 3403 spin_lock_irqsave(&ctxp->ctxlock, flags); 3404 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3405 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3406 return 0; 3407 } 3408 3409 /* Issue ABTS for this WQE based on iotag */ 3410 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 3411 spin_lock_irqsave(&ctxp->ctxlock, flags); 3412 if (!ctxp->abort_wqeq) { 3413 atomic_inc(&tgtp->xmt_abort_rsp_error); 3414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3415 "6161 ABORT failed: No wqeqs: " 3416 "xri: x%x\n", ctxp->oxid); 3417 /* No failure to an ABTS request. */ 3418 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3419 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3420 return 0; 3421 } 3422 abts_wqeq = ctxp->abort_wqeq; 3423 ctxp->state = LPFC_NVME_STE_ABORT; 3424 opt = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? INHIBIT_ABORT : 0; 3425 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3426 3427 /* Announce entry to new IO submit field. */ 3428 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3429 "6162 ABORT Request to rport DID x%06x " 3430 "for xri x%x x%x\n", 3431 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 3432 3433 /* If the hba is getting reset, this flag is set. It is 3434 * cleared when the reset is complete and rings reestablished. 3435 */ 3436 spin_lock_irqsave(&phba->hbalock, flags); 3437 /* driver queued commands are in process of being flushed */ 3438 if (phba->hba_flag & HBA_IOQ_FLUSH) { 3439 spin_unlock_irqrestore(&phba->hbalock, flags); 3440 atomic_inc(&tgtp->xmt_abort_rsp_error); 3441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3442 "6163 Driver in reset cleanup - flushing " 3443 "NVME Req now. hba_flag x%x oxid x%x\n", 3444 phba->hba_flag, ctxp->oxid); 3445 lpfc_sli_release_iocbq(phba, abts_wqeq); 3446 spin_lock_irqsave(&ctxp->ctxlock, flags); 3447 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3448 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3449 return 0; 3450 } 3451 3452 /* Outstanding abort is in progress */ 3453 if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) { 3454 spin_unlock_irqrestore(&phba->hbalock, flags); 3455 atomic_inc(&tgtp->xmt_abort_rsp_error); 3456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3457 "6164 Outstanding NVME I/O Abort Request " 3458 "still pending on oxid x%x\n", 3459 ctxp->oxid); 3460 lpfc_sli_release_iocbq(phba, abts_wqeq); 3461 spin_lock_irqsave(&ctxp->ctxlock, flags); 3462 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3463 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3464 return 0; 3465 } 3466 3467 /* Ready - mark outstanding as aborted by driver. */ 3468 abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED; 3469 3470 lpfc_nvmet_prep_abort_wqe(abts_wqeq, ctxp->wqeq->sli4_xritag, opt); 3471 3472 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3473 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 3474 abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 3475 abts_wqeq->iocb_cmpl = NULL; 3476 abts_wqeq->iocb_flag |= LPFC_IO_NVME; 3477 abts_wqeq->context2 = ctxp; 3478 abts_wqeq->vport = phba->pport; 3479 if (!ctxp->hdwq) 3480 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3481 3482 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3483 spin_unlock_irqrestore(&phba->hbalock, flags); 3484 if (rc == WQE_SUCCESS) { 3485 atomic_inc(&tgtp->xmt_abort_sol); 3486 return 0; 3487 } 3488 3489 atomic_inc(&tgtp->xmt_abort_rsp_error); 3490 spin_lock_irqsave(&ctxp->ctxlock, flags); 3491 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3492 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3493 lpfc_sli_release_iocbq(phba, abts_wqeq); 3494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3495 "6166 Failed ABORT issue_wqe with status x%x " 3496 "for oxid x%x.\n", 3497 rc, ctxp->oxid); 3498 return 1; 3499 } 3500 3501 static int 3502 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 3503 struct lpfc_async_xchg_ctx *ctxp, 3504 uint32_t sid, uint16_t xri) 3505 { 3506 struct lpfc_nvmet_tgtport *tgtp; 3507 struct lpfc_iocbq *abts_wqeq; 3508 unsigned long flags; 3509 bool released = false; 3510 int rc; 3511 3512 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3513 if (!ctxp->wqeq) { 3514 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3515 ctxp->wqeq->hba_wqidx = 0; 3516 } 3517 3518 if (ctxp->state == LPFC_NVME_STE_FREE) { 3519 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3520 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 3521 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 3522 rc = WQE_BUSY; 3523 goto aerr; 3524 } 3525 ctxp->state = LPFC_NVME_STE_ABORT; 3526 ctxp->entry_cnt++; 3527 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 3528 if (rc == 0) 3529 goto aerr; 3530 3531 spin_lock_irqsave(&phba->hbalock, flags); 3532 abts_wqeq = ctxp->wqeq; 3533 abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 3534 abts_wqeq->iocb_cmpl = NULL; 3535 abts_wqeq->iocb_flag |= LPFC_IO_NVMET; 3536 if (!ctxp->hdwq) 3537 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3538 3539 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3540 spin_unlock_irqrestore(&phba->hbalock, flags); 3541 if (rc == WQE_SUCCESS) { 3542 return 0; 3543 } 3544 3545 aerr: 3546 spin_lock_irqsave(&ctxp->ctxlock, flags); 3547 if (ctxp->flag & LPFC_NVME_CTX_RLS) { 3548 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3549 list_del_init(&ctxp->list); 3550 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3551 released = true; 3552 } 3553 ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS); 3554 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3555 3556 atomic_inc(&tgtp->xmt_abort_rsp_error); 3557 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3558 "6135 Failed to Issue ABTS for oxid x%x. Status x%x " 3559 "(%x)\n", 3560 ctxp->oxid, rc, released); 3561 if (released) 3562 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3563 return 1; 3564 } 3565 3566 /** 3567 * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received 3568 * via async frame receive where the frame is not handled. 3569 * @phba: pointer to adapter structure 3570 * @ctxp: pointer to the asynchronously received received sequence 3571 * @sid: address of the remote port to send the ABTS to 3572 * @xri: oxid value to for the ABTS (other side's exchange id). 3573 **/ 3574 int 3575 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba, 3576 struct lpfc_async_xchg_ctx *ctxp, 3577 uint32_t sid, uint16_t xri) 3578 { 3579 struct lpfc_nvmet_tgtport *tgtp = NULL; 3580 struct lpfc_iocbq *abts_wqeq; 3581 unsigned long flags; 3582 int rc; 3583 3584 if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) || 3585 (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) { 3586 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3587 ctxp->entry_cnt++; 3588 } else { 3589 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3590 "6418 NVMET LS abort state mismatch " 3591 "IO x%x: %d %d\n", 3592 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3593 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3594 } 3595 3596 if (phba->nvmet_support && phba->targetport) 3597 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3598 3599 if (!ctxp->wqeq) { 3600 /* Issue ABTS for this WQE based on iotag */ 3601 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 3602 if (!ctxp->wqeq) { 3603 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3604 "6068 Abort failed: No wqeqs: " 3605 "xri: x%x\n", xri); 3606 /* No failure to an ABTS request. */ 3607 kfree(ctxp); 3608 return 0; 3609 } 3610 } 3611 abts_wqeq = ctxp->wqeq; 3612 3613 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 3614 rc = WQE_BUSY; 3615 goto out; 3616 } 3617 3618 spin_lock_irqsave(&phba->hbalock, flags); 3619 abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 3620 abts_wqeq->iocb_cmpl = NULL; 3621 abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS; 3622 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3623 spin_unlock_irqrestore(&phba->hbalock, flags); 3624 if (rc == WQE_SUCCESS) { 3625 if (tgtp) 3626 atomic_inc(&tgtp->xmt_abort_unsol); 3627 return 0; 3628 } 3629 out: 3630 if (tgtp) 3631 atomic_inc(&tgtp->xmt_abort_rsp_error); 3632 abts_wqeq->context2 = NULL; 3633 abts_wqeq->context3 = NULL; 3634 lpfc_sli_release_iocbq(phba, abts_wqeq); 3635 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3636 "6056 Failed to Issue ABTS. Status x%x\n", rc); 3637 return 1; 3638 } 3639 3640 /** 3641 * lpfc_nvmet_invalidate_host 3642 * 3643 * @phba: pointer to the driver instance bound to an adapter port. 3644 * @ndlp: pointer to an lpfc_nodelist type 3645 * 3646 * This routine upcalls the nvmet transport to invalidate an NVME 3647 * host to which this target instance had active connections. 3648 */ 3649 void 3650 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 3651 { 3652 u32 ndlp_has_hh; 3653 struct lpfc_nvmet_tgtport *tgtp; 3654 3655 lpfc_printf_log(phba, KERN_INFO, 3656 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC, 3657 "6203 Invalidating hosthandle x%px\n", 3658 ndlp); 3659 3660 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3661 atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE); 3662 3663 spin_lock_irq(&ndlp->lock); 3664 ndlp_has_hh = ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH; 3665 spin_unlock_irq(&ndlp->lock); 3666 3667 /* Do not invalidate any nodes that do not have a hosthandle. 3668 * The host_release callbk will cause a node reference 3669 * count imbalance and a crash. 3670 */ 3671 if (!ndlp_has_hh) { 3672 lpfc_printf_log(phba, KERN_INFO, 3673 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC, 3674 "6204 Skip invalidate on node x%px DID x%x\n", 3675 ndlp, ndlp->nlp_DID); 3676 return; 3677 } 3678 3679 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 3680 /* Need to get the nvmet_fc_target_port pointer here.*/ 3681 nvmet_fc_invalidate_host(phba->targetport, ndlp); 3682 #endif 3683 } 3684