1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/ctype.h> 34 #include <linux/aer.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/msi.h> 40 #include <linux/irq.h> 41 #include <linux/bitops.h> 42 #include <linux/crash_dump.h> 43 #include <linux/cpu.h> 44 #include <linux/cpuhotplug.h> 45 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_host.h> 49 #include <scsi/scsi_transport_fc.h> 50 #include <scsi/scsi_tcq.h> 51 #include <scsi/fc/fc_fs.h> 52 53 #include "lpfc_hw4.h" 54 #include "lpfc_hw.h" 55 #include "lpfc_sli.h" 56 #include "lpfc_sli4.h" 57 #include "lpfc_nl.h" 58 #include "lpfc_disc.h" 59 #include "lpfc.h" 60 #include "lpfc_scsi.h" 61 #include "lpfc_nvme.h" 62 #include "lpfc_logmsg.h" 63 #include "lpfc_crtn.h" 64 #include "lpfc_vport.h" 65 #include "lpfc_version.h" 66 #include "lpfc_ids.h" 67 68 static enum cpuhp_state lpfc_cpuhp_state; 69 /* Used when mapping IRQ vectors in a driver centric manner */ 70 static uint32_t lpfc_present_cpu; 71 72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 76 static int lpfc_post_rcv_buf(struct lpfc_hba *); 77 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 79 static int lpfc_setup_endian_order(struct lpfc_hba *); 80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 81 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 83 static void lpfc_init_sgl_list(struct lpfc_hba *); 84 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 85 static void lpfc_free_active_sgl(struct lpfc_hba *); 86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 91 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *); 97 98 static struct scsi_transport_template *lpfc_transport_template = NULL; 99 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 100 static DEFINE_IDR(lpfc_hba_index); 101 #define LPFC_NVMET_BUF_POST 254 102 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport); 103 104 /** 105 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 106 * @phba: pointer to lpfc hba data structure. 107 * 108 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 109 * mailbox command. It retrieves the revision information from the HBA and 110 * collects the Vital Product Data (VPD) about the HBA for preparing the 111 * configuration of the HBA. 112 * 113 * Return codes: 114 * 0 - success. 115 * -ERESTART - requests the SLI layer to reset the HBA and try again. 116 * Any other value - indicates an error. 117 **/ 118 int 119 lpfc_config_port_prep(struct lpfc_hba *phba) 120 { 121 lpfc_vpd_t *vp = &phba->vpd; 122 int i = 0, rc; 123 LPFC_MBOXQ_t *pmb; 124 MAILBOX_t *mb; 125 char *lpfc_vpd_data = NULL; 126 uint16_t offset = 0; 127 static char licensed[56] = 128 "key unlock for use with gnu public licensed code only\0"; 129 static int init_key = 1; 130 131 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 132 if (!pmb) { 133 phba->link_state = LPFC_HBA_ERROR; 134 return -ENOMEM; 135 } 136 137 mb = &pmb->u.mb; 138 phba->link_state = LPFC_INIT_MBX_CMDS; 139 140 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 141 if (init_key) { 142 uint32_t *ptext = (uint32_t *) licensed; 143 144 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 145 *ptext = cpu_to_be32(*ptext); 146 init_key = 0; 147 } 148 149 lpfc_read_nv(phba, pmb); 150 memset((char*)mb->un.varRDnvp.rsvd3, 0, 151 sizeof (mb->un.varRDnvp.rsvd3)); 152 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 153 sizeof (licensed)); 154 155 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 156 157 if (rc != MBX_SUCCESS) { 158 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 159 "0324 Config Port initialization " 160 "error, mbxCmd x%x READ_NVPARM, " 161 "mbxStatus x%x\n", 162 mb->mbxCommand, mb->mbxStatus); 163 mempool_free(pmb, phba->mbox_mem_pool); 164 return -ERESTART; 165 } 166 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 167 sizeof(phba->wwnn)); 168 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 169 sizeof(phba->wwpn)); 170 } 171 172 /* 173 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 174 * which was already set in lpfc_get_cfgparam() 175 */ 176 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 177 178 /* Setup and issue mailbox READ REV command */ 179 lpfc_read_rev(phba, pmb); 180 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 181 if (rc != MBX_SUCCESS) { 182 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 183 "0439 Adapter failed to init, mbxCmd x%x " 184 "READ_REV, mbxStatus x%x\n", 185 mb->mbxCommand, mb->mbxStatus); 186 mempool_free( pmb, phba->mbox_mem_pool); 187 return -ERESTART; 188 } 189 190 191 /* 192 * The value of rr must be 1 since the driver set the cv field to 1. 193 * This setting requires the FW to set all revision fields. 194 */ 195 if (mb->un.varRdRev.rr == 0) { 196 vp->rev.rBit = 0; 197 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 198 "0440 Adapter failed to init, READ_REV has " 199 "missing revision information.\n"); 200 mempool_free(pmb, phba->mbox_mem_pool); 201 return -ERESTART; 202 } 203 204 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 205 mempool_free(pmb, phba->mbox_mem_pool); 206 return -EINVAL; 207 } 208 209 /* Save information as VPD data */ 210 vp->rev.rBit = 1; 211 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 212 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 213 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 214 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 215 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 216 vp->rev.biuRev = mb->un.varRdRev.biuRev; 217 vp->rev.smRev = mb->un.varRdRev.smRev; 218 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 219 vp->rev.endecRev = mb->un.varRdRev.endecRev; 220 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 221 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 222 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 223 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 224 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 225 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 226 227 /* If the sli feature level is less then 9, we must 228 * tear down all RPIs and VPIs on link down if NPIV 229 * is enabled. 230 */ 231 if (vp->rev.feaLevelHigh < 9) 232 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 233 234 if (lpfc_is_LC_HBA(phba->pcidev->device)) 235 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 236 sizeof (phba->RandomData)); 237 238 /* Get adapter VPD information */ 239 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 240 if (!lpfc_vpd_data) 241 goto out_free_mbox; 242 do { 243 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 244 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 245 246 if (rc != MBX_SUCCESS) { 247 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 248 "0441 VPD not present on adapter, " 249 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 250 mb->mbxCommand, mb->mbxStatus); 251 mb->un.varDmp.word_cnt = 0; 252 } 253 /* dump mem may return a zero when finished or we got a 254 * mailbox error, either way we are done. 255 */ 256 if (mb->un.varDmp.word_cnt == 0) 257 break; 258 259 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) 260 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; 261 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 262 lpfc_vpd_data + offset, 263 mb->un.varDmp.word_cnt); 264 offset += mb->un.varDmp.word_cnt; 265 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); 266 267 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 268 269 kfree(lpfc_vpd_data); 270 out_free_mbox: 271 mempool_free(pmb, phba->mbox_mem_pool); 272 return 0; 273 } 274 275 /** 276 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 277 * @phba: pointer to lpfc hba data structure. 278 * @pmboxq: pointer to the driver internal queue element for mailbox command. 279 * 280 * This is the completion handler for driver's configuring asynchronous event 281 * mailbox command to the device. If the mailbox command returns successfully, 282 * it will set internal async event support flag to 1; otherwise, it will 283 * set internal async event support flag to 0. 284 **/ 285 static void 286 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 287 { 288 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 289 phba->temp_sensor_support = 1; 290 else 291 phba->temp_sensor_support = 0; 292 mempool_free(pmboxq, phba->mbox_mem_pool); 293 return; 294 } 295 296 /** 297 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 298 * @phba: pointer to lpfc hba data structure. 299 * @pmboxq: pointer to the driver internal queue element for mailbox command. 300 * 301 * This is the completion handler for dump mailbox command for getting 302 * wake up parameters. When this command complete, the response contain 303 * Option rom version of the HBA. This function translate the version number 304 * into a human readable string and store it in OptionROMVersion. 305 **/ 306 static void 307 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 308 { 309 struct prog_id *prg; 310 uint32_t prog_id_word; 311 char dist = ' '; 312 /* character array used for decoding dist type. */ 313 char dist_char[] = "nabx"; 314 315 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 316 mempool_free(pmboxq, phba->mbox_mem_pool); 317 return; 318 } 319 320 prg = (struct prog_id *) &prog_id_word; 321 322 /* word 7 contain option rom version */ 323 prog_id_word = pmboxq->u.mb.un.varWords[7]; 324 325 /* Decode the Option rom version word to a readable string */ 326 if (prg->dist < 4) 327 dist = dist_char[prg->dist]; 328 329 if ((prg->dist == 3) && (prg->num == 0)) 330 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 331 prg->ver, prg->rev, prg->lev); 332 else 333 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 334 prg->ver, prg->rev, prg->lev, 335 dist, prg->num); 336 mempool_free(pmboxq, phba->mbox_mem_pool); 337 return; 338 } 339 340 /** 341 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 342 * cfg_soft_wwnn, cfg_soft_wwpn 343 * @vport: pointer to lpfc vport data structure. 344 * 345 * 346 * Return codes 347 * None. 348 **/ 349 void 350 lpfc_update_vport_wwn(struct lpfc_vport *vport) 351 { 352 uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level; 353 u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0]; 354 355 /* If the soft name exists then update it using the service params */ 356 if (vport->phba->cfg_soft_wwnn) 357 u64_to_wwn(vport->phba->cfg_soft_wwnn, 358 vport->fc_sparam.nodeName.u.wwn); 359 if (vport->phba->cfg_soft_wwpn) 360 u64_to_wwn(vport->phba->cfg_soft_wwpn, 361 vport->fc_sparam.portName.u.wwn); 362 363 /* 364 * If the name is empty or there exists a soft name 365 * then copy the service params name, otherwise use the fc name 366 */ 367 if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn) 368 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 369 sizeof(struct lpfc_name)); 370 else 371 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 372 sizeof(struct lpfc_name)); 373 374 /* 375 * If the port name has changed, then set the Param changes flag 376 * to unreg the login 377 */ 378 if (vport->fc_portname.u.wwn[0] != 0 && 379 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 380 sizeof(struct lpfc_name))) 381 vport->vport_flag |= FAWWPN_PARAM_CHG; 382 383 if (vport->fc_portname.u.wwn[0] == 0 || 384 vport->phba->cfg_soft_wwpn || 385 (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) || 386 vport->vport_flag & FAWWPN_SET) { 387 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 388 sizeof(struct lpfc_name)); 389 vport->vport_flag &= ~FAWWPN_SET; 390 if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) 391 vport->vport_flag |= FAWWPN_SET; 392 } 393 else 394 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 395 sizeof(struct lpfc_name)); 396 } 397 398 /** 399 * lpfc_config_port_post - Perform lpfc initialization after config port 400 * @phba: pointer to lpfc hba data structure. 401 * 402 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 403 * command call. It performs all internal resource and state setups on the 404 * port: post IOCB buffers, enable appropriate host interrupt attentions, 405 * ELS ring timers, etc. 406 * 407 * Return codes 408 * 0 - success. 409 * Any other value - error. 410 **/ 411 int 412 lpfc_config_port_post(struct lpfc_hba *phba) 413 { 414 struct lpfc_vport *vport = phba->pport; 415 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 416 LPFC_MBOXQ_t *pmb; 417 MAILBOX_t *mb; 418 struct lpfc_dmabuf *mp; 419 struct lpfc_sli *psli = &phba->sli; 420 uint32_t status, timeout; 421 int i, j; 422 int rc; 423 424 spin_lock_irq(&phba->hbalock); 425 /* 426 * If the Config port completed correctly the HBA is not 427 * over heated any more. 428 */ 429 if (phba->over_temp_state == HBA_OVER_TEMP) 430 phba->over_temp_state = HBA_NORMAL_TEMP; 431 spin_unlock_irq(&phba->hbalock); 432 433 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 434 if (!pmb) { 435 phba->link_state = LPFC_HBA_ERROR; 436 return -ENOMEM; 437 } 438 mb = &pmb->u.mb; 439 440 /* Get login parameters for NID. */ 441 rc = lpfc_read_sparam(phba, pmb, 0); 442 if (rc) { 443 mempool_free(pmb, phba->mbox_mem_pool); 444 return -ENOMEM; 445 } 446 447 pmb->vport = vport; 448 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 450 "0448 Adapter failed init, mbxCmd x%x " 451 "READ_SPARM mbxStatus x%x\n", 452 mb->mbxCommand, mb->mbxStatus); 453 phba->link_state = LPFC_HBA_ERROR; 454 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 455 mempool_free(pmb, phba->mbox_mem_pool); 456 lpfc_mbuf_free(phba, mp->virt, mp->phys); 457 kfree(mp); 458 return -EIO; 459 } 460 461 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 462 463 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 464 lpfc_mbuf_free(phba, mp->virt, mp->phys); 465 kfree(mp); 466 pmb->ctx_buf = NULL; 467 lpfc_update_vport_wwn(vport); 468 469 /* Update the fc_host data structures with new wwn. */ 470 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 471 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 472 fc_host_max_npiv_vports(shost) = phba->max_vpi; 473 474 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 475 /* This should be consolidated into parse_vpd ? - mr */ 476 if (phba->SerialNumber[0] == 0) { 477 uint8_t *outptr; 478 479 outptr = &vport->fc_nodename.u.s.IEEE[0]; 480 for (i = 0; i < 12; i++) { 481 status = *outptr++; 482 j = ((status & 0xf0) >> 4); 483 if (j <= 9) 484 phba->SerialNumber[i] = 485 (char)((uint8_t) 0x30 + (uint8_t) j); 486 else 487 phba->SerialNumber[i] = 488 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 489 i++; 490 j = (status & 0xf); 491 if (j <= 9) 492 phba->SerialNumber[i] = 493 (char)((uint8_t) 0x30 + (uint8_t) j); 494 else 495 phba->SerialNumber[i] = 496 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 497 } 498 } 499 500 lpfc_read_config(phba, pmb); 501 pmb->vport = vport; 502 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 504 "0453 Adapter failed to init, mbxCmd x%x " 505 "READ_CONFIG, mbxStatus x%x\n", 506 mb->mbxCommand, mb->mbxStatus); 507 phba->link_state = LPFC_HBA_ERROR; 508 mempool_free( pmb, phba->mbox_mem_pool); 509 return -EIO; 510 } 511 512 /* Check if the port is disabled */ 513 lpfc_sli_read_link_ste(phba); 514 515 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 516 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 517 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 518 "3359 HBA queue depth changed from %d to %d\n", 519 phba->cfg_hba_queue_depth, 520 mb->un.varRdConfig.max_xri); 521 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 522 } 523 524 phba->lmt = mb->un.varRdConfig.lmt; 525 526 /* Get the default values for Model Name and Description */ 527 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 528 529 phba->link_state = LPFC_LINK_DOWN; 530 531 /* Only process IOCBs on ELS ring till hba_state is READY */ 532 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 533 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 534 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 535 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 536 537 /* Post receive buffers for desired rings */ 538 if (phba->sli_rev != 3) 539 lpfc_post_rcv_buf(phba); 540 541 /* 542 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 543 */ 544 if (phba->intr_type == MSIX) { 545 rc = lpfc_config_msi(phba, pmb); 546 if (rc) { 547 mempool_free(pmb, phba->mbox_mem_pool); 548 return -EIO; 549 } 550 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 551 if (rc != MBX_SUCCESS) { 552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 553 "0352 Config MSI mailbox command " 554 "failed, mbxCmd x%x, mbxStatus x%x\n", 555 pmb->u.mb.mbxCommand, 556 pmb->u.mb.mbxStatus); 557 mempool_free(pmb, phba->mbox_mem_pool); 558 return -EIO; 559 } 560 } 561 562 spin_lock_irq(&phba->hbalock); 563 /* Initialize ERATT handling flag */ 564 phba->hba_flag &= ~HBA_ERATT_HANDLED; 565 566 /* Enable appropriate host interrupts */ 567 if (lpfc_readl(phba->HCregaddr, &status)) { 568 spin_unlock_irq(&phba->hbalock); 569 return -EIO; 570 } 571 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 572 if (psli->num_rings > 0) 573 status |= HC_R0INT_ENA; 574 if (psli->num_rings > 1) 575 status |= HC_R1INT_ENA; 576 if (psli->num_rings > 2) 577 status |= HC_R2INT_ENA; 578 if (psli->num_rings > 3) 579 status |= HC_R3INT_ENA; 580 581 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 582 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 583 status &= ~(HC_R0INT_ENA); 584 585 writel(status, phba->HCregaddr); 586 readl(phba->HCregaddr); /* flush */ 587 spin_unlock_irq(&phba->hbalock); 588 589 /* Set up ring-0 (ELS) timer */ 590 timeout = phba->fc_ratov * 2; 591 mod_timer(&vport->els_tmofunc, 592 jiffies + msecs_to_jiffies(1000 * timeout)); 593 /* Set up heart beat (HB) timer */ 594 mod_timer(&phba->hb_tmofunc, 595 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 596 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 597 phba->last_completion_time = jiffies; 598 /* Set up error attention (ERATT) polling timer */ 599 mod_timer(&phba->eratt_poll, 600 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 601 602 if (phba->hba_flag & LINK_DISABLED) { 603 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 604 "2598 Adapter Link is disabled.\n"); 605 lpfc_down_link(phba, pmb); 606 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 607 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 608 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 609 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 610 "2599 Adapter failed to issue DOWN_LINK" 611 " mbox command rc 0x%x\n", rc); 612 613 mempool_free(pmb, phba->mbox_mem_pool); 614 return -EIO; 615 } 616 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 617 mempool_free(pmb, phba->mbox_mem_pool); 618 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 619 if (rc) 620 return rc; 621 } 622 /* MBOX buffer will be freed in mbox compl */ 623 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 624 if (!pmb) { 625 phba->link_state = LPFC_HBA_ERROR; 626 return -ENOMEM; 627 } 628 629 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 630 pmb->mbox_cmpl = lpfc_config_async_cmpl; 631 pmb->vport = phba->pport; 632 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 633 634 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 635 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 636 "0456 Adapter failed to issue " 637 "ASYNCEVT_ENABLE mbox status x%x\n", 638 rc); 639 mempool_free(pmb, phba->mbox_mem_pool); 640 } 641 642 /* Get Option rom version */ 643 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 644 if (!pmb) { 645 phba->link_state = LPFC_HBA_ERROR; 646 return -ENOMEM; 647 } 648 649 lpfc_dump_wakeup_param(phba, pmb); 650 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 651 pmb->vport = phba->pport; 652 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 653 654 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 655 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 656 "0435 Adapter failed " 657 "to get Option ROM version status x%x\n", rc); 658 mempool_free(pmb, phba->mbox_mem_pool); 659 } 660 661 return 0; 662 } 663 664 /** 665 * lpfc_hba_init_link - Initialize the FC link 666 * @phba: pointer to lpfc hba data structure. 667 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 668 * 669 * This routine will issue the INIT_LINK mailbox command call. 670 * It is available to other drivers through the lpfc_hba data 671 * structure for use as a delayed link up mechanism with the 672 * module parameter lpfc_suppress_link_up. 673 * 674 * Return code 675 * 0 - success 676 * Any other value - error 677 **/ 678 static int 679 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 680 { 681 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 682 } 683 684 /** 685 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 686 * @phba: pointer to lpfc hba data structure. 687 * @fc_topology: desired fc topology. 688 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 689 * 690 * This routine will issue the INIT_LINK mailbox command call. 691 * It is available to other drivers through the lpfc_hba data 692 * structure for use as a delayed link up mechanism with the 693 * module parameter lpfc_suppress_link_up. 694 * 695 * Return code 696 * 0 - success 697 * Any other value - error 698 **/ 699 int 700 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 701 uint32_t flag) 702 { 703 struct lpfc_vport *vport = phba->pport; 704 LPFC_MBOXQ_t *pmb; 705 MAILBOX_t *mb; 706 int rc; 707 708 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 709 if (!pmb) { 710 phba->link_state = LPFC_HBA_ERROR; 711 return -ENOMEM; 712 } 713 mb = &pmb->u.mb; 714 pmb->vport = vport; 715 716 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 717 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 718 !(phba->lmt & LMT_1Gb)) || 719 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 720 !(phba->lmt & LMT_2Gb)) || 721 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 722 !(phba->lmt & LMT_4Gb)) || 723 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 724 !(phba->lmt & LMT_8Gb)) || 725 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 726 !(phba->lmt & LMT_10Gb)) || 727 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 728 !(phba->lmt & LMT_16Gb)) || 729 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 730 !(phba->lmt & LMT_32Gb)) || 731 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 732 !(phba->lmt & LMT_64Gb))) { 733 /* Reset link speed to auto */ 734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 735 "1302 Invalid speed for this board:%d " 736 "Reset link speed to auto.\n", 737 phba->cfg_link_speed); 738 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 739 } 740 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 741 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 742 if (phba->sli_rev < LPFC_SLI_REV4) 743 lpfc_set_loopback_flag(phba); 744 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 745 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 746 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 747 "0498 Adapter failed to init, mbxCmd x%x " 748 "INIT_LINK, mbxStatus x%x\n", 749 mb->mbxCommand, mb->mbxStatus); 750 if (phba->sli_rev <= LPFC_SLI_REV3) { 751 /* Clear all interrupt enable conditions */ 752 writel(0, phba->HCregaddr); 753 readl(phba->HCregaddr); /* flush */ 754 /* Clear all pending interrupts */ 755 writel(0xffffffff, phba->HAregaddr); 756 readl(phba->HAregaddr); /* flush */ 757 } 758 phba->link_state = LPFC_HBA_ERROR; 759 if (rc != MBX_BUSY || flag == MBX_POLL) 760 mempool_free(pmb, phba->mbox_mem_pool); 761 return -EIO; 762 } 763 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 764 if (flag == MBX_POLL) 765 mempool_free(pmb, phba->mbox_mem_pool); 766 767 return 0; 768 } 769 770 /** 771 * lpfc_hba_down_link - this routine downs the FC link 772 * @phba: pointer to lpfc hba data structure. 773 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 774 * 775 * This routine will issue the DOWN_LINK mailbox command call. 776 * It is available to other drivers through the lpfc_hba data 777 * structure for use to stop the link. 778 * 779 * Return code 780 * 0 - success 781 * Any other value - error 782 **/ 783 static int 784 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 785 { 786 LPFC_MBOXQ_t *pmb; 787 int rc; 788 789 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 790 if (!pmb) { 791 phba->link_state = LPFC_HBA_ERROR; 792 return -ENOMEM; 793 } 794 795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 796 "0491 Adapter Link is disabled.\n"); 797 lpfc_down_link(phba, pmb); 798 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 799 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 800 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 802 "2522 Adapter failed to issue DOWN_LINK" 803 " mbox command rc 0x%x\n", rc); 804 805 mempool_free(pmb, phba->mbox_mem_pool); 806 return -EIO; 807 } 808 if (flag == MBX_POLL) 809 mempool_free(pmb, phba->mbox_mem_pool); 810 811 return 0; 812 } 813 814 /** 815 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 816 * @phba: pointer to lpfc HBA data structure. 817 * 818 * This routine will do LPFC uninitialization before the HBA is reset when 819 * bringing down the SLI Layer. 820 * 821 * Return codes 822 * 0 - success. 823 * Any other value - error. 824 **/ 825 int 826 lpfc_hba_down_prep(struct lpfc_hba *phba) 827 { 828 struct lpfc_vport **vports; 829 int i; 830 831 if (phba->sli_rev <= LPFC_SLI_REV3) { 832 /* Disable interrupts */ 833 writel(0, phba->HCregaddr); 834 readl(phba->HCregaddr); /* flush */ 835 } 836 837 if (phba->pport->load_flag & FC_UNLOADING) 838 lpfc_cleanup_discovery_resources(phba->pport); 839 else { 840 vports = lpfc_create_vport_work_array(phba); 841 if (vports != NULL) 842 for (i = 0; i <= phba->max_vports && 843 vports[i] != NULL; i++) 844 lpfc_cleanup_discovery_resources(vports[i]); 845 lpfc_destroy_vport_work_array(phba, vports); 846 } 847 return 0; 848 } 849 850 /** 851 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 852 * rspiocb which got deferred 853 * 854 * @phba: pointer to lpfc HBA data structure. 855 * 856 * This routine will cleanup completed slow path events after HBA is reset 857 * when bringing down the SLI Layer. 858 * 859 * 860 * Return codes 861 * void. 862 **/ 863 static void 864 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 865 { 866 struct lpfc_iocbq *rspiocbq; 867 struct hbq_dmabuf *dmabuf; 868 struct lpfc_cq_event *cq_event; 869 870 spin_lock_irq(&phba->hbalock); 871 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 872 spin_unlock_irq(&phba->hbalock); 873 874 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 875 /* Get the response iocb from the head of work queue */ 876 spin_lock_irq(&phba->hbalock); 877 list_remove_head(&phba->sli4_hba.sp_queue_event, 878 cq_event, struct lpfc_cq_event, list); 879 spin_unlock_irq(&phba->hbalock); 880 881 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 882 case CQE_CODE_COMPL_WQE: 883 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 884 cq_event); 885 lpfc_sli_release_iocbq(phba, rspiocbq); 886 break; 887 case CQE_CODE_RECEIVE: 888 case CQE_CODE_RECEIVE_V1: 889 dmabuf = container_of(cq_event, struct hbq_dmabuf, 890 cq_event); 891 lpfc_in_buf_free(phba, &dmabuf->dbuf); 892 } 893 } 894 } 895 896 /** 897 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 898 * @phba: pointer to lpfc HBA data structure. 899 * 900 * This routine will cleanup posted ELS buffers after the HBA is reset 901 * when bringing down the SLI Layer. 902 * 903 * 904 * Return codes 905 * void. 906 **/ 907 static void 908 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 909 { 910 struct lpfc_sli *psli = &phba->sli; 911 struct lpfc_sli_ring *pring; 912 struct lpfc_dmabuf *mp, *next_mp; 913 LIST_HEAD(buflist); 914 int count; 915 916 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 917 lpfc_sli_hbqbuf_free_all(phba); 918 else { 919 /* Cleanup preposted buffers on the ELS ring */ 920 pring = &psli->sli3_ring[LPFC_ELS_RING]; 921 spin_lock_irq(&phba->hbalock); 922 list_splice_init(&pring->postbufq, &buflist); 923 spin_unlock_irq(&phba->hbalock); 924 925 count = 0; 926 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 927 list_del(&mp->list); 928 count++; 929 lpfc_mbuf_free(phba, mp->virt, mp->phys); 930 kfree(mp); 931 } 932 933 spin_lock_irq(&phba->hbalock); 934 pring->postbufq_cnt -= count; 935 spin_unlock_irq(&phba->hbalock); 936 } 937 } 938 939 /** 940 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 941 * @phba: pointer to lpfc HBA data structure. 942 * 943 * This routine will cleanup the txcmplq after the HBA is reset when bringing 944 * down the SLI Layer. 945 * 946 * Return codes 947 * void 948 **/ 949 static void 950 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 951 { 952 struct lpfc_sli *psli = &phba->sli; 953 struct lpfc_queue *qp = NULL; 954 struct lpfc_sli_ring *pring; 955 LIST_HEAD(completions); 956 int i; 957 struct lpfc_iocbq *piocb, *next_iocb; 958 959 if (phba->sli_rev != LPFC_SLI_REV4) { 960 for (i = 0; i < psli->num_rings; i++) { 961 pring = &psli->sli3_ring[i]; 962 spin_lock_irq(&phba->hbalock); 963 /* At this point in time the HBA is either reset or DOA 964 * Nothing should be on txcmplq as it will 965 * NEVER complete. 966 */ 967 list_splice_init(&pring->txcmplq, &completions); 968 pring->txcmplq_cnt = 0; 969 spin_unlock_irq(&phba->hbalock); 970 971 lpfc_sli_abort_iocb_ring(phba, pring); 972 } 973 /* Cancel all the IOCBs from the completions list */ 974 lpfc_sli_cancel_iocbs(phba, &completions, 975 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 976 return; 977 } 978 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 979 pring = qp->pring; 980 if (!pring) 981 continue; 982 spin_lock_irq(&pring->ring_lock); 983 list_for_each_entry_safe(piocb, next_iocb, 984 &pring->txcmplq, list) 985 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 986 list_splice_init(&pring->txcmplq, &completions); 987 pring->txcmplq_cnt = 0; 988 spin_unlock_irq(&pring->ring_lock); 989 lpfc_sli_abort_iocb_ring(phba, pring); 990 } 991 /* Cancel all the IOCBs from the completions list */ 992 lpfc_sli_cancel_iocbs(phba, &completions, 993 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 994 } 995 996 /** 997 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 998 * @phba: pointer to lpfc HBA data structure. 999 * 1000 * This routine will do uninitialization after the HBA is reset when bring 1001 * down the SLI Layer. 1002 * 1003 * Return codes 1004 * 0 - success. 1005 * Any other value - error. 1006 **/ 1007 static int 1008 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1009 { 1010 lpfc_hba_free_post_buf(phba); 1011 lpfc_hba_clean_txcmplq(phba); 1012 return 0; 1013 } 1014 1015 /** 1016 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1017 * @phba: pointer to lpfc HBA data structure. 1018 * 1019 * This routine will do uninitialization after the HBA is reset when bring 1020 * down the SLI Layer. 1021 * 1022 * Return codes 1023 * 0 - success. 1024 * Any other value - error. 1025 **/ 1026 static int 1027 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1028 { 1029 struct lpfc_io_buf *psb, *psb_next; 1030 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1031 struct lpfc_sli4_hdw_queue *qp; 1032 LIST_HEAD(aborts); 1033 LIST_HEAD(nvme_aborts); 1034 LIST_HEAD(nvmet_aborts); 1035 struct lpfc_sglq *sglq_entry = NULL; 1036 int cnt, idx; 1037 1038 1039 lpfc_sli_hbqbuf_free_all(phba); 1040 lpfc_hba_clean_txcmplq(phba); 1041 1042 /* At this point in time the HBA is either reset or DOA. Either 1043 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1044 * on the lpfc_els_sgl_list so that it can either be freed if the 1045 * driver is unloading or reposted if the driver is restarting 1046 * the port. 1047 */ 1048 1049 /* sgl_list_lock required because worker thread uses this 1050 * list. 1051 */ 1052 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 1053 list_for_each_entry(sglq_entry, 1054 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1055 sglq_entry->state = SGL_FREED; 1056 1057 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1058 &phba->sli4_hba.lpfc_els_sgl_list); 1059 1060 1061 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 1062 1063 /* abts_xxxx_buf_list_lock required because worker thread uses this 1064 * list. 1065 */ 1066 spin_lock_irq(&phba->hbalock); 1067 cnt = 0; 1068 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1069 qp = &phba->sli4_hba.hdwq[idx]; 1070 1071 spin_lock(&qp->abts_io_buf_list_lock); 1072 list_splice_init(&qp->lpfc_abts_io_buf_list, 1073 &aborts); 1074 1075 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1076 psb->pCmd = NULL; 1077 psb->status = IOSTAT_SUCCESS; 1078 cnt++; 1079 } 1080 spin_lock(&qp->io_buf_list_put_lock); 1081 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1082 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1083 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1084 qp->abts_scsi_io_bufs = 0; 1085 qp->abts_nvme_io_bufs = 0; 1086 spin_unlock(&qp->io_buf_list_put_lock); 1087 spin_unlock(&qp->abts_io_buf_list_lock); 1088 } 1089 spin_unlock_irq(&phba->hbalock); 1090 1091 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1092 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1093 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1094 &nvmet_aborts); 1095 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1096 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1097 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1098 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1099 } 1100 } 1101 1102 lpfc_sli4_free_sp_events(phba); 1103 return cnt; 1104 } 1105 1106 /** 1107 * lpfc_hba_down_post - Wrapper func for hba down post routine 1108 * @phba: pointer to lpfc HBA data structure. 1109 * 1110 * This routine wraps the actual SLI3 or SLI4 routine for performing 1111 * uninitialization after the HBA is reset when bring down the SLI Layer. 1112 * 1113 * Return codes 1114 * 0 - success. 1115 * Any other value - error. 1116 **/ 1117 int 1118 lpfc_hba_down_post(struct lpfc_hba *phba) 1119 { 1120 return (*phba->lpfc_hba_down_post)(phba); 1121 } 1122 1123 /** 1124 * lpfc_hb_timeout - The HBA-timer timeout handler 1125 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1126 * 1127 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1128 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1129 * work-port-events bitmap and the worker thread is notified. This timeout 1130 * event will be used by the worker thread to invoke the actual timeout 1131 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1132 * be performed in the timeout handler and the HBA timeout event bit shall 1133 * be cleared by the worker thread after it has taken the event bitmap out. 1134 **/ 1135 static void 1136 lpfc_hb_timeout(struct timer_list *t) 1137 { 1138 struct lpfc_hba *phba; 1139 uint32_t tmo_posted; 1140 unsigned long iflag; 1141 1142 phba = from_timer(phba, t, hb_tmofunc); 1143 1144 /* Check for heart beat timeout conditions */ 1145 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1146 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1147 if (!tmo_posted) 1148 phba->pport->work_port_events |= WORKER_HB_TMO; 1149 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1150 1151 /* Tell the worker thread there is work to do */ 1152 if (!tmo_posted) 1153 lpfc_worker_wake_up(phba); 1154 return; 1155 } 1156 1157 /** 1158 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1159 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1160 * 1161 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1162 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1163 * work-port-events bitmap and the worker thread is notified. This timeout 1164 * event will be used by the worker thread to invoke the actual timeout 1165 * handler routine, lpfc_rrq_handler. Any periodical operations will 1166 * be performed in the timeout handler and the RRQ timeout event bit shall 1167 * be cleared by the worker thread after it has taken the event bitmap out. 1168 **/ 1169 static void 1170 lpfc_rrq_timeout(struct timer_list *t) 1171 { 1172 struct lpfc_hba *phba; 1173 unsigned long iflag; 1174 1175 phba = from_timer(phba, t, rrq_tmr); 1176 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1177 if (!(phba->pport->load_flag & FC_UNLOADING)) 1178 phba->hba_flag |= HBA_RRQ_ACTIVE; 1179 else 1180 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1181 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1182 1183 if (!(phba->pport->load_flag & FC_UNLOADING)) 1184 lpfc_worker_wake_up(phba); 1185 } 1186 1187 /** 1188 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1189 * @phba: pointer to lpfc hba data structure. 1190 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1191 * 1192 * This is the callback function to the lpfc heart-beat mailbox command. 1193 * If configured, the lpfc driver issues the heart-beat mailbox command to 1194 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1195 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1196 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1197 * heart-beat outstanding state. Once the mailbox command comes back and 1198 * no error conditions detected, the heart-beat mailbox command timer is 1199 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1200 * state is cleared for the next heart-beat. If the timer expired with the 1201 * heart-beat outstanding state set, the driver will put the HBA offline. 1202 **/ 1203 static void 1204 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1205 { 1206 unsigned long drvr_flag; 1207 1208 spin_lock_irqsave(&phba->hbalock, drvr_flag); 1209 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 1210 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 1211 1212 /* Check and reset heart-beat timer if necessary */ 1213 mempool_free(pmboxq, phba->mbox_mem_pool); 1214 if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) && 1215 !(phba->link_state == LPFC_HBA_ERROR) && 1216 !(phba->pport->load_flag & FC_UNLOADING)) 1217 mod_timer(&phba->hb_tmofunc, 1218 jiffies + 1219 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1220 return; 1221 } 1222 1223 /* 1224 * lpfc_idle_stat_delay_work - idle_stat tracking 1225 * 1226 * This routine tracks per-cq idle_stat and determines polling decisions. 1227 * 1228 * Return codes: 1229 * None 1230 **/ 1231 static void 1232 lpfc_idle_stat_delay_work(struct work_struct *work) 1233 { 1234 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1235 struct lpfc_hba, 1236 idle_stat_delay_work); 1237 struct lpfc_queue *cq; 1238 struct lpfc_sli4_hdw_queue *hdwq; 1239 struct lpfc_idle_stat *idle_stat; 1240 u32 i, idle_percent; 1241 u64 wall, wall_idle, diff_wall, diff_idle, busy_time; 1242 1243 if (phba->pport->load_flag & FC_UNLOADING) 1244 return; 1245 1246 if (phba->link_state == LPFC_HBA_ERROR || 1247 phba->pport->fc_flag & FC_OFFLINE_MODE || 1248 phba->cmf_active_mode != LPFC_CFG_OFF) 1249 goto requeue; 1250 1251 for_each_present_cpu(i) { 1252 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 1253 cq = hdwq->io_cq; 1254 1255 /* Skip if we've already handled this cq's primary CPU */ 1256 if (cq->chann != i) 1257 continue; 1258 1259 idle_stat = &phba->sli4_hba.idle_stat[i]; 1260 1261 /* get_cpu_idle_time returns values as running counters. Thus, 1262 * to know the amount for this period, the prior counter values 1263 * need to be subtracted from the current counter values. 1264 * From there, the idle time stat can be calculated as a 1265 * percentage of 100 - the sum of the other consumption times. 1266 */ 1267 wall_idle = get_cpu_idle_time(i, &wall, 1); 1268 diff_idle = wall_idle - idle_stat->prev_idle; 1269 diff_wall = wall - idle_stat->prev_wall; 1270 1271 if (diff_wall <= diff_idle) 1272 busy_time = 0; 1273 else 1274 busy_time = diff_wall - diff_idle; 1275 1276 idle_percent = div64_u64(100 * busy_time, diff_wall); 1277 idle_percent = 100 - idle_percent; 1278 1279 if (idle_percent < 15) 1280 cq->poll_mode = LPFC_QUEUE_WORK; 1281 else 1282 cq->poll_mode = LPFC_IRQ_POLL; 1283 1284 idle_stat->prev_idle = wall_idle; 1285 idle_stat->prev_wall = wall; 1286 } 1287 1288 requeue: 1289 schedule_delayed_work(&phba->idle_stat_delay_work, 1290 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 1291 } 1292 1293 static void 1294 lpfc_hb_eq_delay_work(struct work_struct *work) 1295 { 1296 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1297 struct lpfc_hba, eq_delay_work); 1298 struct lpfc_eq_intr_info *eqi, *eqi_new; 1299 struct lpfc_queue *eq, *eq_next; 1300 unsigned char *ena_delay = NULL; 1301 uint32_t usdelay; 1302 int i; 1303 1304 if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING) 1305 return; 1306 1307 if (phba->link_state == LPFC_HBA_ERROR || 1308 phba->pport->fc_flag & FC_OFFLINE_MODE) 1309 goto requeue; 1310 1311 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1312 GFP_KERNEL); 1313 if (!ena_delay) 1314 goto requeue; 1315 1316 for (i = 0; i < phba->cfg_irq_chann; i++) { 1317 /* Get the EQ corresponding to the IRQ vector */ 1318 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1319 if (!eq) 1320 continue; 1321 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1322 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1323 ena_delay[eq->last_cpu] = 1; 1324 } 1325 } 1326 1327 for_each_present_cpu(i) { 1328 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1329 if (ena_delay[i]) { 1330 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1331 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1332 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1333 } else { 1334 usdelay = 0; 1335 } 1336 1337 eqi->icnt = 0; 1338 1339 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1340 if (unlikely(eq->last_cpu != i)) { 1341 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1342 eq->last_cpu); 1343 list_move_tail(&eq->cpu_list, &eqi_new->list); 1344 continue; 1345 } 1346 if (usdelay != eq->q_mode) 1347 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1348 usdelay); 1349 } 1350 } 1351 1352 kfree(ena_delay); 1353 1354 requeue: 1355 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1356 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1357 } 1358 1359 /** 1360 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1361 * @phba: pointer to lpfc hba data structure. 1362 * 1363 * For each heartbeat, this routine does some heuristic methods to adjust 1364 * XRI distribution. The goal is to fully utilize free XRIs. 1365 **/ 1366 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1367 { 1368 u32 i; 1369 u32 hwq_count; 1370 1371 hwq_count = phba->cfg_hdw_queue; 1372 for (i = 0; i < hwq_count; i++) { 1373 /* Adjust XRIs in private pool */ 1374 lpfc_adjust_pvt_pool_count(phba, i); 1375 1376 /* Adjust high watermark */ 1377 lpfc_adjust_high_watermark(phba, i); 1378 1379 #ifdef LPFC_MXP_STAT 1380 /* Snapshot pbl, pvt and busy count */ 1381 lpfc_snapshot_mxp(phba, i); 1382 #endif 1383 } 1384 } 1385 1386 /** 1387 * lpfc_issue_hb_mbox - Issues heart-beat mailbox command 1388 * @phba: pointer to lpfc hba data structure. 1389 * 1390 * If a HB mbox is not already in progrees, this routine will allocate 1391 * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command, 1392 * and issue it. The HBA_HBEAT_INP flag means the command is in progress. 1393 **/ 1394 int 1395 lpfc_issue_hb_mbox(struct lpfc_hba *phba) 1396 { 1397 LPFC_MBOXQ_t *pmboxq; 1398 int retval; 1399 1400 /* Is a Heartbeat mbox already in progress */ 1401 if (phba->hba_flag & HBA_HBEAT_INP) 1402 return 0; 1403 1404 pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1405 if (!pmboxq) 1406 return -ENOMEM; 1407 1408 lpfc_heart_beat(phba, pmboxq); 1409 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1410 pmboxq->vport = phba->pport; 1411 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 1412 1413 if (retval != MBX_BUSY && retval != MBX_SUCCESS) { 1414 mempool_free(pmboxq, phba->mbox_mem_pool); 1415 return -ENXIO; 1416 } 1417 phba->hba_flag |= HBA_HBEAT_INP; 1418 1419 return 0; 1420 } 1421 1422 /** 1423 * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command 1424 * @phba: pointer to lpfc hba data structure. 1425 * 1426 * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO 1427 * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless 1428 * of the value of lpfc_enable_hba_heartbeat. 1429 * If lpfc_enable_hba_heartbeat is set, the timeout routine will always 1430 * try to issue a MBX_HEARTBEAT mbox command. 1431 **/ 1432 void 1433 lpfc_issue_hb_tmo(struct lpfc_hba *phba) 1434 { 1435 if (phba->cfg_enable_hba_heartbeat) 1436 return; 1437 phba->hba_flag |= HBA_HBEAT_TMO; 1438 } 1439 1440 /** 1441 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1442 * @phba: pointer to lpfc hba data structure. 1443 * 1444 * This is the actual HBA-timer timeout handler to be invoked by the worker 1445 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1446 * handler performs any periodic operations needed for the device. If such 1447 * periodic event has already been attended to either in the interrupt handler 1448 * or by processing slow-ring or fast-ring events within the HBA-timer 1449 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1450 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1451 * is configured and there is no heart-beat mailbox command outstanding, a 1452 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1453 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1454 * to offline. 1455 **/ 1456 void 1457 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1458 { 1459 struct lpfc_vport **vports; 1460 struct lpfc_dmabuf *buf_ptr; 1461 int retval = 0; 1462 int i, tmo; 1463 struct lpfc_sli *psli = &phba->sli; 1464 LIST_HEAD(completions); 1465 1466 if (phba->cfg_xri_rebalancing) { 1467 /* Multi-XRI pools handler */ 1468 lpfc_hb_mxp_handler(phba); 1469 } 1470 1471 vports = lpfc_create_vport_work_array(phba); 1472 if (vports != NULL) 1473 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1474 lpfc_rcv_seq_check_edtov(vports[i]); 1475 lpfc_fdmi_change_check(vports[i]); 1476 } 1477 lpfc_destroy_vport_work_array(phba, vports); 1478 1479 if ((phba->link_state == LPFC_HBA_ERROR) || 1480 (phba->pport->load_flag & FC_UNLOADING) || 1481 (phba->pport->fc_flag & FC_OFFLINE_MODE)) 1482 return; 1483 1484 if (phba->elsbuf_cnt && 1485 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1486 spin_lock_irq(&phba->hbalock); 1487 list_splice_init(&phba->elsbuf, &completions); 1488 phba->elsbuf_cnt = 0; 1489 phba->elsbuf_prev_cnt = 0; 1490 spin_unlock_irq(&phba->hbalock); 1491 1492 while (!list_empty(&completions)) { 1493 list_remove_head(&completions, buf_ptr, 1494 struct lpfc_dmabuf, list); 1495 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1496 kfree(buf_ptr); 1497 } 1498 } 1499 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1500 1501 /* If there is no heart beat outstanding, issue a heartbeat command */ 1502 if (phba->cfg_enable_hba_heartbeat) { 1503 /* If IOs are completing, no need to issue a MBX_HEARTBEAT */ 1504 spin_lock_irq(&phba->pport->work_port_lock); 1505 if (time_after(phba->last_completion_time + 1506 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL), 1507 jiffies)) { 1508 spin_unlock_irq(&phba->pport->work_port_lock); 1509 if (phba->hba_flag & HBA_HBEAT_INP) 1510 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1511 else 1512 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1513 goto out; 1514 } 1515 spin_unlock_irq(&phba->pport->work_port_lock); 1516 1517 /* Check if a MBX_HEARTBEAT is already in progress */ 1518 if (phba->hba_flag & HBA_HBEAT_INP) { 1519 /* 1520 * If heart beat timeout called with HBA_HBEAT_INP set 1521 * we need to give the hb mailbox cmd a chance to 1522 * complete or TMO. 1523 */ 1524 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1525 "0459 Adapter heartbeat still outstanding: " 1526 "last compl time was %d ms.\n", 1527 jiffies_to_msecs(jiffies 1528 - phba->last_completion_time)); 1529 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1530 } else { 1531 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1532 (list_empty(&psli->mboxq))) { 1533 1534 retval = lpfc_issue_hb_mbox(phba); 1535 if (retval) { 1536 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1537 goto out; 1538 } 1539 phba->skipped_hb = 0; 1540 } else if (time_before_eq(phba->last_completion_time, 1541 phba->skipped_hb)) { 1542 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1543 "2857 Last completion time not " 1544 " updated in %d ms\n", 1545 jiffies_to_msecs(jiffies 1546 - phba->last_completion_time)); 1547 } else 1548 phba->skipped_hb = jiffies; 1549 1550 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1551 goto out; 1552 } 1553 } else { 1554 /* Check to see if we want to force a MBX_HEARTBEAT */ 1555 if (phba->hba_flag & HBA_HBEAT_TMO) { 1556 retval = lpfc_issue_hb_mbox(phba); 1557 if (retval) 1558 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1559 else 1560 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1561 goto out; 1562 } 1563 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1564 } 1565 out: 1566 mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo)); 1567 } 1568 1569 /** 1570 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1571 * @phba: pointer to lpfc hba data structure. 1572 * 1573 * This routine is called to bring the HBA offline when HBA hardware error 1574 * other than Port Error 6 has been detected. 1575 **/ 1576 static void 1577 lpfc_offline_eratt(struct lpfc_hba *phba) 1578 { 1579 struct lpfc_sli *psli = &phba->sli; 1580 1581 spin_lock_irq(&phba->hbalock); 1582 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1583 spin_unlock_irq(&phba->hbalock); 1584 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1585 1586 lpfc_offline(phba); 1587 lpfc_reset_barrier(phba); 1588 spin_lock_irq(&phba->hbalock); 1589 lpfc_sli_brdreset(phba); 1590 spin_unlock_irq(&phba->hbalock); 1591 lpfc_hba_down_post(phba); 1592 lpfc_sli_brdready(phba, HS_MBRDY); 1593 lpfc_unblock_mgmt_io(phba); 1594 phba->link_state = LPFC_HBA_ERROR; 1595 return; 1596 } 1597 1598 /** 1599 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1600 * @phba: pointer to lpfc hba data structure. 1601 * 1602 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1603 * other than Port Error 6 has been detected. 1604 **/ 1605 void 1606 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1607 { 1608 spin_lock_irq(&phba->hbalock); 1609 phba->link_state = LPFC_HBA_ERROR; 1610 spin_unlock_irq(&phba->hbalock); 1611 1612 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1613 lpfc_sli_flush_io_rings(phba); 1614 lpfc_offline(phba); 1615 lpfc_hba_down_post(phba); 1616 lpfc_unblock_mgmt_io(phba); 1617 } 1618 1619 /** 1620 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1621 * @phba: pointer to lpfc hba data structure. 1622 * 1623 * This routine is invoked to handle the deferred HBA hardware error 1624 * conditions. This type of error is indicated by HBA by setting ER1 1625 * and another ER bit in the host status register. The driver will 1626 * wait until the ER1 bit clears before handling the error condition. 1627 **/ 1628 static void 1629 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1630 { 1631 uint32_t old_host_status = phba->work_hs; 1632 struct lpfc_sli *psli = &phba->sli; 1633 1634 /* If the pci channel is offline, ignore possible errors, 1635 * since we cannot communicate with the pci card anyway. 1636 */ 1637 if (pci_channel_offline(phba->pcidev)) { 1638 spin_lock_irq(&phba->hbalock); 1639 phba->hba_flag &= ~DEFER_ERATT; 1640 spin_unlock_irq(&phba->hbalock); 1641 return; 1642 } 1643 1644 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1645 "0479 Deferred Adapter Hardware Error " 1646 "Data: x%x x%x x%x\n", 1647 phba->work_hs, phba->work_status[0], 1648 phba->work_status[1]); 1649 1650 spin_lock_irq(&phba->hbalock); 1651 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1652 spin_unlock_irq(&phba->hbalock); 1653 1654 1655 /* 1656 * Firmware stops when it triggred erratt. That could cause the I/Os 1657 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1658 * SCSI layer retry it after re-establishing link. 1659 */ 1660 lpfc_sli_abort_fcp_rings(phba); 1661 1662 /* 1663 * There was a firmware error. Take the hba offline and then 1664 * attempt to restart it. 1665 */ 1666 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1667 lpfc_offline(phba); 1668 1669 /* Wait for the ER1 bit to clear.*/ 1670 while (phba->work_hs & HS_FFER1) { 1671 msleep(100); 1672 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1673 phba->work_hs = UNPLUG_ERR ; 1674 break; 1675 } 1676 /* If driver is unloading let the worker thread continue */ 1677 if (phba->pport->load_flag & FC_UNLOADING) { 1678 phba->work_hs = 0; 1679 break; 1680 } 1681 } 1682 1683 /* 1684 * This is to ptrotect against a race condition in which 1685 * first write to the host attention register clear the 1686 * host status register. 1687 */ 1688 if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING))) 1689 phba->work_hs = old_host_status & ~HS_FFER1; 1690 1691 spin_lock_irq(&phba->hbalock); 1692 phba->hba_flag &= ~DEFER_ERATT; 1693 spin_unlock_irq(&phba->hbalock); 1694 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1695 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1696 } 1697 1698 static void 1699 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1700 { 1701 struct lpfc_board_event_header board_event; 1702 struct Scsi_Host *shost; 1703 1704 board_event.event_type = FC_REG_BOARD_EVENT; 1705 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1706 shost = lpfc_shost_from_vport(phba->pport); 1707 fc_host_post_vendor_event(shost, fc_get_event_number(), 1708 sizeof(board_event), 1709 (char *) &board_event, 1710 LPFC_NL_VENDOR_ID); 1711 } 1712 1713 /** 1714 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1715 * @phba: pointer to lpfc hba data structure. 1716 * 1717 * This routine is invoked to handle the following HBA hardware error 1718 * conditions: 1719 * 1 - HBA error attention interrupt 1720 * 2 - DMA ring index out of range 1721 * 3 - Mailbox command came back as unknown 1722 **/ 1723 static void 1724 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1725 { 1726 struct lpfc_vport *vport = phba->pport; 1727 struct lpfc_sli *psli = &phba->sli; 1728 uint32_t event_data; 1729 unsigned long temperature; 1730 struct temp_event temp_event_data; 1731 struct Scsi_Host *shost; 1732 1733 /* If the pci channel is offline, ignore possible errors, 1734 * since we cannot communicate with the pci card anyway. 1735 */ 1736 if (pci_channel_offline(phba->pcidev)) { 1737 spin_lock_irq(&phba->hbalock); 1738 phba->hba_flag &= ~DEFER_ERATT; 1739 spin_unlock_irq(&phba->hbalock); 1740 return; 1741 } 1742 1743 /* If resets are disabled then leave the HBA alone and return */ 1744 if (!phba->cfg_enable_hba_reset) 1745 return; 1746 1747 /* Send an internal error event to mgmt application */ 1748 lpfc_board_errevt_to_mgmt(phba); 1749 1750 if (phba->hba_flag & DEFER_ERATT) 1751 lpfc_handle_deferred_eratt(phba); 1752 1753 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1754 if (phba->work_hs & HS_FFER6) 1755 /* Re-establishing Link */ 1756 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1757 "1301 Re-establishing Link " 1758 "Data: x%x x%x x%x\n", 1759 phba->work_hs, phba->work_status[0], 1760 phba->work_status[1]); 1761 if (phba->work_hs & HS_FFER8) 1762 /* Device Zeroization */ 1763 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1764 "2861 Host Authentication device " 1765 "zeroization Data:x%x x%x x%x\n", 1766 phba->work_hs, phba->work_status[0], 1767 phba->work_status[1]); 1768 1769 spin_lock_irq(&phba->hbalock); 1770 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1771 spin_unlock_irq(&phba->hbalock); 1772 1773 /* 1774 * Firmware stops when it triggled erratt with HS_FFER6. 1775 * That could cause the I/Os dropped by the firmware. 1776 * Error iocb (I/O) on txcmplq and let the SCSI layer 1777 * retry it after re-establishing link. 1778 */ 1779 lpfc_sli_abort_fcp_rings(phba); 1780 1781 /* 1782 * There was a firmware error. Take the hba offline and then 1783 * attempt to restart it. 1784 */ 1785 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1786 lpfc_offline(phba); 1787 lpfc_sli_brdrestart(phba); 1788 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1789 lpfc_unblock_mgmt_io(phba); 1790 return; 1791 } 1792 lpfc_unblock_mgmt_io(phba); 1793 } else if (phba->work_hs & HS_CRIT_TEMP) { 1794 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1795 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1796 temp_event_data.event_code = LPFC_CRIT_TEMP; 1797 temp_event_data.data = (uint32_t)temperature; 1798 1799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1800 "0406 Adapter maximum temperature exceeded " 1801 "(%ld), taking this port offline " 1802 "Data: x%x x%x x%x\n", 1803 temperature, phba->work_hs, 1804 phba->work_status[0], phba->work_status[1]); 1805 1806 shost = lpfc_shost_from_vport(phba->pport); 1807 fc_host_post_vendor_event(shost, fc_get_event_number(), 1808 sizeof(temp_event_data), 1809 (char *) &temp_event_data, 1810 SCSI_NL_VID_TYPE_PCI 1811 | PCI_VENDOR_ID_EMULEX); 1812 1813 spin_lock_irq(&phba->hbalock); 1814 phba->over_temp_state = HBA_OVER_TEMP; 1815 spin_unlock_irq(&phba->hbalock); 1816 lpfc_offline_eratt(phba); 1817 1818 } else { 1819 /* The if clause above forces this code path when the status 1820 * failure is a value other than FFER6. Do not call the offline 1821 * twice. This is the adapter hardware error path. 1822 */ 1823 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1824 "0457 Adapter Hardware Error " 1825 "Data: x%x x%x x%x\n", 1826 phba->work_hs, 1827 phba->work_status[0], phba->work_status[1]); 1828 1829 event_data = FC_REG_DUMP_EVENT; 1830 shost = lpfc_shost_from_vport(vport); 1831 fc_host_post_vendor_event(shost, fc_get_event_number(), 1832 sizeof(event_data), (char *) &event_data, 1833 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1834 1835 lpfc_offline_eratt(phba); 1836 } 1837 return; 1838 } 1839 1840 /** 1841 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1842 * @phba: pointer to lpfc hba data structure. 1843 * @mbx_action: flag for mailbox shutdown action. 1844 * @en_rn_msg: send reset/port recovery message. 1845 * This routine is invoked to perform an SLI4 port PCI function reset in 1846 * response to port status register polling attention. It waits for port 1847 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1848 * During this process, interrupt vectors are freed and later requested 1849 * for handling possible port resource change. 1850 **/ 1851 static int 1852 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1853 bool en_rn_msg) 1854 { 1855 int rc; 1856 uint32_t intr_mode; 1857 LPFC_MBOXQ_t *mboxq; 1858 1859 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1860 LPFC_SLI_INTF_IF_TYPE_2) { 1861 /* 1862 * On error status condition, driver need to wait for port 1863 * ready before performing reset. 1864 */ 1865 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1866 if (rc) 1867 return rc; 1868 } 1869 1870 /* need reset: attempt for port recovery */ 1871 if (en_rn_msg) 1872 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1873 "2887 Reset Needed: Attempting Port " 1874 "Recovery...\n"); 1875 1876 /* If we are no wait, the HBA has been reset and is not 1877 * functional, thus we should clear 1878 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags. 1879 */ 1880 if (mbx_action == LPFC_MBX_NO_WAIT) { 1881 spin_lock_irq(&phba->hbalock); 1882 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 1883 if (phba->sli.mbox_active) { 1884 mboxq = phba->sli.mbox_active; 1885 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 1886 __lpfc_mbox_cmpl_put(phba, mboxq); 1887 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 1888 phba->sli.mbox_active = NULL; 1889 } 1890 spin_unlock_irq(&phba->hbalock); 1891 } 1892 1893 lpfc_offline_prep(phba, mbx_action); 1894 lpfc_sli_flush_io_rings(phba); 1895 lpfc_offline(phba); 1896 /* release interrupt for possible resource change */ 1897 lpfc_sli4_disable_intr(phba); 1898 rc = lpfc_sli_brdrestart(phba); 1899 if (rc) { 1900 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1901 "6309 Failed to restart board\n"); 1902 return rc; 1903 } 1904 /* request and enable interrupt */ 1905 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1906 if (intr_mode == LPFC_INTR_ERROR) { 1907 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1908 "3175 Failed to enable interrupt\n"); 1909 return -EIO; 1910 } 1911 phba->intr_mode = intr_mode; 1912 rc = lpfc_online(phba); 1913 if (rc == 0) 1914 lpfc_unblock_mgmt_io(phba); 1915 1916 return rc; 1917 } 1918 1919 /** 1920 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1921 * @phba: pointer to lpfc hba data structure. 1922 * 1923 * This routine is invoked to handle the SLI4 HBA hardware error attention 1924 * conditions. 1925 **/ 1926 static void 1927 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1928 { 1929 struct lpfc_vport *vport = phba->pport; 1930 uint32_t event_data; 1931 struct Scsi_Host *shost; 1932 uint32_t if_type; 1933 struct lpfc_register portstat_reg = {0}; 1934 uint32_t reg_err1, reg_err2; 1935 uint32_t uerrlo_reg, uemasklo_reg; 1936 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1937 bool en_rn_msg = true; 1938 struct temp_event temp_event_data; 1939 struct lpfc_register portsmphr_reg; 1940 int rc, i; 1941 1942 /* If the pci channel is offline, ignore possible errors, since 1943 * we cannot communicate with the pci card anyway. 1944 */ 1945 if (pci_channel_offline(phba->pcidev)) { 1946 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1947 "3166 pci channel is offline\n"); 1948 lpfc_sli4_offline_eratt(phba); 1949 return; 1950 } 1951 1952 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 1953 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 1954 switch (if_type) { 1955 case LPFC_SLI_INTF_IF_TYPE_0: 1956 pci_rd_rc1 = lpfc_readl( 1957 phba->sli4_hba.u.if_type0.UERRLOregaddr, 1958 &uerrlo_reg); 1959 pci_rd_rc2 = lpfc_readl( 1960 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 1961 &uemasklo_reg); 1962 /* consider PCI bus read error as pci_channel_offline */ 1963 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 1964 return; 1965 if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) { 1966 lpfc_sli4_offline_eratt(phba); 1967 return; 1968 } 1969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1970 "7623 Checking UE recoverable"); 1971 1972 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 1973 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 1974 &portsmphr_reg.word0)) 1975 continue; 1976 1977 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 1978 &portsmphr_reg); 1979 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 1980 LPFC_PORT_SEM_UE_RECOVERABLE) 1981 break; 1982 /*Sleep for 1Sec, before checking SEMAPHORE */ 1983 msleep(1000); 1984 } 1985 1986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1987 "4827 smphr_port_status x%x : Waited %dSec", 1988 smphr_port_status, i); 1989 1990 /* Recoverable UE, reset the HBA device */ 1991 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 1992 LPFC_PORT_SEM_UE_RECOVERABLE) { 1993 for (i = 0; i < 20; i++) { 1994 msleep(1000); 1995 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 1996 &portsmphr_reg.word0) && 1997 (LPFC_POST_STAGE_PORT_READY == 1998 bf_get(lpfc_port_smphr_port_status, 1999 &portsmphr_reg))) { 2000 rc = lpfc_sli4_port_sta_fn_reset(phba, 2001 LPFC_MBX_NO_WAIT, en_rn_msg); 2002 if (rc == 0) 2003 return; 2004 lpfc_printf_log(phba, KERN_ERR, 2005 LOG_TRACE_EVENT, 2006 "4215 Failed to recover UE"); 2007 break; 2008 } 2009 } 2010 } 2011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2012 "7624 Firmware not ready: Failing UE recovery," 2013 " waited %dSec", i); 2014 phba->link_state = LPFC_HBA_ERROR; 2015 break; 2016 2017 case LPFC_SLI_INTF_IF_TYPE_2: 2018 case LPFC_SLI_INTF_IF_TYPE_6: 2019 pci_rd_rc1 = lpfc_readl( 2020 phba->sli4_hba.u.if_type2.STATUSregaddr, 2021 &portstat_reg.word0); 2022 /* consider PCI bus read error as pci_channel_offline */ 2023 if (pci_rd_rc1 == -EIO) { 2024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2025 "3151 PCI bus read access failure: x%x\n", 2026 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 2027 lpfc_sli4_offline_eratt(phba); 2028 return; 2029 } 2030 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 2031 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 2032 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 2033 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2034 "2889 Port Overtemperature event, " 2035 "taking port offline Data: x%x x%x\n", 2036 reg_err1, reg_err2); 2037 2038 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 2039 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 2040 temp_event_data.event_code = LPFC_CRIT_TEMP; 2041 temp_event_data.data = 0xFFFFFFFF; 2042 2043 shost = lpfc_shost_from_vport(phba->pport); 2044 fc_host_post_vendor_event(shost, fc_get_event_number(), 2045 sizeof(temp_event_data), 2046 (char *)&temp_event_data, 2047 SCSI_NL_VID_TYPE_PCI 2048 | PCI_VENDOR_ID_EMULEX); 2049 2050 spin_lock_irq(&phba->hbalock); 2051 phba->over_temp_state = HBA_OVER_TEMP; 2052 spin_unlock_irq(&phba->hbalock); 2053 lpfc_sli4_offline_eratt(phba); 2054 return; 2055 } 2056 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2057 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 2058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2059 "3143 Port Down: Firmware Update " 2060 "Detected\n"); 2061 en_rn_msg = false; 2062 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2063 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2064 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2065 "3144 Port Down: Debug Dump\n"); 2066 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2067 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 2068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2069 "3145 Port Down: Provisioning\n"); 2070 2071 /* If resets are disabled then leave the HBA alone and return */ 2072 if (!phba->cfg_enable_hba_reset) 2073 return; 2074 2075 /* Check port status register for function reset */ 2076 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 2077 en_rn_msg); 2078 if (rc == 0) { 2079 /* don't report event on forced debug dump */ 2080 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2081 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2082 return; 2083 else 2084 break; 2085 } 2086 /* fall through for not able to recover */ 2087 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2088 "3152 Unrecoverable error\n"); 2089 phba->link_state = LPFC_HBA_ERROR; 2090 break; 2091 case LPFC_SLI_INTF_IF_TYPE_1: 2092 default: 2093 break; 2094 } 2095 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 2096 "3123 Report dump event to upper layer\n"); 2097 /* Send an internal error event to mgmt application */ 2098 lpfc_board_errevt_to_mgmt(phba); 2099 2100 event_data = FC_REG_DUMP_EVENT; 2101 shost = lpfc_shost_from_vport(vport); 2102 fc_host_post_vendor_event(shost, fc_get_event_number(), 2103 sizeof(event_data), (char *) &event_data, 2104 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 2105 } 2106 2107 /** 2108 * lpfc_handle_eratt - Wrapper func for handling hba error attention 2109 * @phba: pointer to lpfc HBA data structure. 2110 * 2111 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 2112 * routine from the API jump table function pointer from the lpfc_hba struct. 2113 * 2114 * Return codes 2115 * 0 - success. 2116 * Any other value - error. 2117 **/ 2118 void 2119 lpfc_handle_eratt(struct lpfc_hba *phba) 2120 { 2121 (*phba->lpfc_handle_eratt)(phba); 2122 } 2123 2124 /** 2125 * lpfc_handle_latt - The HBA link event handler 2126 * @phba: pointer to lpfc hba data structure. 2127 * 2128 * This routine is invoked from the worker thread to handle a HBA host 2129 * attention link event. SLI3 only. 2130 **/ 2131 void 2132 lpfc_handle_latt(struct lpfc_hba *phba) 2133 { 2134 struct lpfc_vport *vport = phba->pport; 2135 struct lpfc_sli *psli = &phba->sli; 2136 LPFC_MBOXQ_t *pmb; 2137 volatile uint32_t control; 2138 struct lpfc_dmabuf *mp; 2139 int rc = 0; 2140 2141 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2142 if (!pmb) { 2143 rc = 1; 2144 goto lpfc_handle_latt_err_exit; 2145 } 2146 2147 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 2148 if (!mp) { 2149 rc = 2; 2150 goto lpfc_handle_latt_free_pmb; 2151 } 2152 2153 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 2154 if (!mp->virt) { 2155 rc = 3; 2156 goto lpfc_handle_latt_free_mp; 2157 } 2158 2159 /* Cleanup any outstanding ELS commands */ 2160 lpfc_els_flush_all_cmd(phba); 2161 2162 psli->slistat.link_event++; 2163 lpfc_read_topology(phba, pmb, mp); 2164 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2165 pmb->vport = vport; 2166 /* Block ELS IOCBs until we have processed this mbox command */ 2167 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2168 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2169 if (rc == MBX_NOT_FINISHED) { 2170 rc = 4; 2171 goto lpfc_handle_latt_free_mbuf; 2172 } 2173 2174 /* Clear Link Attention in HA REG */ 2175 spin_lock_irq(&phba->hbalock); 2176 writel(HA_LATT, phba->HAregaddr); 2177 readl(phba->HAregaddr); /* flush */ 2178 spin_unlock_irq(&phba->hbalock); 2179 2180 return; 2181 2182 lpfc_handle_latt_free_mbuf: 2183 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2184 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2185 lpfc_handle_latt_free_mp: 2186 kfree(mp); 2187 lpfc_handle_latt_free_pmb: 2188 mempool_free(pmb, phba->mbox_mem_pool); 2189 lpfc_handle_latt_err_exit: 2190 /* Enable Link attention interrupts */ 2191 spin_lock_irq(&phba->hbalock); 2192 psli->sli_flag |= LPFC_PROCESS_LA; 2193 control = readl(phba->HCregaddr); 2194 control |= HC_LAINT_ENA; 2195 writel(control, phba->HCregaddr); 2196 readl(phba->HCregaddr); /* flush */ 2197 2198 /* Clear Link Attention in HA REG */ 2199 writel(HA_LATT, phba->HAregaddr); 2200 readl(phba->HAregaddr); /* flush */ 2201 spin_unlock_irq(&phba->hbalock); 2202 lpfc_linkdown(phba); 2203 phba->link_state = LPFC_HBA_ERROR; 2204 2205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2206 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2207 2208 return; 2209 } 2210 2211 /** 2212 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2213 * @phba: pointer to lpfc hba data structure. 2214 * @vpd: pointer to the vital product data. 2215 * @len: length of the vital product data in bytes. 2216 * 2217 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2218 * an array of characters. In this routine, the ModelName, ProgramType, and 2219 * ModelDesc, etc. fields of the phba data structure will be populated. 2220 * 2221 * Return codes 2222 * 0 - pointer to the VPD passed in is NULL 2223 * 1 - success 2224 **/ 2225 int 2226 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2227 { 2228 uint8_t lenlo, lenhi; 2229 int Length; 2230 int i, j; 2231 int finished = 0; 2232 int index = 0; 2233 2234 if (!vpd) 2235 return 0; 2236 2237 /* Vital Product */ 2238 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2239 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2240 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2241 (uint32_t) vpd[3]); 2242 while (!finished && (index < (len - 4))) { 2243 switch (vpd[index]) { 2244 case 0x82: 2245 case 0x91: 2246 index += 1; 2247 lenlo = vpd[index]; 2248 index += 1; 2249 lenhi = vpd[index]; 2250 index += 1; 2251 i = ((((unsigned short)lenhi) << 8) + lenlo); 2252 index += i; 2253 break; 2254 case 0x90: 2255 index += 1; 2256 lenlo = vpd[index]; 2257 index += 1; 2258 lenhi = vpd[index]; 2259 index += 1; 2260 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2261 if (Length > len - index) 2262 Length = len - index; 2263 while (Length > 0) { 2264 /* Look for Serial Number */ 2265 if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) { 2266 index += 2; 2267 i = vpd[index]; 2268 index += 1; 2269 j = 0; 2270 Length -= (3+i); 2271 while(i--) { 2272 phba->SerialNumber[j++] = vpd[index++]; 2273 if (j == 31) 2274 break; 2275 } 2276 phba->SerialNumber[j] = 0; 2277 continue; 2278 } 2279 else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) { 2280 phba->vpd_flag |= VPD_MODEL_DESC; 2281 index += 2; 2282 i = vpd[index]; 2283 index += 1; 2284 j = 0; 2285 Length -= (3+i); 2286 while(i--) { 2287 phba->ModelDesc[j++] = vpd[index++]; 2288 if (j == 255) 2289 break; 2290 } 2291 phba->ModelDesc[j] = 0; 2292 continue; 2293 } 2294 else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) { 2295 phba->vpd_flag |= VPD_MODEL_NAME; 2296 index += 2; 2297 i = vpd[index]; 2298 index += 1; 2299 j = 0; 2300 Length -= (3+i); 2301 while(i--) { 2302 phba->ModelName[j++] = vpd[index++]; 2303 if (j == 79) 2304 break; 2305 } 2306 phba->ModelName[j] = 0; 2307 continue; 2308 } 2309 else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) { 2310 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2311 index += 2; 2312 i = vpd[index]; 2313 index += 1; 2314 j = 0; 2315 Length -= (3+i); 2316 while(i--) { 2317 phba->ProgramType[j++] = vpd[index++]; 2318 if (j == 255) 2319 break; 2320 } 2321 phba->ProgramType[j] = 0; 2322 continue; 2323 } 2324 else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) { 2325 phba->vpd_flag |= VPD_PORT; 2326 index += 2; 2327 i = vpd[index]; 2328 index += 1; 2329 j = 0; 2330 Length -= (3+i); 2331 while(i--) { 2332 if ((phba->sli_rev == LPFC_SLI_REV4) && 2333 (phba->sli4_hba.pport_name_sta == 2334 LPFC_SLI4_PPNAME_GET)) { 2335 j++; 2336 index++; 2337 } else 2338 phba->Port[j++] = vpd[index++]; 2339 if (j == 19) 2340 break; 2341 } 2342 if ((phba->sli_rev != LPFC_SLI_REV4) || 2343 (phba->sli4_hba.pport_name_sta == 2344 LPFC_SLI4_PPNAME_NON)) 2345 phba->Port[j] = 0; 2346 continue; 2347 } 2348 else { 2349 index += 2; 2350 i = vpd[index]; 2351 index += 1; 2352 index += i; 2353 Length -= (3 + i); 2354 } 2355 } 2356 finished = 0; 2357 break; 2358 case 0x78: 2359 finished = 1; 2360 break; 2361 default: 2362 index ++; 2363 break; 2364 } 2365 } 2366 2367 return(1); 2368 } 2369 2370 /** 2371 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2372 * @phba: pointer to lpfc hba data structure. 2373 * @mdp: pointer to the data structure to hold the derived model name. 2374 * @descp: pointer to the data structure to hold the derived description. 2375 * 2376 * This routine retrieves HBA's description based on its registered PCI device 2377 * ID. The @descp passed into this function points to an array of 256 chars. It 2378 * shall be returned with the model name, maximum speed, and the host bus type. 2379 * The @mdp passed into this function points to an array of 80 chars. When the 2380 * function returns, the @mdp will be filled with the model name. 2381 **/ 2382 static void 2383 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2384 { 2385 lpfc_vpd_t *vp; 2386 uint16_t dev_id = phba->pcidev->device; 2387 int max_speed; 2388 int GE = 0; 2389 int oneConnect = 0; /* default is not a oneConnect */ 2390 struct { 2391 char *name; 2392 char *bus; 2393 char *function; 2394 } m = {"<Unknown>", "", ""}; 2395 2396 if (mdp && mdp[0] != '\0' 2397 && descp && descp[0] != '\0') 2398 return; 2399 2400 if (phba->lmt & LMT_64Gb) 2401 max_speed = 64; 2402 else if (phba->lmt & LMT_32Gb) 2403 max_speed = 32; 2404 else if (phba->lmt & LMT_16Gb) 2405 max_speed = 16; 2406 else if (phba->lmt & LMT_10Gb) 2407 max_speed = 10; 2408 else if (phba->lmt & LMT_8Gb) 2409 max_speed = 8; 2410 else if (phba->lmt & LMT_4Gb) 2411 max_speed = 4; 2412 else if (phba->lmt & LMT_2Gb) 2413 max_speed = 2; 2414 else if (phba->lmt & LMT_1Gb) 2415 max_speed = 1; 2416 else 2417 max_speed = 0; 2418 2419 vp = &phba->vpd; 2420 2421 switch (dev_id) { 2422 case PCI_DEVICE_ID_FIREFLY: 2423 m = (typeof(m)){"LP6000", "PCI", 2424 "Obsolete, Unsupported Fibre Channel Adapter"}; 2425 break; 2426 case PCI_DEVICE_ID_SUPERFLY: 2427 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2428 m = (typeof(m)){"LP7000", "PCI", ""}; 2429 else 2430 m = (typeof(m)){"LP7000E", "PCI", ""}; 2431 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2432 break; 2433 case PCI_DEVICE_ID_DRAGONFLY: 2434 m = (typeof(m)){"LP8000", "PCI", 2435 "Obsolete, Unsupported Fibre Channel Adapter"}; 2436 break; 2437 case PCI_DEVICE_ID_CENTAUR: 2438 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2439 m = (typeof(m)){"LP9002", "PCI", ""}; 2440 else 2441 m = (typeof(m)){"LP9000", "PCI", ""}; 2442 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2443 break; 2444 case PCI_DEVICE_ID_RFLY: 2445 m = (typeof(m)){"LP952", "PCI", 2446 "Obsolete, Unsupported Fibre Channel Adapter"}; 2447 break; 2448 case PCI_DEVICE_ID_PEGASUS: 2449 m = (typeof(m)){"LP9802", "PCI-X", 2450 "Obsolete, Unsupported Fibre Channel Adapter"}; 2451 break; 2452 case PCI_DEVICE_ID_THOR: 2453 m = (typeof(m)){"LP10000", "PCI-X", 2454 "Obsolete, Unsupported Fibre Channel Adapter"}; 2455 break; 2456 case PCI_DEVICE_ID_VIPER: 2457 m = (typeof(m)){"LPX1000", "PCI-X", 2458 "Obsolete, Unsupported Fibre Channel Adapter"}; 2459 break; 2460 case PCI_DEVICE_ID_PFLY: 2461 m = (typeof(m)){"LP982", "PCI-X", 2462 "Obsolete, Unsupported Fibre Channel Adapter"}; 2463 break; 2464 case PCI_DEVICE_ID_TFLY: 2465 m = (typeof(m)){"LP1050", "PCI-X", 2466 "Obsolete, Unsupported Fibre Channel Adapter"}; 2467 break; 2468 case PCI_DEVICE_ID_HELIOS: 2469 m = (typeof(m)){"LP11000", "PCI-X2", 2470 "Obsolete, Unsupported Fibre Channel Adapter"}; 2471 break; 2472 case PCI_DEVICE_ID_HELIOS_SCSP: 2473 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2474 "Obsolete, Unsupported Fibre Channel Adapter"}; 2475 break; 2476 case PCI_DEVICE_ID_HELIOS_DCSP: 2477 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2478 "Obsolete, Unsupported Fibre Channel Adapter"}; 2479 break; 2480 case PCI_DEVICE_ID_NEPTUNE: 2481 m = (typeof(m)){"LPe1000", "PCIe", 2482 "Obsolete, Unsupported Fibre Channel Adapter"}; 2483 break; 2484 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2485 m = (typeof(m)){"LPe1000-SP", "PCIe", 2486 "Obsolete, Unsupported Fibre Channel Adapter"}; 2487 break; 2488 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2489 m = (typeof(m)){"LPe1002-SP", "PCIe", 2490 "Obsolete, Unsupported Fibre Channel Adapter"}; 2491 break; 2492 case PCI_DEVICE_ID_BMID: 2493 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; 2494 break; 2495 case PCI_DEVICE_ID_BSMB: 2496 m = (typeof(m)){"LP111", "PCI-X2", 2497 "Obsolete, Unsupported Fibre Channel Adapter"}; 2498 break; 2499 case PCI_DEVICE_ID_ZEPHYR: 2500 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2501 break; 2502 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2503 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2504 break; 2505 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2506 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; 2507 GE = 1; 2508 break; 2509 case PCI_DEVICE_ID_ZMID: 2510 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; 2511 break; 2512 case PCI_DEVICE_ID_ZSMB: 2513 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; 2514 break; 2515 case PCI_DEVICE_ID_LP101: 2516 m = (typeof(m)){"LP101", "PCI-X", 2517 "Obsolete, Unsupported Fibre Channel Adapter"}; 2518 break; 2519 case PCI_DEVICE_ID_LP10000S: 2520 m = (typeof(m)){"LP10000-S", "PCI", 2521 "Obsolete, Unsupported Fibre Channel Adapter"}; 2522 break; 2523 case PCI_DEVICE_ID_LP11000S: 2524 m = (typeof(m)){"LP11000-S", "PCI-X2", 2525 "Obsolete, Unsupported Fibre Channel Adapter"}; 2526 break; 2527 case PCI_DEVICE_ID_LPE11000S: 2528 m = (typeof(m)){"LPe11000-S", "PCIe", 2529 "Obsolete, Unsupported Fibre Channel Adapter"}; 2530 break; 2531 case PCI_DEVICE_ID_SAT: 2532 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; 2533 break; 2534 case PCI_DEVICE_ID_SAT_MID: 2535 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; 2536 break; 2537 case PCI_DEVICE_ID_SAT_SMB: 2538 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; 2539 break; 2540 case PCI_DEVICE_ID_SAT_DCSP: 2541 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; 2542 break; 2543 case PCI_DEVICE_ID_SAT_SCSP: 2544 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; 2545 break; 2546 case PCI_DEVICE_ID_SAT_S: 2547 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; 2548 break; 2549 case PCI_DEVICE_ID_HORNET: 2550 m = (typeof(m)){"LP21000", "PCIe", 2551 "Obsolete, Unsupported FCoE Adapter"}; 2552 GE = 1; 2553 break; 2554 case PCI_DEVICE_ID_PROTEUS_VF: 2555 m = (typeof(m)){"LPev12000", "PCIe IOV", 2556 "Obsolete, Unsupported Fibre Channel Adapter"}; 2557 break; 2558 case PCI_DEVICE_ID_PROTEUS_PF: 2559 m = (typeof(m)){"LPev12000", "PCIe IOV", 2560 "Obsolete, Unsupported Fibre Channel Adapter"}; 2561 break; 2562 case PCI_DEVICE_ID_PROTEUS_S: 2563 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2564 "Obsolete, Unsupported Fibre Channel Adapter"}; 2565 break; 2566 case PCI_DEVICE_ID_TIGERSHARK: 2567 oneConnect = 1; 2568 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; 2569 break; 2570 case PCI_DEVICE_ID_TOMCAT: 2571 oneConnect = 1; 2572 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; 2573 break; 2574 case PCI_DEVICE_ID_FALCON: 2575 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2576 "EmulexSecure Fibre"}; 2577 break; 2578 case PCI_DEVICE_ID_BALIUS: 2579 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2580 "Obsolete, Unsupported Fibre Channel Adapter"}; 2581 break; 2582 case PCI_DEVICE_ID_LANCER_FC: 2583 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; 2584 break; 2585 case PCI_DEVICE_ID_LANCER_FC_VF: 2586 m = (typeof(m)){"LPe16000", "PCIe", 2587 "Obsolete, Unsupported Fibre Channel Adapter"}; 2588 break; 2589 case PCI_DEVICE_ID_LANCER_FCOE: 2590 oneConnect = 1; 2591 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; 2592 break; 2593 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2594 oneConnect = 1; 2595 m = (typeof(m)){"OCe15100", "PCIe", 2596 "Obsolete, Unsupported FCoE"}; 2597 break; 2598 case PCI_DEVICE_ID_LANCER_G6_FC: 2599 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2600 break; 2601 case PCI_DEVICE_ID_LANCER_G7_FC: 2602 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2603 break; 2604 case PCI_DEVICE_ID_LANCER_G7P_FC: 2605 m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"}; 2606 break; 2607 case PCI_DEVICE_ID_SKYHAWK: 2608 case PCI_DEVICE_ID_SKYHAWK_VF: 2609 oneConnect = 1; 2610 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; 2611 break; 2612 default: 2613 m = (typeof(m)){"Unknown", "", ""}; 2614 break; 2615 } 2616 2617 if (mdp && mdp[0] == '\0') 2618 snprintf(mdp, 79,"%s", m.name); 2619 /* 2620 * oneConnect hba requires special processing, they are all initiators 2621 * and we put the port number on the end 2622 */ 2623 if (descp && descp[0] == '\0') { 2624 if (oneConnect) 2625 snprintf(descp, 255, 2626 "Emulex OneConnect %s, %s Initiator %s", 2627 m.name, m.function, 2628 phba->Port); 2629 else if (max_speed == 0) 2630 snprintf(descp, 255, 2631 "Emulex %s %s %s", 2632 m.name, m.bus, m.function); 2633 else 2634 snprintf(descp, 255, 2635 "Emulex %s %d%s %s %s", 2636 m.name, max_speed, (GE) ? "GE" : "Gb", 2637 m.bus, m.function); 2638 } 2639 } 2640 2641 /** 2642 * lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2643 * @phba: pointer to lpfc hba data structure. 2644 * @pring: pointer to a IOCB ring. 2645 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2646 * 2647 * This routine posts a given number of IOCBs with the associated DMA buffer 2648 * descriptors specified by the cnt argument to the given IOCB ring. 2649 * 2650 * Return codes 2651 * The number of IOCBs NOT able to be posted to the IOCB ring. 2652 **/ 2653 int 2654 lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2655 { 2656 IOCB_t *icmd; 2657 struct lpfc_iocbq *iocb; 2658 struct lpfc_dmabuf *mp1, *mp2; 2659 2660 cnt += pring->missbufcnt; 2661 2662 /* While there are buffers to post */ 2663 while (cnt > 0) { 2664 /* Allocate buffer for command iocb */ 2665 iocb = lpfc_sli_get_iocbq(phba); 2666 if (iocb == NULL) { 2667 pring->missbufcnt = cnt; 2668 return cnt; 2669 } 2670 icmd = &iocb->iocb; 2671 2672 /* 2 buffers can be posted per command */ 2673 /* Allocate buffer to post */ 2674 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2675 if (mp1) 2676 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2677 if (!mp1 || !mp1->virt) { 2678 kfree(mp1); 2679 lpfc_sli_release_iocbq(phba, iocb); 2680 pring->missbufcnt = cnt; 2681 return cnt; 2682 } 2683 2684 INIT_LIST_HEAD(&mp1->list); 2685 /* Allocate buffer to post */ 2686 if (cnt > 1) { 2687 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2688 if (mp2) 2689 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2690 &mp2->phys); 2691 if (!mp2 || !mp2->virt) { 2692 kfree(mp2); 2693 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2694 kfree(mp1); 2695 lpfc_sli_release_iocbq(phba, iocb); 2696 pring->missbufcnt = cnt; 2697 return cnt; 2698 } 2699 2700 INIT_LIST_HEAD(&mp2->list); 2701 } else { 2702 mp2 = NULL; 2703 } 2704 2705 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2706 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2707 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2708 icmd->ulpBdeCount = 1; 2709 cnt--; 2710 if (mp2) { 2711 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2712 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2713 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2714 cnt--; 2715 icmd->ulpBdeCount = 2; 2716 } 2717 2718 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2719 icmd->ulpLe = 1; 2720 2721 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2722 IOCB_ERROR) { 2723 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2724 kfree(mp1); 2725 cnt++; 2726 if (mp2) { 2727 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2728 kfree(mp2); 2729 cnt++; 2730 } 2731 lpfc_sli_release_iocbq(phba, iocb); 2732 pring->missbufcnt = cnt; 2733 return cnt; 2734 } 2735 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2736 if (mp2) 2737 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2738 } 2739 pring->missbufcnt = 0; 2740 return 0; 2741 } 2742 2743 /** 2744 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2745 * @phba: pointer to lpfc hba data structure. 2746 * 2747 * This routine posts initial receive IOCB buffers to the ELS ring. The 2748 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2749 * set to 64 IOCBs. SLI3 only. 2750 * 2751 * Return codes 2752 * 0 - success (currently always success) 2753 **/ 2754 static int 2755 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2756 { 2757 struct lpfc_sli *psli = &phba->sli; 2758 2759 /* Ring 0, ELS / CT buffers */ 2760 lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2761 /* Ring 2 - FCP no buffers needed */ 2762 2763 return 0; 2764 } 2765 2766 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2767 2768 /** 2769 * lpfc_sha_init - Set up initial array of hash table entries 2770 * @HashResultPointer: pointer to an array as hash table. 2771 * 2772 * This routine sets up the initial values to the array of hash table entries 2773 * for the LC HBAs. 2774 **/ 2775 static void 2776 lpfc_sha_init(uint32_t * HashResultPointer) 2777 { 2778 HashResultPointer[0] = 0x67452301; 2779 HashResultPointer[1] = 0xEFCDAB89; 2780 HashResultPointer[2] = 0x98BADCFE; 2781 HashResultPointer[3] = 0x10325476; 2782 HashResultPointer[4] = 0xC3D2E1F0; 2783 } 2784 2785 /** 2786 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2787 * @HashResultPointer: pointer to an initial/result hash table. 2788 * @HashWorkingPointer: pointer to an working hash table. 2789 * 2790 * This routine iterates an initial hash table pointed by @HashResultPointer 2791 * with the values from the working hash table pointeed by @HashWorkingPointer. 2792 * The results are putting back to the initial hash table, returned through 2793 * the @HashResultPointer as the result hash table. 2794 **/ 2795 static void 2796 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2797 { 2798 int t; 2799 uint32_t TEMP; 2800 uint32_t A, B, C, D, E; 2801 t = 16; 2802 do { 2803 HashWorkingPointer[t] = 2804 S(1, 2805 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2806 8] ^ 2807 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2808 } while (++t <= 79); 2809 t = 0; 2810 A = HashResultPointer[0]; 2811 B = HashResultPointer[1]; 2812 C = HashResultPointer[2]; 2813 D = HashResultPointer[3]; 2814 E = HashResultPointer[4]; 2815 2816 do { 2817 if (t < 20) { 2818 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2819 } else if (t < 40) { 2820 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2821 } else if (t < 60) { 2822 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2823 } else { 2824 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2825 } 2826 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2827 E = D; 2828 D = C; 2829 C = S(30, B); 2830 B = A; 2831 A = TEMP; 2832 } while (++t <= 79); 2833 2834 HashResultPointer[0] += A; 2835 HashResultPointer[1] += B; 2836 HashResultPointer[2] += C; 2837 HashResultPointer[3] += D; 2838 HashResultPointer[4] += E; 2839 2840 } 2841 2842 /** 2843 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2844 * @RandomChallenge: pointer to the entry of host challenge random number array. 2845 * @HashWorking: pointer to the entry of the working hash array. 2846 * 2847 * This routine calculates the working hash array referred by @HashWorking 2848 * from the challenge random numbers associated with the host, referred by 2849 * @RandomChallenge. The result is put into the entry of the working hash 2850 * array and returned by reference through @HashWorking. 2851 **/ 2852 static void 2853 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 2854 { 2855 *HashWorking = (*RandomChallenge ^ *HashWorking); 2856 } 2857 2858 /** 2859 * lpfc_hba_init - Perform special handling for LC HBA initialization 2860 * @phba: pointer to lpfc hba data structure. 2861 * @hbainit: pointer to an array of unsigned 32-bit integers. 2862 * 2863 * This routine performs the special handling for LC HBA initialization. 2864 **/ 2865 void 2866 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 2867 { 2868 int t; 2869 uint32_t *HashWorking; 2870 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 2871 2872 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 2873 if (!HashWorking) 2874 return; 2875 2876 HashWorking[0] = HashWorking[78] = *pwwnn++; 2877 HashWorking[1] = HashWorking[79] = *pwwnn; 2878 2879 for (t = 0; t < 7; t++) 2880 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 2881 2882 lpfc_sha_init(hbainit); 2883 lpfc_sha_iterate(hbainit, HashWorking); 2884 kfree(HashWorking); 2885 } 2886 2887 /** 2888 * lpfc_cleanup - Performs vport cleanups before deleting a vport 2889 * @vport: pointer to a virtual N_Port data structure. 2890 * 2891 * This routine performs the necessary cleanups before deleting the @vport. 2892 * It invokes the discovery state machine to perform necessary state 2893 * transitions and to release the ndlps associated with the @vport. Note, 2894 * the physical port is treated as @vport 0. 2895 **/ 2896 void 2897 lpfc_cleanup(struct lpfc_vport *vport) 2898 { 2899 struct lpfc_hba *phba = vport->phba; 2900 struct lpfc_nodelist *ndlp, *next_ndlp; 2901 int i = 0; 2902 2903 if (phba->link_state > LPFC_LINK_DOWN) 2904 lpfc_port_link_failure(vport); 2905 2906 /* Clean up VMID resources */ 2907 if (lpfc_is_vmid_enabled(phba)) 2908 lpfc_vmid_vport_cleanup(vport); 2909 2910 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 2911 if (vport->port_type != LPFC_PHYSICAL_PORT && 2912 ndlp->nlp_DID == Fabric_DID) { 2913 /* Just free up ndlp with Fabric_DID for vports */ 2914 lpfc_nlp_put(ndlp); 2915 continue; 2916 } 2917 2918 if (ndlp->nlp_DID == Fabric_Cntl_DID && 2919 ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 2920 lpfc_nlp_put(ndlp); 2921 continue; 2922 } 2923 2924 /* Fabric Ports not in UNMAPPED state are cleaned up in the 2925 * DEVICE_RM event. 2926 */ 2927 if (ndlp->nlp_type & NLP_FABRIC && 2928 ndlp->nlp_state == NLP_STE_UNMAPPED_NODE) 2929 lpfc_disc_state_machine(vport, ndlp, NULL, 2930 NLP_EVT_DEVICE_RECOVERY); 2931 2932 if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD))) 2933 lpfc_disc_state_machine(vport, ndlp, NULL, 2934 NLP_EVT_DEVICE_RM); 2935 } 2936 2937 /* At this point, ALL ndlp's should be gone 2938 * because of the previous NLP_EVT_DEVICE_RM. 2939 * Lets wait for this to happen, if needed. 2940 */ 2941 while (!list_empty(&vport->fc_nodes)) { 2942 if (i++ > 3000) { 2943 lpfc_printf_vlog(vport, KERN_ERR, 2944 LOG_TRACE_EVENT, 2945 "0233 Nodelist not empty\n"); 2946 list_for_each_entry_safe(ndlp, next_ndlp, 2947 &vport->fc_nodes, nlp_listp) { 2948 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 2949 LOG_TRACE_EVENT, 2950 "0282 did:x%x ndlp:x%px " 2951 "refcnt:%d xflags x%x nflag x%x\n", 2952 ndlp->nlp_DID, (void *)ndlp, 2953 kref_read(&ndlp->kref), 2954 ndlp->fc4_xpt_flags, 2955 ndlp->nlp_flag); 2956 } 2957 break; 2958 } 2959 2960 /* Wait for any activity on ndlps to settle */ 2961 msleep(10); 2962 } 2963 lpfc_cleanup_vports_rrqs(vport, NULL); 2964 } 2965 2966 /** 2967 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 2968 * @vport: pointer to a virtual N_Port data structure. 2969 * 2970 * This routine stops all the timers associated with a @vport. This function 2971 * is invoked before disabling or deleting a @vport. Note that the physical 2972 * port is treated as @vport 0. 2973 **/ 2974 void 2975 lpfc_stop_vport_timers(struct lpfc_vport *vport) 2976 { 2977 del_timer_sync(&vport->els_tmofunc); 2978 del_timer_sync(&vport->delayed_disc_tmo); 2979 lpfc_can_disctmo(vport); 2980 return; 2981 } 2982 2983 /** 2984 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 2985 * @phba: pointer to lpfc hba data structure. 2986 * 2987 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 2988 * caller of this routine should already hold the host lock. 2989 **/ 2990 void 2991 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 2992 { 2993 /* Clear pending FCF rediscovery wait flag */ 2994 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 2995 2996 /* Now, try to stop the timer */ 2997 del_timer(&phba->fcf.redisc_wait); 2998 } 2999 3000 /** 3001 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3002 * @phba: pointer to lpfc hba data structure. 3003 * 3004 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 3005 * checks whether the FCF rediscovery wait timer is pending with the host 3006 * lock held before proceeding with disabling the timer and clearing the 3007 * wait timer pendig flag. 3008 **/ 3009 void 3010 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3011 { 3012 spin_lock_irq(&phba->hbalock); 3013 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 3014 /* FCF rediscovery timer already fired or stopped */ 3015 spin_unlock_irq(&phba->hbalock); 3016 return; 3017 } 3018 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3019 /* Clear failover in progress flags */ 3020 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 3021 spin_unlock_irq(&phba->hbalock); 3022 } 3023 3024 /** 3025 * lpfc_cmf_stop - Stop CMF processing 3026 * @phba: pointer to lpfc hba data structure. 3027 * 3028 * This is called when the link goes down or if CMF mode is turned OFF. 3029 * It is also called when going offline or unloaded just before the 3030 * congestion info buffer is unregistered. 3031 **/ 3032 void 3033 lpfc_cmf_stop(struct lpfc_hba *phba) 3034 { 3035 int cpu; 3036 struct lpfc_cgn_stat *cgs; 3037 3038 /* We only do something if CMF is enabled */ 3039 if (!phba->sli4_hba.pc_sli4_params.cmf) 3040 return; 3041 3042 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3043 "6221 Stop CMF / Cancel Timer\n"); 3044 3045 /* Cancel the CMF timer */ 3046 hrtimer_cancel(&phba->cmf_timer); 3047 3048 /* Zero CMF counters */ 3049 atomic_set(&phba->cmf_busy, 0); 3050 for_each_present_cpu(cpu) { 3051 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3052 atomic64_set(&cgs->total_bytes, 0); 3053 atomic64_set(&cgs->rcv_bytes, 0); 3054 atomic_set(&cgs->rx_io_cnt, 0); 3055 atomic64_set(&cgs->rx_latency, 0); 3056 } 3057 atomic_set(&phba->cmf_bw_wait, 0); 3058 3059 /* Resume any blocked IO - Queue unblock on workqueue */ 3060 queue_work(phba->wq, &phba->unblock_request_work); 3061 } 3062 3063 static inline uint64_t 3064 lpfc_get_max_line_rate(struct lpfc_hba *phba) 3065 { 3066 uint64_t rate = lpfc_sli_port_speed_get(phba); 3067 3068 return ((((unsigned long)rate) * 1024 * 1024) / 10); 3069 } 3070 3071 void 3072 lpfc_cmf_signal_init(struct lpfc_hba *phba) 3073 { 3074 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3075 "6223 Signal CMF init\n"); 3076 3077 /* Use the new fc_linkspeed to recalculate */ 3078 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 3079 phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba); 3080 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * 3081 phba->cmf_interval_rate, 1000); 3082 phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count; 3083 3084 /* This is a signal to firmware to sync up CMF BW with link speed */ 3085 lpfc_issue_cmf_sync_wqe(phba, 0, 0); 3086 } 3087 3088 /** 3089 * lpfc_cmf_start - Start CMF processing 3090 * @phba: pointer to lpfc hba data structure. 3091 * 3092 * This is called when the link comes up or if CMF mode is turned OFF 3093 * to Monitor or Managed. 3094 **/ 3095 void 3096 lpfc_cmf_start(struct lpfc_hba *phba) 3097 { 3098 struct lpfc_cgn_stat *cgs; 3099 int cpu; 3100 3101 /* We only do something if CMF is enabled */ 3102 if (!phba->sli4_hba.pc_sli4_params.cmf || 3103 phba->cmf_active_mode == LPFC_CFG_OFF) 3104 return; 3105 3106 /* Reinitialize congestion buffer info */ 3107 lpfc_init_congestion_buf(phba); 3108 3109 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 3110 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 3111 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 3112 atomic_set(&phba->cgn_sync_warn_cnt, 0); 3113 3114 atomic_set(&phba->cmf_busy, 0); 3115 for_each_present_cpu(cpu) { 3116 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3117 atomic64_set(&cgs->total_bytes, 0); 3118 atomic64_set(&cgs->rcv_bytes, 0); 3119 atomic_set(&cgs->rx_io_cnt, 0); 3120 atomic64_set(&cgs->rx_latency, 0); 3121 } 3122 phba->cmf_latency.tv_sec = 0; 3123 phba->cmf_latency.tv_nsec = 0; 3124 3125 lpfc_cmf_signal_init(phba); 3126 3127 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3128 "6222 Start CMF / Timer\n"); 3129 3130 phba->cmf_timer_cnt = 0; 3131 hrtimer_start(&phba->cmf_timer, 3132 ktime_set(0, LPFC_CMF_INTERVAL * 1000000), 3133 HRTIMER_MODE_REL); 3134 /* Setup for latency check in IO cmpl routines */ 3135 ktime_get_real_ts64(&phba->cmf_latency); 3136 3137 atomic_set(&phba->cmf_bw_wait, 0); 3138 atomic_set(&phba->cmf_stop_io, 0); 3139 } 3140 3141 /** 3142 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 3143 * @phba: pointer to lpfc hba data structure. 3144 * 3145 * This routine stops all the timers associated with a HBA. This function is 3146 * invoked before either putting a HBA offline or unloading the driver. 3147 **/ 3148 void 3149 lpfc_stop_hba_timers(struct lpfc_hba *phba) 3150 { 3151 if (phba->pport) 3152 lpfc_stop_vport_timers(phba->pport); 3153 cancel_delayed_work_sync(&phba->eq_delay_work); 3154 cancel_delayed_work_sync(&phba->idle_stat_delay_work); 3155 del_timer_sync(&phba->sli.mbox_tmo); 3156 del_timer_sync(&phba->fabric_block_timer); 3157 del_timer_sync(&phba->eratt_poll); 3158 del_timer_sync(&phba->hb_tmofunc); 3159 if (phba->sli_rev == LPFC_SLI_REV4) { 3160 del_timer_sync(&phba->rrq_tmr); 3161 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 3162 } 3163 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 3164 3165 switch (phba->pci_dev_grp) { 3166 case LPFC_PCI_DEV_LP: 3167 /* Stop any LightPulse device specific driver timers */ 3168 del_timer_sync(&phba->fcp_poll_timer); 3169 break; 3170 case LPFC_PCI_DEV_OC: 3171 /* Stop any OneConnect device specific driver timers */ 3172 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3173 break; 3174 default: 3175 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3176 "0297 Invalid device group (x%x)\n", 3177 phba->pci_dev_grp); 3178 break; 3179 } 3180 return; 3181 } 3182 3183 /** 3184 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 3185 * @phba: pointer to lpfc hba data structure. 3186 * @mbx_action: flag for mailbox no wait action. 3187 * 3188 * This routine marks a HBA's management interface as blocked. Once the HBA's 3189 * management interface is marked as blocked, all the user space access to 3190 * the HBA, whether they are from sysfs interface or libdfc interface will 3191 * all be blocked. The HBA is set to block the management interface when the 3192 * driver prepares the HBA interface for online or offline. 3193 **/ 3194 static void 3195 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 3196 { 3197 unsigned long iflag; 3198 uint8_t actcmd = MBX_HEARTBEAT; 3199 unsigned long timeout; 3200 3201 spin_lock_irqsave(&phba->hbalock, iflag); 3202 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 3203 spin_unlock_irqrestore(&phba->hbalock, iflag); 3204 if (mbx_action == LPFC_MBX_NO_WAIT) 3205 return; 3206 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 3207 spin_lock_irqsave(&phba->hbalock, iflag); 3208 if (phba->sli.mbox_active) { 3209 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 3210 /* Determine how long we might wait for the active mailbox 3211 * command to be gracefully completed by firmware. 3212 */ 3213 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 3214 phba->sli.mbox_active) * 1000) + jiffies; 3215 } 3216 spin_unlock_irqrestore(&phba->hbalock, iflag); 3217 3218 /* Wait for the outstnading mailbox command to complete */ 3219 while (phba->sli.mbox_active) { 3220 /* Check active mailbox complete status every 2ms */ 3221 msleep(2); 3222 if (time_after(jiffies, timeout)) { 3223 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3224 "2813 Mgmt IO is Blocked %x " 3225 "- mbox cmd %x still active\n", 3226 phba->sli.sli_flag, actcmd); 3227 break; 3228 } 3229 } 3230 } 3231 3232 /** 3233 * lpfc_sli4_node_prep - Assign RPIs for active nodes. 3234 * @phba: pointer to lpfc hba data structure. 3235 * 3236 * Allocate RPIs for all active remote nodes. This is needed whenever 3237 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3238 * is to fixup the temporary rpi assignments. 3239 **/ 3240 void 3241 lpfc_sli4_node_prep(struct lpfc_hba *phba) 3242 { 3243 struct lpfc_nodelist *ndlp, *next_ndlp; 3244 struct lpfc_vport **vports; 3245 int i, rpi; 3246 3247 if (phba->sli_rev != LPFC_SLI_REV4) 3248 return; 3249 3250 vports = lpfc_create_vport_work_array(phba); 3251 if (vports == NULL) 3252 return; 3253 3254 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3255 if (vports[i]->load_flag & FC_UNLOADING) 3256 continue; 3257 3258 list_for_each_entry_safe(ndlp, next_ndlp, 3259 &vports[i]->fc_nodes, 3260 nlp_listp) { 3261 rpi = lpfc_sli4_alloc_rpi(phba); 3262 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3263 /* TODO print log? */ 3264 continue; 3265 } 3266 ndlp->nlp_rpi = rpi; 3267 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3268 LOG_NODE | LOG_DISCOVERY, 3269 "0009 Assign RPI x%x to ndlp x%px " 3270 "DID:x%06x flg:x%x\n", 3271 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3272 ndlp->nlp_flag); 3273 } 3274 } 3275 lpfc_destroy_vport_work_array(phba, vports); 3276 } 3277 3278 /** 3279 * lpfc_create_expedite_pool - create expedite pool 3280 * @phba: pointer to lpfc hba data structure. 3281 * 3282 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3283 * to expedite pool. Mark them as expedite. 3284 **/ 3285 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3286 { 3287 struct lpfc_sli4_hdw_queue *qp; 3288 struct lpfc_io_buf *lpfc_ncmd; 3289 struct lpfc_io_buf *lpfc_ncmd_next; 3290 struct lpfc_epd_pool *epd_pool; 3291 unsigned long iflag; 3292 3293 epd_pool = &phba->epd_pool; 3294 qp = &phba->sli4_hba.hdwq[0]; 3295 3296 spin_lock_init(&epd_pool->lock); 3297 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3298 spin_lock(&epd_pool->lock); 3299 INIT_LIST_HEAD(&epd_pool->list); 3300 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3301 &qp->lpfc_io_buf_list_put, list) { 3302 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3303 lpfc_ncmd->expedite = true; 3304 qp->put_io_bufs--; 3305 epd_pool->count++; 3306 if (epd_pool->count >= XRI_BATCH) 3307 break; 3308 } 3309 spin_unlock(&epd_pool->lock); 3310 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3311 } 3312 3313 /** 3314 * lpfc_destroy_expedite_pool - destroy expedite pool 3315 * @phba: pointer to lpfc hba data structure. 3316 * 3317 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3318 * of HWQ 0. Clear the mark. 3319 **/ 3320 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3321 { 3322 struct lpfc_sli4_hdw_queue *qp; 3323 struct lpfc_io_buf *lpfc_ncmd; 3324 struct lpfc_io_buf *lpfc_ncmd_next; 3325 struct lpfc_epd_pool *epd_pool; 3326 unsigned long iflag; 3327 3328 epd_pool = &phba->epd_pool; 3329 qp = &phba->sli4_hba.hdwq[0]; 3330 3331 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3332 spin_lock(&epd_pool->lock); 3333 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3334 &epd_pool->list, list) { 3335 list_move_tail(&lpfc_ncmd->list, 3336 &qp->lpfc_io_buf_list_put); 3337 lpfc_ncmd->flags = false; 3338 qp->put_io_bufs++; 3339 epd_pool->count--; 3340 } 3341 spin_unlock(&epd_pool->lock); 3342 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3343 } 3344 3345 /** 3346 * lpfc_create_multixri_pools - create multi-XRI pools 3347 * @phba: pointer to lpfc hba data structure. 3348 * 3349 * This routine initialize public, private per HWQ. Then, move XRIs from 3350 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3351 * Initialized. 3352 **/ 3353 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3354 { 3355 u32 i, j; 3356 u32 hwq_count; 3357 u32 count_per_hwq; 3358 struct lpfc_io_buf *lpfc_ncmd; 3359 struct lpfc_io_buf *lpfc_ncmd_next; 3360 unsigned long iflag; 3361 struct lpfc_sli4_hdw_queue *qp; 3362 struct lpfc_multixri_pool *multixri_pool; 3363 struct lpfc_pbl_pool *pbl_pool; 3364 struct lpfc_pvt_pool *pvt_pool; 3365 3366 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3367 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3368 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3369 phba->sli4_hba.io_xri_cnt); 3370 3371 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3372 lpfc_create_expedite_pool(phba); 3373 3374 hwq_count = phba->cfg_hdw_queue; 3375 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3376 3377 for (i = 0; i < hwq_count; i++) { 3378 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3379 3380 if (!multixri_pool) { 3381 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3382 "1238 Failed to allocate memory for " 3383 "multixri_pool\n"); 3384 3385 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3386 lpfc_destroy_expedite_pool(phba); 3387 3388 j = 0; 3389 while (j < i) { 3390 qp = &phba->sli4_hba.hdwq[j]; 3391 kfree(qp->p_multixri_pool); 3392 j++; 3393 } 3394 phba->cfg_xri_rebalancing = 0; 3395 return; 3396 } 3397 3398 qp = &phba->sli4_hba.hdwq[i]; 3399 qp->p_multixri_pool = multixri_pool; 3400 3401 multixri_pool->xri_limit = count_per_hwq; 3402 multixri_pool->rrb_next_hwqid = i; 3403 3404 /* Deal with public free xri pool */ 3405 pbl_pool = &multixri_pool->pbl_pool; 3406 spin_lock_init(&pbl_pool->lock); 3407 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3408 spin_lock(&pbl_pool->lock); 3409 INIT_LIST_HEAD(&pbl_pool->list); 3410 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3411 &qp->lpfc_io_buf_list_put, list) { 3412 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3413 qp->put_io_bufs--; 3414 pbl_pool->count++; 3415 } 3416 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3417 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3418 pbl_pool->count, i); 3419 spin_unlock(&pbl_pool->lock); 3420 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3421 3422 /* Deal with private free xri pool */ 3423 pvt_pool = &multixri_pool->pvt_pool; 3424 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3425 pvt_pool->low_watermark = XRI_BATCH; 3426 spin_lock_init(&pvt_pool->lock); 3427 spin_lock_irqsave(&pvt_pool->lock, iflag); 3428 INIT_LIST_HEAD(&pvt_pool->list); 3429 pvt_pool->count = 0; 3430 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3431 } 3432 } 3433 3434 /** 3435 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3436 * @phba: pointer to lpfc hba data structure. 3437 * 3438 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3439 **/ 3440 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3441 { 3442 u32 i; 3443 u32 hwq_count; 3444 struct lpfc_io_buf *lpfc_ncmd; 3445 struct lpfc_io_buf *lpfc_ncmd_next; 3446 unsigned long iflag; 3447 struct lpfc_sli4_hdw_queue *qp; 3448 struct lpfc_multixri_pool *multixri_pool; 3449 struct lpfc_pbl_pool *pbl_pool; 3450 struct lpfc_pvt_pool *pvt_pool; 3451 3452 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3453 lpfc_destroy_expedite_pool(phba); 3454 3455 if (!(phba->pport->load_flag & FC_UNLOADING)) 3456 lpfc_sli_flush_io_rings(phba); 3457 3458 hwq_count = phba->cfg_hdw_queue; 3459 3460 for (i = 0; i < hwq_count; i++) { 3461 qp = &phba->sli4_hba.hdwq[i]; 3462 multixri_pool = qp->p_multixri_pool; 3463 if (!multixri_pool) 3464 continue; 3465 3466 qp->p_multixri_pool = NULL; 3467 3468 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3469 3470 /* Deal with public free xri pool */ 3471 pbl_pool = &multixri_pool->pbl_pool; 3472 spin_lock(&pbl_pool->lock); 3473 3474 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3475 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3476 pbl_pool->count, i); 3477 3478 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3479 &pbl_pool->list, list) { 3480 list_move_tail(&lpfc_ncmd->list, 3481 &qp->lpfc_io_buf_list_put); 3482 qp->put_io_bufs++; 3483 pbl_pool->count--; 3484 } 3485 3486 INIT_LIST_HEAD(&pbl_pool->list); 3487 pbl_pool->count = 0; 3488 3489 spin_unlock(&pbl_pool->lock); 3490 3491 /* Deal with private free xri pool */ 3492 pvt_pool = &multixri_pool->pvt_pool; 3493 spin_lock(&pvt_pool->lock); 3494 3495 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3496 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3497 pvt_pool->count, i); 3498 3499 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3500 &pvt_pool->list, list) { 3501 list_move_tail(&lpfc_ncmd->list, 3502 &qp->lpfc_io_buf_list_put); 3503 qp->put_io_bufs++; 3504 pvt_pool->count--; 3505 } 3506 3507 INIT_LIST_HEAD(&pvt_pool->list); 3508 pvt_pool->count = 0; 3509 3510 spin_unlock(&pvt_pool->lock); 3511 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3512 3513 kfree(multixri_pool); 3514 } 3515 } 3516 3517 /** 3518 * lpfc_online - Initialize and bring a HBA online 3519 * @phba: pointer to lpfc hba data structure. 3520 * 3521 * This routine initializes the HBA and brings a HBA online. During this 3522 * process, the management interface is blocked to prevent user space access 3523 * to the HBA interfering with the driver initialization. 3524 * 3525 * Return codes 3526 * 0 - successful 3527 * 1 - failed 3528 **/ 3529 int 3530 lpfc_online(struct lpfc_hba *phba) 3531 { 3532 struct lpfc_vport *vport; 3533 struct lpfc_vport **vports; 3534 int i, error = 0; 3535 bool vpis_cleared = false; 3536 3537 if (!phba) 3538 return 0; 3539 vport = phba->pport; 3540 3541 if (!(vport->fc_flag & FC_OFFLINE_MODE)) 3542 return 0; 3543 3544 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3545 "0458 Bring Adapter online\n"); 3546 3547 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3548 3549 if (phba->sli_rev == LPFC_SLI_REV4) { 3550 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3551 lpfc_unblock_mgmt_io(phba); 3552 return 1; 3553 } 3554 spin_lock_irq(&phba->hbalock); 3555 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3556 vpis_cleared = true; 3557 spin_unlock_irq(&phba->hbalock); 3558 3559 /* Reestablish the local initiator port. 3560 * The offline process destroyed the previous lport. 3561 */ 3562 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3563 !phba->nvmet_support) { 3564 error = lpfc_nvme_create_localport(phba->pport); 3565 if (error) 3566 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3567 "6132 NVME restore reg failed " 3568 "on nvmei error x%x\n", error); 3569 } 3570 } else { 3571 lpfc_sli_queue_init(phba); 3572 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3573 lpfc_unblock_mgmt_io(phba); 3574 return 1; 3575 } 3576 } 3577 3578 vports = lpfc_create_vport_work_array(phba); 3579 if (vports != NULL) { 3580 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3581 struct Scsi_Host *shost; 3582 shost = lpfc_shost_from_vport(vports[i]); 3583 spin_lock_irq(shost->host_lock); 3584 vports[i]->fc_flag &= ~FC_OFFLINE_MODE; 3585 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3586 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3587 if (phba->sli_rev == LPFC_SLI_REV4) { 3588 vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI; 3589 if ((vpis_cleared) && 3590 (vports[i]->port_type != 3591 LPFC_PHYSICAL_PORT)) 3592 vports[i]->vpi = 0; 3593 } 3594 spin_unlock_irq(shost->host_lock); 3595 } 3596 } 3597 lpfc_destroy_vport_work_array(phba, vports); 3598 3599 if (phba->cfg_xri_rebalancing) 3600 lpfc_create_multixri_pools(phba); 3601 3602 lpfc_cpuhp_add(phba); 3603 3604 lpfc_unblock_mgmt_io(phba); 3605 return 0; 3606 } 3607 3608 /** 3609 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3610 * @phba: pointer to lpfc hba data structure. 3611 * 3612 * This routine marks a HBA's management interface as not blocked. Once the 3613 * HBA's management interface is marked as not blocked, all the user space 3614 * access to the HBA, whether they are from sysfs interface or libdfc 3615 * interface will be allowed. The HBA is set to block the management interface 3616 * when the driver prepares the HBA interface for online or offline and then 3617 * set to unblock the management interface afterwards. 3618 **/ 3619 void 3620 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3621 { 3622 unsigned long iflag; 3623 3624 spin_lock_irqsave(&phba->hbalock, iflag); 3625 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3626 spin_unlock_irqrestore(&phba->hbalock, iflag); 3627 } 3628 3629 /** 3630 * lpfc_offline_prep - Prepare a HBA to be brought offline 3631 * @phba: pointer to lpfc hba data structure. 3632 * @mbx_action: flag for mailbox shutdown action. 3633 * 3634 * This routine is invoked to prepare a HBA to be brought offline. It performs 3635 * unregistration login to all the nodes on all vports and flushes the mailbox 3636 * queue to make it ready to be brought offline. 3637 **/ 3638 void 3639 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3640 { 3641 struct lpfc_vport *vport = phba->pport; 3642 struct lpfc_nodelist *ndlp, *next_ndlp; 3643 struct lpfc_vport **vports; 3644 struct Scsi_Host *shost; 3645 int i; 3646 3647 if (vport->fc_flag & FC_OFFLINE_MODE) 3648 return; 3649 3650 lpfc_block_mgmt_io(phba, mbx_action); 3651 3652 lpfc_linkdown(phba); 3653 3654 /* Issue an unreg_login to all nodes on all vports */ 3655 vports = lpfc_create_vport_work_array(phba); 3656 if (vports != NULL) { 3657 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3658 if (vports[i]->load_flag & FC_UNLOADING) 3659 continue; 3660 shost = lpfc_shost_from_vport(vports[i]); 3661 spin_lock_irq(shost->host_lock); 3662 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3663 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3664 vports[i]->fc_flag &= ~FC_VFI_REGISTERED; 3665 spin_unlock_irq(shost->host_lock); 3666 3667 shost = lpfc_shost_from_vport(vports[i]); 3668 list_for_each_entry_safe(ndlp, next_ndlp, 3669 &vports[i]->fc_nodes, 3670 nlp_listp) { 3671 3672 spin_lock_irq(&ndlp->lock); 3673 ndlp->nlp_flag &= ~NLP_NPR_ADISC; 3674 spin_unlock_irq(&ndlp->lock); 3675 3676 lpfc_unreg_rpi(vports[i], ndlp); 3677 /* 3678 * Whenever an SLI4 port goes offline, free the 3679 * RPI. Get a new RPI when the adapter port 3680 * comes back online. 3681 */ 3682 if (phba->sli_rev == LPFC_SLI_REV4) { 3683 lpfc_printf_vlog(vports[i], KERN_INFO, 3684 LOG_NODE | LOG_DISCOVERY, 3685 "0011 Free RPI x%x on " 3686 "ndlp: x%px did x%x\n", 3687 ndlp->nlp_rpi, ndlp, 3688 ndlp->nlp_DID); 3689 lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); 3690 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3691 } 3692 3693 if (ndlp->nlp_type & NLP_FABRIC) { 3694 lpfc_disc_state_machine(vports[i], ndlp, 3695 NULL, NLP_EVT_DEVICE_RECOVERY); 3696 3697 /* Don't remove the node unless the 3698 * has been unregistered with the 3699 * transport. If so, let dev_loss 3700 * take care of the node. 3701 */ 3702 if (!(ndlp->fc4_xpt_flags & 3703 (NVME_XPT_REGD | SCSI_XPT_REGD))) 3704 lpfc_disc_state_machine 3705 (vports[i], ndlp, 3706 NULL, 3707 NLP_EVT_DEVICE_RM); 3708 } 3709 } 3710 } 3711 } 3712 lpfc_destroy_vport_work_array(phba, vports); 3713 3714 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3715 3716 if (phba->wq) 3717 flush_workqueue(phba->wq); 3718 } 3719 3720 /** 3721 * lpfc_offline - Bring a HBA offline 3722 * @phba: pointer to lpfc hba data structure. 3723 * 3724 * This routine actually brings a HBA offline. It stops all the timers 3725 * associated with the HBA, brings down the SLI layer, and eventually 3726 * marks the HBA as in offline state for the upper layer protocol. 3727 **/ 3728 void 3729 lpfc_offline(struct lpfc_hba *phba) 3730 { 3731 struct Scsi_Host *shost; 3732 struct lpfc_vport **vports; 3733 int i; 3734 3735 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3736 return; 3737 3738 /* stop port and all timers associated with this hba */ 3739 lpfc_stop_port(phba); 3740 3741 /* Tear down the local and target port registrations. The 3742 * nvme transports need to cleanup. 3743 */ 3744 lpfc_nvmet_destroy_targetport(phba); 3745 lpfc_nvme_destroy_localport(phba->pport); 3746 3747 vports = lpfc_create_vport_work_array(phba); 3748 if (vports != NULL) 3749 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3750 lpfc_stop_vport_timers(vports[i]); 3751 lpfc_destroy_vport_work_array(phba, vports); 3752 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3753 "0460 Bring Adapter offline\n"); 3754 /* Bring down the SLI Layer and cleanup. The HBA is offline 3755 now. */ 3756 lpfc_sli_hba_down(phba); 3757 spin_lock_irq(&phba->hbalock); 3758 phba->work_ha = 0; 3759 spin_unlock_irq(&phba->hbalock); 3760 vports = lpfc_create_vport_work_array(phba); 3761 if (vports != NULL) 3762 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3763 shost = lpfc_shost_from_vport(vports[i]); 3764 spin_lock_irq(shost->host_lock); 3765 vports[i]->work_port_events = 0; 3766 vports[i]->fc_flag |= FC_OFFLINE_MODE; 3767 spin_unlock_irq(shost->host_lock); 3768 } 3769 lpfc_destroy_vport_work_array(phba, vports); 3770 /* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled 3771 * in hba_unset 3772 */ 3773 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3774 __lpfc_cpuhp_remove(phba); 3775 3776 if (phba->cfg_xri_rebalancing) 3777 lpfc_destroy_multixri_pools(phba); 3778 } 3779 3780 /** 3781 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3782 * @phba: pointer to lpfc hba data structure. 3783 * 3784 * This routine is to free all the SCSI buffers and IOCBs from the driver 3785 * list back to kernel. It is called from lpfc_pci_remove_one to free 3786 * the internal resources before the device is removed from the system. 3787 **/ 3788 static void 3789 lpfc_scsi_free(struct lpfc_hba *phba) 3790 { 3791 struct lpfc_io_buf *sb, *sb_next; 3792 3793 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3794 return; 3795 3796 spin_lock_irq(&phba->hbalock); 3797 3798 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3799 3800 spin_lock(&phba->scsi_buf_list_put_lock); 3801 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3802 list) { 3803 list_del(&sb->list); 3804 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3805 sb->dma_handle); 3806 kfree(sb); 3807 phba->total_scsi_bufs--; 3808 } 3809 spin_unlock(&phba->scsi_buf_list_put_lock); 3810 3811 spin_lock(&phba->scsi_buf_list_get_lock); 3812 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3813 list) { 3814 list_del(&sb->list); 3815 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3816 sb->dma_handle); 3817 kfree(sb); 3818 phba->total_scsi_bufs--; 3819 } 3820 spin_unlock(&phba->scsi_buf_list_get_lock); 3821 spin_unlock_irq(&phba->hbalock); 3822 } 3823 3824 /** 3825 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 3826 * @phba: pointer to lpfc hba data structure. 3827 * 3828 * This routine is to free all the IO buffers and IOCBs from the driver 3829 * list back to kernel. It is called from lpfc_pci_remove_one to free 3830 * the internal resources before the device is removed from the system. 3831 **/ 3832 void 3833 lpfc_io_free(struct lpfc_hba *phba) 3834 { 3835 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 3836 struct lpfc_sli4_hdw_queue *qp; 3837 int idx; 3838 3839 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3840 qp = &phba->sli4_hba.hdwq[idx]; 3841 /* Release all the lpfc_nvme_bufs maintained by this host. */ 3842 spin_lock(&qp->io_buf_list_put_lock); 3843 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3844 &qp->lpfc_io_buf_list_put, 3845 list) { 3846 list_del(&lpfc_ncmd->list); 3847 qp->put_io_bufs--; 3848 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3849 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3850 if (phba->cfg_xpsgl && !phba->nvmet_support) 3851 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3852 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3853 kfree(lpfc_ncmd); 3854 qp->total_io_bufs--; 3855 } 3856 spin_unlock(&qp->io_buf_list_put_lock); 3857 3858 spin_lock(&qp->io_buf_list_get_lock); 3859 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3860 &qp->lpfc_io_buf_list_get, 3861 list) { 3862 list_del(&lpfc_ncmd->list); 3863 qp->get_io_bufs--; 3864 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3865 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3866 if (phba->cfg_xpsgl && !phba->nvmet_support) 3867 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3868 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3869 kfree(lpfc_ncmd); 3870 qp->total_io_bufs--; 3871 } 3872 spin_unlock(&qp->io_buf_list_get_lock); 3873 } 3874 } 3875 3876 /** 3877 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 3878 * @phba: pointer to lpfc hba data structure. 3879 * 3880 * This routine first calculates the sizes of the current els and allocated 3881 * scsi sgl lists, and then goes through all sgls to updates the physical 3882 * XRIs assigned due to port function reset. During port initialization, the 3883 * current els and allocated scsi sgl lists are 0s. 3884 * 3885 * Return codes 3886 * 0 - successful (for now, it always returns 0) 3887 **/ 3888 int 3889 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 3890 { 3891 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 3892 uint16_t i, lxri, xri_cnt, els_xri_cnt; 3893 LIST_HEAD(els_sgl_list); 3894 int rc; 3895 3896 /* 3897 * update on pci function's els xri-sgl list 3898 */ 3899 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 3900 3901 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 3902 /* els xri-sgl expanded */ 3903 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 3904 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3905 "3157 ELS xri-sgl count increased from " 3906 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3907 els_xri_cnt); 3908 /* allocate the additional els sgls */ 3909 for (i = 0; i < xri_cnt; i++) { 3910 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 3911 GFP_KERNEL); 3912 if (sglq_entry == NULL) { 3913 lpfc_printf_log(phba, KERN_ERR, 3914 LOG_TRACE_EVENT, 3915 "2562 Failure to allocate an " 3916 "ELS sgl entry:%d\n", i); 3917 rc = -ENOMEM; 3918 goto out_free_mem; 3919 } 3920 sglq_entry->buff_type = GEN_BUFF_TYPE; 3921 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 3922 &sglq_entry->phys); 3923 if (sglq_entry->virt == NULL) { 3924 kfree(sglq_entry); 3925 lpfc_printf_log(phba, KERN_ERR, 3926 LOG_TRACE_EVENT, 3927 "2563 Failure to allocate an " 3928 "ELS mbuf:%d\n", i); 3929 rc = -ENOMEM; 3930 goto out_free_mem; 3931 } 3932 sglq_entry->sgl = sglq_entry->virt; 3933 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 3934 sglq_entry->state = SGL_FREED; 3935 list_add_tail(&sglq_entry->list, &els_sgl_list); 3936 } 3937 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 3938 list_splice_init(&els_sgl_list, 3939 &phba->sli4_hba.lpfc_els_sgl_list); 3940 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 3941 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 3942 /* els xri-sgl shrinked */ 3943 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 3944 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3945 "3158 ELS xri-sgl count decreased from " 3946 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3947 els_xri_cnt); 3948 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 3949 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 3950 &els_sgl_list); 3951 /* release extra els sgls from list */ 3952 for (i = 0; i < xri_cnt; i++) { 3953 list_remove_head(&els_sgl_list, 3954 sglq_entry, struct lpfc_sglq, list); 3955 if (sglq_entry) { 3956 __lpfc_mbuf_free(phba, sglq_entry->virt, 3957 sglq_entry->phys); 3958 kfree(sglq_entry); 3959 } 3960 } 3961 list_splice_init(&els_sgl_list, 3962 &phba->sli4_hba.lpfc_els_sgl_list); 3963 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 3964 } else 3965 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3966 "3163 ELS xri-sgl count unchanged: %d\n", 3967 els_xri_cnt); 3968 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 3969 3970 /* update xris to els sgls on the list */ 3971 sglq_entry = NULL; 3972 sglq_entry_next = NULL; 3973 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 3974 &phba->sli4_hba.lpfc_els_sgl_list, list) { 3975 lxri = lpfc_sli4_next_xritag(phba); 3976 if (lxri == NO_XRI) { 3977 lpfc_printf_log(phba, KERN_ERR, 3978 LOG_TRACE_EVENT, 3979 "2400 Failed to allocate xri for " 3980 "ELS sgl\n"); 3981 rc = -ENOMEM; 3982 goto out_free_mem; 3983 } 3984 sglq_entry->sli4_lxritag = lxri; 3985 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 3986 } 3987 return 0; 3988 3989 out_free_mem: 3990 lpfc_free_els_sgl_list(phba); 3991 return rc; 3992 } 3993 3994 /** 3995 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 3996 * @phba: pointer to lpfc hba data structure. 3997 * 3998 * This routine first calculates the sizes of the current els and allocated 3999 * scsi sgl lists, and then goes through all sgls to updates the physical 4000 * XRIs assigned due to port function reset. During port initialization, the 4001 * current els and allocated scsi sgl lists are 0s. 4002 * 4003 * Return codes 4004 * 0 - successful (for now, it always returns 0) 4005 **/ 4006 int 4007 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 4008 { 4009 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4010 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4011 uint16_t nvmet_xri_cnt; 4012 LIST_HEAD(nvmet_sgl_list); 4013 int rc; 4014 4015 /* 4016 * update on pci function's nvmet xri-sgl list 4017 */ 4018 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4019 4020 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 4021 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4022 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 4023 /* els xri-sgl expanded */ 4024 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 4025 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4026 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 4027 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 4028 /* allocate the additional nvmet sgls */ 4029 for (i = 0; i < xri_cnt; i++) { 4030 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4031 GFP_KERNEL); 4032 if (sglq_entry == NULL) { 4033 lpfc_printf_log(phba, KERN_ERR, 4034 LOG_TRACE_EVENT, 4035 "6303 Failure to allocate an " 4036 "NVMET sgl entry:%d\n", i); 4037 rc = -ENOMEM; 4038 goto out_free_mem; 4039 } 4040 sglq_entry->buff_type = NVMET_BUFF_TYPE; 4041 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 4042 &sglq_entry->phys); 4043 if (sglq_entry->virt == NULL) { 4044 kfree(sglq_entry); 4045 lpfc_printf_log(phba, KERN_ERR, 4046 LOG_TRACE_EVENT, 4047 "6304 Failure to allocate an " 4048 "NVMET buf:%d\n", i); 4049 rc = -ENOMEM; 4050 goto out_free_mem; 4051 } 4052 sglq_entry->sgl = sglq_entry->virt; 4053 memset(sglq_entry->sgl, 0, 4054 phba->cfg_sg_dma_buf_size); 4055 sglq_entry->state = SGL_FREED; 4056 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 4057 } 4058 spin_lock_irq(&phba->hbalock); 4059 spin_lock(&phba->sli4_hba.sgl_list_lock); 4060 list_splice_init(&nvmet_sgl_list, 4061 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4062 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4063 spin_unlock_irq(&phba->hbalock); 4064 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 4065 /* nvmet xri-sgl shrunk */ 4066 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 4067 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4068 "6305 NVMET xri-sgl count decreased from " 4069 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 4070 nvmet_xri_cnt); 4071 spin_lock_irq(&phba->hbalock); 4072 spin_lock(&phba->sli4_hba.sgl_list_lock); 4073 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 4074 &nvmet_sgl_list); 4075 /* release extra nvmet sgls from list */ 4076 for (i = 0; i < xri_cnt; i++) { 4077 list_remove_head(&nvmet_sgl_list, 4078 sglq_entry, struct lpfc_sglq, list); 4079 if (sglq_entry) { 4080 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 4081 sglq_entry->phys); 4082 kfree(sglq_entry); 4083 } 4084 } 4085 list_splice_init(&nvmet_sgl_list, 4086 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4087 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4088 spin_unlock_irq(&phba->hbalock); 4089 } else 4090 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4091 "6306 NVMET xri-sgl count unchanged: %d\n", 4092 nvmet_xri_cnt); 4093 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 4094 4095 /* update xris to nvmet sgls on the list */ 4096 sglq_entry = NULL; 4097 sglq_entry_next = NULL; 4098 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4099 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 4100 lxri = lpfc_sli4_next_xritag(phba); 4101 if (lxri == NO_XRI) { 4102 lpfc_printf_log(phba, KERN_ERR, 4103 LOG_TRACE_EVENT, 4104 "6307 Failed to allocate xri for " 4105 "NVMET sgl\n"); 4106 rc = -ENOMEM; 4107 goto out_free_mem; 4108 } 4109 sglq_entry->sli4_lxritag = lxri; 4110 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4111 } 4112 return 0; 4113 4114 out_free_mem: 4115 lpfc_free_nvmet_sgl_list(phba); 4116 return rc; 4117 } 4118 4119 int 4120 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 4121 { 4122 LIST_HEAD(blist); 4123 struct lpfc_sli4_hdw_queue *qp; 4124 struct lpfc_io_buf *lpfc_cmd; 4125 struct lpfc_io_buf *iobufp, *prev_iobufp; 4126 int idx, cnt, xri, inserted; 4127 4128 cnt = 0; 4129 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4130 qp = &phba->sli4_hba.hdwq[idx]; 4131 spin_lock_irq(&qp->io_buf_list_get_lock); 4132 spin_lock(&qp->io_buf_list_put_lock); 4133 4134 /* Take everything off the get and put lists */ 4135 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 4136 list_splice(&qp->lpfc_io_buf_list_put, &blist); 4137 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 4138 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 4139 cnt += qp->get_io_bufs + qp->put_io_bufs; 4140 qp->get_io_bufs = 0; 4141 qp->put_io_bufs = 0; 4142 qp->total_io_bufs = 0; 4143 spin_unlock(&qp->io_buf_list_put_lock); 4144 spin_unlock_irq(&qp->io_buf_list_get_lock); 4145 } 4146 4147 /* 4148 * Take IO buffers off blist and put on cbuf sorted by XRI. 4149 * This is because POST_SGL takes a sequential range of XRIs 4150 * to post to the firmware. 4151 */ 4152 for (idx = 0; idx < cnt; idx++) { 4153 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 4154 if (!lpfc_cmd) 4155 return cnt; 4156 if (idx == 0) { 4157 list_add_tail(&lpfc_cmd->list, cbuf); 4158 continue; 4159 } 4160 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 4161 inserted = 0; 4162 prev_iobufp = NULL; 4163 list_for_each_entry(iobufp, cbuf, list) { 4164 if (xri < iobufp->cur_iocbq.sli4_xritag) { 4165 if (prev_iobufp) 4166 list_add(&lpfc_cmd->list, 4167 &prev_iobufp->list); 4168 else 4169 list_add(&lpfc_cmd->list, cbuf); 4170 inserted = 1; 4171 break; 4172 } 4173 prev_iobufp = iobufp; 4174 } 4175 if (!inserted) 4176 list_add_tail(&lpfc_cmd->list, cbuf); 4177 } 4178 return cnt; 4179 } 4180 4181 int 4182 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 4183 { 4184 struct lpfc_sli4_hdw_queue *qp; 4185 struct lpfc_io_buf *lpfc_cmd; 4186 int idx, cnt; 4187 4188 qp = phba->sli4_hba.hdwq; 4189 cnt = 0; 4190 while (!list_empty(cbuf)) { 4191 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4192 list_remove_head(cbuf, lpfc_cmd, 4193 struct lpfc_io_buf, list); 4194 if (!lpfc_cmd) 4195 return cnt; 4196 cnt++; 4197 qp = &phba->sli4_hba.hdwq[idx]; 4198 lpfc_cmd->hdwq_no = idx; 4199 lpfc_cmd->hdwq = qp; 4200 lpfc_cmd->cur_iocbq.wqe_cmpl = NULL; 4201 lpfc_cmd->cur_iocbq.iocb_cmpl = NULL; 4202 spin_lock(&qp->io_buf_list_put_lock); 4203 list_add_tail(&lpfc_cmd->list, 4204 &qp->lpfc_io_buf_list_put); 4205 qp->put_io_bufs++; 4206 qp->total_io_bufs++; 4207 spin_unlock(&qp->io_buf_list_put_lock); 4208 } 4209 } 4210 return cnt; 4211 } 4212 4213 /** 4214 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 4215 * @phba: pointer to lpfc hba data structure. 4216 * 4217 * This routine first calculates the sizes of the current els and allocated 4218 * scsi sgl lists, and then goes through all sgls to updates the physical 4219 * XRIs assigned due to port function reset. During port initialization, the 4220 * current els and allocated scsi sgl lists are 0s. 4221 * 4222 * Return codes 4223 * 0 - successful (for now, it always returns 0) 4224 **/ 4225 int 4226 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 4227 { 4228 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 4229 uint16_t i, lxri, els_xri_cnt; 4230 uint16_t io_xri_cnt, io_xri_max; 4231 LIST_HEAD(io_sgl_list); 4232 int rc, cnt; 4233 4234 /* 4235 * update on pci function's allocated nvme xri-sgl list 4236 */ 4237 4238 /* maximum number of xris available for nvme buffers */ 4239 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4240 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4241 phba->sli4_hba.io_xri_max = io_xri_max; 4242 4243 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4244 "6074 Current allocated XRI sgl count:%d, " 4245 "maximum XRI count:%d\n", 4246 phba->sli4_hba.io_xri_cnt, 4247 phba->sli4_hba.io_xri_max); 4248 4249 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4250 4251 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4252 /* max nvme xri shrunk below the allocated nvme buffers */ 4253 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4254 phba->sli4_hba.io_xri_max; 4255 /* release the extra allocated nvme buffers */ 4256 for (i = 0; i < io_xri_cnt; i++) { 4257 list_remove_head(&io_sgl_list, lpfc_ncmd, 4258 struct lpfc_io_buf, list); 4259 if (lpfc_ncmd) { 4260 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4261 lpfc_ncmd->data, 4262 lpfc_ncmd->dma_handle); 4263 kfree(lpfc_ncmd); 4264 } 4265 } 4266 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4267 } 4268 4269 /* update xris associated to remaining allocated nvme buffers */ 4270 lpfc_ncmd = NULL; 4271 lpfc_ncmd_next = NULL; 4272 phba->sli4_hba.io_xri_cnt = cnt; 4273 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4274 &io_sgl_list, list) { 4275 lxri = lpfc_sli4_next_xritag(phba); 4276 if (lxri == NO_XRI) { 4277 lpfc_printf_log(phba, KERN_ERR, 4278 LOG_TRACE_EVENT, 4279 "6075 Failed to allocate xri for " 4280 "nvme buffer\n"); 4281 rc = -ENOMEM; 4282 goto out_free_mem; 4283 } 4284 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4285 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4286 } 4287 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4288 return 0; 4289 4290 out_free_mem: 4291 lpfc_io_free(phba); 4292 return rc; 4293 } 4294 4295 /** 4296 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4297 * @phba: Pointer to lpfc hba data structure. 4298 * @num_to_alloc: The requested number of buffers to allocate. 4299 * 4300 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4301 * the nvme buffer contains all the necessary information needed to initiate 4302 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4303 * them on a list, it post them to the port by using SGL block post. 4304 * 4305 * Return codes: 4306 * int - number of IO buffers that were allocated and posted. 4307 * 0 = failure, less than num_to_alloc is a partial failure. 4308 **/ 4309 int 4310 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4311 { 4312 struct lpfc_io_buf *lpfc_ncmd; 4313 struct lpfc_iocbq *pwqeq; 4314 uint16_t iotag, lxri = 0; 4315 int bcnt, num_posted; 4316 LIST_HEAD(prep_nblist); 4317 LIST_HEAD(post_nblist); 4318 LIST_HEAD(nvme_nblist); 4319 4320 phba->sli4_hba.io_xri_cnt = 0; 4321 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4322 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4323 if (!lpfc_ncmd) 4324 break; 4325 /* 4326 * Get memory from the pci pool to map the virt space to 4327 * pci bus space for an I/O. The DMA buffer includes the 4328 * number of SGE's necessary to support the sg_tablesize. 4329 */ 4330 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4331 GFP_KERNEL, 4332 &lpfc_ncmd->dma_handle); 4333 if (!lpfc_ncmd->data) { 4334 kfree(lpfc_ncmd); 4335 break; 4336 } 4337 4338 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4339 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4340 } else { 4341 /* 4342 * 4K Page alignment is CRITICAL to BlockGuard, double 4343 * check to be sure. 4344 */ 4345 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4346 (((unsigned long)(lpfc_ncmd->data) & 4347 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4348 lpfc_printf_log(phba, KERN_ERR, 4349 LOG_TRACE_EVENT, 4350 "3369 Memory alignment err: " 4351 "addr=%lx\n", 4352 (unsigned long)lpfc_ncmd->data); 4353 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4354 lpfc_ncmd->data, 4355 lpfc_ncmd->dma_handle); 4356 kfree(lpfc_ncmd); 4357 break; 4358 } 4359 } 4360 4361 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4362 4363 lxri = lpfc_sli4_next_xritag(phba); 4364 if (lxri == NO_XRI) { 4365 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4366 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4367 kfree(lpfc_ncmd); 4368 break; 4369 } 4370 pwqeq = &lpfc_ncmd->cur_iocbq; 4371 4372 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4373 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4374 if (iotag == 0) { 4375 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4376 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4377 kfree(lpfc_ncmd); 4378 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4379 "6121 Failed to allocate IOTAG for" 4380 " XRI:0x%x\n", lxri); 4381 lpfc_sli4_free_xri(phba, lxri); 4382 break; 4383 } 4384 pwqeq->sli4_lxritag = lxri; 4385 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4386 pwqeq->context1 = lpfc_ncmd; 4387 4388 /* Initialize local short-hand pointers. */ 4389 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4390 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4391 lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd; 4392 spin_lock_init(&lpfc_ncmd->buf_lock); 4393 4394 /* add the nvme buffer to a post list */ 4395 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4396 phba->sli4_hba.io_xri_cnt++; 4397 } 4398 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4399 "6114 Allocate %d out of %d requested new NVME " 4400 "buffers\n", bcnt, num_to_alloc); 4401 4402 /* post the list of nvme buffer sgls to port if available */ 4403 if (!list_empty(&post_nblist)) 4404 num_posted = lpfc_sli4_post_io_sgl_list( 4405 phba, &post_nblist, bcnt); 4406 else 4407 num_posted = 0; 4408 4409 return num_posted; 4410 } 4411 4412 static uint64_t 4413 lpfc_get_wwpn(struct lpfc_hba *phba) 4414 { 4415 uint64_t wwn; 4416 int rc; 4417 LPFC_MBOXQ_t *mboxq; 4418 MAILBOX_t *mb; 4419 4420 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4421 GFP_KERNEL); 4422 if (!mboxq) 4423 return (uint64_t)-1; 4424 4425 /* First get WWN of HBA instance */ 4426 lpfc_read_nv(phba, mboxq); 4427 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4428 if (rc != MBX_SUCCESS) { 4429 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4430 "6019 Mailbox failed , mbxCmd x%x " 4431 "READ_NV, mbxStatus x%x\n", 4432 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4433 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4434 mempool_free(mboxq, phba->mbox_mem_pool); 4435 return (uint64_t) -1; 4436 } 4437 mb = &mboxq->u.mb; 4438 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4439 /* wwn is WWPN of HBA instance */ 4440 mempool_free(mboxq, phba->mbox_mem_pool); 4441 if (phba->sli_rev == LPFC_SLI_REV4) 4442 return be64_to_cpu(wwn); 4443 else 4444 return rol64(wwn, 32); 4445 } 4446 4447 /** 4448 * lpfc_vmid_res_alloc - Allocates resources for VMID 4449 * @phba: pointer to lpfc hba data structure. 4450 * @vport: pointer to vport data structure 4451 * 4452 * This routine allocated the resources needed for the VMID. 4453 * 4454 * Return codes 4455 * 0 on Success 4456 * Non-0 on Failure 4457 */ 4458 static int 4459 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport) 4460 { 4461 /* VMID feature is supported only on SLI4 */ 4462 if (phba->sli_rev == LPFC_SLI_REV3) { 4463 phba->cfg_vmid_app_header = 0; 4464 phba->cfg_vmid_priority_tagging = 0; 4465 } 4466 4467 if (lpfc_is_vmid_enabled(phba)) { 4468 vport->vmid = 4469 kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid), 4470 GFP_KERNEL); 4471 if (!vport->vmid) 4472 return -ENOMEM; 4473 4474 rwlock_init(&vport->vmid_lock); 4475 4476 /* Set the VMID parameters for the vport */ 4477 vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging; 4478 vport->vmid_inactivity_timeout = 4479 phba->cfg_vmid_inactivity_timeout; 4480 vport->max_vmid = phba->cfg_max_vmid; 4481 vport->cur_vmid_cnt = 0; 4482 4483 vport->vmid_priority_range = bitmap_zalloc 4484 (LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL); 4485 4486 if (!vport->vmid_priority_range) { 4487 kfree(vport->vmid); 4488 return -ENOMEM; 4489 } 4490 4491 hash_init(vport->hash_table); 4492 } 4493 return 0; 4494 } 4495 4496 /** 4497 * lpfc_create_port - Create an FC port 4498 * @phba: pointer to lpfc hba data structure. 4499 * @instance: a unique integer ID to this FC port. 4500 * @dev: pointer to the device data structure. 4501 * 4502 * This routine creates a FC port for the upper layer protocol. The FC port 4503 * can be created on top of either a physical port or a virtual port provided 4504 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4505 * and associates the FC port created before adding the shost into the SCSI 4506 * layer. 4507 * 4508 * Return codes 4509 * @vport - pointer to the virtual N_Port data structure. 4510 * NULL - port create failed. 4511 **/ 4512 struct lpfc_vport * 4513 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4514 { 4515 struct lpfc_vport *vport; 4516 struct Scsi_Host *shost = NULL; 4517 struct scsi_host_template *template; 4518 int error = 0; 4519 int i; 4520 uint64_t wwn; 4521 bool use_no_reset_hba = false; 4522 int rc; 4523 4524 if (lpfc_no_hba_reset_cnt) { 4525 if (phba->sli_rev < LPFC_SLI_REV4 && 4526 dev == &phba->pcidev->dev) { 4527 /* Reset the port first */ 4528 lpfc_sli_brdrestart(phba); 4529 rc = lpfc_sli_chipset_init(phba); 4530 if (rc) 4531 return NULL; 4532 } 4533 wwn = lpfc_get_wwpn(phba); 4534 } 4535 4536 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4537 if (wwn == lpfc_no_hba_reset[i]) { 4538 lpfc_printf_log(phba, KERN_ERR, 4539 LOG_TRACE_EVENT, 4540 "6020 Setting use_no_reset port=%llx\n", 4541 wwn); 4542 use_no_reset_hba = true; 4543 break; 4544 } 4545 } 4546 4547 /* Seed template for SCSI host registration */ 4548 if (dev == &phba->pcidev->dev) { 4549 template = &phba->port_template; 4550 4551 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4552 /* Seed physical port template */ 4553 memcpy(template, &lpfc_template, sizeof(*template)); 4554 4555 if (use_no_reset_hba) 4556 /* template is for a no reset SCSI Host */ 4557 template->eh_host_reset_handler = NULL; 4558 4559 /* Template for all vports this physical port creates */ 4560 memcpy(&phba->vport_template, &lpfc_template, 4561 sizeof(*template)); 4562 phba->vport_template.shost_attrs = lpfc_vport_attrs; 4563 phba->vport_template.eh_bus_reset_handler = NULL; 4564 phba->vport_template.eh_host_reset_handler = NULL; 4565 phba->vport_template.vendor_id = 0; 4566 4567 /* Initialize the host templates with updated value */ 4568 if (phba->sli_rev == LPFC_SLI_REV4) { 4569 template->sg_tablesize = phba->cfg_scsi_seg_cnt; 4570 phba->vport_template.sg_tablesize = 4571 phba->cfg_scsi_seg_cnt; 4572 } else { 4573 template->sg_tablesize = phba->cfg_sg_seg_cnt; 4574 phba->vport_template.sg_tablesize = 4575 phba->cfg_sg_seg_cnt; 4576 } 4577 4578 } else { 4579 /* NVMET is for physical port only */ 4580 memcpy(template, &lpfc_template_nvme, 4581 sizeof(*template)); 4582 } 4583 } else { 4584 template = &phba->vport_template; 4585 } 4586 4587 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4588 if (!shost) 4589 goto out; 4590 4591 vport = (struct lpfc_vport *) shost->hostdata; 4592 vport->phba = phba; 4593 vport->load_flag |= FC_LOADING; 4594 vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 4595 vport->fc_rscn_flush = 0; 4596 lpfc_get_vport_cfgparam(vport); 4597 4598 /* Adjust value in vport */ 4599 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4600 4601 shost->unique_id = instance; 4602 shost->max_id = LPFC_MAX_TARGET; 4603 shost->max_lun = vport->cfg_max_luns; 4604 shost->this_id = -1; 4605 shost->max_cmd_len = 16; 4606 4607 if (phba->sli_rev == LPFC_SLI_REV4) { 4608 if (!phba->cfg_fcp_mq_threshold || 4609 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4610 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4611 4612 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4613 phba->cfg_fcp_mq_threshold); 4614 4615 shost->dma_boundary = 4616 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4617 4618 if (phba->cfg_xpsgl && !phba->nvmet_support) 4619 shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE; 4620 else 4621 shost->sg_tablesize = phba->cfg_scsi_seg_cnt; 4622 } else 4623 /* SLI-3 has a limited number of hardware queues (3), 4624 * thus there is only one for FCP processing. 4625 */ 4626 shost->nr_hw_queues = 1; 4627 4628 /* 4629 * Set initial can_queue value since 0 is no longer supported and 4630 * scsi_add_host will fail. This will be adjusted later based on the 4631 * max xri value determined in hba setup. 4632 */ 4633 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4634 if (dev != &phba->pcidev->dev) { 4635 shost->transportt = lpfc_vport_transport_template; 4636 vport->port_type = LPFC_NPIV_PORT; 4637 } else { 4638 shost->transportt = lpfc_transport_template; 4639 vport->port_type = LPFC_PHYSICAL_PORT; 4640 } 4641 4642 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4643 "9081 CreatePort TMPLATE type %x TBLsize %d " 4644 "SEGcnt %d/%d\n", 4645 vport->port_type, shost->sg_tablesize, 4646 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4647 4648 /* Allocate the resources for VMID */ 4649 rc = lpfc_vmid_res_alloc(phba, vport); 4650 4651 if (rc) 4652 goto out; 4653 4654 /* Initialize all internally managed lists. */ 4655 INIT_LIST_HEAD(&vport->fc_nodes); 4656 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4657 spin_lock_init(&vport->work_port_lock); 4658 4659 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4660 4661 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4662 4663 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4664 4665 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4666 lpfc_setup_bg(phba, shost); 4667 4668 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4669 if (error) 4670 goto out_put_shost; 4671 4672 spin_lock_irq(&phba->port_list_lock); 4673 list_add_tail(&vport->listentry, &phba->port_list); 4674 spin_unlock_irq(&phba->port_list_lock); 4675 return vport; 4676 4677 out_put_shost: 4678 kfree(vport->vmid); 4679 bitmap_free(vport->vmid_priority_range); 4680 scsi_host_put(shost); 4681 out: 4682 return NULL; 4683 } 4684 4685 /** 4686 * destroy_port - destroy an FC port 4687 * @vport: pointer to an lpfc virtual N_Port data structure. 4688 * 4689 * This routine destroys a FC port from the upper layer protocol. All the 4690 * resources associated with the port are released. 4691 **/ 4692 void 4693 destroy_port(struct lpfc_vport *vport) 4694 { 4695 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4696 struct lpfc_hba *phba = vport->phba; 4697 4698 lpfc_debugfs_terminate(vport); 4699 fc_remove_host(shost); 4700 scsi_remove_host(shost); 4701 4702 spin_lock_irq(&phba->port_list_lock); 4703 list_del_init(&vport->listentry); 4704 spin_unlock_irq(&phba->port_list_lock); 4705 4706 lpfc_cleanup(vport); 4707 return; 4708 } 4709 4710 /** 4711 * lpfc_get_instance - Get a unique integer ID 4712 * 4713 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4714 * uses the kernel idr facility to perform the task. 4715 * 4716 * Return codes: 4717 * instance - a unique integer ID allocated as the new instance. 4718 * -1 - lpfc get instance failed. 4719 **/ 4720 int 4721 lpfc_get_instance(void) 4722 { 4723 int ret; 4724 4725 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4726 return ret < 0 ? -1 : ret; 4727 } 4728 4729 /** 4730 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4731 * @shost: pointer to SCSI host data structure. 4732 * @time: elapsed time of the scan in jiffies. 4733 * 4734 * This routine is called by the SCSI layer with a SCSI host to determine 4735 * whether the scan host is finished. 4736 * 4737 * Note: there is no scan_start function as adapter initialization will have 4738 * asynchronously kicked off the link initialization. 4739 * 4740 * Return codes 4741 * 0 - SCSI host scan is not over yet. 4742 * 1 - SCSI host scan is over. 4743 **/ 4744 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4745 { 4746 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4747 struct lpfc_hba *phba = vport->phba; 4748 int stat = 0; 4749 4750 spin_lock_irq(shost->host_lock); 4751 4752 if (vport->load_flag & FC_UNLOADING) { 4753 stat = 1; 4754 goto finished; 4755 } 4756 if (time >= msecs_to_jiffies(30 * 1000)) { 4757 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4758 "0461 Scanning longer than 30 " 4759 "seconds. Continuing initialization\n"); 4760 stat = 1; 4761 goto finished; 4762 } 4763 if (time >= msecs_to_jiffies(15 * 1000) && 4764 phba->link_state <= LPFC_LINK_DOWN) { 4765 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4766 "0465 Link down longer than 15 " 4767 "seconds. Continuing initialization\n"); 4768 stat = 1; 4769 goto finished; 4770 } 4771 4772 if (vport->port_state != LPFC_VPORT_READY) 4773 goto finished; 4774 if (vport->num_disc_nodes || vport->fc_prli_sent) 4775 goto finished; 4776 if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000)) 4777 goto finished; 4778 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4779 goto finished; 4780 4781 stat = 1; 4782 4783 finished: 4784 spin_unlock_irq(shost->host_lock); 4785 return stat; 4786 } 4787 4788 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4789 { 4790 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4791 struct lpfc_hba *phba = vport->phba; 4792 4793 fc_host_supported_speeds(shost) = 0; 4794 /* 4795 * Avoid reporting supported link speed for FCoE as it can't be 4796 * controlled via FCoE. 4797 */ 4798 if (phba->hba_flag & HBA_FCOE_MODE) 4799 return; 4800 4801 if (phba->lmt & LMT_256Gb) 4802 fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT; 4803 if (phba->lmt & LMT_128Gb) 4804 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4805 if (phba->lmt & LMT_64Gb) 4806 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4807 if (phba->lmt & LMT_32Gb) 4808 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4809 if (phba->lmt & LMT_16Gb) 4810 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4811 if (phba->lmt & LMT_10Gb) 4812 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4813 if (phba->lmt & LMT_8Gb) 4814 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4815 if (phba->lmt & LMT_4Gb) 4816 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4817 if (phba->lmt & LMT_2Gb) 4818 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4819 if (phba->lmt & LMT_1Gb) 4820 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 4821 } 4822 4823 /** 4824 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 4825 * @shost: pointer to SCSI host data structure. 4826 * 4827 * This routine initializes a given SCSI host attributes on a FC port. The 4828 * SCSI host can be either on top of a physical port or a virtual port. 4829 **/ 4830 void lpfc_host_attrib_init(struct Scsi_Host *shost) 4831 { 4832 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4833 struct lpfc_hba *phba = vport->phba; 4834 /* 4835 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 4836 */ 4837 4838 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 4839 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 4840 fc_host_supported_classes(shost) = FC_COS_CLASS3; 4841 4842 memset(fc_host_supported_fc4s(shost), 0, 4843 sizeof(fc_host_supported_fc4s(shost))); 4844 fc_host_supported_fc4s(shost)[2] = 1; 4845 fc_host_supported_fc4s(shost)[7] = 1; 4846 4847 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 4848 sizeof fc_host_symbolic_name(shost)); 4849 4850 lpfc_host_supported_speeds_set(shost); 4851 4852 fc_host_maxframe_size(shost) = 4853 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 4854 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 4855 4856 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 4857 4858 /* This value is also unchanging */ 4859 memset(fc_host_active_fc4s(shost), 0, 4860 sizeof(fc_host_active_fc4s(shost))); 4861 fc_host_active_fc4s(shost)[2] = 1; 4862 fc_host_active_fc4s(shost)[7] = 1; 4863 4864 fc_host_max_npiv_vports(shost) = phba->max_vpi; 4865 spin_lock_irq(shost->host_lock); 4866 vport->load_flag &= ~FC_LOADING; 4867 spin_unlock_irq(shost->host_lock); 4868 } 4869 4870 /** 4871 * lpfc_stop_port_s3 - Stop SLI3 device port 4872 * @phba: pointer to lpfc hba data structure. 4873 * 4874 * This routine is invoked to stop an SLI3 device port, it stops the device 4875 * from generating interrupts and stops the device driver's timers for the 4876 * device. 4877 **/ 4878 static void 4879 lpfc_stop_port_s3(struct lpfc_hba *phba) 4880 { 4881 /* Clear all interrupt enable conditions */ 4882 writel(0, phba->HCregaddr); 4883 readl(phba->HCregaddr); /* flush */ 4884 /* Clear all pending interrupts */ 4885 writel(0xffffffff, phba->HAregaddr); 4886 readl(phba->HAregaddr); /* flush */ 4887 4888 /* Reset some HBA SLI setup states */ 4889 lpfc_stop_hba_timers(phba); 4890 phba->pport->work_port_events = 0; 4891 } 4892 4893 /** 4894 * lpfc_stop_port_s4 - Stop SLI4 device port 4895 * @phba: pointer to lpfc hba data structure. 4896 * 4897 * This routine is invoked to stop an SLI4 device port, it stops the device 4898 * from generating interrupts and stops the device driver's timers for the 4899 * device. 4900 **/ 4901 static void 4902 lpfc_stop_port_s4(struct lpfc_hba *phba) 4903 { 4904 /* Reset some HBA SLI4 setup states */ 4905 lpfc_stop_hba_timers(phba); 4906 if (phba->pport) 4907 phba->pport->work_port_events = 0; 4908 phba->sli4_hba.intr_enable = 0; 4909 } 4910 4911 /** 4912 * lpfc_stop_port - Wrapper function for stopping hba port 4913 * @phba: Pointer to HBA context object. 4914 * 4915 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 4916 * the API jump table function pointer from the lpfc_hba struct. 4917 **/ 4918 void 4919 lpfc_stop_port(struct lpfc_hba *phba) 4920 { 4921 phba->lpfc_stop_port(phba); 4922 4923 if (phba->wq) 4924 flush_workqueue(phba->wq); 4925 } 4926 4927 /** 4928 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 4929 * @phba: Pointer to hba for which this call is being executed. 4930 * 4931 * This routine starts the timer waiting for the FCF rediscovery to complete. 4932 **/ 4933 void 4934 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 4935 { 4936 unsigned long fcf_redisc_wait_tmo = 4937 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 4938 /* Start fcf rediscovery wait period timer */ 4939 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 4940 spin_lock_irq(&phba->hbalock); 4941 /* Allow action to new fcf asynchronous event */ 4942 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 4943 /* Mark the FCF rediscovery pending state */ 4944 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 4945 spin_unlock_irq(&phba->hbalock); 4946 } 4947 4948 /** 4949 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 4950 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 4951 * 4952 * This routine is invoked when waiting for FCF table rediscover has been 4953 * timed out. If new FCF record(s) has (have) been discovered during the 4954 * wait period, a new FCF event shall be added to the FCOE async event 4955 * list, and then worker thread shall be waked up for processing from the 4956 * worker thread context. 4957 **/ 4958 static void 4959 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 4960 { 4961 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); 4962 4963 /* Don't send FCF rediscovery event if timer cancelled */ 4964 spin_lock_irq(&phba->hbalock); 4965 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 4966 spin_unlock_irq(&phba->hbalock); 4967 return; 4968 } 4969 /* Clear FCF rediscovery timer pending flag */ 4970 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 4971 /* FCF rediscovery event to worker thread */ 4972 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 4973 spin_unlock_irq(&phba->hbalock); 4974 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 4975 "2776 FCF rediscover quiescent timer expired\n"); 4976 /* wake up worker thread */ 4977 lpfc_worker_wake_up(phba); 4978 } 4979 4980 /** 4981 * lpfc_vmid_poll - VMID timeout detection 4982 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 4983 * 4984 * This routine is invoked when there is no I/O on by a VM for the specified 4985 * amount of time. When this situation is detected, the VMID has to be 4986 * deregistered from the switch and all the local resources freed. The VMID 4987 * will be reassigned to the VM once the I/O begins. 4988 **/ 4989 static void 4990 lpfc_vmid_poll(struct timer_list *t) 4991 { 4992 struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll); 4993 u32 wake_up = 0; 4994 4995 /* check if there is a need to issue QFPA */ 4996 if (phba->pport->vmid_priority_tagging) { 4997 wake_up = 1; 4998 phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA; 4999 } 5000 5001 /* Is the vmid inactivity timer enabled */ 5002 if (phba->pport->vmid_inactivity_timeout || 5003 phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) { 5004 wake_up = 1; 5005 phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID; 5006 } 5007 5008 if (wake_up) 5009 lpfc_worker_wake_up(phba); 5010 5011 /* restart the timer for the next iteration */ 5012 mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 * 5013 LPFC_VMID_TIMER)); 5014 } 5015 5016 /** 5017 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 5018 * @phba: pointer to lpfc hba data structure. 5019 * @acqe_link: pointer to the async link completion queue entry. 5020 * 5021 * This routine is to parse the SLI4 link-attention link fault code. 5022 **/ 5023 static void 5024 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 5025 struct lpfc_acqe_link *acqe_link) 5026 { 5027 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 5028 case LPFC_ASYNC_LINK_FAULT_NONE: 5029 case LPFC_ASYNC_LINK_FAULT_LOCAL: 5030 case LPFC_ASYNC_LINK_FAULT_REMOTE: 5031 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 5032 break; 5033 default: 5034 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5035 "0398 Unknown link fault code: x%x\n", 5036 bf_get(lpfc_acqe_link_fault, acqe_link)); 5037 break; 5038 } 5039 } 5040 5041 /** 5042 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 5043 * @phba: pointer to lpfc hba data structure. 5044 * @acqe_link: pointer to the async link completion queue entry. 5045 * 5046 * This routine is to parse the SLI4 link attention type and translate it 5047 * into the base driver's link attention type coding. 5048 * 5049 * Return: Link attention type in terms of base driver's coding. 5050 **/ 5051 static uint8_t 5052 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 5053 struct lpfc_acqe_link *acqe_link) 5054 { 5055 uint8_t att_type; 5056 5057 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 5058 case LPFC_ASYNC_LINK_STATUS_DOWN: 5059 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 5060 att_type = LPFC_ATT_LINK_DOWN; 5061 break; 5062 case LPFC_ASYNC_LINK_STATUS_UP: 5063 /* Ignore physical link up events - wait for logical link up */ 5064 att_type = LPFC_ATT_RESERVED; 5065 break; 5066 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 5067 att_type = LPFC_ATT_LINK_UP; 5068 break; 5069 default: 5070 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5071 "0399 Invalid link attention type: x%x\n", 5072 bf_get(lpfc_acqe_link_status, acqe_link)); 5073 att_type = LPFC_ATT_RESERVED; 5074 break; 5075 } 5076 return att_type; 5077 } 5078 5079 /** 5080 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 5081 * @phba: pointer to lpfc hba data structure. 5082 * 5083 * This routine is to get an SLI3 FC port's link speed in Mbps. 5084 * 5085 * Return: link speed in terms of Mbps. 5086 **/ 5087 uint32_t 5088 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 5089 { 5090 uint32_t link_speed; 5091 5092 if (!lpfc_is_link_up(phba)) 5093 return 0; 5094 5095 if (phba->sli_rev <= LPFC_SLI_REV3) { 5096 switch (phba->fc_linkspeed) { 5097 case LPFC_LINK_SPEED_1GHZ: 5098 link_speed = 1000; 5099 break; 5100 case LPFC_LINK_SPEED_2GHZ: 5101 link_speed = 2000; 5102 break; 5103 case LPFC_LINK_SPEED_4GHZ: 5104 link_speed = 4000; 5105 break; 5106 case LPFC_LINK_SPEED_8GHZ: 5107 link_speed = 8000; 5108 break; 5109 case LPFC_LINK_SPEED_10GHZ: 5110 link_speed = 10000; 5111 break; 5112 case LPFC_LINK_SPEED_16GHZ: 5113 link_speed = 16000; 5114 break; 5115 default: 5116 link_speed = 0; 5117 } 5118 } else { 5119 if (phba->sli4_hba.link_state.logical_speed) 5120 link_speed = 5121 phba->sli4_hba.link_state.logical_speed; 5122 else 5123 link_speed = phba->sli4_hba.link_state.speed; 5124 } 5125 return link_speed; 5126 } 5127 5128 /** 5129 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 5130 * @phba: pointer to lpfc hba data structure. 5131 * @evt_code: asynchronous event code. 5132 * @speed_code: asynchronous event link speed code. 5133 * 5134 * This routine is to parse the giving SLI4 async event link speed code into 5135 * value of Mbps for the link speed. 5136 * 5137 * Return: link speed in terms of Mbps. 5138 **/ 5139 static uint32_t 5140 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 5141 uint8_t speed_code) 5142 { 5143 uint32_t port_speed; 5144 5145 switch (evt_code) { 5146 case LPFC_TRAILER_CODE_LINK: 5147 switch (speed_code) { 5148 case LPFC_ASYNC_LINK_SPEED_ZERO: 5149 port_speed = 0; 5150 break; 5151 case LPFC_ASYNC_LINK_SPEED_10MBPS: 5152 port_speed = 10; 5153 break; 5154 case LPFC_ASYNC_LINK_SPEED_100MBPS: 5155 port_speed = 100; 5156 break; 5157 case LPFC_ASYNC_LINK_SPEED_1GBPS: 5158 port_speed = 1000; 5159 break; 5160 case LPFC_ASYNC_LINK_SPEED_10GBPS: 5161 port_speed = 10000; 5162 break; 5163 case LPFC_ASYNC_LINK_SPEED_20GBPS: 5164 port_speed = 20000; 5165 break; 5166 case LPFC_ASYNC_LINK_SPEED_25GBPS: 5167 port_speed = 25000; 5168 break; 5169 case LPFC_ASYNC_LINK_SPEED_40GBPS: 5170 port_speed = 40000; 5171 break; 5172 case LPFC_ASYNC_LINK_SPEED_100GBPS: 5173 port_speed = 100000; 5174 break; 5175 default: 5176 port_speed = 0; 5177 } 5178 break; 5179 case LPFC_TRAILER_CODE_FC: 5180 switch (speed_code) { 5181 case LPFC_FC_LA_SPEED_UNKNOWN: 5182 port_speed = 0; 5183 break; 5184 case LPFC_FC_LA_SPEED_1G: 5185 port_speed = 1000; 5186 break; 5187 case LPFC_FC_LA_SPEED_2G: 5188 port_speed = 2000; 5189 break; 5190 case LPFC_FC_LA_SPEED_4G: 5191 port_speed = 4000; 5192 break; 5193 case LPFC_FC_LA_SPEED_8G: 5194 port_speed = 8000; 5195 break; 5196 case LPFC_FC_LA_SPEED_10G: 5197 port_speed = 10000; 5198 break; 5199 case LPFC_FC_LA_SPEED_16G: 5200 port_speed = 16000; 5201 break; 5202 case LPFC_FC_LA_SPEED_32G: 5203 port_speed = 32000; 5204 break; 5205 case LPFC_FC_LA_SPEED_64G: 5206 port_speed = 64000; 5207 break; 5208 case LPFC_FC_LA_SPEED_128G: 5209 port_speed = 128000; 5210 break; 5211 case LPFC_FC_LA_SPEED_256G: 5212 port_speed = 256000; 5213 break; 5214 default: 5215 port_speed = 0; 5216 } 5217 break; 5218 default: 5219 port_speed = 0; 5220 } 5221 return port_speed; 5222 } 5223 5224 /** 5225 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 5226 * @phba: pointer to lpfc hba data structure. 5227 * @acqe_link: pointer to the async link completion queue entry. 5228 * 5229 * This routine is to handle the SLI4 asynchronous FCoE link event. 5230 **/ 5231 static void 5232 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 5233 struct lpfc_acqe_link *acqe_link) 5234 { 5235 struct lpfc_dmabuf *mp; 5236 LPFC_MBOXQ_t *pmb; 5237 MAILBOX_t *mb; 5238 struct lpfc_mbx_read_top *la; 5239 uint8_t att_type; 5240 int rc; 5241 5242 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 5243 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 5244 return; 5245 phba->fcoe_eventtag = acqe_link->event_tag; 5246 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5247 if (!pmb) { 5248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5249 "0395 The mboxq allocation failed\n"); 5250 return; 5251 } 5252 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5253 if (!mp) { 5254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5255 "0396 The lpfc_dmabuf allocation failed\n"); 5256 goto out_free_pmb; 5257 } 5258 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 5259 if (!mp->virt) { 5260 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5261 "0397 The mbuf allocation failed\n"); 5262 goto out_free_dmabuf; 5263 } 5264 5265 /* Cleanup any outstanding ELS commands */ 5266 lpfc_els_flush_all_cmd(phba); 5267 5268 /* Block ELS IOCBs until we have done process link event */ 5269 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5270 5271 /* Update link event statistics */ 5272 phba->sli.slistat.link_event++; 5273 5274 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5275 lpfc_read_topology(phba, pmb, mp); 5276 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5277 pmb->vport = phba->pport; 5278 5279 /* Keep the link status for extra SLI4 state machine reference */ 5280 phba->sli4_hba.link_state.speed = 5281 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 5282 bf_get(lpfc_acqe_link_speed, acqe_link)); 5283 phba->sli4_hba.link_state.duplex = 5284 bf_get(lpfc_acqe_link_duplex, acqe_link); 5285 phba->sli4_hba.link_state.status = 5286 bf_get(lpfc_acqe_link_status, acqe_link); 5287 phba->sli4_hba.link_state.type = 5288 bf_get(lpfc_acqe_link_type, acqe_link); 5289 phba->sli4_hba.link_state.number = 5290 bf_get(lpfc_acqe_link_number, acqe_link); 5291 phba->sli4_hba.link_state.fault = 5292 bf_get(lpfc_acqe_link_fault, acqe_link); 5293 phba->sli4_hba.link_state.logical_speed = 5294 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 5295 5296 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5297 "2900 Async FC/FCoE Link event - Speed:%dGBit " 5298 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 5299 "Logical speed:%dMbps Fault:%d\n", 5300 phba->sli4_hba.link_state.speed, 5301 phba->sli4_hba.link_state.topology, 5302 phba->sli4_hba.link_state.status, 5303 phba->sli4_hba.link_state.type, 5304 phba->sli4_hba.link_state.number, 5305 phba->sli4_hba.link_state.logical_speed, 5306 phba->sli4_hba.link_state.fault); 5307 /* 5308 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 5309 * topology info. Note: Optional for non FC-AL ports. 5310 */ 5311 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 5312 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5313 if (rc == MBX_NOT_FINISHED) 5314 goto out_free_dmabuf; 5315 return; 5316 } 5317 /* 5318 * For FCoE Mode: fill in all the topology information we need and call 5319 * the READ_TOPOLOGY completion routine to continue without actually 5320 * sending the READ_TOPOLOGY mailbox command to the port. 5321 */ 5322 /* Initialize completion status */ 5323 mb = &pmb->u.mb; 5324 mb->mbxStatus = MBX_SUCCESS; 5325 5326 /* Parse port fault information field */ 5327 lpfc_sli4_parse_latt_fault(phba, acqe_link); 5328 5329 /* Parse and translate link attention fields */ 5330 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 5331 la->eventTag = acqe_link->event_tag; 5332 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 5333 bf_set(lpfc_mbx_read_top_link_spd, la, 5334 (bf_get(lpfc_acqe_link_speed, acqe_link))); 5335 5336 /* Fake the the following irrelvant fields */ 5337 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 5338 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 5339 bf_set(lpfc_mbx_read_top_il, la, 0); 5340 bf_set(lpfc_mbx_read_top_pb, la, 0); 5341 bf_set(lpfc_mbx_read_top_fa, la, 0); 5342 bf_set(lpfc_mbx_read_top_mm, la, 0); 5343 5344 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5345 lpfc_mbx_cmpl_read_topology(phba, pmb); 5346 5347 return; 5348 5349 out_free_dmabuf: 5350 kfree(mp); 5351 out_free_pmb: 5352 mempool_free(pmb, phba->mbox_mem_pool); 5353 } 5354 5355 /** 5356 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5357 * topology. 5358 * @phba: pointer to lpfc hba data structure. 5359 * @speed_code: asynchronous event link speed code. 5360 * 5361 * This routine is to parse the giving SLI4 async event link speed code into 5362 * value of Read topology link speed. 5363 * 5364 * Return: link speed in terms of Read topology. 5365 **/ 5366 static uint8_t 5367 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5368 { 5369 uint8_t port_speed; 5370 5371 switch (speed_code) { 5372 case LPFC_FC_LA_SPEED_1G: 5373 port_speed = LPFC_LINK_SPEED_1GHZ; 5374 break; 5375 case LPFC_FC_LA_SPEED_2G: 5376 port_speed = LPFC_LINK_SPEED_2GHZ; 5377 break; 5378 case LPFC_FC_LA_SPEED_4G: 5379 port_speed = LPFC_LINK_SPEED_4GHZ; 5380 break; 5381 case LPFC_FC_LA_SPEED_8G: 5382 port_speed = LPFC_LINK_SPEED_8GHZ; 5383 break; 5384 case LPFC_FC_LA_SPEED_16G: 5385 port_speed = LPFC_LINK_SPEED_16GHZ; 5386 break; 5387 case LPFC_FC_LA_SPEED_32G: 5388 port_speed = LPFC_LINK_SPEED_32GHZ; 5389 break; 5390 case LPFC_FC_LA_SPEED_64G: 5391 port_speed = LPFC_LINK_SPEED_64GHZ; 5392 break; 5393 case LPFC_FC_LA_SPEED_128G: 5394 port_speed = LPFC_LINK_SPEED_128GHZ; 5395 break; 5396 case LPFC_FC_LA_SPEED_256G: 5397 port_speed = LPFC_LINK_SPEED_256GHZ; 5398 break; 5399 default: 5400 port_speed = 0; 5401 break; 5402 } 5403 5404 return port_speed; 5405 } 5406 5407 void 5408 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba) 5409 { 5410 struct rxtable_entry *entry; 5411 int cnt = 0, head, tail, last, start; 5412 5413 head = atomic_read(&phba->rxtable_idx_head); 5414 tail = atomic_read(&phba->rxtable_idx_tail); 5415 if (!phba->rxtable || head == tail) { 5416 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 5417 "4411 Rxtable is empty\n"); 5418 return; 5419 } 5420 last = tail; 5421 start = head; 5422 5423 /* Display the last LPFC_MAX_RXMONITOR_DUMP entries from the rxtable */ 5424 while (start != last) { 5425 if (start) 5426 start--; 5427 else 5428 start = LPFC_MAX_RXMONITOR_ENTRY - 1; 5429 entry = &phba->rxtable[start]; 5430 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5431 "4410 %02d: MBPI %lld Xmit %lld Cmpl %lld " 5432 "Lat %lld ASz %lld Info %02d BWUtil %d " 5433 "Int %d slot %d\n", 5434 cnt, entry->max_bytes_per_interval, 5435 entry->total_bytes, entry->rcv_bytes, 5436 entry->avg_io_latency, entry->avg_io_size, 5437 entry->cmf_info, entry->timer_utilization, 5438 entry->timer_interval, start); 5439 cnt++; 5440 if (cnt >= LPFC_MAX_RXMONITOR_DUMP) 5441 return; 5442 } 5443 } 5444 5445 /** 5446 * lpfc_cgn_update_stat - Save data into congestion stats buffer 5447 * @phba: pointer to lpfc hba data structure. 5448 * @dtag: FPIN descriptor received 5449 * 5450 * Increment the FPIN received counter/time when it happens. 5451 */ 5452 void 5453 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag) 5454 { 5455 struct lpfc_cgn_info *cp; 5456 struct tm broken; 5457 struct timespec64 cur_time; 5458 u32 cnt; 5459 u16 value; 5460 5461 /* Make sure we have a congestion info buffer */ 5462 if (!phba->cgn_i) 5463 return; 5464 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5465 ktime_get_real_ts64(&cur_time); 5466 time64_to_tm(cur_time.tv_sec, 0, &broken); 5467 5468 /* Update congestion statistics */ 5469 switch (dtag) { 5470 case ELS_DTAG_LNK_INTEGRITY: 5471 cnt = le32_to_cpu(cp->link_integ_notification); 5472 cnt++; 5473 cp->link_integ_notification = cpu_to_le32(cnt); 5474 5475 cp->cgn_stat_lnk_month = broken.tm_mon + 1; 5476 cp->cgn_stat_lnk_day = broken.tm_mday; 5477 cp->cgn_stat_lnk_year = broken.tm_year - 100; 5478 cp->cgn_stat_lnk_hour = broken.tm_hour; 5479 cp->cgn_stat_lnk_min = broken.tm_min; 5480 cp->cgn_stat_lnk_sec = broken.tm_sec; 5481 break; 5482 case ELS_DTAG_DELIVERY: 5483 cnt = le32_to_cpu(cp->delivery_notification); 5484 cnt++; 5485 cp->delivery_notification = cpu_to_le32(cnt); 5486 5487 cp->cgn_stat_del_month = broken.tm_mon + 1; 5488 cp->cgn_stat_del_day = broken.tm_mday; 5489 cp->cgn_stat_del_year = broken.tm_year - 100; 5490 cp->cgn_stat_del_hour = broken.tm_hour; 5491 cp->cgn_stat_del_min = broken.tm_min; 5492 cp->cgn_stat_del_sec = broken.tm_sec; 5493 break; 5494 case ELS_DTAG_PEER_CONGEST: 5495 cnt = le32_to_cpu(cp->cgn_peer_notification); 5496 cnt++; 5497 cp->cgn_peer_notification = cpu_to_le32(cnt); 5498 5499 cp->cgn_stat_peer_month = broken.tm_mon + 1; 5500 cp->cgn_stat_peer_day = broken.tm_mday; 5501 cp->cgn_stat_peer_year = broken.tm_year - 100; 5502 cp->cgn_stat_peer_hour = broken.tm_hour; 5503 cp->cgn_stat_peer_min = broken.tm_min; 5504 cp->cgn_stat_peer_sec = broken.tm_sec; 5505 break; 5506 case ELS_DTAG_CONGESTION: 5507 cnt = le32_to_cpu(cp->cgn_notification); 5508 cnt++; 5509 cp->cgn_notification = cpu_to_le32(cnt); 5510 5511 cp->cgn_stat_cgn_month = broken.tm_mon + 1; 5512 cp->cgn_stat_cgn_day = broken.tm_mday; 5513 cp->cgn_stat_cgn_year = broken.tm_year - 100; 5514 cp->cgn_stat_cgn_hour = broken.tm_hour; 5515 cp->cgn_stat_cgn_min = broken.tm_min; 5516 cp->cgn_stat_cgn_sec = broken.tm_sec; 5517 } 5518 if (phba->cgn_fpin_frequency && 5519 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5520 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5521 cp->cgn_stat_npm = cpu_to_le32(value); 5522 } 5523 value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5524 LPFC_CGN_CRC32_SEED); 5525 cp->cgn_info_crc = cpu_to_le32(value); 5526 } 5527 5528 /** 5529 * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer 5530 * @phba: pointer to lpfc hba data structure. 5531 * 5532 * Save the congestion event data every minute. 5533 * On the hour collapse all the minute data into hour data. Every day 5534 * collapse all the hour data into daily data. Separate driver 5535 * and fabrc congestion event counters that will be saved out 5536 * to the registered congestion buffer every minute. 5537 */ 5538 static void 5539 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba) 5540 { 5541 struct lpfc_cgn_info *cp; 5542 struct tm broken; 5543 struct timespec64 cur_time; 5544 uint32_t i, index; 5545 uint16_t value, mvalue; 5546 uint64_t bps; 5547 uint32_t mbps; 5548 uint32_t dvalue, wvalue, lvalue, avalue; 5549 uint64_t latsum; 5550 uint16_t *ptr; 5551 uint32_t *lptr; 5552 uint16_t *mptr; 5553 5554 /* Make sure we have a congestion info buffer */ 5555 if (!phba->cgn_i) 5556 return; 5557 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5558 5559 if (time_before(jiffies, phba->cgn_evt_timestamp)) 5560 return; 5561 phba->cgn_evt_timestamp = jiffies + 5562 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 5563 phba->cgn_evt_minute++; 5564 5565 /* We should get to this point in the routine on 1 minute intervals */ 5566 5567 ktime_get_real_ts64(&cur_time); 5568 time64_to_tm(cur_time.tv_sec, 0, &broken); 5569 5570 if (phba->cgn_fpin_frequency && 5571 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5572 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5573 cp->cgn_stat_npm = cpu_to_le32(value); 5574 } 5575 5576 /* Read and clear the latency counters for this minute */ 5577 lvalue = atomic_read(&phba->cgn_latency_evt_cnt); 5578 latsum = atomic64_read(&phba->cgn_latency_evt); 5579 atomic_set(&phba->cgn_latency_evt_cnt, 0); 5580 atomic64_set(&phba->cgn_latency_evt, 0); 5581 5582 /* We need to store MB/sec bandwidth in the congestion information. 5583 * block_cnt is count of 512 byte blocks for the entire minute, 5584 * bps will get bytes per sec before finally converting to MB/sec. 5585 */ 5586 bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512; 5587 phba->rx_block_cnt = 0; 5588 mvalue = bps / (1024 * 1024); /* convert to MB/sec */ 5589 5590 /* Every minute */ 5591 /* cgn parameters */ 5592 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 5593 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 5594 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 5595 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 5596 5597 /* Fill in default LUN qdepth */ 5598 value = (uint16_t)(phba->pport->cfg_lun_queue_depth); 5599 cp->cgn_lunq = cpu_to_le16(value); 5600 5601 /* Record congestion buffer info - every minute 5602 * cgn_driver_evt_cnt (Driver events) 5603 * cgn_fabric_warn_cnt (Congestion Warnings) 5604 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency) 5605 * cgn_fabric_alarm_cnt (Congestion Alarms) 5606 */ 5607 index = ++cp->cgn_index_minute; 5608 if (cp->cgn_index_minute == LPFC_MIN_HOUR) { 5609 cp->cgn_index_minute = 0; 5610 index = 0; 5611 } 5612 5613 /* Get the number of driver events in this sample and reset counter */ 5614 dvalue = atomic_read(&phba->cgn_driver_evt_cnt); 5615 atomic_set(&phba->cgn_driver_evt_cnt, 0); 5616 5617 /* Get the number of warning events - FPIN and Signal for this minute */ 5618 wvalue = 0; 5619 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) || 5620 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 5621 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5622 wvalue = atomic_read(&phba->cgn_fabric_warn_cnt); 5623 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 5624 5625 /* Get the number of alarm events - FPIN and Signal for this minute */ 5626 avalue = 0; 5627 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) || 5628 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5629 avalue = atomic_read(&phba->cgn_fabric_alarm_cnt); 5630 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 5631 5632 /* Collect the driver, warning, alarm and latency counts for this 5633 * minute into the driver congestion buffer. 5634 */ 5635 ptr = &cp->cgn_drvr_min[index]; 5636 value = (uint16_t)dvalue; 5637 *ptr = cpu_to_le16(value); 5638 5639 ptr = &cp->cgn_warn_min[index]; 5640 value = (uint16_t)wvalue; 5641 *ptr = cpu_to_le16(value); 5642 5643 ptr = &cp->cgn_alarm_min[index]; 5644 value = (uint16_t)avalue; 5645 *ptr = cpu_to_le16(value); 5646 5647 lptr = &cp->cgn_latency_min[index]; 5648 if (lvalue) { 5649 lvalue = (uint32_t)div_u64(latsum, lvalue); 5650 *lptr = cpu_to_le32(lvalue); 5651 } else { 5652 *lptr = 0; 5653 } 5654 5655 /* Collect the bandwidth value into the driver's congesion buffer. */ 5656 mptr = &cp->cgn_bw_min[index]; 5657 *mptr = cpu_to_le16(mvalue); 5658 5659 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5660 "2418 Congestion Info - minute (%d): %d %d %d %d %d\n", 5661 index, dvalue, wvalue, *lptr, mvalue, avalue); 5662 5663 /* Every hour */ 5664 if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) { 5665 /* Record congestion buffer info - every hour 5666 * Collapse all minutes into an hour 5667 */ 5668 index = ++cp->cgn_index_hour; 5669 if (cp->cgn_index_hour == LPFC_HOUR_DAY) { 5670 cp->cgn_index_hour = 0; 5671 index = 0; 5672 } 5673 5674 dvalue = 0; 5675 wvalue = 0; 5676 lvalue = 0; 5677 avalue = 0; 5678 mvalue = 0; 5679 mbps = 0; 5680 for (i = 0; i < LPFC_MIN_HOUR; i++) { 5681 dvalue += le16_to_cpu(cp->cgn_drvr_min[i]); 5682 wvalue += le16_to_cpu(cp->cgn_warn_min[i]); 5683 lvalue += le32_to_cpu(cp->cgn_latency_min[i]); 5684 mbps += le16_to_cpu(cp->cgn_bw_min[i]); 5685 avalue += le16_to_cpu(cp->cgn_alarm_min[i]); 5686 } 5687 if (lvalue) /* Avg of latency averages */ 5688 lvalue /= LPFC_MIN_HOUR; 5689 if (mbps) /* Avg of Bandwidth averages */ 5690 mvalue = mbps / LPFC_MIN_HOUR; 5691 5692 lptr = &cp->cgn_drvr_hr[index]; 5693 *lptr = cpu_to_le32(dvalue); 5694 lptr = &cp->cgn_warn_hr[index]; 5695 *lptr = cpu_to_le32(wvalue); 5696 lptr = &cp->cgn_latency_hr[index]; 5697 *lptr = cpu_to_le32(lvalue); 5698 mptr = &cp->cgn_bw_hr[index]; 5699 *mptr = cpu_to_le16(mvalue); 5700 lptr = &cp->cgn_alarm_hr[index]; 5701 *lptr = cpu_to_le32(avalue); 5702 5703 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5704 "2419 Congestion Info - hour " 5705 "(%d): %d %d %d %d %d\n", 5706 index, dvalue, wvalue, lvalue, mvalue, avalue); 5707 } 5708 5709 /* Every day */ 5710 if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) { 5711 /* Record congestion buffer info - every hour 5712 * Collapse all hours into a day. Rotate days 5713 * after LPFC_MAX_CGN_DAYS. 5714 */ 5715 index = ++cp->cgn_index_day; 5716 if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) { 5717 cp->cgn_index_day = 0; 5718 index = 0; 5719 } 5720 5721 /* Anytime we overwrite daily index 0, after we wrap, 5722 * we will be overwriting the oldest day, so we must 5723 * update the congestion data start time for that day. 5724 * That start time should have previously been saved after 5725 * we wrote the last days worth of data. 5726 */ 5727 if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) { 5728 time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken); 5729 5730 cp->cgn_info_month = broken.tm_mon + 1; 5731 cp->cgn_info_day = broken.tm_mday; 5732 cp->cgn_info_year = broken.tm_year - 100; 5733 cp->cgn_info_hour = broken.tm_hour; 5734 cp->cgn_info_minute = broken.tm_min; 5735 cp->cgn_info_second = broken.tm_sec; 5736 5737 lpfc_printf_log 5738 (phba, KERN_INFO, LOG_CGN_MGMT, 5739 "2646 CGNInfo idx0 Start Time: " 5740 "%d/%d/%d %d:%d:%d\n", 5741 cp->cgn_info_day, cp->cgn_info_month, 5742 cp->cgn_info_year, cp->cgn_info_hour, 5743 cp->cgn_info_minute, cp->cgn_info_second); 5744 } 5745 5746 dvalue = 0; 5747 wvalue = 0; 5748 lvalue = 0; 5749 mvalue = 0; 5750 mbps = 0; 5751 avalue = 0; 5752 for (i = 0; i < LPFC_HOUR_DAY; i++) { 5753 dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]); 5754 wvalue += le32_to_cpu(cp->cgn_warn_hr[i]); 5755 lvalue += le32_to_cpu(cp->cgn_latency_hr[i]); 5756 mbps += le32_to_cpu(cp->cgn_bw_hr[i]); 5757 avalue += le32_to_cpu(cp->cgn_alarm_hr[i]); 5758 } 5759 if (lvalue) /* Avg of latency averages */ 5760 lvalue /= LPFC_HOUR_DAY; 5761 if (mbps) /* Avg of Bandwidth averages */ 5762 mvalue = mbps / LPFC_HOUR_DAY; 5763 5764 lptr = &cp->cgn_drvr_day[index]; 5765 *lptr = cpu_to_le32(dvalue); 5766 lptr = &cp->cgn_warn_day[index]; 5767 *lptr = cpu_to_le32(wvalue); 5768 lptr = &cp->cgn_latency_day[index]; 5769 *lptr = cpu_to_le32(lvalue); 5770 mptr = &cp->cgn_bw_day[index]; 5771 *mptr = cpu_to_le16(mvalue); 5772 lptr = &cp->cgn_alarm_day[index]; 5773 *lptr = cpu_to_le32(avalue); 5774 5775 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5776 "2420 Congestion Info - daily (%d): " 5777 "%d %d %d %d %d\n", 5778 index, dvalue, wvalue, lvalue, mvalue, avalue); 5779 5780 /* We just wrote LPFC_MAX_CGN_DAYS of data, 5781 * so we are wrapped on any data after this. 5782 * Save this as the start time for the next day. 5783 */ 5784 if (index == (LPFC_MAX_CGN_DAYS - 1)) { 5785 phba->hba_flag |= HBA_CGN_DAY_WRAP; 5786 ktime_get_real_ts64(&phba->cgn_daily_ts); 5787 } 5788 } 5789 5790 /* Use the frequency found in the last rcv'ed FPIN */ 5791 value = phba->cgn_fpin_frequency; 5792 if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) 5793 cp->cgn_warn_freq = cpu_to_le16(value); 5794 if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) 5795 cp->cgn_alarm_freq = cpu_to_le16(value); 5796 5797 /* Frequency (in ms) Signal Warning/Signal Congestion Notifications 5798 * are received by the HBA 5799 */ 5800 value = phba->cgn_sig_freq; 5801 5802 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 5803 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5804 cp->cgn_warn_freq = cpu_to_le16(value); 5805 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5806 cp->cgn_alarm_freq = cpu_to_le16(value); 5807 5808 lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5809 LPFC_CGN_CRC32_SEED); 5810 cp->cgn_info_crc = cpu_to_le32(lvalue); 5811 } 5812 5813 /** 5814 * lpfc_calc_cmf_latency - latency from start of rxate timer interval 5815 * @phba: The Hba for which this call is being executed. 5816 * 5817 * The routine calculates the latency from the beginning of the CMF timer 5818 * interval to the current point in time. It is called from IO completion 5819 * when we exceed our Bandwidth limitation for the time interval. 5820 */ 5821 uint32_t 5822 lpfc_calc_cmf_latency(struct lpfc_hba *phba) 5823 { 5824 struct timespec64 cmpl_time; 5825 uint32_t msec = 0; 5826 5827 ktime_get_real_ts64(&cmpl_time); 5828 5829 /* This routine works on a ms granularity so sec and usec are 5830 * converted accordingly. 5831 */ 5832 if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) { 5833 msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) / 5834 NSEC_PER_MSEC; 5835 } else { 5836 if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) { 5837 msec = (cmpl_time.tv_sec - 5838 phba->cmf_latency.tv_sec) * MSEC_PER_SEC; 5839 msec += ((cmpl_time.tv_nsec - 5840 phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC); 5841 } else { 5842 msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec - 5843 1) * MSEC_PER_SEC; 5844 msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) + 5845 cmpl_time.tv_nsec) / NSEC_PER_MSEC); 5846 } 5847 } 5848 return msec; 5849 } 5850 5851 /** 5852 * lpfc_cmf_timer - This is the timer function for one congestion 5853 * rate interval. 5854 * @timer: Pointer to the high resolution timer that expired 5855 */ 5856 static enum hrtimer_restart 5857 lpfc_cmf_timer(struct hrtimer *timer) 5858 { 5859 struct lpfc_hba *phba = container_of(timer, struct lpfc_hba, 5860 cmf_timer); 5861 struct rxtable_entry *entry; 5862 uint32_t io_cnt; 5863 uint32_t head, tail; 5864 uint32_t busy, max_read; 5865 uint64_t total, rcv, lat, mbpi; 5866 int timer_interval = LPFC_CMF_INTERVAL; 5867 uint32_t ms; 5868 struct lpfc_cgn_stat *cgs; 5869 int cpu; 5870 5871 /* Only restart the timer if congestion mgmt is on */ 5872 if (phba->cmf_active_mode == LPFC_CFG_OFF || 5873 !phba->cmf_latency.tv_sec) { 5874 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5875 "6224 CMF timer exit: %d %lld\n", 5876 phba->cmf_active_mode, 5877 (uint64_t)phba->cmf_latency.tv_sec); 5878 return HRTIMER_NORESTART; 5879 } 5880 5881 /* If pport is not ready yet, just exit and wait for 5882 * the next timer cycle to hit. 5883 */ 5884 if (!phba->pport) 5885 goto skip; 5886 5887 /* Do not block SCSI IO while in the timer routine since 5888 * total_bytes will be cleared 5889 */ 5890 atomic_set(&phba->cmf_stop_io, 1); 5891 5892 /* First we need to calculate the actual ms between 5893 * the last timer interrupt and this one. We ask for 5894 * LPFC_CMF_INTERVAL, however the actual time may 5895 * vary depending on system overhead. 5896 */ 5897 ms = lpfc_calc_cmf_latency(phba); 5898 5899 5900 /* Immediately after we calculate the time since the last 5901 * timer interrupt, set the start time for the next 5902 * interrupt 5903 */ 5904 ktime_get_real_ts64(&phba->cmf_latency); 5905 5906 phba->cmf_link_byte_count = 5907 div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000); 5908 5909 /* Collect all the stats from the prior timer interval */ 5910 total = 0; 5911 io_cnt = 0; 5912 lat = 0; 5913 rcv = 0; 5914 for_each_present_cpu(cpu) { 5915 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 5916 total += atomic64_xchg(&cgs->total_bytes, 0); 5917 io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0); 5918 lat += atomic64_xchg(&cgs->rx_latency, 0); 5919 rcv += atomic64_xchg(&cgs->rcv_bytes, 0); 5920 } 5921 5922 /* Before we issue another CMF_SYNC_WQE, retrieve the BW 5923 * returned from the last CMF_SYNC_WQE issued, from 5924 * cmf_last_sync_bw. This will be the target BW for 5925 * this next timer interval. 5926 */ 5927 if (phba->cmf_active_mode == LPFC_CFG_MANAGED && 5928 phba->link_state != LPFC_LINK_DOWN && 5929 phba->hba_flag & HBA_SETUP) { 5930 mbpi = phba->cmf_last_sync_bw; 5931 phba->cmf_last_sync_bw = 0; 5932 lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total); 5933 } else { 5934 /* For Monitor mode or link down we want mbpi 5935 * to be the full link speed 5936 */ 5937 mbpi = phba->cmf_link_byte_count; 5938 } 5939 phba->cmf_timer_cnt++; 5940 5941 if (io_cnt) { 5942 /* Update congestion info buffer latency in us */ 5943 atomic_add(io_cnt, &phba->cgn_latency_evt_cnt); 5944 atomic64_add(lat, &phba->cgn_latency_evt); 5945 } 5946 busy = atomic_xchg(&phba->cmf_busy, 0); 5947 max_read = atomic_xchg(&phba->rx_max_read_cnt, 0); 5948 5949 /* Calculate MBPI for the next timer interval */ 5950 if (mbpi) { 5951 if (mbpi > phba->cmf_link_byte_count || 5952 phba->cmf_active_mode == LPFC_CFG_MONITOR) 5953 mbpi = phba->cmf_link_byte_count; 5954 5955 /* Change max_bytes_per_interval to what the prior 5956 * CMF_SYNC_WQE cmpl indicated. 5957 */ 5958 if (mbpi != phba->cmf_max_bytes_per_interval) 5959 phba->cmf_max_bytes_per_interval = mbpi; 5960 } 5961 5962 /* Save rxmonitor information for debug */ 5963 if (phba->rxtable) { 5964 head = atomic_xchg(&phba->rxtable_idx_head, 5965 LPFC_RXMONITOR_TABLE_IN_USE); 5966 entry = &phba->rxtable[head]; 5967 entry->total_bytes = total; 5968 entry->rcv_bytes = rcv; 5969 entry->cmf_busy = busy; 5970 entry->cmf_info = phba->cmf_active_info; 5971 if (io_cnt) { 5972 entry->avg_io_latency = div_u64(lat, io_cnt); 5973 entry->avg_io_size = div_u64(rcv, io_cnt); 5974 } else { 5975 entry->avg_io_latency = 0; 5976 entry->avg_io_size = 0; 5977 } 5978 entry->max_read_cnt = max_read; 5979 entry->io_cnt = io_cnt; 5980 entry->max_bytes_per_interval = mbpi; 5981 if (phba->cmf_active_mode == LPFC_CFG_MANAGED) 5982 entry->timer_utilization = phba->cmf_last_ts; 5983 else 5984 entry->timer_utilization = ms; 5985 entry->timer_interval = ms; 5986 phba->cmf_last_ts = 0; 5987 5988 /* Increment rxtable index */ 5989 head = (head + 1) % LPFC_MAX_RXMONITOR_ENTRY; 5990 tail = atomic_read(&phba->rxtable_idx_tail); 5991 if (head == tail) { 5992 tail = (tail + 1) % LPFC_MAX_RXMONITOR_ENTRY; 5993 atomic_set(&phba->rxtable_idx_tail, tail); 5994 } 5995 atomic_set(&phba->rxtable_idx_head, head); 5996 } 5997 5998 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) { 5999 /* If Monitor mode, check if we are oversubscribed 6000 * against the full line rate. 6001 */ 6002 if (mbpi && total > mbpi) 6003 atomic_inc(&phba->cgn_driver_evt_cnt); 6004 } 6005 phba->rx_block_cnt += div_u64(rcv, 512); /* save 512 byte block cnt */ 6006 6007 /* Each minute save Fabric and Driver congestion information */ 6008 lpfc_cgn_save_evt_cnt(phba); 6009 6010 /* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the 6011 * minute, adjust our next timer interval, if needed, to ensure a 6012 * 1 minute granularity when we get the next timer interrupt. 6013 */ 6014 if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL), 6015 phba->cgn_evt_timestamp)) { 6016 timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp - 6017 jiffies); 6018 if (timer_interval <= 0) 6019 timer_interval = LPFC_CMF_INTERVAL; 6020 6021 /* If we adjust timer_interval, max_bytes_per_interval 6022 * needs to be adjusted as well. 6023 */ 6024 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * 6025 timer_interval, 1000); 6026 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) 6027 phba->cmf_max_bytes_per_interval = 6028 phba->cmf_link_byte_count; 6029 } 6030 6031 /* Since total_bytes has already been zero'ed, its okay to unblock 6032 * after max_bytes_per_interval is setup. 6033 */ 6034 if (atomic_xchg(&phba->cmf_bw_wait, 0)) 6035 queue_work(phba->wq, &phba->unblock_request_work); 6036 6037 /* SCSI IO is now unblocked */ 6038 atomic_set(&phba->cmf_stop_io, 0); 6039 6040 skip: 6041 hrtimer_forward_now(timer, 6042 ktime_set(0, timer_interval * NSEC_PER_MSEC)); 6043 return HRTIMER_RESTART; 6044 } 6045 6046 #define trunk_link_status(__idx)\ 6047 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6048 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 6049 "Link up" : "Link down") : "NA" 6050 /* Did port __idx reported an error */ 6051 #define trunk_port_fault(__idx)\ 6052 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6053 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 6054 6055 static void 6056 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 6057 struct lpfc_acqe_fc_la *acqe_fc) 6058 { 6059 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 6060 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 6061 6062 phba->sli4_hba.link_state.speed = 6063 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6064 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6065 6066 phba->sli4_hba.link_state.logical_speed = 6067 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6068 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 6069 phba->fc_linkspeed = 6070 lpfc_async_link_speed_to_read_top( 6071 phba, 6072 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6073 6074 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 6075 phba->trunk_link.link0.state = 6076 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 6077 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6078 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 6079 } 6080 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 6081 phba->trunk_link.link1.state = 6082 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 6083 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6084 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 6085 } 6086 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 6087 phba->trunk_link.link2.state = 6088 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 6089 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6090 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 6091 } 6092 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 6093 phba->trunk_link.link3.state = 6094 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 6095 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6096 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 6097 } 6098 6099 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6100 "2910 Async FC Trunking Event - Speed:%d\n" 6101 "\tLogical speed:%d " 6102 "port0: %s port1: %s port2: %s port3: %s\n", 6103 phba->sli4_hba.link_state.speed, 6104 phba->sli4_hba.link_state.logical_speed, 6105 trunk_link_status(0), trunk_link_status(1), 6106 trunk_link_status(2), trunk_link_status(3)); 6107 6108 if (phba->cmf_active_mode != LPFC_CFG_OFF) 6109 lpfc_cmf_signal_init(phba); 6110 6111 if (port_fault) 6112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6113 "3202 trunk error:0x%x (%s) seen on port0:%s " 6114 /* 6115 * SLI-4: We have only 0xA error codes 6116 * defined as of now. print an appropriate 6117 * message in case driver needs to be updated. 6118 */ 6119 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 6120 "UNDEFINED. update driver." : trunk_errmsg[err], 6121 trunk_port_fault(0), trunk_port_fault(1), 6122 trunk_port_fault(2), trunk_port_fault(3)); 6123 } 6124 6125 6126 /** 6127 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 6128 * @phba: pointer to lpfc hba data structure. 6129 * @acqe_fc: pointer to the async fc completion queue entry. 6130 * 6131 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 6132 * that the event was received and then issue a read_topology mailbox command so 6133 * that the rest of the driver will treat it the same as SLI3. 6134 **/ 6135 static void 6136 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 6137 { 6138 struct lpfc_dmabuf *mp; 6139 LPFC_MBOXQ_t *pmb; 6140 MAILBOX_t *mb; 6141 struct lpfc_mbx_read_top *la; 6142 int rc; 6143 6144 if (bf_get(lpfc_trailer_type, acqe_fc) != 6145 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 6146 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6147 "2895 Non FC link Event detected.(%d)\n", 6148 bf_get(lpfc_trailer_type, acqe_fc)); 6149 return; 6150 } 6151 6152 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6153 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 6154 lpfc_update_trunk_link_status(phba, acqe_fc); 6155 return; 6156 } 6157 6158 /* Keep the link status for extra SLI4 state machine reference */ 6159 phba->sli4_hba.link_state.speed = 6160 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6161 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6162 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 6163 phba->sli4_hba.link_state.topology = 6164 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 6165 phba->sli4_hba.link_state.status = 6166 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 6167 phba->sli4_hba.link_state.type = 6168 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 6169 phba->sli4_hba.link_state.number = 6170 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 6171 phba->sli4_hba.link_state.fault = 6172 bf_get(lpfc_acqe_link_fault, acqe_fc); 6173 6174 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6175 LPFC_FC_LA_TYPE_LINK_DOWN) 6176 phba->sli4_hba.link_state.logical_speed = 0; 6177 else if (!phba->sli4_hba.conf_trunk) 6178 phba->sli4_hba.link_state.logical_speed = 6179 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6180 6181 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6182 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 6183 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 6184 "%dMbps Fault:%d\n", 6185 phba->sli4_hba.link_state.speed, 6186 phba->sli4_hba.link_state.topology, 6187 phba->sli4_hba.link_state.status, 6188 phba->sli4_hba.link_state.type, 6189 phba->sli4_hba.link_state.number, 6190 phba->sli4_hba.link_state.logical_speed, 6191 phba->sli4_hba.link_state.fault); 6192 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6193 if (!pmb) { 6194 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6195 "2897 The mboxq allocation failed\n"); 6196 return; 6197 } 6198 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 6199 if (!mp) { 6200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6201 "2898 The lpfc_dmabuf allocation failed\n"); 6202 goto out_free_pmb; 6203 } 6204 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 6205 if (!mp->virt) { 6206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6207 "2899 The mbuf allocation failed\n"); 6208 goto out_free_dmabuf; 6209 } 6210 6211 /* Cleanup any outstanding ELS commands */ 6212 lpfc_els_flush_all_cmd(phba); 6213 6214 /* Block ELS IOCBs until we have done process link event */ 6215 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 6216 6217 /* Update link event statistics */ 6218 phba->sli.slistat.link_event++; 6219 6220 /* Create lpfc_handle_latt mailbox command from link ACQE */ 6221 lpfc_read_topology(phba, pmb, mp); 6222 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 6223 pmb->vport = phba->pport; 6224 6225 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 6226 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 6227 6228 switch (phba->sli4_hba.link_state.status) { 6229 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 6230 phba->link_flag |= LS_MDS_LINK_DOWN; 6231 break; 6232 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 6233 phba->link_flag |= LS_MDS_LOOPBACK; 6234 break; 6235 default: 6236 break; 6237 } 6238 6239 /* Initialize completion status */ 6240 mb = &pmb->u.mb; 6241 mb->mbxStatus = MBX_SUCCESS; 6242 6243 /* Parse port fault information field */ 6244 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 6245 6246 /* Parse and translate link attention fields */ 6247 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 6248 la->eventTag = acqe_fc->event_tag; 6249 6250 if (phba->sli4_hba.link_state.status == 6251 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 6252 bf_set(lpfc_mbx_read_top_att_type, la, 6253 LPFC_FC_LA_TYPE_UNEXP_WWPN); 6254 } else { 6255 bf_set(lpfc_mbx_read_top_att_type, la, 6256 LPFC_FC_LA_TYPE_LINK_DOWN); 6257 } 6258 /* Invoke the mailbox command callback function */ 6259 lpfc_mbx_cmpl_read_topology(phba, pmb); 6260 6261 return; 6262 } 6263 6264 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 6265 if (rc == MBX_NOT_FINISHED) 6266 goto out_free_dmabuf; 6267 return; 6268 6269 out_free_dmabuf: 6270 kfree(mp); 6271 out_free_pmb: 6272 mempool_free(pmb, phba->mbox_mem_pool); 6273 } 6274 6275 /** 6276 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 6277 * @phba: pointer to lpfc hba data structure. 6278 * @acqe_sli: pointer to the async SLI completion queue entry. 6279 * 6280 * This routine is to handle the SLI4 asynchronous SLI events. 6281 **/ 6282 static void 6283 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 6284 { 6285 char port_name; 6286 char message[128]; 6287 uint8_t status; 6288 uint8_t evt_type; 6289 uint8_t operational = 0; 6290 struct temp_event temp_event_data; 6291 struct lpfc_acqe_misconfigured_event *misconfigured; 6292 struct lpfc_acqe_cgn_signal *cgn_signal; 6293 struct Scsi_Host *shost; 6294 struct lpfc_vport **vports; 6295 int rc, i, cnt; 6296 6297 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 6298 6299 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6300 "2901 Async SLI event - Type:%d, Event Data: x%08x " 6301 "x%08x x%08x x%08x\n", evt_type, 6302 acqe_sli->event_data1, acqe_sli->event_data2, 6303 acqe_sli->reserved, acqe_sli->trailer); 6304 6305 port_name = phba->Port[0]; 6306 if (port_name == 0x00) 6307 port_name = '?'; /* get port name is empty */ 6308 6309 switch (evt_type) { 6310 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 6311 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6312 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 6313 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6314 6315 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6316 "3190 Over Temperature:%d Celsius- Port Name %c\n", 6317 acqe_sli->event_data1, port_name); 6318 6319 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 6320 shost = lpfc_shost_from_vport(phba->pport); 6321 fc_host_post_vendor_event(shost, fc_get_event_number(), 6322 sizeof(temp_event_data), 6323 (char *)&temp_event_data, 6324 SCSI_NL_VID_TYPE_PCI 6325 | PCI_VENDOR_ID_EMULEX); 6326 break; 6327 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 6328 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6329 temp_event_data.event_code = LPFC_NORMAL_TEMP; 6330 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6331 6332 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6333 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 6334 acqe_sli->event_data1, port_name); 6335 6336 shost = lpfc_shost_from_vport(phba->pport); 6337 fc_host_post_vendor_event(shost, fc_get_event_number(), 6338 sizeof(temp_event_data), 6339 (char *)&temp_event_data, 6340 SCSI_NL_VID_TYPE_PCI 6341 | PCI_VENDOR_ID_EMULEX); 6342 break; 6343 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 6344 misconfigured = (struct lpfc_acqe_misconfigured_event *) 6345 &acqe_sli->event_data1; 6346 6347 /* fetch the status for this port */ 6348 switch (phba->sli4_hba.lnk_info.lnk_no) { 6349 case LPFC_LINK_NUMBER_0: 6350 status = bf_get(lpfc_sli_misconfigured_port0_state, 6351 &misconfigured->theEvent); 6352 operational = bf_get(lpfc_sli_misconfigured_port0_op, 6353 &misconfigured->theEvent); 6354 break; 6355 case LPFC_LINK_NUMBER_1: 6356 status = bf_get(lpfc_sli_misconfigured_port1_state, 6357 &misconfigured->theEvent); 6358 operational = bf_get(lpfc_sli_misconfigured_port1_op, 6359 &misconfigured->theEvent); 6360 break; 6361 case LPFC_LINK_NUMBER_2: 6362 status = bf_get(lpfc_sli_misconfigured_port2_state, 6363 &misconfigured->theEvent); 6364 operational = bf_get(lpfc_sli_misconfigured_port2_op, 6365 &misconfigured->theEvent); 6366 break; 6367 case LPFC_LINK_NUMBER_3: 6368 status = bf_get(lpfc_sli_misconfigured_port3_state, 6369 &misconfigured->theEvent); 6370 operational = bf_get(lpfc_sli_misconfigured_port3_op, 6371 &misconfigured->theEvent); 6372 break; 6373 default: 6374 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6375 "3296 " 6376 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 6377 "event: Invalid link %d", 6378 phba->sli4_hba.lnk_info.lnk_no); 6379 return; 6380 } 6381 6382 /* Skip if optic state unchanged */ 6383 if (phba->sli4_hba.lnk_info.optic_state == status) 6384 return; 6385 6386 switch (status) { 6387 case LPFC_SLI_EVENT_STATUS_VALID: 6388 sprintf(message, "Physical Link is functional"); 6389 break; 6390 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 6391 sprintf(message, "Optics faulted/incorrectly " 6392 "installed/not installed - Reseat optics, " 6393 "if issue not resolved, replace."); 6394 break; 6395 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 6396 sprintf(message, 6397 "Optics of two types installed - Remove one " 6398 "optic or install matching pair of optics."); 6399 break; 6400 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 6401 sprintf(message, "Incompatible optics - Replace with " 6402 "compatible optics for card to function."); 6403 break; 6404 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 6405 sprintf(message, "Unqualified optics - Replace with " 6406 "Avago optics for Warranty and Technical " 6407 "Support - Link is%s operational", 6408 (operational) ? " not" : ""); 6409 break; 6410 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 6411 sprintf(message, "Uncertified optics - Replace with " 6412 "Avago-certified optics to enable link " 6413 "operation - Link is%s operational", 6414 (operational) ? " not" : ""); 6415 break; 6416 default: 6417 /* firmware is reporting a status we don't know about */ 6418 sprintf(message, "Unknown event status x%02x", status); 6419 break; 6420 } 6421 6422 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 6423 rc = lpfc_sli4_read_config(phba); 6424 if (rc) { 6425 phba->lmt = 0; 6426 lpfc_printf_log(phba, KERN_ERR, 6427 LOG_TRACE_EVENT, 6428 "3194 Unable to retrieve supported " 6429 "speeds, rc = 0x%x\n", rc); 6430 } 6431 vports = lpfc_create_vport_work_array(phba); 6432 if (vports != NULL) { 6433 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6434 i++) { 6435 shost = lpfc_shost_from_vport(vports[i]); 6436 lpfc_host_supported_speeds_set(shost); 6437 } 6438 } 6439 lpfc_destroy_vport_work_array(phba, vports); 6440 6441 phba->sli4_hba.lnk_info.optic_state = status; 6442 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6443 "3176 Port Name %c %s\n", port_name, message); 6444 break; 6445 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 6446 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6447 "3192 Remote DPort Test Initiated - " 6448 "Event Data1:x%08x Event Data2: x%08x\n", 6449 acqe_sli->event_data1, acqe_sli->event_data2); 6450 break; 6451 case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG: 6452 /* Call FW to obtain active parms */ 6453 lpfc_sli4_cgn_parm_chg_evt(phba); 6454 break; 6455 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 6456 /* Misconfigured WWN. Reports that the SLI Port is configured 6457 * to use FA-WWN, but the attached device doesn’t support it. 6458 * No driver action is required. 6459 * Event Data1 - N.A, Event Data2 - N.A 6460 */ 6461 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI, 6462 "2699 Misconfigured FA-WWN - Attached device does " 6463 "not support FA-WWN\n"); 6464 break; 6465 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 6466 /* EEPROM failure. No driver action is required */ 6467 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6468 "2518 EEPROM failure - " 6469 "Event Data1: x%08x Event Data2: x%08x\n", 6470 acqe_sli->event_data1, acqe_sli->event_data2); 6471 break; 6472 case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL: 6473 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6474 break; 6475 cgn_signal = (struct lpfc_acqe_cgn_signal *) 6476 &acqe_sli->event_data1; 6477 phba->cgn_acqe_cnt++; 6478 6479 cnt = bf_get(lpfc_warn_acqe, cgn_signal); 6480 atomic64_add(cnt, &phba->cgn_acqe_stat.warn); 6481 atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm); 6482 6483 /* no threshold for CMF, even 1 signal will trigger an event */ 6484 6485 /* Alarm overrides warning, so check that first */ 6486 if (cgn_signal->alarm_cnt) { 6487 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6488 /* Keep track of alarm cnt for cgn_info */ 6489 atomic_add(cgn_signal->alarm_cnt, 6490 &phba->cgn_fabric_alarm_cnt); 6491 /* Keep track of alarm cnt for CMF_SYNC_WQE */ 6492 atomic_add(cgn_signal->alarm_cnt, 6493 &phba->cgn_sync_alarm_cnt); 6494 } 6495 } else if (cnt) { 6496 /* signal action needs to be taken */ 6497 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 6498 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6499 /* Keep track of warning cnt for cgn_info */ 6500 atomic_add(cnt, &phba->cgn_fabric_warn_cnt); 6501 /* Keep track of warning cnt for CMF_SYNC_WQE */ 6502 atomic_add(cnt, &phba->cgn_sync_warn_cnt); 6503 } 6504 } 6505 break; 6506 default: 6507 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6508 "3193 Unrecognized SLI event, type: 0x%x", 6509 evt_type); 6510 break; 6511 } 6512 } 6513 6514 /** 6515 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 6516 * @vport: pointer to vport data structure. 6517 * 6518 * This routine is to perform Clear Virtual Link (CVL) on a vport in 6519 * response to a CVL event. 6520 * 6521 * Return the pointer to the ndlp with the vport if successful, otherwise 6522 * return NULL. 6523 **/ 6524 static struct lpfc_nodelist * 6525 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 6526 { 6527 struct lpfc_nodelist *ndlp; 6528 struct Scsi_Host *shost; 6529 struct lpfc_hba *phba; 6530 6531 if (!vport) 6532 return NULL; 6533 phba = vport->phba; 6534 if (!phba) 6535 return NULL; 6536 ndlp = lpfc_findnode_did(vport, Fabric_DID); 6537 if (!ndlp) { 6538 /* Cannot find existing Fabric ndlp, so allocate a new one */ 6539 ndlp = lpfc_nlp_init(vport, Fabric_DID); 6540 if (!ndlp) 6541 return 0; 6542 /* Set the node type */ 6543 ndlp->nlp_type |= NLP_FABRIC; 6544 /* Put ndlp onto node list */ 6545 lpfc_enqueue_node(vport, ndlp); 6546 } 6547 if ((phba->pport->port_state < LPFC_FLOGI) && 6548 (phba->pport->port_state != LPFC_VPORT_FAILED)) 6549 return NULL; 6550 /* If virtual link is not yet instantiated ignore CVL */ 6551 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 6552 && (vport->port_state != LPFC_VPORT_FAILED)) 6553 return NULL; 6554 shost = lpfc_shost_from_vport(vport); 6555 if (!shost) 6556 return NULL; 6557 lpfc_linkdown_port(vport); 6558 lpfc_cleanup_pending_mbox(vport); 6559 spin_lock_irq(shost->host_lock); 6560 vport->fc_flag |= FC_VPORT_CVL_RCVD; 6561 spin_unlock_irq(shost->host_lock); 6562 6563 return ndlp; 6564 } 6565 6566 /** 6567 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 6568 * @phba: pointer to lpfc hba data structure. 6569 * 6570 * This routine is to perform Clear Virtual Link (CVL) on all vports in 6571 * response to a FCF dead event. 6572 **/ 6573 static void 6574 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 6575 { 6576 struct lpfc_vport **vports; 6577 int i; 6578 6579 vports = lpfc_create_vport_work_array(phba); 6580 if (vports) 6581 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 6582 lpfc_sli4_perform_vport_cvl(vports[i]); 6583 lpfc_destroy_vport_work_array(phba, vports); 6584 } 6585 6586 /** 6587 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 6588 * @phba: pointer to lpfc hba data structure. 6589 * @acqe_fip: pointer to the async fcoe completion queue entry. 6590 * 6591 * This routine is to handle the SLI4 asynchronous fcoe event. 6592 **/ 6593 static void 6594 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 6595 struct lpfc_acqe_fip *acqe_fip) 6596 { 6597 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 6598 int rc; 6599 struct lpfc_vport *vport; 6600 struct lpfc_nodelist *ndlp; 6601 int active_vlink_present; 6602 struct lpfc_vport **vports; 6603 int i; 6604 6605 phba->fc_eventTag = acqe_fip->event_tag; 6606 phba->fcoe_eventtag = acqe_fip->event_tag; 6607 switch (event_type) { 6608 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 6609 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 6610 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 6611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6612 "2546 New FCF event, evt_tag:x%x, " 6613 "index:x%x\n", 6614 acqe_fip->event_tag, 6615 acqe_fip->index); 6616 else 6617 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 6618 LOG_DISCOVERY, 6619 "2788 FCF param modified event, " 6620 "evt_tag:x%x, index:x%x\n", 6621 acqe_fip->event_tag, 6622 acqe_fip->index); 6623 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6624 /* 6625 * During period of FCF discovery, read the FCF 6626 * table record indexed by the event to update 6627 * FCF roundrobin failover eligible FCF bmask. 6628 */ 6629 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6630 LOG_DISCOVERY, 6631 "2779 Read FCF (x%x) for updating " 6632 "roundrobin FCF failover bmask\n", 6633 acqe_fip->index); 6634 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 6635 } 6636 6637 /* If the FCF discovery is in progress, do nothing. */ 6638 spin_lock_irq(&phba->hbalock); 6639 if (phba->hba_flag & FCF_TS_INPROG) { 6640 spin_unlock_irq(&phba->hbalock); 6641 break; 6642 } 6643 /* If fast FCF failover rescan event is pending, do nothing */ 6644 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 6645 spin_unlock_irq(&phba->hbalock); 6646 break; 6647 } 6648 6649 /* If the FCF has been in discovered state, do nothing. */ 6650 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 6651 spin_unlock_irq(&phba->hbalock); 6652 break; 6653 } 6654 spin_unlock_irq(&phba->hbalock); 6655 6656 /* Otherwise, scan the entire FCF table and re-discover SAN */ 6657 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6658 "2770 Start FCF table scan per async FCF " 6659 "event, evt_tag:x%x, index:x%x\n", 6660 acqe_fip->event_tag, acqe_fip->index); 6661 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 6662 LPFC_FCOE_FCF_GET_FIRST); 6663 if (rc) 6664 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6665 "2547 Issue FCF scan read FCF mailbox " 6666 "command failed (x%x)\n", rc); 6667 break; 6668 6669 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 6670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6671 "2548 FCF Table full count 0x%x tag 0x%x\n", 6672 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 6673 acqe_fip->event_tag); 6674 break; 6675 6676 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 6677 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6678 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6679 "2549 FCF (x%x) disconnected from network, " 6680 "tag:x%x\n", acqe_fip->index, 6681 acqe_fip->event_tag); 6682 /* 6683 * If we are in the middle of FCF failover process, clear 6684 * the corresponding FCF bit in the roundrobin bitmap. 6685 */ 6686 spin_lock_irq(&phba->hbalock); 6687 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 6688 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 6689 spin_unlock_irq(&phba->hbalock); 6690 /* Update FLOGI FCF failover eligible FCF bmask */ 6691 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 6692 break; 6693 } 6694 spin_unlock_irq(&phba->hbalock); 6695 6696 /* If the event is not for currently used fcf do nothing */ 6697 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 6698 break; 6699 6700 /* 6701 * Otherwise, request the port to rediscover the entire FCF 6702 * table for a fast recovery from case that the current FCF 6703 * is no longer valid as we are not in the middle of FCF 6704 * failover process already. 6705 */ 6706 spin_lock_irq(&phba->hbalock); 6707 /* Mark the fast failover process in progress */ 6708 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 6709 spin_unlock_irq(&phba->hbalock); 6710 6711 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6712 "2771 Start FCF fast failover process due to " 6713 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 6714 "\n", acqe_fip->event_tag, acqe_fip->index); 6715 rc = lpfc_sli4_redisc_fcf_table(phba); 6716 if (rc) { 6717 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6718 LOG_TRACE_EVENT, 6719 "2772 Issue FCF rediscover mailbox " 6720 "command failed, fail through to FCF " 6721 "dead event\n"); 6722 spin_lock_irq(&phba->hbalock); 6723 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 6724 spin_unlock_irq(&phba->hbalock); 6725 /* 6726 * Last resort will fail over by treating this 6727 * as a link down to FCF registration. 6728 */ 6729 lpfc_sli4_fcf_dead_failthrough(phba); 6730 } else { 6731 /* Reset FCF roundrobin bmask for new discovery */ 6732 lpfc_sli4_clear_fcf_rr_bmask(phba); 6733 /* 6734 * Handling fast FCF failover to a DEAD FCF event is 6735 * considered equalivant to receiving CVL to all vports. 6736 */ 6737 lpfc_sli4_perform_all_vport_cvl(phba); 6738 } 6739 break; 6740 case LPFC_FIP_EVENT_TYPE_CVL: 6741 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6742 lpfc_printf_log(phba, KERN_ERR, 6743 LOG_TRACE_EVENT, 6744 "2718 Clear Virtual Link Received for VPI 0x%x" 6745 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 6746 6747 vport = lpfc_find_vport_by_vpid(phba, 6748 acqe_fip->index); 6749 ndlp = lpfc_sli4_perform_vport_cvl(vport); 6750 if (!ndlp) 6751 break; 6752 active_vlink_present = 0; 6753 6754 vports = lpfc_create_vport_work_array(phba); 6755 if (vports) { 6756 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6757 i++) { 6758 if ((!(vports[i]->fc_flag & 6759 FC_VPORT_CVL_RCVD)) && 6760 (vports[i]->port_state > LPFC_FDISC)) { 6761 active_vlink_present = 1; 6762 break; 6763 } 6764 } 6765 lpfc_destroy_vport_work_array(phba, vports); 6766 } 6767 6768 /* 6769 * Don't re-instantiate if vport is marked for deletion. 6770 * If we are here first then vport_delete is going to wait 6771 * for discovery to complete. 6772 */ 6773 if (!(vport->load_flag & FC_UNLOADING) && 6774 active_vlink_present) { 6775 /* 6776 * If there are other active VLinks present, 6777 * re-instantiate the Vlink using FDISC. 6778 */ 6779 mod_timer(&ndlp->nlp_delayfunc, 6780 jiffies + msecs_to_jiffies(1000)); 6781 spin_lock_irq(&ndlp->lock); 6782 ndlp->nlp_flag |= NLP_DELAY_TMO; 6783 spin_unlock_irq(&ndlp->lock); 6784 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 6785 vport->port_state = LPFC_FDISC; 6786 } else { 6787 /* 6788 * Otherwise, we request port to rediscover 6789 * the entire FCF table for a fast recovery 6790 * from possible case that the current FCF 6791 * is no longer valid if we are not already 6792 * in the FCF failover process. 6793 */ 6794 spin_lock_irq(&phba->hbalock); 6795 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6796 spin_unlock_irq(&phba->hbalock); 6797 break; 6798 } 6799 /* Mark the fast failover process in progress */ 6800 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 6801 spin_unlock_irq(&phba->hbalock); 6802 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6803 LOG_DISCOVERY, 6804 "2773 Start FCF failover per CVL, " 6805 "evt_tag:x%x\n", acqe_fip->event_tag); 6806 rc = lpfc_sli4_redisc_fcf_table(phba); 6807 if (rc) { 6808 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6809 LOG_TRACE_EVENT, 6810 "2774 Issue FCF rediscover " 6811 "mailbox command failed, " 6812 "through to CVL event\n"); 6813 spin_lock_irq(&phba->hbalock); 6814 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 6815 spin_unlock_irq(&phba->hbalock); 6816 /* 6817 * Last resort will be re-try on the 6818 * the current registered FCF entry. 6819 */ 6820 lpfc_retry_pport_discovery(phba); 6821 } else 6822 /* 6823 * Reset FCF roundrobin bmask for new 6824 * discovery. 6825 */ 6826 lpfc_sli4_clear_fcf_rr_bmask(phba); 6827 } 6828 break; 6829 default: 6830 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6831 "0288 Unknown FCoE event type 0x%x event tag " 6832 "0x%x\n", event_type, acqe_fip->event_tag); 6833 break; 6834 } 6835 } 6836 6837 /** 6838 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 6839 * @phba: pointer to lpfc hba data structure. 6840 * @acqe_dcbx: pointer to the async dcbx completion queue entry. 6841 * 6842 * This routine is to handle the SLI4 asynchronous dcbx event. 6843 **/ 6844 static void 6845 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 6846 struct lpfc_acqe_dcbx *acqe_dcbx) 6847 { 6848 phba->fc_eventTag = acqe_dcbx->event_tag; 6849 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6850 "0290 The SLI4 DCBX asynchronous event is not " 6851 "handled yet\n"); 6852 } 6853 6854 /** 6855 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 6856 * @phba: pointer to lpfc hba data structure. 6857 * @acqe_grp5: pointer to the async grp5 completion queue entry. 6858 * 6859 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 6860 * is an asynchronous notified of a logical link speed change. The Port 6861 * reports the logical link speed in units of 10Mbps. 6862 **/ 6863 static void 6864 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 6865 struct lpfc_acqe_grp5 *acqe_grp5) 6866 { 6867 uint16_t prev_ll_spd; 6868 6869 phba->fc_eventTag = acqe_grp5->event_tag; 6870 phba->fcoe_eventtag = acqe_grp5->event_tag; 6871 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 6872 phba->sli4_hba.link_state.logical_speed = 6873 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 6874 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6875 "2789 GRP5 Async Event: Updating logical link speed " 6876 "from %dMbps to %dMbps\n", prev_ll_spd, 6877 phba->sli4_hba.link_state.logical_speed); 6878 } 6879 6880 /** 6881 * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event 6882 * @phba: pointer to lpfc hba data structure. 6883 * 6884 * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event 6885 * is an asynchronous notification of a request to reset CM stats. 6886 **/ 6887 static void 6888 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba) 6889 { 6890 if (!phba->cgn_i) 6891 return; 6892 lpfc_init_congestion_stat(phba); 6893 } 6894 6895 /** 6896 * lpfc_cgn_params_val - Validate FW congestion parameters. 6897 * @phba: pointer to lpfc hba data structure. 6898 * @p_cfg_param: pointer to FW provided congestion parameters. 6899 * 6900 * This routine validates the congestion parameters passed 6901 * by the FW to the driver via an ACQE event. 6902 **/ 6903 static void 6904 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param) 6905 { 6906 spin_lock_irq(&phba->hbalock); 6907 6908 if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF, 6909 LPFC_CFG_MONITOR)) { 6910 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 6911 "6225 CMF mode param out of range: %d\n", 6912 p_cfg_param->cgn_param_mode); 6913 p_cfg_param->cgn_param_mode = LPFC_CFG_OFF; 6914 } 6915 6916 spin_unlock_irq(&phba->hbalock); 6917 } 6918 6919 /** 6920 * lpfc_cgn_params_parse - Process a FW cong parm change event 6921 * @phba: pointer to lpfc hba data structure. 6922 * @p_cgn_param: pointer to a data buffer with the FW cong params. 6923 * @len: the size of pdata in bytes. 6924 * 6925 * This routine validates the congestion management buffer signature 6926 * from the FW, validates the contents and makes corrections for 6927 * valid, in-range values. If the signature magic is correct and 6928 * after parameter validation, the contents are copied to the driver's 6929 * @phba structure. If the magic is incorrect, an error message is 6930 * logged. 6931 **/ 6932 static void 6933 lpfc_cgn_params_parse(struct lpfc_hba *phba, 6934 struct lpfc_cgn_param *p_cgn_param, uint32_t len) 6935 { 6936 struct lpfc_cgn_info *cp; 6937 uint32_t crc, oldmode; 6938 6939 /* Make sure the FW has encoded the correct magic number to 6940 * validate the congestion parameter in FW memory. 6941 */ 6942 if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) { 6943 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 6944 "4668 FW cgn parm buffer data: " 6945 "magic 0x%x version %d mode %d " 6946 "level0 %d level1 %d " 6947 "level2 %d byte13 %d " 6948 "byte14 %d byte15 %d " 6949 "byte11 %d byte12 %d activeMode %d\n", 6950 p_cgn_param->cgn_param_magic, 6951 p_cgn_param->cgn_param_version, 6952 p_cgn_param->cgn_param_mode, 6953 p_cgn_param->cgn_param_level0, 6954 p_cgn_param->cgn_param_level1, 6955 p_cgn_param->cgn_param_level2, 6956 p_cgn_param->byte13, 6957 p_cgn_param->byte14, 6958 p_cgn_param->byte15, 6959 p_cgn_param->byte11, 6960 p_cgn_param->byte12, 6961 phba->cmf_active_mode); 6962 6963 oldmode = phba->cmf_active_mode; 6964 6965 /* Any parameters out of range are corrected to defaults 6966 * by this routine. No need to fail. 6967 */ 6968 lpfc_cgn_params_val(phba, p_cgn_param); 6969 6970 /* Parameters are verified, move them into driver storage */ 6971 spin_lock_irq(&phba->hbalock); 6972 memcpy(&phba->cgn_p, p_cgn_param, 6973 sizeof(struct lpfc_cgn_param)); 6974 6975 /* Update parameters in congestion info buffer now */ 6976 if (phba->cgn_i) { 6977 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 6978 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 6979 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 6980 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 6981 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 6982 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 6983 LPFC_CGN_CRC32_SEED); 6984 cp->cgn_info_crc = cpu_to_le32(crc); 6985 } 6986 spin_unlock_irq(&phba->hbalock); 6987 6988 phba->cmf_active_mode = phba->cgn_p.cgn_param_mode; 6989 6990 switch (oldmode) { 6991 case LPFC_CFG_OFF: 6992 if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) { 6993 /* Turning CMF on */ 6994 lpfc_cmf_start(phba); 6995 6996 if (phba->link_state >= LPFC_LINK_UP) { 6997 phba->cgn_reg_fpin = 6998 phba->cgn_init_reg_fpin; 6999 phba->cgn_reg_signal = 7000 phba->cgn_init_reg_signal; 7001 lpfc_issue_els_edc(phba->pport, 0); 7002 } 7003 } 7004 break; 7005 case LPFC_CFG_MANAGED: 7006 switch (phba->cgn_p.cgn_param_mode) { 7007 case LPFC_CFG_OFF: 7008 /* Turning CMF off */ 7009 lpfc_cmf_stop(phba); 7010 if (phba->link_state >= LPFC_LINK_UP) 7011 lpfc_issue_els_edc(phba->pport, 0); 7012 break; 7013 case LPFC_CFG_MONITOR: 7014 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7015 "4661 Switch from MANAGED to " 7016 "`MONITOR mode\n"); 7017 phba->cmf_max_bytes_per_interval = 7018 phba->cmf_link_byte_count; 7019 7020 /* Resume blocked IO - unblock on workqueue */ 7021 queue_work(phba->wq, 7022 &phba->unblock_request_work); 7023 break; 7024 } 7025 break; 7026 case LPFC_CFG_MONITOR: 7027 switch (phba->cgn_p.cgn_param_mode) { 7028 case LPFC_CFG_OFF: 7029 /* Turning CMF off */ 7030 lpfc_cmf_stop(phba); 7031 if (phba->link_state >= LPFC_LINK_UP) 7032 lpfc_issue_els_edc(phba->pport, 0); 7033 break; 7034 case LPFC_CFG_MANAGED: 7035 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7036 "4662 Switch from MONITOR to " 7037 "MANAGED mode\n"); 7038 lpfc_cmf_signal_init(phba); 7039 break; 7040 } 7041 break; 7042 } 7043 } else { 7044 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7045 "4669 FW cgn parm buf wrong magic 0x%x " 7046 "version %d\n", p_cgn_param->cgn_param_magic, 7047 p_cgn_param->cgn_param_version); 7048 } 7049 } 7050 7051 /** 7052 * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters. 7053 * @phba: pointer to lpfc hba data structure. 7054 * 7055 * This routine issues a read_object mailbox command to 7056 * get the congestion management parameters from the FW 7057 * parses it and updates the driver maintained values. 7058 * 7059 * Returns 7060 * 0 if the object was empty 7061 * -Eval if an error was encountered 7062 * Count if bytes were read from object 7063 **/ 7064 int 7065 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba) 7066 { 7067 int ret = 0; 7068 struct lpfc_cgn_param *p_cgn_param = NULL; 7069 u32 *pdata = NULL; 7070 u32 len = 0; 7071 7072 /* Find out if the FW has a new set of congestion parameters. */ 7073 len = sizeof(struct lpfc_cgn_param); 7074 pdata = kzalloc(len, GFP_KERNEL); 7075 ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME, 7076 pdata, len); 7077 7078 /* 0 means no data. A negative means error. A positive means 7079 * bytes were copied. 7080 */ 7081 if (!ret) { 7082 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7083 "4670 CGN RD OBJ returns no data\n"); 7084 goto rd_obj_err; 7085 } else if (ret < 0) { 7086 /* Some error. Just exit and return it to the caller.*/ 7087 goto rd_obj_err; 7088 } 7089 7090 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7091 "6234 READ CGN PARAMS Successful %d\n", len); 7092 7093 /* Parse data pointer over len and update the phba congestion 7094 * parameters with values passed back. The receive rate values 7095 * may have been altered in FW, but take no action here. 7096 */ 7097 p_cgn_param = (struct lpfc_cgn_param *)pdata; 7098 lpfc_cgn_params_parse(phba, p_cgn_param, len); 7099 7100 rd_obj_err: 7101 kfree(pdata); 7102 return ret; 7103 } 7104 7105 /** 7106 * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event 7107 * @phba: pointer to lpfc hba data structure. 7108 * 7109 * The FW generated Async ACQE SLI event calls this routine when 7110 * the event type is an SLI Internal Port Event and the Event Code 7111 * indicates a change to the FW maintained congestion parameters. 7112 * 7113 * This routine executes a Read_Object mailbox call to obtain the 7114 * current congestion parameters maintained in FW and corrects 7115 * the driver's active congestion parameters. 7116 * 7117 * The acqe event is not passed because there is no further data 7118 * required. 7119 * 7120 * Returns nonzero error if event processing encountered an error. 7121 * Zero otherwise for success. 7122 **/ 7123 static int 7124 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba) 7125 { 7126 int ret = 0; 7127 7128 if (!phba->sli4_hba.pc_sli4_params.cmf) { 7129 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7130 "4664 Cgn Evt when E2E off. Drop event\n"); 7131 return -EACCES; 7132 } 7133 7134 /* If the event is claiming an empty object, it's ok. A write 7135 * could have cleared it. Only error is a negative return 7136 * status. 7137 */ 7138 ret = lpfc_sli4_cgn_params_read(phba); 7139 if (ret < 0) { 7140 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7141 "4667 Error reading Cgn Params (%d)\n", 7142 ret); 7143 } else if (!ret) { 7144 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7145 "4673 CGN Event empty object.\n"); 7146 } 7147 return ret; 7148 } 7149 7150 /** 7151 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 7152 * @phba: pointer to lpfc hba data structure. 7153 * 7154 * This routine is invoked by the worker thread to process all the pending 7155 * SLI4 asynchronous events. 7156 **/ 7157 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 7158 { 7159 struct lpfc_cq_event *cq_event; 7160 unsigned long iflags; 7161 7162 /* First, declare the async event has been handled */ 7163 spin_lock_irqsave(&phba->hbalock, iflags); 7164 phba->hba_flag &= ~ASYNC_EVENT; 7165 spin_unlock_irqrestore(&phba->hbalock, iflags); 7166 7167 /* Now, handle all the async events */ 7168 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7169 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 7170 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 7171 cq_event, struct lpfc_cq_event, list); 7172 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, 7173 iflags); 7174 7175 /* Process the asynchronous event */ 7176 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 7177 case LPFC_TRAILER_CODE_LINK: 7178 lpfc_sli4_async_link_evt(phba, 7179 &cq_event->cqe.acqe_link); 7180 break; 7181 case LPFC_TRAILER_CODE_FCOE: 7182 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 7183 break; 7184 case LPFC_TRAILER_CODE_DCBX: 7185 lpfc_sli4_async_dcbx_evt(phba, 7186 &cq_event->cqe.acqe_dcbx); 7187 break; 7188 case LPFC_TRAILER_CODE_GRP5: 7189 lpfc_sli4_async_grp5_evt(phba, 7190 &cq_event->cqe.acqe_grp5); 7191 break; 7192 case LPFC_TRAILER_CODE_FC: 7193 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 7194 break; 7195 case LPFC_TRAILER_CODE_SLI: 7196 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 7197 break; 7198 case LPFC_TRAILER_CODE_CMSTAT: 7199 lpfc_sli4_async_cmstat_evt(phba); 7200 break; 7201 default: 7202 lpfc_printf_log(phba, KERN_ERR, 7203 LOG_TRACE_EVENT, 7204 "1804 Invalid asynchronous event code: " 7205 "x%x\n", bf_get(lpfc_trailer_code, 7206 &cq_event->cqe.mcqe_cmpl)); 7207 break; 7208 } 7209 7210 /* Free the completion event processed to the free pool */ 7211 lpfc_sli4_cq_event_release(phba, cq_event); 7212 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7213 } 7214 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 7215 } 7216 7217 /** 7218 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 7219 * @phba: pointer to lpfc hba data structure. 7220 * 7221 * This routine is invoked by the worker thread to process FCF table 7222 * rediscovery pending completion event. 7223 **/ 7224 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 7225 { 7226 int rc; 7227 7228 spin_lock_irq(&phba->hbalock); 7229 /* Clear FCF rediscovery timeout event */ 7230 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 7231 /* Clear driver fast failover FCF record flag */ 7232 phba->fcf.failover_rec.flag = 0; 7233 /* Set state for FCF fast failover */ 7234 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 7235 spin_unlock_irq(&phba->hbalock); 7236 7237 /* Scan FCF table from the first entry to re-discover SAN */ 7238 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 7239 "2777 Start post-quiescent FCF table scan\n"); 7240 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 7241 if (rc) 7242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7243 "2747 Issue FCF scan read FCF mailbox " 7244 "command failed 0x%x\n", rc); 7245 } 7246 7247 /** 7248 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 7249 * @phba: pointer to lpfc hba data structure. 7250 * @dev_grp: The HBA PCI-Device group number. 7251 * 7252 * This routine is invoked to set up the per HBA PCI-Device group function 7253 * API jump table entries. 7254 * 7255 * Return: 0 if success, otherwise -ENODEV 7256 **/ 7257 int 7258 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7259 { 7260 int rc; 7261 7262 /* Set up lpfc PCI-device group */ 7263 phba->pci_dev_grp = dev_grp; 7264 7265 /* The LPFC_PCI_DEV_OC uses SLI4 */ 7266 if (dev_grp == LPFC_PCI_DEV_OC) 7267 phba->sli_rev = LPFC_SLI_REV4; 7268 7269 /* Set up device INIT API function jump table */ 7270 rc = lpfc_init_api_table_setup(phba, dev_grp); 7271 if (rc) 7272 return -ENODEV; 7273 /* Set up SCSI API function jump table */ 7274 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 7275 if (rc) 7276 return -ENODEV; 7277 /* Set up SLI API function jump table */ 7278 rc = lpfc_sli_api_table_setup(phba, dev_grp); 7279 if (rc) 7280 return -ENODEV; 7281 /* Set up MBOX API function jump table */ 7282 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 7283 if (rc) 7284 return -ENODEV; 7285 7286 return 0; 7287 } 7288 7289 /** 7290 * lpfc_log_intr_mode - Log the active interrupt mode 7291 * @phba: pointer to lpfc hba data structure. 7292 * @intr_mode: active interrupt mode adopted. 7293 * 7294 * This routine it invoked to log the currently used active interrupt mode 7295 * to the device. 7296 **/ 7297 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 7298 { 7299 switch (intr_mode) { 7300 case 0: 7301 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7302 "0470 Enable INTx interrupt mode.\n"); 7303 break; 7304 case 1: 7305 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7306 "0481 Enabled MSI interrupt mode.\n"); 7307 break; 7308 case 2: 7309 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7310 "0480 Enabled MSI-X interrupt mode.\n"); 7311 break; 7312 default: 7313 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7314 "0482 Illegal interrupt mode.\n"); 7315 break; 7316 } 7317 return; 7318 } 7319 7320 /** 7321 * lpfc_enable_pci_dev - Enable a generic PCI device. 7322 * @phba: pointer to lpfc hba data structure. 7323 * 7324 * This routine is invoked to enable the PCI device that is common to all 7325 * PCI devices. 7326 * 7327 * Return codes 7328 * 0 - successful 7329 * other values - error 7330 **/ 7331 static int 7332 lpfc_enable_pci_dev(struct lpfc_hba *phba) 7333 { 7334 struct pci_dev *pdev; 7335 7336 /* Obtain PCI device reference */ 7337 if (!phba->pcidev) 7338 goto out_error; 7339 else 7340 pdev = phba->pcidev; 7341 /* Enable PCI device */ 7342 if (pci_enable_device_mem(pdev)) 7343 goto out_error; 7344 /* Request PCI resource for the device */ 7345 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 7346 goto out_disable_device; 7347 /* Set up device as PCI master and save state for EEH */ 7348 pci_set_master(pdev); 7349 pci_try_set_mwi(pdev); 7350 pci_save_state(pdev); 7351 7352 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7353 if (pci_is_pcie(pdev)) 7354 pdev->needs_freset = 1; 7355 7356 return 0; 7357 7358 out_disable_device: 7359 pci_disable_device(pdev); 7360 out_error: 7361 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7362 "1401 Failed to enable pci device\n"); 7363 return -ENODEV; 7364 } 7365 7366 /** 7367 * lpfc_disable_pci_dev - Disable a generic PCI device. 7368 * @phba: pointer to lpfc hba data structure. 7369 * 7370 * This routine is invoked to disable the PCI device that is common to all 7371 * PCI devices. 7372 **/ 7373 static void 7374 lpfc_disable_pci_dev(struct lpfc_hba *phba) 7375 { 7376 struct pci_dev *pdev; 7377 7378 /* Obtain PCI device reference */ 7379 if (!phba->pcidev) 7380 return; 7381 else 7382 pdev = phba->pcidev; 7383 /* Release PCI resource and disable PCI device */ 7384 pci_release_mem_regions(pdev); 7385 pci_disable_device(pdev); 7386 7387 return; 7388 } 7389 7390 /** 7391 * lpfc_reset_hba - Reset a hba 7392 * @phba: pointer to lpfc hba data structure. 7393 * 7394 * This routine is invoked to reset a hba device. It brings the HBA 7395 * offline, performs a board restart, and then brings the board back 7396 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 7397 * on outstanding mailbox commands. 7398 **/ 7399 void 7400 lpfc_reset_hba(struct lpfc_hba *phba) 7401 { 7402 /* If resets are disabled then set error state and return. */ 7403 if (!phba->cfg_enable_hba_reset) { 7404 phba->link_state = LPFC_HBA_ERROR; 7405 return; 7406 } 7407 7408 /* If not LPFC_SLI_ACTIVE, force all IO to be flushed */ 7409 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) { 7410 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 7411 } else { 7412 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 7413 lpfc_sli_flush_io_rings(phba); 7414 } 7415 lpfc_offline(phba); 7416 lpfc_sli_brdrestart(phba); 7417 lpfc_online(phba); 7418 lpfc_unblock_mgmt_io(phba); 7419 } 7420 7421 /** 7422 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 7423 * @phba: pointer to lpfc hba data structure. 7424 * 7425 * This function enables the PCI SR-IOV virtual functions to a physical 7426 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7427 * enable the number of virtual functions to the physical function. As 7428 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7429 * API call does not considered as an error condition for most of the device. 7430 **/ 7431 uint16_t 7432 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 7433 { 7434 struct pci_dev *pdev = phba->pcidev; 7435 uint16_t nr_virtfn; 7436 int pos; 7437 7438 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 7439 if (pos == 0) 7440 return 0; 7441 7442 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 7443 return nr_virtfn; 7444 } 7445 7446 /** 7447 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 7448 * @phba: pointer to lpfc hba data structure. 7449 * @nr_vfn: number of virtual functions to be enabled. 7450 * 7451 * This function enables the PCI SR-IOV virtual functions to a physical 7452 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7453 * enable the number of virtual functions to the physical function. As 7454 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7455 * API call does not considered as an error condition for most of the device. 7456 **/ 7457 int 7458 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 7459 { 7460 struct pci_dev *pdev = phba->pcidev; 7461 uint16_t max_nr_vfn; 7462 int rc; 7463 7464 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 7465 if (nr_vfn > max_nr_vfn) { 7466 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7467 "3057 Requested vfs (%d) greater than " 7468 "supported vfs (%d)", nr_vfn, max_nr_vfn); 7469 return -EINVAL; 7470 } 7471 7472 rc = pci_enable_sriov(pdev, nr_vfn); 7473 if (rc) { 7474 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7475 "2806 Failed to enable sriov on this device " 7476 "with vfn number nr_vf:%d, rc:%d\n", 7477 nr_vfn, rc); 7478 } else 7479 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7480 "2807 Successful enable sriov on this device " 7481 "with vfn number nr_vf:%d\n", nr_vfn); 7482 return rc; 7483 } 7484 7485 static void 7486 lpfc_unblock_requests_work(struct work_struct *work) 7487 { 7488 struct lpfc_hba *phba = container_of(work, struct lpfc_hba, 7489 unblock_request_work); 7490 7491 lpfc_unblock_requests(phba); 7492 } 7493 7494 /** 7495 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 7496 * @phba: pointer to lpfc hba data structure. 7497 * 7498 * This routine is invoked to set up the driver internal resources before the 7499 * device specific resource setup to support the HBA device it attached to. 7500 * 7501 * Return codes 7502 * 0 - successful 7503 * other values - error 7504 **/ 7505 static int 7506 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 7507 { 7508 struct lpfc_sli *psli = &phba->sli; 7509 7510 /* 7511 * Driver resources common to all SLI revisions 7512 */ 7513 atomic_set(&phba->fast_event_count, 0); 7514 atomic_set(&phba->dbg_log_idx, 0); 7515 atomic_set(&phba->dbg_log_cnt, 0); 7516 atomic_set(&phba->dbg_log_dmping, 0); 7517 spin_lock_init(&phba->hbalock); 7518 7519 /* Initialize port_list spinlock */ 7520 spin_lock_init(&phba->port_list_lock); 7521 INIT_LIST_HEAD(&phba->port_list); 7522 7523 INIT_LIST_HEAD(&phba->work_list); 7524 init_waitqueue_head(&phba->wait_4_mlo_m_q); 7525 7526 /* Initialize the wait queue head for the kernel thread */ 7527 init_waitqueue_head(&phba->work_waitq); 7528 7529 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7530 "1403 Protocols supported %s %s %s\n", 7531 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 7532 "SCSI" : " "), 7533 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 7534 "NVME" : " "), 7535 (phba->nvmet_support ? "NVMET" : " ")); 7536 7537 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 7538 spin_lock_init(&phba->scsi_buf_list_get_lock); 7539 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 7540 spin_lock_init(&phba->scsi_buf_list_put_lock); 7541 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 7542 7543 /* Initialize the fabric iocb list */ 7544 INIT_LIST_HEAD(&phba->fabric_iocb_list); 7545 7546 /* Initialize list to save ELS buffers */ 7547 INIT_LIST_HEAD(&phba->elsbuf); 7548 7549 /* Initialize FCF connection rec list */ 7550 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 7551 7552 /* Initialize OAS configuration list */ 7553 spin_lock_init(&phba->devicelock); 7554 INIT_LIST_HEAD(&phba->luns); 7555 7556 /* MBOX heartbeat timer */ 7557 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 7558 /* Fabric block timer */ 7559 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 7560 /* EA polling mode timer */ 7561 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 7562 /* Heartbeat timer */ 7563 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 7564 7565 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 7566 7567 INIT_DELAYED_WORK(&phba->idle_stat_delay_work, 7568 lpfc_idle_stat_delay_work); 7569 INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work); 7570 return 0; 7571 } 7572 7573 /** 7574 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 7575 * @phba: pointer to lpfc hba data structure. 7576 * 7577 * This routine is invoked to set up the driver internal resources specific to 7578 * support the SLI-3 HBA device it attached to. 7579 * 7580 * Return codes 7581 * 0 - successful 7582 * other values - error 7583 **/ 7584 static int 7585 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 7586 { 7587 int rc, entry_sz; 7588 7589 /* 7590 * Initialize timers used by driver 7591 */ 7592 7593 /* FCP polling mode timer */ 7594 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 7595 7596 /* Host attention work mask setup */ 7597 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 7598 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 7599 7600 /* Get all the module params for configuring this host */ 7601 lpfc_get_cfgparam(phba); 7602 /* Set up phase-1 common device driver resources */ 7603 7604 rc = lpfc_setup_driver_resource_phase1(phba); 7605 if (rc) 7606 return -ENODEV; 7607 7608 if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) { 7609 phba->menlo_flag |= HBA_MENLO_SUPPORT; 7610 /* check for menlo minimum sg count */ 7611 if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT) 7612 phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT; 7613 } 7614 7615 if (!phba->sli.sli3_ring) 7616 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 7617 sizeof(struct lpfc_sli_ring), 7618 GFP_KERNEL); 7619 if (!phba->sli.sli3_ring) 7620 return -ENOMEM; 7621 7622 /* 7623 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 7624 * used to create the sg_dma_buf_pool must be dynamically calculated. 7625 */ 7626 7627 if (phba->sli_rev == LPFC_SLI_REV4) 7628 entry_sz = sizeof(struct sli4_sge); 7629 else 7630 entry_sz = sizeof(struct ulp_bde64); 7631 7632 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 7633 if (phba->cfg_enable_bg) { 7634 /* 7635 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 7636 * the FCP rsp, and a BDE for each. Sice we have no control 7637 * over how many protection data segments the SCSI Layer 7638 * will hand us (ie: there could be one for every block 7639 * in the IO), we just allocate enough BDEs to accomidate 7640 * our max amount and we need to limit lpfc_sg_seg_cnt to 7641 * minimize the risk of running out. 7642 */ 7643 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7644 sizeof(struct fcp_rsp) + 7645 (LPFC_MAX_SG_SEG_CNT * entry_sz); 7646 7647 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 7648 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 7649 7650 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 7651 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 7652 } else { 7653 /* 7654 * The scsi_buf for a regular I/O will hold the FCP cmnd, 7655 * the FCP rsp, a BDE for each, and a BDE for up to 7656 * cfg_sg_seg_cnt data segments. 7657 */ 7658 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7659 sizeof(struct fcp_rsp) + 7660 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 7661 7662 /* Total BDEs in BPL for scsi_sg_list */ 7663 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 7664 } 7665 7666 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 7667 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 7668 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 7669 phba->cfg_total_seg_cnt); 7670 7671 phba->max_vpi = LPFC_MAX_VPI; 7672 /* This will be set to correct value after config_port mbox */ 7673 phba->max_vports = 0; 7674 7675 /* 7676 * Initialize the SLI Layer to run with lpfc HBAs. 7677 */ 7678 lpfc_sli_setup(phba); 7679 lpfc_sli_queue_init(phba); 7680 7681 /* Allocate device driver memory */ 7682 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 7683 return -ENOMEM; 7684 7685 phba->lpfc_sg_dma_buf_pool = 7686 dma_pool_create("lpfc_sg_dma_buf_pool", 7687 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 7688 BPL_ALIGN_SZ, 0); 7689 7690 if (!phba->lpfc_sg_dma_buf_pool) 7691 goto fail_free_mem; 7692 7693 phba->lpfc_cmd_rsp_buf_pool = 7694 dma_pool_create("lpfc_cmd_rsp_buf_pool", 7695 &phba->pcidev->dev, 7696 sizeof(struct fcp_cmnd) + 7697 sizeof(struct fcp_rsp), 7698 BPL_ALIGN_SZ, 0); 7699 7700 if (!phba->lpfc_cmd_rsp_buf_pool) 7701 goto fail_free_dma_buf_pool; 7702 7703 /* 7704 * Enable sr-iov virtual functions if supported and configured 7705 * through the module parameter. 7706 */ 7707 if (phba->cfg_sriov_nr_virtfn > 0) { 7708 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 7709 phba->cfg_sriov_nr_virtfn); 7710 if (rc) { 7711 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7712 "2808 Requested number of SR-IOV " 7713 "virtual functions (%d) is not " 7714 "supported\n", 7715 phba->cfg_sriov_nr_virtfn); 7716 phba->cfg_sriov_nr_virtfn = 0; 7717 } 7718 } 7719 7720 return 0; 7721 7722 fail_free_dma_buf_pool: 7723 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 7724 phba->lpfc_sg_dma_buf_pool = NULL; 7725 fail_free_mem: 7726 lpfc_mem_free(phba); 7727 return -ENOMEM; 7728 } 7729 7730 /** 7731 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 7732 * @phba: pointer to lpfc hba data structure. 7733 * 7734 * This routine is invoked to unset the driver internal resources set up 7735 * specific for supporting the SLI-3 HBA device it attached to. 7736 **/ 7737 static void 7738 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 7739 { 7740 /* Free device driver memory allocated */ 7741 lpfc_mem_free_all(phba); 7742 7743 return; 7744 } 7745 7746 /** 7747 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 7748 * @phba: pointer to lpfc hba data structure. 7749 * 7750 * This routine is invoked to set up the driver internal resources specific to 7751 * support the SLI-4 HBA device it attached to. 7752 * 7753 * Return codes 7754 * 0 - successful 7755 * other values - error 7756 **/ 7757 static int 7758 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 7759 { 7760 LPFC_MBOXQ_t *mboxq; 7761 MAILBOX_t *mb; 7762 int rc, i, max_buf_size; 7763 int longs; 7764 int extra; 7765 uint64_t wwn; 7766 u32 if_type; 7767 u32 if_fam; 7768 7769 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 7770 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 7771 phba->sli4_hba.curr_disp_cpu = 0; 7772 7773 /* Get all the module params for configuring this host */ 7774 lpfc_get_cfgparam(phba); 7775 7776 /* Set up phase-1 common device driver resources */ 7777 rc = lpfc_setup_driver_resource_phase1(phba); 7778 if (rc) 7779 return -ENODEV; 7780 7781 /* Before proceed, wait for POST done and device ready */ 7782 rc = lpfc_sli4_post_status_check(phba); 7783 if (rc) 7784 return -ENODEV; 7785 7786 /* Allocate all driver workqueues here */ 7787 7788 /* The lpfc_wq workqueue for deferred irq use */ 7789 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); 7790 7791 /* 7792 * Initialize timers used by driver 7793 */ 7794 7795 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 7796 7797 /* FCF rediscover timer */ 7798 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 7799 7800 /* CMF congestion timer */ 7801 hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7802 phba->cmf_timer.function = lpfc_cmf_timer; 7803 7804 /* 7805 * Control structure for handling external multi-buffer mailbox 7806 * command pass-through. 7807 */ 7808 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 7809 sizeof(struct lpfc_mbox_ext_buf_ctx)); 7810 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 7811 7812 phba->max_vpi = LPFC_MAX_VPI; 7813 7814 /* This will be set to correct value after the read_config mbox */ 7815 phba->max_vports = 0; 7816 7817 /* Program the default value of vlan_id and fc_map */ 7818 phba->valid_vlan = 0; 7819 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 7820 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 7821 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 7822 7823 /* 7824 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 7825 * we will associate a new ring, for each EQ/CQ/WQ tuple. 7826 * The WQ create will allocate the ring. 7827 */ 7828 7829 /* Initialize buffer queue management fields */ 7830 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 7831 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 7832 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 7833 7834 /* for VMID idle timeout if VMID is enabled */ 7835 if (lpfc_is_vmid_enabled(phba)) 7836 timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0); 7837 7838 /* 7839 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 7840 */ 7841 /* Initialize the Abort buffer list used by driver */ 7842 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 7843 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 7844 7845 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 7846 /* Initialize the Abort nvme buffer list used by driver */ 7847 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 7848 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 7849 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 7850 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 7851 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 7852 } 7853 7854 /* This abort list used by worker thread */ 7855 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 7856 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 7857 spin_lock_init(&phba->sli4_hba.asynce_list_lock); 7858 spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock); 7859 7860 /* 7861 * Initialize driver internal slow-path work queues 7862 */ 7863 7864 /* Driver internel slow-path CQ Event pool */ 7865 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 7866 /* Response IOCB work queue list */ 7867 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 7868 /* Asynchronous event CQ Event work queue list */ 7869 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 7870 /* Slow-path XRI aborted CQ Event work queue list */ 7871 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 7872 /* Receive queue CQ Event work queue list */ 7873 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 7874 7875 /* Initialize extent block lists. */ 7876 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 7877 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 7878 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 7879 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 7880 7881 /* Initialize mboxq lists. If the early init routines fail 7882 * these lists need to be correctly initialized. 7883 */ 7884 INIT_LIST_HEAD(&phba->sli.mboxq); 7885 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 7886 7887 /* initialize optic_state to 0xFF */ 7888 phba->sli4_hba.lnk_info.optic_state = 0xff; 7889 7890 /* Allocate device driver memory */ 7891 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 7892 if (rc) 7893 return -ENOMEM; 7894 7895 /* IF Type 2 ports get initialized now. */ 7896 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 7897 LPFC_SLI_INTF_IF_TYPE_2) { 7898 rc = lpfc_pci_function_reset(phba); 7899 if (unlikely(rc)) { 7900 rc = -ENODEV; 7901 goto out_free_mem; 7902 } 7903 phba->temp_sensor_support = 1; 7904 } 7905 7906 /* Create the bootstrap mailbox command */ 7907 rc = lpfc_create_bootstrap_mbox(phba); 7908 if (unlikely(rc)) 7909 goto out_free_mem; 7910 7911 /* Set up the host's endian order with the device. */ 7912 rc = lpfc_setup_endian_order(phba); 7913 if (unlikely(rc)) 7914 goto out_free_bsmbx; 7915 7916 /* Set up the hba's configuration parameters. */ 7917 rc = lpfc_sli4_read_config(phba); 7918 if (unlikely(rc)) 7919 goto out_free_bsmbx; 7920 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 7921 if (unlikely(rc)) 7922 goto out_free_bsmbx; 7923 7924 /* IF Type 0 ports get initialized now. */ 7925 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7926 LPFC_SLI_INTF_IF_TYPE_0) { 7927 rc = lpfc_pci_function_reset(phba); 7928 if (unlikely(rc)) 7929 goto out_free_bsmbx; 7930 } 7931 7932 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 7933 GFP_KERNEL); 7934 if (!mboxq) { 7935 rc = -ENOMEM; 7936 goto out_free_bsmbx; 7937 } 7938 7939 /* Check for NVMET being configured */ 7940 phba->nvmet_support = 0; 7941 if (lpfc_enable_nvmet_cnt) { 7942 7943 /* First get WWN of HBA instance */ 7944 lpfc_read_nv(phba, mboxq); 7945 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7946 if (rc != MBX_SUCCESS) { 7947 lpfc_printf_log(phba, KERN_ERR, 7948 LOG_TRACE_EVENT, 7949 "6016 Mailbox failed , mbxCmd x%x " 7950 "READ_NV, mbxStatus x%x\n", 7951 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7952 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 7953 mempool_free(mboxq, phba->mbox_mem_pool); 7954 rc = -EIO; 7955 goto out_free_bsmbx; 7956 } 7957 mb = &mboxq->u.mb; 7958 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 7959 sizeof(uint64_t)); 7960 wwn = cpu_to_be64(wwn); 7961 phba->sli4_hba.wwnn.u.name = wwn; 7962 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 7963 sizeof(uint64_t)); 7964 /* wwn is WWPN of HBA instance */ 7965 wwn = cpu_to_be64(wwn); 7966 phba->sli4_hba.wwpn.u.name = wwn; 7967 7968 /* Check to see if it matches any module parameter */ 7969 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 7970 if (wwn == lpfc_enable_nvmet[i]) { 7971 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 7972 if (lpfc_nvmet_mem_alloc(phba)) 7973 break; 7974 7975 phba->nvmet_support = 1; /* a match */ 7976 7977 lpfc_printf_log(phba, KERN_ERR, 7978 LOG_TRACE_EVENT, 7979 "6017 NVME Target %016llx\n", 7980 wwn); 7981 #else 7982 lpfc_printf_log(phba, KERN_ERR, 7983 LOG_TRACE_EVENT, 7984 "6021 Can't enable NVME Target." 7985 " NVME_TARGET_FC infrastructure" 7986 " is not in kernel\n"); 7987 #endif 7988 /* Not supported for NVMET */ 7989 phba->cfg_xri_rebalancing = 0; 7990 if (phba->irq_chann_mode == NHT_MODE) { 7991 phba->cfg_irq_chann = 7992 phba->sli4_hba.num_present_cpu; 7993 phba->cfg_hdw_queue = 7994 phba->sli4_hba.num_present_cpu; 7995 phba->irq_chann_mode = NORMAL_MODE; 7996 } 7997 break; 7998 } 7999 } 8000 } 8001 8002 lpfc_nvme_mod_param_dep(phba); 8003 8004 /* 8005 * Get sli4 parameters that override parameters from Port capabilities. 8006 * If this call fails, it isn't critical unless the SLI4 parameters come 8007 * back in conflict. 8008 */ 8009 rc = lpfc_get_sli4_parameters(phba, mboxq); 8010 if (rc) { 8011 if_type = bf_get(lpfc_sli_intf_if_type, 8012 &phba->sli4_hba.sli_intf); 8013 if_fam = bf_get(lpfc_sli_intf_sli_family, 8014 &phba->sli4_hba.sli_intf); 8015 if (phba->sli4_hba.extents_in_use && 8016 phba->sli4_hba.rpi_hdrs_in_use) { 8017 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8018 "2999 Unsupported SLI4 Parameters " 8019 "Extents and RPI headers enabled.\n"); 8020 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8021 if_fam == LPFC_SLI_INTF_FAMILY_BE2) { 8022 mempool_free(mboxq, phba->mbox_mem_pool); 8023 rc = -EIO; 8024 goto out_free_bsmbx; 8025 } 8026 } 8027 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8028 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { 8029 mempool_free(mboxq, phba->mbox_mem_pool); 8030 rc = -EIO; 8031 goto out_free_bsmbx; 8032 } 8033 } 8034 8035 /* 8036 * 1 for cmd, 1 for rsp, NVME adds an extra one 8037 * for boundary conditions in its max_sgl_segment template. 8038 */ 8039 extra = 2; 8040 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 8041 extra++; 8042 8043 /* 8044 * It doesn't matter what family our adapter is in, we are 8045 * limited to 2 Pages, 512 SGEs, for our SGL. 8046 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 8047 */ 8048 max_buf_size = (2 * SLI4_PAGE_SIZE); 8049 8050 /* 8051 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 8052 * used to create the sg_dma_buf_pool must be calculated. 8053 */ 8054 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8055 /* Both cfg_enable_bg and cfg_external_dif code paths */ 8056 8057 /* 8058 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 8059 * the FCP rsp, and a SGE. Sice we have no control 8060 * over how many protection segments the SCSI Layer 8061 * will hand us (ie: there could be one for every block 8062 * in the IO), just allocate enough SGEs to accomidate 8063 * our max amount and we need to limit lpfc_sg_seg_cnt 8064 * to minimize the risk of running out. 8065 */ 8066 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 8067 sizeof(struct fcp_rsp) + max_buf_size; 8068 8069 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 8070 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 8071 8072 /* 8073 * If supporting DIF, reduce the seg count for scsi to 8074 * allow room for the DIF sges. 8075 */ 8076 if (phba->cfg_enable_bg && 8077 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 8078 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 8079 else 8080 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8081 8082 } else { 8083 /* 8084 * The scsi_buf for a regular I/O holds the FCP cmnd, 8085 * the FCP rsp, a SGE for each, and a SGE for up to 8086 * cfg_sg_seg_cnt data segments. 8087 */ 8088 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 8089 sizeof(struct fcp_rsp) + 8090 ((phba->cfg_sg_seg_cnt + extra) * 8091 sizeof(struct sli4_sge)); 8092 8093 /* Total SGEs for scsi_sg_list */ 8094 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 8095 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8096 8097 /* 8098 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 8099 * need to post 1 page for the SGL. 8100 */ 8101 } 8102 8103 if (phba->cfg_xpsgl && !phba->nvmet_support) 8104 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 8105 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 8106 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 8107 else 8108 phba->cfg_sg_dma_buf_size = 8109 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 8110 8111 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 8112 sizeof(struct sli4_sge); 8113 8114 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 8115 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8116 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 8117 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 8118 "6300 Reducing NVME sg segment " 8119 "cnt to %d\n", 8120 LPFC_MAX_NVME_SEG_CNT); 8121 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 8122 } else 8123 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 8124 } 8125 8126 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 8127 "9087 sg_seg_cnt:%d dmabuf_size:%d " 8128 "total:%d scsi:%d nvme:%d\n", 8129 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 8130 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 8131 phba->cfg_nvme_seg_cnt); 8132 8133 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) 8134 i = phba->cfg_sg_dma_buf_size; 8135 else 8136 i = SLI4_PAGE_SIZE; 8137 8138 phba->lpfc_sg_dma_buf_pool = 8139 dma_pool_create("lpfc_sg_dma_buf_pool", 8140 &phba->pcidev->dev, 8141 phba->cfg_sg_dma_buf_size, 8142 i, 0); 8143 if (!phba->lpfc_sg_dma_buf_pool) 8144 goto out_free_bsmbx; 8145 8146 phba->lpfc_cmd_rsp_buf_pool = 8147 dma_pool_create("lpfc_cmd_rsp_buf_pool", 8148 &phba->pcidev->dev, 8149 sizeof(struct fcp_cmnd) + 8150 sizeof(struct fcp_rsp), 8151 i, 0); 8152 if (!phba->lpfc_cmd_rsp_buf_pool) 8153 goto out_free_sg_dma_buf; 8154 8155 mempool_free(mboxq, phba->mbox_mem_pool); 8156 8157 /* Verify OAS is supported */ 8158 lpfc_sli4_oas_verify(phba); 8159 8160 /* Verify RAS support on adapter */ 8161 lpfc_sli4_ras_init(phba); 8162 8163 /* Verify all the SLI4 queues */ 8164 rc = lpfc_sli4_queue_verify(phba); 8165 if (rc) 8166 goto out_free_cmd_rsp_buf; 8167 8168 /* Create driver internal CQE event pool */ 8169 rc = lpfc_sli4_cq_event_pool_create(phba); 8170 if (rc) 8171 goto out_free_cmd_rsp_buf; 8172 8173 /* Initialize sgl lists per host */ 8174 lpfc_init_sgl_list(phba); 8175 8176 /* Allocate and initialize active sgl array */ 8177 rc = lpfc_init_active_sgl_array(phba); 8178 if (rc) { 8179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8180 "1430 Failed to initialize sgl list.\n"); 8181 goto out_destroy_cq_event_pool; 8182 } 8183 rc = lpfc_sli4_init_rpi_hdrs(phba); 8184 if (rc) { 8185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8186 "1432 Failed to initialize rpi headers.\n"); 8187 goto out_free_active_sgl; 8188 } 8189 8190 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 8191 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 8192 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 8193 GFP_KERNEL); 8194 if (!phba->fcf.fcf_rr_bmask) { 8195 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8196 "2759 Failed allocate memory for FCF round " 8197 "robin failover bmask\n"); 8198 rc = -ENOMEM; 8199 goto out_remove_rpi_hdrs; 8200 } 8201 8202 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 8203 sizeof(struct lpfc_hba_eq_hdl), 8204 GFP_KERNEL); 8205 if (!phba->sli4_hba.hba_eq_hdl) { 8206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8207 "2572 Failed allocate memory for " 8208 "fast-path per-EQ handle array\n"); 8209 rc = -ENOMEM; 8210 goto out_free_fcf_rr_bmask; 8211 } 8212 8213 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 8214 sizeof(struct lpfc_vector_map_info), 8215 GFP_KERNEL); 8216 if (!phba->sli4_hba.cpu_map) { 8217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8218 "3327 Failed allocate memory for msi-x " 8219 "interrupt vector mapping\n"); 8220 rc = -ENOMEM; 8221 goto out_free_hba_eq_hdl; 8222 } 8223 8224 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 8225 if (!phba->sli4_hba.eq_info) { 8226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8227 "3321 Failed allocation for per_cpu stats\n"); 8228 rc = -ENOMEM; 8229 goto out_free_hba_cpu_map; 8230 } 8231 8232 phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu, 8233 sizeof(*phba->sli4_hba.idle_stat), 8234 GFP_KERNEL); 8235 if (!phba->sli4_hba.idle_stat) { 8236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8237 "3390 Failed allocation for idle_stat\n"); 8238 rc = -ENOMEM; 8239 goto out_free_hba_eq_info; 8240 } 8241 8242 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8243 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 8244 if (!phba->sli4_hba.c_stat) { 8245 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8246 "3332 Failed allocating per cpu hdwq stats\n"); 8247 rc = -ENOMEM; 8248 goto out_free_hba_idle_stat; 8249 } 8250 #endif 8251 8252 phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat); 8253 if (!phba->cmf_stat) { 8254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8255 "3331 Failed allocating per cpu cgn stats\n"); 8256 rc = -ENOMEM; 8257 goto out_free_hba_hdwq_info; 8258 } 8259 8260 /* 8261 * Enable sr-iov virtual functions if supported and configured 8262 * through the module parameter. 8263 */ 8264 if (phba->cfg_sriov_nr_virtfn > 0) { 8265 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 8266 phba->cfg_sriov_nr_virtfn); 8267 if (rc) { 8268 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8269 "3020 Requested number of SR-IOV " 8270 "virtual functions (%d) is not " 8271 "supported\n", 8272 phba->cfg_sriov_nr_virtfn); 8273 phba->cfg_sriov_nr_virtfn = 0; 8274 } 8275 } 8276 8277 return 0; 8278 8279 out_free_hba_hdwq_info: 8280 free_percpu(phba->sli4_hba.c_stat); 8281 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8282 out_free_hba_idle_stat: 8283 kfree(phba->sli4_hba.idle_stat); 8284 #endif 8285 out_free_hba_eq_info: 8286 free_percpu(phba->sli4_hba.eq_info); 8287 out_free_hba_cpu_map: 8288 kfree(phba->sli4_hba.cpu_map); 8289 out_free_hba_eq_hdl: 8290 kfree(phba->sli4_hba.hba_eq_hdl); 8291 out_free_fcf_rr_bmask: 8292 kfree(phba->fcf.fcf_rr_bmask); 8293 out_remove_rpi_hdrs: 8294 lpfc_sli4_remove_rpi_hdrs(phba); 8295 out_free_active_sgl: 8296 lpfc_free_active_sgl(phba); 8297 out_destroy_cq_event_pool: 8298 lpfc_sli4_cq_event_pool_destroy(phba); 8299 out_free_cmd_rsp_buf: 8300 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 8301 phba->lpfc_cmd_rsp_buf_pool = NULL; 8302 out_free_sg_dma_buf: 8303 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 8304 phba->lpfc_sg_dma_buf_pool = NULL; 8305 out_free_bsmbx: 8306 lpfc_destroy_bootstrap_mbox(phba); 8307 out_free_mem: 8308 lpfc_mem_free(phba); 8309 return rc; 8310 } 8311 8312 /** 8313 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 8314 * @phba: pointer to lpfc hba data structure. 8315 * 8316 * This routine is invoked to unset the driver internal resources set up 8317 * specific for supporting the SLI-4 HBA device it attached to. 8318 **/ 8319 static void 8320 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 8321 { 8322 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 8323 8324 free_percpu(phba->sli4_hba.eq_info); 8325 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8326 free_percpu(phba->sli4_hba.c_stat); 8327 #endif 8328 free_percpu(phba->cmf_stat); 8329 kfree(phba->sli4_hba.idle_stat); 8330 8331 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 8332 kfree(phba->sli4_hba.cpu_map); 8333 phba->sli4_hba.num_possible_cpu = 0; 8334 phba->sli4_hba.num_present_cpu = 0; 8335 phba->sli4_hba.curr_disp_cpu = 0; 8336 cpumask_clear(&phba->sli4_hba.irq_aff_mask); 8337 8338 /* Free memory allocated for fast-path work queue handles */ 8339 kfree(phba->sli4_hba.hba_eq_hdl); 8340 8341 /* Free the allocated rpi headers. */ 8342 lpfc_sli4_remove_rpi_hdrs(phba); 8343 lpfc_sli4_remove_rpis(phba); 8344 8345 /* Free eligible FCF index bmask */ 8346 kfree(phba->fcf.fcf_rr_bmask); 8347 8348 /* Free the ELS sgl list */ 8349 lpfc_free_active_sgl(phba); 8350 lpfc_free_els_sgl_list(phba); 8351 lpfc_free_nvmet_sgl_list(phba); 8352 8353 /* Free the completion queue EQ event pool */ 8354 lpfc_sli4_cq_event_release_all(phba); 8355 lpfc_sli4_cq_event_pool_destroy(phba); 8356 8357 /* Release resource identifiers. */ 8358 lpfc_sli4_dealloc_resource_identifiers(phba); 8359 8360 /* Free the bsmbx region. */ 8361 lpfc_destroy_bootstrap_mbox(phba); 8362 8363 /* Free the SLI Layer memory with SLI4 HBAs */ 8364 lpfc_mem_free_all(phba); 8365 8366 /* Free the current connect table */ 8367 list_for_each_entry_safe(conn_entry, next_conn_entry, 8368 &phba->fcf_conn_rec_list, list) { 8369 list_del_init(&conn_entry->list); 8370 kfree(conn_entry); 8371 } 8372 8373 return; 8374 } 8375 8376 /** 8377 * lpfc_init_api_table_setup - Set up init api function jump table 8378 * @phba: The hba struct for which this call is being executed. 8379 * @dev_grp: The HBA PCI-Device group number. 8380 * 8381 * This routine sets up the device INIT interface API function jump table 8382 * in @phba struct. 8383 * 8384 * Returns: 0 - success, -ENODEV - failure. 8385 **/ 8386 int 8387 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8388 { 8389 phba->lpfc_hba_init_link = lpfc_hba_init_link; 8390 phba->lpfc_hba_down_link = lpfc_hba_down_link; 8391 phba->lpfc_selective_reset = lpfc_selective_reset; 8392 switch (dev_grp) { 8393 case LPFC_PCI_DEV_LP: 8394 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 8395 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 8396 phba->lpfc_stop_port = lpfc_stop_port_s3; 8397 break; 8398 case LPFC_PCI_DEV_OC: 8399 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 8400 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 8401 phba->lpfc_stop_port = lpfc_stop_port_s4; 8402 break; 8403 default: 8404 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8405 "1431 Invalid HBA PCI-device group: 0x%x\n", 8406 dev_grp); 8407 return -ENODEV; 8408 } 8409 return 0; 8410 } 8411 8412 /** 8413 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 8414 * @phba: pointer to lpfc hba data structure. 8415 * 8416 * This routine is invoked to set up the driver internal resources after the 8417 * device specific resource setup to support the HBA device it attached to. 8418 * 8419 * Return codes 8420 * 0 - successful 8421 * other values - error 8422 **/ 8423 static int 8424 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 8425 { 8426 int error; 8427 8428 /* Startup the kernel thread for this host adapter. */ 8429 phba->worker_thread = kthread_run(lpfc_do_work, phba, 8430 "lpfc_worker_%d", phba->brd_no); 8431 if (IS_ERR(phba->worker_thread)) { 8432 error = PTR_ERR(phba->worker_thread); 8433 return error; 8434 } 8435 8436 return 0; 8437 } 8438 8439 /** 8440 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 8441 * @phba: pointer to lpfc hba data structure. 8442 * 8443 * This routine is invoked to unset the driver internal resources set up after 8444 * the device specific resource setup for supporting the HBA device it 8445 * attached to. 8446 **/ 8447 static void 8448 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 8449 { 8450 if (phba->wq) { 8451 flush_workqueue(phba->wq); 8452 destroy_workqueue(phba->wq); 8453 phba->wq = NULL; 8454 } 8455 8456 /* Stop kernel worker thread */ 8457 if (phba->worker_thread) 8458 kthread_stop(phba->worker_thread); 8459 } 8460 8461 /** 8462 * lpfc_free_iocb_list - Free iocb list. 8463 * @phba: pointer to lpfc hba data structure. 8464 * 8465 * This routine is invoked to free the driver's IOCB list and memory. 8466 **/ 8467 void 8468 lpfc_free_iocb_list(struct lpfc_hba *phba) 8469 { 8470 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 8471 8472 spin_lock_irq(&phba->hbalock); 8473 list_for_each_entry_safe(iocbq_entry, iocbq_next, 8474 &phba->lpfc_iocb_list, list) { 8475 list_del(&iocbq_entry->list); 8476 kfree(iocbq_entry); 8477 phba->total_iocbq_bufs--; 8478 } 8479 spin_unlock_irq(&phba->hbalock); 8480 8481 return; 8482 } 8483 8484 /** 8485 * lpfc_init_iocb_list - Allocate and initialize iocb list. 8486 * @phba: pointer to lpfc hba data structure. 8487 * @iocb_count: number of requested iocbs 8488 * 8489 * This routine is invoked to allocate and initizlize the driver's IOCB 8490 * list and set up the IOCB tag array accordingly. 8491 * 8492 * Return codes 8493 * 0 - successful 8494 * other values - error 8495 **/ 8496 int 8497 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 8498 { 8499 struct lpfc_iocbq *iocbq_entry = NULL; 8500 uint16_t iotag; 8501 int i; 8502 8503 /* Initialize and populate the iocb list per host. */ 8504 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 8505 for (i = 0; i < iocb_count; i++) { 8506 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 8507 if (iocbq_entry == NULL) { 8508 printk(KERN_ERR "%s: only allocated %d iocbs of " 8509 "expected %d count. Unloading driver.\n", 8510 __func__, i, iocb_count); 8511 goto out_free_iocbq; 8512 } 8513 8514 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 8515 if (iotag == 0) { 8516 kfree(iocbq_entry); 8517 printk(KERN_ERR "%s: failed to allocate IOTAG. " 8518 "Unloading driver.\n", __func__); 8519 goto out_free_iocbq; 8520 } 8521 iocbq_entry->sli4_lxritag = NO_XRI; 8522 iocbq_entry->sli4_xritag = NO_XRI; 8523 8524 spin_lock_irq(&phba->hbalock); 8525 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 8526 phba->total_iocbq_bufs++; 8527 spin_unlock_irq(&phba->hbalock); 8528 } 8529 8530 return 0; 8531 8532 out_free_iocbq: 8533 lpfc_free_iocb_list(phba); 8534 8535 return -ENOMEM; 8536 } 8537 8538 /** 8539 * lpfc_free_sgl_list - Free a given sgl list. 8540 * @phba: pointer to lpfc hba data structure. 8541 * @sglq_list: pointer to the head of sgl list. 8542 * 8543 * This routine is invoked to free a give sgl list and memory. 8544 **/ 8545 void 8546 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 8547 { 8548 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8549 8550 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 8551 list_del(&sglq_entry->list); 8552 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 8553 kfree(sglq_entry); 8554 } 8555 } 8556 8557 /** 8558 * lpfc_free_els_sgl_list - Free els sgl list. 8559 * @phba: pointer to lpfc hba data structure. 8560 * 8561 * This routine is invoked to free the driver's els sgl list and memory. 8562 **/ 8563 static void 8564 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 8565 { 8566 LIST_HEAD(sglq_list); 8567 8568 /* Retrieve all els sgls from driver list */ 8569 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 8570 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 8571 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 8572 8573 /* Now free the sgl list */ 8574 lpfc_free_sgl_list(phba, &sglq_list); 8575 } 8576 8577 /** 8578 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 8579 * @phba: pointer to lpfc hba data structure. 8580 * 8581 * This routine is invoked to free the driver's nvmet sgl list and memory. 8582 **/ 8583 static void 8584 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 8585 { 8586 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8587 LIST_HEAD(sglq_list); 8588 8589 /* Retrieve all nvmet sgls from driver list */ 8590 spin_lock_irq(&phba->hbalock); 8591 spin_lock(&phba->sli4_hba.sgl_list_lock); 8592 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 8593 spin_unlock(&phba->sli4_hba.sgl_list_lock); 8594 spin_unlock_irq(&phba->hbalock); 8595 8596 /* Now free the sgl list */ 8597 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 8598 list_del(&sglq_entry->list); 8599 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 8600 kfree(sglq_entry); 8601 } 8602 8603 /* Update the nvmet_xri_cnt to reflect no current sgls. 8604 * The next initialization cycle sets the count and allocates 8605 * the sgls over again. 8606 */ 8607 phba->sli4_hba.nvmet_xri_cnt = 0; 8608 } 8609 8610 /** 8611 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 8612 * @phba: pointer to lpfc hba data structure. 8613 * 8614 * This routine is invoked to allocate the driver's active sgl memory. 8615 * This array will hold the sglq_entry's for active IOs. 8616 **/ 8617 static int 8618 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 8619 { 8620 int size; 8621 size = sizeof(struct lpfc_sglq *); 8622 size *= phba->sli4_hba.max_cfg_param.max_xri; 8623 8624 phba->sli4_hba.lpfc_sglq_active_list = 8625 kzalloc(size, GFP_KERNEL); 8626 if (!phba->sli4_hba.lpfc_sglq_active_list) 8627 return -ENOMEM; 8628 return 0; 8629 } 8630 8631 /** 8632 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 8633 * @phba: pointer to lpfc hba data structure. 8634 * 8635 * This routine is invoked to walk through the array of active sglq entries 8636 * and free all of the resources. 8637 * This is just a place holder for now. 8638 **/ 8639 static void 8640 lpfc_free_active_sgl(struct lpfc_hba *phba) 8641 { 8642 kfree(phba->sli4_hba.lpfc_sglq_active_list); 8643 } 8644 8645 /** 8646 * lpfc_init_sgl_list - Allocate and initialize sgl list. 8647 * @phba: pointer to lpfc hba data structure. 8648 * 8649 * This routine is invoked to allocate and initizlize the driver's sgl 8650 * list and set up the sgl xritag tag array accordingly. 8651 * 8652 **/ 8653 static void 8654 lpfc_init_sgl_list(struct lpfc_hba *phba) 8655 { 8656 /* Initialize and populate the sglq list per host/VF. */ 8657 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 8658 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 8659 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 8660 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8661 8662 /* els xri-sgl book keeping */ 8663 phba->sli4_hba.els_xri_cnt = 0; 8664 8665 /* nvme xri-buffer book keeping */ 8666 phba->sli4_hba.io_xri_cnt = 0; 8667 } 8668 8669 /** 8670 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 8671 * @phba: pointer to lpfc hba data structure. 8672 * 8673 * This routine is invoked to post rpi header templates to the 8674 * port for those SLI4 ports that do not support extents. This routine 8675 * posts a PAGE_SIZE memory region to the port to hold up to 8676 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 8677 * and should be called only when interrupts are disabled. 8678 * 8679 * Return codes 8680 * 0 - successful 8681 * -ERROR - otherwise. 8682 **/ 8683 int 8684 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 8685 { 8686 int rc = 0; 8687 struct lpfc_rpi_hdr *rpi_hdr; 8688 8689 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 8690 if (!phba->sli4_hba.rpi_hdrs_in_use) 8691 return rc; 8692 if (phba->sli4_hba.extents_in_use) 8693 return -EIO; 8694 8695 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 8696 if (!rpi_hdr) { 8697 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8698 "0391 Error during rpi post operation\n"); 8699 lpfc_sli4_remove_rpis(phba); 8700 rc = -ENODEV; 8701 } 8702 8703 return rc; 8704 } 8705 8706 /** 8707 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 8708 * @phba: pointer to lpfc hba data structure. 8709 * 8710 * This routine is invoked to allocate a single 4KB memory region to 8711 * support rpis and stores them in the phba. This single region 8712 * provides support for up to 64 rpis. The region is used globally 8713 * by the device. 8714 * 8715 * Returns: 8716 * A valid rpi hdr on success. 8717 * A NULL pointer on any failure. 8718 **/ 8719 struct lpfc_rpi_hdr * 8720 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 8721 { 8722 uint16_t rpi_limit, curr_rpi_range; 8723 struct lpfc_dmabuf *dmabuf; 8724 struct lpfc_rpi_hdr *rpi_hdr; 8725 8726 /* 8727 * If the SLI4 port supports extents, posting the rpi header isn't 8728 * required. Set the expected maximum count and let the actual value 8729 * get set when extents are fully allocated. 8730 */ 8731 if (!phba->sli4_hba.rpi_hdrs_in_use) 8732 return NULL; 8733 if (phba->sli4_hba.extents_in_use) 8734 return NULL; 8735 8736 /* The limit on the logical index is just the max_rpi count. */ 8737 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 8738 8739 spin_lock_irq(&phba->hbalock); 8740 /* 8741 * Establish the starting RPI in this header block. The starting 8742 * rpi is normalized to a zero base because the physical rpi is 8743 * port based. 8744 */ 8745 curr_rpi_range = phba->sli4_hba.next_rpi; 8746 spin_unlock_irq(&phba->hbalock); 8747 8748 /* Reached full RPI range */ 8749 if (curr_rpi_range == rpi_limit) 8750 return NULL; 8751 8752 /* 8753 * First allocate the protocol header region for the port. The 8754 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 8755 */ 8756 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8757 if (!dmabuf) 8758 return NULL; 8759 8760 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 8761 LPFC_HDR_TEMPLATE_SIZE, 8762 &dmabuf->phys, GFP_KERNEL); 8763 if (!dmabuf->virt) { 8764 rpi_hdr = NULL; 8765 goto err_free_dmabuf; 8766 } 8767 8768 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 8769 rpi_hdr = NULL; 8770 goto err_free_coherent; 8771 } 8772 8773 /* Save the rpi header data for cleanup later. */ 8774 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 8775 if (!rpi_hdr) 8776 goto err_free_coherent; 8777 8778 rpi_hdr->dmabuf = dmabuf; 8779 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 8780 rpi_hdr->page_count = 1; 8781 spin_lock_irq(&phba->hbalock); 8782 8783 /* The rpi_hdr stores the logical index only. */ 8784 rpi_hdr->start_rpi = curr_rpi_range; 8785 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 8786 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 8787 8788 spin_unlock_irq(&phba->hbalock); 8789 return rpi_hdr; 8790 8791 err_free_coherent: 8792 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 8793 dmabuf->virt, dmabuf->phys); 8794 err_free_dmabuf: 8795 kfree(dmabuf); 8796 return NULL; 8797 } 8798 8799 /** 8800 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 8801 * @phba: pointer to lpfc hba data structure. 8802 * 8803 * This routine is invoked to remove all memory resources allocated 8804 * to support rpis for SLI4 ports not supporting extents. This routine 8805 * presumes the caller has released all rpis consumed by fabric or port 8806 * logins and is prepared to have the header pages removed. 8807 **/ 8808 void 8809 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 8810 { 8811 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 8812 8813 if (!phba->sli4_hba.rpi_hdrs_in_use) 8814 goto exit; 8815 8816 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 8817 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 8818 list_del(&rpi_hdr->list); 8819 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 8820 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 8821 kfree(rpi_hdr->dmabuf); 8822 kfree(rpi_hdr); 8823 } 8824 exit: 8825 /* There are no rpis available to the port now. */ 8826 phba->sli4_hba.next_rpi = 0; 8827 } 8828 8829 /** 8830 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 8831 * @pdev: pointer to pci device data structure. 8832 * 8833 * This routine is invoked to allocate the driver hba data structure for an 8834 * HBA device. If the allocation is successful, the phba reference to the 8835 * PCI device data structure is set. 8836 * 8837 * Return codes 8838 * pointer to @phba - successful 8839 * NULL - error 8840 **/ 8841 static struct lpfc_hba * 8842 lpfc_hba_alloc(struct pci_dev *pdev) 8843 { 8844 struct lpfc_hba *phba; 8845 8846 /* Allocate memory for HBA structure */ 8847 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 8848 if (!phba) { 8849 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 8850 return NULL; 8851 } 8852 8853 /* Set reference to PCI device in HBA structure */ 8854 phba->pcidev = pdev; 8855 8856 /* Assign an unused board number */ 8857 phba->brd_no = lpfc_get_instance(); 8858 if (phba->brd_no < 0) { 8859 kfree(phba); 8860 return NULL; 8861 } 8862 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 8863 8864 spin_lock_init(&phba->ct_ev_lock); 8865 INIT_LIST_HEAD(&phba->ct_ev_waiters); 8866 8867 return phba; 8868 } 8869 8870 /** 8871 * lpfc_hba_free - Free driver hba data structure with a device. 8872 * @phba: pointer to lpfc hba data structure. 8873 * 8874 * This routine is invoked to free the driver hba data structure with an 8875 * HBA device. 8876 **/ 8877 static void 8878 lpfc_hba_free(struct lpfc_hba *phba) 8879 { 8880 if (phba->sli_rev == LPFC_SLI_REV4) 8881 kfree(phba->sli4_hba.hdwq); 8882 8883 /* Release the driver assigned board number */ 8884 idr_remove(&lpfc_hba_index, phba->brd_no); 8885 8886 /* Free memory allocated with sli3 rings */ 8887 kfree(phba->sli.sli3_ring); 8888 phba->sli.sli3_ring = NULL; 8889 8890 kfree(phba); 8891 return; 8892 } 8893 8894 /** 8895 * lpfc_create_shost - Create hba physical port with associated scsi host. 8896 * @phba: pointer to lpfc hba data structure. 8897 * 8898 * This routine is invoked to create HBA physical port and associate a SCSI 8899 * host with it. 8900 * 8901 * Return codes 8902 * 0 - successful 8903 * other values - error 8904 **/ 8905 static int 8906 lpfc_create_shost(struct lpfc_hba *phba) 8907 { 8908 struct lpfc_vport *vport; 8909 struct Scsi_Host *shost; 8910 8911 /* Initialize HBA FC structure */ 8912 phba->fc_edtov = FF_DEF_EDTOV; 8913 phba->fc_ratov = FF_DEF_RATOV; 8914 phba->fc_altov = FF_DEF_ALTOV; 8915 phba->fc_arbtov = FF_DEF_ARBTOV; 8916 8917 atomic_set(&phba->sdev_cnt, 0); 8918 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 8919 if (!vport) 8920 return -ENODEV; 8921 8922 shost = lpfc_shost_from_vport(vport); 8923 phba->pport = vport; 8924 8925 if (phba->nvmet_support) { 8926 /* Only 1 vport (pport) will support NVME target */ 8927 phba->targetport = NULL; 8928 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 8929 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 8930 "6076 NVME Target Found\n"); 8931 } 8932 8933 lpfc_debugfs_initialize(vport); 8934 /* Put reference to SCSI host to driver's device private data */ 8935 pci_set_drvdata(phba->pcidev, shost); 8936 8937 /* 8938 * At this point we are fully registered with PSA. In addition, 8939 * any initial discovery should be completed. 8940 */ 8941 vport->load_flag |= FC_ALLOW_FDMI; 8942 if (phba->cfg_enable_SmartSAN || 8943 (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) { 8944 8945 /* Setup appropriate attribute masks */ 8946 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 8947 if (phba->cfg_enable_SmartSAN) 8948 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 8949 else 8950 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 8951 } 8952 return 0; 8953 } 8954 8955 /** 8956 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 8957 * @phba: pointer to lpfc hba data structure. 8958 * 8959 * This routine is invoked to destroy HBA physical port and the associated 8960 * SCSI host. 8961 **/ 8962 static void 8963 lpfc_destroy_shost(struct lpfc_hba *phba) 8964 { 8965 struct lpfc_vport *vport = phba->pport; 8966 8967 /* Destroy physical port that associated with the SCSI host */ 8968 destroy_port(vport); 8969 8970 return; 8971 } 8972 8973 /** 8974 * lpfc_setup_bg - Setup Block guard structures and debug areas. 8975 * @phba: pointer to lpfc hba data structure. 8976 * @shost: the shost to be used to detect Block guard settings. 8977 * 8978 * This routine sets up the local Block guard protocol settings for @shost. 8979 * This routine also allocates memory for debugging bg buffers. 8980 **/ 8981 static void 8982 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 8983 { 8984 uint32_t old_mask; 8985 uint32_t old_guard; 8986 8987 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 8988 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8989 "1478 Registering BlockGuard with the " 8990 "SCSI layer\n"); 8991 8992 old_mask = phba->cfg_prot_mask; 8993 old_guard = phba->cfg_prot_guard; 8994 8995 /* Only allow supported values */ 8996 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 8997 SHOST_DIX_TYPE0_PROTECTION | 8998 SHOST_DIX_TYPE1_PROTECTION); 8999 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 9000 SHOST_DIX_GUARD_CRC); 9001 9002 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 9003 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 9004 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 9005 9006 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9007 if ((old_mask != phba->cfg_prot_mask) || 9008 (old_guard != phba->cfg_prot_guard)) 9009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9010 "1475 Registering BlockGuard with the " 9011 "SCSI layer: mask %d guard %d\n", 9012 phba->cfg_prot_mask, 9013 phba->cfg_prot_guard); 9014 9015 scsi_host_set_prot(shost, phba->cfg_prot_mask); 9016 scsi_host_set_guard(shost, phba->cfg_prot_guard); 9017 } else 9018 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9019 "1479 Not Registering BlockGuard with the SCSI " 9020 "layer, Bad protection parameters: %d %d\n", 9021 old_mask, old_guard); 9022 } 9023 } 9024 9025 /** 9026 * lpfc_post_init_setup - Perform necessary device post initialization setup. 9027 * @phba: pointer to lpfc hba data structure. 9028 * 9029 * This routine is invoked to perform all the necessary post initialization 9030 * setup for the device. 9031 **/ 9032 static void 9033 lpfc_post_init_setup(struct lpfc_hba *phba) 9034 { 9035 struct Scsi_Host *shost; 9036 struct lpfc_adapter_event_header adapter_event; 9037 9038 /* Get the default values for Model Name and Description */ 9039 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 9040 9041 /* 9042 * hba setup may have changed the hba_queue_depth so we need to 9043 * adjust the value of can_queue. 9044 */ 9045 shost = pci_get_drvdata(phba->pcidev); 9046 shost->can_queue = phba->cfg_hba_queue_depth - 10; 9047 9048 lpfc_host_attrib_init(shost); 9049 9050 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 9051 spin_lock_irq(shost->host_lock); 9052 lpfc_poll_start_timer(phba); 9053 spin_unlock_irq(shost->host_lock); 9054 } 9055 9056 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9057 "0428 Perform SCSI scan\n"); 9058 /* Send board arrival event to upper layer */ 9059 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 9060 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 9061 fc_host_post_vendor_event(shost, fc_get_event_number(), 9062 sizeof(adapter_event), 9063 (char *) &adapter_event, 9064 LPFC_NL_VENDOR_ID); 9065 return; 9066 } 9067 9068 /** 9069 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 9070 * @phba: pointer to lpfc hba data structure. 9071 * 9072 * This routine is invoked to set up the PCI device memory space for device 9073 * with SLI-3 interface spec. 9074 * 9075 * Return codes 9076 * 0 - successful 9077 * other values - error 9078 **/ 9079 static int 9080 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 9081 { 9082 struct pci_dev *pdev = phba->pcidev; 9083 unsigned long bar0map_len, bar2map_len; 9084 int i, hbq_count; 9085 void *ptr; 9086 int error; 9087 9088 if (!pdev) 9089 return -ENODEV; 9090 9091 /* Set the device DMA mask size */ 9092 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 9093 if (error) 9094 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 9095 if (error) 9096 return error; 9097 error = -ENODEV; 9098 9099 /* Get the bus address of Bar0 and Bar2 and the number of bytes 9100 * required by each mapping. 9101 */ 9102 phba->pci_bar0_map = pci_resource_start(pdev, 0); 9103 bar0map_len = pci_resource_len(pdev, 0); 9104 9105 phba->pci_bar2_map = pci_resource_start(pdev, 2); 9106 bar2map_len = pci_resource_len(pdev, 2); 9107 9108 /* Map HBA SLIM to a kernel virtual address. */ 9109 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 9110 if (!phba->slim_memmap_p) { 9111 dev_printk(KERN_ERR, &pdev->dev, 9112 "ioremap failed for SLIM memory.\n"); 9113 goto out; 9114 } 9115 9116 /* Map HBA Control Registers to a kernel virtual address. */ 9117 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 9118 if (!phba->ctrl_regs_memmap_p) { 9119 dev_printk(KERN_ERR, &pdev->dev, 9120 "ioremap failed for HBA control registers.\n"); 9121 goto out_iounmap_slim; 9122 } 9123 9124 /* Allocate memory for SLI-2 structures */ 9125 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9126 &phba->slim2p.phys, GFP_KERNEL); 9127 if (!phba->slim2p.virt) 9128 goto out_iounmap; 9129 9130 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 9131 phba->mbox_ext = (phba->slim2p.virt + 9132 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 9133 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 9134 phba->IOCBs = (phba->slim2p.virt + 9135 offsetof(struct lpfc_sli2_slim, IOCBs)); 9136 9137 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 9138 lpfc_sli_hbq_size(), 9139 &phba->hbqslimp.phys, 9140 GFP_KERNEL); 9141 if (!phba->hbqslimp.virt) 9142 goto out_free_slim; 9143 9144 hbq_count = lpfc_sli_hbq_count(); 9145 ptr = phba->hbqslimp.virt; 9146 for (i = 0; i < hbq_count; ++i) { 9147 phba->hbqs[i].hbq_virt = ptr; 9148 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 9149 ptr += (lpfc_hbq_defs[i]->entry_count * 9150 sizeof(struct lpfc_hbq_entry)); 9151 } 9152 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 9153 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 9154 9155 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 9156 9157 phba->MBslimaddr = phba->slim_memmap_p; 9158 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 9159 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 9160 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 9161 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 9162 9163 return 0; 9164 9165 out_free_slim: 9166 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9167 phba->slim2p.virt, phba->slim2p.phys); 9168 out_iounmap: 9169 iounmap(phba->ctrl_regs_memmap_p); 9170 out_iounmap_slim: 9171 iounmap(phba->slim_memmap_p); 9172 out: 9173 return error; 9174 } 9175 9176 /** 9177 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 9178 * @phba: pointer to lpfc hba data structure. 9179 * 9180 * This routine is invoked to unset the PCI device memory space for device 9181 * with SLI-3 interface spec. 9182 **/ 9183 static void 9184 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 9185 { 9186 struct pci_dev *pdev; 9187 9188 /* Obtain PCI device reference */ 9189 if (!phba->pcidev) 9190 return; 9191 else 9192 pdev = phba->pcidev; 9193 9194 /* Free coherent DMA memory allocated */ 9195 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 9196 phba->hbqslimp.virt, phba->hbqslimp.phys); 9197 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9198 phba->slim2p.virt, phba->slim2p.phys); 9199 9200 /* I/O memory unmap */ 9201 iounmap(phba->ctrl_regs_memmap_p); 9202 iounmap(phba->slim_memmap_p); 9203 9204 return; 9205 } 9206 9207 /** 9208 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 9209 * @phba: pointer to lpfc hba data structure. 9210 * 9211 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 9212 * done and check status. 9213 * 9214 * Return 0 if successful, otherwise -ENODEV. 9215 **/ 9216 int 9217 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 9218 { 9219 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 9220 struct lpfc_register reg_data; 9221 int i, port_error = 0; 9222 uint32_t if_type; 9223 9224 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 9225 memset(®_data, 0, sizeof(reg_data)); 9226 if (!phba->sli4_hba.PSMPHRregaddr) 9227 return -ENODEV; 9228 9229 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 9230 for (i = 0; i < 3000; i++) { 9231 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 9232 &portsmphr_reg.word0) || 9233 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 9234 /* Port has a fatal POST error, break out */ 9235 port_error = -ENODEV; 9236 break; 9237 } 9238 if (LPFC_POST_STAGE_PORT_READY == 9239 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 9240 break; 9241 msleep(10); 9242 } 9243 9244 /* 9245 * If there was a port error during POST, then don't proceed with 9246 * other register reads as the data may not be valid. Just exit. 9247 */ 9248 if (port_error) { 9249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9250 "1408 Port Failed POST - portsmphr=0x%x, " 9251 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 9252 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 9253 portsmphr_reg.word0, 9254 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 9255 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 9256 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 9257 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 9258 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 9259 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 9260 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 9261 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 9262 } else { 9263 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9264 "2534 Device Info: SLIFamily=0x%x, " 9265 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 9266 "SLIHint_2=0x%x, FT=0x%x\n", 9267 bf_get(lpfc_sli_intf_sli_family, 9268 &phba->sli4_hba.sli_intf), 9269 bf_get(lpfc_sli_intf_slirev, 9270 &phba->sli4_hba.sli_intf), 9271 bf_get(lpfc_sli_intf_if_type, 9272 &phba->sli4_hba.sli_intf), 9273 bf_get(lpfc_sli_intf_sli_hint1, 9274 &phba->sli4_hba.sli_intf), 9275 bf_get(lpfc_sli_intf_sli_hint2, 9276 &phba->sli4_hba.sli_intf), 9277 bf_get(lpfc_sli_intf_func_type, 9278 &phba->sli4_hba.sli_intf)); 9279 /* 9280 * Check for other Port errors during the initialization 9281 * process. Fail the load if the port did not come up 9282 * correctly. 9283 */ 9284 if_type = bf_get(lpfc_sli_intf_if_type, 9285 &phba->sli4_hba.sli_intf); 9286 switch (if_type) { 9287 case LPFC_SLI_INTF_IF_TYPE_0: 9288 phba->sli4_hba.ue_mask_lo = 9289 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 9290 phba->sli4_hba.ue_mask_hi = 9291 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 9292 uerrlo_reg.word0 = 9293 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 9294 uerrhi_reg.word0 = 9295 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 9296 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 9297 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 9298 lpfc_printf_log(phba, KERN_ERR, 9299 LOG_TRACE_EVENT, 9300 "1422 Unrecoverable Error " 9301 "Detected during POST " 9302 "uerr_lo_reg=0x%x, " 9303 "uerr_hi_reg=0x%x, " 9304 "ue_mask_lo_reg=0x%x, " 9305 "ue_mask_hi_reg=0x%x\n", 9306 uerrlo_reg.word0, 9307 uerrhi_reg.word0, 9308 phba->sli4_hba.ue_mask_lo, 9309 phba->sli4_hba.ue_mask_hi); 9310 port_error = -ENODEV; 9311 } 9312 break; 9313 case LPFC_SLI_INTF_IF_TYPE_2: 9314 case LPFC_SLI_INTF_IF_TYPE_6: 9315 /* Final checks. The port status should be clean. */ 9316 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9317 ®_data.word0) || 9318 (bf_get(lpfc_sliport_status_err, ®_data) && 9319 !bf_get(lpfc_sliport_status_rn, ®_data))) { 9320 phba->work_status[0] = 9321 readl(phba->sli4_hba.u.if_type2. 9322 ERR1regaddr); 9323 phba->work_status[1] = 9324 readl(phba->sli4_hba.u.if_type2. 9325 ERR2regaddr); 9326 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9327 "2888 Unrecoverable port error " 9328 "following POST: port status reg " 9329 "0x%x, port_smphr reg 0x%x, " 9330 "error 1=0x%x, error 2=0x%x\n", 9331 reg_data.word0, 9332 portsmphr_reg.word0, 9333 phba->work_status[0], 9334 phba->work_status[1]); 9335 port_error = -ENODEV; 9336 } 9337 break; 9338 case LPFC_SLI_INTF_IF_TYPE_1: 9339 default: 9340 break; 9341 } 9342 } 9343 return port_error; 9344 } 9345 9346 /** 9347 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 9348 * @phba: pointer to lpfc hba data structure. 9349 * @if_type: The SLI4 interface type getting configured. 9350 * 9351 * This routine is invoked to set up SLI4 BAR0 PCI config space register 9352 * memory map. 9353 **/ 9354 static void 9355 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9356 { 9357 switch (if_type) { 9358 case LPFC_SLI_INTF_IF_TYPE_0: 9359 phba->sli4_hba.u.if_type0.UERRLOregaddr = 9360 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 9361 phba->sli4_hba.u.if_type0.UERRHIregaddr = 9362 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 9363 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 9364 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 9365 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 9366 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 9367 phba->sli4_hba.SLIINTFregaddr = 9368 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9369 break; 9370 case LPFC_SLI_INTF_IF_TYPE_2: 9371 phba->sli4_hba.u.if_type2.EQDregaddr = 9372 phba->sli4_hba.conf_regs_memmap_p + 9373 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9374 phba->sli4_hba.u.if_type2.ERR1regaddr = 9375 phba->sli4_hba.conf_regs_memmap_p + 9376 LPFC_CTL_PORT_ER1_OFFSET; 9377 phba->sli4_hba.u.if_type2.ERR2regaddr = 9378 phba->sli4_hba.conf_regs_memmap_p + 9379 LPFC_CTL_PORT_ER2_OFFSET; 9380 phba->sli4_hba.u.if_type2.CTRLregaddr = 9381 phba->sli4_hba.conf_regs_memmap_p + 9382 LPFC_CTL_PORT_CTL_OFFSET; 9383 phba->sli4_hba.u.if_type2.STATUSregaddr = 9384 phba->sli4_hba.conf_regs_memmap_p + 9385 LPFC_CTL_PORT_STA_OFFSET; 9386 phba->sli4_hba.SLIINTFregaddr = 9387 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9388 phba->sli4_hba.PSMPHRregaddr = 9389 phba->sli4_hba.conf_regs_memmap_p + 9390 LPFC_CTL_PORT_SEM_OFFSET; 9391 phba->sli4_hba.RQDBregaddr = 9392 phba->sli4_hba.conf_regs_memmap_p + 9393 LPFC_ULP0_RQ_DOORBELL; 9394 phba->sli4_hba.WQDBregaddr = 9395 phba->sli4_hba.conf_regs_memmap_p + 9396 LPFC_ULP0_WQ_DOORBELL; 9397 phba->sli4_hba.CQDBregaddr = 9398 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 9399 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9400 phba->sli4_hba.MQDBregaddr = 9401 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 9402 phba->sli4_hba.BMBXregaddr = 9403 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9404 break; 9405 case LPFC_SLI_INTF_IF_TYPE_6: 9406 phba->sli4_hba.u.if_type2.EQDregaddr = 9407 phba->sli4_hba.conf_regs_memmap_p + 9408 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9409 phba->sli4_hba.u.if_type2.ERR1regaddr = 9410 phba->sli4_hba.conf_regs_memmap_p + 9411 LPFC_CTL_PORT_ER1_OFFSET; 9412 phba->sli4_hba.u.if_type2.ERR2regaddr = 9413 phba->sli4_hba.conf_regs_memmap_p + 9414 LPFC_CTL_PORT_ER2_OFFSET; 9415 phba->sli4_hba.u.if_type2.CTRLregaddr = 9416 phba->sli4_hba.conf_regs_memmap_p + 9417 LPFC_CTL_PORT_CTL_OFFSET; 9418 phba->sli4_hba.u.if_type2.STATUSregaddr = 9419 phba->sli4_hba.conf_regs_memmap_p + 9420 LPFC_CTL_PORT_STA_OFFSET; 9421 phba->sli4_hba.PSMPHRregaddr = 9422 phba->sli4_hba.conf_regs_memmap_p + 9423 LPFC_CTL_PORT_SEM_OFFSET; 9424 phba->sli4_hba.BMBXregaddr = 9425 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9426 break; 9427 case LPFC_SLI_INTF_IF_TYPE_1: 9428 default: 9429 dev_printk(KERN_ERR, &phba->pcidev->dev, 9430 "FATAL - unsupported SLI4 interface type - %d\n", 9431 if_type); 9432 break; 9433 } 9434 } 9435 9436 /** 9437 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 9438 * @phba: pointer to lpfc hba data structure. 9439 * @if_type: sli if type to operate on. 9440 * 9441 * This routine is invoked to set up SLI4 BAR1 register memory map. 9442 **/ 9443 static void 9444 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9445 { 9446 switch (if_type) { 9447 case LPFC_SLI_INTF_IF_TYPE_0: 9448 phba->sli4_hba.PSMPHRregaddr = 9449 phba->sli4_hba.ctrl_regs_memmap_p + 9450 LPFC_SLIPORT_IF0_SMPHR; 9451 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9452 LPFC_HST_ISR0; 9453 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9454 LPFC_HST_IMR0; 9455 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9456 LPFC_HST_ISCR0; 9457 break; 9458 case LPFC_SLI_INTF_IF_TYPE_6: 9459 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9460 LPFC_IF6_RQ_DOORBELL; 9461 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9462 LPFC_IF6_WQ_DOORBELL; 9463 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9464 LPFC_IF6_CQ_DOORBELL; 9465 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9466 LPFC_IF6_EQ_DOORBELL; 9467 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9468 LPFC_IF6_MQ_DOORBELL; 9469 break; 9470 case LPFC_SLI_INTF_IF_TYPE_2: 9471 case LPFC_SLI_INTF_IF_TYPE_1: 9472 default: 9473 dev_err(&phba->pcidev->dev, 9474 "FATAL - unsupported SLI4 interface type - %d\n", 9475 if_type); 9476 break; 9477 } 9478 } 9479 9480 /** 9481 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 9482 * @phba: pointer to lpfc hba data structure. 9483 * @vf: virtual function number 9484 * 9485 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 9486 * based on the given viftual function number, @vf. 9487 * 9488 * Return 0 if successful, otherwise -ENODEV. 9489 **/ 9490 static int 9491 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 9492 { 9493 if (vf > LPFC_VIR_FUNC_MAX) 9494 return -ENODEV; 9495 9496 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9497 vf * LPFC_VFR_PAGE_SIZE + 9498 LPFC_ULP0_RQ_DOORBELL); 9499 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9500 vf * LPFC_VFR_PAGE_SIZE + 9501 LPFC_ULP0_WQ_DOORBELL); 9502 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9503 vf * LPFC_VFR_PAGE_SIZE + 9504 LPFC_EQCQ_DOORBELL); 9505 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9506 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9507 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 9508 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9509 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 9510 return 0; 9511 } 9512 9513 /** 9514 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 9515 * @phba: pointer to lpfc hba data structure. 9516 * 9517 * This routine is invoked to create the bootstrap mailbox 9518 * region consistent with the SLI-4 interface spec. This 9519 * routine allocates all memory necessary to communicate 9520 * mailbox commands to the port and sets up all alignment 9521 * needs. No locks are expected to be held when calling 9522 * this routine. 9523 * 9524 * Return codes 9525 * 0 - successful 9526 * -ENOMEM - could not allocated memory. 9527 **/ 9528 static int 9529 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 9530 { 9531 uint32_t bmbx_size; 9532 struct lpfc_dmabuf *dmabuf; 9533 struct dma_address *dma_address; 9534 uint32_t pa_addr; 9535 uint64_t phys_addr; 9536 9537 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 9538 if (!dmabuf) 9539 return -ENOMEM; 9540 9541 /* 9542 * The bootstrap mailbox region is comprised of 2 parts 9543 * plus an alignment restriction of 16 bytes. 9544 */ 9545 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 9546 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 9547 &dmabuf->phys, GFP_KERNEL); 9548 if (!dmabuf->virt) { 9549 kfree(dmabuf); 9550 return -ENOMEM; 9551 } 9552 9553 /* 9554 * Initialize the bootstrap mailbox pointers now so that the register 9555 * operations are simple later. The mailbox dma address is required 9556 * to be 16-byte aligned. Also align the virtual memory as each 9557 * maibox is copied into the bmbx mailbox region before issuing the 9558 * command to the port. 9559 */ 9560 phba->sli4_hba.bmbx.dmabuf = dmabuf; 9561 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 9562 9563 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 9564 LPFC_ALIGN_16_BYTE); 9565 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 9566 LPFC_ALIGN_16_BYTE); 9567 9568 /* 9569 * Set the high and low physical addresses now. The SLI4 alignment 9570 * requirement is 16 bytes and the mailbox is posted to the port 9571 * as two 30-bit addresses. The other data is a bit marking whether 9572 * the 30-bit address is the high or low address. 9573 * Upcast bmbx aphys to 64bits so shift instruction compiles 9574 * clean on 32 bit machines. 9575 */ 9576 dma_address = &phba->sli4_hba.bmbx.dma_address; 9577 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 9578 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 9579 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 9580 LPFC_BMBX_BIT1_ADDR_HI); 9581 9582 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 9583 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 9584 LPFC_BMBX_BIT1_ADDR_LO); 9585 return 0; 9586 } 9587 9588 /** 9589 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 9590 * @phba: pointer to lpfc hba data structure. 9591 * 9592 * This routine is invoked to teardown the bootstrap mailbox 9593 * region and release all host resources. This routine requires 9594 * the caller to ensure all mailbox commands recovered, no 9595 * additional mailbox comands are sent, and interrupts are disabled 9596 * before calling this routine. 9597 * 9598 **/ 9599 static void 9600 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 9601 { 9602 dma_free_coherent(&phba->pcidev->dev, 9603 phba->sli4_hba.bmbx.bmbx_size, 9604 phba->sli4_hba.bmbx.dmabuf->virt, 9605 phba->sli4_hba.bmbx.dmabuf->phys); 9606 9607 kfree(phba->sli4_hba.bmbx.dmabuf); 9608 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 9609 } 9610 9611 static const char * const lpfc_topo_to_str[] = { 9612 "Loop then P2P", 9613 "Loopback", 9614 "P2P Only", 9615 "Unsupported", 9616 "Loop Only", 9617 "Unsupported", 9618 "P2P then Loop", 9619 }; 9620 9621 #define LINK_FLAGS_DEF 0x0 9622 #define LINK_FLAGS_P2P 0x1 9623 #define LINK_FLAGS_LOOP 0x2 9624 /** 9625 * lpfc_map_topology - Map the topology read from READ_CONFIG 9626 * @phba: pointer to lpfc hba data structure. 9627 * @rd_config: pointer to read config data 9628 * 9629 * This routine is invoked to map the topology values as read 9630 * from the read config mailbox command. If the persistent 9631 * topology feature is supported, the firmware will provide the 9632 * saved topology information to be used in INIT_LINK 9633 **/ 9634 static void 9635 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 9636 { 9637 u8 ptv, tf, pt; 9638 9639 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 9640 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 9641 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 9642 9643 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9644 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 9645 ptv, tf, pt); 9646 if (!ptv) { 9647 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9648 "2019 FW does not support persistent topology " 9649 "Using driver parameter defined value [%s]", 9650 lpfc_topo_to_str[phba->cfg_topology]); 9651 return; 9652 } 9653 /* FW supports persistent topology - override module parameter value */ 9654 phba->hba_flag |= HBA_PERSISTENT_TOPO; 9655 9656 /* if ASIC_GEN_NUM >= 0xC) */ 9657 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 9658 LPFC_SLI_INTF_IF_TYPE_6) || 9659 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 9660 LPFC_SLI_INTF_FAMILY_G6)) { 9661 if (!tf) { 9662 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 9663 ? FLAGS_TOPOLOGY_MODE_LOOP 9664 : FLAGS_TOPOLOGY_MODE_PT_PT); 9665 } else { 9666 phba->hba_flag &= ~HBA_PERSISTENT_TOPO; 9667 } 9668 } else { /* G5 */ 9669 if (tf) { 9670 /* If topology failover set - pt is '0' or '1' */ 9671 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 9672 FLAGS_TOPOLOGY_MODE_LOOP_PT); 9673 } else { 9674 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 9675 ? FLAGS_TOPOLOGY_MODE_PT_PT 9676 : FLAGS_TOPOLOGY_MODE_LOOP); 9677 } 9678 } 9679 if (phba->hba_flag & HBA_PERSISTENT_TOPO) { 9680 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9681 "2020 Using persistent topology value [%s]", 9682 lpfc_topo_to_str[phba->cfg_topology]); 9683 } else { 9684 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9685 "2021 Invalid topology values from FW " 9686 "Using driver parameter defined value [%s]", 9687 lpfc_topo_to_str[phba->cfg_topology]); 9688 } 9689 } 9690 9691 /** 9692 * lpfc_sli4_read_config - Get the config parameters. 9693 * @phba: pointer to lpfc hba data structure. 9694 * 9695 * This routine is invoked to read the configuration parameters from the HBA. 9696 * The configuration parameters are used to set the base and maximum values 9697 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 9698 * allocation for the port. 9699 * 9700 * Return codes 9701 * 0 - successful 9702 * -ENOMEM - No available memory 9703 * -EIO - The mailbox failed to complete successfully. 9704 **/ 9705 int 9706 lpfc_sli4_read_config(struct lpfc_hba *phba) 9707 { 9708 LPFC_MBOXQ_t *pmb; 9709 struct lpfc_mbx_read_config *rd_config; 9710 union lpfc_sli4_cfg_shdr *shdr; 9711 uint32_t shdr_status, shdr_add_status; 9712 struct lpfc_mbx_get_func_cfg *get_func_cfg; 9713 struct lpfc_rsrc_desc_fcfcoe *desc; 9714 char *pdesc_0; 9715 uint16_t forced_link_speed; 9716 uint32_t if_type, qmin; 9717 int length, i, rc = 0, rc2; 9718 9719 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9720 if (!pmb) { 9721 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9722 "2011 Unable to allocate memory for issuing " 9723 "SLI_CONFIG_SPECIAL mailbox command\n"); 9724 return -ENOMEM; 9725 } 9726 9727 lpfc_read_config(phba, pmb); 9728 9729 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 9730 if (rc != MBX_SUCCESS) { 9731 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9732 "2012 Mailbox failed , mbxCmd x%x " 9733 "READ_CONFIG, mbxStatus x%x\n", 9734 bf_get(lpfc_mqe_command, &pmb->u.mqe), 9735 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 9736 rc = -EIO; 9737 } else { 9738 rd_config = &pmb->u.mqe.un.rd_config; 9739 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 9740 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 9741 phba->sli4_hba.lnk_info.lnk_tp = 9742 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 9743 phba->sli4_hba.lnk_info.lnk_no = 9744 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 9745 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9746 "3081 lnk_type:%d, lnk_numb:%d\n", 9747 phba->sli4_hba.lnk_info.lnk_tp, 9748 phba->sli4_hba.lnk_info.lnk_no); 9749 } else 9750 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9751 "3082 Mailbox (x%x) returned ldv:x0\n", 9752 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 9753 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 9754 phba->bbcredit_support = 1; 9755 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 9756 } 9757 9758 phba->sli4_hba.conf_trunk = 9759 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 9760 phba->sli4_hba.extents_in_use = 9761 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 9762 phba->sli4_hba.max_cfg_param.max_xri = 9763 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 9764 /* Reduce resource usage in kdump environment */ 9765 if (is_kdump_kernel() && 9766 phba->sli4_hba.max_cfg_param.max_xri > 512) 9767 phba->sli4_hba.max_cfg_param.max_xri = 512; 9768 phba->sli4_hba.max_cfg_param.xri_base = 9769 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 9770 phba->sli4_hba.max_cfg_param.max_vpi = 9771 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 9772 /* Limit the max we support */ 9773 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 9774 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 9775 phba->sli4_hba.max_cfg_param.vpi_base = 9776 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 9777 phba->sli4_hba.max_cfg_param.max_rpi = 9778 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 9779 phba->sli4_hba.max_cfg_param.rpi_base = 9780 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 9781 phba->sli4_hba.max_cfg_param.max_vfi = 9782 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 9783 phba->sli4_hba.max_cfg_param.vfi_base = 9784 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 9785 phba->sli4_hba.max_cfg_param.max_fcfi = 9786 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 9787 phba->sli4_hba.max_cfg_param.max_eq = 9788 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 9789 phba->sli4_hba.max_cfg_param.max_rq = 9790 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 9791 phba->sli4_hba.max_cfg_param.max_wq = 9792 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 9793 phba->sli4_hba.max_cfg_param.max_cq = 9794 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 9795 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 9796 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 9797 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 9798 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 9799 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 9800 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 9801 phba->max_vports = phba->max_vpi; 9802 9803 /* Next decide on FPIN or Signal E2E CGN support 9804 * For congestion alarms and warnings valid combination are: 9805 * 1. FPIN alarms / FPIN warnings 9806 * 2. Signal alarms / Signal warnings 9807 * 3. FPIN alarms / Signal warnings 9808 * 4. Signal alarms / FPIN warnings 9809 * 9810 * Initialize the adapter frequency to 100 mSecs 9811 */ 9812 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 9813 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 9814 phba->cgn_sig_freq = lpfc_fabric_cgn_frequency; 9815 9816 if (lpfc_use_cgn_signal) { 9817 if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) { 9818 phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY; 9819 phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN; 9820 } 9821 if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) { 9822 /* MUST support both alarm and warning 9823 * because EDC does not support alarm alone. 9824 */ 9825 if (phba->cgn_reg_signal != 9826 EDC_CG_SIG_WARN_ONLY) { 9827 /* Must support both or none */ 9828 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 9829 phba->cgn_reg_signal = 9830 EDC_CG_SIG_NOTSUPPORTED; 9831 } else { 9832 phba->cgn_reg_signal = 9833 EDC_CG_SIG_WARN_ALARM; 9834 phba->cgn_reg_fpin = 9835 LPFC_CGN_FPIN_NONE; 9836 } 9837 } 9838 } 9839 9840 /* Set the congestion initial signal and fpin values. */ 9841 phba->cgn_init_reg_fpin = phba->cgn_reg_fpin; 9842 phba->cgn_init_reg_signal = phba->cgn_reg_signal; 9843 9844 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 9845 "6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n", 9846 phba->cgn_reg_signal, phba->cgn_reg_fpin); 9847 9848 lpfc_map_topology(phba, rd_config); 9849 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9850 "2003 cfg params Extents? %d " 9851 "XRI(B:%d M:%d), " 9852 "VPI(B:%d M:%d) " 9853 "VFI(B:%d M:%d) " 9854 "RPI(B:%d M:%d) " 9855 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n", 9856 phba->sli4_hba.extents_in_use, 9857 phba->sli4_hba.max_cfg_param.xri_base, 9858 phba->sli4_hba.max_cfg_param.max_xri, 9859 phba->sli4_hba.max_cfg_param.vpi_base, 9860 phba->sli4_hba.max_cfg_param.max_vpi, 9861 phba->sli4_hba.max_cfg_param.vfi_base, 9862 phba->sli4_hba.max_cfg_param.max_vfi, 9863 phba->sli4_hba.max_cfg_param.rpi_base, 9864 phba->sli4_hba.max_cfg_param.max_rpi, 9865 phba->sli4_hba.max_cfg_param.max_fcfi, 9866 phba->sli4_hba.max_cfg_param.max_eq, 9867 phba->sli4_hba.max_cfg_param.max_cq, 9868 phba->sli4_hba.max_cfg_param.max_wq, 9869 phba->sli4_hba.max_cfg_param.max_rq, 9870 phba->lmt); 9871 9872 /* 9873 * Calculate queue resources based on how 9874 * many WQ/CQ/EQs are available. 9875 */ 9876 qmin = phba->sli4_hba.max_cfg_param.max_wq; 9877 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 9878 qmin = phba->sli4_hba.max_cfg_param.max_cq; 9879 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 9880 qmin = phba->sli4_hba.max_cfg_param.max_eq; 9881 /* 9882 * Whats left after this can go toward NVME / FCP. 9883 * The minus 4 accounts for ELS, NVME LS, MBOX 9884 * plus one extra. When configured for 9885 * NVMET, FCP io channel WQs are not created. 9886 */ 9887 qmin -= 4; 9888 9889 /* Check to see if there is enough for NVME */ 9890 if ((phba->cfg_irq_chann > qmin) || 9891 (phba->cfg_hdw_queue > qmin)) { 9892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9893 "2005 Reducing Queues - " 9894 "FW resource limitation: " 9895 "WQ %d CQ %d EQ %d: min %d: " 9896 "IRQ %d HDWQ %d\n", 9897 phba->sli4_hba.max_cfg_param.max_wq, 9898 phba->sli4_hba.max_cfg_param.max_cq, 9899 phba->sli4_hba.max_cfg_param.max_eq, 9900 qmin, phba->cfg_irq_chann, 9901 phba->cfg_hdw_queue); 9902 9903 if (phba->cfg_irq_chann > qmin) 9904 phba->cfg_irq_chann = qmin; 9905 if (phba->cfg_hdw_queue > qmin) 9906 phba->cfg_hdw_queue = qmin; 9907 } 9908 } 9909 9910 if (rc) 9911 goto read_cfg_out; 9912 9913 /* Update link speed if forced link speed is supported */ 9914 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 9915 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9916 forced_link_speed = 9917 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 9918 if (forced_link_speed) { 9919 phba->hba_flag |= HBA_FORCED_LINK_SPEED; 9920 9921 switch (forced_link_speed) { 9922 case LINK_SPEED_1G: 9923 phba->cfg_link_speed = 9924 LPFC_USER_LINK_SPEED_1G; 9925 break; 9926 case LINK_SPEED_2G: 9927 phba->cfg_link_speed = 9928 LPFC_USER_LINK_SPEED_2G; 9929 break; 9930 case LINK_SPEED_4G: 9931 phba->cfg_link_speed = 9932 LPFC_USER_LINK_SPEED_4G; 9933 break; 9934 case LINK_SPEED_8G: 9935 phba->cfg_link_speed = 9936 LPFC_USER_LINK_SPEED_8G; 9937 break; 9938 case LINK_SPEED_10G: 9939 phba->cfg_link_speed = 9940 LPFC_USER_LINK_SPEED_10G; 9941 break; 9942 case LINK_SPEED_16G: 9943 phba->cfg_link_speed = 9944 LPFC_USER_LINK_SPEED_16G; 9945 break; 9946 case LINK_SPEED_32G: 9947 phba->cfg_link_speed = 9948 LPFC_USER_LINK_SPEED_32G; 9949 break; 9950 case LINK_SPEED_64G: 9951 phba->cfg_link_speed = 9952 LPFC_USER_LINK_SPEED_64G; 9953 break; 9954 case 0xffff: 9955 phba->cfg_link_speed = 9956 LPFC_USER_LINK_SPEED_AUTO; 9957 break; 9958 default: 9959 lpfc_printf_log(phba, KERN_ERR, 9960 LOG_TRACE_EVENT, 9961 "0047 Unrecognized link " 9962 "speed : %d\n", 9963 forced_link_speed); 9964 phba->cfg_link_speed = 9965 LPFC_USER_LINK_SPEED_AUTO; 9966 } 9967 } 9968 } 9969 9970 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 9971 length = phba->sli4_hba.max_cfg_param.max_xri - 9972 lpfc_sli4_get_els_iocb_cnt(phba); 9973 if (phba->cfg_hba_queue_depth > length) { 9974 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 9975 "3361 HBA queue depth changed from %d to %d\n", 9976 phba->cfg_hba_queue_depth, length); 9977 phba->cfg_hba_queue_depth = length; 9978 } 9979 9980 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 9981 LPFC_SLI_INTF_IF_TYPE_2) 9982 goto read_cfg_out; 9983 9984 /* get the pf# and vf# for SLI4 if_type 2 port */ 9985 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 9986 sizeof(struct lpfc_sli4_cfg_mhdr)); 9987 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 9988 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 9989 length, LPFC_SLI4_MBX_EMBED); 9990 9991 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 9992 shdr = (union lpfc_sli4_cfg_shdr *) 9993 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 9994 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 9995 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 9996 if (rc2 || shdr_status || shdr_add_status) { 9997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9998 "3026 Mailbox failed , mbxCmd x%x " 9999 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 10000 bf_get(lpfc_mqe_command, &pmb->u.mqe), 10001 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 10002 goto read_cfg_out; 10003 } 10004 10005 /* search for fc_fcoe resrouce descriptor */ 10006 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 10007 10008 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 10009 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 10010 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 10011 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 10012 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 10013 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 10014 goto read_cfg_out; 10015 10016 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 10017 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 10018 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 10019 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 10020 phba->sli4_hba.iov.pf_number = 10021 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 10022 phba->sli4_hba.iov.vf_number = 10023 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 10024 break; 10025 } 10026 } 10027 10028 if (i < LPFC_RSRC_DESC_MAX_NUM) 10029 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10030 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 10031 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 10032 phba->sli4_hba.iov.vf_number); 10033 else 10034 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10035 "3028 GET_FUNCTION_CONFIG: failed to find " 10036 "Resource Descriptor:x%x\n", 10037 LPFC_RSRC_DESC_TYPE_FCFCOE); 10038 10039 read_cfg_out: 10040 mempool_free(pmb, phba->mbox_mem_pool); 10041 return rc; 10042 } 10043 10044 /** 10045 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 10046 * @phba: pointer to lpfc hba data structure. 10047 * 10048 * This routine is invoked to setup the port-side endian order when 10049 * the port if_type is 0. This routine has no function for other 10050 * if_types. 10051 * 10052 * Return codes 10053 * 0 - successful 10054 * -ENOMEM - No available memory 10055 * -EIO - The mailbox failed to complete successfully. 10056 **/ 10057 static int 10058 lpfc_setup_endian_order(struct lpfc_hba *phba) 10059 { 10060 LPFC_MBOXQ_t *mboxq; 10061 uint32_t if_type, rc = 0; 10062 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 10063 HOST_ENDIAN_HIGH_WORD1}; 10064 10065 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10066 switch (if_type) { 10067 case LPFC_SLI_INTF_IF_TYPE_0: 10068 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10069 GFP_KERNEL); 10070 if (!mboxq) { 10071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10072 "0492 Unable to allocate memory for " 10073 "issuing SLI_CONFIG_SPECIAL mailbox " 10074 "command\n"); 10075 return -ENOMEM; 10076 } 10077 10078 /* 10079 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 10080 * two words to contain special data values and no other data. 10081 */ 10082 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 10083 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 10084 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10085 if (rc != MBX_SUCCESS) { 10086 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10087 "0493 SLI_CONFIG_SPECIAL mailbox " 10088 "failed with status x%x\n", 10089 rc); 10090 rc = -EIO; 10091 } 10092 mempool_free(mboxq, phba->mbox_mem_pool); 10093 break; 10094 case LPFC_SLI_INTF_IF_TYPE_6: 10095 case LPFC_SLI_INTF_IF_TYPE_2: 10096 case LPFC_SLI_INTF_IF_TYPE_1: 10097 default: 10098 break; 10099 } 10100 return rc; 10101 } 10102 10103 /** 10104 * lpfc_sli4_queue_verify - Verify and update EQ counts 10105 * @phba: pointer to lpfc hba data structure. 10106 * 10107 * This routine is invoked to check the user settable queue counts for EQs. 10108 * After this routine is called the counts will be set to valid values that 10109 * adhere to the constraints of the system's interrupt vectors and the port's 10110 * queue resources. 10111 * 10112 * Return codes 10113 * 0 - successful 10114 * -ENOMEM - No available memory 10115 **/ 10116 static int 10117 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 10118 { 10119 /* 10120 * Sanity check for configured queue parameters against the run-time 10121 * device parameters 10122 */ 10123 10124 if (phba->nvmet_support) { 10125 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 10126 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 10127 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 10128 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 10129 } 10130 10131 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10132 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 10133 phba->cfg_hdw_queue, phba->cfg_irq_chann, 10134 phba->cfg_nvmet_mrq); 10135 10136 /* Get EQ depth from module parameter, fake the default for now */ 10137 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10138 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10139 10140 /* Get CQ depth from module parameter, fake the default for now */ 10141 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10142 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10143 return 0; 10144 } 10145 10146 static int 10147 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 10148 { 10149 struct lpfc_queue *qdesc; 10150 u32 wqesize; 10151 int cpu; 10152 10153 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 10154 /* Create Fast Path IO CQs */ 10155 if (phba->enab_exp_wqcq_pages) 10156 /* Increase the CQ size when WQEs contain an embedded cdb */ 10157 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10158 phba->sli4_hba.cq_esize, 10159 LPFC_CQE_EXP_COUNT, cpu); 10160 10161 else 10162 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10163 phba->sli4_hba.cq_esize, 10164 phba->sli4_hba.cq_ecount, cpu); 10165 if (!qdesc) { 10166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10167 "0499 Failed allocate fast-path IO CQ (%d)\n", 10168 idx); 10169 return 1; 10170 } 10171 qdesc->qe_valid = 1; 10172 qdesc->hdwq = idx; 10173 qdesc->chann = cpu; 10174 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 10175 10176 /* Create Fast Path IO WQs */ 10177 if (phba->enab_exp_wqcq_pages) { 10178 /* Increase the WQ size when WQEs contain an embedded cdb */ 10179 wqesize = (phba->fcp_embed_io) ? 10180 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 10181 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10182 wqesize, 10183 LPFC_WQE_EXP_COUNT, cpu); 10184 } else 10185 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10186 phba->sli4_hba.wq_esize, 10187 phba->sli4_hba.wq_ecount, cpu); 10188 10189 if (!qdesc) { 10190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10191 "0503 Failed allocate fast-path IO WQ (%d)\n", 10192 idx); 10193 return 1; 10194 } 10195 qdesc->hdwq = idx; 10196 qdesc->chann = cpu; 10197 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 10198 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10199 return 0; 10200 } 10201 10202 /** 10203 * lpfc_sli4_queue_create - Create all the SLI4 queues 10204 * @phba: pointer to lpfc hba data structure. 10205 * 10206 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 10207 * operation. For each SLI4 queue type, the parameters such as queue entry 10208 * count (queue depth) shall be taken from the module parameter. For now, 10209 * we just use some constant number as place holder. 10210 * 10211 * Return codes 10212 * 0 - successful 10213 * -ENOMEM - No availble memory 10214 * -EIO - The mailbox failed to complete successfully. 10215 **/ 10216 int 10217 lpfc_sli4_queue_create(struct lpfc_hba *phba) 10218 { 10219 struct lpfc_queue *qdesc; 10220 int idx, cpu, eqcpu; 10221 struct lpfc_sli4_hdw_queue *qp; 10222 struct lpfc_vector_map_info *cpup; 10223 struct lpfc_vector_map_info *eqcpup; 10224 struct lpfc_eq_intr_info *eqi; 10225 10226 /* 10227 * Create HBA Record arrays. 10228 * Both NVME and FCP will share that same vectors / EQs 10229 */ 10230 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 10231 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 10232 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 10233 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 10234 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 10235 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 10236 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10237 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10238 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10239 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10240 10241 if (!phba->sli4_hba.hdwq) { 10242 phba->sli4_hba.hdwq = kcalloc( 10243 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 10244 GFP_KERNEL); 10245 if (!phba->sli4_hba.hdwq) { 10246 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10247 "6427 Failed allocate memory for " 10248 "fast-path Hardware Queue array\n"); 10249 goto out_error; 10250 } 10251 /* Prepare hardware queues to take IO buffers */ 10252 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10253 qp = &phba->sli4_hba.hdwq[idx]; 10254 spin_lock_init(&qp->io_buf_list_get_lock); 10255 spin_lock_init(&qp->io_buf_list_put_lock); 10256 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 10257 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 10258 qp->get_io_bufs = 0; 10259 qp->put_io_bufs = 0; 10260 qp->total_io_bufs = 0; 10261 spin_lock_init(&qp->abts_io_buf_list_lock); 10262 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 10263 qp->abts_scsi_io_bufs = 0; 10264 qp->abts_nvme_io_bufs = 0; 10265 INIT_LIST_HEAD(&qp->sgl_list); 10266 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 10267 spin_lock_init(&qp->hdwq_lock); 10268 } 10269 } 10270 10271 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10272 if (phba->nvmet_support) { 10273 phba->sli4_hba.nvmet_cqset = kcalloc( 10274 phba->cfg_nvmet_mrq, 10275 sizeof(struct lpfc_queue *), 10276 GFP_KERNEL); 10277 if (!phba->sli4_hba.nvmet_cqset) { 10278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10279 "3121 Fail allocate memory for " 10280 "fast-path CQ set array\n"); 10281 goto out_error; 10282 } 10283 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 10284 phba->cfg_nvmet_mrq, 10285 sizeof(struct lpfc_queue *), 10286 GFP_KERNEL); 10287 if (!phba->sli4_hba.nvmet_mrq_hdr) { 10288 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10289 "3122 Fail allocate memory for " 10290 "fast-path RQ set hdr array\n"); 10291 goto out_error; 10292 } 10293 phba->sli4_hba.nvmet_mrq_data = kcalloc( 10294 phba->cfg_nvmet_mrq, 10295 sizeof(struct lpfc_queue *), 10296 GFP_KERNEL); 10297 if (!phba->sli4_hba.nvmet_mrq_data) { 10298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10299 "3124 Fail allocate memory for " 10300 "fast-path RQ set data array\n"); 10301 goto out_error; 10302 } 10303 } 10304 } 10305 10306 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10307 10308 /* Create HBA Event Queues (EQs) */ 10309 for_each_present_cpu(cpu) { 10310 /* We only want to create 1 EQ per vector, even though 10311 * multiple CPUs might be using that vector. so only 10312 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 10313 */ 10314 cpup = &phba->sli4_hba.cpu_map[cpu]; 10315 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 10316 continue; 10317 10318 /* Get a ptr to the Hardware Queue associated with this CPU */ 10319 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10320 10321 /* Allocate an EQ */ 10322 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10323 phba->sli4_hba.eq_esize, 10324 phba->sli4_hba.eq_ecount, cpu); 10325 if (!qdesc) { 10326 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10327 "0497 Failed allocate EQ (%d)\n", 10328 cpup->hdwq); 10329 goto out_error; 10330 } 10331 qdesc->qe_valid = 1; 10332 qdesc->hdwq = cpup->hdwq; 10333 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 10334 qdesc->last_cpu = qdesc->chann; 10335 10336 /* Save the allocated EQ in the Hardware Queue */ 10337 qp->hba_eq = qdesc; 10338 10339 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 10340 list_add(&qdesc->cpu_list, &eqi->list); 10341 } 10342 10343 /* Now we need to populate the other Hardware Queues, that share 10344 * an IRQ vector, with the associated EQ ptr. 10345 */ 10346 for_each_present_cpu(cpu) { 10347 cpup = &phba->sli4_hba.cpu_map[cpu]; 10348 10349 /* Check for EQ already allocated in previous loop */ 10350 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 10351 continue; 10352 10353 /* Check for multiple CPUs per hdwq */ 10354 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10355 if (qp->hba_eq) 10356 continue; 10357 10358 /* We need to share an EQ for this hdwq */ 10359 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 10360 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 10361 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 10362 } 10363 10364 /* Allocate IO Path SLI4 CQ/WQs */ 10365 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10366 if (lpfc_alloc_io_wq_cq(phba, idx)) 10367 goto out_error; 10368 } 10369 10370 if (phba->nvmet_support) { 10371 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10372 cpu = lpfc_find_cpu_handle(phba, idx, 10373 LPFC_FIND_BY_HDWQ); 10374 qdesc = lpfc_sli4_queue_alloc(phba, 10375 LPFC_DEFAULT_PAGE_SIZE, 10376 phba->sli4_hba.cq_esize, 10377 phba->sli4_hba.cq_ecount, 10378 cpu); 10379 if (!qdesc) { 10380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10381 "3142 Failed allocate NVME " 10382 "CQ Set (%d)\n", idx); 10383 goto out_error; 10384 } 10385 qdesc->qe_valid = 1; 10386 qdesc->hdwq = idx; 10387 qdesc->chann = cpu; 10388 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 10389 } 10390 } 10391 10392 /* 10393 * Create Slow Path Completion Queues (CQs) 10394 */ 10395 10396 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 10397 /* Create slow-path Mailbox Command Complete Queue */ 10398 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10399 phba->sli4_hba.cq_esize, 10400 phba->sli4_hba.cq_ecount, cpu); 10401 if (!qdesc) { 10402 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10403 "0500 Failed allocate slow-path mailbox CQ\n"); 10404 goto out_error; 10405 } 10406 qdesc->qe_valid = 1; 10407 phba->sli4_hba.mbx_cq = qdesc; 10408 10409 /* Create slow-path ELS Complete Queue */ 10410 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10411 phba->sli4_hba.cq_esize, 10412 phba->sli4_hba.cq_ecount, cpu); 10413 if (!qdesc) { 10414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10415 "0501 Failed allocate slow-path ELS CQ\n"); 10416 goto out_error; 10417 } 10418 qdesc->qe_valid = 1; 10419 qdesc->chann = cpu; 10420 phba->sli4_hba.els_cq = qdesc; 10421 10422 10423 /* 10424 * Create Slow Path Work Queues (WQs) 10425 */ 10426 10427 /* Create Mailbox Command Queue */ 10428 10429 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10430 phba->sli4_hba.mq_esize, 10431 phba->sli4_hba.mq_ecount, cpu); 10432 if (!qdesc) { 10433 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10434 "0505 Failed allocate slow-path MQ\n"); 10435 goto out_error; 10436 } 10437 qdesc->chann = cpu; 10438 phba->sli4_hba.mbx_wq = qdesc; 10439 10440 /* 10441 * Create ELS Work Queues 10442 */ 10443 10444 /* Create slow-path ELS Work Queue */ 10445 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10446 phba->sli4_hba.wq_esize, 10447 phba->sli4_hba.wq_ecount, cpu); 10448 if (!qdesc) { 10449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10450 "0504 Failed allocate slow-path ELS WQ\n"); 10451 goto out_error; 10452 } 10453 qdesc->chann = cpu; 10454 phba->sli4_hba.els_wq = qdesc; 10455 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10456 10457 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10458 /* Create NVME LS Complete Queue */ 10459 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10460 phba->sli4_hba.cq_esize, 10461 phba->sli4_hba.cq_ecount, cpu); 10462 if (!qdesc) { 10463 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10464 "6079 Failed allocate NVME LS CQ\n"); 10465 goto out_error; 10466 } 10467 qdesc->chann = cpu; 10468 qdesc->qe_valid = 1; 10469 phba->sli4_hba.nvmels_cq = qdesc; 10470 10471 /* Create NVME LS Work Queue */ 10472 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10473 phba->sli4_hba.wq_esize, 10474 phba->sli4_hba.wq_ecount, cpu); 10475 if (!qdesc) { 10476 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10477 "6080 Failed allocate NVME LS WQ\n"); 10478 goto out_error; 10479 } 10480 qdesc->chann = cpu; 10481 phba->sli4_hba.nvmels_wq = qdesc; 10482 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10483 } 10484 10485 /* 10486 * Create Receive Queue (RQ) 10487 */ 10488 10489 /* Create Receive Queue for header */ 10490 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10491 phba->sli4_hba.rq_esize, 10492 phba->sli4_hba.rq_ecount, cpu); 10493 if (!qdesc) { 10494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10495 "0506 Failed allocate receive HRQ\n"); 10496 goto out_error; 10497 } 10498 phba->sli4_hba.hdr_rq = qdesc; 10499 10500 /* Create Receive Queue for data */ 10501 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10502 phba->sli4_hba.rq_esize, 10503 phba->sli4_hba.rq_ecount, cpu); 10504 if (!qdesc) { 10505 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10506 "0507 Failed allocate receive DRQ\n"); 10507 goto out_error; 10508 } 10509 phba->sli4_hba.dat_rq = qdesc; 10510 10511 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 10512 phba->nvmet_support) { 10513 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10514 cpu = lpfc_find_cpu_handle(phba, idx, 10515 LPFC_FIND_BY_HDWQ); 10516 /* Create NVMET Receive Queue for header */ 10517 qdesc = lpfc_sli4_queue_alloc(phba, 10518 LPFC_DEFAULT_PAGE_SIZE, 10519 phba->sli4_hba.rq_esize, 10520 LPFC_NVMET_RQE_DEF_COUNT, 10521 cpu); 10522 if (!qdesc) { 10523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10524 "3146 Failed allocate " 10525 "receive HRQ\n"); 10526 goto out_error; 10527 } 10528 qdesc->hdwq = idx; 10529 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 10530 10531 /* Only needed for header of RQ pair */ 10532 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 10533 GFP_KERNEL, 10534 cpu_to_node(cpu)); 10535 if (qdesc->rqbp == NULL) { 10536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10537 "6131 Failed allocate " 10538 "Header RQBP\n"); 10539 goto out_error; 10540 } 10541 10542 /* Put list in known state in case driver load fails. */ 10543 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 10544 10545 /* Create NVMET Receive Queue for data */ 10546 qdesc = lpfc_sli4_queue_alloc(phba, 10547 LPFC_DEFAULT_PAGE_SIZE, 10548 phba->sli4_hba.rq_esize, 10549 LPFC_NVMET_RQE_DEF_COUNT, 10550 cpu); 10551 if (!qdesc) { 10552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10553 "3156 Failed allocate " 10554 "receive DRQ\n"); 10555 goto out_error; 10556 } 10557 qdesc->hdwq = idx; 10558 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 10559 } 10560 } 10561 10562 /* Clear NVME stats */ 10563 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10564 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10565 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 10566 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 10567 } 10568 } 10569 10570 /* Clear SCSI stats */ 10571 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 10572 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10573 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 10574 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 10575 } 10576 } 10577 10578 return 0; 10579 10580 out_error: 10581 lpfc_sli4_queue_destroy(phba); 10582 return -ENOMEM; 10583 } 10584 10585 static inline void 10586 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 10587 { 10588 if (*qp != NULL) { 10589 lpfc_sli4_queue_free(*qp); 10590 *qp = NULL; 10591 } 10592 } 10593 10594 static inline void 10595 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 10596 { 10597 int idx; 10598 10599 if (*qs == NULL) 10600 return; 10601 10602 for (idx = 0; idx < max; idx++) 10603 __lpfc_sli4_release_queue(&(*qs)[idx]); 10604 10605 kfree(*qs); 10606 *qs = NULL; 10607 } 10608 10609 static inline void 10610 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 10611 { 10612 struct lpfc_sli4_hdw_queue *hdwq; 10613 struct lpfc_queue *eq; 10614 uint32_t idx; 10615 10616 hdwq = phba->sli4_hba.hdwq; 10617 10618 /* Loop thru all Hardware Queues */ 10619 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10620 /* Free the CQ/WQ corresponding to the Hardware Queue */ 10621 lpfc_sli4_queue_free(hdwq[idx].io_cq); 10622 lpfc_sli4_queue_free(hdwq[idx].io_wq); 10623 hdwq[idx].hba_eq = NULL; 10624 hdwq[idx].io_cq = NULL; 10625 hdwq[idx].io_wq = NULL; 10626 if (phba->cfg_xpsgl && !phba->nvmet_support) 10627 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 10628 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 10629 } 10630 /* Loop thru all IRQ vectors */ 10631 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 10632 /* Free the EQ corresponding to the IRQ vector */ 10633 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 10634 lpfc_sli4_queue_free(eq); 10635 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 10636 } 10637 } 10638 10639 /** 10640 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 10641 * @phba: pointer to lpfc hba data structure. 10642 * 10643 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 10644 * operation. 10645 * 10646 * Return codes 10647 * 0 - successful 10648 * -ENOMEM - No available memory 10649 * -EIO - The mailbox failed to complete successfully. 10650 **/ 10651 void 10652 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 10653 { 10654 /* 10655 * Set FREE_INIT before beginning to free the queues. 10656 * Wait until the users of queues to acknowledge to 10657 * release queues by clearing FREE_WAIT. 10658 */ 10659 spin_lock_irq(&phba->hbalock); 10660 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 10661 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 10662 spin_unlock_irq(&phba->hbalock); 10663 msleep(20); 10664 spin_lock_irq(&phba->hbalock); 10665 } 10666 spin_unlock_irq(&phba->hbalock); 10667 10668 lpfc_sli4_cleanup_poll_list(phba); 10669 10670 /* Release HBA eqs */ 10671 if (phba->sli4_hba.hdwq) 10672 lpfc_sli4_release_hdwq(phba); 10673 10674 if (phba->nvmet_support) { 10675 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 10676 phba->cfg_nvmet_mrq); 10677 10678 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 10679 phba->cfg_nvmet_mrq); 10680 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 10681 phba->cfg_nvmet_mrq); 10682 } 10683 10684 /* Release mailbox command work queue */ 10685 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 10686 10687 /* Release ELS work queue */ 10688 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 10689 10690 /* Release ELS work queue */ 10691 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 10692 10693 /* Release unsolicited receive queue */ 10694 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 10695 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 10696 10697 /* Release ELS complete queue */ 10698 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 10699 10700 /* Release NVME LS complete queue */ 10701 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 10702 10703 /* Release mailbox command complete queue */ 10704 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 10705 10706 /* Everything on this list has been freed */ 10707 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10708 10709 /* Done with freeing the queues */ 10710 spin_lock_irq(&phba->hbalock); 10711 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 10712 spin_unlock_irq(&phba->hbalock); 10713 } 10714 10715 int 10716 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 10717 { 10718 struct lpfc_rqb *rqbp; 10719 struct lpfc_dmabuf *h_buf; 10720 struct rqb_dmabuf *rqb_buffer; 10721 10722 rqbp = rq->rqbp; 10723 while (!list_empty(&rqbp->rqb_buffer_list)) { 10724 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 10725 struct lpfc_dmabuf, list); 10726 10727 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 10728 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 10729 rqbp->buffer_count--; 10730 } 10731 return 1; 10732 } 10733 10734 static int 10735 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 10736 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 10737 int qidx, uint32_t qtype) 10738 { 10739 struct lpfc_sli_ring *pring; 10740 int rc; 10741 10742 if (!eq || !cq || !wq) { 10743 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10744 "6085 Fast-path %s (%d) not allocated\n", 10745 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 10746 return -ENOMEM; 10747 } 10748 10749 /* create the Cq first */ 10750 rc = lpfc_cq_create(phba, cq, eq, 10751 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 10752 if (rc) { 10753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10754 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 10755 qidx, (uint32_t)rc); 10756 return rc; 10757 } 10758 10759 if (qtype != LPFC_MBOX) { 10760 /* Setup cq_map for fast lookup */ 10761 if (cq_map) 10762 *cq_map = cq->queue_id; 10763 10764 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10765 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 10766 qidx, cq->queue_id, qidx, eq->queue_id); 10767 10768 /* create the wq */ 10769 rc = lpfc_wq_create(phba, wq, cq, qtype); 10770 if (rc) { 10771 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10772 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 10773 qidx, (uint32_t)rc); 10774 /* no need to tear down cq - caller will do so */ 10775 return rc; 10776 } 10777 10778 /* Bind this CQ/WQ to the NVME ring */ 10779 pring = wq->pring; 10780 pring->sli.sli4.wqp = (void *)wq; 10781 cq->pring = pring; 10782 10783 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10784 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 10785 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 10786 } else { 10787 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 10788 if (rc) { 10789 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10790 "0539 Failed setup of slow-path MQ: " 10791 "rc = 0x%x\n", rc); 10792 /* no need to tear down cq - caller will do so */ 10793 return rc; 10794 } 10795 10796 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10797 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 10798 phba->sli4_hba.mbx_wq->queue_id, 10799 phba->sli4_hba.mbx_cq->queue_id); 10800 } 10801 10802 return 0; 10803 } 10804 10805 /** 10806 * lpfc_setup_cq_lookup - Setup the CQ lookup table 10807 * @phba: pointer to lpfc hba data structure. 10808 * 10809 * This routine will populate the cq_lookup table by all 10810 * available CQ queue_id's. 10811 **/ 10812 static void 10813 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 10814 { 10815 struct lpfc_queue *eq, *childq; 10816 int qidx; 10817 10818 memset(phba->sli4_hba.cq_lookup, 0, 10819 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 10820 /* Loop thru all IRQ vectors */ 10821 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 10822 /* Get the EQ corresponding to the IRQ vector */ 10823 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 10824 if (!eq) 10825 continue; 10826 /* Loop through all CQs associated with that EQ */ 10827 list_for_each_entry(childq, &eq->child_list, list) { 10828 if (childq->queue_id > phba->sli4_hba.cq_max) 10829 continue; 10830 if (childq->subtype == LPFC_IO) 10831 phba->sli4_hba.cq_lookup[childq->queue_id] = 10832 childq; 10833 } 10834 } 10835 } 10836 10837 /** 10838 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 10839 * @phba: pointer to lpfc hba data structure. 10840 * 10841 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 10842 * operation. 10843 * 10844 * Return codes 10845 * 0 - successful 10846 * -ENOMEM - No available memory 10847 * -EIO - The mailbox failed to complete successfully. 10848 **/ 10849 int 10850 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 10851 { 10852 uint32_t shdr_status, shdr_add_status; 10853 union lpfc_sli4_cfg_shdr *shdr; 10854 struct lpfc_vector_map_info *cpup; 10855 struct lpfc_sli4_hdw_queue *qp; 10856 LPFC_MBOXQ_t *mboxq; 10857 int qidx, cpu; 10858 uint32_t length, usdelay; 10859 int rc = -ENOMEM; 10860 10861 /* Check for dual-ULP support */ 10862 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 10863 if (!mboxq) { 10864 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10865 "3249 Unable to allocate memory for " 10866 "QUERY_FW_CFG mailbox command\n"); 10867 return -ENOMEM; 10868 } 10869 length = (sizeof(struct lpfc_mbx_query_fw_config) - 10870 sizeof(struct lpfc_sli4_cfg_mhdr)); 10871 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 10872 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 10873 length, LPFC_SLI4_MBX_EMBED); 10874 10875 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10876 10877 shdr = (union lpfc_sli4_cfg_shdr *) 10878 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 10879 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10880 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 10881 if (shdr_status || shdr_add_status || rc) { 10882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10883 "3250 QUERY_FW_CFG mailbox failed with status " 10884 "x%x add_status x%x, mbx status x%x\n", 10885 shdr_status, shdr_add_status, rc); 10886 mempool_free(mboxq, phba->mbox_mem_pool); 10887 rc = -ENXIO; 10888 goto out_error; 10889 } 10890 10891 phba->sli4_hba.fw_func_mode = 10892 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 10893 phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode; 10894 phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode; 10895 phba->sli4_hba.physical_port = 10896 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 10897 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10898 "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, " 10899 "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode, 10900 phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode); 10901 10902 mempool_free(mboxq, phba->mbox_mem_pool); 10903 10904 /* 10905 * Set up HBA Event Queues (EQs) 10906 */ 10907 qp = phba->sli4_hba.hdwq; 10908 10909 /* Set up HBA event queue */ 10910 if (!qp) { 10911 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10912 "3147 Fast-path EQs not allocated\n"); 10913 rc = -ENOMEM; 10914 goto out_error; 10915 } 10916 10917 /* Loop thru all IRQ vectors */ 10918 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 10919 /* Create HBA Event Queues (EQs) in order */ 10920 for_each_present_cpu(cpu) { 10921 cpup = &phba->sli4_hba.cpu_map[cpu]; 10922 10923 /* Look for the CPU thats using that vector with 10924 * LPFC_CPU_FIRST_IRQ set. 10925 */ 10926 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 10927 continue; 10928 if (qidx != cpup->eq) 10929 continue; 10930 10931 /* Create an EQ for that vector */ 10932 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 10933 phba->cfg_fcp_imax); 10934 if (rc) { 10935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10936 "0523 Failed setup of fast-path" 10937 " EQ (%d), rc = 0x%x\n", 10938 cpup->eq, (uint32_t)rc); 10939 goto out_destroy; 10940 } 10941 10942 /* Save the EQ for that vector in the hba_eq_hdl */ 10943 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 10944 qp[cpup->hdwq].hba_eq; 10945 10946 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10947 "2584 HBA EQ setup: queue[%d]-id=%d\n", 10948 cpup->eq, 10949 qp[cpup->hdwq].hba_eq->queue_id); 10950 } 10951 } 10952 10953 /* Loop thru all Hardware Queues */ 10954 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 10955 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 10956 cpup = &phba->sli4_hba.cpu_map[cpu]; 10957 10958 /* Create the CQ/WQ corresponding to the Hardware Queue */ 10959 rc = lpfc_create_wq_cq(phba, 10960 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 10961 qp[qidx].io_cq, 10962 qp[qidx].io_wq, 10963 &phba->sli4_hba.hdwq[qidx].io_cq_map, 10964 qidx, 10965 LPFC_IO); 10966 if (rc) { 10967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10968 "0535 Failed to setup fastpath " 10969 "IO WQ/CQ (%d), rc = 0x%x\n", 10970 qidx, (uint32_t)rc); 10971 goto out_destroy; 10972 } 10973 } 10974 10975 /* 10976 * Set up Slow Path Complete Queues (CQs) 10977 */ 10978 10979 /* Set up slow-path MBOX CQ/MQ */ 10980 10981 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 10982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10983 "0528 %s not allocated\n", 10984 phba->sli4_hba.mbx_cq ? 10985 "Mailbox WQ" : "Mailbox CQ"); 10986 rc = -ENOMEM; 10987 goto out_destroy; 10988 } 10989 10990 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 10991 phba->sli4_hba.mbx_cq, 10992 phba->sli4_hba.mbx_wq, 10993 NULL, 0, LPFC_MBOX); 10994 if (rc) { 10995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10996 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 10997 (uint32_t)rc); 10998 goto out_destroy; 10999 } 11000 if (phba->nvmet_support) { 11001 if (!phba->sli4_hba.nvmet_cqset) { 11002 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11003 "3165 Fast-path NVME CQ Set " 11004 "array not allocated\n"); 11005 rc = -ENOMEM; 11006 goto out_destroy; 11007 } 11008 if (phba->cfg_nvmet_mrq > 1) { 11009 rc = lpfc_cq_create_set(phba, 11010 phba->sli4_hba.nvmet_cqset, 11011 qp, 11012 LPFC_WCQ, LPFC_NVMET); 11013 if (rc) { 11014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11015 "3164 Failed setup of NVME CQ " 11016 "Set, rc = 0x%x\n", 11017 (uint32_t)rc); 11018 goto out_destroy; 11019 } 11020 } else { 11021 /* Set up NVMET Receive Complete Queue */ 11022 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 11023 qp[0].hba_eq, 11024 LPFC_WCQ, LPFC_NVMET); 11025 if (rc) { 11026 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11027 "6089 Failed setup NVMET CQ: " 11028 "rc = 0x%x\n", (uint32_t)rc); 11029 goto out_destroy; 11030 } 11031 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 11032 11033 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11034 "6090 NVMET CQ setup: cq-id=%d, " 11035 "parent eq-id=%d\n", 11036 phba->sli4_hba.nvmet_cqset[0]->queue_id, 11037 qp[0].hba_eq->queue_id); 11038 } 11039 } 11040 11041 /* Set up slow-path ELS WQ/CQ */ 11042 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 11043 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11044 "0530 ELS %s not allocated\n", 11045 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 11046 rc = -ENOMEM; 11047 goto out_destroy; 11048 } 11049 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11050 phba->sli4_hba.els_cq, 11051 phba->sli4_hba.els_wq, 11052 NULL, 0, LPFC_ELS); 11053 if (rc) { 11054 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11055 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 11056 (uint32_t)rc); 11057 goto out_destroy; 11058 } 11059 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11060 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 11061 phba->sli4_hba.els_wq->queue_id, 11062 phba->sli4_hba.els_cq->queue_id); 11063 11064 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11065 /* Set up NVME LS Complete Queue */ 11066 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 11067 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11068 "6091 LS %s not allocated\n", 11069 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 11070 rc = -ENOMEM; 11071 goto out_destroy; 11072 } 11073 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11074 phba->sli4_hba.nvmels_cq, 11075 phba->sli4_hba.nvmels_wq, 11076 NULL, 0, LPFC_NVME_LS); 11077 if (rc) { 11078 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11079 "0526 Failed setup of NVVME LS WQ/CQ: " 11080 "rc = 0x%x\n", (uint32_t)rc); 11081 goto out_destroy; 11082 } 11083 11084 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11085 "6096 ELS WQ setup: wq-id=%d, " 11086 "parent cq-id=%d\n", 11087 phba->sli4_hba.nvmels_wq->queue_id, 11088 phba->sli4_hba.nvmels_cq->queue_id); 11089 } 11090 11091 /* 11092 * Create NVMET Receive Queue (RQ) 11093 */ 11094 if (phba->nvmet_support) { 11095 if ((!phba->sli4_hba.nvmet_cqset) || 11096 (!phba->sli4_hba.nvmet_mrq_hdr) || 11097 (!phba->sli4_hba.nvmet_mrq_data)) { 11098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11099 "6130 MRQ CQ Queues not " 11100 "allocated\n"); 11101 rc = -ENOMEM; 11102 goto out_destroy; 11103 } 11104 if (phba->cfg_nvmet_mrq > 1) { 11105 rc = lpfc_mrq_create(phba, 11106 phba->sli4_hba.nvmet_mrq_hdr, 11107 phba->sli4_hba.nvmet_mrq_data, 11108 phba->sli4_hba.nvmet_cqset, 11109 LPFC_NVMET); 11110 if (rc) { 11111 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11112 "6098 Failed setup of NVMET " 11113 "MRQ: rc = 0x%x\n", 11114 (uint32_t)rc); 11115 goto out_destroy; 11116 } 11117 11118 } else { 11119 rc = lpfc_rq_create(phba, 11120 phba->sli4_hba.nvmet_mrq_hdr[0], 11121 phba->sli4_hba.nvmet_mrq_data[0], 11122 phba->sli4_hba.nvmet_cqset[0], 11123 LPFC_NVMET); 11124 if (rc) { 11125 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11126 "6057 Failed setup of NVMET " 11127 "Receive Queue: rc = 0x%x\n", 11128 (uint32_t)rc); 11129 goto out_destroy; 11130 } 11131 11132 lpfc_printf_log( 11133 phba, KERN_INFO, LOG_INIT, 11134 "6099 NVMET RQ setup: hdr-rq-id=%d, " 11135 "dat-rq-id=%d parent cq-id=%d\n", 11136 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 11137 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 11138 phba->sli4_hba.nvmet_cqset[0]->queue_id); 11139 11140 } 11141 } 11142 11143 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 11144 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11145 "0540 Receive Queue not allocated\n"); 11146 rc = -ENOMEM; 11147 goto out_destroy; 11148 } 11149 11150 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 11151 phba->sli4_hba.els_cq, LPFC_USOL); 11152 if (rc) { 11153 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11154 "0541 Failed setup of Receive Queue: " 11155 "rc = 0x%x\n", (uint32_t)rc); 11156 goto out_destroy; 11157 } 11158 11159 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11160 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 11161 "parent cq-id=%d\n", 11162 phba->sli4_hba.hdr_rq->queue_id, 11163 phba->sli4_hba.dat_rq->queue_id, 11164 phba->sli4_hba.els_cq->queue_id); 11165 11166 if (phba->cfg_fcp_imax) 11167 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 11168 else 11169 usdelay = 0; 11170 11171 for (qidx = 0; qidx < phba->cfg_irq_chann; 11172 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 11173 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 11174 usdelay); 11175 11176 if (phba->sli4_hba.cq_max) { 11177 kfree(phba->sli4_hba.cq_lookup); 11178 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 11179 sizeof(struct lpfc_queue *), GFP_KERNEL); 11180 if (!phba->sli4_hba.cq_lookup) { 11181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11182 "0549 Failed setup of CQ Lookup table: " 11183 "size 0x%x\n", phba->sli4_hba.cq_max); 11184 rc = -ENOMEM; 11185 goto out_destroy; 11186 } 11187 lpfc_setup_cq_lookup(phba); 11188 } 11189 return 0; 11190 11191 out_destroy: 11192 lpfc_sli4_queue_unset(phba); 11193 out_error: 11194 return rc; 11195 } 11196 11197 /** 11198 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 11199 * @phba: pointer to lpfc hba data structure. 11200 * 11201 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 11202 * operation. 11203 * 11204 * Return codes 11205 * 0 - successful 11206 * -ENOMEM - No available memory 11207 * -EIO - The mailbox failed to complete successfully. 11208 **/ 11209 void 11210 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 11211 { 11212 struct lpfc_sli4_hdw_queue *qp; 11213 struct lpfc_queue *eq; 11214 int qidx; 11215 11216 /* Unset mailbox command work queue */ 11217 if (phba->sli4_hba.mbx_wq) 11218 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 11219 11220 /* Unset NVME LS work queue */ 11221 if (phba->sli4_hba.nvmels_wq) 11222 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 11223 11224 /* Unset ELS work queue */ 11225 if (phba->sli4_hba.els_wq) 11226 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 11227 11228 /* Unset unsolicited receive queue */ 11229 if (phba->sli4_hba.hdr_rq) 11230 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 11231 phba->sli4_hba.dat_rq); 11232 11233 /* Unset mailbox command complete queue */ 11234 if (phba->sli4_hba.mbx_cq) 11235 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 11236 11237 /* Unset ELS complete queue */ 11238 if (phba->sli4_hba.els_cq) 11239 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 11240 11241 /* Unset NVME LS complete queue */ 11242 if (phba->sli4_hba.nvmels_cq) 11243 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 11244 11245 if (phba->nvmet_support) { 11246 /* Unset NVMET MRQ queue */ 11247 if (phba->sli4_hba.nvmet_mrq_hdr) { 11248 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11249 lpfc_rq_destroy( 11250 phba, 11251 phba->sli4_hba.nvmet_mrq_hdr[qidx], 11252 phba->sli4_hba.nvmet_mrq_data[qidx]); 11253 } 11254 11255 /* Unset NVMET CQ Set complete queue */ 11256 if (phba->sli4_hba.nvmet_cqset) { 11257 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11258 lpfc_cq_destroy( 11259 phba, phba->sli4_hba.nvmet_cqset[qidx]); 11260 } 11261 } 11262 11263 /* Unset fast-path SLI4 queues */ 11264 if (phba->sli4_hba.hdwq) { 11265 /* Loop thru all Hardware Queues */ 11266 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11267 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 11268 qp = &phba->sli4_hba.hdwq[qidx]; 11269 lpfc_wq_destroy(phba, qp->io_wq); 11270 lpfc_cq_destroy(phba, qp->io_cq); 11271 } 11272 /* Loop thru all IRQ vectors */ 11273 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11274 /* Destroy the EQ corresponding to the IRQ vector */ 11275 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11276 lpfc_eq_destroy(phba, eq); 11277 } 11278 } 11279 11280 kfree(phba->sli4_hba.cq_lookup); 11281 phba->sli4_hba.cq_lookup = NULL; 11282 phba->sli4_hba.cq_max = 0; 11283 } 11284 11285 /** 11286 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 11287 * @phba: pointer to lpfc hba data structure. 11288 * 11289 * This routine is invoked to allocate and set up a pool of completion queue 11290 * events. The body of the completion queue event is a completion queue entry 11291 * CQE. For now, this pool is used for the interrupt service routine to queue 11292 * the following HBA completion queue events for the worker thread to process: 11293 * - Mailbox asynchronous events 11294 * - Receive queue completion unsolicited events 11295 * Later, this can be used for all the slow-path events. 11296 * 11297 * Return codes 11298 * 0 - successful 11299 * -ENOMEM - No available memory 11300 **/ 11301 static int 11302 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 11303 { 11304 struct lpfc_cq_event *cq_event; 11305 int i; 11306 11307 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 11308 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 11309 if (!cq_event) 11310 goto out_pool_create_fail; 11311 list_add_tail(&cq_event->list, 11312 &phba->sli4_hba.sp_cqe_event_pool); 11313 } 11314 return 0; 11315 11316 out_pool_create_fail: 11317 lpfc_sli4_cq_event_pool_destroy(phba); 11318 return -ENOMEM; 11319 } 11320 11321 /** 11322 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 11323 * @phba: pointer to lpfc hba data structure. 11324 * 11325 * This routine is invoked to free the pool of completion queue events at 11326 * driver unload time. Note that, it is the responsibility of the driver 11327 * cleanup routine to free all the outstanding completion-queue events 11328 * allocated from this pool back into the pool before invoking this routine 11329 * to destroy the pool. 11330 **/ 11331 static void 11332 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 11333 { 11334 struct lpfc_cq_event *cq_event, *next_cq_event; 11335 11336 list_for_each_entry_safe(cq_event, next_cq_event, 11337 &phba->sli4_hba.sp_cqe_event_pool, list) { 11338 list_del(&cq_event->list); 11339 kfree(cq_event); 11340 } 11341 } 11342 11343 /** 11344 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11345 * @phba: pointer to lpfc hba data structure. 11346 * 11347 * This routine is the lock free version of the API invoked to allocate a 11348 * completion-queue event from the free pool. 11349 * 11350 * Return: Pointer to the newly allocated completion-queue event if successful 11351 * NULL otherwise. 11352 **/ 11353 struct lpfc_cq_event * 11354 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11355 { 11356 struct lpfc_cq_event *cq_event = NULL; 11357 11358 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 11359 struct lpfc_cq_event, list); 11360 return cq_event; 11361 } 11362 11363 /** 11364 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11365 * @phba: pointer to lpfc hba data structure. 11366 * 11367 * This routine is the lock version of the API invoked to allocate a 11368 * completion-queue event from the free pool. 11369 * 11370 * Return: Pointer to the newly allocated completion-queue event if successful 11371 * NULL otherwise. 11372 **/ 11373 struct lpfc_cq_event * 11374 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11375 { 11376 struct lpfc_cq_event *cq_event; 11377 unsigned long iflags; 11378 11379 spin_lock_irqsave(&phba->hbalock, iflags); 11380 cq_event = __lpfc_sli4_cq_event_alloc(phba); 11381 spin_unlock_irqrestore(&phba->hbalock, iflags); 11382 return cq_event; 11383 } 11384 11385 /** 11386 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11387 * @phba: pointer to lpfc hba data structure. 11388 * @cq_event: pointer to the completion queue event to be freed. 11389 * 11390 * This routine is the lock free version of the API invoked to release a 11391 * completion-queue event back into the free pool. 11392 **/ 11393 void 11394 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11395 struct lpfc_cq_event *cq_event) 11396 { 11397 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 11398 } 11399 11400 /** 11401 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11402 * @phba: pointer to lpfc hba data structure. 11403 * @cq_event: pointer to the completion queue event to be freed. 11404 * 11405 * This routine is the lock version of the API invoked to release a 11406 * completion-queue event back into the free pool. 11407 **/ 11408 void 11409 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11410 struct lpfc_cq_event *cq_event) 11411 { 11412 unsigned long iflags; 11413 spin_lock_irqsave(&phba->hbalock, iflags); 11414 __lpfc_sli4_cq_event_release(phba, cq_event); 11415 spin_unlock_irqrestore(&phba->hbalock, iflags); 11416 } 11417 11418 /** 11419 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 11420 * @phba: pointer to lpfc hba data structure. 11421 * 11422 * This routine is to free all the pending completion-queue events to the 11423 * back into the free pool for device reset. 11424 **/ 11425 static void 11426 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 11427 { 11428 LIST_HEAD(cq_event_list); 11429 struct lpfc_cq_event *cq_event; 11430 unsigned long iflags; 11431 11432 /* Retrieve all the pending WCQEs from pending WCQE lists */ 11433 11434 /* Pending ELS XRI abort events */ 11435 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11436 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11437 &cq_event_list); 11438 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11439 11440 /* Pending asynnc events */ 11441 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 11442 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 11443 &cq_event_list); 11444 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 11445 11446 while (!list_empty(&cq_event_list)) { 11447 list_remove_head(&cq_event_list, cq_event, 11448 struct lpfc_cq_event, list); 11449 lpfc_sli4_cq_event_release(phba, cq_event); 11450 } 11451 } 11452 11453 /** 11454 * lpfc_pci_function_reset - Reset pci function. 11455 * @phba: pointer to lpfc hba data structure. 11456 * 11457 * This routine is invoked to request a PCI function reset. It will destroys 11458 * all resources assigned to the PCI function which originates this request. 11459 * 11460 * Return codes 11461 * 0 - successful 11462 * -ENOMEM - No available memory 11463 * -EIO - The mailbox failed to complete successfully. 11464 **/ 11465 int 11466 lpfc_pci_function_reset(struct lpfc_hba *phba) 11467 { 11468 LPFC_MBOXQ_t *mboxq; 11469 uint32_t rc = 0, if_type; 11470 uint32_t shdr_status, shdr_add_status; 11471 uint32_t rdy_chk; 11472 uint32_t port_reset = 0; 11473 union lpfc_sli4_cfg_shdr *shdr; 11474 struct lpfc_register reg_data; 11475 uint16_t devid; 11476 11477 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11478 switch (if_type) { 11479 case LPFC_SLI_INTF_IF_TYPE_0: 11480 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 11481 GFP_KERNEL); 11482 if (!mboxq) { 11483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11484 "0494 Unable to allocate memory for " 11485 "issuing SLI_FUNCTION_RESET mailbox " 11486 "command\n"); 11487 return -ENOMEM; 11488 } 11489 11490 /* Setup PCI function reset mailbox-ioctl command */ 11491 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11492 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 11493 LPFC_SLI4_MBX_EMBED); 11494 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11495 shdr = (union lpfc_sli4_cfg_shdr *) 11496 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11497 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11498 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 11499 &shdr->response); 11500 mempool_free(mboxq, phba->mbox_mem_pool); 11501 if (shdr_status || shdr_add_status || rc) { 11502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11503 "0495 SLI_FUNCTION_RESET mailbox " 11504 "failed with status x%x add_status x%x," 11505 " mbx status x%x\n", 11506 shdr_status, shdr_add_status, rc); 11507 rc = -ENXIO; 11508 } 11509 break; 11510 case LPFC_SLI_INTF_IF_TYPE_2: 11511 case LPFC_SLI_INTF_IF_TYPE_6: 11512 wait: 11513 /* 11514 * Poll the Port Status Register and wait for RDY for 11515 * up to 30 seconds. If the port doesn't respond, treat 11516 * it as an error. 11517 */ 11518 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 11519 if (lpfc_readl(phba->sli4_hba.u.if_type2. 11520 STATUSregaddr, ®_data.word0)) { 11521 rc = -ENODEV; 11522 goto out; 11523 } 11524 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 11525 break; 11526 msleep(20); 11527 } 11528 11529 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 11530 phba->work_status[0] = readl( 11531 phba->sli4_hba.u.if_type2.ERR1regaddr); 11532 phba->work_status[1] = readl( 11533 phba->sli4_hba.u.if_type2.ERR2regaddr); 11534 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11535 "2890 Port not ready, port status reg " 11536 "0x%x error 1=0x%x, error 2=0x%x\n", 11537 reg_data.word0, 11538 phba->work_status[0], 11539 phba->work_status[1]); 11540 rc = -ENODEV; 11541 goto out; 11542 } 11543 11544 if (!port_reset) { 11545 /* 11546 * Reset the port now 11547 */ 11548 reg_data.word0 = 0; 11549 bf_set(lpfc_sliport_ctrl_end, ®_data, 11550 LPFC_SLIPORT_LITTLE_ENDIAN); 11551 bf_set(lpfc_sliport_ctrl_ip, ®_data, 11552 LPFC_SLIPORT_INIT_PORT); 11553 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 11554 CTRLregaddr); 11555 /* flush */ 11556 pci_read_config_word(phba->pcidev, 11557 PCI_DEVICE_ID, &devid); 11558 11559 port_reset = 1; 11560 msleep(20); 11561 goto wait; 11562 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 11563 rc = -ENODEV; 11564 goto out; 11565 } 11566 break; 11567 11568 case LPFC_SLI_INTF_IF_TYPE_1: 11569 default: 11570 break; 11571 } 11572 11573 out: 11574 /* Catch the not-ready port failure after a port reset. */ 11575 if (rc) { 11576 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11577 "3317 HBA not functional: IP Reset Failed " 11578 "try: echo fw_reset > board_mode\n"); 11579 rc = -ENODEV; 11580 } 11581 11582 return rc; 11583 } 11584 11585 /** 11586 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 11587 * @phba: pointer to lpfc hba data structure. 11588 * 11589 * This routine is invoked to set up the PCI device memory space for device 11590 * with SLI-4 interface spec. 11591 * 11592 * Return codes 11593 * 0 - successful 11594 * other values - error 11595 **/ 11596 static int 11597 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 11598 { 11599 struct pci_dev *pdev = phba->pcidev; 11600 unsigned long bar0map_len, bar1map_len, bar2map_len; 11601 int error; 11602 uint32_t if_type; 11603 11604 if (!pdev) 11605 return -ENODEV; 11606 11607 /* Set the device DMA mask size */ 11608 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 11609 if (error) 11610 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 11611 if (error) 11612 return error; 11613 11614 /* 11615 * The BARs and register set definitions and offset locations are 11616 * dependent on the if_type. 11617 */ 11618 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 11619 &phba->sli4_hba.sli_intf.word0)) { 11620 return -ENODEV; 11621 } 11622 11623 /* There is no SLI3 failback for SLI4 devices. */ 11624 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 11625 LPFC_SLI_INTF_VALID) { 11626 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11627 "2894 SLI_INTF reg contents invalid " 11628 "sli_intf reg 0x%x\n", 11629 phba->sli4_hba.sli_intf.word0); 11630 return -ENODEV; 11631 } 11632 11633 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11634 /* 11635 * Get the bus address of SLI4 device Bar regions and the 11636 * number of bytes required by each mapping. The mapping of the 11637 * particular PCI BARs regions is dependent on the type of 11638 * SLI4 device. 11639 */ 11640 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 11641 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 11642 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 11643 11644 /* 11645 * Map SLI4 PCI Config Space Register base to a kernel virtual 11646 * addr 11647 */ 11648 phba->sli4_hba.conf_regs_memmap_p = 11649 ioremap(phba->pci_bar0_map, bar0map_len); 11650 if (!phba->sli4_hba.conf_regs_memmap_p) { 11651 dev_printk(KERN_ERR, &pdev->dev, 11652 "ioremap failed for SLI4 PCI config " 11653 "registers.\n"); 11654 return -ENODEV; 11655 } 11656 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 11657 /* Set up BAR0 PCI config space register memory map */ 11658 lpfc_sli4_bar0_register_memmap(phba, if_type); 11659 } else { 11660 phba->pci_bar0_map = pci_resource_start(pdev, 1); 11661 bar0map_len = pci_resource_len(pdev, 1); 11662 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 11663 dev_printk(KERN_ERR, &pdev->dev, 11664 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 11665 return -ENODEV; 11666 } 11667 phba->sli4_hba.conf_regs_memmap_p = 11668 ioremap(phba->pci_bar0_map, bar0map_len); 11669 if (!phba->sli4_hba.conf_regs_memmap_p) { 11670 dev_printk(KERN_ERR, &pdev->dev, 11671 "ioremap failed for SLI4 PCI config " 11672 "registers.\n"); 11673 return -ENODEV; 11674 } 11675 lpfc_sli4_bar0_register_memmap(phba, if_type); 11676 } 11677 11678 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11679 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 11680 /* 11681 * Map SLI4 if type 0 HBA Control Register base to a 11682 * kernel virtual address and setup the registers. 11683 */ 11684 phba->pci_bar1_map = pci_resource_start(pdev, 11685 PCI_64BIT_BAR2); 11686 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11687 phba->sli4_hba.ctrl_regs_memmap_p = 11688 ioremap(phba->pci_bar1_map, 11689 bar1map_len); 11690 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 11691 dev_err(&pdev->dev, 11692 "ioremap failed for SLI4 HBA " 11693 "control registers.\n"); 11694 error = -ENOMEM; 11695 goto out_iounmap_conf; 11696 } 11697 phba->pci_bar2_memmap_p = 11698 phba->sli4_hba.ctrl_regs_memmap_p; 11699 lpfc_sli4_bar1_register_memmap(phba, if_type); 11700 } else { 11701 error = -ENOMEM; 11702 goto out_iounmap_conf; 11703 } 11704 } 11705 11706 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 11707 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 11708 /* 11709 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 11710 * virtual address and setup the registers. 11711 */ 11712 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 11713 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11714 phba->sli4_hba.drbl_regs_memmap_p = 11715 ioremap(phba->pci_bar1_map, bar1map_len); 11716 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11717 dev_err(&pdev->dev, 11718 "ioremap failed for SLI4 HBA doorbell registers.\n"); 11719 error = -ENOMEM; 11720 goto out_iounmap_conf; 11721 } 11722 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 11723 lpfc_sli4_bar1_register_memmap(phba, if_type); 11724 } 11725 11726 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11727 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11728 /* 11729 * Map SLI4 if type 0 HBA Doorbell Register base to 11730 * a kernel virtual address and setup the registers. 11731 */ 11732 phba->pci_bar2_map = pci_resource_start(pdev, 11733 PCI_64BIT_BAR4); 11734 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11735 phba->sli4_hba.drbl_regs_memmap_p = 11736 ioremap(phba->pci_bar2_map, 11737 bar2map_len); 11738 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11739 dev_err(&pdev->dev, 11740 "ioremap failed for SLI4 HBA" 11741 " doorbell registers.\n"); 11742 error = -ENOMEM; 11743 goto out_iounmap_ctrl; 11744 } 11745 phba->pci_bar4_memmap_p = 11746 phba->sli4_hba.drbl_regs_memmap_p; 11747 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 11748 if (error) 11749 goto out_iounmap_all; 11750 } else { 11751 error = -ENOMEM; 11752 goto out_iounmap_all; 11753 } 11754 } 11755 11756 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 11757 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11758 /* 11759 * Map SLI4 if type 6 HBA DPP Register base to a kernel 11760 * virtual address and setup the registers. 11761 */ 11762 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 11763 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11764 phba->sli4_hba.dpp_regs_memmap_p = 11765 ioremap(phba->pci_bar2_map, bar2map_len); 11766 if (!phba->sli4_hba.dpp_regs_memmap_p) { 11767 dev_err(&pdev->dev, 11768 "ioremap failed for SLI4 HBA dpp registers.\n"); 11769 error = -ENOMEM; 11770 goto out_iounmap_ctrl; 11771 } 11772 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 11773 } 11774 11775 /* Set up the EQ/CQ register handeling functions now */ 11776 switch (if_type) { 11777 case LPFC_SLI_INTF_IF_TYPE_0: 11778 case LPFC_SLI_INTF_IF_TYPE_2: 11779 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 11780 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 11781 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 11782 break; 11783 case LPFC_SLI_INTF_IF_TYPE_6: 11784 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 11785 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 11786 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 11787 break; 11788 default: 11789 break; 11790 } 11791 11792 return 0; 11793 11794 out_iounmap_all: 11795 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 11796 out_iounmap_ctrl: 11797 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 11798 out_iounmap_conf: 11799 iounmap(phba->sli4_hba.conf_regs_memmap_p); 11800 11801 return error; 11802 } 11803 11804 /** 11805 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 11806 * @phba: pointer to lpfc hba data structure. 11807 * 11808 * This routine is invoked to unset the PCI device memory space for device 11809 * with SLI-4 interface spec. 11810 **/ 11811 static void 11812 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 11813 { 11814 uint32_t if_type; 11815 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11816 11817 switch (if_type) { 11818 case LPFC_SLI_INTF_IF_TYPE_0: 11819 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 11820 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 11821 iounmap(phba->sli4_hba.conf_regs_memmap_p); 11822 break; 11823 case LPFC_SLI_INTF_IF_TYPE_2: 11824 iounmap(phba->sli4_hba.conf_regs_memmap_p); 11825 break; 11826 case LPFC_SLI_INTF_IF_TYPE_6: 11827 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 11828 iounmap(phba->sli4_hba.conf_regs_memmap_p); 11829 if (phba->sli4_hba.dpp_regs_memmap_p) 11830 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 11831 break; 11832 case LPFC_SLI_INTF_IF_TYPE_1: 11833 default: 11834 dev_printk(KERN_ERR, &phba->pcidev->dev, 11835 "FATAL - unsupported SLI4 interface type - %d\n", 11836 if_type); 11837 break; 11838 } 11839 } 11840 11841 /** 11842 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 11843 * @phba: pointer to lpfc hba data structure. 11844 * 11845 * This routine is invoked to enable the MSI-X interrupt vectors to device 11846 * with SLI-3 interface specs. 11847 * 11848 * Return codes 11849 * 0 - successful 11850 * other values - error 11851 **/ 11852 static int 11853 lpfc_sli_enable_msix(struct lpfc_hba *phba) 11854 { 11855 int rc; 11856 LPFC_MBOXQ_t *pmb; 11857 11858 /* Set up MSI-X multi-message vectors */ 11859 rc = pci_alloc_irq_vectors(phba->pcidev, 11860 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 11861 if (rc < 0) { 11862 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11863 "0420 PCI enable MSI-X failed (%d)\n", rc); 11864 goto vec_fail_out; 11865 } 11866 11867 /* 11868 * Assign MSI-X vectors to interrupt handlers 11869 */ 11870 11871 /* vector-0 is associated to slow-path handler */ 11872 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 11873 &lpfc_sli_sp_intr_handler, 0, 11874 LPFC_SP_DRIVER_HANDLER_NAME, phba); 11875 if (rc) { 11876 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11877 "0421 MSI-X slow-path request_irq failed " 11878 "(%d)\n", rc); 11879 goto msi_fail_out; 11880 } 11881 11882 /* vector-1 is associated to fast-path handler */ 11883 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 11884 &lpfc_sli_fp_intr_handler, 0, 11885 LPFC_FP_DRIVER_HANDLER_NAME, phba); 11886 11887 if (rc) { 11888 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11889 "0429 MSI-X fast-path request_irq failed " 11890 "(%d)\n", rc); 11891 goto irq_fail_out; 11892 } 11893 11894 /* 11895 * Configure HBA MSI-X attention conditions to messages 11896 */ 11897 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 11898 11899 if (!pmb) { 11900 rc = -ENOMEM; 11901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11902 "0474 Unable to allocate memory for issuing " 11903 "MBOX_CONFIG_MSI command\n"); 11904 goto mem_fail_out; 11905 } 11906 rc = lpfc_config_msi(phba, pmb); 11907 if (rc) 11908 goto mbx_fail_out; 11909 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 11910 if (rc != MBX_SUCCESS) { 11911 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 11912 "0351 Config MSI mailbox command failed, " 11913 "mbxCmd x%x, mbxStatus x%x\n", 11914 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 11915 goto mbx_fail_out; 11916 } 11917 11918 /* Free memory allocated for mailbox command */ 11919 mempool_free(pmb, phba->mbox_mem_pool); 11920 return rc; 11921 11922 mbx_fail_out: 11923 /* Free memory allocated for mailbox command */ 11924 mempool_free(pmb, phba->mbox_mem_pool); 11925 11926 mem_fail_out: 11927 /* free the irq already requested */ 11928 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 11929 11930 irq_fail_out: 11931 /* free the irq already requested */ 11932 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 11933 11934 msi_fail_out: 11935 /* Unconfigure MSI-X capability structure */ 11936 pci_free_irq_vectors(phba->pcidev); 11937 11938 vec_fail_out: 11939 return rc; 11940 } 11941 11942 /** 11943 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 11944 * @phba: pointer to lpfc hba data structure. 11945 * 11946 * This routine is invoked to enable the MSI interrupt mode to device with 11947 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 11948 * enable the MSI vector. The device driver is responsible for calling the 11949 * request_irq() to register MSI vector with a interrupt the handler, which 11950 * is done in this function. 11951 * 11952 * Return codes 11953 * 0 - successful 11954 * other values - error 11955 */ 11956 static int 11957 lpfc_sli_enable_msi(struct lpfc_hba *phba) 11958 { 11959 int rc; 11960 11961 rc = pci_enable_msi(phba->pcidev); 11962 if (!rc) 11963 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11964 "0462 PCI enable MSI mode success.\n"); 11965 else { 11966 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11967 "0471 PCI enable MSI mode failed (%d)\n", rc); 11968 return rc; 11969 } 11970 11971 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 11972 0, LPFC_DRIVER_NAME, phba); 11973 if (rc) { 11974 pci_disable_msi(phba->pcidev); 11975 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11976 "0478 MSI request_irq failed (%d)\n", rc); 11977 } 11978 return rc; 11979 } 11980 11981 /** 11982 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 11983 * @phba: pointer to lpfc hba data structure. 11984 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 11985 * 11986 * This routine is invoked to enable device interrupt and associate driver's 11987 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 11988 * spec. Depends on the interrupt mode configured to the driver, the driver 11989 * will try to fallback from the configured interrupt mode to an interrupt 11990 * mode which is supported by the platform, kernel, and device in the order 11991 * of: 11992 * MSI-X -> MSI -> IRQ. 11993 * 11994 * Return codes 11995 * 0 - successful 11996 * other values - error 11997 **/ 11998 static uint32_t 11999 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 12000 { 12001 uint32_t intr_mode = LPFC_INTR_ERROR; 12002 int retval; 12003 12004 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 12005 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 12006 if (retval) 12007 return intr_mode; 12008 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 12009 12010 if (cfg_mode == 2) { 12011 /* Now, try to enable MSI-X interrupt mode */ 12012 retval = lpfc_sli_enable_msix(phba); 12013 if (!retval) { 12014 /* Indicate initialization to MSI-X mode */ 12015 phba->intr_type = MSIX; 12016 intr_mode = 2; 12017 } 12018 } 12019 12020 /* Fallback to MSI if MSI-X initialization failed */ 12021 if (cfg_mode >= 1 && phba->intr_type == NONE) { 12022 retval = lpfc_sli_enable_msi(phba); 12023 if (!retval) { 12024 /* Indicate initialization to MSI mode */ 12025 phba->intr_type = MSI; 12026 intr_mode = 1; 12027 } 12028 } 12029 12030 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 12031 if (phba->intr_type == NONE) { 12032 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12033 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 12034 if (!retval) { 12035 /* Indicate initialization to INTx mode */ 12036 phba->intr_type = INTx; 12037 intr_mode = 0; 12038 } 12039 } 12040 return intr_mode; 12041 } 12042 12043 /** 12044 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 12045 * @phba: pointer to lpfc hba data structure. 12046 * 12047 * This routine is invoked to disable device interrupt and disassociate the 12048 * driver's interrupt handler(s) from interrupt vector(s) to device with 12049 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 12050 * release the interrupt vector(s) for the message signaled interrupt. 12051 **/ 12052 static void 12053 lpfc_sli_disable_intr(struct lpfc_hba *phba) 12054 { 12055 int nr_irqs, i; 12056 12057 if (phba->intr_type == MSIX) 12058 nr_irqs = LPFC_MSIX_VECTORS; 12059 else 12060 nr_irqs = 1; 12061 12062 for (i = 0; i < nr_irqs; i++) 12063 free_irq(pci_irq_vector(phba->pcidev, i), phba); 12064 pci_free_irq_vectors(phba->pcidev); 12065 12066 /* Reset interrupt management states */ 12067 phba->intr_type = NONE; 12068 phba->sli.slistat.sli_intr = 0; 12069 } 12070 12071 /** 12072 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 12073 * @phba: pointer to lpfc hba data structure. 12074 * @id: EQ vector index or Hardware Queue index 12075 * @match: LPFC_FIND_BY_EQ = match by EQ 12076 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 12077 * Return the CPU that matches the selection criteria 12078 */ 12079 static uint16_t 12080 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 12081 { 12082 struct lpfc_vector_map_info *cpup; 12083 int cpu; 12084 12085 /* Loop through all CPUs */ 12086 for_each_present_cpu(cpu) { 12087 cpup = &phba->sli4_hba.cpu_map[cpu]; 12088 12089 /* If we are matching by EQ, there may be multiple CPUs using 12090 * using the same vector, so select the one with 12091 * LPFC_CPU_FIRST_IRQ set. 12092 */ 12093 if ((match == LPFC_FIND_BY_EQ) && 12094 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 12095 (cpup->eq == id)) 12096 return cpu; 12097 12098 /* If matching by HDWQ, select the first CPU that matches */ 12099 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 12100 return cpu; 12101 } 12102 return 0; 12103 } 12104 12105 #ifdef CONFIG_X86 12106 /** 12107 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 12108 * @phba: pointer to lpfc hba data structure. 12109 * @cpu: CPU map index 12110 * @phys_id: CPU package physical id 12111 * @core_id: CPU core id 12112 */ 12113 static int 12114 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 12115 uint16_t phys_id, uint16_t core_id) 12116 { 12117 struct lpfc_vector_map_info *cpup; 12118 int idx; 12119 12120 for_each_present_cpu(idx) { 12121 cpup = &phba->sli4_hba.cpu_map[idx]; 12122 /* Does the cpup match the one we are looking for */ 12123 if ((cpup->phys_id == phys_id) && 12124 (cpup->core_id == core_id) && 12125 (cpu != idx)) 12126 return 1; 12127 } 12128 return 0; 12129 } 12130 #endif 12131 12132 /* 12133 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 12134 * @phba: pointer to lpfc hba data structure. 12135 * @eqidx: index for eq and irq vector 12136 * @flag: flags to set for vector_map structure 12137 * @cpu: cpu used to index vector_map structure 12138 * 12139 * The routine assigns eq info into vector_map structure 12140 */ 12141 static inline void 12142 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 12143 unsigned int cpu) 12144 { 12145 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 12146 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 12147 12148 cpup->eq = eqidx; 12149 cpup->flag |= flag; 12150 12151 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12152 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 12153 cpu, eqhdl->irq, cpup->eq, cpup->flag); 12154 } 12155 12156 /** 12157 * lpfc_cpu_map_array_init - Initialize cpu_map structure 12158 * @phba: pointer to lpfc hba data structure. 12159 * 12160 * The routine initializes the cpu_map array structure 12161 */ 12162 static void 12163 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 12164 { 12165 struct lpfc_vector_map_info *cpup; 12166 struct lpfc_eq_intr_info *eqi; 12167 int cpu; 12168 12169 for_each_possible_cpu(cpu) { 12170 cpup = &phba->sli4_hba.cpu_map[cpu]; 12171 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 12172 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 12173 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 12174 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 12175 cpup->flag = 0; 12176 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 12177 INIT_LIST_HEAD(&eqi->list); 12178 eqi->icnt = 0; 12179 } 12180 } 12181 12182 /** 12183 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 12184 * @phba: pointer to lpfc hba data structure. 12185 * 12186 * The routine initializes the hba_eq_hdl array structure 12187 */ 12188 static void 12189 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 12190 { 12191 struct lpfc_hba_eq_hdl *eqhdl; 12192 int i; 12193 12194 for (i = 0; i < phba->cfg_irq_chann; i++) { 12195 eqhdl = lpfc_get_eq_hdl(i); 12196 eqhdl->irq = LPFC_VECTOR_MAP_EMPTY; 12197 eqhdl->phba = phba; 12198 } 12199 } 12200 12201 /** 12202 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 12203 * @phba: pointer to lpfc hba data structure. 12204 * @vectors: number of msix vectors allocated. 12205 * 12206 * The routine will figure out the CPU affinity assignment for every 12207 * MSI-X vector allocated for the HBA. 12208 * In addition, the CPU to IO channel mapping will be calculated 12209 * and the phba->sli4_hba.cpu_map array will reflect this. 12210 */ 12211 static void 12212 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 12213 { 12214 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 12215 int max_phys_id, min_phys_id; 12216 int max_core_id, min_core_id; 12217 struct lpfc_vector_map_info *cpup; 12218 struct lpfc_vector_map_info *new_cpup; 12219 #ifdef CONFIG_X86 12220 struct cpuinfo_x86 *cpuinfo; 12221 #endif 12222 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12223 struct lpfc_hdwq_stat *c_stat; 12224 #endif 12225 12226 max_phys_id = 0; 12227 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 12228 max_core_id = 0; 12229 min_core_id = LPFC_VECTOR_MAP_EMPTY; 12230 12231 /* Update CPU map with physical id and core id of each CPU */ 12232 for_each_present_cpu(cpu) { 12233 cpup = &phba->sli4_hba.cpu_map[cpu]; 12234 #ifdef CONFIG_X86 12235 cpuinfo = &cpu_data(cpu); 12236 cpup->phys_id = cpuinfo->phys_proc_id; 12237 cpup->core_id = cpuinfo->cpu_core_id; 12238 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 12239 cpup->flag |= LPFC_CPU_MAP_HYPER; 12240 #else 12241 /* No distinction between CPUs for other platforms */ 12242 cpup->phys_id = 0; 12243 cpup->core_id = cpu; 12244 #endif 12245 12246 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12247 "3328 CPU %d physid %d coreid %d flag x%x\n", 12248 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 12249 12250 if (cpup->phys_id > max_phys_id) 12251 max_phys_id = cpup->phys_id; 12252 if (cpup->phys_id < min_phys_id) 12253 min_phys_id = cpup->phys_id; 12254 12255 if (cpup->core_id > max_core_id) 12256 max_core_id = cpup->core_id; 12257 if (cpup->core_id < min_core_id) 12258 min_core_id = cpup->core_id; 12259 } 12260 12261 /* After looking at each irq vector assigned to this pcidev, its 12262 * possible to see that not ALL CPUs have been accounted for. 12263 * Next we will set any unassigned (unaffinitized) cpu map 12264 * entries to a IRQ on the same phys_id. 12265 */ 12266 first_cpu = cpumask_first(cpu_present_mask); 12267 start_cpu = first_cpu; 12268 12269 for_each_present_cpu(cpu) { 12270 cpup = &phba->sli4_hba.cpu_map[cpu]; 12271 12272 /* Is this CPU entry unassigned */ 12273 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12274 /* Mark CPU as IRQ not assigned by the kernel */ 12275 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12276 12277 /* If so, find a new_cpup thats on the the SAME 12278 * phys_id as cpup. start_cpu will start where we 12279 * left off so all unassigned entries don't get assgined 12280 * the IRQ of the first entry. 12281 */ 12282 new_cpu = start_cpu; 12283 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12284 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12285 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12286 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 12287 (new_cpup->phys_id == cpup->phys_id)) 12288 goto found_same; 12289 new_cpu = cpumask_next( 12290 new_cpu, cpu_present_mask); 12291 if (new_cpu == nr_cpumask_bits) 12292 new_cpu = first_cpu; 12293 } 12294 /* At this point, we leave the CPU as unassigned */ 12295 continue; 12296 found_same: 12297 /* We found a matching phys_id, so copy the IRQ info */ 12298 cpup->eq = new_cpup->eq; 12299 12300 /* Bump start_cpu to the next slot to minmize the 12301 * chance of having multiple unassigned CPU entries 12302 * selecting the same IRQ. 12303 */ 12304 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 12305 if (start_cpu == nr_cpumask_bits) 12306 start_cpu = first_cpu; 12307 12308 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12309 "3337 Set Affinity: CPU %d " 12310 "eq %d from peer cpu %d same " 12311 "phys_id (%d)\n", 12312 cpu, cpup->eq, new_cpu, 12313 cpup->phys_id); 12314 } 12315 } 12316 12317 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 12318 start_cpu = first_cpu; 12319 12320 for_each_present_cpu(cpu) { 12321 cpup = &phba->sli4_hba.cpu_map[cpu]; 12322 12323 /* Is this entry unassigned */ 12324 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12325 /* Mark it as IRQ not assigned by the kernel */ 12326 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12327 12328 /* If so, find a new_cpup thats on ANY phys_id 12329 * as the cpup. start_cpu will start where we 12330 * left off so all unassigned entries don't get 12331 * assigned the IRQ of the first entry. 12332 */ 12333 new_cpu = start_cpu; 12334 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12335 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12336 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12337 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 12338 goto found_any; 12339 new_cpu = cpumask_next( 12340 new_cpu, cpu_present_mask); 12341 if (new_cpu == nr_cpumask_bits) 12342 new_cpu = first_cpu; 12343 } 12344 /* We should never leave an entry unassigned */ 12345 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12346 "3339 Set Affinity: CPU %d " 12347 "eq %d UNASSIGNED\n", 12348 cpup->hdwq, cpup->eq); 12349 continue; 12350 found_any: 12351 /* We found an available entry, copy the IRQ info */ 12352 cpup->eq = new_cpup->eq; 12353 12354 /* Bump start_cpu to the next slot to minmize the 12355 * chance of having multiple unassigned CPU entries 12356 * selecting the same IRQ. 12357 */ 12358 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 12359 if (start_cpu == nr_cpumask_bits) 12360 start_cpu = first_cpu; 12361 12362 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12363 "3338 Set Affinity: CPU %d " 12364 "eq %d from peer cpu %d (%d/%d)\n", 12365 cpu, cpup->eq, new_cpu, 12366 new_cpup->phys_id, new_cpup->core_id); 12367 } 12368 } 12369 12370 /* Assign hdwq indices that are unique across all cpus in the map 12371 * that are also FIRST_CPUs. 12372 */ 12373 idx = 0; 12374 for_each_present_cpu(cpu) { 12375 cpup = &phba->sli4_hba.cpu_map[cpu]; 12376 12377 /* Only FIRST IRQs get a hdwq index assignment. */ 12378 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12379 continue; 12380 12381 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 12382 cpup->hdwq = idx; 12383 idx++; 12384 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12385 "3333 Set Affinity: CPU %d (phys %d core %d): " 12386 "hdwq %d eq %d flg x%x\n", 12387 cpu, cpup->phys_id, cpup->core_id, 12388 cpup->hdwq, cpup->eq, cpup->flag); 12389 } 12390 /* Associate a hdwq with each cpu_map entry 12391 * This will be 1 to 1 - hdwq to cpu, unless there are less 12392 * hardware queues then CPUs. For that case we will just round-robin 12393 * the available hardware queues as they get assigned to CPUs. 12394 * The next_idx is the idx from the FIRST_CPU loop above to account 12395 * for irq_chann < hdwq. The idx is used for round-robin assignments 12396 * and needs to start at 0. 12397 */ 12398 next_idx = idx; 12399 start_cpu = 0; 12400 idx = 0; 12401 for_each_present_cpu(cpu) { 12402 cpup = &phba->sli4_hba.cpu_map[cpu]; 12403 12404 /* FIRST cpus are already mapped. */ 12405 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 12406 continue; 12407 12408 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 12409 * of the unassigned cpus to the next idx so that all 12410 * hdw queues are fully utilized. 12411 */ 12412 if (next_idx < phba->cfg_hdw_queue) { 12413 cpup->hdwq = next_idx; 12414 next_idx++; 12415 continue; 12416 } 12417 12418 /* Not a First CPU and all hdw_queues are used. Reuse a 12419 * Hardware Queue for another CPU, so be smart about it 12420 * and pick one that has its IRQ/EQ mapped to the same phys_id 12421 * (CPU package) and core_id. 12422 */ 12423 new_cpu = start_cpu; 12424 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12425 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12426 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12427 new_cpup->phys_id == cpup->phys_id && 12428 new_cpup->core_id == cpup->core_id) { 12429 goto found_hdwq; 12430 } 12431 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 12432 if (new_cpu == nr_cpumask_bits) 12433 new_cpu = first_cpu; 12434 } 12435 12436 /* If we can't match both phys_id and core_id, 12437 * settle for just a phys_id match. 12438 */ 12439 new_cpu = start_cpu; 12440 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12441 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12442 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12443 new_cpup->phys_id == cpup->phys_id) 12444 goto found_hdwq; 12445 12446 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 12447 if (new_cpu == nr_cpumask_bits) 12448 new_cpu = first_cpu; 12449 } 12450 12451 /* Otherwise just round robin on cfg_hdw_queue */ 12452 cpup->hdwq = idx % phba->cfg_hdw_queue; 12453 idx++; 12454 goto logit; 12455 found_hdwq: 12456 /* We found an available entry, copy the IRQ info */ 12457 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 12458 if (start_cpu == nr_cpumask_bits) 12459 start_cpu = first_cpu; 12460 cpup->hdwq = new_cpup->hdwq; 12461 logit: 12462 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12463 "3335 Set Affinity: CPU %d (phys %d core %d): " 12464 "hdwq %d eq %d flg x%x\n", 12465 cpu, cpup->phys_id, cpup->core_id, 12466 cpup->hdwq, cpup->eq, cpup->flag); 12467 } 12468 12469 /* 12470 * Initialize the cpu_map slots for not-present cpus in case 12471 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 12472 */ 12473 idx = 0; 12474 for_each_possible_cpu(cpu) { 12475 cpup = &phba->sli4_hba.cpu_map[cpu]; 12476 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12477 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 12478 c_stat->hdwq_no = cpup->hdwq; 12479 #endif 12480 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 12481 continue; 12482 12483 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 12484 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12485 c_stat->hdwq_no = cpup->hdwq; 12486 #endif 12487 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12488 "3340 Set Affinity: not present " 12489 "CPU %d hdwq %d\n", 12490 cpu, cpup->hdwq); 12491 } 12492 12493 /* The cpu_map array will be used later during initialization 12494 * when EQ / CQ / WQs are allocated and configured. 12495 */ 12496 return; 12497 } 12498 12499 /** 12500 * lpfc_cpuhp_get_eq 12501 * 12502 * @phba: pointer to lpfc hba data structure. 12503 * @cpu: cpu going offline 12504 * @eqlist: eq list to append to 12505 */ 12506 static int 12507 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 12508 struct list_head *eqlist) 12509 { 12510 const struct cpumask *maskp; 12511 struct lpfc_queue *eq; 12512 struct cpumask *tmp; 12513 u16 idx; 12514 12515 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 12516 if (!tmp) 12517 return -ENOMEM; 12518 12519 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12520 maskp = pci_irq_get_affinity(phba->pcidev, idx); 12521 if (!maskp) 12522 continue; 12523 /* 12524 * if irq is not affinitized to the cpu going 12525 * then we don't need to poll the eq attached 12526 * to it. 12527 */ 12528 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 12529 continue; 12530 /* get the cpus that are online and are affini- 12531 * tized to this irq vector. If the count is 12532 * more than 1 then cpuhp is not going to shut- 12533 * down this vector. Since this cpu has not 12534 * gone offline yet, we need >1. 12535 */ 12536 cpumask_and(tmp, maskp, cpu_online_mask); 12537 if (cpumask_weight(tmp) > 1) 12538 continue; 12539 12540 /* Now that we have an irq to shutdown, get the eq 12541 * mapped to this irq. Note: multiple hdwq's in 12542 * the software can share an eq, but eventually 12543 * only eq will be mapped to this vector 12544 */ 12545 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 12546 list_add(&eq->_poll_list, eqlist); 12547 } 12548 kfree(tmp); 12549 return 0; 12550 } 12551 12552 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 12553 { 12554 if (phba->sli_rev != LPFC_SLI_REV4) 12555 return; 12556 12557 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 12558 &phba->cpuhp); 12559 /* 12560 * unregistering the instance doesn't stop the polling 12561 * timer. Wait for the poll timer to retire. 12562 */ 12563 synchronize_rcu(); 12564 del_timer_sync(&phba->cpuhp_poll_timer); 12565 } 12566 12567 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 12568 { 12569 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 12570 return; 12571 12572 __lpfc_cpuhp_remove(phba); 12573 } 12574 12575 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 12576 { 12577 if (phba->sli_rev != LPFC_SLI_REV4) 12578 return; 12579 12580 rcu_read_lock(); 12581 12582 if (!list_empty(&phba->poll_list)) 12583 mod_timer(&phba->cpuhp_poll_timer, 12584 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 12585 12586 rcu_read_unlock(); 12587 12588 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 12589 &phba->cpuhp); 12590 } 12591 12592 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 12593 { 12594 if (phba->pport->load_flag & FC_UNLOADING) { 12595 *retval = -EAGAIN; 12596 return true; 12597 } 12598 12599 if (phba->sli_rev != LPFC_SLI_REV4) { 12600 *retval = 0; 12601 return true; 12602 } 12603 12604 /* proceed with the hotplug */ 12605 return false; 12606 } 12607 12608 /** 12609 * lpfc_irq_set_aff - set IRQ affinity 12610 * @eqhdl: EQ handle 12611 * @cpu: cpu to set affinity 12612 * 12613 **/ 12614 static inline void 12615 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 12616 { 12617 cpumask_clear(&eqhdl->aff_mask); 12618 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 12619 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12620 irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask); 12621 } 12622 12623 /** 12624 * lpfc_irq_clear_aff - clear IRQ affinity 12625 * @eqhdl: EQ handle 12626 * 12627 **/ 12628 static inline void 12629 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 12630 { 12631 cpumask_clear(&eqhdl->aff_mask); 12632 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12633 } 12634 12635 /** 12636 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 12637 * @phba: pointer to HBA context object. 12638 * @cpu: cpu going offline/online 12639 * @offline: true, cpu is going offline. false, cpu is coming online. 12640 * 12641 * If cpu is going offline, we'll try our best effort to find the next 12642 * online cpu on the phba's original_mask and migrate all offlining IRQ 12643 * affinities. 12644 * 12645 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. 12646 * 12647 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on 12648 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 12649 * 12650 **/ 12651 static void 12652 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 12653 { 12654 struct lpfc_vector_map_info *cpup; 12655 struct cpumask *aff_mask; 12656 unsigned int cpu_select, cpu_next, idx; 12657 const struct cpumask *orig_mask; 12658 12659 if (phba->irq_chann_mode == NORMAL_MODE) 12660 return; 12661 12662 orig_mask = &phba->sli4_hba.irq_aff_mask; 12663 12664 if (!cpumask_test_cpu(cpu, orig_mask)) 12665 return; 12666 12667 cpup = &phba->sli4_hba.cpu_map[cpu]; 12668 12669 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12670 return; 12671 12672 if (offline) { 12673 /* Find next online CPU on original mask */ 12674 cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true); 12675 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); 12676 12677 /* Found a valid CPU */ 12678 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 12679 /* Go through each eqhdl and ensure offlining 12680 * cpu aff_mask is migrated 12681 */ 12682 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12683 aff_mask = lpfc_get_aff_mask(idx); 12684 12685 /* Migrate affinity */ 12686 if (cpumask_test_cpu(cpu, aff_mask)) 12687 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 12688 cpu_select); 12689 } 12690 } else { 12691 /* Rely on irqbalance if no online CPUs left on NUMA */ 12692 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 12693 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 12694 } 12695 } else { 12696 /* Migrate affinity back to this CPU */ 12697 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 12698 } 12699 } 12700 12701 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 12702 { 12703 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12704 struct lpfc_queue *eq, *next; 12705 LIST_HEAD(eqlist); 12706 int retval; 12707 12708 if (!phba) { 12709 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12710 return 0; 12711 } 12712 12713 if (__lpfc_cpuhp_checks(phba, &retval)) 12714 return retval; 12715 12716 lpfc_irq_rebalance(phba, cpu, true); 12717 12718 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 12719 if (retval) 12720 return retval; 12721 12722 /* start polling on these eq's */ 12723 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 12724 list_del_init(&eq->_poll_list); 12725 lpfc_sli4_start_polling(eq); 12726 } 12727 12728 return 0; 12729 } 12730 12731 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 12732 { 12733 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12734 struct lpfc_queue *eq, *next; 12735 unsigned int n; 12736 int retval; 12737 12738 if (!phba) { 12739 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12740 return 0; 12741 } 12742 12743 if (__lpfc_cpuhp_checks(phba, &retval)) 12744 return retval; 12745 12746 lpfc_irq_rebalance(phba, cpu, false); 12747 12748 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 12749 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 12750 if (n == cpu) 12751 lpfc_sli4_stop_polling(eq); 12752 } 12753 12754 return 0; 12755 } 12756 12757 /** 12758 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 12759 * @phba: pointer to lpfc hba data structure. 12760 * 12761 * This routine is invoked to enable the MSI-X interrupt vectors to device 12762 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 12763 * to cpus on the system. 12764 * 12765 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 12766 * the number of cpus on the same numa node as this adapter. The vectors are 12767 * allocated without requesting OS affinity mapping. A vector will be 12768 * allocated and assigned to each online and offline cpu. If the cpu is 12769 * online, then affinity will be set to that cpu. If the cpu is offline, then 12770 * affinity will be set to the nearest peer cpu within the numa node that is 12771 * online. If there are no online cpus within the numa node, affinity is not 12772 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 12773 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 12774 * configured. 12775 * 12776 * If numa mode is not enabled and there is more than 1 vector allocated, then 12777 * the driver relies on the managed irq interface where the OS assigns vector to 12778 * cpu affinity. The driver will then use that affinity mapping to setup its 12779 * cpu mapping table. 12780 * 12781 * Return codes 12782 * 0 - successful 12783 * other values - error 12784 **/ 12785 static int 12786 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 12787 { 12788 int vectors, rc, index; 12789 char *name; 12790 const struct cpumask *aff_mask = NULL; 12791 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 12792 struct lpfc_vector_map_info *cpup; 12793 struct lpfc_hba_eq_hdl *eqhdl; 12794 const struct cpumask *maskp; 12795 unsigned int flags = PCI_IRQ_MSIX; 12796 12797 /* Set up MSI-X multi-message vectors */ 12798 vectors = phba->cfg_irq_chann; 12799 12800 if (phba->irq_chann_mode != NORMAL_MODE) 12801 aff_mask = &phba->sli4_hba.irq_aff_mask; 12802 12803 if (aff_mask) { 12804 cpu_cnt = cpumask_weight(aff_mask); 12805 vectors = min(phba->cfg_irq_chann, cpu_cnt); 12806 12807 /* cpu: iterates over aff_mask including offline or online 12808 * cpu_select: iterates over online aff_mask to set affinity 12809 */ 12810 cpu = cpumask_first(aff_mask); 12811 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 12812 } else { 12813 flags |= PCI_IRQ_AFFINITY; 12814 } 12815 12816 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 12817 if (rc < 0) { 12818 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12819 "0484 PCI enable MSI-X failed (%d)\n", rc); 12820 goto vec_fail_out; 12821 } 12822 vectors = rc; 12823 12824 /* Assign MSI-X vectors to interrupt handlers */ 12825 for (index = 0; index < vectors; index++) { 12826 eqhdl = lpfc_get_eq_hdl(index); 12827 name = eqhdl->handler_name; 12828 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 12829 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 12830 LPFC_DRIVER_HANDLER_NAME"%d", index); 12831 12832 eqhdl->idx = index; 12833 rc = request_irq(pci_irq_vector(phba->pcidev, index), 12834 &lpfc_sli4_hba_intr_handler, 0, 12835 name, eqhdl); 12836 if (rc) { 12837 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12838 "0486 MSI-X fast-path (%d) " 12839 "request_irq failed (%d)\n", index, rc); 12840 goto cfg_fail_out; 12841 } 12842 12843 eqhdl->irq = pci_irq_vector(phba->pcidev, index); 12844 12845 if (aff_mask) { 12846 /* If found a neighboring online cpu, set affinity */ 12847 if (cpu_select < nr_cpu_ids) 12848 lpfc_irq_set_aff(eqhdl, cpu_select); 12849 12850 /* Assign EQ to cpu_map */ 12851 lpfc_assign_eq_map_info(phba, index, 12852 LPFC_CPU_FIRST_IRQ, 12853 cpu); 12854 12855 /* Iterate to next offline or online cpu in aff_mask */ 12856 cpu = cpumask_next(cpu, aff_mask); 12857 12858 /* Find next online cpu in aff_mask to set affinity */ 12859 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 12860 } else if (vectors == 1) { 12861 cpu = cpumask_first(cpu_present_mask); 12862 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 12863 cpu); 12864 } else { 12865 maskp = pci_irq_get_affinity(phba->pcidev, index); 12866 12867 /* Loop through all CPUs associated with vector index */ 12868 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 12869 cpup = &phba->sli4_hba.cpu_map[cpu]; 12870 12871 /* If this is the first CPU thats assigned to 12872 * this vector, set LPFC_CPU_FIRST_IRQ. 12873 * 12874 * With certain platforms its possible that irq 12875 * vectors are affinitized to all the cpu's. 12876 * This can result in each cpu_map.eq to be set 12877 * to the last vector, resulting in overwrite 12878 * of all the previous cpu_map.eq. Ensure that 12879 * each vector receives a place in cpu_map. 12880 * Later call to lpfc_cpu_affinity_check will 12881 * ensure we are nicely balanced out. 12882 */ 12883 if (cpup->eq != LPFC_VECTOR_MAP_EMPTY) 12884 continue; 12885 lpfc_assign_eq_map_info(phba, index, 12886 LPFC_CPU_FIRST_IRQ, 12887 cpu); 12888 break; 12889 } 12890 } 12891 } 12892 12893 if (vectors != phba->cfg_irq_chann) { 12894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12895 "3238 Reducing IO channels to match number of " 12896 "MSI-X vectors, requested %d got %d\n", 12897 phba->cfg_irq_chann, vectors); 12898 if (phba->cfg_irq_chann > vectors) 12899 phba->cfg_irq_chann = vectors; 12900 } 12901 12902 return rc; 12903 12904 cfg_fail_out: 12905 /* free the irq already requested */ 12906 for (--index; index >= 0; index--) { 12907 eqhdl = lpfc_get_eq_hdl(index); 12908 lpfc_irq_clear_aff(eqhdl); 12909 irq_set_affinity_hint(eqhdl->irq, NULL); 12910 free_irq(eqhdl->irq, eqhdl); 12911 } 12912 12913 /* Unconfigure MSI-X capability structure */ 12914 pci_free_irq_vectors(phba->pcidev); 12915 12916 vec_fail_out: 12917 return rc; 12918 } 12919 12920 /** 12921 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 12922 * @phba: pointer to lpfc hba data structure. 12923 * 12924 * This routine is invoked to enable the MSI interrupt mode to device with 12925 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 12926 * called to enable the MSI vector. The device driver is responsible for 12927 * calling the request_irq() to register MSI vector with a interrupt the 12928 * handler, which is done in this function. 12929 * 12930 * Return codes 12931 * 0 - successful 12932 * other values - error 12933 **/ 12934 static int 12935 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 12936 { 12937 int rc, index; 12938 unsigned int cpu; 12939 struct lpfc_hba_eq_hdl *eqhdl; 12940 12941 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 12942 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 12943 if (rc > 0) 12944 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12945 "0487 PCI enable MSI mode success.\n"); 12946 else { 12947 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12948 "0488 PCI enable MSI mode failed (%d)\n", rc); 12949 return rc ? rc : -1; 12950 } 12951 12952 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 12953 0, LPFC_DRIVER_NAME, phba); 12954 if (rc) { 12955 pci_free_irq_vectors(phba->pcidev); 12956 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12957 "0490 MSI request_irq failed (%d)\n", rc); 12958 return rc; 12959 } 12960 12961 eqhdl = lpfc_get_eq_hdl(0); 12962 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 12963 12964 cpu = cpumask_first(cpu_present_mask); 12965 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 12966 12967 for (index = 0; index < phba->cfg_irq_chann; index++) { 12968 eqhdl = lpfc_get_eq_hdl(index); 12969 eqhdl->idx = index; 12970 } 12971 12972 return 0; 12973 } 12974 12975 /** 12976 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 12977 * @phba: pointer to lpfc hba data structure. 12978 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 12979 * 12980 * This routine is invoked to enable device interrupt and associate driver's 12981 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 12982 * interface spec. Depends on the interrupt mode configured to the driver, 12983 * the driver will try to fallback from the configured interrupt mode to an 12984 * interrupt mode which is supported by the platform, kernel, and device in 12985 * the order of: 12986 * MSI-X -> MSI -> IRQ. 12987 * 12988 * Return codes 12989 * 0 - successful 12990 * other values - error 12991 **/ 12992 static uint32_t 12993 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 12994 { 12995 uint32_t intr_mode = LPFC_INTR_ERROR; 12996 int retval, idx; 12997 12998 if (cfg_mode == 2) { 12999 /* Preparation before conf_msi mbox cmd */ 13000 retval = 0; 13001 if (!retval) { 13002 /* Now, try to enable MSI-X interrupt mode */ 13003 retval = lpfc_sli4_enable_msix(phba); 13004 if (!retval) { 13005 /* Indicate initialization to MSI-X mode */ 13006 phba->intr_type = MSIX; 13007 intr_mode = 2; 13008 } 13009 } 13010 } 13011 13012 /* Fallback to MSI if MSI-X initialization failed */ 13013 if (cfg_mode >= 1 && phba->intr_type == NONE) { 13014 retval = lpfc_sli4_enable_msi(phba); 13015 if (!retval) { 13016 /* Indicate initialization to MSI mode */ 13017 phba->intr_type = MSI; 13018 intr_mode = 1; 13019 } 13020 } 13021 13022 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 13023 if (phba->intr_type == NONE) { 13024 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13025 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 13026 if (!retval) { 13027 struct lpfc_hba_eq_hdl *eqhdl; 13028 unsigned int cpu; 13029 13030 /* Indicate initialization to INTx mode */ 13031 phba->intr_type = INTx; 13032 intr_mode = 0; 13033 13034 eqhdl = lpfc_get_eq_hdl(0); 13035 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 13036 13037 cpu = cpumask_first(cpu_present_mask); 13038 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 13039 cpu); 13040 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 13041 eqhdl = lpfc_get_eq_hdl(idx); 13042 eqhdl->idx = idx; 13043 } 13044 } 13045 } 13046 return intr_mode; 13047 } 13048 13049 /** 13050 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 13051 * @phba: pointer to lpfc hba data structure. 13052 * 13053 * This routine is invoked to disable device interrupt and disassociate 13054 * the driver's interrupt handler(s) from interrupt vector(s) to device 13055 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 13056 * will release the interrupt vector(s) for the message signaled interrupt. 13057 **/ 13058 static void 13059 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 13060 { 13061 /* Disable the currently initialized interrupt mode */ 13062 if (phba->intr_type == MSIX) { 13063 int index; 13064 struct lpfc_hba_eq_hdl *eqhdl; 13065 13066 /* Free up MSI-X multi-message vectors */ 13067 for (index = 0; index < phba->cfg_irq_chann; index++) { 13068 eqhdl = lpfc_get_eq_hdl(index); 13069 lpfc_irq_clear_aff(eqhdl); 13070 irq_set_affinity_hint(eqhdl->irq, NULL); 13071 free_irq(eqhdl->irq, eqhdl); 13072 } 13073 } else { 13074 free_irq(phba->pcidev->irq, phba); 13075 } 13076 13077 pci_free_irq_vectors(phba->pcidev); 13078 13079 /* Reset interrupt management states */ 13080 phba->intr_type = NONE; 13081 phba->sli.slistat.sli_intr = 0; 13082 } 13083 13084 /** 13085 * lpfc_unset_hba - Unset SLI3 hba device initialization 13086 * @phba: pointer to lpfc hba data structure. 13087 * 13088 * This routine is invoked to unset the HBA device initialization steps to 13089 * a device with SLI-3 interface spec. 13090 **/ 13091 static void 13092 lpfc_unset_hba(struct lpfc_hba *phba) 13093 { 13094 struct lpfc_vport *vport = phba->pport; 13095 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 13096 13097 spin_lock_irq(shost->host_lock); 13098 vport->load_flag |= FC_UNLOADING; 13099 spin_unlock_irq(shost->host_lock); 13100 13101 kfree(phba->vpi_bmask); 13102 kfree(phba->vpi_ids); 13103 13104 lpfc_stop_hba_timers(phba); 13105 13106 phba->pport->work_port_events = 0; 13107 13108 lpfc_sli_hba_down(phba); 13109 13110 lpfc_sli_brdrestart(phba); 13111 13112 lpfc_sli_disable_intr(phba); 13113 13114 return; 13115 } 13116 13117 /** 13118 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 13119 * @phba: Pointer to HBA context object. 13120 * 13121 * This function is called in the SLI4 code path to wait for completion 13122 * of device's XRIs exchange busy. It will check the XRI exchange busy 13123 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 13124 * that, it will check the XRI exchange busy on outstanding FCP and ELS 13125 * I/Os every 30 seconds, log error message, and wait forever. Only when 13126 * all XRI exchange busy complete, the driver unload shall proceed with 13127 * invoking the function reset ioctl mailbox command to the CNA and the 13128 * the rest of the driver unload resource release. 13129 **/ 13130 static void 13131 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 13132 { 13133 struct lpfc_sli4_hdw_queue *qp; 13134 int idx, ccnt; 13135 int wait_time = 0; 13136 int io_xri_cmpl = 1; 13137 int nvmet_xri_cmpl = 1; 13138 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13139 13140 /* Driver just aborted IOs during the hba_unset process. Pause 13141 * here to give the HBA time to complete the IO and get entries 13142 * into the abts lists. 13143 */ 13144 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 13145 13146 /* Wait for NVME pending IO to flush back to transport. */ 13147 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13148 lpfc_nvme_wait_for_io_drain(phba); 13149 13150 ccnt = 0; 13151 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13152 qp = &phba->sli4_hba.hdwq[idx]; 13153 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 13154 if (!io_xri_cmpl) /* if list is NOT empty */ 13155 ccnt++; 13156 } 13157 if (ccnt) 13158 io_xri_cmpl = 0; 13159 13160 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13161 nvmet_xri_cmpl = 13162 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13163 } 13164 13165 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 13166 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 13167 if (!nvmet_xri_cmpl) 13168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13169 "6424 NVMET XRI exchange busy " 13170 "wait time: %d seconds.\n", 13171 wait_time/1000); 13172 if (!io_xri_cmpl) 13173 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13174 "6100 IO XRI exchange busy " 13175 "wait time: %d seconds.\n", 13176 wait_time/1000); 13177 if (!els_xri_cmpl) 13178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13179 "2878 ELS XRI exchange busy " 13180 "wait time: %d seconds.\n", 13181 wait_time/1000); 13182 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 13183 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 13184 } else { 13185 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 13186 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 13187 } 13188 13189 ccnt = 0; 13190 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13191 qp = &phba->sli4_hba.hdwq[idx]; 13192 io_xri_cmpl = list_empty( 13193 &qp->lpfc_abts_io_buf_list); 13194 if (!io_xri_cmpl) /* if list is NOT empty */ 13195 ccnt++; 13196 } 13197 if (ccnt) 13198 io_xri_cmpl = 0; 13199 13200 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13201 nvmet_xri_cmpl = list_empty( 13202 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13203 } 13204 els_xri_cmpl = 13205 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13206 13207 } 13208 } 13209 13210 /** 13211 * lpfc_sli4_hba_unset - Unset the fcoe hba 13212 * @phba: Pointer to HBA context object. 13213 * 13214 * This function is called in the SLI4 code path to reset the HBA's FCoE 13215 * function. The caller is not required to hold any lock. This routine 13216 * issues PCI function reset mailbox command to reset the FCoE function. 13217 * At the end of the function, it calls lpfc_hba_down_post function to 13218 * free any pending commands. 13219 **/ 13220 static void 13221 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 13222 { 13223 int wait_cnt = 0; 13224 LPFC_MBOXQ_t *mboxq; 13225 struct pci_dev *pdev = phba->pcidev; 13226 13227 lpfc_stop_hba_timers(phba); 13228 hrtimer_cancel(&phba->cmf_timer); 13229 13230 if (phba->pport) 13231 phba->sli4_hba.intr_enable = 0; 13232 13233 /* 13234 * Gracefully wait out the potential current outstanding asynchronous 13235 * mailbox command. 13236 */ 13237 13238 /* First, block any pending async mailbox command from posted */ 13239 spin_lock_irq(&phba->hbalock); 13240 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13241 spin_unlock_irq(&phba->hbalock); 13242 /* Now, trying to wait it out if we can */ 13243 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13244 msleep(10); 13245 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 13246 break; 13247 } 13248 /* Forcefully release the outstanding mailbox command if timed out */ 13249 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13250 spin_lock_irq(&phba->hbalock); 13251 mboxq = phba->sli.mbox_active; 13252 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 13253 __lpfc_mbox_cmpl_put(phba, mboxq); 13254 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13255 phba->sli.mbox_active = NULL; 13256 spin_unlock_irq(&phba->hbalock); 13257 } 13258 13259 /* Abort all iocbs associated with the hba */ 13260 lpfc_sli_hba_iocb_abort(phba); 13261 13262 /* Wait for completion of device XRI exchange busy */ 13263 lpfc_sli4_xri_exchange_busy_wait(phba); 13264 13265 /* per-phba callback de-registration for hotplug event */ 13266 if (phba->pport) 13267 lpfc_cpuhp_remove(phba); 13268 13269 /* Disable PCI subsystem interrupt */ 13270 lpfc_sli4_disable_intr(phba); 13271 13272 /* Disable SR-IOV if enabled */ 13273 if (phba->cfg_sriov_nr_virtfn) 13274 pci_disable_sriov(pdev); 13275 13276 /* Stop kthread signal shall trigger work_done one more time */ 13277 kthread_stop(phba->worker_thread); 13278 13279 /* Disable FW logging to host memory */ 13280 lpfc_ras_stop_fwlog(phba); 13281 13282 /* Unset the queues shared with the hardware then release all 13283 * allocated resources. 13284 */ 13285 lpfc_sli4_queue_unset(phba); 13286 lpfc_sli4_queue_destroy(phba); 13287 13288 /* Reset SLI4 HBA FCoE function */ 13289 lpfc_pci_function_reset(phba); 13290 13291 /* Free RAS DMA memory */ 13292 if (phba->ras_fwlog.ras_enabled) 13293 lpfc_sli4_ras_dma_free(phba); 13294 13295 /* Stop the SLI4 device port */ 13296 if (phba->pport) 13297 phba->pport->work_port_events = 0; 13298 } 13299 13300 static uint32_t 13301 lpfc_cgn_crc32(uint32_t crc, u8 byte) 13302 { 13303 uint32_t msb = 0; 13304 uint32_t bit; 13305 13306 for (bit = 0; bit < 8; bit++) { 13307 msb = (crc >> 31) & 1; 13308 crc <<= 1; 13309 13310 if (msb ^ (byte & 1)) { 13311 crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER; 13312 crc |= 1; 13313 } 13314 byte >>= 1; 13315 } 13316 return crc; 13317 } 13318 13319 static uint32_t 13320 lpfc_cgn_reverse_bits(uint32_t wd) 13321 { 13322 uint32_t result = 0; 13323 uint32_t i; 13324 13325 for (i = 0; i < 32; i++) { 13326 result <<= 1; 13327 result |= (1 & (wd >> i)); 13328 } 13329 return result; 13330 } 13331 13332 /* 13333 * The routine corresponds with the algorithm the HBA firmware 13334 * uses to validate the data integrity. 13335 */ 13336 uint32_t 13337 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc) 13338 { 13339 uint32_t i; 13340 uint32_t result; 13341 uint8_t *data = (uint8_t *)ptr; 13342 13343 for (i = 0; i < byteLen; ++i) 13344 crc = lpfc_cgn_crc32(crc, data[i]); 13345 13346 result = ~lpfc_cgn_reverse_bits(crc); 13347 return result; 13348 } 13349 13350 void 13351 lpfc_init_congestion_buf(struct lpfc_hba *phba) 13352 { 13353 struct lpfc_cgn_info *cp; 13354 struct timespec64 cmpl_time; 13355 struct tm broken; 13356 uint16_t size; 13357 uint32_t crc; 13358 13359 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13360 "6235 INIT Congestion Buffer %p\n", phba->cgn_i); 13361 13362 if (!phba->cgn_i) 13363 return; 13364 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13365 13366 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 13367 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 13368 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 13369 atomic_set(&phba->cgn_sync_warn_cnt, 0); 13370 13371 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 13372 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 13373 atomic_set(&phba->cgn_driver_evt_cnt, 0); 13374 atomic_set(&phba->cgn_latency_evt_cnt, 0); 13375 atomic64_set(&phba->cgn_latency_evt, 0); 13376 phba->cgn_evt_minute = 0; 13377 phba->hba_flag &= ~HBA_CGN_DAY_WRAP; 13378 13379 memset(cp, 0xff, LPFC_CGN_DATA_SIZE); 13380 cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ); 13381 cp->cgn_info_version = LPFC_CGN_INFO_V3; 13382 13383 /* cgn parameters */ 13384 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 13385 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 13386 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 13387 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 13388 13389 ktime_get_real_ts64(&cmpl_time); 13390 time64_to_tm(cmpl_time.tv_sec, 0, &broken); 13391 13392 cp->cgn_info_month = broken.tm_mon + 1; 13393 cp->cgn_info_day = broken.tm_mday; 13394 cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */ 13395 cp->cgn_info_hour = broken.tm_hour; 13396 cp->cgn_info_minute = broken.tm_min; 13397 cp->cgn_info_second = broken.tm_sec; 13398 13399 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 13400 "2643 CGNInfo Init: Start Time " 13401 "%d/%d/%d %d:%d:%d\n", 13402 cp->cgn_info_day, cp->cgn_info_month, 13403 cp->cgn_info_year, cp->cgn_info_hour, 13404 cp->cgn_info_minute, cp->cgn_info_second); 13405 13406 /* Fill in default LUN qdepth */ 13407 if (phba->pport) { 13408 size = (uint16_t)(phba->pport->cfg_lun_queue_depth); 13409 cp->cgn_lunq = cpu_to_le16(size); 13410 } 13411 13412 /* last used Index initialized to 0xff already */ 13413 13414 cp->cgn_warn_freq = LPFC_FPIN_INIT_FREQ; 13415 cp->cgn_alarm_freq = LPFC_FPIN_INIT_FREQ; 13416 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13417 cp->cgn_info_crc = cpu_to_le32(crc); 13418 13419 phba->cgn_evt_timestamp = jiffies + 13420 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 13421 } 13422 13423 void 13424 lpfc_init_congestion_stat(struct lpfc_hba *phba) 13425 { 13426 struct lpfc_cgn_info *cp; 13427 struct timespec64 cmpl_time; 13428 struct tm broken; 13429 uint32_t crc; 13430 13431 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13432 "6236 INIT Congestion Stat %p\n", phba->cgn_i); 13433 13434 if (!phba->cgn_i) 13435 return; 13436 13437 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13438 memset(&cp->cgn_stat_npm, 0, LPFC_CGN_STAT_SIZE); 13439 13440 ktime_get_real_ts64(&cmpl_time); 13441 time64_to_tm(cmpl_time.tv_sec, 0, &broken); 13442 13443 cp->cgn_stat_month = broken.tm_mon + 1; 13444 cp->cgn_stat_day = broken.tm_mday; 13445 cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */ 13446 cp->cgn_stat_hour = broken.tm_hour; 13447 cp->cgn_stat_minute = broken.tm_min; 13448 13449 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 13450 "2647 CGNstat Init: Start Time " 13451 "%d/%d/%d %d:%d\n", 13452 cp->cgn_stat_day, cp->cgn_stat_month, 13453 cp->cgn_stat_year, cp->cgn_stat_hour, 13454 cp->cgn_stat_minute); 13455 13456 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13457 cp->cgn_info_crc = cpu_to_le32(crc); 13458 } 13459 13460 /** 13461 * __lpfc_reg_congestion_buf - register congestion info buffer with HBA 13462 * @phba: Pointer to hba context object. 13463 * @reg: flag to determine register or unregister. 13464 */ 13465 static int 13466 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg) 13467 { 13468 struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf; 13469 union lpfc_sli4_cfg_shdr *shdr; 13470 uint32_t shdr_status, shdr_add_status; 13471 LPFC_MBOXQ_t *mboxq; 13472 int length, rc; 13473 13474 if (!phba->cgn_i) 13475 return -ENXIO; 13476 13477 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13478 if (!mboxq) { 13479 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13480 "2641 REG_CONGESTION_BUF mbox allocation fail: " 13481 "HBA state x%x reg %d\n", 13482 phba->pport->port_state, reg); 13483 return -ENOMEM; 13484 } 13485 13486 length = (sizeof(struct lpfc_mbx_reg_congestion_buf) - 13487 sizeof(struct lpfc_sli4_cfg_mhdr)); 13488 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13489 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length, 13490 LPFC_SLI4_MBX_EMBED); 13491 reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf; 13492 bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1); 13493 if (reg > 0) 13494 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1); 13495 else 13496 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0); 13497 reg_congestion_buf->length = sizeof(struct lpfc_cgn_info); 13498 reg_congestion_buf->addr_lo = 13499 putPaddrLow(phba->cgn_i->phys); 13500 reg_congestion_buf->addr_hi = 13501 putPaddrHigh(phba->cgn_i->phys); 13502 13503 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13504 shdr = (union lpfc_sli4_cfg_shdr *) 13505 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 13506 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13507 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 13508 &shdr->response); 13509 mempool_free(mboxq, phba->mbox_mem_pool); 13510 if (shdr_status || shdr_add_status || rc) { 13511 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13512 "2642 REG_CONGESTION_BUF mailbox " 13513 "failed with status x%x add_status x%x," 13514 " mbx status x%x reg %d\n", 13515 shdr_status, shdr_add_status, rc, reg); 13516 return -ENXIO; 13517 } 13518 return 0; 13519 } 13520 13521 int 13522 lpfc_unreg_congestion_buf(struct lpfc_hba *phba) 13523 { 13524 lpfc_cmf_stop(phba); 13525 return __lpfc_reg_congestion_buf(phba, 0); 13526 } 13527 13528 int 13529 lpfc_reg_congestion_buf(struct lpfc_hba *phba) 13530 { 13531 return __lpfc_reg_congestion_buf(phba, 1); 13532 } 13533 13534 /** 13535 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 13536 * @phba: Pointer to HBA context object. 13537 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 13538 * 13539 * This function is called in the SLI4 code path to read the port's 13540 * sli4 capabilities. 13541 * 13542 * This function may be be called from any context that can block-wait 13543 * for the completion. The expectation is that this routine is called 13544 * typically from probe_one or from the online routine. 13545 **/ 13546 int 13547 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 13548 { 13549 int rc; 13550 struct lpfc_mqe *mqe = &mboxq->u.mqe; 13551 struct lpfc_pc_sli4_params *sli4_params; 13552 uint32_t mbox_tmo; 13553 int length; 13554 bool exp_wqcq_pages = true; 13555 struct lpfc_sli4_parameters *mbx_sli4_parameters; 13556 13557 /* 13558 * By default, the driver assumes the SLI4 port requires RPI 13559 * header postings. The SLI4_PARAM response will correct this 13560 * assumption. 13561 */ 13562 phba->sli4_hba.rpi_hdrs_in_use = 1; 13563 13564 /* Read the port's SLI4 Config Parameters */ 13565 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 13566 sizeof(struct lpfc_sli4_cfg_mhdr)); 13567 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13568 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 13569 length, LPFC_SLI4_MBX_EMBED); 13570 if (!phba->sli4_hba.intr_enable) 13571 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13572 else { 13573 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 13574 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 13575 } 13576 if (unlikely(rc)) 13577 return rc; 13578 sli4_params = &phba->sli4_hba.pc_sli4_params; 13579 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 13580 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 13581 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 13582 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 13583 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 13584 mbx_sli4_parameters); 13585 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 13586 mbx_sli4_parameters); 13587 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 13588 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 13589 else 13590 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 13591 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 13592 sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope, 13593 mbx_sli4_parameters); 13594 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 13595 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 13596 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 13597 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 13598 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 13599 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 13600 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 13601 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 13602 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 13603 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 13604 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 13605 mbx_sli4_parameters); 13606 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 13607 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 13608 mbx_sli4_parameters); 13609 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 13610 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 13611 13612 /* Check for Extended Pre-Registered SGL support */ 13613 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 13614 13615 /* Check for firmware nvme support */ 13616 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 13617 bf_get(cfg_xib, mbx_sli4_parameters)); 13618 13619 if (rc) { 13620 /* Save this to indicate the Firmware supports NVME */ 13621 sli4_params->nvme = 1; 13622 13623 /* Firmware NVME support, check driver FC4 NVME support */ 13624 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 13625 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13626 "6133 Disabling NVME support: " 13627 "FC4 type not supported: x%x\n", 13628 phba->cfg_enable_fc4_type); 13629 goto fcponly; 13630 } 13631 } else { 13632 /* No firmware NVME support, check driver FC4 NVME support */ 13633 sli4_params->nvme = 0; 13634 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13635 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 13636 "6101 Disabling NVME support: Not " 13637 "supported by firmware (%d %d) x%x\n", 13638 bf_get(cfg_nvme, mbx_sli4_parameters), 13639 bf_get(cfg_xib, mbx_sli4_parameters), 13640 phba->cfg_enable_fc4_type); 13641 fcponly: 13642 phba->nvmet_support = 0; 13643 phba->cfg_nvmet_mrq = 0; 13644 phba->cfg_nvme_seg_cnt = 0; 13645 13646 /* If no FC4 type support, move to just SCSI support */ 13647 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 13648 return -ENODEV; 13649 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 13650 } 13651 } 13652 13653 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 13654 * accommodate 512K and 1M IOs in a single nvme buf. 13655 */ 13656 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13657 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 13658 13659 /* Enable embedded Payload BDE if support is indicated */ 13660 if (bf_get(cfg_pbde, mbx_sli4_parameters)) 13661 phba->cfg_enable_pbde = 1; 13662 else 13663 phba->cfg_enable_pbde = 0; 13664 13665 /* 13666 * To support Suppress Response feature we must satisfy 3 conditions. 13667 * lpfc_suppress_rsp module parameter must be set (default). 13668 * In SLI4-Parameters Descriptor: 13669 * Extended Inline Buffers (XIB) must be supported. 13670 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 13671 * (double negative). 13672 */ 13673 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 13674 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 13675 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 13676 else 13677 phba->cfg_suppress_rsp = 0; 13678 13679 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 13680 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 13681 13682 /* Make sure that sge_supp_len can be handled by the driver */ 13683 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 13684 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 13685 13686 /* 13687 * Check whether the adapter supports an embedded copy of the 13688 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 13689 * to use this option, 128-byte WQEs must be used. 13690 */ 13691 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 13692 phba->fcp_embed_io = 1; 13693 else 13694 phba->fcp_embed_io = 0; 13695 13696 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13697 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 13698 bf_get(cfg_xib, mbx_sli4_parameters), 13699 phba->cfg_enable_pbde, 13700 phba->fcp_embed_io, sli4_params->nvme, 13701 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 13702 13703 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 13704 LPFC_SLI_INTF_IF_TYPE_2) && 13705 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 13706 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 13707 exp_wqcq_pages = false; 13708 13709 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 13710 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 13711 exp_wqcq_pages && 13712 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 13713 phba->enab_exp_wqcq_pages = 1; 13714 else 13715 phba->enab_exp_wqcq_pages = 0; 13716 /* 13717 * Check if the SLI port supports MDS Diagnostics 13718 */ 13719 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 13720 phba->mds_diags_support = 1; 13721 else 13722 phba->mds_diags_support = 0; 13723 13724 /* 13725 * Check if the SLI port supports NSLER 13726 */ 13727 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 13728 phba->nsler = 1; 13729 else 13730 phba->nsler = 0; 13731 13732 return 0; 13733 } 13734 13735 /** 13736 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 13737 * @pdev: pointer to PCI device 13738 * @pid: pointer to PCI device identifier 13739 * 13740 * This routine is to be called to attach a device with SLI-3 interface spec 13741 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 13742 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13743 * information of the device and driver to see if the driver state that it can 13744 * support this kind of device. If the match is successful, the driver core 13745 * invokes this routine. If this routine determines it can claim the HBA, it 13746 * does all the initialization that it needs to do to handle the HBA properly. 13747 * 13748 * Return code 13749 * 0 - driver can claim the device 13750 * negative value - driver can not claim the device 13751 **/ 13752 static int 13753 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 13754 { 13755 struct lpfc_hba *phba; 13756 struct lpfc_vport *vport = NULL; 13757 struct Scsi_Host *shost = NULL; 13758 int error; 13759 uint32_t cfg_mode, intr_mode; 13760 13761 /* Allocate memory for HBA structure */ 13762 phba = lpfc_hba_alloc(pdev); 13763 if (!phba) 13764 return -ENOMEM; 13765 13766 /* Perform generic PCI device enabling operation */ 13767 error = lpfc_enable_pci_dev(phba); 13768 if (error) 13769 goto out_free_phba; 13770 13771 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 13772 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 13773 if (error) 13774 goto out_disable_pci_dev; 13775 13776 /* Set up SLI-3 specific device PCI memory space */ 13777 error = lpfc_sli_pci_mem_setup(phba); 13778 if (error) { 13779 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13780 "1402 Failed to set up pci memory space.\n"); 13781 goto out_disable_pci_dev; 13782 } 13783 13784 /* Set up SLI-3 specific device driver resources */ 13785 error = lpfc_sli_driver_resource_setup(phba); 13786 if (error) { 13787 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13788 "1404 Failed to set up driver resource.\n"); 13789 goto out_unset_pci_mem_s3; 13790 } 13791 13792 /* Initialize and populate the iocb list per host */ 13793 13794 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 13795 if (error) { 13796 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13797 "1405 Failed to initialize iocb list.\n"); 13798 goto out_unset_driver_resource_s3; 13799 } 13800 13801 /* Set up common device driver resources */ 13802 error = lpfc_setup_driver_resource_phase2(phba); 13803 if (error) { 13804 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13805 "1406 Failed to set up driver resource.\n"); 13806 goto out_free_iocb_list; 13807 } 13808 13809 /* Get the default values for Model Name and Description */ 13810 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 13811 13812 /* Create SCSI host to the physical port */ 13813 error = lpfc_create_shost(phba); 13814 if (error) { 13815 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13816 "1407 Failed to create scsi host.\n"); 13817 goto out_unset_driver_resource; 13818 } 13819 13820 /* Configure sysfs attributes */ 13821 vport = phba->pport; 13822 error = lpfc_alloc_sysfs_attr(vport); 13823 if (error) { 13824 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13825 "1476 Failed to allocate sysfs attr\n"); 13826 goto out_destroy_shost; 13827 } 13828 13829 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 13830 /* Now, trying to enable interrupt and bring up the device */ 13831 cfg_mode = phba->cfg_use_msi; 13832 while (true) { 13833 /* Put device to a known state before enabling interrupt */ 13834 lpfc_stop_port(phba); 13835 /* Configure and enable interrupt */ 13836 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 13837 if (intr_mode == LPFC_INTR_ERROR) { 13838 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13839 "0431 Failed to enable interrupt.\n"); 13840 error = -ENODEV; 13841 goto out_free_sysfs_attr; 13842 } 13843 /* SLI-3 HBA setup */ 13844 if (lpfc_sli_hba_setup(phba)) { 13845 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13846 "1477 Failed to set up hba\n"); 13847 error = -ENODEV; 13848 goto out_remove_device; 13849 } 13850 13851 /* Wait 50ms for the interrupts of previous mailbox commands */ 13852 msleep(50); 13853 /* Check active interrupts on message signaled interrupts */ 13854 if (intr_mode == 0 || 13855 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 13856 /* Log the current active interrupt mode */ 13857 phba->intr_mode = intr_mode; 13858 lpfc_log_intr_mode(phba, intr_mode); 13859 break; 13860 } else { 13861 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13862 "0447 Configure interrupt mode (%d) " 13863 "failed active interrupt test.\n", 13864 intr_mode); 13865 /* Disable the current interrupt mode */ 13866 lpfc_sli_disable_intr(phba); 13867 /* Try next level of interrupt mode */ 13868 cfg_mode = --intr_mode; 13869 } 13870 } 13871 13872 /* Perform post initialization setup */ 13873 lpfc_post_init_setup(phba); 13874 13875 /* Check if there are static vports to be created. */ 13876 lpfc_create_static_vport(phba); 13877 13878 return 0; 13879 13880 out_remove_device: 13881 lpfc_unset_hba(phba); 13882 out_free_sysfs_attr: 13883 lpfc_free_sysfs_attr(vport); 13884 out_destroy_shost: 13885 lpfc_destroy_shost(phba); 13886 out_unset_driver_resource: 13887 lpfc_unset_driver_resource_phase2(phba); 13888 out_free_iocb_list: 13889 lpfc_free_iocb_list(phba); 13890 out_unset_driver_resource_s3: 13891 lpfc_sli_driver_resource_unset(phba); 13892 out_unset_pci_mem_s3: 13893 lpfc_sli_pci_mem_unset(phba); 13894 out_disable_pci_dev: 13895 lpfc_disable_pci_dev(phba); 13896 if (shost) 13897 scsi_host_put(shost); 13898 out_free_phba: 13899 lpfc_hba_free(phba); 13900 return error; 13901 } 13902 13903 /** 13904 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 13905 * @pdev: pointer to PCI device 13906 * 13907 * This routine is to be called to disattach a device with SLI-3 interface 13908 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 13909 * removed from PCI bus, it performs all the necessary cleanup for the HBA 13910 * device to be removed from the PCI subsystem properly. 13911 **/ 13912 static void 13913 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 13914 { 13915 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13916 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 13917 struct lpfc_vport **vports; 13918 struct lpfc_hba *phba = vport->phba; 13919 int i; 13920 13921 spin_lock_irq(&phba->hbalock); 13922 vport->load_flag |= FC_UNLOADING; 13923 spin_unlock_irq(&phba->hbalock); 13924 13925 lpfc_free_sysfs_attr(vport); 13926 13927 /* Release all the vports against this physical port */ 13928 vports = lpfc_create_vport_work_array(phba); 13929 if (vports != NULL) 13930 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 13931 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 13932 continue; 13933 fc_vport_terminate(vports[i]->fc_vport); 13934 } 13935 lpfc_destroy_vport_work_array(phba, vports); 13936 13937 /* Remove FC host with the physical port */ 13938 fc_remove_host(shost); 13939 scsi_remove_host(shost); 13940 13941 /* Clean up all nodes, mailboxes and IOs. */ 13942 lpfc_cleanup(vport); 13943 13944 /* 13945 * Bring down the SLI Layer. This step disable all interrupts, 13946 * clears the rings, discards all mailbox commands, and resets 13947 * the HBA. 13948 */ 13949 13950 /* HBA interrupt will be disabled after this call */ 13951 lpfc_sli_hba_down(phba); 13952 /* Stop kthread signal shall trigger work_done one more time */ 13953 kthread_stop(phba->worker_thread); 13954 /* Final cleanup of txcmplq and reset the HBA */ 13955 lpfc_sli_brdrestart(phba); 13956 13957 kfree(phba->vpi_bmask); 13958 kfree(phba->vpi_ids); 13959 13960 lpfc_stop_hba_timers(phba); 13961 spin_lock_irq(&phba->port_list_lock); 13962 list_del_init(&vport->listentry); 13963 spin_unlock_irq(&phba->port_list_lock); 13964 13965 lpfc_debugfs_terminate(vport); 13966 13967 /* Disable SR-IOV if enabled */ 13968 if (phba->cfg_sriov_nr_virtfn) 13969 pci_disable_sriov(pdev); 13970 13971 /* Disable interrupt */ 13972 lpfc_sli_disable_intr(phba); 13973 13974 scsi_host_put(shost); 13975 13976 /* 13977 * Call scsi_free before mem_free since scsi bufs are released to their 13978 * corresponding pools here. 13979 */ 13980 lpfc_scsi_free(phba); 13981 lpfc_free_iocb_list(phba); 13982 13983 lpfc_mem_free_all(phba); 13984 13985 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 13986 phba->hbqslimp.virt, phba->hbqslimp.phys); 13987 13988 /* Free resources associated with SLI2 interface */ 13989 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 13990 phba->slim2p.virt, phba->slim2p.phys); 13991 13992 /* unmap adapter SLIM and Control Registers */ 13993 iounmap(phba->ctrl_regs_memmap_p); 13994 iounmap(phba->slim_memmap_p); 13995 13996 lpfc_hba_free(phba); 13997 13998 pci_release_mem_regions(pdev); 13999 pci_disable_device(pdev); 14000 } 14001 14002 /** 14003 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 14004 * @dev_d: pointer to device 14005 * 14006 * This routine is to be called from the kernel's PCI subsystem to support 14007 * system Power Management (PM) to device with SLI-3 interface spec. When 14008 * PM invokes this method, it quiesces the device by stopping the driver's 14009 * worker thread for the device, turning off device's interrupt and DMA, 14010 * and bring the device offline. Note that as the driver implements the 14011 * minimum PM requirements to a power-aware driver's PM support for the 14012 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 14013 * to the suspend() method call will be treated as SUSPEND and the driver will 14014 * fully reinitialize its device during resume() method call, the driver will 14015 * set device to PCI_D3hot state in PCI config space instead of setting it 14016 * according to the @msg provided by the PM. 14017 * 14018 * Return code 14019 * 0 - driver suspended the device 14020 * Error otherwise 14021 **/ 14022 static int __maybe_unused 14023 lpfc_pci_suspend_one_s3(struct device *dev_d) 14024 { 14025 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14026 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14027 14028 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14029 "0473 PCI device Power Management suspend.\n"); 14030 14031 /* Bring down the device */ 14032 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14033 lpfc_offline(phba); 14034 kthread_stop(phba->worker_thread); 14035 14036 /* Disable interrupt from device */ 14037 lpfc_sli_disable_intr(phba); 14038 14039 return 0; 14040 } 14041 14042 /** 14043 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 14044 * @dev_d: pointer to device 14045 * 14046 * This routine is to be called from the kernel's PCI subsystem to support 14047 * system Power Management (PM) to device with SLI-3 interface spec. When PM 14048 * invokes this method, it restores the device's PCI config space state and 14049 * fully reinitializes the device and brings it online. Note that as the 14050 * driver implements the minimum PM requirements to a power-aware driver's 14051 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 14052 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 14053 * driver will fully reinitialize its device during resume() method call, 14054 * the device will be set to PCI_D0 directly in PCI config space before 14055 * restoring the state. 14056 * 14057 * Return code 14058 * 0 - driver suspended the device 14059 * Error otherwise 14060 **/ 14061 static int __maybe_unused 14062 lpfc_pci_resume_one_s3(struct device *dev_d) 14063 { 14064 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14065 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14066 uint32_t intr_mode; 14067 int error; 14068 14069 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14070 "0452 PCI device Power Management resume.\n"); 14071 14072 /* Startup the kernel thread for this host adapter. */ 14073 phba->worker_thread = kthread_run(lpfc_do_work, phba, 14074 "lpfc_worker_%d", phba->brd_no); 14075 if (IS_ERR(phba->worker_thread)) { 14076 error = PTR_ERR(phba->worker_thread); 14077 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14078 "0434 PM resume failed to start worker " 14079 "thread: error=x%x.\n", error); 14080 return error; 14081 } 14082 14083 /* Configure and enable interrupt */ 14084 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14085 if (intr_mode == LPFC_INTR_ERROR) { 14086 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14087 "0430 PM resume Failed to enable interrupt\n"); 14088 return -EIO; 14089 } else 14090 phba->intr_mode = intr_mode; 14091 14092 /* Restart HBA and bring it online */ 14093 lpfc_sli_brdrestart(phba); 14094 lpfc_online(phba); 14095 14096 /* Log the current active interrupt mode */ 14097 lpfc_log_intr_mode(phba, phba->intr_mode); 14098 14099 return 0; 14100 } 14101 14102 /** 14103 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 14104 * @phba: pointer to lpfc hba data structure. 14105 * 14106 * This routine is called to prepare the SLI3 device for PCI slot recover. It 14107 * aborts all the outstanding SCSI I/Os to the pci device. 14108 **/ 14109 static void 14110 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 14111 { 14112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14113 "2723 PCI channel I/O abort preparing for recovery\n"); 14114 14115 /* 14116 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 14117 * and let the SCSI mid-layer to retry them to recover. 14118 */ 14119 lpfc_sli_abort_fcp_rings(phba); 14120 } 14121 14122 /** 14123 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 14124 * @phba: pointer to lpfc hba data structure. 14125 * 14126 * This routine is called to prepare the SLI3 device for PCI slot reset. It 14127 * disables the device interrupt and pci device, and aborts the internal FCP 14128 * pending I/Os. 14129 **/ 14130 static void 14131 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 14132 { 14133 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14134 "2710 PCI channel disable preparing for reset\n"); 14135 14136 /* Block any management I/Os to the device */ 14137 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 14138 14139 /* Block all SCSI devices' I/Os on the host */ 14140 lpfc_scsi_dev_block(phba); 14141 14142 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 14143 lpfc_sli_flush_io_rings(phba); 14144 14145 /* stop all timers */ 14146 lpfc_stop_hba_timers(phba); 14147 14148 /* Disable interrupt and pci device */ 14149 lpfc_sli_disable_intr(phba); 14150 pci_disable_device(phba->pcidev); 14151 } 14152 14153 /** 14154 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 14155 * @phba: pointer to lpfc hba data structure. 14156 * 14157 * This routine is called to prepare the SLI3 device for PCI slot permanently 14158 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 14159 * pending I/Os. 14160 **/ 14161 static void 14162 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 14163 { 14164 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14165 "2711 PCI channel permanent disable for failure\n"); 14166 /* Block all SCSI devices' I/Os on the host */ 14167 lpfc_scsi_dev_block(phba); 14168 14169 /* stop all timers */ 14170 lpfc_stop_hba_timers(phba); 14171 14172 /* Clean up all driver's outstanding SCSI I/Os */ 14173 lpfc_sli_flush_io_rings(phba); 14174 } 14175 14176 /** 14177 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 14178 * @pdev: pointer to PCI device. 14179 * @state: the current PCI connection state. 14180 * 14181 * This routine is called from the PCI subsystem for I/O error handling to 14182 * device with SLI-3 interface spec. This function is called by the PCI 14183 * subsystem after a PCI bus error affecting this device has been detected. 14184 * When this function is invoked, it will need to stop all the I/Os and 14185 * interrupt(s) to the device. Once that is done, it will return 14186 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 14187 * as desired. 14188 * 14189 * Return codes 14190 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link 14191 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 14192 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14193 **/ 14194 static pci_ers_result_t 14195 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 14196 { 14197 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14198 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14199 14200 switch (state) { 14201 case pci_channel_io_normal: 14202 /* Non-fatal error, prepare for recovery */ 14203 lpfc_sli_prep_dev_for_recover(phba); 14204 return PCI_ERS_RESULT_CAN_RECOVER; 14205 case pci_channel_io_frozen: 14206 /* Fatal error, prepare for slot reset */ 14207 lpfc_sli_prep_dev_for_reset(phba); 14208 return PCI_ERS_RESULT_NEED_RESET; 14209 case pci_channel_io_perm_failure: 14210 /* Permanent failure, prepare for device down */ 14211 lpfc_sli_prep_dev_for_perm_failure(phba); 14212 return PCI_ERS_RESULT_DISCONNECT; 14213 default: 14214 /* Unknown state, prepare and request slot reset */ 14215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14216 "0472 Unknown PCI error state: x%x\n", state); 14217 lpfc_sli_prep_dev_for_reset(phba); 14218 return PCI_ERS_RESULT_NEED_RESET; 14219 } 14220 } 14221 14222 /** 14223 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 14224 * @pdev: pointer to PCI device. 14225 * 14226 * This routine is called from the PCI subsystem for error handling to 14227 * device with SLI-3 interface spec. This is called after PCI bus has been 14228 * reset to restart the PCI card from scratch, as if from a cold-boot. 14229 * During the PCI subsystem error recovery, after driver returns 14230 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 14231 * recovery and then call this routine before calling the .resume method 14232 * to recover the device. This function will initialize the HBA device, 14233 * enable the interrupt, but it will just put the HBA to offline state 14234 * without passing any I/O traffic. 14235 * 14236 * Return codes 14237 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 14238 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14239 */ 14240 static pci_ers_result_t 14241 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 14242 { 14243 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14244 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14245 struct lpfc_sli *psli = &phba->sli; 14246 uint32_t intr_mode; 14247 14248 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 14249 if (pci_enable_device_mem(pdev)) { 14250 printk(KERN_ERR "lpfc: Cannot re-enable " 14251 "PCI device after reset.\n"); 14252 return PCI_ERS_RESULT_DISCONNECT; 14253 } 14254 14255 pci_restore_state(pdev); 14256 14257 /* 14258 * As the new kernel behavior of pci_restore_state() API call clears 14259 * device saved_state flag, need to save the restored state again. 14260 */ 14261 pci_save_state(pdev); 14262 14263 if (pdev->is_busmaster) 14264 pci_set_master(pdev); 14265 14266 spin_lock_irq(&phba->hbalock); 14267 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 14268 spin_unlock_irq(&phba->hbalock); 14269 14270 /* Configure and enable interrupt */ 14271 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14272 if (intr_mode == LPFC_INTR_ERROR) { 14273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14274 "0427 Cannot re-enable interrupt after " 14275 "slot reset.\n"); 14276 return PCI_ERS_RESULT_DISCONNECT; 14277 } else 14278 phba->intr_mode = intr_mode; 14279 14280 /* Take device offline, it will perform cleanup */ 14281 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14282 lpfc_offline(phba); 14283 lpfc_sli_brdrestart(phba); 14284 14285 /* Log the current active interrupt mode */ 14286 lpfc_log_intr_mode(phba, phba->intr_mode); 14287 14288 return PCI_ERS_RESULT_RECOVERED; 14289 } 14290 14291 /** 14292 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 14293 * @pdev: pointer to PCI device 14294 * 14295 * This routine is called from the PCI subsystem for error handling to device 14296 * with SLI-3 interface spec. It is called when kernel error recovery tells 14297 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 14298 * error recovery. After this call, traffic can start to flow from this device 14299 * again. 14300 */ 14301 static void 14302 lpfc_io_resume_s3(struct pci_dev *pdev) 14303 { 14304 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14305 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14306 14307 /* Bring device online, it will be no-op for non-fatal error resume */ 14308 lpfc_online(phba); 14309 } 14310 14311 /** 14312 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 14313 * @phba: pointer to lpfc hba data structure. 14314 * 14315 * returns the number of ELS/CT IOCBs to reserve 14316 **/ 14317 int 14318 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 14319 { 14320 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 14321 14322 if (phba->sli_rev == LPFC_SLI_REV4) { 14323 if (max_xri <= 100) 14324 return 10; 14325 else if (max_xri <= 256) 14326 return 25; 14327 else if (max_xri <= 512) 14328 return 50; 14329 else if (max_xri <= 1024) 14330 return 100; 14331 else if (max_xri <= 1536) 14332 return 150; 14333 else if (max_xri <= 2048) 14334 return 200; 14335 else 14336 return 250; 14337 } else 14338 return 0; 14339 } 14340 14341 /** 14342 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 14343 * @phba: pointer to lpfc hba data structure. 14344 * 14345 * returns the number of ELS/CT + NVMET IOCBs to reserve 14346 **/ 14347 int 14348 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 14349 { 14350 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 14351 14352 if (phba->nvmet_support) 14353 max_xri += LPFC_NVMET_BUF_POST; 14354 return max_xri; 14355 } 14356 14357 14358 static int 14359 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 14360 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 14361 const struct firmware *fw) 14362 { 14363 int rc; 14364 u8 sli_family; 14365 14366 sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf); 14367 /* Three cases: (1) FW was not supported on the detected adapter. 14368 * (2) FW update has been locked out administratively. 14369 * (3) Some other error during FW update. 14370 * In each case, an unmaskable message is written to the console 14371 * for admin diagnosis. 14372 */ 14373 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 14374 (sli_family == LPFC_SLI_INTF_FAMILY_G6 && 14375 magic_number != MAGIC_NUMBER_G6) || 14376 (sli_family == LPFC_SLI_INTF_FAMILY_G7 && 14377 magic_number != MAGIC_NUMBER_G7) || 14378 (sli_family == LPFC_SLI_INTF_FAMILY_G7P && 14379 magic_number != MAGIC_NUMBER_G7P)) { 14380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14381 "3030 This firmware version is not supported on" 14382 " this HBA model. Device:%x Magic:%x Type:%x " 14383 "ID:%x Size %d %zd\n", 14384 phba->pcidev->device, magic_number, ftype, fid, 14385 fsize, fw->size); 14386 rc = -EINVAL; 14387 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 14388 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14389 "3021 Firmware downloads have been prohibited " 14390 "by a system configuration setting on " 14391 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14392 "%zd\n", 14393 phba->pcidev->device, magic_number, ftype, fid, 14394 fsize, fw->size); 14395 rc = -EACCES; 14396 } else { 14397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14398 "3022 FW Download failed. Add Status x%x " 14399 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14400 "%zd\n", 14401 offset, phba->pcidev->device, magic_number, 14402 ftype, fid, fsize, fw->size); 14403 rc = -EIO; 14404 } 14405 return rc; 14406 } 14407 14408 /** 14409 * lpfc_write_firmware - attempt to write a firmware image to the port 14410 * @fw: pointer to firmware image returned from request_firmware. 14411 * @context: pointer to firmware image returned from request_firmware. 14412 * 14413 **/ 14414 static void 14415 lpfc_write_firmware(const struct firmware *fw, void *context) 14416 { 14417 struct lpfc_hba *phba = (struct lpfc_hba *)context; 14418 char fwrev[FW_REV_STR_SIZE]; 14419 struct lpfc_grp_hdr *image; 14420 struct list_head dma_buffer_list; 14421 int i, rc = 0; 14422 struct lpfc_dmabuf *dmabuf, *next; 14423 uint32_t offset = 0, temp_offset = 0; 14424 uint32_t magic_number, ftype, fid, fsize; 14425 14426 /* It can be null in no-wait mode, sanity check */ 14427 if (!fw) { 14428 rc = -ENXIO; 14429 goto out; 14430 } 14431 image = (struct lpfc_grp_hdr *)fw->data; 14432 14433 magic_number = be32_to_cpu(image->magic_number); 14434 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 14435 fid = bf_get_be32(lpfc_grp_hdr_id, image); 14436 fsize = be32_to_cpu(image->size); 14437 14438 INIT_LIST_HEAD(&dma_buffer_list); 14439 lpfc_decode_firmware_rev(phba, fwrev, 1); 14440 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 14441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14442 "3023 Updating Firmware, Current Version:%s " 14443 "New Version:%s\n", 14444 fwrev, image->revision); 14445 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 14446 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 14447 GFP_KERNEL); 14448 if (!dmabuf) { 14449 rc = -ENOMEM; 14450 goto release_out; 14451 } 14452 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14453 SLI4_PAGE_SIZE, 14454 &dmabuf->phys, 14455 GFP_KERNEL); 14456 if (!dmabuf->virt) { 14457 kfree(dmabuf); 14458 rc = -ENOMEM; 14459 goto release_out; 14460 } 14461 list_add_tail(&dmabuf->list, &dma_buffer_list); 14462 } 14463 while (offset < fw->size) { 14464 temp_offset = offset; 14465 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 14466 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 14467 memcpy(dmabuf->virt, 14468 fw->data + temp_offset, 14469 fw->size - temp_offset); 14470 temp_offset = fw->size; 14471 break; 14472 } 14473 memcpy(dmabuf->virt, fw->data + temp_offset, 14474 SLI4_PAGE_SIZE); 14475 temp_offset += SLI4_PAGE_SIZE; 14476 } 14477 rc = lpfc_wr_object(phba, &dma_buffer_list, 14478 (fw->size - offset), &offset); 14479 if (rc) { 14480 rc = lpfc_log_write_firmware_error(phba, offset, 14481 magic_number, 14482 ftype, 14483 fid, 14484 fsize, 14485 fw); 14486 goto release_out; 14487 } 14488 } 14489 rc = offset; 14490 } else 14491 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14492 "3029 Skipped Firmware update, Current " 14493 "Version:%s New Version:%s\n", 14494 fwrev, image->revision); 14495 14496 release_out: 14497 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 14498 list_del(&dmabuf->list); 14499 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 14500 dmabuf->virt, dmabuf->phys); 14501 kfree(dmabuf); 14502 } 14503 release_firmware(fw); 14504 out: 14505 if (rc < 0) 14506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14507 "3062 Firmware update error, status %d.\n", rc); 14508 else 14509 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14510 "3024 Firmware update success: size %d.\n", rc); 14511 } 14512 14513 /** 14514 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 14515 * @phba: pointer to lpfc hba data structure. 14516 * @fw_upgrade: which firmware to update. 14517 * 14518 * This routine is called to perform Linux generic firmware upgrade on device 14519 * that supports such feature. 14520 **/ 14521 int 14522 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 14523 { 14524 uint8_t file_name[ELX_MODEL_NAME_SIZE]; 14525 int ret; 14526 const struct firmware *fw; 14527 14528 /* Only supported on SLI4 interface type 2 for now */ 14529 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 14530 LPFC_SLI_INTF_IF_TYPE_2) 14531 return -EPERM; 14532 14533 snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName); 14534 14535 if (fw_upgrade == INT_FW_UPGRADE) { 14536 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 14537 file_name, &phba->pcidev->dev, 14538 GFP_KERNEL, (void *)phba, 14539 lpfc_write_firmware); 14540 } else if (fw_upgrade == RUN_FW_UPGRADE) { 14541 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 14542 if (!ret) 14543 lpfc_write_firmware(fw, (void *)phba); 14544 } else { 14545 ret = -EINVAL; 14546 } 14547 14548 return ret; 14549 } 14550 14551 /** 14552 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 14553 * @pdev: pointer to PCI device 14554 * @pid: pointer to PCI device identifier 14555 * 14556 * This routine is called from the kernel's PCI subsystem to device with 14557 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14558 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 14559 * information of the device and driver to see if the driver state that it 14560 * can support this kind of device. If the match is successful, the driver 14561 * core invokes this routine. If this routine determines it can claim the HBA, 14562 * it does all the initialization that it needs to do to handle the HBA 14563 * properly. 14564 * 14565 * Return code 14566 * 0 - driver can claim the device 14567 * negative value - driver can not claim the device 14568 **/ 14569 static int 14570 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 14571 { 14572 struct lpfc_hba *phba; 14573 struct lpfc_vport *vport = NULL; 14574 struct Scsi_Host *shost = NULL; 14575 int error; 14576 uint32_t cfg_mode, intr_mode; 14577 14578 /* Allocate memory for HBA structure */ 14579 phba = lpfc_hba_alloc(pdev); 14580 if (!phba) 14581 return -ENOMEM; 14582 14583 INIT_LIST_HEAD(&phba->poll_list); 14584 14585 /* Perform generic PCI device enabling operation */ 14586 error = lpfc_enable_pci_dev(phba); 14587 if (error) 14588 goto out_free_phba; 14589 14590 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 14591 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 14592 if (error) 14593 goto out_disable_pci_dev; 14594 14595 /* Set up SLI-4 specific device PCI memory space */ 14596 error = lpfc_sli4_pci_mem_setup(phba); 14597 if (error) { 14598 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14599 "1410 Failed to set up pci memory space.\n"); 14600 goto out_disable_pci_dev; 14601 } 14602 14603 /* Set up SLI-4 Specific device driver resources */ 14604 error = lpfc_sli4_driver_resource_setup(phba); 14605 if (error) { 14606 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14607 "1412 Failed to set up driver resource.\n"); 14608 goto out_unset_pci_mem_s4; 14609 } 14610 14611 INIT_LIST_HEAD(&phba->active_rrq_list); 14612 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 14613 14614 /* Set up common device driver resources */ 14615 error = lpfc_setup_driver_resource_phase2(phba); 14616 if (error) { 14617 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14618 "1414 Failed to set up driver resource.\n"); 14619 goto out_unset_driver_resource_s4; 14620 } 14621 14622 /* Get the default values for Model Name and Description */ 14623 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 14624 14625 /* Now, trying to enable interrupt and bring up the device */ 14626 cfg_mode = phba->cfg_use_msi; 14627 14628 /* Put device to a known state before enabling interrupt */ 14629 phba->pport = NULL; 14630 lpfc_stop_port(phba); 14631 14632 /* Init cpu_map array */ 14633 lpfc_cpu_map_array_init(phba); 14634 14635 /* Init hba_eq_hdl array */ 14636 lpfc_hba_eq_hdl_array_init(phba); 14637 14638 /* Configure and enable interrupt */ 14639 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 14640 if (intr_mode == LPFC_INTR_ERROR) { 14641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14642 "0426 Failed to enable interrupt.\n"); 14643 error = -ENODEV; 14644 goto out_unset_driver_resource; 14645 } 14646 /* Default to single EQ for non-MSI-X */ 14647 if (phba->intr_type != MSIX) { 14648 phba->cfg_irq_chann = 1; 14649 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14650 if (phba->nvmet_support) 14651 phba->cfg_nvmet_mrq = 1; 14652 } 14653 } 14654 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 14655 14656 /* Create SCSI host to the physical port */ 14657 error = lpfc_create_shost(phba); 14658 if (error) { 14659 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14660 "1415 Failed to create scsi host.\n"); 14661 goto out_disable_intr; 14662 } 14663 vport = phba->pport; 14664 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14665 14666 /* Configure sysfs attributes */ 14667 error = lpfc_alloc_sysfs_attr(vport); 14668 if (error) { 14669 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14670 "1416 Failed to allocate sysfs attr\n"); 14671 goto out_destroy_shost; 14672 } 14673 14674 /* Set up SLI-4 HBA */ 14675 if (lpfc_sli4_hba_setup(phba)) { 14676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14677 "1421 Failed to set up hba\n"); 14678 error = -ENODEV; 14679 goto out_free_sysfs_attr; 14680 } 14681 14682 /* Log the current active interrupt mode */ 14683 phba->intr_mode = intr_mode; 14684 lpfc_log_intr_mode(phba, intr_mode); 14685 14686 /* Perform post initialization setup */ 14687 lpfc_post_init_setup(phba); 14688 14689 /* NVME support in FW earlier in the driver load corrects the 14690 * FC4 type making a check for nvme_support unnecessary. 14691 */ 14692 if (phba->nvmet_support == 0) { 14693 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14694 /* Create NVME binding with nvme_fc_transport. This 14695 * ensures the vport is initialized. If the localport 14696 * create fails, it should not unload the driver to 14697 * support field issues. 14698 */ 14699 error = lpfc_nvme_create_localport(vport); 14700 if (error) { 14701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14702 "6004 NVME registration " 14703 "failed, error x%x\n", 14704 error); 14705 } 14706 } 14707 } 14708 14709 /* check for firmware upgrade or downgrade */ 14710 if (phba->cfg_request_firmware_upgrade) 14711 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 14712 14713 /* Check if there are static vports to be created. */ 14714 lpfc_create_static_vport(phba); 14715 14716 /* Enable RAS FW log support */ 14717 lpfc_sli4_ras_setup(phba); 14718 14719 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 14720 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 14721 14722 return 0; 14723 14724 out_free_sysfs_attr: 14725 lpfc_free_sysfs_attr(vport); 14726 out_destroy_shost: 14727 lpfc_destroy_shost(phba); 14728 out_disable_intr: 14729 lpfc_sli4_disable_intr(phba); 14730 out_unset_driver_resource: 14731 lpfc_unset_driver_resource_phase2(phba); 14732 out_unset_driver_resource_s4: 14733 lpfc_sli4_driver_resource_unset(phba); 14734 out_unset_pci_mem_s4: 14735 lpfc_sli4_pci_mem_unset(phba); 14736 out_disable_pci_dev: 14737 lpfc_disable_pci_dev(phba); 14738 if (shost) 14739 scsi_host_put(shost); 14740 out_free_phba: 14741 lpfc_hba_free(phba); 14742 return error; 14743 } 14744 14745 /** 14746 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 14747 * @pdev: pointer to PCI device 14748 * 14749 * This routine is called from the kernel's PCI subsystem to device with 14750 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14751 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14752 * device to be removed from the PCI subsystem properly. 14753 **/ 14754 static void 14755 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 14756 { 14757 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14758 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14759 struct lpfc_vport **vports; 14760 struct lpfc_hba *phba = vport->phba; 14761 int i; 14762 14763 /* Mark the device unloading flag */ 14764 spin_lock_irq(&phba->hbalock); 14765 vport->load_flag |= FC_UNLOADING; 14766 spin_unlock_irq(&phba->hbalock); 14767 if (phba->cgn_i) 14768 lpfc_unreg_congestion_buf(phba); 14769 14770 lpfc_free_sysfs_attr(vport); 14771 14772 /* Release all the vports against this physical port */ 14773 vports = lpfc_create_vport_work_array(phba); 14774 if (vports != NULL) 14775 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14776 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14777 continue; 14778 fc_vport_terminate(vports[i]->fc_vport); 14779 } 14780 lpfc_destroy_vport_work_array(phba, vports); 14781 14782 /* Remove FC host with the physical port */ 14783 fc_remove_host(shost); 14784 scsi_remove_host(shost); 14785 14786 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 14787 * localports are destroyed after to cleanup all transport memory. 14788 */ 14789 lpfc_cleanup(vport); 14790 lpfc_nvmet_destroy_targetport(phba); 14791 lpfc_nvme_destroy_localport(vport); 14792 14793 /* De-allocate multi-XRI pools */ 14794 if (phba->cfg_xri_rebalancing) 14795 lpfc_destroy_multixri_pools(phba); 14796 14797 /* 14798 * Bring down the SLI Layer. This step disables all interrupts, 14799 * clears the rings, discards all mailbox commands, and resets 14800 * the HBA FCoE function. 14801 */ 14802 lpfc_debugfs_terminate(vport); 14803 14804 lpfc_stop_hba_timers(phba); 14805 spin_lock_irq(&phba->port_list_lock); 14806 list_del_init(&vport->listentry); 14807 spin_unlock_irq(&phba->port_list_lock); 14808 14809 /* Perform scsi free before driver resource_unset since scsi 14810 * buffers are released to their corresponding pools here. 14811 */ 14812 lpfc_io_free(phba); 14813 lpfc_free_iocb_list(phba); 14814 lpfc_sli4_hba_unset(phba); 14815 14816 lpfc_unset_driver_resource_phase2(phba); 14817 lpfc_sli4_driver_resource_unset(phba); 14818 14819 /* Unmap adapter Control and Doorbell registers */ 14820 lpfc_sli4_pci_mem_unset(phba); 14821 14822 /* Release PCI resources and disable device's PCI function */ 14823 scsi_host_put(shost); 14824 lpfc_disable_pci_dev(phba); 14825 14826 /* Finally, free the driver's device data structure */ 14827 lpfc_hba_free(phba); 14828 14829 return; 14830 } 14831 14832 /** 14833 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 14834 * @dev_d: pointer to device 14835 * 14836 * This routine is called from the kernel's PCI subsystem to support system 14837 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 14838 * this method, it quiesces the device by stopping the driver's worker 14839 * thread for the device, turning off device's interrupt and DMA, and bring 14840 * the device offline. Note that as the driver implements the minimum PM 14841 * requirements to a power-aware driver's PM support for suspend/resume -- all 14842 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 14843 * method call will be treated as SUSPEND and the driver will fully 14844 * reinitialize its device during resume() method call, the driver will set 14845 * device to PCI_D3hot state in PCI config space instead of setting it 14846 * according to the @msg provided by the PM. 14847 * 14848 * Return code 14849 * 0 - driver suspended the device 14850 * Error otherwise 14851 **/ 14852 static int __maybe_unused 14853 lpfc_pci_suspend_one_s4(struct device *dev_d) 14854 { 14855 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14856 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14857 14858 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14859 "2843 PCI device Power Management suspend.\n"); 14860 14861 /* Bring down the device */ 14862 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14863 lpfc_offline(phba); 14864 kthread_stop(phba->worker_thread); 14865 14866 /* Disable interrupt from device */ 14867 lpfc_sli4_disable_intr(phba); 14868 lpfc_sli4_queue_destroy(phba); 14869 14870 return 0; 14871 } 14872 14873 /** 14874 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 14875 * @dev_d: pointer to device 14876 * 14877 * This routine is called from the kernel's PCI subsystem to support system 14878 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 14879 * this method, it restores the device's PCI config space state and fully 14880 * reinitializes the device and brings it online. Note that as the driver 14881 * implements the minimum PM requirements to a power-aware driver's PM for 14882 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 14883 * to the suspend() method call will be treated as SUSPEND and the driver 14884 * will fully reinitialize its device during resume() method call, the device 14885 * will be set to PCI_D0 directly in PCI config space before restoring the 14886 * state. 14887 * 14888 * Return code 14889 * 0 - driver suspended the device 14890 * Error otherwise 14891 **/ 14892 static int __maybe_unused 14893 lpfc_pci_resume_one_s4(struct device *dev_d) 14894 { 14895 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14896 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14897 uint32_t intr_mode; 14898 int error; 14899 14900 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14901 "0292 PCI device Power Management resume.\n"); 14902 14903 /* Startup the kernel thread for this host adapter. */ 14904 phba->worker_thread = kthread_run(lpfc_do_work, phba, 14905 "lpfc_worker_%d", phba->brd_no); 14906 if (IS_ERR(phba->worker_thread)) { 14907 error = PTR_ERR(phba->worker_thread); 14908 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14909 "0293 PM resume failed to start worker " 14910 "thread: error=x%x.\n", error); 14911 return error; 14912 } 14913 14914 /* Configure and enable interrupt */ 14915 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 14916 if (intr_mode == LPFC_INTR_ERROR) { 14917 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14918 "0294 PM resume Failed to enable interrupt\n"); 14919 return -EIO; 14920 } else 14921 phba->intr_mode = intr_mode; 14922 14923 /* Restart HBA and bring it online */ 14924 lpfc_sli_brdrestart(phba); 14925 lpfc_online(phba); 14926 14927 /* Log the current active interrupt mode */ 14928 lpfc_log_intr_mode(phba, phba->intr_mode); 14929 14930 return 0; 14931 } 14932 14933 /** 14934 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 14935 * @phba: pointer to lpfc hba data structure. 14936 * 14937 * This routine is called to prepare the SLI4 device for PCI slot recover. It 14938 * aborts all the outstanding SCSI I/Os to the pci device. 14939 **/ 14940 static void 14941 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 14942 { 14943 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14944 "2828 PCI channel I/O abort preparing for recovery\n"); 14945 /* 14946 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 14947 * and let the SCSI mid-layer to retry them to recover. 14948 */ 14949 lpfc_sli_abort_fcp_rings(phba); 14950 } 14951 14952 /** 14953 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 14954 * @phba: pointer to lpfc hba data structure. 14955 * 14956 * This routine is called to prepare the SLI4 device for PCI slot reset. It 14957 * disables the device interrupt and pci device, and aborts the internal FCP 14958 * pending I/Os. 14959 **/ 14960 static void 14961 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 14962 { 14963 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14964 "2826 PCI channel disable preparing for reset\n"); 14965 14966 /* Block any management I/Os to the device */ 14967 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 14968 14969 /* Block all SCSI devices' I/Os on the host */ 14970 lpfc_scsi_dev_block(phba); 14971 14972 /* Flush all driver's outstanding I/Os as we are to reset */ 14973 lpfc_sli_flush_io_rings(phba); 14974 14975 /* stop all timers */ 14976 lpfc_stop_hba_timers(phba); 14977 14978 /* Disable interrupt and pci device */ 14979 lpfc_sli4_disable_intr(phba); 14980 lpfc_sli4_queue_destroy(phba); 14981 pci_disable_device(phba->pcidev); 14982 } 14983 14984 /** 14985 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 14986 * @phba: pointer to lpfc hba data structure. 14987 * 14988 * This routine is called to prepare the SLI4 device for PCI slot permanently 14989 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 14990 * pending I/Os. 14991 **/ 14992 static void 14993 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 14994 { 14995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14996 "2827 PCI channel permanent disable for failure\n"); 14997 14998 /* Block all SCSI devices' I/Os on the host */ 14999 lpfc_scsi_dev_block(phba); 15000 15001 /* stop all timers */ 15002 lpfc_stop_hba_timers(phba); 15003 15004 /* Clean up all driver's outstanding I/Os */ 15005 lpfc_sli_flush_io_rings(phba); 15006 } 15007 15008 /** 15009 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 15010 * @pdev: pointer to PCI device. 15011 * @state: the current PCI connection state. 15012 * 15013 * This routine is called from the PCI subsystem for error handling to device 15014 * with SLI-4 interface spec. This function is called by the PCI subsystem 15015 * after a PCI bus error affecting this device has been detected. When this 15016 * function is invoked, it will need to stop all the I/Os and interrupt(s) 15017 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 15018 * for the PCI subsystem to perform proper recovery as desired. 15019 * 15020 * Return codes 15021 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15022 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15023 **/ 15024 static pci_ers_result_t 15025 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 15026 { 15027 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15028 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15029 15030 switch (state) { 15031 case pci_channel_io_normal: 15032 /* Non-fatal error, prepare for recovery */ 15033 lpfc_sli4_prep_dev_for_recover(phba); 15034 return PCI_ERS_RESULT_CAN_RECOVER; 15035 case pci_channel_io_frozen: 15036 /* Fatal error, prepare for slot reset */ 15037 lpfc_sli4_prep_dev_for_reset(phba); 15038 return PCI_ERS_RESULT_NEED_RESET; 15039 case pci_channel_io_perm_failure: 15040 /* Permanent failure, prepare for device down */ 15041 lpfc_sli4_prep_dev_for_perm_failure(phba); 15042 return PCI_ERS_RESULT_DISCONNECT; 15043 default: 15044 /* Unknown state, prepare and request slot reset */ 15045 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15046 "2825 Unknown PCI error state: x%x\n", state); 15047 lpfc_sli4_prep_dev_for_reset(phba); 15048 return PCI_ERS_RESULT_NEED_RESET; 15049 } 15050 } 15051 15052 /** 15053 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 15054 * @pdev: pointer to PCI device. 15055 * 15056 * This routine is called from the PCI subsystem for error handling to device 15057 * with SLI-4 interface spec. It is called after PCI bus has been reset to 15058 * restart the PCI card from scratch, as if from a cold-boot. During the 15059 * PCI subsystem error recovery, after the driver returns 15060 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 15061 * recovery and then call this routine before calling the .resume method to 15062 * recover the device. This function will initialize the HBA device, enable 15063 * the interrupt, but it will just put the HBA to offline state without 15064 * passing any I/O traffic. 15065 * 15066 * Return codes 15067 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15068 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15069 */ 15070 static pci_ers_result_t 15071 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 15072 { 15073 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15074 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15075 struct lpfc_sli *psli = &phba->sli; 15076 uint32_t intr_mode; 15077 15078 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 15079 if (pci_enable_device_mem(pdev)) { 15080 printk(KERN_ERR "lpfc: Cannot re-enable " 15081 "PCI device after reset.\n"); 15082 return PCI_ERS_RESULT_DISCONNECT; 15083 } 15084 15085 pci_restore_state(pdev); 15086 15087 /* 15088 * As the new kernel behavior of pci_restore_state() API call clears 15089 * device saved_state flag, need to save the restored state again. 15090 */ 15091 pci_save_state(pdev); 15092 15093 if (pdev->is_busmaster) 15094 pci_set_master(pdev); 15095 15096 spin_lock_irq(&phba->hbalock); 15097 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 15098 spin_unlock_irq(&phba->hbalock); 15099 15100 /* Configure and enable interrupt */ 15101 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15102 if (intr_mode == LPFC_INTR_ERROR) { 15103 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15104 "2824 Cannot re-enable interrupt after " 15105 "slot reset.\n"); 15106 return PCI_ERS_RESULT_DISCONNECT; 15107 } else 15108 phba->intr_mode = intr_mode; 15109 15110 /* Log the current active interrupt mode */ 15111 lpfc_log_intr_mode(phba, phba->intr_mode); 15112 15113 return PCI_ERS_RESULT_RECOVERED; 15114 } 15115 15116 /** 15117 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 15118 * @pdev: pointer to PCI device 15119 * 15120 * This routine is called from the PCI subsystem for error handling to device 15121 * with SLI-4 interface spec. It is called when kernel error recovery tells 15122 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 15123 * error recovery. After this call, traffic can start to flow from this device 15124 * again. 15125 **/ 15126 static void 15127 lpfc_io_resume_s4(struct pci_dev *pdev) 15128 { 15129 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15130 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15131 15132 /* 15133 * In case of slot reset, as function reset is performed through 15134 * mailbox command which needs DMA to be enabled, this operation 15135 * has to be moved to the io resume phase. Taking device offline 15136 * will perform the necessary cleanup. 15137 */ 15138 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 15139 /* Perform device reset */ 15140 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 15141 lpfc_offline(phba); 15142 lpfc_sli_brdrestart(phba); 15143 /* Bring the device back online */ 15144 lpfc_online(phba); 15145 } 15146 } 15147 15148 /** 15149 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 15150 * @pdev: pointer to PCI device 15151 * @pid: pointer to PCI device identifier 15152 * 15153 * This routine is to be registered to the kernel's PCI subsystem. When an 15154 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 15155 * at PCI device-specific information of the device and driver to see if the 15156 * driver state that it can support this kind of device. If the match is 15157 * successful, the driver core invokes this routine. This routine dispatches 15158 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 15159 * do all the initialization that it needs to do to handle the HBA device 15160 * properly. 15161 * 15162 * Return code 15163 * 0 - driver can claim the device 15164 * negative value - driver can not claim the device 15165 **/ 15166 static int 15167 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 15168 { 15169 int rc; 15170 struct lpfc_sli_intf intf; 15171 15172 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 15173 return -ENODEV; 15174 15175 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 15176 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 15177 rc = lpfc_pci_probe_one_s4(pdev, pid); 15178 else 15179 rc = lpfc_pci_probe_one_s3(pdev, pid); 15180 15181 return rc; 15182 } 15183 15184 /** 15185 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 15186 * @pdev: pointer to PCI device 15187 * 15188 * This routine is to be registered to the kernel's PCI subsystem. When an 15189 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 15190 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 15191 * remove routine, which will perform all the necessary cleanup for the 15192 * device to be removed from the PCI subsystem properly. 15193 **/ 15194 static void 15195 lpfc_pci_remove_one(struct pci_dev *pdev) 15196 { 15197 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15198 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15199 15200 switch (phba->pci_dev_grp) { 15201 case LPFC_PCI_DEV_LP: 15202 lpfc_pci_remove_one_s3(pdev); 15203 break; 15204 case LPFC_PCI_DEV_OC: 15205 lpfc_pci_remove_one_s4(pdev); 15206 break; 15207 default: 15208 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15209 "1424 Invalid PCI device group: 0x%x\n", 15210 phba->pci_dev_grp); 15211 break; 15212 } 15213 return; 15214 } 15215 15216 /** 15217 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 15218 * @dev: pointer to device 15219 * 15220 * This routine is to be registered to the kernel's PCI subsystem to support 15221 * system Power Management (PM). When PM invokes this method, it dispatches 15222 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 15223 * suspend the device. 15224 * 15225 * Return code 15226 * 0 - driver suspended the device 15227 * Error otherwise 15228 **/ 15229 static int __maybe_unused 15230 lpfc_pci_suspend_one(struct device *dev) 15231 { 15232 struct Scsi_Host *shost = dev_get_drvdata(dev); 15233 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15234 int rc = -ENODEV; 15235 15236 switch (phba->pci_dev_grp) { 15237 case LPFC_PCI_DEV_LP: 15238 rc = lpfc_pci_suspend_one_s3(dev); 15239 break; 15240 case LPFC_PCI_DEV_OC: 15241 rc = lpfc_pci_suspend_one_s4(dev); 15242 break; 15243 default: 15244 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15245 "1425 Invalid PCI device group: 0x%x\n", 15246 phba->pci_dev_grp); 15247 break; 15248 } 15249 return rc; 15250 } 15251 15252 /** 15253 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 15254 * @dev: pointer to device 15255 * 15256 * This routine is to be registered to the kernel's PCI subsystem to support 15257 * system Power Management (PM). When PM invokes this method, it dispatches 15258 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 15259 * resume the device. 15260 * 15261 * Return code 15262 * 0 - driver suspended the device 15263 * Error otherwise 15264 **/ 15265 static int __maybe_unused 15266 lpfc_pci_resume_one(struct device *dev) 15267 { 15268 struct Scsi_Host *shost = dev_get_drvdata(dev); 15269 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15270 int rc = -ENODEV; 15271 15272 switch (phba->pci_dev_grp) { 15273 case LPFC_PCI_DEV_LP: 15274 rc = lpfc_pci_resume_one_s3(dev); 15275 break; 15276 case LPFC_PCI_DEV_OC: 15277 rc = lpfc_pci_resume_one_s4(dev); 15278 break; 15279 default: 15280 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15281 "1426 Invalid PCI device group: 0x%x\n", 15282 phba->pci_dev_grp); 15283 break; 15284 } 15285 return rc; 15286 } 15287 15288 /** 15289 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 15290 * @pdev: pointer to PCI device. 15291 * @state: the current PCI connection state. 15292 * 15293 * This routine is registered to the PCI subsystem for error handling. This 15294 * function is called by the PCI subsystem after a PCI bus error affecting 15295 * this device has been detected. When this routine is invoked, it dispatches 15296 * the action to the proper SLI-3 or SLI-4 device error detected handling 15297 * routine, which will perform the proper error detected operation. 15298 * 15299 * Return codes 15300 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15301 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15302 **/ 15303 static pci_ers_result_t 15304 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 15305 { 15306 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15307 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15308 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15309 15310 switch (phba->pci_dev_grp) { 15311 case LPFC_PCI_DEV_LP: 15312 rc = lpfc_io_error_detected_s3(pdev, state); 15313 break; 15314 case LPFC_PCI_DEV_OC: 15315 rc = lpfc_io_error_detected_s4(pdev, state); 15316 break; 15317 default: 15318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15319 "1427 Invalid PCI device group: 0x%x\n", 15320 phba->pci_dev_grp); 15321 break; 15322 } 15323 return rc; 15324 } 15325 15326 /** 15327 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 15328 * @pdev: pointer to PCI device. 15329 * 15330 * This routine is registered to the PCI subsystem for error handling. This 15331 * function is called after PCI bus has been reset to restart the PCI card 15332 * from scratch, as if from a cold-boot. When this routine is invoked, it 15333 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 15334 * routine, which will perform the proper device reset. 15335 * 15336 * Return codes 15337 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15338 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15339 **/ 15340 static pci_ers_result_t 15341 lpfc_io_slot_reset(struct pci_dev *pdev) 15342 { 15343 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15344 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15345 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15346 15347 switch (phba->pci_dev_grp) { 15348 case LPFC_PCI_DEV_LP: 15349 rc = lpfc_io_slot_reset_s3(pdev); 15350 break; 15351 case LPFC_PCI_DEV_OC: 15352 rc = lpfc_io_slot_reset_s4(pdev); 15353 break; 15354 default: 15355 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15356 "1428 Invalid PCI device group: 0x%x\n", 15357 phba->pci_dev_grp); 15358 break; 15359 } 15360 return rc; 15361 } 15362 15363 /** 15364 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 15365 * @pdev: pointer to PCI device 15366 * 15367 * This routine is registered to the PCI subsystem for error handling. It 15368 * is called when kernel error recovery tells the lpfc driver that it is 15369 * OK to resume normal PCI operation after PCI bus error recovery. When 15370 * this routine is invoked, it dispatches the action to the proper SLI-3 15371 * or SLI-4 device io_resume routine, which will resume the device operation. 15372 **/ 15373 static void 15374 lpfc_io_resume(struct pci_dev *pdev) 15375 { 15376 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15377 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15378 15379 switch (phba->pci_dev_grp) { 15380 case LPFC_PCI_DEV_LP: 15381 lpfc_io_resume_s3(pdev); 15382 break; 15383 case LPFC_PCI_DEV_OC: 15384 lpfc_io_resume_s4(pdev); 15385 break; 15386 default: 15387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15388 "1429 Invalid PCI device group: 0x%x\n", 15389 phba->pci_dev_grp); 15390 break; 15391 } 15392 return; 15393 } 15394 15395 /** 15396 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 15397 * @phba: pointer to lpfc hba data structure. 15398 * 15399 * This routine checks to see if OAS is supported for this adapter. If 15400 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 15401 * the enable oas flag is cleared and the pool created for OAS device data 15402 * is destroyed. 15403 * 15404 **/ 15405 static void 15406 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 15407 { 15408 15409 if (!phba->cfg_EnableXLane) 15410 return; 15411 15412 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 15413 phba->cfg_fof = 1; 15414 } else { 15415 phba->cfg_fof = 0; 15416 mempool_destroy(phba->device_data_mem_pool); 15417 phba->device_data_mem_pool = NULL; 15418 } 15419 15420 return; 15421 } 15422 15423 /** 15424 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 15425 * @phba: pointer to lpfc hba data structure. 15426 * 15427 * This routine checks to see if RAS is supported by the adapter. Check the 15428 * function through which RAS support enablement is to be done. 15429 **/ 15430 void 15431 lpfc_sli4_ras_init(struct lpfc_hba *phba) 15432 { 15433 /* if ASIC_GEN_NUM >= 0xC) */ 15434 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 15435 LPFC_SLI_INTF_IF_TYPE_6) || 15436 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 15437 LPFC_SLI_INTF_FAMILY_G6)) { 15438 phba->ras_fwlog.ras_hwsupport = true; 15439 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 15440 phba->cfg_ras_fwlog_buffsize) 15441 phba->ras_fwlog.ras_enabled = true; 15442 else 15443 phba->ras_fwlog.ras_enabled = false; 15444 } else { 15445 phba->ras_fwlog.ras_hwsupport = false; 15446 } 15447 } 15448 15449 15450 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 15451 15452 static const struct pci_error_handlers lpfc_err_handler = { 15453 .error_detected = lpfc_io_error_detected, 15454 .slot_reset = lpfc_io_slot_reset, 15455 .resume = lpfc_io_resume, 15456 }; 15457 15458 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one, 15459 lpfc_pci_suspend_one, 15460 lpfc_pci_resume_one); 15461 15462 static struct pci_driver lpfc_driver = { 15463 .name = LPFC_DRIVER_NAME, 15464 .id_table = lpfc_id_table, 15465 .probe = lpfc_pci_probe_one, 15466 .remove = lpfc_pci_remove_one, 15467 .shutdown = lpfc_pci_remove_one, 15468 .driver.pm = &lpfc_pci_pm_ops_one, 15469 .err_handler = &lpfc_err_handler, 15470 }; 15471 15472 static const struct file_operations lpfc_mgmt_fop = { 15473 .owner = THIS_MODULE, 15474 }; 15475 15476 static struct miscdevice lpfc_mgmt_dev = { 15477 .minor = MISC_DYNAMIC_MINOR, 15478 .name = "lpfcmgmt", 15479 .fops = &lpfc_mgmt_fop, 15480 }; 15481 15482 /** 15483 * lpfc_init - lpfc module initialization routine 15484 * 15485 * This routine is to be invoked when the lpfc module is loaded into the 15486 * kernel. The special kernel macro module_init() is used to indicate the 15487 * role of this routine to the kernel as lpfc module entry point. 15488 * 15489 * Return codes 15490 * 0 - successful 15491 * -ENOMEM - FC attach transport failed 15492 * all others - failed 15493 */ 15494 static int __init 15495 lpfc_init(void) 15496 { 15497 int error = 0; 15498 15499 pr_info(LPFC_MODULE_DESC "\n"); 15500 pr_info(LPFC_COPYRIGHT "\n"); 15501 15502 error = misc_register(&lpfc_mgmt_dev); 15503 if (error) 15504 printk(KERN_ERR "Could not register lpfcmgmt device, " 15505 "misc_register returned with status %d", error); 15506 15507 error = -ENOMEM; 15508 lpfc_transport_functions.vport_create = lpfc_vport_create; 15509 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 15510 lpfc_transport_template = 15511 fc_attach_transport(&lpfc_transport_functions); 15512 if (lpfc_transport_template == NULL) 15513 goto unregister; 15514 lpfc_vport_transport_template = 15515 fc_attach_transport(&lpfc_vport_transport_functions); 15516 if (lpfc_vport_transport_template == NULL) { 15517 fc_release_transport(lpfc_transport_template); 15518 goto unregister; 15519 } 15520 lpfc_wqe_cmd_template(); 15521 lpfc_nvmet_cmd_template(); 15522 15523 /* Initialize in case vector mapping is needed */ 15524 lpfc_present_cpu = num_present_cpus(); 15525 15526 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 15527 "lpfc/sli4:online", 15528 lpfc_cpu_online, lpfc_cpu_offline); 15529 if (error < 0) 15530 goto cpuhp_failure; 15531 lpfc_cpuhp_state = error; 15532 15533 error = pci_register_driver(&lpfc_driver); 15534 if (error) 15535 goto unwind; 15536 15537 return error; 15538 15539 unwind: 15540 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15541 cpuhp_failure: 15542 fc_release_transport(lpfc_transport_template); 15543 fc_release_transport(lpfc_vport_transport_template); 15544 unregister: 15545 misc_deregister(&lpfc_mgmt_dev); 15546 15547 return error; 15548 } 15549 15550 void lpfc_dmp_dbg(struct lpfc_hba *phba) 15551 { 15552 unsigned int start_idx; 15553 unsigned int dbg_cnt; 15554 unsigned int temp_idx; 15555 int i; 15556 int j = 0; 15557 unsigned long rem_nsec, iflags; 15558 bool log_verbose = false; 15559 struct lpfc_vport *port_iterator; 15560 15561 /* Don't dump messages if we explicitly set log_verbose for the 15562 * physical port or any vport. 15563 */ 15564 if (phba->cfg_log_verbose) 15565 return; 15566 15567 spin_lock_irqsave(&phba->port_list_lock, iflags); 15568 list_for_each_entry(port_iterator, &phba->port_list, listentry) { 15569 if (port_iterator->load_flag & FC_UNLOADING) 15570 continue; 15571 if (scsi_host_get(lpfc_shost_from_vport(port_iterator))) { 15572 if (port_iterator->cfg_log_verbose) 15573 log_verbose = true; 15574 15575 scsi_host_put(lpfc_shost_from_vport(port_iterator)); 15576 15577 if (log_verbose) { 15578 spin_unlock_irqrestore(&phba->port_list_lock, 15579 iflags); 15580 return; 15581 } 15582 } 15583 } 15584 spin_unlock_irqrestore(&phba->port_list_lock, iflags); 15585 15586 if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0) 15587 return; 15588 15589 start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ; 15590 dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt); 15591 if (!dbg_cnt) 15592 goto out; 15593 temp_idx = start_idx; 15594 if (dbg_cnt >= DBG_LOG_SZ) { 15595 dbg_cnt = DBG_LOG_SZ; 15596 temp_idx -= 1; 15597 } else { 15598 if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) { 15599 temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ; 15600 } else { 15601 if (start_idx < dbg_cnt) 15602 start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx); 15603 else 15604 start_idx -= dbg_cnt; 15605 } 15606 } 15607 dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n", 15608 start_idx, temp_idx, dbg_cnt); 15609 15610 for (i = 0; i < dbg_cnt; i++) { 15611 if ((start_idx + i) < DBG_LOG_SZ) 15612 temp_idx = (start_idx + i) % DBG_LOG_SZ; 15613 else 15614 temp_idx = j++; 15615 rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC); 15616 dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s", 15617 temp_idx, 15618 (unsigned long)phba->dbg_log[temp_idx].t_ns, 15619 rem_nsec / 1000, 15620 phba->dbg_log[temp_idx].log); 15621 } 15622 out: 15623 atomic_set(&phba->dbg_log_cnt, 0); 15624 atomic_set(&phba->dbg_log_dmping, 0); 15625 } 15626 15627 __printf(2, 3) 15628 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...) 15629 { 15630 unsigned int idx; 15631 va_list args; 15632 int dbg_dmping = atomic_read(&phba->dbg_log_dmping); 15633 struct va_format vaf; 15634 15635 15636 va_start(args, fmt); 15637 if (unlikely(dbg_dmping)) { 15638 vaf.fmt = fmt; 15639 vaf.va = &args; 15640 dev_info(&phba->pcidev->dev, "%pV", &vaf); 15641 va_end(args); 15642 return; 15643 } 15644 idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) % 15645 DBG_LOG_SZ; 15646 15647 atomic_inc(&phba->dbg_log_cnt); 15648 15649 vscnprintf(phba->dbg_log[idx].log, 15650 sizeof(phba->dbg_log[idx].log), fmt, args); 15651 va_end(args); 15652 15653 phba->dbg_log[idx].t_ns = local_clock(); 15654 } 15655 15656 /** 15657 * lpfc_exit - lpfc module removal routine 15658 * 15659 * This routine is invoked when the lpfc module is removed from the kernel. 15660 * The special kernel macro module_exit() is used to indicate the role of 15661 * this routine to the kernel as lpfc module exit point. 15662 */ 15663 static void __exit 15664 lpfc_exit(void) 15665 { 15666 misc_deregister(&lpfc_mgmt_dev); 15667 pci_unregister_driver(&lpfc_driver); 15668 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15669 fc_release_transport(lpfc_transport_template); 15670 fc_release_transport(lpfc_vport_transport_template); 15671 idr_destroy(&lpfc_hba_index); 15672 } 15673 15674 module_init(lpfc_init); 15675 module_exit(lpfc_exit); 15676 MODULE_LICENSE("GPL"); 15677 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 15678 MODULE_AUTHOR("Broadcom"); 15679 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 15680