xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/sched/clock.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/irq.h>
40 #include <linux/bitops.h>
41 #include <linux/crash_dump.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuhotplug.h>
44 
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_transport_fc.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/fc/fc_fs.h>
51 
52 #include "lpfc_hw4.h"
53 #include "lpfc_hw.h"
54 #include "lpfc_sli.h"
55 #include "lpfc_sli4.h"
56 #include "lpfc_nl.h"
57 #include "lpfc_disc.h"
58 #include "lpfc.h"
59 #include "lpfc_scsi.h"
60 #include "lpfc_nvme.h"
61 #include "lpfc_logmsg.h"
62 #include "lpfc_crtn.h"
63 #include "lpfc_vport.h"
64 #include "lpfc_version.h"
65 #include "lpfc_ids.h"
66 
67 static enum cpuhp_state lpfc_cpuhp_state;
68 /* Used when mapping IRQ vectors in a driver centric manner */
69 static uint32_t lpfc_present_cpu;
70 static bool lpfc_pldv_detect;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
98 
99 static struct scsi_transport_template *lpfc_transport_template = NULL;
100 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
101 static DEFINE_IDR(lpfc_hba_index);
102 #define LPFC_NVMET_BUF_POST 254
103 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
104 
105 /**
106  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
107  * @phba: pointer to lpfc hba data structure.
108  *
109  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
110  * mailbox command. It retrieves the revision information from the HBA and
111  * collects the Vital Product Data (VPD) about the HBA for preparing the
112  * configuration of the HBA.
113  *
114  * Return codes:
115  *   0 - success.
116  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
117  *   Any other value - indicates an error.
118  **/
119 int
120 lpfc_config_port_prep(struct lpfc_hba *phba)
121 {
122 	lpfc_vpd_t *vp = &phba->vpd;
123 	int i = 0, rc;
124 	LPFC_MBOXQ_t *pmb;
125 	MAILBOX_t *mb;
126 	char *lpfc_vpd_data = NULL;
127 	uint16_t offset = 0;
128 	static char licensed[56] =
129 		    "key unlock for use with gnu public licensed code only\0";
130 	static int init_key = 1;
131 
132 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
133 	if (!pmb) {
134 		phba->link_state = LPFC_HBA_ERROR;
135 		return -ENOMEM;
136 	}
137 
138 	mb = &pmb->u.mb;
139 	phba->link_state = LPFC_INIT_MBX_CMDS;
140 
141 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
142 		if (init_key) {
143 			uint32_t *ptext = (uint32_t *) licensed;
144 
145 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
146 				*ptext = cpu_to_be32(*ptext);
147 			init_key = 0;
148 		}
149 
150 		lpfc_read_nv(phba, pmb);
151 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
152 			sizeof (mb->un.varRDnvp.rsvd3));
153 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
154 			 sizeof (licensed));
155 
156 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
157 
158 		if (rc != MBX_SUCCESS) {
159 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
160 					"0324 Config Port initialization "
161 					"error, mbxCmd x%x READ_NVPARM, "
162 					"mbxStatus x%x\n",
163 					mb->mbxCommand, mb->mbxStatus);
164 			mempool_free(pmb, phba->mbox_mem_pool);
165 			return -ERESTART;
166 		}
167 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
168 		       sizeof(phba->wwnn));
169 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
170 		       sizeof(phba->wwpn));
171 	}
172 
173 	/*
174 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
175 	 * which was already set in lpfc_get_cfgparam()
176 	 */
177 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
178 
179 	/* Setup and issue mailbox READ REV command */
180 	lpfc_read_rev(phba, pmb);
181 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
182 	if (rc != MBX_SUCCESS) {
183 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
184 				"0439 Adapter failed to init, mbxCmd x%x "
185 				"READ_REV, mbxStatus x%x\n",
186 				mb->mbxCommand, mb->mbxStatus);
187 		mempool_free( pmb, phba->mbox_mem_pool);
188 		return -ERESTART;
189 	}
190 
191 
192 	/*
193 	 * The value of rr must be 1 since the driver set the cv field to 1.
194 	 * This setting requires the FW to set all revision fields.
195 	 */
196 	if (mb->un.varRdRev.rr == 0) {
197 		vp->rev.rBit = 0;
198 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
199 				"0440 Adapter failed to init, READ_REV has "
200 				"missing revision information.\n");
201 		mempool_free(pmb, phba->mbox_mem_pool);
202 		return -ERESTART;
203 	}
204 
205 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
206 		mempool_free(pmb, phba->mbox_mem_pool);
207 		return -EINVAL;
208 	}
209 
210 	/* Save information as VPD data */
211 	vp->rev.rBit = 1;
212 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
213 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
214 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
215 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
216 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
217 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
218 	vp->rev.smRev = mb->un.varRdRev.smRev;
219 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
220 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
221 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
222 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
223 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
224 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
225 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
226 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
227 
228 	/* If the sli feature level is less then 9, we must
229 	 * tear down all RPIs and VPIs on link down if NPIV
230 	 * is enabled.
231 	 */
232 	if (vp->rev.feaLevelHigh < 9)
233 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
234 
235 	if (lpfc_is_LC_HBA(phba->pcidev->device))
236 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
237 						sizeof (phba->RandomData));
238 
239 	/* Get adapter VPD information */
240 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
241 	if (!lpfc_vpd_data)
242 		goto out_free_mbox;
243 	do {
244 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
245 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
246 
247 		if (rc != MBX_SUCCESS) {
248 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
249 					"0441 VPD not present on adapter, "
250 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
251 					mb->mbxCommand, mb->mbxStatus);
252 			mb->un.varDmp.word_cnt = 0;
253 		}
254 		/* dump mem may return a zero when finished or we got a
255 		 * mailbox error, either way we are done.
256 		 */
257 		if (mb->un.varDmp.word_cnt == 0)
258 			break;
259 
260 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
261 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
262 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
263 				      lpfc_vpd_data + offset,
264 				      mb->un.varDmp.word_cnt);
265 		offset += mb->un.varDmp.word_cnt;
266 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
267 
268 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
269 
270 	kfree(lpfc_vpd_data);
271 out_free_mbox:
272 	mempool_free(pmb, phba->mbox_mem_pool);
273 	return 0;
274 }
275 
276 /**
277  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
278  * @phba: pointer to lpfc hba data structure.
279  * @pmboxq: pointer to the driver internal queue element for mailbox command.
280  *
281  * This is the completion handler for driver's configuring asynchronous event
282  * mailbox command to the device. If the mailbox command returns successfully,
283  * it will set internal async event support flag to 1; otherwise, it will
284  * set internal async event support flag to 0.
285  **/
286 static void
287 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
288 {
289 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
290 		phba->temp_sensor_support = 1;
291 	else
292 		phba->temp_sensor_support = 0;
293 	mempool_free(pmboxq, phba->mbox_mem_pool);
294 	return;
295 }
296 
297 /**
298  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
299  * @phba: pointer to lpfc hba data structure.
300  * @pmboxq: pointer to the driver internal queue element for mailbox command.
301  *
302  * This is the completion handler for dump mailbox command for getting
303  * wake up parameters. When this command complete, the response contain
304  * Option rom version of the HBA. This function translate the version number
305  * into a human readable string and store it in OptionROMVersion.
306  **/
307 static void
308 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
309 {
310 	struct prog_id *prg;
311 	uint32_t prog_id_word;
312 	char dist = ' ';
313 	/* character array used for decoding dist type. */
314 	char dist_char[] = "nabx";
315 
316 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
317 		mempool_free(pmboxq, phba->mbox_mem_pool);
318 		return;
319 	}
320 
321 	prg = (struct prog_id *) &prog_id_word;
322 
323 	/* word 7 contain option rom version */
324 	prog_id_word = pmboxq->u.mb.un.varWords[7];
325 
326 	/* Decode the Option rom version word to a readable string */
327 	dist = dist_char[prg->dist];
328 
329 	if ((prg->dist == 3) && (prg->num == 0))
330 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
331 			prg->ver, prg->rev, prg->lev);
332 	else
333 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
334 			prg->ver, prg->rev, prg->lev,
335 			dist, prg->num);
336 	mempool_free(pmboxq, phba->mbox_mem_pool);
337 	return;
338 }
339 
340 /**
341  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
342  * @vport: pointer to lpfc vport data structure.
343  *
344  *
345  * Return codes
346  *   None.
347  **/
348 void
349 lpfc_update_vport_wwn(struct lpfc_vport *vport)
350 {
351 	struct lpfc_hba *phba = vport->phba;
352 
353 	/*
354 	 * If the name is empty or there exists a soft name
355 	 * then copy the service params name, otherwise use the fc name
356 	 */
357 	if (vport->fc_nodename.u.wwn[0] == 0)
358 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
359 			sizeof(struct lpfc_name));
360 	else
361 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
362 			sizeof(struct lpfc_name));
363 
364 	/*
365 	 * If the port name has changed, then set the Param changes flag
366 	 * to unreg the login
367 	 */
368 	if (vport->fc_portname.u.wwn[0] != 0 &&
369 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
370 		       sizeof(struct lpfc_name))) {
371 		vport->vport_flag |= FAWWPN_PARAM_CHG;
372 
373 		if (phba->sli_rev == LPFC_SLI_REV4 &&
374 		    vport->port_type == LPFC_PHYSICAL_PORT &&
375 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
376 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
377 				phba->sli4_hba.fawwpn_flag &=
378 						~LPFC_FAWWPN_FABRIC;
379 			lpfc_printf_log(phba, KERN_INFO,
380 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
381 					"2701 FA-PWWN change WWPN from %llx to "
382 					"%llx: vflag x%x fawwpn_flag x%x\n",
383 					wwn_to_u64(vport->fc_portname.u.wwn),
384 					wwn_to_u64
385 					   (vport->fc_sparam.portName.u.wwn),
386 					vport->vport_flag,
387 					phba->sli4_hba.fawwpn_flag);
388 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
389 			       sizeof(struct lpfc_name));
390 		}
391 	}
392 
393 	if (vport->fc_portname.u.wwn[0] == 0)
394 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
395 		       sizeof(struct lpfc_name));
396 	else
397 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
398 		       sizeof(struct lpfc_name));
399 }
400 
401 /**
402  * lpfc_config_port_post - Perform lpfc initialization after config port
403  * @phba: pointer to lpfc hba data structure.
404  *
405  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
406  * command call. It performs all internal resource and state setups on the
407  * port: post IOCB buffers, enable appropriate host interrupt attentions,
408  * ELS ring timers, etc.
409  *
410  * Return codes
411  *   0 - success.
412  *   Any other value - error.
413  **/
414 int
415 lpfc_config_port_post(struct lpfc_hba *phba)
416 {
417 	struct lpfc_vport *vport = phba->pport;
418 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
419 	LPFC_MBOXQ_t *pmb;
420 	MAILBOX_t *mb;
421 	struct lpfc_dmabuf *mp;
422 	struct lpfc_sli *psli = &phba->sli;
423 	uint32_t status, timeout;
424 	int i, j;
425 	int rc;
426 
427 	spin_lock_irq(&phba->hbalock);
428 	/*
429 	 * If the Config port completed correctly the HBA is not
430 	 * over heated any more.
431 	 */
432 	if (phba->over_temp_state == HBA_OVER_TEMP)
433 		phba->over_temp_state = HBA_NORMAL_TEMP;
434 	spin_unlock_irq(&phba->hbalock);
435 
436 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
437 	if (!pmb) {
438 		phba->link_state = LPFC_HBA_ERROR;
439 		return -ENOMEM;
440 	}
441 	mb = &pmb->u.mb;
442 
443 	/* Get login parameters for NID.  */
444 	rc = lpfc_read_sparam(phba, pmb, 0);
445 	if (rc) {
446 		mempool_free(pmb, phba->mbox_mem_pool);
447 		return -ENOMEM;
448 	}
449 
450 	pmb->vport = vport;
451 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
452 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
453 				"0448 Adapter failed init, mbxCmd x%x "
454 				"READ_SPARM mbxStatus x%x\n",
455 				mb->mbxCommand, mb->mbxStatus);
456 		phba->link_state = LPFC_HBA_ERROR;
457 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
458 		return -EIO;
459 	}
460 
461 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
462 
463 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
464 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
465 	 * reused.
466 	 */
467 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
468 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
469 	kfree(mp);
470 	pmb->ctx_buf = NULL;
471 	lpfc_update_vport_wwn(vport);
472 
473 	/* Update the fc_host data structures with new wwn. */
474 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
475 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
476 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
477 
478 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
479 	/* This should be consolidated into parse_vpd ? - mr */
480 	if (phba->SerialNumber[0] == 0) {
481 		uint8_t *outptr;
482 
483 		outptr = &vport->fc_nodename.u.s.IEEE[0];
484 		for (i = 0; i < 12; i++) {
485 			status = *outptr++;
486 			j = ((status & 0xf0) >> 4);
487 			if (j <= 9)
488 				phba->SerialNumber[i] =
489 				    (char)((uint8_t) 0x30 + (uint8_t) j);
490 			else
491 				phba->SerialNumber[i] =
492 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
493 			i++;
494 			j = (status & 0xf);
495 			if (j <= 9)
496 				phba->SerialNumber[i] =
497 				    (char)((uint8_t) 0x30 + (uint8_t) j);
498 			else
499 				phba->SerialNumber[i] =
500 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
501 		}
502 	}
503 
504 	lpfc_read_config(phba, pmb);
505 	pmb->vport = vport;
506 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
507 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
508 				"0453 Adapter failed to init, mbxCmd x%x "
509 				"READ_CONFIG, mbxStatus x%x\n",
510 				mb->mbxCommand, mb->mbxStatus);
511 		phba->link_state = LPFC_HBA_ERROR;
512 		mempool_free( pmb, phba->mbox_mem_pool);
513 		return -EIO;
514 	}
515 
516 	/* Check if the port is disabled */
517 	lpfc_sli_read_link_ste(phba);
518 
519 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
520 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
521 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
522 				"3359 HBA queue depth changed from %d to %d\n",
523 				phba->cfg_hba_queue_depth,
524 				mb->un.varRdConfig.max_xri);
525 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
526 	}
527 
528 	phba->lmt = mb->un.varRdConfig.lmt;
529 
530 	/* Get the default values for Model Name and Description */
531 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
532 
533 	phba->link_state = LPFC_LINK_DOWN;
534 
535 	/* Only process IOCBs on ELS ring till hba_state is READY */
536 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
537 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
538 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
539 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
540 
541 	/* Post receive buffers for desired rings */
542 	if (phba->sli_rev != 3)
543 		lpfc_post_rcv_buf(phba);
544 
545 	/*
546 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
547 	 */
548 	if (phba->intr_type == MSIX) {
549 		rc = lpfc_config_msi(phba, pmb);
550 		if (rc) {
551 			mempool_free(pmb, phba->mbox_mem_pool);
552 			return -EIO;
553 		}
554 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
555 		if (rc != MBX_SUCCESS) {
556 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
557 					"0352 Config MSI mailbox command "
558 					"failed, mbxCmd x%x, mbxStatus x%x\n",
559 					pmb->u.mb.mbxCommand,
560 					pmb->u.mb.mbxStatus);
561 			mempool_free(pmb, phba->mbox_mem_pool);
562 			return -EIO;
563 		}
564 	}
565 
566 	spin_lock_irq(&phba->hbalock);
567 	/* Initialize ERATT handling flag */
568 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
569 
570 	/* Enable appropriate host interrupts */
571 	if (lpfc_readl(phba->HCregaddr, &status)) {
572 		spin_unlock_irq(&phba->hbalock);
573 		return -EIO;
574 	}
575 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
576 	if (psli->num_rings > 0)
577 		status |= HC_R0INT_ENA;
578 	if (psli->num_rings > 1)
579 		status |= HC_R1INT_ENA;
580 	if (psli->num_rings > 2)
581 		status |= HC_R2INT_ENA;
582 	if (psli->num_rings > 3)
583 		status |= HC_R3INT_ENA;
584 
585 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
586 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
587 		status &= ~(HC_R0INT_ENA);
588 
589 	writel(status, phba->HCregaddr);
590 	readl(phba->HCregaddr); /* flush */
591 	spin_unlock_irq(&phba->hbalock);
592 
593 	/* Set up ring-0 (ELS) timer */
594 	timeout = phba->fc_ratov * 2;
595 	mod_timer(&vport->els_tmofunc,
596 		  jiffies + msecs_to_jiffies(1000 * timeout));
597 	/* Set up heart beat (HB) timer */
598 	mod_timer(&phba->hb_tmofunc,
599 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
600 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
601 	phba->last_completion_time = jiffies;
602 	/* Set up error attention (ERATT) polling timer */
603 	mod_timer(&phba->eratt_poll,
604 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
605 
606 	if (phba->hba_flag & LINK_DISABLED) {
607 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
608 				"2598 Adapter Link is disabled.\n");
609 		lpfc_down_link(phba, pmb);
610 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
611 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
612 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
613 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
614 					"2599 Adapter failed to issue DOWN_LINK"
615 					" mbox command rc 0x%x\n", rc);
616 
617 			mempool_free(pmb, phba->mbox_mem_pool);
618 			return -EIO;
619 		}
620 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
621 		mempool_free(pmb, phba->mbox_mem_pool);
622 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
623 		if (rc)
624 			return rc;
625 	}
626 	/* MBOX buffer will be freed in mbox compl */
627 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
628 	if (!pmb) {
629 		phba->link_state = LPFC_HBA_ERROR;
630 		return -ENOMEM;
631 	}
632 
633 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
634 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
635 	pmb->vport = phba->pport;
636 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
637 
638 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
639 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
640 				"0456 Adapter failed to issue "
641 				"ASYNCEVT_ENABLE mbox status x%x\n",
642 				rc);
643 		mempool_free(pmb, phba->mbox_mem_pool);
644 	}
645 
646 	/* Get Option rom version */
647 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
648 	if (!pmb) {
649 		phba->link_state = LPFC_HBA_ERROR;
650 		return -ENOMEM;
651 	}
652 
653 	lpfc_dump_wakeup_param(phba, pmb);
654 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
655 	pmb->vport = phba->pport;
656 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
657 
658 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
659 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
660 				"0435 Adapter failed "
661 				"to get Option ROM version status x%x\n", rc);
662 		mempool_free(pmb, phba->mbox_mem_pool);
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  * lpfc_sli4_refresh_params - update driver copy of params.
670  * @phba: Pointer to HBA context object.
671  *
672  * This is called to refresh driver copy of dynamic fields from the
673  * common_get_sli4_parameters descriptor.
674  **/
675 int
676 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
677 {
678 	LPFC_MBOXQ_t *mboxq;
679 	struct lpfc_mqe *mqe;
680 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
681 	int length, rc;
682 
683 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
684 	if (!mboxq)
685 		return -ENOMEM;
686 
687 	mqe = &mboxq->u.mqe;
688 	/* Read the port's SLI4 Config Parameters */
689 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
690 		  sizeof(struct lpfc_sli4_cfg_mhdr));
691 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
692 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
693 			 length, LPFC_SLI4_MBX_EMBED);
694 
695 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
696 	if (unlikely(rc)) {
697 		mempool_free(mboxq, phba->mbox_mem_pool);
698 		return rc;
699 	}
700 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
701 	phba->sli4_hba.pc_sli4_params.mi_cap =
702 		bf_get(cfg_mi_ver, mbx_sli4_parameters);
703 
704 	/* Are we forcing MI off via module parameter? */
705 	if (phba->cfg_enable_mi)
706 		phba->sli4_hba.pc_sli4_params.mi_ver =
707 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
708 	else
709 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
710 
711 	phba->sli4_hba.pc_sli4_params.cmf =
712 			bf_get(cfg_cmf, mbx_sli4_parameters);
713 	phba->sli4_hba.pc_sli4_params.pls =
714 			bf_get(cfg_pvl, mbx_sli4_parameters);
715 
716 	mempool_free(mboxq, phba->mbox_mem_pool);
717 	return rc;
718 }
719 
720 /**
721  * lpfc_hba_init_link - Initialize the FC link
722  * @phba: pointer to lpfc hba data structure.
723  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
724  *
725  * This routine will issue the INIT_LINK mailbox command call.
726  * It is available to other drivers through the lpfc_hba data
727  * structure for use as a delayed link up mechanism with the
728  * module parameter lpfc_suppress_link_up.
729  *
730  * Return code
731  *		0 - success
732  *		Any other value - error
733  **/
734 static int
735 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
736 {
737 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
738 }
739 
740 /**
741  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
742  * @phba: pointer to lpfc hba data structure.
743  * @fc_topology: desired fc topology.
744  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
745  *
746  * This routine will issue the INIT_LINK mailbox command call.
747  * It is available to other drivers through the lpfc_hba data
748  * structure for use as a delayed link up mechanism with the
749  * module parameter lpfc_suppress_link_up.
750  *
751  * Return code
752  *              0 - success
753  *              Any other value - error
754  **/
755 int
756 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
757 			       uint32_t flag)
758 {
759 	struct lpfc_vport *vport = phba->pport;
760 	LPFC_MBOXQ_t *pmb;
761 	MAILBOX_t *mb;
762 	int rc;
763 
764 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
765 	if (!pmb) {
766 		phba->link_state = LPFC_HBA_ERROR;
767 		return -ENOMEM;
768 	}
769 	mb = &pmb->u.mb;
770 	pmb->vport = vport;
771 
772 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
773 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
774 	     !(phba->lmt & LMT_1Gb)) ||
775 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
776 	     !(phba->lmt & LMT_2Gb)) ||
777 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
778 	     !(phba->lmt & LMT_4Gb)) ||
779 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
780 	     !(phba->lmt & LMT_8Gb)) ||
781 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
782 	     !(phba->lmt & LMT_10Gb)) ||
783 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
784 	     !(phba->lmt & LMT_16Gb)) ||
785 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
786 	     !(phba->lmt & LMT_32Gb)) ||
787 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
788 	     !(phba->lmt & LMT_64Gb))) {
789 		/* Reset link speed to auto */
790 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
791 				"1302 Invalid speed for this board:%d "
792 				"Reset link speed to auto.\n",
793 				phba->cfg_link_speed);
794 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
795 	}
796 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
797 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
798 	if (phba->sli_rev < LPFC_SLI_REV4)
799 		lpfc_set_loopback_flag(phba);
800 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
801 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
802 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
803 				"0498 Adapter failed to init, mbxCmd x%x "
804 				"INIT_LINK, mbxStatus x%x\n",
805 				mb->mbxCommand, mb->mbxStatus);
806 		if (phba->sli_rev <= LPFC_SLI_REV3) {
807 			/* Clear all interrupt enable conditions */
808 			writel(0, phba->HCregaddr);
809 			readl(phba->HCregaddr); /* flush */
810 			/* Clear all pending interrupts */
811 			writel(0xffffffff, phba->HAregaddr);
812 			readl(phba->HAregaddr); /* flush */
813 		}
814 		phba->link_state = LPFC_HBA_ERROR;
815 		if (rc != MBX_BUSY || flag == MBX_POLL)
816 			mempool_free(pmb, phba->mbox_mem_pool);
817 		return -EIO;
818 	}
819 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
820 	if (flag == MBX_POLL)
821 		mempool_free(pmb, phba->mbox_mem_pool);
822 
823 	return 0;
824 }
825 
826 /**
827  * lpfc_hba_down_link - this routine downs the FC link
828  * @phba: pointer to lpfc hba data structure.
829  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
830  *
831  * This routine will issue the DOWN_LINK mailbox command call.
832  * It is available to other drivers through the lpfc_hba data
833  * structure for use to stop the link.
834  *
835  * Return code
836  *		0 - success
837  *		Any other value - error
838  **/
839 static int
840 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
841 {
842 	LPFC_MBOXQ_t *pmb;
843 	int rc;
844 
845 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
846 	if (!pmb) {
847 		phba->link_state = LPFC_HBA_ERROR;
848 		return -ENOMEM;
849 	}
850 
851 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
852 			"0491 Adapter Link is disabled.\n");
853 	lpfc_down_link(phba, pmb);
854 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
855 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
856 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
857 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
858 				"2522 Adapter failed to issue DOWN_LINK"
859 				" mbox command rc 0x%x\n", rc);
860 
861 		mempool_free(pmb, phba->mbox_mem_pool);
862 		return -EIO;
863 	}
864 	if (flag == MBX_POLL)
865 		mempool_free(pmb, phba->mbox_mem_pool);
866 
867 	return 0;
868 }
869 
870 /**
871  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
872  * @phba: pointer to lpfc HBA data structure.
873  *
874  * This routine will do LPFC uninitialization before the HBA is reset when
875  * bringing down the SLI Layer.
876  *
877  * Return codes
878  *   0 - success.
879  *   Any other value - error.
880  **/
881 int
882 lpfc_hba_down_prep(struct lpfc_hba *phba)
883 {
884 	struct lpfc_vport **vports;
885 	int i;
886 
887 	if (phba->sli_rev <= LPFC_SLI_REV3) {
888 		/* Disable interrupts */
889 		writel(0, phba->HCregaddr);
890 		readl(phba->HCregaddr); /* flush */
891 	}
892 
893 	if (phba->pport->load_flag & FC_UNLOADING)
894 		lpfc_cleanup_discovery_resources(phba->pport);
895 	else {
896 		vports = lpfc_create_vport_work_array(phba);
897 		if (vports != NULL)
898 			for (i = 0; i <= phba->max_vports &&
899 				vports[i] != NULL; i++)
900 				lpfc_cleanup_discovery_resources(vports[i]);
901 		lpfc_destroy_vport_work_array(phba, vports);
902 	}
903 	return 0;
904 }
905 
906 /**
907  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
908  * rspiocb which got deferred
909  *
910  * @phba: pointer to lpfc HBA data structure.
911  *
912  * This routine will cleanup completed slow path events after HBA is reset
913  * when bringing down the SLI Layer.
914  *
915  *
916  * Return codes
917  *   void.
918  **/
919 static void
920 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
921 {
922 	struct lpfc_iocbq *rspiocbq;
923 	struct hbq_dmabuf *dmabuf;
924 	struct lpfc_cq_event *cq_event;
925 
926 	spin_lock_irq(&phba->hbalock);
927 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
928 	spin_unlock_irq(&phba->hbalock);
929 
930 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
931 		/* Get the response iocb from the head of work queue */
932 		spin_lock_irq(&phba->hbalock);
933 		list_remove_head(&phba->sli4_hba.sp_queue_event,
934 				 cq_event, struct lpfc_cq_event, list);
935 		spin_unlock_irq(&phba->hbalock);
936 
937 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
938 		case CQE_CODE_COMPL_WQE:
939 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
940 						 cq_event);
941 			lpfc_sli_release_iocbq(phba, rspiocbq);
942 			break;
943 		case CQE_CODE_RECEIVE:
944 		case CQE_CODE_RECEIVE_V1:
945 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
946 					      cq_event);
947 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
948 		}
949 	}
950 }
951 
952 /**
953  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
954  * @phba: pointer to lpfc HBA data structure.
955  *
956  * This routine will cleanup posted ELS buffers after the HBA is reset
957  * when bringing down the SLI Layer.
958  *
959  *
960  * Return codes
961  *   void.
962  **/
963 static void
964 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
965 {
966 	struct lpfc_sli *psli = &phba->sli;
967 	struct lpfc_sli_ring *pring;
968 	struct lpfc_dmabuf *mp, *next_mp;
969 	LIST_HEAD(buflist);
970 	int count;
971 
972 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
973 		lpfc_sli_hbqbuf_free_all(phba);
974 	else {
975 		/* Cleanup preposted buffers on the ELS ring */
976 		pring = &psli->sli3_ring[LPFC_ELS_RING];
977 		spin_lock_irq(&phba->hbalock);
978 		list_splice_init(&pring->postbufq, &buflist);
979 		spin_unlock_irq(&phba->hbalock);
980 
981 		count = 0;
982 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
983 			list_del(&mp->list);
984 			count++;
985 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
986 			kfree(mp);
987 		}
988 
989 		spin_lock_irq(&phba->hbalock);
990 		pring->postbufq_cnt -= count;
991 		spin_unlock_irq(&phba->hbalock);
992 	}
993 }
994 
995 /**
996  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
997  * @phba: pointer to lpfc HBA data structure.
998  *
999  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1000  * down the SLI Layer.
1001  *
1002  * Return codes
1003  *   void
1004  **/
1005 static void
1006 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1007 {
1008 	struct lpfc_sli *psli = &phba->sli;
1009 	struct lpfc_queue *qp = NULL;
1010 	struct lpfc_sli_ring *pring;
1011 	LIST_HEAD(completions);
1012 	int i;
1013 	struct lpfc_iocbq *piocb, *next_iocb;
1014 
1015 	if (phba->sli_rev != LPFC_SLI_REV4) {
1016 		for (i = 0; i < psli->num_rings; i++) {
1017 			pring = &psli->sli3_ring[i];
1018 			spin_lock_irq(&phba->hbalock);
1019 			/* At this point in time the HBA is either reset or DOA
1020 			 * Nothing should be on txcmplq as it will
1021 			 * NEVER complete.
1022 			 */
1023 			list_splice_init(&pring->txcmplq, &completions);
1024 			pring->txcmplq_cnt = 0;
1025 			spin_unlock_irq(&phba->hbalock);
1026 
1027 			lpfc_sli_abort_iocb_ring(phba, pring);
1028 		}
1029 		/* Cancel all the IOCBs from the completions list */
1030 		lpfc_sli_cancel_iocbs(phba, &completions,
1031 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1032 		return;
1033 	}
1034 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1035 		pring = qp->pring;
1036 		if (!pring)
1037 			continue;
1038 		spin_lock_irq(&pring->ring_lock);
1039 		list_for_each_entry_safe(piocb, next_iocb,
1040 					 &pring->txcmplq, list)
1041 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1042 		list_splice_init(&pring->txcmplq, &completions);
1043 		pring->txcmplq_cnt = 0;
1044 		spin_unlock_irq(&pring->ring_lock);
1045 		lpfc_sli_abort_iocb_ring(phba, pring);
1046 	}
1047 	/* Cancel all the IOCBs from the completions list */
1048 	lpfc_sli_cancel_iocbs(phba, &completions,
1049 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1050 }
1051 
1052 /**
1053  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1054  * @phba: pointer to lpfc HBA data structure.
1055  *
1056  * This routine will do uninitialization after the HBA is reset when bring
1057  * down the SLI Layer.
1058  *
1059  * Return codes
1060  *   0 - success.
1061  *   Any other value - error.
1062  **/
1063 static int
1064 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1065 {
1066 	lpfc_hba_free_post_buf(phba);
1067 	lpfc_hba_clean_txcmplq(phba);
1068 	return 0;
1069 }
1070 
1071 /**
1072  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1073  * @phba: pointer to lpfc HBA data structure.
1074  *
1075  * This routine will do uninitialization after the HBA is reset when bring
1076  * down the SLI Layer.
1077  *
1078  * Return codes
1079  *   0 - success.
1080  *   Any other value - error.
1081  **/
1082 static int
1083 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1084 {
1085 	struct lpfc_io_buf *psb, *psb_next;
1086 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1087 	struct lpfc_sli4_hdw_queue *qp;
1088 	LIST_HEAD(aborts);
1089 	LIST_HEAD(nvme_aborts);
1090 	LIST_HEAD(nvmet_aborts);
1091 	struct lpfc_sglq *sglq_entry = NULL;
1092 	int cnt, idx;
1093 
1094 
1095 	lpfc_sli_hbqbuf_free_all(phba);
1096 	lpfc_hba_clean_txcmplq(phba);
1097 
1098 	/* At this point in time the HBA is either reset or DOA. Either
1099 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1100 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1101 	 * driver is unloading or reposted if the driver is restarting
1102 	 * the port.
1103 	 */
1104 
1105 	/* sgl_list_lock required because worker thread uses this
1106 	 * list.
1107 	 */
1108 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1109 	list_for_each_entry(sglq_entry,
1110 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1111 		sglq_entry->state = SGL_FREED;
1112 
1113 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1114 			&phba->sli4_hba.lpfc_els_sgl_list);
1115 
1116 
1117 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1118 
1119 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1120 	 * list.
1121 	 */
1122 	spin_lock_irq(&phba->hbalock);
1123 	cnt = 0;
1124 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1125 		qp = &phba->sli4_hba.hdwq[idx];
1126 
1127 		spin_lock(&qp->abts_io_buf_list_lock);
1128 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1129 				 &aborts);
1130 
1131 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1132 			psb->pCmd = NULL;
1133 			psb->status = IOSTAT_SUCCESS;
1134 			cnt++;
1135 		}
1136 		spin_lock(&qp->io_buf_list_put_lock);
1137 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1138 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1139 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1140 		qp->abts_scsi_io_bufs = 0;
1141 		qp->abts_nvme_io_bufs = 0;
1142 		spin_unlock(&qp->io_buf_list_put_lock);
1143 		spin_unlock(&qp->abts_io_buf_list_lock);
1144 	}
1145 	spin_unlock_irq(&phba->hbalock);
1146 
1147 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1148 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1149 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1150 				 &nvmet_aborts);
1151 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1152 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1153 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1154 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1155 		}
1156 	}
1157 
1158 	lpfc_sli4_free_sp_events(phba);
1159 	return cnt;
1160 }
1161 
1162 /**
1163  * lpfc_hba_down_post - Wrapper func for hba down post routine
1164  * @phba: pointer to lpfc HBA data structure.
1165  *
1166  * This routine wraps the actual SLI3 or SLI4 routine for performing
1167  * uninitialization after the HBA is reset when bring down the SLI Layer.
1168  *
1169  * Return codes
1170  *   0 - success.
1171  *   Any other value - error.
1172  **/
1173 int
1174 lpfc_hba_down_post(struct lpfc_hba *phba)
1175 {
1176 	return (*phba->lpfc_hba_down_post)(phba);
1177 }
1178 
1179 /**
1180  * lpfc_hb_timeout - The HBA-timer timeout handler
1181  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1182  *
1183  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1184  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1185  * work-port-events bitmap and the worker thread is notified. This timeout
1186  * event will be used by the worker thread to invoke the actual timeout
1187  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1188  * be performed in the timeout handler and the HBA timeout event bit shall
1189  * be cleared by the worker thread after it has taken the event bitmap out.
1190  **/
1191 static void
1192 lpfc_hb_timeout(struct timer_list *t)
1193 {
1194 	struct lpfc_hba *phba;
1195 	uint32_t tmo_posted;
1196 	unsigned long iflag;
1197 
1198 	phba = from_timer(phba, t, hb_tmofunc);
1199 
1200 	/* Check for heart beat timeout conditions */
1201 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1202 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1203 	if (!tmo_posted)
1204 		phba->pport->work_port_events |= WORKER_HB_TMO;
1205 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1206 
1207 	/* Tell the worker thread there is work to do */
1208 	if (!tmo_posted)
1209 		lpfc_worker_wake_up(phba);
1210 	return;
1211 }
1212 
1213 /**
1214  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1215  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1216  *
1217  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1218  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1219  * work-port-events bitmap and the worker thread is notified. This timeout
1220  * event will be used by the worker thread to invoke the actual timeout
1221  * handler routine, lpfc_rrq_handler. Any periodical operations will
1222  * be performed in the timeout handler and the RRQ timeout event bit shall
1223  * be cleared by the worker thread after it has taken the event bitmap out.
1224  **/
1225 static void
1226 lpfc_rrq_timeout(struct timer_list *t)
1227 {
1228 	struct lpfc_hba *phba;
1229 	unsigned long iflag;
1230 
1231 	phba = from_timer(phba, t, rrq_tmr);
1232 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1233 	if (!(phba->pport->load_flag & FC_UNLOADING))
1234 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1235 	else
1236 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1237 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1238 
1239 	if (!(phba->pport->load_flag & FC_UNLOADING))
1240 		lpfc_worker_wake_up(phba);
1241 }
1242 
1243 /**
1244  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1245  * @phba: pointer to lpfc hba data structure.
1246  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1247  *
1248  * This is the callback function to the lpfc heart-beat mailbox command.
1249  * If configured, the lpfc driver issues the heart-beat mailbox command to
1250  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1251  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1252  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1253  * heart-beat outstanding state. Once the mailbox command comes back and
1254  * no error conditions detected, the heart-beat mailbox command timer is
1255  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1256  * state is cleared for the next heart-beat. If the timer expired with the
1257  * heart-beat outstanding state set, the driver will put the HBA offline.
1258  **/
1259 static void
1260 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1261 {
1262 	unsigned long drvr_flag;
1263 
1264 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1265 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1266 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1267 
1268 	/* Check and reset heart-beat timer if necessary */
1269 	mempool_free(pmboxq, phba->mbox_mem_pool);
1270 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1271 		!(phba->link_state == LPFC_HBA_ERROR) &&
1272 		!(phba->pport->load_flag & FC_UNLOADING))
1273 		mod_timer(&phba->hb_tmofunc,
1274 			  jiffies +
1275 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1276 	return;
1277 }
1278 
1279 /*
1280  * lpfc_idle_stat_delay_work - idle_stat tracking
1281  *
1282  * This routine tracks per-cq idle_stat and determines polling decisions.
1283  *
1284  * Return codes:
1285  *   None
1286  **/
1287 static void
1288 lpfc_idle_stat_delay_work(struct work_struct *work)
1289 {
1290 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1291 					     struct lpfc_hba,
1292 					     idle_stat_delay_work);
1293 	struct lpfc_queue *cq;
1294 	struct lpfc_sli4_hdw_queue *hdwq;
1295 	struct lpfc_idle_stat *idle_stat;
1296 	u32 i, idle_percent;
1297 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1298 
1299 	if (phba->pport->load_flag & FC_UNLOADING)
1300 		return;
1301 
1302 	if (phba->link_state == LPFC_HBA_ERROR ||
1303 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1304 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1305 		goto requeue;
1306 
1307 	for_each_present_cpu(i) {
1308 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1309 		cq = hdwq->io_cq;
1310 
1311 		/* Skip if we've already handled this cq's primary CPU */
1312 		if (cq->chann != i)
1313 			continue;
1314 
1315 		idle_stat = &phba->sli4_hba.idle_stat[i];
1316 
1317 		/* get_cpu_idle_time returns values as running counters. Thus,
1318 		 * to know the amount for this period, the prior counter values
1319 		 * need to be subtracted from the current counter values.
1320 		 * From there, the idle time stat can be calculated as a
1321 		 * percentage of 100 - the sum of the other consumption times.
1322 		 */
1323 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1324 		diff_idle = wall_idle - idle_stat->prev_idle;
1325 		diff_wall = wall - idle_stat->prev_wall;
1326 
1327 		if (diff_wall <= diff_idle)
1328 			busy_time = 0;
1329 		else
1330 			busy_time = diff_wall - diff_idle;
1331 
1332 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1333 		idle_percent = 100 - idle_percent;
1334 
1335 		if (idle_percent < 15)
1336 			cq->poll_mode = LPFC_QUEUE_WORK;
1337 		else
1338 			cq->poll_mode = LPFC_IRQ_POLL;
1339 
1340 		idle_stat->prev_idle = wall_idle;
1341 		idle_stat->prev_wall = wall;
1342 	}
1343 
1344 requeue:
1345 	schedule_delayed_work(&phba->idle_stat_delay_work,
1346 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1347 }
1348 
1349 static void
1350 lpfc_hb_eq_delay_work(struct work_struct *work)
1351 {
1352 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1353 					     struct lpfc_hba, eq_delay_work);
1354 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1355 	struct lpfc_queue *eq, *eq_next;
1356 	unsigned char *ena_delay = NULL;
1357 	uint32_t usdelay;
1358 	int i;
1359 
1360 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1361 		return;
1362 
1363 	if (phba->link_state == LPFC_HBA_ERROR ||
1364 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1365 		goto requeue;
1366 
1367 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1368 			    GFP_KERNEL);
1369 	if (!ena_delay)
1370 		goto requeue;
1371 
1372 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1373 		/* Get the EQ corresponding to the IRQ vector */
1374 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1375 		if (!eq)
1376 			continue;
1377 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1378 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1379 			ena_delay[eq->last_cpu] = 1;
1380 		}
1381 	}
1382 
1383 	for_each_present_cpu(i) {
1384 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1385 		if (ena_delay[i]) {
1386 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1387 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1388 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1389 		} else {
1390 			usdelay = 0;
1391 		}
1392 
1393 		eqi->icnt = 0;
1394 
1395 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1396 			if (unlikely(eq->last_cpu != i)) {
1397 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1398 						      eq->last_cpu);
1399 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1400 				continue;
1401 			}
1402 			if (usdelay != eq->q_mode)
1403 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1404 							 usdelay);
1405 		}
1406 	}
1407 
1408 	kfree(ena_delay);
1409 
1410 requeue:
1411 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1412 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1413 }
1414 
1415 /**
1416  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1417  * @phba: pointer to lpfc hba data structure.
1418  *
1419  * For each heartbeat, this routine does some heuristic methods to adjust
1420  * XRI distribution. The goal is to fully utilize free XRIs.
1421  **/
1422 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1423 {
1424 	u32 i;
1425 	u32 hwq_count;
1426 
1427 	hwq_count = phba->cfg_hdw_queue;
1428 	for (i = 0; i < hwq_count; i++) {
1429 		/* Adjust XRIs in private pool */
1430 		lpfc_adjust_pvt_pool_count(phba, i);
1431 
1432 		/* Adjust high watermark */
1433 		lpfc_adjust_high_watermark(phba, i);
1434 
1435 #ifdef LPFC_MXP_STAT
1436 		/* Snapshot pbl, pvt and busy count */
1437 		lpfc_snapshot_mxp(phba, i);
1438 #endif
1439 	}
1440 }
1441 
1442 /**
1443  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1444  * @phba: pointer to lpfc hba data structure.
1445  *
1446  * If a HB mbox is not already in progrees, this routine will allocate
1447  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1448  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1449  **/
1450 int
1451 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1452 {
1453 	LPFC_MBOXQ_t *pmboxq;
1454 	int retval;
1455 
1456 	/* Is a Heartbeat mbox already in progress */
1457 	if (phba->hba_flag & HBA_HBEAT_INP)
1458 		return 0;
1459 
1460 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1461 	if (!pmboxq)
1462 		return -ENOMEM;
1463 
1464 	lpfc_heart_beat(phba, pmboxq);
1465 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1466 	pmboxq->vport = phba->pport;
1467 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1468 
1469 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1470 		mempool_free(pmboxq, phba->mbox_mem_pool);
1471 		return -ENXIO;
1472 	}
1473 	phba->hba_flag |= HBA_HBEAT_INP;
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1480  * @phba: pointer to lpfc hba data structure.
1481  *
1482  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1483  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1484  * of the value of lpfc_enable_hba_heartbeat.
1485  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1486  * try to issue a MBX_HEARTBEAT mbox command.
1487  **/
1488 void
1489 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1490 {
1491 	if (phba->cfg_enable_hba_heartbeat)
1492 		return;
1493 	phba->hba_flag |= HBA_HBEAT_TMO;
1494 }
1495 
1496 /**
1497  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1498  * @phba: pointer to lpfc hba data structure.
1499  *
1500  * This is the actual HBA-timer timeout handler to be invoked by the worker
1501  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1502  * handler performs any periodic operations needed for the device. If such
1503  * periodic event has already been attended to either in the interrupt handler
1504  * or by processing slow-ring or fast-ring events within the HBA-timer
1505  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1506  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1507  * is configured and there is no heart-beat mailbox command outstanding, a
1508  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1509  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1510  * to offline.
1511  **/
1512 void
1513 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1514 {
1515 	struct lpfc_vport **vports;
1516 	struct lpfc_dmabuf *buf_ptr;
1517 	int retval = 0;
1518 	int i, tmo;
1519 	struct lpfc_sli *psli = &phba->sli;
1520 	LIST_HEAD(completions);
1521 
1522 	if (phba->cfg_xri_rebalancing) {
1523 		/* Multi-XRI pools handler */
1524 		lpfc_hb_mxp_handler(phba);
1525 	}
1526 
1527 	vports = lpfc_create_vport_work_array(phba);
1528 	if (vports != NULL)
1529 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1530 			lpfc_rcv_seq_check_edtov(vports[i]);
1531 			lpfc_fdmi_change_check(vports[i]);
1532 		}
1533 	lpfc_destroy_vport_work_array(phba, vports);
1534 
1535 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1536 		(phba->pport->load_flag & FC_UNLOADING) ||
1537 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1538 		return;
1539 
1540 	if (phba->elsbuf_cnt &&
1541 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1542 		spin_lock_irq(&phba->hbalock);
1543 		list_splice_init(&phba->elsbuf, &completions);
1544 		phba->elsbuf_cnt = 0;
1545 		phba->elsbuf_prev_cnt = 0;
1546 		spin_unlock_irq(&phba->hbalock);
1547 
1548 		while (!list_empty(&completions)) {
1549 			list_remove_head(&completions, buf_ptr,
1550 				struct lpfc_dmabuf, list);
1551 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1552 			kfree(buf_ptr);
1553 		}
1554 	}
1555 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1556 
1557 	/* If there is no heart beat outstanding, issue a heartbeat command */
1558 	if (phba->cfg_enable_hba_heartbeat) {
1559 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1560 		spin_lock_irq(&phba->pport->work_port_lock);
1561 		if (time_after(phba->last_completion_time +
1562 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1563 				jiffies)) {
1564 			spin_unlock_irq(&phba->pport->work_port_lock);
1565 			if (phba->hba_flag & HBA_HBEAT_INP)
1566 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1567 			else
1568 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1569 			goto out;
1570 		}
1571 		spin_unlock_irq(&phba->pport->work_port_lock);
1572 
1573 		/* Check if a MBX_HEARTBEAT is already in progress */
1574 		if (phba->hba_flag & HBA_HBEAT_INP) {
1575 			/*
1576 			 * If heart beat timeout called with HBA_HBEAT_INP set
1577 			 * we need to give the hb mailbox cmd a chance to
1578 			 * complete or TMO.
1579 			 */
1580 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1581 				"0459 Adapter heartbeat still outstanding: "
1582 				"last compl time was %d ms.\n",
1583 				jiffies_to_msecs(jiffies
1584 					 - phba->last_completion_time));
1585 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1586 		} else {
1587 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1588 				(list_empty(&psli->mboxq))) {
1589 
1590 				retval = lpfc_issue_hb_mbox(phba);
1591 				if (retval) {
1592 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1593 					goto out;
1594 				}
1595 				phba->skipped_hb = 0;
1596 			} else if (time_before_eq(phba->last_completion_time,
1597 					phba->skipped_hb)) {
1598 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1599 					"2857 Last completion time not "
1600 					" updated in %d ms\n",
1601 					jiffies_to_msecs(jiffies
1602 						 - phba->last_completion_time));
1603 			} else
1604 				phba->skipped_hb = jiffies;
1605 
1606 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1607 			goto out;
1608 		}
1609 	} else {
1610 		/* Check to see if we want to force a MBX_HEARTBEAT */
1611 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1612 			retval = lpfc_issue_hb_mbox(phba);
1613 			if (retval)
1614 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1615 			else
1616 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1617 			goto out;
1618 		}
1619 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1620 	}
1621 out:
1622 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1623 }
1624 
1625 /**
1626  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1627  * @phba: pointer to lpfc hba data structure.
1628  *
1629  * This routine is called to bring the HBA offline when HBA hardware error
1630  * other than Port Error 6 has been detected.
1631  **/
1632 static void
1633 lpfc_offline_eratt(struct lpfc_hba *phba)
1634 {
1635 	struct lpfc_sli   *psli = &phba->sli;
1636 
1637 	spin_lock_irq(&phba->hbalock);
1638 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1639 	spin_unlock_irq(&phba->hbalock);
1640 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1641 
1642 	lpfc_offline(phba);
1643 	lpfc_reset_barrier(phba);
1644 	spin_lock_irq(&phba->hbalock);
1645 	lpfc_sli_brdreset(phba);
1646 	spin_unlock_irq(&phba->hbalock);
1647 	lpfc_hba_down_post(phba);
1648 	lpfc_sli_brdready(phba, HS_MBRDY);
1649 	lpfc_unblock_mgmt_io(phba);
1650 	phba->link_state = LPFC_HBA_ERROR;
1651 	return;
1652 }
1653 
1654 /**
1655  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1656  * @phba: pointer to lpfc hba data structure.
1657  *
1658  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1659  * other than Port Error 6 has been detected.
1660  **/
1661 void
1662 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1663 {
1664 	spin_lock_irq(&phba->hbalock);
1665 	if (phba->link_state == LPFC_HBA_ERROR &&
1666 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1667 		spin_unlock_irq(&phba->hbalock);
1668 		return;
1669 	}
1670 	phba->link_state = LPFC_HBA_ERROR;
1671 	spin_unlock_irq(&phba->hbalock);
1672 
1673 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1674 	lpfc_sli_flush_io_rings(phba);
1675 	lpfc_offline(phba);
1676 	lpfc_hba_down_post(phba);
1677 	lpfc_unblock_mgmt_io(phba);
1678 }
1679 
1680 /**
1681  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1682  * @phba: pointer to lpfc hba data structure.
1683  *
1684  * This routine is invoked to handle the deferred HBA hardware error
1685  * conditions. This type of error is indicated by HBA by setting ER1
1686  * and another ER bit in the host status register. The driver will
1687  * wait until the ER1 bit clears before handling the error condition.
1688  **/
1689 static void
1690 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1691 {
1692 	uint32_t old_host_status = phba->work_hs;
1693 	struct lpfc_sli *psli = &phba->sli;
1694 
1695 	/* If the pci channel is offline, ignore possible errors,
1696 	 * since we cannot communicate with the pci card anyway.
1697 	 */
1698 	if (pci_channel_offline(phba->pcidev)) {
1699 		spin_lock_irq(&phba->hbalock);
1700 		phba->hba_flag &= ~DEFER_ERATT;
1701 		spin_unlock_irq(&phba->hbalock);
1702 		return;
1703 	}
1704 
1705 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1706 			"0479 Deferred Adapter Hardware Error "
1707 			"Data: x%x x%x x%x\n",
1708 			phba->work_hs, phba->work_status[0],
1709 			phba->work_status[1]);
1710 
1711 	spin_lock_irq(&phba->hbalock);
1712 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1713 	spin_unlock_irq(&phba->hbalock);
1714 
1715 
1716 	/*
1717 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1718 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1719 	 * SCSI layer retry it after re-establishing link.
1720 	 */
1721 	lpfc_sli_abort_fcp_rings(phba);
1722 
1723 	/*
1724 	 * There was a firmware error. Take the hba offline and then
1725 	 * attempt to restart it.
1726 	 */
1727 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1728 	lpfc_offline(phba);
1729 
1730 	/* Wait for the ER1 bit to clear.*/
1731 	while (phba->work_hs & HS_FFER1) {
1732 		msleep(100);
1733 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1734 			phba->work_hs = UNPLUG_ERR ;
1735 			break;
1736 		}
1737 		/* If driver is unloading let the worker thread continue */
1738 		if (phba->pport->load_flag & FC_UNLOADING) {
1739 			phba->work_hs = 0;
1740 			break;
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * This is to ptrotect against a race condition in which
1746 	 * first write to the host attention register clear the
1747 	 * host status register.
1748 	 */
1749 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1750 		phba->work_hs = old_host_status & ~HS_FFER1;
1751 
1752 	spin_lock_irq(&phba->hbalock);
1753 	phba->hba_flag &= ~DEFER_ERATT;
1754 	spin_unlock_irq(&phba->hbalock);
1755 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1756 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1757 }
1758 
1759 static void
1760 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1761 {
1762 	struct lpfc_board_event_header board_event;
1763 	struct Scsi_Host *shost;
1764 
1765 	board_event.event_type = FC_REG_BOARD_EVENT;
1766 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1767 	shost = lpfc_shost_from_vport(phba->pport);
1768 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1769 				  sizeof(board_event),
1770 				  (char *) &board_event,
1771 				  LPFC_NL_VENDOR_ID);
1772 }
1773 
1774 /**
1775  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1776  * @phba: pointer to lpfc hba data structure.
1777  *
1778  * This routine is invoked to handle the following HBA hardware error
1779  * conditions:
1780  * 1 - HBA error attention interrupt
1781  * 2 - DMA ring index out of range
1782  * 3 - Mailbox command came back as unknown
1783  **/
1784 static void
1785 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1786 {
1787 	struct lpfc_vport *vport = phba->pport;
1788 	struct lpfc_sli   *psli = &phba->sli;
1789 	uint32_t event_data;
1790 	unsigned long temperature;
1791 	struct temp_event temp_event_data;
1792 	struct Scsi_Host  *shost;
1793 
1794 	/* If the pci channel is offline, ignore possible errors,
1795 	 * since we cannot communicate with the pci card anyway.
1796 	 */
1797 	if (pci_channel_offline(phba->pcidev)) {
1798 		spin_lock_irq(&phba->hbalock);
1799 		phba->hba_flag &= ~DEFER_ERATT;
1800 		spin_unlock_irq(&phba->hbalock);
1801 		return;
1802 	}
1803 
1804 	/* If resets are disabled then leave the HBA alone and return */
1805 	if (!phba->cfg_enable_hba_reset)
1806 		return;
1807 
1808 	/* Send an internal error event to mgmt application */
1809 	lpfc_board_errevt_to_mgmt(phba);
1810 
1811 	if (phba->hba_flag & DEFER_ERATT)
1812 		lpfc_handle_deferred_eratt(phba);
1813 
1814 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1815 		if (phba->work_hs & HS_FFER6)
1816 			/* Re-establishing Link */
1817 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1818 					"1301 Re-establishing Link "
1819 					"Data: x%x x%x x%x\n",
1820 					phba->work_hs, phba->work_status[0],
1821 					phba->work_status[1]);
1822 		if (phba->work_hs & HS_FFER8)
1823 			/* Device Zeroization */
1824 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1825 					"2861 Host Authentication device "
1826 					"zeroization Data:x%x x%x x%x\n",
1827 					phba->work_hs, phba->work_status[0],
1828 					phba->work_status[1]);
1829 
1830 		spin_lock_irq(&phba->hbalock);
1831 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1832 		spin_unlock_irq(&phba->hbalock);
1833 
1834 		/*
1835 		* Firmware stops when it triggled erratt with HS_FFER6.
1836 		* That could cause the I/Os dropped by the firmware.
1837 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1838 		* retry it after re-establishing link.
1839 		*/
1840 		lpfc_sli_abort_fcp_rings(phba);
1841 
1842 		/*
1843 		 * There was a firmware error.  Take the hba offline and then
1844 		 * attempt to restart it.
1845 		 */
1846 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1847 		lpfc_offline(phba);
1848 		lpfc_sli_brdrestart(phba);
1849 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1850 			lpfc_unblock_mgmt_io(phba);
1851 			return;
1852 		}
1853 		lpfc_unblock_mgmt_io(phba);
1854 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1855 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1856 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1857 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1858 		temp_event_data.data = (uint32_t)temperature;
1859 
1860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1861 				"0406 Adapter maximum temperature exceeded "
1862 				"(%ld), taking this port offline "
1863 				"Data: x%x x%x x%x\n",
1864 				temperature, phba->work_hs,
1865 				phba->work_status[0], phba->work_status[1]);
1866 
1867 		shost = lpfc_shost_from_vport(phba->pport);
1868 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1869 					  sizeof(temp_event_data),
1870 					  (char *) &temp_event_data,
1871 					  SCSI_NL_VID_TYPE_PCI
1872 					  | PCI_VENDOR_ID_EMULEX);
1873 
1874 		spin_lock_irq(&phba->hbalock);
1875 		phba->over_temp_state = HBA_OVER_TEMP;
1876 		spin_unlock_irq(&phba->hbalock);
1877 		lpfc_offline_eratt(phba);
1878 
1879 	} else {
1880 		/* The if clause above forces this code path when the status
1881 		 * failure is a value other than FFER6. Do not call the offline
1882 		 * twice. This is the adapter hardware error path.
1883 		 */
1884 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1885 				"0457 Adapter Hardware Error "
1886 				"Data: x%x x%x x%x\n",
1887 				phba->work_hs,
1888 				phba->work_status[0], phba->work_status[1]);
1889 
1890 		event_data = FC_REG_DUMP_EVENT;
1891 		shost = lpfc_shost_from_vport(vport);
1892 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1893 				sizeof(event_data), (char *) &event_data,
1894 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1895 
1896 		lpfc_offline_eratt(phba);
1897 	}
1898 	return;
1899 }
1900 
1901 /**
1902  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1903  * @phba: pointer to lpfc hba data structure.
1904  * @mbx_action: flag for mailbox shutdown action.
1905  * @en_rn_msg: send reset/port recovery message.
1906  * This routine is invoked to perform an SLI4 port PCI function reset in
1907  * response to port status register polling attention. It waits for port
1908  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1909  * During this process, interrupt vectors are freed and later requested
1910  * for handling possible port resource change.
1911  **/
1912 static int
1913 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1914 			    bool en_rn_msg)
1915 {
1916 	int rc;
1917 	uint32_t intr_mode;
1918 	LPFC_MBOXQ_t *mboxq;
1919 
1920 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1921 	    LPFC_SLI_INTF_IF_TYPE_2) {
1922 		/*
1923 		 * On error status condition, driver need to wait for port
1924 		 * ready before performing reset.
1925 		 */
1926 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1927 		if (rc)
1928 			return rc;
1929 	}
1930 
1931 	/* need reset: attempt for port recovery */
1932 	if (en_rn_msg)
1933 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1934 				"2887 Reset Needed: Attempting Port "
1935 				"Recovery...\n");
1936 
1937 	/* If we are no wait, the HBA has been reset and is not
1938 	 * functional, thus we should clear
1939 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1940 	 */
1941 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1942 		spin_lock_irq(&phba->hbalock);
1943 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1944 		if (phba->sli.mbox_active) {
1945 			mboxq = phba->sli.mbox_active;
1946 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1947 			__lpfc_mbox_cmpl_put(phba, mboxq);
1948 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1949 			phba->sli.mbox_active = NULL;
1950 		}
1951 		spin_unlock_irq(&phba->hbalock);
1952 	}
1953 
1954 	lpfc_offline_prep(phba, mbx_action);
1955 	lpfc_sli_flush_io_rings(phba);
1956 	lpfc_offline(phba);
1957 	/* release interrupt for possible resource change */
1958 	lpfc_sli4_disable_intr(phba);
1959 	rc = lpfc_sli_brdrestart(phba);
1960 	if (rc) {
1961 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1962 				"6309 Failed to restart board\n");
1963 		return rc;
1964 	}
1965 	/* request and enable interrupt */
1966 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1967 	if (intr_mode == LPFC_INTR_ERROR) {
1968 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1969 				"3175 Failed to enable interrupt\n");
1970 		return -EIO;
1971 	}
1972 	phba->intr_mode = intr_mode;
1973 	rc = lpfc_online(phba);
1974 	if (rc == 0)
1975 		lpfc_unblock_mgmt_io(phba);
1976 
1977 	return rc;
1978 }
1979 
1980 /**
1981  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1982  * @phba: pointer to lpfc hba data structure.
1983  *
1984  * This routine is invoked to handle the SLI4 HBA hardware error attention
1985  * conditions.
1986  **/
1987 static void
1988 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1989 {
1990 	struct lpfc_vport *vport = phba->pport;
1991 	uint32_t event_data;
1992 	struct Scsi_Host *shost;
1993 	uint32_t if_type;
1994 	struct lpfc_register portstat_reg = {0};
1995 	uint32_t reg_err1, reg_err2;
1996 	uint32_t uerrlo_reg, uemasklo_reg;
1997 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1998 	bool en_rn_msg = true;
1999 	struct temp_event temp_event_data;
2000 	struct lpfc_register portsmphr_reg;
2001 	int rc, i;
2002 
2003 	/* If the pci channel is offline, ignore possible errors, since
2004 	 * we cannot communicate with the pci card anyway.
2005 	 */
2006 	if (pci_channel_offline(phba->pcidev)) {
2007 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2008 				"3166 pci channel is offline\n");
2009 		lpfc_sli_flush_io_rings(phba);
2010 		return;
2011 	}
2012 
2013 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2014 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2015 	switch (if_type) {
2016 	case LPFC_SLI_INTF_IF_TYPE_0:
2017 		pci_rd_rc1 = lpfc_readl(
2018 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2019 				&uerrlo_reg);
2020 		pci_rd_rc2 = lpfc_readl(
2021 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2022 				&uemasklo_reg);
2023 		/* consider PCI bus read error as pci_channel_offline */
2024 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2025 			return;
2026 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2027 			lpfc_sli4_offline_eratt(phba);
2028 			return;
2029 		}
2030 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2031 				"7623 Checking UE recoverable");
2032 
2033 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2034 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2035 				       &portsmphr_reg.word0))
2036 				continue;
2037 
2038 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2039 						   &portsmphr_reg);
2040 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2041 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2042 				break;
2043 			/*Sleep for 1Sec, before checking SEMAPHORE */
2044 			msleep(1000);
2045 		}
2046 
2047 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2048 				"4827 smphr_port_status x%x : Waited %dSec",
2049 				smphr_port_status, i);
2050 
2051 		/* Recoverable UE, reset the HBA device */
2052 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2053 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2054 			for (i = 0; i < 20; i++) {
2055 				msleep(1000);
2056 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2057 				    &portsmphr_reg.word0) &&
2058 				    (LPFC_POST_STAGE_PORT_READY ==
2059 				     bf_get(lpfc_port_smphr_port_status,
2060 				     &portsmphr_reg))) {
2061 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2062 						LPFC_MBX_NO_WAIT, en_rn_msg);
2063 					if (rc == 0)
2064 						return;
2065 					lpfc_printf_log(phba, KERN_ERR,
2066 						LOG_TRACE_EVENT,
2067 						"4215 Failed to recover UE");
2068 					break;
2069 				}
2070 			}
2071 		}
2072 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2073 				"7624 Firmware not ready: Failing UE recovery,"
2074 				" waited %dSec", i);
2075 		phba->link_state = LPFC_HBA_ERROR;
2076 		break;
2077 
2078 	case LPFC_SLI_INTF_IF_TYPE_2:
2079 	case LPFC_SLI_INTF_IF_TYPE_6:
2080 		pci_rd_rc1 = lpfc_readl(
2081 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2082 				&portstat_reg.word0);
2083 		/* consider PCI bus read error as pci_channel_offline */
2084 		if (pci_rd_rc1 == -EIO) {
2085 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2086 				"3151 PCI bus read access failure: x%x\n",
2087 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2088 			lpfc_sli4_offline_eratt(phba);
2089 			return;
2090 		}
2091 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2092 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2093 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2094 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2095 					"2889 Port Overtemperature event, "
2096 					"taking port offline Data: x%x x%x\n",
2097 					reg_err1, reg_err2);
2098 
2099 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2100 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2101 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2102 			temp_event_data.data = 0xFFFFFFFF;
2103 
2104 			shost = lpfc_shost_from_vport(phba->pport);
2105 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2106 						  sizeof(temp_event_data),
2107 						  (char *)&temp_event_data,
2108 						  SCSI_NL_VID_TYPE_PCI
2109 						  | PCI_VENDOR_ID_EMULEX);
2110 
2111 			spin_lock_irq(&phba->hbalock);
2112 			phba->over_temp_state = HBA_OVER_TEMP;
2113 			spin_unlock_irq(&phba->hbalock);
2114 			lpfc_sli4_offline_eratt(phba);
2115 			return;
2116 		}
2117 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2118 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2119 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2120 					"3143 Port Down: Firmware Update "
2121 					"Detected\n");
2122 			en_rn_msg = false;
2123 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2124 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2125 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2126 					"3144 Port Down: Debug Dump\n");
2127 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2128 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2129 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2130 					"3145 Port Down: Provisioning\n");
2131 
2132 		/* If resets are disabled then leave the HBA alone and return */
2133 		if (!phba->cfg_enable_hba_reset)
2134 			return;
2135 
2136 		/* Check port status register for function reset */
2137 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2138 				en_rn_msg);
2139 		if (rc == 0) {
2140 			/* don't report event on forced debug dump */
2141 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2142 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2143 				return;
2144 			else
2145 				break;
2146 		}
2147 		/* fall through for not able to recover */
2148 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2149 				"3152 Unrecoverable error\n");
2150 		lpfc_sli4_offline_eratt(phba);
2151 		break;
2152 	case LPFC_SLI_INTF_IF_TYPE_1:
2153 	default:
2154 		break;
2155 	}
2156 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2157 			"3123 Report dump event to upper layer\n");
2158 	/* Send an internal error event to mgmt application */
2159 	lpfc_board_errevt_to_mgmt(phba);
2160 
2161 	event_data = FC_REG_DUMP_EVENT;
2162 	shost = lpfc_shost_from_vport(vport);
2163 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2164 				  sizeof(event_data), (char *) &event_data,
2165 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2166 }
2167 
2168 /**
2169  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2170  * @phba: pointer to lpfc HBA data structure.
2171  *
2172  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2173  * routine from the API jump table function pointer from the lpfc_hba struct.
2174  *
2175  * Return codes
2176  *   0 - success.
2177  *   Any other value - error.
2178  **/
2179 void
2180 lpfc_handle_eratt(struct lpfc_hba *phba)
2181 {
2182 	(*phba->lpfc_handle_eratt)(phba);
2183 }
2184 
2185 /**
2186  * lpfc_handle_latt - The HBA link event handler
2187  * @phba: pointer to lpfc hba data structure.
2188  *
2189  * This routine is invoked from the worker thread to handle a HBA host
2190  * attention link event. SLI3 only.
2191  **/
2192 void
2193 lpfc_handle_latt(struct lpfc_hba *phba)
2194 {
2195 	struct lpfc_vport *vport = phba->pport;
2196 	struct lpfc_sli   *psli = &phba->sli;
2197 	LPFC_MBOXQ_t *pmb;
2198 	volatile uint32_t control;
2199 	int rc = 0;
2200 
2201 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2202 	if (!pmb) {
2203 		rc = 1;
2204 		goto lpfc_handle_latt_err_exit;
2205 	}
2206 
2207 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2208 	if (rc) {
2209 		rc = 2;
2210 		mempool_free(pmb, phba->mbox_mem_pool);
2211 		goto lpfc_handle_latt_err_exit;
2212 	}
2213 
2214 	/* Cleanup any outstanding ELS commands */
2215 	lpfc_els_flush_all_cmd(phba);
2216 	psli->slistat.link_event++;
2217 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
2218 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2219 	pmb->vport = vport;
2220 	/* Block ELS IOCBs until we have processed this mbox command */
2221 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2222 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2223 	if (rc == MBX_NOT_FINISHED) {
2224 		rc = 4;
2225 		goto lpfc_handle_latt_free_mbuf;
2226 	}
2227 
2228 	/* Clear Link Attention in HA REG */
2229 	spin_lock_irq(&phba->hbalock);
2230 	writel(HA_LATT, phba->HAregaddr);
2231 	readl(phba->HAregaddr); /* flush */
2232 	spin_unlock_irq(&phba->hbalock);
2233 
2234 	return;
2235 
2236 lpfc_handle_latt_free_mbuf:
2237 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2238 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2239 lpfc_handle_latt_err_exit:
2240 	/* Enable Link attention interrupts */
2241 	spin_lock_irq(&phba->hbalock);
2242 	psli->sli_flag |= LPFC_PROCESS_LA;
2243 	control = readl(phba->HCregaddr);
2244 	control |= HC_LAINT_ENA;
2245 	writel(control, phba->HCregaddr);
2246 	readl(phba->HCregaddr); /* flush */
2247 
2248 	/* Clear Link Attention in HA REG */
2249 	writel(HA_LATT, phba->HAregaddr);
2250 	readl(phba->HAregaddr); /* flush */
2251 	spin_unlock_irq(&phba->hbalock);
2252 	lpfc_linkdown(phba);
2253 	phba->link_state = LPFC_HBA_ERROR;
2254 
2255 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2256 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2257 
2258 	return;
2259 }
2260 
2261 static void
2262 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2263 {
2264 	int i, j;
2265 
2266 	while (length > 0) {
2267 		/* Look for Serial Number */
2268 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2269 			*pindex += 2;
2270 			i = vpd[*pindex];
2271 			*pindex += 1;
2272 			j = 0;
2273 			length -= (3+i);
2274 			while (i--) {
2275 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2276 				if (j == 31)
2277 					break;
2278 			}
2279 			phba->SerialNumber[j] = 0;
2280 			continue;
2281 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2282 			phba->vpd_flag |= VPD_MODEL_DESC;
2283 			*pindex += 2;
2284 			i = vpd[*pindex];
2285 			*pindex += 1;
2286 			j = 0;
2287 			length -= (3+i);
2288 			while (i--) {
2289 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2290 				if (j == 255)
2291 					break;
2292 			}
2293 			phba->ModelDesc[j] = 0;
2294 			continue;
2295 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2296 			phba->vpd_flag |= VPD_MODEL_NAME;
2297 			*pindex += 2;
2298 			i = vpd[*pindex];
2299 			*pindex += 1;
2300 			j = 0;
2301 			length -= (3+i);
2302 			while (i--) {
2303 				phba->ModelName[j++] = vpd[(*pindex)++];
2304 				if (j == 79)
2305 					break;
2306 			}
2307 			phba->ModelName[j] = 0;
2308 			continue;
2309 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2310 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2311 			*pindex += 2;
2312 			i = vpd[*pindex];
2313 			*pindex += 1;
2314 			j = 0;
2315 			length -= (3+i);
2316 			while (i--) {
2317 				phba->ProgramType[j++] = vpd[(*pindex)++];
2318 				if (j == 255)
2319 					break;
2320 			}
2321 			phba->ProgramType[j] = 0;
2322 			continue;
2323 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2324 			phba->vpd_flag |= VPD_PORT;
2325 			*pindex += 2;
2326 			i = vpd[*pindex];
2327 			*pindex += 1;
2328 			j = 0;
2329 			length -= (3 + i);
2330 			while (i--) {
2331 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2332 				    (phba->sli4_hba.pport_name_sta ==
2333 				     LPFC_SLI4_PPNAME_GET)) {
2334 					j++;
2335 					(*pindex)++;
2336 				} else
2337 					phba->Port[j++] = vpd[(*pindex)++];
2338 				if (j == 19)
2339 					break;
2340 			}
2341 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2342 			    (phba->sli4_hba.pport_name_sta ==
2343 			     LPFC_SLI4_PPNAME_NON))
2344 				phba->Port[j] = 0;
2345 			continue;
2346 		} else {
2347 			*pindex += 2;
2348 			i = vpd[*pindex];
2349 			*pindex += 1;
2350 			*pindex += i;
2351 			length -= (3 + i);
2352 		}
2353 	}
2354 }
2355 
2356 /**
2357  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2358  * @phba: pointer to lpfc hba data structure.
2359  * @vpd: pointer to the vital product data.
2360  * @len: length of the vital product data in bytes.
2361  *
2362  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2363  * an array of characters. In this routine, the ModelName, ProgramType, and
2364  * ModelDesc, etc. fields of the phba data structure will be populated.
2365  *
2366  * Return codes
2367  *   0 - pointer to the VPD passed in is NULL
2368  *   1 - success
2369  **/
2370 int
2371 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2372 {
2373 	uint8_t lenlo, lenhi;
2374 	int Length;
2375 	int i;
2376 	int finished = 0;
2377 	int index = 0;
2378 
2379 	if (!vpd)
2380 		return 0;
2381 
2382 	/* Vital Product */
2383 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2384 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2385 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2386 			(uint32_t) vpd[3]);
2387 	while (!finished && (index < (len - 4))) {
2388 		switch (vpd[index]) {
2389 		case 0x82:
2390 		case 0x91:
2391 			index += 1;
2392 			lenlo = vpd[index];
2393 			index += 1;
2394 			lenhi = vpd[index];
2395 			index += 1;
2396 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2397 			index += i;
2398 			break;
2399 		case 0x90:
2400 			index += 1;
2401 			lenlo = vpd[index];
2402 			index += 1;
2403 			lenhi = vpd[index];
2404 			index += 1;
2405 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2406 			if (Length > len - index)
2407 				Length = len - index;
2408 
2409 			lpfc_fill_vpd(phba, vpd, Length, &index);
2410 			finished = 0;
2411 			break;
2412 		case 0x78:
2413 			finished = 1;
2414 			break;
2415 		default:
2416 			index ++;
2417 			break;
2418 		}
2419 	}
2420 
2421 	return(1);
2422 }
2423 
2424 /**
2425  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2426  * @phba: pointer to lpfc hba data structure.
2427  * @mdp: pointer to the data structure to hold the derived model name.
2428  * @descp: pointer to the data structure to hold the derived description.
2429  *
2430  * This routine retrieves HBA's description based on its registered PCI device
2431  * ID. The @descp passed into this function points to an array of 256 chars. It
2432  * shall be returned with the model name, maximum speed, and the host bus type.
2433  * The @mdp passed into this function points to an array of 80 chars. When the
2434  * function returns, the @mdp will be filled with the model name.
2435  **/
2436 static void
2437 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2438 {
2439 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2440 	char *model = "<Unknown>";
2441 	int tbolt = 0;
2442 
2443 	switch (sub_dev_id) {
2444 	case PCI_DEVICE_ID_CLRY_161E:
2445 		model = "161E";
2446 		break;
2447 	case PCI_DEVICE_ID_CLRY_162E:
2448 		model = "162E";
2449 		break;
2450 	case PCI_DEVICE_ID_CLRY_164E:
2451 		model = "164E";
2452 		break;
2453 	case PCI_DEVICE_ID_CLRY_161P:
2454 		model = "161P";
2455 		break;
2456 	case PCI_DEVICE_ID_CLRY_162P:
2457 		model = "162P";
2458 		break;
2459 	case PCI_DEVICE_ID_CLRY_164P:
2460 		model = "164P";
2461 		break;
2462 	case PCI_DEVICE_ID_CLRY_321E:
2463 		model = "321E";
2464 		break;
2465 	case PCI_DEVICE_ID_CLRY_322E:
2466 		model = "322E";
2467 		break;
2468 	case PCI_DEVICE_ID_CLRY_324E:
2469 		model = "324E";
2470 		break;
2471 	case PCI_DEVICE_ID_CLRY_321P:
2472 		model = "321P";
2473 		break;
2474 	case PCI_DEVICE_ID_CLRY_322P:
2475 		model = "322P";
2476 		break;
2477 	case PCI_DEVICE_ID_CLRY_324P:
2478 		model = "324P";
2479 		break;
2480 	case PCI_DEVICE_ID_TLFC_2XX2:
2481 		model = "2XX2";
2482 		tbolt = 1;
2483 		break;
2484 	case PCI_DEVICE_ID_TLFC_3162:
2485 		model = "3162";
2486 		tbolt = 1;
2487 		break;
2488 	case PCI_DEVICE_ID_TLFC_3322:
2489 		model = "3322";
2490 		tbolt = 1;
2491 		break;
2492 	default:
2493 		model = "Unknown";
2494 		break;
2495 	}
2496 
2497 	if (mdp && mdp[0] == '\0')
2498 		snprintf(mdp, 79, "%s", model);
2499 
2500 	if (descp && descp[0] == '\0')
2501 		snprintf(descp, 255,
2502 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2503 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2504 			 model,
2505 			 phba->Port);
2506 }
2507 
2508 /**
2509  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2510  * @phba: pointer to lpfc hba data structure.
2511  * @mdp: pointer to the data structure to hold the derived model name.
2512  * @descp: pointer to the data structure to hold the derived description.
2513  *
2514  * This routine retrieves HBA's description based on its registered PCI device
2515  * ID. The @descp passed into this function points to an array of 256 chars. It
2516  * shall be returned with the model name, maximum speed, and the host bus type.
2517  * The @mdp passed into this function points to an array of 80 chars. When the
2518  * function returns, the @mdp will be filled with the model name.
2519  **/
2520 static void
2521 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2522 {
2523 	lpfc_vpd_t *vp;
2524 	uint16_t dev_id = phba->pcidev->device;
2525 	int max_speed;
2526 	int GE = 0;
2527 	int oneConnect = 0; /* default is not a oneConnect */
2528 	struct {
2529 		char *name;
2530 		char *bus;
2531 		char *function;
2532 	} m = {"<Unknown>", "", ""};
2533 
2534 	if (mdp && mdp[0] != '\0'
2535 		&& descp && descp[0] != '\0')
2536 		return;
2537 
2538 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2539 		lpfc_get_atto_model_desc(phba, mdp, descp);
2540 		return;
2541 	}
2542 
2543 	if (phba->lmt & LMT_64Gb)
2544 		max_speed = 64;
2545 	else if (phba->lmt & LMT_32Gb)
2546 		max_speed = 32;
2547 	else if (phba->lmt & LMT_16Gb)
2548 		max_speed = 16;
2549 	else if (phba->lmt & LMT_10Gb)
2550 		max_speed = 10;
2551 	else if (phba->lmt & LMT_8Gb)
2552 		max_speed = 8;
2553 	else if (phba->lmt & LMT_4Gb)
2554 		max_speed = 4;
2555 	else if (phba->lmt & LMT_2Gb)
2556 		max_speed = 2;
2557 	else if (phba->lmt & LMT_1Gb)
2558 		max_speed = 1;
2559 	else
2560 		max_speed = 0;
2561 
2562 	vp = &phba->vpd;
2563 
2564 	switch (dev_id) {
2565 	case PCI_DEVICE_ID_FIREFLY:
2566 		m = (typeof(m)){"LP6000", "PCI",
2567 				"Obsolete, Unsupported Fibre Channel Adapter"};
2568 		break;
2569 	case PCI_DEVICE_ID_SUPERFLY:
2570 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2571 			m = (typeof(m)){"LP7000", "PCI", ""};
2572 		else
2573 			m = (typeof(m)){"LP7000E", "PCI", ""};
2574 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2575 		break;
2576 	case PCI_DEVICE_ID_DRAGONFLY:
2577 		m = (typeof(m)){"LP8000", "PCI",
2578 				"Obsolete, Unsupported Fibre Channel Adapter"};
2579 		break;
2580 	case PCI_DEVICE_ID_CENTAUR:
2581 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2582 			m = (typeof(m)){"LP9002", "PCI", ""};
2583 		else
2584 			m = (typeof(m)){"LP9000", "PCI", ""};
2585 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2586 		break;
2587 	case PCI_DEVICE_ID_RFLY:
2588 		m = (typeof(m)){"LP952", "PCI",
2589 				"Obsolete, Unsupported Fibre Channel Adapter"};
2590 		break;
2591 	case PCI_DEVICE_ID_PEGASUS:
2592 		m = (typeof(m)){"LP9802", "PCI-X",
2593 				"Obsolete, Unsupported Fibre Channel Adapter"};
2594 		break;
2595 	case PCI_DEVICE_ID_THOR:
2596 		m = (typeof(m)){"LP10000", "PCI-X",
2597 				"Obsolete, Unsupported Fibre Channel Adapter"};
2598 		break;
2599 	case PCI_DEVICE_ID_VIPER:
2600 		m = (typeof(m)){"LPX1000",  "PCI-X",
2601 				"Obsolete, Unsupported Fibre Channel Adapter"};
2602 		break;
2603 	case PCI_DEVICE_ID_PFLY:
2604 		m = (typeof(m)){"LP982", "PCI-X",
2605 				"Obsolete, Unsupported Fibre Channel Adapter"};
2606 		break;
2607 	case PCI_DEVICE_ID_TFLY:
2608 		m = (typeof(m)){"LP1050", "PCI-X",
2609 				"Obsolete, Unsupported Fibre Channel Adapter"};
2610 		break;
2611 	case PCI_DEVICE_ID_HELIOS:
2612 		m = (typeof(m)){"LP11000", "PCI-X2",
2613 				"Obsolete, Unsupported Fibre Channel Adapter"};
2614 		break;
2615 	case PCI_DEVICE_ID_HELIOS_SCSP:
2616 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2617 				"Obsolete, Unsupported Fibre Channel Adapter"};
2618 		break;
2619 	case PCI_DEVICE_ID_HELIOS_DCSP:
2620 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2621 				"Obsolete, Unsupported Fibre Channel Adapter"};
2622 		break;
2623 	case PCI_DEVICE_ID_NEPTUNE:
2624 		m = (typeof(m)){"LPe1000", "PCIe",
2625 				"Obsolete, Unsupported Fibre Channel Adapter"};
2626 		break;
2627 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2628 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2629 				"Obsolete, Unsupported Fibre Channel Adapter"};
2630 		break;
2631 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2632 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2633 				"Obsolete, Unsupported Fibre Channel Adapter"};
2634 		break;
2635 	case PCI_DEVICE_ID_BMID:
2636 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2637 		break;
2638 	case PCI_DEVICE_ID_BSMB:
2639 		m = (typeof(m)){"LP111", "PCI-X2",
2640 				"Obsolete, Unsupported Fibre Channel Adapter"};
2641 		break;
2642 	case PCI_DEVICE_ID_ZEPHYR:
2643 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2644 		break;
2645 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2646 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2647 		break;
2648 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2649 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2650 		GE = 1;
2651 		break;
2652 	case PCI_DEVICE_ID_ZMID:
2653 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2654 		break;
2655 	case PCI_DEVICE_ID_ZSMB:
2656 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2657 		break;
2658 	case PCI_DEVICE_ID_LP101:
2659 		m = (typeof(m)){"LP101", "PCI-X",
2660 				"Obsolete, Unsupported Fibre Channel Adapter"};
2661 		break;
2662 	case PCI_DEVICE_ID_LP10000S:
2663 		m = (typeof(m)){"LP10000-S", "PCI",
2664 				"Obsolete, Unsupported Fibre Channel Adapter"};
2665 		break;
2666 	case PCI_DEVICE_ID_LP11000S:
2667 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2668 				"Obsolete, Unsupported Fibre Channel Adapter"};
2669 		break;
2670 	case PCI_DEVICE_ID_LPE11000S:
2671 		m = (typeof(m)){"LPe11000-S", "PCIe",
2672 				"Obsolete, Unsupported Fibre Channel Adapter"};
2673 		break;
2674 	case PCI_DEVICE_ID_SAT:
2675 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2676 		break;
2677 	case PCI_DEVICE_ID_SAT_MID:
2678 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2679 		break;
2680 	case PCI_DEVICE_ID_SAT_SMB:
2681 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2682 		break;
2683 	case PCI_DEVICE_ID_SAT_DCSP:
2684 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2685 		break;
2686 	case PCI_DEVICE_ID_SAT_SCSP:
2687 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2688 		break;
2689 	case PCI_DEVICE_ID_SAT_S:
2690 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2691 		break;
2692 	case PCI_DEVICE_ID_PROTEUS_VF:
2693 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2694 				"Obsolete, Unsupported Fibre Channel Adapter"};
2695 		break;
2696 	case PCI_DEVICE_ID_PROTEUS_PF:
2697 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2698 				"Obsolete, Unsupported Fibre Channel Adapter"};
2699 		break;
2700 	case PCI_DEVICE_ID_PROTEUS_S:
2701 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2702 				"Obsolete, Unsupported Fibre Channel Adapter"};
2703 		break;
2704 	case PCI_DEVICE_ID_TIGERSHARK:
2705 		oneConnect = 1;
2706 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2707 		break;
2708 	case PCI_DEVICE_ID_TOMCAT:
2709 		oneConnect = 1;
2710 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2711 		break;
2712 	case PCI_DEVICE_ID_FALCON:
2713 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2714 				"EmulexSecure Fibre"};
2715 		break;
2716 	case PCI_DEVICE_ID_BALIUS:
2717 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2718 				"Obsolete, Unsupported Fibre Channel Adapter"};
2719 		break;
2720 	case PCI_DEVICE_ID_LANCER_FC:
2721 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2722 		break;
2723 	case PCI_DEVICE_ID_LANCER_FC_VF:
2724 		m = (typeof(m)){"LPe16000", "PCIe",
2725 				"Obsolete, Unsupported Fibre Channel Adapter"};
2726 		break;
2727 	case PCI_DEVICE_ID_LANCER_FCOE:
2728 		oneConnect = 1;
2729 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2730 		break;
2731 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2732 		oneConnect = 1;
2733 		m = (typeof(m)){"OCe15100", "PCIe",
2734 				"Obsolete, Unsupported FCoE"};
2735 		break;
2736 	case PCI_DEVICE_ID_LANCER_G6_FC:
2737 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2738 		break;
2739 	case PCI_DEVICE_ID_LANCER_G7_FC:
2740 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2741 		break;
2742 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2743 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2744 		break;
2745 	case PCI_DEVICE_ID_SKYHAWK:
2746 	case PCI_DEVICE_ID_SKYHAWK_VF:
2747 		oneConnect = 1;
2748 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2749 		break;
2750 	default:
2751 		m = (typeof(m)){"Unknown", "", ""};
2752 		break;
2753 	}
2754 
2755 	if (mdp && mdp[0] == '\0')
2756 		snprintf(mdp, 79,"%s", m.name);
2757 	/*
2758 	 * oneConnect hba requires special processing, they are all initiators
2759 	 * and we put the port number on the end
2760 	 */
2761 	if (descp && descp[0] == '\0') {
2762 		if (oneConnect)
2763 			snprintf(descp, 255,
2764 				"Emulex OneConnect %s, %s Initiator %s",
2765 				m.name, m.function,
2766 				phba->Port);
2767 		else if (max_speed == 0)
2768 			snprintf(descp, 255,
2769 				"Emulex %s %s %s",
2770 				m.name, m.bus, m.function);
2771 		else
2772 			snprintf(descp, 255,
2773 				"Emulex %s %d%s %s %s",
2774 				m.name, max_speed, (GE) ? "GE" : "Gb",
2775 				m.bus, m.function);
2776 	}
2777 }
2778 
2779 /**
2780  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2781  * @phba: pointer to lpfc hba data structure.
2782  * @pring: pointer to a IOCB ring.
2783  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2784  *
2785  * This routine posts a given number of IOCBs with the associated DMA buffer
2786  * descriptors specified by the cnt argument to the given IOCB ring.
2787  *
2788  * Return codes
2789  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2790  **/
2791 int
2792 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2793 {
2794 	IOCB_t *icmd;
2795 	struct lpfc_iocbq *iocb;
2796 	struct lpfc_dmabuf *mp1, *mp2;
2797 
2798 	cnt += pring->missbufcnt;
2799 
2800 	/* While there are buffers to post */
2801 	while (cnt > 0) {
2802 		/* Allocate buffer for  command iocb */
2803 		iocb = lpfc_sli_get_iocbq(phba);
2804 		if (iocb == NULL) {
2805 			pring->missbufcnt = cnt;
2806 			return cnt;
2807 		}
2808 		icmd = &iocb->iocb;
2809 
2810 		/* 2 buffers can be posted per command */
2811 		/* Allocate buffer to post */
2812 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2813 		if (mp1)
2814 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2815 		if (!mp1 || !mp1->virt) {
2816 			kfree(mp1);
2817 			lpfc_sli_release_iocbq(phba, iocb);
2818 			pring->missbufcnt = cnt;
2819 			return cnt;
2820 		}
2821 
2822 		INIT_LIST_HEAD(&mp1->list);
2823 		/* Allocate buffer to post */
2824 		if (cnt > 1) {
2825 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2826 			if (mp2)
2827 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2828 							    &mp2->phys);
2829 			if (!mp2 || !mp2->virt) {
2830 				kfree(mp2);
2831 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2832 				kfree(mp1);
2833 				lpfc_sli_release_iocbq(phba, iocb);
2834 				pring->missbufcnt = cnt;
2835 				return cnt;
2836 			}
2837 
2838 			INIT_LIST_HEAD(&mp2->list);
2839 		} else {
2840 			mp2 = NULL;
2841 		}
2842 
2843 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2844 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2845 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2846 		icmd->ulpBdeCount = 1;
2847 		cnt--;
2848 		if (mp2) {
2849 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2850 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2851 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2852 			cnt--;
2853 			icmd->ulpBdeCount = 2;
2854 		}
2855 
2856 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2857 		icmd->ulpLe = 1;
2858 
2859 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2860 		    IOCB_ERROR) {
2861 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2862 			kfree(mp1);
2863 			cnt++;
2864 			if (mp2) {
2865 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2866 				kfree(mp2);
2867 				cnt++;
2868 			}
2869 			lpfc_sli_release_iocbq(phba, iocb);
2870 			pring->missbufcnt = cnt;
2871 			return cnt;
2872 		}
2873 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2874 		if (mp2)
2875 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2876 	}
2877 	pring->missbufcnt = 0;
2878 	return 0;
2879 }
2880 
2881 /**
2882  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2883  * @phba: pointer to lpfc hba data structure.
2884  *
2885  * This routine posts initial receive IOCB buffers to the ELS ring. The
2886  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2887  * set to 64 IOCBs. SLI3 only.
2888  *
2889  * Return codes
2890  *   0 - success (currently always success)
2891  **/
2892 static int
2893 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2894 {
2895 	struct lpfc_sli *psli = &phba->sli;
2896 
2897 	/* Ring 0, ELS / CT buffers */
2898 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2899 	/* Ring 2 - FCP no buffers needed */
2900 
2901 	return 0;
2902 }
2903 
2904 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2905 
2906 /**
2907  * lpfc_sha_init - Set up initial array of hash table entries
2908  * @HashResultPointer: pointer to an array as hash table.
2909  *
2910  * This routine sets up the initial values to the array of hash table entries
2911  * for the LC HBAs.
2912  **/
2913 static void
2914 lpfc_sha_init(uint32_t * HashResultPointer)
2915 {
2916 	HashResultPointer[0] = 0x67452301;
2917 	HashResultPointer[1] = 0xEFCDAB89;
2918 	HashResultPointer[2] = 0x98BADCFE;
2919 	HashResultPointer[3] = 0x10325476;
2920 	HashResultPointer[4] = 0xC3D2E1F0;
2921 }
2922 
2923 /**
2924  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2925  * @HashResultPointer: pointer to an initial/result hash table.
2926  * @HashWorkingPointer: pointer to an working hash table.
2927  *
2928  * This routine iterates an initial hash table pointed by @HashResultPointer
2929  * with the values from the working hash table pointeed by @HashWorkingPointer.
2930  * The results are putting back to the initial hash table, returned through
2931  * the @HashResultPointer as the result hash table.
2932  **/
2933 static void
2934 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2935 {
2936 	int t;
2937 	uint32_t TEMP;
2938 	uint32_t A, B, C, D, E;
2939 	t = 16;
2940 	do {
2941 		HashWorkingPointer[t] =
2942 		    S(1,
2943 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2944 								     8] ^
2945 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2946 	} while (++t <= 79);
2947 	t = 0;
2948 	A = HashResultPointer[0];
2949 	B = HashResultPointer[1];
2950 	C = HashResultPointer[2];
2951 	D = HashResultPointer[3];
2952 	E = HashResultPointer[4];
2953 
2954 	do {
2955 		if (t < 20) {
2956 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2957 		} else if (t < 40) {
2958 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2959 		} else if (t < 60) {
2960 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2961 		} else {
2962 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2963 		}
2964 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2965 		E = D;
2966 		D = C;
2967 		C = S(30, B);
2968 		B = A;
2969 		A = TEMP;
2970 	} while (++t <= 79);
2971 
2972 	HashResultPointer[0] += A;
2973 	HashResultPointer[1] += B;
2974 	HashResultPointer[2] += C;
2975 	HashResultPointer[3] += D;
2976 	HashResultPointer[4] += E;
2977 
2978 }
2979 
2980 /**
2981  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2982  * @RandomChallenge: pointer to the entry of host challenge random number array.
2983  * @HashWorking: pointer to the entry of the working hash array.
2984  *
2985  * This routine calculates the working hash array referred by @HashWorking
2986  * from the challenge random numbers associated with the host, referred by
2987  * @RandomChallenge. The result is put into the entry of the working hash
2988  * array and returned by reference through @HashWorking.
2989  **/
2990 static void
2991 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2992 {
2993 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2994 }
2995 
2996 /**
2997  * lpfc_hba_init - Perform special handling for LC HBA initialization
2998  * @phba: pointer to lpfc hba data structure.
2999  * @hbainit: pointer to an array of unsigned 32-bit integers.
3000  *
3001  * This routine performs the special handling for LC HBA initialization.
3002  **/
3003 void
3004 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
3005 {
3006 	int t;
3007 	uint32_t *HashWorking;
3008 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
3009 
3010 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3011 	if (!HashWorking)
3012 		return;
3013 
3014 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3015 	HashWorking[1] = HashWorking[79] = *pwwnn;
3016 
3017 	for (t = 0; t < 7; t++)
3018 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3019 
3020 	lpfc_sha_init(hbainit);
3021 	lpfc_sha_iterate(hbainit, HashWorking);
3022 	kfree(HashWorking);
3023 }
3024 
3025 /**
3026  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3027  * @vport: pointer to a virtual N_Port data structure.
3028  *
3029  * This routine performs the necessary cleanups before deleting the @vport.
3030  * It invokes the discovery state machine to perform necessary state
3031  * transitions and to release the ndlps associated with the @vport. Note,
3032  * the physical port is treated as @vport 0.
3033  **/
3034 void
3035 lpfc_cleanup(struct lpfc_vport *vport)
3036 {
3037 	struct lpfc_hba   *phba = vport->phba;
3038 	struct lpfc_nodelist *ndlp, *next_ndlp;
3039 	int i = 0;
3040 
3041 	if (phba->link_state > LPFC_LINK_DOWN)
3042 		lpfc_port_link_failure(vport);
3043 
3044 	/* Clean up VMID resources */
3045 	if (lpfc_is_vmid_enabled(phba))
3046 		lpfc_vmid_vport_cleanup(vport);
3047 
3048 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3049 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3050 		    ndlp->nlp_DID == Fabric_DID) {
3051 			/* Just free up ndlp with Fabric_DID for vports */
3052 			lpfc_nlp_put(ndlp);
3053 			continue;
3054 		}
3055 
3056 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3057 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3058 			lpfc_nlp_put(ndlp);
3059 			continue;
3060 		}
3061 
3062 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3063 		 * DEVICE_RM event.
3064 		 */
3065 		if (ndlp->nlp_type & NLP_FABRIC &&
3066 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3067 			lpfc_disc_state_machine(vport, ndlp, NULL,
3068 					NLP_EVT_DEVICE_RECOVERY);
3069 
3070 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3071 			lpfc_disc_state_machine(vport, ndlp, NULL,
3072 					NLP_EVT_DEVICE_RM);
3073 	}
3074 
3075 	/* This is a special case flush to return all
3076 	 * IOs before entering this loop. There are
3077 	 * two points in the code where a flush is
3078 	 * avoided if the FC_UNLOADING flag is set.
3079 	 * one is in the multipool destroy,
3080 	 * (this prevents a crash) and the other is
3081 	 * in the nvme abort handler, ( also prevents
3082 	 * a crash). Both of these exceptions are
3083 	 * cases where the slot is still accessible.
3084 	 * The flush here is only when the pci slot
3085 	 * is offline.
3086 	 */
3087 	if (vport->load_flag & FC_UNLOADING &&
3088 	    pci_channel_offline(phba->pcidev))
3089 		lpfc_sli_flush_io_rings(vport->phba);
3090 
3091 	/* At this point, ALL ndlp's should be gone
3092 	 * because of the previous NLP_EVT_DEVICE_RM.
3093 	 * Lets wait for this to happen, if needed.
3094 	 */
3095 	while (!list_empty(&vport->fc_nodes)) {
3096 		if (i++ > 3000) {
3097 			lpfc_printf_vlog(vport, KERN_ERR,
3098 					 LOG_TRACE_EVENT,
3099 				"0233 Nodelist not empty\n");
3100 			list_for_each_entry_safe(ndlp, next_ndlp,
3101 						&vport->fc_nodes, nlp_listp) {
3102 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3103 						 LOG_DISCOVERY,
3104 						 "0282 did:x%x ndlp:x%px "
3105 						 "refcnt:%d xflags x%x nflag x%x\n",
3106 						 ndlp->nlp_DID, (void *)ndlp,
3107 						 kref_read(&ndlp->kref),
3108 						 ndlp->fc4_xpt_flags,
3109 						 ndlp->nlp_flag);
3110 			}
3111 			break;
3112 		}
3113 
3114 		/* Wait for any activity on ndlps to settle */
3115 		msleep(10);
3116 	}
3117 	lpfc_cleanup_vports_rrqs(vport, NULL);
3118 }
3119 
3120 /**
3121  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3122  * @vport: pointer to a virtual N_Port data structure.
3123  *
3124  * This routine stops all the timers associated with a @vport. This function
3125  * is invoked before disabling or deleting a @vport. Note that the physical
3126  * port is treated as @vport 0.
3127  **/
3128 void
3129 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3130 {
3131 	del_timer_sync(&vport->els_tmofunc);
3132 	del_timer_sync(&vport->delayed_disc_tmo);
3133 	lpfc_can_disctmo(vport);
3134 	return;
3135 }
3136 
3137 /**
3138  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3139  * @phba: pointer to lpfc hba data structure.
3140  *
3141  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3142  * caller of this routine should already hold the host lock.
3143  **/
3144 void
3145 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3146 {
3147 	/* Clear pending FCF rediscovery wait flag */
3148 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3149 
3150 	/* Now, try to stop the timer */
3151 	del_timer(&phba->fcf.redisc_wait);
3152 }
3153 
3154 /**
3155  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3156  * @phba: pointer to lpfc hba data structure.
3157  *
3158  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3159  * checks whether the FCF rediscovery wait timer is pending with the host
3160  * lock held before proceeding with disabling the timer and clearing the
3161  * wait timer pendig flag.
3162  **/
3163 void
3164 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3165 {
3166 	spin_lock_irq(&phba->hbalock);
3167 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3168 		/* FCF rediscovery timer already fired or stopped */
3169 		spin_unlock_irq(&phba->hbalock);
3170 		return;
3171 	}
3172 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3173 	/* Clear failover in progress flags */
3174 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3175 	spin_unlock_irq(&phba->hbalock);
3176 }
3177 
3178 /**
3179  * lpfc_cmf_stop - Stop CMF processing
3180  * @phba: pointer to lpfc hba data structure.
3181  *
3182  * This is called when the link goes down or if CMF mode is turned OFF.
3183  * It is also called when going offline or unloaded just before the
3184  * congestion info buffer is unregistered.
3185  **/
3186 void
3187 lpfc_cmf_stop(struct lpfc_hba *phba)
3188 {
3189 	int cpu;
3190 	struct lpfc_cgn_stat *cgs;
3191 
3192 	/* We only do something if CMF is enabled */
3193 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3194 		return;
3195 
3196 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3197 			"6221 Stop CMF / Cancel Timer\n");
3198 
3199 	/* Cancel the CMF timer */
3200 	hrtimer_cancel(&phba->cmf_timer);
3201 
3202 	/* Zero CMF counters */
3203 	atomic_set(&phba->cmf_busy, 0);
3204 	for_each_present_cpu(cpu) {
3205 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3206 		atomic64_set(&cgs->total_bytes, 0);
3207 		atomic64_set(&cgs->rcv_bytes, 0);
3208 		atomic_set(&cgs->rx_io_cnt, 0);
3209 		atomic64_set(&cgs->rx_latency, 0);
3210 	}
3211 	atomic_set(&phba->cmf_bw_wait, 0);
3212 
3213 	/* Resume any blocked IO - Queue unblock on workqueue */
3214 	queue_work(phba->wq, &phba->unblock_request_work);
3215 }
3216 
3217 static inline uint64_t
3218 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3219 {
3220 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3221 
3222 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3223 }
3224 
3225 void
3226 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3227 {
3228 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3229 			"6223 Signal CMF init\n");
3230 
3231 	/* Use the new fc_linkspeed to recalculate */
3232 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3233 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3234 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3235 					    phba->cmf_interval_rate, 1000);
3236 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3237 
3238 	/* This is a signal to firmware to sync up CMF BW with link speed */
3239 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3240 }
3241 
3242 /**
3243  * lpfc_cmf_start - Start CMF processing
3244  * @phba: pointer to lpfc hba data structure.
3245  *
3246  * This is called when the link comes up or if CMF mode is turned OFF
3247  * to Monitor or Managed.
3248  **/
3249 void
3250 lpfc_cmf_start(struct lpfc_hba *phba)
3251 {
3252 	struct lpfc_cgn_stat *cgs;
3253 	int cpu;
3254 
3255 	/* We only do something if CMF is enabled */
3256 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3257 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3258 		return;
3259 
3260 	/* Reinitialize congestion buffer info */
3261 	lpfc_init_congestion_buf(phba);
3262 
3263 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3264 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3265 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3266 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3267 
3268 	atomic_set(&phba->cmf_busy, 0);
3269 	for_each_present_cpu(cpu) {
3270 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3271 		atomic64_set(&cgs->total_bytes, 0);
3272 		atomic64_set(&cgs->rcv_bytes, 0);
3273 		atomic_set(&cgs->rx_io_cnt, 0);
3274 		atomic64_set(&cgs->rx_latency, 0);
3275 	}
3276 	phba->cmf_latency.tv_sec = 0;
3277 	phba->cmf_latency.tv_nsec = 0;
3278 
3279 	lpfc_cmf_signal_init(phba);
3280 
3281 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3282 			"6222 Start CMF / Timer\n");
3283 
3284 	phba->cmf_timer_cnt = 0;
3285 	hrtimer_start(&phba->cmf_timer,
3286 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3287 		      HRTIMER_MODE_REL);
3288 	/* Setup for latency check in IO cmpl routines */
3289 	ktime_get_real_ts64(&phba->cmf_latency);
3290 
3291 	atomic_set(&phba->cmf_bw_wait, 0);
3292 	atomic_set(&phba->cmf_stop_io, 0);
3293 }
3294 
3295 /**
3296  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3297  * @phba: pointer to lpfc hba data structure.
3298  *
3299  * This routine stops all the timers associated with a HBA. This function is
3300  * invoked before either putting a HBA offline or unloading the driver.
3301  **/
3302 void
3303 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3304 {
3305 	if (phba->pport)
3306 		lpfc_stop_vport_timers(phba->pport);
3307 	cancel_delayed_work_sync(&phba->eq_delay_work);
3308 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3309 	del_timer_sync(&phba->sli.mbox_tmo);
3310 	del_timer_sync(&phba->fabric_block_timer);
3311 	del_timer_sync(&phba->eratt_poll);
3312 	del_timer_sync(&phba->hb_tmofunc);
3313 	if (phba->sli_rev == LPFC_SLI_REV4) {
3314 		del_timer_sync(&phba->rrq_tmr);
3315 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3316 	}
3317 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3318 
3319 	switch (phba->pci_dev_grp) {
3320 	case LPFC_PCI_DEV_LP:
3321 		/* Stop any LightPulse device specific driver timers */
3322 		del_timer_sync(&phba->fcp_poll_timer);
3323 		break;
3324 	case LPFC_PCI_DEV_OC:
3325 		/* Stop any OneConnect device specific driver timers */
3326 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3327 		break;
3328 	default:
3329 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3330 				"0297 Invalid device group (x%x)\n",
3331 				phba->pci_dev_grp);
3332 		break;
3333 	}
3334 	return;
3335 }
3336 
3337 /**
3338  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3339  * @phba: pointer to lpfc hba data structure.
3340  * @mbx_action: flag for mailbox no wait action.
3341  *
3342  * This routine marks a HBA's management interface as blocked. Once the HBA's
3343  * management interface is marked as blocked, all the user space access to
3344  * the HBA, whether they are from sysfs interface or libdfc interface will
3345  * all be blocked. The HBA is set to block the management interface when the
3346  * driver prepares the HBA interface for online or offline.
3347  **/
3348 static void
3349 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3350 {
3351 	unsigned long iflag;
3352 	uint8_t actcmd = MBX_HEARTBEAT;
3353 	unsigned long timeout;
3354 
3355 	spin_lock_irqsave(&phba->hbalock, iflag);
3356 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3357 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3358 	if (mbx_action == LPFC_MBX_NO_WAIT)
3359 		return;
3360 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3361 	spin_lock_irqsave(&phba->hbalock, iflag);
3362 	if (phba->sli.mbox_active) {
3363 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3364 		/* Determine how long we might wait for the active mailbox
3365 		 * command to be gracefully completed by firmware.
3366 		 */
3367 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3368 				phba->sli.mbox_active) * 1000) + jiffies;
3369 	}
3370 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3371 
3372 	/* Wait for the outstnading mailbox command to complete */
3373 	while (phba->sli.mbox_active) {
3374 		/* Check active mailbox complete status every 2ms */
3375 		msleep(2);
3376 		if (time_after(jiffies, timeout)) {
3377 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3378 					"2813 Mgmt IO is Blocked %x "
3379 					"- mbox cmd %x still active\n",
3380 					phba->sli.sli_flag, actcmd);
3381 			break;
3382 		}
3383 	}
3384 }
3385 
3386 /**
3387  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3388  * @phba: pointer to lpfc hba data structure.
3389  *
3390  * Allocate RPIs for all active remote nodes. This is needed whenever
3391  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3392  * is to fixup the temporary rpi assignments.
3393  **/
3394 void
3395 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3396 {
3397 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3398 	struct lpfc_vport **vports;
3399 	int i, rpi;
3400 
3401 	if (phba->sli_rev != LPFC_SLI_REV4)
3402 		return;
3403 
3404 	vports = lpfc_create_vport_work_array(phba);
3405 	if (vports == NULL)
3406 		return;
3407 
3408 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3409 		if (vports[i]->load_flag & FC_UNLOADING)
3410 			continue;
3411 
3412 		list_for_each_entry_safe(ndlp, next_ndlp,
3413 					 &vports[i]->fc_nodes,
3414 					 nlp_listp) {
3415 			rpi = lpfc_sli4_alloc_rpi(phba);
3416 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3417 				/* TODO print log? */
3418 				continue;
3419 			}
3420 			ndlp->nlp_rpi = rpi;
3421 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3422 					 LOG_NODE | LOG_DISCOVERY,
3423 					 "0009 Assign RPI x%x to ndlp x%px "
3424 					 "DID:x%06x flg:x%x\n",
3425 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3426 					 ndlp->nlp_flag);
3427 		}
3428 	}
3429 	lpfc_destroy_vport_work_array(phba, vports);
3430 }
3431 
3432 /**
3433  * lpfc_create_expedite_pool - create expedite pool
3434  * @phba: pointer to lpfc hba data structure.
3435  *
3436  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3437  * to expedite pool. Mark them as expedite.
3438  **/
3439 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3440 {
3441 	struct lpfc_sli4_hdw_queue *qp;
3442 	struct lpfc_io_buf *lpfc_ncmd;
3443 	struct lpfc_io_buf *lpfc_ncmd_next;
3444 	struct lpfc_epd_pool *epd_pool;
3445 	unsigned long iflag;
3446 
3447 	epd_pool = &phba->epd_pool;
3448 	qp = &phba->sli4_hba.hdwq[0];
3449 
3450 	spin_lock_init(&epd_pool->lock);
3451 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3452 	spin_lock(&epd_pool->lock);
3453 	INIT_LIST_HEAD(&epd_pool->list);
3454 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3455 				 &qp->lpfc_io_buf_list_put, list) {
3456 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3457 		lpfc_ncmd->expedite = true;
3458 		qp->put_io_bufs--;
3459 		epd_pool->count++;
3460 		if (epd_pool->count >= XRI_BATCH)
3461 			break;
3462 	}
3463 	spin_unlock(&epd_pool->lock);
3464 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3465 }
3466 
3467 /**
3468  * lpfc_destroy_expedite_pool - destroy expedite pool
3469  * @phba: pointer to lpfc hba data structure.
3470  *
3471  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3472  * of HWQ 0. Clear the mark.
3473  **/
3474 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3475 {
3476 	struct lpfc_sli4_hdw_queue *qp;
3477 	struct lpfc_io_buf *lpfc_ncmd;
3478 	struct lpfc_io_buf *lpfc_ncmd_next;
3479 	struct lpfc_epd_pool *epd_pool;
3480 	unsigned long iflag;
3481 
3482 	epd_pool = &phba->epd_pool;
3483 	qp = &phba->sli4_hba.hdwq[0];
3484 
3485 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3486 	spin_lock(&epd_pool->lock);
3487 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3488 				 &epd_pool->list, list) {
3489 		list_move_tail(&lpfc_ncmd->list,
3490 			       &qp->lpfc_io_buf_list_put);
3491 		lpfc_ncmd->flags = false;
3492 		qp->put_io_bufs++;
3493 		epd_pool->count--;
3494 	}
3495 	spin_unlock(&epd_pool->lock);
3496 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3497 }
3498 
3499 /**
3500  * lpfc_create_multixri_pools - create multi-XRI pools
3501  * @phba: pointer to lpfc hba data structure.
3502  *
3503  * This routine initialize public, private per HWQ. Then, move XRIs from
3504  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3505  * Initialized.
3506  **/
3507 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3508 {
3509 	u32 i, j;
3510 	u32 hwq_count;
3511 	u32 count_per_hwq;
3512 	struct lpfc_io_buf *lpfc_ncmd;
3513 	struct lpfc_io_buf *lpfc_ncmd_next;
3514 	unsigned long iflag;
3515 	struct lpfc_sli4_hdw_queue *qp;
3516 	struct lpfc_multixri_pool *multixri_pool;
3517 	struct lpfc_pbl_pool *pbl_pool;
3518 	struct lpfc_pvt_pool *pvt_pool;
3519 
3520 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3521 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3522 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3523 			phba->sli4_hba.io_xri_cnt);
3524 
3525 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3526 		lpfc_create_expedite_pool(phba);
3527 
3528 	hwq_count = phba->cfg_hdw_queue;
3529 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3530 
3531 	for (i = 0; i < hwq_count; i++) {
3532 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3533 
3534 		if (!multixri_pool) {
3535 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3536 					"1238 Failed to allocate memory for "
3537 					"multixri_pool\n");
3538 
3539 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3540 				lpfc_destroy_expedite_pool(phba);
3541 
3542 			j = 0;
3543 			while (j < i) {
3544 				qp = &phba->sli4_hba.hdwq[j];
3545 				kfree(qp->p_multixri_pool);
3546 				j++;
3547 			}
3548 			phba->cfg_xri_rebalancing = 0;
3549 			return;
3550 		}
3551 
3552 		qp = &phba->sli4_hba.hdwq[i];
3553 		qp->p_multixri_pool = multixri_pool;
3554 
3555 		multixri_pool->xri_limit = count_per_hwq;
3556 		multixri_pool->rrb_next_hwqid = i;
3557 
3558 		/* Deal with public free xri pool */
3559 		pbl_pool = &multixri_pool->pbl_pool;
3560 		spin_lock_init(&pbl_pool->lock);
3561 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3562 		spin_lock(&pbl_pool->lock);
3563 		INIT_LIST_HEAD(&pbl_pool->list);
3564 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3565 					 &qp->lpfc_io_buf_list_put, list) {
3566 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3567 			qp->put_io_bufs--;
3568 			pbl_pool->count++;
3569 		}
3570 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3571 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3572 				pbl_pool->count, i);
3573 		spin_unlock(&pbl_pool->lock);
3574 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3575 
3576 		/* Deal with private free xri pool */
3577 		pvt_pool = &multixri_pool->pvt_pool;
3578 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3579 		pvt_pool->low_watermark = XRI_BATCH;
3580 		spin_lock_init(&pvt_pool->lock);
3581 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3582 		INIT_LIST_HEAD(&pvt_pool->list);
3583 		pvt_pool->count = 0;
3584 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3585 	}
3586 }
3587 
3588 /**
3589  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3590  * @phba: pointer to lpfc hba data structure.
3591  *
3592  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3593  **/
3594 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3595 {
3596 	u32 i;
3597 	u32 hwq_count;
3598 	struct lpfc_io_buf *lpfc_ncmd;
3599 	struct lpfc_io_buf *lpfc_ncmd_next;
3600 	unsigned long iflag;
3601 	struct lpfc_sli4_hdw_queue *qp;
3602 	struct lpfc_multixri_pool *multixri_pool;
3603 	struct lpfc_pbl_pool *pbl_pool;
3604 	struct lpfc_pvt_pool *pvt_pool;
3605 
3606 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3607 		lpfc_destroy_expedite_pool(phba);
3608 
3609 	if (!(phba->pport->load_flag & FC_UNLOADING))
3610 		lpfc_sli_flush_io_rings(phba);
3611 
3612 	hwq_count = phba->cfg_hdw_queue;
3613 
3614 	for (i = 0; i < hwq_count; i++) {
3615 		qp = &phba->sli4_hba.hdwq[i];
3616 		multixri_pool = qp->p_multixri_pool;
3617 		if (!multixri_pool)
3618 			continue;
3619 
3620 		qp->p_multixri_pool = NULL;
3621 
3622 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3623 
3624 		/* Deal with public free xri pool */
3625 		pbl_pool = &multixri_pool->pbl_pool;
3626 		spin_lock(&pbl_pool->lock);
3627 
3628 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3629 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3630 				pbl_pool->count, i);
3631 
3632 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3633 					 &pbl_pool->list, list) {
3634 			list_move_tail(&lpfc_ncmd->list,
3635 				       &qp->lpfc_io_buf_list_put);
3636 			qp->put_io_bufs++;
3637 			pbl_pool->count--;
3638 		}
3639 
3640 		INIT_LIST_HEAD(&pbl_pool->list);
3641 		pbl_pool->count = 0;
3642 
3643 		spin_unlock(&pbl_pool->lock);
3644 
3645 		/* Deal with private free xri pool */
3646 		pvt_pool = &multixri_pool->pvt_pool;
3647 		spin_lock(&pvt_pool->lock);
3648 
3649 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3650 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3651 				pvt_pool->count, i);
3652 
3653 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3654 					 &pvt_pool->list, list) {
3655 			list_move_tail(&lpfc_ncmd->list,
3656 				       &qp->lpfc_io_buf_list_put);
3657 			qp->put_io_bufs++;
3658 			pvt_pool->count--;
3659 		}
3660 
3661 		INIT_LIST_HEAD(&pvt_pool->list);
3662 		pvt_pool->count = 0;
3663 
3664 		spin_unlock(&pvt_pool->lock);
3665 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3666 
3667 		kfree(multixri_pool);
3668 	}
3669 }
3670 
3671 /**
3672  * lpfc_online - Initialize and bring a HBA online
3673  * @phba: pointer to lpfc hba data structure.
3674  *
3675  * This routine initializes the HBA and brings a HBA online. During this
3676  * process, the management interface is blocked to prevent user space access
3677  * to the HBA interfering with the driver initialization.
3678  *
3679  * Return codes
3680  *   0 - successful
3681  *   1 - failed
3682  **/
3683 int
3684 lpfc_online(struct lpfc_hba *phba)
3685 {
3686 	struct lpfc_vport *vport;
3687 	struct lpfc_vport **vports;
3688 	int i, error = 0;
3689 	bool vpis_cleared = false;
3690 
3691 	if (!phba)
3692 		return 0;
3693 	vport = phba->pport;
3694 
3695 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3696 		return 0;
3697 
3698 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3699 			"0458 Bring Adapter online\n");
3700 
3701 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3702 
3703 	if (phba->sli_rev == LPFC_SLI_REV4) {
3704 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3705 			lpfc_unblock_mgmt_io(phba);
3706 			return 1;
3707 		}
3708 		spin_lock_irq(&phba->hbalock);
3709 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3710 			vpis_cleared = true;
3711 		spin_unlock_irq(&phba->hbalock);
3712 
3713 		/* Reestablish the local initiator port.
3714 		 * The offline process destroyed the previous lport.
3715 		 */
3716 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3717 				!phba->nvmet_support) {
3718 			error = lpfc_nvme_create_localport(phba->pport);
3719 			if (error)
3720 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3721 					"6132 NVME restore reg failed "
3722 					"on nvmei error x%x\n", error);
3723 		}
3724 	} else {
3725 		lpfc_sli_queue_init(phba);
3726 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3727 			lpfc_unblock_mgmt_io(phba);
3728 			return 1;
3729 		}
3730 	}
3731 
3732 	vports = lpfc_create_vport_work_array(phba);
3733 	if (vports != NULL) {
3734 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3735 			struct Scsi_Host *shost;
3736 			shost = lpfc_shost_from_vport(vports[i]);
3737 			spin_lock_irq(shost->host_lock);
3738 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3739 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3740 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3741 			if (phba->sli_rev == LPFC_SLI_REV4) {
3742 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3743 				if ((vpis_cleared) &&
3744 				    (vports[i]->port_type !=
3745 					LPFC_PHYSICAL_PORT))
3746 					vports[i]->vpi = 0;
3747 			}
3748 			spin_unlock_irq(shost->host_lock);
3749 		}
3750 	}
3751 	lpfc_destroy_vport_work_array(phba, vports);
3752 
3753 	if (phba->cfg_xri_rebalancing)
3754 		lpfc_create_multixri_pools(phba);
3755 
3756 	lpfc_cpuhp_add(phba);
3757 
3758 	lpfc_unblock_mgmt_io(phba);
3759 	return 0;
3760 }
3761 
3762 /**
3763  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3764  * @phba: pointer to lpfc hba data structure.
3765  *
3766  * This routine marks a HBA's management interface as not blocked. Once the
3767  * HBA's management interface is marked as not blocked, all the user space
3768  * access to the HBA, whether they are from sysfs interface or libdfc
3769  * interface will be allowed. The HBA is set to block the management interface
3770  * when the driver prepares the HBA interface for online or offline and then
3771  * set to unblock the management interface afterwards.
3772  **/
3773 void
3774 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3775 {
3776 	unsigned long iflag;
3777 
3778 	spin_lock_irqsave(&phba->hbalock, iflag);
3779 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3780 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3781 }
3782 
3783 /**
3784  * lpfc_offline_prep - Prepare a HBA to be brought offline
3785  * @phba: pointer to lpfc hba data structure.
3786  * @mbx_action: flag for mailbox shutdown action.
3787  *
3788  * This routine is invoked to prepare a HBA to be brought offline. It performs
3789  * unregistration login to all the nodes on all vports and flushes the mailbox
3790  * queue to make it ready to be brought offline.
3791  **/
3792 void
3793 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3794 {
3795 	struct lpfc_vport *vport = phba->pport;
3796 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3797 	struct lpfc_vport **vports;
3798 	struct Scsi_Host *shost;
3799 	int i;
3800 	int offline;
3801 	bool hba_pci_err;
3802 
3803 	if (vport->fc_flag & FC_OFFLINE_MODE)
3804 		return;
3805 
3806 	lpfc_block_mgmt_io(phba, mbx_action);
3807 
3808 	lpfc_linkdown(phba);
3809 
3810 	offline =  pci_channel_offline(phba->pcidev);
3811 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3812 
3813 	/* Issue an unreg_login to all nodes on all vports */
3814 	vports = lpfc_create_vport_work_array(phba);
3815 	if (vports != NULL) {
3816 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3817 			if (vports[i]->load_flag & FC_UNLOADING)
3818 				continue;
3819 			shost = lpfc_shost_from_vport(vports[i]);
3820 			spin_lock_irq(shost->host_lock);
3821 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3822 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3823 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3824 			spin_unlock_irq(shost->host_lock);
3825 
3826 			shost =	lpfc_shost_from_vport(vports[i]);
3827 			list_for_each_entry_safe(ndlp, next_ndlp,
3828 						 &vports[i]->fc_nodes,
3829 						 nlp_listp) {
3830 
3831 				spin_lock_irq(&ndlp->lock);
3832 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3833 				spin_unlock_irq(&ndlp->lock);
3834 
3835 				if (offline || hba_pci_err) {
3836 					spin_lock_irq(&ndlp->lock);
3837 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3838 							    NLP_RPI_REGISTERED);
3839 					spin_unlock_irq(&ndlp->lock);
3840 					if (phba->sli_rev == LPFC_SLI_REV4)
3841 						lpfc_sli_rpi_release(vports[i],
3842 								     ndlp);
3843 				} else {
3844 					lpfc_unreg_rpi(vports[i], ndlp);
3845 				}
3846 				/*
3847 				 * Whenever an SLI4 port goes offline, free the
3848 				 * RPI. Get a new RPI when the adapter port
3849 				 * comes back online.
3850 				 */
3851 				if (phba->sli_rev == LPFC_SLI_REV4) {
3852 					lpfc_printf_vlog(vports[i], KERN_INFO,
3853 						 LOG_NODE | LOG_DISCOVERY,
3854 						 "0011 Free RPI x%x on "
3855 						 "ndlp: x%px did x%x\n",
3856 						 ndlp->nlp_rpi, ndlp,
3857 						 ndlp->nlp_DID);
3858 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3859 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3860 				}
3861 
3862 				if (ndlp->nlp_type & NLP_FABRIC) {
3863 					lpfc_disc_state_machine(vports[i], ndlp,
3864 						NULL, NLP_EVT_DEVICE_RECOVERY);
3865 
3866 					/* Don't remove the node unless the node
3867 					 * has been unregistered with the
3868 					 * transport, and we're not in recovery
3869 					 * before dev_loss_tmo triggered.
3870 					 * Otherwise, let dev_loss take care of
3871 					 * the node.
3872 					 */
3873 					if (!(ndlp->save_flags &
3874 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3875 					    !(ndlp->fc4_xpt_flags &
3876 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3877 						lpfc_disc_state_machine
3878 							(vports[i], ndlp,
3879 							 NULL,
3880 							 NLP_EVT_DEVICE_RM);
3881 				}
3882 			}
3883 		}
3884 	}
3885 	lpfc_destroy_vport_work_array(phba, vports);
3886 
3887 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3888 
3889 	if (phba->wq)
3890 		flush_workqueue(phba->wq);
3891 }
3892 
3893 /**
3894  * lpfc_offline - Bring a HBA offline
3895  * @phba: pointer to lpfc hba data structure.
3896  *
3897  * This routine actually brings a HBA offline. It stops all the timers
3898  * associated with the HBA, brings down the SLI layer, and eventually
3899  * marks the HBA as in offline state for the upper layer protocol.
3900  **/
3901 void
3902 lpfc_offline(struct lpfc_hba *phba)
3903 {
3904 	struct Scsi_Host  *shost;
3905 	struct lpfc_vport **vports;
3906 	int i;
3907 
3908 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3909 		return;
3910 
3911 	/* stop port and all timers associated with this hba */
3912 	lpfc_stop_port(phba);
3913 
3914 	/* Tear down the local and target port registrations.  The
3915 	 * nvme transports need to cleanup.
3916 	 */
3917 	lpfc_nvmet_destroy_targetport(phba);
3918 	lpfc_nvme_destroy_localport(phba->pport);
3919 
3920 	vports = lpfc_create_vport_work_array(phba);
3921 	if (vports != NULL)
3922 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3923 			lpfc_stop_vport_timers(vports[i]);
3924 	lpfc_destroy_vport_work_array(phba, vports);
3925 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3926 			"0460 Bring Adapter offline\n");
3927 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3928 	   now.  */
3929 	lpfc_sli_hba_down(phba);
3930 	spin_lock_irq(&phba->hbalock);
3931 	phba->work_ha = 0;
3932 	spin_unlock_irq(&phba->hbalock);
3933 	vports = lpfc_create_vport_work_array(phba);
3934 	if (vports != NULL)
3935 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3936 			shost = lpfc_shost_from_vport(vports[i]);
3937 			spin_lock_irq(shost->host_lock);
3938 			vports[i]->work_port_events = 0;
3939 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3940 			spin_unlock_irq(shost->host_lock);
3941 		}
3942 	lpfc_destroy_vport_work_array(phba, vports);
3943 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3944 	 * in hba_unset
3945 	 */
3946 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3947 		__lpfc_cpuhp_remove(phba);
3948 
3949 	if (phba->cfg_xri_rebalancing)
3950 		lpfc_destroy_multixri_pools(phba);
3951 }
3952 
3953 /**
3954  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3955  * @phba: pointer to lpfc hba data structure.
3956  *
3957  * This routine is to free all the SCSI buffers and IOCBs from the driver
3958  * list back to kernel. It is called from lpfc_pci_remove_one to free
3959  * the internal resources before the device is removed from the system.
3960  **/
3961 static void
3962 lpfc_scsi_free(struct lpfc_hba *phba)
3963 {
3964 	struct lpfc_io_buf *sb, *sb_next;
3965 
3966 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3967 		return;
3968 
3969 	spin_lock_irq(&phba->hbalock);
3970 
3971 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3972 
3973 	spin_lock(&phba->scsi_buf_list_put_lock);
3974 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3975 				 list) {
3976 		list_del(&sb->list);
3977 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3978 			      sb->dma_handle);
3979 		kfree(sb);
3980 		phba->total_scsi_bufs--;
3981 	}
3982 	spin_unlock(&phba->scsi_buf_list_put_lock);
3983 
3984 	spin_lock(&phba->scsi_buf_list_get_lock);
3985 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3986 				 list) {
3987 		list_del(&sb->list);
3988 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3989 			      sb->dma_handle);
3990 		kfree(sb);
3991 		phba->total_scsi_bufs--;
3992 	}
3993 	spin_unlock(&phba->scsi_buf_list_get_lock);
3994 	spin_unlock_irq(&phba->hbalock);
3995 }
3996 
3997 /**
3998  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3999  * @phba: pointer to lpfc hba data structure.
4000  *
4001  * This routine is to free all the IO buffers and IOCBs from the driver
4002  * list back to kernel. It is called from lpfc_pci_remove_one to free
4003  * the internal resources before the device is removed from the system.
4004  **/
4005 void
4006 lpfc_io_free(struct lpfc_hba *phba)
4007 {
4008 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4009 	struct lpfc_sli4_hdw_queue *qp;
4010 	int idx;
4011 
4012 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4013 		qp = &phba->sli4_hba.hdwq[idx];
4014 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4015 		spin_lock(&qp->io_buf_list_put_lock);
4016 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4017 					 &qp->lpfc_io_buf_list_put,
4018 					 list) {
4019 			list_del(&lpfc_ncmd->list);
4020 			qp->put_io_bufs--;
4021 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4022 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4023 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4024 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4025 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4026 			kfree(lpfc_ncmd);
4027 			qp->total_io_bufs--;
4028 		}
4029 		spin_unlock(&qp->io_buf_list_put_lock);
4030 
4031 		spin_lock(&qp->io_buf_list_get_lock);
4032 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4033 					 &qp->lpfc_io_buf_list_get,
4034 					 list) {
4035 			list_del(&lpfc_ncmd->list);
4036 			qp->get_io_bufs--;
4037 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4038 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4039 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4040 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4041 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4042 			kfree(lpfc_ncmd);
4043 			qp->total_io_bufs--;
4044 		}
4045 		spin_unlock(&qp->io_buf_list_get_lock);
4046 	}
4047 }
4048 
4049 /**
4050  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4051  * @phba: pointer to lpfc hba data structure.
4052  *
4053  * This routine first calculates the sizes of the current els and allocated
4054  * scsi sgl lists, and then goes through all sgls to updates the physical
4055  * XRIs assigned due to port function reset. During port initialization, the
4056  * current els and allocated scsi sgl lists are 0s.
4057  *
4058  * Return codes
4059  *   0 - successful (for now, it always returns 0)
4060  **/
4061 int
4062 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4063 {
4064 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4065 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4066 	LIST_HEAD(els_sgl_list);
4067 	int rc;
4068 
4069 	/*
4070 	 * update on pci function's els xri-sgl list
4071 	 */
4072 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4073 
4074 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4075 		/* els xri-sgl expanded */
4076 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4077 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4078 				"3157 ELS xri-sgl count increased from "
4079 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4080 				els_xri_cnt);
4081 		/* allocate the additional els sgls */
4082 		for (i = 0; i < xri_cnt; i++) {
4083 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4084 					     GFP_KERNEL);
4085 			if (sglq_entry == NULL) {
4086 				lpfc_printf_log(phba, KERN_ERR,
4087 						LOG_TRACE_EVENT,
4088 						"2562 Failure to allocate an "
4089 						"ELS sgl entry:%d\n", i);
4090 				rc = -ENOMEM;
4091 				goto out_free_mem;
4092 			}
4093 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4094 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4095 							   &sglq_entry->phys);
4096 			if (sglq_entry->virt == NULL) {
4097 				kfree(sglq_entry);
4098 				lpfc_printf_log(phba, KERN_ERR,
4099 						LOG_TRACE_EVENT,
4100 						"2563 Failure to allocate an "
4101 						"ELS mbuf:%d\n", i);
4102 				rc = -ENOMEM;
4103 				goto out_free_mem;
4104 			}
4105 			sglq_entry->sgl = sglq_entry->virt;
4106 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4107 			sglq_entry->state = SGL_FREED;
4108 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4109 		}
4110 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4111 		list_splice_init(&els_sgl_list,
4112 				 &phba->sli4_hba.lpfc_els_sgl_list);
4113 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4114 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4115 		/* els xri-sgl shrinked */
4116 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4117 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4118 				"3158 ELS xri-sgl count decreased from "
4119 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4120 				els_xri_cnt);
4121 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4122 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4123 				 &els_sgl_list);
4124 		/* release extra els sgls from list */
4125 		for (i = 0; i < xri_cnt; i++) {
4126 			list_remove_head(&els_sgl_list,
4127 					 sglq_entry, struct lpfc_sglq, list);
4128 			if (sglq_entry) {
4129 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4130 						 sglq_entry->phys);
4131 				kfree(sglq_entry);
4132 			}
4133 		}
4134 		list_splice_init(&els_sgl_list,
4135 				 &phba->sli4_hba.lpfc_els_sgl_list);
4136 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4137 	} else
4138 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4139 				"3163 ELS xri-sgl count unchanged: %d\n",
4140 				els_xri_cnt);
4141 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4142 
4143 	/* update xris to els sgls on the list */
4144 	sglq_entry = NULL;
4145 	sglq_entry_next = NULL;
4146 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4147 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4148 		lxri = lpfc_sli4_next_xritag(phba);
4149 		if (lxri == NO_XRI) {
4150 			lpfc_printf_log(phba, KERN_ERR,
4151 					LOG_TRACE_EVENT,
4152 					"2400 Failed to allocate xri for "
4153 					"ELS sgl\n");
4154 			rc = -ENOMEM;
4155 			goto out_free_mem;
4156 		}
4157 		sglq_entry->sli4_lxritag = lxri;
4158 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4159 	}
4160 	return 0;
4161 
4162 out_free_mem:
4163 	lpfc_free_els_sgl_list(phba);
4164 	return rc;
4165 }
4166 
4167 /**
4168  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4169  * @phba: pointer to lpfc hba data structure.
4170  *
4171  * This routine first calculates the sizes of the current els and allocated
4172  * scsi sgl lists, and then goes through all sgls to updates the physical
4173  * XRIs assigned due to port function reset. During port initialization, the
4174  * current els and allocated scsi sgl lists are 0s.
4175  *
4176  * Return codes
4177  *   0 - successful (for now, it always returns 0)
4178  **/
4179 int
4180 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4181 {
4182 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4183 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4184 	uint16_t nvmet_xri_cnt;
4185 	LIST_HEAD(nvmet_sgl_list);
4186 	int rc;
4187 
4188 	/*
4189 	 * update on pci function's nvmet xri-sgl list
4190 	 */
4191 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4192 
4193 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4194 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4195 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4196 		/* els xri-sgl expanded */
4197 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4198 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4199 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4200 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4201 		/* allocate the additional nvmet sgls */
4202 		for (i = 0; i < xri_cnt; i++) {
4203 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4204 					     GFP_KERNEL);
4205 			if (sglq_entry == NULL) {
4206 				lpfc_printf_log(phba, KERN_ERR,
4207 						LOG_TRACE_EVENT,
4208 						"6303 Failure to allocate an "
4209 						"NVMET sgl entry:%d\n", i);
4210 				rc = -ENOMEM;
4211 				goto out_free_mem;
4212 			}
4213 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4214 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4215 							   &sglq_entry->phys);
4216 			if (sglq_entry->virt == NULL) {
4217 				kfree(sglq_entry);
4218 				lpfc_printf_log(phba, KERN_ERR,
4219 						LOG_TRACE_EVENT,
4220 						"6304 Failure to allocate an "
4221 						"NVMET buf:%d\n", i);
4222 				rc = -ENOMEM;
4223 				goto out_free_mem;
4224 			}
4225 			sglq_entry->sgl = sglq_entry->virt;
4226 			memset(sglq_entry->sgl, 0,
4227 			       phba->cfg_sg_dma_buf_size);
4228 			sglq_entry->state = SGL_FREED;
4229 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4230 		}
4231 		spin_lock_irq(&phba->hbalock);
4232 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4233 		list_splice_init(&nvmet_sgl_list,
4234 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4235 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4236 		spin_unlock_irq(&phba->hbalock);
4237 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4238 		/* nvmet xri-sgl shrunk */
4239 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4240 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4241 				"6305 NVMET xri-sgl count decreased from "
4242 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4243 				nvmet_xri_cnt);
4244 		spin_lock_irq(&phba->hbalock);
4245 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4246 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4247 				 &nvmet_sgl_list);
4248 		/* release extra nvmet sgls from list */
4249 		for (i = 0; i < xri_cnt; i++) {
4250 			list_remove_head(&nvmet_sgl_list,
4251 					 sglq_entry, struct lpfc_sglq, list);
4252 			if (sglq_entry) {
4253 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4254 						    sglq_entry->phys);
4255 				kfree(sglq_entry);
4256 			}
4257 		}
4258 		list_splice_init(&nvmet_sgl_list,
4259 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4260 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4261 		spin_unlock_irq(&phba->hbalock);
4262 	} else
4263 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4264 				"6306 NVMET xri-sgl count unchanged: %d\n",
4265 				nvmet_xri_cnt);
4266 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4267 
4268 	/* update xris to nvmet sgls on the list */
4269 	sglq_entry = NULL;
4270 	sglq_entry_next = NULL;
4271 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4272 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4273 		lxri = lpfc_sli4_next_xritag(phba);
4274 		if (lxri == NO_XRI) {
4275 			lpfc_printf_log(phba, KERN_ERR,
4276 					LOG_TRACE_EVENT,
4277 					"6307 Failed to allocate xri for "
4278 					"NVMET sgl\n");
4279 			rc = -ENOMEM;
4280 			goto out_free_mem;
4281 		}
4282 		sglq_entry->sli4_lxritag = lxri;
4283 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4284 	}
4285 	return 0;
4286 
4287 out_free_mem:
4288 	lpfc_free_nvmet_sgl_list(phba);
4289 	return rc;
4290 }
4291 
4292 int
4293 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4294 {
4295 	LIST_HEAD(blist);
4296 	struct lpfc_sli4_hdw_queue *qp;
4297 	struct lpfc_io_buf *lpfc_cmd;
4298 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4299 	int idx, cnt, xri, inserted;
4300 
4301 	cnt = 0;
4302 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4303 		qp = &phba->sli4_hba.hdwq[idx];
4304 		spin_lock_irq(&qp->io_buf_list_get_lock);
4305 		spin_lock(&qp->io_buf_list_put_lock);
4306 
4307 		/* Take everything off the get and put lists */
4308 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4309 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4310 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4311 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4312 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4313 		qp->get_io_bufs = 0;
4314 		qp->put_io_bufs = 0;
4315 		qp->total_io_bufs = 0;
4316 		spin_unlock(&qp->io_buf_list_put_lock);
4317 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4318 	}
4319 
4320 	/*
4321 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4322 	 * This is because POST_SGL takes a sequential range of XRIs
4323 	 * to post to the firmware.
4324 	 */
4325 	for (idx = 0; idx < cnt; idx++) {
4326 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4327 		if (!lpfc_cmd)
4328 			return cnt;
4329 		if (idx == 0) {
4330 			list_add_tail(&lpfc_cmd->list, cbuf);
4331 			continue;
4332 		}
4333 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4334 		inserted = 0;
4335 		prev_iobufp = NULL;
4336 		list_for_each_entry(iobufp, cbuf, list) {
4337 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4338 				if (prev_iobufp)
4339 					list_add(&lpfc_cmd->list,
4340 						 &prev_iobufp->list);
4341 				else
4342 					list_add(&lpfc_cmd->list, cbuf);
4343 				inserted = 1;
4344 				break;
4345 			}
4346 			prev_iobufp = iobufp;
4347 		}
4348 		if (!inserted)
4349 			list_add_tail(&lpfc_cmd->list, cbuf);
4350 	}
4351 	return cnt;
4352 }
4353 
4354 int
4355 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4356 {
4357 	struct lpfc_sli4_hdw_queue *qp;
4358 	struct lpfc_io_buf *lpfc_cmd;
4359 	int idx, cnt;
4360 
4361 	qp = phba->sli4_hba.hdwq;
4362 	cnt = 0;
4363 	while (!list_empty(cbuf)) {
4364 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4365 			list_remove_head(cbuf, lpfc_cmd,
4366 					 struct lpfc_io_buf, list);
4367 			if (!lpfc_cmd)
4368 				return cnt;
4369 			cnt++;
4370 			qp = &phba->sli4_hba.hdwq[idx];
4371 			lpfc_cmd->hdwq_no = idx;
4372 			lpfc_cmd->hdwq = qp;
4373 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4374 			spin_lock(&qp->io_buf_list_put_lock);
4375 			list_add_tail(&lpfc_cmd->list,
4376 				      &qp->lpfc_io_buf_list_put);
4377 			qp->put_io_bufs++;
4378 			qp->total_io_bufs++;
4379 			spin_unlock(&qp->io_buf_list_put_lock);
4380 		}
4381 	}
4382 	return cnt;
4383 }
4384 
4385 /**
4386  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4387  * @phba: pointer to lpfc hba data structure.
4388  *
4389  * This routine first calculates the sizes of the current els and allocated
4390  * scsi sgl lists, and then goes through all sgls to updates the physical
4391  * XRIs assigned due to port function reset. During port initialization, the
4392  * current els and allocated scsi sgl lists are 0s.
4393  *
4394  * Return codes
4395  *   0 - successful (for now, it always returns 0)
4396  **/
4397 int
4398 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4399 {
4400 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4401 	uint16_t i, lxri, els_xri_cnt;
4402 	uint16_t io_xri_cnt, io_xri_max;
4403 	LIST_HEAD(io_sgl_list);
4404 	int rc, cnt;
4405 
4406 	/*
4407 	 * update on pci function's allocated nvme xri-sgl list
4408 	 */
4409 
4410 	/* maximum number of xris available for nvme buffers */
4411 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4412 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4413 	phba->sli4_hba.io_xri_max = io_xri_max;
4414 
4415 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4416 			"6074 Current allocated XRI sgl count:%d, "
4417 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4418 			phba->sli4_hba.io_xri_cnt,
4419 			phba->sli4_hba.io_xri_max,
4420 			els_xri_cnt);
4421 
4422 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4423 
4424 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4425 		/* max nvme xri shrunk below the allocated nvme buffers */
4426 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4427 					phba->sli4_hba.io_xri_max;
4428 		/* release the extra allocated nvme buffers */
4429 		for (i = 0; i < io_xri_cnt; i++) {
4430 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4431 					 struct lpfc_io_buf, list);
4432 			if (lpfc_ncmd) {
4433 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4434 					      lpfc_ncmd->data,
4435 					      lpfc_ncmd->dma_handle);
4436 				kfree(lpfc_ncmd);
4437 			}
4438 		}
4439 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4440 	}
4441 
4442 	/* update xris associated to remaining allocated nvme buffers */
4443 	lpfc_ncmd = NULL;
4444 	lpfc_ncmd_next = NULL;
4445 	phba->sli4_hba.io_xri_cnt = cnt;
4446 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4447 				 &io_sgl_list, list) {
4448 		lxri = lpfc_sli4_next_xritag(phba);
4449 		if (lxri == NO_XRI) {
4450 			lpfc_printf_log(phba, KERN_ERR,
4451 					LOG_TRACE_EVENT,
4452 					"6075 Failed to allocate xri for "
4453 					"nvme buffer\n");
4454 			rc = -ENOMEM;
4455 			goto out_free_mem;
4456 		}
4457 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4458 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4459 	}
4460 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4461 	return 0;
4462 
4463 out_free_mem:
4464 	lpfc_io_free(phba);
4465 	return rc;
4466 }
4467 
4468 /**
4469  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4470  * @phba: Pointer to lpfc hba data structure.
4471  * @num_to_alloc: The requested number of buffers to allocate.
4472  *
4473  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4474  * the nvme buffer contains all the necessary information needed to initiate
4475  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4476  * them on a list, it post them to the port by using SGL block post.
4477  *
4478  * Return codes:
4479  *   int - number of IO buffers that were allocated and posted.
4480  *   0 = failure, less than num_to_alloc is a partial failure.
4481  **/
4482 int
4483 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4484 {
4485 	struct lpfc_io_buf *lpfc_ncmd;
4486 	struct lpfc_iocbq *pwqeq;
4487 	uint16_t iotag, lxri = 0;
4488 	int bcnt, num_posted;
4489 	LIST_HEAD(prep_nblist);
4490 	LIST_HEAD(post_nblist);
4491 	LIST_HEAD(nvme_nblist);
4492 
4493 	phba->sli4_hba.io_xri_cnt = 0;
4494 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4495 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4496 		if (!lpfc_ncmd)
4497 			break;
4498 		/*
4499 		 * Get memory from the pci pool to map the virt space to
4500 		 * pci bus space for an I/O. The DMA buffer includes the
4501 		 * number of SGE's necessary to support the sg_tablesize.
4502 		 */
4503 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4504 						  GFP_KERNEL,
4505 						  &lpfc_ncmd->dma_handle);
4506 		if (!lpfc_ncmd->data) {
4507 			kfree(lpfc_ncmd);
4508 			break;
4509 		}
4510 
4511 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4512 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4513 		} else {
4514 			/*
4515 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4516 			 * check to be sure.
4517 			 */
4518 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4519 			    (((unsigned long)(lpfc_ncmd->data) &
4520 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4521 				lpfc_printf_log(phba, KERN_ERR,
4522 						LOG_TRACE_EVENT,
4523 						"3369 Memory alignment err: "
4524 						"addr=%lx\n",
4525 						(unsigned long)lpfc_ncmd->data);
4526 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4527 					      lpfc_ncmd->data,
4528 					      lpfc_ncmd->dma_handle);
4529 				kfree(lpfc_ncmd);
4530 				break;
4531 			}
4532 		}
4533 
4534 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4535 
4536 		lxri = lpfc_sli4_next_xritag(phba);
4537 		if (lxri == NO_XRI) {
4538 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4539 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4540 			kfree(lpfc_ncmd);
4541 			break;
4542 		}
4543 		pwqeq = &lpfc_ncmd->cur_iocbq;
4544 
4545 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4546 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4547 		if (iotag == 0) {
4548 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4549 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4550 			kfree(lpfc_ncmd);
4551 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4552 					"6121 Failed to allocate IOTAG for"
4553 					" XRI:0x%x\n", lxri);
4554 			lpfc_sli4_free_xri(phba, lxri);
4555 			break;
4556 		}
4557 		pwqeq->sli4_lxritag = lxri;
4558 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4559 
4560 		/* Initialize local short-hand pointers. */
4561 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4562 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4563 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4564 		spin_lock_init(&lpfc_ncmd->buf_lock);
4565 
4566 		/* add the nvme buffer to a post list */
4567 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4568 		phba->sli4_hba.io_xri_cnt++;
4569 	}
4570 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4571 			"6114 Allocate %d out of %d requested new NVME "
4572 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4573 			sizeof(*lpfc_ncmd));
4574 
4575 
4576 	/* post the list of nvme buffer sgls to port if available */
4577 	if (!list_empty(&post_nblist))
4578 		num_posted = lpfc_sli4_post_io_sgl_list(
4579 				phba, &post_nblist, bcnt);
4580 	else
4581 		num_posted = 0;
4582 
4583 	return num_posted;
4584 }
4585 
4586 static uint64_t
4587 lpfc_get_wwpn(struct lpfc_hba *phba)
4588 {
4589 	uint64_t wwn;
4590 	int rc;
4591 	LPFC_MBOXQ_t *mboxq;
4592 	MAILBOX_t *mb;
4593 
4594 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4595 						GFP_KERNEL);
4596 	if (!mboxq)
4597 		return (uint64_t)-1;
4598 
4599 	/* First get WWN of HBA instance */
4600 	lpfc_read_nv(phba, mboxq);
4601 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4602 	if (rc != MBX_SUCCESS) {
4603 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4604 				"6019 Mailbox failed , mbxCmd x%x "
4605 				"READ_NV, mbxStatus x%x\n",
4606 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4607 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4608 		mempool_free(mboxq, phba->mbox_mem_pool);
4609 		return (uint64_t) -1;
4610 	}
4611 	mb = &mboxq->u.mb;
4612 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4613 	/* wwn is WWPN of HBA instance */
4614 	mempool_free(mboxq, phba->mbox_mem_pool);
4615 	if (phba->sli_rev == LPFC_SLI_REV4)
4616 		return be64_to_cpu(wwn);
4617 	else
4618 		return rol64(wwn, 32);
4619 }
4620 
4621 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4622 {
4623 	if (phba->sli_rev == LPFC_SLI_REV4)
4624 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4625 			return LPFC_MAX_SG_TABLESIZE;
4626 		else
4627 			return phba->cfg_scsi_seg_cnt;
4628 	else
4629 		return phba->cfg_sg_seg_cnt;
4630 }
4631 
4632 /**
4633  * lpfc_vmid_res_alloc - Allocates resources for VMID
4634  * @phba: pointer to lpfc hba data structure.
4635  * @vport: pointer to vport data structure
4636  *
4637  * This routine allocated the resources needed for the VMID.
4638  *
4639  * Return codes
4640  *	0 on Success
4641  *	Non-0 on Failure
4642  */
4643 static int
4644 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4645 {
4646 	/* VMID feature is supported only on SLI4 */
4647 	if (phba->sli_rev == LPFC_SLI_REV3) {
4648 		phba->cfg_vmid_app_header = 0;
4649 		phba->cfg_vmid_priority_tagging = 0;
4650 	}
4651 
4652 	if (lpfc_is_vmid_enabled(phba)) {
4653 		vport->vmid =
4654 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4655 			    GFP_KERNEL);
4656 		if (!vport->vmid)
4657 			return -ENOMEM;
4658 
4659 		rwlock_init(&vport->vmid_lock);
4660 
4661 		/* Set the VMID parameters for the vport */
4662 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4663 		vport->vmid_inactivity_timeout =
4664 		    phba->cfg_vmid_inactivity_timeout;
4665 		vport->max_vmid = phba->cfg_max_vmid;
4666 		vport->cur_vmid_cnt = 0;
4667 
4668 		vport->vmid_priority_range = bitmap_zalloc
4669 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4670 
4671 		if (!vport->vmid_priority_range) {
4672 			kfree(vport->vmid);
4673 			return -ENOMEM;
4674 		}
4675 
4676 		hash_init(vport->hash_table);
4677 	}
4678 	return 0;
4679 }
4680 
4681 /**
4682  * lpfc_create_port - Create an FC port
4683  * @phba: pointer to lpfc hba data structure.
4684  * @instance: a unique integer ID to this FC port.
4685  * @dev: pointer to the device data structure.
4686  *
4687  * This routine creates a FC port for the upper layer protocol. The FC port
4688  * can be created on top of either a physical port or a virtual port provided
4689  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4690  * and associates the FC port created before adding the shost into the SCSI
4691  * layer.
4692  *
4693  * Return codes
4694  *   @vport - pointer to the virtual N_Port data structure.
4695  *   NULL - port create failed.
4696  **/
4697 struct lpfc_vport *
4698 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4699 {
4700 	struct lpfc_vport *vport;
4701 	struct Scsi_Host  *shost = NULL;
4702 	struct scsi_host_template *template;
4703 	int error = 0;
4704 	int i;
4705 	uint64_t wwn;
4706 	bool use_no_reset_hba = false;
4707 	int rc;
4708 
4709 	if (lpfc_no_hba_reset_cnt) {
4710 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4711 		    dev == &phba->pcidev->dev) {
4712 			/* Reset the port first */
4713 			lpfc_sli_brdrestart(phba);
4714 			rc = lpfc_sli_chipset_init(phba);
4715 			if (rc)
4716 				return NULL;
4717 		}
4718 		wwn = lpfc_get_wwpn(phba);
4719 	}
4720 
4721 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4722 		if (wwn == lpfc_no_hba_reset[i]) {
4723 			lpfc_printf_log(phba, KERN_ERR,
4724 					LOG_TRACE_EVENT,
4725 					"6020 Setting use_no_reset port=%llx\n",
4726 					wwn);
4727 			use_no_reset_hba = true;
4728 			break;
4729 		}
4730 	}
4731 
4732 	/* Seed template for SCSI host registration */
4733 	if (dev == &phba->pcidev->dev) {
4734 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4735 			/* Seed physical port template */
4736 			template = &lpfc_template;
4737 
4738 			if (use_no_reset_hba)
4739 				/* template is for a no reset SCSI Host */
4740 				template->eh_host_reset_handler = NULL;
4741 
4742 			/* Seed updated value of sg_tablesize */
4743 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4744 		} else {
4745 			/* NVMET is for physical port only */
4746 			template = &lpfc_template_nvme;
4747 		}
4748 	} else {
4749 		/* Seed vport template */
4750 		template = &lpfc_vport_template;
4751 
4752 		/* Seed updated value of sg_tablesize */
4753 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4754 	}
4755 
4756 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4757 	if (!shost)
4758 		goto out;
4759 
4760 	vport = (struct lpfc_vport *) shost->hostdata;
4761 	vport->phba = phba;
4762 	vport->load_flag |= FC_LOADING;
4763 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4764 	vport->fc_rscn_flush = 0;
4765 	lpfc_get_vport_cfgparam(vport);
4766 
4767 	/* Adjust value in vport */
4768 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4769 
4770 	shost->unique_id = instance;
4771 	shost->max_id = LPFC_MAX_TARGET;
4772 	shost->max_lun = vport->cfg_max_luns;
4773 	shost->this_id = -1;
4774 	shost->max_cmd_len = 16;
4775 
4776 	if (phba->sli_rev == LPFC_SLI_REV4) {
4777 		if (!phba->cfg_fcp_mq_threshold ||
4778 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4779 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4780 
4781 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4782 					    phba->cfg_fcp_mq_threshold);
4783 
4784 		shost->dma_boundary =
4785 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4786 	} else
4787 		/* SLI-3 has a limited number of hardware queues (3),
4788 		 * thus there is only one for FCP processing.
4789 		 */
4790 		shost->nr_hw_queues = 1;
4791 
4792 	/*
4793 	 * Set initial can_queue value since 0 is no longer supported and
4794 	 * scsi_add_host will fail. This will be adjusted later based on the
4795 	 * max xri value determined in hba setup.
4796 	 */
4797 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4798 	if (dev != &phba->pcidev->dev) {
4799 		shost->transportt = lpfc_vport_transport_template;
4800 		vport->port_type = LPFC_NPIV_PORT;
4801 	} else {
4802 		shost->transportt = lpfc_transport_template;
4803 		vport->port_type = LPFC_PHYSICAL_PORT;
4804 	}
4805 
4806 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4807 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4808 			"SEGcnt %d/%d\n",
4809 			vport->port_type, shost->sg_tablesize,
4810 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4811 
4812 	/* Allocate the resources for VMID */
4813 	rc = lpfc_vmid_res_alloc(phba, vport);
4814 
4815 	if (rc)
4816 		goto out_put_shost;
4817 
4818 	/* Initialize all internally managed lists. */
4819 	INIT_LIST_HEAD(&vport->fc_nodes);
4820 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4821 	spin_lock_init(&vport->work_port_lock);
4822 
4823 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4824 
4825 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4826 
4827 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4828 
4829 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4830 		lpfc_setup_bg(phba, shost);
4831 
4832 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4833 	if (error)
4834 		goto out_free_vmid;
4835 
4836 	spin_lock_irq(&phba->port_list_lock);
4837 	list_add_tail(&vport->listentry, &phba->port_list);
4838 	spin_unlock_irq(&phba->port_list_lock);
4839 	return vport;
4840 
4841 out_free_vmid:
4842 	kfree(vport->vmid);
4843 	bitmap_free(vport->vmid_priority_range);
4844 out_put_shost:
4845 	scsi_host_put(shost);
4846 out:
4847 	return NULL;
4848 }
4849 
4850 /**
4851  * destroy_port -  destroy an FC port
4852  * @vport: pointer to an lpfc virtual N_Port data structure.
4853  *
4854  * This routine destroys a FC port from the upper layer protocol. All the
4855  * resources associated with the port are released.
4856  **/
4857 void
4858 destroy_port(struct lpfc_vport *vport)
4859 {
4860 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4861 	struct lpfc_hba  *phba = vport->phba;
4862 
4863 	lpfc_debugfs_terminate(vport);
4864 	fc_remove_host(shost);
4865 	scsi_remove_host(shost);
4866 
4867 	spin_lock_irq(&phba->port_list_lock);
4868 	list_del_init(&vport->listentry);
4869 	spin_unlock_irq(&phba->port_list_lock);
4870 
4871 	lpfc_cleanup(vport);
4872 	return;
4873 }
4874 
4875 /**
4876  * lpfc_get_instance - Get a unique integer ID
4877  *
4878  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4879  * uses the kernel idr facility to perform the task.
4880  *
4881  * Return codes:
4882  *   instance - a unique integer ID allocated as the new instance.
4883  *   -1 - lpfc get instance failed.
4884  **/
4885 int
4886 lpfc_get_instance(void)
4887 {
4888 	int ret;
4889 
4890 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4891 	return ret < 0 ? -1 : ret;
4892 }
4893 
4894 /**
4895  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4896  * @shost: pointer to SCSI host data structure.
4897  * @time: elapsed time of the scan in jiffies.
4898  *
4899  * This routine is called by the SCSI layer with a SCSI host to determine
4900  * whether the scan host is finished.
4901  *
4902  * Note: there is no scan_start function as adapter initialization will have
4903  * asynchronously kicked off the link initialization.
4904  *
4905  * Return codes
4906  *   0 - SCSI host scan is not over yet.
4907  *   1 - SCSI host scan is over.
4908  **/
4909 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4910 {
4911 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4912 	struct lpfc_hba   *phba = vport->phba;
4913 	int stat = 0;
4914 
4915 	spin_lock_irq(shost->host_lock);
4916 
4917 	if (vport->load_flag & FC_UNLOADING) {
4918 		stat = 1;
4919 		goto finished;
4920 	}
4921 	if (time >= msecs_to_jiffies(30 * 1000)) {
4922 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4923 				"0461 Scanning longer than 30 "
4924 				"seconds.  Continuing initialization\n");
4925 		stat = 1;
4926 		goto finished;
4927 	}
4928 	if (time >= msecs_to_jiffies(15 * 1000) &&
4929 	    phba->link_state <= LPFC_LINK_DOWN) {
4930 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4931 				"0465 Link down longer than 15 "
4932 				"seconds.  Continuing initialization\n");
4933 		stat = 1;
4934 		goto finished;
4935 	}
4936 
4937 	if (vport->port_state != LPFC_VPORT_READY)
4938 		goto finished;
4939 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4940 		goto finished;
4941 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4942 		goto finished;
4943 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4944 		goto finished;
4945 
4946 	stat = 1;
4947 
4948 finished:
4949 	spin_unlock_irq(shost->host_lock);
4950 	return stat;
4951 }
4952 
4953 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4954 {
4955 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4956 	struct lpfc_hba   *phba = vport->phba;
4957 
4958 	fc_host_supported_speeds(shost) = 0;
4959 	/*
4960 	 * Avoid reporting supported link speed for FCoE as it can't be
4961 	 * controlled via FCoE.
4962 	 */
4963 	if (phba->hba_flag & HBA_FCOE_MODE)
4964 		return;
4965 
4966 	if (phba->lmt & LMT_256Gb)
4967 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4968 	if (phba->lmt & LMT_128Gb)
4969 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4970 	if (phba->lmt & LMT_64Gb)
4971 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4972 	if (phba->lmt & LMT_32Gb)
4973 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4974 	if (phba->lmt & LMT_16Gb)
4975 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4976 	if (phba->lmt & LMT_10Gb)
4977 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4978 	if (phba->lmt & LMT_8Gb)
4979 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4980 	if (phba->lmt & LMT_4Gb)
4981 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4982 	if (phba->lmt & LMT_2Gb)
4983 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4984 	if (phba->lmt & LMT_1Gb)
4985 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4986 }
4987 
4988 /**
4989  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4990  * @shost: pointer to SCSI host data structure.
4991  *
4992  * This routine initializes a given SCSI host attributes on a FC port. The
4993  * SCSI host can be either on top of a physical port or a virtual port.
4994  **/
4995 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4996 {
4997 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4998 	struct lpfc_hba   *phba = vport->phba;
4999 	/*
5000 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5001 	 */
5002 
5003 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5004 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5005 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5006 
5007 	memset(fc_host_supported_fc4s(shost), 0,
5008 	       sizeof(fc_host_supported_fc4s(shost)));
5009 	fc_host_supported_fc4s(shost)[2] = 1;
5010 	fc_host_supported_fc4s(shost)[7] = 1;
5011 
5012 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5013 				 sizeof fc_host_symbolic_name(shost));
5014 
5015 	lpfc_host_supported_speeds_set(shost);
5016 
5017 	fc_host_maxframe_size(shost) =
5018 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5019 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5020 
5021 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5022 
5023 	/* This value is also unchanging */
5024 	memset(fc_host_active_fc4s(shost), 0,
5025 	       sizeof(fc_host_active_fc4s(shost)));
5026 	fc_host_active_fc4s(shost)[2] = 1;
5027 	fc_host_active_fc4s(shost)[7] = 1;
5028 
5029 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5030 	spin_lock_irq(shost->host_lock);
5031 	vport->load_flag &= ~FC_LOADING;
5032 	spin_unlock_irq(shost->host_lock);
5033 }
5034 
5035 /**
5036  * lpfc_stop_port_s3 - Stop SLI3 device port
5037  * @phba: pointer to lpfc hba data structure.
5038  *
5039  * This routine is invoked to stop an SLI3 device port, it stops the device
5040  * from generating interrupts and stops the device driver's timers for the
5041  * device.
5042  **/
5043 static void
5044 lpfc_stop_port_s3(struct lpfc_hba *phba)
5045 {
5046 	/* Clear all interrupt enable conditions */
5047 	writel(0, phba->HCregaddr);
5048 	readl(phba->HCregaddr); /* flush */
5049 	/* Clear all pending interrupts */
5050 	writel(0xffffffff, phba->HAregaddr);
5051 	readl(phba->HAregaddr); /* flush */
5052 
5053 	/* Reset some HBA SLI setup states */
5054 	lpfc_stop_hba_timers(phba);
5055 	phba->pport->work_port_events = 0;
5056 }
5057 
5058 /**
5059  * lpfc_stop_port_s4 - Stop SLI4 device port
5060  * @phba: pointer to lpfc hba data structure.
5061  *
5062  * This routine is invoked to stop an SLI4 device port, it stops the device
5063  * from generating interrupts and stops the device driver's timers for the
5064  * device.
5065  **/
5066 static void
5067 lpfc_stop_port_s4(struct lpfc_hba *phba)
5068 {
5069 	/* Reset some HBA SLI4 setup states */
5070 	lpfc_stop_hba_timers(phba);
5071 	if (phba->pport)
5072 		phba->pport->work_port_events = 0;
5073 	phba->sli4_hba.intr_enable = 0;
5074 }
5075 
5076 /**
5077  * lpfc_stop_port - Wrapper function for stopping hba port
5078  * @phba: Pointer to HBA context object.
5079  *
5080  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5081  * the API jump table function pointer from the lpfc_hba struct.
5082  **/
5083 void
5084 lpfc_stop_port(struct lpfc_hba *phba)
5085 {
5086 	phba->lpfc_stop_port(phba);
5087 
5088 	if (phba->wq)
5089 		flush_workqueue(phba->wq);
5090 }
5091 
5092 /**
5093  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5094  * @phba: Pointer to hba for which this call is being executed.
5095  *
5096  * This routine starts the timer waiting for the FCF rediscovery to complete.
5097  **/
5098 void
5099 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5100 {
5101 	unsigned long fcf_redisc_wait_tmo =
5102 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5103 	/* Start fcf rediscovery wait period timer */
5104 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5105 	spin_lock_irq(&phba->hbalock);
5106 	/* Allow action to new fcf asynchronous event */
5107 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5108 	/* Mark the FCF rediscovery pending state */
5109 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5110 	spin_unlock_irq(&phba->hbalock);
5111 }
5112 
5113 /**
5114  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5115  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5116  *
5117  * This routine is invoked when waiting for FCF table rediscover has been
5118  * timed out. If new FCF record(s) has (have) been discovered during the
5119  * wait period, a new FCF event shall be added to the FCOE async event
5120  * list, and then worker thread shall be waked up for processing from the
5121  * worker thread context.
5122  **/
5123 static void
5124 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5125 {
5126 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5127 
5128 	/* Don't send FCF rediscovery event if timer cancelled */
5129 	spin_lock_irq(&phba->hbalock);
5130 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5131 		spin_unlock_irq(&phba->hbalock);
5132 		return;
5133 	}
5134 	/* Clear FCF rediscovery timer pending flag */
5135 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5136 	/* FCF rediscovery event to worker thread */
5137 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5138 	spin_unlock_irq(&phba->hbalock);
5139 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5140 			"2776 FCF rediscover quiescent timer expired\n");
5141 	/* wake up worker thread */
5142 	lpfc_worker_wake_up(phba);
5143 }
5144 
5145 /**
5146  * lpfc_vmid_poll - VMID timeout detection
5147  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5148  *
5149  * This routine is invoked when there is no I/O on by a VM for the specified
5150  * amount of time. When this situation is detected, the VMID has to be
5151  * deregistered from the switch and all the local resources freed. The VMID
5152  * will be reassigned to the VM once the I/O begins.
5153  **/
5154 static void
5155 lpfc_vmid_poll(struct timer_list *t)
5156 {
5157 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5158 	u32 wake_up = 0;
5159 
5160 	/* check if there is a need to issue QFPA */
5161 	if (phba->pport->vmid_priority_tagging) {
5162 		wake_up = 1;
5163 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5164 	}
5165 
5166 	/* Is the vmid inactivity timer enabled */
5167 	if (phba->pport->vmid_inactivity_timeout ||
5168 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5169 		wake_up = 1;
5170 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5171 	}
5172 
5173 	if (wake_up)
5174 		lpfc_worker_wake_up(phba);
5175 
5176 	/* restart the timer for the next iteration */
5177 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5178 							LPFC_VMID_TIMER));
5179 }
5180 
5181 /**
5182  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5183  * @phba: pointer to lpfc hba data structure.
5184  * @acqe_link: pointer to the async link completion queue entry.
5185  *
5186  * This routine is to parse the SLI4 link-attention link fault code.
5187  **/
5188 static void
5189 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5190 			   struct lpfc_acqe_link *acqe_link)
5191 {
5192 	switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) {
5193 	case LPFC_FC_LA_TYPE_LINK_DOWN:
5194 	case LPFC_FC_LA_TYPE_TRUNKING_EVENT:
5195 	case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
5196 	case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
5197 		break;
5198 	default:
5199 		switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5200 		case LPFC_ASYNC_LINK_FAULT_NONE:
5201 		case LPFC_ASYNC_LINK_FAULT_LOCAL:
5202 		case LPFC_ASYNC_LINK_FAULT_REMOTE:
5203 		case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5204 			break;
5205 		default:
5206 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5207 					"0398 Unknown link fault code: x%x\n",
5208 					bf_get(lpfc_acqe_link_fault, acqe_link));
5209 			break;
5210 		}
5211 		break;
5212 	}
5213 }
5214 
5215 /**
5216  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5217  * @phba: pointer to lpfc hba data structure.
5218  * @acqe_link: pointer to the async link completion queue entry.
5219  *
5220  * This routine is to parse the SLI4 link attention type and translate it
5221  * into the base driver's link attention type coding.
5222  *
5223  * Return: Link attention type in terms of base driver's coding.
5224  **/
5225 static uint8_t
5226 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5227 			  struct lpfc_acqe_link *acqe_link)
5228 {
5229 	uint8_t att_type;
5230 
5231 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5232 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5233 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5234 		att_type = LPFC_ATT_LINK_DOWN;
5235 		break;
5236 	case LPFC_ASYNC_LINK_STATUS_UP:
5237 		/* Ignore physical link up events - wait for logical link up */
5238 		att_type = LPFC_ATT_RESERVED;
5239 		break;
5240 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5241 		att_type = LPFC_ATT_LINK_UP;
5242 		break;
5243 	default:
5244 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5245 				"0399 Invalid link attention type: x%x\n",
5246 				bf_get(lpfc_acqe_link_status, acqe_link));
5247 		att_type = LPFC_ATT_RESERVED;
5248 		break;
5249 	}
5250 	return att_type;
5251 }
5252 
5253 /**
5254  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5255  * @phba: pointer to lpfc hba data structure.
5256  *
5257  * This routine is to get an SLI3 FC port's link speed in Mbps.
5258  *
5259  * Return: link speed in terms of Mbps.
5260  **/
5261 uint32_t
5262 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5263 {
5264 	uint32_t link_speed;
5265 
5266 	if (!lpfc_is_link_up(phba))
5267 		return 0;
5268 
5269 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5270 		switch (phba->fc_linkspeed) {
5271 		case LPFC_LINK_SPEED_1GHZ:
5272 			link_speed = 1000;
5273 			break;
5274 		case LPFC_LINK_SPEED_2GHZ:
5275 			link_speed = 2000;
5276 			break;
5277 		case LPFC_LINK_SPEED_4GHZ:
5278 			link_speed = 4000;
5279 			break;
5280 		case LPFC_LINK_SPEED_8GHZ:
5281 			link_speed = 8000;
5282 			break;
5283 		case LPFC_LINK_SPEED_10GHZ:
5284 			link_speed = 10000;
5285 			break;
5286 		case LPFC_LINK_SPEED_16GHZ:
5287 			link_speed = 16000;
5288 			break;
5289 		default:
5290 			link_speed = 0;
5291 		}
5292 	} else {
5293 		if (phba->sli4_hba.link_state.logical_speed)
5294 			link_speed =
5295 			      phba->sli4_hba.link_state.logical_speed;
5296 		else
5297 			link_speed = phba->sli4_hba.link_state.speed;
5298 	}
5299 	return link_speed;
5300 }
5301 
5302 /**
5303  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5304  * @phba: pointer to lpfc hba data structure.
5305  * @evt_code: asynchronous event code.
5306  * @speed_code: asynchronous event link speed code.
5307  *
5308  * This routine is to parse the giving SLI4 async event link speed code into
5309  * value of Mbps for the link speed.
5310  *
5311  * Return: link speed in terms of Mbps.
5312  **/
5313 static uint32_t
5314 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5315 			   uint8_t speed_code)
5316 {
5317 	uint32_t port_speed;
5318 
5319 	switch (evt_code) {
5320 	case LPFC_TRAILER_CODE_LINK:
5321 		switch (speed_code) {
5322 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5323 			port_speed = 0;
5324 			break;
5325 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5326 			port_speed = 10;
5327 			break;
5328 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5329 			port_speed = 100;
5330 			break;
5331 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5332 			port_speed = 1000;
5333 			break;
5334 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5335 			port_speed = 10000;
5336 			break;
5337 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5338 			port_speed = 20000;
5339 			break;
5340 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5341 			port_speed = 25000;
5342 			break;
5343 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5344 			port_speed = 40000;
5345 			break;
5346 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5347 			port_speed = 100000;
5348 			break;
5349 		default:
5350 			port_speed = 0;
5351 		}
5352 		break;
5353 	case LPFC_TRAILER_CODE_FC:
5354 		switch (speed_code) {
5355 		case LPFC_FC_LA_SPEED_UNKNOWN:
5356 			port_speed = 0;
5357 			break;
5358 		case LPFC_FC_LA_SPEED_1G:
5359 			port_speed = 1000;
5360 			break;
5361 		case LPFC_FC_LA_SPEED_2G:
5362 			port_speed = 2000;
5363 			break;
5364 		case LPFC_FC_LA_SPEED_4G:
5365 			port_speed = 4000;
5366 			break;
5367 		case LPFC_FC_LA_SPEED_8G:
5368 			port_speed = 8000;
5369 			break;
5370 		case LPFC_FC_LA_SPEED_10G:
5371 			port_speed = 10000;
5372 			break;
5373 		case LPFC_FC_LA_SPEED_16G:
5374 			port_speed = 16000;
5375 			break;
5376 		case LPFC_FC_LA_SPEED_32G:
5377 			port_speed = 32000;
5378 			break;
5379 		case LPFC_FC_LA_SPEED_64G:
5380 			port_speed = 64000;
5381 			break;
5382 		case LPFC_FC_LA_SPEED_128G:
5383 			port_speed = 128000;
5384 			break;
5385 		case LPFC_FC_LA_SPEED_256G:
5386 			port_speed = 256000;
5387 			break;
5388 		default:
5389 			port_speed = 0;
5390 		}
5391 		break;
5392 	default:
5393 		port_speed = 0;
5394 	}
5395 	return port_speed;
5396 }
5397 
5398 /**
5399  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5400  * @phba: pointer to lpfc hba data structure.
5401  * @acqe_link: pointer to the async link completion queue entry.
5402  *
5403  * This routine is to handle the SLI4 asynchronous FCoE link event.
5404  **/
5405 static void
5406 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5407 			 struct lpfc_acqe_link *acqe_link)
5408 {
5409 	LPFC_MBOXQ_t *pmb;
5410 	MAILBOX_t *mb;
5411 	struct lpfc_mbx_read_top *la;
5412 	uint8_t att_type;
5413 	int rc;
5414 
5415 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5416 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5417 		return;
5418 	phba->fcoe_eventtag = acqe_link->event_tag;
5419 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5420 	if (!pmb) {
5421 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5422 				"0395 The mboxq allocation failed\n");
5423 		return;
5424 	}
5425 
5426 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5427 	if (rc) {
5428 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5429 				"0396 mailbox allocation failed\n");
5430 		goto out_free_pmb;
5431 	}
5432 
5433 	/* Cleanup any outstanding ELS commands */
5434 	lpfc_els_flush_all_cmd(phba);
5435 
5436 	/* Block ELS IOCBs until we have done process link event */
5437 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5438 
5439 	/* Update link event statistics */
5440 	phba->sli.slistat.link_event++;
5441 
5442 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5443 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
5444 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5445 	pmb->vport = phba->pport;
5446 
5447 	/* Keep the link status for extra SLI4 state machine reference */
5448 	phba->sli4_hba.link_state.speed =
5449 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5450 				bf_get(lpfc_acqe_link_speed, acqe_link));
5451 	phba->sli4_hba.link_state.duplex =
5452 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5453 	phba->sli4_hba.link_state.status =
5454 				bf_get(lpfc_acqe_link_status, acqe_link);
5455 	phba->sli4_hba.link_state.type =
5456 				bf_get(lpfc_acqe_link_type, acqe_link);
5457 	phba->sli4_hba.link_state.number =
5458 				bf_get(lpfc_acqe_link_number, acqe_link);
5459 	phba->sli4_hba.link_state.fault =
5460 				bf_get(lpfc_acqe_link_fault, acqe_link);
5461 	phba->sli4_hba.link_state.logical_speed =
5462 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5463 
5464 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5465 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5466 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5467 			"Logical speed:%dMbps Fault:%d\n",
5468 			phba->sli4_hba.link_state.speed,
5469 			phba->sli4_hba.link_state.topology,
5470 			phba->sli4_hba.link_state.status,
5471 			phba->sli4_hba.link_state.type,
5472 			phba->sli4_hba.link_state.number,
5473 			phba->sli4_hba.link_state.logical_speed,
5474 			phba->sli4_hba.link_state.fault);
5475 	/*
5476 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5477 	 * topology info. Note: Optional for non FC-AL ports.
5478 	 */
5479 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5480 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5481 		if (rc == MBX_NOT_FINISHED)
5482 			goto out_free_pmb;
5483 		return;
5484 	}
5485 	/*
5486 	 * For FCoE Mode: fill in all the topology information we need and call
5487 	 * the READ_TOPOLOGY completion routine to continue without actually
5488 	 * sending the READ_TOPOLOGY mailbox command to the port.
5489 	 */
5490 	/* Initialize completion status */
5491 	mb = &pmb->u.mb;
5492 	mb->mbxStatus = MBX_SUCCESS;
5493 
5494 	/* Parse port fault information field */
5495 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5496 
5497 	/* Parse and translate link attention fields */
5498 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5499 	la->eventTag = acqe_link->event_tag;
5500 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5501 	bf_set(lpfc_mbx_read_top_link_spd, la,
5502 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5503 
5504 	/* Fake the following irrelevant fields */
5505 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5506 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5507 	bf_set(lpfc_mbx_read_top_il, la, 0);
5508 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5509 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5510 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5511 
5512 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5513 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5514 
5515 	return;
5516 
5517 out_free_pmb:
5518 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5519 }
5520 
5521 /**
5522  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5523  * topology.
5524  * @phba: pointer to lpfc hba data structure.
5525  * @speed_code: asynchronous event link speed code.
5526  *
5527  * This routine is to parse the giving SLI4 async event link speed code into
5528  * value of Read topology link speed.
5529  *
5530  * Return: link speed in terms of Read topology.
5531  **/
5532 static uint8_t
5533 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5534 {
5535 	uint8_t port_speed;
5536 
5537 	switch (speed_code) {
5538 	case LPFC_FC_LA_SPEED_1G:
5539 		port_speed = LPFC_LINK_SPEED_1GHZ;
5540 		break;
5541 	case LPFC_FC_LA_SPEED_2G:
5542 		port_speed = LPFC_LINK_SPEED_2GHZ;
5543 		break;
5544 	case LPFC_FC_LA_SPEED_4G:
5545 		port_speed = LPFC_LINK_SPEED_4GHZ;
5546 		break;
5547 	case LPFC_FC_LA_SPEED_8G:
5548 		port_speed = LPFC_LINK_SPEED_8GHZ;
5549 		break;
5550 	case LPFC_FC_LA_SPEED_16G:
5551 		port_speed = LPFC_LINK_SPEED_16GHZ;
5552 		break;
5553 	case LPFC_FC_LA_SPEED_32G:
5554 		port_speed = LPFC_LINK_SPEED_32GHZ;
5555 		break;
5556 	case LPFC_FC_LA_SPEED_64G:
5557 		port_speed = LPFC_LINK_SPEED_64GHZ;
5558 		break;
5559 	case LPFC_FC_LA_SPEED_128G:
5560 		port_speed = LPFC_LINK_SPEED_128GHZ;
5561 		break;
5562 	case LPFC_FC_LA_SPEED_256G:
5563 		port_speed = LPFC_LINK_SPEED_256GHZ;
5564 		break;
5565 	default:
5566 		port_speed = 0;
5567 		break;
5568 	}
5569 
5570 	return port_speed;
5571 }
5572 
5573 void
5574 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5575 {
5576 	if (!phba->rx_monitor) {
5577 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5578 				"4411 Rx Monitor Info is empty.\n");
5579 	} else {
5580 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5581 				       LPFC_MAX_RXMONITOR_DUMP);
5582 	}
5583 }
5584 
5585 /**
5586  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5587  * @phba: pointer to lpfc hba data structure.
5588  * @dtag: FPIN descriptor received
5589  *
5590  * Increment the FPIN received counter/time when it happens.
5591  */
5592 void
5593 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5594 {
5595 	struct lpfc_cgn_info *cp;
5596 	struct tm broken;
5597 	struct timespec64 cur_time;
5598 	u32 cnt;
5599 	u32 value;
5600 
5601 	/* Make sure we have a congestion info buffer */
5602 	if (!phba->cgn_i)
5603 		return;
5604 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5605 	ktime_get_real_ts64(&cur_time);
5606 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5607 
5608 	/* Update congestion statistics */
5609 	switch (dtag) {
5610 	case ELS_DTAG_LNK_INTEGRITY:
5611 		cnt = le32_to_cpu(cp->link_integ_notification);
5612 		cnt++;
5613 		cp->link_integ_notification = cpu_to_le32(cnt);
5614 
5615 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5616 		cp->cgn_stat_lnk_day = broken.tm_mday;
5617 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5618 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5619 		cp->cgn_stat_lnk_min = broken.tm_min;
5620 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5621 		break;
5622 	case ELS_DTAG_DELIVERY:
5623 		cnt = le32_to_cpu(cp->delivery_notification);
5624 		cnt++;
5625 		cp->delivery_notification = cpu_to_le32(cnt);
5626 
5627 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5628 		cp->cgn_stat_del_day = broken.tm_mday;
5629 		cp->cgn_stat_del_year = broken.tm_year - 100;
5630 		cp->cgn_stat_del_hour = broken.tm_hour;
5631 		cp->cgn_stat_del_min = broken.tm_min;
5632 		cp->cgn_stat_del_sec = broken.tm_sec;
5633 		break;
5634 	case ELS_DTAG_PEER_CONGEST:
5635 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5636 		cnt++;
5637 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5638 
5639 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5640 		cp->cgn_stat_peer_day = broken.tm_mday;
5641 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5642 		cp->cgn_stat_peer_hour = broken.tm_hour;
5643 		cp->cgn_stat_peer_min = broken.tm_min;
5644 		cp->cgn_stat_peer_sec = broken.tm_sec;
5645 		break;
5646 	case ELS_DTAG_CONGESTION:
5647 		cnt = le32_to_cpu(cp->cgn_notification);
5648 		cnt++;
5649 		cp->cgn_notification = cpu_to_le32(cnt);
5650 
5651 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5652 		cp->cgn_stat_cgn_day = broken.tm_mday;
5653 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5654 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5655 		cp->cgn_stat_cgn_min = broken.tm_min;
5656 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5657 	}
5658 	if (phba->cgn_fpin_frequency &&
5659 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5660 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5661 		cp->cgn_stat_npm = value;
5662 	}
5663 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5664 				    LPFC_CGN_CRC32_SEED);
5665 	cp->cgn_info_crc = cpu_to_le32(value);
5666 }
5667 
5668 /**
5669  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5670  * @phba: pointer to lpfc hba data structure.
5671  *
5672  * Save the congestion event data every minute.
5673  * On the hour collapse all the minute data into hour data. Every day
5674  * collapse all the hour data into daily data. Separate driver
5675  * and fabrc congestion event counters that will be saved out
5676  * to the registered congestion buffer every minute.
5677  */
5678 static void
5679 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5680 {
5681 	struct lpfc_cgn_info *cp;
5682 	struct tm broken;
5683 	struct timespec64 cur_time;
5684 	uint32_t i, index;
5685 	uint16_t value, mvalue;
5686 	uint64_t bps;
5687 	uint32_t mbps;
5688 	uint32_t dvalue, wvalue, lvalue, avalue;
5689 	uint64_t latsum;
5690 	__le16 *ptr;
5691 	__le32 *lptr;
5692 	__le16 *mptr;
5693 
5694 	/* Make sure we have a congestion info buffer */
5695 	if (!phba->cgn_i)
5696 		return;
5697 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5698 
5699 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5700 		return;
5701 	phba->cgn_evt_timestamp = jiffies +
5702 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5703 	phba->cgn_evt_minute++;
5704 
5705 	/* We should get to this point in the routine on 1 minute intervals */
5706 
5707 	ktime_get_real_ts64(&cur_time);
5708 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5709 
5710 	if (phba->cgn_fpin_frequency &&
5711 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5712 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5713 		cp->cgn_stat_npm = value;
5714 	}
5715 
5716 	/* Read and clear the latency counters for this minute */
5717 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5718 	latsum = atomic64_read(&phba->cgn_latency_evt);
5719 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5720 	atomic64_set(&phba->cgn_latency_evt, 0);
5721 
5722 	/* We need to store MB/sec bandwidth in the congestion information.
5723 	 * block_cnt is count of 512 byte blocks for the entire minute,
5724 	 * bps will get bytes per sec before finally converting to MB/sec.
5725 	 */
5726 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5727 	phba->rx_block_cnt = 0;
5728 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5729 
5730 	/* Every minute */
5731 	/* cgn parameters */
5732 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5733 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5734 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5735 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5736 
5737 	/* Fill in default LUN qdepth */
5738 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5739 	cp->cgn_lunq = cpu_to_le16(value);
5740 
5741 	/* Record congestion buffer info - every minute
5742 	 * cgn_driver_evt_cnt (Driver events)
5743 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5744 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5745 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5746 	 */
5747 	index = ++cp->cgn_index_minute;
5748 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5749 		cp->cgn_index_minute = 0;
5750 		index = 0;
5751 	}
5752 
5753 	/* Get the number of driver events in this sample and reset counter */
5754 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5755 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5756 
5757 	/* Get the number of warning events - FPIN and Signal for this minute */
5758 	wvalue = 0;
5759 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5760 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5761 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5762 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5763 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5764 
5765 	/* Get the number of alarm events - FPIN and Signal for this minute */
5766 	avalue = 0;
5767 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5768 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5769 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5770 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5771 
5772 	/* Collect the driver, warning, alarm and latency counts for this
5773 	 * minute into the driver congestion buffer.
5774 	 */
5775 	ptr = &cp->cgn_drvr_min[index];
5776 	value = (uint16_t)dvalue;
5777 	*ptr = cpu_to_le16(value);
5778 
5779 	ptr = &cp->cgn_warn_min[index];
5780 	value = (uint16_t)wvalue;
5781 	*ptr = cpu_to_le16(value);
5782 
5783 	ptr = &cp->cgn_alarm_min[index];
5784 	value = (uint16_t)avalue;
5785 	*ptr = cpu_to_le16(value);
5786 
5787 	lptr = &cp->cgn_latency_min[index];
5788 	if (lvalue) {
5789 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5790 		*lptr = cpu_to_le32(lvalue);
5791 	} else {
5792 		*lptr = 0;
5793 	}
5794 
5795 	/* Collect the bandwidth value into the driver's congesion buffer. */
5796 	mptr = &cp->cgn_bw_min[index];
5797 	*mptr = cpu_to_le16(mvalue);
5798 
5799 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5800 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5801 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5802 
5803 	/* Every hour */
5804 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5805 		/* Record congestion buffer info - every hour
5806 		 * Collapse all minutes into an hour
5807 		 */
5808 		index = ++cp->cgn_index_hour;
5809 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5810 			cp->cgn_index_hour = 0;
5811 			index = 0;
5812 		}
5813 
5814 		dvalue = 0;
5815 		wvalue = 0;
5816 		lvalue = 0;
5817 		avalue = 0;
5818 		mvalue = 0;
5819 		mbps = 0;
5820 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5821 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5822 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5823 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5824 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5825 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5826 		}
5827 		if (lvalue)		/* Avg of latency averages */
5828 			lvalue /= LPFC_MIN_HOUR;
5829 		if (mbps)		/* Avg of Bandwidth averages */
5830 			mvalue = mbps / LPFC_MIN_HOUR;
5831 
5832 		lptr = &cp->cgn_drvr_hr[index];
5833 		*lptr = cpu_to_le32(dvalue);
5834 		lptr = &cp->cgn_warn_hr[index];
5835 		*lptr = cpu_to_le32(wvalue);
5836 		lptr = &cp->cgn_latency_hr[index];
5837 		*lptr = cpu_to_le32(lvalue);
5838 		mptr = &cp->cgn_bw_hr[index];
5839 		*mptr = cpu_to_le16(mvalue);
5840 		lptr = &cp->cgn_alarm_hr[index];
5841 		*lptr = cpu_to_le32(avalue);
5842 
5843 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5844 				"2419 Congestion Info - hour "
5845 				"(%d): %d %d %d %d %d\n",
5846 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5847 	}
5848 
5849 	/* Every day */
5850 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5851 		/* Record congestion buffer info - every hour
5852 		 * Collapse all hours into a day. Rotate days
5853 		 * after LPFC_MAX_CGN_DAYS.
5854 		 */
5855 		index = ++cp->cgn_index_day;
5856 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5857 			cp->cgn_index_day = 0;
5858 			index = 0;
5859 		}
5860 
5861 		/* Anytime we overwrite daily index 0, after we wrap,
5862 		 * we will be overwriting the oldest day, so we must
5863 		 * update the congestion data start time for that day.
5864 		 * That start time should have previously been saved after
5865 		 * we wrote the last days worth of data.
5866 		 */
5867 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5868 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5869 
5870 			cp->cgn_info_month = broken.tm_mon + 1;
5871 			cp->cgn_info_day = broken.tm_mday;
5872 			cp->cgn_info_year = broken.tm_year - 100;
5873 			cp->cgn_info_hour = broken.tm_hour;
5874 			cp->cgn_info_minute = broken.tm_min;
5875 			cp->cgn_info_second = broken.tm_sec;
5876 
5877 			lpfc_printf_log
5878 				(phba, KERN_INFO, LOG_CGN_MGMT,
5879 				"2646 CGNInfo idx0 Start Time: "
5880 				"%d/%d/%d %d:%d:%d\n",
5881 				cp->cgn_info_day, cp->cgn_info_month,
5882 				cp->cgn_info_year, cp->cgn_info_hour,
5883 				cp->cgn_info_minute, cp->cgn_info_second);
5884 		}
5885 
5886 		dvalue = 0;
5887 		wvalue = 0;
5888 		lvalue = 0;
5889 		mvalue = 0;
5890 		mbps = 0;
5891 		avalue = 0;
5892 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5893 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5894 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5895 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5896 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5897 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5898 		}
5899 		if (lvalue)		/* Avg of latency averages */
5900 			lvalue /= LPFC_HOUR_DAY;
5901 		if (mbps)		/* Avg of Bandwidth averages */
5902 			mvalue = mbps / LPFC_HOUR_DAY;
5903 
5904 		lptr = &cp->cgn_drvr_day[index];
5905 		*lptr = cpu_to_le32(dvalue);
5906 		lptr = &cp->cgn_warn_day[index];
5907 		*lptr = cpu_to_le32(wvalue);
5908 		lptr = &cp->cgn_latency_day[index];
5909 		*lptr = cpu_to_le32(lvalue);
5910 		mptr = &cp->cgn_bw_day[index];
5911 		*mptr = cpu_to_le16(mvalue);
5912 		lptr = &cp->cgn_alarm_day[index];
5913 		*lptr = cpu_to_le32(avalue);
5914 
5915 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5916 				"2420 Congestion Info - daily (%d): "
5917 				"%d %d %d %d %d\n",
5918 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5919 
5920 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5921 		 * so we are wrapped on any data after this.
5922 		 * Save this as the start time for the next day.
5923 		 */
5924 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5925 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5926 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5927 		}
5928 	}
5929 
5930 	/* Use the frequency found in the last rcv'ed FPIN */
5931 	value = phba->cgn_fpin_frequency;
5932 	cp->cgn_warn_freq = cpu_to_le16(value);
5933 	cp->cgn_alarm_freq = cpu_to_le16(value);
5934 
5935 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5936 				     LPFC_CGN_CRC32_SEED);
5937 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5938 }
5939 
5940 /**
5941  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5942  * @phba: The Hba for which this call is being executed.
5943  *
5944  * The routine calculates the latency from the beginning of the CMF timer
5945  * interval to the current point in time. It is called from IO completion
5946  * when we exceed our Bandwidth limitation for the time interval.
5947  */
5948 uint32_t
5949 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5950 {
5951 	struct timespec64 cmpl_time;
5952 	uint32_t msec = 0;
5953 
5954 	ktime_get_real_ts64(&cmpl_time);
5955 
5956 	/* This routine works on a ms granularity so sec and usec are
5957 	 * converted accordingly.
5958 	 */
5959 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5960 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5961 			NSEC_PER_MSEC;
5962 	} else {
5963 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5964 			msec = (cmpl_time.tv_sec -
5965 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5966 			msec += ((cmpl_time.tv_nsec -
5967 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5968 		} else {
5969 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5970 				1) * MSEC_PER_SEC;
5971 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5972 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5973 		}
5974 	}
5975 	return msec;
5976 }
5977 
5978 /**
5979  * lpfc_cmf_timer -  This is the timer function for one congestion
5980  * rate interval.
5981  * @timer: Pointer to the high resolution timer that expired
5982  */
5983 static enum hrtimer_restart
5984 lpfc_cmf_timer(struct hrtimer *timer)
5985 {
5986 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5987 					     cmf_timer);
5988 	struct rx_info_entry entry;
5989 	uint32_t io_cnt;
5990 	uint32_t busy, max_read;
5991 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5992 	int timer_interval = LPFC_CMF_INTERVAL;
5993 	uint32_t ms;
5994 	struct lpfc_cgn_stat *cgs;
5995 	int cpu;
5996 
5997 	/* Only restart the timer if congestion mgmt is on */
5998 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5999 	    !phba->cmf_latency.tv_sec) {
6000 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
6001 				"6224 CMF timer exit: %d %lld\n",
6002 				phba->cmf_active_mode,
6003 				(uint64_t)phba->cmf_latency.tv_sec);
6004 		return HRTIMER_NORESTART;
6005 	}
6006 
6007 	/* If pport is not ready yet, just exit and wait for
6008 	 * the next timer cycle to hit.
6009 	 */
6010 	if (!phba->pport)
6011 		goto skip;
6012 
6013 	/* Do not block SCSI IO while in the timer routine since
6014 	 * total_bytes will be cleared
6015 	 */
6016 	atomic_set(&phba->cmf_stop_io, 1);
6017 
6018 	/* First we need to calculate the actual ms between
6019 	 * the last timer interrupt and this one. We ask for
6020 	 * LPFC_CMF_INTERVAL, however the actual time may
6021 	 * vary depending on system overhead.
6022 	 */
6023 	ms = lpfc_calc_cmf_latency(phba);
6024 
6025 
6026 	/* Immediately after we calculate the time since the last
6027 	 * timer interrupt, set the start time for the next
6028 	 * interrupt
6029 	 */
6030 	ktime_get_real_ts64(&phba->cmf_latency);
6031 
6032 	phba->cmf_link_byte_count =
6033 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6034 
6035 	/* Collect all the stats from the prior timer interval */
6036 	total = 0;
6037 	io_cnt = 0;
6038 	lat = 0;
6039 	rcv = 0;
6040 	for_each_present_cpu(cpu) {
6041 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6042 		total += atomic64_xchg(&cgs->total_bytes, 0);
6043 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6044 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6045 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6046 	}
6047 
6048 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6049 	 * returned from the last CMF_SYNC_WQE issued, from
6050 	 * cmf_last_sync_bw. This will be the target BW for
6051 	 * this next timer interval.
6052 	 */
6053 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6054 	    phba->link_state != LPFC_LINK_DOWN &&
6055 	    phba->hba_flag & HBA_SETUP) {
6056 		mbpi = phba->cmf_last_sync_bw;
6057 		phba->cmf_last_sync_bw = 0;
6058 		extra = 0;
6059 
6060 		/* Calculate any extra bytes needed to account for the
6061 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6062 		 * calculate the adjustment needed for total to reflect
6063 		 * a full LPFC_CMF_INTERVAL.
6064 		 */
6065 		if (ms && ms < LPFC_CMF_INTERVAL) {
6066 			cnt = div_u64(total, ms); /* bytes per ms */
6067 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6068 
6069 			/* If the timeout is scheduled to be shorter,
6070 			 * this value may skew the data, so cap it at mbpi.
6071 			 */
6072 			if ((phba->hba_flag & HBA_SHORT_CMF) && cnt > mbpi)
6073 				cnt = mbpi;
6074 
6075 			extra = cnt - total;
6076 		}
6077 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6078 	} else {
6079 		/* For Monitor mode or link down we want mbpi
6080 		 * to be the full link speed
6081 		 */
6082 		mbpi = phba->cmf_link_byte_count;
6083 		extra = 0;
6084 	}
6085 	phba->cmf_timer_cnt++;
6086 
6087 	if (io_cnt) {
6088 		/* Update congestion info buffer latency in us */
6089 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6090 		atomic64_add(lat, &phba->cgn_latency_evt);
6091 	}
6092 	busy = atomic_xchg(&phba->cmf_busy, 0);
6093 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6094 
6095 	/* Calculate MBPI for the next timer interval */
6096 	if (mbpi) {
6097 		if (mbpi > phba->cmf_link_byte_count ||
6098 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6099 			mbpi = phba->cmf_link_byte_count;
6100 
6101 		/* Change max_bytes_per_interval to what the prior
6102 		 * CMF_SYNC_WQE cmpl indicated.
6103 		 */
6104 		if (mbpi != phba->cmf_max_bytes_per_interval)
6105 			phba->cmf_max_bytes_per_interval = mbpi;
6106 	}
6107 
6108 	/* Save rxmonitor information for debug */
6109 	if (phba->rx_monitor) {
6110 		entry.total_bytes = total;
6111 		entry.cmf_bytes = total + extra;
6112 		entry.rcv_bytes = rcv;
6113 		entry.cmf_busy = busy;
6114 		entry.cmf_info = phba->cmf_active_info;
6115 		if (io_cnt) {
6116 			entry.avg_io_latency = div_u64(lat, io_cnt);
6117 			entry.avg_io_size = div_u64(rcv, io_cnt);
6118 		} else {
6119 			entry.avg_io_latency = 0;
6120 			entry.avg_io_size = 0;
6121 		}
6122 		entry.max_read_cnt = max_read;
6123 		entry.io_cnt = io_cnt;
6124 		entry.max_bytes_per_interval = mbpi;
6125 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6126 			entry.timer_utilization = phba->cmf_last_ts;
6127 		else
6128 			entry.timer_utilization = ms;
6129 		entry.timer_interval = ms;
6130 		phba->cmf_last_ts = 0;
6131 
6132 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6133 	}
6134 
6135 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6136 		/* If Monitor mode, check if we are oversubscribed
6137 		 * against the full line rate.
6138 		 */
6139 		if (mbpi && total > mbpi)
6140 			atomic_inc(&phba->cgn_driver_evt_cnt);
6141 	}
6142 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6143 
6144 	/* Each minute save Fabric and Driver congestion information */
6145 	lpfc_cgn_save_evt_cnt(phba);
6146 
6147 	phba->hba_flag &= ~HBA_SHORT_CMF;
6148 
6149 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
6150 	 * minute, adjust our next timer interval, if needed, to ensure a
6151 	 * 1 minute granularity when we get the next timer interrupt.
6152 	 */
6153 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6154 		       phba->cgn_evt_timestamp)) {
6155 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6156 						  jiffies);
6157 		if (timer_interval <= 0)
6158 			timer_interval = LPFC_CMF_INTERVAL;
6159 		else
6160 			phba->hba_flag |= HBA_SHORT_CMF;
6161 
6162 		/* If we adjust timer_interval, max_bytes_per_interval
6163 		 * needs to be adjusted as well.
6164 		 */
6165 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6166 						    timer_interval, 1000);
6167 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6168 			phba->cmf_max_bytes_per_interval =
6169 				phba->cmf_link_byte_count;
6170 	}
6171 
6172 	/* Since total_bytes has already been zero'ed, its okay to unblock
6173 	 * after max_bytes_per_interval is setup.
6174 	 */
6175 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6176 		queue_work(phba->wq, &phba->unblock_request_work);
6177 
6178 	/* SCSI IO is now unblocked */
6179 	atomic_set(&phba->cmf_stop_io, 0);
6180 
6181 skip:
6182 	hrtimer_forward_now(timer,
6183 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6184 	return HRTIMER_RESTART;
6185 }
6186 
6187 #define trunk_link_status(__idx)\
6188 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6189 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6190 		"Link up" : "Link down") : "NA"
6191 /* Did port __idx reported an error */
6192 #define trunk_port_fault(__idx)\
6193 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6194 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6195 
6196 static void
6197 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6198 			      struct lpfc_acqe_fc_la *acqe_fc)
6199 {
6200 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6201 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6202 	u8 cnt = 0;
6203 
6204 	phba->sli4_hba.link_state.speed =
6205 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6206 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6207 
6208 	phba->sli4_hba.link_state.logical_speed =
6209 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6210 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6211 	phba->fc_linkspeed =
6212 		 lpfc_async_link_speed_to_read_top(
6213 				phba,
6214 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6215 
6216 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6217 		phba->trunk_link.link0.state =
6218 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6219 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6220 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6221 		cnt++;
6222 	}
6223 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6224 		phba->trunk_link.link1.state =
6225 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6226 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6227 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6228 		cnt++;
6229 	}
6230 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6231 		phba->trunk_link.link2.state =
6232 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6233 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6234 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6235 		cnt++;
6236 	}
6237 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6238 		phba->trunk_link.link3.state =
6239 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6240 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6241 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6242 		cnt++;
6243 	}
6244 
6245 	if (cnt)
6246 		phba->trunk_link.phy_lnk_speed =
6247 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6248 	else
6249 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6250 
6251 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6252 			"2910 Async FC Trunking Event - Speed:%d\n"
6253 			"\tLogical speed:%d "
6254 			"port0: %s port1: %s port2: %s port3: %s\n",
6255 			phba->sli4_hba.link_state.speed,
6256 			phba->sli4_hba.link_state.logical_speed,
6257 			trunk_link_status(0), trunk_link_status(1),
6258 			trunk_link_status(2), trunk_link_status(3));
6259 
6260 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6261 		lpfc_cmf_signal_init(phba);
6262 
6263 	if (port_fault)
6264 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6265 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6266 				/*
6267 				 * SLI-4: We have only 0xA error codes
6268 				 * defined as of now. print an appropriate
6269 				 * message in case driver needs to be updated.
6270 				 */
6271 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6272 				"UNDEFINED. update driver." : trunk_errmsg[err],
6273 				trunk_port_fault(0), trunk_port_fault(1),
6274 				trunk_port_fault(2), trunk_port_fault(3));
6275 }
6276 
6277 
6278 /**
6279  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6280  * @phba: pointer to lpfc hba data structure.
6281  * @acqe_fc: pointer to the async fc completion queue entry.
6282  *
6283  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6284  * that the event was received and then issue a read_topology mailbox command so
6285  * that the rest of the driver will treat it the same as SLI3.
6286  **/
6287 static void
6288 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6289 {
6290 	LPFC_MBOXQ_t *pmb;
6291 	MAILBOX_t *mb;
6292 	struct lpfc_mbx_read_top *la;
6293 	char *log_level;
6294 	int rc;
6295 
6296 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6297 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6298 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6299 				"2895 Non FC link Event detected.(%d)\n",
6300 				bf_get(lpfc_trailer_type, acqe_fc));
6301 		return;
6302 	}
6303 
6304 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6305 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6306 		lpfc_update_trunk_link_status(phba, acqe_fc);
6307 		return;
6308 	}
6309 
6310 	/* Keep the link status for extra SLI4 state machine reference */
6311 	phba->sli4_hba.link_state.speed =
6312 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6313 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6314 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6315 	phba->sli4_hba.link_state.topology =
6316 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6317 	phba->sli4_hba.link_state.status =
6318 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6319 	phba->sli4_hba.link_state.type =
6320 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6321 	phba->sli4_hba.link_state.number =
6322 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6323 	phba->sli4_hba.link_state.fault =
6324 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6325 	phba->sli4_hba.link_state.link_status =
6326 				bf_get(lpfc_acqe_fc_la_link_status, acqe_fc);
6327 
6328 	/*
6329 	 * Only select attention types need logical speed modification to what
6330 	 * was previously set.
6331 	 */
6332 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP &&
6333 	    phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6334 		if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6335 		    LPFC_FC_LA_TYPE_LINK_DOWN)
6336 			phba->sli4_hba.link_state.logical_speed = 0;
6337 		else if (!phba->sli4_hba.conf_trunk)
6338 			phba->sli4_hba.link_state.logical_speed =
6339 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6340 	}
6341 
6342 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6343 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6344 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6345 			"%dMbps Fault:x%x Link Status:x%x\n",
6346 			phba->sli4_hba.link_state.speed,
6347 			phba->sli4_hba.link_state.topology,
6348 			phba->sli4_hba.link_state.status,
6349 			phba->sli4_hba.link_state.type,
6350 			phba->sli4_hba.link_state.number,
6351 			phba->sli4_hba.link_state.logical_speed,
6352 			phba->sli4_hba.link_state.fault,
6353 			phba->sli4_hba.link_state.link_status);
6354 
6355 	/*
6356 	 * The following attention types are informational only, providing
6357 	 * further details about link status.  Overwrite the value of
6358 	 * link_state.status appropriately.  No further action is required.
6359 	 */
6360 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6361 		switch (phba->sli4_hba.link_state.status) {
6362 		case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
6363 			log_level = KERN_WARNING;
6364 			phba->sli4_hba.link_state.status =
6365 					LPFC_FC_LA_TYPE_LINK_DOWN;
6366 			break;
6367 		case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
6368 			/*
6369 			 * During bb credit recovery establishment, receiving
6370 			 * this attention type is normal.  Link Up attention
6371 			 * type is expected to occur before this informational
6372 			 * attention type so keep the Link Up status.
6373 			 */
6374 			log_level = KERN_INFO;
6375 			phba->sli4_hba.link_state.status =
6376 					LPFC_FC_LA_TYPE_LINK_UP;
6377 			break;
6378 		default:
6379 			log_level = KERN_INFO;
6380 			break;
6381 		}
6382 		lpfc_log_msg(phba, log_level, LOG_SLI,
6383 			     "2992 Async FC event - Informational Link "
6384 			     "Attention Type x%x\n",
6385 			     bf_get(lpfc_acqe_fc_la_att_type, acqe_fc));
6386 		return;
6387 	}
6388 
6389 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6390 	if (!pmb) {
6391 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6392 				"2897 The mboxq allocation failed\n");
6393 		return;
6394 	}
6395 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6396 	if (rc) {
6397 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6398 				"2898 The mboxq prep failed\n");
6399 		goto out_free_pmb;
6400 	}
6401 
6402 	/* Cleanup any outstanding ELS commands */
6403 	lpfc_els_flush_all_cmd(phba);
6404 
6405 	/* Block ELS IOCBs until we have done process link event */
6406 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6407 
6408 	/* Update link event statistics */
6409 	phba->sli.slistat.link_event++;
6410 
6411 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6412 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
6413 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6414 	pmb->vport = phba->pport;
6415 
6416 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6417 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6418 
6419 		switch (phba->sli4_hba.link_state.status) {
6420 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6421 			phba->link_flag |= LS_MDS_LINK_DOWN;
6422 			break;
6423 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6424 			phba->link_flag |= LS_MDS_LOOPBACK;
6425 			break;
6426 		default:
6427 			break;
6428 		}
6429 
6430 		/* Initialize completion status */
6431 		mb = &pmb->u.mb;
6432 		mb->mbxStatus = MBX_SUCCESS;
6433 
6434 		/* Parse port fault information field */
6435 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6436 
6437 		/* Parse and translate link attention fields */
6438 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6439 		la->eventTag = acqe_fc->event_tag;
6440 
6441 		if (phba->sli4_hba.link_state.status ==
6442 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6443 			bf_set(lpfc_mbx_read_top_att_type, la,
6444 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6445 		} else {
6446 			bf_set(lpfc_mbx_read_top_att_type, la,
6447 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6448 		}
6449 		/* Invoke the mailbox command callback function */
6450 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6451 
6452 		return;
6453 	}
6454 
6455 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6456 	if (rc == MBX_NOT_FINISHED)
6457 		goto out_free_pmb;
6458 	return;
6459 
6460 out_free_pmb:
6461 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6462 }
6463 
6464 /**
6465  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6466  * @phba: pointer to lpfc hba data structure.
6467  * @acqe_sli: pointer to the async SLI completion queue entry.
6468  *
6469  * This routine is to handle the SLI4 asynchronous SLI events.
6470  **/
6471 static void
6472 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6473 {
6474 	char port_name;
6475 	char message[128];
6476 	uint8_t status;
6477 	uint8_t evt_type;
6478 	uint8_t operational = 0;
6479 	struct temp_event temp_event_data;
6480 	struct lpfc_acqe_misconfigured_event *misconfigured;
6481 	struct lpfc_acqe_cgn_signal *cgn_signal;
6482 	struct Scsi_Host  *shost;
6483 	struct lpfc_vport **vports;
6484 	int rc, i, cnt;
6485 
6486 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6487 
6488 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6489 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6490 			"x%08x x%08x x%08x\n", evt_type,
6491 			acqe_sli->event_data1, acqe_sli->event_data2,
6492 			acqe_sli->event_data3, acqe_sli->trailer);
6493 
6494 	port_name = phba->Port[0];
6495 	if (port_name == 0x00)
6496 		port_name = '?'; /* get port name is empty */
6497 
6498 	switch (evt_type) {
6499 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6500 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6501 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6502 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6503 
6504 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6505 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6506 				acqe_sli->event_data1, port_name);
6507 
6508 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6509 		shost = lpfc_shost_from_vport(phba->pport);
6510 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6511 					  sizeof(temp_event_data),
6512 					  (char *)&temp_event_data,
6513 					  SCSI_NL_VID_TYPE_PCI
6514 					  | PCI_VENDOR_ID_EMULEX);
6515 		break;
6516 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6517 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6518 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6519 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6520 
6521 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6522 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6523 				acqe_sli->event_data1, port_name);
6524 
6525 		shost = lpfc_shost_from_vport(phba->pport);
6526 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6527 					  sizeof(temp_event_data),
6528 					  (char *)&temp_event_data,
6529 					  SCSI_NL_VID_TYPE_PCI
6530 					  | PCI_VENDOR_ID_EMULEX);
6531 		break;
6532 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6533 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6534 					&acqe_sli->event_data1;
6535 
6536 		/* fetch the status for this port */
6537 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6538 		case LPFC_LINK_NUMBER_0:
6539 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6540 					&misconfigured->theEvent);
6541 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6542 					&misconfigured->theEvent);
6543 			break;
6544 		case LPFC_LINK_NUMBER_1:
6545 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6546 					&misconfigured->theEvent);
6547 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6548 					&misconfigured->theEvent);
6549 			break;
6550 		case LPFC_LINK_NUMBER_2:
6551 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6552 					&misconfigured->theEvent);
6553 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6554 					&misconfigured->theEvent);
6555 			break;
6556 		case LPFC_LINK_NUMBER_3:
6557 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6558 					&misconfigured->theEvent);
6559 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6560 					&misconfigured->theEvent);
6561 			break;
6562 		default:
6563 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6564 					"3296 "
6565 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6566 					"event: Invalid link %d",
6567 					phba->sli4_hba.lnk_info.lnk_no);
6568 			return;
6569 		}
6570 
6571 		/* Skip if optic state unchanged */
6572 		if (phba->sli4_hba.lnk_info.optic_state == status)
6573 			return;
6574 
6575 		switch (status) {
6576 		case LPFC_SLI_EVENT_STATUS_VALID:
6577 			sprintf(message, "Physical Link is functional");
6578 			break;
6579 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6580 			sprintf(message, "Optics faulted/incorrectly "
6581 				"installed/not installed - Reseat optics, "
6582 				"if issue not resolved, replace.");
6583 			break;
6584 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6585 			sprintf(message,
6586 				"Optics of two types installed - Remove one "
6587 				"optic or install matching pair of optics.");
6588 			break;
6589 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6590 			sprintf(message, "Incompatible optics - Replace with "
6591 				"compatible optics for card to function.");
6592 			break;
6593 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6594 			sprintf(message, "Unqualified optics - Replace with "
6595 				"Avago optics for Warranty and Technical "
6596 				"Support - Link is%s operational",
6597 				(operational) ? " not" : "");
6598 			break;
6599 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6600 			sprintf(message, "Uncertified optics - Replace with "
6601 				"Avago-certified optics to enable link "
6602 				"operation - Link is%s operational",
6603 				(operational) ? " not" : "");
6604 			break;
6605 		default:
6606 			/* firmware is reporting a status we don't know about */
6607 			sprintf(message, "Unknown event status x%02x", status);
6608 			break;
6609 		}
6610 
6611 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6612 		rc = lpfc_sli4_read_config(phba);
6613 		if (rc) {
6614 			phba->lmt = 0;
6615 			lpfc_printf_log(phba, KERN_ERR,
6616 					LOG_TRACE_EVENT,
6617 					"3194 Unable to retrieve supported "
6618 					"speeds, rc = 0x%x\n", rc);
6619 		}
6620 		rc = lpfc_sli4_refresh_params(phba);
6621 		if (rc) {
6622 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6623 					"3174 Unable to update pls support, "
6624 					"rc x%x\n", rc);
6625 		}
6626 		vports = lpfc_create_vport_work_array(phba);
6627 		if (vports != NULL) {
6628 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6629 					i++) {
6630 				shost = lpfc_shost_from_vport(vports[i]);
6631 				lpfc_host_supported_speeds_set(shost);
6632 			}
6633 		}
6634 		lpfc_destroy_vport_work_array(phba, vports);
6635 
6636 		phba->sli4_hba.lnk_info.optic_state = status;
6637 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6638 				"3176 Port Name %c %s\n", port_name, message);
6639 		break;
6640 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6641 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6642 				"3192 Remote DPort Test Initiated - "
6643 				"Event Data1:x%08x Event Data2: x%08x\n",
6644 				acqe_sli->event_data1, acqe_sli->event_data2);
6645 		break;
6646 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6647 		/* Call FW to obtain active parms */
6648 		lpfc_sli4_cgn_parm_chg_evt(phba);
6649 		break;
6650 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6651 		/* Misconfigured WWN. Reports that the SLI Port is configured
6652 		 * to use FA-WWN, but the attached device doesn’t support it.
6653 		 * Event Data1 - N.A, Event Data2 - N.A
6654 		 * This event only happens on the physical port.
6655 		 */
6656 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6657 			     "2699 Misconfigured FA-PWWN - Attached device "
6658 			     "does not support FA-PWWN\n");
6659 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6660 		memset(phba->pport->fc_portname.u.wwn, 0,
6661 		       sizeof(struct lpfc_name));
6662 		break;
6663 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6664 		/* EEPROM failure. No driver action is required */
6665 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6666 			     "2518 EEPROM failure - "
6667 			     "Event Data1: x%08x Event Data2: x%08x\n",
6668 			     acqe_sli->event_data1, acqe_sli->event_data2);
6669 		break;
6670 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6671 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6672 			break;
6673 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6674 					&acqe_sli->event_data1;
6675 		phba->cgn_acqe_cnt++;
6676 
6677 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6678 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6679 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6680 
6681 		/* no threshold for CMF, even 1 signal will trigger an event */
6682 
6683 		/* Alarm overrides warning, so check that first */
6684 		if (cgn_signal->alarm_cnt) {
6685 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6686 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6687 				atomic_add(cgn_signal->alarm_cnt,
6688 					   &phba->cgn_sync_alarm_cnt);
6689 			}
6690 		} else if (cnt) {
6691 			/* signal action needs to be taken */
6692 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6693 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6694 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6695 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6696 			}
6697 		}
6698 		break;
6699 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6700 		/* May be accompanied by a temperature event */
6701 		lpfc_printf_log(phba, KERN_INFO,
6702 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6703 				"2902 Remote Degrade Signaling: x%08x x%08x "
6704 				"x%08x\n",
6705 				acqe_sli->event_data1, acqe_sli->event_data2,
6706 				acqe_sli->event_data3);
6707 		break;
6708 	default:
6709 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6710 				"3193 Unrecognized SLI event, type: 0x%x",
6711 				evt_type);
6712 		break;
6713 	}
6714 }
6715 
6716 /**
6717  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6718  * @vport: pointer to vport data structure.
6719  *
6720  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6721  * response to a CVL event.
6722  *
6723  * Return the pointer to the ndlp with the vport if successful, otherwise
6724  * return NULL.
6725  **/
6726 static struct lpfc_nodelist *
6727 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6728 {
6729 	struct lpfc_nodelist *ndlp;
6730 	struct Scsi_Host *shost;
6731 	struct lpfc_hba *phba;
6732 
6733 	if (!vport)
6734 		return NULL;
6735 	phba = vport->phba;
6736 	if (!phba)
6737 		return NULL;
6738 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6739 	if (!ndlp) {
6740 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6741 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6742 		if (!ndlp)
6743 			return NULL;
6744 		/* Set the node type */
6745 		ndlp->nlp_type |= NLP_FABRIC;
6746 		/* Put ndlp onto node list */
6747 		lpfc_enqueue_node(vport, ndlp);
6748 	}
6749 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6750 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6751 		return NULL;
6752 	/* If virtual link is not yet instantiated ignore CVL */
6753 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6754 		&& (vport->port_state != LPFC_VPORT_FAILED))
6755 		return NULL;
6756 	shost = lpfc_shost_from_vport(vport);
6757 	if (!shost)
6758 		return NULL;
6759 	lpfc_linkdown_port(vport);
6760 	lpfc_cleanup_pending_mbox(vport);
6761 	spin_lock_irq(shost->host_lock);
6762 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6763 	spin_unlock_irq(shost->host_lock);
6764 
6765 	return ndlp;
6766 }
6767 
6768 /**
6769  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6770  * @phba: pointer to lpfc hba data structure.
6771  *
6772  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6773  * response to a FCF dead event.
6774  **/
6775 static void
6776 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6777 {
6778 	struct lpfc_vport **vports;
6779 	int i;
6780 
6781 	vports = lpfc_create_vport_work_array(phba);
6782 	if (vports)
6783 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6784 			lpfc_sli4_perform_vport_cvl(vports[i]);
6785 	lpfc_destroy_vport_work_array(phba, vports);
6786 }
6787 
6788 /**
6789  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6790  * @phba: pointer to lpfc hba data structure.
6791  * @acqe_fip: pointer to the async fcoe completion queue entry.
6792  *
6793  * This routine is to handle the SLI4 asynchronous fcoe event.
6794  **/
6795 static void
6796 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6797 			struct lpfc_acqe_fip *acqe_fip)
6798 {
6799 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6800 	int rc;
6801 	struct lpfc_vport *vport;
6802 	struct lpfc_nodelist *ndlp;
6803 	int active_vlink_present;
6804 	struct lpfc_vport **vports;
6805 	int i;
6806 
6807 	phba->fc_eventTag = acqe_fip->event_tag;
6808 	phba->fcoe_eventtag = acqe_fip->event_tag;
6809 	switch (event_type) {
6810 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6811 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6812 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6813 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6814 					"2546 New FCF event, evt_tag:x%x, "
6815 					"index:x%x\n",
6816 					acqe_fip->event_tag,
6817 					acqe_fip->index);
6818 		else
6819 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6820 					LOG_DISCOVERY,
6821 					"2788 FCF param modified event, "
6822 					"evt_tag:x%x, index:x%x\n",
6823 					acqe_fip->event_tag,
6824 					acqe_fip->index);
6825 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6826 			/*
6827 			 * During period of FCF discovery, read the FCF
6828 			 * table record indexed by the event to update
6829 			 * FCF roundrobin failover eligible FCF bmask.
6830 			 */
6831 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6832 					LOG_DISCOVERY,
6833 					"2779 Read FCF (x%x) for updating "
6834 					"roundrobin FCF failover bmask\n",
6835 					acqe_fip->index);
6836 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6837 		}
6838 
6839 		/* If the FCF discovery is in progress, do nothing. */
6840 		spin_lock_irq(&phba->hbalock);
6841 		if (phba->hba_flag & FCF_TS_INPROG) {
6842 			spin_unlock_irq(&phba->hbalock);
6843 			break;
6844 		}
6845 		/* If fast FCF failover rescan event is pending, do nothing */
6846 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6847 			spin_unlock_irq(&phba->hbalock);
6848 			break;
6849 		}
6850 
6851 		/* If the FCF has been in discovered state, do nothing. */
6852 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6853 			spin_unlock_irq(&phba->hbalock);
6854 			break;
6855 		}
6856 		spin_unlock_irq(&phba->hbalock);
6857 
6858 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6859 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6860 				"2770 Start FCF table scan per async FCF "
6861 				"event, evt_tag:x%x, index:x%x\n",
6862 				acqe_fip->event_tag, acqe_fip->index);
6863 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6864 						     LPFC_FCOE_FCF_GET_FIRST);
6865 		if (rc)
6866 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6867 					"2547 Issue FCF scan read FCF mailbox "
6868 					"command failed (x%x)\n", rc);
6869 		break;
6870 
6871 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6872 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6873 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6874 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6875 				acqe_fip->event_tag);
6876 		break;
6877 
6878 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6879 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6880 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6881 				"2549 FCF (x%x) disconnected from network, "
6882 				 "tag:x%x\n", acqe_fip->index,
6883 				 acqe_fip->event_tag);
6884 		/*
6885 		 * If we are in the middle of FCF failover process, clear
6886 		 * the corresponding FCF bit in the roundrobin bitmap.
6887 		 */
6888 		spin_lock_irq(&phba->hbalock);
6889 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6890 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6891 			spin_unlock_irq(&phba->hbalock);
6892 			/* Update FLOGI FCF failover eligible FCF bmask */
6893 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6894 			break;
6895 		}
6896 		spin_unlock_irq(&phba->hbalock);
6897 
6898 		/* If the event is not for currently used fcf do nothing */
6899 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6900 			break;
6901 
6902 		/*
6903 		 * Otherwise, request the port to rediscover the entire FCF
6904 		 * table for a fast recovery from case that the current FCF
6905 		 * is no longer valid as we are not in the middle of FCF
6906 		 * failover process already.
6907 		 */
6908 		spin_lock_irq(&phba->hbalock);
6909 		/* Mark the fast failover process in progress */
6910 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6911 		spin_unlock_irq(&phba->hbalock);
6912 
6913 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6914 				"2771 Start FCF fast failover process due to "
6915 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6916 				"\n", acqe_fip->event_tag, acqe_fip->index);
6917 		rc = lpfc_sli4_redisc_fcf_table(phba);
6918 		if (rc) {
6919 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6920 					LOG_TRACE_EVENT,
6921 					"2772 Issue FCF rediscover mailbox "
6922 					"command failed, fail through to FCF "
6923 					"dead event\n");
6924 			spin_lock_irq(&phba->hbalock);
6925 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6926 			spin_unlock_irq(&phba->hbalock);
6927 			/*
6928 			 * Last resort will fail over by treating this
6929 			 * as a link down to FCF registration.
6930 			 */
6931 			lpfc_sli4_fcf_dead_failthrough(phba);
6932 		} else {
6933 			/* Reset FCF roundrobin bmask for new discovery */
6934 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6935 			/*
6936 			 * Handling fast FCF failover to a DEAD FCF event is
6937 			 * considered equalivant to receiving CVL to all vports.
6938 			 */
6939 			lpfc_sli4_perform_all_vport_cvl(phba);
6940 		}
6941 		break;
6942 	case LPFC_FIP_EVENT_TYPE_CVL:
6943 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6944 		lpfc_printf_log(phba, KERN_ERR,
6945 				LOG_TRACE_EVENT,
6946 			"2718 Clear Virtual Link Received for VPI 0x%x"
6947 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6948 
6949 		vport = lpfc_find_vport_by_vpid(phba,
6950 						acqe_fip->index);
6951 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6952 		if (!ndlp)
6953 			break;
6954 		active_vlink_present = 0;
6955 
6956 		vports = lpfc_create_vport_work_array(phba);
6957 		if (vports) {
6958 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6959 					i++) {
6960 				if ((!(vports[i]->fc_flag &
6961 					FC_VPORT_CVL_RCVD)) &&
6962 					(vports[i]->port_state > LPFC_FDISC)) {
6963 					active_vlink_present = 1;
6964 					break;
6965 				}
6966 			}
6967 			lpfc_destroy_vport_work_array(phba, vports);
6968 		}
6969 
6970 		/*
6971 		 * Don't re-instantiate if vport is marked for deletion.
6972 		 * If we are here first then vport_delete is going to wait
6973 		 * for discovery to complete.
6974 		 */
6975 		if (!(vport->load_flag & FC_UNLOADING) &&
6976 					active_vlink_present) {
6977 			/*
6978 			 * If there are other active VLinks present,
6979 			 * re-instantiate the Vlink using FDISC.
6980 			 */
6981 			mod_timer(&ndlp->nlp_delayfunc,
6982 				  jiffies + msecs_to_jiffies(1000));
6983 			spin_lock_irq(&ndlp->lock);
6984 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6985 			spin_unlock_irq(&ndlp->lock);
6986 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6987 			vport->port_state = LPFC_FDISC;
6988 		} else {
6989 			/*
6990 			 * Otherwise, we request port to rediscover
6991 			 * the entire FCF table for a fast recovery
6992 			 * from possible case that the current FCF
6993 			 * is no longer valid if we are not already
6994 			 * in the FCF failover process.
6995 			 */
6996 			spin_lock_irq(&phba->hbalock);
6997 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6998 				spin_unlock_irq(&phba->hbalock);
6999 				break;
7000 			}
7001 			/* Mark the fast failover process in progress */
7002 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
7003 			spin_unlock_irq(&phba->hbalock);
7004 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
7005 					LOG_DISCOVERY,
7006 					"2773 Start FCF failover per CVL, "
7007 					"evt_tag:x%x\n", acqe_fip->event_tag);
7008 			rc = lpfc_sli4_redisc_fcf_table(phba);
7009 			if (rc) {
7010 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
7011 						LOG_TRACE_EVENT,
7012 						"2774 Issue FCF rediscover "
7013 						"mailbox command failed, "
7014 						"through to CVL event\n");
7015 				spin_lock_irq(&phba->hbalock);
7016 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
7017 				spin_unlock_irq(&phba->hbalock);
7018 				/*
7019 				 * Last resort will be re-try on the
7020 				 * the current registered FCF entry.
7021 				 */
7022 				lpfc_retry_pport_discovery(phba);
7023 			} else
7024 				/*
7025 				 * Reset FCF roundrobin bmask for new
7026 				 * discovery.
7027 				 */
7028 				lpfc_sli4_clear_fcf_rr_bmask(phba);
7029 		}
7030 		break;
7031 	default:
7032 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7033 				"0288 Unknown FCoE event type 0x%x event tag "
7034 				"0x%x\n", event_type, acqe_fip->event_tag);
7035 		break;
7036 	}
7037 }
7038 
7039 /**
7040  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
7041  * @phba: pointer to lpfc hba data structure.
7042  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
7043  *
7044  * This routine is to handle the SLI4 asynchronous dcbx event.
7045  **/
7046 static void
7047 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
7048 			 struct lpfc_acqe_dcbx *acqe_dcbx)
7049 {
7050 	phba->fc_eventTag = acqe_dcbx->event_tag;
7051 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7052 			"0290 The SLI4 DCBX asynchronous event is not "
7053 			"handled yet\n");
7054 }
7055 
7056 /**
7057  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
7058  * @phba: pointer to lpfc hba data structure.
7059  * @acqe_grp5: pointer to the async grp5 completion queue entry.
7060  *
7061  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
7062  * is an asynchronous notified of a logical link speed change.  The Port
7063  * reports the logical link speed in units of 10Mbps.
7064  **/
7065 static void
7066 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
7067 			 struct lpfc_acqe_grp5 *acqe_grp5)
7068 {
7069 	uint16_t prev_ll_spd;
7070 
7071 	phba->fc_eventTag = acqe_grp5->event_tag;
7072 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7073 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7074 	phba->sli4_hba.link_state.logical_speed =
7075 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7076 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7077 			"2789 GRP5 Async Event: Updating logical link speed "
7078 			"from %dMbps to %dMbps\n", prev_ll_spd,
7079 			phba->sli4_hba.link_state.logical_speed);
7080 }
7081 
7082 /**
7083  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7084  * @phba: pointer to lpfc hba data structure.
7085  *
7086  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7087  * is an asynchronous notification of a request to reset CM stats.
7088  **/
7089 static void
7090 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7091 {
7092 	if (!phba->cgn_i)
7093 		return;
7094 	lpfc_init_congestion_stat(phba);
7095 }
7096 
7097 /**
7098  * lpfc_cgn_params_val - Validate FW congestion parameters.
7099  * @phba: pointer to lpfc hba data structure.
7100  * @p_cfg_param: pointer to FW provided congestion parameters.
7101  *
7102  * This routine validates the congestion parameters passed
7103  * by the FW to the driver via an ACQE event.
7104  **/
7105 static void
7106 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7107 {
7108 	spin_lock_irq(&phba->hbalock);
7109 
7110 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7111 			     LPFC_CFG_MONITOR)) {
7112 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7113 				"6225 CMF mode param out of range: %d\n",
7114 				 p_cfg_param->cgn_param_mode);
7115 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7116 	}
7117 
7118 	spin_unlock_irq(&phba->hbalock);
7119 }
7120 
7121 static const char * const lpfc_cmf_mode_to_str[] = {
7122 	"OFF",
7123 	"MANAGED",
7124 	"MONITOR",
7125 };
7126 
7127 /**
7128  * lpfc_cgn_params_parse - Process a FW cong parm change event
7129  * @phba: pointer to lpfc hba data structure.
7130  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7131  * @len: the size of pdata in bytes.
7132  *
7133  * This routine validates the congestion management buffer signature
7134  * from the FW, validates the contents and makes corrections for
7135  * valid, in-range values.  If the signature magic is correct and
7136  * after parameter validation, the contents are copied to the driver's
7137  * @phba structure. If the magic is incorrect, an error message is
7138  * logged.
7139  **/
7140 static void
7141 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7142 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7143 {
7144 	struct lpfc_cgn_info *cp;
7145 	uint32_t crc, oldmode;
7146 	char acr_string[4] = {0};
7147 
7148 	/* Make sure the FW has encoded the correct magic number to
7149 	 * validate the congestion parameter in FW memory.
7150 	 */
7151 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7152 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7153 				"4668 FW cgn parm buffer data: "
7154 				"magic 0x%x version %d mode %d "
7155 				"level0 %d level1 %d "
7156 				"level2 %d byte13 %d "
7157 				"byte14 %d byte15 %d "
7158 				"byte11 %d byte12 %d activeMode %d\n",
7159 				p_cgn_param->cgn_param_magic,
7160 				p_cgn_param->cgn_param_version,
7161 				p_cgn_param->cgn_param_mode,
7162 				p_cgn_param->cgn_param_level0,
7163 				p_cgn_param->cgn_param_level1,
7164 				p_cgn_param->cgn_param_level2,
7165 				p_cgn_param->byte13,
7166 				p_cgn_param->byte14,
7167 				p_cgn_param->byte15,
7168 				p_cgn_param->byte11,
7169 				p_cgn_param->byte12,
7170 				phba->cmf_active_mode);
7171 
7172 		oldmode = phba->cmf_active_mode;
7173 
7174 		/* Any parameters out of range are corrected to defaults
7175 		 * by this routine.  No need to fail.
7176 		 */
7177 		lpfc_cgn_params_val(phba, p_cgn_param);
7178 
7179 		/* Parameters are verified, move them into driver storage */
7180 		spin_lock_irq(&phba->hbalock);
7181 		memcpy(&phba->cgn_p, p_cgn_param,
7182 		       sizeof(struct lpfc_cgn_param));
7183 
7184 		/* Update parameters in congestion info buffer now */
7185 		if (phba->cgn_i) {
7186 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7187 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7188 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7189 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7190 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7191 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7192 						  LPFC_CGN_CRC32_SEED);
7193 			cp->cgn_info_crc = cpu_to_le32(crc);
7194 		}
7195 		spin_unlock_irq(&phba->hbalock);
7196 
7197 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7198 
7199 		switch (oldmode) {
7200 		case LPFC_CFG_OFF:
7201 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7202 				/* Turning CMF on */
7203 				lpfc_cmf_start(phba);
7204 
7205 				if (phba->link_state >= LPFC_LINK_UP) {
7206 					phba->cgn_reg_fpin =
7207 						phba->cgn_init_reg_fpin;
7208 					phba->cgn_reg_signal =
7209 						phba->cgn_init_reg_signal;
7210 					lpfc_issue_els_edc(phba->pport, 0);
7211 				}
7212 			}
7213 			break;
7214 		case LPFC_CFG_MANAGED:
7215 			switch (phba->cgn_p.cgn_param_mode) {
7216 			case LPFC_CFG_OFF:
7217 				/* Turning CMF off */
7218 				lpfc_cmf_stop(phba);
7219 				if (phba->link_state >= LPFC_LINK_UP)
7220 					lpfc_issue_els_edc(phba->pport, 0);
7221 				break;
7222 			case LPFC_CFG_MONITOR:
7223 				phba->cmf_max_bytes_per_interval =
7224 					phba->cmf_link_byte_count;
7225 
7226 				/* Resume blocked IO - unblock on workqueue */
7227 				queue_work(phba->wq,
7228 					   &phba->unblock_request_work);
7229 				break;
7230 			}
7231 			break;
7232 		case LPFC_CFG_MONITOR:
7233 			switch (phba->cgn_p.cgn_param_mode) {
7234 			case LPFC_CFG_OFF:
7235 				/* Turning CMF off */
7236 				lpfc_cmf_stop(phba);
7237 				if (phba->link_state >= LPFC_LINK_UP)
7238 					lpfc_issue_els_edc(phba->pport, 0);
7239 				break;
7240 			case LPFC_CFG_MANAGED:
7241 				lpfc_cmf_signal_init(phba);
7242 				break;
7243 			}
7244 			break;
7245 		}
7246 		if (oldmode != LPFC_CFG_OFF ||
7247 		    oldmode != phba->cgn_p.cgn_param_mode) {
7248 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7249 				scnprintf(acr_string, sizeof(acr_string), "%u",
7250 					  phba->cgn_p.cgn_param_level0);
7251 			else
7252 				scnprintf(acr_string, sizeof(acr_string), "NA");
7253 
7254 			dev_info(&phba->pcidev->dev, "%d: "
7255 				 "4663 CMF: Mode %s acr %s\n",
7256 				 phba->brd_no,
7257 				 lpfc_cmf_mode_to_str
7258 				 [phba->cgn_p.cgn_param_mode],
7259 				 acr_string);
7260 		}
7261 	} else {
7262 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7263 				"4669 FW cgn parm buf wrong magic 0x%x "
7264 				"version %d\n", p_cgn_param->cgn_param_magic,
7265 				p_cgn_param->cgn_param_version);
7266 	}
7267 }
7268 
7269 /**
7270  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7271  * @phba: pointer to lpfc hba data structure.
7272  *
7273  * This routine issues a read_object mailbox command to
7274  * get the congestion management parameters from the FW
7275  * parses it and updates the driver maintained values.
7276  *
7277  * Returns
7278  *  0     if the object was empty
7279  *  -Eval if an error was encountered
7280  *  Count if bytes were read from object
7281  **/
7282 int
7283 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7284 {
7285 	int ret = 0;
7286 	struct lpfc_cgn_param *p_cgn_param = NULL;
7287 	u32 *pdata = NULL;
7288 	u32 len = 0;
7289 
7290 	/* Find out if the FW has a new set of congestion parameters. */
7291 	len = sizeof(struct lpfc_cgn_param);
7292 	pdata = kzalloc(len, GFP_KERNEL);
7293 	if (!pdata)
7294 		return -ENOMEM;
7295 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7296 			       pdata, len);
7297 
7298 	/* 0 means no data.  A negative means error.  A positive means
7299 	 * bytes were copied.
7300 	 */
7301 	if (!ret) {
7302 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7303 				"4670 CGN RD OBJ returns no data\n");
7304 		goto rd_obj_err;
7305 	} else if (ret < 0) {
7306 		/* Some error.  Just exit and return it to the caller.*/
7307 		goto rd_obj_err;
7308 	}
7309 
7310 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7311 			"6234 READ CGN PARAMS Successful %d\n", len);
7312 
7313 	/* Parse data pointer over len and update the phba congestion
7314 	 * parameters with values passed back.  The receive rate values
7315 	 * may have been altered in FW, but take no action here.
7316 	 */
7317 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7318 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7319 
7320  rd_obj_err:
7321 	kfree(pdata);
7322 	return ret;
7323 }
7324 
7325 /**
7326  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7327  * @phba: pointer to lpfc hba data structure.
7328  *
7329  * The FW generated Async ACQE SLI event calls this routine when
7330  * the event type is an SLI Internal Port Event and the Event Code
7331  * indicates a change to the FW maintained congestion parameters.
7332  *
7333  * This routine executes a Read_Object mailbox call to obtain the
7334  * current congestion parameters maintained in FW and corrects
7335  * the driver's active congestion parameters.
7336  *
7337  * The acqe event is not passed because there is no further data
7338  * required.
7339  *
7340  * Returns nonzero error if event processing encountered an error.
7341  * Zero otherwise for success.
7342  **/
7343 static int
7344 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7345 {
7346 	int ret = 0;
7347 
7348 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7349 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7350 				"4664 Cgn Evt when E2E off. Drop event\n");
7351 		return -EACCES;
7352 	}
7353 
7354 	/* If the event is claiming an empty object, it's ok.  A write
7355 	 * could have cleared it.  Only error is a negative return
7356 	 * status.
7357 	 */
7358 	ret = lpfc_sli4_cgn_params_read(phba);
7359 	if (ret < 0) {
7360 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7361 				"4667 Error reading Cgn Params (%d)\n",
7362 				ret);
7363 	} else if (!ret) {
7364 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7365 				"4673 CGN Event empty object.\n");
7366 	}
7367 	return ret;
7368 }
7369 
7370 /**
7371  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7372  * @phba: pointer to lpfc hba data structure.
7373  *
7374  * This routine is invoked by the worker thread to process all the pending
7375  * SLI4 asynchronous events.
7376  **/
7377 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7378 {
7379 	struct lpfc_cq_event *cq_event;
7380 	unsigned long iflags;
7381 
7382 	/* First, declare the async event has been handled */
7383 	spin_lock_irqsave(&phba->hbalock, iflags);
7384 	phba->hba_flag &= ~ASYNC_EVENT;
7385 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7386 
7387 	/* Now, handle all the async events */
7388 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7389 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7390 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7391 				 cq_event, struct lpfc_cq_event, list);
7392 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7393 				       iflags);
7394 
7395 		/* Process the asynchronous event */
7396 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7397 		case LPFC_TRAILER_CODE_LINK:
7398 			lpfc_sli4_async_link_evt(phba,
7399 						 &cq_event->cqe.acqe_link);
7400 			break;
7401 		case LPFC_TRAILER_CODE_FCOE:
7402 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7403 			break;
7404 		case LPFC_TRAILER_CODE_DCBX:
7405 			lpfc_sli4_async_dcbx_evt(phba,
7406 						 &cq_event->cqe.acqe_dcbx);
7407 			break;
7408 		case LPFC_TRAILER_CODE_GRP5:
7409 			lpfc_sli4_async_grp5_evt(phba,
7410 						 &cq_event->cqe.acqe_grp5);
7411 			break;
7412 		case LPFC_TRAILER_CODE_FC:
7413 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7414 			break;
7415 		case LPFC_TRAILER_CODE_SLI:
7416 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7417 			break;
7418 		case LPFC_TRAILER_CODE_CMSTAT:
7419 			lpfc_sli4_async_cmstat_evt(phba);
7420 			break;
7421 		default:
7422 			lpfc_printf_log(phba, KERN_ERR,
7423 					LOG_TRACE_EVENT,
7424 					"1804 Invalid asynchronous event code: "
7425 					"x%x\n", bf_get(lpfc_trailer_code,
7426 					&cq_event->cqe.mcqe_cmpl));
7427 			break;
7428 		}
7429 
7430 		/* Free the completion event processed to the free pool */
7431 		lpfc_sli4_cq_event_release(phba, cq_event);
7432 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7433 	}
7434 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7435 }
7436 
7437 /**
7438  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7439  * @phba: pointer to lpfc hba data structure.
7440  *
7441  * This routine is invoked by the worker thread to process FCF table
7442  * rediscovery pending completion event.
7443  **/
7444 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7445 {
7446 	int rc;
7447 
7448 	spin_lock_irq(&phba->hbalock);
7449 	/* Clear FCF rediscovery timeout event */
7450 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7451 	/* Clear driver fast failover FCF record flag */
7452 	phba->fcf.failover_rec.flag = 0;
7453 	/* Set state for FCF fast failover */
7454 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7455 	spin_unlock_irq(&phba->hbalock);
7456 
7457 	/* Scan FCF table from the first entry to re-discover SAN */
7458 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7459 			"2777 Start post-quiescent FCF table scan\n");
7460 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7461 	if (rc)
7462 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7463 				"2747 Issue FCF scan read FCF mailbox "
7464 				"command failed 0x%x\n", rc);
7465 }
7466 
7467 /**
7468  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7469  * @phba: pointer to lpfc hba data structure.
7470  * @dev_grp: The HBA PCI-Device group number.
7471  *
7472  * This routine is invoked to set up the per HBA PCI-Device group function
7473  * API jump table entries.
7474  *
7475  * Return: 0 if success, otherwise -ENODEV
7476  **/
7477 int
7478 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7479 {
7480 	int rc;
7481 
7482 	/* Set up lpfc PCI-device group */
7483 	phba->pci_dev_grp = dev_grp;
7484 
7485 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7486 	if (dev_grp == LPFC_PCI_DEV_OC)
7487 		phba->sli_rev = LPFC_SLI_REV4;
7488 
7489 	/* Set up device INIT API function jump table */
7490 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7491 	if (rc)
7492 		return -ENODEV;
7493 	/* Set up SCSI API function jump table */
7494 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7495 	if (rc)
7496 		return -ENODEV;
7497 	/* Set up SLI API function jump table */
7498 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7499 	if (rc)
7500 		return -ENODEV;
7501 	/* Set up MBOX API function jump table */
7502 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7503 	if (rc)
7504 		return -ENODEV;
7505 
7506 	return 0;
7507 }
7508 
7509 /**
7510  * lpfc_log_intr_mode - Log the active interrupt mode
7511  * @phba: pointer to lpfc hba data structure.
7512  * @intr_mode: active interrupt mode adopted.
7513  *
7514  * This routine it invoked to log the currently used active interrupt mode
7515  * to the device.
7516  **/
7517 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7518 {
7519 	switch (intr_mode) {
7520 	case 0:
7521 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7522 				"0470 Enable INTx interrupt mode.\n");
7523 		break;
7524 	case 1:
7525 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7526 				"0481 Enabled MSI interrupt mode.\n");
7527 		break;
7528 	case 2:
7529 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7530 				"0480 Enabled MSI-X interrupt mode.\n");
7531 		break;
7532 	default:
7533 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7534 				"0482 Illegal interrupt mode.\n");
7535 		break;
7536 	}
7537 	return;
7538 }
7539 
7540 /**
7541  * lpfc_enable_pci_dev - Enable a generic PCI device.
7542  * @phba: pointer to lpfc hba data structure.
7543  *
7544  * This routine is invoked to enable the PCI device that is common to all
7545  * PCI devices.
7546  *
7547  * Return codes
7548  * 	0 - successful
7549  * 	other values - error
7550  **/
7551 static int
7552 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7553 {
7554 	struct pci_dev *pdev;
7555 
7556 	/* Obtain PCI device reference */
7557 	if (!phba->pcidev)
7558 		goto out_error;
7559 	else
7560 		pdev = phba->pcidev;
7561 	/* Enable PCI device */
7562 	if (pci_enable_device_mem(pdev))
7563 		goto out_error;
7564 	/* Request PCI resource for the device */
7565 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7566 		goto out_disable_device;
7567 	/* Set up device as PCI master and save state for EEH */
7568 	pci_set_master(pdev);
7569 	pci_try_set_mwi(pdev);
7570 	pci_save_state(pdev);
7571 
7572 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7573 	if (pci_is_pcie(pdev))
7574 		pdev->needs_freset = 1;
7575 
7576 	return 0;
7577 
7578 out_disable_device:
7579 	pci_disable_device(pdev);
7580 out_error:
7581 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7582 			"1401 Failed to enable pci device\n");
7583 	return -ENODEV;
7584 }
7585 
7586 /**
7587  * lpfc_disable_pci_dev - Disable a generic PCI device.
7588  * @phba: pointer to lpfc hba data structure.
7589  *
7590  * This routine is invoked to disable the PCI device that is common to all
7591  * PCI devices.
7592  **/
7593 static void
7594 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7595 {
7596 	struct pci_dev *pdev;
7597 
7598 	/* Obtain PCI device reference */
7599 	if (!phba->pcidev)
7600 		return;
7601 	else
7602 		pdev = phba->pcidev;
7603 	/* Release PCI resource and disable PCI device */
7604 	pci_release_mem_regions(pdev);
7605 	pci_disable_device(pdev);
7606 
7607 	return;
7608 }
7609 
7610 /**
7611  * lpfc_reset_hba - Reset a hba
7612  * @phba: pointer to lpfc hba data structure.
7613  *
7614  * This routine is invoked to reset a hba device. It brings the HBA
7615  * offline, performs a board restart, and then brings the board back
7616  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7617  * on outstanding mailbox commands.
7618  **/
7619 void
7620 lpfc_reset_hba(struct lpfc_hba *phba)
7621 {
7622 	/* If resets are disabled then set error state and return. */
7623 	if (!phba->cfg_enable_hba_reset) {
7624 		phba->link_state = LPFC_HBA_ERROR;
7625 		return;
7626 	}
7627 
7628 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7629 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7630 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7631 	} else {
7632 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7633 		lpfc_sli_flush_io_rings(phba);
7634 	}
7635 	lpfc_offline(phba);
7636 	lpfc_sli_brdrestart(phba);
7637 	lpfc_online(phba);
7638 	lpfc_unblock_mgmt_io(phba);
7639 }
7640 
7641 /**
7642  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7643  * @phba: pointer to lpfc hba data structure.
7644  *
7645  * This function enables the PCI SR-IOV virtual functions to a physical
7646  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7647  * enable the number of virtual functions to the physical function. As
7648  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7649  * API call does not considered as an error condition for most of the device.
7650  **/
7651 uint16_t
7652 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7653 {
7654 	struct pci_dev *pdev = phba->pcidev;
7655 	uint16_t nr_virtfn;
7656 	int pos;
7657 
7658 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7659 	if (pos == 0)
7660 		return 0;
7661 
7662 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7663 	return nr_virtfn;
7664 }
7665 
7666 /**
7667  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7668  * @phba: pointer to lpfc hba data structure.
7669  * @nr_vfn: number of virtual functions to be enabled.
7670  *
7671  * This function enables the PCI SR-IOV virtual functions to a physical
7672  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7673  * enable the number of virtual functions to the physical function. As
7674  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7675  * API call does not considered as an error condition for most of the device.
7676  **/
7677 int
7678 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7679 {
7680 	struct pci_dev *pdev = phba->pcidev;
7681 	uint16_t max_nr_vfn;
7682 	int rc;
7683 
7684 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7685 	if (nr_vfn > max_nr_vfn) {
7686 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7687 				"3057 Requested vfs (%d) greater than "
7688 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7689 		return -EINVAL;
7690 	}
7691 
7692 	rc = pci_enable_sriov(pdev, nr_vfn);
7693 	if (rc) {
7694 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7695 				"2806 Failed to enable sriov on this device "
7696 				"with vfn number nr_vf:%d, rc:%d\n",
7697 				nr_vfn, rc);
7698 	} else
7699 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7700 				"2807 Successful enable sriov on this device "
7701 				"with vfn number nr_vf:%d\n", nr_vfn);
7702 	return rc;
7703 }
7704 
7705 static void
7706 lpfc_unblock_requests_work(struct work_struct *work)
7707 {
7708 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7709 					     unblock_request_work);
7710 
7711 	lpfc_unblock_requests(phba);
7712 }
7713 
7714 /**
7715  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7716  * @phba: pointer to lpfc hba data structure.
7717  *
7718  * This routine is invoked to set up the driver internal resources before the
7719  * device specific resource setup to support the HBA device it attached to.
7720  *
7721  * Return codes
7722  *	0 - successful
7723  *	other values - error
7724  **/
7725 static int
7726 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7727 {
7728 	struct lpfc_sli *psli = &phba->sli;
7729 
7730 	/*
7731 	 * Driver resources common to all SLI revisions
7732 	 */
7733 	atomic_set(&phba->fast_event_count, 0);
7734 	atomic_set(&phba->dbg_log_idx, 0);
7735 	atomic_set(&phba->dbg_log_cnt, 0);
7736 	atomic_set(&phba->dbg_log_dmping, 0);
7737 	spin_lock_init(&phba->hbalock);
7738 
7739 	/* Initialize port_list spinlock */
7740 	spin_lock_init(&phba->port_list_lock);
7741 	INIT_LIST_HEAD(&phba->port_list);
7742 
7743 	INIT_LIST_HEAD(&phba->work_list);
7744 
7745 	/* Initialize the wait queue head for the kernel thread */
7746 	init_waitqueue_head(&phba->work_waitq);
7747 
7748 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7749 			"1403 Protocols supported %s %s %s\n",
7750 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7751 				"SCSI" : " "),
7752 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7753 				"NVME" : " "),
7754 			(phba->nvmet_support ? "NVMET" : " "));
7755 
7756 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7757 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7758 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7759 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7760 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7761 
7762 	/* Initialize the fabric iocb list */
7763 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7764 
7765 	/* Initialize list to save ELS buffers */
7766 	INIT_LIST_HEAD(&phba->elsbuf);
7767 
7768 	/* Initialize FCF connection rec list */
7769 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7770 
7771 	/* Initialize OAS configuration list */
7772 	spin_lock_init(&phba->devicelock);
7773 	INIT_LIST_HEAD(&phba->luns);
7774 
7775 	/* MBOX heartbeat timer */
7776 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7777 	/* Fabric block timer */
7778 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7779 	/* EA polling mode timer */
7780 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7781 	/* Heartbeat timer */
7782 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7783 
7784 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7785 
7786 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7787 			  lpfc_idle_stat_delay_work);
7788 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7789 	return 0;
7790 }
7791 
7792 /**
7793  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7794  * @phba: pointer to lpfc hba data structure.
7795  *
7796  * This routine is invoked to set up the driver internal resources specific to
7797  * support the SLI-3 HBA device it attached to.
7798  *
7799  * Return codes
7800  * 0 - successful
7801  * other values - error
7802  **/
7803 static int
7804 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7805 {
7806 	int rc, entry_sz;
7807 
7808 	/*
7809 	 * Initialize timers used by driver
7810 	 */
7811 
7812 	/* FCP polling mode timer */
7813 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7814 
7815 	/* Host attention work mask setup */
7816 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7817 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7818 
7819 	/* Get all the module params for configuring this host */
7820 	lpfc_get_cfgparam(phba);
7821 	/* Set up phase-1 common device driver resources */
7822 
7823 	rc = lpfc_setup_driver_resource_phase1(phba);
7824 	if (rc)
7825 		return -ENODEV;
7826 
7827 	if (!phba->sli.sli3_ring)
7828 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7829 					      sizeof(struct lpfc_sli_ring),
7830 					      GFP_KERNEL);
7831 	if (!phba->sli.sli3_ring)
7832 		return -ENOMEM;
7833 
7834 	/*
7835 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7836 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7837 	 */
7838 
7839 	if (phba->sli_rev == LPFC_SLI_REV4)
7840 		entry_sz = sizeof(struct sli4_sge);
7841 	else
7842 		entry_sz = sizeof(struct ulp_bde64);
7843 
7844 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7845 	if (phba->cfg_enable_bg) {
7846 		/*
7847 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7848 		 * the FCP rsp, and a BDE for each. Sice we have no control
7849 		 * over how many protection data segments the SCSI Layer
7850 		 * will hand us (ie: there could be one for every block
7851 		 * in the IO), we just allocate enough BDEs to accomidate
7852 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7853 		 * minimize the risk of running out.
7854 		 */
7855 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7856 			sizeof(struct fcp_rsp) +
7857 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7858 
7859 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7860 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7861 
7862 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7863 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7864 	} else {
7865 		/*
7866 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7867 		 * the FCP rsp, a BDE for each, and a BDE for up to
7868 		 * cfg_sg_seg_cnt data segments.
7869 		 */
7870 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7871 			sizeof(struct fcp_rsp) +
7872 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7873 
7874 		/* Total BDEs in BPL for scsi_sg_list */
7875 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7876 	}
7877 
7878 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7879 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7880 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7881 			phba->cfg_total_seg_cnt);
7882 
7883 	phba->max_vpi = LPFC_MAX_VPI;
7884 	/* This will be set to correct value after config_port mbox */
7885 	phba->max_vports = 0;
7886 
7887 	/*
7888 	 * Initialize the SLI Layer to run with lpfc HBAs.
7889 	 */
7890 	lpfc_sli_setup(phba);
7891 	lpfc_sli_queue_init(phba);
7892 
7893 	/* Allocate device driver memory */
7894 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7895 		return -ENOMEM;
7896 
7897 	phba->lpfc_sg_dma_buf_pool =
7898 		dma_pool_create("lpfc_sg_dma_buf_pool",
7899 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7900 				BPL_ALIGN_SZ, 0);
7901 
7902 	if (!phba->lpfc_sg_dma_buf_pool)
7903 		goto fail_free_mem;
7904 
7905 	phba->lpfc_cmd_rsp_buf_pool =
7906 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7907 					&phba->pcidev->dev,
7908 					sizeof(struct fcp_cmnd) +
7909 					sizeof(struct fcp_rsp),
7910 					BPL_ALIGN_SZ, 0);
7911 
7912 	if (!phba->lpfc_cmd_rsp_buf_pool)
7913 		goto fail_free_dma_buf_pool;
7914 
7915 	/*
7916 	 * Enable sr-iov virtual functions if supported and configured
7917 	 * through the module parameter.
7918 	 */
7919 	if (phba->cfg_sriov_nr_virtfn > 0) {
7920 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7921 						 phba->cfg_sriov_nr_virtfn);
7922 		if (rc) {
7923 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7924 					"2808 Requested number of SR-IOV "
7925 					"virtual functions (%d) is not "
7926 					"supported\n",
7927 					phba->cfg_sriov_nr_virtfn);
7928 			phba->cfg_sriov_nr_virtfn = 0;
7929 		}
7930 	}
7931 
7932 	return 0;
7933 
7934 fail_free_dma_buf_pool:
7935 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7936 	phba->lpfc_sg_dma_buf_pool = NULL;
7937 fail_free_mem:
7938 	lpfc_mem_free(phba);
7939 	return -ENOMEM;
7940 }
7941 
7942 /**
7943  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7944  * @phba: pointer to lpfc hba data structure.
7945  *
7946  * This routine is invoked to unset the driver internal resources set up
7947  * specific for supporting the SLI-3 HBA device it attached to.
7948  **/
7949 static void
7950 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7951 {
7952 	/* Free device driver memory allocated */
7953 	lpfc_mem_free_all(phba);
7954 
7955 	return;
7956 }
7957 
7958 /**
7959  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7960  * @phba: pointer to lpfc hba data structure.
7961  *
7962  * This routine is invoked to set up the driver internal resources specific to
7963  * support the SLI-4 HBA device it attached to.
7964  *
7965  * Return codes
7966  * 	0 - successful
7967  * 	other values - error
7968  **/
7969 static int
7970 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7971 {
7972 	LPFC_MBOXQ_t *mboxq;
7973 	MAILBOX_t *mb;
7974 	int rc, i, max_buf_size;
7975 	int longs;
7976 	int extra;
7977 	uint64_t wwn;
7978 	u32 if_type;
7979 	u32 if_fam;
7980 
7981 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7982 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7983 	phba->sli4_hba.curr_disp_cpu = 0;
7984 
7985 	/* Get all the module params for configuring this host */
7986 	lpfc_get_cfgparam(phba);
7987 
7988 	/* Set up phase-1 common device driver resources */
7989 	rc = lpfc_setup_driver_resource_phase1(phba);
7990 	if (rc)
7991 		return -ENODEV;
7992 
7993 	/* Before proceed, wait for POST done and device ready */
7994 	rc = lpfc_sli4_post_status_check(phba);
7995 	if (rc)
7996 		return -ENODEV;
7997 
7998 	/* Allocate all driver workqueues here */
7999 
8000 	/* The lpfc_wq workqueue for deferred irq use */
8001 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
8002 	if (!phba->wq)
8003 		return -ENOMEM;
8004 
8005 	/*
8006 	 * Initialize timers used by driver
8007 	 */
8008 
8009 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
8010 
8011 	/* FCF rediscover timer */
8012 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
8013 
8014 	/* CMF congestion timer */
8015 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8016 	phba->cmf_timer.function = lpfc_cmf_timer;
8017 
8018 	/*
8019 	 * Control structure for handling external multi-buffer mailbox
8020 	 * command pass-through.
8021 	 */
8022 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
8023 		sizeof(struct lpfc_mbox_ext_buf_ctx));
8024 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
8025 
8026 	phba->max_vpi = LPFC_MAX_VPI;
8027 
8028 	/* This will be set to correct value after the read_config mbox */
8029 	phba->max_vports = 0;
8030 
8031 	/* Program the default value of vlan_id and fc_map */
8032 	phba->valid_vlan = 0;
8033 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
8034 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
8035 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
8036 
8037 	/*
8038 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
8039 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
8040 	 * The WQ create will allocate the ring.
8041 	 */
8042 
8043 	/* Initialize buffer queue management fields */
8044 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
8045 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
8046 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
8047 
8048 	/* for VMID idle timeout if VMID is enabled */
8049 	if (lpfc_is_vmid_enabled(phba))
8050 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
8051 
8052 	/*
8053 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
8054 	 */
8055 	/* Initialize the Abort buffer list used by driver */
8056 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8057 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8058 
8059 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8060 		/* Initialize the Abort nvme buffer list used by driver */
8061 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8062 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8063 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8064 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8065 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8066 	}
8067 
8068 	/* This abort list used by worker thread */
8069 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8070 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8071 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8072 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8073 
8074 	/*
8075 	 * Initialize driver internal slow-path work queues
8076 	 */
8077 
8078 	/* Driver internel slow-path CQ Event pool */
8079 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8080 	/* Response IOCB work queue list */
8081 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8082 	/* Asynchronous event CQ Event work queue list */
8083 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8084 	/* Slow-path XRI aborted CQ Event work queue list */
8085 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8086 	/* Receive queue CQ Event work queue list */
8087 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8088 
8089 	/* Initialize extent block lists. */
8090 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8091 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8092 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8093 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8094 
8095 	/* Initialize mboxq lists. If the early init routines fail
8096 	 * these lists need to be correctly initialized.
8097 	 */
8098 	INIT_LIST_HEAD(&phba->sli.mboxq);
8099 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8100 
8101 	/* initialize optic_state to 0xFF */
8102 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8103 
8104 	/* Allocate device driver memory */
8105 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8106 	if (rc)
8107 		goto out_destroy_workqueue;
8108 
8109 	/* IF Type 2 ports get initialized now. */
8110 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8111 	    LPFC_SLI_INTF_IF_TYPE_2) {
8112 		rc = lpfc_pci_function_reset(phba);
8113 		if (unlikely(rc)) {
8114 			rc = -ENODEV;
8115 			goto out_free_mem;
8116 		}
8117 		phba->temp_sensor_support = 1;
8118 	}
8119 
8120 	/* Create the bootstrap mailbox command */
8121 	rc = lpfc_create_bootstrap_mbox(phba);
8122 	if (unlikely(rc))
8123 		goto out_free_mem;
8124 
8125 	/* Set up the host's endian order with the device. */
8126 	rc = lpfc_setup_endian_order(phba);
8127 	if (unlikely(rc))
8128 		goto out_free_bsmbx;
8129 
8130 	/* Set up the hba's configuration parameters. */
8131 	rc = lpfc_sli4_read_config(phba);
8132 	if (unlikely(rc))
8133 		goto out_free_bsmbx;
8134 
8135 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8136 		/* Right now the link is down, if FA-PWWN is configured the
8137 		 * firmware will try FLOGI before the driver gets a link up.
8138 		 * If it fails, the driver should get a MISCONFIGURED async
8139 		 * event which will clear this flag. The only notification
8140 		 * the driver gets is if it fails, if it succeeds there is no
8141 		 * notification given. Assume success.
8142 		 */
8143 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8144 	}
8145 
8146 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8147 	if (unlikely(rc))
8148 		goto out_free_bsmbx;
8149 
8150 	/* IF Type 0 ports get initialized now. */
8151 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8152 	    LPFC_SLI_INTF_IF_TYPE_0) {
8153 		rc = lpfc_pci_function_reset(phba);
8154 		if (unlikely(rc))
8155 			goto out_free_bsmbx;
8156 	}
8157 
8158 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8159 						       GFP_KERNEL);
8160 	if (!mboxq) {
8161 		rc = -ENOMEM;
8162 		goto out_free_bsmbx;
8163 	}
8164 
8165 	/* Check for NVMET being configured */
8166 	phba->nvmet_support = 0;
8167 	if (lpfc_enable_nvmet_cnt) {
8168 
8169 		/* First get WWN of HBA instance */
8170 		lpfc_read_nv(phba, mboxq);
8171 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8172 		if (rc != MBX_SUCCESS) {
8173 			lpfc_printf_log(phba, KERN_ERR,
8174 					LOG_TRACE_EVENT,
8175 					"6016 Mailbox failed , mbxCmd x%x "
8176 					"READ_NV, mbxStatus x%x\n",
8177 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8178 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8179 			mempool_free(mboxq, phba->mbox_mem_pool);
8180 			rc = -EIO;
8181 			goto out_free_bsmbx;
8182 		}
8183 		mb = &mboxq->u.mb;
8184 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8185 		       sizeof(uint64_t));
8186 		wwn = cpu_to_be64(wwn);
8187 		phba->sli4_hba.wwnn.u.name = wwn;
8188 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8189 		       sizeof(uint64_t));
8190 		/* wwn is WWPN of HBA instance */
8191 		wwn = cpu_to_be64(wwn);
8192 		phba->sli4_hba.wwpn.u.name = wwn;
8193 
8194 		/* Check to see if it matches any module parameter */
8195 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8196 			if (wwn == lpfc_enable_nvmet[i]) {
8197 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8198 				if (lpfc_nvmet_mem_alloc(phba))
8199 					break;
8200 
8201 				phba->nvmet_support = 1; /* a match */
8202 
8203 				lpfc_printf_log(phba, KERN_ERR,
8204 						LOG_TRACE_EVENT,
8205 						"6017 NVME Target %016llx\n",
8206 						wwn);
8207 #else
8208 				lpfc_printf_log(phba, KERN_ERR,
8209 						LOG_TRACE_EVENT,
8210 						"6021 Can't enable NVME Target."
8211 						" NVME_TARGET_FC infrastructure"
8212 						" is not in kernel\n");
8213 #endif
8214 				/* Not supported for NVMET */
8215 				phba->cfg_xri_rebalancing = 0;
8216 				if (phba->irq_chann_mode == NHT_MODE) {
8217 					phba->cfg_irq_chann =
8218 						phba->sli4_hba.num_present_cpu;
8219 					phba->cfg_hdw_queue =
8220 						phba->sli4_hba.num_present_cpu;
8221 					phba->irq_chann_mode = NORMAL_MODE;
8222 				}
8223 				break;
8224 			}
8225 		}
8226 	}
8227 
8228 	lpfc_nvme_mod_param_dep(phba);
8229 
8230 	/*
8231 	 * Get sli4 parameters that override parameters from Port capabilities.
8232 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8233 	 * back in conflict.
8234 	 */
8235 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8236 	if (rc) {
8237 		if_type = bf_get(lpfc_sli_intf_if_type,
8238 				 &phba->sli4_hba.sli_intf);
8239 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8240 				&phba->sli4_hba.sli_intf);
8241 		if (phba->sli4_hba.extents_in_use &&
8242 		    phba->sli4_hba.rpi_hdrs_in_use) {
8243 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8244 					"2999 Unsupported SLI4 Parameters "
8245 					"Extents and RPI headers enabled.\n");
8246 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8247 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8248 				mempool_free(mboxq, phba->mbox_mem_pool);
8249 				rc = -EIO;
8250 				goto out_free_bsmbx;
8251 			}
8252 		}
8253 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8254 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8255 			mempool_free(mboxq, phba->mbox_mem_pool);
8256 			rc = -EIO;
8257 			goto out_free_bsmbx;
8258 		}
8259 	}
8260 
8261 	/*
8262 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8263 	 * for boundary conditions in its max_sgl_segment template.
8264 	 */
8265 	extra = 2;
8266 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8267 		extra++;
8268 
8269 	/*
8270 	 * It doesn't matter what family our adapter is in, we are
8271 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8272 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8273 	 */
8274 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8275 
8276 	/*
8277 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8278 	 * used to create the sg_dma_buf_pool must be calculated.
8279 	 */
8280 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8281 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8282 
8283 		/*
8284 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8285 		 * the FCP rsp, and a SGE. Sice we have no control
8286 		 * over how many protection segments the SCSI Layer
8287 		 * will hand us (ie: there could be one for every block
8288 		 * in the IO), just allocate enough SGEs to accomidate
8289 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8290 		 * to minimize the risk of running out.
8291 		 */
8292 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8293 				sizeof(struct fcp_rsp) + max_buf_size;
8294 
8295 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8296 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8297 
8298 		/*
8299 		 * If supporting DIF, reduce the seg count for scsi to
8300 		 * allow room for the DIF sges.
8301 		 */
8302 		if (phba->cfg_enable_bg &&
8303 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8304 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8305 		else
8306 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8307 
8308 	} else {
8309 		/*
8310 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8311 		 * the FCP rsp, a SGE for each, and a SGE for up to
8312 		 * cfg_sg_seg_cnt data segments.
8313 		 */
8314 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8315 				sizeof(struct fcp_rsp) +
8316 				((phba->cfg_sg_seg_cnt + extra) *
8317 				sizeof(struct sli4_sge));
8318 
8319 		/* Total SGEs for scsi_sg_list */
8320 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8321 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8322 
8323 		/*
8324 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8325 		 * need to post 1 page for the SGL.
8326 		 */
8327 	}
8328 
8329 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8330 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8331 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8332 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8333 	else
8334 		phba->cfg_sg_dma_buf_size =
8335 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8336 
8337 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8338 			       sizeof(struct sli4_sge);
8339 
8340 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8341 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8342 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8343 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8344 					"6300 Reducing NVME sg segment "
8345 					"cnt to %d\n",
8346 					LPFC_MAX_NVME_SEG_CNT);
8347 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8348 		} else
8349 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8350 	}
8351 
8352 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8353 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8354 			"total:%d scsi:%d nvme:%d\n",
8355 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8356 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8357 			phba->cfg_nvme_seg_cnt);
8358 
8359 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8360 		i = phba->cfg_sg_dma_buf_size;
8361 	else
8362 		i = SLI4_PAGE_SIZE;
8363 
8364 	phba->lpfc_sg_dma_buf_pool =
8365 			dma_pool_create("lpfc_sg_dma_buf_pool",
8366 					&phba->pcidev->dev,
8367 					phba->cfg_sg_dma_buf_size,
8368 					i, 0);
8369 	if (!phba->lpfc_sg_dma_buf_pool) {
8370 		rc = -ENOMEM;
8371 		goto out_free_bsmbx;
8372 	}
8373 
8374 	phba->lpfc_cmd_rsp_buf_pool =
8375 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8376 					&phba->pcidev->dev,
8377 					sizeof(struct fcp_cmnd) +
8378 					sizeof(struct fcp_rsp),
8379 					i, 0);
8380 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8381 		rc = -ENOMEM;
8382 		goto out_free_sg_dma_buf;
8383 	}
8384 
8385 	mempool_free(mboxq, phba->mbox_mem_pool);
8386 
8387 	/* Verify OAS is supported */
8388 	lpfc_sli4_oas_verify(phba);
8389 
8390 	/* Verify RAS support on adapter */
8391 	lpfc_sli4_ras_init(phba);
8392 
8393 	/* Verify all the SLI4 queues */
8394 	rc = lpfc_sli4_queue_verify(phba);
8395 	if (rc)
8396 		goto out_free_cmd_rsp_buf;
8397 
8398 	/* Create driver internal CQE event pool */
8399 	rc = lpfc_sli4_cq_event_pool_create(phba);
8400 	if (rc)
8401 		goto out_free_cmd_rsp_buf;
8402 
8403 	/* Initialize sgl lists per host */
8404 	lpfc_init_sgl_list(phba);
8405 
8406 	/* Allocate and initialize active sgl array */
8407 	rc = lpfc_init_active_sgl_array(phba);
8408 	if (rc) {
8409 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8410 				"1430 Failed to initialize sgl list.\n");
8411 		goto out_destroy_cq_event_pool;
8412 	}
8413 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8414 	if (rc) {
8415 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8416 				"1432 Failed to initialize rpi headers.\n");
8417 		goto out_free_active_sgl;
8418 	}
8419 
8420 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8421 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8422 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8423 					 GFP_KERNEL);
8424 	if (!phba->fcf.fcf_rr_bmask) {
8425 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8426 				"2759 Failed allocate memory for FCF round "
8427 				"robin failover bmask\n");
8428 		rc = -ENOMEM;
8429 		goto out_remove_rpi_hdrs;
8430 	}
8431 
8432 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8433 					    sizeof(struct lpfc_hba_eq_hdl),
8434 					    GFP_KERNEL);
8435 	if (!phba->sli4_hba.hba_eq_hdl) {
8436 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8437 				"2572 Failed allocate memory for "
8438 				"fast-path per-EQ handle array\n");
8439 		rc = -ENOMEM;
8440 		goto out_free_fcf_rr_bmask;
8441 	}
8442 
8443 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8444 					sizeof(struct lpfc_vector_map_info),
8445 					GFP_KERNEL);
8446 	if (!phba->sli4_hba.cpu_map) {
8447 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8448 				"3327 Failed allocate memory for msi-x "
8449 				"interrupt vector mapping\n");
8450 		rc = -ENOMEM;
8451 		goto out_free_hba_eq_hdl;
8452 	}
8453 
8454 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8455 	if (!phba->sli4_hba.eq_info) {
8456 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8457 				"3321 Failed allocation for per_cpu stats\n");
8458 		rc = -ENOMEM;
8459 		goto out_free_hba_cpu_map;
8460 	}
8461 
8462 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8463 					   sizeof(*phba->sli4_hba.idle_stat),
8464 					   GFP_KERNEL);
8465 	if (!phba->sli4_hba.idle_stat) {
8466 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8467 				"3390 Failed allocation for idle_stat\n");
8468 		rc = -ENOMEM;
8469 		goto out_free_hba_eq_info;
8470 	}
8471 
8472 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8473 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8474 	if (!phba->sli4_hba.c_stat) {
8475 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8476 				"3332 Failed allocating per cpu hdwq stats\n");
8477 		rc = -ENOMEM;
8478 		goto out_free_hba_idle_stat;
8479 	}
8480 #endif
8481 
8482 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8483 	if (!phba->cmf_stat) {
8484 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8485 				"3331 Failed allocating per cpu cgn stats\n");
8486 		rc = -ENOMEM;
8487 		goto out_free_hba_hdwq_info;
8488 	}
8489 
8490 	/*
8491 	 * Enable sr-iov virtual functions if supported and configured
8492 	 * through the module parameter.
8493 	 */
8494 	if (phba->cfg_sriov_nr_virtfn > 0) {
8495 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8496 						 phba->cfg_sriov_nr_virtfn);
8497 		if (rc) {
8498 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8499 					"3020 Requested number of SR-IOV "
8500 					"virtual functions (%d) is not "
8501 					"supported\n",
8502 					phba->cfg_sriov_nr_virtfn);
8503 			phba->cfg_sriov_nr_virtfn = 0;
8504 		}
8505 	}
8506 
8507 	return 0;
8508 
8509 out_free_hba_hdwq_info:
8510 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8511 	free_percpu(phba->sli4_hba.c_stat);
8512 out_free_hba_idle_stat:
8513 #endif
8514 	kfree(phba->sli4_hba.idle_stat);
8515 out_free_hba_eq_info:
8516 	free_percpu(phba->sli4_hba.eq_info);
8517 out_free_hba_cpu_map:
8518 	kfree(phba->sli4_hba.cpu_map);
8519 out_free_hba_eq_hdl:
8520 	kfree(phba->sli4_hba.hba_eq_hdl);
8521 out_free_fcf_rr_bmask:
8522 	kfree(phba->fcf.fcf_rr_bmask);
8523 out_remove_rpi_hdrs:
8524 	lpfc_sli4_remove_rpi_hdrs(phba);
8525 out_free_active_sgl:
8526 	lpfc_free_active_sgl(phba);
8527 out_destroy_cq_event_pool:
8528 	lpfc_sli4_cq_event_pool_destroy(phba);
8529 out_free_cmd_rsp_buf:
8530 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8531 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8532 out_free_sg_dma_buf:
8533 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8534 	phba->lpfc_sg_dma_buf_pool = NULL;
8535 out_free_bsmbx:
8536 	lpfc_destroy_bootstrap_mbox(phba);
8537 out_free_mem:
8538 	lpfc_mem_free(phba);
8539 out_destroy_workqueue:
8540 	destroy_workqueue(phba->wq);
8541 	phba->wq = NULL;
8542 	return rc;
8543 }
8544 
8545 /**
8546  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8547  * @phba: pointer to lpfc hba data structure.
8548  *
8549  * This routine is invoked to unset the driver internal resources set up
8550  * specific for supporting the SLI-4 HBA device it attached to.
8551  **/
8552 static void
8553 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8554 {
8555 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8556 
8557 	free_percpu(phba->sli4_hba.eq_info);
8558 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8559 	free_percpu(phba->sli4_hba.c_stat);
8560 #endif
8561 	free_percpu(phba->cmf_stat);
8562 	kfree(phba->sli4_hba.idle_stat);
8563 
8564 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8565 	kfree(phba->sli4_hba.cpu_map);
8566 	phba->sli4_hba.num_possible_cpu = 0;
8567 	phba->sli4_hba.num_present_cpu = 0;
8568 	phba->sli4_hba.curr_disp_cpu = 0;
8569 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8570 
8571 	/* Free memory allocated for fast-path work queue handles */
8572 	kfree(phba->sli4_hba.hba_eq_hdl);
8573 
8574 	/* Free the allocated rpi headers. */
8575 	lpfc_sli4_remove_rpi_hdrs(phba);
8576 	lpfc_sli4_remove_rpis(phba);
8577 
8578 	/* Free eligible FCF index bmask */
8579 	kfree(phba->fcf.fcf_rr_bmask);
8580 
8581 	/* Free the ELS sgl list */
8582 	lpfc_free_active_sgl(phba);
8583 	lpfc_free_els_sgl_list(phba);
8584 	lpfc_free_nvmet_sgl_list(phba);
8585 
8586 	/* Free the completion queue EQ event pool */
8587 	lpfc_sli4_cq_event_release_all(phba);
8588 	lpfc_sli4_cq_event_pool_destroy(phba);
8589 
8590 	/* Release resource identifiers. */
8591 	lpfc_sli4_dealloc_resource_identifiers(phba);
8592 
8593 	/* Free the bsmbx region. */
8594 	lpfc_destroy_bootstrap_mbox(phba);
8595 
8596 	/* Free the SLI Layer memory with SLI4 HBAs */
8597 	lpfc_mem_free_all(phba);
8598 
8599 	/* Free the current connect table */
8600 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8601 		&phba->fcf_conn_rec_list, list) {
8602 		list_del_init(&conn_entry->list);
8603 		kfree(conn_entry);
8604 	}
8605 
8606 	return;
8607 }
8608 
8609 /**
8610  * lpfc_init_api_table_setup - Set up init api function jump table
8611  * @phba: The hba struct for which this call is being executed.
8612  * @dev_grp: The HBA PCI-Device group number.
8613  *
8614  * This routine sets up the device INIT interface API function jump table
8615  * in @phba struct.
8616  *
8617  * Returns: 0 - success, -ENODEV - failure.
8618  **/
8619 int
8620 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8621 {
8622 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8623 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8624 	phba->lpfc_selective_reset = lpfc_selective_reset;
8625 	switch (dev_grp) {
8626 	case LPFC_PCI_DEV_LP:
8627 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8628 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8629 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8630 		break;
8631 	case LPFC_PCI_DEV_OC:
8632 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8633 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8634 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8635 		break;
8636 	default:
8637 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8638 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8639 				dev_grp);
8640 		return -ENODEV;
8641 	}
8642 	return 0;
8643 }
8644 
8645 /**
8646  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8647  * @phba: pointer to lpfc hba data structure.
8648  *
8649  * This routine is invoked to set up the driver internal resources after the
8650  * device specific resource setup to support the HBA device it attached to.
8651  *
8652  * Return codes
8653  * 	0 - successful
8654  * 	other values - error
8655  **/
8656 static int
8657 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8658 {
8659 	int error;
8660 
8661 	/* Startup the kernel thread for this host adapter. */
8662 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8663 					  "lpfc_worker_%d", phba->brd_no);
8664 	if (IS_ERR(phba->worker_thread)) {
8665 		error = PTR_ERR(phba->worker_thread);
8666 		return error;
8667 	}
8668 
8669 	return 0;
8670 }
8671 
8672 /**
8673  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8674  * @phba: pointer to lpfc hba data structure.
8675  *
8676  * This routine is invoked to unset the driver internal resources set up after
8677  * the device specific resource setup for supporting the HBA device it
8678  * attached to.
8679  **/
8680 static void
8681 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8682 {
8683 	if (phba->wq) {
8684 		destroy_workqueue(phba->wq);
8685 		phba->wq = NULL;
8686 	}
8687 
8688 	/* Stop kernel worker thread */
8689 	if (phba->worker_thread)
8690 		kthread_stop(phba->worker_thread);
8691 }
8692 
8693 /**
8694  * lpfc_free_iocb_list - Free iocb list.
8695  * @phba: pointer to lpfc hba data structure.
8696  *
8697  * This routine is invoked to free the driver's IOCB list and memory.
8698  **/
8699 void
8700 lpfc_free_iocb_list(struct lpfc_hba *phba)
8701 {
8702 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8703 
8704 	spin_lock_irq(&phba->hbalock);
8705 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8706 				 &phba->lpfc_iocb_list, list) {
8707 		list_del(&iocbq_entry->list);
8708 		kfree(iocbq_entry);
8709 		phba->total_iocbq_bufs--;
8710 	}
8711 	spin_unlock_irq(&phba->hbalock);
8712 
8713 	return;
8714 }
8715 
8716 /**
8717  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8718  * @phba: pointer to lpfc hba data structure.
8719  * @iocb_count: number of requested iocbs
8720  *
8721  * This routine is invoked to allocate and initizlize the driver's IOCB
8722  * list and set up the IOCB tag array accordingly.
8723  *
8724  * Return codes
8725  *	0 - successful
8726  *	other values - error
8727  **/
8728 int
8729 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8730 {
8731 	struct lpfc_iocbq *iocbq_entry = NULL;
8732 	uint16_t iotag;
8733 	int i;
8734 
8735 	/* Initialize and populate the iocb list per host.  */
8736 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8737 	for (i = 0; i < iocb_count; i++) {
8738 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8739 		if (iocbq_entry == NULL) {
8740 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8741 				"expected %d count. Unloading driver.\n",
8742 				__func__, i, iocb_count);
8743 			goto out_free_iocbq;
8744 		}
8745 
8746 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8747 		if (iotag == 0) {
8748 			kfree(iocbq_entry);
8749 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8750 				"Unloading driver.\n", __func__);
8751 			goto out_free_iocbq;
8752 		}
8753 		iocbq_entry->sli4_lxritag = NO_XRI;
8754 		iocbq_entry->sli4_xritag = NO_XRI;
8755 
8756 		spin_lock_irq(&phba->hbalock);
8757 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8758 		phba->total_iocbq_bufs++;
8759 		spin_unlock_irq(&phba->hbalock);
8760 	}
8761 
8762 	return 0;
8763 
8764 out_free_iocbq:
8765 	lpfc_free_iocb_list(phba);
8766 
8767 	return -ENOMEM;
8768 }
8769 
8770 /**
8771  * lpfc_free_sgl_list - Free a given sgl list.
8772  * @phba: pointer to lpfc hba data structure.
8773  * @sglq_list: pointer to the head of sgl list.
8774  *
8775  * This routine is invoked to free a give sgl list and memory.
8776  **/
8777 void
8778 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8779 {
8780 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8781 
8782 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8783 		list_del(&sglq_entry->list);
8784 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8785 		kfree(sglq_entry);
8786 	}
8787 }
8788 
8789 /**
8790  * lpfc_free_els_sgl_list - Free els sgl list.
8791  * @phba: pointer to lpfc hba data structure.
8792  *
8793  * This routine is invoked to free the driver's els sgl list and memory.
8794  **/
8795 static void
8796 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8797 {
8798 	LIST_HEAD(sglq_list);
8799 
8800 	/* Retrieve all els sgls from driver list */
8801 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8802 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8803 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8804 
8805 	/* Now free the sgl list */
8806 	lpfc_free_sgl_list(phba, &sglq_list);
8807 }
8808 
8809 /**
8810  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8811  * @phba: pointer to lpfc hba data structure.
8812  *
8813  * This routine is invoked to free the driver's nvmet sgl list and memory.
8814  **/
8815 static void
8816 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8817 {
8818 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8819 	LIST_HEAD(sglq_list);
8820 
8821 	/* Retrieve all nvmet sgls from driver list */
8822 	spin_lock_irq(&phba->hbalock);
8823 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8824 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8825 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8826 	spin_unlock_irq(&phba->hbalock);
8827 
8828 	/* Now free the sgl list */
8829 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8830 		list_del(&sglq_entry->list);
8831 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8832 		kfree(sglq_entry);
8833 	}
8834 
8835 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8836 	 * The next initialization cycle sets the count and allocates
8837 	 * the sgls over again.
8838 	 */
8839 	phba->sli4_hba.nvmet_xri_cnt = 0;
8840 }
8841 
8842 /**
8843  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8844  * @phba: pointer to lpfc hba data structure.
8845  *
8846  * This routine is invoked to allocate the driver's active sgl memory.
8847  * This array will hold the sglq_entry's for active IOs.
8848  **/
8849 static int
8850 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8851 {
8852 	int size;
8853 	size = sizeof(struct lpfc_sglq *);
8854 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8855 
8856 	phba->sli4_hba.lpfc_sglq_active_list =
8857 		kzalloc(size, GFP_KERNEL);
8858 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8859 		return -ENOMEM;
8860 	return 0;
8861 }
8862 
8863 /**
8864  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8865  * @phba: pointer to lpfc hba data structure.
8866  *
8867  * This routine is invoked to walk through the array of active sglq entries
8868  * and free all of the resources.
8869  * This is just a place holder for now.
8870  **/
8871 static void
8872 lpfc_free_active_sgl(struct lpfc_hba *phba)
8873 {
8874 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8875 }
8876 
8877 /**
8878  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8879  * @phba: pointer to lpfc hba data structure.
8880  *
8881  * This routine is invoked to allocate and initizlize the driver's sgl
8882  * list and set up the sgl xritag tag array accordingly.
8883  *
8884  **/
8885 static void
8886 lpfc_init_sgl_list(struct lpfc_hba *phba)
8887 {
8888 	/* Initialize and populate the sglq list per host/VF. */
8889 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8890 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8891 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8892 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8893 
8894 	/* els xri-sgl book keeping */
8895 	phba->sli4_hba.els_xri_cnt = 0;
8896 
8897 	/* nvme xri-buffer book keeping */
8898 	phba->sli4_hba.io_xri_cnt = 0;
8899 }
8900 
8901 /**
8902  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8903  * @phba: pointer to lpfc hba data structure.
8904  *
8905  * This routine is invoked to post rpi header templates to the
8906  * port for those SLI4 ports that do not support extents.  This routine
8907  * posts a PAGE_SIZE memory region to the port to hold up to
8908  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8909  * and should be called only when interrupts are disabled.
8910  *
8911  * Return codes
8912  * 	0 - successful
8913  *	-ERROR - otherwise.
8914  **/
8915 int
8916 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8917 {
8918 	int rc = 0;
8919 	struct lpfc_rpi_hdr *rpi_hdr;
8920 
8921 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8922 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8923 		return rc;
8924 	if (phba->sli4_hba.extents_in_use)
8925 		return -EIO;
8926 
8927 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8928 	if (!rpi_hdr) {
8929 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8930 				"0391 Error during rpi post operation\n");
8931 		lpfc_sli4_remove_rpis(phba);
8932 		rc = -ENODEV;
8933 	}
8934 
8935 	return rc;
8936 }
8937 
8938 /**
8939  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8940  * @phba: pointer to lpfc hba data structure.
8941  *
8942  * This routine is invoked to allocate a single 4KB memory region to
8943  * support rpis and stores them in the phba.  This single region
8944  * provides support for up to 64 rpis.  The region is used globally
8945  * by the device.
8946  *
8947  * Returns:
8948  *   A valid rpi hdr on success.
8949  *   A NULL pointer on any failure.
8950  **/
8951 struct lpfc_rpi_hdr *
8952 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8953 {
8954 	uint16_t rpi_limit, curr_rpi_range;
8955 	struct lpfc_dmabuf *dmabuf;
8956 	struct lpfc_rpi_hdr *rpi_hdr;
8957 
8958 	/*
8959 	 * If the SLI4 port supports extents, posting the rpi header isn't
8960 	 * required.  Set the expected maximum count and let the actual value
8961 	 * get set when extents are fully allocated.
8962 	 */
8963 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8964 		return NULL;
8965 	if (phba->sli4_hba.extents_in_use)
8966 		return NULL;
8967 
8968 	/* The limit on the logical index is just the max_rpi count. */
8969 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8970 
8971 	spin_lock_irq(&phba->hbalock);
8972 	/*
8973 	 * Establish the starting RPI in this header block.  The starting
8974 	 * rpi is normalized to a zero base because the physical rpi is
8975 	 * port based.
8976 	 */
8977 	curr_rpi_range = phba->sli4_hba.next_rpi;
8978 	spin_unlock_irq(&phba->hbalock);
8979 
8980 	/* Reached full RPI range */
8981 	if (curr_rpi_range == rpi_limit)
8982 		return NULL;
8983 
8984 	/*
8985 	 * First allocate the protocol header region for the port.  The
8986 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8987 	 */
8988 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8989 	if (!dmabuf)
8990 		return NULL;
8991 
8992 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8993 					  LPFC_HDR_TEMPLATE_SIZE,
8994 					  &dmabuf->phys, GFP_KERNEL);
8995 	if (!dmabuf->virt) {
8996 		rpi_hdr = NULL;
8997 		goto err_free_dmabuf;
8998 	}
8999 
9000 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
9001 		rpi_hdr = NULL;
9002 		goto err_free_coherent;
9003 	}
9004 
9005 	/* Save the rpi header data for cleanup later. */
9006 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
9007 	if (!rpi_hdr)
9008 		goto err_free_coherent;
9009 
9010 	rpi_hdr->dmabuf = dmabuf;
9011 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
9012 	rpi_hdr->page_count = 1;
9013 	spin_lock_irq(&phba->hbalock);
9014 
9015 	/* The rpi_hdr stores the logical index only. */
9016 	rpi_hdr->start_rpi = curr_rpi_range;
9017 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
9018 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
9019 
9020 	spin_unlock_irq(&phba->hbalock);
9021 	return rpi_hdr;
9022 
9023  err_free_coherent:
9024 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
9025 			  dmabuf->virt, dmabuf->phys);
9026  err_free_dmabuf:
9027 	kfree(dmabuf);
9028 	return NULL;
9029 }
9030 
9031 /**
9032  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
9033  * @phba: pointer to lpfc hba data structure.
9034  *
9035  * This routine is invoked to remove all memory resources allocated
9036  * to support rpis for SLI4 ports not supporting extents. This routine
9037  * presumes the caller has released all rpis consumed by fabric or port
9038  * logins and is prepared to have the header pages removed.
9039  **/
9040 void
9041 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
9042 {
9043 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
9044 
9045 	if (!phba->sli4_hba.rpi_hdrs_in_use)
9046 		goto exit;
9047 
9048 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
9049 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
9050 		list_del(&rpi_hdr->list);
9051 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
9052 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
9053 		kfree(rpi_hdr->dmabuf);
9054 		kfree(rpi_hdr);
9055 	}
9056  exit:
9057 	/* There are no rpis available to the port now. */
9058 	phba->sli4_hba.next_rpi = 0;
9059 }
9060 
9061 /**
9062  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9063  * @pdev: pointer to pci device data structure.
9064  *
9065  * This routine is invoked to allocate the driver hba data structure for an
9066  * HBA device. If the allocation is successful, the phba reference to the
9067  * PCI device data structure is set.
9068  *
9069  * Return codes
9070  *      pointer to @phba - successful
9071  *      NULL - error
9072  **/
9073 static struct lpfc_hba *
9074 lpfc_hba_alloc(struct pci_dev *pdev)
9075 {
9076 	struct lpfc_hba *phba;
9077 
9078 	/* Allocate memory for HBA structure */
9079 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9080 	if (!phba) {
9081 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9082 		return NULL;
9083 	}
9084 
9085 	/* Set reference to PCI device in HBA structure */
9086 	phba->pcidev = pdev;
9087 
9088 	/* Assign an unused board number */
9089 	phba->brd_no = lpfc_get_instance();
9090 	if (phba->brd_no < 0) {
9091 		kfree(phba);
9092 		return NULL;
9093 	}
9094 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9095 
9096 	spin_lock_init(&phba->ct_ev_lock);
9097 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9098 
9099 	return phba;
9100 }
9101 
9102 /**
9103  * lpfc_hba_free - Free driver hba data structure with a device.
9104  * @phba: pointer to lpfc hba data structure.
9105  *
9106  * This routine is invoked to free the driver hba data structure with an
9107  * HBA device.
9108  **/
9109 static void
9110 lpfc_hba_free(struct lpfc_hba *phba)
9111 {
9112 	if (phba->sli_rev == LPFC_SLI_REV4)
9113 		kfree(phba->sli4_hba.hdwq);
9114 
9115 	/* Release the driver assigned board number */
9116 	idr_remove(&lpfc_hba_index, phba->brd_no);
9117 
9118 	/* Free memory allocated with sli3 rings */
9119 	kfree(phba->sli.sli3_ring);
9120 	phba->sli.sli3_ring = NULL;
9121 
9122 	kfree(phba);
9123 	return;
9124 }
9125 
9126 /**
9127  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9128  * @vport: pointer to lpfc vport data structure.
9129  *
9130  * This routine is will setup initial FDMI attribute masks for
9131  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9132  * to get these attributes first before falling back, the attribute
9133  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9134  **/
9135 void
9136 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9137 {
9138 	struct lpfc_hba *phba = vport->phba;
9139 
9140 	vport->load_flag |= FC_ALLOW_FDMI;
9141 	if (phba->cfg_enable_SmartSAN ||
9142 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9143 		/* Setup appropriate attribute masks */
9144 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9145 		if (phba->cfg_enable_SmartSAN)
9146 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9147 		else
9148 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9149 	}
9150 
9151 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9152 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9153 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9154 }
9155 
9156 /**
9157  * lpfc_create_shost - Create hba physical port with associated scsi host.
9158  * @phba: pointer to lpfc hba data structure.
9159  *
9160  * This routine is invoked to create HBA physical port and associate a SCSI
9161  * host with it.
9162  *
9163  * Return codes
9164  *      0 - successful
9165  *      other values - error
9166  **/
9167 static int
9168 lpfc_create_shost(struct lpfc_hba *phba)
9169 {
9170 	struct lpfc_vport *vport;
9171 	struct Scsi_Host  *shost;
9172 
9173 	/* Initialize HBA FC structure */
9174 	phba->fc_edtov = FF_DEF_EDTOV;
9175 	phba->fc_ratov = FF_DEF_RATOV;
9176 	phba->fc_altov = FF_DEF_ALTOV;
9177 	phba->fc_arbtov = FF_DEF_ARBTOV;
9178 
9179 	atomic_set(&phba->sdev_cnt, 0);
9180 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9181 	if (!vport)
9182 		return -ENODEV;
9183 
9184 	shost = lpfc_shost_from_vport(vport);
9185 	phba->pport = vport;
9186 
9187 	if (phba->nvmet_support) {
9188 		/* Only 1 vport (pport) will support NVME target */
9189 		phba->targetport = NULL;
9190 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9191 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9192 				"6076 NVME Target Found\n");
9193 	}
9194 
9195 	lpfc_debugfs_initialize(vport);
9196 	/* Put reference to SCSI host to driver's device private data */
9197 	pci_set_drvdata(phba->pcidev, shost);
9198 
9199 	lpfc_setup_fdmi_mask(vport);
9200 
9201 	/*
9202 	 * At this point we are fully registered with PSA. In addition,
9203 	 * any initial discovery should be completed.
9204 	 */
9205 	return 0;
9206 }
9207 
9208 /**
9209  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9210  * @phba: pointer to lpfc hba data structure.
9211  *
9212  * This routine is invoked to destroy HBA physical port and the associated
9213  * SCSI host.
9214  **/
9215 static void
9216 lpfc_destroy_shost(struct lpfc_hba *phba)
9217 {
9218 	struct lpfc_vport *vport = phba->pport;
9219 
9220 	/* Destroy physical port that associated with the SCSI host */
9221 	destroy_port(vport);
9222 
9223 	return;
9224 }
9225 
9226 /**
9227  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9228  * @phba: pointer to lpfc hba data structure.
9229  * @shost: the shost to be used to detect Block guard settings.
9230  *
9231  * This routine sets up the local Block guard protocol settings for @shost.
9232  * This routine also allocates memory for debugging bg buffers.
9233  **/
9234 static void
9235 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9236 {
9237 	uint32_t old_mask;
9238 	uint32_t old_guard;
9239 
9240 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9241 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9242 				"1478 Registering BlockGuard with the "
9243 				"SCSI layer\n");
9244 
9245 		old_mask = phba->cfg_prot_mask;
9246 		old_guard = phba->cfg_prot_guard;
9247 
9248 		/* Only allow supported values */
9249 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9250 			SHOST_DIX_TYPE0_PROTECTION |
9251 			SHOST_DIX_TYPE1_PROTECTION);
9252 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9253 					 SHOST_DIX_GUARD_CRC);
9254 
9255 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9256 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9257 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9258 
9259 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9260 			if ((old_mask != phba->cfg_prot_mask) ||
9261 				(old_guard != phba->cfg_prot_guard))
9262 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9263 					"1475 Registering BlockGuard with the "
9264 					"SCSI layer: mask %d  guard %d\n",
9265 					phba->cfg_prot_mask,
9266 					phba->cfg_prot_guard);
9267 
9268 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9269 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9270 		} else
9271 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9272 				"1479 Not Registering BlockGuard with the SCSI "
9273 				"layer, Bad protection parameters: %d %d\n",
9274 				old_mask, old_guard);
9275 	}
9276 }
9277 
9278 /**
9279  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9280  * @phba: pointer to lpfc hba data structure.
9281  *
9282  * This routine is invoked to perform all the necessary post initialization
9283  * setup for the device.
9284  **/
9285 static void
9286 lpfc_post_init_setup(struct lpfc_hba *phba)
9287 {
9288 	struct Scsi_Host  *shost;
9289 	struct lpfc_adapter_event_header adapter_event;
9290 
9291 	/* Get the default values for Model Name and Description */
9292 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9293 
9294 	/*
9295 	 * hba setup may have changed the hba_queue_depth so we need to
9296 	 * adjust the value of can_queue.
9297 	 */
9298 	shost = pci_get_drvdata(phba->pcidev);
9299 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9300 
9301 	lpfc_host_attrib_init(shost);
9302 
9303 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9304 		spin_lock_irq(shost->host_lock);
9305 		lpfc_poll_start_timer(phba);
9306 		spin_unlock_irq(shost->host_lock);
9307 	}
9308 
9309 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9310 			"0428 Perform SCSI scan\n");
9311 	/* Send board arrival event to upper layer */
9312 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9313 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9314 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9315 				  sizeof(adapter_event),
9316 				  (char *) &adapter_event,
9317 				  LPFC_NL_VENDOR_ID);
9318 	return;
9319 }
9320 
9321 /**
9322  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9323  * @phba: pointer to lpfc hba data structure.
9324  *
9325  * This routine is invoked to set up the PCI device memory space for device
9326  * with SLI-3 interface spec.
9327  *
9328  * Return codes
9329  * 	0 - successful
9330  * 	other values - error
9331  **/
9332 static int
9333 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9334 {
9335 	struct pci_dev *pdev = phba->pcidev;
9336 	unsigned long bar0map_len, bar2map_len;
9337 	int i, hbq_count;
9338 	void *ptr;
9339 	int error;
9340 
9341 	if (!pdev)
9342 		return -ENODEV;
9343 
9344 	/* Set the device DMA mask size */
9345 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9346 	if (error)
9347 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9348 	if (error)
9349 		return error;
9350 	error = -ENODEV;
9351 
9352 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9353 	 * required by each mapping.
9354 	 */
9355 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9356 	bar0map_len = pci_resource_len(pdev, 0);
9357 
9358 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9359 	bar2map_len = pci_resource_len(pdev, 2);
9360 
9361 	/* Map HBA SLIM to a kernel virtual address. */
9362 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9363 	if (!phba->slim_memmap_p) {
9364 		dev_printk(KERN_ERR, &pdev->dev,
9365 			   "ioremap failed for SLIM memory.\n");
9366 		goto out;
9367 	}
9368 
9369 	/* Map HBA Control Registers to a kernel virtual address. */
9370 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9371 	if (!phba->ctrl_regs_memmap_p) {
9372 		dev_printk(KERN_ERR, &pdev->dev,
9373 			   "ioremap failed for HBA control registers.\n");
9374 		goto out_iounmap_slim;
9375 	}
9376 
9377 	/* Allocate memory for SLI-2 structures */
9378 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9379 					       &phba->slim2p.phys, GFP_KERNEL);
9380 	if (!phba->slim2p.virt)
9381 		goto out_iounmap;
9382 
9383 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9384 	phba->mbox_ext = (phba->slim2p.virt +
9385 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9386 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9387 	phba->IOCBs = (phba->slim2p.virt +
9388 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9389 
9390 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9391 						 lpfc_sli_hbq_size(),
9392 						 &phba->hbqslimp.phys,
9393 						 GFP_KERNEL);
9394 	if (!phba->hbqslimp.virt)
9395 		goto out_free_slim;
9396 
9397 	hbq_count = lpfc_sli_hbq_count();
9398 	ptr = phba->hbqslimp.virt;
9399 	for (i = 0; i < hbq_count; ++i) {
9400 		phba->hbqs[i].hbq_virt = ptr;
9401 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9402 		ptr += (lpfc_hbq_defs[i]->entry_count *
9403 			sizeof(struct lpfc_hbq_entry));
9404 	}
9405 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9406 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9407 
9408 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9409 
9410 	phba->MBslimaddr = phba->slim_memmap_p;
9411 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9412 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9413 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9414 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9415 
9416 	return 0;
9417 
9418 out_free_slim:
9419 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9420 			  phba->slim2p.virt, phba->slim2p.phys);
9421 out_iounmap:
9422 	iounmap(phba->ctrl_regs_memmap_p);
9423 out_iounmap_slim:
9424 	iounmap(phba->slim_memmap_p);
9425 out:
9426 	return error;
9427 }
9428 
9429 /**
9430  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9431  * @phba: pointer to lpfc hba data structure.
9432  *
9433  * This routine is invoked to unset the PCI device memory space for device
9434  * with SLI-3 interface spec.
9435  **/
9436 static void
9437 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9438 {
9439 	struct pci_dev *pdev;
9440 
9441 	/* Obtain PCI device reference */
9442 	if (!phba->pcidev)
9443 		return;
9444 	else
9445 		pdev = phba->pcidev;
9446 
9447 	/* Free coherent DMA memory allocated */
9448 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9449 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9450 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9451 			  phba->slim2p.virt, phba->slim2p.phys);
9452 
9453 	/* I/O memory unmap */
9454 	iounmap(phba->ctrl_regs_memmap_p);
9455 	iounmap(phba->slim_memmap_p);
9456 
9457 	return;
9458 }
9459 
9460 /**
9461  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9462  * @phba: pointer to lpfc hba data structure.
9463  *
9464  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9465  * done and check status.
9466  *
9467  * Return 0 if successful, otherwise -ENODEV.
9468  **/
9469 int
9470 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9471 {
9472 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9473 	struct lpfc_register reg_data;
9474 	int i, port_error = 0;
9475 	uint32_t if_type;
9476 
9477 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9478 	memset(&reg_data, 0, sizeof(reg_data));
9479 	if (!phba->sli4_hba.PSMPHRregaddr)
9480 		return -ENODEV;
9481 
9482 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9483 	for (i = 0; i < 3000; i++) {
9484 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9485 			&portsmphr_reg.word0) ||
9486 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9487 			/* Port has a fatal POST error, break out */
9488 			port_error = -ENODEV;
9489 			break;
9490 		}
9491 		if (LPFC_POST_STAGE_PORT_READY ==
9492 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9493 			break;
9494 		msleep(10);
9495 	}
9496 
9497 	/*
9498 	 * If there was a port error during POST, then don't proceed with
9499 	 * other register reads as the data may not be valid.  Just exit.
9500 	 */
9501 	if (port_error) {
9502 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9503 			"1408 Port Failed POST - portsmphr=0x%x, "
9504 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9505 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9506 			portsmphr_reg.word0,
9507 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9508 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9509 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9510 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9511 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9512 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9513 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9514 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9515 	} else {
9516 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9517 				"2534 Device Info: SLIFamily=0x%x, "
9518 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9519 				"SLIHint_2=0x%x, FT=0x%x\n",
9520 				bf_get(lpfc_sli_intf_sli_family,
9521 				       &phba->sli4_hba.sli_intf),
9522 				bf_get(lpfc_sli_intf_slirev,
9523 				       &phba->sli4_hba.sli_intf),
9524 				bf_get(lpfc_sli_intf_if_type,
9525 				       &phba->sli4_hba.sli_intf),
9526 				bf_get(lpfc_sli_intf_sli_hint1,
9527 				       &phba->sli4_hba.sli_intf),
9528 				bf_get(lpfc_sli_intf_sli_hint2,
9529 				       &phba->sli4_hba.sli_intf),
9530 				bf_get(lpfc_sli_intf_func_type,
9531 				       &phba->sli4_hba.sli_intf));
9532 		/*
9533 		 * Check for other Port errors during the initialization
9534 		 * process.  Fail the load if the port did not come up
9535 		 * correctly.
9536 		 */
9537 		if_type = bf_get(lpfc_sli_intf_if_type,
9538 				 &phba->sli4_hba.sli_intf);
9539 		switch (if_type) {
9540 		case LPFC_SLI_INTF_IF_TYPE_0:
9541 			phba->sli4_hba.ue_mask_lo =
9542 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9543 			phba->sli4_hba.ue_mask_hi =
9544 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9545 			uerrlo_reg.word0 =
9546 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9547 			uerrhi_reg.word0 =
9548 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9549 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9550 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9551 				lpfc_printf_log(phba, KERN_ERR,
9552 						LOG_TRACE_EVENT,
9553 						"1422 Unrecoverable Error "
9554 						"Detected during POST "
9555 						"uerr_lo_reg=0x%x, "
9556 						"uerr_hi_reg=0x%x, "
9557 						"ue_mask_lo_reg=0x%x, "
9558 						"ue_mask_hi_reg=0x%x\n",
9559 						uerrlo_reg.word0,
9560 						uerrhi_reg.word0,
9561 						phba->sli4_hba.ue_mask_lo,
9562 						phba->sli4_hba.ue_mask_hi);
9563 				port_error = -ENODEV;
9564 			}
9565 			break;
9566 		case LPFC_SLI_INTF_IF_TYPE_2:
9567 		case LPFC_SLI_INTF_IF_TYPE_6:
9568 			/* Final checks.  The port status should be clean. */
9569 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9570 				&reg_data.word0) ||
9571 				lpfc_sli4_unrecoverable_port(&reg_data)) {
9572 				phba->work_status[0] =
9573 					readl(phba->sli4_hba.u.if_type2.
9574 					      ERR1regaddr);
9575 				phba->work_status[1] =
9576 					readl(phba->sli4_hba.u.if_type2.
9577 					      ERR2regaddr);
9578 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9579 					"2888 Unrecoverable port error "
9580 					"following POST: port status reg "
9581 					"0x%x, port_smphr reg 0x%x, "
9582 					"error 1=0x%x, error 2=0x%x\n",
9583 					reg_data.word0,
9584 					portsmphr_reg.word0,
9585 					phba->work_status[0],
9586 					phba->work_status[1]);
9587 				port_error = -ENODEV;
9588 				break;
9589 			}
9590 
9591 			if (lpfc_pldv_detect &&
9592 			    bf_get(lpfc_sli_intf_sli_family,
9593 				   &phba->sli4_hba.sli_intf) ==
9594 					LPFC_SLI_INTF_FAMILY_G6)
9595 				pci_write_config_byte(phba->pcidev,
9596 						      LPFC_SLI_INTF, CFG_PLD);
9597 			break;
9598 		case LPFC_SLI_INTF_IF_TYPE_1:
9599 		default:
9600 			break;
9601 		}
9602 	}
9603 	return port_error;
9604 }
9605 
9606 /**
9607  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9608  * @phba: pointer to lpfc hba data structure.
9609  * @if_type:  The SLI4 interface type getting configured.
9610  *
9611  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9612  * memory map.
9613  **/
9614 static void
9615 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9616 {
9617 	switch (if_type) {
9618 	case LPFC_SLI_INTF_IF_TYPE_0:
9619 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9620 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9621 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9622 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9623 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9624 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9625 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9626 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9627 		phba->sli4_hba.SLIINTFregaddr =
9628 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9629 		break;
9630 	case LPFC_SLI_INTF_IF_TYPE_2:
9631 		phba->sli4_hba.u.if_type2.EQDregaddr =
9632 			phba->sli4_hba.conf_regs_memmap_p +
9633 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9634 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9635 			phba->sli4_hba.conf_regs_memmap_p +
9636 						LPFC_CTL_PORT_ER1_OFFSET;
9637 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9638 			phba->sli4_hba.conf_regs_memmap_p +
9639 						LPFC_CTL_PORT_ER2_OFFSET;
9640 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9641 			phba->sli4_hba.conf_regs_memmap_p +
9642 						LPFC_CTL_PORT_CTL_OFFSET;
9643 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9644 			phba->sli4_hba.conf_regs_memmap_p +
9645 						LPFC_CTL_PORT_STA_OFFSET;
9646 		phba->sli4_hba.SLIINTFregaddr =
9647 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9648 		phba->sli4_hba.PSMPHRregaddr =
9649 			phba->sli4_hba.conf_regs_memmap_p +
9650 						LPFC_CTL_PORT_SEM_OFFSET;
9651 		phba->sli4_hba.RQDBregaddr =
9652 			phba->sli4_hba.conf_regs_memmap_p +
9653 						LPFC_ULP0_RQ_DOORBELL;
9654 		phba->sli4_hba.WQDBregaddr =
9655 			phba->sli4_hba.conf_regs_memmap_p +
9656 						LPFC_ULP0_WQ_DOORBELL;
9657 		phba->sli4_hba.CQDBregaddr =
9658 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9659 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9660 		phba->sli4_hba.MQDBregaddr =
9661 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9662 		phba->sli4_hba.BMBXregaddr =
9663 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9664 		break;
9665 	case LPFC_SLI_INTF_IF_TYPE_6:
9666 		phba->sli4_hba.u.if_type2.EQDregaddr =
9667 			phba->sli4_hba.conf_regs_memmap_p +
9668 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9669 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9670 			phba->sli4_hba.conf_regs_memmap_p +
9671 						LPFC_CTL_PORT_ER1_OFFSET;
9672 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9673 			phba->sli4_hba.conf_regs_memmap_p +
9674 						LPFC_CTL_PORT_ER2_OFFSET;
9675 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9676 			phba->sli4_hba.conf_regs_memmap_p +
9677 						LPFC_CTL_PORT_CTL_OFFSET;
9678 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9679 			phba->sli4_hba.conf_regs_memmap_p +
9680 						LPFC_CTL_PORT_STA_OFFSET;
9681 		phba->sli4_hba.PSMPHRregaddr =
9682 			phba->sli4_hba.conf_regs_memmap_p +
9683 						LPFC_CTL_PORT_SEM_OFFSET;
9684 		phba->sli4_hba.BMBXregaddr =
9685 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9686 		break;
9687 	case LPFC_SLI_INTF_IF_TYPE_1:
9688 	default:
9689 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9690 			   "FATAL - unsupported SLI4 interface type - %d\n",
9691 			   if_type);
9692 		break;
9693 	}
9694 }
9695 
9696 /**
9697  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9698  * @phba: pointer to lpfc hba data structure.
9699  * @if_type: sli if type to operate on.
9700  *
9701  * This routine is invoked to set up SLI4 BAR1 register memory map.
9702  **/
9703 static void
9704 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9705 {
9706 	switch (if_type) {
9707 	case LPFC_SLI_INTF_IF_TYPE_0:
9708 		phba->sli4_hba.PSMPHRregaddr =
9709 			phba->sli4_hba.ctrl_regs_memmap_p +
9710 			LPFC_SLIPORT_IF0_SMPHR;
9711 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9712 			LPFC_HST_ISR0;
9713 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9714 			LPFC_HST_IMR0;
9715 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9716 			LPFC_HST_ISCR0;
9717 		break;
9718 	case LPFC_SLI_INTF_IF_TYPE_6:
9719 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9720 			LPFC_IF6_RQ_DOORBELL;
9721 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9722 			LPFC_IF6_WQ_DOORBELL;
9723 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9724 			LPFC_IF6_CQ_DOORBELL;
9725 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9726 			LPFC_IF6_EQ_DOORBELL;
9727 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9728 			LPFC_IF6_MQ_DOORBELL;
9729 		break;
9730 	case LPFC_SLI_INTF_IF_TYPE_2:
9731 	case LPFC_SLI_INTF_IF_TYPE_1:
9732 	default:
9733 		dev_err(&phba->pcidev->dev,
9734 			   "FATAL - unsupported SLI4 interface type - %d\n",
9735 			   if_type);
9736 		break;
9737 	}
9738 }
9739 
9740 /**
9741  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9742  * @phba: pointer to lpfc hba data structure.
9743  * @vf: virtual function number
9744  *
9745  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9746  * based on the given viftual function number, @vf.
9747  *
9748  * Return 0 if successful, otherwise -ENODEV.
9749  **/
9750 static int
9751 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9752 {
9753 	if (vf > LPFC_VIR_FUNC_MAX)
9754 		return -ENODEV;
9755 
9756 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9757 				vf * LPFC_VFR_PAGE_SIZE +
9758 					LPFC_ULP0_RQ_DOORBELL);
9759 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9760 				vf * LPFC_VFR_PAGE_SIZE +
9761 					LPFC_ULP0_WQ_DOORBELL);
9762 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9763 				vf * LPFC_VFR_PAGE_SIZE +
9764 					LPFC_EQCQ_DOORBELL);
9765 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9766 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9767 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9768 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9769 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9770 	return 0;
9771 }
9772 
9773 /**
9774  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9775  * @phba: pointer to lpfc hba data structure.
9776  *
9777  * This routine is invoked to create the bootstrap mailbox
9778  * region consistent with the SLI-4 interface spec.  This
9779  * routine allocates all memory necessary to communicate
9780  * mailbox commands to the port and sets up all alignment
9781  * needs.  No locks are expected to be held when calling
9782  * this routine.
9783  *
9784  * Return codes
9785  * 	0 - successful
9786  * 	-ENOMEM - could not allocated memory.
9787  **/
9788 static int
9789 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9790 {
9791 	uint32_t bmbx_size;
9792 	struct lpfc_dmabuf *dmabuf;
9793 	struct dma_address *dma_address;
9794 	uint32_t pa_addr;
9795 	uint64_t phys_addr;
9796 
9797 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9798 	if (!dmabuf)
9799 		return -ENOMEM;
9800 
9801 	/*
9802 	 * The bootstrap mailbox region is comprised of 2 parts
9803 	 * plus an alignment restriction of 16 bytes.
9804 	 */
9805 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9806 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9807 					  &dmabuf->phys, GFP_KERNEL);
9808 	if (!dmabuf->virt) {
9809 		kfree(dmabuf);
9810 		return -ENOMEM;
9811 	}
9812 
9813 	/*
9814 	 * Initialize the bootstrap mailbox pointers now so that the register
9815 	 * operations are simple later.  The mailbox dma address is required
9816 	 * to be 16-byte aligned.  Also align the virtual memory as each
9817 	 * maibox is copied into the bmbx mailbox region before issuing the
9818 	 * command to the port.
9819 	 */
9820 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9821 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9822 
9823 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9824 					      LPFC_ALIGN_16_BYTE);
9825 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9826 					      LPFC_ALIGN_16_BYTE);
9827 
9828 	/*
9829 	 * Set the high and low physical addresses now.  The SLI4 alignment
9830 	 * requirement is 16 bytes and the mailbox is posted to the port
9831 	 * as two 30-bit addresses.  The other data is a bit marking whether
9832 	 * the 30-bit address is the high or low address.
9833 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9834 	 * clean on 32 bit machines.
9835 	 */
9836 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9837 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9838 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9839 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9840 					   LPFC_BMBX_BIT1_ADDR_HI);
9841 
9842 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9843 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9844 					   LPFC_BMBX_BIT1_ADDR_LO);
9845 	return 0;
9846 }
9847 
9848 /**
9849  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9850  * @phba: pointer to lpfc hba data structure.
9851  *
9852  * This routine is invoked to teardown the bootstrap mailbox
9853  * region and release all host resources. This routine requires
9854  * the caller to ensure all mailbox commands recovered, no
9855  * additional mailbox comands are sent, and interrupts are disabled
9856  * before calling this routine.
9857  *
9858  **/
9859 static void
9860 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9861 {
9862 	dma_free_coherent(&phba->pcidev->dev,
9863 			  phba->sli4_hba.bmbx.bmbx_size,
9864 			  phba->sli4_hba.bmbx.dmabuf->virt,
9865 			  phba->sli4_hba.bmbx.dmabuf->phys);
9866 
9867 	kfree(phba->sli4_hba.bmbx.dmabuf);
9868 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9869 }
9870 
9871 static const char * const lpfc_topo_to_str[] = {
9872 	"Loop then P2P",
9873 	"Loopback",
9874 	"P2P Only",
9875 	"Unsupported",
9876 	"Loop Only",
9877 	"Unsupported",
9878 	"P2P then Loop",
9879 };
9880 
9881 #define	LINK_FLAGS_DEF	0x0
9882 #define	LINK_FLAGS_P2P	0x1
9883 #define	LINK_FLAGS_LOOP	0x2
9884 /**
9885  * lpfc_map_topology - Map the topology read from READ_CONFIG
9886  * @phba: pointer to lpfc hba data structure.
9887  * @rd_config: pointer to read config data
9888  *
9889  * This routine is invoked to map the topology values as read
9890  * from the read config mailbox command. If the persistent
9891  * topology feature is supported, the firmware will provide the
9892  * saved topology information to be used in INIT_LINK
9893  **/
9894 static void
9895 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9896 {
9897 	u8 ptv, tf, pt;
9898 
9899 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9900 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9901 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9902 
9903 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9904 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9905 			 ptv, tf, pt);
9906 	if (!ptv) {
9907 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9908 				"2019 FW does not support persistent topology "
9909 				"Using driver parameter defined value [%s]",
9910 				lpfc_topo_to_str[phba->cfg_topology]);
9911 		return;
9912 	}
9913 	/* FW supports persistent topology - override module parameter value */
9914 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9915 
9916 	/* if ASIC_GEN_NUM >= 0xC) */
9917 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9918 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9919 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9920 		    LPFC_SLI_INTF_FAMILY_G6)) {
9921 		if (!tf) {
9922 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9923 					? FLAGS_TOPOLOGY_MODE_LOOP
9924 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9925 		} else {
9926 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9927 		}
9928 	} else { /* G5 */
9929 		if (tf) {
9930 			/* If topology failover set - pt is '0' or '1' */
9931 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9932 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9933 		} else {
9934 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9935 					? FLAGS_TOPOLOGY_MODE_PT_PT
9936 					: FLAGS_TOPOLOGY_MODE_LOOP);
9937 		}
9938 	}
9939 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9940 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9941 				"2020 Using persistent topology value [%s]",
9942 				lpfc_topo_to_str[phba->cfg_topology]);
9943 	} else {
9944 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9945 				"2021 Invalid topology values from FW "
9946 				"Using driver parameter defined value [%s]",
9947 				lpfc_topo_to_str[phba->cfg_topology]);
9948 	}
9949 }
9950 
9951 /**
9952  * lpfc_sli4_read_config - Get the config parameters.
9953  * @phba: pointer to lpfc hba data structure.
9954  *
9955  * This routine is invoked to read the configuration parameters from the HBA.
9956  * The configuration parameters are used to set the base and maximum values
9957  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9958  * allocation for the port.
9959  *
9960  * Return codes
9961  * 	0 - successful
9962  * 	-ENOMEM - No available memory
9963  *      -EIO - The mailbox failed to complete successfully.
9964  **/
9965 int
9966 lpfc_sli4_read_config(struct lpfc_hba *phba)
9967 {
9968 	LPFC_MBOXQ_t *pmb;
9969 	struct lpfc_mbx_read_config *rd_config;
9970 	union  lpfc_sli4_cfg_shdr *shdr;
9971 	uint32_t shdr_status, shdr_add_status;
9972 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9973 	struct lpfc_rsrc_desc_fcfcoe *desc;
9974 	char *pdesc_0;
9975 	uint16_t forced_link_speed;
9976 	uint32_t if_type, qmin, fawwpn;
9977 	int length, i, rc = 0, rc2;
9978 
9979 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9980 	if (!pmb) {
9981 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9982 				"2011 Unable to allocate memory for issuing "
9983 				"SLI_CONFIG_SPECIAL mailbox command\n");
9984 		return -ENOMEM;
9985 	}
9986 
9987 	lpfc_read_config(phba, pmb);
9988 
9989 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9990 	if (rc != MBX_SUCCESS) {
9991 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9992 				"2012 Mailbox failed , mbxCmd x%x "
9993 				"READ_CONFIG, mbxStatus x%x\n",
9994 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9995 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9996 		rc = -EIO;
9997 	} else {
9998 		rd_config = &pmb->u.mqe.un.rd_config;
9999 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
10000 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
10001 			phba->sli4_hba.lnk_info.lnk_tp =
10002 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
10003 			phba->sli4_hba.lnk_info.lnk_no =
10004 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
10005 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10006 					"3081 lnk_type:%d, lnk_numb:%d\n",
10007 					phba->sli4_hba.lnk_info.lnk_tp,
10008 					phba->sli4_hba.lnk_info.lnk_no);
10009 		} else
10010 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10011 					"3082 Mailbox (x%x) returned ldv:x0\n",
10012 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
10013 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
10014 			phba->bbcredit_support = 1;
10015 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
10016 		}
10017 
10018 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
10019 
10020 		if (fawwpn) {
10021 			lpfc_printf_log(phba, KERN_INFO,
10022 					LOG_INIT | LOG_DISCOVERY,
10023 					"2702 READ_CONFIG: FA-PWWN is "
10024 					"configured on\n");
10025 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
10026 		} else {
10027 			/* Clear FW configured flag, preserve driver flag */
10028 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
10029 		}
10030 
10031 		phba->sli4_hba.conf_trunk =
10032 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
10033 		phba->sli4_hba.extents_in_use =
10034 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
10035 
10036 		phba->sli4_hba.max_cfg_param.max_xri =
10037 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
10038 		/* Reduce resource usage in kdump environment */
10039 		if (is_kdump_kernel() &&
10040 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
10041 			phba->sli4_hba.max_cfg_param.max_xri = 512;
10042 		phba->sli4_hba.max_cfg_param.xri_base =
10043 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
10044 		phba->sli4_hba.max_cfg_param.max_vpi =
10045 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
10046 		/* Limit the max we support */
10047 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
10048 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
10049 		phba->sli4_hba.max_cfg_param.vpi_base =
10050 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
10051 		phba->sli4_hba.max_cfg_param.max_rpi =
10052 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
10053 		phba->sli4_hba.max_cfg_param.rpi_base =
10054 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
10055 		phba->sli4_hba.max_cfg_param.max_vfi =
10056 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10057 		phba->sli4_hba.max_cfg_param.vfi_base =
10058 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10059 		phba->sli4_hba.max_cfg_param.max_fcfi =
10060 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10061 		phba->sli4_hba.max_cfg_param.max_eq =
10062 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10063 		phba->sli4_hba.max_cfg_param.max_rq =
10064 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10065 		phba->sli4_hba.max_cfg_param.max_wq =
10066 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10067 		phba->sli4_hba.max_cfg_param.max_cq =
10068 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10069 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10070 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10071 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10072 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10073 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10074 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10075 		phba->max_vports = phba->max_vpi;
10076 
10077 		/* Next decide on FPIN or Signal E2E CGN support
10078 		 * For congestion alarms and warnings valid combination are:
10079 		 * 1. FPIN alarms / FPIN warnings
10080 		 * 2. Signal alarms / Signal warnings
10081 		 * 3. FPIN alarms / Signal warnings
10082 		 * 4. Signal alarms / FPIN warnings
10083 		 *
10084 		 * Initialize the adapter frequency to 100 mSecs
10085 		 */
10086 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10087 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10088 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10089 
10090 		if (lpfc_use_cgn_signal) {
10091 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10092 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10093 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10094 			}
10095 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10096 				/* MUST support both alarm and warning
10097 				 * because EDC does not support alarm alone.
10098 				 */
10099 				if (phba->cgn_reg_signal !=
10100 				    EDC_CG_SIG_WARN_ONLY) {
10101 					/* Must support both or none */
10102 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10103 					phba->cgn_reg_signal =
10104 						EDC_CG_SIG_NOTSUPPORTED;
10105 				} else {
10106 					phba->cgn_reg_signal =
10107 						EDC_CG_SIG_WARN_ALARM;
10108 					phba->cgn_reg_fpin =
10109 						LPFC_CGN_FPIN_NONE;
10110 				}
10111 			}
10112 		}
10113 
10114 		/* Set the congestion initial signal and fpin values. */
10115 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10116 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10117 
10118 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10119 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10120 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10121 
10122 		lpfc_map_topology(phba, rd_config);
10123 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10124 				"2003 cfg params Extents? %d "
10125 				"XRI(B:%d M:%d), "
10126 				"VPI(B:%d M:%d) "
10127 				"VFI(B:%d M:%d) "
10128 				"RPI(B:%d M:%d) "
10129 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10130 				phba->sli4_hba.extents_in_use,
10131 				phba->sli4_hba.max_cfg_param.xri_base,
10132 				phba->sli4_hba.max_cfg_param.max_xri,
10133 				phba->sli4_hba.max_cfg_param.vpi_base,
10134 				phba->sli4_hba.max_cfg_param.max_vpi,
10135 				phba->sli4_hba.max_cfg_param.vfi_base,
10136 				phba->sli4_hba.max_cfg_param.max_vfi,
10137 				phba->sli4_hba.max_cfg_param.rpi_base,
10138 				phba->sli4_hba.max_cfg_param.max_rpi,
10139 				phba->sli4_hba.max_cfg_param.max_fcfi,
10140 				phba->sli4_hba.max_cfg_param.max_eq,
10141 				phba->sli4_hba.max_cfg_param.max_cq,
10142 				phba->sli4_hba.max_cfg_param.max_wq,
10143 				phba->sli4_hba.max_cfg_param.max_rq,
10144 				phba->lmt);
10145 
10146 		/*
10147 		 * Calculate queue resources based on how
10148 		 * many WQ/CQ/EQs are available.
10149 		 */
10150 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10151 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10152 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10153 		/*
10154 		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10155 		 * the remainder can be used for NVME / FCP.
10156 		 */
10157 		qmin -= 4;
10158 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10159 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10160 
10161 		/* Check to see if there is enough for default cfg */
10162 		if ((phba->cfg_irq_chann > qmin) ||
10163 		    (phba->cfg_hdw_queue > qmin)) {
10164 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10165 					"2005 Reducing Queues - "
10166 					"FW resource limitation: "
10167 					"WQ %d CQ %d EQ %d: min %d: "
10168 					"IRQ %d HDWQ %d\n",
10169 					phba->sli4_hba.max_cfg_param.max_wq,
10170 					phba->sli4_hba.max_cfg_param.max_cq,
10171 					phba->sli4_hba.max_cfg_param.max_eq,
10172 					qmin, phba->cfg_irq_chann,
10173 					phba->cfg_hdw_queue);
10174 
10175 			if (phba->cfg_irq_chann > qmin)
10176 				phba->cfg_irq_chann = qmin;
10177 			if (phba->cfg_hdw_queue > qmin)
10178 				phba->cfg_hdw_queue = qmin;
10179 		}
10180 	}
10181 
10182 	if (rc)
10183 		goto read_cfg_out;
10184 
10185 	/* Update link speed if forced link speed is supported */
10186 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10187 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10188 		forced_link_speed =
10189 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10190 		if (forced_link_speed) {
10191 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10192 
10193 			switch (forced_link_speed) {
10194 			case LINK_SPEED_1G:
10195 				phba->cfg_link_speed =
10196 					LPFC_USER_LINK_SPEED_1G;
10197 				break;
10198 			case LINK_SPEED_2G:
10199 				phba->cfg_link_speed =
10200 					LPFC_USER_LINK_SPEED_2G;
10201 				break;
10202 			case LINK_SPEED_4G:
10203 				phba->cfg_link_speed =
10204 					LPFC_USER_LINK_SPEED_4G;
10205 				break;
10206 			case LINK_SPEED_8G:
10207 				phba->cfg_link_speed =
10208 					LPFC_USER_LINK_SPEED_8G;
10209 				break;
10210 			case LINK_SPEED_10G:
10211 				phba->cfg_link_speed =
10212 					LPFC_USER_LINK_SPEED_10G;
10213 				break;
10214 			case LINK_SPEED_16G:
10215 				phba->cfg_link_speed =
10216 					LPFC_USER_LINK_SPEED_16G;
10217 				break;
10218 			case LINK_SPEED_32G:
10219 				phba->cfg_link_speed =
10220 					LPFC_USER_LINK_SPEED_32G;
10221 				break;
10222 			case LINK_SPEED_64G:
10223 				phba->cfg_link_speed =
10224 					LPFC_USER_LINK_SPEED_64G;
10225 				break;
10226 			case 0xffff:
10227 				phba->cfg_link_speed =
10228 					LPFC_USER_LINK_SPEED_AUTO;
10229 				break;
10230 			default:
10231 				lpfc_printf_log(phba, KERN_ERR,
10232 						LOG_TRACE_EVENT,
10233 						"0047 Unrecognized link "
10234 						"speed : %d\n",
10235 						forced_link_speed);
10236 				phba->cfg_link_speed =
10237 					LPFC_USER_LINK_SPEED_AUTO;
10238 			}
10239 		}
10240 	}
10241 
10242 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10243 	length = phba->sli4_hba.max_cfg_param.max_xri -
10244 			lpfc_sli4_get_els_iocb_cnt(phba);
10245 	if (phba->cfg_hba_queue_depth > length) {
10246 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10247 				"3361 HBA queue depth changed from %d to %d\n",
10248 				phba->cfg_hba_queue_depth, length);
10249 		phba->cfg_hba_queue_depth = length;
10250 	}
10251 
10252 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10253 	    LPFC_SLI_INTF_IF_TYPE_2)
10254 		goto read_cfg_out;
10255 
10256 	/* get the pf# and vf# for SLI4 if_type 2 port */
10257 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10258 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10259 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10260 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10261 			 length, LPFC_SLI4_MBX_EMBED);
10262 
10263 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10264 	shdr = (union lpfc_sli4_cfg_shdr *)
10265 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10266 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10267 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10268 	if (rc2 || shdr_status || shdr_add_status) {
10269 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10270 				"3026 Mailbox failed , mbxCmd x%x "
10271 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10272 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10273 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10274 		goto read_cfg_out;
10275 	}
10276 
10277 	/* search for fc_fcoe resrouce descriptor */
10278 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10279 
10280 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10281 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10282 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10283 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10284 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10285 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10286 		goto read_cfg_out;
10287 
10288 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10289 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10290 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10291 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10292 			phba->sli4_hba.iov.pf_number =
10293 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10294 			phba->sli4_hba.iov.vf_number =
10295 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10296 			break;
10297 		}
10298 	}
10299 
10300 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10301 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10302 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10303 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10304 				phba->sli4_hba.iov.vf_number);
10305 	else
10306 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10307 				"3028 GET_FUNCTION_CONFIG: failed to find "
10308 				"Resource Descriptor:x%x\n",
10309 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10310 
10311 read_cfg_out:
10312 	mempool_free(pmb, phba->mbox_mem_pool);
10313 	return rc;
10314 }
10315 
10316 /**
10317  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10318  * @phba: pointer to lpfc hba data structure.
10319  *
10320  * This routine is invoked to setup the port-side endian order when
10321  * the port if_type is 0.  This routine has no function for other
10322  * if_types.
10323  *
10324  * Return codes
10325  * 	0 - successful
10326  * 	-ENOMEM - No available memory
10327  *      -EIO - The mailbox failed to complete successfully.
10328  **/
10329 static int
10330 lpfc_setup_endian_order(struct lpfc_hba *phba)
10331 {
10332 	LPFC_MBOXQ_t *mboxq;
10333 	uint32_t if_type, rc = 0;
10334 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10335 				      HOST_ENDIAN_HIGH_WORD1};
10336 
10337 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10338 	switch (if_type) {
10339 	case LPFC_SLI_INTF_IF_TYPE_0:
10340 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10341 						       GFP_KERNEL);
10342 		if (!mboxq) {
10343 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10344 					"0492 Unable to allocate memory for "
10345 					"issuing SLI_CONFIG_SPECIAL mailbox "
10346 					"command\n");
10347 			return -ENOMEM;
10348 		}
10349 
10350 		/*
10351 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10352 		 * two words to contain special data values and no other data.
10353 		 */
10354 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10355 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10356 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10357 		if (rc != MBX_SUCCESS) {
10358 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10359 					"0493 SLI_CONFIG_SPECIAL mailbox "
10360 					"failed with status x%x\n",
10361 					rc);
10362 			rc = -EIO;
10363 		}
10364 		mempool_free(mboxq, phba->mbox_mem_pool);
10365 		break;
10366 	case LPFC_SLI_INTF_IF_TYPE_6:
10367 	case LPFC_SLI_INTF_IF_TYPE_2:
10368 	case LPFC_SLI_INTF_IF_TYPE_1:
10369 	default:
10370 		break;
10371 	}
10372 	return rc;
10373 }
10374 
10375 /**
10376  * lpfc_sli4_queue_verify - Verify and update EQ counts
10377  * @phba: pointer to lpfc hba data structure.
10378  *
10379  * This routine is invoked to check the user settable queue counts for EQs.
10380  * After this routine is called the counts will be set to valid values that
10381  * adhere to the constraints of the system's interrupt vectors and the port's
10382  * queue resources.
10383  *
10384  * Return codes
10385  *      0 - successful
10386  *      -ENOMEM - No available memory
10387  **/
10388 static int
10389 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10390 {
10391 	/*
10392 	 * Sanity check for configured queue parameters against the run-time
10393 	 * device parameters
10394 	 */
10395 
10396 	if (phba->nvmet_support) {
10397 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10398 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10399 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10400 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10401 	}
10402 
10403 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10404 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10405 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10406 			phba->cfg_nvmet_mrq);
10407 
10408 	/* Get EQ depth from module parameter, fake the default for now */
10409 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10410 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10411 
10412 	/* Get CQ depth from module parameter, fake the default for now */
10413 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10414 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10415 	return 0;
10416 }
10417 
10418 static int
10419 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10420 {
10421 	struct lpfc_queue *qdesc;
10422 	u32 wqesize;
10423 	int cpu;
10424 
10425 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10426 	/* Create Fast Path IO CQs */
10427 	if (phba->enab_exp_wqcq_pages)
10428 		/* Increase the CQ size when WQEs contain an embedded cdb */
10429 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10430 					      phba->sli4_hba.cq_esize,
10431 					      LPFC_CQE_EXP_COUNT, cpu);
10432 
10433 	else
10434 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10435 					      phba->sli4_hba.cq_esize,
10436 					      phba->sli4_hba.cq_ecount, cpu);
10437 	if (!qdesc) {
10438 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10439 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10440 				idx);
10441 		return 1;
10442 	}
10443 	qdesc->qe_valid = 1;
10444 	qdesc->hdwq = idx;
10445 	qdesc->chann = cpu;
10446 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10447 
10448 	/* Create Fast Path IO WQs */
10449 	if (phba->enab_exp_wqcq_pages) {
10450 		/* Increase the WQ size when WQEs contain an embedded cdb */
10451 		wqesize = (phba->fcp_embed_io) ?
10452 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10453 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10454 					      wqesize,
10455 					      LPFC_WQE_EXP_COUNT, cpu);
10456 	} else
10457 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10458 					      phba->sli4_hba.wq_esize,
10459 					      phba->sli4_hba.wq_ecount, cpu);
10460 
10461 	if (!qdesc) {
10462 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10463 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10464 				idx);
10465 		return 1;
10466 	}
10467 	qdesc->hdwq = idx;
10468 	qdesc->chann = cpu;
10469 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10470 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10471 	return 0;
10472 }
10473 
10474 /**
10475  * lpfc_sli4_queue_create - Create all the SLI4 queues
10476  * @phba: pointer to lpfc hba data structure.
10477  *
10478  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10479  * operation. For each SLI4 queue type, the parameters such as queue entry
10480  * count (queue depth) shall be taken from the module parameter. For now,
10481  * we just use some constant number as place holder.
10482  *
10483  * Return codes
10484  *      0 - successful
10485  *      -ENOMEM - No availble memory
10486  *      -EIO - The mailbox failed to complete successfully.
10487  **/
10488 int
10489 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10490 {
10491 	struct lpfc_queue *qdesc;
10492 	int idx, cpu, eqcpu;
10493 	struct lpfc_sli4_hdw_queue *qp;
10494 	struct lpfc_vector_map_info *cpup;
10495 	struct lpfc_vector_map_info *eqcpup;
10496 	struct lpfc_eq_intr_info *eqi;
10497 
10498 	/*
10499 	 * Create HBA Record arrays.
10500 	 * Both NVME and FCP will share that same vectors / EQs
10501 	 */
10502 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10503 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10504 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10505 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10506 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10507 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10508 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10509 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10510 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10511 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10512 
10513 	if (!phba->sli4_hba.hdwq) {
10514 		phba->sli4_hba.hdwq = kcalloc(
10515 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10516 			GFP_KERNEL);
10517 		if (!phba->sli4_hba.hdwq) {
10518 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10519 					"6427 Failed allocate memory for "
10520 					"fast-path Hardware Queue array\n");
10521 			goto out_error;
10522 		}
10523 		/* Prepare hardware queues to take IO buffers */
10524 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10525 			qp = &phba->sli4_hba.hdwq[idx];
10526 			spin_lock_init(&qp->io_buf_list_get_lock);
10527 			spin_lock_init(&qp->io_buf_list_put_lock);
10528 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10529 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10530 			qp->get_io_bufs = 0;
10531 			qp->put_io_bufs = 0;
10532 			qp->total_io_bufs = 0;
10533 			spin_lock_init(&qp->abts_io_buf_list_lock);
10534 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10535 			qp->abts_scsi_io_bufs = 0;
10536 			qp->abts_nvme_io_bufs = 0;
10537 			INIT_LIST_HEAD(&qp->sgl_list);
10538 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10539 			spin_lock_init(&qp->hdwq_lock);
10540 		}
10541 	}
10542 
10543 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10544 		if (phba->nvmet_support) {
10545 			phba->sli4_hba.nvmet_cqset = kcalloc(
10546 					phba->cfg_nvmet_mrq,
10547 					sizeof(struct lpfc_queue *),
10548 					GFP_KERNEL);
10549 			if (!phba->sli4_hba.nvmet_cqset) {
10550 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10551 					"3121 Fail allocate memory for "
10552 					"fast-path CQ set array\n");
10553 				goto out_error;
10554 			}
10555 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10556 					phba->cfg_nvmet_mrq,
10557 					sizeof(struct lpfc_queue *),
10558 					GFP_KERNEL);
10559 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10560 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10561 					"3122 Fail allocate memory for "
10562 					"fast-path RQ set hdr array\n");
10563 				goto out_error;
10564 			}
10565 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10566 					phba->cfg_nvmet_mrq,
10567 					sizeof(struct lpfc_queue *),
10568 					GFP_KERNEL);
10569 			if (!phba->sli4_hba.nvmet_mrq_data) {
10570 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10571 					"3124 Fail allocate memory for "
10572 					"fast-path RQ set data array\n");
10573 				goto out_error;
10574 			}
10575 		}
10576 	}
10577 
10578 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10579 
10580 	/* Create HBA Event Queues (EQs) */
10581 	for_each_present_cpu(cpu) {
10582 		/* We only want to create 1 EQ per vector, even though
10583 		 * multiple CPUs might be using that vector. so only
10584 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10585 		 */
10586 		cpup = &phba->sli4_hba.cpu_map[cpu];
10587 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10588 			continue;
10589 
10590 		/* Get a ptr to the Hardware Queue associated with this CPU */
10591 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10592 
10593 		/* Allocate an EQ */
10594 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10595 					      phba->sli4_hba.eq_esize,
10596 					      phba->sli4_hba.eq_ecount, cpu);
10597 		if (!qdesc) {
10598 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10599 					"0497 Failed allocate EQ (%d)\n",
10600 					cpup->hdwq);
10601 			goto out_error;
10602 		}
10603 		qdesc->qe_valid = 1;
10604 		qdesc->hdwq = cpup->hdwq;
10605 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10606 		qdesc->last_cpu = qdesc->chann;
10607 
10608 		/* Save the allocated EQ in the Hardware Queue */
10609 		qp->hba_eq = qdesc;
10610 
10611 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10612 		list_add(&qdesc->cpu_list, &eqi->list);
10613 	}
10614 
10615 	/* Now we need to populate the other Hardware Queues, that share
10616 	 * an IRQ vector, with the associated EQ ptr.
10617 	 */
10618 	for_each_present_cpu(cpu) {
10619 		cpup = &phba->sli4_hba.cpu_map[cpu];
10620 
10621 		/* Check for EQ already allocated in previous loop */
10622 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10623 			continue;
10624 
10625 		/* Check for multiple CPUs per hdwq */
10626 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10627 		if (qp->hba_eq)
10628 			continue;
10629 
10630 		/* We need to share an EQ for this hdwq */
10631 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10632 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10633 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10634 	}
10635 
10636 	/* Allocate IO Path SLI4 CQ/WQs */
10637 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10638 		if (lpfc_alloc_io_wq_cq(phba, idx))
10639 			goto out_error;
10640 	}
10641 
10642 	if (phba->nvmet_support) {
10643 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10644 			cpu = lpfc_find_cpu_handle(phba, idx,
10645 						   LPFC_FIND_BY_HDWQ);
10646 			qdesc = lpfc_sli4_queue_alloc(phba,
10647 						      LPFC_DEFAULT_PAGE_SIZE,
10648 						      phba->sli4_hba.cq_esize,
10649 						      phba->sli4_hba.cq_ecount,
10650 						      cpu);
10651 			if (!qdesc) {
10652 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10653 						"3142 Failed allocate NVME "
10654 						"CQ Set (%d)\n", idx);
10655 				goto out_error;
10656 			}
10657 			qdesc->qe_valid = 1;
10658 			qdesc->hdwq = idx;
10659 			qdesc->chann = cpu;
10660 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10661 		}
10662 	}
10663 
10664 	/*
10665 	 * Create Slow Path Completion Queues (CQs)
10666 	 */
10667 
10668 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10669 	/* Create slow-path Mailbox Command Complete Queue */
10670 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10671 				      phba->sli4_hba.cq_esize,
10672 				      phba->sli4_hba.cq_ecount, cpu);
10673 	if (!qdesc) {
10674 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10675 				"0500 Failed allocate slow-path mailbox CQ\n");
10676 		goto out_error;
10677 	}
10678 	qdesc->qe_valid = 1;
10679 	phba->sli4_hba.mbx_cq = qdesc;
10680 
10681 	/* Create slow-path ELS Complete Queue */
10682 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10683 				      phba->sli4_hba.cq_esize,
10684 				      phba->sli4_hba.cq_ecount, cpu);
10685 	if (!qdesc) {
10686 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10687 				"0501 Failed allocate slow-path ELS CQ\n");
10688 		goto out_error;
10689 	}
10690 	qdesc->qe_valid = 1;
10691 	qdesc->chann = cpu;
10692 	phba->sli4_hba.els_cq = qdesc;
10693 
10694 
10695 	/*
10696 	 * Create Slow Path Work Queues (WQs)
10697 	 */
10698 
10699 	/* Create Mailbox Command Queue */
10700 
10701 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10702 				      phba->sli4_hba.mq_esize,
10703 				      phba->sli4_hba.mq_ecount, cpu);
10704 	if (!qdesc) {
10705 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10706 				"0505 Failed allocate slow-path MQ\n");
10707 		goto out_error;
10708 	}
10709 	qdesc->chann = cpu;
10710 	phba->sli4_hba.mbx_wq = qdesc;
10711 
10712 	/*
10713 	 * Create ELS Work Queues
10714 	 */
10715 
10716 	/* Create slow-path ELS Work Queue */
10717 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10718 				      phba->sli4_hba.wq_esize,
10719 				      phba->sli4_hba.wq_ecount, cpu);
10720 	if (!qdesc) {
10721 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10722 				"0504 Failed allocate slow-path ELS WQ\n");
10723 		goto out_error;
10724 	}
10725 	qdesc->chann = cpu;
10726 	phba->sli4_hba.els_wq = qdesc;
10727 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10728 
10729 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10730 		/* Create NVME LS Complete Queue */
10731 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10732 					      phba->sli4_hba.cq_esize,
10733 					      phba->sli4_hba.cq_ecount, cpu);
10734 		if (!qdesc) {
10735 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10736 					"6079 Failed allocate NVME LS CQ\n");
10737 			goto out_error;
10738 		}
10739 		qdesc->chann = cpu;
10740 		qdesc->qe_valid = 1;
10741 		phba->sli4_hba.nvmels_cq = qdesc;
10742 
10743 		/* Create NVME LS Work Queue */
10744 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10745 					      phba->sli4_hba.wq_esize,
10746 					      phba->sli4_hba.wq_ecount, cpu);
10747 		if (!qdesc) {
10748 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10749 					"6080 Failed allocate NVME LS WQ\n");
10750 			goto out_error;
10751 		}
10752 		qdesc->chann = cpu;
10753 		phba->sli4_hba.nvmels_wq = qdesc;
10754 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10755 	}
10756 
10757 	/*
10758 	 * Create Receive Queue (RQ)
10759 	 */
10760 
10761 	/* Create Receive Queue for header */
10762 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10763 				      phba->sli4_hba.rq_esize,
10764 				      phba->sli4_hba.rq_ecount, cpu);
10765 	if (!qdesc) {
10766 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10767 				"0506 Failed allocate receive HRQ\n");
10768 		goto out_error;
10769 	}
10770 	phba->sli4_hba.hdr_rq = qdesc;
10771 
10772 	/* Create Receive Queue for data */
10773 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10774 				      phba->sli4_hba.rq_esize,
10775 				      phba->sli4_hba.rq_ecount, cpu);
10776 	if (!qdesc) {
10777 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10778 				"0507 Failed allocate receive DRQ\n");
10779 		goto out_error;
10780 	}
10781 	phba->sli4_hba.dat_rq = qdesc;
10782 
10783 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10784 	    phba->nvmet_support) {
10785 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10786 			cpu = lpfc_find_cpu_handle(phba, idx,
10787 						   LPFC_FIND_BY_HDWQ);
10788 			/* Create NVMET Receive Queue for header */
10789 			qdesc = lpfc_sli4_queue_alloc(phba,
10790 						      LPFC_DEFAULT_PAGE_SIZE,
10791 						      phba->sli4_hba.rq_esize,
10792 						      LPFC_NVMET_RQE_DEF_COUNT,
10793 						      cpu);
10794 			if (!qdesc) {
10795 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10796 						"3146 Failed allocate "
10797 						"receive HRQ\n");
10798 				goto out_error;
10799 			}
10800 			qdesc->hdwq = idx;
10801 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10802 
10803 			/* Only needed for header of RQ pair */
10804 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10805 						   GFP_KERNEL,
10806 						   cpu_to_node(cpu));
10807 			if (qdesc->rqbp == NULL) {
10808 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10809 						"6131 Failed allocate "
10810 						"Header RQBP\n");
10811 				goto out_error;
10812 			}
10813 
10814 			/* Put list in known state in case driver load fails. */
10815 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10816 
10817 			/* Create NVMET Receive Queue for data */
10818 			qdesc = lpfc_sli4_queue_alloc(phba,
10819 						      LPFC_DEFAULT_PAGE_SIZE,
10820 						      phba->sli4_hba.rq_esize,
10821 						      LPFC_NVMET_RQE_DEF_COUNT,
10822 						      cpu);
10823 			if (!qdesc) {
10824 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10825 						"3156 Failed allocate "
10826 						"receive DRQ\n");
10827 				goto out_error;
10828 			}
10829 			qdesc->hdwq = idx;
10830 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10831 		}
10832 	}
10833 
10834 	/* Clear NVME stats */
10835 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10836 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10837 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10838 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10839 		}
10840 	}
10841 
10842 	/* Clear SCSI stats */
10843 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10844 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10845 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10846 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10847 		}
10848 	}
10849 
10850 	return 0;
10851 
10852 out_error:
10853 	lpfc_sli4_queue_destroy(phba);
10854 	return -ENOMEM;
10855 }
10856 
10857 static inline void
10858 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10859 {
10860 	if (*qp != NULL) {
10861 		lpfc_sli4_queue_free(*qp);
10862 		*qp = NULL;
10863 	}
10864 }
10865 
10866 static inline void
10867 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10868 {
10869 	int idx;
10870 
10871 	if (*qs == NULL)
10872 		return;
10873 
10874 	for (idx = 0; idx < max; idx++)
10875 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10876 
10877 	kfree(*qs);
10878 	*qs = NULL;
10879 }
10880 
10881 static inline void
10882 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10883 {
10884 	struct lpfc_sli4_hdw_queue *hdwq;
10885 	struct lpfc_queue *eq;
10886 	uint32_t idx;
10887 
10888 	hdwq = phba->sli4_hba.hdwq;
10889 
10890 	/* Loop thru all Hardware Queues */
10891 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10892 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10893 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10894 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10895 		hdwq[idx].hba_eq = NULL;
10896 		hdwq[idx].io_cq = NULL;
10897 		hdwq[idx].io_wq = NULL;
10898 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10899 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10900 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10901 	}
10902 	/* Loop thru all IRQ vectors */
10903 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10904 		/* Free the EQ corresponding to the IRQ vector */
10905 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10906 		lpfc_sli4_queue_free(eq);
10907 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10908 	}
10909 }
10910 
10911 /**
10912  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10913  * @phba: pointer to lpfc hba data structure.
10914  *
10915  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10916  * operation.
10917  *
10918  * Return codes
10919  *      0 - successful
10920  *      -ENOMEM - No available memory
10921  *      -EIO - The mailbox failed to complete successfully.
10922  **/
10923 void
10924 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10925 {
10926 	/*
10927 	 * Set FREE_INIT before beginning to free the queues.
10928 	 * Wait until the users of queues to acknowledge to
10929 	 * release queues by clearing FREE_WAIT.
10930 	 */
10931 	spin_lock_irq(&phba->hbalock);
10932 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10933 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10934 		spin_unlock_irq(&phba->hbalock);
10935 		msleep(20);
10936 		spin_lock_irq(&phba->hbalock);
10937 	}
10938 	spin_unlock_irq(&phba->hbalock);
10939 
10940 	lpfc_sli4_cleanup_poll_list(phba);
10941 
10942 	/* Release HBA eqs */
10943 	if (phba->sli4_hba.hdwq)
10944 		lpfc_sli4_release_hdwq(phba);
10945 
10946 	if (phba->nvmet_support) {
10947 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10948 					 phba->cfg_nvmet_mrq);
10949 
10950 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10951 					 phba->cfg_nvmet_mrq);
10952 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10953 					 phba->cfg_nvmet_mrq);
10954 	}
10955 
10956 	/* Release mailbox command work queue */
10957 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10958 
10959 	/* Release ELS work queue */
10960 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10961 
10962 	/* Release ELS work queue */
10963 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10964 
10965 	/* Release unsolicited receive queue */
10966 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10967 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10968 
10969 	/* Release ELS complete queue */
10970 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10971 
10972 	/* Release NVME LS complete queue */
10973 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10974 
10975 	/* Release mailbox command complete queue */
10976 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10977 
10978 	/* Everything on this list has been freed */
10979 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10980 
10981 	/* Done with freeing the queues */
10982 	spin_lock_irq(&phba->hbalock);
10983 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10984 	spin_unlock_irq(&phba->hbalock);
10985 }
10986 
10987 int
10988 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10989 {
10990 	struct lpfc_rqb *rqbp;
10991 	struct lpfc_dmabuf *h_buf;
10992 	struct rqb_dmabuf *rqb_buffer;
10993 
10994 	rqbp = rq->rqbp;
10995 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10996 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10997 				 struct lpfc_dmabuf, list);
10998 
10999 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
11000 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
11001 		rqbp->buffer_count--;
11002 	}
11003 	return 1;
11004 }
11005 
11006 static int
11007 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
11008 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
11009 	int qidx, uint32_t qtype)
11010 {
11011 	struct lpfc_sli_ring *pring;
11012 	int rc;
11013 
11014 	if (!eq || !cq || !wq) {
11015 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11016 			"6085 Fast-path %s (%d) not allocated\n",
11017 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
11018 		return -ENOMEM;
11019 	}
11020 
11021 	/* create the Cq first */
11022 	rc = lpfc_cq_create(phba, cq, eq,
11023 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
11024 	if (rc) {
11025 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11026 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
11027 				qidx, (uint32_t)rc);
11028 		return rc;
11029 	}
11030 
11031 	if (qtype != LPFC_MBOX) {
11032 		/* Setup cq_map for fast lookup */
11033 		if (cq_map)
11034 			*cq_map = cq->queue_id;
11035 
11036 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11037 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
11038 			qidx, cq->queue_id, qidx, eq->queue_id);
11039 
11040 		/* create the wq */
11041 		rc = lpfc_wq_create(phba, wq, cq, qtype);
11042 		if (rc) {
11043 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11044 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
11045 				qidx, (uint32_t)rc);
11046 			/* no need to tear down cq - caller will do so */
11047 			return rc;
11048 		}
11049 
11050 		/* Bind this CQ/WQ to the NVME ring */
11051 		pring = wq->pring;
11052 		pring->sli.sli4.wqp = (void *)wq;
11053 		cq->pring = pring;
11054 
11055 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11056 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11057 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11058 	} else {
11059 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11060 		if (rc) {
11061 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11062 					"0539 Failed setup of slow-path MQ: "
11063 					"rc = 0x%x\n", rc);
11064 			/* no need to tear down cq - caller will do so */
11065 			return rc;
11066 		}
11067 
11068 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11069 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11070 			phba->sli4_hba.mbx_wq->queue_id,
11071 			phba->sli4_hba.mbx_cq->queue_id);
11072 	}
11073 
11074 	return 0;
11075 }
11076 
11077 /**
11078  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11079  * @phba: pointer to lpfc hba data structure.
11080  *
11081  * This routine will populate the cq_lookup table by all
11082  * available CQ queue_id's.
11083  **/
11084 static void
11085 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11086 {
11087 	struct lpfc_queue *eq, *childq;
11088 	int qidx;
11089 
11090 	memset(phba->sli4_hba.cq_lookup, 0,
11091 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11092 	/* Loop thru all IRQ vectors */
11093 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11094 		/* Get the EQ corresponding to the IRQ vector */
11095 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11096 		if (!eq)
11097 			continue;
11098 		/* Loop through all CQs associated with that EQ */
11099 		list_for_each_entry(childq, &eq->child_list, list) {
11100 			if (childq->queue_id > phba->sli4_hba.cq_max)
11101 				continue;
11102 			if (childq->subtype == LPFC_IO)
11103 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11104 					childq;
11105 		}
11106 	}
11107 }
11108 
11109 /**
11110  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11111  * @phba: pointer to lpfc hba data structure.
11112  *
11113  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11114  * operation.
11115  *
11116  * Return codes
11117  *      0 - successful
11118  *      -ENOMEM - No available memory
11119  *      -EIO - The mailbox failed to complete successfully.
11120  **/
11121 int
11122 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11123 {
11124 	uint32_t shdr_status, shdr_add_status;
11125 	union lpfc_sli4_cfg_shdr *shdr;
11126 	struct lpfc_vector_map_info *cpup;
11127 	struct lpfc_sli4_hdw_queue *qp;
11128 	LPFC_MBOXQ_t *mboxq;
11129 	int qidx, cpu;
11130 	uint32_t length, usdelay;
11131 	int rc = -ENOMEM;
11132 
11133 	/* Check for dual-ULP support */
11134 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11135 	if (!mboxq) {
11136 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11137 				"3249 Unable to allocate memory for "
11138 				"QUERY_FW_CFG mailbox command\n");
11139 		return -ENOMEM;
11140 	}
11141 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11142 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11143 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11144 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11145 			 length, LPFC_SLI4_MBX_EMBED);
11146 
11147 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11148 
11149 	shdr = (union lpfc_sli4_cfg_shdr *)
11150 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11151 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11152 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11153 	if (shdr_status || shdr_add_status || rc) {
11154 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11155 				"3250 QUERY_FW_CFG mailbox failed with status "
11156 				"x%x add_status x%x, mbx status x%x\n",
11157 				shdr_status, shdr_add_status, rc);
11158 		mempool_free(mboxq, phba->mbox_mem_pool);
11159 		rc = -ENXIO;
11160 		goto out_error;
11161 	}
11162 
11163 	phba->sli4_hba.fw_func_mode =
11164 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11165 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11166 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11167 	phba->sli4_hba.physical_port =
11168 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11169 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11170 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11171 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11172 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11173 
11174 	mempool_free(mboxq, phba->mbox_mem_pool);
11175 
11176 	/*
11177 	 * Set up HBA Event Queues (EQs)
11178 	 */
11179 	qp = phba->sli4_hba.hdwq;
11180 
11181 	/* Set up HBA event queue */
11182 	if (!qp) {
11183 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11184 				"3147 Fast-path EQs not allocated\n");
11185 		rc = -ENOMEM;
11186 		goto out_error;
11187 	}
11188 
11189 	/* Loop thru all IRQ vectors */
11190 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11191 		/* Create HBA Event Queues (EQs) in order */
11192 		for_each_present_cpu(cpu) {
11193 			cpup = &phba->sli4_hba.cpu_map[cpu];
11194 
11195 			/* Look for the CPU thats using that vector with
11196 			 * LPFC_CPU_FIRST_IRQ set.
11197 			 */
11198 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11199 				continue;
11200 			if (qidx != cpup->eq)
11201 				continue;
11202 
11203 			/* Create an EQ for that vector */
11204 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11205 					    phba->cfg_fcp_imax);
11206 			if (rc) {
11207 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11208 						"0523 Failed setup of fast-path"
11209 						" EQ (%d), rc = 0x%x\n",
11210 						cpup->eq, (uint32_t)rc);
11211 				goto out_destroy;
11212 			}
11213 
11214 			/* Save the EQ for that vector in the hba_eq_hdl */
11215 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11216 				qp[cpup->hdwq].hba_eq;
11217 
11218 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11219 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11220 					cpup->eq,
11221 					qp[cpup->hdwq].hba_eq->queue_id);
11222 		}
11223 	}
11224 
11225 	/* Loop thru all Hardware Queues */
11226 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11227 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11228 		cpup = &phba->sli4_hba.cpu_map[cpu];
11229 
11230 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11231 		rc = lpfc_create_wq_cq(phba,
11232 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11233 				       qp[qidx].io_cq,
11234 				       qp[qidx].io_wq,
11235 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11236 				       qidx,
11237 				       LPFC_IO);
11238 		if (rc) {
11239 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11240 					"0535 Failed to setup fastpath "
11241 					"IO WQ/CQ (%d), rc = 0x%x\n",
11242 					qidx, (uint32_t)rc);
11243 			goto out_destroy;
11244 		}
11245 	}
11246 
11247 	/*
11248 	 * Set up Slow Path Complete Queues (CQs)
11249 	 */
11250 
11251 	/* Set up slow-path MBOX CQ/MQ */
11252 
11253 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11254 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11255 				"0528 %s not allocated\n",
11256 				phba->sli4_hba.mbx_cq ?
11257 				"Mailbox WQ" : "Mailbox CQ");
11258 		rc = -ENOMEM;
11259 		goto out_destroy;
11260 	}
11261 
11262 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11263 			       phba->sli4_hba.mbx_cq,
11264 			       phba->sli4_hba.mbx_wq,
11265 			       NULL, 0, LPFC_MBOX);
11266 	if (rc) {
11267 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11268 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11269 			(uint32_t)rc);
11270 		goto out_destroy;
11271 	}
11272 	if (phba->nvmet_support) {
11273 		if (!phba->sli4_hba.nvmet_cqset) {
11274 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11275 					"3165 Fast-path NVME CQ Set "
11276 					"array not allocated\n");
11277 			rc = -ENOMEM;
11278 			goto out_destroy;
11279 		}
11280 		if (phba->cfg_nvmet_mrq > 1) {
11281 			rc = lpfc_cq_create_set(phba,
11282 					phba->sli4_hba.nvmet_cqset,
11283 					qp,
11284 					LPFC_WCQ, LPFC_NVMET);
11285 			if (rc) {
11286 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11287 						"3164 Failed setup of NVME CQ "
11288 						"Set, rc = 0x%x\n",
11289 						(uint32_t)rc);
11290 				goto out_destroy;
11291 			}
11292 		} else {
11293 			/* Set up NVMET Receive Complete Queue */
11294 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11295 					    qp[0].hba_eq,
11296 					    LPFC_WCQ, LPFC_NVMET);
11297 			if (rc) {
11298 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11299 						"6089 Failed setup NVMET CQ: "
11300 						"rc = 0x%x\n", (uint32_t)rc);
11301 				goto out_destroy;
11302 			}
11303 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11304 
11305 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11306 					"6090 NVMET CQ setup: cq-id=%d, "
11307 					"parent eq-id=%d\n",
11308 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11309 					qp[0].hba_eq->queue_id);
11310 		}
11311 	}
11312 
11313 	/* Set up slow-path ELS WQ/CQ */
11314 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11315 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11316 				"0530 ELS %s not allocated\n",
11317 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11318 		rc = -ENOMEM;
11319 		goto out_destroy;
11320 	}
11321 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11322 			       phba->sli4_hba.els_cq,
11323 			       phba->sli4_hba.els_wq,
11324 			       NULL, 0, LPFC_ELS);
11325 	if (rc) {
11326 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11327 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11328 				(uint32_t)rc);
11329 		goto out_destroy;
11330 	}
11331 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11332 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11333 			phba->sli4_hba.els_wq->queue_id,
11334 			phba->sli4_hba.els_cq->queue_id);
11335 
11336 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11337 		/* Set up NVME LS Complete Queue */
11338 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11339 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11340 					"6091 LS %s not allocated\n",
11341 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11342 			rc = -ENOMEM;
11343 			goto out_destroy;
11344 		}
11345 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11346 				       phba->sli4_hba.nvmels_cq,
11347 				       phba->sli4_hba.nvmels_wq,
11348 				       NULL, 0, LPFC_NVME_LS);
11349 		if (rc) {
11350 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11351 					"0526 Failed setup of NVVME LS WQ/CQ: "
11352 					"rc = 0x%x\n", (uint32_t)rc);
11353 			goto out_destroy;
11354 		}
11355 
11356 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11357 				"6096 ELS WQ setup: wq-id=%d, "
11358 				"parent cq-id=%d\n",
11359 				phba->sli4_hba.nvmels_wq->queue_id,
11360 				phba->sli4_hba.nvmels_cq->queue_id);
11361 	}
11362 
11363 	/*
11364 	 * Create NVMET Receive Queue (RQ)
11365 	 */
11366 	if (phba->nvmet_support) {
11367 		if ((!phba->sli4_hba.nvmet_cqset) ||
11368 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11369 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11370 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11371 					"6130 MRQ CQ Queues not "
11372 					"allocated\n");
11373 			rc = -ENOMEM;
11374 			goto out_destroy;
11375 		}
11376 		if (phba->cfg_nvmet_mrq > 1) {
11377 			rc = lpfc_mrq_create(phba,
11378 					     phba->sli4_hba.nvmet_mrq_hdr,
11379 					     phba->sli4_hba.nvmet_mrq_data,
11380 					     phba->sli4_hba.nvmet_cqset,
11381 					     LPFC_NVMET);
11382 			if (rc) {
11383 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11384 						"6098 Failed setup of NVMET "
11385 						"MRQ: rc = 0x%x\n",
11386 						(uint32_t)rc);
11387 				goto out_destroy;
11388 			}
11389 
11390 		} else {
11391 			rc = lpfc_rq_create(phba,
11392 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11393 					    phba->sli4_hba.nvmet_mrq_data[0],
11394 					    phba->sli4_hba.nvmet_cqset[0],
11395 					    LPFC_NVMET);
11396 			if (rc) {
11397 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11398 						"6057 Failed setup of NVMET "
11399 						"Receive Queue: rc = 0x%x\n",
11400 						(uint32_t)rc);
11401 				goto out_destroy;
11402 			}
11403 
11404 			lpfc_printf_log(
11405 				phba, KERN_INFO, LOG_INIT,
11406 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11407 				"dat-rq-id=%d parent cq-id=%d\n",
11408 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11409 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11410 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11411 
11412 		}
11413 	}
11414 
11415 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11416 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11417 				"0540 Receive Queue not allocated\n");
11418 		rc = -ENOMEM;
11419 		goto out_destroy;
11420 	}
11421 
11422 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11423 			    phba->sli4_hba.els_cq, LPFC_USOL);
11424 	if (rc) {
11425 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11426 				"0541 Failed setup of Receive Queue: "
11427 				"rc = 0x%x\n", (uint32_t)rc);
11428 		goto out_destroy;
11429 	}
11430 
11431 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11432 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11433 			"parent cq-id=%d\n",
11434 			phba->sli4_hba.hdr_rq->queue_id,
11435 			phba->sli4_hba.dat_rq->queue_id,
11436 			phba->sli4_hba.els_cq->queue_id);
11437 
11438 	if (phba->cfg_fcp_imax)
11439 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11440 	else
11441 		usdelay = 0;
11442 
11443 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11444 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11445 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11446 					 usdelay);
11447 
11448 	if (phba->sli4_hba.cq_max) {
11449 		kfree(phba->sli4_hba.cq_lookup);
11450 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11451 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11452 		if (!phba->sli4_hba.cq_lookup) {
11453 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11454 					"0549 Failed setup of CQ Lookup table: "
11455 					"size 0x%x\n", phba->sli4_hba.cq_max);
11456 			rc = -ENOMEM;
11457 			goto out_destroy;
11458 		}
11459 		lpfc_setup_cq_lookup(phba);
11460 	}
11461 	return 0;
11462 
11463 out_destroy:
11464 	lpfc_sli4_queue_unset(phba);
11465 out_error:
11466 	return rc;
11467 }
11468 
11469 /**
11470  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11471  * @phba: pointer to lpfc hba data structure.
11472  *
11473  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11474  * operation.
11475  *
11476  * Return codes
11477  *      0 - successful
11478  *      -ENOMEM - No available memory
11479  *      -EIO - The mailbox failed to complete successfully.
11480  **/
11481 void
11482 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11483 {
11484 	struct lpfc_sli4_hdw_queue *qp;
11485 	struct lpfc_queue *eq;
11486 	int qidx;
11487 
11488 	/* Unset mailbox command work queue */
11489 	if (phba->sli4_hba.mbx_wq)
11490 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11491 
11492 	/* Unset NVME LS work queue */
11493 	if (phba->sli4_hba.nvmels_wq)
11494 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11495 
11496 	/* Unset ELS work queue */
11497 	if (phba->sli4_hba.els_wq)
11498 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11499 
11500 	/* Unset unsolicited receive queue */
11501 	if (phba->sli4_hba.hdr_rq)
11502 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11503 				phba->sli4_hba.dat_rq);
11504 
11505 	/* Unset mailbox command complete queue */
11506 	if (phba->sli4_hba.mbx_cq)
11507 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11508 
11509 	/* Unset ELS complete queue */
11510 	if (phba->sli4_hba.els_cq)
11511 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11512 
11513 	/* Unset NVME LS complete queue */
11514 	if (phba->sli4_hba.nvmels_cq)
11515 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11516 
11517 	if (phba->nvmet_support) {
11518 		/* Unset NVMET MRQ queue */
11519 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11520 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11521 				lpfc_rq_destroy(
11522 					phba,
11523 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11524 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11525 		}
11526 
11527 		/* Unset NVMET CQ Set complete queue */
11528 		if (phba->sli4_hba.nvmet_cqset) {
11529 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11530 				lpfc_cq_destroy(
11531 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11532 		}
11533 	}
11534 
11535 	/* Unset fast-path SLI4 queues */
11536 	if (phba->sli4_hba.hdwq) {
11537 		/* Loop thru all Hardware Queues */
11538 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11539 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11540 			qp = &phba->sli4_hba.hdwq[qidx];
11541 			lpfc_wq_destroy(phba, qp->io_wq);
11542 			lpfc_cq_destroy(phba, qp->io_cq);
11543 		}
11544 		/* Loop thru all IRQ vectors */
11545 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11546 			/* Destroy the EQ corresponding to the IRQ vector */
11547 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11548 			lpfc_eq_destroy(phba, eq);
11549 		}
11550 	}
11551 
11552 	kfree(phba->sli4_hba.cq_lookup);
11553 	phba->sli4_hba.cq_lookup = NULL;
11554 	phba->sli4_hba.cq_max = 0;
11555 }
11556 
11557 /**
11558  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11559  * @phba: pointer to lpfc hba data structure.
11560  *
11561  * This routine is invoked to allocate and set up a pool of completion queue
11562  * events. The body of the completion queue event is a completion queue entry
11563  * CQE. For now, this pool is used for the interrupt service routine to queue
11564  * the following HBA completion queue events for the worker thread to process:
11565  *   - Mailbox asynchronous events
11566  *   - Receive queue completion unsolicited events
11567  * Later, this can be used for all the slow-path events.
11568  *
11569  * Return codes
11570  *      0 - successful
11571  *      -ENOMEM - No available memory
11572  **/
11573 static int
11574 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11575 {
11576 	struct lpfc_cq_event *cq_event;
11577 	int i;
11578 
11579 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11580 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11581 		if (!cq_event)
11582 			goto out_pool_create_fail;
11583 		list_add_tail(&cq_event->list,
11584 			      &phba->sli4_hba.sp_cqe_event_pool);
11585 	}
11586 	return 0;
11587 
11588 out_pool_create_fail:
11589 	lpfc_sli4_cq_event_pool_destroy(phba);
11590 	return -ENOMEM;
11591 }
11592 
11593 /**
11594  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11595  * @phba: pointer to lpfc hba data structure.
11596  *
11597  * This routine is invoked to free the pool of completion queue events at
11598  * driver unload time. Note that, it is the responsibility of the driver
11599  * cleanup routine to free all the outstanding completion-queue events
11600  * allocated from this pool back into the pool before invoking this routine
11601  * to destroy the pool.
11602  **/
11603 static void
11604 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11605 {
11606 	struct lpfc_cq_event *cq_event, *next_cq_event;
11607 
11608 	list_for_each_entry_safe(cq_event, next_cq_event,
11609 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11610 		list_del(&cq_event->list);
11611 		kfree(cq_event);
11612 	}
11613 }
11614 
11615 /**
11616  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11617  * @phba: pointer to lpfc hba data structure.
11618  *
11619  * This routine is the lock free version of the API invoked to allocate a
11620  * completion-queue event from the free pool.
11621  *
11622  * Return: Pointer to the newly allocated completion-queue event if successful
11623  *         NULL otherwise.
11624  **/
11625 struct lpfc_cq_event *
11626 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11627 {
11628 	struct lpfc_cq_event *cq_event = NULL;
11629 
11630 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11631 			 struct lpfc_cq_event, list);
11632 	return cq_event;
11633 }
11634 
11635 /**
11636  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11637  * @phba: pointer to lpfc hba data structure.
11638  *
11639  * This routine is the lock version of the API invoked to allocate a
11640  * completion-queue event from the free pool.
11641  *
11642  * Return: Pointer to the newly allocated completion-queue event if successful
11643  *         NULL otherwise.
11644  **/
11645 struct lpfc_cq_event *
11646 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11647 {
11648 	struct lpfc_cq_event *cq_event;
11649 	unsigned long iflags;
11650 
11651 	spin_lock_irqsave(&phba->hbalock, iflags);
11652 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11653 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11654 	return cq_event;
11655 }
11656 
11657 /**
11658  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11659  * @phba: pointer to lpfc hba data structure.
11660  * @cq_event: pointer to the completion queue event to be freed.
11661  *
11662  * This routine is the lock free version of the API invoked to release a
11663  * completion-queue event back into the free pool.
11664  **/
11665 void
11666 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11667 			     struct lpfc_cq_event *cq_event)
11668 {
11669 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11670 }
11671 
11672 /**
11673  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11674  * @phba: pointer to lpfc hba data structure.
11675  * @cq_event: pointer to the completion queue event to be freed.
11676  *
11677  * This routine is the lock version of the API invoked to release a
11678  * completion-queue event back into the free pool.
11679  **/
11680 void
11681 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11682 			   struct lpfc_cq_event *cq_event)
11683 {
11684 	unsigned long iflags;
11685 	spin_lock_irqsave(&phba->hbalock, iflags);
11686 	__lpfc_sli4_cq_event_release(phba, cq_event);
11687 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11688 }
11689 
11690 /**
11691  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11692  * @phba: pointer to lpfc hba data structure.
11693  *
11694  * This routine is to free all the pending completion-queue events to the
11695  * back into the free pool for device reset.
11696  **/
11697 static void
11698 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11699 {
11700 	LIST_HEAD(cq_event_list);
11701 	struct lpfc_cq_event *cq_event;
11702 	unsigned long iflags;
11703 
11704 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11705 
11706 	/* Pending ELS XRI abort events */
11707 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11708 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11709 			 &cq_event_list);
11710 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11711 
11712 	/* Pending asynnc events */
11713 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11714 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11715 			 &cq_event_list);
11716 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11717 
11718 	while (!list_empty(&cq_event_list)) {
11719 		list_remove_head(&cq_event_list, cq_event,
11720 				 struct lpfc_cq_event, list);
11721 		lpfc_sli4_cq_event_release(phba, cq_event);
11722 	}
11723 }
11724 
11725 /**
11726  * lpfc_pci_function_reset - Reset pci function.
11727  * @phba: pointer to lpfc hba data structure.
11728  *
11729  * This routine is invoked to request a PCI function reset. It will destroys
11730  * all resources assigned to the PCI function which originates this request.
11731  *
11732  * Return codes
11733  *      0 - successful
11734  *      -ENOMEM - No available memory
11735  *      -EIO - The mailbox failed to complete successfully.
11736  **/
11737 int
11738 lpfc_pci_function_reset(struct lpfc_hba *phba)
11739 {
11740 	LPFC_MBOXQ_t *mboxq;
11741 	uint32_t rc = 0, if_type;
11742 	uint32_t shdr_status, shdr_add_status;
11743 	uint32_t rdy_chk;
11744 	uint32_t port_reset = 0;
11745 	union lpfc_sli4_cfg_shdr *shdr;
11746 	struct lpfc_register reg_data;
11747 	uint16_t devid;
11748 
11749 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11750 	switch (if_type) {
11751 	case LPFC_SLI_INTF_IF_TYPE_0:
11752 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11753 						       GFP_KERNEL);
11754 		if (!mboxq) {
11755 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11756 					"0494 Unable to allocate memory for "
11757 					"issuing SLI_FUNCTION_RESET mailbox "
11758 					"command\n");
11759 			return -ENOMEM;
11760 		}
11761 
11762 		/* Setup PCI function reset mailbox-ioctl command */
11763 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11764 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11765 				 LPFC_SLI4_MBX_EMBED);
11766 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11767 		shdr = (union lpfc_sli4_cfg_shdr *)
11768 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11769 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11770 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11771 					 &shdr->response);
11772 		mempool_free(mboxq, phba->mbox_mem_pool);
11773 		if (shdr_status || shdr_add_status || rc) {
11774 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11775 					"0495 SLI_FUNCTION_RESET mailbox "
11776 					"failed with status x%x add_status x%x,"
11777 					" mbx status x%x\n",
11778 					shdr_status, shdr_add_status, rc);
11779 			rc = -ENXIO;
11780 		}
11781 		break;
11782 	case LPFC_SLI_INTF_IF_TYPE_2:
11783 	case LPFC_SLI_INTF_IF_TYPE_6:
11784 wait:
11785 		/*
11786 		 * Poll the Port Status Register and wait for RDY for
11787 		 * up to 30 seconds. If the port doesn't respond, treat
11788 		 * it as an error.
11789 		 */
11790 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11791 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11792 				STATUSregaddr, &reg_data.word0)) {
11793 				rc = -ENODEV;
11794 				goto out;
11795 			}
11796 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11797 				break;
11798 			msleep(20);
11799 		}
11800 
11801 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11802 			phba->work_status[0] = readl(
11803 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11804 			phba->work_status[1] = readl(
11805 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11806 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11807 					"2890 Port not ready, port status reg "
11808 					"0x%x error 1=0x%x, error 2=0x%x\n",
11809 					reg_data.word0,
11810 					phba->work_status[0],
11811 					phba->work_status[1]);
11812 			rc = -ENODEV;
11813 			goto out;
11814 		}
11815 
11816 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11817 			lpfc_pldv_detect = true;
11818 
11819 		if (!port_reset) {
11820 			/*
11821 			 * Reset the port now
11822 			 */
11823 			reg_data.word0 = 0;
11824 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11825 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11826 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11827 			       LPFC_SLIPORT_INIT_PORT);
11828 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11829 			       CTRLregaddr);
11830 			/* flush */
11831 			pci_read_config_word(phba->pcidev,
11832 					     PCI_DEVICE_ID, &devid);
11833 
11834 			port_reset = 1;
11835 			msleep(20);
11836 			goto wait;
11837 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11838 			rc = -ENODEV;
11839 			goto out;
11840 		}
11841 		break;
11842 
11843 	case LPFC_SLI_INTF_IF_TYPE_1:
11844 	default:
11845 		break;
11846 	}
11847 
11848 out:
11849 	/* Catch the not-ready port failure after a port reset. */
11850 	if (rc) {
11851 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11852 				"3317 HBA not functional: IP Reset Failed "
11853 				"try: echo fw_reset > board_mode\n");
11854 		rc = -ENODEV;
11855 	}
11856 
11857 	return rc;
11858 }
11859 
11860 /**
11861  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11862  * @phba: pointer to lpfc hba data structure.
11863  *
11864  * This routine is invoked to set up the PCI device memory space for device
11865  * with SLI-4 interface spec.
11866  *
11867  * Return codes
11868  * 	0 - successful
11869  * 	other values - error
11870  **/
11871 static int
11872 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11873 {
11874 	struct pci_dev *pdev = phba->pcidev;
11875 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11876 	int error;
11877 	uint32_t if_type;
11878 
11879 	if (!pdev)
11880 		return -ENODEV;
11881 
11882 	/* Set the device DMA mask size */
11883 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11884 	if (error)
11885 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11886 	if (error)
11887 		return error;
11888 
11889 	/*
11890 	 * The BARs and register set definitions and offset locations are
11891 	 * dependent on the if_type.
11892 	 */
11893 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11894 				  &phba->sli4_hba.sli_intf.word0)) {
11895 		return -ENODEV;
11896 	}
11897 
11898 	/* There is no SLI3 failback for SLI4 devices. */
11899 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11900 	    LPFC_SLI_INTF_VALID) {
11901 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11902 				"2894 SLI_INTF reg contents invalid "
11903 				"sli_intf reg 0x%x\n",
11904 				phba->sli4_hba.sli_intf.word0);
11905 		return -ENODEV;
11906 	}
11907 
11908 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11909 	/*
11910 	 * Get the bus address of SLI4 device Bar regions and the
11911 	 * number of bytes required by each mapping. The mapping of the
11912 	 * particular PCI BARs regions is dependent on the type of
11913 	 * SLI4 device.
11914 	 */
11915 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11916 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11917 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11918 
11919 		/*
11920 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11921 		 * addr
11922 		 */
11923 		phba->sli4_hba.conf_regs_memmap_p =
11924 			ioremap(phba->pci_bar0_map, bar0map_len);
11925 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11926 			dev_printk(KERN_ERR, &pdev->dev,
11927 				   "ioremap failed for SLI4 PCI config "
11928 				   "registers.\n");
11929 			return -ENODEV;
11930 		}
11931 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11932 		/* Set up BAR0 PCI config space register memory map */
11933 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11934 	} else {
11935 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11936 		bar0map_len = pci_resource_len(pdev, 1);
11937 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11938 			dev_printk(KERN_ERR, &pdev->dev,
11939 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11940 			return -ENODEV;
11941 		}
11942 		phba->sli4_hba.conf_regs_memmap_p =
11943 				ioremap(phba->pci_bar0_map, bar0map_len);
11944 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11945 			dev_printk(KERN_ERR, &pdev->dev,
11946 				"ioremap failed for SLI4 PCI config "
11947 				"registers.\n");
11948 			return -ENODEV;
11949 		}
11950 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11951 	}
11952 
11953 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11954 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11955 			/*
11956 			 * Map SLI4 if type 0 HBA Control Register base to a
11957 			 * kernel virtual address and setup the registers.
11958 			 */
11959 			phba->pci_bar1_map = pci_resource_start(pdev,
11960 								PCI_64BIT_BAR2);
11961 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11962 			phba->sli4_hba.ctrl_regs_memmap_p =
11963 					ioremap(phba->pci_bar1_map,
11964 						bar1map_len);
11965 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11966 				dev_err(&pdev->dev,
11967 					   "ioremap failed for SLI4 HBA "
11968 					    "control registers.\n");
11969 				error = -ENOMEM;
11970 				goto out_iounmap_conf;
11971 			}
11972 			phba->pci_bar2_memmap_p =
11973 					 phba->sli4_hba.ctrl_regs_memmap_p;
11974 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11975 		} else {
11976 			error = -ENOMEM;
11977 			goto out_iounmap_conf;
11978 		}
11979 	}
11980 
11981 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11982 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11983 		/*
11984 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11985 		 * virtual address and setup the registers.
11986 		 */
11987 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11988 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11989 		phba->sli4_hba.drbl_regs_memmap_p =
11990 				ioremap(phba->pci_bar1_map, bar1map_len);
11991 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11992 			dev_err(&pdev->dev,
11993 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11994 			error = -ENOMEM;
11995 			goto out_iounmap_conf;
11996 		}
11997 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11998 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11999 	}
12000 
12001 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
12002 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
12003 			/*
12004 			 * Map SLI4 if type 0 HBA Doorbell Register base to
12005 			 * a kernel virtual address and setup the registers.
12006 			 */
12007 			phba->pci_bar2_map = pci_resource_start(pdev,
12008 								PCI_64BIT_BAR4);
12009 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
12010 			phba->sli4_hba.drbl_regs_memmap_p =
12011 					ioremap(phba->pci_bar2_map,
12012 						bar2map_len);
12013 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
12014 				dev_err(&pdev->dev,
12015 					   "ioremap failed for SLI4 HBA"
12016 					   " doorbell registers.\n");
12017 				error = -ENOMEM;
12018 				goto out_iounmap_ctrl;
12019 			}
12020 			phba->pci_bar4_memmap_p =
12021 					phba->sli4_hba.drbl_regs_memmap_p;
12022 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
12023 			if (error)
12024 				goto out_iounmap_all;
12025 		} else {
12026 			error = -ENOMEM;
12027 			goto out_iounmap_ctrl;
12028 		}
12029 	}
12030 
12031 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
12032 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
12033 		/*
12034 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
12035 		 * virtual address and setup the registers.
12036 		 */
12037 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
12038 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
12039 		phba->sli4_hba.dpp_regs_memmap_p =
12040 				ioremap(phba->pci_bar2_map, bar2map_len);
12041 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
12042 			dev_err(&pdev->dev,
12043 			   "ioremap failed for SLI4 HBA dpp registers.\n");
12044 			error = -ENOMEM;
12045 			goto out_iounmap_all;
12046 		}
12047 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
12048 	}
12049 
12050 	/* Set up the EQ/CQ register handeling functions now */
12051 	switch (if_type) {
12052 	case LPFC_SLI_INTF_IF_TYPE_0:
12053 	case LPFC_SLI_INTF_IF_TYPE_2:
12054 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
12055 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12056 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12057 		break;
12058 	case LPFC_SLI_INTF_IF_TYPE_6:
12059 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12060 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12061 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12062 		break;
12063 	default:
12064 		break;
12065 	}
12066 
12067 	return 0;
12068 
12069 out_iounmap_all:
12070 	if (phba->sli4_hba.drbl_regs_memmap_p)
12071 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12072 out_iounmap_ctrl:
12073 	if (phba->sli4_hba.ctrl_regs_memmap_p)
12074 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12075 out_iounmap_conf:
12076 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12077 
12078 	return error;
12079 }
12080 
12081 /**
12082  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12083  * @phba: pointer to lpfc hba data structure.
12084  *
12085  * This routine is invoked to unset the PCI device memory space for device
12086  * with SLI-4 interface spec.
12087  **/
12088 static void
12089 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12090 {
12091 	uint32_t if_type;
12092 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12093 
12094 	switch (if_type) {
12095 	case LPFC_SLI_INTF_IF_TYPE_0:
12096 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12097 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12098 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12099 		break;
12100 	case LPFC_SLI_INTF_IF_TYPE_2:
12101 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12102 		break;
12103 	case LPFC_SLI_INTF_IF_TYPE_6:
12104 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12105 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12106 		if (phba->sli4_hba.dpp_regs_memmap_p)
12107 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12108 		break;
12109 	case LPFC_SLI_INTF_IF_TYPE_1:
12110 		break;
12111 	default:
12112 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12113 			   "FATAL - unsupported SLI4 interface type - %d\n",
12114 			   if_type);
12115 		break;
12116 	}
12117 }
12118 
12119 /**
12120  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12121  * @phba: pointer to lpfc hba data structure.
12122  *
12123  * This routine is invoked to enable the MSI-X interrupt vectors to device
12124  * with SLI-3 interface specs.
12125  *
12126  * Return codes
12127  *   0 - successful
12128  *   other values - error
12129  **/
12130 static int
12131 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12132 {
12133 	int rc;
12134 	LPFC_MBOXQ_t *pmb;
12135 
12136 	/* Set up MSI-X multi-message vectors */
12137 	rc = pci_alloc_irq_vectors(phba->pcidev,
12138 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12139 	if (rc < 0) {
12140 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12141 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12142 		goto vec_fail_out;
12143 	}
12144 
12145 	/*
12146 	 * Assign MSI-X vectors to interrupt handlers
12147 	 */
12148 
12149 	/* vector-0 is associated to slow-path handler */
12150 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12151 			 &lpfc_sli_sp_intr_handler, 0,
12152 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12153 	if (rc) {
12154 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12155 				"0421 MSI-X slow-path request_irq failed "
12156 				"(%d)\n", rc);
12157 		goto msi_fail_out;
12158 	}
12159 
12160 	/* vector-1 is associated to fast-path handler */
12161 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12162 			 &lpfc_sli_fp_intr_handler, 0,
12163 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12164 
12165 	if (rc) {
12166 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12167 				"0429 MSI-X fast-path request_irq failed "
12168 				"(%d)\n", rc);
12169 		goto irq_fail_out;
12170 	}
12171 
12172 	/*
12173 	 * Configure HBA MSI-X attention conditions to messages
12174 	 */
12175 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12176 
12177 	if (!pmb) {
12178 		rc = -ENOMEM;
12179 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12180 				"0474 Unable to allocate memory for issuing "
12181 				"MBOX_CONFIG_MSI command\n");
12182 		goto mem_fail_out;
12183 	}
12184 	rc = lpfc_config_msi(phba, pmb);
12185 	if (rc)
12186 		goto mbx_fail_out;
12187 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12188 	if (rc != MBX_SUCCESS) {
12189 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12190 				"0351 Config MSI mailbox command failed, "
12191 				"mbxCmd x%x, mbxStatus x%x\n",
12192 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12193 		goto mbx_fail_out;
12194 	}
12195 
12196 	/* Free memory allocated for mailbox command */
12197 	mempool_free(pmb, phba->mbox_mem_pool);
12198 	return rc;
12199 
12200 mbx_fail_out:
12201 	/* Free memory allocated for mailbox command */
12202 	mempool_free(pmb, phba->mbox_mem_pool);
12203 
12204 mem_fail_out:
12205 	/* free the irq already requested */
12206 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12207 
12208 irq_fail_out:
12209 	/* free the irq already requested */
12210 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12211 
12212 msi_fail_out:
12213 	/* Unconfigure MSI-X capability structure */
12214 	pci_free_irq_vectors(phba->pcidev);
12215 
12216 vec_fail_out:
12217 	return rc;
12218 }
12219 
12220 /**
12221  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12222  * @phba: pointer to lpfc hba data structure.
12223  *
12224  * This routine is invoked to enable the MSI interrupt mode to device with
12225  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12226  * enable the MSI vector. The device driver is responsible for calling the
12227  * request_irq() to register MSI vector with a interrupt the handler, which
12228  * is done in this function.
12229  *
12230  * Return codes
12231  * 	0 - successful
12232  * 	other values - error
12233  */
12234 static int
12235 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12236 {
12237 	int rc;
12238 
12239 	rc = pci_enable_msi(phba->pcidev);
12240 	if (!rc)
12241 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12242 				"0012 PCI enable MSI mode success.\n");
12243 	else {
12244 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12245 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12246 		return rc;
12247 	}
12248 
12249 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12250 			 0, LPFC_DRIVER_NAME, phba);
12251 	if (rc) {
12252 		pci_disable_msi(phba->pcidev);
12253 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12254 				"0478 MSI request_irq failed (%d)\n", rc);
12255 	}
12256 	return rc;
12257 }
12258 
12259 /**
12260  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12261  * @phba: pointer to lpfc hba data structure.
12262  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12263  *
12264  * This routine is invoked to enable device interrupt and associate driver's
12265  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12266  * spec. Depends on the interrupt mode configured to the driver, the driver
12267  * will try to fallback from the configured interrupt mode to an interrupt
12268  * mode which is supported by the platform, kernel, and device in the order
12269  * of:
12270  * MSI-X -> MSI -> IRQ.
12271  *
12272  * Return codes
12273  *   0 - successful
12274  *   other values - error
12275  **/
12276 static uint32_t
12277 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12278 {
12279 	uint32_t intr_mode = LPFC_INTR_ERROR;
12280 	int retval;
12281 
12282 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12283 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12284 	if (retval)
12285 		return intr_mode;
12286 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12287 
12288 	if (cfg_mode == 2) {
12289 		/* Now, try to enable MSI-X interrupt mode */
12290 		retval = lpfc_sli_enable_msix(phba);
12291 		if (!retval) {
12292 			/* Indicate initialization to MSI-X mode */
12293 			phba->intr_type = MSIX;
12294 			intr_mode = 2;
12295 		}
12296 	}
12297 
12298 	/* Fallback to MSI if MSI-X initialization failed */
12299 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12300 		retval = lpfc_sli_enable_msi(phba);
12301 		if (!retval) {
12302 			/* Indicate initialization to MSI mode */
12303 			phba->intr_type = MSI;
12304 			intr_mode = 1;
12305 		}
12306 	}
12307 
12308 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12309 	if (phba->intr_type == NONE) {
12310 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12311 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12312 		if (!retval) {
12313 			/* Indicate initialization to INTx mode */
12314 			phba->intr_type = INTx;
12315 			intr_mode = 0;
12316 		}
12317 	}
12318 	return intr_mode;
12319 }
12320 
12321 /**
12322  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12323  * @phba: pointer to lpfc hba data structure.
12324  *
12325  * This routine is invoked to disable device interrupt and disassociate the
12326  * driver's interrupt handler(s) from interrupt vector(s) to device with
12327  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12328  * release the interrupt vector(s) for the message signaled interrupt.
12329  **/
12330 static void
12331 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12332 {
12333 	int nr_irqs, i;
12334 
12335 	if (phba->intr_type == MSIX)
12336 		nr_irqs = LPFC_MSIX_VECTORS;
12337 	else
12338 		nr_irqs = 1;
12339 
12340 	for (i = 0; i < nr_irqs; i++)
12341 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12342 	pci_free_irq_vectors(phba->pcidev);
12343 
12344 	/* Reset interrupt management states */
12345 	phba->intr_type = NONE;
12346 	phba->sli.slistat.sli_intr = 0;
12347 }
12348 
12349 /**
12350  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12351  * @phba: pointer to lpfc hba data structure.
12352  * @id: EQ vector index or Hardware Queue index
12353  * @match: LPFC_FIND_BY_EQ = match by EQ
12354  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12355  * Return the CPU that matches the selection criteria
12356  */
12357 static uint16_t
12358 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12359 {
12360 	struct lpfc_vector_map_info *cpup;
12361 	int cpu;
12362 
12363 	/* Loop through all CPUs */
12364 	for_each_present_cpu(cpu) {
12365 		cpup = &phba->sli4_hba.cpu_map[cpu];
12366 
12367 		/* If we are matching by EQ, there may be multiple CPUs using
12368 		 * using the same vector, so select the one with
12369 		 * LPFC_CPU_FIRST_IRQ set.
12370 		 */
12371 		if ((match == LPFC_FIND_BY_EQ) &&
12372 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12373 		    (cpup->eq == id))
12374 			return cpu;
12375 
12376 		/* If matching by HDWQ, select the first CPU that matches */
12377 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12378 			return cpu;
12379 	}
12380 	return 0;
12381 }
12382 
12383 #ifdef CONFIG_X86
12384 /**
12385  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12386  * @phba: pointer to lpfc hba data structure.
12387  * @cpu: CPU map index
12388  * @phys_id: CPU package physical id
12389  * @core_id: CPU core id
12390  */
12391 static int
12392 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12393 		uint16_t phys_id, uint16_t core_id)
12394 {
12395 	struct lpfc_vector_map_info *cpup;
12396 	int idx;
12397 
12398 	for_each_present_cpu(idx) {
12399 		cpup = &phba->sli4_hba.cpu_map[idx];
12400 		/* Does the cpup match the one we are looking for */
12401 		if ((cpup->phys_id == phys_id) &&
12402 		    (cpup->core_id == core_id) &&
12403 		    (cpu != idx))
12404 			return 1;
12405 	}
12406 	return 0;
12407 }
12408 #endif
12409 
12410 /*
12411  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12412  * @phba: pointer to lpfc hba data structure.
12413  * @eqidx: index for eq and irq vector
12414  * @flag: flags to set for vector_map structure
12415  * @cpu: cpu used to index vector_map structure
12416  *
12417  * The routine assigns eq info into vector_map structure
12418  */
12419 static inline void
12420 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12421 			unsigned int cpu)
12422 {
12423 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12424 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12425 
12426 	cpup->eq = eqidx;
12427 	cpup->flag |= flag;
12428 
12429 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12430 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12431 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12432 }
12433 
12434 /**
12435  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12436  * @phba: pointer to lpfc hba data structure.
12437  *
12438  * The routine initializes the cpu_map array structure
12439  */
12440 static void
12441 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12442 {
12443 	struct lpfc_vector_map_info *cpup;
12444 	struct lpfc_eq_intr_info *eqi;
12445 	int cpu;
12446 
12447 	for_each_possible_cpu(cpu) {
12448 		cpup = &phba->sli4_hba.cpu_map[cpu];
12449 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12450 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12451 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12452 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12453 		cpup->flag = 0;
12454 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12455 		INIT_LIST_HEAD(&eqi->list);
12456 		eqi->icnt = 0;
12457 	}
12458 }
12459 
12460 /**
12461  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12462  * @phba: pointer to lpfc hba data structure.
12463  *
12464  * The routine initializes the hba_eq_hdl array structure
12465  */
12466 static void
12467 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12468 {
12469 	struct lpfc_hba_eq_hdl *eqhdl;
12470 	int i;
12471 
12472 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12473 		eqhdl = lpfc_get_eq_hdl(i);
12474 		eqhdl->irq = LPFC_IRQ_EMPTY;
12475 		eqhdl->phba = phba;
12476 	}
12477 }
12478 
12479 /**
12480  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12481  * @phba: pointer to lpfc hba data structure.
12482  * @vectors: number of msix vectors allocated.
12483  *
12484  * The routine will figure out the CPU affinity assignment for every
12485  * MSI-X vector allocated for the HBA.
12486  * In addition, the CPU to IO channel mapping will be calculated
12487  * and the phba->sli4_hba.cpu_map array will reflect this.
12488  */
12489 static void
12490 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12491 {
12492 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12493 	int max_phys_id, min_phys_id;
12494 	int max_core_id, min_core_id;
12495 	struct lpfc_vector_map_info *cpup;
12496 	struct lpfc_vector_map_info *new_cpup;
12497 #ifdef CONFIG_X86
12498 	struct cpuinfo_x86 *cpuinfo;
12499 #endif
12500 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12501 	struct lpfc_hdwq_stat *c_stat;
12502 #endif
12503 
12504 	max_phys_id = 0;
12505 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12506 	max_core_id = 0;
12507 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12508 
12509 	/* Update CPU map with physical id and core id of each CPU */
12510 	for_each_present_cpu(cpu) {
12511 		cpup = &phba->sli4_hba.cpu_map[cpu];
12512 #ifdef CONFIG_X86
12513 		cpuinfo = &cpu_data(cpu);
12514 		cpup->phys_id = cpuinfo->phys_proc_id;
12515 		cpup->core_id = cpuinfo->cpu_core_id;
12516 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12517 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12518 #else
12519 		/* No distinction between CPUs for other platforms */
12520 		cpup->phys_id = 0;
12521 		cpup->core_id = cpu;
12522 #endif
12523 
12524 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12525 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12526 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12527 
12528 		if (cpup->phys_id > max_phys_id)
12529 			max_phys_id = cpup->phys_id;
12530 		if (cpup->phys_id < min_phys_id)
12531 			min_phys_id = cpup->phys_id;
12532 
12533 		if (cpup->core_id > max_core_id)
12534 			max_core_id = cpup->core_id;
12535 		if (cpup->core_id < min_core_id)
12536 			min_core_id = cpup->core_id;
12537 	}
12538 
12539 	/* After looking at each irq vector assigned to this pcidev, its
12540 	 * possible to see that not ALL CPUs have been accounted for.
12541 	 * Next we will set any unassigned (unaffinitized) cpu map
12542 	 * entries to a IRQ on the same phys_id.
12543 	 */
12544 	first_cpu = cpumask_first(cpu_present_mask);
12545 	start_cpu = first_cpu;
12546 
12547 	for_each_present_cpu(cpu) {
12548 		cpup = &phba->sli4_hba.cpu_map[cpu];
12549 
12550 		/* Is this CPU entry unassigned */
12551 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12552 			/* Mark CPU as IRQ not assigned by the kernel */
12553 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12554 
12555 			/* If so, find a new_cpup that is on the SAME
12556 			 * phys_id as cpup. start_cpu will start where we
12557 			 * left off so all unassigned entries don't get assgined
12558 			 * the IRQ of the first entry.
12559 			 */
12560 			new_cpu = start_cpu;
12561 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12562 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12563 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12564 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12565 				    (new_cpup->phys_id == cpup->phys_id))
12566 					goto found_same;
12567 				new_cpu = cpumask_next(
12568 					new_cpu, cpu_present_mask);
12569 				if (new_cpu >= nr_cpu_ids)
12570 					new_cpu = first_cpu;
12571 			}
12572 			/* At this point, we leave the CPU as unassigned */
12573 			continue;
12574 found_same:
12575 			/* We found a matching phys_id, so copy the IRQ info */
12576 			cpup->eq = new_cpup->eq;
12577 
12578 			/* Bump start_cpu to the next slot to minmize the
12579 			 * chance of having multiple unassigned CPU entries
12580 			 * selecting the same IRQ.
12581 			 */
12582 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12583 			if (start_cpu >= nr_cpu_ids)
12584 				start_cpu = first_cpu;
12585 
12586 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12587 					"3337 Set Affinity: CPU %d "
12588 					"eq %d from peer cpu %d same "
12589 					"phys_id (%d)\n",
12590 					cpu, cpup->eq, new_cpu,
12591 					cpup->phys_id);
12592 		}
12593 	}
12594 
12595 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12596 	start_cpu = first_cpu;
12597 
12598 	for_each_present_cpu(cpu) {
12599 		cpup = &phba->sli4_hba.cpu_map[cpu];
12600 
12601 		/* Is this entry unassigned */
12602 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12603 			/* Mark it as IRQ not assigned by the kernel */
12604 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12605 
12606 			/* If so, find a new_cpup thats on ANY phys_id
12607 			 * as the cpup. start_cpu will start where we
12608 			 * left off so all unassigned entries don't get
12609 			 * assigned the IRQ of the first entry.
12610 			 */
12611 			new_cpu = start_cpu;
12612 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12613 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12614 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12615 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12616 					goto found_any;
12617 				new_cpu = cpumask_next(
12618 					new_cpu, cpu_present_mask);
12619 				if (new_cpu >= nr_cpu_ids)
12620 					new_cpu = first_cpu;
12621 			}
12622 			/* We should never leave an entry unassigned */
12623 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12624 					"3339 Set Affinity: CPU %d "
12625 					"eq %d UNASSIGNED\n",
12626 					cpup->hdwq, cpup->eq);
12627 			continue;
12628 found_any:
12629 			/* We found an available entry, copy the IRQ info */
12630 			cpup->eq = new_cpup->eq;
12631 
12632 			/* Bump start_cpu to the next slot to minmize the
12633 			 * chance of having multiple unassigned CPU entries
12634 			 * selecting the same IRQ.
12635 			 */
12636 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12637 			if (start_cpu >= nr_cpu_ids)
12638 				start_cpu = first_cpu;
12639 
12640 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12641 					"3338 Set Affinity: CPU %d "
12642 					"eq %d from peer cpu %d (%d/%d)\n",
12643 					cpu, cpup->eq, new_cpu,
12644 					new_cpup->phys_id, new_cpup->core_id);
12645 		}
12646 	}
12647 
12648 	/* Assign hdwq indices that are unique across all cpus in the map
12649 	 * that are also FIRST_CPUs.
12650 	 */
12651 	idx = 0;
12652 	for_each_present_cpu(cpu) {
12653 		cpup = &phba->sli4_hba.cpu_map[cpu];
12654 
12655 		/* Only FIRST IRQs get a hdwq index assignment. */
12656 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12657 			continue;
12658 
12659 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12660 		cpup->hdwq = idx;
12661 		idx++;
12662 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12663 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12664 				"hdwq %d eq %d flg x%x\n",
12665 				cpu, cpup->phys_id, cpup->core_id,
12666 				cpup->hdwq, cpup->eq, cpup->flag);
12667 	}
12668 	/* Associate a hdwq with each cpu_map entry
12669 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12670 	 * hardware queues then CPUs. For that case we will just round-robin
12671 	 * the available hardware queues as they get assigned to CPUs.
12672 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12673 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12674 	 * and needs to start at 0.
12675 	 */
12676 	next_idx = idx;
12677 	start_cpu = 0;
12678 	idx = 0;
12679 	for_each_present_cpu(cpu) {
12680 		cpup = &phba->sli4_hba.cpu_map[cpu];
12681 
12682 		/* FIRST cpus are already mapped. */
12683 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12684 			continue;
12685 
12686 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12687 		 * of the unassigned cpus to the next idx so that all
12688 		 * hdw queues are fully utilized.
12689 		 */
12690 		if (next_idx < phba->cfg_hdw_queue) {
12691 			cpup->hdwq = next_idx;
12692 			next_idx++;
12693 			continue;
12694 		}
12695 
12696 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12697 		 * Hardware Queue for another CPU, so be smart about it
12698 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12699 		 * (CPU package) and core_id.
12700 		 */
12701 		new_cpu = start_cpu;
12702 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12703 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12704 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12705 			    new_cpup->phys_id == cpup->phys_id &&
12706 			    new_cpup->core_id == cpup->core_id) {
12707 				goto found_hdwq;
12708 			}
12709 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12710 			if (new_cpu >= nr_cpu_ids)
12711 				new_cpu = first_cpu;
12712 		}
12713 
12714 		/* If we can't match both phys_id and core_id,
12715 		 * settle for just a phys_id match.
12716 		 */
12717 		new_cpu = start_cpu;
12718 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12719 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12720 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12721 			    new_cpup->phys_id == cpup->phys_id)
12722 				goto found_hdwq;
12723 
12724 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12725 			if (new_cpu >= nr_cpu_ids)
12726 				new_cpu = first_cpu;
12727 		}
12728 
12729 		/* Otherwise just round robin on cfg_hdw_queue */
12730 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12731 		idx++;
12732 		goto logit;
12733  found_hdwq:
12734 		/* We found an available entry, copy the IRQ info */
12735 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12736 		if (start_cpu >= nr_cpu_ids)
12737 			start_cpu = first_cpu;
12738 		cpup->hdwq = new_cpup->hdwq;
12739  logit:
12740 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12741 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12742 				"hdwq %d eq %d flg x%x\n",
12743 				cpu, cpup->phys_id, cpup->core_id,
12744 				cpup->hdwq, cpup->eq, cpup->flag);
12745 	}
12746 
12747 	/*
12748 	 * Initialize the cpu_map slots for not-present cpus in case
12749 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12750 	 */
12751 	idx = 0;
12752 	for_each_possible_cpu(cpu) {
12753 		cpup = &phba->sli4_hba.cpu_map[cpu];
12754 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12755 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12756 		c_stat->hdwq_no = cpup->hdwq;
12757 #endif
12758 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12759 			continue;
12760 
12761 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12762 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12763 		c_stat->hdwq_no = cpup->hdwq;
12764 #endif
12765 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12766 				"3340 Set Affinity: not present "
12767 				"CPU %d hdwq %d\n",
12768 				cpu, cpup->hdwq);
12769 	}
12770 
12771 	/* The cpu_map array will be used later during initialization
12772 	 * when EQ / CQ / WQs are allocated and configured.
12773 	 */
12774 	return;
12775 }
12776 
12777 /**
12778  * lpfc_cpuhp_get_eq
12779  *
12780  * @phba:   pointer to lpfc hba data structure.
12781  * @cpu:    cpu going offline
12782  * @eqlist: eq list to append to
12783  */
12784 static int
12785 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12786 		  struct list_head *eqlist)
12787 {
12788 	const struct cpumask *maskp;
12789 	struct lpfc_queue *eq;
12790 	struct cpumask *tmp;
12791 	u16 idx;
12792 
12793 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12794 	if (!tmp)
12795 		return -ENOMEM;
12796 
12797 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12798 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12799 		if (!maskp)
12800 			continue;
12801 		/*
12802 		 * if irq is not affinitized to the cpu going
12803 		 * then we don't need to poll the eq attached
12804 		 * to it.
12805 		 */
12806 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12807 			continue;
12808 		/* get the cpus that are online and are affini-
12809 		 * tized to this irq vector.  If the count is
12810 		 * more than 1 then cpuhp is not going to shut-
12811 		 * down this vector.  Since this cpu has not
12812 		 * gone offline yet, we need >1.
12813 		 */
12814 		cpumask_and(tmp, maskp, cpu_online_mask);
12815 		if (cpumask_weight(tmp) > 1)
12816 			continue;
12817 
12818 		/* Now that we have an irq to shutdown, get the eq
12819 		 * mapped to this irq.  Note: multiple hdwq's in
12820 		 * the software can share an eq, but eventually
12821 		 * only eq will be mapped to this vector
12822 		 */
12823 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12824 		list_add(&eq->_poll_list, eqlist);
12825 	}
12826 	kfree(tmp);
12827 	return 0;
12828 }
12829 
12830 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12831 {
12832 	if (phba->sli_rev != LPFC_SLI_REV4)
12833 		return;
12834 
12835 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12836 					    &phba->cpuhp);
12837 	/*
12838 	 * unregistering the instance doesn't stop the polling
12839 	 * timer. Wait for the poll timer to retire.
12840 	 */
12841 	synchronize_rcu();
12842 	del_timer_sync(&phba->cpuhp_poll_timer);
12843 }
12844 
12845 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12846 {
12847 	if (phba->pport && (phba->pport->fc_flag & FC_OFFLINE_MODE))
12848 		return;
12849 
12850 	__lpfc_cpuhp_remove(phba);
12851 }
12852 
12853 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12854 {
12855 	if (phba->sli_rev != LPFC_SLI_REV4)
12856 		return;
12857 
12858 	rcu_read_lock();
12859 
12860 	if (!list_empty(&phba->poll_list))
12861 		mod_timer(&phba->cpuhp_poll_timer,
12862 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12863 
12864 	rcu_read_unlock();
12865 
12866 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12867 					 &phba->cpuhp);
12868 }
12869 
12870 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12871 {
12872 	if (phba->pport->load_flag & FC_UNLOADING) {
12873 		*retval = -EAGAIN;
12874 		return true;
12875 	}
12876 
12877 	if (phba->sli_rev != LPFC_SLI_REV4) {
12878 		*retval = 0;
12879 		return true;
12880 	}
12881 
12882 	/* proceed with the hotplug */
12883 	return false;
12884 }
12885 
12886 /**
12887  * lpfc_irq_set_aff - set IRQ affinity
12888  * @eqhdl: EQ handle
12889  * @cpu: cpu to set affinity
12890  *
12891  **/
12892 static inline void
12893 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12894 {
12895 	cpumask_clear(&eqhdl->aff_mask);
12896 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12897 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12898 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12899 }
12900 
12901 /**
12902  * lpfc_irq_clear_aff - clear IRQ affinity
12903  * @eqhdl: EQ handle
12904  *
12905  **/
12906 static inline void
12907 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12908 {
12909 	cpumask_clear(&eqhdl->aff_mask);
12910 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12911 }
12912 
12913 /**
12914  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12915  * @phba: pointer to HBA context object.
12916  * @cpu: cpu going offline/online
12917  * @offline: true, cpu is going offline. false, cpu is coming online.
12918  *
12919  * If cpu is going offline, we'll try our best effort to find the next
12920  * online cpu on the phba's original_mask and migrate all offlining IRQ
12921  * affinities.
12922  *
12923  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12924  *
12925  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12926  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12927  *
12928  **/
12929 static void
12930 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12931 {
12932 	struct lpfc_vector_map_info *cpup;
12933 	struct cpumask *aff_mask;
12934 	unsigned int cpu_select, cpu_next, idx;
12935 	const struct cpumask *orig_mask;
12936 
12937 	if (phba->irq_chann_mode == NORMAL_MODE)
12938 		return;
12939 
12940 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12941 
12942 	if (!cpumask_test_cpu(cpu, orig_mask))
12943 		return;
12944 
12945 	cpup = &phba->sli4_hba.cpu_map[cpu];
12946 
12947 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12948 		return;
12949 
12950 	if (offline) {
12951 		/* Find next online CPU on original mask */
12952 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12953 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12954 
12955 		/* Found a valid CPU */
12956 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12957 			/* Go through each eqhdl and ensure offlining
12958 			 * cpu aff_mask is migrated
12959 			 */
12960 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12961 				aff_mask = lpfc_get_aff_mask(idx);
12962 
12963 				/* Migrate affinity */
12964 				if (cpumask_test_cpu(cpu, aff_mask))
12965 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12966 							 cpu_select);
12967 			}
12968 		} else {
12969 			/* Rely on irqbalance if no online CPUs left on NUMA */
12970 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12971 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12972 		}
12973 	} else {
12974 		/* Migrate affinity back to this CPU */
12975 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12976 	}
12977 }
12978 
12979 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12980 {
12981 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12982 	struct lpfc_queue *eq, *next;
12983 	LIST_HEAD(eqlist);
12984 	int retval;
12985 
12986 	if (!phba) {
12987 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12988 		return 0;
12989 	}
12990 
12991 	if (__lpfc_cpuhp_checks(phba, &retval))
12992 		return retval;
12993 
12994 	lpfc_irq_rebalance(phba, cpu, true);
12995 
12996 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12997 	if (retval)
12998 		return retval;
12999 
13000 	/* start polling on these eq's */
13001 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
13002 		list_del_init(&eq->_poll_list);
13003 		lpfc_sli4_start_polling(eq);
13004 	}
13005 
13006 	return 0;
13007 }
13008 
13009 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
13010 {
13011 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
13012 	struct lpfc_queue *eq, *next;
13013 	unsigned int n;
13014 	int retval;
13015 
13016 	if (!phba) {
13017 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
13018 		return 0;
13019 	}
13020 
13021 	if (__lpfc_cpuhp_checks(phba, &retval))
13022 		return retval;
13023 
13024 	lpfc_irq_rebalance(phba, cpu, false);
13025 
13026 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
13027 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
13028 		if (n == cpu)
13029 			lpfc_sli4_stop_polling(eq);
13030 	}
13031 
13032 	return 0;
13033 }
13034 
13035 /**
13036  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
13037  * @phba: pointer to lpfc hba data structure.
13038  *
13039  * This routine is invoked to enable the MSI-X interrupt vectors to device
13040  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
13041  * to cpus on the system.
13042  *
13043  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
13044  * the number of cpus on the same numa node as this adapter.  The vectors are
13045  * allocated without requesting OS affinity mapping.  A vector will be
13046  * allocated and assigned to each online and offline cpu.  If the cpu is
13047  * online, then affinity will be set to that cpu.  If the cpu is offline, then
13048  * affinity will be set to the nearest peer cpu within the numa node that is
13049  * online.  If there are no online cpus within the numa node, affinity is not
13050  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
13051  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
13052  * configured.
13053  *
13054  * If numa mode is not enabled and there is more than 1 vector allocated, then
13055  * the driver relies on the managed irq interface where the OS assigns vector to
13056  * cpu affinity.  The driver will then use that affinity mapping to setup its
13057  * cpu mapping table.
13058  *
13059  * Return codes
13060  * 0 - successful
13061  * other values - error
13062  **/
13063 static int
13064 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
13065 {
13066 	int vectors, rc, index;
13067 	char *name;
13068 	const struct cpumask *aff_mask = NULL;
13069 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13070 	struct lpfc_vector_map_info *cpup;
13071 	struct lpfc_hba_eq_hdl *eqhdl;
13072 	const struct cpumask *maskp;
13073 	unsigned int flags = PCI_IRQ_MSIX;
13074 
13075 	/* Set up MSI-X multi-message vectors */
13076 	vectors = phba->cfg_irq_chann;
13077 
13078 	if (phba->irq_chann_mode != NORMAL_MODE)
13079 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13080 
13081 	if (aff_mask) {
13082 		cpu_cnt = cpumask_weight(aff_mask);
13083 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13084 
13085 		/* cpu: iterates over aff_mask including offline or online
13086 		 * cpu_select: iterates over online aff_mask to set affinity
13087 		 */
13088 		cpu = cpumask_first(aff_mask);
13089 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13090 	} else {
13091 		flags |= PCI_IRQ_AFFINITY;
13092 	}
13093 
13094 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13095 	if (rc < 0) {
13096 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13097 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13098 		goto vec_fail_out;
13099 	}
13100 	vectors = rc;
13101 
13102 	/* Assign MSI-X vectors to interrupt handlers */
13103 	for (index = 0; index < vectors; index++) {
13104 		eqhdl = lpfc_get_eq_hdl(index);
13105 		name = eqhdl->handler_name;
13106 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13107 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13108 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13109 
13110 		eqhdl->idx = index;
13111 		rc = pci_irq_vector(phba->pcidev, index);
13112 		if (rc < 0) {
13113 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13114 					"0489 MSI-X fast-path (%d) "
13115 					"pci_irq_vec failed (%d)\n", index, rc);
13116 			goto cfg_fail_out;
13117 		}
13118 		eqhdl->irq = rc;
13119 
13120 		rc = request_irq(eqhdl->irq, &lpfc_sli4_hba_intr_handler, 0,
13121 				 name, eqhdl);
13122 		if (rc) {
13123 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13124 					"0486 MSI-X fast-path (%d) "
13125 					"request_irq failed (%d)\n", index, rc);
13126 			goto cfg_fail_out;
13127 		}
13128 
13129 		if (aff_mask) {
13130 			/* If found a neighboring online cpu, set affinity */
13131 			if (cpu_select < nr_cpu_ids)
13132 				lpfc_irq_set_aff(eqhdl, cpu_select);
13133 
13134 			/* Assign EQ to cpu_map */
13135 			lpfc_assign_eq_map_info(phba, index,
13136 						LPFC_CPU_FIRST_IRQ,
13137 						cpu);
13138 
13139 			/* Iterate to next offline or online cpu in aff_mask */
13140 			cpu = cpumask_next(cpu, aff_mask);
13141 
13142 			/* Find next online cpu in aff_mask to set affinity */
13143 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13144 		} else if (vectors == 1) {
13145 			cpu = cpumask_first(cpu_present_mask);
13146 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13147 						cpu);
13148 		} else {
13149 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13150 
13151 			/* Loop through all CPUs associated with vector index */
13152 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13153 				cpup = &phba->sli4_hba.cpu_map[cpu];
13154 
13155 				/* If this is the first CPU thats assigned to
13156 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13157 				 *
13158 				 * With certain platforms its possible that irq
13159 				 * vectors are affinitized to all the cpu's.
13160 				 * This can result in each cpu_map.eq to be set
13161 				 * to the last vector, resulting in overwrite
13162 				 * of all the previous cpu_map.eq.  Ensure that
13163 				 * each vector receives a place in cpu_map.
13164 				 * Later call to lpfc_cpu_affinity_check will
13165 				 * ensure we are nicely balanced out.
13166 				 */
13167 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13168 					continue;
13169 				lpfc_assign_eq_map_info(phba, index,
13170 							LPFC_CPU_FIRST_IRQ,
13171 							cpu);
13172 				break;
13173 			}
13174 		}
13175 	}
13176 
13177 	if (vectors != phba->cfg_irq_chann) {
13178 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13179 				"3238 Reducing IO channels to match number of "
13180 				"MSI-X vectors, requested %d got %d\n",
13181 				phba->cfg_irq_chann, vectors);
13182 		if (phba->cfg_irq_chann > vectors)
13183 			phba->cfg_irq_chann = vectors;
13184 	}
13185 
13186 	return rc;
13187 
13188 cfg_fail_out:
13189 	/* free the irq already requested */
13190 	for (--index; index >= 0; index--) {
13191 		eqhdl = lpfc_get_eq_hdl(index);
13192 		lpfc_irq_clear_aff(eqhdl);
13193 		free_irq(eqhdl->irq, eqhdl);
13194 	}
13195 
13196 	/* Unconfigure MSI-X capability structure */
13197 	pci_free_irq_vectors(phba->pcidev);
13198 
13199 vec_fail_out:
13200 	return rc;
13201 }
13202 
13203 /**
13204  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13205  * @phba: pointer to lpfc hba data structure.
13206  *
13207  * This routine is invoked to enable the MSI interrupt mode to device with
13208  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13209  * called to enable the MSI vector. The device driver is responsible for
13210  * calling the request_irq() to register MSI vector with a interrupt the
13211  * handler, which is done in this function.
13212  *
13213  * Return codes
13214  * 	0 - successful
13215  * 	other values - error
13216  **/
13217 static int
13218 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13219 {
13220 	int rc, index;
13221 	unsigned int cpu;
13222 	struct lpfc_hba_eq_hdl *eqhdl;
13223 
13224 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13225 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13226 	if (rc > 0)
13227 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13228 				"0487 PCI enable MSI mode success.\n");
13229 	else {
13230 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13231 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13232 		return rc ? rc : -1;
13233 	}
13234 
13235 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13236 			 0, LPFC_DRIVER_NAME, phba);
13237 	if (rc) {
13238 		pci_free_irq_vectors(phba->pcidev);
13239 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13240 				"0490 MSI request_irq failed (%d)\n", rc);
13241 		return rc;
13242 	}
13243 
13244 	eqhdl = lpfc_get_eq_hdl(0);
13245 	rc = pci_irq_vector(phba->pcidev, 0);
13246 	if (rc < 0) {
13247 		pci_free_irq_vectors(phba->pcidev);
13248 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13249 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13250 		return rc;
13251 	}
13252 	eqhdl->irq = rc;
13253 
13254 	cpu = cpumask_first(cpu_present_mask);
13255 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13256 
13257 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13258 		eqhdl = lpfc_get_eq_hdl(index);
13259 		eqhdl->idx = index;
13260 	}
13261 
13262 	return 0;
13263 }
13264 
13265 /**
13266  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13267  * @phba: pointer to lpfc hba data structure.
13268  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13269  *
13270  * This routine is invoked to enable device interrupt and associate driver's
13271  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13272  * interface spec. Depends on the interrupt mode configured to the driver,
13273  * the driver will try to fallback from the configured interrupt mode to an
13274  * interrupt mode which is supported by the platform, kernel, and device in
13275  * the order of:
13276  * MSI-X -> MSI -> IRQ.
13277  *
13278  * Return codes
13279  *	Interrupt mode (2, 1, 0) - successful
13280  *	LPFC_INTR_ERROR - error
13281  **/
13282 static uint32_t
13283 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13284 {
13285 	uint32_t intr_mode = LPFC_INTR_ERROR;
13286 	int retval, idx;
13287 
13288 	if (cfg_mode == 2) {
13289 		/* Preparation before conf_msi mbox cmd */
13290 		retval = 0;
13291 		if (!retval) {
13292 			/* Now, try to enable MSI-X interrupt mode */
13293 			retval = lpfc_sli4_enable_msix(phba);
13294 			if (!retval) {
13295 				/* Indicate initialization to MSI-X mode */
13296 				phba->intr_type = MSIX;
13297 				intr_mode = 2;
13298 			}
13299 		}
13300 	}
13301 
13302 	/* Fallback to MSI if MSI-X initialization failed */
13303 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13304 		retval = lpfc_sli4_enable_msi(phba);
13305 		if (!retval) {
13306 			/* Indicate initialization to MSI mode */
13307 			phba->intr_type = MSI;
13308 			intr_mode = 1;
13309 		}
13310 	}
13311 
13312 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13313 	if (phba->intr_type == NONE) {
13314 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13315 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13316 		if (!retval) {
13317 			struct lpfc_hba_eq_hdl *eqhdl;
13318 			unsigned int cpu;
13319 
13320 			/* Indicate initialization to INTx mode */
13321 			phba->intr_type = INTx;
13322 			intr_mode = 0;
13323 
13324 			eqhdl = lpfc_get_eq_hdl(0);
13325 			retval = pci_irq_vector(phba->pcidev, 0);
13326 			if (retval < 0) {
13327 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13328 					"0502 INTR pci_irq_vec failed (%d)\n",
13329 					 retval);
13330 				return LPFC_INTR_ERROR;
13331 			}
13332 			eqhdl->irq = retval;
13333 
13334 			cpu = cpumask_first(cpu_present_mask);
13335 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13336 						cpu);
13337 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13338 				eqhdl = lpfc_get_eq_hdl(idx);
13339 				eqhdl->idx = idx;
13340 			}
13341 		}
13342 	}
13343 	return intr_mode;
13344 }
13345 
13346 /**
13347  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13348  * @phba: pointer to lpfc hba data structure.
13349  *
13350  * This routine is invoked to disable device interrupt and disassociate
13351  * the driver's interrupt handler(s) from interrupt vector(s) to device
13352  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13353  * will release the interrupt vector(s) for the message signaled interrupt.
13354  **/
13355 static void
13356 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13357 {
13358 	/* Disable the currently initialized interrupt mode */
13359 	if (phba->intr_type == MSIX) {
13360 		int index;
13361 		struct lpfc_hba_eq_hdl *eqhdl;
13362 
13363 		/* Free up MSI-X multi-message vectors */
13364 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13365 			eqhdl = lpfc_get_eq_hdl(index);
13366 			lpfc_irq_clear_aff(eqhdl);
13367 			free_irq(eqhdl->irq, eqhdl);
13368 		}
13369 	} else {
13370 		free_irq(phba->pcidev->irq, phba);
13371 	}
13372 
13373 	pci_free_irq_vectors(phba->pcidev);
13374 
13375 	/* Reset interrupt management states */
13376 	phba->intr_type = NONE;
13377 	phba->sli.slistat.sli_intr = 0;
13378 }
13379 
13380 /**
13381  * lpfc_unset_hba - Unset SLI3 hba device initialization
13382  * @phba: pointer to lpfc hba data structure.
13383  *
13384  * This routine is invoked to unset the HBA device initialization steps to
13385  * a device with SLI-3 interface spec.
13386  **/
13387 static void
13388 lpfc_unset_hba(struct lpfc_hba *phba)
13389 {
13390 	struct lpfc_vport *vport = phba->pport;
13391 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13392 
13393 	spin_lock_irq(shost->host_lock);
13394 	vport->load_flag |= FC_UNLOADING;
13395 	spin_unlock_irq(shost->host_lock);
13396 
13397 	kfree(phba->vpi_bmask);
13398 	kfree(phba->vpi_ids);
13399 
13400 	lpfc_stop_hba_timers(phba);
13401 
13402 	phba->pport->work_port_events = 0;
13403 
13404 	lpfc_sli_hba_down(phba);
13405 
13406 	lpfc_sli_brdrestart(phba);
13407 
13408 	lpfc_sli_disable_intr(phba);
13409 
13410 	return;
13411 }
13412 
13413 /**
13414  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13415  * @phba: Pointer to HBA context object.
13416  *
13417  * This function is called in the SLI4 code path to wait for completion
13418  * of device's XRIs exchange busy. It will check the XRI exchange busy
13419  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13420  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13421  * I/Os every 30 seconds, log error message, and wait forever. Only when
13422  * all XRI exchange busy complete, the driver unload shall proceed with
13423  * invoking the function reset ioctl mailbox command to the CNA and the
13424  * the rest of the driver unload resource release.
13425  **/
13426 static void
13427 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13428 {
13429 	struct lpfc_sli4_hdw_queue *qp;
13430 	int idx, ccnt;
13431 	int wait_time = 0;
13432 	int io_xri_cmpl = 1;
13433 	int nvmet_xri_cmpl = 1;
13434 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13435 
13436 	/* Driver just aborted IOs during the hba_unset process.  Pause
13437 	 * here to give the HBA time to complete the IO and get entries
13438 	 * into the abts lists.
13439 	 */
13440 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13441 
13442 	/* Wait for NVME pending IO to flush back to transport. */
13443 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13444 		lpfc_nvme_wait_for_io_drain(phba);
13445 
13446 	ccnt = 0;
13447 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13448 		qp = &phba->sli4_hba.hdwq[idx];
13449 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13450 		if (!io_xri_cmpl) /* if list is NOT empty */
13451 			ccnt++;
13452 	}
13453 	if (ccnt)
13454 		io_xri_cmpl = 0;
13455 
13456 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13457 		nvmet_xri_cmpl =
13458 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13459 	}
13460 
13461 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13462 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13463 			if (!nvmet_xri_cmpl)
13464 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13465 						"6424 NVMET XRI exchange busy "
13466 						"wait time: %d seconds.\n",
13467 						wait_time/1000);
13468 			if (!io_xri_cmpl)
13469 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13470 						"6100 IO XRI exchange busy "
13471 						"wait time: %d seconds.\n",
13472 						wait_time/1000);
13473 			if (!els_xri_cmpl)
13474 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13475 						"2878 ELS XRI exchange busy "
13476 						"wait time: %d seconds.\n",
13477 						wait_time/1000);
13478 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13479 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13480 		} else {
13481 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13482 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13483 		}
13484 
13485 		ccnt = 0;
13486 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13487 			qp = &phba->sli4_hba.hdwq[idx];
13488 			io_xri_cmpl = list_empty(
13489 			    &qp->lpfc_abts_io_buf_list);
13490 			if (!io_xri_cmpl) /* if list is NOT empty */
13491 				ccnt++;
13492 		}
13493 		if (ccnt)
13494 			io_xri_cmpl = 0;
13495 
13496 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13497 			nvmet_xri_cmpl = list_empty(
13498 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13499 		}
13500 		els_xri_cmpl =
13501 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13502 
13503 	}
13504 }
13505 
13506 /**
13507  * lpfc_sli4_hba_unset - Unset the fcoe hba
13508  * @phba: Pointer to HBA context object.
13509  *
13510  * This function is called in the SLI4 code path to reset the HBA's FCoE
13511  * function. The caller is not required to hold any lock. This routine
13512  * issues PCI function reset mailbox command to reset the FCoE function.
13513  * At the end of the function, it calls lpfc_hba_down_post function to
13514  * free any pending commands.
13515  **/
13516 static void
13517 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13518 {
13519 	int wait_cnt = 0;
13520 	LPFC_MBOXQ_t *mboxq;
13521 	struct pci_dev *pdev = phba->pcidev;
13522 
13523 	lpfc_stop_hba_timers(phba);
13524 	hrtimer_cancel(&phba->cmf_timer);
13525 
13526 	if (phba->pport)
13527 		phba->sli4_hba.intr_enable = 0;
13528 
13529 	/*
13530 	 * Gracefully wait out the potential current outstanding asynchronous
13531 	 * mailbox command.
13532 	 */
13533 
13534 	/* First, block any pending async mailbox command from posted */
13535 	spin_lock_irq(&phba->hbalock);
13536 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13537 	spin_unlock_irq(&phba->hbalock);
13538 	/* Now, trying to wait it out if we can */
13539 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13540 		msleep(10);
13541 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13542 			break;
13543 	}
13544 	/* Forcefully release the outstanding mailbox command if timed out */
13545 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13546 		spin_lock_irq(&phba->hbalock);
13547 		mboxq = phba->sli.mbox_active;
13548 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13549 		__lpfc_mbox_cmpl_put(phba, mboxq);
13550 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13551 		phba->sli.mbox_active = NULL;
13552 		spin_unlock_irq(&phba->hbalock);
13553 	}
13554 
13555 	/* Abort all iocbs associated with the hba */
13556 	lpfc_sli_hba_iocb_abort(phba);
13557 
13558 	if (!pci_channel_offline(phba->pcidev))
13559 		/* Wait for completion of device XRI exchange busy */
13560 		lpfc_sli4_xri_exchange_busy_wait(phba);
13561 
13562 	/* per-phba callback de-registration for hotplug event */
13563 	if (phba->pport)
13564 		lpfc_cpuhp_remove(phba);
13565 
13566 	/* Disable PCI subsystem interrupt */
13567 	lpfc_sli4_disable_intr(phba);
13568 
13569 	/* Disable SR-IOV if enabled */
13570 	if (phba->cfg_sriov_nr_virtfn)
13571 		pci_disable_sriov(pdev);
13572 
13573 	/* Stop kthread signal shall trigger work_done one more time */
13574 	kthread_stop(phba->worker_thread);
13575 
13576 	/* Disable FW logging to host memory */
13577 	lpfc_ras_stop_fwlog(phba);
13578 
13579 	/* Reset SLI4 HBA FCoE function */
13580 	lpfc_pci_function_reset(phba);
13581 
13582 	/* release all queue allocated resources. */
13583 	lpfc_sli4_queue_destroy(phba);
13584 
13585 	/* Free RAS DMA memory */
13586 	if (phba->ras_fwlog.ras_enabled)
13587 		lpfc_sli4_ras_dma_free(phba);
13588 
13589 	/* Stop the SLI4 device port */
13590 	if (phba->pport)
13591 		phba->pport->work_port_events = 0;
13592 }
13593 
13594 static uint32_t
13595 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13596 {
13597 	uint32_t msb = 0;
13598 	uint32_t bit;
13599 
13600 	for (bit = 0; bit < 8; bit++) {
13601 		msb = (crc >> 31) & 1;
13602 		crc <<= 1;
13603 
13604 		if (msb ^ (byte & 1)) {
13605 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13606 			crc |= 1;
13607 		}
13608 		byte >>= 1;
13609 	}
13610 	return crc;
13611 }
13612 
13613 static uint32_t
13614 lpfc_cgn_reverse_bits(uint32_t wd)
13615 {
13616 	uint32_t result = 0;
13617 	uint32_t i;
13618 
13619 	for (i = 0; i < 32; i++) {
13620 		result <<= 1;
13621 		result |= (1 & (wd >> i));
13622 	}
13623 	return result;
13624 }
13625 
13626 /*
13627  * The routine corresponds with the algorithm the HBA firmware
13628  * uses to validate the data integrity.
13629  */
13630 uint32_t
13631 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13632 {
13633 	uint32_t  i;
13634 	uint32_t result;
13635 	uint8_t  *data = (uint8_t *)ptr;
13636 
13637 	for (i = 0; i < byteLen; ++i)
13638 		crc = lpfc_cgn_crc32(crc, data[i]);
13639 
13640 	result = ~lpfc_cgn_reverse_bits(crc);
13641 	return result;
13642 }
13643 
13644 void
13645 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13646 {
13647 	struct lpfc_cgn_info *cp;
13648 	struct timespec64 cmpl_time;
13649 	struct tm broken;
13650 	uint16_t size;
13651 	uint32_t crc;
13652 
13653 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13654 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13655 
13656 	if (!phba->cgn_i)
13657 		return;
13658 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13659 
13660 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13661 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13662 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13663 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13664 
13665 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13666 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13667 	atomic64_set(&phba->cgn_latency_evt, 0);
13668 	phba->cgn_evt_minute = 0;
13669 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13670 
13671 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13672 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13673 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13674 
13675 	/* cgn parameters */
13676 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13677 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13678 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13679 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13680 
13681 	ktime_get_real_ts64(&cmpl_time);
13682 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13683 
13684 	cp->cgn_info_month = broken.tm_mon + 1;
13685 	cp->cgn_info_day = broken.tm_mday;
13686 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13687 	cp->cgn_info_hour = broken.tm_hour;
13688 	cp->cgn_info_minute = broken.tm_min;
13689 	cp->cgn_info_second = broken.tm_sec;
13690 
13691 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13692 			"2643 CGNInfo Init: Start Time "
13693 			"%d/%d/%d %d:%d:%d\n",
13694 			cp->cgn_info_day, cp->cgn_info_month,
13695 			cp->cgn_info_year, cp->cgn_info_hour,
13696 			cp->cgn_info_minute, cp->cgn_info_second);
13697 
13698 	/* Fill in default LUN qdepth */
13699 	if (phba->pport) {
13700 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13701 		cp->cgn_lunq = cpu_to_le16(size);
13702 	}
13703 
13704 	/* last used Index initialized to 0xff already */
13705 
13706 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13707 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13708 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13709 	cp->cgn_info_crc = cpu_to_le32(crc);
13710 
13711 	phba->cgn_evt_timestamp = jiffies +
13712 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13713 }
13714 
13715 void
13716 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13717 {
13718 	struct lpfc_cgn_info *cp;
13719 	struct timespec64 cmpl_time;
13720 	struct tm broken;
13721 	uint32_t crc;
13722 
13723 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13724 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13725 
13726 	if (!phba->cgn_i)
13727 		return;
13728 
13729 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13730 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13731 
13732 	ktime_get_real_ts64(&cmpl_time);
13733 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13734 
13735 	cp->cgn_stat_month = broken.tm_mon + 1;
13736 	cp->cgn_stat_day = broken.tm_mday;
13737 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13738 	cp->cgn_stat_hour = broken.tm_hour;
13739 	cp->cgn_stat_minute = broken.tm_min;
13740 
13741 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13742 			"2647 CGNstat Init: Start Time "
13743 			"%d/%d/%d %d:%d\n",
13744 			cp->cgn_stat_day, cp->cgn_stat_month,
13745 			cp->cgn_stat_year, cp->cgn_stat_hour,
13746 			cp->cgn_stat_minute);
13747 
13748 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13749 	cp->cgn_info_crc = cpu_to_le32(crc);
13750 }
13751 
13752 /**
13753  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13754  * @phba: Pointer to hba context object.
13755  * @reg: flag to determine register or unregister.
13756  */
13757 static int
13758 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13759 {
13760 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13761 	union  lpfc_sli4_cfg_shdr *shdr;
13762 	uint32_t shdr_status, shdr_add_status;
13763 	LPFC_MBOXQ_t *mboxq;
13764 	int length, rc;
13765 
13766 	if (!phba->cgn_i)
13767 		return -ENXIO;
13768 
13769 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13770 	if (!mboxq) {
13771 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13772 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13773 				"HBA state x%x reg %d\n",
13774 				phba->pport->port_state, reg);
13775 		return -ENOMEM;
13776 	}
13777 
13778 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13779 		sizeof(struct lpfc_sli4_cfg_mhdr));
13780 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13781 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13782 			 LPFC_SLI4_MBX_EMBED);
13783 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13784 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13785 	if (reg > 0)
13786 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13787 	else
13788 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13789 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13790 	reg_congestion_buf->addr_lo =
13791 		putPaddrLow(phba->cgn_i->phys);
13792 	reg_congestion_buf->addr_hi =
13793 		putPaddrHigh(phba->cgn_i->phys);
13794 
13795 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13796 	shdr = (union lpfc_sli4_cfg_shdr *)
13797 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13798 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13799 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13800 				 &shdr->response);
13801 	mempool_free(mboxq, phba->mbox_mem_pool);
13802 	if (shdr_status || shdr_add_status || rc) {
13803 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13804 				"2642 REG_CONGESTION_BUF mailbox "
13805 				"failed with status x%x add_status x%x,"
13806 				" mbx status x%x reg %d\n",
13807 				shdr_status, shdr_add_status, rc, reg);
13808 		return -ENXIO;
13809 	}
13810 	return 0;
13811 }
13812 
13813 int
13814 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13815 {
13816 	lpfc_cmf_stop(phba);
13817 	return __lpfc_reg_congestion_buf(phba, 0);
13818 }
13819 
13820 int
13821 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13822 {
13823 	return __lpfc_reg_congestion_buf(phba, 1);
13824 }
13825 
13826 /**
13827  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13828  * @phba: Pointer to HBA context object.
13829  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13830  *
13831  * This function is called in the SLI4 code path to read the port's
13832  * sli4 capabilities.
13833  *
13834  * This function may be be called from any context that can block-wait
13835  * for the completion.  The expectation is that this routine is called
13836  * typically from probe_one or from the online routine.
13837  **/
13838 int
13839 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13840 {
13841 	int rc;
13842 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13843 	struct lpfc_pc_sli4_params *sli4_params;
13844 	uint32_t mbox_tmo;
13845 	int length;
13846 	bool exp_wqcq_pages = true;
13847 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13848 
13849 	/*
13850 	 * By default, the driver assumes the SLI4 port requires RPI
13851 	 * header postings.  The SLI4_PARAM response will correct this
13852 	 * assumption.
13853 	 */
13854 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13855 
13856 	/* Read the port's SLI4 Config Parameters */
13857 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13858 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13859 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13860 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13861 			 length, LPFC_SLI4_MBX_EMBED);
13862 	if (!phba->sli4_hba.intr_enable)
13863 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13864 	else {
13865 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13866 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13867 	}
13868 	if (unlikely(rc))
13869 		return rc;
13870 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13871 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13872 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13873 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13874 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13875 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13876 					     mbx_sli4_parameters);
13877 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13878 					     mbx_sli4_parameters);
13879 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13880 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13881 	else
13882 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13883 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13884 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13885 					   mbx_sli4_parameters);
13886 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13887 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13888 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13889 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13890 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13891 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13892 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13893 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13894 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13895 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13896 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13897 					    mbx_sli4_parameters);
13898 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13899 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13900 					   mbx_sli4_parameters);
13901 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13902 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13903 	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13904 
13905 	/* Check for Extended Pre-Registered SGL support */
13906 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13907 
13908 	/* Check for firmware nvme support */
13909 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13910 		     bf_get(cfg_xib, mbx_sli4_parameters));
13911 
13912 	if (rc) {
13913 		/* Save this to indicate the Firmware supports NVME */
13914 		sli4_params->nvme = 1;
13915 
13916 		/* Firmware NVME support, check driver FC4 NVME support */
13917 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13918 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13919 					"6133 Disabling NVME support: "
13920 					"FC4 type not supported: x%x\n",
13921 					phba->cfg_enable_fc4_type);
13922 			goto fcponly;
13923 		}
13924 	} else {
13925 		/* No firmware NVME support, check driver FC4 NVME support */
13926 		sli4_params->nvme = 0;
13927 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13928 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13929 					"6101 Disabling NVME support: Not "
13930 					"supported by firmware (%d %d) x%x\n",
13931 					bf_get(cfg_nvme, mbx_sli4_parameters),
13932 					bf_get(cfg_xib, mbx_sli4_parameters),
13933 					phba->cfg_enable_fc4_type);
13934 fcponly:
13935 			phba->nvmet_support = 0;
13936 			phba->cfg_nvmet_mrq = 0;
13937 			phba->cfg_nvme_seg_cnt = 0;
13938 
13939 			/* If no FC4 type support, move to just SCSI support */
13940 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13941 				return -ENODEV;
13942 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13943 		}
13944 	}
13945 
13946 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13947 	 * accommodate 512K and 1M IOs in a single nvme buf.
13948 	 */
13949 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13950 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13951 
13952 	/* Enable embedded Payload BDE if support is indicated */
13953 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13954 		phba->cfg_enable_pbde = 1;
13955 	else
13956 		phba->cfg_enable_pbde = 0;
13957 
13958 	/*
13959 	 * To support Suppress Response feature we must satisfy 3 conditions.
13960 	 * lpfc_suppress_rsp module parameter must be set (default).
13961 	 * In SLI4-Parameters Descriptor:
13962 	 * Extended Inline Buffers (XIB) must be supported.
13963 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13964 	 * (double negative).
13965 	 */
13966 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13967 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13968 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13969 	else
13970 		phba->cfg_suppress_rsp = 0;
13971 
13972 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13973 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13974 
13975 	/* Make sure that sge_supp_len can be handled by the driver */
13976 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13977 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13978 
13979 	rc = dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len);
13980 	if (unlikely(rc)) {
13981 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13982 				"6400 Can't set dma maximum segment size\n");
13983 		return rc;
13984 	}
13985 
13986 	/*
13987 	 * Check whether the adapter supports an embedded copy of the
13988 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13989 	 * to use this option, 128-byte WQEs must be used.
13990 	 */
13991 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13992 		phba->fcp_embed_io = 1;
13993 	else
13994 		phba->fcp_embed_io = 0;
13995 
13996 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13997 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13998 			bf_get(cfg_xib, mbx_sli4_parameters),
13999 			phba->cfg_enable_pbde,
14000 			phba->fcp_embed_io, sli4_params->nvme,
14001 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
14002 
14003 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
14004 	    LPFC_SLI_INTF_IF_TYPE_2) &&
14005 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
14006 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
14007 		exp_wqcq_pages = false;
14008 
14009 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
14010 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
14011 	    exp_wqcq_pages &&
14012 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
14013 		phba->enab_exp_wqcq_pages = 1;
14014 	else
14015 		phba->enab_exp_wqcq_pages = 0;
14016 	/*
14017 	 * Check if the SLI port supports MDS Diagnostics
14018 	 */
14019 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
14020 		phba->mds_diags_support = 1;
14021 	else
14022 		phba->mds_diags_support = 0;
14023 
14024 	/*
14025 	 * Check if the SLI port supports NSLER
14026 	 */
14027 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
14028 		phba->nsler = 1;
14029 	else
14030 		phba->nsler = 0;
14031 
14032 	return 0;
14033 }
14034 
14035 /**
14036  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
14037  * @pdev: pointer to PCI device
14038  * @pid: pointer to PCI device identifier
14039  *
14040  * This routine is to be called to attach a device with SLI-3 interface spec
14041  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14042  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14043  * information of the device and driver to see if the driver state that it can
14044  * support this kind of device. If the match is successful, the driver core
14045  * invokes this routine. If this routine determines it can claim the HBA, it
14046  * does all the initialization that it needs to do to handle the HBA properly.
14047  *
14048  * Return code
14049  * 	0 - driver can claim the device
14050  * 	negative value - driver can not claim the device
14051  **/
14052 static int
14053 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
14054 {
14055 	struct lpfc_hba   *phba;
14056 	struct lpfc_vport *vport = NULL;
14057 	struct Scsi_Host  *shost = NULL;
14058 	int error;
14059 	uint32_t cfg_mode, intr_mode;
14060 
14061 	/* Allocate memory for HBA structure */
14062 	phba = lpfc_hba_alloc(pdev);
14063 	if (!phba)
14064 		return -ENOMEM;
14065 
14066 	/* Perform generic PCI device enabling operation */
14067 	error = lpfc_enable_pci_dev(phba);
14068 	if (error)
14069 		goto out_free_phba;
14070 
14071 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
14072 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
14073 	if (error)
14074 		goto out_disable_pci_dev;
14075 
14076 	/* Set up SLI-3 specific device PCI memory space */
14077 	error = lpfc_sli_pci_mem_setup(phba);
14078 	if (error) {
14079 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14080 				"1402 Failed to set up pci memory space.\n");
14081 		goto out_disable_pci_dev;
14082 	}
14083 
14084 	/* Set up SLI-3 specific device driver resources */
14085 	error = lpfc_sli_driver_resource_setup(phba);
14086 	if (error) {
14087 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14088 				"1404 Failed to set up driver resource.\n");
14089 		goto out_unset_pci_mem_s3;
14090 	}
14091 
14092 	/* Initialize and populate the iocb list per host */
14093 
14094 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
14095 	if (error) {
14096 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14097 				"1405 Failed to initialize iocb list.\n");
14098 		goto out_unset_driver_resource_s3;
14099 	}
14100 
14101 	/* Set up common device driver resources */
14102 	error = lpfc_setup_driver_resource_phase2(phba);
14103 	if (error) {
14104 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14105 				"1406 Failed to set up driver resource.\n");
14106 		goto out_free_iocb_list;
14107 	}
14108 
14109 	/* Get the default values for Model Name and Description */
14110 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14111 
14112 	/* Create SCSI host to the physical port */
14113 	error = lpfc_create_shost(phba);
14114 	if (error) {
14115 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14116 				"1407 Failed to create scsi host.\n");
14117 		goto out_unset_driver_resource;
14118 	}
14119 
14120 	/* Configure sysfs attributes */
14121 	vport = phba->pport;
14122 	error = lpfc_alloc_sysfs_attr(vport);
14123 	if (error) {
14124 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14125 				"1476 Failed to allocate sysfs attr\n");
14126 		goto out_destroy_shost;
14127 	}
14128 
14129 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14130 	/* Now, trying to enable interrupt and bring up the device */
14131 	cfg_mode = phba->cfg_use_msi;
14132 	while (true) {
14133 		/* Put device to a known state before enabling interrupt */
14134 		lpfc_stop_port(phba);
14135 		/* Configure and enable interrupt */
14136 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14137 		if (intr_mode == LPFC_INTR_ERROR) {
14138 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14139 					"0431 Failed to enable interrupt.\n");
14140 			error = -ENODEV;
14141 			goto out_free_sysfs_attr;
14142 		}
14143 		/* SLI-3 HBA setup */
14144 		if (lpfc_sli_hba_setup(phba)) {
14145 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14146 					"1477 Failed to set up hba\n");
14147 			error = -ENODEV;
14148 			goto out_remove_device;
14149 		}
14150 
14151 		/* Wait 50ms for the interrupts of previous mailbox commands */
14152 		msleep(50);
14153 		/* Check active interrupts on message signaled interrupts */
14154 		if (intr_mode == 0 ||
14155 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14156 			/* Log the current active interrupt mode */
14157 			phba->intr_mode = intr_mode;
14158 			lpfc_log_intr_mode(phba, intr_mode);
14159 			break;
14160 		} else {
14161 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14162 					"0447 Configure interrupt mode (%d) "
14163 					"failed active interrupt test.\n",
14164 					intr_mode);
14165 			/* Disable the current interrupt mode */
14166 			lpfc_sli_disable_intr(phba);
14167 			/* Try next level of interrupt mode */
14168 			cfg_mode = --intr_mode;
14169 		}
14170 	}
14171 
14172 	/* Perform post initialization setup */
14173 	lpfc_post_init_setup(phba);
14174 
14175 	/* Check if there are static vports to be created. */
14176 	lpfc_create_static_vport(phba);
14177 
14178 	return 0;
14179 
14180 out_remove_device:
14181 	lpfc_unset_hba(phba);
14182 out_free_sysfs_attr:
14183 	lpfc_free_sysfs_attr(vport);
14184 out_destroy_shost:
14185 	lpfc_destroy_shost(phba);
14186 out_unset_driver_resource:
14187 	lpfc_unset_driver_resource_phase2(phba);
14188 out_free_iocb_list:
14189 	lpfc_free_iocb_list(phba);
14190 out_unset_driver_resource_s3:
14191 	lpfc_sli_driver_resource_unset(phba);
14192 out_unset_pci_mem_s3:
14193 	lpfc_sli_pci_mem_unset(phba);
14194 out_disable_pci_dev:
14195 	lpfc_disable_pci_dev(phba);
14196 	if (shost)
14197 		scsi_host_put(shost);
14198 out_free_phba:
14199 	lpfc_hba_free(phba);
14200 	return error;
14201 }
14202 
14203 /**
14204  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14205  * @pdev: pointer to PCI device
14206  *
14207  * This routine is to be called to disattach a device with SLI-3 interface
14208  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14209  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14210  * device to be removed from the PCI subsystem properly.
14211  **/
14212 static void
14213 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14214 {
14215 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14216 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14217 	struct lpfc_vport **vports;
14218 	struct lpfc_hba   *phba = vport->phba;
14219 	int i;
14220 
14221 	spin_lock_irq(&phba->hbalock);
14222 	vport->load_flag |= FC_UNLOADING;
14223 	spin_unlock_irq(&phba->hbalock);
14224 
14225 	lpfc_free_sysfs_attr(vport);
14226 
14227 	/* Release all the vports against this physical port */
14228 	vports = lpfc_create_vport_work_array(phba);
14229 	if (vports != NULL)
14230 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14231 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14232 				continue;
14233 			fc_vport_terminate(vports[i]->fc_vport);
14234 		}
14235 	lpfc_destroy_vport_work_array(phba, vports);
14236 
14237 	/* Remove FC host with the physical port */
14238 	fc_remove_host(shost);
14239 	scsi_remove_host(shost);
14240 
14241 	/* Clean up all nodes, mailboxes and IOs. */
14242 	lpfc_cleanup(vport);
14243 
14244 	/*
14245 	 * Bring down the SLI Layer. This step disable all interrupts,
14246 	 * clears the rings, discards all mailbox commands, and resets
14247 	 * the HBA.
14248 	 */
14249 
14250 	/* HBA interrupt will be disabled after this call */
14251 	lpfc_sli_hba_down(phba);
14252 	/* Stop kthread signal shall trigger work_done one more time */
14253 	kthread_stop(phba->worker_thread);
14254 	/* Final cleanup of txcmplq and reset the HBA */
14255 	lpfc_sli_brdrestart(phba);
14256 
14257 	kfree(phba->vpi_bmask);
14258 	kfree(phba->vpi_ids);
14259 
14260 	lpfc_stop_hba_timers(phba);
14261 	spin_lock_irq(&phba->port_list_lock);
14262 	list_del_init(&vport->listentry);
14263 	spin_unlock_irq(&phba->port_list_lock);
14264 
14265 	lpfc_debugfs_terminate(vport);
14266 
14267 	/* Disable SR-IOV if enabled */
14268 	if (phba->cfg_sriov_nr_virtfn)
14269 		pci_disable_sriov(pdev);
14270 
14271 	/* Disable interrupt */
14272 	lpfc_sli_disable_intr(phba);
14273 
14274 	scsi_host_put(shost);
14275 
14276 	/*
14277 	 * Call scsi_free before mem_free since scsi bufs are released to their
14278 	 * corresponding pools here.
14279 	 */
14280 	lpfc_scsi_free(phba);
14281 	lpfc_free_iocb_list(phba);
14282 
14283 	lpfc_mem_free_all(phba);
14284 
14285 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14286 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14287 
14288 	/* Free resources associated with SLI2 interface */
14289 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14290 			  phba->slim2p.virt, phba->slim2p.phys);
14291 
14292 	/* unmap adapter SLIM and Control Registers */
14293 	iounmap(phba->ctrl_regs_memmap_p);
14294 	iounmap(phba->slim_memmap_p);
14295 
14296 	lpfc_hba_free(phba);
14297 
14298 	pci_release_mem_regions(pdev);
14299 	pci_disable_device(pdev);
14300 }
14301 
14302 /**
14303  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14304  * @dev_d: pointer to device
14305  *
14306  * This routine is to be called from the kernel's PCI subsystem to support
14307  * system Power Management (PM) to device with SLI-3 interface spec. When
14308  * PM invokes this method, it quiesces the device by stopping the driver's
14309  * worker thread for the device, turning off device's interrupt and DMA,
14310  * and bring the device offline. Note that as the driver implements the
14311  * minimum PM requirements to a power-aware driver's PM support for the
14312  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14313  * to the suspend() method call will be treated as SUSPEND and the driver will
14314  * fully reinitialize its device during resume() method call, the driver will
14315  * set device to PCI_D3hot state in PCI config space instead of setting it
14316  * according to the @msg provided by the PM.
14317  *
14318  * Return code
14319  * 	0 - driver suspended the device
14320  * 	Error otherwise
14321  **/
14322 static int __maybe_unused
14323 lpfc_pci_suspend_one_s3(struct device *dev_d)
14324 {
14325 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14326 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14327 
14328 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14329 			"0473 PCI device Power Management suspend.\n");
14330 
14331 	/* Bring down the device */
14332 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14333 	lpfc_offline(phba);
14334 	kthread_stop(phba->worker_thread);
14335 
14336 	/* Disable interrupt from device */
14337 	lpfc_sli_disable_intr(phba);
14338 
14339 	return 0;
14340 }
14341 
14342 /**
14343  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14344  * @dev_d: pointer to device
14345  *
14346  * This routine is to be called from the kernel's PCI subsystem to support
14347  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14348  * invokes this method, it restores the device's PCI config space state and
14349  * fully reinitializes the device and brings it online. Note that as the
14350  * driver implements the minimum PM requirements to a power-aware driver's
14351  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14352  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14353  * driver will fully reinitialize its device during resume() method call,
14354  * the device will be set to PCI_D0 directly in PCI config space before
14355  * restoring the state.
14356  *
14357  * Return code
14358  * 	0 - driver suspended the device
14359  * 	Error otherwise
14360  **/
14361 static int __maybe_unused
14362 lpfc_pci_resume_one_s3(struct device *dev_d)
14363 {
14364 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14365 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14366 	uint32_t intr_mode;
14367 	int error;
14368 
14369 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14370 			"0452 PCI device Power Management resume.\n");
14371 
14372 	/* Startup the kernel thread for this host adapter. */
14373 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14374 					"lpfc_worker_%d", phba->brd_no);
14375 	if (IS_ERR(phba->worker_thread)) {
14376 		error = PTR_ERR(phba->worker_thread);
14377 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14378 				"0434 PM resume failed to start worker "
14379 				"thread: error=x%x.\n", error);
14380 		return error;
14381 	}
14382 
14383 	/* Init cpu_map array */
14384 	lpfc_cpu_map_array_init(phba);
14385 	/* Init hba_eq_hdl array */
14386 	lpfc_hba_eq_hdl_array_init(phba);
14387 	/* Configure and enable interrupt */
14388 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14389 	if (intr_mode == LPFC_INTR_ERROR) {
14390 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14391 				"0430 PM resume Failed to enable interrupt\n");
14392 		return -EIO;
14393 	} else
14394 		phba->intr_mode = intr_mode;
14395 
14396 	/* Restart HBA and bring it online */
14397 	lpfc_sli_brdrestart(phba);
14398 	lpfc_online(phba);
14399 
14400 	/* Log the current active interrupt mode */
14401 	lpfc_log_intr_mode(phba, phba->intr_mode);
14402 
14403 	return 0;
14404 }
14405 
14406 /**
14407  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14408  * @phba: pointer to lpfc hba data structure.
14409  *
14410  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14411  * aborts all the outstanding SCSI I/Os to the pci device.
14412  **/
14413 static void
14414 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14415 {
14416 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14417 			"2723 PCI channel I/O abort preparing for recovery\n");
14418 
14419 	/*
14420 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14421 	 * and let the SCSI mid-layer to retry them to recover.
14422 	 */
14423 	lpfc_sli_abort_fcp_rings(phba);
14424 }
14425 
14426 /**
14427  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14428  * @phba: pointer to lpfc hba data structure.
14429  *
14430  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14431  * disables the device interrupt and pci device, and aborts the internal FCP
14432  * pending I/Os.
14433  **/
14434 static void
14435 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14436 {
14437 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14438 			"2710 PCI channel disable preparing for reset\n");
14439 
14440 	/* Block any management I/Os to the device */
14441 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14442 
14443 	/* Block all SCSI devices' I/Os on the host */
14444 	lpfc_scsi_dev_block(phba);
14445 
14446 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14447 	lpfc_sli_flush_io_rings(phba);
14448 
14449 	/* stop all timers */
14450 	lpfc_stop_hba_timers(phba);
14451 
14452 	/* Disable interrupt and pci device */
14453 	lpfc_sli_disable_intr(phba);
14454 	pci_disable_device(phba->pcidev);
14455 }
14456 
14457 /**
14458  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14459  * @phba: pointer to lpfc hba data structure.
14460  *
14461  * This routine is called to prepare the SLI3 device for PCI slot permanently
14462  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14463  * pending I/Os.
14464  **/
14465 static void
14466 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14467 {
14468 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14469 			"2711 PCI channel permanent disable for failure\n");
14470 	/* Block all SCSI devices' I/Os on the host */
14471 	lpfc_scsi_dev_block(phba);
14472 	lpfc_sli4_prep_dev_for_reset(phba);
14473 
14474 	/* stop all timers */
14475 	lpfc_stop_hba_timers(phba);
14476 
14477 	/* Clean up all driver's outstanding SCSI I/Os */
14478 	lpfc_sli_flush_io_rings(phba);
14479 }
14480 
14481 /**
14482  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14483  * @pdev: pointer to PCI device.
14484  * @state: the current PCI connection state.
14485  *
14486  * This routine is called from the PCI subsystem for I/O error handling to
14487  * device with SLI-3 interface spec. This function is called by the PCI
14488  * subsystem after a PCI bus error affecting this device has been detected.
14489  * When this function is invoked, it will need to stop all the I/Os and
14490  * interrupt(s) to the device. Once that is done, it will return
14491  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14492  * as desired.
14493  *
14494  * Return codes
14495  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14496  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14497  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14498  **/
14499 static pci_ers_result_t
14500 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14501 {
14502 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14503 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14504 
14505 	switch (state) {
14506 	case pci_channel_io_normal:
14507 		/* Non-fatal error, prepare for recovery */
14508 		lpfc_sli_prep_dev_for_recover(phba);
14509 		return PCI_ERS_RESULT_CAN_RECOVER;
14510 	case pci_channel_io_frozen:
14511 		/* Fatal error, prepare for slot reset */
14512 		lpfc_sli_prep_dev_for_reset(phba);
14513 		return PCI_ERS_RESULT_NEED_RESET;
14514 	case pci_channel_io_perm_failure:
14515 		/* Permanent failure, prepare for device down */
14516 		lpfc_sli_prep_dev_for_perm_failure(phba);
14517 		return PCI_ERS_RESULT_DISCONNECT;
14518 	default:
14519 		/* Unknown state, prepare and request slot reset */
14520 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14521 				"0472 Unknown PCI error state: x%x\n", state);
14522 		lpfc_sli_prep_dev_for_reset(phba);
14523 		return PCI_ERS_RESULT_NEED_RESET;
14524 	}
14525 }
14526 
14527 /**
14528  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14529  * @pdev: pointer to PCI device.
14530  *
14531  * This routine is called from the PCI subsystem for error handling to
14532  * device with SLI-3 interface spec. This is called after PCI bus has been
14533  * reset to restart the PCI card from scratch, as if from a cold-boot.
14534  * During the PCI subsystem error recovery, after driver returns
14535  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14536  * recovery and then call this routine before calling the .resume method
14537  * to recover the device. This function will initialize the HBA device,
14538  * enable the interrupt, but it will just put the HBA to offline state
14539  * without passing any I/O traffic.
14540  *
14541  * Return codes
14542  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14543  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14544  */
14545 static pci_ers_result_t
14546 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14547 {
14548 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14549 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14550 	struct lpfc_sli *psli = &phba->sli;
14551 	uint32_t intr_mode;
14552 
14553 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14554 	if (pci_enable_device_mem(pdev)) {
14555 		printk(KERN_ERR "lpfc: Cannot re-enable "
14556 			"PCI device after reset.\n");
14557 		return PCI_ERS_RESULT_DISCONNECT;
14558 	}
14559 
14560 	pci_restore_state(pdev);
14561 
14562 	/*
14563 	 * As the new kernel behavior of pci_restore_state() API call clears
14564 	 * device saved_state flag, need to save the restored state again.
14565 	 */
14566 	pci_save_state(pdev);
14567 
14568 	if (pdev->is_busmaster)
14569 		pci_set_master(pdev);
14570 
14571 	spin_lock_irq(&phba->hbalock);
14572 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14573 	spin_unlock_irq(&phba->hbalock);
14574 
14575 	/* Configure and enable interrupt */
14576 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14577 	if (intr_mode == LPFC_INTR_ERROR) {
14578 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14579 				"0427 Cannot re-enable interrupt after "
14580 				"slot reset.\n");
14581 		return PCI_ERS_RESULT_DISCONNECT;
14582 	} else
14583 		phba->intr_mode = intr_mode;
14584 
14585 	/* Take device offline, it will perform cleanup */
14586 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14587 	lpfc_offline(phba);
14588 	lpfc_sli_brdrestart(phba);
14589 
14590 	/* Log the current active interrupt mode */
14591 	lpfc_log_intr_mode(phba, phba->intr_mode);
14592 
14593 	return PCI_ERS_RESULT_RECOVERED;
14594 }
14595 
14596 /**
14597  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14598  * @pdev: pointer to PCI device
14599  *
14600  * This routine is called from the PCI subsystem for error handling to device
14601  * with SLI-3 interface spec. It is called when kernel error recovery tells
14602  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14603  * error recovery. After this call, traffic can start to flow from this device
14604  * again.
14605  */
14606 static void
14607 lpfc_io_resume_s3(struct pci_dev *pdev)
14608 {
14609 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14610 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14611 
14612 	/* Bring device online, it will be no-op for non-fatal error resume */
14613 	lpfc_online(phba);
14614 }
14615 
14616 /**
14617  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14618  * @phba: pointer to lpfc hba data structure.
14619  *
14620  * returns the number of ELS/CT IOCBs to reserve
14621  **/
14622 int
14623 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14624 {
14625 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14626 
14627 	if (phba->sli_rev == LPFC_SLI_REV4) {
14628 		if (max_xri <= 100)
14629 			return 10;
14630 		else if (max_xri <= 256)
14631 			return 25;
14632 		else if (max_xri <= 512)
14633 			return 50;
14634 		else if (max_xri <= 1024)
14635 			return 100;
14636 		else if (max_xri <= 1536)
14637 			return 150;
14638 		else if (max_xri <= 2048)
14639 			return 200;
14640 		else
14641 			return 250;
14642 	} else
14643 		return 0;
14644 }
14645 
14646 /**
14647  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14648  * @phba: pointer to lpfc hba data structure.
14649  *
14650  * returns the number of ELS/CT + NVMET IOCBs to reserve
14651  **/
14652 int
14653 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14654 {
14655 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14656 
14657 	if (phba->nvmet_support)
14658 		max_xri += LPFC_NVMET_BUF_POST;
14659 	return max_xri;
14660 }
14661 
14662 
14663 static int
14664 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14665 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14666 	const struct firmware *fw)
14667 {
14668 	int rc;
14669 	u8 sli_family;
14670 
14671 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14672 	/* Three cases:  (1) FW was not supported on the detected adapter.
14673 	 * (2) FW update has been locked out administratively.
14674 	 * (3) Some other error during FW update.
14675 	 * In each case, an unmaskable message is written to the console
14676 	 * for admin diagnosis.
14677 	 */
14678 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14679 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14680 	     magic_number != MAGIC_NUMBER_G6) ||
14681 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14682 	     magic_number != MAGIC_NUMBER_G7) ||
14683 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14684 	     magic_number != MAGIC_NUMBER_G7P)) {
14685 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14686 				"3030 This firmware version is not supported on"
14687 				" this HBA model. Device:%x Magic:%x Type:%x "
14688 				"ID:%x Size %d %zd\n",
14689 				phba->pcidev->device, magic_number, ftype, fid,
14690 				fsize, fw->size);
14691 		rc = -EINVAL;
14692 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14693 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14694 				"3021 Firmware downloads have been prohibited "
14695 				"by a system configuration setting on "
14696 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14697 				"%zd\n",
14698 				phba->pcidev->device, magic_number, ftype, fid,
14699 				fsize, fw->size);
14700 		rc = -EACCES;
14701 	} else {
14702 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14703 				"3022 FW Download failed. Add Status x%x "
14704 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14705 				"%zd\n",
14706 				offset, phba->pcidev->device, magic_number,
14707 				ftype, fid, fsize, fw->size);
14708 		rc = -EIO;
14709 	}
14710 	return rc;
14711 }
14712 
14713 /**
14714  * lpfc_write_firmware - attempt to write a firmware image to the port
14715  * @fw: pointer to firmware image returned from request_firmware.
14716  * @context: pointer to firmware image returned from request_firmware.
14717  *
14718  **/
14719 static void
14720 lpfc_write_firmware(const struct firmware *fw, void *context)
14721 {
14722 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14723 	char fwrev[FW_REV_STR_SIZE];
14724 	struct lpfc_grp_hdr *image;
14725 	struct list_head dma_buffer_list;
14726 	int i, rc = 0;
14727 	struct lpfc_dmabuf *dmabuf, *next;
14728 	uint32_t offset = 0, temp_offset = 0;
14729 	uint32_t magic_number, ftype, fid, fsize;
14730 
14731 	/* It can be null in no-wait mode, sanity check */
14732 	if (!fw) {
14733 		rc = -ENXIO;
14734 		goto out;
14735 	}
14736 	image = (struct lpfc_grp_hdr *)fw->data;
14737 
14738 	magic_number = be32_to_cpu(image->magic_number);
14739 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14740 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14741 	fsize = be32_to_cpu(image->size);
14742 
14743 	INIT_LIST_HEAD(&dma_buffer_list);
14744 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14745 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14746 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14747 				"3023 Updating Firmware, Current Version:%s "
14748 				"New Version:%s\n",
14749 				fwrev, image->revision);
14750 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14751 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14752 					 GFP_KERNEL);
14753 			if (!dmabuf) {
14754 				rc = -ENOMEM;
14755 				goto release_out;
14756 			}
14757 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14758 							  SLI4_PAGE_SIZE,
14759 							  &dmabuf->phys,
14760 							  GFP_KERNEL);
14761 			if (!dmabuf->virt) {
14762 				kfree(dmabuf);
14763 				rc = -ENOMEM;
14764 				goto release_out;
14765 			}
14766 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14767 		}
14768 		while (offset < fw->size) {
14769 			temp_offset = offset;
14770 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14771 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14772 					memcpy(dmabuf->virt,
14773 					       fw->data + temp_offset,
14774 					       fw->size - temp_offset);
14775 					temp_offset = fw->size;
14776 					break;
14777 				}
14778 				memcpy(dmabuf->virt, fw->data + temp_offset,
14779 				       SLI4_PAGE_SIZE);
14780 				temp_offset += SLI4_PAGE_SIZE;
14781 			}
14782 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14783 				    (fw->size - offset), &offset);
14784 			if (rc) {
14785 				rc = lpfc_log_write_firmware_error(phba, offset,
14786 								   magic_number,
14787 								   ftype,
14788 								   fid,
14789 								   fsize,
14790 								   fw);
14791 				goto release_out;
14792 			}
14793 		}
14794 		rc = offset;
14795 	} else
14796 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14797 				"3029 Skipped Firmware update, Current "
14798 				"Version:%s New Version:%s\n",
14799 				fwrev, image->revision);
14800 
14801 release_out:
14802 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14803 		list_del(&dmabuf->list);
14804 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14805 				  dmabuf->virt, dmabuf->phys);
14806 		kfree(dmabuf);
14807 	}
14808 	release_firmware(fw);
14809 out:
14810 	if (rc < 0)
14811 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14812 				"3062 Firmware update error, status %d.\n", rc);
14813 	else
14814 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14815 				"3024 Firmware update success: size %d.\n", rc);
14816 }
14817 
14818 /**
14819  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14820  * @phba: pointer to lpfc hba data structure.
14821  * @fw_upgrade: which firmware to update.
14822  *
14823  * This routine is called to perform Linux generic firmware upgrade on device
14824  * that supports such feature.
14825  **/
14826 int
14827 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14828 {
14829 	uint8_t file_name[ELX_MODEL_NAME_SIZE];
14830 	int ret;
14831 	const struct firmware *fw;
14832 
14833 	/* Only supported on SLI4 interface type 2 for now */
14834 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14835 	    LPFC_SLI_INTF_IF_TYPE_2)
14836 		return -EPERM;
14837 
14838 	snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
14839 
14840 	if (fw_upgrade == INT_FW_UPGRADE) {
14841 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14842 					file_name, &phba->pcidev->dev,
14843 					GFP_KERNEL, (void *)phba,
14844 					lpfc_write_firmware);
14845 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14846 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14847 		if (!ret)
14848 			lpfc_write_firmware(fw, (void *)phba);
14849 	} else {
14850 		ret = -EINVAL;
14851 	}
14852 
14853 	return ret;
14854 }
14855 
14856 /**
14857  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14858  * @pdev: pointer to PCI device
14859  * @pid: pointer to PCI device identifier
14860  *
14861  * This routine is called from the kernel's PCI subsystem to device with
14862  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14863  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14864  * information of the device and driver to see if the driver state that it
14865  * can support this kind of device. If the match is successful, the driver
14866  * core invokes this routine. If this routine determines it can claim the HBA,
14867  * it does all the initialization that it needs to do to handle the HBA
14868  * properly.
14869  *
14870  * Return code
14871  * 	0 - driver can claim the device
14872  * 	negative value - driver can not claim the device
14873  **/
14874 static int
14875 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14876 {
14877 	struct lpfc_hba   *phba;
14878 	struct lpfc_vport *vport = NULL;
14879 	struct Scsi_Host  *shost = NULL;
14880 	int error;
14881 	uint32_t cfg_mode, intr_mode;
14882 
14883 	/* Allocate memory for HBA structure */
14884 	phba = lpfc_hba_alloc(pdev);
14885 	if (!phba)
14886 		return -ENOMEM;
14887 
14888 	INIT_LIST_HEAD(&phba->poll_list);
14889 
14890 	/* Perform generic PCI device enabling operation */
14891 	error = lpfc_enable_pci_dev(phba);
14892 	if (error)
14893 		goto out_free_phba;
14894 
14895 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14896 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14897 	if (error)
14898 		goto out_disable_pci_dev;
14899 
14900 	/* Set up SLI-4 specific device PCI memory space */
14901 	error = lpfc_sli4_pci_mem_setup(phba);
14902 	if (error) {
14903 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14904 				"1410 Failed to set up pci memory space.\n");
14905 		goto out_disable_pci_dev;
14906 	}
14907 
14908 	/* Set up SLI-4 Specific device driver resources */
14909 	error = lpfc_sli4_driver_resource_setup(phba);
14910 	if (error) {
14911 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14912 				"1412 Failed to set up driver resource.\n");
14913 		goto out_unset_pci_mem_s4;
14914 	}
14915 
14916 	INIT_LIST_HEAD(&phba->active_rrq_list);
14917 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14918 
14919 	/* Set up common device driver resources */
14920 	error = lpfc_setup_driver_resource_phase2(phba);
14921 	if (error) {
14922 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14923 				"1414 Failed to set up driver resource.\n");
14924 		goto out_unset_driver_resource_s4;
14925 	}
14926 
14927 	/* Get the default values for Model Name and Description */
14928 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14929 
14930 	/* Now, trying to enable interrupt and bring up the device */
14931 	cfg_mode = phba->cfg_use_msi;
14932 
14933 	/* Put device to a known state before enabling interrupt */
14934 	phba->pport = NULL;
14935 	lpfc_stop_port(phba);
14936 
14937 	/* Init cpu_map array */
14938 	lpfc_cpu_map_array_init(phba);
14939 
14940 	/* Init hba_eq_hdl array */
14941 	lpfc_hba_eq_hdl_array_init(phba);
14942 
14943 	/* Configure and enable interrupt */
14944 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14945 	if (intr_mode == LPFC_INTR_ERROR) {
14946 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14947 				"0426 Failed to enable interrupt.\n");
14948 		error = -ENODEV;
14949 		goto out_unset_driver_resource;
14950 	}
14951 	/* Default to single EQ for non-MSI-X */
14952 	if (phba->intr_type != MSIX) {
14953 		phba->cfg_irq_chann = 1;
14954 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14955 			if (phba->nvmet_support)
14956 				phba->cfg_nvmet_mrq = 1;
14957 		}
14958 	}
14959 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14960 
14961 	/* Create SCSI host to the physical port */
14962 	error = lpfc_create_shost(phba);
14963 	if (error) {
14964 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14965 				"1415 Failed to create scsi host.\n");
14966 		goto out_disable_intr;
14967 	}
14968 	vport = phba->pport;
14969 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14970 
14971 	/* Configure sysfs attributes */
14972 	error = lpfc_alloc_sysfs_attr(vport);
14973 	if (error) {
14974 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14975 				"1416 Failed to allocate sysfs attr\n");
14976 		goto out_destroy_shost;
14977 	}
14978 
14979 	/* Set up SLI-4 HBA */
14980 	if (lpfc_sli4_hba_setup(phba)) {
14981 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14982 				"1421 Failed to set up hba\n");
14983 		error = -ENODEV;
14984 		goto out_free_sysfs_attr;
14985 	}
14986 
14987 	/* Log the current active interrupt mode */
14988 	phba->intr_mode = intr_mode;
14989 	lpfc_log_intr_mode(phba, intr_mode);
14990 
14991 	/* Perform post initialization setup */
14992 	lpfc_post_init_setup(phba);
14993 
14994 	/* NVME support in FW earlier in the driver load corrects the
14995 	 * FC4 type making a check for nvme_support unnecessary.
14996 	 */
14997 	if (phba->nvmet_support == 0) {
14998 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14999 			/* Create NVME binding with nvme_fc_transport. This
15000 			 * ensures the vport is initialized.  If the localport
15001 			 * create fails, it should not unload the driver to
15002 			 * support field issues.
15003 			 */
15004 			error = lpfc_nvme_create_localport(vport);
15005 			if (error) {
15006 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15007 						"6004 NVME registration "
15008 						"failed, error x%x\n",
15009 						error);
15010 			}
15011 		}
15012 	}
15013 
15014 	/* check for firmware upgrade or downgrade */
15015 	if (phba->cfg_request_firmware_upgrade)
15016 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
15017 
15018 	/* Check if there are static vports to be created. */
15019 	lpfc_create_static_vport(phba);
15020 
15021 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
15022 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
15023 
15024 	return 0;
15025 
15026 out_free_sysfs_attr:
15027 	lpfc_free_sysfs_attr(vport);
15028 out_destroy_shost:
15029 	lpfc_destroy_shost(phba);
15030 out_disable_intr:
15031 	lpfc_sli4_disable_intr(phba);
15032 out_unset_driver_resource:
15033 	lpfc_unset_driver_resource_phase2(phba);
15034 out_unset_driver_resource_s4:
15035 	lpfc_sli4_driver_resource_unset(phba);
15036 out_unset_pci_mem_s4:
15037 	lpfc_sli4_pci_mem_unset(phba);
15038 out_disable_pci_dev:
15039 	lpfc_disable_pci_dev(phba);
15040 	if (shost)
15041 		scsi_host_put(shost);
15042 out_free_phba:
15043 	lpfc_hba_free(phba);
15044 	return error;
15045 }
15046 
15047 /**
15048  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
15049  * @pdev: pointer to PCI device
15050  *
15051  * This routine is called from the kernel's PCI subsystem to device with
15052  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
15053  * removed from PCI bus, it performs all the necessary cleanup for the HBA
15054  * device to be removed from the PCI subsystem properly.
15055  **/
15056 static void
15057 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
15058 {
15059 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15060 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
15061 	struct lpfc_vport **vports;
15062 	struct lpfc_hba *phba = vport->phba;
15063 	int i;
15064 
15065 	/* Mark the device unloading flag */
15066 	spin_lock_irq(&phba->hbalock);
15067 	vport->load_flag |= FC_UNLOADING;
15068 	spin_unlock_irq(&phba->hbalock);
15069 	if (phba->cgn_i)
15070 		lpfc_unreg_congestion_buf(phba);
15071 
15072 	lpfc_free_sysfs_attr(vport);
15073 
15074 	/* Release all the vports against this physical port */
15075 	vports = lpfc_create_vport_work_array(phba);
15076 	if (vports != NULL)
15077 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
15078 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
15079 				continue;
15080 			fc_vport_terminate(vports[i]->fc_vport);
15081 		}
15082 	lpfc_destroy_vport_work_array(phba, vports);
15083 
15084 	/* Remove FC host with the physical port */
15085 	fc_remove_host(shost);
15086 	scsi_remove_host(shost);
15087 
15088 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
15089 	 * localports are destroyed after to cleanup all transport memory.
15090 	 */
15091 	lpfc_cleanup(vport);
15092 	lpfc_nvmet_destroy_targetport(phba);
15093 	lpfc_nvme_destroy_localport(vport);
15094 
15095 	/* De-allocate multi-XRI pools */
15096 	if (phba->cfg_xri_rebalancing)
15097 		lpfc_destroy_multixri_pools(phba);
15098 
15099 	/*
15100 	 * Bring down the SLI Layer. This step disables all interrupts,
15101 	 * clears the rings, discards all mailbox commands, and resets
15102 	 * the HBA FCoE function.
15103 	 */
15104 	lpfc_debugfs_terminate(vport);
15105 
15106 	lpfc_stop_hba_timers(phba);
15107 	spin_lock_irq(&phba->port_list_lock);
15108 	list_del_init(&vport->listentry);
15109 	spin_unlock_irq(&phba->port_list_lock);
15110 
15111 	/* Perform scsi free before driver resource_unset since scsi
15112 	 * buffers are released to their corresponding pools here.
15113 	 */
15114 	lpfc_io_free(phba);
15115 	lpfc_free_iocb_list(phba);
15116 	lpfc_sli4_hba_unset(phba);
15117 
15118 	lpfc_unset_driver_resource_phase2(phba);
15119 	lpfc_sli4_driver_resource_unset(phba);
15120 
15121 	/* Unmap adapter Control and Doorbell registers */
15122 	lpfc_sli4_pci_mem_unset(phba);
15123 
15124 	/* Release PCI resources and disable device's PCI function */
15125 	scsi_host_put(shost);
15126 	lpfc_disable_pci_dev(phba);
15127 
15128 	/* Finally, free the driver's device data structure */
15129 	lpfc_hba_free(phba);
15130 
15131 	return;
15132 }
15133 
15134 /**
15135  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15136  * @dev_d: pointer to device
15137  *
15138  * This routine is called from the kernel's PCI subsystem to support system
15139  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15140  * this method, it quiesces the device by stopping the driver's worker
15141  * thread for the device, turning off device's interrupt and DMA, and bring
15142  * the device offline. Note that as the driver implements the minimum PM
15143  * requirements to a power-aware driver's PM support for suspend/resume -- all
15144  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15145  * method call will be treated as SUSPEND and the driver will fully
15146  * reinitialize its device during resume() method call, the driver will set
15147  * device to PCI_D3hot state in PCI config space instead of setting it
15148  * according to the @msg provided by the PM.
15149  *
15150  * Return code
15151  * 	0 - driver suspended the device
15152  * 	Error otherwise
15153  **/
15154 static int __maybe_unused
15155 lpfc_pci_suspend_one_s4(struct device *dev_d)
15156 {
15157 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15158 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15159 
15160 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15161 			"2843 PCI device Power Management suspend.\n");
15162 
15163 	/* Bring down the device */
15164 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15165 	lpfc_offline(phba);
15166 	kthread_stop(phba->worker_thread);
15167 
15168 	/* Disable interrupt from device */
15169 	lpfc_sli4_disable_intr(phba);
15170 	lpfc_sli4_queue_destroy(phba);
15171 
15172 	return 0;
15173 }
15174 
15175 /**
15176  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15177  * @dev_d: pointer to device
15178  *
15179  * This routine is called from the kernel's PCI subsystem to support system
15180  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15181  * this method, it restores the device's PCI config space state and fully
15182  * reinitializes the device and brings it online. Note that as the driver
15183  * implements the minimum PM requirements to a power-aware driver's PM for
15184  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15185  * to the suspend() method call will be treated as SUSPEND and the driver
15186  * will fully reinitialize its device during resume() method call, the device
15187  * will be set to PCI_D0 directly in PCI config space before restoring the
15188  * state.
15189  *
15190  * Return code
15191  * 	0 - driver suspended the device
15192  * 	Error otherwise
15193  **/
15194 static int __maybe_unused
15195 lpfc_pci_resume_one_s4(struct device *dev_d)
15196 {
15197 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15198 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15199 	uint32_t intr_mode;
15200 	int error;
15201 
15202 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15203 			"0292 PCI device Power Management resume.\n");
15204 
15205 	 /* Startup the kernel thread for this host adapter. */
15206 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15207 					"lpfc_worker_%d", phba->brd_no);
15208 	if (IS_ERR(phba->worker_thread)) {
15209 		error = PTR_ERR(phba->worker_thread);
15210 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15211 				"0293 PM resume failed to start worker "
15212 				"thread: error=x%x.\n", error);
15213 		return error;
15214 	}
15215 
15216 	/* Configure and enable interrupt */
15217 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15218 	if (intr_mode == LPFC_INTR_ERROR) {
15219 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15220 				"0294 PM resume Failed to enable interrupt\n");
15221 		return -EIO;
15222 	} else
15223 		phba->intr_mode = intr_mode;
15224 
15225 	/* Restart HBA and bring it online */
15226 	lpfc_sli_brdrestart(phba);
15227 	lpfc_online(phba);
15228 
15229 	/* Log the current active interrupt mode */
15230 	lpfc_log_intr_mode(phba, phba->intr_mode);
15231 
15232 	return 0;
15233 }
15234 
15235 /**
15236  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15237  * @phba: pointer to lpfc hba data structure.
15238  *
15239  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15240  * aborts all the outstanding SCSI I/Os to the pci device.
15241  **/
15242 static void
15243 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15244 {
15245 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15246 			"2828 PCI channel I/O abort preparing for recovery\n");
15247 	/*
15248 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15249 	 * and let the SCSI mid-layer to retry them to recover.
15250 	 */
15251 	lpfc_sli_abort_fcp_rings(phba);
15252 }
15253 
15254 /**
15255  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15256  * @phba: pointer to lpfc hba data structure.
15257  *
15258  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15259  * disables the device interrupt and pci device, and aborts the internal FCP
15260  * pending I/Os.
15261  **/
15262 static void
15263 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15264 {
15265 	int offline =  pci_channel_offline(phba->pcidev);
15266 
15267 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15268 			"2826 PCI channel disable preparing for reset offline"
15269 			" %d\n", offline);
15270 
15271 	/* Block any management I/Os to the device */
15272 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15273 
15274 
15275 	/* HBA_PCI_ERR was set in io_error_detect */
15276 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15277 	/* Flush all driver's outstanding I/Os as we are to reset */
15278 	lpfc_sli_flush_io_rings(phba);
15279 	lpfc_offline(phba);
15280 
15281 	/* stop all timers */
15282 	lpfc_stop_hba_timers(phba);
15283 
15284 	lpfc_sli4_queue_destroy(phba);
15285 	/* Disable interrupt and pci device */
15286 	lpfc_sli4_disable_intr(phba);
15287 	pci_disable_device(phba->pcidev);
15288 }
15289 
15290 /**
15291  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15292  * @phba: pointer to lpfc hba data structure.
15293  *
15294  * This routine is called to prepare the SLI4 device for PCI slot permanently
15295  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15296  * pending I/Os.
15297  **/
15298 static void
15299 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15300 {
15301 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15302 			"2827 PCI channel permanent disable for failure\n");
15303 
15304 	/* Block all SCSI devices' I/Os on the host */
15305 	lpfc_scsi_dev_block(phba);
15306 
15307 	/* stop all timers */
15308 	lpfc_stop_hba_timers(phba);
15309 
15310 	/* Clean up all driver's outstanding I/Os */
15311 	lpfc_sli_flush_io_rings(phba);
15312 }
15313 
15314 /**
15315  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15316  * @pdev: pointer to PCI device.
15317  * @state: the current PCI connection state.
15318  *
15319  * This routine is called from the PCI subsystem for error handling to device
15320  * with SLI-4 interface spec. This function is called by the PCI subsystem
15321  * after a PCI bus error affecting this device has been detected. When this
15322  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15323  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15324  * for the PCI subsystem to perform proper recovery as desired.
15325  *
15326  * Return codes
15327  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15328  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15329  **/
15330 static pci_ers_result_t
15331 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15332 {
15333 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15334 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15335 	bool hba_pci_err;
15336 
15337 	switch (state) {
15338 	case pci_channel_io_normal:
15339 		/* Non-fatal error, prepare for recovery */
15340 		lpfc_sli4_prep_dev_for_recover(phba);
15341 		return PCI_ERS_RESULT_CAN_RECOVER;
15342 	case pci_channel_io_frozen:
15343 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15344 		/* Fatal error, prepare for slot reset */
15345 		if (!hba_pci_err)
15346 			lpfc_sli4_prep_dev_for_reset(phba);
15347 		else
15348 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15349 					"2832  Already handling PCI error "
15350 					"state: x%x\n", state);
15351 		return PCI_ERS_RESULT_NEED_RESET;
15352 	case pci_channel_io_perm_failure:
15353 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15354 		/* Permanent failure, prepare for device down */
15355 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15356 		return PCI_ERS_RESULT_DISCONNECT;
15357 	default:
15358 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15359 		if (!hba_pci_err)
15360 			lpfc_sli4_prep_dev_for_reset(phba);
15361 		/* Unknown state, prepare and request slot reset */
15362 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15363 				"2825 Unknown PCI error state: x%x\n", state);
15364 		lpfc_sli4_prep_dev_for_reset(phba);
15365 		return PCI_ERS_RESULT_NEED_RESET;
15366 	}
15367 }
15368 
15369 /**
15370  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15371  * @pdev: pointer to PCI device.
15372  *
15373  * This routine is called from the PCI subsystem for error handling to device
15374  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15375  * restart the PCI card from scratch, as if from a cold-boot. During the
15376  * PCI subsystem error recovery, after the driver returns
15377  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15378  * recovery and then call this routine before calling the .resume method to
15379  * recover the device. This function will initialize the HBA device, enable
15380  * the interrupt, but it will just put the HBA to offline state without
15381  * passing any I/O traffic.
15382  *
15383  * Return codes
15384  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15385  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15386  */
15387 static pci_ers_result_t
15388 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15389 {
15390 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15391 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15392 	struct lpfc_sli *psli = &phba->sli;
15393 	uint32_t intr_mode;
15394 	bool hba_pci_err;
15395 
15396 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15397 	if (pci_enable_device_mem(pdev)) {
15398 		printk(KERN_ERR "lpfc: Cannot re-enable "
15399 		       "PCI device after reset.\n");
15400 		return PCI_ERS_RESULT_DISCONNECT;
15401 	}
15402 
15403 	pci_restore_state(pdev);
15404 
15405 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15406 	if (!hba_pci_err)
15407 		dev_info(&pdev->dev,
15408 			 "hba_pci_err was not set, recovering slot reset.\n");
15409 	/*
15410 	 * As the new kernel behavior of pci_restore_state() API call clears
15411 	 * device saved_state flag, need to save the restored state again.
15412 	 */
15413 	pci_save_state(pdev);
15414 
15415 	if (pdev->is_busmaster)
15416 		pci_set_master(pdev);
15417 
15418 	spin_lock_irq(&phba->hbalock);
15419 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15420 	spin_unlock_irq(&phba->hbalock);
15421 
15422 	/* Init cpu_map array */
15423 	lpfc_cpu_map_array_init(phba);
15424 	/* Configure and enable interrupt */
15425 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15426 	if (intr_mode == LPFC_INTR_ERROR) {
15427 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15428 				"2824 Cannot re-enable interrupt after "
15429 				"slot reset.\n");
15430 		return PCI_ERS_RESULT_DISCONNECT;
15431 	} else
15432 		phba->intr_mode = intr_mode;
15433 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15434 
15435 	/* Log the current active interrupt mode */
15436 	lpfc_log_intr_mode(phba, phba->intr_mode);
15437 
15438 	return PCI_ERS_RESULT_RECOVERED;
15439 }
15440 
15441 /**
15442  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15443  * @pdev: pointer to PCI device
15444  *
15445  * This routine is called from the PCI subsystem for error handling to device
15446  * with SLI-4 interface spec. It is called when kernel error recovery tells
15447  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15448  * error recovery. After this call, traffic can start to flow from this device
15449  * again.
15450  **/
15451 static void
15452 lpfc_io_resume_s4(struct pci_dev *pdev)
15453 {
15454 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15455 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15456 
15457 	/*
15458 	 * In case of slot reset, as function reset is performed through
15459 	 * mailbox command which needs DMA to be enabled, this operation
15460 	 * has to be moved to the io resume phase. Taking device offline
15461 	 * will perform the necessary cleanup.
15462 	 */
15463 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15464 		/* Perform device reset */
15465 		lpfc_sli_brdrestart(phba);
15466 		/* Bring the device back online */
15467 		lpfc_online(phba);
15468 	}
15469 }
15470 
15471 /**
15472  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15473  * @pdev: pointer to PCI device
15474  * @pid: pointer to PCI device identifier
15475  *
15476  * This routine is to be registered to the kernel's PCI subsystem. When an
15477  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15478  * at PCI device-specific information of the device and driver to see if the
15479  * driver state that it can support this kind of device. If the match is
15480  * successful, the driver core invokes this routine. This routine dispatches
15481  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15482  * do all the initialization that it needs to do to handle the HBA device
15483  * properly.
15484  *
15485  * Return code
15486  * 	0 - driver can claim the device
15487  * 	negative value - driver can not claim the device
15488  **/
15489 static int
15490 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15491 {
15492 	int rc;
15493 	struct lpfc_sli_intf intf;
15494 
15495 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15496 		return -ENODEV;
15497 
15498 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15499 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15500 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15501 	else
15502 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15503 
15504 	return rc;
15505 }
15506 
15507 /**
15508  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15509  * @pdev: pointer to PCI device
15510  *
15511  * This routine is to be registered to the kernel's PCI subsystem. When an
15512  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15513  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15514  * remove routine, which will perform all the necessary cleanup for the
15515  * device to be removed from the PCI subsystem properly.
15516  **/
15517 static void
15518 lpfc_pci_remove_one(struct pci_dev *pdev)
15519 {
15520 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15521 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15522 
15523 	switch (phba->pci_dev_grp) {
15524 	case LPFC_PCI_DEV_LP:
15525 		lpfc_pci_remove_one_s3(pdev);
15526 		break;
15527 	case LPFC_PCI_DEV_OC:
15528 		lpfc_pci_remove_one_s4(pdev);
15529 		break;
15530 	default:
15531 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15532 				"1424 Invalid PCI device group: 0x%x\n",
15533 				phba->pci_dev_grp);
15534 		break;
15535 	}
15536 	return;
15537 }
15538 
15539 /**
15540  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15541  * @dev: pointer to device
15542  *
15543  * This routine is to be registered to the kernel's PCI subsystem to support
15544  * system Power Management (PM). When PM invokes this method, it dispatches
15545  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15546  * suspend the device.
15547  *
15548  * Return code
15549  * 	0 - driver suspended the device
15550  * 	Error otherwise
15551  **/
15552 static int __maybe_unused
15553 lpfc_pci_suspend_one(struct device *dev)
15554 {
15555 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15556 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15557 	int rc = -ENODEV;
15558 
15559 	switch (phba->pci_dev_grp) {
15560 	case LPFC_PCI_DEV_LP:
15561 		rc = lpfc_pci_suspend_one_s3(dev);
15562 		break;
15563 	case LPFC_PCI_DEV_OC:
15564 		rc = lpfc_pci_suspend_one_s4(dev);
15565 		break;
15566 	default:
15567 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15568 				"1425 Invalid PCI device group: 0x%x\n",
15569 				phba->pci_dev_grp);
15570 		break;
15571 	}
15572 	return rc;
15573 }
15574 
15575 /**
15576  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15577  * @dev: pointer to device
15578  *
15579  * This routine is to be registered to the kernel's PCI subsystem to support
15580  * system Power Management (PM). When PM invokes this method, it dispatches
15581  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15582  * resume the device.
15583  *
15584  * Return code
15585  * 	0 - driver suspended the device
15586  * 	Error otherwise
15587  **/
15588 static int __maybe_unused
15589 lpfc_pci_resume_one(struct device *dev)
15590 {
15591 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15592 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15593 	int rc = -ENODEV;
15594 
15595 	switch (phba->pci_dev_grp) {
15596 	case LPFC_PCI_DEV_LP:
15597 		rc = lpfc_pci_resume_one_s3(dev);
15598 		break;
15599 	case LPFC_PCI_DEV_OC:
15600 		rc = lpfc_pci_resume_one_s4(dev);
15601 		break;
15602 	default:
15603 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15604 				"1426 Invalid PCI device group: 0x%x\n",
15605 				phba->pci_dev_grp);
15606 		break;
15607 	}
15608 	return rc;
15609 }
15610 
15611 /**
15612  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15613  * @pdev: pointer to PCI device.
15614  * @state: the current PCI connection state.
15615  *
15616  * This routine is registered to the PCI subsystem for error handling. This
15617  * function is called by the PCI subsystem after a PCI bus error affecting
15618  * this device has been detected. When this routine is invoked, it dispatches
15619  * the action to the proper SLI-3 or SLI-4 device error detected handling
15620  * routine, which will perform the proper error detected operation.
15621  *
15622  * Return codes
15623  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15624  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15625  **/
15626 static pci_ers_result_t
15627 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15628 {
15629 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15630 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15631 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15632 
15633 	if (phba->link_state == LPFC_HBA_ERROR &&
15634 	    phba->hba_flag & HBA_IOQ_FLUSH)
15635 		return PCI_ERS_RESULT_NEED_RESET;
15636 
15637 	switch (phba->pci_dev_grp) {
15638 	case LPFC_PCI_DEV_LP:
15639 		rc = lpfc_io_error_detected_s3(pdev, state);
15640 		break;
15641 	case LPFC_PCI_DEV_OC:
15642 		rc = lpfc_io_error_detected_s4(pdev, state);
15643 		break;
15644 	default:
15645 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15646 				"1427 Invalid PCI device group: 0x%x\n",
15647 				phba->pci_dev_grp);
15648 		break;
15649 	}
15650 	return rc;
15651 }
15652 
15653 /**
15654  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15655  * @pdev: pointer to PCI device.
15656  *
15657  * This routine is registered to the PCI subsystem for error handling. This
15658  * function is called after PCI bus has been reset to restart the PCI card
15659  * from scratch, as if from a cold-boot. When this routine is invoked, it
15660  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15661  * routine, which will perform the proper device reset.
15662  *
15663  * Return codes
15664  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15665  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15666  **/
15667 static pci_ers_result_t
15668 lpfc_io_slot_reset(struct pci_dev *pdev)
15669 {
15670 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15671 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15672 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15673 
15674 	switch (phba->pci_dev_grp) {
15675 	case LPFC_PCI_DEV_LP:
15676 		rc = lpfc_io_slot_reset_s3(pdev);
15677 		break;
15678 	case LPFC_PCI_DEV_OC:
15679 		rc = lpfc_io_slot_reset_s4(pdev);
15680 		break;
15681 	default:
15682 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15683 				"1428 Invalid PCI device group: 0x%x\n",
15684 				phba->pci_dev_grp);
15685 		break;
15686 	}
15687 	return rc;
15688 }
15689 
15690 /**
15691  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15692  * @pdev: pointer to PCI device
15693  *
15694  * This routine is registered to the PCI subsystem for error handling. It
15695  * is called when kernel error recovery tells the lpfc driver that it is
15696  * OK to resume normal PCI operation after PCI bus error recovery. When
15697  * this routine is invoked, it dispatches the action to the proper SLI-3
15698  * or SLI-4 device io_resume routine, which will resume the device operation.
15699  **/
15700 static void
15701 lpfc_io_resume(struct pci_dev *pdev)
15702 {
15703 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15704 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15705 
15706 	switch (phba->pci_dev_grp) {
15707 	case LPFC_PCI_DEV_LP:
15708 		lpfc_io_resume_s3(pdev);
15709 		break;
15710 	case LPFC_PCI_DEV_OC:
15711 		lpfc_io_resume_s4(pdev);
15712 		break;
15713 	default:
15714 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15715 				"1429 Invalid PCI device group: 0x%x\n",
15716 				phba->pci_dev_grp);
15717 		break;
15718 	}
15719 	return;
15720 }
15721 
15722 /**
15723  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15724  * @phba: pointer to lpfc hba data structure.
15725  *
15726  * This routine checks to see if OAS is supported for this adapter. If
15727  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15728  * the enable oas flag is cleared and the pool created for OAS device data
15729  * is destroyed.
15730  *
15731  **/
15732 static void
15733 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15734 {
15735 
15736 	if (!phba->cfg_EnableXLane)
15737 		return;
15738 
15739 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15740 		phba->cfg_fof = 1;
15741 	} else {
15742 		phba->cfg_fof = 0;
15743 		mempool_destroy(phba->device_data_mem_pool);
15744 		phba->device_data_mem_pool = NULL;
15745 	}
15746 
15747 	return;
15748 }
15749 
15750 /**
15751  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15752  * @phba: pointer to lpfc hba data structure.
15753  *
15754  * This routine checks to see if RAS is supported by the adapter. Check the
15755  * function through which RAS support enablement is to be done.
15756  **/
15757 void
15758 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15759 {
15760 	/* if ASIC_GEN_NUM >= 0xC) */
15761 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15762 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15763 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15764 		    LPFC_SLI_INTF_FAMILY_G6)) {
15765 		phba->ras_fwlog.ras_hwsupport = true;
15766 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15767 		    phba->cfg_ras_fwlog_buffsize)
15768 			phba->ras_fwlog.ras_enabled = true;
15769 		else
15770 			phba->ras_fwlog.ras_enabled = false;
15771 	} else {
15772 		phba->ras_fwlog.ras_hwsupport = false;
15773 	}
15774 }
15775 
15776 
15777 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15778 
15779 static const struct pci_error_handlers lpfc_err_handler = {
15780 	.error_detected = lpfc_io_error_detected,
15781 	.slot_reset = lpfc_io_slot_reset,
15782 	.resume = lpfc_io_resume,
15783 };
15784 
15785 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15786 			 lpfc_pci_suspend_one,
15787 			 lpfc_pci_resume_one);
15788 
15789 static struct pci_driver lpfc_driver = {
15790 	.name		= LPFC_DRIVER_NAME,
15791 	.id_table	= lpfc_id_table,
15792 	.probe		= lpfc_pci_probe_one,
15793 	.remove		= lpfc_pci_remove_one,
15794 	.shutdown	= lpfc_pci_remove_one,
15795 	.driver.pm	= &lpfc_pci_pm_ops_one,
15796 	.err_handler    = &lpfc_err_handler,
15797 };
15798 
15799 static const struct file_operations lpfc_mgmt_fop = {
15800 	.owner = THIS_MODULE,
15801 };
15802 
15803 static struct miscdevice lpfc_mgmt_dev = {
15804 	.minor = MISC_DYNAMIC_MINOR,
15805 	.name = "lpfcmgmt",
15806 	.fops = &lpfc_mgmt_fop,
15807 };
15808 
15809 /**
15810  * lpfc_init - lpfc module initialization routine
15811  *
15812  * This routine is to be invoked when the lpfc module is loaded into the
15813  * kernel. The special kernel macro module_init() is used to indicate the
15814  * role of this routine to the kernel as lpfc module entry point.
15815  *
15816  * Return codes
15817  *   0 - successful
15818  *   -ENOMEM - FC attach transport failed
15819  *   all others - failed
15820  */
15821 static int __init
15822 lpfc_init(void)
15823 {
15824 	int error = 0;
15825 
15826 	pr_info(LPFC_MODULE_DESC "\n");
15827 	pr_info(LPFC_COPYRIGHT "\n");
15828 
15829 	error = misc_register(&lpfc_mgmt_dev);
15830 	if (error)
15831 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15832 			"misc_register returned with status %d", error);
15833 
15834 	error = -ENOMEM;
15835 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15836 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15837 	lpfc_transport_template =
15838 				fc_attach_transport(&lpfc_transport_functions);
15839 	if (lpfc_transport_template == NULL)
15840 		goto unregister;
15841 	lpfc_vport_transport_template =
15842 		fc_attach_transport(&lpfc_vport_transport_functions);
15843 	if (lpfc_vport_transport_template == NULL) {
15844 		fc_release_transport(lpfc_transport_template);
15845 		goto unregister;
15846 	}
15847 	lpfc_wqe_cmd_template();
15848 	lpfc_nvmet_cmd_template();
15849 
15850 	/* Initialize in case vector mapping is needed */
15851 	lpfc_present_cpu = num_present_cpus();
15852 
15853 	lpfc_pldv_detect = false;
15854 
15855 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15856 					"lpfc/sli4:online",
15857 					lpfc_cpu_online, lpfc_cpu_offline);
15858 	if (error < 0)
15859 		goto cpuhp_failure;
15860 	lpfc_cpuhp_state = error;
15861 
15862 	error = pci_register_driver(&lpfc_driver);
15863 	if (error)
15864 		goto unwind;
15865 
15866 	return error;
15867 
15868 unwind:
15869 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15870 cpuhp_failure:
15871 	fc_release_transport(lpfc_transport_template);
15872 	fc_release_transport(lpfc_vport_transport_template);
15873 unregister:
15874 	misc_deregister(&lpfc_mgmt_dev);
15875 
15876 	return error;
15877 }
15878 
15879 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15880 {
15881 	unsigned int start_idx;
15882 	unsigned int dbg_cnt;
15883 	unsigned int temp_idx;
15884 	int i;
15885 	int j = 0;
15886 	unsigned long rem_nsec;
15887 
15888 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15889 		return;
15890 
15891 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15892 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15893 	if (!dbg_cnt)
15894 		goto out;
15895 	temp_idx = start_idx;
15896 	if (dbg_cnt >= DBG_LOG_SZ) {
15897 		dbg_cnt = DBG_LOG_SZ;
15898 		temp_idx -= 1;
15899 	} else {
15900 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15901 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15902 		} else {
15903 			if (start_idx < dbg_cnt)
15904 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15905 			else
15906 				start_idx -= dbg_cnt;
15907 		}
15908 	}
15909 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15910 		 start_idx, temp_idx, dbg_cnt);
15911 
15912 	for (i = 0; i < dbg_cnt; i++) {
15913 		if ((start_idx + i) < DBG_LOG_SZ)
15914 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15915 		else
15916 			temp_idx = j++;
15917 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15918 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15919 			 temp_idx,
15920 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15921 			 rem_nsec / 1000,
15922 			 phba->dbg_log[temp_idx].log);
15923 	}
15924 out:
15925 	atomic_set(&phba->dbg_log_cnt, 0);
15926 	atomic_set(&phba->dbg_log_dmping, 0);
15927 }
15928 
15929 __printf(2, 3)
15930 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15931 {
15932 	unsigned int idx;
15933 	va_list args;
15934 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15935 	struct va_format vaf;
15936 
15937 
15938 	va_start(args, fmt);
15939 	if (unlikely(dbg_dmping)) {
15940 		vaf.fmt = fmt;
15941 		vaf.va = &args;
15942 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15943 		va_end(args);
15944 		return;
15945 	}
15946 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15947 		DBG_LOG_SZ;
15948 
15949 	atomic_inc(&phba->dbg_log_cnt);
15950 
15951 	vscnprintf(phba->dbg_log[idx].log,
15952 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15953 	va_end(args);
15954 
15955 	phba->dbg_log[idx].t_ns = local_clock();
15956 }
15957 
15958 /**
15959  * lpfc_exit - lpfc module removal routine
15960  *
15961  * This routine is invoked when the lpfc module is removed from the kernel.
15962  * The special kernel macro module_exit() is used to indicate the role of
15963  * this routine to the kernel as lpfc module exit point.
15964  */
15965 static void __exit
15966 lpfc_exit(void)
15967 {
15968 	misc_deregister(&lpfc_mgmt_dev);
15969 	pci_unregister_driver(&lpfc_driver);
15970 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15971 	fc_release_transport(lpfc_transport_template);
15972 	fc_release_transport(lpfc_vport_transport_template);
15973 	idr_destroy(&lpfc_hba_index);
15974 }
15975 
15976 module_init(lpfc_init);
15977 module_exit(lpfc_exit);
15978 MODULE_LICENSE("GPL");
15979 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15980 MODULE_AUTHOR("Broadcom");
15981 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15982