xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision cbadaf71)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/ctype.h>
34 #include <linux/aer.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/msi.h>
40 #include <linux/irq.h>
41 #include <linux/bitops.h>
42 #include <linux/crash_dump.h>
43 #include <linux/cpu.h>
44 #include <linux/cpuhotplug.h>
45 
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_transport_fc.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/fc/fc_fs.h>
52 
53 #include "lpfc_hw4.h"
54 #include "lpfc_hw.h"
55 #include "lpfc_sli.h"
56 #include "lpfc_sli4.h"
57 #include "lpfc_nl.h"
58 #include "lpfc_disc.h"
59 #include "lpfc.h"
60 #include "lpfc_scsi.h"
61 #include "lpfc_nvme.h"
62 #include "lpfc_logmsg.h"
63 #include "lpfc_crtn.h"
64 #include "lpfc_vport.h"
65 #include "lpfc_version.h"
66 #include "lpfc_ids.h"
67 
68 static enum cpuhp_state lpfc_cpuhp_state;
69 /* Used when mapping IRQ vectors in a driver centric manner */
70 static uint32_t lpfc_present_cpu;
71 static bool lpfc_pldv_detect;
72 
73 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
75 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
76 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
77 static int lpfc_post_rcv_buf(struct lpfc_hba *);
78 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
79 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
80 static int lpfc_setup_endian_order(struct lpfc_hba *);
81 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
82 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
83 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
84 static void lpfc_init_sgl_list(struct lpfc_hba *);
85 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
86 static void lpfc_free_active_sgl(struct lpfc_hba *);
87 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
88 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
89 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
91 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
92 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
93 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
94 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
95 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
96 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
97 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
99 
100 static struct scsi_transport_template *lpfc_transport_template = NULL;
101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
102 static DEFINE_IDR(lpfc_hba_index);
103 #define LPFC_NVMET_BUF_POST 254
104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
105 
106 /**
107  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
108  * @phba: pointer to lpfc hba data structure.
109  *
110  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
111  * mailbox command. It retrieves the revision information from the HBA and
112  * collects the Vital Product Data (VPD) about the HBA for preparing the
113  * configuration of the HBA.
114  *
115  * Return codes:
116  *   0 - success.
117  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
118  *   Any other value - indicates an error.
119  **/
120 int
121 lpfc_config_port_prep(struct lpfc_hba *phba)
122 {
123 	lpfc_vpd_t *vp = &phba->vpd;
124 	int i = 0, rc;
125 	LPFC_MBOXQ_t *pmb;
126 	MAILBOX_t *mb;
127 	char *lpfc_vpd_data = NULL;
128 	uint16_t offset = 0;
129 	static char licensed[56] =
130 		    "key unlock for use with gnu public licensed code only\0";
131 	static int init_key = 1;
132 
133 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
134 	if (!pmb) {
135 		phba->link_state = LPFC_HBA_ERROR;
136 		return -ENOMEM;
137 	}
138 
139 	mb = &pmb->u.mb;
140 	phba->link_state = LPFC_INIT_MBX_CMDS;
141 
142 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
143 		if (init_key) {
144 			uint32_t *ptext = (uint32_t *) licensed;
145 
146 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
147 				*ptext = cpu_to_be32(*ptext);
148 			init_key = 0;
149 		}
150 
151 		lpfc_read_nv(phba, pmb);
152 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
153 			sizeof (mb->un.varRDnvp.rsvd3));
154 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
155 			 sizeof (licensed));
156 
157 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
158 
159 		if (rc != MBX_SUCCESS) {
160 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
161 					"0324 Config Port initialization "
162 					"error, mbxCmd x%x READ_NVPARM, "
163 					"mbxStatus x%x\n",
164 					mb->mbxCommand, mb->mbxStatus);
165 			mempool_free(pmb, phba->mbox_mem_pool);
166 			return -ERESTART;
167 		}
168 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
169 		       sizeof(phba->wwnn));
170 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
171 		       sizeof(phba->wwpn));
172 	}
173 
174 	/*
175 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
176 	 * which was already set in lpfc_get_cfgparam()
177 	 */
178 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
179 
180 	/* Setup and issue mailbox READ REV command */
181 	lpfc_read_rev(phba, pmb);
182 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
183 	if (rc != MBX_SUCCESS) {
184 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
185 				"0439 Adapter failed to init, mbxCmd x%x "
186 				"READ_REV, mbxStatus x%x\n",
187 				mb->mbxCommand, mb->mbxStatus);
188 		mempool_free( pmb, phba->mbox_mem_pool);
189 		return -ERESTART;
190 	}
191 
192 
193 	/*
194 	 * The value of rr must be 1 since the driver set the cv field to 1.
195 	 * This setting requires the FW to set all revision fields.
196 	 */
197 	if (mb->un.varRdRev.rr == 0) {
198 		vp->rev.rBit = 0;
199 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
200 				"0440 Adapter failed to init, READ_REV has "
201 				"missing revision information.\n");
202 		mempool_free(pmb, phba->mbox_mem_pool);
203 		return -ERESTART;
204 	}
205 
206 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
207 		mempool_free(pmb, phba->mbox_mem_pool);
208 		return -EINVAL;
209 	}
210 
211 	/* Save information as VPD data */
212 	vp->rev.rBit = 1;
213 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
214 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
215 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
216 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
217 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
218 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
219 	vp->rev.smRev = mb->un.varRdRev.smRev;
220 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
221 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
222 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
223 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
224 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
225 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
226 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
227 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
228 
229 	/* If the sli feature level is less then 9, we must
230 	 * tear down all RPIs and VPIs on link down if NPIV
231 	 * is enabled.
232 	 */
233 	if (vp->rev.feaLevelHigh < 9)
234 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
235 
236 	if (lpfc_is_LC_HBA(phba->pcidev->device))
237 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
238 						sizeof (phba->RandomData));
239 
240 	/* Get adapter VPD information */
241 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
242 	if (!lpfc_vpd_data)
243 		goto out_free_mbox;
244 	do {
245 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
246 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
247 
248 		if (rc != MBX_SUCCESS) {
249 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
250 					"0441 VPD not present on adapter, "
251 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
252 					mb->mbxCommand, mb->mbxStatus);
253 			mb->un.varDmp.word_cnt = 0;
254 		}
255 		/* dump mem may return a zero when finished or we got a
256 		 * mailbox error, either way we are done.
257 		 */
258 		if (mb->un.varDmp.word_cnt == 0)
259 			break;
260 
261 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
262 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
263 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
264 				      lpfc_vpd_data + offset,
265 				      mb->un.varDmp.word_cnt);
266 		offset += mb->un.varDmp.word_cnt;
267 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
268 
269 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
270 
271 	kfree(lpfc_vpd_data);
272 out_free_mbox:
273 	mempool_free(pmb, phba->mbox_mem_pool);
274 	return 0;
275 }
276 
277 /**
278  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
279  * @phba: pointer to lpfc hba data structure.
280  * @pmboxq: pointer to the driver internal queue element for mailbox command.
281  *
282  * This is the completion handler for driver's configuring asynchronous event
283  * mailbox command to the device. If the mailbox command returns successfully,
284  * it will set internal async event support flag to 1; otherwise, it will
285  * set internal async event support flag to 0.
286  **/
287 static void
288 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
289 {
290 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
291 		phba->temp_sensor_support = 1;
292 	else
293 		phba->temp_sensor_support = 0;
294 	mempool_free(pmboxq, phba->mbox_mem_pool);
295 	return;
296 }
297 
298 /**
299  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
300  * @phba: pointer to lpfc hba data structure.
301  * @pmboxq: pointer to the driver internal queue element for mailbox command.
302  *
303  * This is the completion handler for dump mailbox command for getting
304  * wake up parameters. When this command complete, the response contain
305  * Option rom version of the HBA. This function translate the version number
306  * into a human readable string and store it in OptionROMVersion.
307  **/
308 static void
309 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
310 {
311 	struct prog_id *prg;
312 	uint32_t prog_id_word;
313 	char dist = ' ';
314 	/* character array used for decoding dist type. */
315 	char dist_char[] = "nabx";
316 
317 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
318 		mempool_free(pmboxq, phba->mbox_mem_pool);
319 		return;
320 	}
321 
322 	prg = (struct prog_id *) &prog_id_word;
323 
324 	/* word 7 contain option rom version */
325 	prog_id_word = pmboxq->u.mb.un.varWords[7];
326 
327 	/* Decode the Option rom version word to a readable string */
328 	dist = dist_char[prg->dist];
329 
330 	if ((prg->dist == 3) && (prg->num == 0))
331 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
332 			prg->ver, prg->rev, prg->lev);
333 	else
334 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
335 			prg->ver, prg->rev, prg->lev,
336 			dist, prg->num);
337 	mempool_free(pmboxq, phba->mbox_mem_pool);
338 	return;
339 }
340 
341 /**
342  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
343  * @vport: pointer to lpfc vport data structure.
344  *
345  *
346  * Return codes
347  *   None.
348  **/
349 void
350 lpfc_update_vport_wwn(struct lpfc_vport *vport)
351 {
352 	struct lpfc_hba *phba = vport->phba;
353 
354 	/*
355 	 * If the name is empty or there exists a soft name
356 	 * then copy the service params name, otherwise use the fc name
357 	 */
358 	if (vport->fc_nodename.u.wwn[0] == 0)
359 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
360 			sizeof(struct lpfc_name));
361 	else
362 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
363 			sizeof(struct lpfc_name));
364 
365 	/*
366 	 * If the port name has changed, then set the Param changes flag
367 	 * to unreg the login
368 	 */
369 	if (vport->fc_portname.u.wwn[0] != 0 &&
370 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
371 		       sizeof(struct lpfc_name))) {
372 		vport->vport_flag |= FAWWPN_PARAM_CHG;
373 
374 		if (phba->sli_rev == LPFC_SLI_REV4 &&
375 		    vport->port_type == LPFC_PHYSICAL_PORT &&
376 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
377 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
378 				phba->sli4_hba.fawwpn_flag &=
379 						~LPFC_FAWWPN_FABRIC;
380 			lpfc_printf_log(phba, KERN_INFO,
381 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
382 					"2701 FA-PWWN change WWPN from %llx to "
383 					"%llx: vflag x%x fawwpn_flag x%x\n",
384 					wwn_to_u64(vport->fc_portname.u.wwn),
385 					wwn_to_u64
386 					   (vport->fc_sparam.portName.u.wwn),
387 					vport->vport_flag,
388 					phba->sli4_hba.fawwpn_flag);
389 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
390 			       sizeof(struct lpfc_name));
391 		}
392 	}
393 
394 	if (vport->fc_portname.u.wwn[0] == 0)
395 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
396 		       sizeof(struct lpfc_name));
397 	else
398 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
399 		       sizeof(struct lpfc_name));
400 }
401 
402 /**
403  * lpfc_config_port_post - Perform lpfc initialization after config port
404  * @phba: pointer to lpfc hba data structure.
405  *
406  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
407  * command call. It performs all internal resource and state setups on the
408  * port: post IOCB buffers, enable appropriate host interrupt attentions,
409  * ELS ring timers, etc.
410  *
411  * Return codes
412  *   0 - success.
413  *   Any other value - error.
414  **/
415 int
416 lpfc_config_port_post(struct lpfc_hba *phba)
417 {
418 	struct lpfc_vport *vport = phba->pport;
419 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
420 	LPFC_MBOXQ_t *pmb;
421 	MAILBOX_t *mb;
422 	struct lpfc_dmabuf *mp;
423 	struct lpfc_sli *psli = &phba->sli;
424 	uint32_t status, timeout;
425 	int i, j;
426 	int rc;
427 
428 	spin_lock_irq(&phba->hbalock);
429 	/*
430 	 * If the Config port completed correctly the HBA is not
431 	 * over heated any more.
432 	 */
433 	if (phba->over_temp_state == HBA_OVER_TEMP)
434 		phba->over_temp_state = HBA_NORMAL_TEMP;
435 	spin_unlock_irq(&phba->hbalock);
436 
437 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
438 	if (!pmb) {
439 		phba->link_state = LPFC_HBA_ERROR;
440 		return -ENOMEM;
441 	}
442 	mb = &pmb->u.mb;
443 
444 	/* Get login parameters for NID.  */
445 	rc = lpfc_read_sparam(phba, pmb, 0);
446 	if (rc) {
447 		mempool_free(pmb, phba->mbox_mem_pool);
448 		return -ENOMEM;
449 	}
450 
451 	pmb->vport = vport;
452 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
453 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
454 				"0448 Adapter failed init, mbxCmd x%x "
455 				"READ_SPARM mbxStatus x%x\n",
456 				mb->mbxCommand, mb->mbxStatus);
457 		phba->link_state = LPFC_HBA_ERROR;
458 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
459 		return -EIO;
460 	}
461 
462 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
463 
464 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
465 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
466 	 * reused.
467 	 */
468 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
469 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
470 	kfree(mp);
471 	pmb->ctx_buf = NULL;
472 	lpfc_update_vport_wwn(vport);
473 
474 	/* Update the fc_host data structures with new wwn. */
475 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
476 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
477 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
478 
479 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
480 	/* This should be consolidated into parse_vpd ? - mr */
481 	if (phba->SerialNumber[0] == 0) {
482 		uint8_t *outptr;
483 
484 		outptr = &vport->fc_nodename.u.s.IEEE[0];
485 		for (i = 0; i < 12; i++) {
486 			status = *outptr++;
487 			j = ((status & 0xf0) >> 4);
488 			if (j <= 9)
489 				phba->SerialNumber[i] =
490 				    (char)((uint8_t) 0x30 + (uint8_t) j);
491 			else
492 				phba->SerialNumber[i] =
493 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
494 			i++;
495 			j = (status & 0xf);
496 			if (j <= 9)
497 				phba->SerialNumber[i] =
498 				    (char)((uint8_t) 0x30 + (uint8_t) j);
499 			else
500 				phba->SerialNumber[i] =
501 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
502 		}
503 	}
504 
505 	lpfc_read_config(phba, pmb);
506 	pmb->vport = vport;
507 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
508 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
509 				"0453 Adapter failed to init, mbxCmd x%x "
510 				"READ_CONFIG, mbxStatus x%x\n",
511 				mb->mbxCommand, mb->mbxStatus);
512 		phba->link_state = LPFC_HBA_ERROR;
513 		mempool_free( pmb, phba->mbox_mem_pool);
514 		return -EIO;
515 	}
516 
517 	/* Check if the port is disabled */
518 	lpfc_sli_read_link_ste(phba);
519 
520 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
521 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
522 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
523 				"3359 HBA queue depth changed from %d to %d\n",
524 				phba->cfg_hba_queue_depth,
525 				mb->un.varRdConfig.max_xri);
526 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
527 	}
528 
529 	phba->lmt = mb->un.varRdConfig.lmt;
530 
531 	/* Get the default values for Model Name and Description */
532 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
533 
534 	phba->link_state = LPFC_LINK_DOWN;
535 
536 	/* Only process IOCBs on ELS ring till hba_state is READY */
537 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
538 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
539 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
540 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
541 
542 	/* Post receive buffers for desired rings */
543 	if (phba->sli_rev != 3)
544 		lpfc_post_rcv_buf(phba);
545 
546 	/*
547 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
548 	 */
549 	if (phba->intr_type == MSIX) {
550 		rc = lpfc_config_msi(phba, pmb);
551 		if (rc) {
552 			mempool_free(pmb, phba->mbox_mem_pool);
553 			return -EIO;
554 		}
555 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
556 		if (rc != MBX_SUCCESS) {
557 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
558 					"0352 Config MSI mailbox command "
559 					"failed, mbxCmd x%x, mbxStatus x%x\n",
560 					pmb->u.mb.mbxCommand,
561 					pmb->u.mb.mbxStatus);
562 			mempool_free(pmb, phba->mbox_mem_pool);
563 			return -EIO;
564 		}
565 	}
566 
567 	spin_lock_irq(&phba->hbalock);
568 	/* Initialize ERATT handling flag */
569 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
570 
571 	/* Enable appropriate host interrupts */
572 	if (lpfc_readl(phba->HCregaddr, &status)) {
573 		spin_unlock_irq(&phba->hbalock);
574 		return -EIO;
575 	}
576 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
577 	if (psli->num_rings > 0)
578 		status |= HC_R0INT_ENA;
579 	if (psli->num_rings > 1)
580 		status |= HC_R1INT_ENA;
581 	if (psli->num_rings > 2)
582 		status |= HC_R2INT_ENA;
583 	if (psli->num_rings > 3)
584 		status |= HC_R3INT_ENA;
585 
586 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
587 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
588 		status &= ~(HC_R0INT_ENA);
589 
590 	writel(status, phba->HCregaddr);
591 	readl(phba->HCregaddr); /* flush */
592 	spin_unlock_irq(&phba->hbalock);
593 
594 	/* Set up ring-0 (ELS) timer */
595 	timeout = phba->fc_ratov * 2;
596 	mod_timer(&vport->els_tmofunc,
597 		  jiffies + msecs_to_jiffies(1000 * timeout));
598 	/* Set up heart beat (HB) timer */
599 	mod_timer(&phba->hb_tmofunc,
600 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
601 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
602 	phba->last_completion_time = jiffies;
603 	/* Set up error attention (ERATT) polling timer */
604 	mod_timer(&phba->eratt_poll,
605 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
606 
607 	if (phba->hba_flag & LINK_DISABLED) {
608 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
609 				"2598 Adapter Link is disabled.\n");
610 		lpfc_down_link(phba, pmb);
611 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
612 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
613 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
614 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
615 					"2599 Adapter failed to issue DOWN_LINK"
616 					" mbox command rc 0x%x\n", rc);
617 
618 			mempool_free(pmb, phba->mbox_mem_pool);
619 			return -EIO;
620 		}
621 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
622 		mempool_free(pmb, phba->mbox_mem_pool);
623 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
624 		if (rc)
625 			return rc;
626 	}
627 	/* MBOX buffer will be freed in mbox compl */
628 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
629 	if (!pmb) {
630 		phba->link_state = LPFC_HBA_ERROR;
631 		return -ENOMEM;
632 	}
633 
634 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
635 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
636 	pmb->vport = phba->pport;
637 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
638 
639 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
640 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
641 				"0456 Adapter failed to issue "
642 				"ASYNCEVT_ENABLE mbox status x%x\n",
643 				rc);
644 		mempool_free(pmb, phba->mbox_mem_pool);
645 	}
646 
647 	/* Get Option rom version */
648 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
649 	if (!pmb) {
650 		phba->link_state = LPFC_HBA_ERROR;
651 		return -ENOMEM;
652 	}
653 
654 	lpfc_dump_wakeup_param(phba, pmb);
655 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
656 	pmb->vport = phba->pport;
657 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
658 
659 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
660 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
661 				"0435 Adapter failed "
662 				"to get Option ROM version status x%x\n", rc);
663 		mempool_free(pmb, phba->mbox_mem_pool);
664 	}
665 
666 	return 0;
667 }
668 
669 /**
670  * lpfc_sli4_refresh_params - update driver copy of params.
671  * @phba: Pointer to HBA context object.
672  *
673  * This is called to refresh driver copy of dynamic fields from the
674  * common_get_sli4_parameters descriptor.
675  **/
676 int
677 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
678 {
679 	LPFC_MBOXQ_t *mboxq;
680 	struct lpfc_mqe *mqe;
681 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
682 	int length, rc;
683 
684 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
685 	if (!mboxq)
686 		return -ENOMEM;
687 
688 	mqe = &mboxq->u.mqe;
689 	/* Read the port's SLI4 Config Parameters */
690 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
691 		  sizeof(struct lpfc_sli4_cfg_mhdr));
692 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
693 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
694 			 length, LPFC_SLI4_MBX_EMBED);
695 
696 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
697 	if (unlikely(rc)) {
698 		mempool_free(mboxq, phba->mbox_mem_pool);
699 		return rc;
700 	}
701 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
702 
703 	/* Are we forcing MI off via module parameter? */
704 	if (phba->cfg_enable_mi)
705 		phba->sli4_hba.pc_sli4_params.mi_ver =
706 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
707 	else
708 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
709 
710 	phba->sli4_hba.pc_sli4_params.cmf =
711 			bf_get(cfg_cmf, mbx_sli4_parameters);
712 	phba->sli4_hba.pc_sli4_params.pls =
713 			bf_get(cfg_pvl, mbx_sli4_parameters);
714 
715 	mempool_free(mboxq, phba->mbox_mem_pool);
716 	return rc;
717 }
718 
719 /**
720  * lpfc_hba_init_link - Initialize the FC link
721  * @phba: pointer to lpfc hba data structure.
722  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
723  *
724  * This routine will issue the INIT_LINK mailbox command call.
725  * It is available to other drivers through the lpfc_hba data
726  * structure for use as a delayed link up mechanism with the
727  * module parameter lpfc_suppress_link_up.
728  *
729  * Return code
730  *		0 - success
731  *		Any other value - error
732  **/
733 static int
734 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
735 {
736 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
737 }
738 
739 /**
740  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
741  * @phba: pointer to lpfc hba data structure.
742  * @fc_topology: desired fc topology.
743  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
744  *
745  * This routine will issue the INIT_LINK mailbox command call.
746  * It is available to other drivers through the lpfc_hba data
747  * structure for use as a delayed link up mechanism with the
748  * module parameter lpfc_suppress_link_up.
749  *
750  * Return code
751  *              0 - success
752  *              Any other value - error
753  **/
754 int
755 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
756 			       uint32_t flag)
757 {
758 	struct lpfc_vport *vport = phba->pport;
759 	LPFC_MBOXQ_t *pmb;
760 	MAILBOX_t *mb;
761 	int rc;
762 
763 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
764 	if (!pmb) {
765 		phba->link_state = LPFC_HBA_ERROR;
766 		return -ENOMEM;
767 	}
768 	mb = &pmb->u.mb;
769 	pmb->vport = vport;
770 
771 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
772 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
773 	     !(phba->lmt & LMT_1Gb)) ||
774 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
775 	     !(phba->lmt & LMT_2Gb)) ||
776 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
777 	     !(phba->lmt & LMT_4Gb)) ||
778 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
779 	     !(phba->lmt & LMT_8Gb)) ||
780 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
781 	     !(phba->lmt & LMT_10Gb)) ||
782 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
783 	     !(phba->lmt & LMT_16Gb)) ||
784 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
785 	     !(phba->lmt & LMT_32Gb)) ||
786 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
787 	     !(phba->lmt & LMT_64Gb))) {
788 		/* Reset link speed to auto */
789 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
790 				"1302 Invalid speed for this board:%d "
791 				"Reset link speed to auto.\n",
792 				phba->cfg_link_speed);
793 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
794 	}
795 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
796 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
797 	if (phba->sli_rev < LPFC_SLI_REV4)
798 		lpfc_set_loopback_flag(phba);
799 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
800 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
801 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
802 				"0498 Adapter failed to init, mbxCmd x%x "
803 				"INIT_LINK, mbxStatus x%x\n",
804 				mb->mbxCommand, mb->mbxStatus);
805 		if (phba->sli_rev <= LPFC_SLI_REV3) {
806 			/* Clear all interrupt enable conditions */
807 			writel(0, phba->HCregaddr);
808 			readl(phba->HCregaddr); /* flush */
809 			/* Clear all pending interrupts */
810 			writel(0xffffffff, phba->HAregaddr);
811 			readl(phba->HAregaddr); /* flush */
812 		}
813 		phba->link_state = LPFC_HBA_ERROR;
814 		if (rc != MBX_BUSY || flag == MBX_POLL)
815 			mempool_free(pmb, phba->mbox_mem_pool);
816 		return -EIO;
817 	}
818 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
819 	if (flag == MBX_POLL)
820 		mempool_free(pmb, phba->mbox_mem_pool);
821 
822 	return 0;
823 }
824 
825 /**
826  * lpfc_hba_down_link - this routine downs the FC link
827  * @phba: pointer to lpfc hba data structure.
828  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
829  *
830  * This routine will issue the DOWN_LINK mailbox command call.
831  * It is available to other drivers through the lpfc_hba data
832  * structure for use to stop the link.
833  *
834  * Return code
835  *		0 - success
836  *		Any other value - error
837  **/
838 static int
839 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
840 {
841 	LPFC_MBOXQ_t *pmb;
842 	int rc;
843 
844 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
845 	if (!pmb) {
846 		phba->link_state = LPFC_HBA_ERROR;
847 		return -ENOMEM;
848 	}
849 
850 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
851 			"0491 Adapter Link is disabled.\n");
852 	lpfc_down_link(phba, pmb);
853 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
854 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
855 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
856 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
857 				"2522 Adapter failed to issue DOWN_LINK"
858 				" mbox command rc 0x%x\n", rc);
859 
860 		mempool_free(pmb, phba->mbox_mem_pool);
861 		return -EIO;
862 	}
863 	if (flag == MBX_POLL)
864 		mempool_free(pmb, phba->mbox_mem_pool);
865 
866 	return 0;
867 }
868 
869 /**
870  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
871  * @phba: pointer to lpfc HBA data structure.
872  *
873  * This routine will do LPFC uninitialization before the HBA is reset when
874  * bringing down the SLI Layer.
875  *
876  * Return codes
877  *   0 - success.
878  *   Any other value - error.
879  **/
880 int
881 lpfc_hba_down_prep(struct lpfc_hba *phba)
882 {
883 	struct lpfc_vport **vports;
884 	int i;
885 
886 	if (phba->sli_rev <= LPFC_SLI_REV3) {
887 		/* Disable interrupts */
888 		writel(0, phba->HCregaddr);
889 		readl(phba->HCregaddr); /* flush */
890 	}
891 
892 	if (phba->pport->load_flag & FC_UNLOADING)
893 		lpfc_cleanup_discovery_resources(phba->pport);
894 	else {
895 		vports = lpfc_create_vport_work_array(phba);
896 		if (vports != NULL)
897 			for (i = 0; i <= phba->max_vports &&
898 				vports[i] != NULL; i++)
899 				lpfc_cleanup_discovery_resources(vports[i]);
900 		lpfc_destroy_vport_work_array(phba, vports);
901 	}
902 	return 0;
903 }
904 
905 /**
906  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
907  * rspiocb which got deferred
908  *
909  * @phba: pointer to lpfc HBA data structure.
910  *
911  * This routine will cleanup completed slow path events after HBA is reset
912  * when bringing down the SLI Layer.
913  *
914  *
915  * Return codes
916  *   void.
917  **/
918 static void
919 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
920 {
921 	struct lpfc_iocbq *rspiocbq;
922 	struct hbq_dmabuf *dmabuf;
923 	struct lpfc_cq_event *cq_event;
924 
925 	spin_lock_irq(&phba->hbalock);
926 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
927 	spin_unlock_irq(&phba->hbalock);
928 
929 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
930 		/* Get the response iocb from the head of work queue */
931 		spin_lock_irq(&phba->hbalock);
932 		list_remove_head(&phba->sli4_hba.sp_queue_event,
933 				 cq_event, struct lpfc_cq_event, list);
934 		spin_unlock_irq(&phba->hbalock);
935 
936 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
937 		case CQE_CODE_COMPL_WQE:
938 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
939 						 cq_event);
940 			lpfc_sli_release_iocbq(phba, rspiocbq);
941 			break;
942 		case CQE_CODE_RECEIVE:
943 		case CQE_CODE_RECEIVE_V1:
944 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
945 					      cq_event);
946 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
947 		}
948 	}
949 }
950 
951 /**
952  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
953  * @phba: pointer to lpfc HBA data structure.
954  *
955  * This routine will cleanup posted ELS buffers after the HBA is reset
956  * when bringing down the SLI Layer.
957  *
958  *
959  * Return codes
960  *   void.
961  **/
962 static void
963 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
964 {
965 	struct lpfc_sli *psli = &phba->sli;
966 	struct lpfc_sli_ring *pring;
967 	struct lpfc_dmabuf *mp, *next_mp;
968 	LIST_HEAD(buflist);
969 	int count;
970 
971 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
972 		lpfc_sli_hbqbuf_free_all(phba);
973 	else {
974 		/* Cleanup preposted buffers on the ELS ring */
975 		pring = &psli->sli3_ring[LPFC_ELS_RING];
976 		spin_lock_irq(&phba->hbalock);
977 		list_splice_init(&pring->postbufq, &buflist);
978 		spin_unlock_irq(&phba->hbalock);
979 
980 		count = 0;
981 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
982 			list_del(&mp->list);
983 			count++;
984 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
985 			kfree(mp);
986 		}
987 
988 		spin_lock_irq(&phba->hbalock);
989 		pring->postbufq_cnt -= count;
990 		spin_unlock_irq(&phba->hbalock);
991 	}
992 }
993 
994 /**
995  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
996  * @phba: pointer to lpfc HBA data structure.
997  *
998  * This routine will cleanup the txcmplq after the HBA is reset when bringing
999  * down the SLI Layer.
1000  *
1001  * Return codes
1002  *   void
1003  **/
1004 static void
1005 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1006 {
1007 	struct lpfc_sli *psli = &phba->sli;
1008 	struct lpfc_queue *qp = NULL;
1009 	struct lpfc_sli_ring *pring;
1010 	LIST_HEAD(completions);
1011 	int i;
1012 	struct lpfc_iocbq *piocb, *next_iocb;
1013 
1014 	if (phba->sli_rev != LPFC_SLI_REV4) {
1015 		for (i = 0; i < psli->num_rings; i++) {
1016 			pring = &psli->sli3_ring[i];
1017 			spin_lock_irq(&phba->hbalock);
1018 			/* At this point in time the HBA is either reset or DOA
1019 			 * Nothing should be on txcmplq as it will
1020 			 * NEVER complete.
1021 			 */
1022 			list_splice_init(&pring->txcmplq, &completions);
1023 			pring->txcmplq_cnt = 0;
1024 			spin_unlock_irq(&phba->hbalock);
1025 
1026 			lpfc_sli_abort_iocb_ring(phba, pring);
1027 		}
1028 		/* Cancel all the IOCBs from the completions list */
1029 		lpfc_sli_cancel_iocbs(phba, &completions,
1030 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1031 		return;
1032 	}
1033 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1034 		pring = qp->pring;
1035 		if (!pring)
1036 			continue;
1037 		spin_lock_irq(&pring->ring_lock);
1038 		list_for_each_entry_safe(piocb, next_iocb,
1039 					 &pring->txcmplq, list)
1040 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1041 		list_splice_init(&pring->txcmplq, &completions);
1042 		pring->txcmplq_cnt = 0;
1043 		spin_unlock_irq(&pring->ring_lock);
1044 		lpfc_sli_abort_iocb_ring(phba, pring);
1045 	}
1046 	/* Cancel all the IOCBs from the completions list */
1047 	lpfc_sli_cancel_iocbs(phba, &completions,
1048 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1049 }
1050 
1051 /**
1052  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1053  * @phba: pointer to lpfc HBA data structure.
1054  *
1055  * This routine will do uninitialization after the HBA is reset when bring
1056  * down the SLI Layer.
1057  *
1058  * Return codes
1059  *   0 - success.
1060  *   Any other value - error.
1061  **/
1062 static int
1063 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1064 {
1065 	lpfc_hba_free_post_buf(phba);
1066 	lpfc_hba_clean_txcmplq(phba);
1067 	return 0;
1068 }
1069 
1070 /**
1071  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1072  * @phba: pointer to lpfc HBA data structure.
1073  *
1074  * This routine will do uninitialization after the HBA is reset when bring
1075  * down the SLI Layer.
1076  *
1077  * Return codes
1078  *   0 - success.
1079  *   Any other value - error.
1080  **/
1081 static int
1082 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1083 {
1084 	struct lpfc_io_buf *psb, *psb_next;
1085 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1086 	struct lpfc_sli4_hdw_queue *qp;
1087 	LIST_HEAD(aborts);
1088 	LIST_HEAD(nvme_aborts);
1089 	LIST_HEAD(nvmet_aborts);
1090 	struct lpfc_sglq *sglq_entry = NULL;
1091 	int cnt, idx;
1092 
1093 
1094 	lpfc_sli_hbqbuf_free_all(phba);
1095 	lpfc_hba_clean_txcmplq(phba);
1096 
1097 	/* At this point in time the HBA is either reset or DOA. Either
1098 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1099 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1100 	 * driver is unloading or reposted if the driver is restarting
1101 	 * the port.
1102 	 */
1103 
1104 	/* sgl_list_lock required because worker thread uses this
1105 	 * list.
1106 	 */
1107 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1108 	list_for_each_entry(sglq_entry,
1109 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1110 		sglq_entry->state = SGL_FREED;
1111 
1112 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1113 			&phba->sli4_hba.lpfc_els_sgl_list);
1114 
1115 
1116 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1117 
1118 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1119 	 * list.
1120 	 */
1121 	spin_lock_irq(&phba->hbalock);
1122 	cnt = 0;
1123 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1124 		qp = &phba->sli4_hba.hdwq[idx];
1125 
1126 		spin_lock(&qp->abts_io_buf_list_lock);
1127 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1128 				 &aborts);
1129 
1130 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1131 			psb->pCmd = NULL;
1132 			psb->status = IOSTAT_SUCCESS;
1133 			cnt++;
1134 		}
1135 		spin_lock(&qp->io_buf_list_put_lock);
1136 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1137 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1138 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1139 		qp->abts_scsi_io_bufs = 0;
1140 		qp->abts_nvme_io_bufs = 0;
1141 		spin_unlock(&qp->io_buf_list_put_lock);
1142 		spin_unlock(&qp->abts_io_buf_list_lock);
1143 	}
1144 	spin_unlock_irq(&phba->hbalock);
1145 
1146 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1147 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1148 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1149 				 &nvmet_aborts);
1150 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1151 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1152 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1153 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1154 		}
1155 	}
1156 
1157 	lpfc_sli4_free_sp_events(phba);
1158 	return cnt;
1159 }
1160 
1161 /**
1162  * lpfc_hba_down_post - Wrapper func for hba down post routine
1163  * @phba: pointer to lpfc HBA data structure.
1164  *
1165  * This routine wraps the actual SLI3 or SLI4 routine for performing
1166  * uninitialization after the HBA is reset when bring down the SLI Layer.
1167  *
1168  * Return codes
1169  *   0 - success.
1170  *   Any other value - error.
1171  **/
1172 int
1173 lpfc_hba_down_post(struct lpfc_hba *phba)
1174 {
1175 	return (*phba->lpfc_hba_down_post)(phba);
1176 }
1177 
1178 /**
1179  * lpfc_hb_timeout - The HBA-timer timeout handler
1180  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1181  *
1182  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1183  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1184  * work-port-events bitmap and the worker thread is notified. This timeout
1185  * event will be used by the worker thread to invoke the actual timeout
1186  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1187  * be performed in the timeout handler and the HBA timeout event bit shall
1188  * be cleared by the worker thread after it has taken the event bitmap out.
1189  **/
1190 static void
1191 lpfc_hb_timeout(struct timer_list *t)
1192 {
1193 	struct lpfc_hba *phba;
1194 	uint32_t tmo_posted;
1195 	unsigned long iflag;
1196 
1197 	phba = from_timer(phba, t, hb_tmofunc);
1198 
1199 	/* Check for heart beat timeout conditions */
1200 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1201 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1202 	if (!tmo_posted)
1203 		phba->pport->work_port_events |= WORKER_HB_TMO;
1204 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1205 
1206 	/* Tell the worker thread there is work to do */
1207 	if (!tmo_posted)
1208 		lpfc_worker_wake_up(phba);
1209 	return;
1210 }
1211 
1212 /**
1213  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1214  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1215  *
1216  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1217  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1218  * work-port-events bitmap and the worker thread is notified. This timeout
1219  * event will be used by the worker thread to invoke the actual timeout
1220  * handler routine, lpfc_rrq_handler. Any periodical operations will
1221  * be performed in the timeout handler and the RRQ timeout event bit shall
1222  * be cleared by the worker thread after it has taken the event bitmap out.
1223  **/
1224 static void
1225 lpfc_rrq_timeout(struct timer_list *t)
1226 {
1227 	struct lpfc_hba *phba;
1228 	unsigned long iflag;
1229 
1230 	phba = from_timer(phba, t, rrq_tmr);
1231 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1232 	if (!(phba->pport->load_flag & FC_UNLOADING))
1233 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1234 	else
1235 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1236 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1237 
1238 	if (!(phba->pport->load_flag & FC_UNLOADING))
1239 		lpfc_worker_wake_up(phba);
1240 }
1241 
1242 /**
1243  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1244  * @phba: pointer to lpfc hba data structure.
1245  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1246  *
1247  * This is the callback function to the lpfc heart-beat mailbox command.
1248  * If configured, the lpfc driver issues the heart-beat mailbox command to
1249  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1250  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1251  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1252  * heart-beat outstanding state. Once the mailbox command comes back and
1253  * no error conditions detected, the heart-beat mailbox command timer is
1254  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1255  * state is cleared for the next heart-beat. If the timer expired with the
1256  * heart-beat outstanding state set, the driver will put the HBA offline.
1257  **/
1258 static void
1259 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1260 {
1261 	unsigned long drvr_flag;
1262 
1263 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1264 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1265 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1266 
1267 	/* Check and reset heart-beat timer if necessary */
1268 	mempool_free(pmboxq, phba->mbox_mem_pool);
1269 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1270 		!(phba->link_state == LPFC_HBA_ERROR) &&
1271 		!(phba->pport->load_flag & FC_UNLOADING))
1272 		mod_timer(&phba->hb_tmofunc,
1273 			  jiffies +
1274 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1275 	return;
1276 }
1277 
1278 /*
1279  * lpfc_idle_stat_delay_work - idle_stat tracking
1280  *
1281  * This routine tracks per-cq idle_stat and determines polling decisions.
1282  *
1283  * Return codes:
1284  *   None
1285  **/
1286 static void
1287 lpfc_idle_stat_delay_work(struct work_struct *work)
1288 {
1289 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1290 					     struct lpfc_hba,
1291 					     idle_stat_delay_work);
1292 	struct lpfc_queue *cq;
1293 	struct lpfc_sli4_hdw_queue *hdwq;
1294 	struct lpfc_idle_stat *idle_stat;
1295 	u32 i, idle_percent;
1296 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1297 
1298 	if (phba->pport->load_flag & FC_UNLOADING)
1299 		return;
1300 
1301 	if (phba->link_state == LPFC_HBA_ERROR ||
1302 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1303 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1304 		goto requeue;
1305 
1306 	for_each_present_cpu(i) {
1307 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1308 		cq = hdwq->io_cq;
1309 
1310 		/* Skip if we've already handled this cq's primary CPU */
1311 		if (cq->chann != i)
1312 			continue;
1313 
1314 		idle_stat = &phba->sli4_hba.idle_stat[i];
1315 
1316 		/* get_cpu_idle_time returns values as running counters. Thus,
1317 		 * to know the amount for this period, the prior counter values
1318 		 * need to be subtracted from the current counter values.
1319 		 * From there, the idle time stat can be calculated as a
1320 		 * percentage of 100 - the sum of the other consumption times.
1321 		 */
1322 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1323 		diff_idle = wall_idle - idle_stat->prev_idle;
1324 		diff_wall = wall - idle_stat->prev_wall;
1325 
1326 		if (diff_wall <= diff_idle)
1327 			busy_time = 0;
1328 		else
1329 			busy_time = diff_wall - diff_idle;
1330 
1331 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1332 		idle_percent = 100 - idle_percent;
1333 
1334 		if (idle_percent < 15)
1335 			cq->poll_mode = LPFC_QUEUE_WORK;
1336 		else
1337 			cq->poll_mode = LPFC_IRQ_POLL;
1338 
1339 		idle_stat->prev_idle = wall_idle;
1340 		idle_stat->prev_wall = wall;
1341 	}
1342 
1343 requeue:
1344 	schedule_delayed_work(&phba->idle_stat_delay_work,
1345 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1346 }
1347 
1348 static void
1349 lpfc_hb_eq_delay_work(struct work_struct *work)
1350 {
1351 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1352 					     struct lpfc_hba, eq_delay_work);
1353 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1354 	struct lpfc_queue *eq, *eq_next;
1355 	unsigned char *ena_delay = NULL;
1356 	uint32_t usdelay;
1357 	int i;
1358 
1359 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1360 		return;
1361 
1362 	if (phba->link_state == LPFC_HBA_ERROR ||
1363 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1364 		goto requeue;
1365 
1366 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1367 			    GFP_KERNEL);
1368 	if (!ena_delay)
1369 		goto requeue;
1370 
1371 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1372 		/* Get the EQ corresponding to the IRQ vector */
1373 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1374 		if (!eq)
1375 			continue;
1376 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1377 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1378 			ena_delay[eq->last_cpu] = 1;
1379 		}
1380 	}
1381 
1382 	for_each_present_cpu(i) {
1383 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1384 		if (ena_delay[i]) {
1385 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1386 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1387 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1388 		} else {
1389 			usdelay = 0;
1390 		}
1391 
1392 		eqi->icnt = 0;
1393 
1394 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1395 			if (unlikely(eq->last_cpu != i)) {
1396 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1397 						      eq->last_cpu);
1398 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1399 				continue;
1400 			}
1401 			if (usdelay != eq->q_mode)
1402 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1403 							 usdelay);
1404 		}
1405 	}
1406 
1407 	kfree(ena_delay);
1408 
1409 requeue:
1410 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1411 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1412 }
1413 
1414 /**
1415  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1416  * @phba: pointer to lpfc hba data structure.
1417  *
1418  * For each heartbeat, this routine does some heuristic methods to adjust
1419  * XRI distribution. The goal is to fully utilize free XRIs.
1420  **/
1421 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1422 {
1423 	u32 i;
1424 	u32 hwq_count;
1425 
1426 	hwq_count = phba->cfg_hdw_queue;
1427 	for (i = 0; i < hwq_count; i++) {
1428 		/* Adjust XRIs in private pool */
1429 		lpfc_adjust_pvt_pool_count(phba, i);
1430 
1431 		/* Adjust high watermark */
1432 		lpfc_adjust_high_watermark(phba, i);
1433 
1434 #ifdef LPFC_MXP_STAT
1435 		/* Snapshot pbl, pvt and busy count */
1436 		lpfc_snapshot_mxp(phba, i);
1437 #endif
1438 	}
1439 }
1440 
1441 /**
1442  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1443  * @phba: pointer to lpfc hba data structure.
1444  *
1445  * If a HB mbox is not already in progrees, this routine will allocate
1446  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1447  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1448  **/
1449 int
1450 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1451 {
1452 	LPFC_MBOXQ_t *pmboxq;
1453 	int retval;
1454 
1455 	/* Is a Heartbeat mbox already in progress */
1456 	if (phba->hba_flag & HBA_HBEAT_INP)
1457 		return 0;
1458 
1459 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1460 	if (!pmboxq)
1461 		return -ENOMEM;
1462 
1463 	lpfc_heart_beat(phba, pmboxq);
1464 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1465 	pmboxq->vport = phba->pport;
1466 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1467 
1468 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1469 		mempool_free(pmboxq, phba->mbox_mem_pool);
1470 		return -ENXIO;
1471 	}
1472 	phba->hba_flag |= HBA_HBEAT_INP;
1473 
1474 	return 0;
1475 }
1476 
1477 /**
1478  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1479  * @phba: pointer to lpfc hba data structure.
1480  *
1481  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1482  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1483  * of the value of lpfc_enable_hba_heartbeat.
1484  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1485  * try to issue a MBX_HEARTBEAT mbox command.
1486  **/
1487 void
1488 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1489 {
1490 	if (phba->cfg_enable_hba_heartbeat)
1491 		return;
1492 	phba->hba_flag |= HBA_HBEAT_TMO;
1493 }
1494 
1495 /**
1496  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1497  * @phba: pointer to lpfc hba data structure.
1498  *
1499  * This is the actual HBA-timer timeout handler to be invoked by the worker
1500  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1501  * handler performs any periodic operations needed for the device. If such
1502  * periodic event has already been attended to either in the interrupt handler
1503  * or by processing slow-ring or fast-ring events within the HBA-timer
1504  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1505  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1506  * is configured and there is no heart-beat mailbox command outstanding, a
1507  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1508  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1509  * to offline.
1510  **/
1511 void
1512 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1513 {
1514 	struct lpfc_vport **vports;
1515 	struct lpfc_dmabuf *buf_ptr;
1516 	int retval = 0;
1517 	int i, tmo;
1518 	struct lpfc_sli *psli = &phba->sli;
1519 	LIST_HEAD(completions);
1520 
1521 	if (phba->cfg_xri_rebalancing) {
1522 		/* Multi-XRI pools handler */
1523 		lpfc_hb_mxp_handler(phba);
1524 	}
1525 
1526 	vports = lpfc_create_vport_work_array(phba);
1527 	if (vports != NULL)
1528 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1529 			lpfc_rcv_seq_check_edtov(vports[i]);
1530 			lpfc_fdmi_change_check(vports[i]);
1531 		}
1532 	lpfc_destroy_vport_work_array(phba, vports);
1533 
1534 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1535 		(phba->pport->load_flag & FC_UNLOADING) ||
1536 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1537 		return;
1538 
1539 	if (phba->elsbuf_cnt &&
1540 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1541 		spin_lock_irq(&phba->hbalock);
1542 		list_splice_init(&phba->elsbuf, &completions);
1543 		phba->elsbuf_cnt = 0;
1544 		phba->elsbuf_prev_cnt = 0;
1545 		spin_unlock_irq(&phba->hbalock);
1546 
1547 		while (!list_empty(&completions)) {
1548 			list_remove_head(&completions, buf_ptr,
1549 				struct lpfc_dmabuf, list);
1550 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1551 			kfree(buf_ptr);
1552 		}
1553 	}
1554 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1555 
1556 	/* If there is no heart beat outstanding, issue a heartbeat command */
1557 	if (phba->cfg_enable_hba_heartbeat) {
1558 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1559 		spin_lock_irq(&phba->pport->work_port_lock);
1560 		if (time_after(phba->last_completion_time +
1561 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1562 				jiffies)) {
1563 			spin_unlock_irq(&phba->pport->work_port_lock);
1564 			if (phba->hba_flag & HBA_HBEAT_INP)
1565 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1566 			else
1567 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1568 			goto out;
1569 		}
1570 		spin_unlock_irq(&phba->pport->work_port_lock);
1571 
1572 		/* Check if a MBX_HEARTBEAT is already in progress */
1573 		if (phba->hba_flag & HBA_HBEAT_INP) {
1574 			/*
1575 			 * If heart beat timeout called with HBA_HBEAT_INP set
1576 			 * we need to give the hb mailbox cmd a chance to
1577 			 * complete or TMO.
1578 			 */
1579 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1580 				"0459 Adapter heartbeat still outstanding: "
1581 				"last compl time was %d ms.\n",
1582 				jiffies_to_msecs(jiffies
1583 					 - phba->last_completion_time));
1584 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1585 		} else {
1586 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1587 				(list_empty(&psli->mboxq))) {
1588 
1589 				retval = lpfc_issue_hb_mbox(phba);
1590 				if (retval) {
1591 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1592 					goto out;
1593 				}
1594 				phba->skipped_hb = 0;
1595 			} else if (time_before_eq(phba->last_completion_time,
1596 					phba->skipped_hb)) {
1597 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1598 					"2857 Last completion time not "
1599 					" updated in %d ms\n",
1600 					jiffies_to_msecs(jiffies
1601 						 - phba->last_completion_time));
1602 			} else
1603 				phba->skipped_hb = jiffies;
1604 
1605 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1606 			goto out;
1607 		}
1608 	} else {
1609 		/* Check to see if we want to force a MBX_HEARTBEAT */
1610 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1611 			retval = lpfc_issue_hb_mbox(phba);
1612 			if (retval)
1613 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1614 			else
1615 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1616 			goto out;
1617 		}
1618 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1619 	}
1620 out:
1621 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1622 }
1623 
1624 /**
1625  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1626  * @phba: pointer to lpfc hba data structure.
1627  *
1628  * This routine is called to bring the HBA offline when HBA hardware error
1629  * other than Port Error 6 has been detected.
1630  **/
1631 static void
1632 lpfc_offline_eratt(struct lpfc_hba *phba)
1633 {
1634 	struct lpfc_sli   *psli = &phba->sli;
1635 
1636 	spin_lock_irq(&phba->hbalock);
1637 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1638 	spin_unlock_irq(&phba->hbalock);
1639 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1640 
1641 	lpfc_offline(phba);
1642 	lpfc_reset_barrier(phba);
1643 	spin_lock_irq(&phba->hbalock);
1644 	lpfc_sli_brdreset(phba);
1645 	spin_unlock_irq(&phba->hbalock);
1646 	lpfc_hba_down_post(phba);
1647 	lpfc_sli_brdready(phba, HS_MBRDY);
1648 	lpfc_unblock_mgmt_io(phba);
1649 	phba->link_state = LPFC_HBA_ERROR;
1650 	return;
1651 }
1652 
1653 /**
1654  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1655  * @phba: pointer to lpfc hba data structure.
1656  *
1657  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1658  * other than Port Error 6 has been detected.
1659  **/
1660 void
1661 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1662 {
1663 	spin_lock_irq(&phba->hbalock);
1664 	if (phba->link_state == LPFC_HBA_ERROR &&
1665 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1666 		spin_unlock_irq(&phba->hbalock);
1667 		return;
1668 	}
1669 	phba->link_state = LPFC_HBA_ERROR;
1670 	spin_unlock_irq(&phba->hbalock);
1671 
1672 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1673 	lpfc_sli_flush_io_rings(phba);
1674 	lpfc_offline(phba);
1675 	lpfc_hba_down_post(phba);
1676 	lpfc_unblock_mgmt_io(phba);
1677 }
1678 
1679 /**
1680  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1681  * @phba: pointer to lpfc hba data structure.
1682  *
1683  * This routine is invoked to handle the deferred HBA hardware error
1684  * conditions. This type of error is indicated by HBA by setting ER1
1685  * and another ER bit in the host status register. The driver will
1686  * wait until the ER1 bit clears before handling the error condition.
1687  **/
1688 static void
1689 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1690 {
1691 	uint32_t old_host_status = phba->work_hs;
1692 	struct lpfc_sli *psli = &phba->sli;
1693 
1694 	/* If the pci channel is offline, ignore possible errors,
1695 	 * since we cannot communicate with the pci card anyway.
1696 	 */
1697 	if (pci_channel_offline(phba->pcidev)) {
1698 		spin_lock_irq(&phba->hbalock);
1699 		phba->hba_flag &= ~DEFER_ERATT;
1700 		spin_unlock_irq(&phba->hbalock);
1701 		return;
1702 	}
1703 
1704 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1705 			"0479 Deferred Adapter Hardware Error "
1706 			"Data: x%x x%x x%x\n",
1707 			phba->work_hs, phba->work_status[0],
1708 			phba->work_status[1]);
1709 
1710 	spin_lock_irq(&phba->hbalock);
1711 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1712 	spin_unlock_irq(&phba->hbalock);
1713 
1714 
1715 	/*
1716 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1717 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1718 	 * SCSI layer retry it after re-establishing link.
1719 	 */
1720 	lpfc_sli_abort_fcp_rings(phba);
1721 
1722 	/*
1723 	 * There was a firmware error. Take the hba offline and then
1724 	 * attempt to restart it.
1725 	 */
1726 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1727 	lpfc_offline(phba);
1728 
1729 	/* Wait for the ER1 bit to clear.*/
1730 	while (phba->work_hs & HS_FFER1) {
1731 		msleep(100);
1732 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1733 			phba->work_hs = UNPLUG_ERR ;
1734 			break;
1735 		}
1736 		/* If driver is unloading let the worker thread continue */
1737 		if (phba->pport->load_flag & FC_UNLOADING) {
1738 			phba->work_hs = 0;
1739 			break;
1740 		}
1741 	}
1742 
1743 	/*
1744 	 * This is to ptrotect against a race condition in which
1745 	 * first write to the host attention register clear the
1746 	 * host status register.
1747 	 */
1748 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1749 		phba->work_hs = old_host_status & ~HS_FFER1;
1750 
1751 	spin_lock_irq(&phba->hbalock);
1752 	phba->hba_flag &= ~DEFER_ERATT;
1753 	spin_unlock_irq(&phba->hbalock);
1754 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1755 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1756 }
1757 
1758 static void
1759 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1760 {
1761 	struct lpfc_board_event_header board_event;
1762 	struct Scsi_Host *shost;
1763 
1764 	board_event.event_type = FC_REG_BOARD_EVENT;
1765 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1766 	shost = lpfc_shost_from_vport(phba->pport);
1767 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1768 				  sizeof(board_event),
1769 				  (char *) &board_event,
1770 				  LPFC_NL_VENDOR_ID);
1771 }
1772 
1773 /**
1774  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1775  * @phba: pointer to lpfc hba data structure.
1776  *
1777  * This routine is invoked to handle the following HBA hardware error
1778  * conditions:
1779  * 1 - HBA error attention interrupt
1780  * 2 - DMA ring index out of range
1781  * 3 - Mailbox command came back as unknown
1782  **/
1783 static void
1784 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1785 {
1786 	struct lpfc_vport *vport = phba->pport;
1787 	struct lpfc_sli   *psli = &phba->sli;
1788 	uint32_t event_data;
1789 	unsigned long temperature;
1790 	struct temp_event temp_event_data;
1791 	struct Scsi_Host  *shost;
1792 
1793 	/* If the pci channel is offline, ignore possible errors,
1794 	 * since we cannot communicate with the pci card anyway.
1795 	 */
1796 	if (pci_channel_offline(phba->pcidev)) {
1797 		spin_lock_irq(&phba->hbalock);
1798 		phba->hba_flag &= ~DEFER_ERATT;
1799 		spin_unlock_irq(&phba->hbalock);
1800 		return;
1801 	}
1802 
1803 	/* If resets are disabled then leave the HBA alone and return */
1804 	if (!phba->cfg_enable_hba_reset)
1805 		return;
1806 
1807 	/* Send an internal error event to mgmt application */
1808 	lpfc_board_errevt_to_mgmt(phba);
1809 
1810 	if (phba->hba_flag & DEFER_ERATT)
1811 		lpfc_handle_deferred_eratt(phba);
1812 
1813 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1814 		if (phba->work_hs & HS_FFER6)
1815 			/* Re-establishing Link */
1816 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1817 					"1301 Re-establishing Link "
1818 					"Data: x%x x%x x%x\n",
1819 					phba->work_hs, phba->work_status[0],
1820 					phba->work_status[1]);
1821 		if (phba->work_hs & HS_FFER8)
1822 			/* Device Zeroization */
1823 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1824 					"2861 Host Authentication device "
1825 					"zeroization Data:x%x x%x x%x\n",
1826 					phba->work_hs, phba->work_status[0],
1827 					phba->work_status[1]);
1828 
1829 		spin_lock_irq(&phba->hbalock);
1830 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1831 		spin_unlock_irq(&phba->hbalock);
1832 
1833 		/*
1834 		* Firmware stops when it triggled erratt with HS_FFER6.
1835 		* That could cause the I/Os dropped by the firmware.
1836 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1837 		* retry it after re-establishing link.
1838 		*/
1839 		lpfc_sli_abort_fcp_rings(phba);
1840 
1841 		/*
1842 		 * There was a firmware error.  Take the hba offline and then
1843 		 * attempt to restart it.
1844 		 */
1845 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1846 		lpfc_offline(phba);
1847 		lpfc_sli_brdrestart(phba);
1848 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1849 			lpfc_unblock_mgmt_io(phba);
1850 			return;
1851 		}
1852 		lpfc_unblock_mgmt_io(phba);
1853 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1854 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1855 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1856 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1857 		temp_event_data.data = (uint32_t)temperature;
1858 
1859 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1860 				"0406 Adapter maximum temperature exceeded "
1861 				"(%ld), taking this port offline "
1862 				"Data: x%x x%x x%x\n",
1863 				temperature, phba->work_hs,
1864 				phba->work_status[0], phba->work_status[1]);
1865 
1866 		shost = lpfc_shost_from_vport(phba->pport);
1867 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1868 					  sizeof(temp_event_data),
1869 					  (char *) &temp_event_data,
1870 					  SCSI_NL_VID_TYPE_PCI
1871 					  | PCI_VENDOR_ID_EMULEX);
1872 
1873 		spin_lock_irq(&phba->hbalock);
1874 		phba->over_temp_state = HBA_OVER_TEMP;
1875 		spin_unlock_irq(&phba->hbalock);
1876 		lpfc_offline_eratt(phba);
1877 
1878 	} else {
1879 		/* The if clause above forces this code path when the status
1880 		 * failure is a value other than FFER6. Do not call the offline
1881 		 * twice. This is the adapter hardware error path.
1882 		 */
1883 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1884 				"0457 Adapter Hardware Error "
1885 				"Data: x%x x%x x%x\n",
1886 				phba->work_hs,
1887 				phba->work_status[0], phba->work_status[1]);
1888 
1889 		event_data = FC_REG_DUMP_EVENT;
1890 		shost = lpfc_shost_from_vport(vport);
1891 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1892 				sizeof(event_data), (char *) &event_data,
1893 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1894 
1895 		lpfc_offline_eratt(phba);
1896 	}
1897 	return;
1898 }
1899 
1900 /**
1901  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1902  * @phba: pointer to lpfc hba data structure.
1903  * @mbx_action: flag for mailbox shutdown action.
1904  * @en_rn_msg: send reset/port recovery message.
1905  * This routine is invoked to perform an SLI4 port PCI function reset in
1906  * response to port status register polling attention. It waits for port
1907  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1908  * During this process, interrupt vectors are freed and later requested
1909  * for handling possible port resource change.
1910  **/
1911 static int
1912 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1913 			    bool en_rn_msg)
1914 {
1915 	int rc;
1916 	uint32_t intr_mode;
1917 	LPFC_MBOXQ_t *mboxq;
1918 
1919 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1920 	    LPFC_SLI_INTF_IF_TYPE_2) {
1921 		/*
1922 		 * On error status condition, driver need to wait for port
1923 		 * ready before performing reset.
1924 		 */
1925 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1926 		if (rc)
1927 			return rc;
1928 	}
1929 
1930 	/* need reset: attempt for port recovery */
1931 	if (en_rn_msg)
1932 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1933 				"2887 Reset Needed: Attempting Port "
1934 				"Recovery...\n");
1935 
1936 	/* If we are no wait, the HBA has been reset and is not
1937 	 * functional, thus we should clear
1938 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1939 	 */
1940 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1941 		spin_lock_irq(&phba->hbalock);
1942 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1943 		if (phba->sli.mbox_active) {
1944 			mboxq = phba->sli.mbox_active;
1945 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1946 			__lpfc_mbox_cmpl_put(phba, mboxq);
1947 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1948 			phba->sli.mbox_active = NULL;
1949 		}
1950 		spin_unlock_irq(&phba->hbalock);
1951 	}
1952 
1953 	lpfc_offline_prep(phba, mbx_action);
1954 	lpfc_sli_flush_io_rings(phba);
1955 	lpfc_offline(phba);
1956 	/* release interrupt for possible resource change */
1957 	lpfc_sli4_disable_intr(phba);
1958 	rc = lpfc_sli_brdrestart(phba);
1959 	if (rc) {
1960 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1961 				"6309 Failed to restart board\n");
1962 		return rc;
1963 	}
1964 	/* request and enable interrupt */
1965 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1966 	if (intr_mode == LPFC_INTR_ERROR) {
1967 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1968 				"3175 Failed to enable interrupt\n");
1969 		return -EIO;
1970 	}
1971 	phba->intr_mode = intr_mode;
1972 	rc = lpfc_online(phba);
1973 	if (rc == 0)
1974 		lpfc_unblock_mgmt_io(phba);
1975 
1976 	return rc;
1977 }
1978 
1979 /**
1980  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1981  * @phba: pointer to lpfc hba data structure.
1982  *
1983  * This routine is invoked to handle the SLI4 HBA hardware error attention
1984  * conditions.
1985  **/
1986 static void
1987 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1988 {
1989 	struct lpfc_vport *vport = phba->pport;
1990 	uint32_t event_data;
1991 	struct Scsi_Host *shost;
1992 	uint32_t if_type;
1993 	struct lpfc_register portstat_reg = {0};
1994 	uint32_t reg_err1, reg_err2;
1995 	uint32_t uerrlo_reg, uemasklo_reg;
1996 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1997 	bool en_rn_msg = true;
1998 	struct temp_event temp_event_data;
1999 	struct lpfc_register portsmphr_reg;
2000 	int rc, i;
2001 
2002 	/* If the pci channel is offline, ignore possible errors, since
2003 	 * we cannot communicate with the pci card anyway.
2004 	 */
2005 	if (pci_channel_offline(phba->pcidev)) {
2006 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2007 				"3166 pci channel is offline\n");
2008 		lpfc_sli_flush_io_rings(phba);
2009 		return;
2010 	}
2011 
2012 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2013 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2014 	switch (if_type) {
2015 	case LPFC_SLI_INTF_IF_TYPE_0:
2016 		pci_rd_rc1 = lpfc_readl(
2017 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2018 				&uerrlo_reg);
2019 		pci_rd_rc2 = lpfc_readl(
2020 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2021 				&uemasklo_reg);
2022 		/* consider PCI bus read error as pci_channel_offline */
2023 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2024 			return;
2025 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2026 			lpfc_sli4_offline_eratt(phba);
2027 			return;
2028 		}
2029 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2030 				"7623 Checking UE recoverable");
2031 
2032 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2033 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2034 				       &portsmphr_reg.word0))
2035 				continue;
2036 
2037 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2038 						   &portsmphr_reg);
2039 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2040 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2041 				break;
2042 			/*Sleep for 1Sec, before checking SEMAPHORE */
2043 			msleep(1000);
2044 		}
2045 
2046 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2047 				"4827 smphr_port_status x%x : Waited %dSec",
2048 				smphr_port_status, i);
2049 
2050 		/* Recoverable UE, reset the HBA device */
2051 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2052 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2053 			for (i = 0; i < 20; i++) {
2054 				msleep(1000);
2055 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2056 				    &portsmphr_reg.word0) &&
2057 				    (LPFC_POST_STAGE_PORT_READY ==
2058 				     bf_get(lpfc_port_smphr_port_status,
2059 				     &portsmphr_reg))) {
2060 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2061 						LPFC_MBX_NO_WAIT, en_rn_msg);
2062 					if (rc == 0)
2063 						return;
2064 					lpfc_printf_log(phba, KERN_ERR,
2065 						LOG_TRACE_EVENT,
2066 						"4215 Failed to recover UE");
2067 					break;
2068 				}
2069 			}
2070 		}
2071 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2072 				"7624 Firmware not ready: Failing UE recovery,"
2073 				" waited %dSec", i);
2074 		phba->link_state = LPFC_HBA_ERROR;
2075 		break;
2076 
2077 	case LPFC_SLI_INTF_IF_TYPE_2:
2078 	case LPFC_SLI_INTF_IF_TYPE_6:
2079 		pci_rd_rc1 = lpfc_readl(
2080 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2081 				&portstat_reg.word0);
2082 		/* consider PCI bus read error as pci_channel_offline */
2083 		if (pci_rd_rc1 == -EIO) {
2084 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2085 				"3151 PCI bus read access failure: x%x\n",
2086 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2087 			lpfc_sli4_offline_eratt(phba);
2088 			return;
2089 		}
2090 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2091 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2092 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2093 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2094 					"2889 Port Overtemperature event, "
2095 					"taking port offline Data: x%x x%x\n",
2096 					reg_err1, reg_err2);
2097 
2098 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2099 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2100 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2101 			temp_event_data.data = 0xFFFFFFFF;
2102 
2103 			shost = lpfc_shost_from_vport(phba->pport);
2104 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2105 						  sizeof(temp_event_data),
2106 						  (char *)&temp_event_data,
2107 						  SCSI_NL_VID_TYPE_PCI
2108 						  | PCI_VENDOR_ID_EMULEX);
2109 
2110 			spin_lock_irq(&phba->hbalock);
2111 			phba->over_temp_state = HBA_OVER_TEMP;
2112 			spin_unlock_irq(&phba->hbalock);
2113 			lpfc_sli4_offline_eratt(phba);
2114 			return;
2115 		}
2116 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2117 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2118 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2119 					"3143 Port Down: Firmware Update "
2120 					"Detected\n");
2121 			en_rn_msg = false;
2122 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2123 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2124 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2125 					"3144 Port Down: Debug Dump\n");
2126 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2127 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2128 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2129 					"3145 Port Down: Provisioning\n");
2130 
2131 		/* If resets are disabled then leave the HBA alone and return */
2132 		if (!phba->cfg_enable_hba_reset)
2133 			return;
2134 
2135 		/* Check port status register for function reset */
2136 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2137 				en_rn_msg);
2138 		if (rc == 0) {
2139 			/* don't report event on forced debug dump */
2140 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2141 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2142 				return;
2143 			else
2144 				break;
2145 		}
2146 		/* fall through for not able to recover */
2147 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2148 				"3152 Unrecoverable error\n");
2149 		phba->link_state = LPFC_HBA_ERROR;
2150 		break;
2151 	case LPFC_SLI_INTF_IF_TYPE_1:
2152 	default:
2153 		break;
2154 	}
2155 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2156 			"3123 Report dump event to upper layer\n");
2157 	/* Send an internal error event to mgmt application */
2158 	lpfc_board_errevt_to_mgmt(phba);
2159 
2160 	event_data = FC_REG_DUMP_EVENT;
2161 	shost = lpfc_shost_from_vport(vport);
2162 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2163 				  sizeof(event_data), (char *) &event_data,
2164 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2165 }
2166 
2167 /**
2168  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2169  * @phba: pointer to lpfc HBA data structure.
2170  *
2171  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2172  * routine from the API jump table function pointer from the lpfc_hba struct.
2173  *
2174  * Return codes
2175  *   0 - success.
2176  *   Any other value - error.
2177  **/
2178 void
2179 lpfc_handle_eratt(struct lpfc_hba *phba)
2180 {
2181 	(*phba->lpfc_handle_eratt)(phba);
2182 }
2183 
2184 /**
2185  * lpfc_handle_latt - The HBA link event handler
2186  * @phba: pointer to lpfc hba data structure.
2187  *
2188  * This routine is invoked from the worker thread to handle a HBA host
2189  * attention link event. SLI3 only.
2190  **/
2191 void
2192 lpfc_handle_latt(struct lpfc_hba *phba)
2193 {
2194 	struct lpfc_vport *vport = phba->pport;
2195 	struct lpfc_sli   *psli = &phba->sli;
2196 	LPFC_MBOXQ_t *pmb;
2197 	volatile uint32_t control;
2198 	int rc = 0;
2199 
2200 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2201 	if (!pmb) {
2202 		rc = 1;
2203 		goto lpfc_handle_latt_err_exit;
2204 	}
2205 
2206 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2207 	if (rc) {
2208 		rc = 2;
2209 		mempool_free(pmb, phba->mbox_mem_pool);
2210 		goto lpfc_handle_latt_err_exit;
2211 	}
2212 
2213 	/* Cleanup any outstanding ELS commands */
2214 	lpfc_els_flush_all_cmd(phba);
2215 	psli->slistat.link_event++;
2216 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
2217 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2218 	pmb->vport = vport;
2219 	/* Block ELS IOCBs until we have processed this mbox command */
2220 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2221 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2222 	if (rc == MBX_NOT_FINISHED) {
2223 		rc = 4;
2224 		goto lpfc_handle_latt_free_mbuf;
2225 	}
2226 
2227 	/* Clear Link Attention in HA REG */
2228 	spin_lock_irq(&phba->hbalock);
2229 	writel(HA_LATT, phba->HAregaddr);
2230 	readl(phba->HAregaddr); /* flush */
2231 	spin_unlock_irq(&phba->hbalock);
2232 
2233 	return;
2234 
2235 lpfc_handle_latt_free_mbuf:
2236 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2237 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2238 lpfc_handle_latt_err_exit:
2239 	/* Enable Link attention interrupts */
2240 	spin_lock_irq(&phba->hbalock);
2241 	psli->sli_flag |= LPFC_PROCESS_LA;
2242 	control = readl(phba->HCregaddr);
2243 	control |= HC_LAINT_ENA;
2244 	writel(control, phba->HCregaddr);
2245 	readl(phba->HCregaddr); /* flush */
2246 
2247 	/* Clear Link Attention in HA REG */
2248 	writel(HA_LATT, phba->HAregaddr);
2249 	readl(phba->HAregaddr); /* flush */
2250 	spin_unlock_irq(&phba->hbalock);
2251 	lpfc_linkdown(phba);
2252 	phba->link_state = LPFC_HBA_ERROR;
2253 
2254 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2255 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2256 
2257 	return;
2258 }
2259 
2260 static void
2261 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2262 {
2263 	int i, j;
2264 
2265 	while (length > 0) {
2266 		/* Look for Serial Number */
2267 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2268 			*pindex += 2;
2269 			i = vpd[*pindex];
2270 			*pindex += 1;
2271 			j = 0;
2272 			length -= (3+i);
2273 			while (i--) {
2274 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2275 				if (j == 31)
2276 					break;
2277 			}
2278 			phba->SerialNumber[j] = 0;
2279 			continue;
2280 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2281 			phba->vpd_flag |= VPD_MODEL_DESC;
2282 			*pindex += 2;
2283 			i = vpd[*pindex];
2284 			*pindex += 1;
2285 			j = 0;
2286 			length -= (3+i);
2287 			while (i--) {
2288 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2289 				if (j == 255)
2290 					break;
2291 			}
2292 			phba->ModelDesc[j] = 0;
2293 			continue;
2294 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2295 			phba->vpd_flag |= VPD_MODEL_NAME;
2296 			*pindex += 2;
2297 			i = vpd[*pindex];
2298 			*pindex += 1;
2299 			j = 0;
2300 			length -= (3+i);
2301 			while (i--) {
2302 				phba->ModelName[j++] = vpd[(*pindex)++];
2303 				if (j == 79)
2304 					break;
2305 			}
2306 			phba->ModelName[j] = 0;
2307 			continue;
2308 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2309 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2310 			*pindex += 2;
2311 			i = vpd[*pindex];
2312 			*pindex += 1;
2313 			j = 0;
2314 			length -= (3+i);
2315 			while (i--) {
2316 				phba->ProgramType[j++] = vpd[(*pindex)++];
2317 				if (j == 255)
2318 					break;
2319 			}
2320 			phba->ProgramType[j] = 0;
2321 			continue;
2322 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2323 			phba->vpd_flag |= VPD_PORT;
2324 			*pindex += 2;
2325 			i = vpd[*pindex];
2326 			*pindex += 1;
2327 			j = 0;
2328 			length -= (3 + i);
2329 			while (i--) {
2330 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2331 				    (phba->sli4_hba.pport_name_sta ==
2332 				     LPFC_SLI4_PPNAME_GET)) {
2333 					j++;
2334 					(*pindex)++;
2335 				} else
2336 					phba->Port[j++] = vpd[(*pindex)++];
2337 				if (j == 19)
2338 					break;
2339 			}
2340 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2341 			    (phba->sli4_hba.pport_name_sta ==
2342 			     LPFC_SLI4_PPNAME_NON))
2343 				phba->Port[j] = 0;
2344 			continue;
2345 		} else {
2346 			*pindex += 2;
2347 			i = vpd[*pindex];
2348 			*pindex += 1;
2349 			*pindex += i;
2350 			length -= (3 + i);
2351 		}
2352 	}
2353 }
2354 
2355 /**
2356  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2357  * @phba: pointer to lpfc hba data structure.
2358  * @vpd: pointer to the vital product data.
2359  * @len: length of the vital product data in bytes.
2360  *
2361  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2362  * an array of characters. In this routine, the ModelName, ProgramType, and
2363  * ModelDesc, etc. fields of the phba data structure will be populated.
2364  *
2365  * Return codes
2366  *   0 - pointer to the VPD passed in is NULL
2367  *   1 - success
2368  **/
2369 int
2370 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2371 {
2372 	uint8_t lenlo, lenhi;
2373 	int Length;
2374 	int i;
2375 	int finished = 0;
2376 	int index = 0;
2377 
2378 	if (!vpd)
2379 		return 0;
2380 
2381 	/* Vital Product */
2382 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2383 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2384 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2385 			(uint32_t) vpd[3]);
2386 	while (!finished && (index < (len - 4))) {
2387 		switch (vpd[index]) {
2388 		case 0x82:
2389 		case 0x91:
2390 			index += 1;
2391 			lenlo = vpd[index];
2392 			index += 1;
2393 			lenhi = vpd[index];
2394 			index += 1;
2395 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2396 			index += i;
2397 			break;
2398 		case 0x90:
2399 			index += 1;
2400 			lenlo = vpd[index];
2401 			index += 1;
2402 			lenhi = vpd[index];
2403 			index += 1;
2404 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2405 			if (Length > len - index)
2406 				Length = len - index;
2407 
2408 			lpfc_fill_vpd(phba, vpd, Length, &index);
2409 			finished = 0;
2410 			break;
2411 		case 0x78:
2412 			finished = 1;
2413 			break;
2414 		default:
2415 			index ++;
2416 			break;
2417 		}
2418 	}
2419 
2420 	return(1);
2421 }
2422 
2423 /**
2424  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2425  * @phba: pointer to lpfc hba data structure.
2426  * @mdp: pointer to the data structure to hold the derived model name.
2427  * @descp: pointer to the data structure to hold the derived description.
2428  *
2429  * This routine retrieves HBA's description based on its registered PCI device
2430  * ID. The @descp passed into this function points to an array of 256 chars. It
2431  * shall be returned with the model name, maximum speed, and the host bus type.
2432  * The @mdp passed into this function points to an array of 80 chars. When the
2433  * function returns, the @mdp will be filled with the model name.
2434  **/
2435 static void
2436 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2437 {
2438 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2439 	char *model = "<Unknown>";
2440 	int tbolt = 0;
2441 
2442 	switch (sub_dev_id) {
2443 	case PCI_DEVICE_ID_CLRY_161E:
2444 		model = "161E";
2445 		break;
2446 	case PCI_DEVICE_ID_CLRY_162E:
2447 		model = "162E";
2448 		break;
2449 	case PCI_DEVICE_ID_CLRY_164E:
2450 		model = "164E";
2451 		break;
2452 	case PCI_DEVICE_ID_CLRY_161P:
2453 		model = "161P";
2454 		break;
2455 	case PCI_DEVICE_ID_CLRY_162P:
2456 		model = "162P";
2457 		break;
2458 	case PCI_DEVICE_ID_CLRY_164P:
2459 		model = "164P";
2460 		break;
2461 	case PCI_DEVICE_ID_CLRY_321E:
2462 		model = "321E";
2463 		break;
2464 	case PCI_DEVICE_ID_CLRY_322E:
2465 		model = "322E";
2466 		break;
2467 	case PCI_DEVICE_ID_CLRY_324E:
2468 		model = "324E";
2469 		break;
2470 	case PCI_DEVICE_ID_CLRY_321P:
2471 		model = "321P";
2472 		break;
2473 	case PCI_DEVICE_ID_CLRY_322P:
2474 		model = "322P";
2475 		break;
2476 	case PCI_DEVICE_ID_CLRY_324P:
2477 		model = "324P";
2478 		break;
2479 	case PCI_DEVICE_ID_TLFC_2XX2:
2480 		model = "2XX2";
2481 		tbolt = 1;
2482 		break;
2483 	case PCI_DEVICE_ID_TLFC_3162:
2484 		model = "3162";
2485 		tbolt = 1;
2486 		break;
2487 	case PCI_DEVICE_ID_TLFC_3322:
2488 		model = "3322";
2489 		tbolt = 1;
2490 		break;
2491 	default:
2492 		model = "Unknown";
2493 		break;
2494 	}
2495 
2496 	if (mdp && mdp[0] == '\0')
2497 		snprintf(mdp, 79, "%s", model);
2498 
2499 	if (descp && descp[0] == '\0')
2500 		snprintf(descp, 255,
2501 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2502 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2503 			 model,
2504 			 phba->Port);
2505 }
2506 
2507 /**
2508  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2509  * @phba: pointer to lpfc hba data structure.
2510  * @mdp: pointer to the data structure to hold the derived model name.
2511  * @descp: pointer to the data structure to hold the derived description.
2512  *
2513  * This routine retrieves HBA's description based on its registered PCI device
2514  * ID. The @descp passed into this function points to an array of 256 chars. It
2515  * shall be returned with the model name, maximum speed, and the host bus type.
2516  * The @mdp passed into this function points to an array of 80 chars. When the
2517  * function returns, the @mdp will be filled with the model name.
2518  **/
2519 static void
2520 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2521 {
2522 	lpfc_vpd_t *vp;
2523 	uint16_t dev_id = phba->pcidev->device;
2524 	int max_speed;
2525 	int GE = 0;
2526 	int oneConnect = 0; /* default is not a oneConnect */
2527 	struct {
2528 		char *name;
2529 		char *bus;
2530 		char *function;
2531 	} m = {"<Unknown>", "", ""};
2532 
2533 	if (mdp && mdp[0] != '\0'
2534 		&& descp && descp[0] != '\0')
2535 		return;
2536 
2537 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2538 		lpfc_get_atto_model_desc(phba, mdp, descp);
2539 		return;
2540 	}
2541 
2542 	if (phba->lmt & LMT_64Gb)
2543 		max_speed = 64;
2544 	else if (phba->lmt & LMT_32Gb)
2545 		max_speed = 32;
2546 	else if (phba->lmt & LMT_16Gb)
2547 		max_speed = 16;
2548 	else if (phba->lmt & LMT_10Gb)
2549 		max_speed = 10;
2550 	else if (phba->lmt & LMT_8Gb)
2551 		max_speed = 8;
2552 	else if (phba->lmt & LMT_4Gb)
2553 		max_speed = 4;
2554 	else if (phba->lmt & LMT_2Gb)
2555 		max_speed = 2;
2556 	else if (phba->lmt & LMT_1Gb)
2557 		max_speed = 1;
2558 	else
2559 		max_speed = 0;
2560 
2561 	vp = &phba->vpd;
2562 
2563 	switch (dev_id) {
2564 	case PCI_DEVICE_ID_FIREFLY:
2565 		m = (typeof(m)){"LP6000", "PCI",
2566 				"Obsolete, Unsupported Fibre Channel Adapter"};
2567 		break;
2568 	case PCI_DEVICE_ID_SUPERFLY:
2569 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2570 			m = (typeof(m)){"LP7000", "PCI", ""};
2571 		else
2572 			m = (typeof(m)){"LP7000E", "PCI", ""};
2573 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2574 		break;
2575 	case PCI_DEVICE_ID_DRAGONFLY:
2576 		m = (typeof(m)){"LP8000", "PCI",
2577 				"Obsolete, Unsupported Fibre Channel Adapter"};
2578 		break;
2579 	case PCI_DEVICE_ID_CENTAUR:
2580 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2581 			m = (typeof(m)){"LP9002", "PCI", ""};
2582 		else
2583 			m = (typeof(m)){"LP9000", "PCI", ""};
2584 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2585 		break;
2586 	case PCI_DEVICE_ID_RFLY:
2587 		m = (typeof(m)){"LP952", "PCI",
2588 				"Obsolete, Unsupported Fibre Channel Adapter"};
2589 		break;
2590 	case PCI_DEVICE_ID_PEGASUS:
2591 		m = (typeof(m)){"LP9802", "PCI-X",
2592 				"Obsolete, Unsupported Fibre Channel Adapter"};
2593 		break;
2594 	case PCI_DEVICE_ID_THOR:
2595 		m = (typeof(m)){"LP10000", "PCI-X",
2596 				"Obsolete, Unsupported Fibre Channel Adapter"};
2597 		break;
2598 	case PCI_DEVICE_ID_VIPER:
2599 		m = (typeof(m)){"LPX1000",  "PCI-X",
2600 				"Obsolete, Unsupported Fibre Channel Adapter"};
2601 		break;
2602 	case PCI_DEVICE_ID_PFLY:
2603 		m = (typeof(m)){"LP982", "PCI-X",
2604 				"Obsolete, Unsupported Fibre Channel Adapter"};
2605 		break;
2606 	case PCI_DEVICE_ID_TFLY:
2607 		m = (typeof(m)){"LP1050", "PCI-X",
2608 				"Obsolete, Unsupported Fibre Channel Adapter"};
2609 		break;
2610 	case PCI_DEVICE_ID_HELIOS:
2611 		m = (typeof(m)){"LP11000", "PCI-X2",
2612 				"Obsolete, Unsupported Fibre Channel Adapter"};
2613 		break;
2614 	case PCI_DEVICE_ID_HELIOS_SCSP:
2615 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2616 				"Obsolete, Unsupported Fibre Channel Adapter"};
2617 		break;
2618 	case PCI_DEVICE_ID_HELIOS_DCSP:
2619 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2620 				"Obsolete, Unsupported Fibre Channel Adapter"};
2621 		break;
2622 	case PCI_DEVICE_ID_NEPTUNE:
2623 		m = (typeof(m)){"LPe1000", "PCIe",
2624 				"Obsolete, Unsupported Fibre Channel Adapter"};
2625 		break;
2626 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2627 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2628 				"Obsolete, Unsupported Fibre Channel Adapter"};
2629 		break;
2630 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2631 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2632 				"Obsolete, Unsupported Fibre Channel Adapter"};
2633 		break;
2634 	case PCI_DEVICE_ID_BMID:
2635 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2636 		break;
2637 	case PCI_DEVICE_ID_BSMB:
2638 		m = (typeof(m)){"LP111", "PCI-X2",
2639 				"Obsolete, Unsupported Fibre Channel Adapter"};
2640 		break;
2641 	case PCI_DEVICE_ID_ZEPHYR:
2642 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2643 		break;
2644 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2645 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2646 		break;
2647 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2648 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2649 		GE = 1;
2650 		break;
2651 	case PCI_DEVICE_ID_ZMID:
2652 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2653 		break;
2654 	case PCI_DEVICE_ID_ZSMB:
2655 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2656 		break;
2657 	case PCI_DEVICE_ID_LP101:
2658 		m = (typeof(m)){"LP101", "PCI-X",
2659 				"Obsolete, Unsupported Fibre Channel Adapter"};
2660 		break;
2661 	case PCI_DEVICE_ID_LP10000S:
2662 		m = (typeof(m)){"LP10000-S", "PCI",
2663 				"Obsolete, Unsupported Fibre Channel Adapter"};
2664 		break;
2665 	case PCI_DEVICE_ID_LP11000S:
2666 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2667 				"Obsolete, Unsupported Fibre Channel Adapter"};
2668 		break;
2669 	case PCI_DEVICE_ID_LPE11000S:
2670 		m = (typeof(m)){"LPe11000-S", "PCIe",
2671 				"Obsolete, Unsupported Fibre Channel Adapter"};
2672 		break;
2673 	case PCI_DEVICE_ID_SAT:
2674 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2675 		break;
2676 	case PCI_DEVICE_ID_SAT_MID:
2677 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2678 		break;
2679 	case PCI_DEVICE_ID_SAT_SMB:
2680 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2681 		break;
2682 	case PCI_DEVICE_ID_SAT_DCSP:
2683 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2684 		break;
2685 	case PCI_DEVICE_ID_SAT_SCSP:
2686 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2687 		break;
2688 	case PCI_DEVICE_ID_SAT_S:
2689 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2690 		break;
2691 	case PCI_DEVICE_ID_PROTEUS_VF:
2692 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2693 				"Obsolete, Unsupported Fibre Channel Adapter"};
2694 		break;
2695 	case PCI_DEVICE_ID_PROTEUS_PF:
2696 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2697 				"Obsolete, Unsupported Fibre Channel Adapter"};
2698 		break;
2699 	case PCI_DEVICE_ID_PROTEUS_S:
2700 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2701 				"Obsolete, Unsupported Fibre Channel Adapter"};
2702 		break;
2703 	case PCI_DEVICE_ID_TIGERSHARK:
2704 		oneConnect = 1;
2705 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2706 		break;
2707 	case PCI_DEVICE_ID_TOMCAT:
2708 		oneConnect = 1;
2709 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2710 		break;
2711 	case PCI_DEVICE_ID_FALCON:
2712 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2713 				"EmulexSecure Fibre"};
2714 		break;
2715 	case PCI_DEVICE_ID_BALIUS:
2716 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2717 				"Obsolete, Unsupported Fibre Channel Adapter"};
2718 		break;
2719 	case PCI_DEVICE_ID_LANCER_FC:
2720 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2721 		break;
2722 	case PCI_DEVICE_ID_LANCER_FC_VF:
2723 		m = (typeof(m)){"LPe16000", "PCIe",
2724 				"Obsolete, Unsupported Fibre Channel Adapter"};
2725 		break;
2726 	case PCI_DEVICE_ID_LANCER_FCOE:
2727 		oneConnect = 1;
2728 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2729 		break;
2730 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2731 		oneConnect = 1;
2732 		m = (typeof(m)){"OCe15100", "PCIe",
2733 				"Obsolete, Unsupported FCoE"};
2734 		break;
2735 	case PCI_DEVICE_ID_LANCER_G6_FC:
2736 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2737 		break;
2738 	case PCI_DEVICE_ID_LANCER_G7_FC:
2739 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2740 		break;
2741 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2742 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2743 		break;
2744 	case PCI_DEVICE_ID_SKYHAWK:
2745 	case PCI_DEVICE_ID_SKYHAWK_VF:
2746 		oneConnect = 1;
2747 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2748 		break;
2749 	default:
2750 		m = (typeof(m)){"Unknown", "", ""};
2751 		break;
2752 	}
2753 
2754 	if (mdp && mdp[0] == '\0')
2755 		snprintf(mdp, 79,"%s", m.name);
2756 	/*
2757 	 * oneConnect hba requires special processing, they are all initiators
2758 	 * and we put the port number on the end
2759 	 */
2760 	if (descp && descp[0] == '\0') {
2761 		if (oneConnect)
2762 			snprintf(descp, 255,
2763 				"Emulex OneConnect %s, %s Initiator %s",
2764 				m.name, m.function,
2765 				phba->Port);
2766 		else if (max_speed == 0)
2767 			snprintf(descp, 255,
2768 				"Emulex %s %s %s",
2769 				m.name, m.bus, m.function);
2770 		else
2771 			snprintf(descp, 255,
2772 				"Emulex %s %d%s %s %s",
2773 				m.name, max_speed, (GE) ? "GE" : "Gb",
2774 				m.bus, m.function);
2775 	}
2776 }
2777 
2778 /**
2779  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2780  * @phba: pointer to lpfc hba data structure.
2781  * @pring: pointer to a IOCB ring.
2782  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2783  *
2784  * This routine posts a given number of IOCBs with the associated DMA buffer
2785  * descriptors specified by the cnt argument to the given IOCB ring.
2786  *
2787  * Return codes
2788  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2789  **/
2790 int
2791 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2792 {
2793 	IOCB_t *icmd;
2794 	struct lpfc_iocbq *iocb;
2795 	struct lpfc_dmabuf *mp1, *mp2;
2796 
2797 	cnt += pring->missbufcnt;
2798 
2799 	/* While there are buffers to post */
2800 	while (cnt > 0) {
2801 		/* Allocate buffer for  command iocb */
2802 		iocb = lpfc_sli_get_iocbq(phba);
2803 		if (iocb == NULL) {
2804 			pring->missbufcnt = cnt;
2805 			return cnt;
2806 		}
2807 		icmd = &iocb->iocb;
2808 
2809 		/* 2 buffers can be posted per command */
2810 		/* Allocate buffer to post */
2811 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2812 		if (mp1)
2813 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2814 		if (!mp1 || !mp1->virt) {
2815 			kfree(mp1);
2816 			lpfc_sli_release_iocbq(phba, iocb);
2817 			pring->missbufcnt = cnt;
2818 			return cnt;
2819 		}
2820 
2821 		INIT_LIST_HEAD(&mp1->list);
2822 		/* Allocate buffer to post */
2823 		if (cnt > 1) {
2824 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2825 			if (mp2)
2826 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2827 							    &mp2->phys);
2828 			if (!mp2 || !mp2->virt) {
2829 				kfree(mp2);
2830 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2831 				kfree(mp1);
2832 				lpfc_sli_release_iocbq(phba, iocb);
2833 				pring->missbufcnt = cnt;
2834 				return cnt;
2835 			}
2836 
2837 			INIT_LIST_HEAD(&mp2->list);
2838 		} else {
2839 			mp2 = NULL;
2840 		}
2841 
2842 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2843 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2844 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2845 		icmd->ulpBdeCount = 1;
2846 		cnt--;
2847 		if (mp2) {
2848 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2849 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2850 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2851 			cnt--;
2852 			icmd->ulpBdeCount = 2;
2853 		}
2854 
2855 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2856 		icmd->ulpLe = 1;
2857 
2858 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2859 		    IOCB_ERROR) {
2860 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2861 			kfree(mp1);
2862 			cnt++;
2863 			if (mp2) {
2864 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2865 				kfree(mp2);
2866 				cnt++;
2867 			}
2868 			lpfc_sli_release_iocbq(phba, iocb);
2869 			pring->missbufcnt = cnt;
2870 			return cnt;
2871 		}
2872 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2873 		if (mp2)
2874 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2875 	}
2876 	pring->missbufcnt = 0;
2877 	return 0;
2878 }
2879 
2880 /**
2881  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2882  * @phba: pointer to lpfc hba data structure.
2883  *
2884  * This routine posts initial receive IOCB buffers to the ELS ring. The
2885  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2886  * set to 64 IOCBs. SLI3 only.
2887  *
2888  * Return codes
2889  *   0 - success (currently always success)
2890  **/
2891 static int
2892 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2893 {
2894 	struct lpfc_sli *psli = &phba->sli;
2895 
2896 	/* Ring 0, ELS / CT buffers */
2897 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2898 	/* Ring 2 - FCP no buffers needed */
2899 
2900 	return 0;
2901 }
2902 
2903 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2904 
2905 /**
2906  * lpfc_sha_init - Set up initial array of hash table entries
2907  * @HashResultPointer: pointer to an array as hash table.
2908  *
2909  * This routine sets up the initial values to the array of hash table entries
2910  * for the LC HBAs.
2911  **/
2912 static void
2913 lpfc_sha_init(uint32_t * HashResultPointer)
2914 {
2915 	HashResultPointer[0] = 0x67452301;
2916 	HashResultPointer[1] = 0xEFCDAB89;
2917 	HashResultPointer[2] = 0x98BADCFE;
2918 	HashResultPointer[3] = 0x10325476;
2919 	HashResultPointer[4] = 0xC3D2E1F0;
2920 }
2921 
2922 /**
2923  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2924  * @HashResultPointer: pointer to an initial/result hash table.
2925  * @HashWorkingPointer: pointer to an working hash table.
2926  *
2927  * This routine iterates an initial hash table pointed by @HashResultPointer
2928  * with the values from the working hash table pointeed by @HashWorkingPointer.
2929  * The results are putting back to the initial hash table, returned through
2930  * the @HashResultPointer as the result hash table.
2931  **/
2932 static void
2933 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2934 {
2935 	int t;
2936 	uint32_t TEMP;
2937 	uint32_t A, B, C, D, E;
2938 	t = 16;
2939 	do {
2940 		HashWorkingPointer[t] =
2941 		    S(1,
2942 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2943 								     8] ^
2944 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2945 	} while (++t <= 79);
2946 	t = 0;
2947 	A = HashResultPointer[0];
2948 	B = HashResultPointer[1];
2949 	C = HashResultPointer[2];
2950 	D = HashResultPointer[3];
2951 	E = HashResultPointer[4];
2952 
2953 	do {
2954 		if (t < 20) {
2955 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2956 		} else if (t < 40) {
2957 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2958 		} else if (t < 60) {
2959 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2960 		} else {
2961 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2962 		}
2963 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2964 		E = D;
2965 		D = C;
2966 		C = S(30, B);
2967 		B = A;
2968 		A = TEMP;
2969 	} while (++t <= 79);
2970 
2971 	HashResultPointer[0] += A;
2972 	HashResultPointer[1] += B;
2973 	HashResultPointer[2] += C;
2974 	HashResultPointer[3] += D;
2975 	HashResultPointer[4] += E;
2976 
2977 }
2978 
2979 /**
2980  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2981  * @RandomChallenge: pointer to the entry of host challenge random number array.
2982  * @HashWorking: pointer to the entry of the working hash array.
2983  *
2984  * This routine calculates the working hash array referred by @HashWorking
2985  * from the challenge random numbers associated with the host, referred by
2986  * @RandomChallenge. The result is put into the entry of the working hash
2987  * array and returned by reference through @HashWorking.
2988  **/
2989 static void
2990 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2991 {
2992 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2993 }
2994 
2995 /**
2996  * lpfc_hba_init - Perform special handling for LC HBA initialization
2997  * @phba: pointer to lpfc hba data structure.
2998  * @hbainit: pointer to an array of unsigned 32-bit integers.
2999  *
3000  * This routine performs the special handling for LC HBA initialization.
3001  **/
3002 void
3003 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
3004 {
3005 	int t;
3006 	uint32_t *HashWorking;
3007 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
3008 
3009 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3010 	if (!HashWorking)
3011 		return;
3012 
3013 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3014 	HashWorking[1] = HashWorking[79] = *pwwnn;
3015 
3016 	for (t = 0; t < 7; t++)
3017 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3018 
3019 	lpfc_sha_init(hbainit);
3020 	lpfc_sha_iterate(hbainit, HashWorking);
3021 	kfree(HashWorking);
3022 }
3023 
3024 /**
3025  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3026  * @vport: pointer to a virtual N_Port data structure.
3027  *
3028  * This routine performs the necessary cleanups before deleting the @vport.
3029  * It invokes the discovery state machine to perform necessary state
3030  * transitions and to release the ndlps associated with the @vport. Note,
3031  * the physical port is treated as @vport 0.
3032  **/
3033 void
3034 lpfc_cleanup(struct lpfc_vport *vport)
3035 {
3036 	struct lpfc_hba   *phba = vport->phba;
3037 	struct lpfc_nodelist *ndlp, *next_ndlp;
3038 	int i = 0;
3039 
3040 	if (phba->link_state > LPFC_LINK_DOWN)
3041 		lpfc_port_link_failure(vport);
3042 
3043 	/* Clean up VMID resources */
3044 	if (lpfc_is_vmid_enabled(phba))
3045 		lpfc_vmid_vport_cleanup(vport);
3046 
3047 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3048 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3049 		    ndlp->nlp_DID == Fabric_DID) {
3050 			/* Just free up ndlp with Fabric_DID for vports */
3051 			lpfc_nlp_put(ndlp);
3052 			continue;
3053 		}
3054 
3055 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3056 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3057 			lpfc_nlp_put(ndlp);
3058 			continue;
3059 		}
3060 
3061 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3062 		 * DEVICE_RM event.
3063 		 */
3064 		if (ndlp->nlp_type & NLP_FABRIC &&
3065 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3066 			lpfc_disc_state_machine(vport, ndlp, NULL,
3067 					NLP_EVT_DEVICE_RECOVERY);
3068 
3069 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3070 			lpfc_disc_state_machine(vport, ndlp, NULL,
3071 					NLP_EVT_DEVICE_RM);
3072 	}
3073 
3074 	/* This is a special case flush to return all
3075 	 * IOs before entering this loop. There are
3076 	 * two points in the code where a flush is
3077 	 * avoided if the FC_UNLOADING flag is set.
3078 	 * one is in the multipool destroy,
3079 	 * (this prevents a crash) and the other is
3080 	 * in the nvme abort handler, ( also prevents
3081 	 * a crash). Both of these exceptions are
3082 	 * cases where the slot is still accessible.
3083 	 * The flush here is only when the pci slot
3084 	 * is offline.
3085 	 */
3086 	if (vport->load_flag & FC_UNLOADING &&
3087 	    pci_channel_offline(phba->pcidev))
3088 		lpfc_sli_flush_io_rings(vport->phba);
3089 
3090 	/* At this point, ALL ndlp's should be gone
3091 	 * because of the previous NLP_EVT_DEVICE_RM.
3092 	 * Lets wait for this to happen, if needed.
3093 	 */
3094 	while (!list_empty(&vport->fc_nodes)) {
3095 		if (i++ > 3000) {
3096 			lpfc_printf_vlog(vport, KERN_ERR,
3097 					 LOG_TRACE_EVENT,
3098 				"0233 Nodelist not empty\n");
3099 			list_for_each_entry_safe(ndlp, next_ndlp,
3100 						&vport->fc_nodes, nlp_listp) {
3101 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3102 						 LOG_DISCOVERY,
3103 						 "0282 did:x%x ndlp:x%px "
3104 						 "refcnt:%d xflags x%x nflag x%x\n",
3105 						 ndlp->nlp_DID, (void *)ndlp,
3106 						 kref_read(&ndlp->kref),
3107 						 ndlp->fc4_xpt_flags,
3108 						 ndlp->nlp_flag);
3109 			}
3110 			break;
3111 		}
3112 
3113 		/* Wait for any activity on ndlps to settle */
3114 		msleep(10);
3115 	}
3116 	lpfc_cleanup_vports_rrqs(vport, NULL);
3117 }
3118 
3119 /**
3120  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3121  * @vport: pointer to a virtual N_Port data structure.
3122  *
3123  * This routine stops all the timers associated with a @vport. This function
3124  * is invoked before disabling or deleting a @vport. Note that the physical
3125  * port is treated as @vport 0.
3126  **/
3127 void
3128 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3129 {
3130 	del_timer_sync(&vport->els_tmofunc);
3131 	del_timer_sync(&vport->delayed_disc_tmo);
3132 	lpfc_can_disctmo(vport);
3133 	return;
3134 }
3135 
3136 /**
3137  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3138  * @phba: pointer to lpfc hba data structure.
3139  *
3140  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3141  * caller of this routine should already hold the host lock.
3142  **/
3143 void
3144 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3145 {
3146 	/* Clear pending FCF rediscovery wait flag */
3147 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3148 
3149 	/* Now, try to stop the timer */
3150 	del_timer(&phba->fcf.redisc_wait);
3151 }
3152 
3153 /**
3154  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3155  * @phba: pointer to lpfc hba data structure.
3156  *
3157  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3158  * checks whether the FCF rediscovery wait timer is pending with the host
3159  * lock held before proceeding with disabling the timer and clearing the
3160  * wait timer pendig flag.
3161  **/
3162 void
3163 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3164 {
3165 	spin_lock_irq(&phba->hbalock);
3166 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3167 		/* FCF rediscovery timer already fired or stopped */
3168 		spin_unlock_irq(&phba->hbalock);
3169 		return;
3170 	}
3171 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3172 	/* Clear failover in progress flags */
3173 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3174 	spin_unlock_irq(&phba->hbalock);
3175 }
3176 
3177 /**
3178  * lpfc_cmf_stop - Stop CMF processing
3179  * @phba: pointer to lpfc hba data structure.
3180  *
3181  * This is called when the link goes down or if CMF mode is turned OFF.
3182  * It is also called when going offline or unloaded just before the
3183  * congestion info buffer is unregistered.
3184  **/
3185 void
3186 lpfc_cmf_stop(struct lpfc_hba *phba)
3187 {
3188 	int cpu;
3189 	struct lpfc_cgn_stat *cgs;
3190 
3191 	/* We only do something if CMF is enabled */
3192 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3193 		return;
3194 
3195 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3196 			"6221 Stop CMF / Cancel Timer\n");
3197 
3198 	/* Cancel the CMF timer */
3199 	hrtimer_cancel(&phba->cmf_timer);
3200 
3201 	/* Zero CMF counters */
3202 	atomic_set(&phba->cmf_busy, 0);
3203 	for_each_present_cpu(cpu) {
3204 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3205 		atomic64_set(&cgs->total_bytes, 0);
3206 		atomic64_set(&cgs->rcv_bytes, 0);
3207 		atomic_set(&cgs->rx_io_cnt, 0);
3208 		atomic64_set(&cgs->rx_latency, 0);
3209 	}
3210 	atomic_set(&phba->cmf_bw_wait, 0);
3211 
3212 	/* Resume any blocked IO - Queue unblock on workqueue */
3213 	queue_work(phba->wq, &phba->unblock_request_work);
3214 }
3215 
3216 static inline uint64_t
3217 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3218 {
3219 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3220 
3221 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3222 }
3223 
3224 void
3225 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3226 {
3227 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3228 			"6223 Signal CMF init\n");
3229 
3230 	/* Use the new fc_linkspeed to recalculate */
3231 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3232 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3233 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3234 					    phba->cmf_interval_rate, 1000);
3235 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3236 
3237 	/* This is a signal to firmware to sync up CMF BW with link speed */
3238 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3239 }
3240 
3241 /**
3242  * lpfc_cmf_start - Start CMF processing
3243  * @phba: pointer to lpfc hba data structure.
3244  *
3245  * This is called when the link comes up or if CMF mode is turned OFF
3246  * to Monitor or Managed.
3247  **/
3248 void
3249 lpfc_cmf_start(struct lpfc_hba *phba)
3250 {
3251 	struct lpfc_cgn_stat *cgs;
3252 	int cpu;
3253 
3254 	/* We only do something if CMF is enabled */
3255 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3256 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3257 		return;
3258 
3259 	/* Reinitialize congestion buffer info */
3260 	lpfc_init_congestion_buf(phba);
3261 
3262 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3263 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3264 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3265 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3266 
3267 	atomic_set(&phba->cmf_busy, 0);
3268 	for_each_present_cpu(cpu) {
3269 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3270 		atomic64_set(&cgs->total_bytes, 0);
3271 		atomic64_set(&cgs->rcv_bytes, 0);
3272 		atomic_set(&cgs->rx_io_cnt, 0);
3273 		atomic64_set(&cgs->rx_latency, 0);
3274 	}
3275 	phba->cmf_latency.tv_sec = 0;
3276 	phba->cmf_latency.tv_nsec = 0;
3277 
3278 	lpfc_cmf_signal_init(phba);
3279 
3280 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3281 			"6222 Start CMF / Timer\n");
3282 
3283 	phba->cmf_timer_cnt = 0;
3284 	hrtimer_start(&phba->cmf_timer,
3285 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3286 		      HRTIMER_MODE_REL);
3287 	/* Setup for latency check in IO cmpl routines */
3288 	ktime_get_real_ts64(&phba->cmf_latency);
3289 
3290 	atomic_set(&phba->cmf_bw_wait, 0);
3291 	atomic_set(&phba->cmf_stop_io, 0);
3292 }
3293 
3294 /**
3295  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3296  * @phba: pointer to lpfc hba data structure.
3297  *
3298  * This routine stops all the timers associated with a HBA. This function is
3299  * invoked before either putting a HBA offline or unloading the driver.
3300  **/
3301 void
3302 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3303 {
3304 	if (phba->pport)
3305 		lpfc_stop_vport_timers(phba->pport);
3306 	cancel_delayed_work_sync(&phba->eq_delay_work);
3307 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3308 	del_timer_sync(&phba->sli.mbox_tmo);
3309 	del_timer_sync(&phba->fabric_block_timer);
3310 	del_timer_sync(&phba->eratt_poll);
3311 	del_timer_sync(&phba->hb_tmofunc);
3312 	if (phba->sli_rev == LPFC_SLI_REV4) {
3313 		del_timer_sync(&phba->rrq_tmr);
3314 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3315 	}
3316 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3317 
3318 	switch (phba->pci_dev_grp) {
3319 	case LPFC_PCI_DEV_LP:
3320 		/* Stop any LightPulse device specific driver timers */
3321 		del_timer_sync(&phba->fcp_poll_timer);
3322 		break;
3323 	case LPFC_PCI_DEV_OC:
3324 		/* Stop any OneConnect device specific driver timers */
3325 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3326 		break;
3327 	default:
3328 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3329 				"0297 Invalid device group (x%x)\n",
3330 				phba->pci_dev_grp);
3331 		break;
3332 	}
3333 	return;
3334 }
3335 
3336 /**
3337  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3338  * @phba: pointer to lpfc hba data structure.
3339  * @mbx_action: flag for mailbox no wait action.
3340  *
3341  * This routine marks a HBA's management interface as blocked. Once the HBA's
3342  * management interface is marked as blocked, all the user space access to
3343  * the HBA, whether they are from sysfs interface or libdfc interface will
3344  * all be blocked. The HBA is set to block the management interface when the
3345  * driver prepares the HBA interface for online or offline.
3346  **/
3347 static void
3348 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3349 {
3350 	unsigned long iflag;
3351 	uint8_t actcmd = MBX_HEARTBEAT;
3352 	unsigned long timeout;
3353 
3354 	spin_lock_irqsave(&phba->hbalock, iflag);
3355 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3356 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3357 	if (mbx_action == LPFC_MBX_NO_WAIT)
3358 		return;
3359 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3360 	spin_lock_irqsave(&phba->hbalock, iflag);
3361 	if (phba->sli.mbox_active) {
3362 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3363 		/* Determine how long we might wait for the active mailbox
3364 		 * command to be gracefully completed by firmware.
3365 		 */
3366 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3367 				phba->sli.mbox_active) * 1000) + jiffies;
3368 	}
3369 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3370 
3371 	/* Wait for the outstnading mailbox command to complete */
3372 	while (phba->sli.mbox_active) {
3373 		/* Check active mailbox complete status every 2ms */
3374 		msleep(2);
3375 		if (time_after(jiffies, timeout)) {
3376 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3377 					"2813 Mgmt IO is Blocked %x "
3378 					"- mbox cmd %x still active\n",
3379 					phba->sli.sli_flag, actcmd);
3380 			break;
3381 		}
3382 	}
3383 }
3384 
3385 /**
3386  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3387  * @phba: pointer to lpfc hba data structure.
3388  *
3389  * Allocate RPIs for all active remote nodes. This is needed whenever
3390  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3391  * is to fixup the temporary rpi assignments.
3392  **/
3393 void
3394 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3395 {
3396 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3397 	struct lpfc_vport **vports;
3398 	int i, rpi;
3399 
3400 	if (phba->sli_rev != LPFC_SLI_REV4)
3401 		return;
3402 
3403 	vports = lpfc_create_vport_work_array(phba);
3404 	if (vports == NULL)
3405 		return;
3406 
3407 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3408 		if (vports[i]->load_flag & FC_UNLOADING)
3409 			continue;
3410 
3411 		list_for_each_entry_safe(ndlp, next_ndlp,
3412 					 &vports[i]->fc_nodes,
3413 					 nlp_listp) {
3414 			rpi = lpfc_sli4_alloc_rpi(phba);
3415 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3416 				/* TODO print log? */
3417 				continue;
3418 			}
3419 			ndlp->nlp_rpi = rpi;
3420 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3421 					 LOG_NODE | LOG_DISCOVERY,
3422 					 "0009 Assign RPI x%x to ndlp x%px "
3423 					 "DID:x%06x flg:x%x\n",
3424 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3425 					 ndlp->nlp_flag);
3426 		}
3427 	}
3428 	lpfc_destroy_vport_work_array(phba, vports);
3429 }
3430 
3431 /**
3432  * lpfc_create_expedite_pool - create expedite pool
3433  * @phba: pointer to lpfc hba data structure.
3434  *
3435  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3436  * to expedite pool. Mark them as expedite.
3437  **/
3438 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3439 {
3440 	struct lpfc_sli4_hdw_queue *qp;
3441 	struct lpfc_io_buf *lpfc_ncmd;
3442 	struct lpfc_io_buf *lpfc_ncmd_next;
3443 	struct lpfc_epd_pool *epd_pool;
3444 	unsigned long iflag;
3445 
3446 	epd_pool = &phba->epd_pool;
3447 	qp = &phba->sli4_hba.hdwq[0];
3448 
3449 	spin_lock_init(&epd_pool->lock);
3450 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3451 	spin_lock(&epd_pool->lock);
3452 	INIT_LIST_HEAD(&epd_pool->list);
3453 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3454 				 &qp->lpfc_io_buf_list_put, list) {
3455 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3456 		lpfc_ncmd->expedite = true;
3457 		qp->put_io_bufs--;
3458 		epd_pool->count++;
3459 		if (epd_pool->count >= XRI_BATCH)
3460 			break;
3461 	}
3462 	spin_unlock(&epd_pool->lock);
3463 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3464 }
3465 
3466 /**
3467  * lpfc_destroy_expedite_pool - destroy expedite pool
3468  * @phba: pointer to lpfc hba data structure.
3469  *
3470  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3471  * of HWQ 0. Clear the mark.
3472  **/
3473 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3474 {
3475 	struct lpfc_sli4_hdw_queue *qp;
3476 	struct lpfc_io_buf *lpfc_ncmd;
3477 	struct lpfc_io_buf *lpfc_ncmd_next;
3478 	struct lpfc_epd_pool *epd_pool;
3479 	unsigned long iflag;
3480 
3481 	epd_pool = &phba->epd_pool;
3482 	qp = &phba->sli4_hba.hdwq[0];
3483 
3484 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3485 	spin_lock(&epd_pool->lock);
3486 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3487 				 &epd_pool->list, list) {
3488 		list_move_tail(&lpfc_ncmd->list,
3489 			       &qp->lpfc_io_buf_list_put);
3490 		lpfc_ncmd->flags = false;
3491 		qp->put_io_bufs++;
3492 		epd_pool->count--;
3493 	}
3494 	spin_unlock(&epd_pool->lock);
3495 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3496 }
3497 
3498 /**
3499  * lpfc_create_multixri_pools - create multi-XRI pools
3500  * @phba: pointer to lpfc hba data structure.
3501  *
3502  * This routine initialize public, private per HWQ. Then, move XRIs from
3503  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3504  * Initialized.
3505  **/
3506 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3507 {
3508 	u32 i, j;
3509 	u32 hwq_count;
3510 	u32 count_per_hwq;
3511 	struct lpfc_io_buf *lpfc_ncmd;
3512 	struct lpfc_io_buf *lpfc_ncmd_next;
3513 	unsigned long iflag;
3514 	struct lpfc_sli4_hdw_queue *qp;
3515 	struct lpfc_multixri_pool *multixri_pool;
3516 	struct lpfc_pbl_pool *pbl_pool;
3517 	struct lpfc_pvt_pool *pvt_pool;
3518 
3519 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3520 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3521 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3522 			phba->sli4_hba.io_xri_cnt);
3523 
3524 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3525 		lpfc_create_expedite_pool(phba);
3526 
3527 	hwq_count = phba->cfg_hdw_queue;
3528 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3529 
3530 	for (i = 0; i < hwq_count; i++) {
3531 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3532 
3533 		if (!multixri_pool) {
3534 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3535 					"1238 Failed to allocate memory for "
3536 					"multixri_pool\n");
3537 
3538 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3539 				lpfc_destroy_expedite_pool(phba);
3540 
3541 			j = 0;
3542 			while (j < i) {
3543 				qp = &phba->sli4_hba.hdwq[j];
3544 				kfree(qp->p_multixri_pool);
3545 				j++;
3546 			}
3547 			phba->cfg_xri_rebalancing = 0;
3548 			return;
3549 		}
3550 
3551 		qp = &phba->sli4_hba.hdwq[i];
3552 		qp->p_multixri_pool = multixri_pool;
3553 
3554 		multixri_pool->xri_limit = count_per_hwq;
3555 		multixri_pool->rrb_next_hwqid = i;
3556 
3557 		/* Deal with public free xri pool */
3558 		pbl_pool = &multixri_pool->pbl_pool;
3559 		spin_lock_init(&pbl_pool->lock);
3560 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3561 		spin_lock(&pbl_pool->lock);
3562 		INIT_LIST_HEAD(&pbl_pool->list);
3563 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3564 					 &qp->lpfc_io_buf_list_put, list) {
3565 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3566 			qp->put_io_bufs--;
3567 			pbl_pool->count++;
3568 		}
3569 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3570 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3571 				pbl_pool->count, i);
3572 		spin_unlock(&pbl_pool->lock);
3573 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3574 
3575 		/* Deal with private free xri pool */
3576 		pvt_pool = &multixri_pool->pvt_pool;
3577 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3578 		pvt_pool->low_watermark = XRI_BATCH;
3579 		spin_lock_init(&pvt_pool->lock);
3580 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3581 		INIT_LIST_HEAD(&pvt_pool->list);
3582 		pvt_pool->count = 0;
3583 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3584 	}
3585 }
3586 
3587 /**
3588  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3589  * @phba: pointer to lpfc hba data structure.
3590  *
3591  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3592  **/
3593 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3594 {
3595 	u32 i;
3596 	u32 hwq_count;
3597 	struct lpfc_io_buf *lpfc_ncmd;
3598 	struct lpfc_io_buf *lpfc_ncmd_next;
3599 	unsigned long iflag;
3600 	struct lpfc_sli4_hdw_queue *qp;
3601 	struct lpfc_multixri_pool *multixri_pool;
3602 	struct lpfc_pbl_pool *pbl_pool;
3603 	struct lpfc_pvt_pool *pvt_pool;
3604 
3605 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3606 		lpfc_destroy_expedite_pool(phba);
3607 
3608 	if (!(phba->pport->load_flag & FC_UNLOADING))
3609 		lpfc_sli_flush_io_rings(phba);
3610 
3611 	hwq_count = phba->cfg_hdw_queue;
3612 
3613 	for (i = 0; i < hwq_count; i++) {
3614 		qp = &phba->sli4_hba.hdwq[i];
3615 		multixri_pool = qp->p_multixri_pool;
3616 		if (!multixri_pool)
3617 			continue;
3618 
3619 		qp->p_multixri_pool = NULL;
3620 
3621 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3622 
3623 		/* Deal with public free xri pool */
3624 		pbl_pool = &multixri_pool->pbl_pool;
3625 		spin_lock(&pbl_pool->lock);
3626 
3627 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3628 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3629 				pbl_pool->count, i);
3630 
3631 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3632 					 &pbl_pool->list, list) {
3633 			list_move_tail(&lpfc_ncmd->list,
3634 				       &qp->lpfc_io_buf_list_put);
3635 			qp->put_io_bufs++;
3636 			pbl_pool->count--;
3637 		}
3638 
3639 		INIT_LIST_HEAD(&pbl_pool->list);
3640 		pbl_pool->count = 0;
3641 
3642 		spin_unlock(&pbl_pool->lock);
3643 
3644 		/* Deal with private free xri pool */
3645 		pvt_pool = &multixri_pool->pvt_pool;
3646 		spin_lock(&pvt_pool->lock);
3647 
3648 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3649 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3650 				pvt_pool->count, i);
3651 
3652 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3653 					 &pvt_pool->list, list) {
3654 			list_move_tail(&lpfc_ncmd->list,
3655 				       &qp->lpfc_io_buf_list_put);
3656 			qp->put_io_bufs++;
3657 			pvt_pool->count--;
3658 		}
3659 
3660 		INIT_LIST_HEAD(&pvt_pool->list);
3661 		pvt_pool->count = 0;
3662 
3663 		spin_unlock(&pvt_pool->lock);
3664 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3665 
3666 		kfree(multixri_pool);
3667 	}
3668 }
3669 
3670 /**
3671  * lpfc_online - Initialize and bring a HBA online
3672  * @phba: pointer to lpfc hba data structure.
3673  *
3674  * This routine initializes the HBA and brings a HBA online. During this
3675  * process, the management interface is blocked to prevent user space access
3676  * to the HBA interfering with the driver initialization.
3677  *
3678  * Return codes
3679  *   0 - successful
3680  *   1 - failed
3681  **/
3682 int
3683 lpfc_online(struct lpfc_hba *phba)
3684 {
3685 	struct lpfc_vport *vport;
3686 	struct lpfc_vport **vports;
3687 	int i, error = 0;
3688 	bool vpis_cleared = false;
3689 
3690 	if (!phba)
3691 		return 0;
3692 	vport = phba->pport;
3693 
3694 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3695 		return 0;
3696 
3697 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3698 			"0458 Bring Adapter online\n");
3699 
3700 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3701 
3702 	if (phba->sli_rev == LPFC_SLI_REV4) {
3703 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3704 			lpfc_unblock_mgmt_io(phba);
3705 			return 1;
3706 		}
3707 		spin_lock_irq(&phba->hbalock);
3708 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3709 			vpis_cleared = true;
3710 		spin_unlock_irq(&phba->hbalock);
3711 
3712 		/* Reestablish the local initiator port.
3713 		 * The offline process destroyed the previous lport.
3714 		 */
3715 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3716 				!phba->nvmet_support) {
3717 			error = lpfc_nvme_create_localport(phba->pport);
3718 			if (error)
3719 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3720 					"6132 NVME restore reg failed "
3721 					"on nvmei error x%x\n", error);
3722 		}
3723 	} else {
3724 		lpfc_sli_queue_init(phba);
3725 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3726 			lpfc_unblock_mgmt_io(phba);
3727 			return 1;
3728 		}
3729 	}
3730 
3731 	vports = lpfc_create_vport_work_array(phba);
3732 	if (vports != NULL) {
3733 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3734 			struct Scsi_Host *shost;
3735 			shost = lpfc_shost_from_vport(vports[i]);
3736 			spin_lock_irq(shost->host_lock);
3737 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3738 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3739 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3740 			if (phba->sli_rev == LPFC_SLI_REV4) {
3741 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3742 				if ((vpis_cleared) &&
3743 				    (vports[i]->port_type !=
3744 					LPFC_PHYSICAL_PORT))
3745 					vports[i]->vpi = 0;
3746 			}
3747 			spin_unlock_irq(shost->host_lock);
3748 		}
3749 	}
3750 	lpfc_destroy_vport_work_array(phba, vports);
3751 
3752 	if (phba->cfg_xri_rebalancing)
3753 		lpfc_create_multixri_pools(phba);
3754 
3755 	lpfc_cpuhp_add(phba);
3756 
3757 	lpfc_unblock_mgmt_io(phba);
3758 	return 0;
3759 }
3760 
3761 /**
3762  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3763  * @phba: pointer to lpfc hba data structure.
3764  *
3765  * This routine marks a HBA's management interface as not blocked. Once the
3766  * HBA's management interface is marked as not blocked, all the user space
3767  * access to the HBA, whether they are from sysfs interface or libdfc
3768  * interface will be allowed. The HBA is set to block the management interface
3769  * when the driver prepares the HBA interface for online or offline and then
3770  * set to unblock the management interface afterwards.
3771  **/
3772 void
3773 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3774 {
3775 	unsigned long iflag;
3776 
3777 	spin_lock_irqsave(&phba->hbalock, iflag);
3778 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3779 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3780 }
3781 
3782 /**
3783  * lpfc_offline_prep - Prepare a HBA to be brought offline
3784  * @phba: pointer to lpfc hba data structure.
3785  * @mbx_action: flag for mailbox shutdown action.
3786  *
3787  * This routine is invoked to prepare a HBA to be brought offline. It performs
3788  * unregistration login to all the nodes on all vports and flushes the mailbox
3789  * queue to make it ready to be brought offline.
3790  **/
3791 void
3792 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3793 {
3794 	struct lpfc_vport *vport = phba->pport;
3795 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3796 	struct lpfc_vport **vports;
3797 	struct Scsi_Host *shost;
3798 	int i;
3799 	int offline;
3800 	bool hba_pci_err;
3801 
3802 	if (vport->fc_flag & FC_OFFLINE_MODE)
3803 		return;
3804 
3805 	lpfc_block_mgmt_io(phba, mbx_action);
3806 
3807 	lpfc_linkdown(phba);
3808 
3809 	offline =  pci_channel_offline(phba->pcidev);
3810 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3811 
3812 	/* Issue an unreg_login to all nodes on all vports */
3813 	vports = lpfc_create_vport_work_array(phba);
3814 	if (vports != NULL) {
3815 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3816 			if (vports[i]->load_flag & FC_UNLOADING)
3817 				continue;
3818 			shost = lpfc_shost_from_vport(vports[i]);
3819 			spin_lock_irq(shost->host_lock);
3820 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3821 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3822 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3823 			spin_unlock_irq(shost->host_lock);
3824 
3825 			shost =	lpfc_shost_from_vport(vports[i]);
3826 			list_for_each_entry_safe(ndlp, next_ndlp,
3827 						 &vports[i]->fc_nodes,
3828 						 nlp_listp) {
3829 
3830 				spin_lock_irq(&ndlp->lock);
3831 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3832 				spin_unlock_irq(&ndlp->lock);
3833 
3834 				if (offline || hba_pci_err) {
3835 					spin_lock_irq(&ndlp->lock);
3836 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3837 							    NLP_RPI_REGISTERED);
3838 					spin_unlock_irq(&ndlp->lock);
3839 					if (phba->sli_rev == LPFC_SLI_REV4)
3840 						lpfc_sli_rpi_release(vports[i],
3841 								     ndlp);
3842 				} else {
3843 					lpfc_unreg_rpi(vports[i], ndlp);
3844 				}
3845 				/*
3846 				 * Whenever an SLI4 port goes offline, free the
3847 				 * RPI. Get a new RPI when the adapter port
3848 				 * comes back online.
3849 				 */
3850 				if (phba->sli_rev == LPFC_SLI_REV4) {
3851 					lpfc_printf_vlog(vports[i], KERN_INFO,
3852 						 LOG_NODE | LOG_DISCOVERY,
3853 						 "0011 Free RPI x%x on "
3854 						 "ndlp: x%px did x%x\n",
3855 						 ndlp->nlp_rpi, ndlp,
3856 						 ndlp->nlp_DID);
3857 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3858 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3859 				}
3860 
3861 				if (ndlp->nlp_type & NLP_FABRIC) {
3862 					lpfc_disc_state_machine(vports[i], ndlp,
3863 						NULL, NLP_EVT_DEVICE_RECOVERY);
3864 
3865 					/* Don't remove the node unless the node
3866 					 * has been unregistered with the
3867 					 * transport, and we're not in recovery
3868 					 * before dev_loss_tmo triggered.
3869 					 * Otherwise, let dev_loss take care of
3870 					 * the node.
3871 					 */
3872 					if (!(ndlp->save_flags &
3873 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3874 					    !(ndlp->fc4_xpt_flags &
3875 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3876 						lpfc_disc_state_machine
3877 							(vports[i], ndlp,
3878 							 NULL,
3879 							 NLP_EVT_DEVICE_RM);
3880 				}
3881 			}
3882 		}
3883 	}
3884 	lpfc_destroy_vport_work_array(phba, vports);
3885 
3886 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3887 
3888 	if (phba->wq)
3889 		flush_workqueue(phba->wq);
3890 }
3891 
3892 /**
3893  * lpfc_offline - Bring a HBA offline
3894  * @phba: pointer to lpfc hba data structure.
3895  *
3896  * This routine actually brings a HBA offline. It stops all the timers
3897  * associated with the HBA, brings down the SLI layer, and eventually
3898  * marks the HBA as in offline state for the upper layer protocol.
3899  **/
3900 void
3901 lpfc_offline(struct lpfc_hba *phba)
3902 {
3903 	struct Scsi_Host  *shost;
3904 	struct lpfc_vport **vports;
3905 	int i;
3906 
3907 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3908 		return;
3909 
3910 	/* stop port and all timers associated with this hba */
3911 	lpfc_stop_port(phba);
3912 
3913 	/* Tear down the local and target port registrations.  The
3914 	 * nvme transports need to cleanup.
3915 	 */
3916 	lpfc_nvmet_destroy_targetport(phba);
3917 	lpfc_nvme_destroy_localport(phba->pport);
3918 
3919 	vports = lpfc_create_vport_work_array(phba);
3920 	if (vports != NULL)
3921 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3922 			lpfc_stop_vport_timers(vports[i]);
3923 	lpfc_destroy_vport_work_array(phba, vports);
3924 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3925 			"0460 Bring Adapter offline\n");
3926 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3927 	   now.  */
3928 	lpfc_sli_hba_down(phba);
3929 	spin_lock_irq(&phba->hbalock);
3930 	phba->work_ha = 0;
3931 	spin_unlock_irq(&phba->hbalock);
3932 	vports = lpfc_create_vport_work_array(phba);
3933 	if (vports != NULL)
3934 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3935 			shost = lpfc_shost_from_vport(vports[i]);
3936 			spin_lock_irq(shost->host_lock);
3937 			vports[i]->work_port_events = 0;
3938 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3939 			spin_unlock_irq(shost->host_lock);
3940 		}
3941 	lpfc_destroy_vport_work_array(phba, vports);
3942 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3943 	 * in hba_unset
3944 	 */
3945 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3946 		__lpfc_cpuhp_remove(phba);
3947 
3948 	if (phba->cfg_xri_rebalancing)
3949 		lpfc_destroy_multixri_pools(phba);
3950 }
3951 
3952 /**
3953  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3954  * @phba: pointer to lpfc hba data structure.
3955  *
3956  * This routine is to free all the SCSI buffers and IOCBs from the driver
3957  * list back to kernel. It is called from lpfc_pci_remove_one to free
3958  * the internal resources before the device is removed from the system.
3959  **/
3960 static void
3961 lpfc_scsi_free(struct lpfc_hba *phba)
3962 {
3963 	struct lpfc_io_buf *sb, *sb_next;
3964 
3965 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3966 		return;
3967 
3968 	spin_lock_irq(&phba->hbalock);
3969 
3970 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3971 
3972 	spin_lock(&phba->scsi_buf_list_put_lock);
3973 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3974 				 list) {
3975 		list_del(&sb->list);
3976 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3977 			      sb->dma_handle);
3978 		kfree(sb);
3979 		phba->total_scsi_bufs--;
3980 	}
3981 	spin_unlock(&phba->scsi_buf_list_put_lock);
3982 
3983 	spin_lock(&phba->scsi_buf_list_get_lock);
3984 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3985 				 list) {
3986 		list_del(&sb->list);
3987 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3988 			      sb->dma_handle);
3989 		kfree(sb);
3990 		phba->total_scsi_bufs--;
3991 	}
3992 	spin_unlock(&phba->scsi_buf_list_get_lock);
3993 	spin_unlock_irq(&phba->hbalock);
3994 }
3995 
3996 /**
3997  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3998  * @phba: pointer to lpfc hba data structure.
3999  *
4000  * This routine is to free all the IO buffers and IOCBs from the driver
4001  * list back to kernel. It is called from lpfc_pci_remove_one to free
4002  * the internal resources before the device is removed from the system.
4003  **/
4004 void
4005 lpfc_io_free(struct lpfc_hba *phba)
4006 {
4007 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4008 	struct lpfc_sli4_hdw_queue *qp;
4009 	int idx;
4010 
4011 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4012 		qp = &phba->sli4_hba.hdwq[idx];
4013 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4014 		spin_lock(&qp->io_buf_list_put_lock);
4015 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4016 					 &qp->lpfc_io_buf_list_put,
4017 					 list) {
4018 			list_del(&lpfc_ncmd->list);
4019 			qp->put_io_bufs--;
4020 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4021 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4022 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4023 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4024 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4025 			kfree(lpfc_ncmd);
4026 			qp->total_io_bufs--;
4027 		}
4028 		spin_unlock(&qp->io_buf_list_put_lock);
4029 
4030 		spin_lock(&qp->io_buf_list_get_lock);
4031 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4032 					 &qp->lpfc_io_buf_list_get,
4033 					 list) {
4034 			list_del(&lpfc_ncmd->list);
4035 			qp->get_io_bufs--;
4036 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4037 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4038 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4039 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4040 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4041 			kfree(lpfc_ncmd);
4042 			qp->total_io_bufs--;
4043 		}
4044 		spin_unlock(&qp->io_buf_list_get_lock);
4045 	}
4046 }
4047 
4048 /**
4049  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4050  * @phba: pointer to lpfc hba data structure.
4051  *
4052  * This routine first calculates the sizes of the current els and allocated
4053  * scsi sgl lists, and then goes through all sgls to updates the physical
4054  * XRIs assigned due to port function reset. During port initialization, the
4055  * current els and allocated scsi sgl lists are 0s.
4056  *
4057  * Return codes
4058  *   0 - successful (for now, it always returns 0)
4059  **/
4060 int
4061 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4062 {
4063 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4064 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4065 	LIST_HEAD(els_sgl_list);
4066 	int rc;
4067 
4068 	/*
4069 	 * update on pci function's els xri-sgl list
4070 	 */
4071 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4072 
4073 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4074 		/* els xri-sgl expanded */
4075 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4076 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4077 				"3157 ELS xri-sgl count increased from "
4078 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4079 				els_xri_cnt);
4080 		/* allocate the additional els sgls */
4081 		for (i = 0; i < xri_cnt; i++) {
4082 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4083 					     GFP_KERNEL);
4084 			if (sglq_entry == NULL) {
4085 				lpfc_printf_log(phba, KERN_ERR,
4086 						LOG_TRACE_EVENT,
4087 						"2562 Failure to allocate an "
4088 						"ELS sgl entry:%d\n", i);
4089 				rc = -ENOMEM;
4090 				goto out_free_mem;
4091 			}
4092 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4093 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4094 							   &sglq_entry->phys);
4095 			if (sglq_entry->virt == NULL) {
4096 				kfree(sglq_entry);
4097 				lpfc_printf_log(phba, KERN_ERR,
4098 						LOG_TRACE_EVENT,
4099 						"2563 Failure to allocate an "
4100 						"ELS mbuf:%d\n", i);
4101 				rc = -ENOMEM;
4102 				goto out_free_mem;
4103 			}
4104 			sglq_entry->sgl = sglq_entry->virt;
4105 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4106 			sglq_entry->state = SGL_FREED;
4107 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4108 		}
4109 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4110 		list_splice_init(&els_sgl_list,
4111 				 &phba->sli4_hba.lpfc_els_sgl_list);
4112 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4113 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4114 		/* els xri-sgl shrinked */
4115 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4116 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4117 				"3158 ELS xri-sgl count decreased from "
4118 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4119 				els_xri_cnt);
4120 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4121 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4122 				 &els_sgl_list);
4123 		/* release extra els sgls from list */
4124 		for (i = 0; i < xri_cnt; i++) {
4125 			list_remove_head(&els_sgl_list,
4126 					 sglq_entry, struct lpfc_sglq, list);
4127 			if (sglq_entry) {
4128 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4129 						 sglq_entry->phys);
4130 				kfree(sglq_entry);
4131 			}
4132 		}
4133 		list_splice_init(&els_sgl_list,
4134 				 &phba->sli4_hba.lpfc_els_sgl_list);
4135 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4136 	} else
4137 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4138 				"3163 ELS xri-sgl count unchanged: %d\n",
4139 				els_xri_cnt);
4140 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4141 
4142 	/* update xris to els sgls on the list */
4143 	sglq_entry = NULL;
4144 	sglq_entry_next = NULL;
4145 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4146 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4147 		lxri = lpfc_sli4_next_xritag(phba);
4148 		if (lxri == NO_XRI) {
4149 			lpfc_printf_log(phba, KERN_ERR,
4150 					LOG_TRACE_EVENT,
4151 					"2400 Failed to allocate xri for "
4152 					"ELS sgl\n");
4153 			rc = -ENOMEM;
4154 			goto out_free_mem;
4155 		}
4156 		sglq_entry->sli4_lxritag = lxri;
4157 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4158 	}
4159 	return 0;
4160 
4161 out_free_mem:
4162 	lpfc_free_els_sgl_list(phba);
4163 	return rc;
4164 }
4165 
4166 /**
4167  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4168  * @phba: pointer to lpfc hba data structure.
4169  *
4170  * This routine first calculates the sizes of the current els and allocated
4171  * scsi sgl lists, and then goes through all sgls to updates the physical
4172  * XRIs assigned due to port function reset. During port initialization, the
4173  * current els and allocated scsi sgl lists are 0s.
4174  *
4175  * Return codes
4176  *   0 - successful (for now, it always returns 0)
4177  **/
4178 int
4179 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4180 {
4181 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4182 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4183 	uint16_t nvmet_xri_cnt;
4184 	LIST_HEAD(nvmet_sgl_list);
4185 	int rc;
4186 
4187 	/*
4188 	 * update on pci function's nvmet xri-sgl list
4189 	 */
4190 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4191 
4192 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4193 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4194 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4195 		/* els xri-sgl expanded */
4196 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4197 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4198 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4199 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4200 		/* allocate the additional nvmet sgls */
4201 		for (i = 0; i < xri_cnt; i++) {
4202 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4203 					     GFP_KERNEL);
4204 			if (sglq_entry == NULL) {
4205 				lpfc_printf_log(phba, KERN_ERR,
4206 						LOG_TRACE_EVENT,
4207 						"6303 Failure to allocate an "
4208 						"NVMET sgl entry:%d\n", i);
4209 				rc = -ENOMEM;
4210 				goto out_free_mem;
4211 			}
4212 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4213 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4214 							   &sglq_entry->phys);
4215 			if (sglq_entry->virt == NULL) {
4216 				kfree(sglq_entry);
4217 				lpfc_printf_log(phba, KERN_ERR,
4218 						LOG_TRACE_EVENT,
4219 						"6304 Failure to allocate an "
4220 						"NVMET buf:%d\n", i);
4221 				rc = -ENOMEM;
4222 				goto out_free_mem;
4223 			}
4224 			sglq_entry->sgl = sglq_entry->virt;
4225 			memset(sglq_entry->sgl, 0,
4226 			       phba->cfg_sg_dma_buf_size);
4227 			sglq_entry->state = SGL_FREED;
4228 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4229 		}
4230 		spin_lock_irq(&phba->hbalock);
4231 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4232 		list_splice_init(&nvmet_sgl_list,
4233 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4234 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4235 		spin_unlock_irq(&phba->hbalock);
4236 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4237 		/* nvmet xri-sgl shrunk */
4238 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4239 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4240 				"6305 NVMET xri-sgl count decreased from "
4241 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4242 				nvmet_xri_cnt);
4243 		spin_lock_irq(&phba->hbalock);
4244 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4245 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4246 				 &nvmet_sgl_list);
4247 		/* release extra nvmet sgls from list */
4248 		for (i = 0; i < xri_cnt; i++) {
4249 			list_remove_head(&nvmet_sgl_list,
4250 					 sglq_entry, struct lpfc_sglq, list);
4251 			if (sglq_entry) {
4252 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4253 						    sglq_entry->phys);
4254 				kfree(sglq_entry);
4255 			}
4256 		}
4257 		list_splice_init(&nvmet_sgl_list,
4258 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4259 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4260 		spin_unlock_irq(&phba->hbalock);
4261 	} else
4262 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4263 				"6306 NVMET xri-sgl count unchanged: %d\n",
4264 				nvmet_xri_cnt);
4265 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4266 
4267 	/* update xris to nvmet sgls on the list */
4268 	sglq_entry = NULL;
4269 	sglq_entry_next = NULL;
4270 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4271 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4272 		lxri = lpfc_sli4_next_xritag(phba);
4273 		if (lxri == NO_XRI) {
4274 			lpfc_printf_log(phba, KERN_ERR,
4275 					LOG_TRACE_EVENT,
4276 					"6307 Failed to allocate xri for "
4277 					"NVMET sgl\n");
4278 			rc = -ENOMEM;
4279 			goto out_free_mem;
4280 		}
4281 		sglq_entry->sli4_lxritag = lxri;
4282 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4283 	}
4284 	return 0;
4285 
4286 out_free_mem:
4287 	lpfc_free_nvmet_sgl_list(phba);
4288 	return rc;
4289 }
4290 
4291 int
4292 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4293 {
4294 	LIST_HEAD(blist);
4295 	struct lpfc_sli4_hdw_queue *qp;
4296 	struct lpfc_io_buf *lpfc_cmd;
4297 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4298 	int idx, cnt, xri, inserted;
4299 
4300 	cnt = 0;
4301 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4302 		qp = &phba->sli4_hba.hdwq[idx];
4303 		spin_lock_irq(&qp->io_buf_list_get_lock);
4304 		spin_lock(&qp->io_buf_list_put_lock);
4305 
4306 		/* Take everything off the get and put lists */
4307 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4308 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4309 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4310 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4311 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4312 		qp->get_io_bufs = 0;
4313 		qp->put_io_bufs = 0;
4314 		qp->total_io_bufs = 0;
4315 		spin_unlock(&qp->io_buf_list_put_lock);
4316 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4317 	}
4318 
4319 	/*
4320 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4321 	 * This is because POST_SGL takes a sequential range of XRIs
4322 	 * to post to the firmware.
4323 	 */
4324 	for (idx = 0; idx < cnt; idx++) {
4325 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4326 		if (!lpfc_cmd)
4327 			return cnt;
4328 		if (idx == 0) {
4329 			list_add_tail(&lpfc_cmd->list, cbuf);
4330 			continue;
4331 		}
4332 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4333 		inserted = 0;
4334 		prev_iobufp = NULL;
4335 		list_for_each_entry(iobufp, cbuf, list) {
4336 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4337 				if (prev_iobufp)
4338 					list_add(&lpfc_cmd->list,
4339 						 &prev_iobufp->list);
4340 				else
4341 					list_add(&lpfc_cmd->list, cbuf);
4342 				inserted = 1;
4343 				break;
4344 			}
4345 			prev_iobufp = iobufp;
4346 		}
4347 		if (!inserted)
4348 			list_add_tail(&lpfc_cmd->list, cbuf);
4349 	}
4350 	return cnt;
4351 }
4352 
4353 int
4354 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4355 {
4356 	struct lpfc_sli4_hdw_queue *qp;
4357 	struct lpfc_io_buf *lpfc_cmd;
4358 	int idx, cnt;
4359 
4360 	qp = phba->sli4_hba.hdwq;
4361 	cnt = 0;
4362 	while (!list_empty(cbuf)) {
4363 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4364 			list_remove_head(cbuf, lpfc_cmd,
4365 					 struct lpfc_io_buf, list);
4366 			if (!lpfc_cmd)
4367 				return cnt;
4368 			cnt++;
4369 			qp = &phba->sli4_hba.hdwq[idx];
4370 			lpfc_cmd->hdwq_no = idx;
4371 			lpfc_cmd->hdwq = qp;
4372 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4373 			spin_lock(&qp->io_buf_list_put_lock);
4374 			list_add_tail(&lpfc_cmd->list,
4375 				      &qp->lpfc_io_buf_list_put);
4376 			qp->put_io_bufs++;
4377 			qp->total_io_bufs++;
4378 			spin_unlock(&qp->io_buf_list_put_lock);
4379 		}
4380 	}
4381 	return cnt;
4382 }
4383 
4384 /**
4385  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4386  * @phba: pointer to lpfc hba data structure.
4387  *
4388  * This routine first calculates the sizes of the current els and allocated
4389  * scsi sgl lists, and then goes through all sgls to updates the physical
4390  * XRIs assigned due to port function reset. During port initialization, the
4391  * current els and allocated scsi sgl lists are 0s.
4392  *
4393  * Return codes
4394  *   0 - successful (for now, it always returns 0)
4395  **/
4396 int
4397 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4398 {
4399 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4400 	uint16_t i, lxri, els_xri_cnt;
4401 	uint16_t io_xri_cnt, io_xri_max;
4402 	LIST_HEAD(io_sgl_list);
4403 	int rc, cnt;
4404 
4405 	/*
4406 	 * update on pci function's allocated nvme xri-sgl list
4407 	 */
4408 
4409 	/* maximum number of xris available for nvme buffers */
4410 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4411 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4412 	phba->sli4_hba.io_xri_max = io_xri_max;
4413 
4414 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4415 			"6074 Current allocated XRI sgl count:%d, "
4416 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4417 			phba->sli4_hba.io_xri_cnt,
4418 			phba->sli4_hba.io_xri_max,
4419 			els_xri_cnt);
4420 
4421 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4422 
4423 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4424 		/* max nvme xri shrunk below the allocated nvme buffers */
4425 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4426 					phba->sli4_hba.io_xri_max;
4427 		/* release the extra allocated nvme buffers */
4428 		for (i = 0; i < io_xri_cnt; i++) {
4429 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4430 					 struct lpfc_io_buf, list);
4431 			if (lpfc_ncmd) {
4432 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4433 					      lpfc_ncmd->data,
4434 					      lpfc_ncmd->dma_handle);
4435 				kfree(lpfc_ncmd);
4436 			}
4437 		}
4438 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4439 	}
4440 
4441 	/* update xris associated to remaining allocated nvme buffers */
4442 	lpfc_ncmd = NULL;
4443 	lpfc_ncmd_next = NULL;
4444 	phba->sli4_hba.io_xri_cnt = cnt;
4445 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4446 				 &io_sgl_list, list) {
4447 		lxri = lpfc_sli4_next_xritag(phba);
4448 		if (lxri == NO_XRI) {
4449 			lpfc_printf_log(phba, KERN_ERR,
4450 					LOG_TRACE_EVENT,
4451 					"6075 Failed to allocate xri for "
4452 					"nvme buffer\n");
4453 			rc = -ENOMEM;
4454 			goto out_free_mem;
4455 		}
4456 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4457 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4458 	}
4459 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4460 	return 0;
4461 
4462 out_free_mem:
4463 	lpfc_io_free(phba);
4464 	return rc;
4465 }
4466 
4467 /**
4468  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4469  * @phba: Pointer to lpfc hba data structure.
4470  * @num_to_alloc: The requested number of buffers to allocate.
4471  *
4472  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4473  * the nvme buffer contains all the necessary information needed to initiate
4474  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4475  * them on a list, it post them to the port by using SGL block post.
4476  *
4477  * Return codes:
4478  *   int - number of IO buffers that were allocated and posted.
4479  *   0 = failure, less than num_to_alloc is a partial failure.
4480  **/
4481 int
4482 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4483 {
4484 	struct lpfc_io_buf *lpfc_ncmd;
4485 	struct lpfc_iocbq *pwqeq;
4486 	uint16_t iotag, lxri = 0;
4487 	int bcnt, num_posted;
4488 	LIST_HEAD(prep_nblist);
4489 	LIST_HEAD(post_nblist);
4490 	LIST_HEAD(nvme_nblist);
4491 
4492 	phba->sli4_hba.io_xri_cnt = 0;
4493 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4494 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4495 		if (!lpfc_ncmd)
4496 			break;
4497 		/*
4498 		 * Get memory from the pci pool to map the virt space to
4499 		 * pci bus space for an I/O. The DMA buffer includes the
4500 		 * number of SGE's necessary to support the sg_tablesize.
4501 		 */
4502 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4503 						  GFP_KERNEL,
4504 						  &lpfc_ncmd->dma_handle);
4505 		if (!lpfc_ncmd->data) {
4506 			kfree(lpfc_ncmd);
4507 			break;
4508 		}
4509 
4510 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4511 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4512 		} else {
4513 			/*
4514 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4515 			 * check to be sure.
4516 			 */
4517 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4518 			    (((unsigned long)(lpfc_ncmd->data) &
4519 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4520 				lpfc_printf_log(phba, KERN_ERR,
4521 						LOG_TRACE_EVENT,
4522 						"3369 Memory alignment err: "
4523 						"addr=%lx\n",
4524 						(unsigned long)lpfc_ncmd->data);
4525 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4526 					      lpfc_ncmd->data,
4527 					      lpfc_ncmd->dma_handle);
4528 				kfree(lpfc_ncmd);
4529 				break;
4530 			}
4531 		}
4532 
4533 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4534 
4535 		lxri = lpfc_sli4_next_xritag(phba);
4536 		if (lxri == NO_XRI) {
4537 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4538 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4539 			kfree(lpfc_ncmd);
4540 			break;
4541 		}
4542 		pwqeq = &lpfc_ncmd->cur_iocbq;
4543 
4544 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4545 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4546 		if (iotag == 0) {
4547 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4548 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4549 			kfree(lpfc_ncmd);
4550 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4551 					"6121 Failed to allocate IOTAG for"
4552 					" XRI:0x%x\n", lxri);
4553 			lpfc_sli4_free_xri(phba, lxri);
4554 			break;
4555 		}
4556 		pwqeq->sli4_lxritag = lxri;
4557 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4558 
4559 		/* Initialize local short-hand pointers. */
4560 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4561 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4562 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4563 		spin_lock_init(&lpfc_ncmd->buf_lock);
4564 
4565 		/* add the nvme buffer to a post list */
4566 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4567 		phba->sli4_hba.io_xri_cnt++;
4568 	}
4569 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4570 			"6114 Allocate %d out of %d requested new NVME "
4571 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4572 			sizeof(*lpfc_ncmd));
4573 
4574 
4575 	/* post the list of nvme buffer sgls to port if available */
4576 	if (!list_empty(&post_nblist))
4577 		num_posted = lpfc_sli4_post_io_sgl_list(
4578 				phba, &post_nblist, bcnt);
4579 	else
4580 		num_posted = 0;
4581 
4582 	return num_posted;
4583 }
4584 
4585 static uint64_t
4586 lpfc_get_wwpn(struct lpfc_hba *phba)
4587 {
4588 	uint64_t wwn;
4589 	int rc;
4590 	LPFC_MBOXQ_t *mboxq;
4591 	MAILBOX_t *mb;
4592 
4593 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4594 						GFP_KERNEL);
4595 	if (!mboxq)
4596 		return (uint64_t)-1;
4597 
4598 	/* First get WWN of HBA instance */
4599 	lpfc_read_nv(phba, mboxq);
4600 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4601 	if (rc != MBX_SUCCESS) {
4602 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4603 				"6019 Mailbox failed , mbxCmd x%x "
4604 				"READ_NV, mbxStatus x%x\n",
4605 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4606 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4607 		mempool_free(mboxq, phba->mbox_mem_pool);
4608 		return (uint64_t) -1;
4609 	}
4610 	mb = &mboxq->u.mb;
4611 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4612 	/* wwn is WWPN of HBA instance */
4613 	mempool_free(mboxq, phba->mbox_mem_pool);
4614 	if (phba->sli_rev == LPFC_SLI_REV4)
4615 		return be64_to_cpu(wwn);
4616 	else
4617 		return rol64(wwn, 32);
4618 }
4619 
4620 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4621 {
4622 	if (phba->sli_rev == LPFC_SLI_REV4)
4623 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4624 			return LPFC_MAX_SG_TABLESIZE;
4625 		else
4626 			return phba->cfg_scsi_seg_cnt;
4627 	else
4628 		return phba->cfg_sg_seg_cnt;
4629 }
4630 
4631 /**
4632  * lpfc_vmid_res_alloc - Allocates resources for VMID
4633  * @phba: pointer to lpfc hba data structure.
4634  * @vport: pointer to vport data structure
4635  *
4636  * This routine allocated the resources needed for the VMID.
4637  *
4638  * Return codes
4639  *	0 on Success
4640  *	Non-0 on Failure
4641  */
4642 static int
4643 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4644 {
4645 	/* VMID feature is supported only on SLI4 */
4646 	if (phba->sli_rev == LPFC_SLI_REV3) {
4647 		phba->cfg_vmid_app_header = 0;
4648 		phba->cfg_vmid_priority_tagging = 0;
4649 	}
4650 
4651 	if (lpfc_is_vmid_enabled(phba)) {
4652 		vport->vmid =
4653 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4654 			    GFP_KERNEL);
4655 		if (!vport->vmid)
4656 			return -ENOMEM;
4657 
4658 		rwlock_init(&vport->vmid_lock);
4659 
4660 		/* Set the VMID parameters for the vport */
4661 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4662 		vport->vmid_inactivity_timeout =
4663 		    phba->cfg_vmid_inactivity_timeout;
4664 		vport->max_vmid = phba->cfg_max_vmid;
4665 		vport->cur_vmid_cnt = 0;
4666 
4667 		vport->vmid_priority_range = bitmap_zalloc
4668 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4669 
4670 		if (!vport->vmid_priority_range) {
4671 			kfree(vport->vmid);
4672 			return -ENOMEM;
4673 		}
4674 
4675 		hash_init(vport->hash_table);
4676 	}
4677 	return 0;
4678 }
4679 
4680 /**
4681  * lpfc_create_port - Create an FC port
4682  * @phba: pointer to lpfc hba data structure.
4683  * @instance: a unique integer ID to this FC port.
4684  * @dev: pointer to the device data structure.
4685  *
4686  * This routine creates a FC port for the upper layer protocol. The FC port
4687  * can be created on top of either a physical port or a virtual port provided
4688  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4689  * and associates the FC port created before adding the shost into the SCSI
4690  * layer.
4691  *
4692  * Return codes
4693  *   @vport - pointer to the virtual N_Port data structure.
4694  *   NULL - port create failed.
4695  **/
4696 struct lpfc_vport *
4697 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4698 {
4699 	struct lpfc_vport *vport;
4700 	struct Scsi_Host  *shost = NULL;
4701 	struct scsi_host_template *template;
4702 	int error = 0;
4703 	int i;
4704 	uint64_t wwn;
4705 	bool use_no_reset_hba = false;
4706 	int rc;
4707 
4708 	if (lpfc_no_hba_reset_cnt) {
4709 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4710 		    dev == &phba->pcidev->dev) {
4711 			/* Reset the port first */
4712 			lpfc_sli_brdrestart(phba);
4713 			rc = lpfc_sli_chipset_init(phba);
4714 			if (rc)
4715 				return NULL;
4716 		}
4717 		wwn = lpfc_get_wwpn(phba);
4718 	}
4719 
4720 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4721 		if (wwn == lpfc_no_hba_reset[i]) {
4722 			lpfc_printf_log(phba, KERN_ERR,
4723 					LOG_TRACE_EVENT,
4724 					"6020 Setting use_no_reset port=%llx\n",
4725 					wwn);
4726 			use_no_reset_hba = true;
4727 			break;
4728 		}
4729 	}
4730 
4731 	/* Seed template for SCSI host registration */
4732 	if (dev == &phba->pcidev->dev) {
4733 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4734 			/* Seed physical port template */
4735 			template = &lpfc_template;
4736 
4737 			if (use_no_reset_hba)
4738 				/* template is for a no reset SCSI Host */
4739 				template->eh_host_reset_handler = NULL;
4740 
4741 			/* Seed updated value of sg_tablesize */
4742 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4743 		} else {
4744 			/* NVMET is for physical port only */
4745 			template = &lpfc_template_nvme;
4746 		}
4747 	} else {
4748 		/* Seed vport template */
4749 		template = &lpfc_vport_template;
4750 
4751 		/* Seed updated value of sg_tablesize */
4752 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4753 	}
4754 
4755 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4756 	if (!shost)
4757 		goto out;
4758 
4759 	vport = (struct lpfc_vport *) shost->hostdata;
4760 	vport->phba = phba;
4761 	vport->load_flag |= FC_LOADING;
4762 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4763 	vport->fc_rscn_flush = 0;
4764 	lpfc_get_vport_cfgparam(vport);
4765 
4766 	/* Adjust value in vport */
4767 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4768 
4769 	shost->unique_id = instance;
4770 	shost->max_id = LPFC_MAX_TARGET;
4771 	shost->max_lun = vport->cfg_max_luns;
4772 	shost->this_id = -1;
4773 	shost->max_cmd_len = 16;
4774 
4775 	if (phba->sli_rev == LPFC_SLI_REV4) {
4776 		if (!phba->cfg_fcp_mq_threshold ||
4777 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4778 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4779 
4780 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4781 					    phba->cfg_fcp_mq_threshold);
4782 
4783 		shost->dma_boundary =
4784 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4785 	} else
4786 		/* SLI-3 has a limited number of hardware queues (3),
4787 		 * thus there is only one for FCP processing.
4788 		 */
4789 		shost->nr_hw_queues = 1;
4790 
4791 	/*
4792 	 * Set initial can_queue value since 0 is no longer supported and
4793 	 * scsi_add_host will fail. This will be adjusted later based on the
4794 	 * max xri value determined in hba setup.
4795 	 */
4796 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4797 	if (dev != &phba->pcidev->dev) {
4798 		shost->transportt = lpfc_vport_transport_template;
4799 		vport->port_type = LPFC_NPIV_PORT;
4800 	} else {
4801 		shost->transportt = lpfc_transport_template;
4802 		vport->port_type = LPFC_PHYSICAL_PORT;
4803 	}
4804 
4805 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4806 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4807 			"SEGcnt %d/%d\n",
4808 			vport->port_type, shost->sg_tablesize,
4809 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4810 
4811 	/* Allocate the resources for VMID */
4812 	rc = lpfc_vmid_res_alloc(phba, vport);
4813 
4814 	if (rc)
4815 		goto out_put_shost;
4816 
4817 	/* Initialize all internally managed lists. */
4818 	INIT_LIST_HEAD(&vport->fc_nodes);
4819 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4820 	spin_lock_init(&vport->work_port_lock);
4821 
4822 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4823 
4824 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4825 
4826 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4827 
4828 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4829 		lpfc_setup_bg(phba, shost);
4830 
4831 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4832 	if (error)
4833 		goto out_free_vmid;
4834 
4835 	spin_lock_irq(&phba->port_list_lock);
4836 	list_add_tail(&vport->listentry, &phba->port_list);
4837 	spin_unlock_irq(&phba->port_list_lock);
4838 	return vport;
4839 
4840 out_free_vmid:
4841 	kfree(vport->vmid);
4842 	bitmap_free(vport->vmid_priority_range);
4843 out_put_shost:
4844 	scsi_host_put(shost);
4845 out:
4846 	return NULL;
4847 }
4848 
4849 /**
4850  * destroy_port -  destroy an FC port
4851  * @vport: pointer to an lpfc virtual N_Port data structure.
4852  *
4853  * This routine destroys a FC port from the upper layer protocol. All the
4854  * resources associated with the port are released.
4855  **/
4856 void
4857 destroy_port(struct lpfc_vport *vport)
4858 {
4859 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4860 	struct lpfc_hba  *phba = vport->phba;
4861 
4862 	lpfc_debugfs_terminate(vport);
4863 	fc_remove_host(shost);
4864 	scsi_remove_host(shost);
4865 
4866 	spin_lock_irq(&phba->port_list_lock);
4867 	list_del_init(&vport->listentry);
4868 	spin_unlock_irq(&phba->port_list_lock);
4869 
4870 	lpfc_cleanup(vport);
4871 	return;
4872 }
4873 
4874 /**
4875  * lpfc_get_instance - Get a unique integer ID
4876  *
4877  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4878  * uses the kernel idr facility to perform the task.
4879  *
4880  * Return codes:
4881  *   instance - a unique integer ID allocated as the new instance.
4882  *   -1 - lpfc get instance failed.
4883  **/
4884 int
4885 lpfc_get_instance(void)
4886 {
4887 	int ret;
4888 
4889 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4890 	return ret < 0 ? -1 : ret;
4891 }
4892 
4893 /**
4894  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4895  * @shost: pointer to SCSI host data structure.
4896  * @time: elapsed time of the scan in jiffies.
4897  *
4898  * This routine is called by the SCSI layer with a SCSI host to determine
4899  * whether the scan host is finished.
4900  *
4901  * Note: there is no scan_start function as adapter initialization will have
4902  * asynchronously kicked off the link initialization.
4903  *
4904  * Return codes
4905  *   0 - SCSI host scan is not over yet.
4906  *   1 - SCSI host scan is over.
4907  **/
4908 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4909 {
4910 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4911 	struct lpfc_hba   *phba = vport->phba;
4912 	int stat = 0;
4913 
4914 	spin_lock_irq(shost->host_lock);
4915 
4916 	if (vport->load_flag & FC_UNLOADING) {
4917 		stat = 1;
4918 		goto finished;
4919 	}
4920 	if (time >= msecs_to_jiffies(30 * 1000)) {
4921 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4922 				"0461 Scanning longer than 30 "
4923 				"seconds.  Continuing initialization\n");
4924 		stat = 1;
4925 		goto finished;
4926 	}
4927 	if (time >= msecs_to_jiffies(15 * 1000) &&
4928 	    phba->link_state <= LPFC_LINK_DOWN) {
4929 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4930 				"0465 Link down longer than 15 "
4931 				"seconds.  Continuing initialization\n");
4932 		stat = 1;
4933 		goto finished;
4934 	}
4935 
4936 	if (vport->port_state != LPFC_VPORT_READY)
4937 		goto finished;
4938 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4939 		goto finished;
4940 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4941 		goto finished;
4942 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4943 		goto finished;
4944 
4945 	stat = 1;
4946 
4947 finished:
4948 	spin_unlock_irq(shost->host_lock);
4949 	return stat;
4950 }
4951 
4952 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4953 {
4954 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4955 	struct lpfc_hba   *phba = vport->phba;
4956 
4957 	fc_host_supported_speeds(shost) = 0;
4958 	/*
4959 	 * Avoid reporting supported link speed for FCoE as it can't be
4960 	 * controlled via FCoE.
4961 	 */
4962 	if (phba->hba_flag & HBA_FCOE_MODE)
4963 		return;
4964 
4965 	if (phba->lmt & LMT_256Gb)
4966 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4967 	if (phba->lmt & LMT_128Gb)
4968 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4969 	if (phba->lmt & LMT_64Gb)
4970 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4971 	if (phba->lmt & LMT_32Gb)
4972 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4973 	if (phba->lmt & LMT_16Gb)
4974 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4975 	if (phba->lmt & LMT_10Gb)
4976 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4977 	if (phba->lmt & LMT_8Gb)
4978 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4979 	if (phba->lmt & LMT_4Gb)
4980 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4981 	if (phba->lmt & LMT_2Gb)
4982 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4983 	if (phba->lmt & LMT_1Gb)
4984 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4985 }
4986 
4987 /**
4988  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4989  * @shost: pointer to SCSI host data structure.
4990  *
4991  * This routine initializes a given SCSI host attributes on a FC port. The
4992  * SCSI host can be either on top of a physical port or a virtual port.
4993  **/
4994 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4995 {
4996 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4997 	struct lpfc_hba   *phba = vport->phba;
4998 	/*
4999 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5000 	 */
5001 
5002 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5003 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5004 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5005 
5006 	memset(fc_host_supported_fc4s(shost), 0,
5007 	       sizeof(fc_host_supported_fc4s(shost)));
5008 	fc_host_supported_fc4s(shost)[2] = 1;
5009 	fc_host_supported_fc4s(shost)[7] = 1;
5010 
5011 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5012 				 sizeof fc_host_symbolic_name(shost));
5013 
5014 	lpfc_host_supported_speeds_set(shost);
5015 
5016 	fc_host_maxframe_size(shost) =
5017 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5018 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5019 
5020 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5021 
5022 	/* This value is also unchanging */
5023 	memset(fc_host_active_fc4s(shost), 0,
5024 	       sizeof(fc_host_active_fc4s(shost)));
5025 	fc_host_active_fc4s(shost)[2] = 1;
5026 	fc_host_active_fc4s(shost)[7] = 1;
5027 
5028 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5029 	spin_lock_irq(shost->host_lock);
5030 	vport->load_flag &= ~FC_LOADING;
5031 	spin_unlock_irq(shost->host_lock);
5032 }
5033 
5034 /**
5035  * lpfc_stop_port_s3 - Stop SLI3 device port
5036  * @phba: pointer to lpfc hba data structure.
5037  *
5038  * This routine is invoked to stop an SLI3 device port, it stops the device
5039  * from generating interrupts and stops the device driver's timers for the
5040  * device.
5041  **/
5042 static void
5043 lpfc_stop_port_s3(struct lpfc_hba *phba)
5044 {
5045 	/* Clear all interrupt enable conditions */
5046 	writel(0, phba->HCregaddr);
5047 	readl(phba->HCregaddr); /* flush */
5048 	/* Clear all pending interrupts */
5049 	writel(0xffffffff, phba->HAregaddr);
5050 	readl(phba->HAregaddr); /* flush */
5051 
5052 	/* Reset some HBA SLI setup states */
5053 	lpfc_stop_hba_timers(phba);
5054 	phba->pport->work_port_events = 0;
5055 }
5056 
5057 /**
5058  * lpfc_stop_port_s4 - Stop SLI4 device port
5059  * @phba: pointer to lpfc hba data structure.
5060  *
5061  * This routine is invoked to stop an SLI4 device port, it stops the device
5062  * from generating interrupts and stops the device driver's timers for the
5063  * device.
5064  **/
5065 static void
5066 lpfc_stop_port_s4(struct lpfc_hba *phba)
5067 {
5068 	/* Reset some HBA SLI4 setup states */
5069 	lpfc_stop_hba_timers(phba);
5070 	if (phba->pport)
5071 		phba->pport->work_port_events = 0;
5072 	phba->sli4_hba.intr_enable = 0;
5073 }
5074 
5075 /**
5076  * lpfc_stop_port - Wrapper function for stopping hba port
5077  * @phba: Pointer to HBA context object.
5078  *
5079  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5080  * the API jump table function pointer from the lpfc_hba struct.
5081  **/
5082 void
5083 lpfc_stop_port(struct lpfc_hba *phba)
5084 {
5085 	phba->lpfc_stop_port(phba);
5086 
5087 	if (phba->wq)
5088 		flush_workqueue(phba->wq);
5089 }
5090 
5091 /**
5092  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5093  * @phba: Pointer to hba for which this call is being executed.
5094  *
5095  * This routine starts the timer waiting for the FCF rediscovery to complete.
5096  **/
5097 void
5098 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5099 {
5100 	unsigned long fcf_redisc_wait_tmo =
5101 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5102 	/* Start fcf rediscovery wait period timer */
5103 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5104 	spin_lock_irq(&phba->hbalock);
5105 	/* Allow action to new fcf asynchronous event */
5106 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5107 	/* Mark the FCF rediscovery pending state */
5108 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5109 	spin_unlock_irq(&phba->hbalock);
5110 }
5111 
5112 /**
5113  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5114  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5115  *
5116  * This routine is invoked when waiting for FCF table rediscover has been
5117  * timed out. If new FCF record(s) has (have) been discovered during the
5118  * wait period, a new FCF event shall be added to the FCOE async event
5119  * list, and then worker thread shall be waked up for processing from the
5120  * worker thread context.
5121  **/
5122 static void
5123 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5124 {
5125 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5126 
5127 	/* Don't send FCF rediscovery event if timer cancelled */
5128 	spin_lock_irq(&phba->hbalock);
5129 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5130 		spin_unlock_irq(&phba->hbalock);
5131 		return;
5132 	}
5133 	/* Clear FCF rediscovery timer pending flag */
5134 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5135 	/* FCF rediscovery event to worker thread */
5136 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5137 	spin_unlock_irq(&phba->hbalock);
5138 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5139 			"2776 FCF rediscover quiescent timer expired\n");
5140 	/* wake up worker thread */
5141 	lpfc_worker_wake_up(phba);
5142 }
5143 
5144 /**
5145  * lpfc_vmid_poll - VMID timeout detection
5146  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5147  *
5148  * This routine is invoked when there is no I/O on by a VM for the specified
5149  * amount of time. When this situation is detected, the VMID has to be
5150  * deregistered from the switch and all the local resources freed. The VMID
5151  * will be reassigned to the VM once the I/O begins.
5152  **/
5153 static void
5154 lpfc_vmid_poll(struct timer_list *t)
5155 {
5156 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5157 	u32 wake_up = 0;
5158 
5159 	/* check if there is a need to issue QFPA */
5160 	if (phba->pport->vmid_priority_tagging) {
5161 		wake_up = 1;
5162 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5163 	}
5164 
5165 	/* Is the vmid inactivity timer enabled */
5166 	if (phba->pport->vmid_inactivity_timeout ||
5167 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5168 		wake_up = 1;
5169 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5170 	}
5171 
5172 	if (wake_up)
5173 		lpfc_worker_wake_up(phba);
5174 
5175 	/* restart the timer for the next iteration */
5176 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5177 							LPFC_VMID_TIMER));
5178 }
5179 
5180 /**
5181  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5182  * @phba: pointer to lpfc hba data structure.
5183  * @acqe_link: pointer to the async link completion queue entry.
5184  *
5185  * This routine is to parse the SLI4 link-attention link fault code.
5186  **/
5187 static void
5188 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5189 			   struct lpfc_acqe_link *acqe_link)
5190 {
5191 	switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5192 	case LPFC_ASYNC_LINK_FAULT_NONE:
5193 	case LPFC_ASYNC_LINK_FAULT_LOCAL:
5194 	case LPFC_ASYNC_LINK_FAULT_REMOTE:
5195 	case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5196 		break;
5197 	default:
5198 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5199 				"0398 Unknown link fault code: x%x\n",
5200 				bf_get(lpfc_acqe_link_fault, acqe_link));
5201 		break;
5202 	}
5203 }
5204 
5205 /**
5206  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5207  * @phba: pointer to lpfc hba data structure.
5208  * @acqe_link: pointer to the async link completion queue entry.
5209  *
5210  * This routine is to parse the SLI4 link attention type and translate it
5211  * into the base driver's link attention type coding.
5212  *
5213  * Return: Link attention type in terms of base driver's coding.
5214  **/
5215 static uint8_t
5216 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5217 			  struct lpfc_acqe_link *acqe_link)
5218 {
5219 	uint8_t att_type;
5220 
5221 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5222 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5223 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5224 		att_type = LPFC_ATT_LINK_DOWN;
5225 		break;
5226 	case LPFC_ASYNC_LINK_STATUS_UP:
5227 		/* Ignore physical link up events - wait for logical link up */
5228 		att_type = LPFC_ATT_RESERVED;
5229 		break;
5230 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5231 		att_type = LPFC_ATT_LINK_UP;
5232 		break;
5233 	default:
5234 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5235 				"0399 Invalid link attention type: x%x\n",
5236 				bf_get(lpfc_acqe_link_status, acqe_link));
5237 		att_type = LPFC_ATT_RESERVED;
5238 		break;
5239 	}
5240 	return att_type;
5241 }
5242 
5243 /**
5244  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5245  * @phba: pointer to lpfc hba data structure.
5246  *
5247  * This routine is to get an SLI3 FC port's link speed in Mbps.
5248  *
5249  * Return: link speed in terms of Mbps.
5250  **/
5251 uint32_t
5252 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5253 {
5254 	uint32_t link_speed;
5255 
5256 	if (!lpfc_is_link_up(phba))
5257 		return 0;
5258 
5259 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5260 		switch (phba->fc_linkspeed) {
5261 		case LPFC_LINK_SPEED_1GHZ:
5262 			link_speed = 1000;
5263 			break;
5264 		case LPFC_LINK_SPEED_2GHZ:
5265 			link_speed = 2000;
5266 			break;
5267 		case LPFC_LINK_SPEED_4GHZ:
5268 			link_speed = 4000;
5269 			break;
5270 		case LPFC_LINK_SPEED_8GHZ:
5271 			link_speed = 8000;
5272 			break;
5273 		case LPFC_LINK_SPEED_10GHZ:
5274 			link_speed = 10000;
5275 			break;
5276 		case LPFC_LINK_SPEED_16GHZ:
5277 			link_speed = 16000;
5278 			break;
5279 		default:
5280 			link_speed = 0;
5281 		}
5282 	} else {
5283 		if (phba->sli4_hba.link_state.logical_speed)
5284 			link_speed =
5285 			      phba->sli4_hba.link_state.logical_speed;
5286 		else
5287 			link_speed = phba->sli4_hba.link_state.speed;
5288 	}
5289 	return link_speed;
5290 }
5291 
5292 /**
5293  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5294  * @phba: pointer to lpfc hba data structure.
5295  * @evt_code: asynchronous event code.
5296  * @speed_code: asynchronous event link speed code.
5297  *
5298  * This routine is to parse the giving SLI4 async event link speed code into
5299  * value of Mbps for the link speed.
5300  *
5301  * Return: link speed in terms of Mbps.
5302  **/
5303 static uint32_t
5304 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5305 			   uint8_t speed_code)
5306 {
5307 	uint32_t port_speed;
5308 
5309 	switch (evt_code) {
5310 	case LPFC_TRAILER_CODE_LINK:
5311 		switch (speed_code) {
5312 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5313 			port_speed = 0;
5314 			break;
5315 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5316 			port_speed = 10;
5317 			break;
5318 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5319 			port_speed = 100;
5320 			break;
5321 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5322 			port_speed = 1000;
5323 			break;
5324 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5325 			port_speed = 10000;
5326 			break;
5327 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5328 			port_speed = 20000;
5329 			break;
5330 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5331 			port_speed = 25000;
5332 			break;
5333 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5334 			port_speed = 40000;
5335 			break;
5336 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5337 			port_speed = 100000;
5338 			break;
5339 		default:
5340 			port_speed = 0;
5341 		}
5342 		break;
5343 	case LPFC_TRAILER_CODE_FC:
5344 		switch (speed_code) {
5345 		case LPFC_FC_LA_SPEED_UNKNOWN:
5346 			port_speed = 0;
5347 			break;
5348 		case LPFC_FC_LA_SPEED_1G:
5349 			port_speed = 1000;
5350 			break;
5351 		case LPFC_FC_LA_SPEED_2G:
5352 			port_speed = 2000;
5353 			break;
5354 		case LPFC_FC_LA_SPEED_4G:
5355 			port_speed = 4000;
5356 			break;
5357 		case LPFC_FC_LA_SPEED_8G:
5358 			port_speed = 8000;
5359 			break;
5360 		case LPFC_FC_LA_SPEED_10G:
5361 			port_speed = 10000;
5362 			break;
5363 		case LPFC_FC_LA_SPEED_16G:
5364 			port_speed = 16000;
5365 			break;
5366 		case LPFC_FC_LA_SPEED_32G:
5367 			port_speed = 32000;
5368 			break;
5369 		case LPFC_FC_LA_SPEED_64G:
5370 			port_speed = 64000;
5371 			break;
5372 		case LPFC_FC_LA_SPEED_128G:
5373 			port_speed = 128000;
5374 			break;
5375 		case LPFC_FC_LA_SPEED_256G:
5376 			port_speed = 256000;
5377 			break;
5378 		default:
5379 			port_speed = 0;
5380 		}
5381 		break;
5382 	default:
5383 		port_speed = 0;
5384 	}
5385 	return port_speed;
5386 }
5387 
5388 /**
5389  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5390  * @phba: pointer to lpfc hba data structure.
5391  * @acqe_link: pointer to the async link completion queue entry.
5392  *
5393  * This routine is to handle the SLI4 asynchronous FCoE link event.
5394  **/
5395 static void
5396 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5397 			 struct lpfc_acqe_link *acqe_link)
5398 {
5399 	LPFC_MBOXQ_t *pmb;
5400 	MAILBOX_t *mb;
5401 	struct lpfc_mbx_read_top *la;
5402 	uint8_t att_type;
5403 	int rc;
5404 
5405 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5406 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5407 		return;
5408 	phba->fcoe_eventtag = acqe_link->event_tag;
5409 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5410 	if (!pmb) {
5411 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5412 				"0395 The mboxq allocation failed\n");
5413 		return;
5414 	}
5415 
5416 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5417 	if (rc) {
5418 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5419 				"0396 mailbox allocation failed\n");
5420 		goto out_free_pmb;
5421 	}
5422 
5423 	/* Cleanup any outstanding ELS commands */
5424 	lpfc_els_flush_all_cmd(phba);
5425 
5426 	/* Block ELS IOCBs until we have done process link event */
5427 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5428 
5429 	/* Update link event statistics */
5430 	phba->sli.slistat.link_event++;
5431 
5432 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5433 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
5434 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5435 	pmb->vport = phba->pport;
5436 
5437 	/* Keep the link status for extra SLI4 state machine reference */
5438 	phba->sli4_hba.link_state.speed =
5439 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5440 				bf_get(lpfc_acqe_link_speed, acqe_link));
5441 	phba->sli4_hba.link_state.duplex =
5442 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5443 	phba->sli4_hba.link_state.status =
5444 				bf_get(lpfc_acqe_link_status, acqe_link);
5445 	phba->sli4_hba.link_state.type =
5446 				bf_get(lpfc_acqe_link_type, acqe_link);
5447 	phba->sli4_hba.link_state.number =
5448 				bf_get(lpfc_acqe_link_number, acqe_link);
5449 	phba->sli4_hba.link_state.fault =
5450 				bf_get(lpfc_acqe_link_fault, acqe_link);
5451 	phba->sli4_hba.link_state.logical_speed =
5452 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5453 
5454 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5455 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5456 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5457 			"Logical speed:%dMbps Fault:%d\n",
5458 			phba->sli4_hba.link_state.speed,
5459 			phba->sli4_hba.link_state.topology,
5460 			phba->sli4_hba.link_state.status,
5461 			phba->sli4_hba.link_state.type,
5462 			phba->sli4_hba.link_state.number,
5463 			phba->sli4_hba.link_state.logical_speed,
5464 			phba->sli4_hba.link_state.fault);
5465 	/*
5466 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5467 	 * topology info. Note: Optional for non FC-AL ports.
5468 	 */
5469 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5470 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5471 		if (rc == MBX_NOT_FINISHED)
5472 			goto out_free_pmb;
5473 		return;
5474 	}
5475 	/*
5476 	 * For FCoE Mode: fill in all the topology information we need and call
5477 	 * the READ_TOPOLOGY completion routine to continue without actually
5478 	 * sending the READ_TOPOLOGY mailbox command to the port.
5479 	 */
5480 	/* Initialize completion status */
5481 	mb = &pmb->u.mb;
5482 	mb->mbxStatus = MBX_SUCCESS;
5483 
5484 	/* Parse port fault information field */
5485 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5486 
5487 	/* Parse and translate link attention fields */
5488 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5489 	la->eventTag = acqe_link->event_tag;
5490 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5491 	bf_set(lpfc_mbx_read_top_link_spd, la,
5492 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5493 
5494 	/* Fake the the following irrelvant fields */
5495 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5496 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5497 	bf_set(lpfc_mbx_read_top_il, la, 0);
5498 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5499 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5500 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5501 
5502 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5503 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5504 
5505 	return;
5506 
5507 out_free_pmb:
5508 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5509 }
5510 
5511 /**
5512  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5513  * topology.
5514  * @phba: pointer to lpfc hba data structure.
5515  * @speed_code: asynchronous event link speed code.
5516  *
5517  * This routine is to parse the giving SLI4 async event link speed code into
5518  * value of Read topology link speed.
5519  *
5520  * Return: link speed in terms of Read topology.
5521  **/
5522 static uint8_t
5523 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5524 {
5525 	uint8_t port_speed;
5526 
5527 	switch (speed_code) {
5528 	case LPFC_FC_LA_SPEED_1G:
5529 		port_speed = LPFC_LINK_SPEED_1GHZ;
5530 		break;
5531 	case LPFC_FC_LA_SPEED_2G:
5532 		port_speed = LPFC_LINK_SPEED_2GHZ;
5533 		break;
5534 	case LPFC_FC_LA_SPEED_4G:
5535 		port_speed = LPFC_LINK_SPEED_4GHZ;
5536 		break;
5537 	case LPFC_FC_LA_SPEED_8G:
5538 		port_speed = LPFC_LINK_SPEED_8GHZ;
5539 		break;
5540 	case LPFC_FC_LA_SPEED_16G:
5541 		port_speed = LPFC_LINK_SPEED_16GHZ;
5542 		break;
5543 	case LPFC_FC_LA_SPEED_32G:
5544 		port_speed = LPFC_LINK_SPEED_32GHZ;
5545 		break;
5546 	case LPFC_FC_LA_SPEED_64G:
5547 		port_speed = LPFC_LINK_SPEED_64GHZ;
5548 		break;
5549 	case LPFC_FC_LA_SPEED_128G:
5550 		port_speed = LPFC_LINK_SPEED_128GHZ;
5551 		break;
5552 	case LPFC_FC_LA_SPEED_256G:
5553 		port_speed = LPFC_LINK_SPEED_256GHZ;
5554 		break;
5555 	default:
5556 		port_speed = 0;
5557 		break;
5558 	}
5559 
5560 	return port_speed;
5561 }
5562 
5563 void
5564 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5565 {
5566 	if (!phba->rx_monitor) {
5567 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5568 				"4411 Rx Monitor Info is empty.\n");
5569 	} else {
5570 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5571 				       LPFC_MAX_RXMONITOR_DUMP);
5572 	}
5573 }
5574 
5575 /**
5576  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5577  * @phba: pointer to lpfc hba data structure.
5578  * @dtag: FPIN descriptor received
5579  *
5580  * Increment the FPIN received counter/time when it happens.
5581  */
5582 void
5583 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5584 {
5585 	struct lpfc_cgn_info *cp;
5586 	struct tm broken;
5587 	struct timespec64 cur_time;
5588 	u32 cnt;
5589 	u32 value;
5590 
5591 	/* Make sure we have a congestion info buffer */
5592 	if (!phba->cgn_i)
5593 		return;
5594 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5595 	ktime_get_real_ts64(&cur_time);
5596 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5597 
5598 	/* Update congestion statistics */
5599 	switch (dtag) {
5600 	case ELS_DTAG_LNK_INTEGRITY:
5601 		cnt = le32_to_cpu(cp->link_integ_notification);
5602 		cnt++;
5603 		cp->link_integ_notification = cpu_to_le32(cnt);
5604 
5605 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5606 		cp->cgn_stat_lnk_day = broken.tm_mday;
5607 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5608 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5609 		cp->cgn_stat_lnk_min = broken.tm_min;
5610 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5611 		break;
5612 	case ELS_DTAG_DELIVERY:
5613 		cnt = le32_to_cpu(cp->delivery_notification);
5614 		cnt++;
5615 		cp->delivery_notification = cpu_to_le32(cnt);
5616 
5617 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5618 		cp->cgn_stat_del_day = broken.tm_mday;
5619 		cp->cgn_stat_del_year = broken.tm_year - 100;
5620 		cp->cgn_stat_del_hour = broken.tm_hour;
5621 		cp->cgn_stat_del_min = broken.tm_min;
5622 		cp->cgn_stat_del_sec = broken.tm_sec;
5623 		break;
5624 	case ELS_DTAG_PEER_CONGEST:
5625 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5626 		cnt++;
5627 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5628 
5629 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5630 		cp->cgn_stat_peer_day = broken.tm_mday;
5631 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5632 		cp->cgn_stat_peer_hour = broken.tm_hour;
5633 		cp->cgn_stat_peer_min = broken.tm_min;
5634 		cp->cgn_stat_peer_sec = broken.tm_sec;
5635 		break;
5636 	case ELS_DTAG_CONGESTION:
5637 		cnt = le32_to_cpu(cp->cgn_notification);
5638 		cnt++;
5639 		cp->cgn_notification = cpu_to_le32(cnt);
5640 
5641 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5642 		cp->cgn_stat_cgn_day = broken.tm_mday;
5643 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5644 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5645 		cp->cgn_stat_cgn_min = broken.tm_min;
5646 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5647 	}
5648 	if (phba->cgn_fpin_frequency &&
5649 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5650 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5651 		cp->cgn_stat_npm = value;
5652 	}
5653 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5654 				    LPFC_CGN_CRC32_SEED);
5655 	cp->cgn_info_crc = cpu_to_le32(value);
5656 }
5657 
5658 /**
5659  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5660  * @phba: pointer to lpfc hba data structure.
5661  *
5662  * Save the congestion event data every minute.
5663  * On the hour collapse all the minute data into hour data. Every day
5664  * collapse all the hour data into daily data. Separate driver
5665  * and fabrc congestion event counters that will be saved out
5666  * to the registered congestion buffer every minute.
5667  */
5668 static void
5669 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5670 {
5671 	struct lpfc_cgn_info *cp;
5672 	struct tm broken;
5673 	struct timespec64 cur_time;
5674 	uint32_t i, index;
5675 	uint16_t value, mvalue;
5676 	uint64_t bps;
5677 	uint32_t mbps;
5678 	uint32_t dvalue, wvalue, lvalue, avalue;
5679 	uint64_t latsum;
5680 	__le16 *ptr;
5681 	__le32 *lptr;
5682 	__le16 *mptr;
5683 
5684 	/* Make sure we have a congestion info buffer */
5685 	if (!phba->cgn_i)
5686 		return;
5687 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5688 
5689 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5690 		return;
5691 	phba->cgn_evt_timestamp = jiffies +
5692 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5693 	phba->cgn_evt_minute++;
5694 
5695 	/* We should get to this point in the routine on 1 minute intervals */
5696 
5697 	ktime_get_real_ts64(&cur_time);
5698 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5699 
5700 	if (phba->cgn_fpin_frequency &&
5701 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5702 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5703 		cp->cgn_stat_npm = value;
5704 	}
5705 
5706 	/* Read and clear the latency counters for this minute */
5707 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5708 	latsum = atomic64_read(&phba->cgn_latency_evt);
5709 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5710 	atomic64_set(&phba->cgn_latency_evt, 0);
5711 
5712 	/* We need to store MB/sec bandwidth in the congestion information.
5713 	 * block_cnt is count of 512 byte blocks for the entire minute,
5714 	 * bps will get bytes per sec before finally converting to MB/sec.
5715 	 */
5716 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5717 	phba->rx_block_cnt = 0;
5718 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5719 
5720 	/* Every minute */
5721 	/* cgn parameters */
5722 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5723 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5724 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5725 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5726 
5727 	/* Fill in default LUN qdepth */
5728 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5729 	cp->cgn_lunq = cpu_to_le16(value);
5730 
5731 	/* Record congestion buffer info - every minute
5732 	 * cgn_driver_evt_cnt (Driver events)
5733 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5734 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5735 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5736 	 */
5737 	index = ++cp->cgn_index_minute;
5738 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5739 		cp->cgn_index_minute = 0;
5740 		index = 0;
5741 	}
5742 
5743 	/* Get the number of driver events in this sample and reset counter */
5744 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5745 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5746 
5747 	/* Get the number of warning events - FPIN and Signal for this minute */
5748 	wvalue = 0;
5749 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5750 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5751 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5752 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5753 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5754 
5755 	/* Get the number of alarm events - FPIN and Signal for this minute */
5756 	avalue = 0;
5757 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5758 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5759 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5760 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5761 
5762 	/* Collect the driver, warning, alarm and latency counts for this
5763 	 * minute into the driver congestion buffer.
5764 	 */
5765 	ptr = &cp->cgn_drvr_min[index];
5766 	value = (uint16_t)dvalue;
5767 	*ptr = cpu_to_le16(value);
5768 
5769 	ptr = &cp->cgn_warn_min[index];
5770 	value = (uint16_t)wvalue;
5771 	*ptr = cpu_to_le16(value);
5772 
5773 	ptr = &cp->cgn_alarm_min[index];
5774 	value = (uint16_t)avalue;
5775 	*ptr = cpu_to_le16(value);
5776 
5777 	lptr = &cp->cgn_latency_min[index];
5778 	if (lvalue) {
5779 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5780 		*lptr = cpu_to_le32(lvalue);
5781 	} else {
5782 		*lptr = 0;
5783 	}
5784 
5785 	/* Collect the bandwidth value into the driver's congesion buffer. */
5786 	mptr = &cp->cgn_bw_min[index];
5787 	*mptr = cpu_to_le16(mvalue);
5788 
5789 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5790 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5791 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5792 
5793 	/* Every hour */
5794 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5795 		/* Record congestion buffer info - every hour
5796 		 * Collapse all minutes into an hour
5797 		 */
5798 		index = ++cp->cgn_index_hour;
5799 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5800 			cp->cgn_index_hour = 0;
5801 			index = 0;
5802 		}
5803 
5804 		dvalue = 0;
5805 		wvalue = 0;
5806 		lvalue = 0;
5807 		avalue = 0;
5808 		mvalue = 0;
5809 		mbps = 0;
5810 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5811 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5812 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5813 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5814 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5815 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5816 		}
5817 		if (lvalue)		/* Avg of latency averages */
5818 			lvalue /= LPFC_MIN_HOUR;
5819 		if (mbps)		/* Avg of Bandwidth averages */
5820 			mvalue = mbps / LPFC_MIN_HOUR;
5821 
5822 		lptr = &cp->cgn_drvr_hr[index];
5823 		*lptr = cpu_to_le32(dvalue);
5824 		lptr = &cp->cgn_warn_hr[index];
5825 		*lptr = cpu_to_le32(wvalue);
5826 		lptr = &cp->cgn_latency_hr[index];
5827 		*lptr = cpu_to_le32(lvalue);
5828 		mptr = &cp->cgn_bw_hr[index];
5829 		*mptr = cpu_to_le16(mvalue);
5830 		lptr = &cp->cgn_alarm_hr[index];
5831 		*lptr = cpu_to_le32(avalue);
5832 
5833 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5834 				"2419 Congestion Info - hour "
5835 				"(%d): %d %d %d %d %d\n",
5836 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5837 	}
5838 
5839 	/* Every day */
5840 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5841 		/* Record congestion buffer info - every hour
5842 		 * Collapse all hours into a day. Rotate days
5843 		 * after LPFC_MAX_CGN_DAYS.
5844 		 */
5845 		index = ++cp->cgn_index_day;
5846 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5847 			cp->cgn_index_day = 0;
5848 			index = 0;
5849 		}
5850 
5851 		/* Anytime we overwrite daily index 0, after we wrap,
5852 		 * we will be overwriting the oldest day, so we must
5853 		 * update the congestion data start time for that day.
5854 		 * That start time should have previously been saved after
5855 		 * we wrote the last days worth of data.
5856 		 */
5857 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5858 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5859 
5860 			cp->cgn_info_month = broken.tm_mon + 1;
5861 			cp->cgn_info_day = broken.tm_mday;
5862 			cp->cgn_info_year = broken.tm_year - 100;
5863 			cp->cgn_info_hour = broken.tm_hour;
5864 			cp->cgn_info_minute = broken.tm_min;
5865 			cp->cgn_info_second = broken.tm_sec;
5866 
5867 			lpfc_printf_log
5868 				(phba, KERN_INFO, LOG_CGN_MGMT,
5869 				"2646 CGNInfo idx0 Start Time: "
5870 				"%d/%d/%d %d:%d:%d\n",
5871 				cp->cgn_info_day, cp->cgn_info_month,
5872 				cp->cgn_info_year, cp->cgn_info_hour,
5873 				cp->cgn_info_minute, cp->cgn_info_second);
5874 		}
5875 
5876 		dvalue = 0;
5877 		wvalue = 0;
5878 		lvalue = 0;
5879 		mvalue = 0;
5880 		mbps = 0;
5881 		avalue = 0;
5882 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5883 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5884 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5885 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5886 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5887 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5888 		}
5889 		if (lvalue)		/* Avg of latency averages */
5890 			lvalue /= LPFC_HOUR_DAY;
5891 		if (mbps)		/* Avg of Bandwidth averages */
5892 			mvalue = mbps / LPFC_HOUR_DAY;
5893 
5894 		lptr = &cp->cgn_drvr_day[index];
5895 		*lptr = cpu_to_le32(dvalue);
5896 		lptr = &cp->cgn_warn_day[index];
5897 		*lptr = cpu_to_le32(wvalue);
5898 		lptr = &cp->cgn_latency_day[index];
5899 		*lptr = cpu_to_le32(lvalue);
5900 		mptr = &cp->cgn_bw_day[index];
5901 		*mptr = cpu_to_le16(mvalue);
5902 		lptr = &cp->cgn_alarm_day[index];
5903 		*lptr = cpu_to_le32(avalue);
5904 
5905 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5906 				"2420 Congestion Info - daily (%d): "
5907 				"%d %d %d %d %d\n",
5908 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5909 
5910 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5911 		 * so we are wrapped on any data after this.
5912 		 * Save this as the start time for the next day.
5913 		 */
5914 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5915 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5916 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5917 		}
5918 	}
5919 
5920 	/* Use the frequency found in the last rcv'ed FPIN */
5921 	value = phba->cgn_fpin_frequency;
5922 	cp->cgn_warn_freq = cpu_to_le16(value);
5923 	cp->cgn_alarm_freq = cpu_to_le16(value);
5924 
5925 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5926 				     LPFC_CGN_CRC32_SEED);
5927 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5928 }
5929 
5930 /**
5931  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5932  * @phba: The Hba for which this call is being executed.
5933  *
5934  * The routine calculates the latency from the beginning of the CMF timer
5935  * interval to the current point in time. It is called from IO completion
5936  * when we exceed our Bandwidth limitation for the time interval.
5937  */
5938 uint32_t
5939 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5940 {
5941 	struct timespec64 cmpl_time;
5942 	uint32_t msec = 0;
5943 
5944 	ktime_get_real_ts64(&cmpl_time);
5945 
5946 	/* This routine works on a ms granularity so sec and usec are
5947 	 * converted accordingly.
5948 	 */
5949 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5950 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5951 			NSEC_PER_MSEC;
5952 	} else {
5953 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5954 			msec = (cmpl_time.tv_sec -
5955 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5956 			msec += ((cmpl_time.tv_nsec -
5957 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5958 		} else {
5959 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5960 				1) * MSEC_PER_SEC;
5961 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5962 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5963 		}
5964 	}
5965 	return msec;
5966 }
5967 
5968 /**
5969  * lpfc_cmf_timer -  This is the timer function for one congestion
5970  * rate interval.
5971  * @timer: Pointer to the high resolution timer that expired
5972  */
5973 static enum hrtimer_restart
5974 lpfc_cmf_timer(struct hrtimer *timer)
5975 {
5976 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5977 					     cmf_timer);
5978 	struct rx_info_entry entry;
5979 	uint32_t io_cnt;
5980 	uint32_t busy, max_read;
5981 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5982 	int timer_interval = LPFC_CMF_INTERVAL;
5983 	uint32_t ms;
5984 	struct lpfc_cgn_stat *cgs;
5985 	int cpu;
5986 
5987 	/* Only restart the timer if congestion mgmt is on */
5988 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5989 	    !phba->cmf_latency.tv_sec) {
5990 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5991 				"6224 CMF timer exit: %d %lld\n",
5992 				phba->cmf_active_mode,
5993 				(uint64_t)phba->cmf_latency.tv_sec);
5994 		return HRTIMER_NORESTART;
5995 	}
5996 
5997 	/* If pport is not ready yet, just exit and wait for
5998 	 * the next timer cycle to hit.
5999 	 */
6000 	if (!phba->pport)
6001 		goto skip;
6002 
6003 	/* Do not block SCSI IO while in the timer routine since
6004 	 * total_bytes will be cleared
6005 	 */
6006 	atomic_set(&phba->cmf_stop_io, 1);
6007 
6008 	/* First we need to calculate the actual ms between
6009 	 * the last timer interrupt and this one. We ask for
6010 	 * LPFC_CMF_INTERVAL, however the actual time may
6011 	 * vary depending on system overhead.
6012 	 */
6013 	ms = lpfc_calc_cmf_latency(phba);
6014 
6015 
6016 	/* Immediately after we calculate the time since the last
6017 	 * timer interrupt, set the start time for the next
6018 	 * interrupt
6019 	 */
6020 	ktime_get_real_ts64(&phba->cmf_latency);
6021 
6022 	phba->cmf_link_byte_count =
6023 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6024 
6025 	/* Collect all the stats from the prior timer interval */
6026 	total = 0;
6027 	io_cnt = 0;
6028 	lat = 0;
6029 	rcv = 0;
6030 	for_each_present_cpu(cpu) {
6031 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6032 		total += atomic64_xchg(&cgs->total_bytes, 0);
6033 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6034 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6035 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6036 	}
6037 
6038 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6039 	 * returned from the last CMF_SYNC_WQE issued, from
6040 	 * cmf_last_sync_bw. This will be the target BW for
6041 	 * this next timer interval.
6042 	 */
6043 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6044 	    phba->link_state != LPFC_LINK_DOWN &&
6045 	    phba->hba_flag & HBA_SETUP) {
6046 		mbpi = phba->cmf_last_sync_bw;
6047 		phba->cmf_last_sync_bw = 0;
6048 		extra = 0;
6049 
6050 		/* Calculate any extra bytes needed to account for the
6051 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6052 		 * calculate the adjustment needed for total to reflect
6053 		 * a full LPFC_CMF_INTERVAL.
6054 		 */
6055 		if (ms && ms < LPFC_CMF_INTERVAL) {
6056 			cnt = div_u64(total, ms); /* bytes per ms */
6057 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6058 
6059 			/* If the timeout is scheduled to be shorter,
6060 			 * this value may skew the data, so cap it at mbpi.
6061 			 */
6062 			if ((phba->hba_flag & HBA_SHORT_CMF) && cnt > mbpi)
6063 				cnt = mbpi;
6064 
6065 			extra = cnt - total;
6066 		}
6067 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6068 	} else {
6069 		/* For Monitor mode or link down we want mbpi
6070 		 * to be the full link speed
6071 		 */
6072 		mbpi = phba->cmf_link_byte_count;
6073 		extra = 0;
6074 	}
6075 	phba->cmf_timer_cnt++;
6076 
6077 	if (io_cnt) {
6078 		/* Update congestion info buffer latency in us */
6079 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6080 		atomic64_add(lat, &phba->cgn_latency_evt);
6081 	}
6082 	busy = atomic_xchg(&phba->cmf_busy, 0);
6083 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6084 
6085 	/* Calculate MBPI for the next timer interval */
6086 	if (mbpi) {
6087 		if (mbpi > phba->cmf_link_byte_count ||
6088 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6089 			mbpi = phba->cmf_link_byte_count;
6090 
6091 		/* Change max_bytes_per_interval to what the prior
6092 		 * CMF_SYNC_WQE cmpl indicated.
6093 		 */
6094 		if (mbpi != phba->cmf_max_bytes_per_interval)
6095 			phba->cmf_max_bytes_per_interval = mbpi;
6096 	}
6097 
6098 	/* Save rxmonitor information for debug */
6099 	if (phba->rx_monitor) {
6100 		entry.total_bytes = total;
6101 		entry.cmf_bytes = total + extra;
6102 		entry.rcv_bytes = rcv;
6103 		entry.cmf_busy = busy;
6104 		entry.cmf_info = phba->cmf_active_info;
6105 		if (io_cnt) {
6106 			entry.avg_io_latency = div_u64(lat, io_cnt);
6107 			entry.avg_io_size = div_u64(rcv, io_cnt);
6108 		} else {
6109 			entry.avg_io_latency = 0;
6110 			entry.avg_io_size = 0;
6111 		}
6112 		entry.max_read_cnt = max_read;
6113 		entry.io_cnt = io_cnt;
6114 		entry.max_bytes_per_interval = mbpi;
6115 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6116 			entry.timer_utilization = phba->cmf_last_ts;
6117 		else
6118 			entry.timer_utilization = ms;
6119 		entry.timer_interval = ms;
6120 		phba->cmf_last_ts = 0;
6121 
6122 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6123 	}
6124 
6125 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6126 		/* If Monitor mode, check if we are oversubscribed
6127 		 * against the full line rate.
6128 		 */
6129 		if (mbpi && total > mbpi)
6130 			atomic_inc(&phba->cgn_driver_evt_cnt);
6131 	}
6132 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6133 
6134 	/* Each minute save Fabric and Driver congestion information */
6135 	lpfc_cgn_save_evt_cnt(phba);
6136 
6137 	phba->hba_flag &= ~HBA_SHORT_CMF;
6138 
6139 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
6140 	 * minute, adjust our next timer interval, if needed, to ensure a
6141 	 * 1 minute granularity when we get the next timer interrupt.
6142 	 */
6143 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6144 		       phba->cgn_evt_timestamp)) {
6145 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6146 						  jiffies);
6147 		if (timer_interval <= 0)
6148 			timer_interval = LPFC_CMF_INTERVAL;
6149 		else
6150 			phba->hba_flag |= HBA_SHORT_CMF;
6151 
6152 		/* If we adjust timer_interval, max_bytes_per_interval
6153 		 * needs to be adjusted as well.
6154 		 */
6155 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6156 						    timer_interval, 1000);
6157 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6158 			phba->cmf_max_bytes_per_interval =
6159 				phba->cmf_link_byte_count;
6160 	}
6161 
6162 	/* Since total_bytes has already been zero'ed, its okay to unblock
6163 	 * after max_bytes_per_interval is setup.
6164 	 */
6165 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6166 		queue_work(phba->wq, &phba->unblock_request_work);
6167 
6168 	/* SCSI IO is now unblocked */
6169 	atomic_set(&phba->cmf_stop_io, 0);
6170 
6171 skip:
6172 	hrtimer_forward_now(timer,
6173 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6174 	return HRTIMER_RESTART;
6175 }
6176 
6177 #define trunk_link_status(__idx)\
6178 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6179 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6180 		"Link up" : "Link down") : "NA"
6181 /* Did port __idx reported an error */
6182 #define trunk_port_fault(__idx)\
6183 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6184 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6185 
6186 static void
6187 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6188 			      struct lpfc_acqe_fc_la *acqe_fc)
6189 {
6190 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6191 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6192 	u8 cnt = 0;
6193 
6194 	phba->sli4_hba.link_state.speed =
6195 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6196 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6197 
6198 	phba->sli4_hba.link_state.logical_speed =
6199 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6200 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6201 	phba->fc_linkspeed =
6202 		 lpfc_async_link_speed_to_read_top(
6203 				phba,
6204 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6205 
6206 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6207 		phba->trunk_link.link0.state =
6208 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6209 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6210 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6211 		cnt++;
6212 	}
6213 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6214 		phba->trunk_link.link1.state =
6215 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6216 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6217 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6218 		cnt++;
6219 	}
6220 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6221 		phba->trunk_link.link2.state =
6222 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6223 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6224 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6225 		cnt++;
6226 	}
6227 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6228 		phba->trunk_link.link3.state =
6229 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6230 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6231 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6232 		cnt++;
6233 	}
6234 
6235 	if (cnt)
6236 		phba->trunk_link.phy_lnk_speed =
6237 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6238 	else
6239 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6240 
6241 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6242 			"2910 Async FC Trunking Event - Speed:%d\n"
6243 			"\tLogical speed:%d "
6244 			"port0: %s port1: %s port2: %s port3: %s\n",
6245 			phba->sli4_hba.link_state.speed,
6246 			phba->sli4_hba.link_state.logical_speed,
6247 			trunk_link_status(0), trunk_link_status(1),
6248 			trunk_link_status(2), trunk_link_status(3));
6249 
6250 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6251 		lpfc_cmf_signal_init(phba);
6252 
6253 	if (port_fault)
6254 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6255 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6256 				/*
6257 				 * SLI-4: We have only 0xA error codes
6258 				 * defined as of now. print an appropriate
6259 				 * message in case driver needs to be updated.
6260 				 */
6261 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6262 				"UNDEFINED. update driver." : trunk_errmsg[err],
6263 				trunk_port_fault(0), trunk_port_fault(1),
6264 				trunk_port_fault(2), trunk_port_fault(3));
6265 }
6266 
6267 
6268 /**
6269  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6270  * @phba: pointer to lpfc hba data structure.
6271  * @acqe_fc: pointer to the async fc completion queue entry.
6272  *
6273  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6274  * that the event was received and then issue a read_topology mailbox command so
6275  * that the rest of the driver will treat it the same as SLI3.
6276  **/
6277 static void
6278 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6279 {
6280 	LPFC_MBOXQ_t *pmb;
6281 	MAILBOX_t *mb;
6282 	struct lpfc_mbx_read_top *la;
6283 	int rc;
6284 
6285 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6286 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6287 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6288 				"2895 Non FC link Event detected.(%d)\n",
6289 				bf_get(lpfc_trailer_type, acqe_fc));
6290 		return;
6291 	}
6292 
6293 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6294 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6295 		lpfc_update_trunk_link_status(phba, acqe_fc);
6296 		return;
6297 	}
6298 
6299 	/* Keep the link status for extra SLI4 state machine reference */
6300 	phba->sli4_hba.link_state.speed =
6301 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6302 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6303 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6304 	phba->sli4_hba.link_state.topology =
6305 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6306 	phba->sli4_hba.link_state.status =
6307 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6308 	phba->sli4_hba.link_state.type =
6309 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6310 	phba->sli4_hba.link_state.number =
6311 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6312 	phba->sli4_hba.link_state.fault =
6313 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6314 
6315 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6316 	    LPFC_FC_LA_TYPE_LINK_DOWN)
6317 		phba->sli4_hba.link_state.logical_speed = 0;
6318 	else if (!phba->sli4_hba.conf_trunk)
6319 		phba->sli4_hba.link_state.logical_speed =
6320 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6321 
6322 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6323 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6324 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6325 			"%dMbps Fault:%d\n",
6326 			phba->sli4_hba.link_state.speed,
6327 			phba->sli4_hba.link_state.topology,
6328 			phba->sli4_hba.link_state.status,
6329 			phba->sli4_hba.link_state.type,
6330 			phba->sli4_hba.link_state.number,
6331 			phba->sli4_hba.link_state.logical_speed,
6332 			phba->sli4_hba.link_state.fault);
6333 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6334 	if (!pmb) {
6335 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6336 				"2897 The mboxq allocation failed\n");
6337 		return;
6338 	}
6339 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6340 	if (rc) {
6341 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6342 				"2898 The mboxq prep failed\n");
6343 		goto out_free_pmb;
6344 	}
6345 
6346 	/* Cleanup any outstanding ELS commands */
6347 	lpfc_els_flush_all_cmd(phba);
6348 
6349 	/* Block ELS IOCBs until we have done process link event */
6350 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6351 
6352 	/* Update link event statistics */
6353 	phba->sli.slistat.link_event++;
6354 
6355 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6356 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
6357 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6358 	pmb->vport = phba->pport;
6359 
6360 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6361 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6362 
6363 		switch (phba->sli4_hba.link_state.status) {
6364 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6365 			phba->link_flag |= LS_MDS_LINK_DOWN;
6366 			break;
6367 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6368 			phba->link_flag |= LS_MDS_LOOPBACK;
6369 			break;
6370 		default:
6371 			break;
6372 		}
6373 
6374 		/* Initialize completion status */
6375 		mb = &pmb->u.mb;
6376 		mb->mbxStatus = MBX_SUCCESS;
6377 
6378 		/* Parse port fault information field */
6379 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6380 
6381 		/* Parse and translate link attention fields */
6382 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6383 		la->eventTag = acqe_fc->event_tag;
6384 
6385 		if (phba->sli4_hba.link_state.status ==
6386 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6387 			bf_set(lpfc_mbx_read_top_att_type, la,
6388 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6389 		} else {
6390 			bf_set(lpfc_mbx_read_top_att_type, la,
6391 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6392 		}
6393 		/* Invoke the mailbox command callback function */
6394 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6395 
6396 		return;
6397 	}
6398 
6399 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6400 	if (rc == MBX_NOT_FINISHED)
6401 		goto out_free_pmb;
6402 	return;
6403 
6404 out_free_pmb:
6405 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6406 }
6407 
6408 /**
6409  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6410  * @phba: pointer to lpfc hba data structure.
6411  * @acqe_sli: pointer to the async SLI completion queue entry.
6412  *
6413  * This routine is to handle the SLI4 asynchronous SLI events.
6414  **/
6415 static void
6416 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6417 {
6418 	char port_name;
6419 	char message[128];
6420 	uint8_t status;
6421 	uint8_t evt_type;
6422 	uint8_t operational = 0;
6423 	struct temp_event temp_event_data;
6424 	struct lpfc_acqe_misconfigured_event *misconfigured;
6425 	struct lpfc_acqe_cgn_signal *cgn_signal;
6426 	struct Scsi_Host  *shost;
6427 	struct lpfc_vport **vports;
6428 	int rc, i, cnt;
6429 
6430 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6431 
6432 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6433 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6434 			"x%08x x%08x x%08x\n", evt_type,
6435 			acqe_sli->event_data1, acqe_sli->event_data2,
6436 			acqe_sli->event_data3, acqe_sli->trailer);
6437 
6438 	port_name = phba->Port[0];
6439 	if (port_name == 0x00)
6440 		port_name = '?'; /* get port name is empty */
6441 
6442 	switch (evt_type) {
6443 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6444 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6445 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6446 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6447 
6448 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6449 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6450 				acqe_sli->event_data1, port_name);
6451 
6452 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6453 		shost = lpfc_shost_from_vport(phba->pport);
6454 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6455 					  sizeof(temp_event_data),
6456 					  (char *)&temp_event_data,
6457 					  SCSI_NL_VID_TYPE_PCI
6458 					  | PCI_VENDOR_ID_EMULEX);
6459 		break;
6460 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6461 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6462 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6463 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6464 
6465 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6466 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6467 				acqe_sli->event_data1, port_name);
6468 
6469 		shost = lpfc_shost_from_vport(phba->pport);
6470 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6471 					  sizeof(temp_event_data),
6472 					  (char *)&temp_event_data,
6473 					  SCSI_NL_VID_TYPE_PCI
6474 					  | PCI_VENDOR_ID_EMULEX);
6475 		break;
6476 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6477 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6478 					&acqe_sli->event_data1;
6479 
6480 		/* fetch the status for this port */
6481 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6482 		case LPFC_LINK_NUMBER_0:
6483 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6484 					&misconfigured->theEvent);
6485 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6486 					&misconfigured->theEvent);
6487 			break;
6488 		case LPFC_LINK_NUMBER_1:
6489 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6490 					&misconfigured->theEvent);
6491 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6492 					&misconfigured->theEvent);
6493 			break;
6494 		case LPFC_LINK_NUMBER_2:
6495 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6496 					&misconfigured->theEvent);
6497 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6498 					&misconfigured->theEvent);
6499 			break;
6500 		case LPFC_LINK_NUMBER_3:
6501 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6502 					&misconfigured->theEvent);
6503 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6504 					&misconfigured->theEvent);
6505 			break;
6506 		default:
6507 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6508 					"3296 "
6509 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6510 					"event: Invalid link %d",
6511 					phba->sli4_hba.lnk_info.lnk_no);
6512 			return;
6513 		}
6514 
6515 		/* Skip if optic state unchanged */
6516 		if (phba->sli4_hba.lnk_info.optic_state == status)
6517 			return;
6518 
6519 		switch (status) {
6520 		case LPFC_SLI_EVENT_STATUS_VALID:
6521 			sprintf(message, "Physical Link is functional");
6522 			break;
6523 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6524 			sprintf(message, "Optics faulted/incorrectly "
6525 				"installed/not installed - Reseat optics, "
6526 				"if issue not resolved, replace.");
6527 			break;
6528 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6529 			sprintf(message,
6530 				"Optics of two types installed - Remove one "
6531 				"optic or install matching pair of optics.");
6532 			break;
6533 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6534 			sprintf(message, "Incompatible optics - Replace with "
6535 				"compatible optics for card to function.");
6536 			break;
6537 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6538 			sprintf(message, "Unqualified optics - Replace with "
6539 				"Avago optics for Warranty and Technical "
6540 				"Support - Link is%s operational",
6541 				(operational) ? " not" : "");
6542 			break;
6543 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6544 			sprintf(message, "Uncertified optics - Replace with "
6545 				"Avago-certified optics to enable link "
6546 				"operation - Link is%s operational",
6547 				(operational) ? " not" : "");
6548 			break;
6549 		default:
6550 			/* firmware is reporting a status we don't know about */
6551 			sprintf(message, "Unknown event status x%02x", status);
6552 			break;
6553 		}
6554 
6555 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6556 		rc = lpfc_sli4_read_config(phba);
6557 		if (rc) {
6558 			phba->lmt = 0;
6559 			lpfc_printf_log(phba, KERN_ERR,
6560 					LOG_TRACE_EVENT,
6561 					"3194 Unable to retrieve supported "
6562 					"speeds, rc = 0x%x\n", rc);
6563 		}
6564 		rc = lpfc_sli4_refresh_params(phba);
6565 		if (rc) {
6566 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6567 					"3174 Unable to update pls support, "
6568 					"rc x%x\n", rc);
6569 		}
6570 		vports = lpfc_create_vport_work_array(phba);
6571 		if (vports != NULL) {
6572 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6573 					i++) {
6574 				shost = lpfc_shost_from_vport(vports[i]);
6575 				lpfc_host_supported_speeds_set(shost);
6576 			}
6577 		}
6578 		lpfc_destroy_vport_work_array(phba, vports);
6579 
6580 		phba->sli4_hba.lnk_info.optic_state = status;
6581 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6582 				"3176 Port Name %c %s\n", port_name, message);
6583 		break;
6584 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6585 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6586 				"3192 Remote DPort Test Initiated - "
6587 				"Event Data1:x%08x Event Data2: x%08x\n",
6588 				acqe_sli->event_data1, acqe_sli->event_data2);
6589 		break;
6590 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6591 		/* Call FW to obtain active parms */
6592 		lpfc_sli4_cgn_parm_chg_evt(phba);
6593 		break;
6594 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6595 		/* Misconfigured WWN. Reports that the SLI Port is configured
6596 		 * to use FA-WWN, but the attached device doesn’t support it.
6597 		 * Event Data1 - N.A, Event Data2 - N.A
6598 		 * This event only happens on the physical port.
6599 		 */
6600 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6601 			     "2699 Misconfigured FA-PWWN - Attached device "
6602 			     "does not support FA-PWWN\n");
6603 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6604 		memset(phba->pport->fc_portname.u.wwn, 0,
6605 		       sizeof(struct lpfc_name));
6606 		break;
6607 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6608 		/* EEPROM failure. No driver action is required */
6609 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6610 			     "2518 EEPROM failure - "
6611 			     "Event Data1: x%08x Event Data2: x%08x\n",
6612 			     acqe_sli->event_data1, acqe_sli->event_data2);
6613 		break;
6614 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6615 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6616 			break;
6617 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6618 					&acqe_sli->event_data1;
6619 		phba->cgn_acqe_cnt++;
6620 
6621 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6622 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6623 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6624 
6625 		/* no threshold for CMF, even 1 signal will trigger an event */
6626 
6627 		/* Alarm overrides warning, so check that first */
6628 		if (cgn_signal->alarm_cnt) {
6629 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6630 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6631 				atomic_add(cgn_signal->alarm_cnt,
6632 					   &phba->cgn_sync_alarm_cnt);
6633 			}
6634 		} else if (cnt) {
6635 			/* signal action needs to be taken */
6636 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6637 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6638 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6639 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6640 			}
6641 		}
6642 		break;
6643 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6644 		/* May be accompanied by a temperature event */
6645 		lpfc_printf_log(phba, KERN_INFO,
6646 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6647 				"2902 Remote Degrade Signaling: x%08x x%08x "
6648 				"x%08x\n",
6649 				acqe_sli->event_data1, acqe_sli->event_data2,
6650 				acqe_sli->event_data3);
6651 		break;
6652 	default:
6653 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6654 				"3193 Unrecognized SLI event, type: 0x%x",
6655 				evt_type);
6656 		break;
6657 	}
6658 }
6659 
6660 /**
6661  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6662  * @vport: pointer to vport data structure.
6663  *
6664  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6665  * response to a CVL event.
6666  *
6667  * Return the pointer to the ndlp with the vport if successful, otherwise
6668  * return NULL.
6669  **/
6670 static struct lpfc_nodelist *
6671 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6672 {
6673 	struct lpfc_nodelist *ndlp;
6674 	struct Scsi_Host *shost;
6675 	struct lpfc_hba *phba;
6676 
6677 	if (!vport)
6678 		return NULL;
6679 	phba = vport->phba;
6680 	if (!phba)
6681 		return NULL;
6682 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6683 	if (!ndlp) {
6684 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6685 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6686 		if (!ndlp)
6687 			return NULL;
6688 		/* Set the node type */
6689 		ndlp->nlp_type |= NLP_FABRIC;
6690 		/* Put ndlp onto node list */
6691 		lpfc_enqueue_node(vport, ndlp);
6692 	}
6693 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6694 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6695 		return NULL;
6696 	/* If virtual link is not yet instantiated ignore CVL */
6697 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6698 		&& (vport->port_state != LPFC_VPORT_FAILED))
6699 		return NULL;
6700 	shost = lpfc_shost_from_vport(vport);
6701 	if (!shost)
6702 		return NULL;
6703 	lpfc_linkdown_port(vport);
6704 	lpfc_cleanup_pending_mbox(vport);
6705 	spin_lock_irq(shost->host_lock);
6706 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6707 	spin_unlock_irq(shost->host_lock);
6708 
6709 	return ndlp;
6710 }
6711 
6712 /**
6713  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6714  * @phba: pointer to lpfc hba data structure.
6715  *
6716  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6717  * response to a FCF dead event.
6718  **/
6719 static void
6720 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6721 {
6722 	struct lpfc_vport **vports;
6723 	int i;
6724 
6725 	vports = lpfc_create_vport_work_array(phba);
6726 	if (vports)
6727 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6728 			lpfc_sli4_perform_vport_cvl(vports[i]);
6729 	lpfc_destroy_vport_work_array(phba, vports);
6730 }
6731 
6732 /**
6733  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6734  * @phba: pointer to lpfc hba data structure.
6735  * @acqe_fip: pointer to the async fcoe completion queue entry.
6736  *
6737  * This routine is to handle the SLI4 asynchronous fcoe event.
6738  **/
6739 static void
6740 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6741 			struct lpfc_acqe_fip *acqe_fip)
6742 {
6743 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6744 	int rc;
6745 	struct lpfc_vport *vport;
6746 	struct lpfc_nodelist *ndlp;
6747 	int active_vlink_present;
6748 	struct lpfc_vport **vports;
6749 	int i;
6750 
6751 	phba->fc_eventTag = acqe_fip->event_tag;
6752 	phba->fcoe_eventtag = acqe_fip->event_tag;
6753 	switch (event_type) {
6754 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6755 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6756 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6757 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6758 					"2546 New FCF event, evt_tag:x%x, "
6759 					"index:x%x\n",
6760 					acqe_fip->event_tag,
6761 					acqe_fip->index);
6762 		else
6763 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6764 					LOG_DISCOVERY,
6765 					"2788 FCF param modified event, "
6766 					"evt_tag:x%x, index:x%x\n",
6767 					acqe_fip->event_tag,
6768 					acqe_fip->index);
6769 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6770 			/*
6771 			 * During period of FCF discovery, read the FCF
6772 			 * table record indexed by the event to update
6773 			 * FCF roundrobin failover eligible FCF bmask.
6774 			 */
6775 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6776 					LOG_DISCOVERY,
6777 					"2779 Read FCF (x%x) for updating "
6778 					"roundrobin FCF failover bmask\n",
6779 					acqe_fip->index);
6780 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6781 		}
6782 
6783 		/* If the FCF discovery is in progress, do nothing. */
6784 		spin_lock_irq(&phba->hbalock);
6785 		if (phba->hba_flag & FCF_TS_INPROG) {
6786 			spin_unlock_irq(&phba->hbalock);
6787 			break;
6788 		}
6789 		/* If fast FCF failover rescan event is pending, do nothing */
6790 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6791 			spin_unlock_irq(&phba->hbalock);
6792 			break;
6793 		}
6794 
6795 		/* If the FCF has been in discovered state, do nothing. */
6796 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6797 			spin_unlock_irq(&phba->hbalock);
6798 			break;
6799 		}
6800 		spin_unlock_irq(&phba->hbalock);
6801 
6802 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6803 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6804 				"2770 Start FCF table scan per async FCF "
6805 				"event, evt_tag:x%x, index:x%x\n",
6806 				acqe_fip->event_tag, acqe_fip->index);
6807 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6808 						     LPFC_FCOE_FCF_GET_FIRST);
6809 		if (rc)
6810 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6811 					"2547 Issue FCF scan read FCF mailbox "
6812 					"command failed (x%x)\n", rc);
6813 		break;
6814 
6815 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6816 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6817 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6818 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6819 				acqe_fip->event_tag);
6820 		break;
6821 
6822 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6823 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6824 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6825 				"2549 FCF (x%x) disconnected from network, "
6826 				 "tag:x%x\n", acqe_fip->index,
6827 				 acqe_fip->event_tag);
6828 		/*
6829 		 * If we are in the middle of FCF failover process, clear
6830 		 * the corresponding FCF bit in the roundrobin bitmap.
6831 		 */
6832 		spin_lock_irq(&phba->hbalock);
6833 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6834 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6835 			spin_unlock_irq(&phba->hbalock);
6836 			/* Update FLOGI FCF failover eligible FCF bmask */
6837 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6838 			break;
6839 		}
6840 		spin_unlock_irq(&phba->hbalock);
6841 
6842 		/* If the event is not for currently used fcf do nothing */
6843 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6844 			break;
6845 
6846 		/*
6847 		 * Otherwise, request the port to rediscover the entire FCF
6848 		 * table for a fast recovery from case that the current FCF
6849 		 * is no longer valid as we are not in the middle of FCF
6850 		 * failover process already.
6851 		 */
6852 		spin_lock_irq(&phba->hbalock);
6853 		/* Mark the fast failover process in progress */
6854 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6855 		spin_unlock_irq(&phba->hbalock);
6856 
6857 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6858 				"2771 Start FCF fast failover process due to "
6859 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6860 				"\n", acqe_fip->event_tag, acqe_fip->index);
6861 		rc = lpfc_sli4_redisc_fcf_table(phba);
6862 		if (rc) {
6863 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6864 					LOG_TRACE_EVENT,
6865 					"2772 Issue FCF rediscover mailbox "
6866 					"command failed, fail through to FCF "
6867 					"dead event\n");
6868 			spin_lock_irq(&phba->hbalock);
6869 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6870 			spin_unlock_irq(&phba->hbalock);
6871 			/*
6872 			 * Last resort will fail over by treating this
6873 			 * as a link down to FCF registration.
6874 			 */
6875 			lpfc_sli4_fcf_dead_failthrough(phba);
6876 		} else {
6877 			/* Reset FCF roundrobin bmask for new discovery */
6878 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6879 			/*
6880 			 * Handling fast FCF failover to a DEAD FCF event is
6881 			 * considered equalivant to receiving CVL to all vports.
6882 			 */
6883 			lpfc_sli4_perform_all_vport_cvl(phba);
6884 		}
6885 		break;
6886 	case LPFC_FIP_EVENT_TYPE_CVL:
6887 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6888 		lpfc_printf_log(phba, KERN_ERR,
6889 				LOG_TRACE_EVENT,
6890 			"2718 Clear Virtual Link Received for VPI 0x%x"
6891 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6892 
6893 		vport = lpfc_find_vport_by_vpid(phba,
6894 						acqe_fip->index);
6895 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6896 		if (!ndlp)
6897 			break;
6898 		active_vlink_present = 0;
6899 
6900 		vports = lpfc_create_vport_work_array(phba);
6901 		if (vports) {
6902 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6903 					i++) {
6904 				if ((!(vports[i]->fc_flag &
6905 					FC_VPORT_CVL_RCVD)) &&
6906 					(vports[i]->port_state > LPFC_FDISC)) {
6907 					active_vlink_present = 1;
6908 					break;
6909 				}
6910 			}
6911 			lpfc_destroy_vport_work_array(phba, vports);
6912 		}
6913 
6914 		/*
6915 		 * Don't re-instantiate if vport is marked for deletion.
6916 		 * If we are here first then vport_delete is going to wait
6917 		 * for discovery to complete.
6918 		 */
6919 		if (!(vport->load_flag & FC_UNLOADING) &&
6920 					active_vlink_present) {
6921 			/*
6922 			 * If there are other active VLinks present,
6923 			 * re-instantiate the Vlink using FDISC.
6924 			 */
6925 			mod_timer(&ndlp->nlp_delayfunc,
6926 				  jiffies + msecs_to_jiffies(1000));
6927 			spin_lock_irq(&ndlp->lock);
6928 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6929 			spin_unlock_irq(&ndlp->lock);
6930 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6931 			vport->port_state = LPFC_FDISC;
6932 		} else {
6933 			/*
6934 			 * Otherwise, we request port to rediscover
6935 			 * the entire FCF table for a fast recovery
6936 			 * from possible case that the current FCF
6937 			 * is no longer valid if we are not already
6938 			 * in the FCF failover process.
6939 			 */
6940 			spin_lock_irq(&phba->hbalock);
6941 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6942 				spin_unlock_irq(&phba->hbalock);
6943 				break;
6944 			}
6945 			/* Mark the fast failover process in progress */
6946 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6947 			spin_unlock_irq(&phba->hbalock);
6948 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6949 					LOG_DISCOVERY,
6950 					"2773 Start FCF failover per CVL, "
6951 					"evt_tag:x%x\n", acqe_fip->event_tag);
6952 			rc = lpfc_sli4_redisc_fcf_table(phba);
6953 			if (rc) {
6954 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6955 						LOG_TRACE_EVENT,
6956 						"2774 Issue FCF rediscover "
6957 						"mailbox command failed, "
6958 						"through to CVL event\n");
6959 				spin_lock_irq(&phba->hbalock);
6960 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6961 				spin_unlock_irq(&phba->hbalock);
6962 				/*
6963 				 * Last resort will be re-try on the
6964 				 * the current registered FCF entry.
6965 				 */
6966 				lpfc_retry_pport_discovery(phba);
6967 			} else
6968 				/*
6969 				 * Reset FCF roundrobin bmask for new
6970 				 * discovery.
6971 				 */
6972 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6973 		}
6974 		break;
6975 	default:
6976 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6977 				"0288 Unknown FCoE event type 0x%x event tag "
6978 				"0x%x\n", event_type, acqe_fip->event_tag);
6979 		break;
6980 	}
6981 }
6982 
6983 /**
6984  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6985  * @phba: pointer to lpfc hba data structure.
6986  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6987  *
6988  * This routine is to handle the SLI4 asynchronous dcbx event.
6989  **/
6990 static void
6991 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6992 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6993 {
6994 	phba->fc_eventTag = acqe_dcbx->event_tag;
6995 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6996 			"0290 The SLI4 DCBX asynchronous event is not "
6997 			"handled yet\n");
6998 }
6999 
7000 /**
7001  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
7002  * @phba: pointer to lpfc hba data structure.
7003  * @acqe_grp5: pointer to the async grp5 completion queue entry.
7004  *
7005  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
7006  * is an asynchronous notified of a logical link speed change.  The Port
7007  * reports the logical link speed in units of 10Mbps.
7008  **/
7009 static void
7010 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
7011 			 struct lpfc_acqe_grp5 *acqe_grp5)
7012 {
7013 	uint16_t prev_ll_spd;
7014 
7015 	phba->fc_eventTag = acqe_grp5->event_tag;
7016 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7017 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7018 	phba->sli4_hba.link_state.logical_speed =
7019 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7020 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7021 			"2789 GRP5 Async Event: Updating logical link speed "
7022 			"from %dMbps to %dMbps\n", prev_ll_spd,
7023 			phba->sli4_hba.link_state.logical_speed);
7024 }
7025 
7026 /**
7027  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7028  * @phba: pointer to lpfc hba data structure.
7029  *
7030  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7031  * is an asynchronous notification of a request to reset CM stats.
7032  **/
7033 static void
7034 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7035 {
7036 	if (!phba->cgn_i)
7037 		return;
7038 	lpfc_init_congestion_stat(phba);
7039 }
7040 
7041 /**
7042  * lpfc_cgn_params_val - Validate FW congestion parameters.
7043  * @phba: pointer to lpfc hba data structure.
7044  * @p_cfg_param: pointer to FW provided congestion parameters.
7045  *
7046  * This routine validates the congestion parameters passed
7047  * by the FW to the driver via an ACQE event.
7048  **/
7049 static void
7050 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7051 {
7052 	spin_lock_irq(&phba->hbalock);
7053 
7054 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7055 			     LPFC_CFG_MONITOR)) {
7056 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7057 				"6225 CMF mode param out of range: %d\n",
7058 				 p_cfg_param->cgn_param_mode);
7059 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7060 	}
7061 
7062 	spin_unlock_irq(&phba->hbalock);
7063 }
7064 
7065 static const char * const lpfc_cmf_mode_to_str[] = {
7066 	"OFF",
7067 	"MANAGED",
7068 	"MONITOR",
7069 };
7070 
7071 /**
7072  * lpfc_cgn_params_parse - Process a FW cong parm change event
7073  * @phba: pointer to lpfc hba data structure.
7074  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7075  * @len: the size of pdata in bytes.
7076  *
7077  * This routine validates the congestion management buffer signature
7078  * from the FW, validates the contents and makes corrections for
7079  * valid, in-range values.  If the signature magic is correct and
7080  * after parameter validation, the contents are copied to the driver's
7081  * @phba structure. If the magic is incorrect, an error message is
7082  * logged.
7083  **/
7084 static void
7085 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7086 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7087 {
7088 	struct lpfc_cgn_info *cp;
7089 	uint32_t crc, oldmode;
7090 	char acr_string[4] = {0};
7091 
7092 	/* Make sure the FW has encoded the correct magic number to
7093 	 * validate the congestion parameter in FW memory.
7094 	 */
7095 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7096 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7097 				"4668 FW cgn parm buffer data: "
7098 				"magic 0x%x version %d mode %d "
7099 				"level0 %d level1 %d "
7100 				"level2 %d byte13 %d "
7101 				"byte14 %d byte15 %d "
7102 				"byte11 %d byte12 %d activeMode %d\n",
7103 				p_cgn_param->cgn_param_magic,
7104 				p_cgn_param->cgn_param_version,
7105 				p_cgn_param->cgn_param_mode,
7106 				p_cgn_param->cgn_param_level0,
7107 				p_cgn_param->cgn_param_level1,
7108 				p_cgn_param->cgn_param_level2,
7109 				p_cgn_param->byte13,
7110 				p_cgn_param->byte14,
7111 				p_cgn_param->byte15,
7112 				p_cgn_param->byte11,
7113 				p_cgn_param->byte12,
7114 				phba->cmf_active_mode);
7115 
7116 		oldmode = phba->cmf_active_mode;
7117 
7118 		/* Any parameters out of range are corrected to defaults
7119 		 * by this routine.  No need to fail.
7120 		 */
7121 		lpfc_cgn_params_val(phba, p_cgn_param);
7122 
7123 		/* Parameters are verified, move them into driver storage */
7124 		spin_lock_irq(&phba->hbalock);
7125 		memcpy(&phba->cgn_p, p_cgn_param,
7126 		       sizeof(struct lpfc_cgn_param));
7127 
7128 		/* Update parameters in congestion info buffer now */
7129 		if (phba->cgn_i) {
7130 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7131 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7132 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7133 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7134 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7135 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7136 						  LPFC_CGN_CRC32_SEED);
7137 			cp->cgn_info_crc = cpu_to_le32(crc);
7138 		}
7139 		spin_unlock_irq(&phba->hbalock);
7140 
7141 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7142 
7143 		switch (oldmode) {
7144 		case LPFC_CFG_OFF:
7145 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7146 				/* Turning CMF on */
7147 				lpfc_cmf_start(phba);
7148 
7149 				if (phba->link_state >= LPFC_LINK_UP) {
7150 					phba->cgn_reg_fpin =
7151 						phba->cgn_init_reg_fpin;
7152 					phba->cgn_reg_signal =
7153 						phba->cgn_init_reg_signal;
7154 					lpfc_issue_els_edc(phba->pport, 0);
7155 				}
7156 			}
7157 			break;
7158 		case LPFC_CFG_MANAGED:
7159 			switch (phba->cgn_p.cgn_param_mode) {
7160 			case LPFC_CFG_OFF:
7161 				/* Turning CMF off */
7162 				lpfc_cmf_stop(phba);
7163 				if (phba->link_state >= LPFC_LINK_UP)
7164 					lpfc_issue_els_edc(phba->pport, 0);
7165 				break;
7166 			case LPFC_CFG_MONITOR:
7167 				phba->cmf_max_bytes_per_interval =
7168 					phba->cmf_link_byte_count;
7169 
7170 				/* Resume blocked IO - unblock on workqueue */
7171 				queue_work(phba->wq,
7172 					   &phba->unblock_request_work);
7173 				break;
7174 			}
7175 			break;
7176 		case LPFC_CFG_MONITOR:
7177 			switch (phba->cgn_p.cgn_param_mode) {
7178 			case LPFC_CFG_OFF:
7179 				/* Turning CMF off */
7180 				lpfc_cmf_stop(phba);
7181 				if (phba->link_state >= LPFC_LINK_UP)
7182 					lpfc_issue_els_edc(phba->pport, 0);
7183 				break;
7184 			case LPFC_CFG_MANAGED:
7185 				lpfc_cmf_signal_init(phba);
7186 				break;
7187 			}
7188 			break;
7189 		}
7190 		if (oldmode != LPFC_CFG_OFF ||
7191 		    oldmode != phba->cgn_p.cgn_param_mode) {
7192 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7193 				scnprintf(acr_string, sizeof(acr_string), "%u",
7194 					  phba->cgn_p.cgn_param_level0);
7195 			else
7196 				scnprintf(acr_string, sizeof(acr_string), "NA");
7197 
7198 			dev_info(&phba->pcidev->dev, "%d: "
7199 				 "4663 CMF: Mode %s acr %s\n",
7200 				 phba->brd_no,
7201 				 lpfc_cmf_mode_to_str
7202 				 [phba->cgn_p.cgn_param_mode],
7203 				 acr_string);
7204 		}
7205 	} else {
7206 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7207 				"4669 FW cgn parm buf wrong magic 0x%x "
7208 				"version %d\n", p_cgn_param->cgn_param_magic,
7209 				p_cgn_param->cgn_param_version);
7210 	}
7211 }
7212 
7213 /**
7214  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7215  * @phba: pointer to lpfc hba data structure.
7216  *
7217  * This routine issues a read_object mailbox command to
7218  * get the congestion management parameters from the FW
7219  * parses it and updates the driver maintained values.
7220  *
7221  * Returns
7222  *  0     if the object was empty
7223  *  -Eval if an error was encountered
7224  *  Count if bytes were read from object
7225  **/
7226 int
7227 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7228 {
7229 	int ret = 0;
7230 	struct lpfc_cgn_param *p_cgn_param = NULL;
7231 	u32 *pdata = NULL;
7232 	u32 len = 0;
7233 
7234 	/* Find out if the FW has a new set of congestion parameters. */
7235 	len = sizeof(struct lpfc_cgn_param);
7236 	pdata = kzalloc(len, GFP_KERNEL);
7237 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7238 			       pdata, len);
7239 
7240 	/* 0 means no data.  A negative means error.  A positive means
7241 	 * bytes were copied.
7242 	 */
7243 	if (!ret) {
7244 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7245 				"4670 CGN RD OBJ returns no data\n");
7246 		goto rd_obj_err;
7247 	} else if (ret < 0) {
7248 		/* Some error.  Just exit and return it to the caller.*/
7249 		goto rd_obj_err;
7250 	}
7251 
7252 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7253 			"6234 READ CGN PARAMS Successful %d\n", len);
7254 
7255 	/* Parse data pointer over len and update the phba congestion
7256 	 * parameters with values passed back.  The receive rate values
7257 	 * may have been altered in FW, but take no action here.
7258 	 */
7259 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7260 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7261 
7262  rd_obj_err:
7263 	kfree(pdata);
7264 	return ret;
7265 }
7266 
7267 /**
7268  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7269  * @phba: pointer to lpfc hba data structure.
7270  *
7271  * The FW generated Async ACQE SLI event calls this routine when
7272  * the event type is an SLI Internal Port Event and the Event Code
7273  * indicates a change to the FW maintained congestion parameters.
7274  *
7275  * This routine executes a Read_Object mailbox call to obtain the
7276  * current congestion parameters maintained in FW and corrects
7277  * the driver's active congestion parameters.
7278  *
7279  * The acqe event is not passed because there is no further data
7280  * required.
7281  *
7282  * Returns nonzero error if event processing encountered an error.
7283  * Zero otherwise for success.
7284  **/
7285 static int
7286 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7287 {
7288 	int ret = 0;
7289 
7290 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7291 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7292 				"4664 Cgn Evt when E2E off. Drop event\n");
7293 		return -EACCES;
7294 	}
7295 
7296 	/* If the event is claiming an empty object, it's ok.  A write
7297 	 * could have cleared it.  Only error is a negative return
7298 	 * status.
7299 	 */
7300 	ret = lpfc_sli4_cgn_params_read(phba);
7301 	if (ret < 0) {
7302 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7303 				"4667 Error reading Cgn Params (%d)\n",
7304 				ret);
7305 	} else if (!ret) {
7306 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7307 				"4673 CGN Event empty object.\n");
7308 	}
7309 	return ret;
7310 }
7311 
7312 /**
7313  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7314  * @phba: pointer to lpfc hba data structure.
7315  *
7316  * This routine is invoked by the worker thread to process all the pending
7317  * SLI4 asynchronous events.
7318  **/
7319 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7320 {
7321 	struct lpfc_cq_event *cq_event;
7322 	unsigned long iflags;
7323 
7324 	/* First, declare the async event has been handled */
7325 	spin_lock_irqsave(&phba->hbalock, iflags);
7326 	phba->hba_flag &= ~ASYNC_EVENT;
7327 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7328 
7329 	/* Now, handle all the async events */
7330 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7331 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7332 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7333 				 cq_event, struct lpfc_cq_event, list);
7334 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7335 				       iflags);
7336 
7337 		/* Process the asynchronous event */
7338 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7339 		case LPFC_TRAILER_CODE_LINK:
7340 			lpfc_sli4_async_link_evt(phba,
7341 						 &cq_event->cqe.acqe_link);
7342 			break;
7343 		case LPFC_TRAILER_CODE_FCOE:
7344 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7345 			break;
7346 		case LPFC_TRAILER_CODE_DCBX:
7347 			lpfc_sli4_async_dcbx_evt(phba,
7348 						 &cq_event->cqe.acqe_dcbx);
7349 			break;
7350 		case LPFC_TRAILER_CODE_GRP5:
7351 			lpfc_sli4_async_grp5_evt(phba,
7352 						 &cq_event->cqe.acqe_grp5);
7353 			break;
7354 		case LPFC_TRAILER_CODE_FC:
7355 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7356 			break;
7357 		case LPFC_TRAILER_CODE_SLI:
7358 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7359 			break;
7360 		case LPFC_TRAILER_CODE_CMSTAT:
7361 			lpfc_sli4_async_cmstat_evt(phba);
7362 			break;
7363 		default:
7364 			lpfc_printf_log(phba, KERN_ERR,
7365 					LOG_TRACE_EVENT,
7366 					"1804 Invalid asynchronous event code: "
7367 					"x%x\n", bf_get(lpfc_trailer_code,
7368 					&cq_event->cqe.mcqe_cmpl));
7369 			break;
7370 		}
7371 
7372 		/* Free the completion event processed to the free pool */
7373 		lpfc_sli4_cq_event_release(phba, cq_event);
7374 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7375 	}
7376 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7377 }
7378 
7379 /**
7380  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7381  * @phba: pointer to lpfc hba data structure.
7382  *
7383  * This routine is invoked by the worker thread to process FCF table
7384  * rediscovery pending completion event.
7385  **/
7386 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7387 {
7388 	int rc;
7389 
7390 	spin_lock_irq(&phba->hbalock);
7391 	/* Clear FCF rediscovery timeout event */
7392 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7393 	/* Clear driver fast failover FCF record flag */
7394 	phba->fcf.failover_rec.flag = 0;
7395 	/* Set state for FCF fast failover */
7396 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7397 	spin_unlock_irq(&phba->hbalock);
7398 
7399 	/* Scan FCF table from the first entry to re-discover SAN */
7400 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7401 			"2777 Start post-quiescent FCF table scan\n");
7402 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7403 	if (rc)
7404 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7405 				"2747 Issue FCF scan read FCF mailbox "
7406 				"command failed 0x%x\n", rc);
7407 }
7408 
7409 /**
7410  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7411  * @phba: pointer to lpfc hba data structure.
7412  * @dev_grp: The HBA PCI-Device group number.
7413  *
7414  * This routine is invoked to set up the per HBA PCI-Device group function
7415  * API jump table entries.
7416  *
7417  * Return: 0 if success, otherwise -ENODEV
7418  **/
7419 int
7420 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7421 {
7422 	int rc;
7423 
7424 	/* Set up lpfc PCI-device group */
7425 	phba->pci_dev_grp = dev_grp;
7426 
7427 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7428 	if (dev_grp == LPFC_PCI_DEV_OC)
7429 		phba->sli_rev = LPFC_SLI_REV4;
7430 
7431 	/* Set up device INIT API function jump table */
7432 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7433 	if (rc)
7434 		return -ENODEV;
7435 	/* Set up SCSI API function jump table */
7436 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7437 	if (rc)
7438 		return -ENODEV;
7439 	/* Set up SLI API function jump table */
7440 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7441 	if (rc)
7442 		return -ENODEV;
7443 	/* Set up MBOX API function jump table */
7444 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7445 	if (rc)
7446 		return -ENODEV;
7447 
7448 	return 0;
7449 }
7450 
7451 /**
7452  * lpfc_log_intr_mode - Log the active interrupt mode
7453  * @phba: pointer to lpfc hba data structure.
7454  * @intr_mode: active interrupt mode adopted.
7455  *
7456  * This routine it invoked to log the currently used active interrupt mode
7457  * to the device.
7458  **/
7459 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7460 {
7461 	switch (intr_mode) {
7462 	case 0:
7463 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7464 				"0470 Enable INTx interrupt mode.\n");
7465 		break;
7466 	case 1:
7467 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7468 				"0481 Enabled MSI interrupt mode.\n");
7469 		break;
7470 	case 2:
7471 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7472 				"0480 Enabled MSI-X interrupt mode.\n");
7473 		break;
7474 	default:
7475 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7476 				"0482 Illegal interrupt mode.\n");
7477 		break;
7478 	}
7479 	return;
7480 }
7481 
7482 /**
7483  * lpfc_enable_pci_dev - Enable a generic PCI device.
7484  * @phba: pointer to lpfc hba data structure.
7485  *
7486  * This routine is invoked to enable the PCI device that is common to all
7487  * PCI devices.
7488  *
7489  * Return codes
7490  * 	0 - successful
7491  * 	other values - error
7492  **/
7493 static int
7494 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7495 {
7496 	struct pci_dev *pdev;
7497 
7498 	/* Obtain PCI device reference */
7499 	if (!phba->pcidev)
7500 		goto out_error;
7501 	else
7502 		pdev = phba->pcidev;
7503 	/* Enable PCI device */
7504 	if (pci_enable_device_mem(pdev))
7505 		goto out_error;
7506 	/* Request PCI resource for the device */
7507 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7508 		goto out_disable_device;
7509 	/* Set up device as PCI master and save state for EEH */
7510 	pci_set_master(pdev);
7511 	pci_try_set_mwi(pdev);
7512 	pci_save_state(pdev);
7513 
7514 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7515 	if (pci_is_pcie(pdev))
7516 		pdev->needs_freset = 1;
7517 
7518 	return 0;
7519 
7520 out_disable_device:
7521 	pci_disable_device(pdev);
7522 out_error:
7523 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7524 			"1401 Failed to enable pci device\n");
7525 	return -ENODEV;
7526 }
7527 
7528 /**
7529  * lpfc_disable_pci_dev - Disable a generic PCI device.
7530  * @phba: pointer to lpfc hba data structure.
7531  *
7532  * This routine is invoked to disable the PCI device that is common to all
7533  * PCI devices.
7534  **/
7535 static void
7536 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7537 {
7538 	struct pci_dev *pdev;
7539 
7540 	/* Obtain PCI device reference */
7541 	if (!phba->pcidev)
7542 		return;
7543 	else
7544 		pdev = phba->pcidev;
7545 	/* Release PCI resource and disable PCI device */
7546 	pci_release_mem_regions(pdev);
7547 	pci_disable_device(pdev);
7548 
7549 	return;
7550 }
7551 
7552 /**
7553  * lpfc_reset_hba - Reset a hba
7554  * @phba: pointer to lpfc hba data structure.
7555  *
7556  * This routine is invoked to reset a hba device. It brings the HBA
7557  * offline, performs a board restart, and then brings the board back
7558  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7559  * on outstanding mailbox commands.
7560  **/
7561 void
7562 lpfc_reset_hba(struct lpfc_hba *phba)
7563 {
7564 	/* If resets are disabled then set error state and return. */
7565 	if (!phba->cfg_enable_hba_reset) {
7566 		phba->link_state = LPFC_HBA_ERROR;
7567 		return;
7568 	}
7569 
7570 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7571 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7572 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7573 	} else {
7574 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7575 		lpfc_sli_flush_io_rings(phba);
7576 	}
7577 	lpfc_offline(phba);
7578 	lpfc_sli_brdrestart(phba);
7579 	lpfc_online(phba);
7580 	lpfc_unblock_mgmt_io(phba);
7581 }
7582 
7583 /**
7584  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7585  * @phba: pointer to lpfc hba data structure.
7586  *
7587  * This function enables the PCI SR-IOV virtual functions to a physical
7588  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7589  * enable the number of virtual functions to the physical function. As
7590  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7591  * API call does not considered as an error condition for most of the device.
7592  **/
7593 uint16_t
7594 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7595 {
7596 	struct pci_dev *pdev = phba->pcidev;
7597 	uint16_t nr_virtfn;
7598 	int pos;
7599 
7600 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7601 	if (pos == 0)
7602 		return 0;
7603 
7604 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7605 	return nr_virtfn;
7606 }
7607 
7608 /**
7609  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7610  * @phba: pointer to lpfc hba data structure.
7611  * @nr_vfn: number of virtual functions to be enabled.
7612  *
7613  * This function enables the PCI SR-IOV virtual functions to a physical
7614  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7615  * enable the number of virtual functions to the physical function. As
7616  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7617  * API call does not considered as an error condition for most of the device.
7618  **/
7619 int
7620 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7621 {
7622 	struct pci_dev *pdev = phba->pcidev;
7623 	uint16_t max_nr_vfn;
7624 	int rc;
7625 
7626 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7627 	if (nr_vfn > max_nr_vfn) {
7628 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7629 				"3057 Requested vfs (%d) greater than "
7630 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7631 		return -EINVAL;
7632 	}
7633 
7634 	rc = pci_enable_sriov(pdev, nr_vfn);
7635 	if (rc) {
7636 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7637 				"2806 Failed to enable sriov on this device "
7638 				"with vfn number nr_vf:%d, rc:%d\n",
7639 				nr_vfn, rc);
7640 	} else
7641 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7642 				"2807 Successful enable sriov on this device "
7643 				"with vfn number nr_vf:%d\n", nr_vfn);
7644 	return rc;
7645 }
7646 
7647 static void
7648 lpfc_unblock_requests_work(struct work_struct *work)
7649 {
7650 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7651 					     unblock_request_work);
7652 
7653 	lpfc_unblock_requests(phba);
7654 }
7655 
7656 /**
7657  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7658  * @phba: pointer to lpfc hba data structure.
7659  *
7660  * This routine is invoked to set up the driver internal resources before the
7661  * device specific resource setup to support the HBA device it attached to.
7662  *
7663  * Return codes
7664  *	0 - successful
7665  *	other values - error
7666  **/
7667 static int
7668 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7669 {
7670 	struct lpfc_sli *psli = &phba->sli;
7671 
7672 	/*
7673 	 * Driver resources common to all SLI revisions
7674 	 */
7675 	atomic_set(&phba->fast_event_count, 0);
7676 	atomic_set(&phba->dbg_log_idx, 0);
7677 	atomic_set(&phba->dbg_log_cnt, 0);
7678 	atomic_set(&phba->dbg_log_dmping, 0);
7679 	spin_lock_init(&phba->hbalock);
7680 
7681 	/* Initialize port_list spinlock */
7682 	spin_lock_init(&phba->port_list_lock);
7683 	INIT_LIST_HEAD(&phba->port_list);
7684 
7685 	INIT_LIST_HEAD(&phba->work_list);
7686 
7687 	/* Initialize the wait queue head for the kernel thread */
7688 	init_waitqueue_head(&phba->work_waitq);
7689 
7690 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7691 			"1403 Protocols supported %s %s %s\n",
7692 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7693 				"SCSI" : " "),
7694 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7695 				"NVME" : " "),
7696 			(phba->nvmet_support ? "NVMET" : " "));
7697 
7698 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7699 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7700 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7701 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7702 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7703 
7704 	/* Initialize the fabric iocb list */
7705 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7706 
7707 	/* Initialize list to save ELS buffers */
7708 	INIT_LIST_HEAD(&phba->elsbuf);
7709 
7710 	/* Initialize FCF connection rec list */
7711 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7712 
7713 	/* Initialize OAS configuration list */
7714 	spin_lock_init(&phba->devicelock);
7715 	INIT_LIST_HEAD(&phba->luns);
7716 
7717 	/* MBOX heartbeat timer */
7718 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7719 	/* Fabric block timer */
7720 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7721 	/* EA polling mode timer */
7722 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7723 	/* Heartbeat timer */
7724 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7725 
7726 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7727 
7728 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7729 			  lpfc_idle_stat_delay_work);
7730 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7731 	return 0;
7732 }
7733 
7734 /**
7735  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7736  * @phba: pointer to lpfc hba data structure.
7737  *
7738  * This routine is invoked to set up the driver internal resources specific to
7739  * support the SLI-3 HBA device it attached to.
7740  *
7741  * Return codes
7742  * 0 - successful
7743  * other values - error
7744  **/
7745 static int
7746 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7747 {
7748 	int rc, entry_sz;
7749 
7750 	/*
7751 	 * Initialize timers used by driver
7752 	 */
7753 
7754 	/* FCP polling mode timer */
7755 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7756 
7757 	/* Host attention work mask setup */
7758 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7759 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7760 
7761 	/* Get all the module params for configuring this host */
7762 	lpfc_get_cfgparam(phba);
7763 	/* Set up phase-1 common device driver resources */
7764 
7765 	rc = lpfc_setup_driver_resource_phase1(phba);
7766 	if (rc)
7767 		return -ENODEV;
7768 
7769 	if (!phba->sli.sli3_ring)
7770 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7771 					      sizeof(struct lpfc_sli_ring),
7772 					      GFP_KERNEL);
7773 	if (!phba->sli.sli3_ring)
7774 		return -ENOMEM;
7775 
7776 	/*
7777 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7778 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7779 	 */
7780 
7781 	if (phba->sli_rev == LPFC_SLI_REV4)
7782 		entry_sz = sizeof(struct sli4_sge);
7783 	else
7784 		entry_sz = sizeof(struct ulp_bde64);
7785 
7786 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7787 	if (phba->cfg_enable_bg) {
7788 		/*
7789 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7790 		 * the FCP rsp, and a BDE for each. Sice we have no control
7791 		 * over how many protection data segments the SCSI Layer
7792 		 * will hand us (ie: there could be one for every block
7793 		 * in the IO), we just allocate enough BDEs to accomidate
7794 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7795 		 * minimize the risk of running out.
7796 		 */
7797 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7798 			sizeof(struct fcp_rsp) +
7799 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7800 
7801 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7802 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7803 
7804 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7805 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7806 	} else {
7807 		/*
7808 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7809 		 * the FCP rsp, a BDE for each, and a BDE for up to
7810 		 * cfg_sg_seg_cnt data segments.
7811 		 */
7812 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7813 			sizeof(struct fcp_rsp) +
7814 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7815 
7816 		/* Total BDEs in BPL for scsi_sg_list */
7817 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7818 	}
7819 
7820 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7821 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7822 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7823 			phba->cfg_total_seg_cnt);
7824 
7825 	phba->max_vpi = LPFC_MAX_VPI;
7826 	/* This will be set to correct value after config_port mbox */
7827 	phba->max_vports = 0;
7828 
7829 	/*
7830 	 * Initialize the SLI Layer to run with lpfc HBAs.
7831 	 */
7832 	lpfc_sli_setup(phba);
7833 	lpfc_sli_queue_init(phba);
7834 
7835 	/* Allocate device driver memory */
7836 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7837 		return -ENOMEM;
7838 
7839 	phba->lpfc_sg_dma_buf_pool =
7840 		dma_pool_create("lpfc_sg_dma_buf_pool",
7841 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7842 				BPL_ALIGN_SZ, 0);
7843 
7844 	if (!phba->lpfc_sg_dma_buf_pool)
7845 		goto fail_free_mem;
7846 
7847 	phba->lpfc_cmd_rsp_buf_pool =
7848 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7849 					&phba->pcidev->dev,
7850 					sizeof(struct fcp_cmnd) +
7851 					sizeof(struct fcp_rsp),
7852 					BPL_ALIGN_SZ, 0);
7853 
7854 	if (!phba->lpfc_cmd_rsp_buf_pool)
7855 		goto fail_free_dma_buf_pool;
7856 
7857 	/*
7858 	 * Enable sr-iov virtual functions if supported and configured
7859 	 * through the module parameter.
7860 	 */
7861 	if (phba->cfg_sriov_nr_virtfn > 0) {
7862 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7863 						 phba->cfg_sriov_nr_virtfn);
7864 		if (rc) {
7865 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7866 					"2808 Requested number of SR-IOV "
7867 					"virtual functions (%d) is not "
7868 					"supported\n",
7869 					phba->cfg_sriov_nr_virtfn);
7870 			phba->cfg_sriov_nr_virtfn = 0;
7871 		}
7872 	}
7873 
7874 	return 0;
7875 
7876 fail_free_dma_buf_pool:
7877 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7878 	phba->lpfc_sg_dma_buf_pool = NULL;
7879 fail_free_mem:
7880 	lpfc_mem_free(phba);
7881 	return -ENOMEM;
7882 }
7883 
7884 /**
7885  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7886  * @phba: pointer to lpfc hba data structure.
7887  *
7888  * This routine is invoked to unset the driver internal resources set up
7889  * specific for supporting the SLI-3 HBA device it attached to.
7890  **/
7891 static void
7892 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7893 {
7894 	/* Free device driver memory allocated */
7895 	lpfc_mem_free_all(phba);
7896 
7897 	return;
7898 }
7899 
7900 /**
7901  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7902  * @phba: pointer to lpfc hba data structure.
7903  *
7904  * This routine is invoked to set up the driver internal resources specific to
7905  * support the SLI-4 HBA device it attached to.
7906  *
7907  * Return codes
7908  * 	0 - successful
7909  * 	other values - error
7910  **/
7911 static int
7912 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7913 {
7914 	LPFC_MBOXQ_t *mboxq;
7915 	MAILBOX_t *mb;
7916 	int rc, i, max_buf_size;
7917 	int longs;
7918 	int extra;
7919 	uint64_t wwn;
7920 	u32 if_type;
7921 	u32 if_fam;
7922 
7923 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7924 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7925 	phba->sli4_hba.curr_disp_cpu = 0;
7926 
7927 	/* Get all the module params for configuring this host */
7928 	lpfc_get_cfgparam(phba);
7929 
7930 	/* Set up phase-1 common device driver resources */
7931 	rc = lpfc_setup_driver_resource_phase1(phba);
7932 	if (rc)
7933 		return -ENODEV;
7934 
7935 	/* Before proceed, wait for POST done and device ready */
7936 	rc = lpfc_sli4_post_status_check(phba);
7937 	if (rc)
7938 		return -ENODEV;
7939 
7940 	/* Allocate all driver workqueues here */
7941 
7942 	/* The lpfc_wq workqueue for deferred irq use */
7943 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7944 	if (!phba->wq)
7945 		return -ENOMEM;
7946 
7947 	/*
7948 	 * Initialize timers used by driver
7949 	 */
7950 
7951 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7952 
7953 	/* FCF rediscover timer */
7954 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7955 
7956 	/* CMF congestion timer */
7957 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7958 	phba->cmf_timer.function = lpfc_cmf_timer;
7959 
7960 	/*
7961 	 * Control structure for handling external multi-buffer mailbox
7962 	 * command pass-through.
7963 	 */
7964 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7965 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7966 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7967 
7968 	phba->max_vpi = LPFC_MAX_VPI;
7969 
7970 	/* This will be set to correct value after the read_config mbox */
7971 	phba->max_vports = 0;
7972 
7973 	/* Program the default value of vlan_id and fc_map */
7974 	phba->valid_vlan = 0;
7975 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7976 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7977 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7978 
7979 	/*
7980 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7981 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7982 	 * The WQ create will allocate the ring.
7983 	 */
7984 
7985 	/* Initialize buffer queue management fields */
7986 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7987 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7988 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7989 
7990 	/* for VMID idle timeout if VMID is enabled */
7991 	if (lpfc_is_vmid_enabled(phba))
7992 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7993 
7994 	/*
7995 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7996 	 */
7997 	/* Initialize the Abort buffer list used by driver */
7998 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
7999 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8000 
8001 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8002 		/* Initialize the Abort nvme buffer list used by driver */
8003 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8004 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8005 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8006 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8007 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8008 	}
8009 
8010 	/* This abort list used by worker thread */
8011 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8012 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8013 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8014 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8015 
8016 	/*
8017 	 * Initialize driver internal slow-path work queues
8018 	 */
8019 
8020 	/* Driver internel slow-path CQ Event pool */
8021 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8022 	/* Response IOCB work queue list */
8023 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8024 	/* Asynchronous event CQ Event work queue list */
8025 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8026 	/* Slow-path XRI aborted CQ Event work queue list */
8027 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8028 	/* Receive queue CQ Event work queue list */
8029 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8030 
8031 	/* Initialize extent block lists. */
8032 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8033 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8034 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8035 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8036 
8037 	/* Initialize mboxq lists. If the early init routines fail
8038 	 * these lists need to be correctly initialized.
8039 	 */
8040 	INIT_LIST_HEAD(&phba->sli.mboxq);
8041 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8042 
8043 	/* initialize optic_state to 0xFF */
8044 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8045 
8046 	/* Allocate device driver memory */
8047 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8048 	if (rc)
8049 		goto out_destroy_workqueue;
8050 
8051 	/* IF Type 2 ports get initialized now. */
8052 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8053 	    LPFC_SLI_INTF_IF_TYPE_2) {
8054 		rc = lpfc_pci_function_reset(phba);
8055 		if (unlikely(rc)) {
8056 			rc = -ENODEV;
8057 			goto out_free_mem;
8058 		}
8059 		phba->temp_sensor_support = 1;
8060 	}
8061 
8062 	/* Create the bootstrap mailbox command */
8063 	rc = lpfc_create_bootstrap_mbox(phba);
8064 	if (unlikely(rc))
8065 		goto out_free_mem;
8066 
8067 	/* Set up the host's endian order with the device. */
8068 	rc = lpfc_setup_endian_order(phba);
8069 	if (unlikely(rc))
8070 		goto out_free_bsmbx;
8071 
8072 	/* Set up the hba's configuration parameters. */
8073 	rc = lpfc_sli4_read_config(phba);
8074 	if (unlikely(rc))
8075 		goto out_free_bsmbx;
8076 
8077 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8078 		/* Right now the link is down, if FA-PWWN is configured the
8079 		 * firmware will try FLOGI before the driver gets a link up.
8080 		 * If it fails, the driver should get a MISCONFIGURED async
8081 		 * event which will clear this flag. The only notification
8082 		 * the driver gets is if it fails, if it succeeds there is no
8083 		 * notification given. Assume success.
8084 		 */
8085 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8086 	}
8087 
8088 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8089 	if (unlikely(rc))
8090 		goto out_free_bsmbx;
8091 
8092 	/* IF Type 0 ports get initialized now. */
8093 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8094 	    LPFC_SLI_INTF_IF_TYPE_0) {
8095 		rc = lpfc_pci_function_reset(phba);
8096 		if (unlikely(rc))
8097 			goto out_free_bsmbx;
8098 	}
8099 
8100 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8101 						       GFP_KERNEL);
8102 	if (!mboxq) {
8103 		rc = -ENOMEM;
8104 		goto out_free_bsmbx;
8105 	}
8106 
8107 	/* Check for NVMET being configured */
8108 	phba->nvmet_support = 0;
8109 	if (lpfc_enable_nvmet_cnt) {
8110 
8111 		/* First get WWN of HBA instance */
8112 		lpfc_read_nv(phba, mboxq);
8113 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8114 		if (rc != MBX_SUCCESS) {
8115 			lpfc_printf_log(phba, KERN_ERR,
8116 					LOG_TRACE_EVENT,
8117 					"6016 Mailbox failed , mbxCmd x%x "
8118 					"READ_NV, mbxStatus x%x\n",
8119 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8120 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8121 			mempool_free(mboxq, phba->mbox_mem_pool);
8122 			rc = -EIO;
8123 			goto out_free_bsmbx;
8124 		}
8125 		mb = &mboxq->u.mb;
8126 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8127 		       sizeof(uint64_t));
8128 		wwn = cpu_to_be64(wwn);
8129 		phba->sli4_hba.wwnn.u.name = wwn;
8130 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8131 		       sizeof(uint64_t));
8132 		/* wwn is WWPN of HBA instance */
8133 		wwn = cpu_to_be64(wwn);
8134 		phba->sli4_hba.wwpn.u.name = wwn;
8135 
8136 		/* Check to see if it matches any module parameter */
8137 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8138 			if (wwn == lpfc_enable_nvmet[i]) {
8139 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8140 				if (lpfc_nvmet_mem_alloc(phba))
8141 					break;
8142 
8143 				phba->nvmet_support = 1; /* a match */
8144 
8145 				lpfc_printf_log(phba, KERN_ERR,
8146 						LOG_TRACE_EVENT,
8147 						"6017 NVME Target %016llx\n",
8148 						wwn);
8149 #else
8150 				lpfc_printf_log(phba, KERN_ERR,
8151 						LOG_TRACE_EVENT,
8152 						"6021 Can't enable NVME Target."
8153 						" NVME_TARGET_FC infrastructure"
8154 						" is not in kernel\n");
8155 #endif
8156 				/* Not supported for NVMET */
8157 				phba->cfg_xri_rebalancing = 0;
8158 				if (phba->irq_chann_mode == NHT_MODE) {
8159 					phba->cfg_irq_chann =
8160 						phba->sli4_hba.num_present_cpu;
8161 					phba->cfg_hdw_queue =
8162 						phba->sli4_hba.num_present_cpu;
8163 					phba->irq_chann_mode = NORMAL_MODE;
8164 				}
8165 				break;
8166 			}
8167 		}
8168 	}
8169 
8170 	lpfc_nvme_mod_param_dep(phba);
8171 
8172 	/*
8173 	 * Get sli4 parameters that override parameters from Port capabilities.
8174 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8175 	 * back in conflict.
8176 	 */
8177 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8178 	if (rc) {
8179 		if_type = bf_get(lpfc_sli_intf_if_type,
8180 				 &phba->sli4_hba.sli_intf);
8181 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8182 				&phba->sli4_hba.sli_intf);
8183 		if (phba->sli4_hba.extents_in_use &&
8184 		    phba->sli4_hba.rpi_hdrs_in_use) {
8185 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8186 					"2999 Unsupported SLI4 Parameters "
8187 					"Extents and RPI headers enabled.\n");
8188 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8189 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8190 				mempool_free(mboxq, phba->mbox_mem_pool);
8191 				rc = -EIO;
8192 				goto out_free_bsmbx;
8193 			}
8194 		}
8195 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8196 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8197 			mempool_free(mboxq, phba->mbox_mem_pool);
8198 			rc = -EIO;
8199 			goto out_free_bsmbx;
8200 		}
8201 	}
8202 
8203 	/*
8204 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8205 	 * for boundary conditions in its max_sgl_segment template.
8206 	 */
8207 	extra = 2;
8208 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8209 		extra++;
8210 
8211 	/*
8212 	 * It doesn't matter what family our adapter is in, we are
8213 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8214 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8215 	 */
8216 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8217 
8218 	/*
8219 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8220 	 * used to create the sg_dma_buf_pool must be calculated.
8221 	 */
8222 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8223 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8224 
8225 		/*
8226 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8227 		 * the FCP rsp, and a SGE. Sice we have no control
8228 		 * over how many protection segments the SCSI Layer
8229 		 * will hand us (ie: there could be one for every block
8230 		 * in the IO), just allocate enough SGEs to accomidate
8231 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8232 		 * to minimize the risk of running out.
8233 		 */
8234 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8235 				sizeof(struct fcp_rsp) + max_buf_size;
8236 
8237 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8238 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8239 
8240 		/*
8241 		 * If supporting DIF, reduce the seg count for scsi to
8242 		 * allow room for the DIF sges.
8243 		 */
8244 		if (phba->cfg_enable_bg &&
8245 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8246 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8247 		else
8248 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8249 
8250 	} else {
8251 		/*
8252 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8253 		 * the FCP rsp, a SGE for each, and a SGE for up to
8254 		 * cfg_sg_seg_cnt data segments.
8255 		 */
8256 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8257 				sizeof(struct fcp_rsp) +
8258 				((phba->cfg_sg_seg_cnt + extra) *
8259 				sizeof(struct sli4_sge));
8260 
8261 		/* Total SGEs for scsi_sg_list */
8262 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8263 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8264 
8265 		/*
8266 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8267 		 * need to post 1 page for the SGL.
8268 		 */
8269 	}
8270 
8271 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8272 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8273 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8274 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8275 	else
8276 		phba->cfg_sg_dma_buf_size =
8277 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8278 
8279 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8280 			       sizeof(struct sli4_sge);
8281 
8282 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8283 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8284 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8285 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8286 					"6300 Reducing NVME sg segment "
8287 					"cnt to %d\n",
8288 					LPFC_MAX_NVME_SEG_CNT);
8289 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8290 		} else
8291 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8292 	}
8293 
8294 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8295 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8296 			"total:%d scsi:%d nvme:%d\n",
8297 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8298 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8299 			phba->cfg_nvme_seg_cnt);
8300 
8301 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8302 		i = phba->cfg_sg_dma_buf_size;
8303 	else
8304 		i = SLI4_PAGE_SIZE;
8305 
8306 	phba->lpfc_sg_dma_buf_pool =
8307 			dma_pool_create("lpfc_sg_dma_buf_pool",
8308 					&phba->pcidev->dev,
8309 					phba->cfg_sg_dma_buf_size,
8310 					i, 0);
8311 	if (!phba->lpfc_sg_dma_buf_pool) {
8312 		rc = -ENOMEM;
8313 		goto out_free_bsmbx;
8314 	}
8315 
8316 	phba->lpfc_cmd_rsp_buf_pool =
8317 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8318 					&phba->pcidev->dev,
8319 					sizeof(struct fcp_cmnd) +
8320 					sizeof(struct fcp_rsp),
8321 					i, 0);
8322 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8323 		rc = -ENOMEM;
8324 		goto out_free_sg_dma_buf;
8325 	}
8326 
8327 	mempool_free(mboxq, phba->mbox_mem_pool);
8328 
8329 	/* Verify OAS is supported */
8330 	lpfc_sli4_oas_verify(phba);
8331 
8332 	/* Verify RAS support on adapter */
8333 	lpfc_sli4_ras_init(phba);
8334 
8335 	/* Verify all the SLI4 queues */
8336 	rc = lpfc_sli4_queue_verify(phba);
8337 	if (rc)
8338 		goto out_free_cmd_rsp_buf;
8339 
8340 	/* Create driver internal CQE event pool */
8341 	rc = lpfc_sli4_cq_event_pool_create(phba);
8342 	if (rc)
8343 		goto out_free_cmd_rsp_buf;
8344 
8345 	/* Initialize sgl lists per host */
8346 	lpfc_init_sgl_list(phba);
8347 
8348 	/* Allocate and initialize active sgl array */
8349 	rc = lpfc_init_active_sgl_array(phba);
8350 	if (rc) {
8351 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8352 				"1430 Failed to initialize sgl list.\n");
8353 		goto out_destroy_cq_event_pool;
8354 	}
8355 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8356 	if (rc) {
8357 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8358 				"1432 Failed to initialize rpi headers.\n");
8359 		goto out_free_active_sgl;
8360 	}
8361 
8362 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8363 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8364 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8365 					 GFP_KERNEL);
8366 	if (!phba->fcf.fcf_rr_bmask) {
8367 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8368 				"2759 Failed allocate memory for FCF round "
8369 				"robin failover bmask\n");
8370 		rc = -ENOMEM;
8371 		goto out_remove_rpi_hdrs;
8372 	}
8373 
8374 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8375 					    sizeof(struct lpfc_hba_eq_hdl),
8376 					    GFP_KERNEL);
8377 	if (!phba->sli4_hba.hba_eq_hdl) {
8378 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8379 				"2572 Failed allocate memory for "
8380 				"fast-path per-EQ handle array\n");
8381 		rc = -ENOMEM;
8382 		goto out_free_fcf_rr_bmask;
8383 	}
8384 
8385 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8386 					sizeof(struct lpfc_vector_map_info),
8387 					GFP_KERNEL);
8388 	if (!phba->sli4_hba.cpu_map) {
8389 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8390 				"3327 Failed allocate memory for msi-x "
8391 				"interrupt vector mapping\n");
8392 		rc = -ENOMEM;
8393 		goto out_free_hba_eq_hdl;
8394 	}
8395 
8396 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8397 	if (!phba->sli4_hba.eq_info) {
8398 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8399 				"3321 Failed allocation for per_cpu stats\n");
8400 		rc = -ENOMEM;
8401 		goto out_free_hba_cpu_map;
8402 	}
8403 
8404 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8405 					   sizeof(*phba->sli4_hba.idle_stat),
8406 					   GFP_KERNEL);
8407 	if (!phba->sli4_hba.idle_stat) {
8408 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8409 				"3390 Failed allocation for idle_stat\n");
8410 		rc = -ENOMEM;
8411 		goto out_free_hba_eq_info;
8412 	}
8413 
8414 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8415 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8416 	if (!phba->sli4_hba.c_stat) {
8417 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8418 				"3332 Failed allocating per cpu hdwq stats\n");
8419 		rc = -ENOMEM;
8420 		goto out_free_hba_idle_stat;
8421 	}
8422 #endif
8423 
8424 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8425 	if (!phba->cmf_stat) {
8426 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8427 				"3331 Failed allocating per cpu cgn stats\n");
8428 		rc = -ENOMEM;
8429 		goto out_free_hba_hdwq_info;
8430 	}
8431 
8432 	/*
8433 	 * Enable sr-iov virtual functions if supported and configured
8434 	 * through the module parameter.
8435 	 */
8436 	if (phba->cfg_sriov_nr_virtfn > 0) {
8437 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8438 						 phba->cfg_sriov_nr_virtfn);
8439 		if (rc) {
8440 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8441 					"3020 Requested number of SR-IOV "
8442 					"virtual functions (%d) is not "
8443 					"supported\n",
8444 					phba->cfg_sriov_nr_virtfn);
8445 			phba->cfg_sriov_nr_virtfn = 0;
8446 		}
8447 	}
8448 
8449 	return 0;
8450 
8451 out_free_hba_hdwq_info:
8452 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8453 	free_percpu(phba->sli4_hba.c_stat);
8454 out_free_hba_idle_stat:
8455 #endif
8456 	kfree(phba->sli4_hba.idle_stat);
8457 out_free_hba_eq_info:
8458 	free_percpu(phba->sli4_hba.eq_info);
8459 out_free_hba_cpu_map:
8460 	kfree(phba->sli4_hba.cpu_map);
8461 out_free_hba_eq_hdl:
8462 	kfree(phba->sli4_hba.hba_eq_hdl);
8463 out_free_fcf_rr_bmask:
8464 	kfree(phba->fcf.fcf_rr_bmask);
8465 out_remove_rpi_hdrs:
8466 	lpfc_sli4_remove_rpi_hdrs(phba);
8467 out_free_active_sgl:
8468 	lpfc_free_active_sgl(phba);
8469 out_destroy_cq_event_pool:
8470 	lpfc_sli4_cq_event_pool_destroy(phba);
8471 out_free_cmd_rsp_buf:
8472 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8473 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8474 out_free_sg_dma_buf:
8475 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8476 	phba->lpfc_sg_dma_buf_pool = NULL;
8477 out_free_bsmbx:
8478 	lpfc_destroy_bootstrap_mbox(phba);
8479 out_free_mem:
8480 	lpfc_mem_free(phba);
8481 out_destroy_workqueue:
8482 	destroy_workqueue(phba->wq);
8483 	phba->wq = NULL;
8484 	return rc;
8485 }
8486 
8487 /**
8488  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8489  * @phba: pointer to lpfc hba data structure.
8490  *
8491  * This routine is invoked to unset the driver internal resources set up
8492  * specific for supporting the SLI-4 HBA device it attached to.
8493  **/
8494 static void
8495 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8496 {
8497 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8498 
8499 	free_percpu(phba->sli4_hba.eq_info);
8500 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8501 	free_percpu(phba->sli4_hba.c_stat);
8502 #endif
8503 	free_percpu(phba->cmf_stat);
8504 	kfree(phba->sli4_hba.idle_stat);
8505 
8506 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8507 	kfree(phba->sli4_hba.cpu_map);
8508 	phba->sli4_hba.num_possible_cpu = 0;
8509 	phba->sli4_hba.num_present_cpu = 0;
8510 	phba->sli4_hba.curr_disp_cpu = 0;
8511 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8512 
8513 	/* Free memory allocated for fast-path work queue handles */
8514 	kfree(phba->sli4_hba.hba_eq_hdl);
8515 
8516 	/* Free the allocated rpi headers. */
8517 	lpfc_sli4_remove_rpi_hdrs(phba);
8518 	lpfc_sli4_remove_rpis(phba);
8519 
8520 	/* Free eligible FCF index bmask */
8521 	kfree(phba->fcf.fcf_rr_bmask);
8522 
8523 	/* Free the ELS sgl list */
8524 	lpfc_free_active_sgl(phba);
8525 	lpfc_free_els_sgl_list(phba);
8526 	lpfc_free_nvmet_sgl_list(phba);
8527 
8528 	/* Free the completion queue EQ event pool */
8529 	lpfc_sli4_cq_event_release_all(phba);
8530 	lpfc_sli4_cq_event_pool_destroy(phba);
8531 
8532 	/* Release resource identifiers. */
8533 	lpfc_sli4_dealloc_resource_identifiers(phba);
8534 
8535 	/* Free the bsmbx region. */
8536 	lpfc_destroy_bootstrap_mbox(phba);
8537 
8538 	/* Free the SLI Layer memory with SLI4 HBAs */
8539 	lpfc_mem_free_all(phba);
8540 
8541 	/* Free the current connect table */
8542 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8543 		&phba->fcf_conn_rec_list, list) {
8544 		list_del_init(&conn_entry->list);
8545 		kfree(conn_entry);
8546 	}
8547 
8548 	return;
8549 }
8550 
8551 /**
8552  * lpfc_init_api_table_setup - Set up init api function jump table
8553  * @phba: The hba struct for which this call is being executed.
8554  * @dev_grp: The HBA PCI-Device group number.
8555  *
8556  * This routine sets up the device INIT interface API function jump table
8557  * in @phba struct.
8558  *
8559  * Returns: 0 - success, -ENODEV - failure.
8560  **/
8561 int
8562 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8563 {
8564 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8565 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8566 	phba->lpfc_selective_reset = lpfc_selective_reset;
8567 	switch (dev_grp) {
8568 	case LPFC_PCI_DEV_LP:
8569 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8570 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8571 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8572 		break;
8573 	case LPFC_PCI_DEV_OC:
8574 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8575 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8576 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8577 		break;
8578 	default:
8579 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8580 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8581 				dev_grp);
8582 		return -ENODEV;
8583 	}
8584 	return 0;
8585 }
8586 
8587 /**
8588  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8589  * @phba: pointer to lpfc hba data structure.
8590  *
8591  * This routine is invoked to set up the driver internal resources after the
8592  * device specific resource setup to support the HBA device it attached to.
8593  *
8594  * Return codes
8595  * 	0 - successful
8596  * 	other values - error
8597  **/
8598 static int
8599 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8600 {
8601 	int error;
8602 
8603 	/* Startup the kernel thread for this host adapter. */
8604 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8605 					  "lpfc_worker_%d", phba->brd_no);
8606 	if (IS_ERR(phba->worker_thread)) {
8607 		error = PTR_ERR(phba->worker_thread);
8608 		return error;
8609 	}
8610 
8611 	return 0;
8612 }
8613 
8614 /**
8615  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8616  * @phba: pointer to lpfc hba data structure.
8617  *
8618  * This routine is invoked to unset the driver internal resources set up after
8619  * the device specific resource setup for supporting the HBA device it
8620  * attached to.
8621  **/
8622 static void
8623 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8624 {
8625 	if (phba->wq) {
8626 		destroy_workqueue(phba->wq);
8627 		phba->wq = NULL;
8628 	}
8629 
8630 	/* Stop kernel worker thread */
8631 	if (phba->worker_thread)
8632 		kthread_stop(phba->worker_thread);
8633 }
8634 
8635 /**
8636  * lpfc_free_iocb_list - Free iocb list.
8637  * @phba: pointer to lpfc hba data structure.
8638  *
8639  * This routine is invoked to free the driver's IOCB list and memory.
8640  **/
8641 void
8642 lpfc_free_iocb_list(struct lpfc_hba *phba)
8643 {
8644 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8645 
8646 	spin_lock_irq(&phba->hbalock);
8647 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8648 				 &phba->lpfc_iocb_list, list) {
8649 		list_del(&iocbq_entry->list);
8650 		kfree(iocbq_entry);
8651 		phba->total_iocbq_bufs--;
8652 	}
8653 	spin_unlock_irq(&phba->hbalock);
8654 
8655 	return;
8656 }
8657 
8658 /**
8659  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8660  * @phba: pointer to lpfc hba data structure.
8661  * @iocb_count: number of requested iocbs
8662  *
8663  * This routine is invoked to allocate and initizlize the driver's IOCB
8664  * list and set up the IOCB tag array accordingly.
8665  *
8666  * Return codes
8667  *	0 - successful
8668  *	other values - error
8669  **/
8670 int
8671 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8672 {
8673 	struct lpfc_iocbq *iocbq_entry = NULL;
8674 	uint16_t iotag;
8675 	int i;
8676 
8677 	/* Initialize and populate the iocb list per host.  */
8678 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8679 	for (i = 0; i < iocb_count; i++) {
8680 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8681 		if (iocbq_entry == NULL) {
8682 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8683 				"expected %d count. Unloading driver.\n",
8684 				__func__, i, iocb_count);
8685 			goto out_free_iocbq;
8686 		}
8687 
8688 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8689 		if (iotag == 0) {
8690 			kfree(iocbq_entry);
8691 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8692 				"Unloading driver.\n", __func__);
8693 			goto out_free_iocbq;
8694 		}
8695 		iocbq_entry->sli4_lxritag = NO_XRI;
8696 		iocbq_entry->sli4_xritag = NO_XRI;
8697 
8698 		spin_lock_irq(&phba->hbalock);
8699 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8700 		phba->total_iocbq_bufs++;
8701 		spin_unlock_irq(&phba->hbalock);
8702 	}
8703 
8704 	return 0;
8705 
8706 out_free_iocbq:
8707 	lpfc_free_iocb_list(phba);
8708 
8709 	return -ENOMEM;
8710 }
8711 
8712 /**
8713  * lpfc_free_sgl_list - Free a given sgl list.
8714  * @phba: pointer to lpfc hba data structure.
8715  * @sglq_list: pointer to the head of sgl list.
8716  *
8717  * This routine is invoked to free a give sgl list and memory.
8718  **/
8719 void
8720 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8721 {
8722 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8723 
8724 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8725 		list_del(&sglq_entry->list);
8726 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8727 		kfree(sglq_entry);
8728 	}
8729 }
8730 
8731 /**
8732  * lpfc_free_els_sgl_list - Free els sgl list.
8733  * @phba: pointer to lpfc hba data structure.
8734  *
8735  * This routine is invoked to free the driver's els sgl list and memory.
8736  **/
8737 static void
8738 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8739 {
8740 	LIST_HEAD(sglq_list);
8741 
8742 	/* Retrieve all els sgls from driver list */
8743 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8744 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8745 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8746 
8747 	/* Now free the sgl list */
8748 	lpfc_free_sgl_list(phba, &sglq_list);
8749 }
8750 
8751 /**
8752  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8753  * @phba: pointer to lpfc hba data structure.
8754  *
8755  * This routine is invoked to free the driver's nvmet sgl list and memory.
8756  **/
8757 static void
8758 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8759 {
8760 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8761 	LIST_HEAD(sglq_list);
8762 
8763 	/* Retrieve all nvmet sgls from driver list */
8764 	spin_lock_irq(&phba->hbalock);
8765 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8766 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8767 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8768 	spin_unlock_irq(&phba->hbalock);
8769 
8770 	/* Now free the sgl list */
8771 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8772 		list_del(&sglq_entry->list);
8773 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8774 		kfree(sglq_entry);
8775 	}
8776 
8777 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8778 	 * The next initialization cycle sets the count and allocates
8779 	 * the sgls over again.
8780 	 */
8781 	phba->sli4_hba.nvmet_xri_cnt = 0;
8782 }
8783 
8784 /**
8785  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8786  * @phba: pointer to lpfc hba data structure.
8787  *
8788  * This routine is invoked to allocate the driver's active sgl memory.
8789  * This array will hold the sglq_entry's for active IOs.
8790  **/
8791 static int
8792 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8793 {
8794 	int size;
8795 	size = sizeof(struct lpfc_sglq *);
8796 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8797 
8798 	phba->sli4_hba.lpfc_sglq_active_list =
8799 		kzalloc(size, GFP_KERNEL);
8800 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8801 		return -ENOMEM;
8802 	return 0;
8803 }
8804 
8805 /**
8806  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8807  * @phba: pointer to lpfc hba data structure.
8808  *
8809  * This routine is invoked to walk through the array of active sglq entries
8810  * and free all of the resources.
8811  * This is just a place holder for now.
8812  **/
8813 static void
8814 lpfc_free_active_sgl(struct lpfc_hba *phba)
8815 {
8816 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8817 }
8818 
8819 /**
8820  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8821  * @phba: pointer to lpfc hba data structure.
8822  *
8823  * This routine is invoked to allocate and initizlize the driver's sgl
8824  * list and set up the sgl xritag tag array accordingly.
8825  *
8826  **/
8827 static void
8828 lpfc_init_sgl_list(struct lpfc_hba *phba)
8829 {
8830 	/* Initialize and populate the sglq list per host/VF. */
8831 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8832 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8833 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8834 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8835 
8836 	/* els xri-sgl book keeping */
8837 	phba->sli4_hba.els_xri_cnt = 0;
8838 
8839 	/* nvme xri-buffer book keeping */
8840 	phba->sli4_hba.io_xri_cnt = 0;
8841 }
8842 
8843 /**
8844  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8845  * @phba: pointer to lpfc hba data structure.
8846  *
8847  * This routine is invoked to post rpi header templates to the
8848  * port for those SLI4 ports that do not support extents.  This routine
8849  * posts a PAGE_SIZE memory region to the port to hold up to
8850  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8851  * and should be called only when interrupts are disabled.
8852  *
8853  * Return codes
8854  * 	0 - successful
8855  *	-ERROR - otherwise.
8856  **/
8857 int
8858 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8859 {
8860 	int rc = 0;
8861 	struct lpfc_rpi_hdr *rpi_hdr;
8862 
8863 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8864 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8865 		return rc;
8866 	if (phba->sli4_hba.extents_in_use)
8867 		return -EIO;
8868 
8869 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8870 	if (!rpi_hdr) {
8871 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8872 				"0391 Error during rpi post operation\n");
8873 		lpfc_sli4_remove_rpis(phba);
8874 		rc = -ENODEV;
8875 	}
8876 
8877 	return rc;
8878 }
8879 
8880 /**
8881  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8882  * @phba: pointer to lpfc hba data structure.
8883  *
8884  * This routine is invoked to allocate a single 4KB memory region to
8885  * support rpis and stores them in the phba.  This single region
8886  * provides support for up to 64 rpis.  The region is used globally
8887  * by the device.
8888  *
8889  * Returns:
8890  *   A valid rpi hdr on success.
8891  *   A NULL pointer on any failure.
8892  **/
8893 struct lpfc_rpi_hdr *
8894 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8895 {
8896 	uint16_t rpi_limit, curr_rpi_range;
8897 	struct lpfc_dmabuf *dmabuf;
8898 	struct lpfc_rpi_hdr *rpi_hdr;
8899 
8900 	/*
8901 	 * If the SLI4 port supports extents, posting the rpi header isn't
8902 	 * required.  Set the expected maximum count and let the actual value
8903 	 * get set when extents are fully allocated.
8904 	 */
8905 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8906 		return NULL;
8907 	if (phba->sli4_hba.extents_in_use)
8908 		return NULL;
8909 
8910 	/* The limit on the logical index is just the max_rpi count. */
8911 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8912 
8913 	spin_lock_irq(&phba->hbalock);
8914 	/*
8915 	 * Establish the starting RPI in this header block.  The starting
8916 	 * rpi is normalized to a zero base because the physical rpi is
8917 	 * port based.
8918 	 */
8919 	curr_rpi_range = phba->sli4_hba.next_rpi;
8920 	spin_unlock_irq(&phba->hbalock);
8921 
8922 	/* Reached full RPI range */
8923 	if (curr_rpi_range == rpi_limit)
8924 		return NULL;
8925 
8926 	/*
8927 	 * First allocate the protocol header region for the port.  The
8928 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8929 	 */
8930 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8931 	if (!dmabuf)
8932 		return NULL;
8933 
8934 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8935 					  LPFC_HDR_TEMPLATE_SIZE,
8936 					  &dmabuf->phys, GFP_KERNEL);
8937 	if (!dmabuf->virt) {
8938 		rpi_hdr = NULL;
8939 		goto err_free_dmabuf;
8940 	}
8941 
8942 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8943 		rpi_hdr = NULL;
8944 		goto err_free_coherent;
8945 	}
8946 
8947 	/* Save the rpi header data for cleanup later. */
8948 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8949 	if (!rpi_hdr)
8950 		goto err_free_coherent;
8951 
8952 	rpi_hdr->dmabuf = dmabuf;
8953 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8954 	rpi_hdr->page_count = 1;
8955 	spin_lock_irq(&phba->hbalock);
8956 
8957 	/* The rpi_hdr stores the logical index only. */
8958 	rpi_hdr->start_rpi = curr_rpi_range;
8959 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8960 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8961 
8962 	spin_unlock_irq(&phba->hbalock);
8963 	return rpi_hdr;
8964 
8965  err_free_coherent:
8966 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8967 			  dmabuf->virt, dmabuf->phys);
8968  err_free_dmabuf:
8969 	kfree(dmabuf);
8970 	return NULL;
8971 }
8972 
8973 /**
8974  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8975  * @phba: pointer to lpfc hba data structure.
8976  *
8977  * This routine is invoked to remove all memory resources allocated
8978  * to support rpis for SLI4 ports not supporting extents. This routine
8979  * presumes the caller has released all rpis consumed by fabric or port
8980  * logins and is prepared to have the header pages removed.
8981  **/
8982 void
8983 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8984 {
8985 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8986 
8987 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8988 		goto exit;
8989 
8990 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8991 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8992 		list_del(&rpi_hdr->list);
8993 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8994 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8995 		kfree(rpi_hdr->dmabuf);
8996 		kfree(rpi_hdr);
8997 	}
8998  exit:
8999 	/* There are no rpis available to the port now. */
9000 	phba->sli4_hba.next_rpi = 0;
9001 }
9002 
9003 /**
9004  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9005  * @pdev: pointer to pci device data structure.
9006  *
9007  * This routine is invoked to allocate the driver hba data structure for an
9008  * HBA device. If the allocation is successful, the phba reference to the
9009  * PCI device data structure is set.
9010  *
9011  * Return codes
9012  *      pointer to @phba - successful
9013  *      NULL - error
9014  **/
9015 static struct lpfc_hba *
9016 lpfc_hba_alloc(struct pci_dev *pdev)
9017 {
9018 	struct lpfc_hba *phba;
9019 
9020 	/* Allocate memory for HBA structure */
9021 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9022 	if (!phba) {
9023 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9024 		return NULL;
9025 	}
9026 
9027 	/* Set reference to PCI device in HBA structure */
9028 	phba->pcidev = pdev;
9029 
9030 	/* Assign an unused board number */
9031 	phba->brd_no = lpfc_get_instance();
9032 	if (phba->brd_no < 0) {
9033 		kfree(phba);
9034 		return NULL;
9035 	}
9036 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9037 
9038 	spin_lock_init(&phba->ct_ev_lock);
9039 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9040 
9041 	return phba;
9042 }
9043 
9044 /**
9045  * lpfc_hba_free - Free driver hba data structure with a device.
9046  * @phba: pointer to lpfc hba data structure.
9047  *
9048  * This routine is invoked to free the driver hba data structure with an
9049  * HBA device.
9050  **/
9051 static void
9052 lpfc_hba_free(struct lpfc_hba *phba)
9053 {
9054 	if (phba->sli_rev == LPFC_SLI_REV4)
9055 		kfree(phba->sli4_hba.hdwq);
9056 
9057 	/* Release the driver assigned board number */
9058 	idr_remove(&lpfc_hba_index, phba->brd_no);
9059 
9060 	/* Free memory allocated with sli3 rings */
9061 	kfree(phba->sli.sli3_ring);
9062 	phba->sli.sli3_ring = NULL;
9063 
9064 	kfree(phba);
9065 	return;
9066 }
9067 
9068 /**
9069  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9070  * @vport: pointer to lpfc vport data structure.
9071  *
9072  * This routine is will setup initial FDMI attribute masks for
9073  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9074  * to get these attributes first before falling back, the attribute
9075  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9076  **/
9077 void
9078 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9079 {
9080 	struct lpfc_hba *phba = vport->phba;
9081 
9082 	vport->load_flag |= FC_ALLOW_FDMI;
9083 	if (phba->cfg_enable_SmartSAN ||
9084 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9085 		/* Setup appropriate attribute masks */
9086 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9087 		if (phba->cfg_enable_SmartSAN)
9088 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9089 		else
9090 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9091 	}
9092 
9093 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9094 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9095 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9096 }
9097 
9098 /**
9099  * lpfc_create_shost - Create hba physical port with associated scsi host.
9100  * @phba: pointer to lpfc hba data structure.
9101  *
9102  * This routine is invoked to create HBA physical port and associate a SCSI
9103  * host with it.
9104  *
9105  * Return codes
9106  *      0 - successful
9107  *      other values - error
9108  **/
9109 static int
9110 lpfc_create_shost(struct lpfc_hba *phba)
9111 {
9112 	struct lpfc_vport *vport;
9113 	struct Scsi_Host  *shost;
9114 
9115 	/* Initialize HBA FC structure */
9116 	phba->fc_edtov = FF_DEF_EDTOV;
9117 	phba->fc_ratov = FF_DEF_RATOV;
9118 	phba->fc_altov = FF_DEF_ALTOV;
9119 	phba->fc_arbtov = FF_DEF_ARBTOV;
9120 
9121 	atomic_set(&phba->sdev_cnt, 0);
9122 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9123 	if (!vport)
9124 		return -ENODEV;
9125 
9126 	shost = lpfc_shost_from_vport(vport);
9127 	phba->pport = vport;
9128 
9129 	if (phba->nvmet_support) {
9130 		/* Only 1 vport (pport) will support NVME target */
9131 		phba->targetport = NULL;
9132 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9133 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9134 				"6076 NVME Target Found\n");
9135 	}
9136 
9137 	lpfc_debugfs_initialize(vport);
9138 	/* Put reference to SCSI host to driver's device private data */
9139 	pci_set_drvdata(phba->pcidev, shost);
9140 
9141 	lpfc_setup_fdmi_mask(vport);
9142 
9143 	/*
9144 	 * At this point we are fully registered with PSA. In addition,
9145 	 * any initial discovery should be completed.
9146 	 */
9147 	return 0;
9148 }
9149 
9150 /**
9151  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9152  * @phba: pointer to lpfc hba data structure.
9153  *
9154  * This routine is invoked to destroy HBA physical port and the associated
9155  * SCSI host.
9156  **/
9157 static void
9158 lpfc_destroy_shost(struct lpfc_hba *phba)
9159 {
9160 	struct lpfc_vport *vport = phba->pport;
9161 
9162 	/* Destroy physical port that associated with the SCSI host */
9163 	destroy_port(vport);
9164 
9165 	return;
9166 }
9167 
9168 /**
9169  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9170  * @phba: pointer to lpfc hba data structure.
9171  * @shost: the shost to be used to detect Block guard settings.
9172  *
9173  * This routine sets up the local Block guard protocol settings for @shost.
9174  * This routine also allocates memory for debugging bg buffers.
9175  **/
9176 static void
9177 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9178 {
9179 	uint32_t old_mask;
9180 	uint32_t old_guard;
9181 
9182 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9183 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9184 				"1478 Registering BlockGuard with the "
9185 				"SCSI layer\n");
9186 
9187 		old_mask = phba->cfg_prot_mask;
9188 		old_guard = phba->cfg_prot_guard;
9189 
9190 		/* Only allow supported values */
9191 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9192 			SHOST_DIX_TYPE0_PROTECTION |
9193 			SHOST_DIX_TYPE1_PROTECTION);
9194 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9195 					 SHOST_DIX_GUARD_CRC);
9196 
9197 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9198 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9199 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9200 
9201 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9202 			if ((old_mask != phba->cfg_prot_mask) ||
9203 				(old_guard != phba->cfg_prot_guard))
9204 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9205 					"1475 Registering BlockGuard with the "
9206 					"SCSI layer: mask %d  guard %d\n",
9207 					phba->cfg_prot_mask,
9208 					phba->cfg_prot_guard);
9209 
9210 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9211 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9212 		} else
9213 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9214 				"1479 Not Registering BlockGuard with the SCSI "
9215 				"layer, Bad protection parameters: %d %d\n",
9216 				old_mask, old_guard);
9217 	}
9218 }
9219 
9220 /**
9221  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9222  * @phba: pointer to lpfc hba data structure.
9223  *
9224  * This routine is invoked to perform all the necessary post initialization
9225  * setup for the device.
9226  **/
9227 static void
9228 lpfc_post_init_setup(struct lpfc_hba *phba)
9229 {
9230 	struct Scsi_Host  *shost;
9231 	struct lpfc_adapter_event_header adapter_event;
9232 
9233 	/* Get the default values for Model Name and Description */
9234 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9235 
9236 	/*
9237 	 * hba setup may have changed the hba_queue_depth so we need to
9238 	 * adjust the value of can_queue.
9239 	 */
9240 	shost = pci_get_drvdata(phba->pcidev);
9241 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9242 
9243 	lpfc_host_attrib_init(shost);
9244 
9245 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9246 		spin_lock_irq(shost->host_lock);
9247 		lpfc_poll_start_timer(phba);
9248 		spin_unlock_irq(shost->host_lock);
9249 	}
9250 
9251 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9252 			"0428 Perform SCSI scan\n");
9253 	/* Send board arrival event to upper layer */
9254 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9255 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9256 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9257 				  sizeof(adapter_event),
9258 				  (char *) &adapter_event,
9259 				  LPFC_NL_VENDOR_ID);
9260 	return;
9261 }
9262 
9263 /**
9264  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9265  * @phba: pointer to lpfc hba data structure.
9266  *
9267  * This routine is invoked to set up the PCI device memory space for device
9268  * with SLI-3 interface spec.
9269  *
9270  * Return codes
9271  * 	0 - successful
9272  * 	other values - error
9273  **/
9274 static int
9275 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9276 {
9277 	struct pci_dev *pdev = phba->pcidev;
9278 	unsigned long bar0map_len, bar2map_len;
9279 	int i, hbq_count;
9280 	void *ptr;
9281 	int error;
9282 
9283 	if (!pdev)
9284 		return -ENODEV;
9285 
9286 	/* Set the device DMA mask size */
9287 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9288 	if (error)
9289 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9290 	if (error)
9291 		return error;
9292 	error = -ENODEV;
9293 
9294 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9295 	 * required by each mapping.
9296 	 */
9297 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9298 	bar0map_len = pci_resource_len(pdev, 0);
9299 
9300 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9301 	bar2map_len = pci_resource_len(pdev, 2);
9302 
9303 	/* Map HBA SLIM to a kernel virtual address. */
9304 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9305 	if (!phba->slim_memmap_p) {
9306 		dev_printk(KERN_ERR, &pdev->dev,
9307 			   "ioremap failed for SLIM memory.\n");
9308 		goto out;
9309 	}
9310 
9311 	/* Map HBA Control Registers to a kernel virtual address. */
9312 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9313 	if (!phba->ctrl_regs_memmap_p) {
9314 		dev_printk(KERN_ERR, &pdev->dev,
9315 			   "ioremap failed for HBA control registers.\n");
9316 		goto out_iounmap_slim;
9317 	}
9318 
9319 	/* Allocate memory for SLI-2 structures */
9320 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9321 					       &phba->slim2p.phys, GFP_KERNEL);
9322 	if (!phba->slim2p.virt)
9323 		goto out_iounmap;
9324 
9325 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9326 	phba->mbox_ext = (phba->slim2p.virt +
9327 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9328 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9329 	phba->IOCBs = (phba->slim2p.virt +
9330 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9331 
9332 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9333 						 lpfc_sli_hbq_size(),
9334 						 &phba->hbqslimp.phys,
9335 						 GFP_KERNEL);
9336 	if (!phba->hbqslimp.virt)
9337 		goto out_free_slim;
9338 
9339 	hbq_count = lpfc_sli_hbq_count();
9340 	ptr = phba->hbqslimp.virt;
9341 	for (i = 0; i < hbq_count; ++i) {
9342 		phba->hbqs[i].hbq_virt = ptr;
9343 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9344 		ptr += (lpfc_hbq_defs[i]->entry_count *
9345 			sizeof(struct lpfc_hbq_entry));
9346 	}
9347 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9348 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9349 
9350 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9351 
9352 	phba->MBslimaddr = phba->slim_memmap_p;
9353 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9354 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9355 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9356 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9357 
9358 	return 0;
9359 
9360 out_free_slim:
9361 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9362 			  phba->slim2p.virt, phba->slim2p.phys);
9363 out_iounmap:
9364 	iounmap(phba->ctrl_regs_memmap_p);
9365 out_iounmap_slim:
9366 	iounmap(phba->slim_memmap_p);
9367 out:
9368 	return error;
9369 }
9370 
9371 /**
9372  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9373  * @phba: pointer to lpfc hba data structure.
9374  *
9375  * This routine is invoked to unset the PCI device memory space for device
9376  * with SLI-3 interface spec.
9377  **/
9378 static void
9379 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9380 {
9381 	struct pci_dev *pdev;
9382 
9383 	/* Obtain PCI device reference */
9384 	if (!phba->pcidev)
9385 		return;
9386 	else
9387 		pdev = phba->pcidev;
9388 
9389 	/* Free coherent DMA memory allocated */
9390 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9391 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9392 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9393 			  phba->slim2p.virt, phba->slim2p.phys);
9394 
9395 	/* I/O memory unmap */
9396 	iounmap(phba->ctrl_regs_memmap_p);
9397 	iounmap(phba->slim_memmap_p);
9398 
9399 	return;
9400 }
9401 
9402 /**
9403  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9404  * @phba: pointer to lpfc hba data structure.
9405  *
9406  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9407  * done and check status.
9408  *
9409  * Return 0 if successful, otherwise -ENODEV.
9410  **/
9411 int
9412 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9413 {
9414 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9415 	struct lpfc_register reg_data;
9416 	int i, port_error = 0;
9417 	uint32_t if_type;
9418 
9419 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9420 	memset(&reg_data, 0, sizeof(reg_data));
9421 	if (!phba->sli4_hba.PSMPHRregaddr)
9422 		return -ENODEV;
9423 
9424 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9425 	for (i = 0; i < 3000; i++) {
9426 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9427 			&portsmphr_reg.word0) ||
9428 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9429 			/* Port has a fatal POST error, break out */
9430 			port_error = -ENODEV;
9431 			break;
9432 		}
9433 		if (LPFC_POST_STAGE_PORT_READY ==
9434 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9435 			break;
9436 		msleep(10);
9437 	}
9438 
9439 	/*
9440 	 * If there was a port error during POST, then don't proceed with
9441 	 * other register reads as the data may not be valid.  Just exit.
9442 	 */
9443 	if (port_error) {
9444 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9445 			"1408 Port Failed POST - portsmphr=0x%x, "
9446 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9447 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9448 			portsmphr_reg.word0,
9449 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9450 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9451 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9452 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9453 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9454 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9455 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9456 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9457 	} else {
9458 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9459 				"2534 Device Info: SLIFamily=0x%x, "
9460 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9461 				"SLIHint_2=0x%x, FT=0x%x\n",
9462 				bf_get(lpfc_sli_intf_sli_family,
9463 				       &phba->sli4_hba.sli_intf),
9464 				bf_get(lpfc_sli_intf_slirev,
9465 				       &phba->sli4_hba.sli_intf),
9466 				bf_get(lpfc_sli_intf_if_type,
9467 				       &phba->sli4_hba.sli_intf),
9468 				bf_get(lpfc_sli_intf_sli_hint1,
9469 				       &phba->sli4_hba.sli_intf),
9470 				bf_get(lpfc_sli_intf_sli_hint2,
9471 				       &phba->sli4_hba.sli_intf),
9472 				bf_get(lpfc_sli_intf_func_type,
9473 				       &phba->sli4_hba.sli_intf));
9474 		/*
9475 		 * Check for other Port errors during the initialization
9476 		 * process.  Fail the load if the port did not come up
9477 		 * correctly.
9478 		 */
9479 		if_type = bf_get(lpfc_sli_intf_if_type,
9480 				 &phba->sli4_hba.sli_intf);
9481 		switch (if_type) {
9482 		case LPFC_SLI_INTF_IF_TYPE_0:
9483 			phba->sli4_hba.ue_mask_lo =
9484 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9485 			phba->sli4_hba.ue_mask_hi =
9486 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9487 			uerrlo_reg.word0 =
9488 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9489 			uerrhi_reg.word0 =
9490 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9491 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9492 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9493 				lpfc_printf_log(phba, KERN_ERR,
9494 						LOG_TRACE_EVENT,
9495 						"1422 Unrecoverable Error "
9496 						"Detected during POST "
9497 						"uerr_lo_reg=0x%x, "
9498 						"uerr_hi_reg=0x%x, "
9499 						"ue_mask_lo_reg=0x%x, "
9500 						"ue_mask_hi_reg=0x%x\n",
9501 						uerrlo_reg.word0,
9502 						uerrhi_reg.word0,
9503 						phba->sli4_hba.ue_mask_lo,
9504 						phba->sli4_hba.ue_mask_hi);
9505 				port_error = -ENODEV;
9506 			}
9507 			break;
9508 		case LPFC_SLI_INTF_IF_TYPE_2:
9509 		case LPFC_SLI_INTF_IF_TYPE_6:
9510 			/* Final checks.  The port status should be clean. */
9511 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9512 				&reg_data.word0) ||
9513 				(bf_get(lpfc_sliport_status_err, &reg_data) &&
9514 				 !bf_get(lpfc_sliport_status_rn, &reg_data))) {
9515 				phba->work_status[0] =
9516 					readl(phba->sli4_hba.u.if_type2.
9517 					      ERR1regaddr);
9518 				phba->work_status[1] =
9519 					readl(phba->sli4_hba.u.if_type2.
9520 					      ERR2regaddr);
9521 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9522 					"2888 Unrecoverable port error "
9523 					"following POST: port status reg "
9524 					"0x%x, port_smphr reg 0x%x, "
9525 					"error 1=0x%x, error 2=0x%x\n",
9526 					reg_data.word0,
9527 					portsmphr_reg.word0,
9528 					phba->work_status[0],
9529 					phba->work_status[1]);
9530 				port_error = -ENODEV;
9531 				break;
9532 			}
9533 
9534 			if (lpfc_pldv_detect &&
9535 			    bf_get(lpfc_sli_intf_sli_family,
9536 				   &phba->sli4_hba.sli_intf) ==
9537 					LPFC_SLI_INTF_FAMILY_G6)
9538 				pci_write_config_byte(phba->pcidev,
9539 						      LPFC_SLI_INTF, CFG_PLD);
9540 			break;
9541 		case LPFC_SLI_INTF_IF_TYPE_1:
9542 		default:
9543 			break;
9544 		}
9545 	}
9546 	return port_error;
9547 }
9548 
9549 /**
9550  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9551  * @phba: pointer to lpfc hba data structure.
9552  * @if_type:  The SLI4 interface type getting configured.
9553  *
9554  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9555  * memory map.
9556  **/
9557 static void
9558 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9559 {
9560 	switch (if_type) {
9561 	case LPFC_SLI_INTF_IF_TYPE_0:
9562 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9563 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9564 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9565 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9566 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9567 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9568 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9569 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9570 		phba->sli4_hba.SLIINTFregaddr =
9571 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9572 		break;
9573 	case LPFC_SLI_INTF_IF_TYPE_2:
9574 		phba->sli4_hba.u.if_type2.EQDregaddr =
9575 			phba->sli4_hba.conf_regs_memmap_p +
9576 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9577 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9578 			phba->sli4_hba.conf_regs_memmap_p +
9579 						LPFC_CTL_PORT_ER1_OFFSET;
9580 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9581 			phba->sli4_hba.conf_regs_memmap_p +
9582 						LPFC_CTL_PORT_ER2_OFFSET;
9583 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9584 			phba->sli4_hba.conf_regs_memmap_p +
9585 						LPFC_CTL_PORT_CTL_OFFSET;
9586 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9587 			phba->sli4_hba.conf_regs_memmap_p +
9588 						LPFC_CTL_PORT_STA_OFFSET;
9589 		phba->sli4_hba.SLIINTFregaddr =
9590 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9591 		phba->sli4_hba.PSMPHRregaddr =
9592 			phba->sli4_hba.conf_regs_memmap_p +
9593 						LPFC_CTL_PORT_SEM_OFFSET;
9594 		phba->sli4_hba.RQDBregaddr =
9595 			phba->sli4_hba.conf_regs_memmap_p +
9596 						LPFC_ULP0_RQ_DOORBELL;
9597 		phba->sli4_hba.WQDBregaddr =
9598 			phba->sli4_hba.conf_regs_memmap_p +
9599 						LPFC_ULP0_WQ_DOORBELL;
9600 		phba->sli4_hba.CQDBregaddr =
9601 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9602 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9603 		phba->sli4_hba.MQDBregaddr =
9604 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9605 		phba->sli4_hba.BMBXregaddr =
9606 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9607 		break;
9608 	case LPFC_SLI_INTF_IF_TYPE_6:
9609 		phba->sli4_hba.u.if_type2.EQDregaddr =
9610 			phba->sli4_hba.conf_regs_memmap_p +
9611 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9612 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9613 			phba->sli4_hba.conf_regs_memmap_p +
9614 						LPFC_CTL_PORT_ER1_OFFSET;
9615 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9616 			phba->sli4_hba.conf_regs_memmap_p +
9617 						LPFC_CTL_PORT_ER2_OFFSET;
9618 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9619 			phba->sli4_hba.conf_regs_memmap_p +
9620 						LPFC_CTL_PORT_CTL_OFFSET;
9621 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9622 			phba->sli4_hba.conf_regs_memmap_p +
9623 						LPFC_CTL_PORT_STA_OFFSET;
9624 		phba->sli4_hba.PSMPHRregaddr =
9625 			phba->sli4_hba.conf_regs_memmap_p +
9626 						LPFC_CTL_PORT_SEM_OFFSET;
9627 		phba->sli4_hba.BMBXregaddr =
9628 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9629 		break;
9630 	case LPFC_SLI_INTF_IF_TYPE_1:
9631 	default:
9632 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9633 			   "FATAL - unsupported SLI4 interface type - %d\n",
9634 			   if_type);
9635 		break;
9636 	}
9637 }
9638 
9639 /**
9640  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9641  * @phba: pointer to lpfc hba data structure.
9642  * @if_type: sli if type to operate on.
9643  *
9644  * This routine is invoked to set up SLI4 BAR1 register memory map.
9645  **/
9646 static void
9647 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9648 {
9649 	switch (if_type) {
9650 	case LPFC_SLI_INTF_IF_TYPE_0:
9651 		phba->sli4_hba.PSMPHRregaddr =
9652 			phba->sli4_hba.ctrl_regs_memmap_p +
9653 			LPFC_SLIPORT_IF0_SMPHR;
9654 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9655 			LPFC_HST_ISR0;
9656 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9657 			LPFC_HST_IMR0;
9658 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9659 			LPFC_HST_ISCR0;
9660 		break;
9661 	case LPFC_SLI_INTF_IF_TYPE_6:
9662 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9663 			LPFC_IF6_RQ_DOORBELL;
9664 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9665 			LPFC_IF6_WQ_DOORBELL;
9666 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9667 			LPFC_IF6_CQ_DOORBELL;
9668 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9669 			LPFC_IF6_EQ_DOORBELL;
9670 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9671 			LPFC_IF6_MQ_DOORBELL;
9672 		break;
9673 	case LPFC_SLI_INTF_IF_TYPE_2:
9674 	case LPFC_SLI_INTF_IF_TYPE_1:
9675 	default:
9676 		dev_err(&phba->pcidev->dev,
9677 			   "FATAL - unsupported SLI4 interface type - %d\n",
9678 			   if_type);
9679 		break;
9680 	}
9681 }
9682 
9683 /**
9684  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9685  * @phba: pointer to lpfc hba data structure.
9686  * @vf: virtual function number
9687  *
9688  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9689  * based on the given viftual function number, @vf.
9690  *
9691  * Return 0 if successful, otherwise -ENODEV.
9692  **/
9693 static int
9694 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9695 {
9696 	if (vf > LPFC_VIR_FUNC_MAX)
9697 		return -ENODEV;
9698 
9699 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9700 				vf * LPFC_VFR_PAGE_SIZE +
9701 					LPFC_ULP0_RQ_DOORBELL);
9702 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9703 				vf * LPFC_VFR_PAGE_SIZE +
9704 					LPFC_ULP0_WQ_DOORBELL);
9705 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9706 				vf * LPFC_VFR_PAGE_SIZE +
9707 					LPFC_EQCQ_DOORBELL);
9708 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9709 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9710 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9711 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9712 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9713 	return 0;
9714 }
9715 
9716 /**
9717  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9718  * @phba: pointer to lpfc hba data structure.
9719  *
9720  * This routine is invoked to create the bootstrap mailbox
9721  * region consistent with the SLI-4 interface spec.  This
9722  * routine allocates all memory necessary to communicate
9723  * mailbox commands to the port and sets up all alignment
9724  * needs.  No locks are expected to be held when calling
9725  * this routine.
9726  *
9727  * Return codes
9728  * 	0 - successful
9729  * 	-ENOMEM - could not allocated memory.
9730  **/
9731 static int
9732 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9733 {
9734 	uint32_t bmbx_size;
9735 	struct lpfc_dmabuf *dmabuf;
9736 	struct dma_address *dma_address;
9737 	uint32_t pa_addr;
9738 	uint64_t phys_addr;
9739 
9740 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9741 	if (!dmabuf)
9742 		return -ENOMEM;
9743 
9744 	/*
9745 	 * The bootstrap mailbox region is comprised of 2 parts
9746 	 * plus an alignment restriction of 16 bytes.
9747 	 */
9748 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9749 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9750 					  &dmabuf->phys, GFP_KERNEL);
9751 	if (!dmabuf->virt) {
9752 		kfree(dmabuf);
9753 		return -ENOMEM;
9754 	}
9755 
9756 	/*
9757 	 * Initialize the bootstrap mailbox pointers now so that the register
9758 	 * operations are simple later.  The mailbox dma address is required
9759 	 * to be 16-byte aligned.  Also align the virtual memory as each
9760 	 * maibox is copied into the bmbx mailbox region before issuing the
9761 	 * command to the port.
9762 	 */
9763 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9764 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9765 
9766 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9767 					      LPFC_ALIGN_16_BYTE);
9768 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9769 					      LPFC_ALIGN_16_BYTE);
9770 
9771 	/*
9772 	 * Set the high and low physical addresses now.  The SLI4 alignment
9773 	 * requirement is 16 bytes and the mailbox is posted to the port
9774 	 * as two 30-bit addresses.  The other data is a bit marking whether
9775 	 * the 30-bit address is the high or low address.
9776 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9777 	 * clean on 32 bit machines.
9778 	 */
9779 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9780 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9781 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9782 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9783 					   LPFC_BMBX_BIT1_ADDR_HI);
9784 
9785 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9786 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9787 					   LPFC_BMBX_BIT1_ADDR_LO);
9788 	return 0;
9789 }
9790 
9791 /**
9792  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9793  * @phba: pointer to lpfc hba data structure.
9794  *
9795  * This routine is invoked to teardown the bootstrap mailbox
9796  * region and release all host resources. This routine requires
9797  * the caller to ensure all mailbox commands recovered, no
9798  * additional mailbox comands are sent, and interrupts are disabled
9799  * before calling this routine.
9800  *
9801  **/
9802 static void
9803 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9804 {
9805 	dma_free_coherent(&phba->pcidev->dev,
9806 			  phba->sli4_hba.bmbx.bmbx_size,
9807 			  phba->sli4_hba.bmbx.dmabuf->virt,
9808 			  phba->sli4_hba.bmbx.dmabuf->phys);
9809 
9810 	kfree(phba->sli4_hba.bmbx.dmabuf);
9811 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9812 }
9813 
9814 static const char * const lpfc_topo_to_str[] = {
9815 	"Loop then P2P",
9816 	"Loopback",
9817 	"P2P Only",
9818 	"Unsupported",
9819 	"Loop Only",
9820 	"Unsupported",
9821 	"P2P then Loop",
9822 };
9823 
9824 #define	LINK_FLAGS_DEF	0x0
9825 #define	LINK_FLAGS_P2P	0x1
9826 #define	LINK_FLAGS_LOOP	0x2
9827 /**
9828  * lpfc_map_topology - Map the topology read from READ_CONFIG
9829  * @phba: pointer to lpfc hba data structure.
9830  * @rd_config: pointer to read config data
9831  *
9832  * This routine is invoked to map the topology values as read
9833  * from the read config mailbox command. If the persistent
9834  * topology feature is supported, the firmware will provide the
9835  * saved topology information to be used in INIT_LINK
9836  **/
9837 static void
9838 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9839 {
9840 	u8 ptv, tf, pt;
9841 
9842 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9843 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9844 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9845 
9846 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9847 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9848 			 ptv, tf, pt);
9849 	if (!ptv) {
9850 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9851 				"2019 FW does not support persistent topology "
9852 				"Using driver parameter defined value [%s]",
9853 				lpfc_topo_to_str[phba->cfg_topology]);
9854 		return;
9855 	}
9856 	/* FW supports persistent topology - override module parameter value */
9857 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9858 
9859 	/* if ASIC_GEN_NUM >= 0xC) */
9860 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9861 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9862 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9863 		    LPFC_SLI_INTF_FAMILY_G6)) {
9864 		if (!tf) {
9865 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9866 					? FLAGS_TOPOLOGY_MODE_LOOP
9867 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9868 		} else {
9869 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9870 		}
9871 	} else { /* G5 */
9872 		if (tf) {
9873 			/* If topology failover set - pt is '0' or '1' */
9874 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9875 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9876 		} else {
9877 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9878 					? FLAGS_TOPOLOGY_MODE_PT_PT
9879 					: FLAGS_TOPOLOGY_MODE_LOOP);
9880 		}
9881 	}
9882 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9883 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9884 				"2020 Using persistent topology value [%s]",
9885 				lpfc_topo_to_str[phba->cfg_topology]);
9886 	} else {
9887 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9888 				"2021 Invalid topology values from FW "
9889 				"Using driver parameter defined value [%s]",
9890 				lpfc_topo_to_str[phba->cfg_topology]);
9891 	}
9892 }
9893 
9894 /**
9895  * lpfc_sli4_read_config - Get the config parameters.
9896  * @phba: pointer to lpfc hba data structure.
9897  *
9898  * This routine is invoked to read the configuration parameters from the HBA.
9899  * The configuration parameters are used to set the base and maximum values
9900  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9901  * allocation for the port.
9902  *
9903  * Return codes
9904  * 	0 - successful
9905  * 	-ENOMEM - No available memory
9906  *      -EIO - The mailbox failed to complete successfully.
9907  **/
9908 int
9909 lpfc_sli4_read_config(struct lpfc_hba *phba)
9910 {
9911 	LPFC_MBOXQ_t *pmb;
9912 	struct lpfc_mbx_read_config *rd_config;
9913 	union  lpfc_sli4_cfg_shdr *shdr;
9914 	uint32_t shdr_status, shdr_add_status;
9915 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9916 	struct lpfc_rsrc_desc_fcfcoe *desc;
9917 	char *pdesc_0;
9918 	uint16_t forced_link_speed;
9919 	uint32_t if_type, qmin, fawwpn;
9920 	int length, i, rc = 0, rc2;
9921 
9922 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9923 	if (!pmb) {
9924 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9925 				"2011 Unable to allocate memory for issuing "
9926 				"SLI_CONFIG_SPECIAL mailbox command\n");
9927 		return -ENOMEM;
9928 	}
9929 
9930 	lpfc_read_config(phba, pmb);
9931 
9932 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9933 	if (rc != MBX_SUCCESS) {
9934 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9935 				"2012 Mailbox failed , mbxCmd x%x "
9936 				"READ_CONFIG, mbxStatus x%x\n",
9937 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9938 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9939 		rc = -EIO;
9940 	} else {
9941 		rd_config = &pmb->u.mqe.un.rd_config;
9942 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9943 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9944 			phba->sli4_hba.lnk_info.lnk_tp =
9945 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9946 			phba->sli4_hba.lnk_info.lnk_no =
9947 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9948 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9949 					"3081 lnk_type:%d, lnk_numb:%d\n",
9950 					phba->sli4_hba.lnk_info.lnk_tp,
9951 					phba->sli4_hba.lnk_info.lnk_no);
9952 		} else
9953 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9954 					"3082 Mailbox (x%x) returned ldv:x0\n",
9955 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9956 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9957 			phba->bbcredit_support = 1;
9958 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9959 		}
9960 
9961 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9962 
9963 		if (fawwpn) {
9964 			lpfc_printf_log(phba, KERN_INFO,
9965 					LOG_INIT | LOG_DISCOVERY,
9966 					"2702 READ_CONFIG: FA-PWWN is "
9967 					"configured on\n");
9968 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9969 		} else {
9970 			/* Clear FW configured flag, preserve driver flag */
9971 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9972 		}
9973 
9974 		phba->sli4_hba.conf_trunk =
9975 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9976 		phba->sli4_hba.extents_in_use =
9977 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9978 
9979 		phba->sli4_hba.max_cfg_param.max_xri =
9980 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9981 		/* Reduce resource usage in kdump environment */
9982 		if (is_kdump_kernel() &&
9983 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9984 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9985 		phba->sli4_hba.max_cfg_param.xri_base =
9986 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9987 		phba->sli4_hba.max_cfg_param.max_vpi =
9988 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9989 		/* Limit the max we support */
9990 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9991 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9992 		phba->sli4_hba.max_cfg_param.vpi_base =
9993 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9994 		phba->sli4_hba.max_cfg_param.max_rpi =
9995 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9996 		phba->sli4_hba.max_cfg_param.rpi_base =
9997 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9998 		phba->sli4_hba.max_cfg_param.max_vfi =
9999 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10000 		phba->sli4_hba.max_cfg_param.vfi_base =
10001 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10002 		phba->sli4_hba.max_cfg_param.max_fcfi =
10003 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10004 		phba->sli4_hba.max_cfg_param.max_eq =
10005 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10006 		phba->sli4_hba.max_cfg_param.max_rq =
10007 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10008 		phba->sli4_hba.max_cfg_param.max_wq =
10009 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10010 		phba->sli4_hba.max_cfg_param.max_cq =
10011 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10012 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10013 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10014 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10015 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10016 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10017 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10018 		phba->max_vports = phba->max_vpi;
10019 
10020 		/* Next decide on FPIN or Signal E2E CGN support
10021 		 * For congestion alarms and warnings valid combination are:
10022 		 * 1. FPIN alarms / FPIN warnings
10023 		 * 2. Signal alarms / Signal warnings
10024 		 * 3. FPIN alarms / Signal warnings
10025 		 * 4. Signal alarms / FPIN warnings
10026 		 *
10027 		 * Initialize the adapter frequency to 100 mSecs
10028 		 */
10029 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10030 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10031 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10032 
10033 		if (lpfc_use_cgn_signal) {
10034 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10035 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10036 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10037 			}
10038 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10039 				/* MUST support both alarm and warning
10040 				 * because EDC does not support alarm alone.
10041 				 */
10042 				if (phba->cgn_reg_signal !=
10043 				    EDC_CG_SIG_WARN_ONLY) {
10044 					/* Must support both or none */
10045 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10046 					phba->cgn_reg_signal =
10047 						EDC_CG_SIG_NOTSUPPORTED;
10048 				} else {
10049 					phba->cgn_reg_signal =
10050 						EDC_CG_SIG_WARN_ALARM;
10051 					phba->cgn_reg_fpin =
10052 						LPFC_CGN_FPIN_NONE;
10053 				}
10054 			}
10055 		}
10056 
10057 		/* Set the congestion initial signal and fpin values. */
10058 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10059 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10060 
10061 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10062 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10063 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10064 
10065 		lpfc_map_topology(phba, rd_config);
10066 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10067 				"2003 cfg params Extents? %d "
10068 				"XRI(B:%d M:%d), "
10069 				"VPI(B:%d M:%d) "
10070 				"VFI(B:%d M:%d) "
10071 				"RPI(B:%d M:%d) "
10072 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10073 				phba->sli4_hba.extents_in_use,
10074 				phba->sli4_hba.max_cfg_param.xri_base,
10075 				phba->sli4_hba.max_cfg_param.max_xri,
10076 				phba->sli4_hba.max_cfg_param.vpi_base,
10077 				phba->sli4_hba.max_cfg_param.max_vpi,
10078 				phba->sli4_hba.max_cfg_param.vfi_base,
10079 				phba->sli4_hba.max_cfg_param.max_vfi,
10080 				phba->sli4_hba.max_cfg_param.rpi_base,
10081 				phba->sli4_hba.max_cfg_param.max_rpi,
10082 				phba->sli4_hba.max_cfg_param.max_fcfi,
10083 				phba->sli4_hba.max_cfg_param.max_eq,
10084 				phba->sli4_hba.max_cfg_param.max_cq,
10085 				phba->sli4_hba.max_cfg_param.max_wq,
10086 				phba->sli4_hba.max_cfg_param.max_rq,
10087 				phba->lmt);
10088 
10089 		/*
10090 		 * Calculate queue resources based on how
10091 		 * many WQ/CQ/EQs are available.
10092 		 */
10093 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10094 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10095 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10096 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10097 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10098 		/*
10099 		 * Whats left after this can go toward NVME / FCP.
10100 		 * The minus 4 accounts for ELS, NVME LS, MBOX
10101 		 * plus one extra. When configured for
10102 		 * NVMET, FCP io channel WQs are not created.
10103 		 */
10104 		qmin -= 4;
10105 
10106 		/* Check to see if there is enough for NVME */
10107 		if ((phba->cfg_irq_chann > qmin) ||
10108 		    (phba->cfg_hdw_queue > qmin)) {
10109 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10110 					"2005 Reducing Queues - "
10111 					"FW resource limitation: "
10112 					"WQ %d CQ %d EQ %d: min %d: "
10113 					"IRQ %d HDWQ %d\n",
10114 					phba->sli4_hba.max_cfg_param.max_wq,
10115 					phba->sli4_hba.max_cfg_param.max_cq,
10116 					phba->sli4_hba.max_cfg_param.max_eq,
10117 					qmin, phba->cfg_irq_chann,
10118 					phba->cfg_hdw_queue);
10119 
10120 			if (phba->cfg_irq_chann > qmin)
10121 				phba->cfg_irq_chann = qmin;
10122 			if (phba->cfg_hdw_queue > qmin)
10123 				phba->cfg_hdw_queue = qmin;
10124 		}
10125 	}
10126 
10127 	if (rc)
10128 		goto read_cfg_out;
10129 
10130 	/* Update link speed if forced link speed is supported */
10131 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10132 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10133 		forced_link_speed =
10134 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10135 		if (forced_link_speed) {
10136 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10137 
10138 			switch (forced_link_speed) {
10139 			case LINK_SPEED_1G:
10140 				phba->cfg_link_speed =
10141 					LPFC_USER_LINK_SPEED_1G;
10142 				break;
10143 			case LINK_SPEED_2G:
10144 				phba->cfg_link_speed =
10145 					LPFC_USER_LINK_SPEED_2G;
10146 				break;
10147 			case LINK_SPEED_4G:
10148 				phba->cfg_link_speed =
10149 					LPFC_USER_LINK_SPEED_4G;
10150 				break;
10151 			case LINK_SPEED_8G:
10152 				phba->cfg_link_speed =
10153 					LPFC_USER_LINK_SPEED_8G;
10154 				break;
10155 			case LINK_SPEED_10G:
10156 				phba->cfg_link_speed =
10157 					LPFC_USER_LINK_SPEED_10G;
10158 				break;
10159 			case LINK_SPEED_16G:
10160 				phba->cfg_link_speed =
10161 					LPFC_USER_LINK_SPEED_16G;
10162 				break;
10163 			case LINK_SPEED_32G:
10164 				phba->cfg_link_speed =
10165 					LPFC_USER_LINK_SPEED_32G;
10166 				break;
10167 			case LINK_SPEED_64G:
10168 				phba->cfg_link_speed =
10169 					LPFC_USER_LINK_SPEED_64G;
10170 				break;
10171 			case 0xffff:
10172 				phba->cfg_link_speed =
10173 					LPFC_USER_LINK_SPEED_AUTO;
10174 				break;
10175 			default:
10176 				lpfc_printf_log(phba, KERN_ERR,
10177 						LOG_TRACE_EVENT,
10178 						"0047 Unrecognized link "
10179 						"speed : %d\n",
10180 						forced_link_speed);
10181 				phba->cfg_link_speed =
10182 					LPFC_USER_LINK_SPEED_AUTO;
10183 			}
10184 		}
10185 	}
10186 
10187 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10188 	length = phba->sli4_hba.max_cfg_param.max_xri -
10189 			lpfc_sli4_get_els_iocb_cnt(phba);
10190 	if (phba->cfg_hba_queue_depth > length) {
10191 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10192 				"3361 HBA queue depth changed from %d to %d\n",
10193 				phba->cfg_hba_queue_depth, length);
10194 		phba->cfg_hba_queue_depth = length;
10195 	}
10196 
10197 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10198 	    LPFC_SLI_INTF_IF_TYPE_2)
10199 		goto read_cfg_out;
10200 
10201 	/* get the pf# and vf# for SLI4 if_type 2 port */
10202 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10203 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10204 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10205 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10206 			 length, LPFC_SLI4_MBX_EMBED);
10207 
10208 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10209 	shdr = (union lpfc_sli4_cfg_shdr *)
10210 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10211 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10212 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10213 	if (rc2 || shdr_status || shdr_add_status) {
10214 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10215 				"3026 Mailbox failed , mbxCmd x%x "
10216 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10217 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10218 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10219 		goto read_cfg_out;
10220 	}
10221 
10222 	/* search for fc_fcoe resrouce descriptor */
10223 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10224 
10225 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10226 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10227 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10228 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10229 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10230 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10231 		goto read_cfg_out;
10232 
10233 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10234 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10235 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10236 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10237 			phba->sli4_hba.iov.pf_number =
10238 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10239 			phba->sli4_hba.iov.vf_number =
10240 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10241 			break;
10242 		}
10243 	}
10244 
10245 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10246 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10247 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10248 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10249 				phba->sli4_hba.iov.vf_number);
10250 	else
10251 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10252 				"3028 GET_FUNCTION_CONFIG: failed to find "
10253 				"Resource Descriptor:x%x\n",
10254 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10255 
10256 read_cfg_out:
10257 	mempool_free(pmb, phba->mbox_mem_pool);
10258 	return rc;
10259 }
10260 
10261 /**
10262  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10263  * @phba: pointer to lpfc hba data structure.
10264  *
10265  * This routine is invoked to setup the port-side endian order when
10266  * the port if_type is 0.  This routine has no function for other
10267  * if_types.
10268  *
10269  * Return codes
10270  * 	0 - successful
10271  * 	-ENOMEM - No available memory
10272  *      -EIO - The mailbox failed to complete successfully.
10273  **/
10274 static int
10275 lpfc_setup_endian_order(struct lpfc_hba *phba)
10276 {
10277 	LPFC_MBOXQ_t *mboxq;
10278 	uint32_t if_type, rc = 0;
10279 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10280 				      HOST_ENDIAN_HIGH_WORD1};
10281 
10282 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10283 	switch (if_type) {
10284 	case LPFC_SLI_INTF_IF_TYPE_0:
10285 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10286 						       GFP_KERNEL);
10287 		if (!mboxq) {
10288 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10289 					"0492 Unable to allocate memory for "
10290 					"issuing SLI_CONFIG_SPECIAL mailbox "
10291 					"command\n");
10292 			return -ENOMEM;
10293 		}
10294 
10295 		/*
10296 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10297 		 * two words to contain special data values and no other data.
10298 		 */
10299 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10300 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10301 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10302 		if (rc != MBX_SUCCESS) {
10303 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10304 					"0493 SLI_CONFIG_SPECIAL mailbox "
10305 					"failed with status x%x\n",
10306 					rc);
10307 			rc = -EIO;
10308 		}
10309 		mempool_free(mboxq, phba->mbox_mem_pool);
10310 		break;
10311 	case LPFC_SLI_INTF_IF_TYPE_6:
10312 	case LPFC_SLI_INTF_IF_TYPE_2:
10313 	case LPFC_SLI_INTF_IF_TYPE_1:
10314 	default:
10315 		break;
10316 	}
10317 	return rc;
10318 }
10319 
10320 /**
10321  * lpfc_sli4_queue_verify - Verify and update EQ counts
10322  * @phba: pointer to lpfc hba data structure.
10323  *
10324  * This routine is invoked to check the user settable queue counts for EQs.
10325  * After this routine is called the counts will be set to valid values that
10326  * adhere to the constraints of the system's interrupt vectors and the port's
10327  * queue resources.
10328  *
10329  * Return codes
10330  *      0 - successful
10331  *      -ENOMEM - No available memory
10332  **/
10333 static int
10334 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10335 {
10336 	/*
10337 	 * Sanity check for configured queue parameters against the run-time
10338 	 * device parameters
10339 	 */
10340 
10341 	if (phba->nvmet_support) {
10342 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10343 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10344 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10345 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10346 	}
10347 
10348 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10349 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10350 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10351 			phba->cfg_nvmet_mrq);
10352 
10353 	/* Get EQ depth from module parameter, fake the default for now */
10354 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10355 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10356 
10357 	/* Get CQ depth from module parameter, fake the default for now */
10358 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10359 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10360 	return 0;
10361 }
10362 
10363 static int
10364 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10365 {
10366 	struct lpfc_queue *qdesc;
10367 	u32 wqesize;
10368 	int cpu;
10369 
10370 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10371 	/* Create Fast Path IO CQs */
10372 	if (phba->enab_exp_wqcq_pages)
10373 		/* Increase the CQ size when WQEs contain an embedded cdb */
10374 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10375 					      phba->sli4_hba.cq_esize,
10376 					      LPFC_CQE_EXP_COUNT, cpu);
10377 
10378 	else
10379 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10380 					      phba->sli4_hba.cq_esize,
10381 					      phba->sli4_hba.cq_ecount, cpu);
10382 	if (!qdesc) {
10383 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10384 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10385 				idx);
10386 		return 1;
10387 	}
10388 	qdesc->qe_valid = 1;
10389 	qdesc->hdwq = idx;
10390 	qdesc->chann = cpu;
10391 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10392 
10393 	/* Create Fast Path IO WQs */
10394 	if (phba->enab_exp_wqcq_pages) {
10395 		/* Increase the WQ size when WQEs contain an embedded cdb */
10396 		wqesize = (phba->fcp_embed_io) ?
10397 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10398 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10399 					      wqesize,
10400 					      LPFC_WQE_EXP_COUNT, cpu);
10401 	} else
10402 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10403 					      phba->sli4_hba.wq_esize,
10404 					      phba->sli4_hba.wq_ecount, cpu);
10405 
10406 	if (!qdesc) {
10407 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10408 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10409 				idx);
10410 		return 1;
10411 	}
10412 	qdesc->hdwq = idx;
10413 	qdesc->chann = cpu;
10414 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10415 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10416 	return 0;
10417 }
10418 
10419 /**
10420  * lpfc_sli4_queue_create - Create all the SLI4 queues
10421  * @phba: pointer to lpfc hba data structure.
10422  *
10423  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10424  * operation. For each SLI4 queue type, the parameters such as queue entry
10425  * count (queue depth) shall be taken from the module parameter. For now,
10426  * we just use some constant number as place holder.
10427  *
10428  * Return codes
10429  *      0 - successful
10430  *      -ENOMEM - No availble memory
10431  *      -EIO - The mailbox failed to complete successfully.
10432  **/
10433 int
10434 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10435 {
10436 	struct lpfc_queue *qdesc;
10437 	int idx, cpu, eqcpu;
10438 	struct lpfc_sli4_hdw_queue *qp;
10439 	struct lpfc_vector_map_info *cpup;
10440 	struct lpfc_vector_map_info *eqcpup;
10441 	struct lpfc_eq_intr_info *eqi;
10442 
10443 	/*
10444 	 * Create HBA Record arrays.
10445 	 * Both NVME and FCP will share that same vectors / EQs
10446 	 */
10447 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10448 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10449 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10450 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10451 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10452 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10453 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10454 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10455 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10456 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10457 
10458 	if (!phba->sli4_hba.hdwq) {
10459 		phba->sli4_hba.hdwq = kcalloc(
10460 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10461 			GFP_KERNEL);
10462 		if (!phba->sli4_hba.hdwq) {
10463 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10464 					"6427 Failed allocate memory for "
10465 					"fast-path Hardware Queue array\n");
10466 			goto out_error;
10467 		}
10468 		/* Prepare hardware queues to take IO buffers */
10469 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10470 			qp = &phba->sli4_hba.hdwq[idx];
10471 			spin_lock_init(&qp->io_buf_list_get_lock);
10472 			spin_lock_init(&qp->io_buf_list_put_lock);
10473 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10474 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10475 			qp->get_io_bufs = 0;
10476 			qp->put_io_bufs = 0;
10477 			qp->total_io_bufs = 0;
10478 			spin_lock_init(&qp->abts_io_buf_list_lock);
10479 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10480 			qp->abts_scsi_io_bufs = 0;
10481 			qp->abts_nvme_io_bufs = 0;
10482 			INIT_LIST_HEAD(&qp->sgl_list);
10483 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10484 			spin_lock_init(&qp->hdwq_lock);
10485 		}
10486 	}
10487 
10488 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10489 		if (phba->nvmet_support) {
10490 			phba->sli4_hba.nvmet_cqset = kcalloc(
10491 					phba->cfg_nvmet_mrq,
10492 					sizeof(struct lpfc_queue *),
10493 					GFP_KERNEL);
10494 			if (!phba->sli4_hba.nvmet_cqset) {
10495 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10496 					"3121 Fail allocate memory for "
10497 					"fast-path CQ set array\n");
10498 				goto out_error;
10499 			}
10500 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10501 					phba->cfg_nvmet_mrq,
10502 					sizeof(struct lpfc_queue *),
10503 					GFP_KERNEL);
10504 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10505 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10506 					"3122 Fail allocate memory for "
10507 					"fast-path RQ set hdr array\n");
10508 				goto out_error;
10509 			}
10510 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10511 					phba->cfg_nvmet_mrq,
10512 					sizeof(struct lpfc_queue *),
10513 					GFP_KERNEL);
10514 			if (!phba->sli4_hba.nvmet_mrq_data) {
10515 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10516 					"3124 Fail allocate memory for "
10517 					"fast-path RQ set data array\n");
10518 				goto out_error;
10519 			}
10520 		}
10521 	}
10522 
10523 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10524 
10525 	/* Create HBA Event Queues (EQs) */
10526 	for_each_present_cpu(cpu) {
10527 		/* We only want to create 1 EQ per vector, even though
10528 		 * multiple CPUs might be using that vector. so only
10529 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10530 		 */
10531 		cpup = &phba->sli4_hba.cpu_map[cpu];
10532 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10533 			continue;
10534 
10535 		/* Get a ptr to the Hardware Queue associated with this CPU */
10536 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10537 
10538 		/* Allocate an EQ */
10539 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10540 					      phba->sli4_hba.eq_esize,
10541 					      phba->sli4_hba.eq_ecount, cpu);
10542 		if (!qdesc) {
10543 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10544 					"0497 Failed allocate EQ (%d)\n",
10545 					cpup->hdwq);
10546 			goto out_error;
10547 		}
10548 		qdesc->qe_valid = 1;
10549 		qdesc->hdwq = cpup->hdwq;
10550 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10551 		qdesc->last_cpu = qdesc->chann;
10552 
10553 		/* Save the allocated EQ in the Hardware Queue */
10554 		qp->hba_eq = qdesc;
10555 
10556 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10557 		list_add(&qdesc->cpu_list, &eqi->list);
10558 	}
10559 
10560 	/* Now we need to populate the other Hardware Queues, that share
10561 	 * an IRQ vector, with the associated EQ ptr.
10562 	 */
10563 	for_each_present_cpu(cpu) {
10564 		cpup = &phba->sli4_hba.cpu_map[cpu];
10565 
10566 		/* Check for EQ already allocated in previous loop */
10567 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10568 			continue;
10569 
10570 		/* Check for multiple CPUs per hdwq */
10571 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10572 		if (qp->hba_eq)
10573 			continue;
10574 
10575 		/* We need to share an EQ for this hdwq */
10576 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10577 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10578 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10579 	}
10580 
10581 	/* Allocate IO Path SLI4 CQ/WQs */
10582 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10583 		if (lpfc_alloc_io_wq_cq(phba, idx))
10584 			goto out_error;
10585 	}
10586 
10587 	if (phba->nvmet_support) {
10588 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10589 			cpu = lpfc_find_cpu_handle(phba, idx,
10590 						   LPFC_FIND_BY_HDWQ);
10591 			qdesc = lpfc_sli4_queue_alloc(phba,
10592 						      LPFC_DEFAULT_PAGE_SIZE,
10593 						      phba->sli4_hba.cq_esize,
10594 						      phba->sli4_hba.cq_ecount,
10595 						      cpu);
10596 			if (!qdesc) {
10597 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10598 						"3142 Failed allocate NVME "
10599 						"CQ Set (%d)\n", idx);
10600 				goto out_error;
10601 			}
10602 			qdesc->qe_valid = 1;
10603 			qdesc->hdwq = idx;
10604 			qdesc->chann = cpu;
10605 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10606 		}
10607 	}
10608 
10609 	/*
10610 	 * Create Slow Path Completion Queues (CQs)
10611 	 */
10612 
10613 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10614 	/* Create slow-path Mailbox Command Complete Queue */
10615 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10616 				      phba->sli4_hba.cq_esize,
10617 				      phba->sli4_hba.cq_ecount, cpu);
10618 	if (!qdesc) {
10619 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10620 				"0500 Failed allocate slow-path mailbox CQ\n");
10621 		goto out_error;
10622 	}
10623 	qdesc->qe_valid = 1;
10624 	phba->sli4_hba.mbx_cq = qdesc;
10625 
10626 	/* Create slow-path ELS Complete Queue */
10627 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10628 				      phba->sli4_hba.cq_esize,
10629 				      phba->sli4_hba.cq_ecount, cpu);
10630 	if (!qdesc) {
10631 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10632 				"0501 Failed allocate slow-path ELS CQ\n");
10633 		goto out_error;
10634 	}
10635 	qdesc->qe_valid = 1;
10636 	qdesc->chann = cpu;
10637 	phba->sli4_hba.els_cq = qdesc;
10638 
10639 
10640 	/*
10641 	 * Create Slow Path Work Queues (WQs)
10642 	 */
10643 
10644 	/* Create Mailbox Command Queue */
10645 
10646 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10647 				      phba->sli4_hba.mq_esize,
10648 				      phba->sli4_hba.mq_ecount, cpu);
10649 	if (!qdesc) {
10650 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10651 				"0505 Failed allocate slow-path MQ\n");
10652 		goto out_error;
10653 	}
10654 	qdesc->chann = cpu;
10655 	phba->sli4_hba.mbx_wq = qdesc;
10656 
10657 	/*
10658 	 * Create ELS Work Queues
10659 	 */
10660 
10661 	/* Create slow-path ELS Work Queue */
10662 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10663 				      phba->sli4_hba.wq_esize,
10664 				      phba->sli4_hba.wq_ecount, cpu);
10665 	if (!qdesc) {
10666 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10667 				"0504 Failed allocate slow-path ELS WQ\n");
10668 		goto out_error;
10669 	}
10670 	qdesc->chann = cpu;
10671 	phba->sli4_hba.els_wq = qdesc;
10672 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10673 
10674 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10675 		/* Create NVME LS Complete Queue */
10676 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10677 					      phba->sli4_hba.cq_esize,
10678 					      phba->sli4_hba.cq_ecount, cpu);
10679 		if (!qdesc) {
10680 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10681 					"6079 Failed allocate NVME LS CQ\n");
10682 			goto out_error;
10683 		}
10684 		qdesc->chann = cpu;
10685 		qdesc->qe_valid = 1;
10686 		phba->sli4_hba.nvmels_cq = qdesc;
10687 
10688 		/* Create NVME LS Work Queue */
10689 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10690 					      phba->sli4_hba.wq_esize,
10691 					      phba->sli4_hba.wq_ecount, cpu);
10692 		if (!qdesc) {
10693 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10694 					"6080 Failed allocate NVME LS WQ\n");
10695 			goto out_error;
10696 		}
10697 		qdesc->chann = cpu;
10698 		phba->sli4_hba.nvmels_wq = qdesc;
10699 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10700 	}
10701 
10702 	/*
10703 	 * Create Receive Queue (RQ)
10704 	 */
10705 
10706 	/* Create Receive Queue for header */
10707 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10708 				      phba->sli4_hba.rq_esize,
10709 				      phba->sli4_hba.rq_ecount, cpu);
10710 	if (!qdesc) {
10711 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10712 				"0506 Failed allocate receive HRQ\n");
10713 		goto out_error;
10714 	}
10715 	phba->sli4_hba.hdr_rq = qdesc;
10716 
10717 	/* Create Receive Queue for data */
10718 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10719 				      phba->sli4_hba.rq_esize,
10720 				      phba->sli4_hba.rq_ecount, cpu);
10721 	if (!qdesc) {
10722 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10723 				"0507 Failed allocate receive DRQ\n");
10724 		goto out_error;
10725 	}
10726 	phba->sli4_hba.dat_rq = qdesc;
10727 
10728 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10729 	    phba->nvmet_support) {
10730 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10731 			cpu = lpfc_find_cpu_handle(phba, idx,
10732 						   LPFC_FIND_BY_HDWQ);
10733 			/* Create NVMET Receive Queue for header */
10734 			qdesc = lpfc_sli4_queue_alloc(phba,
10735 						      LPFC_DEFAULT_PAGE_SIZE,
10736 						      phba->sli4_hba.rq_esize,
10737 						      LPFC_NVMET_RQE_DEF_COUNT,
10738 						      cpu);
10739 			if (!qdesc) {
10740 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10741 						"3146 Failed allocate "
10742 						"receive HRQ\n");
10743 				goto out_error;
10744 			}
10745 			qdesc->hdwq = idx;
10746 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10747 
10748 			/* Only needed for header of RQ pair */
10749 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10750 						   GFP_KERNEL,
10751 						   cpu_to_node(cpu));
10752 			if (qdesc->rqbp == NULL) {
10753 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10754 						"6131 Failed allocate "
10755 						"Header RQBP\n");
10756 				goto out_error;
10757 			}
10758 
10759 			/* Put list in known state in case driver load fails. */
10760 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10761 
10762 			/* Create NVMET Receive Queue for data */
10763 			qdesc = lpfc_sli4_queue_alloc(phba,
10764 						      LPFC_DEFAULT_PAGE_SIZE,
10765 						      phba->sli4_hba.rq_esize,
10766 						      LPFC_NVMET_RQE_DEF_COUNT,
10767 						      cpu);
10768 			if (!qdesc) {
10769 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10770 						"3156 Failed allocate "
10771 						"receive DRQ\n");
10772 				goto out_error;
10773 			}
10774 			qdesc->hdwq = idx;
10775 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10776 		}
10777 	}
10778 
10779 	/* Clear NVME stats */
10780 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10781 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10782 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10783 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10784 		}
10785 	}
10786 
10787 	/* Clear SCSI stats */
10788 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10789 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10790 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10791 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10792 		}
10793 	}
10794 
10795 	return 0;
10796 
10797 out_error:
10798 	lpfc_sli4_queue_destroy(phba);
10799 	return -ENOMEM;
10800 }
10801 
10802 static inline void
10803 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10804 {
10805 	if (*qp != NULL) {
10806 		lpfc_sli4_queue_free(*qp);
10807 		*qp = NULL;
10808 	}
10809 }
10810 
10811 static inline void
10812 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10813 {
10814 	int idx;
10815 
10816 	if (*qs == NULL)
10817 		return;
10818 
10819 	for (idx = 0; idx < max; idx++)
10820 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10821 
10822 	kfree(*qs);
10823 	*qs = NULL;
10824 }
10825 
10826 static inline void
10827 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10828 {
10829 	struct lpfc_sli4_hdw_queue *hdwq;
10830 	struct lpfc_queue *eq;
10831 	uint32_t idx;
10832 
10833 	hdwq = phba->sli4_hba.hdwq;
10834 
10835 	/* Loop thru all Hardware Queues */
10836 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10837 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10838 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10839 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10840 		hdwq[idx].hba_eq = NULL;
10841 		hdwq[idx].io_cq = NULL;
10842 		hdwq[idx].io_wq = NULL;
10843 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10844 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10845 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10846 	}
10847 	/* Loop thru all IRQ vectors */
10848 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10849 		/* Free the EQ corresponding to the IRQ vector */
10850 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10851 		lpfc_sli4_queue_free(eq);
10852 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10853 	}
10854 }
10855 
10856 /**
10857  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10858  * @phba: pointer to lpfc hba data structure.
10859  *
10860  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10861  * operation.
10862  *
10863  * Return codes
10864  *      0 - successful
10865  *      -ENOMEM - No available memory
10866  *      -EIO - The mailbox failed to complete successfully.
10867  **/
10868 void
10869 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10870 {
10871 	/*
10872 	 * Set FREE_INIT before beginning to free the queues.
10873 	 * Wait until the users of queues to acknowledge to
10874 	 * release queues by clearing FREE_WAIT.
10875 	 */
10876 	spin_lock_irq(&phba->hbalock);
10877 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10878 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10879 		spin_unlock_irq(&phba->hbalock);
10880 		msleep(20);
10881 		spin_lock_irq(&phba->hbalock);
10882 	}
10883 	spin_unlock_irq(&phba->hbalock);
10884 
10885 	lpfc_sli4_cleanup_poll_list(phba);
10886 
10887 	/* Release HBA eqs */
10888 	if (phba->sli4_hba.hdwq)
10889 		lpfc_sli4_release_hdwq(phba);
10890 
10891 	if (phba->nvmet_support) {
10892 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10893 					 phba->cfg_nvmet_mrq);
10894 
10895 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10896 					 phba->cfg_nvmet_mrq);
10897 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10898 					 phba->cfg_nvmet_mrq);
10899 	}
10900 
10901 	/* Release mailbox command work queue */
10902 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10903 
10904 	/* Release ELS work queue */
10905 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10906 
10907 	/* Release ELS work queue */
10908 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10909 
10910 	/* Release unsolicited receive queue */
10911 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10912 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10913 
10914 	/* Release ELS complete queue */
10915 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10916 
10917 	/* Release NVME LS complete queue */
10918 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10919 
10920 	/* Release mailbox command complete queue */
10921 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10922 
10923 	/* Everything on this list has been freed */
10924 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10925 
10926 	/* Done with freeing the queues */
10927 	spin_lock_irq(&phba->hbalock);
10928 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10929 	spin_unlock_irq(&phba->hbalock);
10930 }
10931 
10932 int
10933 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10934 {
10935 	struct lpfc_rqb *rqbp;
10936 	struct lpfc_dmabuf *h_buf;
10937 	struct rqb_dmabuf *rqb_buffer;
10938 
10939 	rqbp = rq->rqbp;
10940 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10941 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10942 				 struct lpfc_dmabuf, list);
10943 
10944 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10945 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10946 		rqbp->buffer_count--;
10947 	}
10948 	return 1;
10949 }
10950 
10951 static int
10952 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10953 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10954 	int qidx, uint32_t qtype)
10955 {
10956 	struct lpfc_sli_ring *pring;
10957 	int rc;
10958 
10959 	if (!eq || !cq || !wq) {
10960 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10961 			"6085 Fast-path %s (%d) not allocated\n",
10962 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10963 		return -ENOMEM;
10964 	}
10965 
10966 	/* create the Cq first */
10967 	rc = lpfc_cq_create(phba, cq, eq,
10968 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10969 	if (rc) {
10970 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10971 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10972 				qidx, (uint32_t)rc);
10973 		return rc;
10974 	}
10975 
10976 	if (qtype != LPFC_MBOX) {
10977 		/* Setup cq_map for fast lookup */
10978 		if (cq_map)
10979 			*cq_map = cq->queue_id;
10980 
10981 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10982 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10983 			qidx, cq->queue_id, qidx, eq->queue_id);
10984 
10985 		/* create the wq */
10986 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10987 		if (rc) {
10988 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10989 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10990 				qidx, (uint32_t)rc);
10991 			/* no need to tear down cq - caller will do so */
10992 			return rc;
10993 		}
10994 
10995 		/* Bind this CQ/WQ to the NVME ring */
10996 		pring = wq->pring;
10997 		pring->sli.sli4.wqp = (void *)wq;
10998 		cq->pring = pring;
10999 
11000 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11001 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11002 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11003 	} else {
11004 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11005 		if (rc) {
11006 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11007 					"0539 Failed setup of slow-path MQ: "
11008 					"rc = 0x%x\n", rc);
11009 			/* no need to tear down cq - caller will do so */
11010 			return rc;
11011 		}
11012 
11013 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11014 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11015 			phba->sli4_hba.mbx_wq->queue_id,
11016 			phba->sli4_hba.mbx_cq->queue_id);
11017 	}
11018 
11019 	return 0;
11020 }
11021 
11022 /**
11023  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11024  * @phba: pointer to lpfc hba data structure.
11025  *
11026  * This routine will populate the cq_lookup table by all
11027  * available CQ queue_id's.
11028  **/
11029 static void
11030 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11031 {
11032 	struct lpfc_queue *eq, *childq;
11033 	int qidx;
11034 
11035 	memset(phba->sli4_hba.cq_lookup, 0,
11036 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11037 	/* Loop thru all IRQ vectors */
11038 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11039 		/* Get the EQ corresponding to the IRQ vector */
11040 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11041 		if (!eq)
11042 			continue;
11043 		/* Loop through all CQs associated with that EQ */
11044 		list_for_each_entry(childq, &eq->child_list, list) {
11045 			if (childq->queue_id > phba->sli4_hba.cq_max)
11046 				continue;
11047 			if (childq->subtype == LPFC_IO)
11048 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11049 					childq;
11050 		}
11051 	}
11052 }
11053 
11054 /**
11055  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11056  * @phba: pointer to lpfc hba data structure.
11057  *
11058  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11059  * operation.
11060  *
11061  * Return codes
11062  *      0 - successful
11063  *      -ENOMEM - No available memory
11064  *      -EIO - The mailbox failed to complete successfully.
11065  **/
11066 int
11067 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11068 {
11069 	uint32_t shdr_status, shdr_add_status;
11070 	union lpfc_sli4_cfg_shdr *shdr;
11071 	struct lpfc_vector_map_info *cpup;
11072 	struct lpfc_sli4_hdw_queue *qp;
11073 	LPFC_MBOXQ_t *mboxq;
11074 	int qidx, cpu;
11075 	uint32_t length, usdelay;
11076 	int rc = -ENOMEM;
11077 
11078 	/* Check for dual-ULP support */
11079 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11080 	if (!mboxq) {
11081 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11082 				"3249 Unable to allocate memory for "
11083 				"QUERY_FW_CFG mailbox command\n");
11084 		return -ENOMEM;
11085 	}
11086 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11087 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11088 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11089 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11090 			 length, LPFC_SLI4_MBX_EMBED);
11091 
11092 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11093 
11094 	shdr = (union lpfc_sli4_cfg_shdr *)
11095 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11096 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11097 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11098 	if (shdr_status || shdr_add_status || rc) {
11099 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11100 				"3250 QUERY_FW_CFG mailbox failed with status "
11101 				"x%x add_status x%x, mbx status x%x\n",
11102 				shdr_status, shdr_add_status, rc);
11103 		mempool_free(mboxq, phba->mbox_mem_pool);
11104 		rc = -ENXIO;
11105 		goto out_error;
11106 	}
11107 
11108 	phba->sli4_hba.fw_func_mode =
11109 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11110 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11111 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11112 	phba->sli4_hba.physical_port =
11113 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11114 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11115 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11116 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11117 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11118 
11119 	mempool_free(mboxq, phba->mbox_mem_pool);
11120 
11121 	/*
11122 	 * Set up HBA Event Queues (EQs)
11123 	 */
11124 	qp = phba->sli4_hba.hdwq;
11125 
11126 	/* Set up HBA event queue */
11127 	if (!qp) {
11128 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11129 				"3147 Fast-path EQs not allocated\n");
11130 		rc = -ENOMEM;
11131 		goto out_error;
11132 	}
11133 
11134 	/* Loop thru all IRQ vectors */
11135 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11136 		/* Create HBA Event Queues (EQs) in order */
11137 		for_each_present_cpu(cpu) {
11138 			cpup = &phba->sli4_hba.cpu_map[cpu];
11139 
11140 			/* Look for the CPU thats using that vector with
11141 			 * LPFC_CPU_FIRST_IRQ set.
11142 			 */
11143 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11144 				continue;
11145 			if (qidx != cpup->eq)
11146 				continue;
11147 
11148 			/* Create an EQ for that vector */
11149 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11150 					    phba->cfg_fcp_imax);
11151 			if (rc) {
11152 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11153 						"0523 Failed setup of fast-path"
11154 						" EQ (%d), rc = 0x%x\n",
11155 						cpup->eq, (uint32_t)rc);
11156 				goto out_destroy;
11157 			}
11158 
11159 			/* Save the EQ for that vector in the hba_eq_hdl */
11160 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11161 				qp[cpup->hdwq].hba_eq;
11162 
11163 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11164 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11165 					cpup->eq,
11166 					qp[cpup->hdwq].hba_eq->queue_id);
11167 		}
11168 	}
11169 
11170 	/* Loop thru all Hardware Queues */
11171 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11172 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11173 		cpup = &phba->sli4_hba.cpu_map[cpu];
11174 
11175 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11176 		rc = lpfc_create_wq_cq(phba,
11177 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11178 				       qp[qidx].io_cq,
11179 				       qp[qidx].io_wq,
11180 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11181 				       qidx,
11182 				       LPFC_IO);
11183 		if (rc) {
11184 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11185 					"0535 Failed to setup fastpath "
11186 					"IO WQ/CQ (%d), rc = 0x%x\n",
11187 					qidx, (uint32_t)rc);
11188 			goto out_destroy;
11189 		}
11190 	}
11191 
11192 	/*
11193 	 * Set up Slow Path Complete Queues (CQs)
11194 	 */
11195 
11196 	/* Set up slow-path MBOX CQ/MQ */
11197 
11198 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11199 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11200 				"0528 %s not allocated\n",
11201 				phba->sli4_hba.mbx_cq ?
11202 				"Mailbox WQ" : "Mailbox CQ");
11203 		rc = -ENOMEM;
11204 		goto out_destroy;
11205 	}
11206 
11207 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11208 			       phba->sli4_hba.mbx_cq,
11209 			       phba->sli4_hba.mbx_wq,
11210 			       NULL, 0, LPFC_MBOX);
11211 	if (rc) {
11212 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11213 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11214 			(uint32_t)rc);
11215 		goto out_destroy;
11216 	}
11217 	if (phba->nvmet_support) {
11218 		if (!phba->sli4_hba.nvmet_cqset) {
11219 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11220 					"3165 Fast-path NVME CQ Set "
11221 					"array not allocated\n");
11222 			rc = -ENOMEM;
11223 			goto out_destroy;
11224 		}
11225 		if (phba->cfg_nvmet_mrq > 1) {
11226 			rc = lpfc_cq_create_set(phba,
11227 					phba->sli4_hba.nvmet_cqset,
11228 					qp,
11229 					LPFC_WCQ, LPFC_NVMET);
11230 			if (rc) {
11231 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11232 						"3164 Failed setup of NVME CQ "
11233 						"Set, rc = 0x%x\n",
11234 						(uint32_t)rc);
11235 				goto out_destroy;
11236 			}
11237 		} else {
11238 			/* Set up NVMET Receive Complete Queue */
11239 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11240 					    qp[0].hba_eq,
11241 					    LPFC_WCQ, LPFC_NVMET);
11242 			if (rc) {
11243 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11244 						"6089 Failed setup NVMET CQ: "
11245 						"rc = 0x%x\n", (uint32_t)rc);
11246 				goto out_destroy;
11247 			}
11248 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11249 
11250 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11251 					"6090 NVMET CQ setup: cq-id=%d, "
11252 					"parent eq-id=%d\n",
11253 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11254 					qp[0].hba_eq->queue_id);
11255 		}
11256 	}
11257 
11258 	/* Set up slow-path ELS WQ/CQ */
11259 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11260 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11261 				"0530 ELS %s not allocated\n",
11262 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11263 		rc = -ENOMEM;
11264 		goto out_destroy;
11265 	}
11266 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11267 			       phba->sli4_hba.els_cq,
11268 			       phba->sli4_hba.els_wq,
11269 			       NULL, 0, LPFC_ELS);
11270 	if (rc) {
11271 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11272 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11273 				(uint32_t)rc);
11274 		goto out_destroy;
11275 	}
11276 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11277 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11278 			phba->sli4_hba.els_wq->queue_id,
11279 			phba->sli4_hba.els_cq->queue_id);
11280 
11281 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11282 		/* Set up NVME LS Complete Queue */
11283 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11284 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11285 					"6091 LS %s not allocated\n",
11286 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11287 			rc = -ENOMEM;
11288 			goto out_destroy;
11289 		}
11290 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11291 				       phba->sli4_hba.nvmels_cq,
11292 				       phba->sli4_hba.nvmels_wq,
11293 				       NULL, 0, LPFC_NVME_LS);
11294 		if (rc) {
11295 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11296 					"0526 Failed setup of NVVME LS WQ/CQ: "
11297 					"rc = 0x%x\n", (uint32_t)rc);
11298 			goto out_destroy;
11299 		}
11300 
11301 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11302 				"6096 ELS WQ setup: wq-id=%d, "
11303 				"parent cq-id=%d\n",
11304 				phba->sli4_hba.nvmels_wq->queue_id,
11305 				phba->sli4_hba.nvmels_cq->queue_id);
11306 	}
11307 
11308 	/*
11309 	 * Create NVMET Receive Queue (RQ)
11310 	 */
11311 	if (phba->nvmet_support) {
11312 		if ((!phba->sli4_hba.nvmet_cqset) ||
11313 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11314 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11315 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11316 					"6130 MRQ CQ Queues not "
11317 					"allocated\n");
11318 			rc = -ENOMEM;
11319 			goto out_destroy;
11320 		}
11321 		if (phba->cfg_nvmet_mrq > 1) {
11322 			rc = lpfc_mrq_create(phba,
11323 					     phba->sli4_hba.nvmet_mrq_hdr,
11324 					     phba->sli4_hba.nvmet_mrq_data,
11325 					     phba->sli4_hba.nvmet_cqset,
11326 					     LPFC_NVMET);
11327 			if (rc) {
11328 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11329 						"6098 Failed setup of NVMET "
11330 						"MRQ: rc = 0x%x\n",
11331 						(uint32_t)rc);
11332 				goto out_destroy;
11333 			}
11334 
11335 		} else {
11336 			rc = lpfc_rq_create(phba,
11337 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11338 					    phba->sli4_hba.nvmet_mrq_data[0],
11339 					    phba->sli4_hba.nvmet_cqset[0],
11340 					    LPFC_NVMET);
11341 			if (rc) {
11342 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11343 						"6057 Failed setup of NVMET "
11344 						"Receive Queue: rc = 0x%x\n",
11345 						(uint32_t)rc);
11346 				goto out_destroy;
11347 			}
11348 
11349 			lpfc_printf_log(
11350 				phba, KERN_INFO, LOG_INIT,
11351 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11352 				"dat-rq-id=%d parent cq-id=%d\n",
11353 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11354 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11355 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11356 
11357 		}
11358 	}
11359 
11360 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11361 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11362 				"0540 Receive Queue not allocated\n");
11363 		rc = -ENOMEM;
11364 		goto out_destroy;
11365 	}
11366 
11367 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11368 			    phba->sli4_hba.els_cq, LPFC_USOL);
11369 	if (rc) {
11370 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11371 				"0541 Failed setup of Receive Queue: "
11372 				"rc = 0x%x\n", (uint32_t)rc);
11373 		goto out_destroy;
11374 	}
11375 
11376 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11377 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11378 			"parent cq-id=%d\n",
11379 			phba->sli4_hba.hdr_rq->queue_id,
11380 			phba->sli4_hba.dat_rq->queue_id,
11381 			phba->sli4_hba.els_cq->queue_id);
11382 
11383 	if (phba->cfg_fcp_imax)
11384 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11385 	else
11386 		usdelay = 0;
11387 
11388 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11389 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11390 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11391 					 usdelay);
11392 
11393 	if (phba->sli4_hba.cq_max) {
11394 		kfree(phba->sli4_hba.cq_lookup);
11395 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11396 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11397 		if (!phba->sli4_hba.cq_lookup) {
11398 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11399 					"0549 Failed setup of CQ Lookup table: "
11400 					"size 0x%x\n", phba->sli4_hba.cq_max);
11401 			rc = -ENOMEM;
11402 			goto out_destroy;
11403 		}
11404 		lpfc_setup_cq_lookup(phba);
11405 	}
11406 	return 0;
11407 
11408 out_destroy:
11409 	lpfc_sli4_queue_unset(phba);
11410 out_error:
11411 	return rc;
11412 }
11413 
11414 /**
11415  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11416  * @phba: pointer to lpfc hba data structure.
11417  *
11418  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11419  * operation.
11420  *
11421  * Return codes
11422  *      0 - successful
11423  *      -ENOMEM - No available memory
11424  *      -EIO - The mailbox failed to complete successfully.
11425  **/
11426 void
11427 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11428 {
11429 	struct lpfc_sli4_hdw_queue *qp;
11430 	struct lpfc_queue *eq;
11431 	int qidx;
11432 
11433 	/* Unset mailbox command work queue */
11434 	if (phba->sli4_hba.mbx_wq)
11435 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11436 
11437 	/* Unset NVME LS work queue */
11438 	if (phba->sli4_hba.nvmels_wq)
11439 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11440 
11441 	/* Unset ELS work queue */
11442 	if (phba->sli4_hba.els_wq)
11443 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11444 
11445 	/* Unset unsolicited receive queue */
11446 	if (phba->sli4_hba.hdr_rq)
11447 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11448 				phba->sli4_hba.dat_rq);
11449 
11450 	/* Unset mailbox command complete queue */
11451 	if (phba->sli4_hba.mbx_cq)
11452 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11453 
11454 	/* Unset ELS complete queue */
11455 	if (phba->sli4_hba.els_cq)
11456 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11457 
11458 	/* Unset NVME LS complete queue */
11459 	if (phba->sli4_hba.nvmels_cq)
11460 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11461 
11462 	if (phba->nvmet_support) {
11463 		/* Unset NVMET MRQ queue */
11464 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11465 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11466 				lpfc_rq_destroy(
11467 					phba,
11468 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11469 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11470 		}
11471 
11472 		/* Unset NVMET CQ Set complete queue */
11473 		if (phba->sli4_hba.nvmet_cqset) {
11474 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11475 				lpfc_cq_destroy(
11476 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11477 		}
11478 	}
11479 
11480 	/* Unset fast-path SLI4 queues */
11481 	if (phba->sli4_hba.hdwq) {
11482 		/* Loop thru all Hardware Queues */
11483 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11484 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11485 			qp = &phba->sli4_hba.hdwq[qidx];
11486 			lpfc_wq_destroy(phba, qp->io_wq);
11487 			lpfc_cq_destroy(phba, qp->io_cq);
11488 		}
11489 		/* Loop thru all IRQ vectors */
11490 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11491 			/* Destroy the EQ corresponding to the IRQ vector */
11492 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11493 			lpfc_eq_destroy(phba, eq);
11494 		}
11495 	}
11496 
11497 	kfree(phba->sli4_hba.cq_lookup);
11498 	phba->sli4_hba.cq_lookup = NULL;
11499 	phba->sli4_hba.cq_max = 0;
11500 }
11501 
11502 /**
11503  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11504  * @phba: pointer to lpfc hba data structure.
11505  *
11506  * This routine is invoked to allocate and set up a pool of completion queue
11507  * events. The body of the completion queue event is a completion queue entry
11508  * CQE. For now, this pool is used for the interrupt service routine to queue
11509  * the following HBA completion queue events for the worker thread to process:
11510  *   - Mailbox asynchronous events
11511  *   - Receive queue completion unsolicited events
11512  * Later, this can be used for all the slow-path events.
11513  *
11514  * Return codes
11515  *      0 - successful
11516  *      -ENOMEM - No available memory
11517  **/
11518 static int
11519 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11520 {
11521 	struct lpfc_cq_event *cq_event;
11522 	int i;
11523 
11524 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11525 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11526 		if (!cq_event)
11527 			goto out_pool_create_fail;
11528 		list_add_tail(&cq_event->list,
11529 			      &phba->sli4_hba.sp_cqe_event_pool);
11530 	}
11531 	return 0;
11532 
11533 out_pool_create_fail:
11534 	lpfc_sli4_cq_event_pool_destroy(phba);
11535 	return -ENOMEM;
11536 }
11537 
11538 /**
11539  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11540  * @phba: pointer to lpfc hba data structure.
11541  *
11542  * This routine is invoked to free the pool of completion queue events at
11543  * driver unload time. Note that, it is the responsibility of the driver
11544  * cleanup routine to free all the outstanding completion-queue events
11545  * allocated from this pool back into the pool before invoking this routine
11546  * to destroy the pool.
11547  **/
11548 static void
11549 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11550 {
11551 	struct lpfc_cq_event *cq_event, *next_cq_event;
11552 
11553 	list_for_each_entry_safe(cq_event, next_cq_event,
11554 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11555 		list_del(&cq_event->list);
11556 		kfree(cq_event);
11557 	}
11558 }
11559 
11560 /**
11561  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11562  * @phba: pointer to lpfc hba data structure.
11563  *
11564  * This routine is the lock free version of the API invoked to allocate a
11565  * completion-queue event from the free pool.
11566  *
11567  * Return: Pointer to the newly allocated completion-queue event if successful
11568  *         NULL otherwise.
11569  **/
11570 struct lpfc_cq_event *
11571 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11572 {
11573 	struct lpfc_cq_event *cq_event = NULL;
11574 
11575 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11576 			 struct lpfc_cq_event, list);
11577 	return cq_event;
11578 }
11579 
11580 /**
11581  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11582  * @phba: pointer to lpfc hba data structure.
11583  *
11584  * This routine is the lock version of the API invoked to allocate a
11585  * completion-queue event from the free pool.
11586  *
11587  * Return: Pointer to the newly allocated completion-queue event if successful
11588  *         NULL otherwise.
11589  **/
11590 struct lpfc_cq_event *
11591 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11592 {
11593 	struct lpfc_cq_event *cq_event;
11594 	unsigned long iflags;
11595 
11596 	spin_lock_irqsave(&phba->hbalock, iflags);
11597 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11598 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11599 	return cq_event;
11600 }
11601 
11602 /**
11603  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11604  * @phba: pointer to lpfc hba data structure.
11605  * @cq_event: pointer to the completion queue event to be freed.
11606  *
11607  * This routine is the lock free version of the API invoked to release a
11608  * completion-queue event back into the free pool.
11609  **/
11610 void
11611 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11612 			     struct lpfc_cq_event *cq_event)
11613 {
11614 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11615 }
11616 
11617 /**
11618  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11619  * @phba: pointer to lpfc hba data structure.
11620  * @cq_event: pointer to the completion queue event to be freed.
11621  *
11622  * This routine is the lock version of the API invoked to release a
11623  * completion-queue event back into the free pool.
11624  **/
11625 void
11626 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11627 			   struct lpfc_cq_event *cq_event)
11628 {
11629 	unsigned long iflags;
11630 	spin_lock_irqsave(&phba->hbalock, iflags);
11631 	__lpfc_sli4_cq_event_release(phba, cq_event);
11632 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11633 }
11634 
11635 /**
11636  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11637  * @phba: pointer to lpfc hba data structure.
11638  *
11639  * This routine is to free all the pending completion-queue events to the
11640  * back into the free pool for device reset.
11641  **/
11642 static void
11643 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11644 {
11645 	LIST_HEAD(cq_event_list);
11646 	struct lpfc_cq_event *cq_event;
11647 	unsigned long iflags;
11648 
11649 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11650 
11651 	/* Pending ELS XRI abort events */
11652 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11653 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11654 			 &cq_event_list);
11655 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11656 
11657 	/* Pending asynnc events */
11658 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11659 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11660 			 &cq_event_list);
11661 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11662 
11663 	while (!list_empty(&cq_event_list)) {
11664 		list_remove_head(&cq_event_list, cq_event,
11665 				 struct lpfc_cq_event, list);
11666 		lpfc_sli4_cq_event_release(phba, cq_event);
11667 	}
11668 }
11669 
11670 /**
11671  * lpfc_pci_function_reset - Reset pci function.
11672  * @phba: pointer to lpfc hba data structure.
11673  *
11674  * This routine is invoked to request a PCI function reset. It will destroys
11675  * all resources assigned to the PCI function which originates this request.
11676  *
11677  * Return codes
11678  *      0 - successful
11679  *      -ENOMEM - No available memory
11680  *      -EIO - The mailbox failed to complete successfully.
11681  **/
11682 int
11683 lpfc_pci_function_reset(struct lpfc_hba *phba)
11684 {
11685 	LPFC_MBOXQ_t *mboxq;
11686 	uint32_t rc = 0, if_type;
11687 	uint32_t shdr_status, shdr_add_status;
11688 	uint32_t rdy_chk;
11689 	uint32_t port_reset = 0;
11690 	union lpfc_sli4_cfg_shdr *shdr;
11691 	struct lpfc_register reg_data;
11692 	uint16_t devid;
11693 
11694 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11695 	switch (if_type) {
11696 	case LPFC_SLI_INTF_IF_TYPE_0:
11697 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11698 						       GFP_KERNEL);
11699 		if (!mboxq) {
11700 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11701 					"0494 Unable to allocate memory for "
11702 					"issuing SLI_FUNCTION_RESET mailbox "
11703 					"command\n");
11704 			return -ENOMEM;
11705 		}
11706 
11707 		/* Setup PCI function reset mailbox-ioctl command */
11708 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11709 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11710 				 LPFC_SLI4_MBX_EMBED);
11711 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11712 		shdr = (union lpfc_sli4_cfg_shdr *)
11713 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11714 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11715 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11716 					 &shdr->response);
11717 		mempool_free(mboxq, phba->mbox_mem_pool);
11718 		if (shdr_status || shdr_add_status || rc) {
11719 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11720 					"0495 SLI_FUNCTION_RESET mailbox "
11721 					"failed with status x%x add_status x%x,"
11722 					" mbx status x%x\n",
11723 					shdr_status, shdr_add_status, rc);
11724 			rc = -ENXIO;
11725 		}
11726 		break;
11727 	case LPFC_SLI_INTF_IF_TYPE_2:
11728 	case LPFC_SLI_INTF_IF_TYPE_6:
11729 wait:
11730 		/*
11731 		 * Poll the Port Status Register and wait for RDY for
11732 		 * up to 30 seconds. If the port doesn't respond, treat
11733 		 * it as an error.
11734 		 */
11735 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11736 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11737 				STATUSregaddr, &reg_data.word0)) {
11738 				rc = -ENODEV;
11739 				goto out;
11740 			}
11741 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11742 				break;
11743 			msleep(20);
11744 		}
11745 
11746 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11747 			phba->work_status[0] = readl(
11748 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11749 			phba->work_status[1] = readl(
11750 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11751 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11752 					"2890 Port not ready, port status reg "
11753 					"0x%x error 1=0x%x, error 2=0x%x\n",
11754 					reg_data.word0,
11755 					phba->work_status[0],
11756 					phba->work_status[1]);
11757 			rc = -ENODEV;
11758 			goto out;
11759 		}
11760 
11761 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11762 			lpfc_pldv_detect = true;
11763 
11764 		if (!port_reset) {
11765 			/*
11766 			 * Reset the port now
11767 			 */
11768 			reg_data.word0 = 0;
11769 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11770 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11771 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11772 			       LPFC_SLIPORT_INIT_PORT);
11773 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11774 			       CTRLregaddr);
11775 			/* flush */
11776 			pci_read_config_word(phba->pcidev,
11777 					     PCI_DEVICE_ID, &devid);
11778 
11779 			port_reset = 1;
11780 			msleep(20);
11781 			goto wait;
11782 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11783 			rc = -ENODEV;
11784 			goto out;
11785 		}
11786 		break;
11787 
11788 	case LPFC_SLI_INTF_IF_TYPE_1:
11789 	default:
11790 		break;
11791 	}
11792 
11793 out:
11794 	/* Catch the not-ready port failure after a port reset. */
11795 	if (rc) {
11796 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11797 				"3317 HBA not functional: IP Reset Failed "
11798 				"try: echo fw_reset > board_mode\n");
11799 		rc = -ENODEV;
11800 	}
11801 
11802 	return rc;
11803 }
11804 
11805 /**
11806  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11807  * @phba: pointer to lpfc hba data structure.
11808  *
11809  * This routine is invoked to set up the PCI device memory space for device
11810  * with SLI-4 interface spec.
11811  *
11812  * Return codes
11813  * 	0 - successful
11814  * 	other values - error
11815  **/
11816 static int
11817 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11818 {
11819 	struct pci_dev *pdev = phba->pcidev;
11820 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11821 	int error;
11822 	uint32_t if_type;
11823 
11824 	if (!pdev)
11825 		return -ENODEV;
11826 
11827 	/* Set the device DMA mask size */
11828 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11829 	if (error)
11830 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11831 	if (error)
11832 		return error;
11833 
11834 	/*
11835 	 * The BARs and register set definitions and offset locations are
11836 	 * dependent on the if_type.
11837 	 */
11838 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11839 				  &phba->sli4_hba.sli_intf.word0)) {
11840 		return -ENODEV;
11841 	}
11842 
11843 	/* There is no SLI3 failback for SLI4 devices. */
11844 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11845 	    LPFC_SLI_INTF_VALID) {
11846 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11847 				"2894 SLI_INTF reg contents invalid "
11848 				"sli_intf reg 0x%x\n",
11849 				phba->sli4_hba.sli_intf.word0);
11850 		return -ENODEV;
11851 	}
11852 
11853 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11854 	/*
11855 	 * Get the bus address of SLI4 device Bar regions and the
11856 	 * number of bytes required by each mapping. The mapping of the
11857 	 * particular PCI BARs regions is dependent on the type of
11858 	 * SLI4 device.
11859 	 */
11860 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11861 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11862 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11863 
11864 		/*
11865 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11866 		 * addr
11867 		 */
11868 		phba->sli4_hba.conf_regs_memmap_p =
11869 			ioremap(phba->pci_bar0_map, bar0map_len);
11870 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11871 			dev_printk(KERN_ERR, &pdev->dev,
11872 				   "ioremap failed for SLI4 PCI config "
11873 				   "registers.\n");
11874 			return -ENODEV;
11875 		}
11876 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11877 		/* Set up BAR0 PCI config space register memory map */
11878 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11879 	} else {
11880 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11881 		bar0map_len = pci_resource_len(pdev, 1);
11882 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11883 			dev_printk(KERN_ERR, &pdev->dev,
11884 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11885 			return -ENODEV;
11886 		}
11887 		phba->sli4_hba.conf_regs_memmap_p =
11888 				ioremap(phba->pci_bar0_map, bar0map_len);
11889 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11890 			dev_printk(KERN_ERR, &pdev->dev,
11891 				"ioremap failed for SLI4 PCI config "
11892 				"registers.\n");
11893 			return -ENODEV;
11894 		}
11895 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11896 	}
11897 
11898 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11899 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11900 			/*
11901 			 * Map SLI4 if type 0 HBA Control Register base to a
11902 			 * kernel virtual address and setup the registers.
11903 			 */
11904 			phba->pci_bar1_map = pci_resource_start(pdev,
11905 								PCI_64BIT_BAR2);
11906 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11907 			phba->sli4_hba.ctrl_regs_memmap_p =
11908 					ioremap(phba->pci_bar1_map,
11909 						bar1map_len);
11910 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11911 				dev_err(&pdev->dev,
11912 					   "ioremap failed for SLI4 HBA "
11913 					    "control registers.\n");
11914 				error = -ENOMEM;
11915 				goto out_iounmap_conf;
11916 			}
11917 			phba->pci_bar2_memmap_p =
11918 					 phba->sli4_hba.ctrl_regs_memmap_p;
11919 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11920 		} else {
11921 			error = -ENOMEM;
11922 			goto out_iounmap_conf;
11923 		}
11924 	}
11925 
11926 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11927 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11928 		/*
11929 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11930 		 * virtual address and setup the registers.
11931 		 */
11932 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11933 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11934 		phba->sli4_hba.drbl_regs_memmap_p =
11935 				ioremap(phba->pci_bar1_map, bar1map_len);
11936 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11937 			dev_err(&pdev->dev,
11938 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11939 			error = -ENOMEM;
11940 			goto out_iounmap_conf;
11941 		}
11942 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11943 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11944 	}
11945 
11946 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11947 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11948 			/*
11949 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11950 			 * a kernel virtual address and setup the registers.
11951 			 */
11952 			phba->pci_bar2_map = pci_resource_start(pdev,
11953 								PCI_64BIT_BAR4);
11954 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11955 			phba->sli4_hba.drbl_regs_memmap_p =
11956 					ioremap(phba->pci_bar2_map,
11957 						bar2map_len);
11958 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11959 				dev_err(&pdev->dev,
11960 					   "ioremap failed for SLI4 HBA"
11961 					   " doorbell registers.\n");
11962 				error = -ENOMEM;
11963 				goto out_iounmap_ctrl;
11964 			}
11965 			phba->pci_bar4_memmap_p =
11966 					phba->sli4_hba.drbl_regs_memmap_p;
11967 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11968 			if (error)
11969 				goto out_iounmap_all;
11970 		} else {
11971 			error = -ENOMEM;
11972 			goto out_iounmap_all;
11973 		}
11974 	}
11975 
11976 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11977 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11978 		/*
11979 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11980 		 * virtual address and setup the registers.
11981 		 */
11982 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11983 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11984 		phba->sli4_hba.dpp_regs_memmap_p =
11985 				ioremap(phba->pci_bar2_map, bar2map_len);
11986 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11987 			dev_err(&pdev->dev,
11988 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11989 			error = -ENOMEM;
11990 			goto out_iounmap_ctrl;
11991 		}
11992 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11993 	}
11994 
11995 	/* Set up the EQ/CQ register handeling functions now */
11996 	switch (if_type) {
11997 	case LPFC_SLI_INTF_IF_TYPE_0:
11998 	case LPFC_SLI_INTF_IF_TYPE_2:
11999 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
12000 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12001 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12002 		break;
12003 	case LPFC_SLI_INTF_IF_TYPE_6:
12004 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12005 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12006 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12007 		break;
12008 	default:
12009 		break;
12010 	}
12011 
12012 	return 0;
12013 
12014 out_iounmap_all:
12015 	iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12016 out_iounmap_ctrl:
12017 	iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12018 out_iounmap_conf:
12019 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12020 
12021 	return error;
12022 }
12023 
12024 /**
12025  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12026  * @phba: pointer to lpfc hba data structure.
12027  *
12028  * This routine is invoked to unset the PCI device memory space for device
12029  * with SLI-4 interface spec.
12030  **/
12031 static void
12032 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12033 {
12034 	uint32_t if_type;
12035 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12036 
12037 	switch (if_type) {
12038 	case LPFC_SLI_INTF_IF_TYPE_0:
12039 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12040 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12041 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12042 		break;
12043 	case LPFC_SLI_INTF_IF_TYPE_2:
12044 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12045 		break;
12046 	case LPFC_SLI_INTF_IF_TYPE_6:
12047 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12048 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12049 		if (phba->sli4_hba.dpp_regs_memmap_p)
12050 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12051 		break;
12052 	case LPFC_SLI_INTF_IF_TYPE_1:
12053 	default:
12054 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12055 			   "FATAL - unsupported SLI4 interface type - %d\n",
12056 			   if_type);
12057 		break;
12058 	}
12059 }
12060 
12061 /**
12062  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12063  * @phba: pointer to lpfc hba data structure.
12064  *
12065  * This routine is invoked to enable the MSI-X interrupt vectors to device
12066  * with SLI-3 interface specs.
12067  *
12068  * Return codes
12069  *   0 - successful
12070  *   other values - error
12071  **/
12072 static int
12073 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12074 {
12075 	int rc;
12076 	LPFC_MBOXQ_t *pmb;
12077 
12078 	/* Set up MSI-X multi-message vectors */
12079 	rc = pci_alloc_irq_vectors(phba->pcidev,
12080 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12081 	if (rc < 0) {
12082 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12083 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12084 		goto vec_fail_out;
12085 	}
12086 
12087 	/*
12088 	 * Assign MSI-X vectors to interrupt handlers
12089 	 */
12090 
12091 	/* vector-0 is associated to slow-path handler */
12092 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12093 			 &lpfc_sli_sp_intr_handler, 0,
12094 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12095 	if (rc) {
12096 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12097 				"0421 MSI-X slow-path request_irq failed "
12098 				"(%d)\n", rc);
12099 		goto msi_fail_out;
12100 	}
12101 
12102 	/* vector-1 is associated to fast-path handler */
12103 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12104 			 &lpfc_sli_fp_intr_handler, 0,
12105 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12106 
12107 	if (rc) {
12108 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12109 				"0429 MSI-X fast-path request_irq failed "
12110 				"(%d)\n", rc);
12111 		goto irq_fail_out;
12112 	}
12113 
12114 	/*
12115 	 * Configure HBA MSI-X attention conditions to messages
12116 	 */
12117 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12118 
12119 	if (!pmb) {
12120 		rc = -ENOMEM;
12121 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12122 				"0474 Unable to allocate memory for issuing "
12123 				"MBOX_CONFIG_MSI command\n");
12124 		goto mem_fail_out;
12125 	}
12126 	rc = lpfc_config_msi(phba, pmb);
12127 	if (rc)
12128 		goto mbx_fail_out;
12129 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12130 	if (rc != MBX_SUCCESS) {
12131 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12132 				"0351 Config MSI mailbox command failed, "
12133 				"mbxCmd x%x, mbxStatus x%x\n",
12134 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12135 		goto mbx_fail_out;
12136 	}
12137 
12138 	/* Free memory allocated for mailbox command */
12139 	mempool_free(pmb, phba->mbox_mem_pool);
12140 	return rc;
12141 
12142 mbx_fail_out:
12143 	/* Free memory allocated for mailbox command */
12144 	mempool_free(pmb, phba->mbox_mem_pool);
12145 
12146 mem_fail_out:
12147 	/* free the irq already requested */
12148 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12149 
12150 irq_fail_out:
12151 	/* free the irq already requested */
12152 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12153 
12154 msi_fail_out:
12155 	/* Unconfigure MSI-X capability structure */
12156 	pci_free_irq_vectors(phba->pcidev);
12157 
12158 vec_fail_out:
12159 	return rc;
12160 }
12161 
12162 /**
12163  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12164  * @phba: pointer to lpfc hba data structure.
12165  *
12166  * This routine is invoked to enable the MSI interrupt mode to device with
12167  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12168  * enable the MSI vector. The device driver is responsible for calling the
12169  * request_irq() to register MSI vector with a interrupt the handler, which
12170  * is done in this function.
12171  *
12172  * Return codes
12173  * 	0 - successful
12174  * 	other values - error
12175  */
12176 static int
12177 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12178 {
12179 	int rc;
12180 
12181 	rc = pci_enable_msi(phba->pcidev);
12182 	if (!rc)
12183 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12184 				"0012 PCI enable MSI mode success.\n");
12185 	else {
12186 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12187 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12188 		return rc;
12189 	}
12190 
12191 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12192 			 0, LPFC_DRIVER_NAME, phba);
12193 	if (rc) {
12194 		pci_disable_msi(phba->pcidev);
12195 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12196 				"0478 MSI request_irq failed (%d)\n", rc);
12197 	}
12198 	return rc;
12199 }
12200 
12201 /**
12202  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12203  * @phba: pointer to lpfc hba data structure.
12204  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12205  *
12206  * This routine is invoked to enable device interrupt and associate driver's
12207  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12208  * spec. Depends on the interrupt mode configured to the driver, the driver
12209  * will try to fallback from the configured interrupt mode to an interrupt
12210  * mode which is supported by the platform, kernel, and device in the order
12211  * of:
12212  * MSI-X -> MSI -> IRQ.
12213  *
12214  * Return codes
12215  *   0 - successful
12216  *   other values - error
12217  **/
12218 static uint32_t
12219 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12220 {
12221 	uint32_t intr_mode = LPFC_INTR_ERROR;
12222 	int retval;
12223 
12224 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12225 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12226 	if (retval)
12227 		return intr_mode;
12228 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12229 
12230 	if (cfg_mode == 2) {
12231 		/* Now, try to enable MSI-X interrupt mode */
12232 		retval = lpfc_sli_enable_msix(phba);
12233 		if (!retval) {
12234 			/* Indicate initialization to MSI-X mode */
12235 			phba->intr_type = MSIX;
12236 			intr_mode = 2;
12237 		}
12238 	}
12239 
12240 	/* Fallback to MSI if MSI-X initialization failed */
12241 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12242 		retval = lpfc_sli_enable_msi(phba);
12243 		if (!retval) {
12244 			/* Indicate initialization to MSI mode */
12245 			phba->intr_type = MSI;
12246 			intr_mode = 1;
12247 		}
12248 	}
12249 
12250 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12251 	if (phba->intr_type == NONE) {
12252 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12253 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12254 		if (!retval) {
12255 			/* Indicate initialization to INTx mode */
12256 			phba->intr_type = INTx;
12257 			intr_mode = 0;
12258 		}
12259 	}
12260 	return intr_mode;
12261 }
12262 
12263 /**
12264  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12265  * @phba: pointer to lpfc hba data structure.
12266  *
12267  * This routine is invoked to disable device interrupt and disassociate the
12268  * driver's interrupt handler(s) from interrupt vector(s) to device with
12269  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12270  * release the interrupt vector(s) for the message signaled interrupt.
12271  **/
12272 static void
12273 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12274 {
12275 	int nr_irqs, i;
12276 
12277 	if (phba->intr_type == MSIX)
12278 		nr_irqs = LPFC_MSIX_VECTORS;
12279 	else
12280 		nr_irqs = 1;
12281 
12282 	for (i = 0; i < nr_irqs; i++)
12283 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12284 	pci_free_irq_vectors(phba->pcidev);
12285 
12286 	/* Reset interrupt management states */
12287 	phba->intr_type = NONE;
12288 	phba->sli.slistat.sli_intr = 0;
12289 }
12290 
12291 /**
12292  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12293  * @phba: pointer to lpfc hba data structure.
12294  * @id: EQ vector index or Hardware Queue index
12295  * @match: LPFC_FIND_BY_EQ = match by EQ
12296  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12297  * Return the CPU that matches the selection criteria
12298  */
12299 static uint16_t
12300 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12301 {
12302 	struct lpfc_vector_map_info *cpup;
12303 	int cpu;
12304 
12305 	/* Loop through all CPUs */
12306 	for_each_present_cpu(cpu) {
12307 		cpup = &phba->sli4_hba.cpu_map[cpu];
12308 
12309 		/* If we are matching by EQ, there may be multiple CPUs using
12310 		 * using the same vector, so select the one with
12311 		 * LPFC_CPU_FIRST_IRQ set.
12312 		 */
12313 		if ((match == LPFC_FIND_BY_EQ) &&
12314 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12315 		    (cpup->eq == id))
12316 			return cpu;
12317 
12318 		/* If matching by HDWQ, select the first CPU that matches */
12319 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12320 			return cpu;
12321 	}
12322 	return 0;
12323 }
12324 
12325 #ifdef CONFIG_X86
12326 /**
12327  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12328  * @phba: pointer to lpfc hba data structure.
12329  * @cpu: CPU map index
12330  * @phys_id: CPU package physical id
12331  * @core_id: CPU core id
12332  */
12333 static int
12334 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12335 		uint16_t phys_id, uint16_t core_id)
12336 {
12337 	struct lpfc_vector_map_info *cpup;
12338 	int idx;
12339 
12340 	for_each_present_cpu(idx) {
12341 		cpup = &phba->sli4_hba.cpu_map[idx];
12342 		/* Does the cpup match the one we are looking for */
12343 		if ((cpup->phys_id == phys_id) &&
12344 		    (cpup->core_id == core_id) &&
12345 		    (cpu != idx))
12346 			return 1;
12347 	}
12348 	return 0;
12349 }
12350 #endif
12351 
12352 /*
12353  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12354  * @phba: pointer to lpfc hba data structure.
12355  * @eqidx: index for eq and irq vector
12356  * @flag: flags to set for vector_map structure
12357  * @cpu: cpu used to index vector_map structure
12358  *
12359  * The routine assigns eq info into vector_map structure
12360  */
12361 static inline void
12362 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12363 			unsigned int cpu)
12364 {
12365 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12366 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12367 
12368 	cpup->eq = eqidx;
12369 	cpup->flag |= flag;
12370 
12371 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12372 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12373 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12374 }
12375 
12376 /**
12377  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12378  * @phba: pointer to lpfc hba data structure.
12379  *
12380  * The routine initializes the cpu_map array structure
12381  */
12382 static void
12383 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12384 {
12385 	struct lpfc_vector_map_info *cpup;
12386 	struct lpfc_eq_intr_info *eqi;
12387 	int cpu;
12388 
12389 	for_each_possible_cpu(cpu) {
12390 		cpup = &phba->sli4_hba.cpu_map[cpu];
12391 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12392 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12393 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12394 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12395 		cpup->flag = 0;
12396 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12397 		INIT_LIST_HEAD(&eqi->list);
12398 		eqi->icnt = 0;
12399 	}
12400 }
12401 
12402 /**
12403  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12404  * @phba: pointer to lpfc hba data structure.
12405  *
12406  * The routine initializes the hba_eq_hdl array structure
12407  */
12408 static void
12409 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12410 {
12411 	struct lpfc_hba_eq_hdl *eqhdl;
12412 	int i;
12413 
12414 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12415 		eqhdl = lpfc_get_eq_hdl(i);
12416 		eqhdl->irq = LPFC_IRQ_EMPTY;
12417 		eqhdl->phba = phba;
12418 	}
12419 }
12420 
12421 /**
12422  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12423  * @phba: pointer to lpfc hba data structure.
12424  * @vectors: number of msix vectors allocated.
12425  *
12426  * The routine will figure out the CPU affinity assignment for every
12427  * MSI-X vector allocated for the HBA.
12428  * In addition, the CPU to IO channel mapping will be calculated
12429  * and the phba->sli4_hba.cpu_map array will reflect this.
12430  */
12431 static void
12432 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12433 {
12434 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12435 	int max_phys_id, min_phys_id;
12436 	int max_core_id, min_core_id;
12437 	struct lpfc_vector_map_info *cpup;
12438 	struct lpfc_vector_map_info *new_cpup;
12439 #ifdef CONFIG_X86
12440 	struct cpuinfo_x86 *cpuinfo;
12441 #endif
12442 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12443 	struct lpfc_hdwq_stat *c_stat;
12444 #endif
12445 
12446 	max_phys_id = 0;
12447 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12448 	max_core_id = 0;
12449 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12450 
12451 	/* Update CPU map with physical id and core id of each CPU */
12452 	for_each_present_cpu(cpu) {
12453 		cpup = &phba->sli4_hba.cpu_map[cpu];
12454 #ifdef CONFIG_X86
12455 		cpuinfo = &cpu_data(cpu);
12456 		cpup->phys_id = cpuinfo->phys_proc_id;
12457 		cpup->core_id = cpuinfo->cpu_core_id;
12458 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12459 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12460 #else
12461 		/* No distinction between CPUs for other platforms */
12462 		cpup->phys_id = 0;
12463 		cpup->core_id = cpu;
12464 #endif
12465 
12466 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12467 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12468 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12469 
12470 		if (cpup->phys_id > max_phys_id)
12471 			max_phys_id = cpup->phys_id;
12472 		if (cpup->phys_id < min_phys_id)
12473 			min_phys_id = cpup->phys_id;
12474 
12475 		if (cpup->core_id > max_core_id)
12476 			max_core_id = cpup->core_id;
12477 		if (cpup->core_id < min_core_id)
12478 			min_core_id = cpup->core_id;
12479 	}
12480 
12481 	/* After looking at each irq vector assigned to this pcidev, its
12482 	 * possible to see that not ALL CPUs have been accounted for.
12483 	 * Next we will set any unassigned (unaffinitized) cpu map
12484 	 * entries to a IRQ on the same phys_id.
12485 	 */
12486 	first_cpu = cpumask_first(cpu_present_mask);
12487 	start_cpu = first_cpu;
12488 
12489 	for_each_present_cpu(cpu) {
12490 		cpup = &phba->sli4_hba.cpu_map[cpu];
12491 
12492 		/* Is this CPU entry unassigned */
12493 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12494 			/* Mark CPU as IRQ not assigned by the kernel */
12495 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12496 
12497 			/* If so, find a new_cpup thats on the the SAME
12498 			 * phys_id as cpup. start_cpu will start where we
12499 			 * left off so all unassigned entries don't get assgined
12500 			 * the IRQ of the first entry.
12501 			 */
12502 			new_cpu = start_cpu;
12503 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12504 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12505 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12506 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12507 				    (new_cpup->phys_id == cpup->phys_id))
12508 					goto found_same;
12509 				new_cpu = cpumask_next(
12510 					new_cpu, cpu_present_mask);
12511 				if (new_cpu == nr_cpumask_bits)
12512 					new_cpu = first_cpu;
12513 			}
12514 			/* At this point, we leave the CPU as unassigned */
12515 			continue;
12516 found_same:
12517 			/* We found a matching phys_id, so copy the IRQ info */
12518 			cpup->eq = new_cpup->eq;
12519 
12520 			/* Bump start_cpu to the next slot to minmize the
12521 			 * chance of having multiple unassigned CPU entries
12522 			 * selecting the same IRQ.
12523 			 */
12524 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12525 			if (start_cpu == nr_cpumask_bits)
12526 				start_cpu = first_cpu;
12527 
12528 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12529 					"3337 Set Affinity: CPU %d "
12530 					"eq %d from peer cpu %d same "
12531 					"phys_id (%d)\n",
12532 					cpu, cpup->eq, new_cpu,
12533 					cpup->phys_id);
12534 		}
12535 	}
12536 
12537 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12538 	start_cpu = first_cpu;
12539 
12540 	for_each_present_cpu(cpu) {
12541 		cpup = &phba->sli4_hba.cpu_map[cpu];
12542 
12543 		/* Is this entry unassigned */
12544 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12545 			/* Mark it as IRQ not assigned by the kernel */
12546 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12547 
12548 			/* If so, find a new_cpup thats on ANY phys_id
12549 			 * as the cpup. start_cpu will start where we
12550 			 * left off so all unassigned entries don't get
12551 			 * assigned the IRQ of the first entry.
12552 			 */
12553 			new_cpu = start_cpu;
12554 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12555 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12556 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12557 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12558 					goto found_any;
12559 				new_cpu = cpumask_next(
12560 					new_cpu, cpu_present_mask);
12561 				if (new_cpu == nr_cpumask_bits)
12562 					new_cpu = first_cpu;
12563 			}
12564 			/* We should never leave an entry unassigned */
12565 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12566 					"3339 Set Affinity: CPU %d "
12567 					"eq %d UNASSIGNED\n",
12568 					cpup->hdwq, cpup->eq);
12569 			continue;
12570 found_any:
12571 			/* We found an available entry, copy the IRQ info */
12572 			cpup->eq = new_cpup->eq;
12573 
12574 			/* Bump start_cpu to the next slot to minmize the
12575 			 * chance of having multiple unassigned CPU entries
12576 			 * selecting the same IRQ.
12577 			 */
12578 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12579 			if (start_cpu == nr_cpumask_bits)
12580 				start_cpu = first_cpu;
12581 
12582 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12583 					"3338 Set Affinity: CPU %d "
12584 					"eq %d from peer cpu %d (%d/%d)\n",
12585 					cpu, cpup->eq, new_cpu,
12586 					new_cpup->phys_id, new_cpup->core_id);
12587 		}
12588 	}
12589 
12590 	/* Assign hdwq indices that are unique across all cpus in the map
12591 	 * that are also FIRST_CPUs.
12592 	 */
12593 	idx = 0;
12594 	for_each_present_cpu(cpu) {
12595 		cpup = &phba->sli4_hba.cpu_map[cpu];
12596 
12597 		/* Only FIRST IRQs get a hdwq index assignment. */
12598 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12599 			continue;
12600 
12601 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12602 		cpup->hdwq = idx;
12603 		idx++;
12604 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12605 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12606 				"hdwq %d eq %d flg x%x\n",
12607 				cpu, cpup->phys_id, cpup->core_id,
12608 				cpup->hdwq, cpup->eq, cpup->flag);
12609 	}
12610 	/* Associate a hdwq with each cpu_map entry
12611 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12612 	 * hardware queues then CPUs. For that case we will just round-robin
12613 	 * the available hardware queues as they get assigned to CPUs.
12614 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12615 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12616 	 * and needs to start at 0.
12617 	 */
12618 	next_idx = idx;
12619 	start_cpu = 0;
12620 	idx = 0;
12621 	for_each_present_cpu(cpu) {
12622 		cpup = &phba->sli4_hba.cpu_map[cpu];
12623 
12624 		/* FIRST cpus are already mapped. */
12625 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12626 			continue;
12627 
12628 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12629 		 * of the unassigned cpus to the next idx so that all
12630 		 * hdw queues are fully utilized.
12631 		 */
12632 		if (next_idx < phba->cfg_hdw_queue) {
12633 			cpup->hdwq = next_idx;
12634 			next_idx++;
12635 			continue;
12636 		}
12637 
12638 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12639 		 * Hardware Queue for another CPU, so be smart about it
12640 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12641 		 * (CPU package) and core_id.
12642 		 */
12643 		new_cpu = start_cpu;
12644 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12645 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12646 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12647 			    new_cpup->phys_id == cpup->phys_id &&
12648 			    new_cpup->core_id == cpup->core_id) {
12649 				goto found_hdwq;
12650 			}
12651 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12652 			if (new_cpu == nr_cpumask_bits)
12653 				new_cpu = first_cpu;
12654 		}
12655 
12656 		/* If we can't match both phys_id and core_id,
12657 		 * settle for just a phys_id match.
12658 		 */
12659 		new_cpu = start_cpu;
12660 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12661 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12662 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12663 			    new_cpup->phys_id == cpup->phys_id)
12664 				goto found_hdwq;
12665 
12666 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12667 			if (new_cpu == nr_cpumask_bits)
12668 				new_cpu = first_cpu;
12669 		}
12670 
12671 		/* Otherwise just round robin on cfg_hdw_queue */
12672 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12673 		idx++;
12674 		goto logit;
12675  found_hdwq:
12676 		/* We found an available entry, copy the IRQ info */
12677 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12678 		if (start_cpu == nr_cpumask_bits)
12679 			start_cpu = first_cpu;
12680 		cpup->hdwq = new_cpup->hdwq;
12681  logit:
12682 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12683 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12684 				"hdwq %d eq %d flg x%x\n",
12685 				cpu, cpup->phys_id, cpup->core_id,
12686 				cpup->hdwq, cpup->eq, cpup->flag);
12687 	}
12688 
12689 	/*
12690 	 * Initialize the cpu_map slots for not-present cpus in case
12691 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12692 	 */
12693 	idx = 0;
12694 	for_each_possible_cpu(cpu) {
12695 		cpup = &phba->sli4_hba.cpu_map[cpu];
12696 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12697 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12698 		c_stat->hdwq_no = cpup->hdwq;
12699 #endif
12700 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12701 			continue;
12702 
12703 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12704 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12705 		c_stat->hdwq_no = cpup->hdwq;
12706 #endif
12707 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12708 				"3340 Set Affinity: not present "
12709 				"CPU %d hdwq %d\n",
12710 				cpu, cpup->hdwq);
12711 	}
12712 
12713 	/* The cpu_map array will be used later during initialization
12714 	 * when EQ / CQ / WQs are allocated and configured.
12715 	 */
12716 	return;
12717 }
12718 
12719 /**
12720  * lpfc_cpuhp_get_eq
12721  *
12722  * @phba:   pointer to lpfc hba data structure.
12723  * @cpu:    cpu going offline
12724  * @eqlist: eq list to append to
12725  */
12726 static int
12727 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12728 		  struct list_head *eqlist)
12729 {
12730 	const struct cpumask *maskp;
12731 	struct lpfc_queue *eq;
12732 	struct cpumask *tmp;
12733 	u16 idx;
12734 
12735 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12736 	if (!tmp)
12737 		return -ENOMEM;
12738 
12739 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12740 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12741 		if (!maskp)
12742 			continue;
12743 		/*
12744 		 * if irq is not affinitized to the cpu going
12745 		 * then we don't need to poll the eq attached
12746 		 * to it.
12747 		 */
12748 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12749 			continue;
12750 		/* get the cpus that are online and are affini-
12751 		 * tized to this irq vector.  If the count is
12752 		 * more than 1 then cpuhp is not going to shut-
12753 		 * down this vector.  Since this cpu has not
12754 		 * gone offline yet, we need >1.
12755 		 */
12756 		cpumask_and(tmp, maskp, cpu_online_mask);
12757 		if (cpumask_weight(tmp) > 1)
12758 			continue;
12759 
12760 		/* Now that we have an irq to shutdown, get the eq
12761 		 * mapped to this irq.  Note: multiple hdwq's in
12762 		 * the software can share an eq, but eventually
12763 		 * only eq will be mapped to this vector
12764 		 */
12765 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12766 		list_add(&eq->_poll_list, eqlist);
12767 	}
12768 	kfree(tmp);
12769 	return 0;
12770 }
12771 
12772 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12773 {
12774 	if (phba->sli_rev != LPFC_SLI_REV4)
12775 		return;
12776 
12777 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12778 					    &phba->cpuhp);
12779 	/*
12780 	 * unregistering the instance doesn't stop the polling
12781 	 * timer. Wait for the poll timer to retire.
12782 	 */
12783 	synchronize_rcu();
12784 	del_timer_sync(&phba->cpuhp_poll_timer);
12785 }
12786 
12787 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12788 {
12789 	if (phba->pport && (phba->pport->fc_flag & FC_OFFLINE_MODE))
12790 		return;
12791 
12792 	__lpfc_cpuhp_remove(phba);
12793 }
12794 
12795 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12796 {
12797 	if (phba->sli_rev != LPFC_SLI_REV4)
12798 		return;
12799 
12800 	rcu_read_lock();
12801 
12802 	if (!list_empty(&phba->poll_list))
12803 		mod_timer(&phba->cpuhp_poll_timer,
12804 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12805 
12806 	rcu_read_unlock();
12807 
12808 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12809 					 &phba->cpuhp);
12810 }
12811 
12812 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12813 {
12814 	if (phba->pport->load_flag & FC_UNLOADING) {
12815 		*retval = -EAGAIN;
12816 		return true;
12817 	}
12818 
12819 	if (phba->sli_rev != LPFC_SLI_REV4) {
12820 		*retval = 0;
12821 		return true;
12822 	}
12823 
12824 	/* proceed with the hotplug */
12825 	return false;
12826 }
12827 
12828 /**
12829  * lpfc_irq_set_aff - set IRQ affinity
12830  * @eqhdl: EQ handle
12831  * @cpu: cpu to set affinity
12832  *
12833  **/
12834 static inline void
12835 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12836 {
12837 	cpumask_clear(&eqhdl->aff_mask);
12838 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12839 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12840 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12841 }
12842 
12843 /**
12844  * lpfc_irq_clear_aff - clear IRQ affinity
12845  * @eqhdl: EQ handle
12846  *
12847  **/
12848 static inline void
12849 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12850 {
12851 	cpumask_clear(&eqhdl->aff_mask);
12852 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12853 }
12854 
12855 /**
12856  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12857  * @phba: pointer to HBA context object.
12858  * @cpu: cpu going offline/online
12859  * @offline: true, cpu is going offline. false, cpu is coming online.
12860  *
12861  * If cpu is going offline, we'll try our best effort to find the next
12862  * online cpu on the phba's original_mask and migrate all offlining IRQ
12863  * affinities.
12864  *
12865  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12866  *
12867  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12868  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12869  *
12870  **/
12871 static void
12872 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12873 {
12874 	struct lpfc_vector_map_info *cpup;
12875 	struct cpumask *aff_mask;
12876 	unsigned int cpu_select, cpu_next, idx;
12877 	const struct cpumask *orig_mask;
12878 
12879 	if (phba->irq_chann_mode == NORMAL_MODE)
12880 		return;
12881 
12882 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12883 
12884 	if (!cpumask_test_cpu(cpu, orig_mask))
12885 		return;
12886 
12887 	cpup = &phba->sli4_hba.cpu_map[cpu];
12888 
12889 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12890 		return;
12891 
12892 	if (offline) {
12893 		/* Find next online CPU on original mask */
12894 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12895 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12896 
12897 		/* Found a valid CPU */
12898 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12899 			/* Go through each eqhdl and ensure offlining
12900 			 * cpu aff_mask is migrated
12901 			 */
12902 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12903 				aff_mask = lpfc_get_aff_mask(idx);
12904 
12905 				/* Migrate affinity */
12906 				if (cpumask_test_cpu(cpu, aff_mask))
12907 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12908 							 cpu_select);
12909 			}
12910 		} else {
12911 			/* Rely on irqbalance if no online CPUs left on NUMA */
12912 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12913 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12914 		}
12915 	} else {
12916 		/* Migrate affinity back to this CPU */
12917 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12918 	}
12919 }
12920 
12921 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12922 {
12923 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12924 	struct lpfc_queue *eq, *next;
12925 	LIST_HEAD(eqlist);
12926 	int retval;
12927 
12928 	if (!phba) {
12929 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12930 		return 0;
12931 	}
12932 
12933 	if (__lpfc_cpuhp_checks(phba, &retval))
12934 		return retval;
12935 
12936 	lpfc_irq_rebalance(phba, cpu, true);
12937 
12938 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12939 	if (retval)
12940 		return retval;
12941 
12942 	/* start polling on these eq's */
12943 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12944 		list_del_init(&eq->_poll_list);
12945 		lpfc_sli4_start_polling(eq);
12946 	}
12947 
12948 	return 0;
12949 }
12950 
12951 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12952 {
12953 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12954 	struct lpfc_queue *eq, *next;
12955 	unsigned int n;
12956 	int retval;
12957 
12958 	if (!phba) {
12959 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12960 		return 0;
12961 	}
12962 
12963 	if (__lpfc_cpuhp_checks(phba, &retval))
12964 		return retval;
12965 
12966 	lpfc_irq_rebalance(phba, cpu, false);
12967 
12968 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12969 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12970 		if (n == cpu)
12971 			lpfc_sli4_stop_polling(eq);
12972 	}
12973 
12974 	return 0;
12975 }
12976 
12977 /**
12978  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12979  * @phba: pointer to lpfc hba data structure.
12980  *
12981  * This routine is invoked to enable the MSI-X interrupt vectors to device
12982  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12983  * to cpus on the system.
12984  *
12985  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12986  * the number of cpus on the same numa node as this adapter.  The vectors are
12987  * allocated without requesting OS affinity mapping.  A vector will be
12988  * allocated and assigned to each online and offline cpu.  If the cpu is
12989  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12990  * affinity will be set to the nearest peer cpu within the numa node that is
12991  * online.  If there are no online cpus within the numa node, affinity is not
12992  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12993  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12994  * configured.
12995  *
12996  * If numa mode is not enabled and there is more than 1 vector allocated, then
12997  * the driver relies on the managed irq interface where the OS assigns vector to
12998  * cpu affinity.  The driver will then use that affinity mapping to setup its
12999  * cpu mapping table.
13000  *
13001  * Return codes
13002  * 0 - successful
13003  * other values - error
13004  **/
13005 static int
13006 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
13007 {
13008 	int vectors, rc, index;
13009 	char *name;
13010 	const struct cpumask *aff_mask = NULL;
13011 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13012 	struct lpfc_vector_map_info *cpup;
13013 	struct lpfc_hba_eq_hdl *eqhdl;
13014 	const struct cpumask *maskp;
13015 	unsigned int flags = PCI_IRQ_MSIX;
13016 
13017 	/* Set up MSI-X multi-message vectors */
13018 	vectors = phba->cfg_irq_chann;
13019 
13020 	if (phba->irq_chann_mode != NORMAL_MODE)
13021 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13022 
13023 	if (aff_mask) {
13024 		cpu_cnt = cpumask_weight(aff_mask);
13025 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13026 
13027 		/* cpu: iterates over aff_mask including offline or online
13028 		 * cpu_select: iterates over online aff_mask to set affinity
13029 		 */
13030 		cpu = cpumask_first(aff_mask);
13031 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13032 	} else {
13033 		flags |= PCI_IRQ_AFFINITY;
13034 	}
13035 
13036 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13037 	if (rc < 0) {
13038 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13039 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13040 		goto vec_fail_out;
13041 	}
13042 	vectors = rc;
13043 
13044 	/* Assign MSI-X vectors to interrupt handlers */
13045 	for (index = 0; index < vectors; index++) {
13046 		eqhdl = lpfc_get_eq_hdl(index);
13047 		name = eqhdl->handler_name;
13048 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13049 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13050 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13051 
13052 		eqhdl->idx = index;
13053 		rc = pci_irq_vector(phba->pcidev, index);
13054 		if (rc < 0) {
13055 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13056 					"0489 MSI-X fast-path (%d) "
13057 					"pci_irq_vec failed (%d)\n", index, rc);
13058 			goto cfg_fail_out;
13059 		}
13060 		eqhdl->irq = rc;
13061 
13062 		rc = request_irq(eqhdl->irq, &lpfc_sli4_hba_intr_handler, 0,
13063 				 name, eqhdl);
13064 		if (rc) {
13065 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13066 					"0486 MSI-X fast-path (%d) "
13067 					"request_irq failed (%d)\n", index, rc);
13068 			goto cfg_fail_out;
13069 		}
13070 
13071 		if (aff_mask) {
13072 			/* If found a neighboring online cpu, set affinity */
13073 			if (cpu_select < nr_cpu_ids)
13074 				lpfc_irq_set_aff(eqhdl, cpu_select);
13075 
13076 			/* Assign EQ to cpu_map */
13077 			lpfc_assign_eq_map_info(phba, index,
13078 						LPFC_CPU_FIRST_IRQ,
13079 						cpu);
13080 
13081 			/* Iterate to next offline or online cpu in aff_mask */
13082 			cpu = cpumask_next(cpu, aff_mask);
13083 
13084 			/* Find next online cpu in aff_mask to set affinity */
13085 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13086 		} else if (vectors == 1) {
13087 			cpu = cpumask_first(cpu_present_mask);
13088 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13089 						cpu);
13090 		} else {
13091 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13092 
13093 			/* Loop through all CPUs associated with vector index */
13094 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13095 				cpup = &phba->sli4_hba.cpu_map[cpu];
13096 
13097 				/* If this is the first CPU thats assigned to
13098 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13099 				 *
13100 				 * With certain platforms its possible that irq
13101 				 * vectors are affinitized to all the cpu's.
13102 				 * This can result in each cpu_map.eq to be set
13103 				 * to the last vector, resulting in overwrite
13104 				 * of all the previous cpu_map.eq.  Ensure that
13105 				 * each vector receives a place in cpu_map.
13106 				 * Later call to lpfc_cpu_affinity_check will
13107 				 * ensure we are nicely balanced out.
13108 				 */
13109 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13110 					continue;
13111 				lpfc_assign_eq_map_info(phba, index,
13112 							LPFC_CPU_FIRST_IRQ,
13113 							cpu);
13114 				break;
13115 			}
13116 		}
13117 	}
13118 
13119 	if (vectors != phba->cfg_irq_chann) {
13120 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13121 				"3238 Reducing IO channels to match number of "
13122 				"MSI-X vectors, requested %d got %d\n",
13123 				phba->cfg_irq_chann, vectors);
13124 		if (phba->cfg_irq_chann > vectors)
13125 			phba->cfg_irq_chann = vectors;
13126 	}
13127 
13128 	return rc;
13129 
13130 cfg_fail_out:
13131 	/* free the irq already requested */
13132 	for (--index; index >= 0; index--) {
13133 		eqhdl = lpfc_get_eq_hdl(index);
13134 		lpfc_irq_clear_aff(eqhdl);
13135 		free_irq(eqhdl->irq, eqhdl);
13136 	}
13137 
13138 	/* Unconfigure MSI-X capability structure */
13139 	pci_free_irq_vectors(phba->pcidev);
13140 
13141 vec_fail_out:
13142 	return rc;
13143 }
13144 
13145 /**
13146  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13147  * @phba: pointer to lpfc hba data structure.
13148  *
13149  * This routine is invoked to enable the MSI interrupt mode to device with
13150  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13151  * called to enable the MSI vector. The device driver is responsible for
13152  * calling the request_irq() to register MSI vector with a interrupt the
13153  * handler, which is done in this function.
13154  *
13155  * Return codes
13156  * 	0 - successful
13157  * 	other values - error
13158  **/
13159 static int
13160 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13161 {
13162 	int rc, index;
13163 	unsigned int cpu;
13164 	struct lpfc_hba_eq_hdl *eqhdl;
13165 
13166 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13167 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13168 	if (rc > 0)
13169 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13170 				"0487 PCI enable MSI mode success.\n");
13171 	else {
13172 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13173 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13174 		return rc ? rc : -1;
13175 	}
13176 
13177 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13178 			 0, LPFC_DRIVER_NAME, phba);
13179 	if (rc) {
13180 		pci_free_irq_vectors(phba->pcidev);
13181 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13182 				"0490 MSI request_irq failed (%d)\n", rc);
13183 		return rc;
13184 	}
13185 
13186 	eqhdl = lpfc_get_eq_hdl(0);
13187 	rc = pci_irq_vector(phba->pcidev, 0);
13188 	if (rc < 0) {
13189 		pci_free_irq_vectors(phba->pcidev);
13190 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13191 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13192 		return rc;
13193 	}
13194 	eqhdl->irq = rc;
13195 
13196 	cpu = cpumask_first(cpu_present_mask);
13197 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13198 
13199 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13200 		eqhdl = lpfc_get_eq_hdl(index);
13201 		eqhdl->idx = index;
13202 	}
13203 
13204 	return 0;
13205 }
13206 
13207 /**
13208  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13209  * @phba: pointer to lpfc hba data structure.
13210  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13211  *
13212  * This routine is invoked to enable device interrupt and associate driver's
13213  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13214  * interface spec. Depends on the interrupt mode configured to the driver,
13215  * the driver will try to fallback from the configured interrupt mode to an
13216  * interrupt mode which is supported by the platform, kernel, and device in
13217  * the order of:
13218  * MSI-X -> MSI -> IRQ.
13219  *
13220  * Return codes
13221  *	Interrupt mode (2, 1, 0) - successful
13222  *	LPFC_INTR_ERROR - error
13223  **/
13224 static uint32_t
13225 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13226 {
13227 	uint32_t intr_mode = LPFC_INTR_ERROR;
13228 	int retval, idx;
13229 
13230 	if (cfg_mode == 2) {
13231 		/* Preparation before conf_msi mbox cmd */
13232 		retval = 0;
13233 		if (!retval) {
13234 			/* Now, try to enable MSI-X interrupt mode */
13235 			retval = lpfc_sli4_enable_msix(phba);
13236 			if (!retval) {
13237 				/* Indicate initialization to MSI-X mode */
13238 				phba->intr_type = MSIX;
13239 				intr_mode = 2;
13240 			}
13241 		}
13242 	}
13243 
13244 	/* Fallback to MSI if MSI-X initialization failed */
13245 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13246 		retval = lpfc_sli4_enable_msi(phba);
13247 		if (!retval) {
13248 			/* Indicate initialization to MSI mode */
13249 			phba->intr_type = MSI;
13250 			intr_mode = 1;
13251 		}
13252 	}
13253 
13254 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13255 	if (phba->intr_type == NONE) {
13256 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13257 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13258 		if (!retval) {
13259 			struct lpfc_hba_eq_hdl *eqhdl;
13260 			unsigned int cpu;
13261 
13262 			/* Indicate initialization to INTx mode */
13263 			phba->intr_type = INTx;
13264 			intr_mode = 0;
13265 
13266 			eqhdl = lpfc_get_eq_hdl(0);
13267 			retval = pci_irq_vector(phba->pcidev, 0);
13268 			if (retval < 0) {
13269 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13270 					"0502 INTR pci_irq_vec failed (%d)\n",
13271 					 retval);
13272 				return LPFC_INTR_ERROR;
13273 			}
13274 			eqhdl->irq = retval;
13275 
13276 			cpu = cpumask_first(cpu_present_mask);
13277 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13278 						cpu);
13279 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13280 				eqhdl = lpfc_get_eq_hdl(idx);
13281 				eqhdl->idx = idx;
13282 			}
13283 		}
13284 	}
13285 	return intr_mode;
13286 }
13287 
13288 /**
13289  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13290  * @phba: pointer to lpfc hba data structure.
13291  *
13292  * This routine is invoked to disable device interrupt and disassociate
13293  * the driver's interrupt handler(s) from interrupt vector(s) to device
13294  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13295  * will release the interrupt vector(s) for the message signaled interrupt.
13296  **/
13297 static void
13298 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13299 {
13300 	/* Disable the currently initialized interrupt mode */
13301 	if (phba->intr_type == MSIX) {
13302 		int index;
13303 		struct lpfc_hba_eq_hdl *eqhdl;
13304 
13305 		/* Free up MSI-X multi-message vectors */
13306 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13307 			eqhdl = lpfc_get_eq_hdl(index);
13308 			lpfc_irq_clear_aff(eqhdl);
13309 			free_irq(eqhdl->irq, eqhdl);
13310 		}
13311 	} else {
13312 		free_irq(phba->pcidev->irq, phba);
13313 	}
13314 
13315 	pci_free_irq_vectors(phba->pcidev);
13316 
13317 	/* Reset interrupt management states */
13318 	phba->intr_type = NONE;
13319 	phba->sli.slistat.sli_intr = 0;
13320 }
13321 
13322 /**
13323  * lpfc_unset_hba - Unset SLI3 hba device initialization
13324  * @phba: pointer to lpfc hba data structure.
13325  *
13326  * This routine is invoked to unset the HBA device initialization steps to
13327  * a device with SLI-3 interface spec.
13328  **/
13329 static void
13330 lpfc_unset_hba(struct lpfc_hba *phba)
13331 {
13332 	struct lpfc_vport *vport = phba->pport;
13333 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13334 
13335 	spin_lock_irq(shost->host_lock);
13336 	vport->load_flag |= FC_UNLOADING;
13337 	spin_unlock_irq(shost->host_lock);
13338 
13339 	kfree(phba->vpi_bmask);
13340 	kfree(phba->vpi_ids);
13341 
13342 	lpfc_stop_hba_timers(phba);
13343 
13344 	phba->pport->work_port_events = 0;
13345 
13346 	lpfc_sli_hba_down(phba);
13347 
13348 	lpfc_sli_brdrestart(phba);
13349 
13350 	lpfc_sli_disable_intr(phba);
13351 
13352 	return;
13353 }
13354 
13355 /**
13356  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13357  * @phba: Pointer to HBA context object.
13358  *
13359  * This function is called in the SLI4 code path to wait for completion
13360  * of device's XRIs exchange busy. It will check the XRI exchange busy
13361  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13362  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13363  * I/Os every 30 seconds, log error message, and wait forever. Only when
13364  * all XRI exchange busy complete, the driver unload shall proceed with
13365  * invoking the function reset ioctl mailbox command to the CNA and the
13366  * the rest of the driver unload resource release.
13367  **/
13368 static void
13369 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13370 {
13371 	struct lpfc_sli4_hdw_queue *qp;
13372 	int idx, ccnt;
13373 	int wait_time = 0;
13374 	int io_xri_cmpl = 1;
13375 	int nvmet_xri_cmpl = 1;
13376 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13377 
13378 	/* Driver just aborted IOs during the hba_unset process.  Pause
13379 	 * here to give the HBA time to complete the IO and get entries
13380 	 * into the abts lists.
13381 	 */
13382 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13383 
13384 	/* Wait for NVME pending IO to flush back to transport. */
13385 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13386 		lpfc_nvme_wait_for_io_drain(phba);
13387 
13388 	ccnt = 0;
13389 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13390 		qp = &phba->sli4_hba.hdwq[idx];
13391 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13392 		if (!io_xri_cmpl) /* if list is NOT empty */
13393 			ccnt++;
13394 	}
13395 	if (ccnt)
13396 		io_xri_cmpl = 0;
13397 
13398 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13399 		nvmet_xri_cmpl =
13400 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13401 	}
13402 
13403 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13404 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13405 			if (!nvmet_xri_cmpl)
13406 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13407 						"6424 NVMET XRI exchange busy "
13408 						"wait time: %d seconds.\n",
13409 						wait_time/1000);
13410 			if (!io_xri_cmpl)
13411 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13412 						"6100 IO XRI exchange busy "
13413 						"wait time: %d seconds.\n",
13414 						wait_time/1000);
13415 			if (!els_xri_cmpl)
13416 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13417 						"2878 ELS XRI exchange busy "
13418 						"wait time: %d seconds.\n",
13419 						wait_time/1000);
13420 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13421 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13422 		} else {
13423 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13424 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13425 		}
13426 
13427 		ccnt = 0;
13428 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13429 			qp = &phba->sli4_hba.hdwq[idx];
13430 			io_xri_cmpl = list_empty(
13431 			    &qp->lpfc_abts_io_buf_list);
13432 			if (!io_xri_cmpl) /* if list is NOT empty */
13433 				ccnt++;
13434 		}
13435 		if (ccnt)
13436 			io_xri_cmpl = 0;
13437 
13438 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13439 			nvmet_xri_cmpl = list_empty(
13440 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13441 		}
13442 		els_xri_cmpl =
13443 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13444 
13445 	}
13446 }
13447 
13448 /**
13449  * lpfc_sli4_hba_unset - Unset the fcoe hba
13450  * @phba: Pointer to HBA context object.
13451  *
13452  * This function is called in the SLI4 code path to reset the HBA's FCoE
13453  * function. The caller is not required to hold any lock. This routine
13454  * issues PCI function reset mailbox command to reset the FCoE function.
13455  * At the end of the function, it calls lpfc_hba_down_post function to
13456  * free any pending commands.
13457  **/
13458 static void
13459 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13460 {
13461 	int wait_cnt = 0;
13462 	LPFC_MBOXQ_t *mboxq;
13463 	struct pci_dev *pdev = phba->pcidev;
13464 
13465 	lpfc_stop_hba_timers(phba);
13466 	hrtimer_cancel(&phba->cmf_timer);
13467 
13468 	if (phba->pport)
13469 		phba->sli4_hba.intr_enable = 0;
13470 
13471 	/*
13472 	 * Gracefully wait out the potential current outstanding asynchronous
13473 	 * mailbox command.
13474 	 */
13475 
13476 	/* First, block any pending async mailbox command from posted */
13477 	spin_lock_irq(&phba->hbalock);
13478 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13479 	spin_unlock_irq(&phba->hbalock);
13480 	/* Now, trying to wait it out if we can */
13481 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13482 		msleep(10);
13483 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13484 			break;
13485 	}
13486 	/* Forcefully release the outstanding mailbox command if timed out */
13487 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13488 		spin_lock_irq(&phba->hbalock);
13489 		mboxq = phba->sli.mbox_active;
13490 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13491 		__lpfc_mbox_cmpl_put(phba, mboxq);
13492 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13493 		phba->sli.mbox_active = NULL;
13494 		spin_unlock_irq(&phba->hbalock);
13495 	}
13496 
13497 	/* Abort all iocbs associated with the hba */
13498 	lpfc_sli_hba_iocb_abort(phba);
13499 
13500 	if (!pci_channel_offline(phba->pcidev))
13501 		/* Wait for completion of device XRI exchange busy */
13502 		lpfc_sli4_xri_exchange_busy_wait(phba);
13503 
13504 	/* per-phba callback de-registration for hotplug event */
13505 	if (phba->pport)
13506 		lpfc_cpuhp_remove(phba);
13507 
13508 	/* Disable PCI subsystem interrupt */
13509 	lpfc_sli4_disable_intr(phba);
13510 
13511 	/* Disable SR-IOV if enabled */
13512 	if (phba->cfg_sriov_nr_virtfn)
13513 		pci_disable_sriov(pdev);
13514 
13515 	/* Stop kthread signal shall trigger work_done one more time */
13516 	kthread_stop(phba->worker_thread);
13517 
13518 	/* Disable FW logging to host memory */
13519 	lpfc_ras_stop_fwlog(phba);
13520 
13521 	/* Reset SLI4 HBA FCoE function */
13522 	lpfc_pci_function_reset(phba);
13523 
13524 	/* release all queue allocated resources. */
13525 	lpfc_sli4_queue_destroy(phba);
13526 
13527 	/* Free RAS DMA memory */
13528 	if (phba->ras_fwlog.ras_enabled)
13529 		lpfc_sli4_ras_dma_free(phba);
13530 
13531 	/* Stop the SLI4 device port */
13532 	if (phba->pport)
13533 		phba->pport->work_port_events = 0;
13534 }
13535 
13536 static uint32_t
13537 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13538 {
13539 	uint32_t msb = 0;
13540 	uint32_t bit;
13541 
13542 	for (bit = 0; bit < 8; bit++) {
13543 		msb = (crc >> 31) & 1;
13544 		crc <<= 1;
13545 
13546 		if (msb ^ (byte & 1)) {
13547 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13548 			crc |= 1;
13549 		}
13550 		byte >>= 1;
13551 	}
13552 	return crc;
13553 }
13554 
13555 static uint32_t
13556 lpfc_cgn_reverse_bits(uint32_t wd)
13557 {
13558 	uint32_t result = 0;
13559 	uint32_t i;
13560 
13561 	for (i = 0; i < 32; i++) {
13562 		result <<= 1;
13563 		result |= (1 & (wd >> i));
13564 	}
13565 	return result;
13566 }
13567 
13568 /*
13569  * The routine corresponds with the algorithm the HBA firmware
13570  * uses to validate the data integrity.
13571  */
13572 uint32_t
13573 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13574 {
13575 	uint32_t  i;
13576 	uint32_t result;
13577 	uint8_t  *data = (uint8_t *)ptr;
13578 
13579 	for (i = 0; i < byteLen; ++i)
13580 		crc = lpfc_cgn_crc32(crc, data[i]);
13581 
13582 	result = ~lpfc_cgn_reverse_bits(crc);
13583 	return result;
13584 }
13585 
13586 void
13587 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13588 {
13589 	struct lpfc_cgn_info *cp;
13590 	struct timespec64 cmpl_time;
13591 	struct tm broken;
13592 	uint16_t size;
13593 	uint32_t crc;
13594 
13595 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13596 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13597 
13598 	if (!phba->cgn_i)
13599 		return;
13600 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13601 
13602 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13603 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13604 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13605 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13606 
13607 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13608 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13609 	atomic64_set(&phba->cgn_latency_evt, 0);
13610 	phba->cgn_evt_minute = 0;
13611 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13612 
13613 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13614 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13615 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13616 
13617 	/* cgn parameters */
13618 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13619 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13620 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13621 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13622 
13623 	ktime_get_real_ts64(&cmpl_time);
13624 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13625 
13626 	cp->cgn_info_month = broken.tm_mon + 1;
13627 	cp->cgn_info_day = broken.tm_mday;
13628 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13629 	cp->cgn_info_hour = broken.tm_hour;
13630 	cp->cgn_info_minute = broken.tm_min;
13631 	cp->cgn_info_second = broken.tm_sec;
13632 
13633 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13634 			"2643 CGNInfo Init: Start Time "
13635 			"%d/%d/%d %d:%d:%d\n",
13636 			cp->cgn_info_day, cp->cgn_info_month,
13637 			cp->cgn_info_year, cp->cgn_info_hour,
13638 			cp->cgn_info_minute, cp->cgn_info_second);
13639 
13640 	/* Fill in default LUN qdepth */
13641 	if (phba->pport) {
13642 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13643 		cp->cgn_lunq = cpu_to_le16(size);
13644 	}
13645 
13646 	/* last used Index initialized to 0xff already */
13647 
13648 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13649 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13650 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13651 	cp->cgn_info_crc = cpu_to_le32(crc);
13652 
13653 	phba->cgn_evt_timestamp = jiffies +
13654 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13655 }
13656 
13657 void
13658 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13659 {
13660 	struct lpfc_cgn_info *cp;
13661 	struct timespec64 cmpl_time;
13662 	struct tm broken;
13663 	uint32_t crc;
13664 
13665 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13666 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13667 
13668 	if (!phba->cgn_i)
13669 		return;
13670 
13671 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13672 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13673 
13674 	ktime_get_real_ts64(&cmpl_time);
13675 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13676 
13677 	cp->cgn_stat_month = broken.tm_mon + 1;
13678 	cp->cgn_stat_day = broken.tm_mday;
13679 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13680 	cp->cgn_stat_hour = broken.tm_hour;
13681 	cp->cgn_stat_minute = broken.tm_min;
13682 
13683 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13684 			"2647 CGNstat Init: Start Time "
13685 			"%d/%d/%d %d:%d\n",
13686 			cp->cgn_stat_day, cp->cgn_stat_month,
13687 			cp->cgn_stat_year, cp->cgn_stat_hour,
13688 			cp->cgn_stat_minute);
13689 
13690 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13691 	cp->cgn_info_crc = cpu_to_le32(crc);
13692 }
13693 
13694 /**
13695  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13696  * @phba: Pointer to hba context object.
13697  * @reg: flag to determine register or unregister.
13698  */
13699 static int
13700 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13701 {
13702 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13703 	union  lpfc_sli4_cfg_shdr *shdr;
13704 	uint32_t shdr_status, shdr_add_status;
13705 	LPFC_MBOXQ_t *mboxq;
13706 	int length, rc;
13707 
13708 	if (!phba->cgn_i)
13709 		return -ENXIO;
13710 
13711 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13712 	if (!mboxq) {
13713 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13714 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13715 				"HBA state x%x reg %d\n",
13716 				phba->pport->port_state, reg);
13717 		return -ENOMEM;
13718 	}
13719 
13720 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13721 		sizeof(struct lpfc_sli4_cfg_mhdr));
13722 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13723 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13724 			 LPFC_SLI4_MBX_EMBED);
13725 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13726 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13727 	if (reg > 0)
13728 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13729 	else
13730 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13731 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13732 	reg_congestion_buf->addr_lo =
13733 		putPaddrLow(phba->cgn_i->phys);
13734 	reg_congestion_buf->addr_hi =
13735 		putPaddrHigh(phba->cgn_i->phys);
13736 
13737 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13738 	shdr = (union lpfc_sli4_cfg_shdr *)
13739 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13740 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13741 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13742 				 &shdr->response);
13743 	mempool_free(mboxq, phba->mbox_mem_pool);
13744 	if (shdr_status || shdr_add_status || rc) {
13745 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13746 				"2642 REG_CONGESTION_BUF mailbox "
13747 				"failed with status x%x add_status x%x,"
13748 				" mbx status x%x reg %d\n",
13749 				shdr_status, shdr_add_status, rc, reg);
13750 		return -ENXIO;
13751 	}
13752 	return 0;
13753 }
13754 
13755 int
13756 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13757 {
13758 	lpfc_cmf_stop(phba);
13759 	return __lpfc_reg_congestion_buf(phba, 0);
13760 }
13761 
13762 int
13763 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13764 {
13765 	return __lpfc_reg_congestion_buf(phba, 1);
13766 }
13767 
13768 /**
13769  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13770  * @phba: Pointer to HBA context object.
13771  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13772  *
13773  * This function is called in the SLI4 code path to read the port's
13774  * sli4 capabilities.
13775  *
13776  * This function may be be called from any context that can block-wait
13777  * for the completion.  The expectation is that this routine is called
13778  * typically from probe_one or from the online routine.
13779  **/
13780 int
13781 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13782 {
13783 	int rc;
13784 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13785 	struct lpfc_pc_sli4_params *sli4_params;
13786 	uint32_t mbox_tmo;
13787 	int length;
13788 	bool exp_wqcq_pages = true;
13789 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13790 
13791 	/*
13792 	 * By default, the driver assumes the SLI4 port requires RPI
13793 	 * header postings.  The SLI4_PARAM response will correct this
13794 	 * assumption.
13795 	 */
13796 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13797 
13798 	/* Read the port's SLI4 Config Parameters */
13799 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13800 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13801 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13802 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13803 			 length, LPFC_SLI4_MBX_EMBED);
13804 	if (!phba->sli4_hba.intr_enable)
13805 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13806 	else {
13807 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13808 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13809 	}
13810 	if (unlikely(rc))
13811 		return rc;
13812 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13813 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13814 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13815 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13816 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13817 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13818 					     mbx_sli4_parameters);
13819 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13820 					     mbx_sli4_parameters);
13821 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13822 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13823 	else
13824 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13825 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13826 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13827 					   mbx_sli4_parameters);
13828 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13829 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13830 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13831 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13832 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13833 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13834 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13835 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13836 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13837 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13838 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13839 					    mbx_sli4_parameters);
13840 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13841 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13842 					   mbx_sli4_parameters);
13843 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13844 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13845 
13846 	/* Check for Extended Pre-Registered SGL support */
13847 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13848 
13849 	/* Check for firmware nvme support */
13850 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13851 		     bf_get(cfg_xib, mbx_sli4_parameters));
13852 
13853 	if (rc) {
13854 		/* Save this to indicate the Firmware supports NVME */
13855 		sli4_params->nvme = 1;
13856 
13857 		/* Firmware NVME support, check driver FC4 NVME support */
13858 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13859 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13860 					"6133 Disabling NVME support: "
13861 					"FC4 type not supported: x%x\n",
13862 					phba->cfg_enable_fc4_type);
13863 			goto fcponly;
13864 		}
13865 	} else {
13866 		/* No firmware NVME support, check driver FC4 NVME support */
13867 		sli4_params->nvme = 0;
13868 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13869 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13870 					"6101 Disabling NVME support: Not "
13871 					"supported by firmware (%d %d) x%x\n",
13872 					bf_get(cfg_nvme, mbx_sli4_parameters),
13873 					bf_get(cfg_xib, mbx_sli4_parameters),
13874 					phba->cfg_enable_fc4_type);
13875 fcponly:
13876 			phba->nvmet_support = 0;
13877 			phba->cfg_nvmet_mrq = 0;
13878 			phba->cfg_nvme_seg_cnt = 0;
13879 
13880 			/* If no FC4 type support, move to just SCSI support */
13881 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13882 				return -ENODEV;
13883 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13884 		}
13885 	}
13886 
13887 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13888 	 * accommodate 512K and 1M IOs in a single nvme buf.
13889 	 */
13890 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13891 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13892 
13893 	/* Enable embedded Payload BDE if support is indicated */
13894 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13895 		phba->cfg_enable_pbde = 1;
13896 	else
13897 		phba->cfg_enable_pbde = 0;
13898 
13899 	/*
13900 	 * To support Suppress Response feature we must satisfy 3 conditions.
13901 	 * lpfc_suppress_rsp module parameter must be set (default).
13902 	 * In SLI4-Parameters Descriptor:
13903 	 * Extended Inline Buffers (XIB) must be supported.
13904 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13905 	 * (double negative).
13906 	 */
13907 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13908 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13909 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13910 	else
13911 		phba->cfg_suppress_rsp = 0;
13912 
13913 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13914 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13915 
13916 	/* Make sure that sge_supp_len can be handled by the driver */
13917 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13918 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13919 
13920 	/*
13921 	 * Check whether the adapter supports an embedded copy of the
13922 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13923 	 * to use this option, 128-byte WQEs must be used.
13924 	 */
13925 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13926 		phba->fcp_embed_io = 1;
13927 	else
13928 		phba->fcp_embed_io = 0;
13929 
13930 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13931 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13932 			bf_get(cfg_xib, mbx_sli4_parameters),
13933 			phba->cfg_enable_pbde,
13934 			phba->fcp_embed_io, sli4_params->nvme,
13935 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13936 
13937 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13938 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13939 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13940 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13941 		exp_wqcq_pages = false;
13942 
13943 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13944 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13945 	    exp_wqcq_pages &&
13946 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13947 		phba->enab_exp_wqcq_pages = 1;
13948 	else
13949 		phba->enab_exp_wqcq_pages = 0;
13950 	/*
13951 	 * Check if the SLI port supports MDS Diagnostics
13952 	 */
13953 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13954 		phba->mds_diags_support = 1;
13955 	else
13956 		phba->mds_diags_support = 0;
13957 
13958 	/*
13959 	 * Check if the SLI port supports NSLER
13960 	 */
13961 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13962 		phba->nsler = 1;
13963 	else
13964 		phba->nsler = 0;
13965 
13966 	return 0;
13967 }
13968 
13969 /**
13970  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13971  * @pdev: pointer to PCI device
13972  * @pid: pointer to PCI device identifier
13973  *
13974  * This routine is to be called to attach a device with SLI-3 interface spec
13975  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13976  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13977  * information of the device and driver to see if the driver state that it can
13978  * support this kind of device. If the match is successful, the driver core
13979  * invokes this routine. If this routine determines it can claim the HBA, it
13980  * does all the initialization that it needs to do to handle the HBA properly.
13981  *
13982  * Return code
13983  * 	0 - driver can claim the device
13984  * 	negative value - driver can not claim the device
13985  **/
13986 static int
13987 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13988 {
13989 	struct lpfc_hba   *phba;
13990 	struct lpfc_vport *vport = NULL;
13991 	struct Scsi_Host  *shost = NULL;
13992 	int error;
13993 	uint32_t cfg_mode, intr_mode;
13994 
13995 	/* Allocate memory for HBA structure */
13996 	phba = lpfc_hba_alloc(pdev);
13997 	if (!phba)
13998 		return -ENOMEM;
13999 
14000 	/* Perform generic PCI device enabling operation */
14001 	error = lpfc_enable_pci_dev(phba);
14002 	if (error)
14003 		goto out_free_phba;
14004 
14005 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
14006 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
14007 	if (error)
14008 		goto out_disable_pci_dev;
14009 
14010 	/* Set up SLI-3 specific device PCI memory space */
14011 	error = lpfc_sli_pci_mem_setup(phba);
14012 	if (error) {
14013 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14014 				"1402 Failed to set up pci memory space.\n");
14015 		goto out_disable_pci_dev;
14016 	}
14017 
14018 	/* Set up SLI-3 specific device driver resources */
14019 	error = lpfc_sli_driver_resource_setup(phba);
14020 	if (error) {
14021 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14022 				"1404 Failed to set up driver resource.\n");
14023 		goto out_unset_pci_mem_s3;
14024 	}
14025 
14026 	/* Initialize and populate the iocb list per host */
14027 
14028 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
14029 	if (error) {
14030 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14031 				"1405 Failed to initialize iocb list.\n");
14032 		goto out_unset_driver_resource_s3;
14033 	}
14034 
14035 	/* Set up common device driver resources */
14036 	error = lpfc_setup_driver_resource_phase2(phba);
14037 	if (error) {
14038 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14039 				"1406 Failed to set up driver resource.\n");
14040 		goto out_free_iocb_list;
14041 	}
14042 
14043 	/* Get the default values for Model Name and Description */
14044 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14045 
14046 	/* Create SCSI host to the physical port */
14047 	error = lpfc_create_shost(phba);
14048 	if (error) {
14049 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14050 				"1407 Failed to create scsi host.\n");
14051 		goto out_unset_driver_resource;
14052 	}
14053 
14054 	/* Configure sysfs attributes */
14055 	vport = phba->pport;
14056 	error = lpfc_alloc_sysfs_attr(vport);
14057 	if (error) {
14058 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14059 				"1476 Failed to allocate sysfs attr\n");
14060 		goto out_destroy_shost;
14061 	}
14062 
14063 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14064 	/* Now, trying to enable interrupt and bring up the device */
14065 	cfg_mode = phba->cfg_use_msi;
14066 	while (true) {
14067 		/* Put device to a known state before enabling interrupt */
14068 		lpfc_stop_port(phba);
14069 		/* Configure and enable interrupt */
14070 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14071 		if (intr_mode == LPFC_INTR_ERROR) {
14072 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14073 					"0431 Failed to enable interrupt.\n");
14074 			error = -ENODEV;
14075 			goto out_free_sysfs_attr;
14076 		}
14077 		/* SLI-3 HBA setup */
14078 		if (lpfc_sli_hba_setup(phba)) {
14079 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14080 					"1477 Failed to set up hba\n");
14081 			error = -ENODEV;
14082 			goto out_remove_device;
14083 		}
14084 
14085 		/* Wait 50ms for the interrupts of previous mailbox commands */
14086 		msleep(50);
14087 		/* Check active interrupts on message signaled interrupts */
14088 		if (intr_mode == 0 ||
14089 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14090 			/* Log the current active interrupt mode */
14091 			phba->intr_mode = intr_mode;
14092 			lpfc_log_intr_mode(phba, intr_mode);
14093 			break;
14094 		} else {
14095 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14096 					"0447 Configure interrupt mode (%d) "
14097 					"failed active interrupt test.\n",
14098 					intr_mode);
14099 			/* Disable the current interrupt mode */
14100 			lpfc_sli_disable_intr(phba);
14101 			/* Try next level of interrupt mode */
14102 			cfg_mode = --intr_mode;
14103 		}
14104 	}
14105 
14106 	/* Perform post initialization setup */
14107 	lpfc_post_init_setup(phba);
14108 
14109 	/* Check if there are static vports to be created. */
14110 	lpfc_create_static_vport(phba);
14111 
14112 	return 0;
14113 
14114 out_remove_device:
14115 	lpfc_unset_hba(phba);
14116 out_free_sysfs_attr:
14117 	lpfc_free_sysfs_attr(vport);
14118 out_destroy_shost:
14119 	lpfc_destroy_shost(phba);
14120 out_unset_driver_resource:
14121 	lpfc_unset_driver_resource_phase2(phba);
14122 out_free_iocb_list:
14123 	lpfc_free_iocb_list(phba);
14124 out_unset_driver_resource_s3:
14125 	lpfc_sli_driver_resource_unset(phba);
14126 out_unset_pci_mem_s3:
14127 	lpfc_sli_pci_mem_unset(phba);
14128 out_disable_pci_dev:
14129 	lpfc_disable_pci_dev(phba);
14130 	if (shost)
14131 		scsi_host_put(shost);
14132 out_free_phba:
14133 	lpfc_hba_free(phba);
14134 	return error;
14135 }
14136 
14137 /**
14138  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14139  * @pdev: pointer to PCI device
14140  *
14141  * This routine is to be called to disattach a device with SLI-3 interface
14142  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14143  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14144  * device to be removed from the PCI subsystem properly.
14145  **/
14146 static void
14147 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14148 {
14149 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14150 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14151 	struct lpfc_vport **vports;
14152 	struct lpfc_hba   *phba = vport->phba;
14153 	int i;
14154 
14155 	spin_lock_irq(&phba->hbalock);
14156 	vport->load_flag |= FC_UNLOADING;
14157 	spin_unlock_irq(&phba->hbalock);
14158 
14159 	lpfc_free_sysfs_attr(vport);
14160 
14161 	/* Release all the vports against this physical port */
14162 	vports = lpfc_create_vport_work_array(phba);
14163 	if (vports != NULL)
14164 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14165 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14166 				continue;
14167 			fc_vport_terminate(vports[i]->fc_vport);
14168 		}
14169 	lpfc_destroy_vport_work_array(phba, vports);
14170 
14171 	/* Remove FC host with the physical port */
14172 	fc_remove_host(shost);
14173 	scsi_remove_host(shost);
14174 
14175 	/* Clean up all nodes, mailboxes and IOs. */
14176 	lpfc_cleanup(vport);
14177 
14178 	/*
14179 	 * Bring down the SLI Layer. This step disable all interrupts,
14180 	 * clears the rings, discards all mailbox commands, and resets
14181 	 * the HBA.
14182 	 */
14183 
14184 	/* HBA interrupt will be disabled after this call */
14185 	lpfc_sli_hba_down(phba);
14186 	/* Stop kthread signal shall trigger work_done one more time */
14187 	kthread_stop(phba->worker_thread);
14188 	/* Final cleanup of txcmplq and reset the HBA */
14189 	lpfc_sli_brdrestart(phba);
14190 
14191 	kfree(phba->vpi_bmask);
14192 	kfree(phba->vpi_ids);
14193 
14194 	lpfc_stop_hba_timers(phba);
14195 	spin_lock_irq(&phba->port_list_lock);
14196 	list_del_init(&vport->listentry);
14197 	spin_unlock_irq(&phba->port_list_lock);
14198 
14199 	lpfc_debugfs_terminate(vport);
14200 
14201 	/* Disable SR-IOV if enabled */
14202 	if (phba->cfg_sriov_nr_virtfn)
14203 		pci_disable_sriov(pdev);
14204 
14205 	/* Disable interrupt */
14206 	lpfc_sli_disable_intr(phba);
14207 
14208 	scsi_host_put(shost);
14209 
14210 	/*
14211 	 * Call scsi_free before mem_free since scsi bufs are released to their
14212 	 * corresponding pools here.
14213 	 */
14214 	lpfc_scsi_free(phba);
14215 	lpfc_free_iocb_list(phba);
14216 
14217 	lpfc_mem_free_all(phba);
14218 
14219 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14220 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14221 
14222 	/* Free resources associated with SLI2 interface */
14223 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14224 			  phba->slim2p.virt, phba->slim2p.phys);
14225 
14226 	/* unmap adapter SLIM and Control Registers */
14227 	iounmap(phba->ctrl_regs_memmap_p);
14228 	iounmap(phba->slim_memmap_p);
14229 
14230 	lpfc_hba_free(phba);
14231 
14232 	pci_release_mem_regions(pdev);
14233 	pci_disable_device(pdev);
14234 }
14235 
14236 /**
14237  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14238  * @dev_d: pointer to device
14239  *
14240  * This routine is to be called from the kernel's PCI subsystem to support
14241  * system Power Management (PM) to device with SLI-3 interface spec. When
14242  * PM invokes this method, it quiesces the device by stopping the driver's
14243  * worker thread for the device, turning off device's interrupt and DMA,
14244  * and bring the device offline. Note that as the driver implements the
14245  * minimum PM requirements to a power-aware driver's PM support for the
14246  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14247  * to the suspend() method call will be treated as SUSPEND and the driver will
14248  * fully reinitialize its device during resume() method call, the driver will
14249  * set device to PCI_D3hot state in PCI config space instead of setting it
14250  * according to the @msg provided by the PM.
14251  *
14252  * Return code
14253  * 	0 - driver suspended the device
14254  * 	Error otherwise
14255  **/
14256 static int __maybe_unused
14257 lpfc_pci_suspend_one_s3(struct device *dev_d)
14258 {
14259 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14260 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14261 
14262 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14263 			"0473 PCI device Power Management suspend.\n");
14264 
14265 	/* Bring down the device */
14266 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14267 	lpfc_offline(phba);
14268 	kthread_stop(phba->worker_thread);
14269 
14270 	/* Disable interrupt from device */
14271 	lpfc_sli_disable_intr(phba);
14272 
14273 	return 0;
14274 }
14275 
14276 /**
14277  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14278  * @dev_d: pointer to device
14279  *
14280  * This routine is to be called from the kernel's PCI subsystem to support
14281  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14282  * invokes this method, it restores the device's PCI config space state and
14283  * fully reinitializes the device and brings it online. Note that as the
14284  * driver implements the minimum PM requirements to a power-aware driver's
14285  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14286  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14287  * driver will fully reinitialize its device during resume() method call,
14288  * the device will be set to PCI_D0 directly in PCI config space before
14289  * restoring the state.
14290  *
14291  * Return code
14292  * 	0 - driver suspended the device
14293  * 	Error otherwise
14294  **/
14295 static int __maybe_unused
14296 lpfc_pci_resume_one_s3(struct device *dev_d)
14297 {
14298 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14299 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14300 	uint32_t intr_mode;
14301 	int error;
14302 
14303 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14304 			"0452 PCI device Power Management resume.\n");
14305 
14306 	/* Startup the kernel thread for this host adapter. */
14307 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14308 					"lpfc_worker_%d", phba->brd_no);
14309 	if (IS_ERR(phba->worker_thread)) {
14310 		error = PTR_ERR(phba->worker_thread);
14311 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14312 				"0434 PM resume failed to start worker "
14313 				"thread: error=x%x.\n", error);
14314 		return error;
14315 	}
14316 
14317 	/* Init cpu_map array */
14318 	lpfc_cpu_map_array_init(phba);
14319 	/* Init hba_eq_hdl array */
14320 	lpfc_hba_eq_hdl_array_init(phba);
14321 	/* Configure and enable interrupt */
14322 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14323 	if (intr_mode == LPFC_INTR_ERROR) {
14324 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14325 				"0430 PM resume Failed to enable interrupt\n");
14326 		return -EIO;
14327 	} else
14328 		phba->intr_mode = intr_mode;
14329 
14330 	/* Restart HBA and bring it online */
14331 	lpfc_sli_brdrestart(phba);
14332 	lpfc_online(phba);
14333 
14334 	/* Log the current active interrupt mode */
14335 	lpfc_log_intr_mode(phba, phba->intr_mode);
14336 
14337 	return 0;
14338 }
14339 
14340 /**
14341  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14342  * @phba: pointer to lpfc hba data structure.
14343  *
14344  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14345  * aborts all the outstanding SCSI I/Os to the pci device.
14346  **/
14347 static void
14348 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14349 {
14350 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14351 			"2723 PCI channel I/O abort preparing for recovery\n");
14352 
14353 	/*
14354 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14355 	 * and let the SCSI mid-layer to retry them to recover.
14356 	 */
14357 	lpfc_sli_abort_fcp_rings(phba);
14358 }
14359 
14360 /**
14361  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14362  * @phba: pointer to lpfc hba data structure.
14363  *
14364  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14365  * disables the device interrupt and pci device, and aborts the internal FCP
14366  * pending I/Os.
14367  **/
14368 static void
14369 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14370 {
14371 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14372 			"2710 PCI channel disable preparing for reset\n");
14373 
14374 	/* Block any management I/Os to the device */
14375 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14376 
14377 	/* Block all SCSI devices' I/Os on the host */
14378 	lpfc_scsi_dev_block(phba);
14379 
14380 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14381 	lpfc_sli_flush_io_rings(phba);
14382 
14383 	/* stop all timers */
14384 	lpfc_stop_hba_timers(phba);
14385 
14386 	/* Disable interrupt and pci device */
14387 	lpfc_sli_disable_intr(phba);
14388 	pci_disable_device(phba->pcidev);
14389 }
14390 
14391 /**
14392  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14393  * @phba: pointer to lpfc hba data structure.
14394  *
14395  * This routine is called to prepare the SLI3 device for PCI slot permanently
14396  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14397  * pending I/Os.
14398  **/
14399 static void
14400 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14401 {
14402 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14403 			"2711 PCI channel permanent disable for failure\n");
14404 	/* Block all SCSI devices' I/Os on the host */
14405 	lpfc_scsi_dev_block(phba);
14406 	lpfc_sli4_prep_dev_for_reset(phba);
14407 
14408 	/* stop all timers */
14409 	lpfc_stop_hba_timers(phba);
14410 
14411 	/* Clean up all driver's outstanding SCSI I/Os */
14412 	lpfc_sli_flush_io_rings(phba);
14413 }
14414 
14415 /**
14416  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14417  * @pdev: pointer to PCI device.
14418  * @state: the current PCI connection state.
14419  *
14420  * This routine is called from the PCI subsystem for I/O error handling to
14421  * device with SLI-3 interface spec. This function is called by the PCI
14422  * subsystem after a PCI bus error affecting this device has been detected.
14423  * When this function is invoked, it will need to stop all the I/Os and
14424  * interrupt(s) to the device. Once that is done, it will return
14425  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14426  * as desired.
14427  *
14428  * Return codes
14429  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14430  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14431  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14432  **/
14433 static pci_ers_result_t
14434 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14435 {
14436 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14437 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14438 
14439 	switch (state) {
14440 	case pci_channel_io_normal:
14441 		/* Non-fatal error, prepare for recovery */
14442 		lpfc_sli_prep_dev_for_recover(phba);
14443 		return PCI_ERS_RESULT_CAN_RECOVER;
14444 	case pci_channel_io_frozen:
14445 		/* Fatal error, prepare for slot reset */
14446 		lpfc_sli_prep_dev_for_reset(phba);
14447 		return PCI_ERS_RESULT_NEED_RESET;
14448 	case pci_channel_io_perm_failure:
14449 		/* Permanent failure, prepare for device down */
14450 		lpfc_sli_prep_dev_for_perm_failure(phba);
14451 		return PCI_ERS_RESULT_DISCONNECT;
14452 	default:
14453 		/* Unknown state, prepare and request slot reset */
14454 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14455 				"0472 Unknown PCI error state: x%x\n", state);
14456 		lpfc_sli_prep_dev_for_reset(phba);
14457 		return PCI_ERS_RESULT_NEED_RESET;
14458 	}
14459 }
14460 
14461 /**
14462  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14463  * @pdev: pointer to PCI device.
14464  *
14465  * This routine is called from the PCI subsystem for error handling to
14466  * device with SLI-3 interface spec. This is called after PCI bus has been
14467  * reset to restart the PCI card from scratch, as if from a cold-boot.
14468  * During the PCI subsystem error recovery, after driver returns
14469  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14470  * recovery and then call this routine before calling the .resume method
14471  * to recover the device. This function will initialize the HBA device,
14472  * enable the interrupt, but it will just put the HBA to offline state
14473  * without passing any I/O traffic.
14474  *
14475  * Return codes
14476  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14477  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14478  */
14479 static pci_ers_result_t
14480 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14481 {
14482 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14483 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14484 	struct lpfc_sli *psli = &phba->sli;
14485 	uint32_t intr_mode;
14486 
14487 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14488 	if (pci_enable_device_mem(pdev)) {
14489 		printk(KERN_ERR "lpfc: Cannot re-enable "
14490 			"PCI device after reset.\n");
14491 		return PCI_ERS_RESULT_DISCONNECT;
14492 	}
14493 
14494 	pci_restore_state(pdev);
14495 
14496 	/*
14497 	 * As the new kernel behavior of pci_restore_state() API call clears
14498 	 * device saved_state flag, need to save the restored state again.
14499 	 */
14500 	pci_save_state(pdev);
14501 
14502 	if (pdev->is_busmaster)
14503 		pci_set_master(pdev);
14504 
14505 	spin_lock_irq(&phba->hbalock);
14506 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14507 	spin_unlock_irq(&phba->hbalock);
14508 
14509 	/* Configure and enable interrupt */
14510 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14511 	if (intr_mode == LPFC_INTR_ERROR) {
14512 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14513 				"0427 Cannot re-enable interrupt after "
14514 				"slot reset.\n");
14515 		return PCI_ERS_RESULT_DISCONNECT;
14516 	} else
14517 		phba->intr_mode = intr_mode;
14518 
14519 	/* Take device offline, it will perform cleanup */
14520 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14521 	lpfc_offline(phba);
14522 	lpfc_sli_brdrestart(phba);
14523 
14524 	/* Log the current active interrupt mode */
14525 	lpfc_log_intr_mode(phba, phba->intr_mode);
14526 
14527 	return PCI_ERS_RESULT_RECOVERED;
14528 }
14529 
14530 /**
14531  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14532  * @pdev: pointer to PCI device
14533  *
14534  * This routine is called from the PCI subsystem for error handling to device
14535  * with SLI-3 interface spec. It is called when kernel error recovery tells
14536  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14537  * error recovery. After this call, traffic can start to flow from this device
14538  * again.
14539  */
14540 static void
14541 lpfc_io_resume_s3(struct pci_dev *pdev)
14542 {
14543 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14544 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14545 
14546 	/* Bring device online, it will be no-op for non-fatal error resume */
14547 	lpfc_online(phba);
14548 }
14549 
14550 /**
14551  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14552  * @phba: pointer to lpfc hba data structure.
14553  *
14554  * returns the number of ELS/CT IOCBs to reserve
14555  **/
14556 int
14557 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14558 {
14559 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14560 
14561 	if (phba->sli_rev == LPFC_SLI_REV4) {
14562 		if (max_xri <= 100)
14563 			return 10;
14564 		else if (max_xri <= 256)
14565 			return 25;
14566 		else if (max_xri <= 512)
14567 			return 50;
14568 		else if (max_xri <= 1024)
14569 			return 100;
14570 		else if (max_xri <= 1536)
14571 			return 150;
14572 		else if (max_xri <= 2048)
14573 			return 200;
14574 		else
14575 			return 250;
14576 	} else
14577 		return 0;
14578 }
14579 
14580 /**
14581  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14582  * @phba: pointer to lpfc hba data structure.
14583  *
14584  * returns the number of ELS/CT + NVMET IOCBs to reserve
14585  **/
14586 int
14587 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14588 {
14589 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14590 
14591 	if (phba->nvmet_support)
14592 		max_xri += LPFC_NVMET_BUF_POST;
14593 	return max_xri;
14594 }
14595 
14596 
14597 static int
14598 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14599 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14600 	const struct firmware *fw)
14601 {
14602 	int rc;
14603 	u8 sli_family;
14604 
14605 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14606 	/* Three cases:  (1) FW was not supported on the detected adapter.
14607 	 * (2) FW update has been locked out administratively.
14608 	 * (3) Some other error during FW update.
14609 	 * In each case, an unmaskable message is written to the console
14610 	 * for admin diagnosis.
14611 	 */
14612 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14613 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14614 	     magic_number != MAGIC_NUMBER_G6) ||
14615 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14616 	     magic_number != MAGIC_NUMBER_G7) ||
14617 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14618 	     magic_number != MAGIC_NUMBER_G7P)) {
14619 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14620 				"3030 This firmware version is not supported on"
14621 				" this HBA model. Device:%x Magic:%x Type:%x "
14622 				"ID:%x Size %d %zd\n",
14623 				phba->pcidev->device, magic_number, ftype, fid,
14624 				fsize, fw->size);
14625 		rc = -EINVAL;
14626 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14627 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14628 				"3021 Firmware downloads have been prohibited "
14629 				"by a system configuration setting on "
14630 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14631 				"%zd\n",
14632 				phba->pcidev->device, magic_number, ftype, fid,
14633 				fsize, fw->size);
14634 		rc = -EACCES;
14635 	} else {
14636 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14637 				"3022 FW Download failed. Add Status x%x "
14638 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14639 				"%zd\n",
14640 				offset, phba->pcidev->device, magic_number,
14641 				ftype, fid, fsize, fw->size);
14642 		rc = -EIO;
14643 	}
14644 	return rc;
14645 }
14646 
14647 /**
14648  * lpfc_write_firmware - attempt to write a firmware image to the port
14649  * @fw: pointer to firmware image returned from request_firmware.
14650  * @context: pointer to firmware image returned from request_firmware.
14651  *
14652  **/
14653 static void
14654 lpfc_write_firmware(const struct firmware *fw, void *context)
14655 {
14656 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14657 	char fwrev[FW_REV_STR_SIZE];
14658 	struct lpfc_grp_hdr *image;
14659 	struct list_head dma_buffer_list;
14660 	int i, rc = 0;
14661 	struct lpfc_dmabuf *dmabuf, *next;
14662 	uint32_t offset = 0, temp_offset = 0;
14663 	uint32_t magic_number, ftype, fid, fsize;
14664 
14665 	/* It can be null in no-wait mode, sanity check */
14666 	if (!fw) {
14667 		rc = -ENXIO;
14668 		goto out;
14669 	}
14670 	image = (struct lpfc_grp_hdr *)fw->data;
14671 
14672 	magic_number = be32_to_cpu(image->magic_number);
14673 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14674 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14675 	fsize = be32_to_cpu(image->size);
14676 
14677 	INIT_LIST_HEAD(&dma_buffer_list);
14678 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14679 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14680 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14681 				"3023 Updating Firmware, Current Version:%s "
14682 				"New Version:%s\n",
14683 				fwrev, image->revision);
14684 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14685 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14686 					 GFP_KERNEL);
14687 			if (!dmabuf) {
14688 				rc = -ENOMEM;
14689 				goto release_out;
14690 			}
14691 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14692 							  SLI4_PAGE_SIZE,
14693 							  &dmabuf->phys,
14694 							  GFP_KERNEL);
14695 			if (!dmabuf->virt) {
14696 				kfree(dmabuf);
14697 				rc = -ENOMEM;
14698 				goto release_out;
14699 			}
14700 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14701 		}
14702 		while (offset < fw->size) {
14703 			temp_offset = offset;
14704 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14705 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14706 					memcpy(dmabuf->virt,
14707 					       fw->data + temp_offset,
14708 					       fw->size - temp_offset);
14709 					temp_offset = fw->size;
14710 					break;
14711 				}
14712 				memcpy(dmabuf->virt, fw->data + temp_offset,
14713 				       SLI4_PAGE_SIZE);
14714 				temp_offset += SLI4_PAGE_SIZE;
14715 			}
14716 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14717 				    (fw->size - offset), &offset);
14718 			if (rc) {
14719 				rc = lpfc_log_write_firmware_error(phba, offset,
14720 								   magic_number,
14721 								   ftype,
14722 								   fid,
14723 								   fsize,
14724 								   fw);
14725 				goto release_out;
14726 			}
14727 		}
14728 		rc = offset;
14729 	} else
14730 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14731 				"3029 Skipped Firmware update, Current "
14732 				"Version:%s New Version:%s\n",
14733 				fwrev, image->revision);
14734 
14735 release_out:
14736 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14737 		list_del(&dmabuf->list);
14738 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14739 				  dmabuf->virt, dmabuf->phys);
14740 		kfree(dmabuf);
14741 	}
14742 	release_firmware(fw);
14743 out:
14744 	if (rc < 0)
14745 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14746 				"3062 Firmware update error, status %d.\n", rc);
14747 	else
14748 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14749 				"3024 Firmware update success: size %d.\n", rc);
14750 }
14751 
14752 /**
14753  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14754  * @phba: pointer to lpfc hba data structure.
14755  * @fw_upgrade: which firmware to update.
14756  *
14757  * This routine is called to perform Linux generic firmware upgrade on device
14758  * that supports such feature.
14759  **/
14760 int
14761 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14762 {
14763 	uint8_t file_name[ELX_MODEL_NAME_SIZE];
14764 	int ret;
14765 	const struct firmware *fw;
14766 
14767 	/* Only supported on SLI4 interface type 2 for now */
14768 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14769 	    LPFC_SLI_INTF_IF_TYPE_2)
14770 		return -EPERM;
14771 
14772 	snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
14773 
14774 	if (fw_upgrade == INT_FW_UPGRADE) {
14775 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14776 					file_name, &phba->pcidev->dev,
14777 					GFP_KERNEL, (void *)phba,
14778 					lpfc_write_firmware);
14779 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14780 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14781 		if (!ret)
14782 			lpfc_write_firmware(fw, (void *)phba);
14783 	} else {
14784 		ret = -EINVAL;
14785 	}
14786 
14787 	return ret;
14788 }
14789 
14790 /**
14791  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14792  * @pdev: pointer to PCI device
14793  * @pid: pointer to PCI device identifier
14794  *
14795  * This routine is called from the kernel's PCI subsystem to device with
14796  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14797  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14798  * information of the device and driver to see if the driver state that it
14799  * can support this kind of device. If the match is successful, the driver
14800  * core invokes this routine. If this routine determines it can claim the HBA,
14801  * it does all the initialization that it needs to do to handle the HBA
14802  * properly.
14803  *
14804  * Return code
14805  * 	0 - driver can claim the device
14806  * 	negative value - driver can not claim the device
14807  **/
14808 static int
14809 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14810 {
14811 	struct lpfc_hba   *phba;
14812 	struct lpfc_vport *vport = NULL;
14813 	struct Scsi_Host  *shost = NULL;
14814 	int error;
14815 	uint32_t cfg_mode, intr_mode;
14816 
14817 	/* Allocate memory for HBA structure */
14818 	phba = lpfc_hba_alloc(pdev);
14819 	if (!phba)
14820 		return -ENOMEM;
14821 
14822 	INIT_LIST_HEAD(&phba->poll_list);
14823 
14824 	/* Perform generic PCI device enabling operation */
14825 	error = lpfc_enable_pci_dev(phba);
14826 	if (error)
14827 		goto out_free_phba;
14828 
14829 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14830 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14831 	if (error)
14832 		goto out_disable_pci_dev;
14833 
14834 	/* Set up SLI-4 specific device PCI memory space */
14835 	error = lpfc_sli4_pci_mem_setup(phba);
14836 	if (error) {
14837 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14838 				"1410 Failed to set up pci memory space.\n");
14839 		goto out_disable_pci_dev;
14840 	}
14841 
14842 	/* Set up SLI-4 Specific device driver resources */
14843 	error = lpfc_sli4_driver_resource_setup(phba);
14844 	if (error) {
14845 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14846 				"1412 Failed to set up driver resource.\n");
14847 		goto out_unset_pci_mem_s4;
14848 	}
14849 
14850 	INIT_LIST_HEAD(&phba->active_rrq_list);
14851 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14852 
14853 	/* Set up common device driver resources */
14854 	error = lpfc_setup_driver_resource_phase2(phba);
14855 	if (error) {
14856 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14857 				"1414 Failed to set up driver resource.\n");
14858 		goto out_unset_driver_resource_s4;
14859 	}
14860 
14861 	/* Get the default values for Model Name and Description */
14862 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14863 
14864 	/* Now, trying to enable interrupt and bring up the device */
14865 	cfg_mode = phba->cfg_use_msi;
14866 
14867 	/* Put device to a known state before enabling interrupt */
14868 	phba->pport = NULL;
14869 	lpfc_stop_port(phba);
14870 
14871 	/* Init cpu_map array */
14872 	lpfc_cpu_map_array_init(phba);
14873 
14874 	/* Init hba_eq_hdl array */
14875 	lpfc_hba_eq_hdl_array_init(phba);
14876 
14877 	/* Configure and enable interrupt */
14878 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14879 	if (intr_mode == LPFC_INTR_ERROR) {
14880 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14881 				"0426 Failed to enable interrupt.\n");
14882 		error = -ENODEV;
14883 		goto out_unset_driver_resource;
14884 	}
14885 	/* Default to single EQ for non-MSI-X */
14886 	if (phba->intr_type != MSIX) {
14887 		phba->cfg_irq_chann = 1;
14888 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14889 			if (phba->nvmet_support)
14890 				phba->cfg_nvmet_mrq = 1;
14891 		}
14892 	}
14893 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14894 
14895 	/* Create SCSI host to the physical port */
14896 	error = lpfc_create_shost(phba);
14897 	if (error) {
14898 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14899 				"1415 Failed to create scsi host.\n");
14900 		goto out_disable_intr;
14901 	}
14902 	vport = phba->pport;
14903 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14904 
14905 	/* Configure sysfs attributes */
14906 	error = lpfc_alloc_sysfs_attr(vport);
14907 	if (error) {
14908 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14909 				"1416 Failed to allocate sysfs attr\n");
14910 		goto out_destroy_shost;
14911 	}
14912 
14913 	/* Set up SLI-4 HBA */
14914 	if (lpfc_sli4_hba_setup(phba)) {
14915 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14916 				"1421 Failed to set up hba\n");
14917 		error = -ENODEV;
14918 		goto out_free_sysfs_attr;
14919 	}
14920 
14921 	/* Log the current active interrupt mode */
14922 	phba->intr_mode = intr_mode;
14923 	lpfc_log_intr_mode(phba, intr_mode);
14924 
14925 	/* Perform post initialization setup */
14926 	lpfc_post_init_setup(phba);
14927 
14928 	/* NVME support in FW earlier in the driver load corrects the
14929 	 * FC4 type making a check for nvme_support unnecessary.
14930 	 */
14931 	if (phba->nvmet_support == 0) {
14932 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14933 			/* Create NVME binding with nvme_fc_transport. This
14934 			 * ensures the vport is initialized.  If the localport
14935 			 * create fails, it should not unload the driver to
14936 			 * support field issues.
14937 			 */
14938 			error = lpfc_nvme_create_localport(vport);
14939 			if (error) {
14940 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14941 						"6004 NVME registration "
14942 						"failed, error x%x\n",
14943 						error);
14944 			}
14945 		}
14946 	}
14947 
14948 	/* check for firmware upgrade or downgrade */
14949 	if (phba->cfg_request_firmware_upgrade)
14950 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14951 
14952 	/* Check if there are static vports to be created. */
14953 	lpfc_create_static_vport(phba);
14954 
14955 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14956 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14957 
14958 	return 0;
14959 
14960 out_free_sysfs_attr:
14961 	lpfc_free_sysfs_attr(vport);
14962 out_destroy_shost:
14963 	lpfc_destroy_shost(phba);
14964 out_disable_intr:
14965 	lpfc_sli4_disable_intr(phba);
14966 out_unset_driver_resource:
14967 	lpfc_unset_driver_resource_phase2(phba);
14968 out_unset_driver_resource_s4:
14969 	lpfc_sli4_driver_resource_unset(phba);
14970 out_unset_pci_mem_s4:
14971 	lpfc_sli4_pci_mem_unset(phba);
14972 out_disable_pci_dev:
14973 	lpfc_disable_pci_dev(phba);
14974 	if (shost)
14975 		scsi_host_put(shost);
14976 out_free_phba:
14977 	lpfc_hba_free(phba);
14978 	return error;
14979 }
14980 
14981 /**
14982  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14983  * @pdev: pointer to PCI device
14984  *
14985  * This routine is called from the kernel's PCI subsystem to device with
14986  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14987  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14988  * device to be removed from the PCI subsystem properly.
14989  **/
14990 static void
14991 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14992 {
14993 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14994 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14995 	struct lpfc_vport **vports;
14996 	struct lpfc_hba *phba = vport->phba;
14997 	int i;
14998 
14999 	/* Mark the device unloading flag */
15000 	spin_lock_irq(&phba->hbalock);
15001 	vport->load_flag |= FC_UNLOADING;
15002 	spin_unlock_irq(&phba->hbalock);
15003 	if (phba->cgn_i)
15004 		lpfc_unreg_congestion_buf(phba);
15005 
15006 	lpfc_free_sysfs_attr(vport);
15007 
15008 	/* Release all the vports against this physical port */
15009 	vports = lpfc_create_vport_work_array(phba);
15010 	if (vports != NULL)
15011 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
15012 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
15013 				continue;
15014 			fc_vport_terminate(vports[i]->fc_vport);
15015 		}
15016 	lpfc_destroy_vport_work_array(phba, vports);
15017 
15018 	/* Remove FC host with the physical port */
15019 	fc_remove_host(shost);
15020 	scsi_remove_host(shost);
15021 
15022 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
15023 	 * localports are destroyed after to cleanup all transport memory.
15024 	 */
15025 	lpfc_cleanup(vport);
15026 	lpfc_nvmet_destroy_targetport(phba);
15027 	lpfc_nvme_destroy_localport(vport);
15028 
15029 	/* De-allocate multi-XRI pools */
15030 	if (phba->cfg_xri_rebalancing)
15031 		lpfc_destroy_multixri_pools(phba);
15032 
15033 	/*
15034 	 * Bring down the SLI Layer. This step disables all interrupts,
15035 	 * clears the rings, discards all mailbox commands, and resets
15036 	 * the HBA FCoE function.
15037 	 */
15038 	lpfc_debugfs_terminate(vport);
15039 
15040 	lpfc_stop_hba_timers(phba);
15041 	spin_lock_irq(&phba->port_list_lock);
15042 	list_del_init(&vport->listentry);
15043 	spin_unlock_irq(&phba->port_list_lock);
15044 
15045 	/* Perform scsi free before driver resource_unset since scsi
15046 	 * buffers are released to their corresponding pools here.
15047 	 */
15048 	lpfc_io_free(phba);
15049 	lpfc_free_iocb_list(phba);
15050 	lpfc_sli4_hba_unset(phba);
15051 
15052 	lpfc_unset_driver_resource_phase2(phba);
15053 	lpfc_sli4_driver_resource_unset(phba);
15054 
15055 	/* Unmap adapter Control and Doorbell registers */
15056 	lpfc_sli4_pci_mem_unset(phba);
15057 
15058 	/* Release PCI resources and disable device's PCI function */
15059 	scsi_host_put(shost);
15060 	lpfc_disable_pci_dev(phba);
15061 
15062 	/* Finally, free the driver's device data structure */
15063 	lpfc_hba_free(phba);
15064 
15065 	return;
15066 }
15067 
15068 /**
15069  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15070  * @dev_d: pointer to device
15071  *
15072  * This routine is called from the kernel's PCI subsystem to support system
15073  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15074  * this method, it quiesces the device by stopping the driver's worker
15075  * thread for the device, turning off device's interrupt and DMA, and bring
15076  * the device offline. Note that as the driver implements the minimum PM
15077  * requirements to a power-aware driver's PM support for suspend/resume -- all
15078  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15079  * method call will be treated as SUSPEND and the driver will fully
15080  * reinitialize its device during resume() method call, the driver will set
15081  * device to PCI_D3hot state in PCI config space instead of setting it
15082  * according to the @msg provided by the PM.
15083  *
15084  * Return code
15085  * 	0 - driver suspended the device
15086  * 	Error otherwise
15087  **/
15088 static int __maybe_unused
15089 lpfc_pci_suspend_one_s4(struct device *dev_d)
15090 {
15091 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15092 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15093 
15094 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15095 			"2843 PCI device Power Management suspend.\n");
15096 
15097 	/* Bring down the device */
15098 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15099 	lpfc_offline(phba);
15100 	kthread_stop(phba->worker_thread);
15101 
15102 	/* Disable interrupt from device */
15103 	lpfc_sli4_disable_intr(phba);
15104 	lpfc_sli4_queue_destroy(phba);
15105 
15106 	return 0;
15107 }
15108 
15109 /**
15110  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15111  * @dev_d: pointer to device
15112  *
15113  * This routine is called from the kernel's PCI subsystem to support system
15114  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15115  * this method, it restores the device's PCI config space state and fully
15116  * reinitializes the device and brings it online. Note that as the driver
15117  * implements the minimum PM requirements to a power-aware driver's PM for
15118  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15119  * to the suspend() method call will be treated as SUSPEND and the driver
15120  * will fully reinitialize its device during resume() method call, the device
15121  * will be set to PCI_D0 directly in PCI config space before restoring the
15122  * state.
15123  *
15124  * Return code
15125  * 	0 - driver suspended the device
15126  * 	Error otherwise
15127  **/
15128 static int __maybe_unused
15129 lpfc_pci_resume_one_s4(struct device *dev_d)
15130 {
15131 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15132 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15133 	uint32_t intr_mode;
15134 	int error;
15135 
15136 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15137 			"0292 PCI device Power Management resume.\n");
15138 
15139 	 /* Startup the kernel thread for this host adapter. */
15140 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15141 					"lpfc_worker_%d", phba->brd_no);
15142 	if (IS_ERR(phba->worker_thread)) {
15143 		error = PTR_ERR(phba->worker_thread);
15144 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15145 				"0293 PM resume failed to start worker "
15146 				"thread: error=x%x.\n", error);
15147 		return error;
15148 	}
15149 
15150 	/* Configure and enable interrupt */
15151 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15152 	if (intr_mode == LPFC_INTR_ERROR) {
15153 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15154 				"0294 PM resume Failed to enable interrupt\n");
15155 		return -EIO;
15156 	} else
15157 		phba->intr_mode = intr_mode;
15158 
15159 	/* Restart HBA and bring it online */
15160 	lpfc_sli_brdrestart(phba);
15161 	lpfc_online(phba);
15162 
15163 	/* Log the current active interrupt mode */
15164 	lpfc_log_intr_mode(phba, phba->intr_mode);
15165 
15166 	return 0;
15167 }
15168 
15169 /**
15170  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15171  * @phba: pointer to lpfc hba data structure.
15172  *
15173  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15174  * aborts all the outstanding SCSI I/Os to the pci device.
15175  **/
15176 static void
15177 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15178 {
15179 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15180 			"2828 PCI channel I/O abort preparing for recovery\n");
15181 	/*
15182 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15183 	 * and let the SCSI mid-layer to retry them to recover.
15184 	 */
15185 	lpfc_sli_abort_fcp_rings(phba);
15186 }
15187 
15188 /**
15189  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15190  * @phba: pointer to lpfc hba data structure.
15191  *
15192  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15193  * disables the device interrupt and pci device, and aborts the internal FCP
15194  * pending I/Os.
15195  **/
15196 static void
15197 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15198 {
15199 	int offline =  pci_channel_offline(phba->pcidev);
15200 
15201 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15202 			"2826 PCI channel disable preparing for reset offline"
15203 			" %d\n", offline);
15204 
15205 	/* Block any management I/Os to the device */
15206 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15207 
15208 
15209 	/* HBA_PCI_ERR was set in io_error_detect */
15210 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15211 	/* Flush all driver's outstanding I/Os as we are to reset */
15212 	lpfc_sli_flush_io_rings(phba);
15213 	lpfc_offline(phba);
15214 
15215 	/* stop all timers */
15216 	lpfc_stop_hba_timers(phba);
15217 
15218 	lpfc_sli4_queue_destroy(phba);
15219 	/* Disable interrupt and pci device */
15220 	lpfc_sli4_disable_intr(phba);
15221 	pci_disable_device(phba->pcidev);
15222 }
15223 
15224 /**
15225  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15226  * @phba: pointer to lpfc hba data structure.
15227  *
15228  * This routine is called to prepare the SLI4 device for PCI slot permanently
15229  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15230  * pending I/Os.
15231  **/
15232 static void
15233 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15234 {
15235 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15236 			"2827 PCI channel permanent disable for failure\n");
15237 
15238 	/* Block all SCSI devices' I/Os on the host */
15239 	lpfc_scsi_dev_block(phba);
15240 
15241 	/* stop all timers */
15242 	lpfc_stop_hba_timers(phba);
15243 
15244 	/* Clean up all driver's outstanding I/Os */
15245 	lpfc_sli_flush_io_rings(phba);
15246 }
15247 
15248 /**
15249  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15250  * @pdev: pointer to PCI device.
15251  * @state: the current PCI connection state.
15252  *
15253  * This routine is called from the PCI subsystem for error handling to device
15254  * with SLI-4 interface spec. This function is called by the PCI subsystem
15255  * after a PCI bus error affecting this device has been detected. When this
15256  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15257  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15258  * for the PCI subsystem to perform proper recovery as desired.
15259  *
15260  * Return codes
15261  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15262  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15263  **/
15264 static pci_ers_result_t
15265 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15266 {
15267 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15268 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15269 	bool hba_pci_err;
15270 
15271 	switch (state) {
15272 	case pci_channel_io_normal:
15273 		/* Non-fatal error, prepare for recovery */
15274 		lpfc_sli4_prep_dev_for_recover(phba);
15275 		return PCI_ERS_RESULT_CAN_RECOVER;
15276 	case pci_channel_io_frozen:
15277 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15278 		/* Fatal error, prepare for slot reset */
15279 		if (!hba_pci_err)
15280 			lpfc_sli4_prep_dev_for_reset(phba);
15281 		else
15282 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15283 					"2832  Already handling PCI error "
15284 					"state: x%x\n", state);
15285 		return PCI_ERS_RESULT_NEED_RESET;
15286 	case pci_channel_io_perm_failure:
15287 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15288 		/* Permanent failure, prepare for device down */
15289 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15290 		return PCI_ERS_RESULT_DISCONNECT;
15291 	default:
15292 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15293 		if (!hba_pci_err)
15294 			lpfc_sli4_prep_dev_for_reset(phba);
15295 		/* Unknown state, prepare and request slot reset */
15296 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15297 				"2825 Unknown PCI error state: x%x\n", state);
15298 		lpfc_sli4_prep_dev_for_reset(phba);
15299 		return PCI_ERS_RESULT_NEED_RESET;
15300 	}
15301 }
15302 
15303 /**
15304  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15305  * @pdev: pointer to PCI device.
15306  *
15307  * This routine is called from the PCI subsystem for error handling to device
15308  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15309  * restart the PCI card from scratch, as if from a cold-boot. During the
15310  * PCI subsystem error recovery, after the driver returns
15311  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15312  * recovery and then call this routine before calling the .resume method to
15313  * recover the device. This function will initialize the HBA device, enable
15314  * the interrupt, but it will just put the HBA to offline state without
15315  * passing any I/O traffic.
15316  *
15317  * Return codes
15318  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15319  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15320  */
15321 static pci_ers_result_t
15322 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15323 {
15324 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15325 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15326 	struct lpfc_sli *psli = &phba->sli;
15327 	uint32_t intr_mode;
15328 	bool hba_pci_err;
15329 
15330 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15331 	if (pci_enable_device_mem(pdev)) {
15332 		printk(KERN_ERR "lpfc: Cannot re-enable "
15333 		       "PCI device after reset.\n");
15334 		return PCI_ERS_RESULT_DISCONNECT;
15335 	}
15336 
15337 	pci_restore_state(pdev);
15338 
15339 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15340 	if (!hba_pci_err)
15341 		dev_info(&pdev->dev,
15342 			 "hba_pci_err was not set, recovering slot reset.\n");
15343 	/*
15344 	 * As the new kernel behavior of pci_restore_state() API call clears
15345 	 * device saved_state flag, need to save the restored state again.
15346 	 */
15347 	pci_save_state(pdev);
15348 
15349 	if (pdev->is_busmaster)
15350 		pci_set_master(pdev);
15351 
15352 	spin_lock_irq(&phba->hbalock);
15353 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15354 	spin_unlock_irq(&phba->hbalock);
15355 
15356 	/* Init cpu_map array */
15357 	lpfc_cpu_map_array_init(phba);
15358 	/* Configure and enable interrupt */
15359 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15360 	if (intr_mode == LPFC_INTR_ERROR) {
15361 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15362 				"2824 Cannot re-enable interrupt after "
15363 				"slot reset.\n");
15364 		return PCI_ERS_RESULT_DISCONNECT;
15365 	} else
15366 		phba->intr_mode = intr_mode;
15367 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15368 
15369 	/* Log the current active interrupt mode */
15370 	lpfc_log_intr_mode(phba, phba->intr_mode);
15371 
15372 	return PCI_ERS_RESULT_RECOVERED;
15373 }
15374 
15375 /**
15376  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15377  * @pdev: pointer to PCI device
15378  *
15379  * This routine is called from the PCI subsystem for error handling to device
15380  * with SLI-4 interface spec. It is called when kernel error recovery tells
15381  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15382  * error recovery. After this call, traffic can start to flow from this device
15383  * again.
15384  **/
15385 static void
15386 lpfc_io_resume_s4(struct pci_dev *pdev)
15387 {
15388 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15389 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15390 
15391 	/*
15392 	 * In case of slot reset, as function reset is performed through
15393 	 * mailbox command which needs DMA to be enabled, this operation
15394 	 * has to be moved to the io resume phase. Taking device offline
15395 	 * will perform the necessary cleanup.
15396 	 */
15397 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15398 		/* Perform device reset */
15399 		lpfc_sli_brdrestart(phba);
15400 		/* Bring the device back online */
15401 		lpfc_online(phba);
15402 	}
15403 }
15404 
15405 /**
15406  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15407  * @pdev: pointer to PCI device
15408  * @pid: pointer to PCI device identifier
15409  *
15410  * This routine is to be registered to the kernel's PCI subsystem. When an
15411  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15412  * at PCI device-specific information of the device and driver to see if the
15413  * driver state that it can support this kind of device. If the match is
15414  * successful, the driver core invokes this routine. This routine dispatches
15415  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15416  * do all the initialization that it needs to do to handle the HBA device
15417  * properly.
15418  *
15419  * Return code
15420  * 	0 - driver can claim the device
15421  * 	negative value - driver can not claim the device
15422  **/
15423 static int
15424 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15425 {
15426 	int rc;
15427 	struct lpfc_sli_intf intf;
15428 
15429 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15430 		return -ENODEV;
15431 
15432 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15433 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15434 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15435 	else
15436 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15437 
15438 	return rc;
15439 }
15440 
15441 /**
15442  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15443  * @pdev: pointer to PCI device
15444  *
15445  * This routine is to be registered to the kernel's PCI subsystem. When an
15446  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15447  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15448  * remove routine, which will perform all the necessary cleanup for the
15449  * device to be removed from the PCI subsystem properly.
15450  **/
15451 static void
15452 lpfc_pci_remove_one(struct pci_dev *pdev)
15453 {
15454 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15455 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15456 
15457 	switch (phba->pci_dev_grp) {
15458 	case LPFC_PCI_DEV_LP:
15459 		lpfc_pci_remove_one_s3(pdev);
15460 		break;
15461 	case LPFC_PCI_DEV_OC:
15462 		lpfc_pci_remove_one_s4(pdev);
15463 		break;
15464 	default:
15465 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15466 				"1424 Invalid PCI device group: 0x%x\n",
15467 				phba->pci_dev_grp);
15468 		break;
15469 	}
15470 	return;
15471 }
15472 
15473 /**
15474  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15475  * @dev: pointer to device
15476  *
15477  * This routine is to be registered to the kernel's PCI subsystem to support
15478  * system Power Management (PM). When PM invokes this method, it dispatches
15479  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15480  * suspend the device.
15481  *
15482  * Return code
15483  * 	0 - driver suspended the device
15484  * 	Error otherwise
15485  **/
15486 static int __maybe_unused
15487 lpfc_pci_suspend_one(struct device *dev)
15488 {
15489 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15490 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15491 	int rc = -ENODEV;
15492 
15493 	switch (phba->pci_dev_grp) {
15494 	case LPFC_PCI_DEV_LP:
15495 		rc = lpfc_pci_suspend_one_s3(dev);
15496 		break;
15497 	case LPFC_PCI_DEV_OC:
15498 		rc = lpfc_pci_suspend_one_s4(dev);
15499 		break;
15500 	default:
15501 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15502 				"1425 Invalid PCI device group: 0x%x\n",
15503 				phba->pci_dev_grp);
15504 		break;
15505 	}
15506 	return rc;
15507 }
15508 
15509 /**
15510  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15511  * @dev: pointer to device
15512  *
15513  * This routine is to be registered to the kernel's PCI subsystem to support
15514  * system Power Management (PM). When PM invokes this method, it dispatches
15515  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15516  * resume the device.
15517  *
15518  * Return code
15519  * 	0 - driver suspended the device
15520  * 	Error otherwise
15521  **/
15522 static int __maybe_unused
15523 lpfc_pci_resume_one(struct device *dev)
15524 {
15525 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15526 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15527 	int rc = -ENODEV;
15528 
15529 	switch (phba->pci_dev_grp) {
15530 	case LPFC_PCI_DEV_LP:
15531 		rc = lpfc_pci_resume_one_s3(dev);
15532 		break;
15533 	case LPFC_PCI_DEV_OC:
15534 		rc = lpfc_pci_resume_one_s4(dev);
15535 		break;
15536 	default:
15537 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15538 				"1426 Invalid PCI device group: 0x%x\n",
15539 				phba->pci_dev_grp);
15540 		break;
15541 	}
15542 	return rc;
15543 }
15544 
15545 /**
15546  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15547  * @pdev: pointer to PCI device.
15548  * @state: the current PCI connection state.
15549  *
15550  * This routine is registered to the PCI subsystem for error handling. This
15551  * function is called by the PCI subsystem after a PCI bus error affecting
15552  * this device has been detected. When this routine is invoked, it dispatches
15553  * the action to the proper SLI-3 or SLI-4 device error detected handling
15554  * routine, which will perform the proper error detected operation.
15555  *
15556  * Return codes
15557  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15558  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15559  **/
15560 static pci_ers_result_t
15561 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15562 {
15563 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15564 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15565 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15566 
15567 	if (phba->link_state == LPFC_HBA_ERROR &&
15568 	    phba->hba_flag & HBA_IOQ_FLUSH)
15569 		return PCI_ERS_RESULT_NEED_RESET;
15570 
15571 	switch (phba->pci_dev_grp) {
15572 	case LPFC_PCI_DEV_LP:
15573 		rc = lpfc_io_error_detected_s3(pdev, state);
15574 		break;
15575 	case LPFC_PCI_DEV_OC:
15576 		rc = lpfc_io_error_detected_s4(pdev, state);
15577 		break;
15578 	default:
15579 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15580 				"1427 Invalid PCI device group: 0x%x\n",
15581 				phba->pci_dev_grp);
15582 		break;
15583 	}
15584 	return rc;
15585 }
15586 
15587 /**
15588  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15589  * @pdev: pointer to PCI device.
15590  *
15591  * This routine is registered to the PCI subsystem for error handling. This
15592  * function is called after PCI bus has been reset to restart the PCI card
15593  * from scratch, as if from a cold-boot. When this routine is invoked, it
15594  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15595  * routine, which will perform the proper device reset.
15596  *
15597  * Return codes
15598  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15599  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15600  **/
15601 static pci_ers_result_t
15602 lpfc_io_slot_reset(struct pci_dev *pdev)
15603 {
15604 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15605 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15606 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15607 
15608 	switch (phba->pci_dev_grp) {
15609 	case LPFC_PCI_DEV_LP:
15610 		rc = lpfc_io_slot_reset_s3(pdev);
15611 		break;
15612 	case LPFC_PCI_DEV_OC:
15613 		rc = lpfc_io_slot_reset_s4(pdev);
15614 		break;
15615 	default:
15616 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15617 				"1428 Invalid PCI device group: 0x%x\n",
15618 				phba->pci_dev_grp);
15619 		break;
15620 	}
15621 	return rc;
15622 }
15623 
15624 /**
15625  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15626  * @pdev: pointer to PCI device
15627  *
15628  * This routine is registered to the PCI subsystem for error handling. It
15629  * is called when kernel error recovery tells the lpfc driver that it is
15630  * OK to resume normal PCI operation after PCI bus error recovery. When
15631  * this routine is invoked, it dispatches the action to the proper SLI-3
15632  * or SLI-4 device io_resume routine, which will resume the device operation.
15633  **/
15634 static void
15635 lpfc_io_resume(struct pci_dev *pdev)
15636 {
15637 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15638 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15639 
15640 	switch (phba->pci_dev_grp) {
15641 	case LPFC_PCI_DEV_LP:
15642 		lpfc_io_resume_s3(pdev);
15643 		break;
15644 	case LPFC_PCI_DEV_OC:
15645 		lpfc_io_resume_s4(pdev);
15646 		break;
15647 	default:
15648 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15649 				"1429 Invalid PCI device group: 0x%x\n",
15650 				phba->pci_dev_grp);
15651 		break;
15652 	}
15653 	return;
15654 }
15655 
15656 /**
15657  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15658  * @phba: pointer to lpfc hba data structure.
15659  *
15660  * This routine checks to see if OAS is supported for this adapter. If
15661  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15662  * the enable oas flag is cleared and the pool created for OAS device data
15663  * is destroyed.
15664  *
15665  **/
15666 static void
15667 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15668 {
15669 
15670 	if (!phba->cfg_EnableXLane)
15671 		return;
15672 
15673 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15674 		phba->cfg_fof = 1;
15675 	} else {
15676 		phba->cfg_fof = 0;
15677 		mempool_destroy(phba->device_data_mem_pool);
15678 		phba->device_data_mem_pool = NULL;
15679 	}
15680 
15681 	return;
15682 }
15683 
15684 /**
15685  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15686  * @phba: pointer to lpfc hba data structure.
15687  *
15688  * This routine checks to see if RAS is supported by the adapter. Check the
15689  * function through which RAS support enablement is to be done.
15690  **/
15691 void
15692 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15693 {
15694 	/* if ASIC_GEN_NUM >= 0xC) */
15695 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15696 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15697 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15698 		    LPFC_SLI_INTF_FAMILY_G6)) {
15699 		phba->ras_fwlog.ras_hwsupport = true;
15700 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15701 		    phba->cfg_ras_fwlog_buffsize)
15702 			phba->ras_fwlog.ras_enabled = true;
15703 		else
15704 			phba->ras_fwlog.ras_enabled = false;
15705 	} else {
15706 		phba->ras_fwlog.ras_hwsupport = false;
15707 	}
15708 }
15709 
15710 
15711 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15712 
15713 static const struct pci_error_handlers lpfc_err_handler = {
15714 	.error_detected = lpfc_io_error_detected,
15715 	.slot_reset = lpfc_io_slot_reset,
15716 	.resume = lpfc_io_resume,
15717 };
15718 
15719 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15720 			 lpfc_pci_suspend_one,
15721 			 lpfc_pci_resume_one);
15722 
15723 static struct pci_driver lpfc_driver = {
15724 	.name		= LPFC_DRIVER_NAME,
15725 	.id_table	= lpfc_id_table,
15726 	.probe		= lpfc_pci_probe_one,
15727 	.remove		= lpfc_pci_remove_one,
15728 	.shutdown	= lpfc_pci_remove_one,
15729 	.driver.pm	= &lpfc_pci_pm_ops_one,
15730 	.err_handler    = &lpfc_err_handler,
15731 };
15732 
15733 static const struct file_operations lpfc_mgmt_fop = {
15734 	.owner = THIS_MODULE,
15735 };
15736 
15737 static struct miscdevice lpfc_mgmt_dev = {
15738 	.minor = MISC_DYNAMIC_MINOR,
15739 	.name = "lpfcmgmt",
15740 	.fops = &lpfc_mgmt_fop,
15741 };
15742 
15743 /**
15744  * lpfc_init - lpfc module initialization routine
15745  *
15746  * This routine is to be invoked when the lpfc module is loaded into the
15747  * kernel. The special kernel macro module_init() is used to indicate the
15748  * role of this routine to the kernel as lpfc module entry point.
15749  *
15750  * Return codes
15751  *   0 - successful
15752  *   -ENOMEM - FC attach transport failed
15753  *   all others - failed
15754  */
15755 static int __init
15756 lpfc_init(void)
15757 {
15758 	int error = 0;
15759 
15760 	pr_info(LPFC_MODULE_DESC "\n");
15761 	pr_info(LPFC_COPYRIGHT "\n");
15762 
15763 	error = misc_register(&lpfc_mgmt_dev);
15764 	if (error)
15765 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15766 			"misc_register returned with status %d", error);
15767 
15768 	error = -ENOMEM;
15769 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15770 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15771 	lpfc_transport_template =
15772 				fc_attach_transport(&lpfc_transport_functions);
15773 	if (lpfc_transport_template == NULL)
15774 		goto unregister;
15775 	lpfc_vport_transport_template =
15776 		fc_attach_transport(&lpfc_vport_transport_functions);
15777 	if (lpfc_vport_transport_template == NULL) {
15778 		fc_release_transport(lpfc_transport_template);
15779 		goto unregister;
15780 	}
15781 	lpfc_wqe_cmd_template();
15782 	lpfc_nvmet_cmd_template();
15783 
15784 	/* Initialize in case vector mapping is needed */
15785 	lpfc_present_cpu = num_present_cpus();
15786 
15787 	lpfc_pldv_detect = false;
15788 
15789 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15790 					"lpfc/sli4:online",
15791 					lpfc_cpu_online, lpfc_cpu_offline);
15792 	if (error < 0)
15793 		goto cpuhp_failure;
15794 	lpfc_cpuhp_state = error;
15795 
15796 	error = pci_register_driver(&lpfc_driver);
15797 	if (error)
15798 		goto unwind;
15799 
15800 	return error;
15801 
15802 unwind:
15803 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15804 cpuhp_failure:
15805 	fc_release_transport(lpfc_transport_template);
15806 	fc_release_transport(lpfc_vport_transport_template);
15807 unregister:
15808 	misc_deregister(&lpfc_mgmt_dev);
15809 
15810 	return error;
15811 }
15812 
15813 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15814 {
15815 	unsigned int start_idx;
15816 	unsigned int dbg_cnt;
15817 	unsigned int temp_idx;
15818 	int i;
15819 	int j = 0;
15820 	unsigned long rem_nsec;
15821 
15822 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15823 		return;
15824 
15825 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15826 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15827 	if (!dbg_cnt)
15828 		goto out;
15829 	temp_idx = start_idx;
15830 	if (dbg_cnt >= DBG_LOG_SZ) {
15831 		dbg_cnt = DBG_LOG_SZ;
15832 		temp_idx -= 1;
15833 	} else {
15834 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15835 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15836 		} else {
15837 			if (start_idx < dbg_cnt)
15838 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15839 			else
15840 				start_idx -= dbg_cnt;
15841 		}
15842 	}
15843 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15844 		 start_idx, temp_idx, dbg_cnt);
15845 
15846 	for (i = 0; i < dbg_cnt; i++) {
15847 		if ((start_idx + i) < DBG_LOG_SZ)
15848 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15849 		else
15850 			temp_idx = j++;
15851 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15852 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15853 			 temp_idx,
15854 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15855 			 rem_nsec / 1000,
15856 			 phba->dbg_log[temp_idx].log);
15857 	}
15858 out:
15859 	atomic_set(&phba->dbg_log_cnt, 0);
15860 	atomic_set(&phba->dbg_log_dmping, 0);
15861 }
15862 
15863 __printf(2, 3)
15864 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15865 {
15866 	unsigned int idx;
15867 	va_list args;
15868 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15869 	struct va_format vaf;
15870 
15871 
15872 	va_start(args, fmt);
15873 	if (unlikely(dbg_dmping)) {
15874 		vaf.fmt = fmt;
15875 		vaf.va = &args;
15876 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15877 		va_end(args);
15878 		return;
15879 	}
15880 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15881 		DBG_LOG_SZ;
15882 
15883 	atomic_inc(&phba->dbg_log_cnt);
15884 
15885 	vscnprintf(phba->dbg_log[idx].log,
15886 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15887 	va_end(args);
15888 
15889 	phba->dbg_log[idx].t_ns = local_clock();
15890 }
15891 
15892 /**
15893  * lpfc_exit - lpfc module removal routine
15894  *
15895  * This routine is invoked when the lpfc module is removed from the kernel.
15896  * The special kernel macro module_exit() is used to indicate the role of
15897  * this routine to the kernel as lpfc module exit point.
15898  */
15899 static void __exit
15900 lpfc_exit(void)
15901 {
15902 	misc_deregister(&lpfc_mgmt_dev);
15903 	pci_unregister_driver(&lpfc_driver);
15904 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15905 	fc_release_transport(lpfc_transport_template);
15906 	fc_release_transport(lpfc_vport_transport_template);
15907 	idr_destroy(&lpfc_hba_index);
15908 }
15909 
15910 module_init(lpfc_init);
15911 module_exit(lpfc_exit);
15912 MODULE_LICENSE("GPL");
15913 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15914 MODULE_AUTHOR("Broadcom");
15915 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15916