xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision b9f0bfd1)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/ctype.h>
34 #include <linux/aer.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/msi.h>
40 #include <linux/irq.h>
41 #include <linux/bitops.h>
42 #include <linux/crash_dump.h>
43 #include <linux/cpu.h>
44 #include <linux/cpuhotplug.h>
45 
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_transport_fc.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/fc/fc_fs.h>
52 
53 #include "lpfc_hw4.h"
54 #include "lpfc_hw.h"
55 #include "lpfc_sli.h"
56 #include "lpfc_sli4.h"
57 #include "lpfc_nl.h"
58 #include "lpfc_disc.h"
59 #include "lpfc.h"
60 #include "lpfc_scsi.h"
61 #include "lpfc_nvme.h"
62 #include "lpfc_logmsg.h"
63 #include "lpfc_crtn.h"
64 #include "lpfc_vport.h"
65 #include "lpfc_version.h"
66 #include "lpfc_ids.h"
67 
68 static enum cpuhp_state lpfc_cpuhp_state;
69 /* Used when mapping IRQ vectors in a driver centric manner */
70 static uint32_t lpfc_present_cpu;
71 static bool lpfc_pldv_detect;
72 
73 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
75 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
76 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
77 static int lpfc_post_rcv_buf(struct lpfc_hba *);
78 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
79 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
80 static int lpfc_setup_endian_order(struct lpfc_hba *);
81 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
82 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
83 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
84 static void lpfc_init_sgl_list(struct lpfc_hba *);
85 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
86 static void lpfc_free_active_sgl(struct lpfc_hba *);
87 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
88 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
89 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
91 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
92 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
93 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
94 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
95 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
96 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
97 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
98 
99 static struct scsi_transport_template *lpfc_transport_template = NULL;
100 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
101 static DEFINE_IDR(lpfc_hba_index);
102 #define LPFC_NVMET_BUF_POST 254
103 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
104 
105 /**
106  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
107  * @phba: pointer to lpfc hba data structure.
108  *
109  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
110  * mailbox command. It retrieves the revision information from the HBA and
111  * collects the Vital Product Data (VPD) about the HBA for preparing the
112  * configuration of the HBA.
113  *
114  * Return codes:
115  *   0 - success.
116  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
117  *   Any other value - indicates an error.
118  **/
119 int
120 lpfc_config_port_prep(struct lpfc_hba *phba)
121 {
122 	lpfc_vpd_t *vp = &phba->vpd;
123 	int i = 0, rc;
124 	LPFC_MBOXQ_t *pmb;
125 	MAILBOX_t *mb;
126 	char *lpfc_vpd_data = NULL;
127 	uint16_t offset = 0;
128 	static char licensed[56] =
129 		    "key unlock for use with gnu public licensed code only\0";
130 	static int init_key = 1;
131 
132 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
133 	if (!pmb) {
134 		phba->link_state = LPFC_HBA_ERROR;
135 		return -ENOMEM;
136 	}
137 
138 	mb = &pmb->u.mb;
139 	phba->link_state = LPFC_INIT_MBX_CMDS;
140 
141 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
142 		if (init_key) {
143 			uint32_t *ptext = (uint32_t *) licensed;
144 
145 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
146 				*ptext = cpu_to_be32(*ptext);
147 			init_key = 0;
148 		}
149 
150 		lpfc_read_nv(phba, pmb);
151 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
152 			sizeof (mb->un.varRDnvp.rsvd3));
153 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
154 			 sizeof (licensed));
155 
156 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
157 
158 		if (rc != MBX_SUCCESS) {
159 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
160 					"0324 Config Port initialization "
161 					"error, mbxCmd x%x READ_NVPARM, "
162 					"mbxStatus x%x\n",
163 					mb->mbxCommand, mb->mbxStatus);
164 			mempool_free(pmb, phba->mbox_mem_pool);
165 			return -ERESTART;
166 		}
167 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
168 		       sizeof(phba->wwnn));
169 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
170 		       sizeof(phba->wwpn));
171 	}
172 
173 	/*
174 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
175 	 * which was already set in lpfc_get_cfgparam()
176 	 */
177 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
178 
179 	/* Setup and issue mailbox READ REV command */
180 	lpfc_read_rev(phba, pmb);
181 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
182 	if (rc != MBX_SUCCESS) {
183 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
184 				"0439 Adapter failed to init, mbxCmd x%x "
185 				"READ_REV, mbxStatus x%x\n",
186 				mb->mbxCommand, mb->mbxStatus);
187 		mempool_free( pmb, phba->mbox_mem_pool);
188 		return -ERESTART;
189 	}
190 
191 
192 	/*
193 	 * The value of rr must be 1 since the driver set the cv field to 1.
194 	 * This setting requires the FW to set all revision fields.
195 	 */
196 	if (mb->un.varRdRev.rr == 0) {
197 		vp->rev.rBit = 0;
198 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
199 				"0440 Adapter failed to init, READ_REV has "
200 				"missing revision information.\n");
201 		mempool_free(pmb, phba->mbox_mem_pool);
202 		return -ERESTART;
203 	}
204 
205 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
206 		mempool_free(pmb, phba->mbox_mem_pool);
207 		return -EINVAL;
208 	}
209 
210 	/* Save information as VPD data */
211 	vp->rev.rBit = 1;
212 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
213 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
214 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
215 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
216 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
217 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
218 	vp->rev.smRev = mb->un.varRdRev.smRev;
219 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
220 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
221 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
222 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
223 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
224 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
225 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
226 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
227 
228 	/* If the sli feature level is less then 9, we must
229 	 * tear down all RPIs and VPIs on link down if NPIV
230 	 * is enabled.
231 	 */
232 	if (vp->rev.feaLevelHigh < 9)
233 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
234 
235 	if (lpfc_is_LC_HBA(phba->pcidev->device))
236 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
237 						sizeof (phba->RandomData));
238 
239 	/* Get adapter VPD information */
240 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
241 	if (!lpfc_vpd_data)
242 		goto out_free_mbox;
243 	do {
244 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
245 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
246 
247 		if (rc != MBX_SUCCESS) {
248 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
249 					"0441 VPD not present on adapter, "
250 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
251 					mb->mbxCommand, mb->mbxStatus);
252 			mb->un.varDmp.word_cnt = 0;
253 		}
254 		/* dump mem may return a zero when finished or we got a
255 		 * mailbox error, either way we are done.
256 		 */
257 		if (mb->un.varDmp.word_cnt == 0)
258 			break;
259 
260 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
261 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
262 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
263 				      lpfc_vpd_data + offset,
264 				      mb->un.varDmp.word_cnt);
265 		offset += mb->un.varDmp.word_cnt;
266 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
267 
268 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
269 
270 	kfree(lpfc_vpd_data);
271 out_free_mbox:
272 	mempool_free(pmb, phba->mbox_mem_pool);
273 	return 0;
274 }
275 
276 /**
277  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
278  * @phba: pointer to lpfc hba data structure.
279  * @pmboxq: pointer to the driver internal queue element for mailbox command.
280  *
281  * This is the completion handler for driver's configuring asynchronous event
282  * mailbox command to the device. If the mailbox command returns successfully,
283  * it will set internal async event support flag to 1; otherwise, it will
284  * set internal async event support flag to 0.
285  **/
286 static void
287 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
288 {
289 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
290 		phba->temp_sensor_support = 1;
291 	else
292 		phba->temp_sensor_support = 0;
293 	mempool_free(pmboxq, phba->mbox_mem_pool);
294 	return;
295 }
296 
297 /**
298  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
299  * @phba: pointer to lpfc hba data structure.
300  * @pmboxq: pointer to the driver internal queue element for mailbox command.
301  *
302  * This is the completion handler for dump mailbox command for getting
303  * wake up parameters. When this command complete, the response contain
304  * Option rom version of the HBA. This function translate the version number
305  * into a human readable string and store it in OptionROMVersion.
306  **/
307 static void
308 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
309 {
310 	struct prog_id *prg;
311 	uint32_t prog_id_word;
312 	char dist = ' ';
313 	/* character array used for decoding dist type. */
314 	char dist_char[] = "nabx";
315 
316 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
317 		mempool_free(pmboxq, phba->mbox_mem_pool);
318 		return;
319 	}
320 
321 	prg = (struct prog_id *) &prog_id_word;
322 
323 	/* word 7 contain option rom version */
324 	prog_id_word = pmboxq->u.mb.un.varWords[7];
325 
326 	/* Decode the Option rom version word to a readable string */
327 	if (prg->dist < 4)
328 		dist = dist_char[prg->dist];
329 
330 	if ((prg->dist == 3) && (prg->num == 0))
331 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
332 			prg->ver, prg->rev, prg->lev);
333 	else
334 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
335 			prg->ver, prg->rev, prg->lev,
336 			dist, prg->num);
337 	mempool_free(pmboxq, phba->mbox_mem_pool);
338 	return;
339 }
340 
341 /**
342  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
343  *	cfg_soft_wwnn, cfg_soft_wwpn
344  * @vport: pointer to lpfc vport data structure.
345  *
346  *
347  * Return codes
348  *   None.
349  **/
350 void
351 lpfc_update_vport_wwn(struct lpfc_vport *vport)
352 {
353 	uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level;
354 	u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0];
355 
356 	/* If the soft name exists then update it using the service params */
357 	if (vport->phba->cfg_soft_wwnn)
358 		u64_to_wwn(vport->phba->cfg_soft_wwnn,
359 			   vport->fc_sparam.nodeName.u.wwn);
360 	if (vport->phba->cfg_soft_wwpn)
361 		u64_to_wwn(vport->phba->cfg_soft_wwpn,
362 			   vport->fc_sparam.portName.u.wwn);
363 
364 	/*
365 	 * If the name is empty or there exists a soft name
366 	 * then copy the service params name, otherwise use the fc name
367 	 */
368 	if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn)
369 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
370 			sizeof(struct lpfc_name));
371 	else
372 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
373 			sizeof(struct lpfc_name));
374 
375 	/*
376 	 * If the port name has changed, then set the Param changes flag
377 	 * to unreg the login
378 	 */
379 	if (vport->fc_portname.u.wwn[0] != 0 &&
380 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
381 			sizeof(struct lpfc_name)))
382 		vport->vport_flag |= FAWWPN_PARAM_CHG;
383 
384 	if (vport->fc_portname.u.wwn[0] == 0 ||
385 	    vport->phba->cfg_soft_wwpn ||
386 	    (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) ||
387 	    vport->vport_flag & FAWWPN_SET) {
388 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
389 			sizeof(struct lpfc_name));
390 		vport->vport_flag &= ~FAWWPN_SET;
391 		if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR)
392 			vport->vport_flag |= FAWWPN_SET;
393 	}
394 	else
395 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
396 			sizeof(struct lpfc_name));
397 }
398 
399 /**
400  * lpfc_config_port_post - Perform lpfc initialization after config port
401  * @phba: pointer to lpfc hba data structure.
402  *
403  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
404  * command call. It performs all internal resource and state setups on the
405  * port: post IOCB buffers, enable appropriate host interrupt attentions,
406  * ELS ring timers, etc.
407  *
408  * Return codes
409  *   0 - success.
410  *   Any other value - error.
411  **/
412 int
413 lpfc_config_port_post(struct lpfc_hba *phba)
414 {
415 	struct lpfc_vport *vport = phba->pport;
416 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
417 	LPFC_MBOXQ_t *pmb;
418 	MAILBOX_t *mb;
419 	struct lpfc_dmabuf *mp;
420 	struct lpfc_sli *psli = &phba->sli;
421 	uint32_t status, timeout;
422 	int i, j;
423 	int rc;
424 
425 	spin_lock_irq(&phba->hbalock);
426 	/*
427 	 * If the Config port completed correctly the HBA is not
428 	 * over heated any more.
429 	 */
430 	if (phba->over_temp_state == HBA_OVER_TEMP)
431 		phba->over_temp_state = HBA_NORMAL_TEMP;
432 	spin_unlock_irq(&phba->hbalock);
433 
434 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
435 	if (!pmb) {
436 		phba->link_state = LPFC_HBA_ERROR;
437 		return -ENOMEM;
438 	}
439 	mb = &pmb->u.mb;
440 
441 	/* Get login parameters for NID.  */
442 	rc = lpfc_read_sparam(phba, pmb, 0);
443 	if (rc) {
444 		mempool_free(pmb, phba->mbox_mem_pool);
445 		return -ENOMEM;
446 	}
447 
448 	pmb->vport = vport;
449 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
450 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
451 				"0448 Adapter failed init, mbxCmd x%x "
452 				"READ_SPARM mbxStatus x%x\n",
453 				mb->mbxCommand, mb->mbxStatus);
454 		phba->link_state = LPFC_HBA_ERROR;
455 		mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
456 		mempool_free(pmb, phba->mbox_mem_pool);
457 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
458 		kfree(mp);
459 		return -EIO;
460 	}
461 
462 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
463 
464 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
465 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
466 	kfree(mp);
467 	pmb->ctx_buf = NULL;
468 	lpfc_update_vport_wwn(vport);
469 
470 	/* Update the fc_host data structures with new wwn. */
471 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
472 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
473 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
474 
475 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
476 	/* This should be consolidated into parse_vpd ? - mr */
477 	if (phba->SerialNumber[0] == 0) {
478 		uint8_t *outptr;
479 
480 		outptr = &vport->fc_nodename.u.s.IEEE[0];
481 		for (i = 0; i < 12; i++) {
482 			status = *outptr++;
483 			j = ((status & 0xf0) >> 4);
484 			if (j <= 9)
485 				phba->SerialNumber[i] =
486 				    (char)((uint8_t) 0x30 + (uint8_t) j);
487 			else
488 				phba->SerialNumber[i] =
489 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
490 			i++;
491 			j = (status & 0xf);
492 			if (j <= 9)
493 				phba->SerialNumber[i] =
494 				    (char)((uint8_t) 0x30 + (uint8_t) j);
495 			else
496 				phba->SerialNumber[i] =
497 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
498 		}
499 	}
500 
501 	lpfc_read_config(phba, pmb);
502 	pmb->vport = vport;
503 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
504 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
505 				"0453 Adapter failed to init, mbxCmd x%x "
506 				"READ_CONFIG, mbxStatus x%x\n",
507 				mb->mbxCommand, mb->mbxStatus);
508 		phba->link_state = LPFC_HBA_ERROR;
509 		mempool_free( pmb, phba->mbox_mem_pool);
510 		return -EIO;
511 	}
512 
513 	/* Check if the port is disabled */
514 	lpfc_sli_read_link_ste(phba);
515 
516 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
517 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
518 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
519 				"3359 HBA queue depth changed from %d to %d\n",
520 				phba->cfg_hba_queue_depth,
521 				mb->un.varRdConfig.max_xri);
522 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
523 	}
524 
525 	phba->lmt = mb->un.varRdConfig.lmt;
526 
527 	/* Get the default values for Model Name and Description */
528 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
529 
530 	phba->link_state = LPFC_LINK_DOWN;
531 
532 	/* Only process IOCBs on ELS ring till hba_state is READY */
533 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
534 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
535 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
536 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
537 
538 	/* Post receive buffers for desired rings */
539 	if (phba->sli_rev != 3)
540 		lpfc_post_rcv_buf(phba);
541 
542 	/*
543 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
544 	 */
545 	if (phba->intr_type == MSIX) {
546 		rc = lpfc_config_msi(phba, pmb);
547 		if (rc) {
548 			mempool_free(pmb, phba->mbox_mem_pool);
549 			return -EIO;
550 		}
551 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
552 		if (rc != MBX_SUCCESS) {
553 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
554 					"0352 Config MSI mailbox command "
555 					"failed, mbxCmd x%x, mbxStatus x%x\n",
556 					pmb->u.mb.mbxCommand,
557 					pmb->u.mb.mbxStatus);
558 			mempool_free(pmb, phba->mbox_mem_pool);
559 			return -EIO;
560 		}
561 	}
562 
563 	spin_lock_irq(&phba->hbalock);
564 	/* Initialize ERATT handling flag */
565 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
566 
567 	/* Enable appropriate host interrupts */
568 	if (lpfc_readl(phba->HCregaddr, &status)) {
569 		spin_unlock_irq(&phba->hbalock);
570 		return -EIO;
571 	}
572 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
573 	if (psli->num_rings > 0)
574 		status |= HC_R0INT_ENA;
575 	if (psli->num_rings > 1)
576 		status |= HC_R1INT_ENA;
577 	if (psli->num_rings > 2)
578 		status |= HC_R2INT_ENA;
579 	if (psli->num_rings > 3)
580 		status |= HC_R3INT_ENA;
581 
582 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
583 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
584 		status &= ~(HC_R0INT_ENA);
585 
586 	writel(status, phba->HCregaddr);
587 	readl(phba->HCregaddr); /* flush */
588 	spin_unlock_irq(&phba->hbalock);
589 
590 	/* Set up ring-0 (ELS) timer */
591 	timeout = phba->fc_ratov * 2;
592 	mod_timer(&vport->els_tmofunc,
593 		  jiffies + msecs_to_jiffies(1000 * timeout));
594 	/* Set up heart beat (HB) timer */
595 	mod_timer(&phba->hb_tmofunc,
596 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
597 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
598 	phba->last_completion_time = jiffies;
599 	/* Set up error attention (ERATT) polling timer */
600 	mod_timer(&phba->eratt_poll,
601 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
602 
603 	if (phba->hba_flag & LINK_DISABLED) {
604 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
605 				"2598 Adapter Link is disabled.\n");
606 		lpfc_down_link(phba, pmb);
607 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
608 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
609 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
610 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
611 					"2599 Adapter failed to issue DOWN_LINK"
612 					" mbox command rc 0x%x\n", rc);
613 
614 			mempool_free(pmb, phba->mbox_mem_pool);
615 			return -EIO;
616 		}
617 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
618 		mempool_free(pmb, phba->mbox_mem_pool);
619 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
620 		if (rc)
621 			return rc;
622 	}
623 	/* MBOX buffer will be freed in mbox compl */
624 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
625 	if (!pmb) {
626 		phba->link_state = LPFC_HBA_ERROR;
627 		return -ENOMEM;
628 	}
629 
630 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
631 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
632 	pmb->vport = phba->pport;
633 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
634 
635 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
636 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
637 				"0456 Adapter failed to issue "
638 				"ASYNCEVT_ENABLE mbox status x%x\n",
639 				rc);
640 		mempool_free(pmb, phba->mbox_mem_pool);
641 	}
642 
643 	/* Get Option rom version */
644 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
645 	if (!pmb) {
646 		phba->link_state = LPFC_HBA_ERROR;
647 		return -ENOMEM;
648 	}
649 
650 	lpfc_dump_wakeup_param(phba, pmb);
651 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
652 	pmb->vport = phba->pport;
653 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
654 
655 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
656 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
657 				"0435 Adapter failed "
658 				"to get Option ROM version status x%x\n", rc);
659 		mempool_free(pmb, phba->mbox_mem_pool);
660 	}
661 
662 	return 0;
663 }
664 
665 /**
666  * lpfc_sli4_refresh_params - update driver copy of params.
667  * @phba: Pointer to HBA context object.
668  *
669  * This is called to refresh driver copy of dynamic fields from the
670  * common_get_sli4_parameters descriptor.
671  **/
672 int
673 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
674 {
675 	LPFC_MBOXQ_t *mboxq;
676 	struct lpfc_mqe *mqe;
677 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
678 	int length, rc;
679 
680 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
681 	if (!mboxq)
682 		return -ENOMEM;
683 
684 	mqe = &mboxq->u.mqe;
685 	/* Read the port's SLI4 Config Parameters */
686 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
687 		  sizeof(struct lpfc_sli4_cfg_mhdr));
688 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
689 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
690 			 length, LPFC_SLI4_MBX_EMBED);
691 
692 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
693 	if (unlikely(rc)) {
694 		mempool_free(mboxq, phba->mbox_mem_pool);
695 		return rc;
696 	}
697 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
698 	phba->sli4_hba.pc_sli4_params.mi_ver =
699 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
700 	phba->sli4_hba.pc_sli4_params.cmf =
701 			bf_get(cfg_cmf, mbx_sli4_parameters);
702 	phba->sli4_hba.pc_sli4_params.pls =
703 			bf_get(cfg_pvl, mbx_sli4_parameters);
704 
705 	mempool_free(mboxq, phba->mbox_mem_pool);
706 	return rc;
707 }
708 
709 /**
710  * lpfc_hba_init_link - Initialize the FC link
711  * @phba: pointer to lpfc hba data structure.
712  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
713  *
714  * This routine will issue the INIT_LINK mailbox command call.
715  * It is available to other drivers through the lpfc_hba data
716  * structure for use as a delayed link up mechanism with the
717  * module parameter lpfc_suppress_link_up.
718  *
719  * Return code
720  *		0 - success
721  *		Any other value - error
722  **/
723 static int
724 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
725 {
726 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
727 }
728 
729 /**
730  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
731  * @phba: pointer to lpfc hba data structure.
732  * @fc_topology: desired fc topology.
733  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
734  *
735  * This routine will issue the INIT_LINK mailbox command call.
736  * It is available to other drivers through the lpfc_hba data
737  * structure for use as a delayed link up mechanism with the
738  * module parameter lpfc_suppress_link_up.
739  *
740  * Return code
741  *              0 - success
742  *              Any other value - error
743  **/
744 int
745 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
746 			       uint32_t flag)
747 {
748 	struct lpfc_vport *vport = phba->pport;
749 	LPFC_MBOXQ_t *pmb;
750 	MAILBOX_t *mb;
751 	int rc;
752 
753 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
754 	if (!pmb) {
755 		phba->link_state = LPFC_HBA_ERROR;
756 		return -ENOMEM;
757 	}
758 	mb = &pmb->u.mb;
759 	pmb->vport = vport;
760 
761 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
762 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
763 	     !(phba->lmt & LMT_1Gb)) ||
764 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
765 	     !(phba->lmt & LMT_2Gb)) ||
766 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
767 	     !(phba->lmt & LMT_4Gb)) ||
768 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
769 	     !(phba->lmt & LMT_8Gb)) ||
770 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
771 	     !(phba->lmt & LMT_10Gb)) ||
772 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
773 	     !(phba->lmt & LMT_16Gb)) ||
774 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
775 	     !(phba->lmt & LMT_32Gb)) ||
776 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
777 	     !(phba->lmt & LMT_64Gb))) {
778 		/* Reset link speed to auto */
779 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
780 				"1302 Invalid speed for this board:%d "
781 				"Reset link speed to auto.\n",
782 				phba->cfg_link_speed);
783 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
784 	}
785 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
786 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
787 	if (phba->sli_rev < LPFC_SLI_REV4)
788 		lpfc_set_loopback_flag(phba);
789 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
790 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
791 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
792 				"0498 Adapter failed to init, mbxCmd x%x "
793 				"INIT_LINK, mbxStatus x%x\n",
794 				mb->mbxCommand, mb->mbxStatus);
795 		if (phba->sli_rev <= LPFC_SLI_REV3) {
796 			/* Clear all interrupt enable conditions */
797 			writel(0, phba->HCregaddr);
798 			readl(phba->HCregaddr); /* flush */
799 			/* Clear all pending interrupts */
800 			writel(0xffffffff, phba->HAregaddr);
801 			readl(phba->HAregaddr); /* flush */
802 		}
803 		phba->link_state = LPFC_HBA_ERROR;
804 		if (rc != MBX_BUSY || flag == MBX_POLL)
805 			mempool_free(pmb, phba->mbox_mem_pool);
806 		return -EIO;
807 	}
808 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
809 	if (flag == MBX_POLL)
810 		mempool_free(pmb, phba->mbox_mem_pool);
811 
812 	return 0;
813 }
814 
815 /**
816  * lpfc_hba_down_link - this routine downs the FC link
817  * @phba: pointer to lpfc hba data structure.
818  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
819  *
820  * This routine will issue the DOWN_LINK mailbox command call.
821  * It is available to other drivers through the lpfc_hba data
822  * structure for use to stop the link.
823  *
824  * Return code
825  *		0 - success
826  *		Any other value - error
827  **/
828 static int
829 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
830 {
831 	LPFC_MBOXQ_t *pmb;
832 	int rc;
833 
834 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
835 	if (!pmb) {
836 		phba->link_state = LPFC_HBA_ERROR;
837 		return -ENOMEM;
838 	}
839 
840 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
841 			"0491 Adapter Link is disabled.\n");
842 	lpfc_down_link(phba, pmb);
843 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
844 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
845 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
846 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
847 				"2522 Adapter failed to issue DOWN_LINK"
848 				" mbox command rc 0x%x\n", rc);
849 
850 		mempool_free(pmb, phba->mbox_mem_pool);
851 		return -EIO;
852 	}
853 	if (flag == MBX_POLL)
854 		mempool_free(pmb, phba->mbox_mem_pool);
855 
856 	return 0;
857 }
858 
859 /**
860  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
861  * @phba: pointer to lpfc HBA data structure.
862  *
863  * This routine will do LPFC uninitialization before the HBA is reset when
864  * bringing down the SLI Layer.
865  *
866  * Return codes
867  *   0 - success.
868  *   Any other value - error.
869  **/
870 int
871 lpfc_hba_down_prep(struct lpfc_hba *phba)
872 {
873 	struct lpfc_vport **vports;
874 	int i;
875 
876 	if (phba->sli_rev <= LPFC_SLI_REV3) {
877 		/* Disable interrupts */
878 		writel(0, phba->HCregaddr);
879 		readl(phba->HCregaddr); /* flush */
880 	}
881 
882 	if (phba->pport->load_flag & FC_UNLOADING)
883 		lpfc_cleanup_discovery_resources(phba->pport);
884 	else {
885 		vports = lpfc_create_vport_work_array(phba);
886 		if (vports != NULL)
887 			for (i = 0; i <= phba->max_vports &&
888 				vports[i] != NULL; i++)
889 				lpfc_cleanup_discovery_resources(vports[i]);
890 		lpfc_destroy_vport_work_array(phba, vports);
891 	}
892 	return 0;
893 }
894 
895 /**
896  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
897  * rspiocb which got deferred
898  *
899  * @phba: pointer to lpfc HBA data structure.
900  *
901  * This routine will cleanup completed slow path events after HBA is reset
902  * when bringing down the SLI Layer.
903  *
904  *
905  * Return codes
906  *   void.
907  **/
908 static void
909 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
910 {
911 	struct lpfc_iocbq *rspiocbq;
912 	struct hbq_dmabuf *dmabuf;
913 	struct lpfc_cq_event *cq_event;
914 
915 	spin_lock_irq(&phba->hbalock);
916 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
917 	spin_unlock_irq(&phba->hbalock);
918 
919 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
920 		/* Get the response iocb from the head of work queue */
921 		spin_lock_irq(&phba->hbalock);
922 		list_remove_head(&phba->sli4_hba.sp_queue_event,
923 				 cq_event, struct lpfc_cq_event, list);
924 		spin_unlock_irq(&phba->hbalock);
925 
926 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
927 		case CQE_CODE_COMPL_WQE:
928 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
929 						 cq_event);
930 			lpfc_sli_release_iocbq(phba, rspiocbq);
931 			break;
932 		case CQE_CODE_RECEIVE:
933 		case CQE_CODE_RECEIVE_V1:
934 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
935 					      cq_event);
936 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
937 		}
938 	}
939 }
940 
941 /**
942  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
943  * @phba: pointer to lpfc HBA data structure.
944  *
945  * This routine will cleanup posted ELS buffers after the HBA is reset
946  * when bringing down the SLI Layer.
947  *
948  *
949  * Return codes
950  *   void.
951  **/
952 static void
953 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
954 {
955 	struct lpfc_sli *psli = &phba->sli;
956 	struct lpfc_sli_ring *pring;
957 	struct lpfc_dmabuf *mp, *next_mp;
958 	LIST_HEAD(buflist);
959 	int count;
960 
961 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
962 		lpfc_sli_hbqbuf_free_all(phba);
963 	else {
964 		/* Cleanup preposted buffers on the ELS ring */
965 		pring = &psli->sli3_ring[LPFC_ELS_RING];
966 		spin_lock_irq(&phba->hbalock);
967 		list_splice_init(&pring->postbufq, &buflist);
968 		spin_unlock_irq(&phba->hbalock);
969 
970 		count = 0;
971 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
972 			list_del(&mp->list);
973 			count++;
974 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
975 			kfree(mp);
976 		}
977 
978 		spin_lock_irq(&phba->hbalock);
979 		pring->postbufq_cnt -= count;
980 		spin_unlock_irq(&phba->hbalock);
981 	}
982 }
983 
984 /**
985  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
986  * @phba: pointer to lpfc HBA data structure.
987  *
988  * This routine will cleanup the txcmplq after the HBA is reset when bringing
989  * down the SLI Layer.
990  *
991  * Return codes
992  *   void
993  **/
994 static void
995 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
996 {
997 	struct lpfc_sli *psli = &phba->sli;
998 	struct lpfc_queue *qp = NULL;
999 	struct lpfc_sli_ring *pring;
1000 	LIST_HEAD(completions);
1001 	int i;
1002 	struct lpfc_iocbq *piocb, *next_iocb;
1003 
1004 	if (phba->sli_rev != LPFC_SLI_REV4) {
1005 		for (i = 0; i < psli->num_rings; i++) {
1006 			pring = &psli->sli3_ring[i];
1007 			spin_lock_irq(&phba->hbalock);
1008 			/* At this point in time the HBA is either reset or DOA
1009 			 * Nothing should be on txcmplq as it will
1010 			 * NEVER complete.
1011 			 */
1012 			list_splice_init(&pring->txcmplq, &completions);
1013 			pring->txcmplq_cnt = 0;
1014 			spin_unlock_irq(&phba->hbalock);
1015 
1016 			lpfc_sli_abort_iocb_ring(phba, pring);
1017 		}
1018 		/* Cancel all the IOCBs from the completions list */
1019 		lpfc_sli_cancel_iocbs(phba, &completions,
1020 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1021 		return;
1022 	}
1023 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1024 		pring = qp->pring;
1025 		if (!pring)
1026 			continue;
1027 		spin_lock_irq(&pring->ring_lock);
1028 		list_for_each_entry_safe(piocb, next_iocb,
1029 					 &pring->txcmplq, list)
1030 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
1031 		list_splice_init(&pring->txcmplq, &completions);
1032 		pring->txcmplq_cnt = 0;
1033 		spin_unlock_irq(&pring->ring_lock);
1034 		lpfc_sli_abort_iocb_ring(phba, pring);
1035 	}
1036 	/* Cancel all the IOCBs from the completions list */
1037 	lpfc_sli_cancel_iocbs(phba, &completions,
1038 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1039 }
1040 
1041 /**
1042  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1043  * @phba: pointer to lpfc HBA data structure.
1044  *
1045  * This routine will do uninitialization after the HBA is reset when bring
1046  * down the SLI Layer.
1047  *
1048  * Return codes
1049  *   0 - success.
1050  *   Any other value - error.
1051  **/
1052 static int
1053 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1054 {
1055 	lpfc_hba_free_post_buf(phba);
1056 	lpfc_hba_clean_txcmplq(phba);
1057 	return 0;
1058 }
1059 
1060 /**
1061  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1062  * @phba: pointer to lpfc HBA data structure.
1063  *
1064  * This routine will do uninitialization after the HBA is reset when bring
1065  * down the SLI Layer.
1066  *
1067  * Return codes
1068  *   0 - success.
1069  *   Any other value - error.
1070  **/
1071 static int
1072 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1073 {
1074 	struct lpfc_io_buf *psb, *psb_next;
1075 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1076 	struct lpfc_sli4_hdw_queue *qp;
1077 	LIST_HEAD(aborts);
1078 	LIST_HEAD(nvme_aborts);
1079 	LIST_HEAD(nvmet_aborts);
1080 	struct lpfc_sglq *sglq_entry = NULL;
1081 	int cnt, idx;
1082 
1083 
1084 	lpfc_sli_hbqbuf_free_all(phba);
1085 	lpfc_hba_clean_txcmplq(phba);
1086 
1087 	/* At this point in time the HBA is either reset or DOA. Either
1088 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1089 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1090 	 * driver is unloading or reposted if the driver is restarting
1091 	 * the port.
1092 	 */
1093 
1094 	/* sgl_list_lock required because worker thread uses this
1095 	 * list.
1096 	 */
1097 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1098 	list_for_each_entry(sglq_entry,
1099 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1100 		sglq_entry->state = SGL_FREED;
1101 
1102 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1103 			&phba->sli4_hba.lpfc_els_sgl_list);
1104 
1105 
1106 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1107 
1108 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1109 	 * list.
1110 	 */
1111 	spin_lock_irq(&phba->hbalock);
1112 	cnt = 0;
1113 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1114 		qp = &phba->sli4_hba.hdwq[idx];
1115 
1116 		spin_lock(&qp->abts_io_buf_list_lock);
1117 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1118 				 &aborts);
1119 
1120 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1121 			psb->pCmd = NULL;
1122 			psb->status = IOSTAT_SUCCESS;
1123 			cnt++;
1124 		}
1125 		spin_lock(&qp->io_buf_list_put_lock);
1126 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1127 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1128 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1129 		qp->abts_scsi_io_bufs = 0;
1130 		qp->abts_nvme_io_bufs = 0;
1131 		spin_unlock(&qp->io_buf_list_put_lock);
1132 		spin_unlock(&qp->abts_io_buf_list_lock);
1133 	}
1134 	spin_unlock_irq(&phba->hbalock);
1135 
1136 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1137 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1138 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1139 				 &nvmet_aborts);
1140 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1141 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1142 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1143 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1144 		}
1145 	}
1146 
1147 	lpfc_sli4_free_sp_events(phba);
1148 	return cnt;
1149 }
1150 
1151 /**
1152  * lpfc_hba_down_post - Wrapper func for hba down post routine
1153  * @phba: pointer to lpfc HBA data structure.
1154  *
1155  * This routine wraps the actual SLI3 or SLI4 routine for performing
1156  * uninitialization after the HBA is reset when bring down the SLI Layer.
1157  *
1158  * Return codes
1159  *   0 - success.
1160  *   Any other value - error.
1161  **/
1162 int
1163 lpfc_hba_down_post(struct lpfc_hba *phba)
1164 {
1165 	return (*phba->lpfc_hba_down_post)(phba);
1166 }
1167 
1168 /**
1169  * lpfc_hb_timeout - The HBA-timer timeout handler
1170  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1171  *
1172  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1173  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1174  * work-port-events bitmap and the worker thread is notified. This timeout
1175  * event will be used by the worker thread to invoke the actual timeout
1176  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1177  * be performed in the timeout handler and the HBA timeout event bit shall
1178  * be cleared by the worker thread after it has taken the event bitmap out.
1179  **/
1180 static void
1181 lpfc_hb_timeout(struct timer_list *t)
1182 {
1183 	struct lpfc_hba *phba;
1184 	uint32_t tmo_posted;
1185 	unsigned long iflag;
1186 
1187 	phba = from_timer(phba, t, hb_tmofunc);
1188 
1189 	/* Check for heart beat timeout conditions */
1190 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1191 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1192 	if (!tmo_posted)
1193 		phba->pport->work_port_events |= WORKER_HB_TMO;
1194 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1195 
1196 	/* Tell the worker thread there is work to do */
1197 	if (!tmo_posted)
1198 		lpfc_worker_wake_up(phba);
1199 	return;
1200 }
1201 
1202 /**
1203  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1204  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1205  *
1206  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1207  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1208  * work-port-events bitmap and the worker thread is notified. This timeout
1209  * event will be used by the worker thread to invoke the actual timeout
1210  * handler routine, lpfc_rrq_handler. Any periodical operations will
1211  * be performed in the timeout handler and the RRQ timeout event bit shall
1212  * be cleared by the worker thread after it has taken the event bitmap out.
1213  **/
1214 static void
1215 lpfc_rrq_timeout(struct timer_list *t)
1216 {
1217 	struct lpfc_hba *phba;
1218 	unsigned long iflag;
1219 
1220 	phba = from_timer(phba, t, rrq_tmr);
1221 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1222 	if (!(phba->pport->load_flag & FC_UNLOADING))
1223 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1224 	else
1225 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1226 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1227 
1228 	if (!(phba->pport->load_flag & FC_UNLOADING))
1229 		lpfc_worker_wake_up(phba);
1230 }
1231 
1232 /**
1233  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1234  * @phba: pointer to lpfc hba data structure.
1235  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1236  *
1237  * This is the callback function to the lpfc heart-beat mailbox command.
1238  * If configured, the lpfc driver issues the heart-beat mailbox command to
1239  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1240  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1241  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1242  * heart-beat outstanding state. Once the mailbox command comes back and
1243  * no error conditions detected, the heart-beat mailbox command timer is
1244  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1245  * state is cleared for the next heart-beat. If the timer expired with the
1246  * heart-beat outstanding state set, the driver will put the HBA offline.
1247  **/
1248 static void
1249 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1250 {
1251 	unsigned long drvr_flag;
1252 
1253 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1254 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1255 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1256 
1257 	/* Check and reset heart-beat timer if necessary */
1258 	mempool_free(pmboxq, phba->mbox_mem_pool);
1259 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1260 		!(phba->link_state == LPFC_HBA_ERROR) &&
1261 		!(phba->pport->load_flag & FC_UNLOADING))
1262 		mod_timer(&phba->hb_tmofunc,
1263 			  jiffies +
1264 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1265 	return;
1266 }
1267 
1268 /*
1269  * lpfc_idle_stat_delay_work - idle_stat tracking
1270  *
1271  * This routine tracks per-cq idle_stat and determines polling decisions.
1272  *
1273  * Return codes:
1274  *   None
1275  **/
1276 static void
1277 lpfc_idle_stat_delay_work(struct work_struct *work)
1278 {
1279 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1280 					     struct lpfc_hba,
1281 					     idle_stat_delay_work);
1282 	struct lpfc_queue *cq;
1283 	struct lpfc_sli4_hdw_queue *hdwq;
1284 	struct lpfc_idle_stat *idle_stat;
1285 	u32 i, idle_percent;
1286 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1287 
1288 	if (phba->pport->load_flag & FC_UNLOADING)
1289 		return;
1290 
1291 	if (phba->link_state == LPFC_HBA_ERROR ||
1292 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1293 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1294 		goto requeue;
1295 
1296 	for_each_present_cpu(i) {
1297 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1298 		cq = hdwq->io_cq;
1299 
1300 		/* Skip if we've already handled this cq's primary CPU */
1301 		if (cq->chann != i)
1302 			continue;
1303 
1304 		idle_stat = &phba->sli4_hba.idle_stat[i];
1305 
1306 		/* get_cpu_idle_time returns values as running counters. Thus,
1307 		 * to know the amount for this period, the prior counter values
1308 		 * need to be subtracted from the current counter values.
1309 		 * From there, the idle time stat can be calculated as a
1310 		 * percentage of 100 - the sum of the other consumption times.
1311 		 */
1312 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1313 		diff_idle = wall_idle - idle_stat->prev_idle;
1314 		diff_wall = wall - idle_stat->prev_wall;
1315 
1316 		if (diff_wall <= diff_idle)
1317 			busy_time = 0;
1318 		else
1319 			busy_time = diff_wall - diff_idle;
1320 
1321 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1322 		idle_percent = 100 - idle_percent;
1323 
1324 		if (idle_percent < 15)
1325 			cq->poll_mode = LPFC_QUEUE_WORK;
1326 		else
1327 			cq->poll_mode = LPFC_IRQ_POLL;
1328 
1329 		idle_stat->prev_idle = wall_idle;
1330 		idle_stat->prev_wall = wall;
1331 	}
1332 
1333 requeue:
1334 	schedule_delayed_work(&phba->idle_stat_delay_work,
1335 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1336 }
1337 
1338 static void
1339 lpfc_hb_eq_delay_work(struct work_struct *work)
1340 {
1341 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1342 					     struct lpfc_hba, eq_delay_work);
1343 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1344 	struct lpfc_queue *eq, *eq_next;
1345 	unsigned char *ena_delay = NULL;
1346 	uint32_t usdelay;
1347 	int i;
1348 
1349 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1350 		return;
1351 
1352 	if (phba->link_state == LPFC_HBA_ERROR ||
1353 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1354 		goto requeue;
1355 
1356 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1357 			    GFP_KERNEL);
1358 	if (!ena_delay)
1359 		goto requeue;
1360 
1361 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1362 		/* Get the EQ corresponding to the IRQ vector */
1363 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1364 		if (!eq)
1365 			continue;
1366 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1367 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1368 			ena_delay[eq->last_cpu] = 1;
1369 		}
1370 	}
1371 
1372 	for_each_present_cpu(i) {
1373 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1374 		if (ena_delay[i]) {
1375 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1376 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1377 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1378 		} else {
1379 			usdelay = 0;
1380 		}
1381 
1382 		eqi->icnt = 0;
1383 
1384 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1385 			if (unlikely(eq->last_cpu != i)) {
1386 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1387 						      eq->last_cpu);
1388 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1389 				continue;
1390 			}
1391 			if (usdelay != eq->q_mode)
1392 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1393 							 usdelay);
1394 		}
1395 	}
1396 
1397 	kfree(ena_delay);
1398 
1399 requeue:
1400 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1401 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1402 }
1403 
1404 /**
1405  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1406  * @phba: pointer to lpfc hba data structure.
1407  *
1408  * For each heartbeat, this routine does some heuristic methods to adjust
1409  * XRI distribution. The goal is to fully utilize free XRIs.
1410  **/
1411 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1412 {
1413 	u32 i;
1414 	u32 hwq_count;
1415 
1416 	hwq_count = phba->cfg_hdw_queue;
1417 	for (i = 0; i < hwq_count; i++) {
1418 		/* Adjust XRIs in private pool */
1419 		lpfc_adjust_pvt_pool_count(phba, i);
1420 
1421 		/* Adjust high watermark */
1422 		lpfc_adjust_high_watermark(phba, i);
1423 
1424 #ifdef LPFC_MXP_STAT
1425 		/* Snapshot pbl, pvt and busy count */
1426 		lpfc_snapshot_mxp(phba, i);
1427 #endif
1428 	}
1429 }
1430 
1431 /**
1432  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1433  * @phba: pointer to lpfc hba data structure.
1434  *
1435  * If a HB mbox is not already in progrees, this routine will allocate
1436  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1437  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1438  **/
1439 int
1440 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1441 {
1442 	LPFC_MBOXQ_t *pmboxq;
1443 	int retval;
1444 
1445 	/* Is a Heartbeat mbox already in progress */
1446 	if (phba->hba_flag & HBA_HBEAT_INP)
1447 		return 0;
1448 
1449 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1450 	if (!pmboxq)
1451 		return -ENOMEM;
1452 
1453 	lpfc_heart_beat(phba, pmboxq);
1454 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1455 	pmboxq->vport = phba->pport;
1456 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1457 
1458 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1459 		mempool_free(pmboxq, phba->mbox_mem_pool);
1460 		return -ENXIO;
1461 	}
1462 	phba->hba_flag |= HBA_HBEAT_INP;
1463 
1464 	return 0;
1465 }
1466 
1467 /**
1468  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1469  * @phba: pointer to lpfc hba data structure.
1470  *
1471  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1472  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1473  * of the value of lpfc_enable_hba_heartbeat.
1474  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1475  * try to issue a MBX_HEARTBEAT mbox command.
1476  **/
1477 void
1478 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1479 {
1480 	if (phba->cfg_enable_hba_heartbeat)
1481 		return;
1482 	phba->hba_flag |= HBA_HBEAT_TMO;
1483 }
1484 
1485 /**
1486  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1487  * @phba: pointer to lpfc hba data structure.
1488  *
1489  * This is the actual HBA-timer timeout handler to be invoked by the worker
1490  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1491  * handler performs any periodic operations needed for the device. If such
1492  * periodic event has already been attended to either in the interrupt handler
1493  * or by processing slow-ring or fast-ring events within the HBA-timer
1494  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1495  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1496  * is configured and there is no heart-beat mailbox command outstanding, a
1497  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1498  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1499  * to offline.
1500  **/
1501 void
1502 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1503 {
1504 	struct lpfc_vport **vports;
1505 	struct lpfc_dmabuf *buf_ptr;
1506 	int retval = 0;
1507 	int i, tmo;
1508 	struct lpfc_sli *psli = &phba->sli;
1509 	LIST_HEAD(completions);
1510 
1511 	if (phba->cfg_xri_rebalancing) {
1512 		/* Multi-XRI pools handler */
1513 		lpfc_hb_mxp_handler(phba);
1514 	}
1515 
1516 	vports = lpfc_create_vport_work_array(phba);
1517 	if (vports != NULL)
1518 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1519 			lpfc_rcv_seq_check_edtov(vports[i]);
1520 			lpfc_fdmi_change_check(vports[i]);
1521 		}
1522 	lpfc_destroy_vport_work_array(phba, vports);
1523 
1524 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1525 		(phba->pport->load_flag & FC_UNLOADING) ||
1526 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1527 		return;
1528 
1529 	if (phba->elsbuf_cnt &&
1530 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1531 		spin_lock_irq(&phba->hbalock);
1532 		list_splice_init(&phba->elsbuf, &completions);
1533 		phba->elsbuf_cnt = 0;
1534 		phba->elsbuf_prev_cnt = 0;
1535 		spin_unlock_irq(&phba->hbalock);
1536 
1537 		while (!list_empty(&completions)) {
1538 			list_remove_head(&completions, buf_ptr,
1539 				struct lpfc_dmabuf, list);
1540 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1541 			kfree(buf_ptr);
1542 		}
1543 	}
1544 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1545 
1546 	/* If there is no heart beat outstanding, issue a heartbeat command */
1547 	if (phba->cfg_enable_hba_heartbeat) {
1548 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1549 		spin_lock_irq(&phba->pport->work_port_lock);
1550 		if (time_after(phba->last_completion_time +
1551 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1552 				jiffies)) {
1553 			spin_unlock_irq(&phba->pport->work_port_lock);
1554 			if (phba->hba_flag & HBA_HBEAT_INP)
1555 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1556 			else
1557 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1558 			goto out;
1559 		}
1560 		spin_unlock_irq(&phba->pport->work_port_lock);
1561 
1562 		/* Check if a MBX_HEARTBEAT is already in progress */
1563 		if (phba->hba_flag & HBA_HBEAT_INP) {
1564 			/*
1565 			 * If heart beat timeout called with HBA_HBEAT_INP set
1566 			 * we need to give the hb mailbox cmd a chance to
1567 			 * complete or TMO.
1568 			 */
1569 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1570 				"0459 Adapter heartbeat still outstanding: "
1571 				"last compl time was %d ms.\n",
1572 				jiffies_to_msecs(jiffies
1573 					 - phba->last_completion_time));
1574 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1575 		} else {
1576 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1577 				(list_empty(&psli->mboxq))) {
1578 
1579 				retval = lpfc_issue_hb_mbox(phba);
1580 				if (retval) {
1581 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1582 					goto out;
1583 				}
1584 				phba->skipped_hb = 0;
1585 			} else if (time_before_eq(phba->last_completion_time,
1586 					phba->skipped_hb)) {
1587 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1588 					"2857 Last completion time not "
1589 					" updated in %d ms\n",
1590 					jiffies_to_msecs(jiffies
1591 						 - phba->last_completion_time));
1592 			} else
1593 				phba->skipped_hb = jiffies;
1594 
1595 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1596 			goto out;
1597 		}
1598 	} else {
1599 		/* Check to see if we want to force a MBX_HEARTBEAT */
1600 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1601 			retval = lpfc_issue_hb_mbox(phba);
1602 			if (retval)
1603 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1604 			else
1605 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1606 			goto out;
1607 		}
1608 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1609 	}
1610 out:
1611 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1612 }
1613 
1614 /**
1615  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1616  * @phba: pointer to lpfc hba data structure.
1617  *
1618  * This routine is called to bring the HBA offline when HBA hardware error
1619  * other than Port Error 6 has been detected.
1620  **/
1621 static void
1622 lpfc_offline_eratt(struct lpfc_hba *phba)
1623 {
1624 	struct lpfc_sli   *psli = &phba->sli;
1625 
1626 	spin_lock_irq(&phba->hbalock);
1627 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1628 	spin_unlock_irq(&phba->hbalock);
1629 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1630 
1631 	lpfc_offline(phba);
1632 	lpfc_reset_barrier(phba);
1633 	spin_lock_irq(&phba->hbalock);
1634 	lpfc_sli_brdreset(phba);
1635 	spin_unlock_irq(&phba->hbalock);
1636 	lpfc_hba_down_post(phba);
1637 	lpfc_sli_brdready(phba, HS_MBRDY);
1638 	lpfc_unblock_mgmt_io(phba);
1639 	phba->link_state = LPFC_HBA_ERROR;
1640 	return;
1641 }
1642 
1643 /**
1644  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1645  * @phba: pointer to lpfc hba data structure.
1646  *
1647  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1648  * other than Port Error 6 has been detected.
1649  **/
1650 void
1651 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1652 {
1653 	spin_lock_irq(&phba->hbalock);
1654 	if (phba->link_state == LPFC_HBA_ERROR &&
1655 	    phba->hba_flag & HBA_PCI_ERR) {
1656 		spin_unlock_irq(&phba->hbalock);
1657 		return;
1658 	}
1659 	phba->link_state = LPFC_HBA_ERROR;
1660 	spin_unlock_irq(&phba->hbalock);
1661 
1662 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1663 	lpfc_sli_flush_io_rings(phba);
1664 	lpfc_offline(phba);
1665 	lpfc_hba_down_post(phba);
1666 	lpfc_unblock_mgmt_io(phba);
1667 }
1668 
1669 /**
1670  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1671  * @phba: pointer to lpfc hba data structure.
1672  *
1673  * This routine is invoked to handle the deferred HBA hardware error
1674  * conditions. This type of error is indicated by HBA by setting ER1
1675  * and another ER bit in the host status register. The driver will
1676  * wait until the ER1 bit clears before handling the error condition.
1677  **/
1678 static void
1679 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1680 {
1681 	uint32_t old_host_status = phba->work_hs;
1682 	struct lpfc_sli *psli = &phba->sli;
1683 
1684 	/* If the pci channel is offline, ignore possible errors,
1685 	 * since we cannot communicate with the pci card anyway.
1686 	 */
1687 	if (pci_channel_offline(phba->pcidev)) {
1688 		spin_lock_irq(&phba->hbalock);
1689 		phba->hba_flag &= ~DEFER_ERATT;
1690 		spin_unlock_irq(&phba->hbalock);
1691 		return;
1692 	}
1693 
1694 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1695 			"0479 Deferred Adapter Hardware Error "
1696 			"Data: x%x x%x x%x\n",
1697 			phba->work_hs, phba->work_status[0],
1698 			phba->work_status[1]);
1699 
1700 	spin_lock_irq(&phba->hbalock);
1701 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1702 	spin_unlock_irq(&phba->hbalock);
1703 
1704 
1705 	/*
1706 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1707 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1708 	 * SCSI layer retry it after re-establishing link.
1709 	 */
1710 	lpfc_sli_abort_fcp_rings(phba);
1711 
1712 	/*
1713 	 * There was a firmware error. Take the hba offline and then
1714 	 * attempt to restart it.
1715 	 */
1716 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1717 	lpfc_offline(phba);
1718 
1719 	/* Wait for the ER1 bit to clear.*/
1720 	while (phba->work_hs & HS_FFER1) {
1721 		msleep(100);
1722 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1723 			phba->work_hs = UNPLUG_ERR ;
1724 			break;
1725 		}
1726 		/* If driver is unloading let the worker thread continue */
1727 		if (phba->pport->load_flag & FC_UNLOADING) {
1728 			phba->work_hs = 0;
1729 			break;
1730 		}
1731 	}
1732 
1733 	/*
1734 	 * This is to ptrotect against a race condition in which
1735 	 * first write to the host attention register clear the
1736 	 * host status register.
1737 	 */
1738 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1739 		phba->work_hs = old_host_status & ~HS_FFER1;
1740 
1741 	spin_lock_irq(&phba->hbalock);
1742 	phba->hba_flag &= ~DEFER_ERATT;
1743 	spin_unlock_irq(&phba->hbalock);
1744 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1745 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1746 }
1747 
1748 static void
1749 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1750 {
1751 	struct lpfc_board_event_header board_event;
1752 	struct Scsi_Host *shost;
1753 
1754 	board_event.event_type = FC_REG_BOARD_EVENT;
1755 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1756 	shost = lpfc_shost_from_vport(phba->pport);
1757 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1758 				  sizeof(board_event),
1759 				  (char *) &board_event,
1760 				  LPFC_NL_VENDOR_ID);
1761 }
1762 
1763 /**
1764  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1765  * @phba: pointer to lpfc hba data structure.
1766  *
1767  * This routine is invoked to handle the following HBA hardware error
1768  * conditions:
1769  * 1 - HBA error attention interrupt
1770  * 2 - DMA ring index out of range
1771  * 3 - Mailbox command came back as unknown
1772  **/
1773 static void
1774 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1775 {
1776 	struct lpfc_vport *vport = phba->pport;
1777 	struct lpfc_sli   *psli = &phba->sli;
1778 	uint32_t event_data;
1779 	unsigned long temperature;
1780 	struct temp_event temp_event_data;
1781 	struct Scsi_Host  *shost;
1782 
1783 	/* If the pci channel is offline, ignore possible errors,
1784 	 * since we cannot communicate with the pci card anyway.
1785 	 */
1786 	if (pci_channel_offline(phba->pcidev)) {
1787 		spin_lock_irq(&phba->hbalock);
1788 		phba->hba_flag &= ~DEFER_ERATT;
1789 		spin_unlock_irq(&phba->hbalock);
1790 		return;
1791 	}
1792 
1793 	/* If resets are disabled then leave the HBA alone and return */
1794 	if (!phba->cfg_enable_hba_reset)
1795 		return;
1796 
1797 	/* Send an internal error event to mgmt application */
1798 	lpfc_board_errevt_to_mgmt(phba);
1799 
1800 	if (phba->hba_flag & DEFER_ERATT)
1801 		lpfc_handle_deferred_eratt(phba);
1802 
1803 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1804 		if (phba->work_hs & HS_FFER6)
1805 			/* Re-establishing Link */
1806 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1807 					"1301 Re-establishing Link "
1808 					"Data: x%x x%x x%x\n",
1809 					phba->work_hs, phba->work_status[0],
1810 					phba->work_status[1]);
1811 		if (phba->work_hs & HS_FFER8)
1812 			/* Device Zeroization */
1813 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1814 					"2861 Host Authentication device "
1815 					"zeroization Data:x%x x%x x%x\n",
1816 					phba->work_hs, phba->work_status[0],
1817 					phba->work_status[1]);
1818 
1819 		spin_lock_irq(&phba->hbalock);
1820 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1821 		spin_unlock_irq(&phba->hbalock);
1822 
1823 		/*
1824 		* Firmware stops when it triggled erratt with HS_FFER6.
1825 		* That could cause the I/Os dropped by the firmware.
1826 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1827 		* retry it after re-establishing link.
1828 		*/
1829 		lpfc_sli_abort_fcp_rings(phba);
1830 
1831 		/*
1832 		 * There was a firmware error.  Take the hba offline and then
1833 		 * attempt to restart it.
1834 		 */
1835 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1836 		lpfc_offline(phba);
1837 		lpfc_sli_brdrestart(phba);
1838 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1839 			lpfc_unblock_mgmt_io(phba);
1840 			return;
1841 		}
1842 		lpfc_unblock_mgmt_io(phba);
1843 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1844 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1845 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1846 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1847 		temp_event_data.data = (uint32_t)temperature;
1848 
1849 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1850 				"0406 Adapter maximum temperature exceeded "
1851 				"(%ld), taking this port offline "
1852 				"Data: x%x x%x x%x\n",
1853 				temperature, phba->work_hs,
1854 				phba->work_status[0], phba->work_status[1]);
1855 
1856 		shost = lpfc_shost_from_vport(phba->pport);
1857 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1858 					  sizeof(temp_event_data),
1859 					  (char *) &temp_event_data,
1860 					  SCSI_NL_VID_TYPE_PCI
1861 					  | PCI_VENDOR_ID_EMULEX);
1862 
1863 		spin_lock_irq(&phba->hbalock);
1864 		phba->over_temp_state = HBA_OVER_TEMP;
1865 		spin_unlock_irq(&phba->hbalock);
1866 		lpfc_offline_eratt(phba);
1867 
1868 	} else {
1869 		/* The if clause above forces this code path when the status
1870 		 * failure is a value other than FFER6. Do not call the offline
1871 		 * twice. This is the adapter hardware error path.
1872 		 */
1873 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1874 				"0457 Adapter Hardware Error "
1875 				"Data: x%x x%x x%x\n",
1876 				phba->work_hs,
1877 				phba->work_status[0], phba->work_status[1]);
1878 
1879 		event_data = FC_REG_DUMP_EVENT;
1880 		shost = lpfc_shost_from_vport(vport);
1881 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1882 				sizeof(event_data), (char *) &event_data,
1883 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1884 
1885 		lpfc_offline_eratt(phba);
1886 	}
1887 	return;
1888 }
1889 
1890 /**
1891  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1892  * @phba: pointer to lpfc hba data structure.
1893  * @mbx_action: flag for mailbox shutdown action.
1894  * @en_rn_msg: send reset/port recovery message.
1895  * This routine is invoked to perform an SLI4 port PCI function reset in
1896  * response to port status register polling attention. It waits for port
1897  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1898  * During this process, interrupt vectors are freed and later requested
1899  * for handling possible port resource change.
1900  **/
1901 static int
1902 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1903 			    bool en_rn_msg)
1904 {
1905 	int rc;
1906 	uint32_t intr_mode;
1907 	LPFC_MBOXQ_t *mboxq;
1908 
1909 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1910 	    LPFC_SLI_INTF_IF_TYPE_2) {
1911 		/*
1912 		 * On error status condition, driver need to wait for port
1913 		 * ready before performing reset.
1914 		 */
1915 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1916 		if (rc)
1917 			return rc;
1918 	}
1919 
1920 	/* need reset: attempt for port recovery */
1921 	if (en_rn_msg)
1922 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1923 				"2887 Reset Needed: Attempting Port "
1924 				"Recovery...\n");
1925 
1926 	/* If we are no wait, the HBA has been reset and is not
1927 	 * functional, thus we should clear
1928 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1929 	 */
1930 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1931 		spin_lock_irq(&phba->hbalock);
1932 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1933 		if (phba->sli.mbox_active) {
1934 			mboxq = phba->sli.mbox_active;
1935 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1936 			__lpfc_mbox_cmpl_put(phba, mboxq);
1937 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1938 			phba->sli.mbox_active = NULL;
1939 		}
1940 		spin_unlock_irq(&phba->hbalock);
1941 	}
1942 
1943 	lpfc_offline_prep(phba, mbx_action);
1944 	lpfc_sli_flush_io_rings(phba);
1945 	lpfc_offline(phba);
1946 	/* release interrupt for possible resource change */
1947 	lpfc_sli4_disable_intr(phba);
1948 	rc = lpfc_sli_brdrestart(phba);
1949 	if (rc) {
1950 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1951 				"6309 Failed to restart board\n");
1952 		return rc;
1953 	}
1954 	/* request and enable interrupt */
1955 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1956 	if (intr_mode == LPFC_INTR_ERROR) {
1957 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1958 				"3175 Failed to enable interrupt\n");
1959 		return -EIO;
1960 	}
1961 	phba->intr_mode = intr_mode;
1962 	rc = lpfc_online(phba);
1963 	if (rc == 0)
1964 		lpfc_unblock_mgmt_io(phba);
1965 
1966 	return rc;
1967 }
1968 
1969 /**
1970  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1971  * @phba: pointer to lpfc hba data structure.
1972  *
1973  * This routine is invoked to handle the SLI4 HBA hardware error attention
1974  * conditions.
1975  **/
1976 static void
1977 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1978 {
1979 	struct lpfc_vport *vport = phba->pport;
1980 	uint32_t event_data;
1981 	struct Scsi_Host *shost;
1982 	uint32_t if_type;
1983 	struct lpfc_register portstat_reg = {0};
1984 	uint32_t reg_err1, reg_err2;
1985 	uint32_t uerrlo_reg, uemasklo_reg;
1986 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1987 	bool en_rn_msg = true;
1988 	struct temp_event temp_event_data;
1989 	struct lpfc_register portsmphr_reg;
1990 	int rc, i;
1991 
1992 	/* If the pci channel is offline, ignore possible errors, since
1993 	 * we cannot communicate with the pci card anyway.
1994 	 */
1995 	if (pci_channel_offline(phba->pcidev)) {
1996 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1997 				"3166 pci channel is offline\n");
1998 		return;
1999 	}
2000 
2001 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2002 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2003 	switch (if_type) {
2004 	case LPFC_SLI_INTF_IF_TYPE_0:
2005 		pci_rd_rc1 = lpfc_readl(
2006 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2007 				&uerrlo_reg);
2008 		pci_rd_rc2 = lpfc_readl(
2009 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2010 				&uemasklo_reg);
2011 		/* consider PCI bus read error as pci_channel_offline */
2012 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2013 			return;
2014 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2015 			lpfc_sli4_offline_eratt(phba);
2016 			return;
2017 		}
2018 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2019 				"7623 Checking UE recoverable");
2020 
2021 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2022 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2023 				       &portsmphr_reg.word0))
2024 				continue;
2025 
2026 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2027 						   &portsmphr_reg);
2028 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2029 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2030 				break;
2031 			/*Sleep for 1Sec, before checking SEMAPHORE */
2032 			msleep(1000);
2033 		}
2034 
2035 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2036 				"4827 smphr_port_status x%x : Waited %dSec",
2037 				smphr_port_status, i);
2038 
2039 		/* Recoverable UE, reset the HBA device */
2040 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2041 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2042 			for (i = 0; i < 20; i++) {
2043 				msleep(1000);
2044 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2045 				    &portsmphr_reg.word0) &&
2046 				    (LPFC_POST_STAGE_PORT_READY ==
2047 				     bf_get(lpfc_port_smphr_port_status,
2048 				     &portsmphr_reg))) {
2049 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2050 						LPFC_MBX_NO_WAIT, en_rn_msg);
2051 					if (rc == 0)
2052 						return;
2053 					lpfc_printf_log(phba, KERN_ERR,
2054 						LOG_TRACE_EVENT,
2055 						"4215 Failed to recover UE");
2056 					break;
2057 				}
2058 			}
2059 		}
2060 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2061 				"7624 Firmware not ready: Failing UE recovery,"
2062 				" waited %dSec", i);
2063 		phba->link_state = LPFC_HBA_ERROR;
2064 		break;
2065 
2066 	case LPFC_SLI_INTF_IF_TYPE_2:
2067 	case LPFC_SLI_INTF_IF_TYPE_6:
2068 		pci_rd_rc1 = lpfc_readl(
2069 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2070 				&portstat_reg.word0);
2071 		/* consider PCI bus read error as pci_channel_offline */
2072 		if (pci_rd_rc1 == -EIO) {
2073 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2074 				"3151 PCI bus read access failure: x%x\n",
2075 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2076 			lpfc_sli4_offline_eratt(phba);
2077 			return;
2078 		}
2079 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2080 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2081 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2082 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2083 					"2889 Port Overtemperature event, "
2084 					"taking port offline Data: x%x x%x\n",
2085 					reg_err1, reg_err2);
2086 
2087 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2088 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2089 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2090 			temp_event_data.data = 0xFFFFFFFF;
2091 
2092 			shost = lpfc_shost_from_vport(phba->pport);
2093 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2094 						  sizeof(temp_event_data),
2095 						  (char *)&temp_event_data,
2096 						  SCSI_NL_VID_TYPE_PCI
2097 						  | PCI_VENDOR_ID_EMULEX);
2098 
2099 			spin_lock_irq(&phba->hbalock);
2100 			phba->over_temp_state = HBA_OVER_TEMP;
2101 			spin_unlock_irq(&phba->hbalock);
2102 			lpfc_sli4_offline_eratt(phba);
2103 			return;
2104 		}
2105 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2106 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2107 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2108 					"3143 Port Down: Firmware Update "
2109 					"Detected\n");
2110 			en_rn_msg = false;
2111 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2112 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2113 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2114 					"3144 Port Down: Debug Dump\n");
2115 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2116 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2117 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2118 					"3145 Port Down: Provisioning\n");
2119 
2120 		/* If resets are disabled then leave the HBA alone and return */
2121 		if (!phba->cfg_enable_hba_reset)
2122 			return;
2123 
2124 		/* Check port status register for function reset */
2125 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2126 				en_rn_msg);
2127 		if (rc == 0) {
2128 			/* don't report event on forced debug dump */
2129 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2130 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2131 				return;
2132 			else
2133 				break;
2134 		}
2135 		/* fall through for not able to recover */
2136 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2137 				"3152 Unrecoverable error\n");
2138 		phba->link_state = LPFC_HBA_ERROR;
2139 		break;
2140 	case LPFC_SLI_INTF_IF_TYPE_1:
2141 	default:
2142 		break;
2143 	}
2144 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2145 			"3123 Report dump event to upper layer\n");
2146 	/* Send an internal error event to mgmt application */
2147 	lpfc_board_errevt_to_mgmt(phba);
2148 
2149 	event_data = FC_REG_DUMP_EVENT;
2150 	shost = lpfc_shost_from_vport(vport);
2151 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2152 				  sizeof(event_data), (char *) &event_data,
2153 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2154 }
2155 
2156 /**
2157  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2158  * @phba: pointer to lpfc HBA data structure.
2159  *
2160  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2161  * routine from the API jump table function pointer from the lpfc_hba struct.
2162  *
2163  * Return codes
2164  *   0 - success.
2165  *   Any other value - error.
2166  **/
2167 void
2168 lpfc_handle_eratt(struct lpfc_hba *phba)
2169 {
2170 	(*phba->lpfc_handle_eratt)(phba);
2171 }
2172 
2173 /**
2174  * lpfc_handle_latt - The HBA link event handler
2175  * @phba: pointer to lpfc hba data structure.
2176  *
2177  * This routine is invoked from the worker thread to handle a HBA host
2178  * attention link event. SLI3 only.
2179  **/
2180 void
2181 lpfc_handle_latt(struct lpfc_hba *phba)
2182 {
2183 	struct lpfc_vport *vport = phba->pport;
2184 	struct lpfc_sli   *psli = &phba->sli;
2185 	LPFC_MBOXQ_t *pmb;
2186 	volatile uint32_t control;
2187 	struct lpfc_dmabuf *mp;
2188 	int rc = 0;
2189 
2190 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2191 	if (!pmb) {
2192 		rc = 1;
2193 		goto lpfc_handle_latt_err_exit;
2194 	}
2195 
2196 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
2197 	if (!mp) {
2198 		rc = 2;
2199 		goto lpfc_handle_latt_free_pmb;
2200 	}
2201 
2202 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
2203 	if (!mp->virt) {
2204 		rc = 3;
2205 		goto lpfc_handle_latt_free_mp;
2206 	}
2207 
2208 	/* Cleanup any outstanding ELS commands */
2209 	lpfc_els_flush_all_cmd(phba);
2210 
2211 	psli->slistat.link_event++;
2212 	lpfc_read_topology(phba, pmb, mp);
2213 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2214 	pmb->vport = vport;
2215 	/* Block ELS IOCBs until we have processed this mbox command */
2216 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2217 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2218 	if (rc == MBX_NOT_FINISHED) {
2219 		rc = 4;
2220 		goto lpfc_handle_latt_free_mbuf;
2221 	}
2222 
2223 	/* Clear Link Attention in HA REG */
2224 	spin_lock_irq(&phba->hbalock);
2225 	writel(HA_LATT, phba->HAregaddr);
2226 	readl(phba->HAregaddr); /* flush */
2227 	spin_unlock_irq(&phba->hbalock);
2228 
2229 	return;
2230 
2231 lpfc_handle_latt_free_mbuf:
2232 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2233 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
2234 lpfc_handle_latt_free_mp:
2235 	kfree(mp);
2236 lpfc_handle_latt_free_pmb:
2237 	mempool_free(pmb, phba->mbox_mem_pool);
2238 lpfc_handle_latt_err_exit:
2239 	/* Enable Link attention interrupts */
2240 	spin_lock_irq(&phba->hbalock);
2241 	psli->sli_flag |= LPFC_PROCESS_LA;
2242 	control = readl(phba->HCregaddr);
2243 	control |= HC_LAINT_ENA;
2244 	writel(control, phba->HCregaddr);
2245 	readl(phba->HCregaddr); /* flush */
2246 
2247 	/* Clear Link Attention in HA REG */
2248 	writel(HA_LATT, phba->HAregaddr);
2249 	readl(phba->HAregaddr); /* flush */
2250 	spin_unlock_irq(&phba->hbalock);
2251 	lpfc_linkdown(phba);
2252 	phba->link_state = LPFC_HBA_ERROR;
2253 
2254 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2255 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2256 
2257 	return;
2258 }
2259 
2260 /**
2261  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2262  * @phba: pointer to lpfc hba data structure.
2263  * @vpd: pointer to the vital product data.
2264  * @len: length of the vital product data in bytes.
2265  *
2266  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2267  * an array of characters. In this routine, the ModelName, ProgramType, and
2268  * ModelDesc, etc. fields of the phba data structure will be populated.
2269  *
2270  * Return codes
2271  *   0 - pointer to the VPD passed in is NULL
2272  *   1 - success
2273  **/
2274 int
2275 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2276 {
2277 	uint8_t lenlo, lenhi;
2278 	int Length;
2279 	int i, j;
2280 	int finished = 0;
2281 	int index = 0;
2282 
2283 	if (!vpd)
2284 		return 0;
2285 
2286 	/* Vital Product */
2287 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2288 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2289 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2290 			(uint32_t) vpd[3]);
2291 	while (!finished && (index < (len - 4))) {
2292 		switch (vpd[index]) {
2293 		case 0x82:
2294 		case 0x91:
2295 			index += 1;
2296 			lenlo = vpd[index];
2297 			index += 1;
2298 			lenhi = vpd[index];
2299 			index += 1;
2300 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2301 			index += i;
2302 			break;
2303 		case 0x90:
2304 			index += 1;
2305 			lenlo = vpd[index];
2306 			index += 1;
2307 			lenhi = vpd[index];
2308 			index += 1;
2309 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2310 			if (Length > len - index)
2311 				Length = len - index;
2312 			while (Length > 0) {
2313 			/* Look for Serial Number */
2314 			if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) {
2315 				index += 2;
2316 				i = vpd[index];
2317 				index += 1;
2318 				j = 0;
2319 				Length -= (3+i);
2320 				while(i--) {
2321 					phba->SerialNumber[j++] = vpd[index++];
2322 					if (j == 31)
2323 						break;
2324 				}
2325 				phba->SerialNumber[j] = 0;
2326 				continue;
2327 			}
2328 			else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) {
2329 				phba->vpd_flag |= VPD_MODEL_DESC;
2330 				index += 2;
2331 				i = vpd[index];
2332 				index += 1;
2333 				j = 0;
2334 				Length -= (3+i);
2335 				while(i--) {
2336 					phba->ModelDesc[j++] = vpd[index++];
2337 					if (j == 255)
2338 						break;
2339 				}
2340 				phba->ModelDesc[j] = 0;
2341 				continue;
2342 			}
2343 			else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) {
2344 				phba->vpd_flag |= VPD_MODEL_NAME;
2345 				index += 2;
2346 				i = vpd[index];
2347 				index += 1;
2348 				j = 0;
2349 				Length -= (3+i);
2350 				while(i--) {
2351 					phba->ModelName[j++] = vpd[index++];
2352 					if (j == 79)
2353 						break;
2354 				}
2355 				phba->ModelName[j] = 0;
2356 				continue;
2357 			}
2358 			else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) {
2359 				phba->vpd_flag |= VPD_PROGRAM_TYPE;
2360 				index += 2;
2361 				i = vpd[index];
2362 				index += 1;
2363 				j = 0;
2364 				Length -= (3+i);
2365 				while(i--) {
2366 					phba->ProgramType[j++] = vpd[index++];
2367 					if (j == 255)
2368 						break;
2369 				}
2370 				phba->ProgramType[j] = 0;
2371 				continue;
2372 			}
2373 			else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) {
2374 				phba->vpd_flag |= VPD_PORT;
2375 				index += 2;
2376 				i = vpd[index];
2377 				index += 1;
2378 				j = 0;
2379 				Length -= (3+i);
2380 				while(i--) {
2381 					if ((phba->sli_rev == LPFC_SLI_REV4) &&
2382 					    (phba->sli4_hba.pport_name_sta ==
2383 					     LPFC_SLI4_PPNAME_GET)) {
2384 						j++;
2385 						index++;
2386 					} else
2387 						phba->Port[j++] = vpd[index++];
2388 					if (j == 19)
2389 						break;
2390 				}
2391 				if ((phba->sli_rev != LPFC_SLI_REV4) ||
2392 				    (phba->sli4_hba.pport_name_sta ==
2393 				     LPFC_SLI4_PPNAME_NON))
2394 					phba->Port[j] = 0;
2395 				continue;
2396 			}
2397 			else {
2398 				index += 2;
2399 				i = vpd[index];
2400 				index += 1;
2401 				index += i;
2402 				Length -= (3 + i);
2403 			}
2404 		}
2405 		finished = 0;
2406 		break;
2407 		case 0x78:
2408 			finished = 1;
2409 			break;
2410 		default:
2411 			index ++;
2412 			break;
2413 		}
2414 	}
2415 
2416 	return(1);
2417 }
2418 
2419 /**
2420  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2421  * @phba: pointer to lpfc hba data structure.
2422  * @mdp: pointer to the data structure to hold the derived model name.
2423  * @descp: pointer to the data structure to hold the derived description.
2424  *
2425  * This routine retrieves HBA's description based on its registered PCI device
2426  * ID. The @descp passed into this function points to an array of 256 chars. It
2427  * shall be returned with the model name, maximum speed, and the host bus type.
2428  * The @mdp passed into this function points to an array of 80 chars. When the
2429  * function returns, the @mdp will be filled with the model name.
2430  **/
2431 static void
2432 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2433 {
2434 	lpfc_vpd_t *vp;
2435 	uint16_t dev_id = phba->pcidev->device;
2436 	int max_speed;
2437 	int GE = 0;
2438 	int oneConnect = 0; /* default is not a oneConnect */
2439 	struct {
2440 		char *name;
2441 		char *bus;
2442 		char *function;
2443 	} m = {"<Unknown>", "", ""};
2444 
2445 	if (mdp && mdp[0] != '\0'
2446 		&& descp && descp[0] != '\0')
2447 		return;
2448 
2449 	if (phba->lmt & LMT_64Gb)
2450 		max_speed = 64;
2451 	else if (phba->lmt & LMT_32Gb)
2452 		max_speed = 32;
2453 	else if (phba->lmt & LMT_16Gb)
2454 		max_speed = 16;
2455 	else if (phba->lmt & LMT_10Gb)
2456 		max_speed = 10;
2457 	else if (phba->lmt & LMT_8Gb)
2458 		max_speed = 8;
2459 	else if (phba->lmt & LMT_4Gb)
2460 		max_speed = 4;
2461 	else if (phba->lmt & LMT_2Gb)
2462 		max_speed = 2;
2463 	else if (phba->lmt & LMT_1Gb)
2464 		max_speed = 1;
2465 	else
2466 		max_speed = 0;
2467 
2468 	vp = &phba->vpd;
2469 
2470 	switch (dev_id) {
2471 	case PCI_DEVICE_ID_FIREFLY:
2472 		m = (typeof(m)){"LP6000", "PCI",
2473 				"Obsolete, Unsupported Fibre Channel Adapter"};
2474 		break;
2475 	case PCI_DEVICE_ID_SUPERFLY:
2476 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2477 			m = (typeof(m)){"LP7000", "PCI", ""};
2478 		else
2479 			m = (typeof(m)){"LP7000E", "PCI", ""};
2480 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2481 		break;
2482 	case PCI_DEVICE_ID_DRAGONFLY:
2483 		m = (typeof(m)){"LP8000", "PCI",
2484 				"Obsolete, Unsupported Fibre Channel Adapter"};
2485 		break;
2486 	case PCI_DEVICE_ID_CENTAUR:
2487 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2488 			m = (typeof(m)){"LP9002", "PCI", ""};
2489 		else
2490 			m = (typeof(m)){"LP9000", "PCI", ""};
2491 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2492 		break;
2493 	case PCI_DEVICE_ID_RFLY:
2494 		m = (typeof(m)){"LP952", "PCI",
2495 				"Obsolete, Unsupported Fibre Channel Adapter"};
2496 		break;
2497 	case PCI_DEVICE_ID_PEGASUS:
2498 		m = (typeof(m)){"LP9802", "PCI-X",
2499 				"Obsolete, Unsupported Fibre Channel Adapter"};
2500 		break;
2501 	case PCI_DEVICE_ID_THOR:
2502 		m = (typeof(m)){"LP10000", "PCI-X",
2503 				"Obsolete, Unsupported Fibre Channel Adapter"};
2504 		break;
2505 	case PCI_DEVICE_ID_VIPER:
2506 		m = (typeof(m)){"LPX1000",  "PCI-X",
2507 				"Obsolete, Unsupported Fibre Channel Adapter"};
2508 		break;
2509 	case PCI_DEVICE_ID_PFLY:
2510 		m = (typeof(m)){"LP982", "PCI-X",
2511 				"Obsolete, Unsupported Fibre Channel Adapter"};
2512 		break;
2513 	case PCI_DEVICE_ID_TFLY:
2514 		m = (typeof(m)){"LP1050", "PCI-X",
2515 				"Obsolete, Unsupported Fibre Channel Adapter"};
2516 		break;
2517 	case PCI_DEVICE_ID_HELIOS:
2518 		m = (typeof(m)){"LP11000", "PCI-X2",
2519 				"Obsolete, Unsupported Fibre Channel Adapter"};
2520 		break;
2521 	case PCI_DEVICE_ID_HELIOS_SCSP:
2522 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2523 				"Obsolete, Unsupported Fibre Channel Adapter"};
2524 		break;
2525 	case PCI_DEVICE_ID_HELIOS_DCSP:
2526 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2527 				"Obsolete, Unsupported Fibre Channel Adapter"};
2528 		break;
2529 	case PCI_DEVICE_ID_NEPTUNE:
2530 		m = (typeof(m)){"LPe1000", "PCIe",
2531 				"Obsolete, Unsupported Fibre Channel Adapter"};
2532 		break;
2533 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2534 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2535 				"Obsolete, Unsupported Fibre Channel Adapter"};
2536 		break;
2537 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2538 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2539 				"Obsolete, Unsupported Fibre Channel Adapter"};
2540 		break;
2541 	case PCI_DEVICE_ID_BMID:
2542 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2543 		break;
2544 	case PCI_DEVICE_ID_BSMB:
2545 		m = (typeof(m)){"LP111", "PCI-X2",
2546 				"Obsolete, Unsupported Fibre Channel Adapter"};
2547 		break;
2548 	case PCI_DEVICE_ID_ZEPHYR:
2549 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2550 		break;
2551 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2552 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2553 		break;
2554 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2555 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2556 		GE = 1;
2557 		break;
2558 	case PCI_DEVICE_ID_ZMID:
2559 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2560 		break;
2561 	case PCI_DEVICE_ID_ZSMB:
2562 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2563 		break;
2564 	case PCI_DEVICE_ID_LP101:
2565 		m = (typeof(m)){"LP101", "PCI-X",
2566 				"Obsolete, Unsupported Fibre Channel Adapter"};
2567 		break;
2568 	case PCI_DEVICE_ID_LP10000S:
2569 		m = (typeof(m)){"LP10000-S", "PCI",
2570 				"Obsolete, Unsupported Fibre Channel Adapter"};
2571 		break;
2572 	case PCI_DEVICE_ID_LP11000S:
2573 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2574 				"Obsolete, Unsupported Fibre Channel Adapter"};
2575 		break;
2576 	case PCI_DEVICE_ID_LPE11000S:
2577 		m = (typeof(m)){"LPe11000-S", "PCIe",
2578 				"Obsolete, Unsupported Fibre Channel Adapter"};
2579 		break;
2580 	case PCI_DEVICE_ID_SAT:
2581 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2582 		break;
2583 	case PCI_DEVICE_ID_SAT_MID:
2584 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2585 		break;
2586 	case PCI_DEVICE_ID_SAT_SMB:
2587 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2588 		break;
2589 	case PCI_DEVICE_ID_SAT_DCSP:
2590 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2591 		break;
2592 	case PCI_DEVICE_ID_SAT_SCSP:
2593 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2594 		break;
2595 	case PCI_DEVICE_ID_SAT_S:
2596 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2597 		break;
2598 	case PCI_DEVICE_ID_HORNET:
2599 		m = (typeof(m)){"LP21000", "PCIe",
2600 				"Obsolete, Unsupported FCoE Adapter"};
2601 		GE = 1;
2602 		break;
2603 	case PCI_DEVICE_ID_PROTEUS_VF:
2604 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2605 				"Obsolete, Unsupported Fibre Channel Adapter"};
2606 		break;
2607 	case PCI_DEVICE_ID_PROTEUS_PF:
2608 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2609 				"Obsolete, Unsupported Fibre Channel Adapter"};
2610 		break;
2611 	case PCI_DEVICE_ID_PROTEUS_S:
2612 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2613 				"Obsolete, Unsupported Fibre Channel Adapter"};
2614 		break;
2615 	case PCI_DEVICE_ID_TIGERSHARK:
2616 		oneConnect = 1;
2617 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2618 		break;
2619 	case PCI_DEVICE_ID_TOMCAT:
2620 		oneConnect = 1;
2621 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2622 		break;
2623 	case PCI_DEVICE_ID_FALCON:
2624 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2625 				"EmulexSecure Fibre"};
2626 		break;
2627 	case PCI_DEVICE_ID_BALIUS:
2628 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2629 				"Obsolete, Unsupported Fibre Channel Adapter"};
2630 		break;
2631 	case PCI_DEVICE_ID_LANCER_FC:
2632 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2633 		break;
2634 	case PCI_DEVICE_ID_LANCER_FC_VF:
2635 		m = (typeof(m)){"LPe16000", "PCIe",
2636 				"Obsolete, Unsupported Fibre Channel Adapter"};
2637 		break;
2638 	case PCI_DEVICE_ID_LANCER_FCOE:
2639 		oneConnect = 1;
2640 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2641 		break;
2642 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2643 		oneConnect = 1;
2644 		m = (typeof(m)){"OCe15100", "PCIe",
2645 				"Obsolete, Unsupported FCoE"};
2646 		break;
2647 	case PCI_DEVICE_ID_LANCER_G6_FC:
2648 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2649 		break;
2650 	case PCI_DEVICE_ID_LANCER_G7_FC:
2651 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2652 		break;
2653 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2654 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2655 		break;
2656 	case PCI_DEVICE_ID_SKYHAWK:
2657 	case PCI_DEVICE_ID_SKYHAWK_VF:
2658 		oneConnect = 1;
2659 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2660 		break;
2661 	default:
2662 		m = (typeof(m)){"Unknown", "", ""};
2663 		break;
2664 	}
2665 
2666 	if (mdp && mdp[0] == '\0')
2667 		snprintf(mdp, 79,"%s", m.name);
2668 	/*
2669 	 * oneConnect hba requires special processing, they are all initiators
2670 	 * and we put the port number on the end
2671 	 */
2672 	if (descp && descp[0] == '\0') {
2673 		if (oneConnect)
2674 			snprintf(descp, 255,
2675 				"Emulex OneConnect %s, %s Initiator %s",
2676 				m.name, m.function,
2677 				phba->Port);
2678 		else if (max_speed == 0)
2679 			snprintf(descp, 255,
2680 				"Emulex %s %s %s",
2681 				m.name, m.bus, m.function);
2682 		else
2683 			snprintf(descp, 255,
2684 				"Emulex %s %d%s %s %s",
2685 				m.name, max_speed, (GE) ? "GE" : "Gb",
2686 				m.bus, m.function);
2687 	}
2688 }
2689 
2690 /**
2691  * lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2692  * @phba: pointer to lpfc hba data structure.
2693  * @pring: pointer to a IOCB ring.
2694  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2695  *
2696  * This routine posts a given number of IOCBs with the associated DMA buffer
2697  * descriptors specified by the cnt argument to the given IOCB ring.
2698  *
2699  * Return codes
2700  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2701  **/
2702 int
2703 lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2704 {
2705 	IOCB_t *icmd;
2706 	struct lpfc_iocbq *iocb;
2707 	struct lpfc_dmabuf *mp1, *mp2;
2708 
2709 	cnt += pring->missbufcnt;
2710 
2711 	/* While there are buffers to post */
2712 	while (cnt > 0) {
2713 		/* Allocate buffer for  command iocb */
2714 		iocb = lpfc_sli_get_iocbq(phba);
2715 		if (iocb == NULL) {
2716 			pring->missbufcnt = cnt;
2717 			return cnt;
2718 		}
2719 		icmd = &iocb->iocb;
2720 
2721 		/* 2 buffers can be posted per command */
2722 		/* Allocate buffer to post */
2723 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2724 		if (mp1)
2725 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2726 		if (!mp1 || !mp1->virt) {
2727 			kfree(mp1);
2728 			lpfc_sli_release_iocbq(phba, iocb);
2729 			pring->missbufcnt = cnt;
2730 			return cnt;
2731 		}
2732 
2733 		INIT_LIST_HEAD(&mp1->list);
2734 		/* Allocate buffer to post */
2735 		if (cnt > 1) {
2736 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2737 			if (mp2)
2738 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2739 							    &mp2->phys);
2740 			if (!mp2 || !mp2->virt) {
2741 				kfree(mp2);
2742 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2743 				kfree(mp1);
2744 				lpfc_sli_release_iocbq(phba, iocb);
2745 				pring->missbufcnt = cnt;
2746 				return cnt;
2747 			}
2748 
2749 			INIT_LIST_HEAD(&mp2->list);
2750 		} else {
2751 			mp2 = NULL;
2752 		}
2753 
2754 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2755 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2756 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2757 		icmd->ulpBdeCount = 1;
2758 		cnt--;
2759 		if (mp2) {
2760 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2761 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2762 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2763 			cnt--;
2764 			icmd->ulpBdeCount = 2;
2765 		}
2766 
2767 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2768 		icmd->ulpLe = 1;
2769 
2770 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2771 		    IOCB_ERROR) {
2772 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2773 			kfree(mp1);
2774 			cnt++;
2775 			if (mp2) {
2776 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2777 				kfree(mp2);
2778 				cnt++;
2779 			}
2780 			lpfc_sli_release_iocbq(phba, iocb);
2781 			pring->missbufcnt = cnt;
2782 			return cnt;
2783 		}
2784 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2785 		if (mp2)
2786 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2787 	}
2788 	pring->missbufcnt = 0;
2789 	return 0;
2790 }
2791 
2792 /**
2793  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2794  * @phba: pointer to lpfc hba data structure.
2795  *
2796  * This routine posts initial receive IOCB buffers to the ELS ring. The
2797  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2798  * set to 64 IOCBs. SLI3 only.
2799  *
2800  * Return codes
2801  *   0 - success (currently always success)
2802  **/
2803 static int
2804 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2805 {
2806 	struct lpfc_sli *psli = &phba->sli;
2807 
2808 	/* Ring 0, ELS / CT buffers */
2809 	lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2810 	/* Ring 2 - FCP no buffers needed */
2811 
2812 	return 0;
2813 }
2814 
2815 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2816 
2817 /**
2818  * lpfc_sha_init - Set up initial array of hash table entries
2819  * @HashResultPointer: pointer to an array as hash table.
2820  *
2821  * This routine sets up the initial values to the array of hash table entries
2822  * for the LC HBAs.
2823  **/
2824 static void
2825 lpfc_sha_init(uint32_t * HashResultPointer)
2826 {
2827 	HashResultPointer[0] = 0x67452301;
2828 	HashResultPointer[1] = 0xEFCDAB89;
2829 	HashResultPointer[2] = 0x98BADCFE;
2830 	HashResultPointer[3] = 0x10325476;
2831 	HashResultPointer[4] = 0xC3D2E1F0;
2832 }
2833 
2834 /**
2835  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2836  * @HashResultPointer: pointer to an initial/result hash table.
2837  * @HashWorkingPointer: pointer to an working hash table.
2838  *
2839  * This routine iterates an initial hash table pointed by @HashResultPointer
2840  * with the values from the working hash table pointeed by @HashWorkingPointer.
2841  * The results are putting back to the initial hash table, returned through
2842  * the @HashResultPointer as the result hash table.
2843  **/
2844 static void
2845 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2846 {
2847 	int t;
2848 	uint32_t TEMP;
2849 	uint32_t A, B, C, D, E;
2850 	t = 16;
2851 	do {
2852 		HashWorkingPointer[t] =
2853 		    S(1,
2854 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2855 								     8] ^
2856 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2857 	} while (++t <= 79);
2858 	t = 0;
2859 	A = HashResultPointer[0];
2860 	B = HashResultPointer[1];
2861 	C = HashResultPointer[2];
2862 	D = HashResultPointer[3];
2863 	E = HashResultPointer[4];
2864 
2865 	do {
2866 		if (t < 20) {
2867 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2868 		} else if (t < 40) {
2869 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2870 		} else if (t < 60) {
2871 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2872 		} else {
2873 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2874 		}
2875 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2876 		E = D;
2877 		D = C;
2878 		C = S(30, B);
2879 		B = A;
2880 		A = TEMP;
2881 	} while (++t <= 79);
2882 
2883 	HashResultPointer[0] += A;
2884 	HashResultPointer[1] += B;
2885 	HashResultPointer[2] += C;
2886 	HashResultPointer[3] += D;
2887 	HashResultPointer[4] += E;
2888 
2889 }
2890 
2891 /**
2892  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2893  * @RandomChallenge: pointer to the entry of host challenge random number array.
2894  * @HashWorking: pointer to the entry of the working hash array.
2895  *
2896  * This routine calculates the working hash array referred by @HashWorking
2897  * from the challenge random numbers associated with the host, referred by
2898  * @RandomChallenge. The result is put into the entry of the working hash
2899  * array and returned by reference through @HashWorking.
2900  **/
2901 static void
2902 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2903 {
2904 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2905 }
2906 
2907 /**
2908  * lpfc_hba_init - Perform special handling for LC HBA initialization
2909  * @phba: pointer to lpfc hba data structure.
2910  * @hbainit: pointer to an array of unsigned 32-bit integers.
2911  *
2912  * This routine performs the special handling for LC HBA initialization.
2913  **/
2914 void
2915 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
2916 {
2917 	int t;
2918 	uint32_t *HashWorking;
2919 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
2920 
2921 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
2922 	if (!HashWorking)
2923 		return;
2924 
2925 	HashWorking[0] = HashWorking[78] = *pwwnn++;
2926 	HashWorking[1] = HashWorking[79] = *pwwnn;
2927 
2928 	for (t = 0; t < 7; t++)
2929 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
2930 
2931 	lpfc_sha_init(hbainit);
2932 	lpfc_sha_iterate(hbainit, HashWorking);
2933 	kfree(HashWorking);
2934 }
2935 
2936 /**
2937  * lpfc_cleanup - Performs vport cleanups before deleting a vport
2938  * @vport: pointer to a virtual N_Port data structure.
2939  *
2940  * This routine performs the necessary cleanups before deleting the @vport.
2941  * It invokes the discovery state machine to perform necessary state
2942  * transitions and to release the ndlps associated with the @vport. Note,
2943  * the physical port is treated as @vport 0.
2944  **/
2945 void
2946 lpfc_cleanup(struct lpfc_vport *vport)
2947 {
2948 	struct lpfc_hba   *phba = vport->phba;
2949 	struct lpfc_nodelist *ndlp, *next_ndlp;
2950 	int i = 0;
2951 
2952 	if (phba->link_state > LPFC_LINK_DOWN)
2953 		lpfc_port_link_failure(vport);
2954 
2955 	/* Clean up VMID resources */
2956 	if (lpfc_is_vmid_enabled(phba))
2957 		lpfc_vmid_vport_cleanup(vport);
2958 
2959 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
2960 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
2961 		    ndlp->nlp_DID == Fabric_DID) {
2962 			/* Just free up ndlp with Fabric_DID for vports */
2963 			lpfc_nlp_put(ndlp);
2964 			continue;
2965 		}
2966 
2967 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
2968 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
2969 			lpfc_nlp_put(ndlp);
2970 			continue;
2971 		}
2972 
2973 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
2974 		 * DEVICE_RM event.
2975 		 */
2976 		if (ndlp->nlp_type & NLP_FABRIC &&
2977 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
2978 			lpfc_disc_state_machine(vport, ndlp, NULL,
2979 					NLP_EVT_DEVICE_RECOVERY);
2980 
2981 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
2982 			lpfc_disc_state_machine(vport, ndlp, NULL,
2983 					NLP_EVT_DEVICE_RM);
2984 	}
2985 
2986 	/* At this point, ALL ndlp's should be gone
2987 	 * because of the previous NLP_EVT_DEVICE_RM.
2988 	 * Lets wait for this to happen, if needed.
2989 	 */
2990 	while (!list_empty(&vport->fc_nodes)) {
2991 		if (i++ > 3000) {
2992 			lpfc_printf_vlog(vport, KERN_ERR,
2993 					 LOG_TRACE_EVENT,
2994 				"0233 Nodelist not empty\n");
2995 			list_for_each_entry_safe(ndlp, next_ndlp,
2996 						&vport->fc_nodes, nlp_listp) {
2997 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
2998 						 LOG_TRACE_EVENT,
2999 						 "0282 did:x%x ndlp:x%px "
3000 						 "refcnt:%d xflags x%x nflag x%x\n",
3001 						 ndlp->nlp_DID, (void *)ndlp,
3002 						 kref_read(&ndlp->kref),
3003 						 ndlp->fc4_xpt_flags,
3004 						 ndlp->nlp_flag);
3005 			}
3006 			break;
3007 		}
3008 
3009 		/* Wait for any activity on ndlps to settle */
3010 		msleep(10);
3011 	}
3012 	lpfc_cleanup_vports_rrqs(vport, NULL);
3013 }
3014 
3015 /**
3016  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3017  * @vport: pointer to a virtual N_Port data structure.
3018  *
3019  * This routine stops all the timers associated with a @vport. This function
3020  * is invoked before disabling or deleting a @vport. Note that the physical
3021  * port is treated as @vport 0.
3022  **/
3023 void
3024 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3025 {
3026 	del_timer_sync(&vport->els_tmofunc);
3027 	del_timer_sync(&vport->delayed_disc_tmo);
3028 	lpfc_can_disctmo(vport);
3029 	return;
3030 }
3031 
3032 /**
3033  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3034  * @phba: pointer to lpfc hba data structure.
3035  *
3036  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3037  * caller of this routine should already hold the host lock.
3038  **/
3039 void
3040 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3041 {
3042 	/* Clear pending FCF rediscovery wait flag */
3043 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3044 
3045 	/* Now, try to stop the timer */
3046 	del_timer(&phba->fcf.redisc_wait);
3047 }
3048 
3049 /**
3050  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3051  * @phba: pointer to lpfc hba data structure.
3052  *
3053  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3054  * checks whether the FCF rediscovery wait timer is pending with the host
3055  * lock held before proceeding with disabling the timer and clearing the
3056  * wait timer pendig flag.
3057  **/
3058 void
3059 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3060 {
3061 	spin_lock_irq(&phba->hbalock);
3062 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3063 		/* FCF rediscovery timer already fired or stopped */
3064 		spin_unlock_irq(&phba->hbalock);
3065 		return;
3066 	}
3067 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3068 	/* Clear failover in progress flags */
3069 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3070 	spin_unlock_irq(&phba->hbalock);
3071 }
3072 
3073 /**
3074  * lpfc_cmf_stop - Stop CMF processing
3075  * @phba: pointer to lpfc hba data structure.
3076  *
3077  * This is called when the link goes down or if CMF mode is turned OFF.
3078  * It is also called when going offline or unloaded just before the
3079  * congestion info buffer is unregistered.
3080  **/
3081 void
3082 lpfc_cmf_stop(struct lpfc_hba *phba)
3083 {
3084 	int cpu;
3085 	struct lpfc_cgn_stat *cgs;
3086 
3087 	/* We only do something if CMF is enabled */
3088 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3089 		return;
3090 
3091 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3092 			"6221 Stop CMF / Cancel Timer\n");
3093 
3094 	/* Cancel the CMF timer */
3095 	hrtimer_cancel(&phba->cmf_timer);
3096 
3097 	/* Zero CMF counters */
3098 	atomic_set(&phba->cmf_busy, 0);
3099 	for_each_present_cpu(cpu) {
3100 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3101 		atomic64_set(&cgs->total_bytes, 0);
3102 		atomic64_set(&cgs->rcv_bytes, 0);
3103 		atomic_set(&cgs->rx_io_cnt, 0);
3104 		atomic64_set(&cgs->rx_latency, 0);
3105 	}
3106 	atomic_set(&phba->cmf_bw_wait, 0);
3107 
3108 	/* Resume any blocked IO - Queue unblock on workqueue */
3109 	queue_work(phba->wq, &phba->unblock_request_work);
3110 }
3111 
3112 static inline uint64_t
3113 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3114 {
3115 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3116 
3117 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3118 }
3119 
3120 void
3121 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3122 {
3123 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3124 			"6223 Signal CMF init\n");
3125 
3126 	/* Use the new fc_linkspeed to recalculate */
3127 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3128 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3129 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3130 					    phba->cmf_interval_rate, 1000);
3131 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3132 
3133 	/* This is a signal to firmware to sync up CMF BW with link speed */
3134 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3135 }
3136 
3137 /**
3138  * lpfc_cmf_start - Start CMF processing
3139  * @phba: pointer to lpfc hba data structure.
3140  *
3141  * This is called when the link comes up or if CMF mode is turned OFF
3142  * to Monitor or Managed.
3143  **/
3144 void
3145 lpfc_cmf_start(struct lpfc_hba *phba)
3146 {
3147 	struct lpfc_cgn_stat *cgs;
3148 	int cpu;
3149 
3150 	/* We only do something if CMF is enabled */
3151 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3152 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3153 		return;
3154 
3155 	/* Reinitialize congestion buffer info */
3156 	lpfc_init_congestion_buf(phba);
3157 
3158 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3159 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3160 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3161 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3162 
3163 	atomic_set(&phba->cmf_busy, 0);
3164 	for_each_present_cpu(cpu) {
3165 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3166 		atomic64_set(&cgs->total_bytes, 0);
3167 		atomic64_set(&cgs->rcv_bytes, 0);
3168 		atomic_set(&cgs->rx_io_cnt, 0);
3169 		atomic64_set(&cgs->rx_latency, 0);
3170 	}
3171 	phba->cmf_latency.tv_sec = 0;
3172 	phba->cmf_latency.tv_nsec = 0;
3173 
3174 	lpfc_cmf_signal_init(phba);
3175 
3176 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3177 			"6222 Start CMF / Timer\n");
3178 
3179 	phba->cmf_timer_cnt = 0;
3180 	hrtimer_start(&phba->cmf_timer,
3181 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3182 		      HRTIMER_MODE_REL);
3183 	/* Setup for latency check in IO cmpl routines */
3184 	ktime_get_real_ts64(&phba->cmf_latency);
3185 
3186 	atomic_set(&phba->cmf_bw_wait, 0);
3187 	atomic_set(&phba->cmf_stop_io, 0);
3188 }
3189 
3190 /**
3191  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3192  * @phba: pointer to lpfc hba data structure.
3193  *
3194  * This routine stops all the timers associated with a HBA. This function is
3195  * invoked before either putting a HBA offline or unloading the driver.
3196  **/
3197 void
3198 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3199 {
3200 	if (phba->pport)
3201 		lpfc_stop_vport_timers(phba->pport);
3202 	cancel_delayed_work_sync(&phba->eq_delay_work);
3203 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3204 	del_timer_sync(&phba->sli.mbox_tmo);
3205 	del_timer_sync(&phba->fabric_block_timer);
3206 	del_timer_sync(&phba->eratt_poll);
3207 	del_timer_sync(&phba->hb_tmofunc);
3208 	if (phba->sli_rev == LPFC_SLI_REV4) {
3209 		del_timer_sync(&phba->rrq_tmr);
3210 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3211 	}
3212 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3213 
3214 	switch (phba->pci_dev_grp) {
3215 	case LPFC_PCI_DEV_LP:
3216 		/* Stop any LightPulse device specific driver timers */
3217 		del_timer_sync(&phba->fcp_poll_timer);
3218 		break;
3219 	case LPFC_PCI_DEV_OC:
3220 		/* Stop any OneConnect device specific driver timers */
3221 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3222 		break;
3223 	default:
3224 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3225 				"0297 Invalid device group (x%x)\n",
3226 				phba->pci_dev_grp);
3227 		break;
3228 	}
3229 	return;
3230 }
3231 
3232 /**
3233  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3234  * @phba: pointer to lpfc hba data structure.
3235  * @mbx_action: flag for mailbox no wait action.
3236  *
3237  * This routine marks a HBA's management interface as blocked. Once the HBA's
3238  * management interface is marked as blocked, all the user space access to
3239  * the HBA, whether they are from sysfs interface or libdfc interface will
3240  * all be blocked. The HBA is set to block the management interface when the
3241  * driver prepares the HBA interface for online or offline.
3242  **/
3243 static void
3244 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3245 {
3246 	unsigned long iflag;
3247 	uint8_t actcmd = MBX_HEARTBEAT;
3248 	unsigned long timeout;
3249 
3250 	spin_lock_irqsave(&phba->hbalock, iflag);
3251 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3252 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3253 	if (mbx_action == LPFC_MBX_NO_WAIT)
3254 		return;
3255 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3256 	spin_lock_irqsave(&phba->hbalock, iflag);
3257 	if (phba->sli.mbox_active) {
3258 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3259 		/* Determine how long we might wait for the active mailbox
3260 		 * command to be gracefully completed by firmware.
3261 		 */
3262 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3263 				phba->sli.mbox_active) * 1000) + jiffies;
3264 	}
3265 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3266 
3267 	/* Wait for the outstnading mailbox command to complete */
3268 	while (phba->sli.mbox_active) {
3269 		/* Check active mailbox complete status every 2ms */
3270 		msleep(2);
3271 		if (time_after(jiffies, timeout)) {
3272 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3273 					"2813 Mgmt IO is Blocked %x "
3274 					"- mbox cmd %x still active\n",
3275 					phba->sli.sli_flag, actcmd);
3276 			break;
3277 		}
3278 	}
3279 }
3280 
3281 /**
3282  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3283  * @phba: pointer to lpfc hba data structure.
3284  *
3285  * Allocate RPIs for all active remote nodes. This is needed whenever
3286  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3287  * is to fixup the temporary rpi assignments.
3288  **/
3289 void
3290 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3291 {
3292 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3293 	struct lpfc_vport **vports;
3294 	int i, rpi;
3295 
3296 	if (phba->sli_rev != LPFC_SLI_REV4)
3297 		return;
3298 
3299 	vports = lpfc_create_vport_work_array(phba);
3300 	if (vports == NULL)
3301 		return;
3302 
3303 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3304 		if (vports[i]->load_flag & FC_UNLOADING)
3305 			continue;
3306 
3307 		list_for_each_entry_safe(ndlp, next_ndlp,
3308 					 &vports[i]->fc_nodes,
3309 					 nlp_listp) {
3310 			rpi = lpfc_sli4_alloc_rpi(phba);
3311 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3312 				/* TODO print log? */
3313 				continue;
3314 			}
3315 			ndlp->nlp_rpi = rpi;
3316 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3317 					 LOG_NODE | LOG_DISCOVERY,
3318 					 "0009 Assign RPI x%x to ndlp x%px "
3319 					 "DID:x%06x flg:x%x\n",
3320 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3321 					 ndlp->nlp_flag);
3322 		}
3323 	}
3324 	lpfc_destroy_vport_work_array(phba, vports);
3325 }
3326 
3327 /**
3328  * lpfc_create_expedite_pool - create expedite pool
3329  * @phba: pointer to lpfc hba data structure.
3330  *
3331  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3332  * to expedite pool. Mark them as expedite.
3333  **/
3334 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3335 {
3336 	struct lpfc_sli4_hdw_queue *qp;
3337 	struct lpfc_io_buf *lpfc_ncmd;
3338 	struct lpfc_io_buf *lpfc_ncmd_next;
3339 	struct lpfc_epd_pool *epd_pool;
3340 	unsigned long iflag;
3341 
3342 	epd_pool = &phba->epd_pool;
3343 	qp = &phba->sli4_hba.hdwq[0];
3344 
3345 	spin_lock_init(&epd_pool->lock);
3346 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3347 	spin_lock(&epd_pool->lock);
3348 	INIT_LIST_HEAD(&epd_pool->list);
3349 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3350 				 &qp->lpfc_io_buf_list_put, list) {
3351 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3352 		lpfc_ncmd->expedite = true;
3353 		qp->put_io_bufs--;
3354 		epd_pool->count++;
3355 		if (epd_pool->count >= XRI_BATCH)
3356 			break;
3357 	}
3358 	spin_unlock(&epd_pool->lock);
3359 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3360 }
3361 
3362 /**
3363  * lpfc_destroy_expedite_pool - destroy expedite pool
3364  * @phba: pointer to lpfc hba data structure.
3365  *
3366  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3367  * of HWQ 0. Clear the mark.
3368  **/
3369 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3370 {
3371 	struct lpfc_sli4_hdw_queue *qp;
3372 	struct lpfc_io_buf *lpfc_ncmd;
3373 	struct lpfc_io_buf *lpfc_ncmd_next;
3374 	struct lpfc_epd_pool *epd_pool;
3375 	unsigned long iflag;
3376 
3377 	epd_pool = &phba->epd_pool;
3378 	qp = &phba->sli4_hba.hdwq[0];
3379 
3380 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3381 	spin_lock(&epd_pool->lock);
3382 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3383 				 &epd_pool->list, list) {
3384 		list_move_tail(&lpfc_ncmd->list,
3385 			       &qp->lpfc_io_buf_list_put);
3386 		lpfc_ncmd->flags = false;
3387 		qp->put_io_bufs++;
3388 		epd_pool->count--;
3389 	}
3390 	spin_unlock(&epd_pool->lock);
3391 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3392 }
3393 
3394 /**
3395  * lpfc_create_multixri_pools - create multi-XRI pools
3396  * @phba: pointer to lpfc hba data structure.
3397  *
3398  * This routine initialize public, private per HWQ. Then, move XRIs from
3399  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3400  * Initialized.
3401  **/
3402 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3403 {
3404 	u32 i, j;
3405 	u32 hwq_count;
3406 	u32 count_per_hwq;
3407 	struct lpfc_io_buf *lpfc_ncmd;
3408 	struct lpfc_io_buf *lpfc_ncmd_next;
3409 	unsigned long iflag;
3410 	struct lpfc_sli4_hdw_queue *qp;
3411 	struct lpfc_multixri_pool *multixri_pool;
3412 	struct lpfc_pbl_pool *pbl_pool;
3413 	struct lpfc_pvt_pool *pvt_pool;
3414 
3415 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3416 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3417 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3418 			phba->sli4_hba.io_xri_cnt);
3419 
3420 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3421 		lpfc_create_expedite_pool(phba);
3422 
3423 	hwq_count = phba->cfg_hdw_queue;
3424 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3425 
3426 	for (i = 0; i < hwq_count; i++) {
3427 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3428 
3429 		if (!multixri_pool) {
3430 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3431 					"1238 Failed to allocate memory for "
3432 					"multixri_pool\n");
3433 
3434 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3435 				lpfc_destroy_expedite_pool(phba);
3436 
3437 			j = 0;
3438 			while (j < i) {
3439 				qp = &phba->sli4_hba.hdwq[j];
3440 				kfree(qp->p_multixri_pool);
3441 				j++;
3442 			}
3443 			phba->cfg_xri_rebalancing = 0;
3444 			return;
3445 		}
3446 
3447 		qp = &phba->sli4_hba.hdwq[i];
3448 		qp->p_multixri_pool = multixri_pool;
3449 
3450 		multixri_pool->xri_limit = count_per_hwq;
3451 		multixri_pool->rrb_next_hwqid = i;
3452 
3453 		/* Deal with public free xri pool */
3454 		pbl_pool = &multixri_pool->pbl_pool;
3455 		spin_lock_init(&pbl_pool->lock);
3456 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3457 		spin_lock(&pbl_pool->lock);
3458 		INIT_LIST_HEAD(&pbl_pool->list);
3459 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3460 					 &qp->lpfc_io_buf_list_put, list) {
3461 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3462 			qp->put_io_bufs--;
3463 			pbl_pool->count++;
3464 		}
3465 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3466 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3467 				pbl_pool->count, i);
3468 		spin_unlock(&pbl_pool->lock);
3469 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3470 
3471 		/* Deal with private free xri pool */
3472 		pvt_pool = &multixri_pool->pvt_pool;
3473 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3474 		pvt_pool->low_watermark = XRI_BATCH;
3475 		spin_lock_init(&pvt_pool->lock);
3476 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3477 		INIT_LIST_HEAD(&pvt_pool->list);
3478 		pvt_pool->count = 0;
3479 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3480 	}
3481 }
3482 
3483 /**
3484  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3485  * @phba: pointer to lpfc hba data structure.
3486  *
3487  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3488  **/
3489 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3490 {
3491 	u32 i;
3492 	u32 hwq_count;
3493 	struct lpfc_io_buf *lpfc_ncmd;
3494 	struct lpfc_io_buf *lpfc_ncmd_next;
3495 	unsigned long iflag;
3496 	struct lpfc_sli4_hdw_queue *qp;
3497 	struct lpfc_multixri_pool *multixri_pool;
3498 	struct lpfc_pbl_pool *pbl_pool;
3499 	struct lpfc_pvt_pool *pvt_pool;
3500 
3501 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3502 		lpfc_destroy_expedite_pool(phba);
3503 
3504 	if (!(phba->pport->load_flag & FC_UNLOADING))
3505 		lpfc_sli_flush_io_rings(phba);
3506 
3507 	hwq_count = phba->cfg_hdw_queue;
3508 
3509 	for (i = 0; i < hwq_count; i++) {
3510 		qp = &phba->sli4_hba.hdwq[i];
3511 		multixri_pool = qp->p_multixri_pool;
3512 		if (!multixri_pool)
3513 			continue;
3514 
3515 		qp->p_multixri_pool = NULL;
3516 
3517 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3518 
3519 		/* Deal with public free xri pool */
3520 		pbl_pool = &multixri_pool->pbl_pool;
3521 		spin_lock(&pbl_pool->lock);
3522 
3523 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3524 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3525 				pbl_pool->count, i);
3526 
3527 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3528 					 &pbl_pool->list, list) {
3529 			list_move_tail(&lpfc_ncmd->list,
3530 				       &qp->lpfc_io_buf_list_put);
3531 			qp->put_io_bufs++;
3532 			pbl_pool->count--;
3533 		}
3534 
3535 		INIT_LIST_HEAD(&pbl_pool->list);
3536 		pbl_pool->count = 0;
3537 
3538 		spin_unlock(&pbl_pool->lock);
3539 
3540 		/* Deal with private free xri pool */
3541 		pvt_pool = &multixri_pool->pvt_pool;
3542 		spin_lock(&pvt_pool->lock);
3543 
3544 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3545 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3546 				pvt_pool->count, i);
3547 
3548 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3549 					 &pvt_pool->list, list) {
3550 			list_move_tail(&lpfc_ncmd->list,
3551 				       &qp->lpfc_io_buf_list_put);
3552 			qp->put_io_bufs++;
3553 			pvt_pool->count--;
3554 		}
3555 
3556 		INIT_LIST_HEAD(&pvt_pool->list);
3557 		pvt_pool->count = 0;
3558 
3559 		spin_unlock(&pvt_pool->lock);
3560 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3561 
3562 		kfree(multixri_pool);
3563 	}
3564 }
3565 
3566 /**
3567  * lpfc_online - Initialize and bring a HBA online
3568  * @phba: pointer to lpfc hba data structure.
3569  *
3570  * This routine initializes the HBA and brings a HBA online. During this
3571  * process, the management interface is blocked to prevent user space access
3572  * to the HBA interfering with the driver initialization.
3573  *
3574  * Return codes
3575  *   0 - successful
3576  *   1 - failed
3577  **/
3578 int
3579 lpfc_online(struct lpfc_hba *phba)
3580 {
3581 	struct lpfc_vport *vport;
3582 	struct lpfc_vport **vports;
3583 	int i, error = 0;
3584 	bool vpis_cleared = false;
3585 
3586 	if (!phba)
3587 		return 0;
3588 	vport = phba->pport;
3589 
3590 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3591 		return 0;
3592 
3593 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3594 			"0458 Bring Adapter online\n");
3595 
3596 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3597 
3598 	if (phba->sli_rev == LPFC_SLI_REV4) {
3599 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3600 			lpfc_unblock_mgmt_io(phba);
3601 			return 1;
3602 		}
3603 		spin_lock_irq(&phba->hbalock);
3604 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3605 			vpis_cleared = true;
3606 		spin_unlock_irq(&phba->hbalock);
3607 
3608 		/* Reestablish the local initiator port.
3609 		 * The offline process destroyed the previous lport.
3610 		 */
3611 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3612 				!phba->nvmet_support) {
3613 			error = lpfc_nvme_create_localport(phba->pport);
3614 			if (error)
3615 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3616 					"6132 NVME restore reg failed "
3617 					"on nvmei error x%x\n", error);
3618 		}
3619 	} else {
3620 		lpfc_sli_queue_init(phba);
3621 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3622 			lpfc_unblock_mgmt_io(phba);
3623 			return 1;
3624 		}
3625 	}
3626 
3627 	vports = lpfc_create_vport_work_array(phba);
3628 	if (vports != NULL) {
3629 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3630 			struct Scsi_Host *shost;
3631 			shost = lpfc_shost_from_vport(vports[i]);
3632 			spin_lock_irq(shost->host_lock);
3633 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3634 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3635 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3636 			if (phba->sli_rev == LPFC_SLI_REV4) {
3637 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3638 				if ((vpis_cleared) &&
3639 				    (vports[i]->port_type !=
3640 					LPFC_PHYSICAL_PORT))
3641 					vports[i]->vpi = 0;
3642 			}
3643 			spin_unlock_irq(shost->host_lock);
3644 		}
3645 	}
3646 	lpfc_destroy_vport_work_array(phba, vports);
3647 
3648 	if (phba->cfg_xri_rebalancing)
3649 		lpfc_create_multixri_pools(phba);
3650 
3651 	lpfc_cpuhp_add(phba);
3652 
3653 	lpfc_unblock_mgmt_io(phba);
3654 	return 0;
3655 }
3656 
3657 /**
3658  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3659  * @phba: pointer to lpfc hba data structure.
3660  *
3661  * This routine marks a HBA's management interface as not blocked. Once the
3662  * HBA's management interface is marked as not blocked, all the user space
3663  * access to the HBA, whether they are from sysfs interface or libdfc
3664  * interface will be allowed. The HBA is set to block the management interface
3665  * when the driver prepares the HBA interface for online or offline and then
3666  * set to unblock the management interface afterwards.
3667  **/
3668 void
3669 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3670 {
3671 	unsigned long iflag;
3672 
3673 	spin_lock_irqsave(&phba->hbalock, iflag);
3674 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3675 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3676 }
3677 
3678 /**
3679  * lpfc_offline_prep - Prepare a HBA to be brought offline
3680  * @phba: pointer to lpfc hba data structure.
3681  * @mbx_action: flag for mailbox shutdown action.
3682  *
3683  * This routine is invoked to prepare a HBA to be brought offline. It performs
3684  * unregistration login to all the nodes on all vports and flushes the mailbox
3685  * queue to make it ready to be brought offline.
3686  **/
3687 void
3688 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3689 {
3690 	struct lpfc_vport *vport = phba->pport;
3691 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3692 	struct lpfc_vport **vports;
3693 	struct Scsi_Host *shost;
3694 	int i;
3695 	int offline = 0;
3696 
3697 	if (vport->fc_flag & FC_OFFLINE_MODE)
3698 		return;
3699 
3700 	lpfc_block_mgmt_io(phba, mbx_action);
3701 
3702 	lpfc_linkdown(phba);
3703 
3704 	offline =  pci_channel_offline(phba->pcidev);
3705 
3706 	/* Issue an unreg_login to all nodes on all vports */
3707 	vports = lpfc_create_vport_work_array(phba);
3708 	if (vports != NULL) {
3709 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3710 			if (vports[i]->load_flag & FC_UNLOADING)
3711 				continue;
3712 			shost = lpfc_shost_from_vport(vports[i]);
3713 			spin_lock_irq(shost->host_lock);
3714 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3715 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3716 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3717 			spin_unlock_irq(shost->host_lock);
3718 
3719 			shost =	lpfc_shost_from_vport(vports[i]);
3720 			list_for_each_entry_safe(ndlp, next_ndlp,
3721 						 &vports[i]->fc_nodes,
3722 						 nlp_listp) {
3723 
3724 				spin_lock_irq(&ndlp->lock);
3725 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3726 				spin_unlock_irq(&ndlp->lock);
3727 
3728 				if (offline) {
3729 					spin_lock_irq(&ndlp->lock);
3730 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3731 							    NLP_RPI_REGISTERED);
3732 					spin_unlock_irq(&ndlp->lock);
3733 				} else {
3734 					lpfc_unreg_rpi(vports[i], ndlp);
3735 				}
3736 				/*
3737 				 * Whenever an SLI4 port goes offline, free the
3738 				 * RPI. Get a new RPI when the adapter port
3739 				 * comes back online.
3740 				 */
3741 				if (phba->sli_rev == LPFC_SLI_REV4) {
3742 					lpfc_printf_vlog(vports[i], KERN_INFO,
3743 						 LOG_NODE | LOG_DISCOVERY,
3744 						 "0011 Free RPI x%x on "
3745 						 "ndlp: x%px did x%x\n",
3746 						 ndlp->nlp_rpi, ndlp,
3747 						 ndlp->nlp_DID);
3748 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3749 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3750 				}
3751 
3752 				if (ndlp->nlp_type & NLP_FABRIC) {
3753 					lpfc_disc_state_machine(vports[i], ndlp,
3754 						NULL, NLP_EVT_DEVICE_RECOVERY);
3755 
3756 					/* Don't remove the node unless the node
3757 					 * has been unregistered with the
3758 					 * transport, and we're not in recovery
3759 					 * before dev_loss_tmo triggered.
3760 					 * Otherwise, let dev_loss take care of
3761 					 * the node.
3762 					 */
3763 					if (!(ndlp->save_flags &
3764 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3765 					    !(ndlp->fc4_xpt_flags &
3766 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3767 						lpfc_disc_state_machine
3768 							(vports[i], ndlp,
3769 							 NULL,
3770 							 NLP_EVT_DEVICE_RM);
3771 				}
3772 			}
3773 		}
3774 	}
3775 	lpfc_destroy_vport_work_array(phba, vports);
3776 
3777 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3778 
3779 	if (phba->wq)
3780 		flush_workqueue(phba->wq);
3781 }
3782 
3783 /**
3784  * lpfc_offline - Bring a HBA offline
3785  * @phba: pointer to lpfc hba data structure.
3786  *
3787  * This routine actually brings a HBA offline. It stops all the timers
3788  * associated with the HBA, brings down the SLI layer, and eventually
3789  * marks the HBA as in offline state for the upper layer protocol.
3790  **/
3791 void
3792 lpfc_offline(struct lpfc_hba *phba)
3793 {
3794 	struct Scsi_Host  *shost;
3795 	struct lpfc_vport **vports;
3796 	int i;
3797 
3798 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3799 		return;
3800 
3801 	/* stop port and all timers associated with this hba */
3802 	lpfc_stop_port(phba);
3803 
3804 	/* Tear down the local and target port registrations.  The
3805 	 * nvme transports need to cleanup.
3806 	 */
3807 	lpfc_nvmet_destroy_targetport(phba);
3808 	lpfc_nvme_destroy_localport(phba->pport);
3809 
3810 	vports = lpfc_create_vport_work_array(phba);
3811 	if (vports != NULL)
3812 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3813 			lpfc_stop_vport_timers(vports[i]);
3814 	lpfc_destroy_vport_work_array(phba, vports);
3815 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3816 			"0460 Bring Adapter offline\n");
3817 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3818 	   now.  */
3819 	lpfc_sli_hba_down(phba);
3820 	spin_lock_irq(&phba->hbalock);
3821 	phba->work_ha = 0;
3822 	spin_unlock_irq(&phba->hbalock);
3823 	vports = lpfc_create_vport_work_array(phba);
3824 	if (vports != NULL)
3825 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3826 			shost = lpfc_shost_from_vport(vports[i]);
3827 			spin_lock_irq(shost->host_lock);
3828 			vports[i]->work_port_events = 0;
3829 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3830 			spin_unlock_irq(shost->host_lock);
3831 		}
3832 	lpfc_destroy_vport_work_array(phba, vports);
3833 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3834 	 * in hba_unset
3835 	 */
3836 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3837 		__lpfc_cpuhp_remove(phba);
3838 
3839 	if (phba->cfg_xri_rebalancing)
3840 		lpfc_destroy_multixri_pools(phba);
3841 }
3842 
3843 /**
3844  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3845  * @phba: pointer to lpfc hba data structure.
3846  *
3847  * This routine is to free all the SCSI buffers and IOCBs from the driver
3848  * list back to kernel. It is called from lpfc_pci_remove_one to free
3849  * the internal resources before the device is removed from the system.
3850  **/
3851 static void
3852 lpfc_scsi_free(struct lpfc_hba *phba)
3853 {
3854 	struct lpfc_io_buf *sb, *sb_next;
3855 
3856 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3857 		return;
3858 
3859 	spin_lock_irq(&phba->hbalock);
3860 
3861 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3862 
3863 	spin_lock(&phba->scsi_buf_list_put_lock);
3864 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3865 				 list) {
3866 		list_del(&sb->list);
3867 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3868 			      sb->dma_handle);
3869 		kfree(sb);
3870 		phba->total_scsi_bufs--;
3871 	}
3872 	spin_unlock(&phba->scsi_buf_list_put_lock);
3873 
3874 	spin_lock(&phba->scsi_buf_list_get_lock);
3875 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3876 				 list) {
3877 		list_del(&sb->list);
3878 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3879 			      sb->dma_handle);
3880 		kfree(sb);
3881 		phba->total_scsi_bufs--;
3882 	}
3883 	spin_unlock(&phba->scsi_buf_list_get_lock);
3884 	spin_unlock_irq(&phba->hbalock);
3885 }
3886 
3887 /**
3888  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3889  * @phba: pointer to lpfc hba data structure.
3890  *
3891  * This routine is to free all the IO buffers and IOCBs from the driver
3892  * list back to kernel. It is called from lpfc_pci_remove_one to free
3893  * the internal resources before the device is removed from the system.
3894  **/
3895 void
3896 lpfc_io_free(struct lpfc_hba *phba)
3897 {
3898 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
3899 	struct lpfc_sli4_hdw_queue *qp;
3900 	int idx;
3901 
3902 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
3903 		qp = &phba->sli4_hba.hdwq[idx];
3904 		/* Release all the lpfc_nvme_bufs maintained by this host. */
3905 		spin_lock(&qp->io_buf_list_put_lock);
3906 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3907 					 &qp->lpfc_io_buf_list_put,
3908 					 list) {
3909 			list_del(&lpfc_ncmd->list);
3910 			qp->put_io_bufs--;
3911 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3912 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3913 			if (phba->cfg_xpsgl && !phba->nvmet_support)
3914 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3915 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3916 			kfree(lpfc_ncmd);
3917 			qp->total_io_bufs--;
3918 		}
3919 		spin_unlock(&qp->io_buf_list_put_lock);
3920 
3921 		spin_lock(&qp->io_buf_list_get_lock);
3922 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3923 					 &qp->lpfc_io_buf_list_get,
3924 					 list) {
3925 			list_del(&lpfc_ncmd->list);
3926 			qp->get_io_bufs--;
3927 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3928 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3929 			if (phba->cfg_xpsgl && !phba->nvmet_support)
3930 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3931 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3932 			kfree(lpfc_ncmd);
3933 			qp->total_io_bufs--;
3934 		}
3935 		spin_unlock(&qp->io_buf_list_get_lock);
3936 	}
3937 }
3938 
3939 /**
3940  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
3941  * @phba: pointer to lpfc hba data structure.
3942  *
3943  * This routine first calculates the sizes of the current els and allocated
3944  * scsi sgl lists, and then goes through all sgls to updates the physical
3945  * XRIs assigned due to port function reset. During port initialization, the
3946  * current els and allocated scsi sgl lists are 0s.
3947  *
3948  * Return codes
3949  *   0 - successful (for now, it always returns 0)
3950  **/
3951 int
3952 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
3953 {
3954 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
3955 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
3956 	LIST_HEAD(els_sgl_list);
3957 	int rc;
3958 
3959 	/*
3960 	 * update on pci function's els xri-sgl list
3961 	 */
3962 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
3963 
3964 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
3965 		/* els xri-sgl expanded */
3966 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
3967 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3968 				"3157 ELS xri-sgl count increased from "
3969 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
3970 				els_xri_cnt);
3971 		/* allocate the additional els sgls */
3972 		for (i = 0; i < xri_cnt; i++) {
3973 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
3974 					     GFP_KERNEL);
3975 			if (sglq_entry == NULL) {
3976 				lpfc_printf_log(phba, KERN_ERR,
3977 						LOG_TRACE_EVENT,
3978 						"2562 Failure to allocate an "
3979 						"ELS sgl entry:%d\n", i);
3980 				rc = -ENOMEM;
3981 				goto out_free_mem;
3982 			}
3983 			sglq_entry->buff_type = GEN_BUFF_TYPE;
3984 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
3985 							   &sglq_entry->phys);
3986 			if (sglq_entry->virt == NULL) {
3987 				kfree(sglq_entry);
3988 				lpfc_printf_log(phba, KERN_ERR,
3989 						LOG_TRACE_EVENT,
3990 						"2563 Failure to allocate an "
3991 						"ELS mbuf:%d\n", i);
3992 				rc = -ENOMEM;
3993 				goto out_free_mem;
3994 			}
3995 			sglq_entry->sgl = sglq_entry->virt;
3996 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
3997 			sglq_entry->state = SGL_FREED;
3998 			list_add_tail(&sglq_entry->list, &els_sgl_list);
3999 		}
4000 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4001 		list_splice_init(&els_sgl_list,
4002 				 &phba->sli4_hba.lpfc_els_sgl_list);
4003 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4004 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4005 		/* els xri-sgl shrinked */
4006 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4007 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4008 				"3158 ELS xri-sgl count decreased from "
4009 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4010 				els_xri_cnt);
4011 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4012 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4013 				 &els_sgl_list);
4014 		/* release extra els sgls from list */
4015 		for (i = 0; i < xri_cnt; i++) {
4016 			list_remove_head(&els_sgl_list,
4017 					 sglq_entry, struct lpfc_sglq, list);
4018 			if (sglq_entry) {
4019 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4020 						 sglq_entry->phys);
4021 				kfree(sglq_entry);
4022 			}
4023 		}
4024 		list_splice_init(&els_sgl_list,
4025 				 &phba->sli4_hba.lpfc_els_sgl_list);
4026 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4027 	} else
4028 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4029 				"3163 ELS xri-sgl count unchanged: %d\n",
4030 				els_xri_cnt);
4031 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4032 
4033 	/* update xris to els sgls on the list */
4034 	sglq_entry = NULL;
4035 	sglq_entry_next = NULL;
4036 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4037 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4038 		lxri = lpfc_sli4_next_xritag(phba);
4039 		if (lxri == NO_XRI) {
4040 			lpfc_printf_log(phba, KERN_ERR,
4041 					LOG_TRACE_EVENT,
4042 					"2400 Failed to allocate xri for "
4043 					"ELS sgl\n");
4044 			rc = -ENOMEM;
4045 			goto out_free_mem;
4046 		}
4047 		sglq_entry->sli4_lxritag = lxri;
4048 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4049 	}
4050 	return 0;
4051 
4052 out_free_mem:
4053 	lpfc_free_els_sgl_list(phba);
4054 	return rc;
4055 }
4056 
4057 /**
4058  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4059  * @phba: pointer to lpfc hba data structure.
4060  *
4061  * This routine first calculates the sizes of the current els and allocated
4062  * scsi sgl lists, and then goes through all sgls to updates the physical
4063  * XRIs assigned due to port function reset. During port initialization, the
4064  * current els and allocated scsi sgl lists are 0s.
4065  *
4066  * Return codes
4067  *   0 - successful (for now, it always returns 0)
4068  **/
4069 int
4070 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4071 {
4072 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4073 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4074 	uint16_t nvmet_xri_cnt;
4075 	LIST_HEAD(nvmet_sgl_list);
4076 	int rc;
4077 
4078 	/*
4079 	 * update on pci function's nvmet xri-sgl list
4080 	 */
4081 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4082 
4083 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4084 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4085 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4086 		/* els xri-sgl expanded */
4087 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4088 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4089 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4090 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4091 		/* allocate the additional nvmet sgls */
4092 		for (i = 0; i < xri_cnt; i++) {
4093 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4094 					     GFP_KERNEL);
4095 			if (sglq_entry == NULL) {
4096 				lpfc_printf_log(phba, KERN_ERR,
4097 						LOG_TRACE_EVENT,
4098 						"6303 Failure to allocate an "
4099 						"NVMET sgl entry:%d\n", i);
4100 				rc = -ENOMEM;
4101 				goto out_free_mem;
4102 			}
4103 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4104 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4105 							   &sglq_entry->phys);
4106 			if (sglq_entry->virt == NULL) {
4107 				kfree(sglq_entry);
4108 				lpfc_printf_log(phba, KERN_ERR,
4109 						LOG_TRACE_EVENT,
4110 						"6304 Failure to allocate an "
4111 						"NVMET buf:%d\n", i);
4112 				rc = -ENOMEM;
4113 				goto out_free_mem;
4114 			}
4115 			sglq_entry->sgl = sglq_entry->virt;
4116 			memset(sglq_entry->sgl, 0,
4117 			       phba->cfg_sg_dma_buf_size);
4118 			sglq_entry->state = SGL_FREED;
4119 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4120 		}
4121 		spin_lock_irq(&phba->hbalock);
4122 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4123 		list_splice_init(&nvmet_sgl_list,
4124 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4125 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4126 		spin_unlock_irq(&phba->hbalock);
4127 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4128 		/* nvmet xri-sgl shrunk */
4129 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4130 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4131 				"6305 NVMET xri-sgl count decreased from "
4132 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4133 				nvmet_xri_cnt);
4134 		spin_lock_irq(&phba->hbalock);
4135 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4136 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4137 				 &nvmet_sgl_list);
4138 		/* release extra nvmet sgls from list */
4139 		for (i = 0; i < xri_cnt; i++) {
4140 			list_remove_head(&nvmet_sgl_list,
4141 					 sglq_entry, struct lpfc_sglq, list);
4142 			if (sglq_entry) {
4143 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4144 						    sglq_entry->phys);
4145 				kfree(sglq_entry);
4146 			}
4147 		}
4148 		list_splice_init(&nvmet_sgl_list,
4149 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4150 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4151 		spin_unlock_irq(&phba->hbalock);
4152 	} else
4153 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4154 				"6306 NVMET xri-sgl count unchanged: %d\n",
4155 				nvmet_xri_cnt);
4156 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4157 
4158 	/* update xris to nvmet sgls on the list */
4159 	sglq_entry = NULL;
4160 	sglq_entry_next = NULL;
4161 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4162 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4163 		lxri = lpfc_sli4_next_xritag(phba);
4164 		if (lxri == NO_XRI) {
4165 			lpfc_printf_log(phba, KERN_ERR,
4166 					LOG_TRACE_EVENT,
4167 					"6307 Failed to allocate xri for "
4168 					"NVMET sgl\n");
4169 			rc = -ENOMEM;
4170 			goto out_free_mem;
4171 		}
4172 		sglq_entry->sli4_lxritag = lxri;
4173 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4174 	}
4175 	return 0;
4176 
4177 out_free_mem:
4178 	lpfc_free_nvmet_sgl_list(phba);
4179 	return rc;
4180 }
4181 
4182 int
4183 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4184 {
4185 	LIST_HEAD(blist);
4186 	struct lpfc_sli4_hdw_queue *qp;
4187 	struct lpfc_io_buf *lpfc_cmd;
4188 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4189 	int idx, cnt, xri, inserted;
4190 
4191 	cnt = 0;
4192 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4193 		qp = &phba->sli4_hba.hdwq[idx];
4194 		spin_lock_irq(&qp->io_buf_list_get_lock);
4195 		spin_lock(&qp->io_buf_list_put_lock);
4196 
4197 		/* Take everything off the get and put lists */
4198 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4199 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4200 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4201 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4202 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4203 		qp->get_io_bufs = 0;
4204 		qp->put_io_bufs = 0;
4205 		qp->total_io_bufs = 0;
4206 		spin_unlock(&qp->io_buf_list_put_lock);
4207 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4208 	}
4209 
4210 	/*
4211 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4212 	 * This is because POST_SGL takes a sequential range of XRIs
4213 	 * to post to the firmware.
4214 	 */
4215 	for (idx = 0; idx < cnt; idx++) {
4216 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4217 		if (!lpfc_cmd)
4218 			return cnt;
4219 		if (idx == 0) {
4220 			list_add_tail(&lpfc_cmd->list, cbuf);
4221 			continue;
4222 		}
4223 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4224 		inserted = 0;
4225 		prev_iobufp = NULL;
4226 		list_for_each_entry(iobufp, cbuf, list) {
4227 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4228 				if (prev_iobufp)
4229 					list_add(&lpfc_cmd->list,
4230 						 &prev_iobufp->list);
4231 				else
4232 					list_add(&lpfc_cmd->list, cbuf);
4233 				inserted = 1;
4234 				break;
4235 			}
4236 			prev_iobufp = iobufp;
4237 		}
4238 		if (!inserted)
4239 			list_add_tail(&lpfc_cmd->list, cbuf);
4240 	}
4241 	return cnt;
4242 }
4243 
4244 int
4245 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4246 {
4247 	struct lpfc_sli4_hdw_queue *qp;
4248 	struct lpfc_io_buf *lpfc_cmd;
4249 	int idx, cnt;
4250 
4251 	qp = phba->sli4_hba.hdwq;
4252 	cnt = 0;
4253 	while (!list_empty(cbuf)) {
4254 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4255 			list_remove_head(cbuf, lpfc_cmd,
4256 					 struct lpfc_io_buf, list);
4257 			if (!lpfc_cmd)
4258 				return cnt;
4259 			cnt++;
4260 			qp = &phba->sli4_hba.hdwq[idx];
4261 			lpfc_cmd->hdwq_no = idx;
4262 			lpfc_cmd->hdwq = qp;
4263 			lpfc_cmd->cur_iocbq.wqe_cmpl = NULL;
4264 			lpfc_cmd->cur_iocbq.iocb_cmpl = NULL;
4265 			spin_lock(&qp->io_buf_list_put_lock);
4266 			list_add_tail(&lpfc_cmd->list,
4267 				      &qp->lpfc_io_buf_list_put);
4268 			qp->put_io_bufs++;
4269 			qp->total_io_bufs++;
4270 			spin_unlock(&qp->io_buf_list_put_lock);
4271 		}
4272 	}
4273 	return cnt;
4274 }
4275 
4276 /**
4277  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4278  * @phba: pointer to lpfc hba data structure.
4279  *
4280  * This routine first calculates the sizes of the current els and allocated
4281  * scsi sgl lists, and then goes through all sgls to updates the physical
4282  * XRIs assigned due to port function reset. During port initialization, the
4283  * current els and allocated scsi sgl lists are 0s.
4284  *
4285  * Return codes
4286  *   0 - successful (for now, it always returns 0)
4287  **/
4288 int
4289 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4290 {
4291 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4292 	uint16_t i, lxri, els_xri_cnt;
4293 	uint16_t io_xri_cnt, io_xri_max;
4294 	LIST_HEAD(io_sgl_list);
4295 	int rc, cnt;
4296 
4297 	/*
4298 	 * update on pci function's allocated nvme xri-sgl list
4299 	 */
4300 
4301 	/* maximum number of xris available for nvme buffers */
4302 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4303 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4304 	phba->sli4_hba.io_xri_max = io_xri_max;
4305 
4306 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4307 			"6074 Current allocated XRI sgl count:%d, "
4308 			"maximum XRI count:%d\n",
4309 			phba->sli4_hba.io_xri_cnt,
4310 			phba->sli4_hba.io_xri_max);
4311 
4312 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4313 
4314 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4315 		/* max nvme xri shrunk below the allocated nvme buffers */
4316 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4317 					phba->sli4_hba.io_xri_max;
4318 		/* release the extra allocated nvme buffers */
4319 		for (i = 0; i < io_xri_cnt; i++) {
4320 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4321 					 struct lpfc_io_buf, list);
4322 			if (lpfc_ncmd) {
4323 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4324 					      lpfc_ncmd->data,
4325 					      lpfc_ncmd->dma_handle);
4326 				kfree(lpfc_ncmd);
4327 			}
4328 		}
4329 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4330 	}
4331 
4332 	/* update xris associated to remaining allocated nvme buffers */
4333 	lpfc_ncmd = NULL;
4334 	lpfc_ncmd_next = NULL;
4335 	phba->sli4_hba.io_xri_cnt = cnt;
4336 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4337 				 &io_sgl_list, list) {
4338 		lxri = lpfc_sli4_next_xritag(phba);
4339 		if (lxri == NO_XRI) {
4340 			lpfc_printf_log(phba, KERN_ERR,
4341 					LOG_TRACE_EVENT,
4342 					"6075 Failed to allocate xri for "
4343 					"nvme buffer\n");
4344 			rc = -ENOMEM;
4345 			goto out_free_mem;
4346 		}
4347 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4348 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4349 	}
4350 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4351 	return 0;
4352 
4353 out_free_mem:
4354 	lpfc_io_free(phba);
4355 	return rc;
4356 }
4357 
4358 /**
4359  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4360  * @phba: Pointer to lpfc hba data structure.
4361  * @num_to_alloc: The requested number of buffers to allocate.
4362  *
4363  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4364  * the nvme buffer contains all the necessary information needed to initiate
4365  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4366  * them on a list, it post them to the port by using SGL block post.
4367  *
4368  * Return codes:
4369  *   int - number of IO buffers that were allocated and posted.
4370  *   0 = failure, less than num_to_alloc is a partial failure.
4371  **/
4372 int
4373 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4374 {
4375 	struct lpfc_io_buf *lpfc_ncmd;
4376 	struct lpfc_iocbq *pwqeq;
4377 	uint16_t iotag, lxri = 0;
4378 	int bcnt, num_posted;
4379 	LIST_HEAD(prep_nblist);
4380 	LIST_HEAD(post_nblist);
4381 	LIST_HEAD(nvme_nblist);
4382 
4383 	phba->sli4_hba.io_xri_cnt = 0;
4384 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4385 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4386 		if (!lpfc_ncmd)
4387 			break;
4388 		/*
4389 		 * Get memory from the pci pool to map the virt space to
4390 		 * pci bus space for an I/O. The DMA buffer includes the
4391 		 * number of SGE's necessary to support the sg_tablesize.
4392 		 */
4393 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4394 						  GFP_KERNEL,
4395 						  &lpfc_ncmd->dma_handle);
4396 		if (!lpfc_ncmd->data) {
4397 			kfree(lpfc_ncmd);
4398 			break;
4399 		}
4400 
4401 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4402 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4403 		} else {
4404 			/*
4405 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4406 			 * check to be sure.
4407 			 */
4408 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4409 			    (((unsigned long)(lpfc_ncmd->data) &
4410 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4411 				lpfc_printf_log(phba, KERN_ERR,
4412 						LOG_TRACE_EVENT,
4413 						"3369 Memory alignment err: "
4414 						"addr=%lx\n",
4415 						(unsigned long)lpfc_ncmd->data);
4416 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4417 					      lpfc_ncmd->data,
4418 					      lpfc_ncmd->dma_handle);
4419 				kfree(lpfc_ncmd);
4420 				break;
4421 			}
4422 		}
4423 
4424 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4425 
4426 		lxri = lpfc_sli4_next_xritag(phba);
4427 		if (lxri == NO_XRI) {
4428 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4429 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4430 			kfree(lpfc_ncmd);
4431 			break;
4432 		}
4433 		pwqeq = &lpfc_ncmd->cur_iocbq;
4434 
4435 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4436 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4437 		if (iotag == 0) {
4438 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4439 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4440 			kfree(lpfc_ncmd);
4441 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4442 					"6121 Failed to allocate IOTAG for"
4443 					" XRI:0x%x\n", lxri);
4444 			lpfc_sli4_free_xri(phba, lxri);
4445 			break;
4446 		}
4447 		pwqeq->sli4_lxritag = lxri;
4448 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4449 		pwqeq->context1 = lpfc_ncmd;
4450 
4451 		/* Initialize local short-hand pointers. */
4452 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4453 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4454 		lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd;
4455 		spin_lock_init(&lpfc_ncmd->buf_lock);
4456 
4457 		/* add the nvme buffer to a post list */
4458 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4459 		phba->sli4_hba.io_xri_cnt++;
4460 	}
4461 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4462 			"6114 Allocate %d out of %d requested new NVME "
4463 			"buffers\n", bcnt, num_to_alloc);
4464 
4465 	/* post the list of nvme buffer sgls to port if available */
4466 	if (!list_empty(&post_nblist))
4467 		num_posted = lpfc_sli4_post_io_sgl_list(
4468 				phba, &post_nblist, bcnt);
4469 	else
4470 		num_posted = 0;
4471 
4472 	return num_posted;
4473 }
4474 
4475 static uint64_t
4476 lpfc_get_wwpn(struct lpfc_hba *phba)
4477 {
4478 	uint64_t wwn;
4479 	int rc;
4480 	LPFC_MBOXQ_t *mboxq;
4481 	MAILBOX_t *mb;
4482 
4483 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4484 						GFP_KERNEL);
4485 	if (!mboxq)
4486 		return (uint64_t)-1;
4487 
4488 	/* First get WWN of HBA instance */
4489 	lpfc_read_nv(phba, mboxq);
4490 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4491 	if (rc != MBX_SUCCESS) {
4492 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4493 				"6019 Mailbox failed , mbxCmd x%x "
4494 				"READ_NV, mbxStatus x%x\n",
4495 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4496 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4497 		mempool_free(mboxq, phba->mbox_mem_pool);
4498 		return (uint64_t) -1;
4499 	}
4500 	mb = &mboxq->u.mb;
4501 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4502 	/* wwn is WWPN of HBA instance */
4503 	mempool_free(mboxq, phba->mbox_mem_pool);
4504 	if (phba->sli_rev == LPFC_SLI_REV4)
4505 		return be64_to_cpu(wwn);
4506 	else
4507 		return rol64(wwn, 32);
4508 }
4509 
4510 /**
4511  * lpfc_vmid_res_alloc - Allocates resources for VMID
4512  * @phba: pointer to lpfc hba data structure.
4513  * @vport: pointer to vport data structure
4514  *
4515  * This routine allocated the resources needed for the VMID.
4516  *
4517  * Return codes
4518  *	0 on Success
4519  *	Non-0 on Failure
4520  */
4521 static int
4522 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4523 {
4524 	/* VMID feature is supported only on SLI4 */
4525 	if (phba->sli_rev == LPFC_SLI_REV3) {
4526 		phba->cfg_vmid_app_header = 0;
4527 		phba->cfg_vmid_priority_tagging = 0;
4528 	}
4529 
4530 	if (lpfc_is_vmid_enabled(phba)) {
4531 		vport->vmid =
4532 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4533 			    GFP_KERNEL);
4534 		if (!vport->vmid)
4535 			return -ENOMEM;
4536 
4537 		rwlock_init(&vport->vmid_lock);
4538 
4539 		/* Set the VMID parameters for the vport */
4540 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4541 		vport->vmid_inactivity_timeout =
4542 		    phba->cfg_vmid_inactivity_timeout;
4543 		vport->max_vmid = phba->cfg_max_vmid;
4544 		vport->cur_vmid_cnt = 0;
4545 
4546 		vport->vmid_priority_range = bitmap_zalloc
4547 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4548 
4549 		if (!vport->vmid_priority_range) {
4550 			kfree(vport->vmid);
4551 			return -ENOMEM;
4552 		}
4553 
4554 		hash_init(vport->hash_table);
4555 	}
4556 	return 0;
4557 }
4558 
4559 /**
4560  * lpfc_create_port - Create an FC port
4561  * @phba: pointer to lpfc hba data structure.
4562  * @instance: a unique integer ID to this FC port.
4563  * @dev: pointer to the device data structure.
4564  *
4565  * This routine creates a FC port for the upper layer protocol. The FC port
4566  * can be created on top of either a physical port or a virtual port provided
4567  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4568  * and associates the FC port created before adding the shost into the SCSI
4569  * layer.
4570  *
4571  * Return codes
4572  *   @vport - pointer to the virtual N_Port data structure.
4573  *   NULL - port create failed.
4574  **/
4575 struct lpfc_vport *
4576 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4577 {
4578 	struct lpfc_vport *vport;
4579 	struct Scsi_Host  *shost = NULL;
4580 	struct scsi_host_template *template;
4581 	int error = 0;
4582 	int i;
4583 	uint64_t wwn;
4584 	bool use_no_reset_hba = false;
4585 	int rc;
4586 
4587 	if (lpfc_no_hba_reset_cnt) {
4588 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4589 		    dev == &phba->pcidev->dev) {
4590 			/* Reset the port first */
4591 			lpfc_sli_brdrestart(phba);
4592 			rc = lpfc_sli_chipset_init(phba);
4593 			if (rc)
4594 				return NULL;
4595 		}
4596 		wwn = lpfc_get_wwpn(phba);
4597 	}
4598 
4599 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4600 		if (wwn == lpfc_no_hba_reset[i]) {
4601 			lpfc_printf_log(phba, KERN_ERR,
4602 					LOG_TRACE_EVENT,
4603 					"6020 Setting use_no_reset port=%llx\n",
4604 					wwn);
4605 			use_no_reset_hba = true;
4606 			break;
4607 		}
4608 	}
4609 
4610 	/* Seed template for SCSI host registration */
4611 	if (dev == &phba->pcidev->dev) {
4612 		template = &phba->port_template;
4613 
4614 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4615 			/* Seed physical port template */
4616 			memcpy(template, &lpfc_template, sizeof(*template));
4617 
4618 			if (use_no_reset_hba)
4619 				/* template is for a no reset SCSI Host */
4620 				template->eh_host_reset_handler = NULL;
4621 
4622 			/* Template for all vports this physical port creates */
4623 			memcpy(&phba->vport_template, &lpfc_template,
4624 			       sizeof(*template));
4625 			phba->vport_template.shost_groups = lpfc_vport_groups;
4626 			phba->vport_template.eh_bus_reset_handler = NULL;
4627 			phba->vport_template.eh_host_reset_handler = NULL;
4628 			phba->vport_template.vendor_id = 0;
4629 
4630 			/* Initialize the host templates with updated value */
4631 			if (phba->sli_rev == LPFC_SLI_REV4) {
4632 				template->sg_tablesize = phba->cfg_scsi_seg_cnt;
4633 				phba->vport_template.sg_tablesize =
4634 					phba->cfg_scsi_seg_cnt;
4635 			} else {
4636 				template->sg_tablesize = phba->cfg_sg_seg_cnt;
4637 				phba->vport_template.sg_tablesize =
4638 					phba->cfg_sg_seg_cnt;
4639 			}
4640 
4641 		} else {
4642 			/* NVMET is for physical port only */
4643 			memcpy(template, &lpfc_template_nvme,
4644 			       sizeof(*template));
4645 		}
4646 	} else {
4647 		template = &phba->vport_template;
4648 	}
4649 
4650 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4651 	if (!shost)
4652 		goto out;
4653 
4654 	vport = (struct lpfc_vport *) shost->hostdata;
4655 	vport->phba = phba;
4656 	vport->load_flag |= FC_LOADING;
4657 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4658 	vport->fc_rscn_flush = 0;
4659 	lpfc_get_vport_cfgparam(vport);
4660 
4661 	/* Adjust value in vport */
4662 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4663 
4664 	shost->unique_id = instance;
4665 	shost->max_id = LPFC_MAX_TARGET;
4666 	shost->max_lun = vport->cfg_max_luns;
4667 	shost->this_id = -1;
4668 	shost->max_cmd_len = 16;
4669 
4670 	if (phba->sli_rev == LPFC_SLI_REV4) {
4671 		if (!phba->cfg_fcp_mq_threshold ||
4672 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4673 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4674 
4675 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4676 					    phba->cfg_fcp_mq_threshold);
4677 
4678 		shost->dma_boundary =
4679 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4680 
4681 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4682 			shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE;
4683 		else
4684 			shost->sg_tablesize = phba->cfg_scsi_seg_cnt;
4685 	} else
4686 		/* SLI-3 has a limited number of hardware queues (3),
4687 		 * thus there is only one for FCP processing.
4688 		 */
4689 		shost->nr_hw_queues = 1;
4690 
4691 	/*
4692 	 * Set initial can_queue value since 0 is no longer supported and
4693 	 * scsi_add_host will fail. This will be adjusted later based on the
4694 	 * max xri value determined in hba setup.
4695 	 */
4696 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4697 	if (dev != &phba->pcidev->dev) {
4698 		shost->transportt = lpfc_vport_transport_template;
4699 		vport->port_type = LPFC_NPIV_PORT;
4700 	} else {
4701 		shost->transportt = lpfc_transport_template;
4702 		vport->port_type = LPFC_PHYSICAL_PORT;
4703 	}
4704 
4705 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4706 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4707 			"SEGcnt %d/%d\n",
4708 			vport->port_type, shost->sg_tablesize,
4709 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4710 
4711 	/* Allocate the resources for VMID */
4712 	rc = lpfc_vmid_res_alloc(phba, vport);
4713 
4714 	if (rc)
4715 		goto out;
4716 
4717 	/* Initialize all internally managed lists. */
4718 	INIT_LIST_HEAD(&vport->fc_nodes);
4719 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4720 	spin_lock_init(&vport->work_port_lock);
4721 
4722 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4723 
4724 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4725 
4726 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4727 
4728 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4729 		lpfc_setup_bg(phba, shost);
4730 
4731 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4732 	if (error)
4733 		goto out_put_shost;
4734 
4735 	spin_lock_irq(&phba->port_list_lock);
4736 	list_add_tail(&vport->listentry, &phba->port_list);
4737 	spin_unlock_irq(&phba->port_list_lock);
4738 	return vport;
4739 
4740 out_put_shost:
4741 	kfree(vport->vmid);
4742 	bitmap_free(vport->vmid_priority_range);
4743 	scsi_host_put(shost);
4744 out:
4745 	return NULL;
4746 }
4747 
4748 /**
4749  * destroy_port -  destroy an FC port
4750  * @vport: pointer to an lpfc virtual N_Port data structure.
4751  *
4752  * This routine destroys a FC port from the upper layer protocol. All the
4753  * resources associated with the port are released.
4754  **/
4755 void
4756 destroy_port(struct lpfc_vport *vport)
4757 {
4758 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4759 	struct lpfc_hba  *phba = vport->phba;
4760 
4761 	lpfc_debugfs_terminate(vport);
4762 	fc_remove_host(shost);
4763 	scsi_remove_host(shost);
4764 
4765 	spin_lock_irq(&phba->port_list_lock);
4766 	list_del_init(&vport->listentry);
4767 	spin_unlock_irq(&phba->port_list_lock);
4768 
4769 	lpfc_cleanup(vport);
4770 	return;
4771 }
4772 
4773 /**
4774  * lpfc_get_instance - Get a unique integer ID
4775  *
4776  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4777  * uses the kernel idr facility to perform the task.
4778  *
4779  * Return codes:
4780  *   instance - a unique integer ID allocated as the new instance.
4781  *   -1 - lpfc get instance failed.
4782  **/
4783 int
4784 lpfc_get_instance(void)
4785 {
4786 	int ret;
4787 
4788 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4789 	return ret < 0 ? -1 : ret;
4790 }
4791 
4792 /**
4793  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4794  * @shost: pointer to SCSI host data structure.
4795  * @time: elapsed time of the scan in jiffies.
4796  *
4797  * This routine is called by the SCSI layer with a SCSI host to determine
4798  * whether the scan host is finished.
4799  *
4800  * Note: there is no scan_start function as adapter initialization will have
4801  * asynchronously kicked off the link initialization.
4802  *
4803  * Return codes
4804  *   0 - SCSI host scan is not over yet.
4805  *   1 - SCSI host scan is over.
4806  **/
4807 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4808 {
4809 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4810 	struct lpfc_hba   *phba = vport->phba;
4811 	int stat = 0;
4812 
4813 	spin_lock_irq(shost->host_lock);
4814 
4815 	if (vport->load_flag & FC_UNLOADING) {
4816 		stat = 1;
4817 		goto finished;
4818 	}
4819 	if (time >= msecs_to_jiffies(30 * 1000)) {
4820 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4821 				"0461 Scanning longer than 30 "
4822 				"seconds.  Continuing initialization\n");
4823 		stat = 1;
4824 		goto finished;
4825 	}
4826 	if (time >= msecs_to_jiffies(15 * 1000) &&
4827 	    phba->link_state <= LPFC_LINK_DOWN) {
4828 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4829 				"0465 Link down longer than 15 "
4830 				"seconds.  Continuing initialization\n");
4831 		stat = 1;
4832 		goto finished;
4833 	}
4834 
4835 	if (vport->port_state != LPFC_VPORT_READY)
4836 		goto finished;
4837 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4838 		goto finished;
4839 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4840 		goto finished;
4841 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4842 		goto finished;
4843 
4844 	stat = 1;
4845 
4846 finished:
4847 	spin_unlock_irq(shost->host_lock);
4848 	return stat;
4849 }
4850 
4851 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4852 {
4853 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4854 	struct lpfc_hba   *phba = vport->phba;
4855 
4856 	fc_host_supported_speeds(shost) = 0;
4857 	/*
4858 	 * Avoid reporting supported link speed for FCoE as it can't be
4859 	 * controlled via FCoE.
4860 	 */
4861 	if (phba->hba_flag & HBA_FCOE_MODE)
4862 		return;
4863 
4864 	if (phba->lmt & LMT_256Gb)
4865 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4866 	if (phba->lmt & LMT_128Gb)
4867 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4868 	if (phba->lmt & LMT_64Gb)
4869 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4870 	if (phba->lmt & LMT_32Gb)
4871 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4872 	if (phba->lmt & LMT_16Gb)
4873 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4874 	if (phba->lmt & LMT_10Gb)
4875 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4876 	if (phba->lmt & LMT_8Gb)
4877 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4878 	if (phba->lmt & LMT_4Gb)
4879 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4880 	if (phba->lmt & LMT_2Gb)
4881 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4882 	if (phba->lmt & LMT_1Gb)
4883 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4884 }
4885 
4886 /**
4887  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4888  * @shost: pointer to SCSI host data structure.
4889  *
4890  * This routine initializes a given SCSI host attributes on a FC port. The
4891  * SCSI host can be either on top of a physical port or a virtual port.
4892  **/
4893 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4894 {
4895 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4896 	struct lpfc_hba   *phba = vport->phba;
4897 	/*
4898 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
4899 	 */
4900 
4901 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
4902 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
4903 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
4904 
4905 	memset(fc_host_supported_fc4s(shost), 0,
4906 	       sizeof(fc_host_supported_fc4s(shost)));
4907 	fc_host_supported_fc4s(shost)[2] = 1;
4908 	fc_host_supported_fc4s(shost)[7] = 1;
4909 
4910 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
4911 				 sizeof fc_host_symbolic_name(shost));
4912 
4913 	lpfc_host_supported_speeds_set(shost);
4914 
4915 	fc_host_maxframe_size(shost) =
4916 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
4917 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
4918 
4919 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
4920 
4921 	/* This value is also unchanging */
4922 	memset(fc_host_active_fc4s(shost), 0,
4923 	       sizeof(fc_host_active_fc4s(shost)));
4924 	fc_host_active_fc4s(shost)[2] = 1;
4925 	fc_host_active_fc4s(shost)[7] = 1;
4926 
4927 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
4928 	spin_lock_irq(shost->host_lock);
4929 	vport->load_flag &= ~FC_LOADING;
4930 	spin_unlock_irq(shost->host_lock);
4931 }
4932 
4933 /**
4934  * lpfc_stop_port_s3 - Stop SLI3 device port
4935  * @phba: pointer to lpfc hba data structure.
4936  *
4937  * This routine is invoked to stop an SLI3 device port, it stops the device
4938  * from generating interrupts and stops the device driver's timers for the
4939  * device.
4940  **/
4941 static void
4942 lpfc_stop_port_s3(struct lpfc_hba *phba)
4943 {
4944 	/* Clear all interrupt enable conditions */
4945 	writel(0, phba->HCregaddr);
4946 	readl(phba->HCregaddr); /* flush */
4947 	/* Clear all pending interrupts */
4948 	writel(0xffffffff, phba->HAregaddr);
4949 	readl(phba->HAregaddr); /* flush */
4950 
4951 	/* Reset some HBA SLI setup states */
4952 	lpfc_stop_hba_timers(phba);
4953 	phba->pport->work_port_events = 0;
4954 }
4955 
4956 /**
4957  * lpfc_stop_port_s4 - Stop SLI4 device port
4958  * @phba: pointer to lpfc hba data structure.
4959  *
4960  * This routine is invoked to stop an SLI4 device port, it stops the device
4961  * from generating interrupts and stops the device driver's timers for the
4962  * device.
4963  **/
4964 static void
4965 lpfc_stop_port_s4(struct lpfc_hba *phba)
4966 {
4967 	/* Reset some HBA SLI4 setup states */
4968 	lpfc_stop_hba_timers(phba);
4969 	if (phba->pport)
4970 		phba->pport->work_port_events = 0;
4971 	phba->sli4_hba.intr_enable = 0;
4972 }
4973 
4974 /**
4975  * lpfc_stop_port - Wrapper function for stopping hba port
4976  * @phba: Pointer to HBA context object.
4977  *
4978  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
4979  * the API jump table function pointer from the lpfc_hba struct.
4980  **/
4981 void
4982 lpfc_stop_port(struct lpfc_hba *phba)
4983 {
4984 	phba->lpfc_stop_port(phba);
4985 
4986 	if (phba->wq)
4987 		flush_workqueue(phba->wq);
4988 }
4989 
4990 /**
4991  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
4992  * @phba: Pointer to hba for which this call is being executed.
4993  *
4994  * This routine starts the timer waiting for the FCF rediscovery to complete.
4995  **/
4996 void
4997 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
4998 {
4999 	unsigned long fcf_redisc_wait_tmo =
5000 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5001 	/* Start fcf rediscovery wait period timer */
5002 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5003 	spin_lock_irq(&phba->hbalock);
5004 	/* Allow action to new fcf asynchronous event */
5005 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5006 	/* Mark the FCF rediscovery pending state */
5007 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5008 	spin_unlock_irq(&phba->hbalock);
5009 }
5010 
5011 /**
5012  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5013  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5014  *
5015  * This routine is invoked when waiting for FCF table rediscover has been
5016  * timed out. If new FCF record(s) has (have) been discovered during the
5017  * wait period, a new FCF event shall be added to the FCOE async event
5018  * list, and then worker thread shall be waked up for processing from the
5019  * worker thread context.
5020  **/
5021 static void
5022 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5023 {
5024 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5025 
5026 	/* Don't send FCF rediscovery event if timer cancelled */
5027 	spin_lock_irq(&phba->hbalock);
5028 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5029 		spin_unlock_irq(&phba->hbalock);
5030 		return;
5031 	}
5032 	/* Clear FCF rediscovery timer pending flag */
5033 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5034 	/* FCF rediscovery event to worker thread */
5035 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5036 	spin_unlock_irq(&phba->hbalock);
5037 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5038 			"2776 FCF rediscover quiescent timer expired\n");
5039 	/* wake up worker thread */
5040 	lpfc_worker_wake_up(phba);
5041 }
5042 
5043 /**
5044  * lpfc_vmid_poll - VMID timeout detection
5045  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5046  *
5047  * This routine is invoked when there is no I/O on by a VM for the specified
5048  * amount of time. When this situation is detected, the VMID has to be
5049  * deregistered from the switch and all the local resources freed. The VMID
5050  * will be reassigned to the VM once the I/O begins.
5051  **/
5052 static void
5053 lpfc_vmid_poll(struct timer_list *t)
5054 {
5055 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5056 	u32 wake_up = 0;
5057 
5058 	/* check if there is a need to issue QFPA */
5059 	if (phba->pport->vmid_priority_tagging) {
5060 		wake_up = 1;
5061 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5062 	}
5063 
5064 	/* Is the vmid inactivity timer enabled */
5065 	if (phba->pport->vmid_inactivity_timeout ||
5066 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5067 		wake_up = 1;
5068 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5069 	}
5070 
5071 	if (wake_up)
5072 		lpfc_worker_wake_up(phba);
5073 
5074 	/* restart the timer for the next iteration */
5075 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5076 							LPFC_VMID_TIMER));
5077 }
5078 
5079 /**
5080  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5081  * @phba: pointer to lpfc hba data structure.
5082  * @acqe_link: pointer to the async link completion queue entry.
5083  *
5084  * This routine is to parse the SLI4 link-attention link fault code.
5085  **/
5086 static void
5087 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5088 			   struct lpfc_acqe_link *acqe_link)
5089 {
5090 	switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5091 	case LPFC_ASYNC_LINK_FAULT_NONE:
5092 	case LPFC_ASYNC_LINK_FAULT_LOCAL:
5093 	case LPFC_ASYNC_LINK_FAULT_REMOTE:
5094 	case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5095 		break;
5096 	default:
5097 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5098 				"0398 Unknown link fault code: x%x\n",
5099 				bf_get(lpfc_acqe_link_fault, acqe_link));
5100 		break;
5101 	}
5102 }
5103 
5104 /**
5105  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5106  * @phba: pointer to lpfc hba data structure.
5107  * @acqe_link: pointer to the async link completion queue entry.
5108  *
5109  * This routine is to parse the SLI4 link attention type and translate it
5110  * into the base driver's link attention type coding.
5111  *
5112  * Return: Link attention type in terms of base driver's coding.
5113  **/
5114 static uint8_t
5115 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5116 			  struct lpfc_acqe_link *acqe_link)
5117 {
5118 	uint8_t att_type;
5119 
5120 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5121 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5122 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5123 		att_type = LPFC_ATT_LINK_DOWN;
5124 		break;
5125 	case LPFC_ASYNC_LINK_STATUS_UP:
5126 		/* Ignore physical link up events - wait for logical link up */
5127 		att_type = LPFC_ATT_RESERVED;
5128 		break;
5129 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5130 		att_type = LPFC_ATT_LINK_UP;
5131 		break;
5132 	default:
5133 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5134 				"0399 Invalid link attention type: x%x\n",
5135 				bf_get(lpfc_acqe_link_status, acqe_link));
5136 		att_type = LPFC_ATT_RESERVED;
5137 		break;
5138 	}
5139 	return att_type;
5140 }
5141 
5142 /**
5143  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5144  * @phba: pointer to lpfc hba data structure.
5145  *
5146  * This routine is to get an SLI3 FC port's link speed in Mbps.
5147  *
5148  * Return: link speed in terms of Mbps.
5149  **/
5150 uint32_t
5151 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5152 {
5153 	uint32_t link_speed;
5154 
5155 	if (!lpfc_is_link_up(phba))
5156 		return 0;
5157 
5158 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5159 		switch (phba->fc_linkspeed) {
5160 		case LPFC_LINK_SPEED_1GHZ:
5161 			link_speed = 1000;
5162 			break;
5163 		case LPFC_LINK_SPEED_2GHZ:
5164 			link_speed = 2000;
5165 			break;
5166 		case LPFC_LINK_SPEED_4GHZ:
5167 			link_speed = 4000;
5168 			break;
5169 		case LPFC_LINK_SPEED_8GHZ:
5170 			link_speed = 8000;
5171 			break;
5172 		case LPFC_LINK_SPEED_10GHZ:
5173 			link_speed = 10000;
5174 			break;
5175 		case LPFC_LINK_SPEED_16GHZ:
5176 			link_speed = 16000;
5177 			break;
5178 		default:
5179 			link_speed = 0;
5180 		}
5181 	} else {
5182 		if (phba->sli4_hba.link_state.logical_speed)
5183 			link_speed =
5184 			      phba->sli4_hba.link_state.logical_speed;
5185 		else
5186 			link_speed = phba->sli4_hba.link_state.speed;
5187 	}
5188 	return link_speed;
5189 }
5190 
5191 /**
5192  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5193  * @phba: pointer to lpfc hba data structure.
5194  * @evt_code: asynchronous event code.
5195  * @speed_code: asynchronous event link speed code.
5196  *
5197  * This routine is to parse the giving SLI4 async event link speed code into
5198  * value of Mbps for the link speed.
5199  *
5200  * Return: link speed in terms of Mbps.
5201  **/
5202 static uint32_t
5203 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5204 			   uint8_t speed_code)
5205 {
5206 	uint32_t port_speed;
5207 
5208 	switch (evt_code) {
5209 	case LPFC_TRAILER_CODE_LINK:
5210 		switch (speed_code) {
5211 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5212 			port_speed = 0;
5213 			break;
5214 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5215 			port_speed = 10;
5216 			break;
5217 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5218 			port_speed = 100;
5219 			break;
5220 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5221 			port_speed = 1000;
5222 			break;
5223 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5224 			port_speed = 10000;
5225 			break;
5226 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5227 			port_speed = 20000;
5228 			break;
5229 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5230 			port_speed = 25000;
5231 			break;
5232 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5233 			port_speed = 40000;
5234 			break;
5235 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5236 			port_speed = 100000;
5237 			break;
5238 		default:
5239 			port_speed = 0;
5240 		}
5241 		break;
5242 	case LPFC_TRAILER_CODE_FC:
5243 		switch (speed_code) {
5244 		case LPFC_FC_LA_SPEED_UNKNOWN:
5245 			port_speed = 0;
5246 			break;
5247 		case LPFC_FC_LA_SPEED_1G:
5248 			port_speed = 1000;
5249 			break;
5250 		case LPFC_FC_LA_SPEED_2G:
5251 			port_speed = 2000;
5252 			break;
5253 		case LPFC_FC_LA_SPEED_4G:
5254 			port_speed = 4000;
5255 			break;
5256 		case LPFC_FC_LA_SPEED_8G:
5257 			port_speed = 8000;
5258 			break;
5259 		case LPFC_FC_LA_SPEED_10G:
5260 			port_speed = 10000;
5261 			break;
5262 		case LPFC_FC_LA_SPEED_16G:
5263 			port_speed = 16000;
5264 			break;
5265 		case LPFC_FC_LA_SPEED_32G:
5266 			port_speed = 32000;
5267 			break;
5268 		case LPFC_FC_LA_SPEED_64G:
5269 			port_speed = 64000;
5270 			break;
5271 		case LPFC_FC_LA_SPEED_128G:
5272 			port_speed = 128000;
5273 			break;
5274 		case LPFC_FC_LA_SPEED_256G:
5275 			port_speed = 256000;
5276 			break;
5277 		default:
5278 			port_speed = 0;
5279 		}
5280 		break;
5281 	default:
5282 		port_speed = 0;
5283 	}
5284 	return port_speed;
5285 }
5286 
5287 /**
5288  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5289  * @phba: pointer to lpfc hba data structure.
5290  * @acqe_link: pointer to the async link completion queue entry.
5291  *
5292  * This routine is to handle the SLI4 asynchronous FCoE link event.
5293  **/
5294 static void
5295 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5296 			 struct lpfc_acqe_link *acqe_link)
5297 {
5298 	struct lpfc_dmabuf *mp;
5299 	LPFC_MBOXQ_t *pmb;
5300 	MAILBOX_t *mb;
5301 	struct lpfc_mbx_read_top *la;
5302 	uint8_t att_type;
5303 	int rc;
5304 
5305 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5306 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5307 		return;
5308 	phba->fcoe_eventtag = acqe_link->event_tag;
5309 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5310 	if (!pmb) {
5311 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5312 				"0395 The mboxq allocation failed\n");
5313 		return;
5314 	}
5315 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5316 	if (!mp) {
5317 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5318 				"0396 The lpfc_dmabuf allocation failed\n");
5319 		goto out_free_pmb;
5320 	}
5321 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
5322 	if (!mp->virt) {
5323 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5324 				"0397 The mbuf allocation failed\n");
5325 		goto out_free_dmabuf;
5326 	}
5327 
5328 	/* Cleanup any outstanding ELS commands */
5329 	lpfc_els_flush_all_cmd(phba);
5330 
5331 	/* Block ELS IOCBs until we have done process link event */
5332 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5333 
5334 	/* Update link event statistics */
5335 	phba->sli.slistat.link_event++;
5336 
5337 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5338 	lpfc_read_topology(phba, pmb, mp);
5339 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5340 	pmb->vport = phba->pport;
5341 
5342 	/* Keep the link status for extra SLI4 state machine reference */
5343 	phba->sli4_hba.link_state.speed =
5344 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5345 				bf_get(lpfc_acqe_link_speed, acqe_link));
5346 	phba->sli4_hba.link_state.duplex =
5347 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5348 	phba->sli4_hba.link_state.status =
5349 				bf_get(lpfc_acqe_link_status, acqe_link);
5350 	phba->sli4_hba.link_state.type =
5351 				bf_get(lpfc_acqe_link_type, acqe_link);
5352 	phba->sli4_hba.link_state.number =
5353 				bf_get(lpfc_acqe_link_number, acqe_link);
5354 	phba->sli4_hba.link_state.fault =
5355 				bf_get(lpfc_acqe_link_fault, acqe_link);
5356 	phba->sli4_hba.link_state.logical_speed =
5357 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5358 
5359 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5360 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5361 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5362 			"Logical speed:%dMbps Fault:%d\n",
5363 			phba->sli4_hba.link_state.speed,
5364 			phba->sli4_hba.link_state.topology,
5365 			phba->sli4_hba.link_state.status,
5366 			phba->sli4_hba.link_state.type,
5367 			phba->sli4_hba.link_state.number,
5368 			phba->sli4_hba.link_state.logical_speed,
5369 			phba->sli4_hba.link_state.fault);
5370 	/*
5371 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5372 	 * topology info. Note: Optional for non FC-AL ports.
5373 	 */
5374 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5375 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5376 		if (rc == MBX_NOT_FINISHED)
5377 			goto out_free_dmabuf;
5378 		return;
5379 	}
5380 	/*
5381 	 * For FCoE Mode: fill in all the topology information we need and call
5382 	 * the READ_TOPOLOGY completion routine to continue without actually
5383 	 * sending the READ_TOPOLOGY mailbox command to the port.
5384 	 */
5385 	/* Initialize completion status */
5386 	mb = &pmb->u.mb;
5387 	mb->mbxStatus = MBX_SUCCESS;
5388 
5389 	/* Parse port fault information field */
5390 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5391 
5392 	/* Parse and translate link attention fields */
5393 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5394 	la->eventTag = acqe_link->event_tag;
5395 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5396 	bf_set(lpfc_mbx_read_top_link_spd, la,
5397 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5398 
5399 	/* Fake the the following irrelvant fields */
5400 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5401 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5402 	bf_set(lpfc_mbx_read_top_il, la, 0);
5403 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5404 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5405 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5406 
5407 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5408 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5409 
5410 	return;
5411 
5412 out_free_dmabuf:
5413 	kfree(mp);
5414 out_free_pmb:
5415 	mempool_free(pmb, phba->mbox_mem_pool);
5416 }
5417 
5418 /**
5419  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5420  * topology.
5421  * @phba: pointer to lpfc hba data structure.
5422  * @speed_code: asynchronous event link speed code.
5423  *
5424  * This routine is to parse the giving SLI4 async event link speed code into
5425  * value of Read topology link speed.
5426  *
5427  * Return: link speed in terms of Read topology.
5428  **/
5429 static uint8_t
5430 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5431 {
5432 	uint8_t port_speed;
5433 
5434 	switch (speed_code) {
5435 	case LPFC_FC_LA_SPEED_1G:
5436 		port_speed = LPFC_LINK_SPEED_1GHZ;
5437 		break;
5438 	case LPFC_FC_LA_SPEED_2G:
5439 		port_speed = LPFC_LINK_SPEED_2GHZ;
5440 		break;
5441 	case LPFC_FC_LA_SPEED_4G:
5442 		port_speed = LPFC_LINK_SPEED_4GHZ;
5443 		break;
5444 	case LPFC_FC_LA_SPEED_8G:
5445 		port_speed = LPFC_LINK_SPEED_8GHZ;
5446 		break;
5447 	case LPFC_FC_LA_SPEED_16G:
5448 		port_speed = LPFC_LINK_SPEED_16GHZ;
5449 		break;
5450 	case LPFC_FC_LA_SPEED_32G:
5451 		port_speed = LPFC_LINK_SPEED_32GHZ;
5452 		break;
5453 	case LPFC_FC_LA_SPEED_64G:
5454 		port_speed = LPFC_LINK_SPEED_64GHZ;
5455 		break;
5456 	case LPFC_FC_LA_SPEED_128G:
5457 		port_speed = LPFC_LINK_SPEED_128GHZ;
5458 		break;
5459 	case LPFC_FC_LA_SPEED_256G:
5460 		port_speed = LPFC_LINK_SPEED_256GHZ;
5461 		break;
5462 	default:
5463 		port_speed = 0;
5464 		break;
5465 	}
5466 
5467 	return port_speed;
5468 }
5469 
5470 void
5471 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5472 {
5473 	struct rxtable_entry *entry;
5474 	int cnt = 0, head, tail, last, start;
5475 
5476 	head = atomic_read(&phba->rxtable_idx_head);
5477 	tail = atomic_read(&phba->rxtable_idx_tail);
5478 	if (!phba->rxtable || head == tail) {
5479 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
5480 				"4411 Rxtable is empty\n");
5481 		return;
5482 	}
5483 	last = tail;
5484 	start = head;
5485 
5486 	/* Display the last LPFC_MAX_RXMONITOR_DUMP entries from the rxtable */
5487 	while (start != last) {
5488 		if (start)
5489 			start--;
5490 		else
5491 			start = LPFC_MAX_RXMONITOR_ENTRY - 1;
5492 		entry = &phba->rxtable[start];
5493 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5494 				"4410 %02d: MBPI %lld Xmit %lld Cmpl %lld "
5495 				"Lat %lld ASz %lld Info %02d BWUtil %d "
5496 				"Int %d slot %d\n",
5497 				cnt, entry->max_bytes_per_interval,
5498 				entry->total_bytes, entry->rcv_bytes,
5499 				entry->avg_io_latency, entry->avg_io_size,
5500 				entry->cmf_info, entry->timer_utilization,
5501 				entry->timer_interval, start);
5502 		cnt++;
5503 		if (cnt >= LPFC_MAX_RXMONITOR_DUMP)
5504 			return;
5505 	}
5506 }
5507 
5508 /**
5509  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5510  * @phba: pointer to lpfc hba data structure.
5511  * @dtag: FPIN descriptor received
5512  *
5513  * Increment the FPIN received counter/time when it happens.
5514  */
5515 void
5516 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5517 {
5518 	struct lpfc_cgn_info *cp;
5519 	struct tm broken;
5520 	struct timespec64 cur_time;
5521 	u32 cnt;
5522 	u16 value;
5523 
5524 	/* Make sure we have a congestion info buffer */
5525 	if (!phba->cgn_i)
5526 		return;
5527 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5528 	ktime_get_real_ts64(&cur_time);
5529 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5530 
5531 	/* Update congestion statistics */
5532 	switch (dtag) {
5533 	case ELS_DTAG_LNK_INTEGRITY:
5534 		cnt = le32_to_cpu(cp->link_integ_notification);
5535 		cnt++;
5536 		cp->link_integ_notification = cpu_to_le32(cnt);
5537 
5538 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5539 		cp->cgn_stat_lnk_day = broken.tm_mday;
5540 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5541 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5542 		cp->cgn_stat_lnk_min = broken.tm_min;
5543 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5544 		break;
5545 	case ELS_DTAG_DELIVERY:
5546 		cnt = le32_to_cpu(cp->delivery_notification);
5547 		cnt++;
5548 		cp->delivery_notification = cpu_to_le32(cnt);
5549 
5550 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5551 		cp->cgn_stat_del_day = broken.tm_mday;
5552 		cp->cgn_stat_del_year = broken.tm_year - 100;
5553 		cp->cgn_stat_del_hour = broken.tm_hour;
5554 		cp->cgn_stat_del_min = broken.tm_min;
5555 		cp->cgn_stat_del_sec = broken.tm_sec;
5556 		break;
5557 	case ELS_DTAG_PEER_CONGEST:
5558 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5559 		cnt++;
5560 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5561 
5562 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5563 		cp->cgn_stat_peer_day = broken.tm_mday;
5564 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5565 		cp->cgn_stat_peer_hour = broken.tm_hour;
5566 		cp->cgn_stat_peer_min = broken.tm_min;
5567 		cp->cgn_stat_peer_sec = broken.tm_sec;
5568 		break;
5569 	case ELS_DTAG_CONGESTION:
5570 		cnt = le32_to_cpu(cp->cgn_notification);
5571 		cnt++;
5572 		cp->cgn_notification = cpu_to_le32(cnt);
5573 
5574 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5575 		cp->cgn_stat_cgn_day = broken.tm_mday;
5576 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5577 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5578 		cp->cgn_stat_cgn_min = broken.tm_min;
5579 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5580 	}
5581 	if (phba->cgn_fpin_frequency &&
5582 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5583 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5584 		cp->cgn_stat_npm = value;
5585 	}
5586 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5587 				    LPFC_CGN_CRC32_SEED);
5588 	cp->cgn_info_crc = cpu_to_le32(value);
5589 }
5590 
5591 /**
5592  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5593  * @phba: pointer to lpfc hba data structure.
5594  *
5595  * Save the congestion event data every minute.
5596  * On the hour collapse all the minute data into hour data. Every day
5597  * collapse all the hour data into daily data. Separate driver
5598  * and fabrc congestion event counters that will be saved out
5599  * to the registered congestion buffer every minute.
5600  */
5601 static void
5602 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5603 {
5604 	struct lpfc_cgn_info *cp;
5605 	struct tm broken;
5606 	struct timespec64 cur_time;
5607 	uint32_t i, index;
5608 	uint16_t value, mvalue;
5609 	uint64_t bps;
5610 	uint32_t mbps;
5611 	uint32_t dvalue, wvalue, lvalue, avalue;
5612 	uint64_t latsum;
5613 	__le16 *ptr;
5614 	__le32 *lptr;
5615 	__le16 *mptr;
5616 
5617 	/* Make sure we have a congestion info buffer */
5618 	if (!phba->cgn_i)
5619 		return;
5620 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5621 
5622 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5623 		return;
5624 	phba->cgn_evt_timestamp = jiffies +
5625 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5626 	phba->cgn_evt_minute++;
5627 
5628 	/* We should get to this point in the routine on 1 minute intervals */
5629 
5630 	ktime_get_real_ts64(&cur_time);
5631 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5632 
5633 	if (phba->cgn_fpin_frequency &&
5634 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5635 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5636 		cp->cgn_stat_npm = value;
5637 	}
5638 
5639 	/* Read and clear the latency counters for this minute */
5640 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5641 	latsum = atomic64_read(&phba->cgn_latency_evt);
5642 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5643 	atomic64_set(&phba->cgn_latency_evt, 0);
5644 
5645 	/* We need to store MB/sec bandwidth in the congestion information.
5646 	 * block_cnt is count of 512 byte blocks for the entire minute,
5647 	 * bps will get bytes per sec before finally converting to MB/sec.
5648 	 */
5649 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5650 	phba->rx_block_cnt = 0;
5651 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5652 
5653 	/* Every minute */
5654 	/* cgn parameters */
5655 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5656 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5657 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5658 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5659 
5660 	/* Fill in default LUN qdepth */
5661 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5662 	cp->cgn_lunq = cpu_to_le16(value);
5663 
5664 	/* Record congestion buffer info - every minute
5665 	 * cgn_driver_evt_cnt (Driver events)
5666 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5667 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5668 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5669 	 */
5670 	index = ++cp->cgn_index_minute;
5671 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5672 		cp->cgn_index_minute = 0;
5673 		index = 0;
5674 	}
5675 
5676 	/* Get the number of driver events in this sample and reset counter */
5677 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5678 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5679 
5680 	/* Get the number of warning events - FPIN and Signal for this minute */
5681 	wvalue = 0;
5682 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5683 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5684 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5685 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5686 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5687 
5688 	/* Get the number of alarm events - FPIN and Signal for this minute */
5689 	avalue = 0;
5690 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5691 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5692 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5693 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5694 
5695 	/* Collect the driver, warning, alarm and latency counts for this
5696 	 * minute into the driver congestion buffer.
5697 	 */
5698 	ptr = &cp->cgn_drvr_min[index];
5699 	value = (uint16_t)dvalue;
5700 	*ptr = cpu_to_le16(value);
5701 
5702 	ptr = &cp->cgn_warn_min[index];
5703 	value = (uint16_t)wvalue;
5704 	*ptr = cpu_to_le16(value);
5705 
5706 	ptr = &cp->cgn_alarm_min[index];
5707 	value = (uint16_t)avalue;
5708 	*ptr = cpu_to_le16(value);
5709 
5710 	lptr = &cp->cgn_latency_min[index];
5711 	if (lvalue) {
5712 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5713 		*lptr = cpu_to_le32(lvalue);
5714 	} else {
5715 		*lptr = 0;
5716 	}
5717 
5718 	/* Collect the bandwidth value into the driver's congesion buffer. */
5719 	mptr = &cp->cgn_bw_min[index];
5720 	*mptr = cpu_to_le16(mvalue);
5721 
5722 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5723 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5724 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5725 
5726 	/* Every hour */
5727 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5728 		/* Record congestion buffer info - every hour
5729 		 * Collapse all minutes into an hour
5730 		 */
5731 		index = ++cp->cgn_index_hour;
5732 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5733 			cp->cgn_index_hour = 0;
5734 			index = 0;
5735 		}
5736 
5737 		dvalue = 0;
5738 		wvalue = 0;
5739 		lvalue = 0;
5740 		avalue = 0;
5741 		mvalue = 0;
5742 		mbps = 0;
5743 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5744 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5745 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5746 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5747 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5748 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5749 		}
5750 		if (lvalue)		/* Avg of latency averages */
5751 			lvalue /= LPFC_MIN_HOUR;
5752 		if (mbps)		/* Avg of Bandwidth averages */
5753 			mvalue = mbps / LPFC_MIN_HOUR;
5754 
5755 		lptr = &cp->cgn_drvr_hr[index];
5756 		*lptr = cpu_to_le32(dvalue);
5757 		lptr = &cp->cgn_warn_hr[index];
5758 		*lptr = cpu_to_le32(wvalue);
5759 		lptr = &cp->cgn_latency_hr[index];
5760 		*lptr = cpu_to_le32(lvalue);
5761 		mptr = &cp->cgn_bw_hr[index];
5762 		*mptr = cpu_to_le16(mvalue);
5763 		lptr = &cp->cgn_alarm_hr[index];
5764 		*lptr = cpu_to_le32(avalue);
5765 
5766 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5767 				"2419 Congestion Info - hour "
5768 				"(%d): %d %d %d %d %d\n",
5769 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5770 	}
5771 
5772 	/* Every day */
5773 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5774 		/* Record congestion buffer info - every hour
5775 		 * Collapse all hours into a day. Rotate days
5776 		 * after LPFC_MAX_CGN_DAYS.
5777 		 */
5778 		index = ++cp->cgn_index_day;
5779 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5780 			cp->cgn_index_day = 0;
5781 			index = 0;
5782 		}
5783 
5784 		/* Anytime we overwrite daily index 0, after we wrap,
5785 		 * we will be overwriting the oldest day, so we must
5786 		 * update the congestion data start time for that day.
5787 		 * That start time should have previously been saved after
5788 		 * we wrote the last days worth of data.
5789 		 */
5790 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5791 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5792 
5793 			cp->cgn_info_month = broken.tm_mon + 1;
5794 			cp->cgn_info_day = broken.tm_mday;
5795 			cp->cgn_info_year = broken.tm_year - 100;
5796 			cp->cgn_info_hour = broken.tm_hour;
5797 			cp->cgn_info_minute = broken.tm_min;
5798 			cp->cgn_info_second = broken.tm_sec;
5799 
5800 			lpfc_printf_log
5801 				(phba, KERN_INFO, LOG_CGN_MGMT,
5802 				"2646 CGNInfo idx0 Start Time: "
5803 				"%d/%d/%d %d:%d:%d\n",
5804 				cp->cgn_info_day, cp->cgn_info_month,
5805 				cp->cgn_info_year, cp->cgn_info_hour,
5806 				cp->cgn_info_minute, cp->cgn_info_second);
5807 		}
5808 
5809 		dvalue = 0;
5810 		wvalue = 0;
5811 		lvalue = 0;
5812 		mvalue = 0;
5813 		mbps = 0;
5814 		avalue = 0;
5815 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5816 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5817 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5818 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5819 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5820 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5821 		}
5822 		if (lvalue)		/* Avg of latency averages */
5823 			lvalue /= LPFC_HOUR_DAY;
5824 		if (mbps)		/* Avg of Bandwidth averages */
5825 			mvalue = mbps / LPFC_HOUR_DAY;
5826 
5827 		lptr = &cp->cgn_drvr_day[index];
5828 		*lptr = cpu_to_le32(dvalue);
5829 		lptr = &cp->cgn_warn_day[index];
5830 		*lptr = cpu_to_le32(wvalue);
5831 		lptr = &cp->cgn_latency_day[index];
5832 		*lptr = cpu_to_le32(lvalue);
5833 		mptr = &cp->cgn_bw_day[index];
5834 		*mptr = cpu_to_le16(mvalue);
5835 		lptr = &cp->cgn_alarm_day[index];
5836 		*lptr = cpu_to_le32(avalue);
5837 
5838 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5839 				"2420 Congestion Info - daily (%d): "
5840 				"%d %d %d %d %d\n",
5841 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5842 
5843 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5844 		 * so we are wrapped on any data after this.
5845 		 * Save this as the start time for the next day.
5846 		 */
5847 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5848 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5849 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5850 		}
5851 	}
5852 
5853 	/* Use the frequency found in the last rcv'ed FPIN */
5854 	value = phba->cgn_fpin_frequency;
5855 	if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN)
5856 		cp->cgn_warn_freq = cpu_to_le16(value);
5857 	if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM)
5858 		cp->cgn_alarm_freq = cpu_to_le16(value);
5859 
5860 	/* Frequency (in ms) Signal Warning/Signal Congestion Notifications
5861 	 * are received by the HBA
5862 	 */
5863 	value = phba->cgn_sig_freq;
5864 
5865 	if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5866 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5867 		cp->cgn_warn_freq = cpu_to_le16(value);
5868 	if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5869 		cp->cgn_alarm_freq = cpu_to_le16(value);
5870 
5871 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5872 				     LPFC_CGN_CRC32_SEED);
5873 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5874 }
5875 
5876 /**
5877  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5878  * @phba: The Hba for which this call is being executed.
5879  *
5880  * The routine calculates the latency from the beginning of the CMF timer
5881  * interval to the current point in time. It is called from IO completion
5882  * when we exceed our Bandwidth limitation for the time interval.
5883  */
5884 uint32_t
5885 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5886 {
5887 	struct timespec64 cmpl_time;
5888 	uint32_t msec = 0;
5889 
5890 	ktime_get_real_ts64(&cmpl_time);
5891 
5892 	/* This routine works on a ms granularity so sec and usec are
5893 	 * converted accordingly.
5894 	 */
5895 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5896 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5897 			NSEC_PER_MSEC;
5898 	} else {
5899 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5900 			msec = (cmpl_time.tv_sec -
5901 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5902 			msec += ((cmpl_time.tv_nsec -
5903 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5904 		} else {
5905 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5906 				1) * MSEC_PER_SEC;
5907 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5908 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5909 		}
5910 	}
5911 	return msec;
5912 }
5913 
5914 /**
5915  * lpfc_cmf_timer -  This is the timer function for one congestion
5916  * rate interval.
5917  * @timer: Pointer to the high resolution timer that expired
5918  */
5919 static enum hrtimer_restart
5920 lpfc_cmf_timer(struct hrtimer *timer)
5921 {
5922 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5923 					     cmf_timer);
5924 	struct rxtable_entry *entry;
5925 	uint32_t io_cnt;
5926 	uint32_t head, tail;
5927 	uint32_t busy, max_read;
5928 	uint64_t total, rcv, lat, mbpi, extra;
5929 	int timer_interval = LPFC_CMF_INTERVAL;
5930 	uint32_t ms;
5931 	struct lpfc_cgn_stat *cgs;
5932 	int cpu;
5933 
5934 	/* Only restart the timer if congestion mgmt is on */
5935 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5936 	    !phba->cmf_latency.tv_sec) {
5937 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5938 				"6224 CMF timer exit: %d %lld\n",
5939 				phba->cmf_active_mode,
5940 				(uint64_t)phba->cmf_latency.tv_sec);
5941 		return HRTIMER_NORESTART;
5942 	}
5943 
5944 	/* If pport is not ready yet, just exit and wait for
5945 	 * the next timer cycle to hit.
5946 	 */
5947 	if (!phba->pport)
5948 		goto skip;
5949 
5950 	/* Do not block SCSI IO while in the timer routine since
5951 	 * total_bytes will be cleared
5952 	 */
5953 	atomic_set(&phba->cmf_stop_io, 1);
5954 
5955 	/* First we need to calculate the actual ms between
5956 	 * the last timer interrupt and this one. We ask for
5957 	 * LPFC_CMF_INTERVAL, however the actual time may
5958 	 * vary depending on system overhead.
5959 	 */
5960 	ms = lpfc_calc_cmf_latency(phba);
5961 
5962 
5963 	/* Immediately after we calculate the time since the last
5964 	 * timer interrupt, set the start time for the next
5965 	 * interrupt
5966 	 */
5967 	ktime_get_real_ts64(&phba->cmf_latency);
5968 
5969 	phba->cmf_link_byte_count =
5970 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
5971 
5972 	/* Collect all the stats from the prior timer interval */
5973 	total = 0;
5974 	io_cnt = 0;
5975 	lat = 0;
5976 	rcv = 0;
5977 	for_each_present_cpu(cpu) {
5978 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
5979 		total += atomic64_xchg(&cgs->total_bytes, 0);
5980 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
5981 		lat += atomic64_xchg(&cgs->rx_latency, 0);
5982 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
5983 	}
5984 
5985 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
5986 	 * returned from the last CMF_SYNC_WQE issued, from
5987 	 * cmf_last_sync_bw. This will be the target BW for
5988 	 * this next timer interval.
5989 	 */
5990 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
5991 	    phba->link_state != LPFC_LINK_DOWN &&
5992 	    phba->hba_flag & HBA_SETUP) {
5993 		mbpi = phba->cmf_last_sync_bw;
5994 		phba->cmf_last_sync_bw = 0;
5995 		extra = 0;
5996 
5997 		/* Calculate any extra bytes needed to account for the
5998 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
5999 		 * add an extra 3% slop factor, equal to LPFC_CMF_INTERVAL
6000 		 * add an extra 2%. The goal is to equalize total with a
6001 		 * time > LPFC_CMF_INTERVAL or <= LPFC_CMF_INTERVAL + 1
6002 		 */
6003 		if (ms == LPFC_CMF_INTERVAL)
6004 			extra = div_u64(total, 50);
6005 		else if (ms < LPFC_CMF_INTERVAL)
6006 			extra = div_u64(total, 33);
6007 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6008 	} else {
6009 		/* For Monitor mode or link down we want mbpi
6010 		 * to be the full link speed
6011 		 */
6012 		mbpi = phba->cmf_link_byte_count;
6013 	}
6014 	phba->cmf_timer_cnt++;
6015 
6016 	if (io_cnt) {
6017 		/* Update congestion info buffer latency in us */
6018 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6019 		atomic64_add(lat, &phba->cgn_latency_evt);
6020 	}
6021 	busy = atomic_xchg(&phba->cmf_busy, 0);
6022 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6023 
6024 	/* Calculate MBPI for the next timer interval */
6025 	if (mbpi) {
6026 		if (mbpi > phba->cmf_link_byte_count ||
6027 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6028 			mbpi = phba->cmf_link_byte_count;
6029 
6030 		/* Change max_bytes_per_interval to what the prior
6031 		 * CMF_SYNC_WQE cmpl indicated.
6032 		 */
6033 		if (mbpi != phba->cmf_max_bytes_per_interval)
6034 			phba->cmf_max_bytes_per_interval = mbpi;
6035 	}
6036 
6037 	/* Save rxmonitor information for debug */
6038 	if (phba->rxtable) {
6039 		head = atomic_xchg(&phba->rxtable_idx_head,
6040 				   LPFC_RXMONITOR_TABLE_IN_USE);
6041 		entry = &phba->rxtable[head];
6042 		entry->total_bytes = total;
6043 		entry->rcv_bytes = rcv;
6044 		entry->cmf_busy = busy;
6045 		entry->cmf_info = phba->cmf_active_info;
6046 		if (io_cnt) {
6047 			entry->avg_io_latency = div_u64(lat, io_cnt);
6048 			entry->avg_io_size = div_u64(rcv, io_cnt);
6049 		} else {
6050 			entry->avg_io_latency = 0;
6051 			entry->avg_io_size = 0;
6052 		}
6053 		entry->max_read_cnt = max_read;
6054 		entry->io_cnt = io_cnt;
6055 		entry->max_bytes_per_interval = mbpi;
6056 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6057 			entry->timer_utilization = phba->cmf_last_ts;
6058 		else
6059 			entry->timer_utilization = ms;
6060 		entry->timer_interval = ms;
6061 		phba->cmf_last_ts = 0;
6062 
6063 		/* Increment rxtable index */
6064 		head = (head + 1) % LPFC_MAX_RXMONITOR_ENTRY;
6065 		tail = atomic_read(&phba->rxtable_idx_tail);
6066 		if (head == tail) {
6067 			tail = (tail + 1) % LPFC_MAX_RXMONITOR_ENTRY;
6068 			atomic_set(&phba->rxtable_idx_tail, tail);
6069 		}
6070 		atomic_set(&phba->rxtable_idx_head, head);
6071 	}
6072 
6073 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6074 		/* If Monitor mode, check if we are oversubscribed
6075 		 * against the full line rate.
6076 		 */
6077 		if (mbpi && total > mbpi)
6078 			atomic_inc(&phba->cgn_driver_evt_cnt);
6079 	}
6080 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6081 
6082 	/* Each minute save Fabric and Driver congestion information */
6083 	lpfc_cgn_save_evt_cnt(phba);
6084 
6085 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
6086 	 * minute, adjust our next timer interval, if needed, to ensure a
6087 	 * 1 minute granularity when we get the next timer interrupt.
6088 	 */
6089 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6090 		       phba->cgn_evt_timestamp)) {
6091 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6092 						  jiffies);
6093 		if (timer_interval <= 0)
6094 			timer_interval = LPFC_CMF_INTERVAL;
6095 
6096 		/* If we adjust timer_interval, max_bytes_per_interval
6097 		 * needs to be adjusted as well.
6098 		 */
6099 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6100 						    timer_interval, 1000);
6101 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6102 			phba->cmf_max_bytes_per_interval =
6103 				phba->cmf_link_byte_count;
6104 	}
6105 
6106 	/* Since total_bytes has already been zero'ed, its okay to unblock
6107 	 * after max_bytes_per_interval is setup.
6108 	 */
6109 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6110 		queue_work(phba->wq, &phba->unblock_request_work);
6111 
6112 	/* SCSI IO is now unblocked */
6113 	atomic_set(&phba->cmf_stop_io, 0);
6114 
6115 skip:
6116 	hrtimer_forward_now(timer,
6117 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6118 	return HRTIMER_RESTART;
6119 }
6120 
6121 #define trunk_link_status(__idx)\
6122 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6123 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6124 		"Link up" : "Link down") : "NA"
6125 /* Did port __idx reported an error */
6126 #define trunk_port_fault(__idx)\
6127 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6128 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6129 
6130 static void
6131 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6132 			      struct lpfc_acqe_fc_la *acqe_fc)
6133 {
6134 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6135 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6136 
6137 	phba->sli4_hba.link_state.speed =
6138 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6139 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6140 
6141 	phba->sli4_hba.link_state.logical_speed =
6142 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6143 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6144 	phba->fc_linkspeed =
6145 		 lpfc_async_link_speed_to_read_top(
6146 				phba,
6147 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6148 
6149 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6150 		phba->trunk_link.link0.state =
6151 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6152 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6153 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6154 	}
6155 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6156 		phba->trunk_link.link1.state =
6157 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6158 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6159 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6160 	}
6161 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6162 		phba->trunk_link.link2.state =
6163 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6164 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6165 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6166 	}
6167 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6168 		phba->trunk_link.link3.state =
6169 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6170 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6171 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6172 	}
6173 
6174 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6175 			"2910 Async FC Trunking Event - Speed:%d\n"
6176 			"\tLogical speed:%d "
6177 			"port0: %s port1: %s port2: %s port3: %s\n",
6178 			phba->sli4_hba.link_state.speed,
6179 			phba->sli4_hba.link_state.logical_speed,
6180 			trunk_link_status(0), trunk_link_status(1),
6181 			trunk_link_status(2), trunk_link_status(3));
6182 
6183 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6184 		lpfc_cmf_signal_init(phba);
6185 
6186 	if (port_fault)
6187 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6188 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6189 				/*
6190 				 * SLI-4: We have only 0xA error codes
6191 				 * defined as of now. print an appropriate
6192 				 * message in case driver needs to be updated.
6193 				 */
6194 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6195 				"UNDEFINED. update driver." : trunk_errmsg[err],
6196 				trunk_port_fault(0), trunk_port_fault(1),
6197 				trunk_port_fault(2), trunk_port_fault(3));
6198 }
6199 
6200 
6201 /**
6202  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6203  * @phba: pointer to lpfc hba data structure.
6204  * @acqe_fc: pointer to the async fc completion queue entry.
6205  *
6206  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6207  * that the event was received and then issue a read_topology mailbox command so
6208  * that the rest of the driver will treat it the same as SLI3.
6209  **/
6210 static void
6211 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6212 {
6213 	struct lpfc_dmabuf *mp;
6214 	LPFC_MBOXQ_t *pmb;
6215 	MAILBOX_t *mb;
6216 	struct lpfc_mbx_read_top *la;
6217 	int rc;
6218 
6219 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6220 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6221 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6222 				"2895 Non FC link Event detected.(%d)\n",
6223 				bf_get(lpfc_trailer_type, acqe_fc));
6224 		return;
6225 	}
6226 
6227 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6228 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6229 		lpfc_update_trunk_link_status(phba, acqe_fc);
6230 		return;
6231 	}
6232 
6233 	/* Keep the link status for extra SLI4 state machine reference */
6234 	phba->sli4_hba.link_state.speed =
6235 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6236 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6237 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6238 	phba->sli4_hba.link_state.topology =
6239 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6240 	phba->sli4_hba.link_state.status =
6241 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6242 	phba->sli4_hba.link_state.type =
6243 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6244 	phba->sli4_hba.link_state.number =
6245 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6246 	phba->sli4_hba.link_state.fault =
6247 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6248 
6249 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6250 	    LPFC_FC_LA_TYPE_LINK_DOWN)
6251 		phba->sli4_hba.link_state.logical_speed = 0;
6252 	else if	(!phba->sli4_hba.conf_trunk)
6253 		phba->sli4_hba.link_state.logical_speed =
6254 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6255 
6256 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6257 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6258 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6259 			"%dMbps Fault:%d\n",
6260 			phba->sli4_hba.link_state.speed,
6261 			phba->sli4_hba.link_state.topology,
6262 			phba->sli4_hba.link_state.status,
6263 			phba->sli4_hba.link_state.type,
6264 			phba->sli4_hba.link_state.number,
6265 			phba->sli4_hba.link_state.logical_speed,
6266 			phba->sli4_hba.link_state.fault);
6267 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6268 	if (!pmb) {
6269 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6270 				"2897 The mboxq allocation failed\n");
6271 		return;
6272 	}
6273 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
6274 	if (!mp) {
6275 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6276 				"2898 The lpfc_dmabuf allocation failed\n");
6277 		goto out_free_pmb;
6278 	}
6279 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
6280 	if (!mp->virt) {
6281 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6282 				"2899 The mbuf allocation failed\n");
6283 		goto out_free_dmabuf;
6284 	}
6285 
6286 	/* Cleanup any outstanding ELS commands */
6287 	lpfc_els_flush_all_cmd(phba);
6288 
6289 	/* Block ELS IOCBs until we have done process link event */
6290 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6291 
6292 	/* Update link event statistics */
6293 	phba->sli.slistat.link_event++;
6294 
6295 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6296 	lpfc_read_topology(phba, pmb, mp);
6297 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6298 	pmb->vport = phba->pport;
6299 
6300 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6301 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6302 
6303 		switch (phba->sli4_hba.link_state.status) {
6304 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6305 			phba->link_flag |= LS_MDS_LINK_DOWN;
6306 			break;
6307 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6308 			phba->link_flag |= LS_MDS_LOOPBACK;
6309 			break;
6310 		default:
6311 			break;
6312 		}
6313 
6314 		/* Initialize completion status */
6315 		mb = &pmb->u.mb;
6316 		mb->mbxStatus = MBX_SUCCESS;
6317 
6318 		/* Parse port fault information field */
6319 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6320 
6321 		/* Parse and translate link attention fields */
6322 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6323 		la->eventTag = acqe_fc->event_tag;
6324 
6325 		if (phba->sli4_hba.link_state.status ==
6326 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6327 			bf_set(lpfc_mbx_read_top_att_type, la,
6328 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6329 		} else {
6330 			bf_set(lpfc_mbx_read_top_att_type, la,
6331 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6332 		}
6333 		/* Invoke the mailbox command callback function */
6334 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6335 
6336 		return;
6337 	}
6338 
6339 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6340 	if (rc == MBX_NOT_FINISHED)
6341 		goto out_free_dmabuf;
6342 	return;
6343 
6344 out_free_dmabuf:
6345 	kfree(mp);
6346 out_free_pmb:
6347 	mempool_free(pmb, phba->mbox_mem_pool);
6348 }
6349 
6350 /**
6351  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6352  * @phba: pointer to lpfc hba data structure.
6353  * @acqe_sli: pointer to the async SLI completion queue entry.
6354  *
6355  * This routine is to handle the SLI4 asynchronous SLI events.
6356  **/
6357 static void
6358 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6359 {
6360 	char port_name;
6361 	char message[128];
6362 	uint8_t status;
6363 	uint8_t evt_type;
6364 	uint8_t operational = 0;
6365 	struct temp_event temp_event_data;
6366 	struct lpfc_acqe_misconfigured_event *misconfigured;
6367 	struct lpfc_acqe_cgn_signal *cgn_signal;
6368 	struct Scsi_Host  *shost;
6369 	struct lpfc_vport **vports;
6370 	int rc, i, cnt;
6371 
6372 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6373 
6374 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6375 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6376 			"x%08x x%08x x%08x\n", evt_type,
6377 			acqe_sli->event_data1, acqe_sli->event_data2,
6378 			acqe_sli->reserved, acqe_sli->trailer);
6379 
6380 	port_name = phba->Port[0];
6381 	if (port_name == 0x00)
6382 		port_name = '?'; /* get port name is empty */
6383 
6384 	switch (evt_type) {
6385 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6386 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6387 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6388 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6389 
6390 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6391 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6392 				acqe_sli->event_data1, port_name);
6393 
6394 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6395 		shost = lpfc_shost_from_vport(phba->pport);
6396 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6397 					  sizeof(temp_event_data),
6398 					  (char *)&temp_event_data,
6399 					  SCSI_NL_VID_TYPE_PCI
6400 					  | PCI_VENDOR_ID_EMULEX);
6401 		break;
6402 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6403 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6404 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6405 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6406 
6407 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6408 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6409 				acqe_sli->event_data1, port_name);
6410 
6411 		shost = lpfc_shost_from_vport(phba->pport);
6412 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6413 					  sizeof(temp_event_data),
6414 					  (char *)&temp_event_data,
6415 					  SCSI_NL_VID_TYPE_PCI
6416 					  | PCI_VENDOR_ID_EMULEX);
6417 		break;
6418 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6419 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6420 					&acqe_sli->event_data1;
6421 
6422 		/* fetch the status for this port */
6423 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6424 		case LPFC_LINK_NUMBER_0:
6425 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6426 					&misconfigured->theEvent);
6427 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6428 					&misconfigured->theEvent);
6429 			break;
6430 		case LPFC_LINK_NUMBER_1:
6431 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6432 					&misconfigured->theEvent);
6433 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6434 					&misconfigured->theEvent);
6435 			break;
6436 		case LPFC_LINK_NUMBER_2:
6437 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6438 					&misconfigured->theEvent);
6439 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6440 					&misconfigured->theEvent);
6441 			break;
6442 		case LPFC_LINK_NUMBER_3:
6443 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6444 					&misconfigured->theEvent);
6445 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6446 					&misconfigured->theEvent);
6447 			break;
6448 		default:
6449 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6450 					"3296 "
6451 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6452 					"event: Invalid link %d",
6453 					phba->sli4_hba.lnk_info.lnk_no);
6454 			return;
6455 		}
6456 
6457 		/* Skip if optic state unchanged */
6458 		if (phba->sli4_hba.lnk_info.optic_state == status)
6459 			return;
6460 
6461 		switch (status) {
6462 		case LPFC_SLI_EVENT_STATUS_VALID:
6463 			sprintf(message, "Physical Link is functional");
6464 			break;
6465 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6466 			sprintf(message, "Optics faulted/incorrectly "
6467 				"installed/not installed - Reseat optics, "
6468 				"if issue not resolved, replace.");
6469 			break;
6470 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6471 			sprintf(message,
6472 				"Optics of two types installed - Remove one "
6473 				"optic or install matching pair of optics.");
6474 			break;
6475 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6476 			sprintf(message, "Incompatible optics - Replace with "
6477 				"compatible optics for card to function.");
6478 			break;
6479 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6480 			sprintf(message, "Unqualified optics - Replace with "
6481 				"Avago optics for Warranty and Technical "
6482 				"Support - Link is%s operational",
6483 				(operational) ? " not" : "");
6484 			break;
6485 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6486 			sprintf(message, "Uncertified optics - Replace with "
6487 				"Avago-certified optics to enable link "
6488 				"operation - Link is%s operational",
6489 				(operational) ? " not" : "");
6490 			break;
6491 		default:
6492 			/* firmware is reporting a status we don't know about */
6493 			sprintf(message, "Unknown event status x%02x", status);
6494 			break;
6495 		}
6496 
6497 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6498 		rc = lpfc_sli4_read_config(phba);
6499 		if (rc) {
6500 			phba->lmt = 0;
6501 			lpfc_printf_log(phba, KERN_ERR,
6502 					LOG_TRACE_EVENT,
6503 					"3194 Unable to retrieve supported "
6504 					"speeds, rc = 0x%x\n", rc);
6505 		}
6506 		rc = lpfc_sli4_refresh_params(phba);
6507 		if (rc) {
6508 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6509 					"3174 Unable to update pls support, "
6510 					"rc x%x\n", rc);
6511 		}
6512 		vports = lpfc_create_vport_work_array(phba);
6513 		if (vports != NULL) {
6514 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6515 					i++) {
6516 				shost = lpfc_shost_from_vport(vports[i]);
6517 				lpfc_host_supported_speeds_set(shost);
6518 			}
6519 		}
6520 		lpfc_destroy_vport_work_array(phba, vports);
6521 
6522 		phba->sli4_hba.lnk_info.optic_state = status;
6523 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6524 				"3176 Port Name %c %s\n", port_name, message);
6525 		break;
6526 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6527 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6528 				"3192 Remote DPort Test Initiated - "
6529 				"Event Data1:x%08x Event Data2: x%08x\n",
6530 				acqe_sli->event_data1, acqe_sli->event_data2);
6531 		break;
6532 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6533 		/* Call FW to obtain active parms */
6534 		lpfc_sli4_cgn_parm_chg_evt(phba);
6535 		break;
6536 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6537 		/* Misconfigured WWN. Reports that the SLI Port is configured
6538 		 * to use FA-WWN, but the attached device doesn’t support it.
6539 		 * No driver action is required.
6540 		 * Event Data1 - N.A, Event Data2 - N.A
6541 		 */
6542 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI,
6543 			     "2699 Misconfigured FA-WWN - Attached device does "
6544 			     "not support FA-WWN\n");
6545 		break;
6546 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6547 		/* EEPROM failure. No driver action is required */
6548 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6549 			     "2518 EEPROM failure - "
6550 			     "Event Data1: x%08x Event Data2: x%08x\n",
6551 			     acqe_sli->event_data1, acqe_sli->event_data2);
6552 		break;
6553 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6554 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6555 			break;
6556 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6557 					&acqe_sli->event_data1;
6558 		phba->cgn_acqe_cnt++;
6559 
6560 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6561 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6562 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6563 
6564 		/* no threshold for CMF, even 1 signal will trigger an event */
6565 
6566 		/* Alarm overrides warning, so check that first */
6567 		if (cgn_signal->alarm_cnt) {
6568 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6569 				/* Keep track of alarm cnt for cgn_info */
6570 				atomic_add(cgn_signal->alarm_cnt,
6571 					   &phba->cgn_fabric_alarm_cnt);
6572 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6573 				atomic_add(cgn_signal->alarm_cnt,
6574 					   &phba->cgn_sync_alarm_cnt);
6575 			}
6576 		} else if (cnt) {
6577 			/* signal action needs to be taken */
6578 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6579 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6580 				/* Keep track of warning cnt for cgn_info */
6581 				atomic_add(cnt, &phba->cgn_fabric_warn_cnt);
6582 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6583 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6584 			}
6585 		}
6586 		break;
6587 	default:
6588 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6589 				"3193 Unrecognized SLI event, type: 0x%x",
6590 				evt_type);
6591 		break;
6592 	}
6593 }
6594 
6595 /**
6596  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6597  * @vport: pointer to vport data structure.
6598  *
6599  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6600  * response to a CVL event.
6601  *
6602  * Return the pointer to the ndlp with the vport if successful, otherwise
6603  * return NULL.
6604  **/
6605 static struct lpfc_nodelist *
6606 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6607 {
6608 	struct lpfc_nodelist *ndlp;
6609 	struct Scsi_Host *shost;
6610 	struct lpfc_hba *phba;
6611 
6612 	if (!vport)
6613 		return NULL;
6614 	phba = vport->phba;
6615 	if (!phba)
6616 		return NULL;
6617 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6618 	if (!ndlp) {
6619 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6620 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6621 		if (!ndlp)
6622 			return NULL;
6623 		/* Set the node type */
6624 		ndlp->nlp_type |= NLP_FABRIC;
6625 		/* Put ndlp onto node list */
6626 		lpfc_enqueue_node(vport, ndlp);
6627 	}
6628 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6629 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6630 		return NULL;
6631 	/* If virtual link is not yet instantiated ignore CVL */
6632 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6633 		&& (vport->port_state != LPFC_VPORT_FAILED))
6634 		return NULL;
6635 	shost = lpfc_shost_from_vport(vport);
6636 	if (!shost)
6637 		return NULL;
6638 	lpfc_linkdown_port(vport);
6639 	lpfc_cleanup_pending_mbox(vport);
6640 	spin_lock_irq(shost->host_lock);
6641 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6642 	spin_unlock_irq(shost->host_lock);
6643 
6644 	return ndlp;
6645 }
6646 
6647 /**
6648  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6649  * @phba: pointer to lpfc hba data structure.
6650  *
6651  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6652  * response to a FCF dead event.
6653  **/
6654 static void
6655 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6656 {
6657 	struct lpfc_vport **vports;
6658 	int i;
6659 
6660 	vports = lpfc_create_vport_work_array(phba);
6661 	if (vports)
6662 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6663 			lpfc_sli4_perform_vport_cvl(vports[i]);
6664 	lpfc_destroy_vport_work_array(phba, vports);
6665 }
6666 
6667 /**
6668  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6669  * @phba: pointer to lpfc hba data structure.
6670  * @acqe_fip: pointer to the async fcoe completion queue entry.
6671  *
6672  * This routine is to handle the SLI4 asynchronous fcoe event.
6673  **/
6674 static void
6675 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6676 			struct lpfc_acqe_fip *acqe_fip)
6677 {
6678 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6679 	int rc;
6680 	struct lpfc_vport *vport;
6681 	struct lpfc_nodelist *ndlp;
6682 	int active_vlink_present;
6683 	struct lpfc_vport **vports;
6684 	int i;
6685 
6686 	phba->fc_eventTag = acqe_fip->event_tag;
6687 	phba->fcoe_eventtag = acqe_fip->event_tag;
6688 	switch (event_type) {
6689 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6690 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6691 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6692 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6693 					"2546 New FCF event, evt_tag:x%x, "
6694 					"index:x%x\n",
6695 					acqe_fip->event_tag,
6696 					acqe_fip->index);
6697 		else
6698 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6699 					LOG_DISCOVERY,
6700 					"2788 FCF param modified event, "
6701 					"evt_tag:x%x, index:x%x\n",
6702 					acqe_fip->event_tag,
6703 					acqe_fip->index);
6704 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6705 			/*
6706 			 * During period of FCF discovery, read the FCF
6707 			 * table record indexed by the event to update
6708 			 * FCF roundrobin failover eligible FCF bmask.
6709 			 */
6710 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6711 					LOG_DISCOVERY,
6712 					"2779 Read FCF (x%x) for updating "
6713 					"roundrobin FCF failover bmask\n",
6714 					acqe_fip->index);
6715 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6716 		}
6717 
6718 		/* If the FCF discovery is in progress, do nothing. */
6719 		spin_lock_irq(&phba->hbalock);
6720 		if (phba->hba_flag & FCF_TS_INPROG) {
6721 			spin_unlock_irq(&phba->hbalock);
6722 			break;
6723 		}
6724 		/* If fast FCF failover rescan event is pending, do nothing */
6725 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6726 			spin_unlock_irq(&phba->hbalock);
6727 			break;
6728 		}
6729 
6730 		/* If the FCF has been in discovered state, do nothing. */
6731 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6732 			spin_unlock_irq(&phba->hbalock);
6733 			break;
6734 		}
6735 		spin_unlock_irq(&phba->hbalock);
6736 
6737 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6738 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6739 				"2770 Start FCF table scan per async FCF "
6740 				"event, evt_tag:x%x, index:x%x\n",
6741 				acqe_fip->event_tag, acqe_fip->index);
6742 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6743 						     LPFC_FCOE_FCF_GET_FIRST);
6744 		if (rc)
6745 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6746 					"2547 Issue FCF scan read FCF mailbox "
6747 					"command failed (x%x)\n", rc);
6748 		break;
6749 
6750 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6751 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6752 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6753 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6754 				acqe_fip->event_tag);
6755 		break;
6756 
6757 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6758 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6759 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6760 				"2549 FCF (x%x) disconnected from network, "
6761 				 "tag:x%x\n", acqe_fip->index,
6762 				 acqe_fip->event_tag);
6763 		/*
6764 		 * If we are in the middle of FCF failover process, clear
6765 		 * the corresponding FCF bit in the roundrobin bitmap.
6766 		 */
6767 		spin_lock_irq(&phba->hbalock);
6768 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6769 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6770 			spin_unlock_irq(&phba->hbalock);
6771 			/* Update FLOGI FCF failover eligible FCF bmask */
6772 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6773 			break;
6774 		}
6775 		spin_unlock_irq(&phba->hbalock);
6776 
6777 		/* If the event is not for currently used fcf do nothing */
6778 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6779 			break;
6780 
6781 		/*
6782 		 * Otherwise, request the port to rediscover the entire FCF
6783 		 * table for a fast recovery from case that the current FCF
6784 		 * is no longer valid as we are not in the middle of FCF
6785 		 * failover process already.
6786 		 */
6787 		spin_lock_irq(&phba->hbalock);
6788 		/* Mark the fast failover process in progress */
6789 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6790 		spin_unlock_irq(&phba->hbalock);
6791 
6792 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6793 				"2771 Start FCF fast failover process due to "
6794 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6795 				"\n", acqe_fip->event_tag, acqe_fip->index);
6796 		rc = lpfc_sli4_redisc_fcf_table(phba);
6797 		if (rc) {
6798 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6799 					LOG_TRACE_EVENT,
6800 					"2772 Issue FCF rediscover mailbox "
6801 					"command failed, fail through to FCF "
6802 					"dead event\n");
6803 			spin_lock_irq(&phba->hbalock);
6804 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6805 			spin_unlock_irq(&phba->hbalock);
6806 			/*
6807 			 * Last resort will fail over by treating this
6808 			 * as a link down to FCF registration.
6809 			 */
6810 			lpfc_sli4_fcf_dead_failthrough(phba);
6811 		} else {
6812 			/* Reset FCF roundrobin bmask for new discovery */
6813 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6814 			/*
6815 			 * Handling fast FCF failover to a DEAD FCF event is
6816 			 * considered equalivant to receiving CVL to all vports.
6817 			 */
6818 			lpfc_sli4_perform_all_vport_cvl(phba);
6819 		}
6820 		break;
6821 	case LPFC_FIP_EVENT_TYPE_CVL:
6822 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6823 		lpfc_printf_log(phba, KERN_ERR,
6824 				LOG_TRACE_EVENT,
6825 			"2718 Clear Virtual Link Received for VPI 0x%x"
6826 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6827 
6828 		vport = lpfc_find_vport_by_vpid(phba,
6829 						acqe_fip->index);
6830 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6831 		if (!ndlp)
6832 			break;
6833 		active_vlink_present = 0;
6834 
6835 		vports = lpfc_create_vport_work_array(phba);
6836 		if (vports) {
6837 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6838 					i++) {
6839 				if ((!(vports[i]->fc_flag &
6840 					FC_VPORT_CVL_RCVD)) &&
6841 					(vports[i]->port_state > LPFC_FDISC)) {
6842 					active_vlink_present = 1;
6843 					break;
6844 				}
6845 			}
6846 			lpfc_destroy_vport_work_array(phba, vports);
6847 		}
6848 
6849 		/*
6850 		 * Don't re-instantiate if vport is marked for deletion.
6851 		 * If we are here first then vport_delete is going to wait
6852 		 * for discovery to complete.
6853 		 */
6854 		if (!(vport->load_flag & FC_UNLOADING) &&
6855 					active_vlink_present) {
6856 			/*
6857 			 * If there are other active VLinks present,
6858 			 * re-instantiate the Vlink using FDISC.
6859 			 */
6860 			mod_timer(&ndlp->nlp_delayfunc,
6861 				  jiffies + msecs_to_jiffies(1000));
6862 			spin_lock_irq(&ndlp->lock);
6863 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6864 			spin_unlock_irq(&ndlp->lock);
6865 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6866 			vport->port_state = LPFC_FDISC;
6867 		} else {
6868 			/*
6869 			 * Otherwise, we request port to rediscover
6870 			 * the entire FCF table for a fast recovery
6871 			 * from possible case that the current FCF
6872 			 * is no longer valid if we are not already
6873 			 * in the FCF failover process.
6874 			 */
6875 			spin_lock_irq(&phba->hbalock);
6876 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6877 				spin_unlock_irq(&phba->hbalock);
6878 				break;
6879 			}
6880 			/* Mark the fast failover process in progress */
6881 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6882 			spin_unlock_irq(&phba->hbalock);
6883 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6884 					LOG_DISCOVERY,
6885 					"2773 Start FCF failover per CVL, "
6886 					"evt_tag:x%x\n", acqe_fip->event_tag);
6887 			rc = lpfc_sli4_redisc_fcf_table(phba);
6888 			if (rc) {
6889 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6890 						LOG_TRACE_EVENT,
6891 						"2774 Issue FCF rediscover "
6892 						"mailbox command failed, "
6893 						"through to CVL event\n");
6894 				spin_lock_irq(&phba->hbalock);
6895 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6896 				spin_unlock_irq(&phba->hbalock);
6897 				/*
6898 				 * Last resort will be re-try on the
6899 				 * the current registered FCF entry.
6900 				 */
6901 				lpfc_retry_pport_discovery(phba);
6902 			} else
6903 				/*
6904 				 * Reset FCF roundrobin bmask for new
6905 				 * discovery.
6906 				 */
6907 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6908 		}
6909 		break;
6910 	default:
6911 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6912 				"0288 Unknown FCoE event type 0x%x event tag "
6913 				"0x%x\n", event_type, acqe_fip->event_tag);
6914 		break;
6915 	}
6916 }
6917 
6918 /**
6919  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6920  * @phba: pointer to lpfc hba data structure.
6921  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6922  *
6923  * This routine is to handle the SLI4 asynchronous dcbx event.
6924  **/
6925 static void
6926 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6927 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6928 {
6929 	phba->fc_eventTag = acqe_dcbx->event_tag;
6930 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6931 			"0290 The SLI4 DCBX asynchronous event is not "
6932 			"handled yet\n");
6933 }
6934 
6935 /**
6936  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6937  * @phba: pointer to lpfc hba data structure.
6938  * @acqe_grp5: pointer to the async grp5 completion queue entry.
6939  *
6940  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
6941  * is an asynchronous notified of a logical link speed change.  The Port
6942  * reports the logical link speed in units of 10Mbps.
6943  **/
6944 static void
6945 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
6946 			 struct lpfc_acqe_grp5 *acqe_grp5)
6947 {
6948 	uint16_t prev_ll_spd;
6949 
6950 	phba->fc_eventTag = acqe_grp5->event_tag;
6951 	phba->fcoe_eventtag = acqe_grp5->event_tag;
6952 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
6953 	phba->sli4_hba.link_state.logical_speed =
6954 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
6955 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6956 			"2789 GRP5 Async Event: Updating logical link speed "
6957 			"from %dMbps to %dMbps\n", prev_ll_spd,
6958 			phba->sli4_hba.link_state.logical_speed);
6959 }
6960 
6961 /**
6962  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
6963  * @phba: pointer to lpfc hba data structure.
6964  *
6965  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
6966  * is an asynchronous notification of a request to reset CM stats.
6967  **/
6968 static void
6969 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
6970 {
6971 	if (!phba->cgn_i)
6972 		return;
6973 	lpfc_init_congestion_stat(phba);
6974 }
6975 
6976 /**
6977  * lpfc_cgn_params_val - Validate FW congestion parameters.
6978  * @phba: pointer to lpfc hba data structure.
6979  * @p_cfg_param: pointer to FW provided congestion parameters.
6980  *
6981  * This routine validates the congestion parameters passed
6982  * by the FW to the driver via an ACQE event.
6983  **/
6984 static void
6985 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
6986 {
6987 	spin_lock_irq(&phba->hbalock);
6988 
6989 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
6990 			     LPFC_CFG_MONITOR)) {
6991 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
6992 				"6225 CMF mode param out of range: %d\n",
6993 				 p_cfg_param->cgn_param_mode);
6994 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
6995 	}
6996 
6997 	spin_unlock_irq(&phba->hbalock);
6998 }
6999 
7000 /**
7001  * lpfc_cgn_params_parse - Process a FW cong parm change event
7002  * @phba: pointer to lpfc hba data structure.
7003  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7004  * @len: the size of pdata in bytes.
7005  *
7006  * This routine validates the congestion management buffer signature
7007  * from the FW, validates the contents and makes corrections for
7008  * valid, in-range values.  If the signature magic is correct and
7009  * after parameter validation, the contents are copied to the driver's
7010  * @phba structure. If the magic is incorrect, an error message is
7011  * logged.
7012  **/
7013 static void
7014 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7015 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7016 {
7017 	struct lpfc_cgn_info *cp;
7018 	uint32_t crc, oldmode;
7019 
7020 	/* Make sure the FW has encoded the correct magic number to
7021 	 * validate the congestion parameter in FW memory.
7022 	 */
7023 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7024 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7025 				"4668 FW cgn parm buffer data: "
7026 				"magic 0x%x version %d mode %d "
7027 				"level0 %d level1 %d "
7028 				"level2 %d byte13 %d "
7029 				"byte14 %d byte15 %d "
7030 				"byte11 %d byte12 %d activeMode %d\n",
7031 				p_cgn_param->cgn_param_magic,
7032 				p_cgn_param->cgn_param_version,
7033 				p_cgn_param->cgn_param_mode,
7034 				p_cgn_param->cgn_param_level0,
7035 				p_cgn_param->cgn_param_level1,
7036 				p_cgn_param->cgn_param_level2,
7037 				p_cgn_param->byte13,
7038 				p_cgn_param->byte14,
7039 				p_cgn_param->byte15,
7040 				p_cgn_param->byte11,
7041 				p_cgn_param->byte12,
7042 				phba->cmf_active_mode);
7043 
7044 		oldmode = phba->cmf_active_mode;
7045 
7046 		/* Any parameters out of range are corrected to defaults
7047 		 * by this routine.  No need to fail.
7048 		 */
7049 		lpfc_cgn_params_val(phba, p_cgn_param);
7050 
7051 		/* Parameters are verified, move them into driver storage */
7052 		spin_lock_irq(&phba->hbalock);
7053 		memcpy(&phba->cgn_p, p_cgn_param,
7054 		       sizeof(struct lpfc_cgn_param));
7055 
7056 		/* Update parameters in congestion info buffer now */
7057 		if (phba->cgn_i) {
7058 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7059 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7060 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7061 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7062 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7063 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7064 						  LPFC_CGN_CRC32_SEED);
7065 			cp->cgn_info_crc = cpu_to_le32(crc);
7066 		}
7067 		spin_unlock_irq(&phba->hbalock);
7068 
7069 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7070 
7071 		switch (oldmode) {
7072 		case LPFC_CFG_OFF:
7073 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7074 				/* Turning CMF on */
7075 				lpfc_cmf_start(phba);
7076 
7077 				if (phba->link_state >= LPFC_LINK_UP) {
7078 					phba->cgn_reg_fpin =
7079 						phba->cgn_init_reg_fpin;
7080 					phba->cgn_reg_signal =
7081 						phba->cgn_init_reg_signal;
7082 					lpfc_issue_els_edc(phba->pport, 0);
7083 				}
7084 			}
7085 			break;
7086 		case LPFC_CFG_MANAGED:
7087 			switch (phba->cgn_p.cgn_param_mode) {
7088 			case LPFC_CFG_OFF:
7089 				/* Turning CMF off */
7090 				lpfc_cmf_stop(phba);
7091 				if (phba->link_state >= LPFC_LINK_UP)
7092 					lpfc_issue_els_edc(phba->pport, 0);
7093 				break;
7094 			case LPFC_CFG_MONITOR:
7095 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7096 						"4661 Switch from MANAGED to "
7097 						"`MONITOR mode\n");
7098 				phba->cmf_max_bytes_per_interval =
7099 					phba->cmf_link_byte_count;
7100 
7101 				/* Resume blocked IO - unblock on workqueue */
7102 				queue_work(phba->wq,
7103 					   &phba->unblock_request_work);
7104 				break;
7105 			}
7106 			break;
7107 		case LPFC_CFG_MONITOR:
7108 			switch (phba->cgn_p.cgn_param_mode) {
7109 			case LPFC_CFG_OFF:
7110 				/* Turning CMF off */
7111 				lpfc_cmf_stop(phba);
7112 				if (phba->link_state >= LPFC_LINK_UP)
7113 					lpfc_issue_els_edc(phba->pport, 0);
7114 				break;
7115 			case LPFC_CFG_MANAGED:
7116 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7117 						"4662 Switch from MONITOR to "
7118 						"MANAGED mode\n");
7119 				lpfc_cmf_signal_init(phba);
7120 				break;
7121 			}
7122 			break;
7123 		}
7124 	} else {
7125 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7126 				"4669 FW cgn parm buf wrong magic 0x%x "
7127 				"version %d\n", p_cgn_param->cgn_param_magic,
7128 				p_cgn_param->cgn_param_version);
7129 	}
7130 }
7131 
7132 /**
7133  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7134  * @phba: pointer to lpfc hba data structure.
7135  *
7136  * This routine issues a read_object mailbox command to
7137  * get the congestion management parameters from the FW
7138  * parses it and updates the driver maintained values.
7139  *
7140  * Returns
7141  *  0     if the object was empty
7142  *  -Eval if an error was encountered
7143  *  Count if bytes were read from object
7144  **/
7145 int
7146 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7147 {
7148 	int ret = 0;
7149 	struct lpfc_cgn_param *p_cgn_param = NULL;
7150 	u32 *pdata = NULL;
7151 	u32 len = 0;
7152 
7153 	/* Find out if the FW has a new set of congestion parameters. */
7154 	len = sizeof(struct lpfc_cgn_param);
7155 	pdata = kzalloc(len, GFP_KERNEL);
7156 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7157 			       pdata, len);
7158 
7159 	/* 0 means no data.  A negative means error.  A positive means
7160 	 * bytes were copied.
7161 	 */
7162 	if (!ret) {
7163 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7164 				"4670 CGN RD OBJ returns no data\n");
7165 		goto rd_obj_err;
7166 	} else if (ret < 0) {
7167 		/* Some error.  Just exit and return it to the caller.*/
7168 		goto rd_obj_err;
7169 	}
7170 
7171 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7172 			"6234 READ CGN PARAMS Successful %d\n", len);
7173 
7174 	/* Parse data pointer over len and update the phba congestion
7175 	 * parameters with values passed back.  The receive rate values
7176 	 * may have been altered in FW, but take no action here.
7177 	 */
7178 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7179 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7180 
7181  rd_obj_err:
7182 	kfree(pdata);
7183 	return ret;
7184 }
7185 
7186 /**
7187  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7188  * @phba: pointer to lpfc hba data structure.
7189  *
7190  * The FW generated Async ACQE SLI event calls this routine when
7191  * the event type is an SLI Internal Port Event and the Event Code
7192  * indicates a change to the FW maintained congestion parameters.
7193  *
7194  * This routine executes a Read_Object mailbox call to obtain the
7195  * current congestion parameters maintained in FW and corrects
7196  * the driver's active congestion parameters.
7197  *
7198  * The acqe event is not passed because there is no further data
7199  * required.
7200  *
7201  * Returns nonzero error if event processing encountered an error.
7202  * Zero otherwise for success.
7203  **/
7204 static int
7205 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7206 {
7207 	int ret = 0;
7208 
7209 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7210 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7211 				"4664 Cgn Evt when E2E off. Drop event\n");
7212 		return -EACCES;
7213 	}
7214 
7215 	/* If the event is claiming an empty object, it's ok.  A write
7216 	 * could have cleared it.  Only error is a negative return
7217 	 * status.
7218 	 */
7219 	ret = lpfc_sli4_cgn_params_read(phba);
7220 	if (ret < 0) {
7221 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7222 				"4667 Error reading Cgn Params (%d)\n",
7223 				ret);
7224 	} else if (!ret) {
7225 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7226 				"4673 CGN Event empty object.\n");
7227 	}
7228 	return ret;
7229 }
7230 
7231 /**
7232  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7233  * @phba: pointer to lpfc hba data structure.
7234  *
7235  * This routine is invoked by the worker thread to process all the pending
7236  * SLI4 asynchronous events.
7237  **/
7238 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7239 {
7240 	struct lpfc_cq_event *cq_event;
7241 	unsigned long iflags;
7242 
7243 	/* First, declare the async event has been handled */
7244 	spin_lock_irqsave(&phba->hbalock, iflags);
7245 	phba->hba_flag &= ~ASYNC_EVENT;
7246 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7247 
7248 	/* Now, handle all the async events */
7249 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7250 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7251 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7252 				 cq_event, struct lpfc_cq_event, list);
7253 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7254 				       iflags);
7255 
7256 		/* Process the asynchronous event */
7257 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7258 		case LPFC_TRAILER_CODE_LINK:
7259 			lpfc_sli4_async_link_evt(phba,
7260 						 &cq_event->cqe.acqe_link);
7261 			break;
7262 		case LPFC_TRAILER_CODE_FCOE:
7263 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7264 			break;
7265 		case LPFC_TRAILER_CODE_DCBX:
7266 			lpfc_sli4_async_dcbx_evt(phba,
7267 						 &cq_event->cqe.acqe_dcbx);
7268 			break;
7269 		case LPFC_TRAILER_CODE_GRP5:
7270 			lpfc_sli4_async_grp5_evt(phba,
7271 						 &cq_event->cqe.acqe_grp5);
7272 			break;
7273 		case LPFC_TRAILER_CODE_FC:
7274 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7275 			break;
7276 		case LPFC_TRAILER_CODE_SLI:
7277 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7278 			break;
7279 		case LPFC_TRAILER_CODE_CMSTAT:
7280 			lpfc_sli4_async_cmstat_evt(phba);
7281 			break;
7282 		default:
7283 			lpfc_printf_log(phba, KERN_ERR,
7284 					LOG_TRACE_EVENT,
7285 					"1804 Invalid asynchronous event code: "
7286 					"x%x\n", bf_get(lpfc_trailer_code,
7287 					&cq_event->cqe.mcqe_cmpl));
7288 			break;
7289 		}
7290 
7291 		/* Free the completion event processed to the free pool */
7292 		lpfc_sli4_cq_event_release(phba, cq_event);
7293 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7294 	}
7295 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7296 }
7297 
7298 /**
7299  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7300  * @phba: pointer to lpfc hba data structure.
7301  *
7302  * This routine is invoked by the worker thread to process FCF table
7303  * rediscovery pending completion event.
7304  **/
7305 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7306 {
7307 	int rc;
7308 
7309 	spin_lock_irq(&phba->hbalock);
7310 	/* Clear FCF rediscovery timeout event */
7311 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7312 	/* Clear driver fast failover FCF record flag */
7313 	phba->fcf.failover_rec.flag = 0;
7314 	/* Set state for FCF fast failover */
7315 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7316 	spin_unlock_irq(&phba->hbalock);
7317 
7318 	/* Scan FCF table from the first entry to re-discover SAN */
7319 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7320 			"2777 Start post-quiescent FCF table scan\n");
7321 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7322 	if (rc)
7323 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7324 				"2747 Issue FCF scan read FCF mailbox "
7325 				"command failed 0x%x\n", rc);
7326 }
7327 
7328 /**
7329  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7330  * @phba: pointer to lpfc hba data structure.
7331  * @dev_grp: The HBA PCI-Device group number.
7332  *
7333  * This routine is invoked to set up the per HBA PCI-Device group function
7334  * API jump table entries.
7335  *
7336  * Return: 0 if success, otherwise -ENODEV
7337  **/
7338 int
7339 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7340 {
7341 	int rc;
7342 
7343 	/* Set up lpfc PCI-device group */
7344 	phba->pci_dev_grp = dev_grp;
7345 
7346 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7347 	if (dev_grp == LPFC_PCI_DEV_OC)
7348 		phba->sli_rev = LPFC_SLI_REV4;
7349 
7350 	/* Set up device INIT API function jump table */
7351 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7352 	if (rc)
7353 		return -ENODEV;
7354 	/* Set up SCSI API function jump table */
7355 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7356 	if (rc)
7357 		return -ENODEV;
7358 	/* Set up SLI API function jump table */
7359 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7360 	if (rc)
7361 		return -ENODEV;
7362 	/* Set up MBOX API function jump table */
7363 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7364 	if (rc)
7365 		return -ENODEV;
7366 
7367 	return 0;
7368 }
7369 
7370 /**
7371  * lpfc_log_intr_mode - Log the active interrupt mode
7372  * @phba: pointer to lpfc hba data structure.
7373  * @intr_mode: active interrupt mode adopted.
7374  *
7375  * This routine it invoked to log the currently used active interrupt mode
7376  * to the device.
7377  **/
7378 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7379 {
7380 	switch (intr_mode) {
7381 	case 0:
7382 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7383 				"0470 Enable INTx interrupt mode.\n");
7384 		break;
7385 	case 1:
7386 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7387 				"0481 Enabled MSI interrupt mode.\n");
7388 		break;
7389 	case 2:
7390 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7391 				"0480 Enabled MSI-X interrupt mode.\n");
7392 		break;
7393 	default:
7394 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7395 				"0482 Illegal interrupt mode.\n");
7396 		break;
7397 	}
7398 	return;
7399 }
7400 
7401 /**
7402  * lpfc_enable_pci_dev - Enable a generic PCI device.
7403  * @phba: pointer to lpfc hba data structure.
7404  *
7405  * This routine is invoked to enable the PCI device that is common to all
7406  * PCI devices.
7407  *
7408  * Return codes
7409  * 	0 - successful
7410  * 	other values - error
7411  **/
7412 static int
7413 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7414 {
7415 	struct pci_dev *pdev;
7416 
7417 	/* Obtain PCI device reference */
7418 	if (!phba->pcidev)
7419 		goto out_error;
7420 	else
7421 		pdev = phba->pcidev;
7422 	/* Enable PCI device */
7423 	if (pci_enable_device_mem(pdev))
7424 		goto out_error;
7425 	/* Request PCI resource for the device */
7426 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7427 		goto out_disable_device;
7428 	/* Set up device as PCI master and save state for EEH */
7429 	pci_set_master(pdev);
7430 	pci_try_set_mwi(pdev);
7431 	pci_save_state(pdev);
7432 
7433 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7434 	if (pci_is_pcie(pdev))
7435 		pdev->needs_freset = 1;
7436 
7437 	return 0;
7438 
7439 out_disable_device:
7440 	pci_disable_device(pdev);
7441 out_error:
7442 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7443 			"1401 Failed to enable pci device\n");
7444 	return -ENODEV;
7445 }
7446 
7447 /**
7448  * lpfc_disable_pci_dev - Disable a generic PCI device.
7449  * @phba: pointer to lpfc hba data structure.
7450  *
7451  * This routine is invoked to disable the PCI device that is common to all
7452  * PCI devices.
7453  **/
7454 static void
7455 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7456 {
7457 	struct pci_dev *pdev;
7458 
7459 	/* Obtain PCI device reference */
7460 	if (!phba->pcidev)
7461 		return;
7462 	else
7463 		pdev = phba->pcidev;
7464 	/* Release PCI resource and disable PCI device */
7465 	pci_release_mem_regions(pdev);
7466 	pci_disable_device(pdev);
7467 
7468 	return;
7469 }
7470 
7471 /**
7472  * lpfc_reset_hba - Reset a hba
7473  * @phba: pointer to lpfc hba data structure.
7474  *
7475  * This routine is invoked to reset a hba device. It brings the HBA
7476  * offline, performs a board restart, and then brings the board back
7477  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7478  * on outstanding mailbox commands.
7479  **/
7480 void
7481 lpfc_reset_hba(struct lpfc_hba *phba)
7482 {
7483 	/* If resets are disabled then set error state and return. */
7484 	if (!phba->cfg_enable_hba_reset) {
7485 		phba->link_state = LPFC_HBA_ERROR;
7486 		return;
7487 	}
7488 
7489 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7490 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7491 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7492 	} else {
7493 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7494 		lpfc_sli_flush_io_rings(phba);
7495 	}
7496 	lpfc_offline(phba);
7497 	lpfc_sli_brdrestart(phba);
7498 	lpfc_online(phba);
7499 	lpfc_unblock_mgmt_io(phba);
7500 }
7501 
7502 /**
7503  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7504  * @phba: pointer to lpfc hba data structure.
7505  *
7506  * This function enables the PCI SR-IOV virtual functions to a physical
7507  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7508  * enable the number of virtual functions to the physical function. As
7509  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7510  * API call does not considered as an error condition for most of the device.
7511  **/
7512 uint16_t
7513 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7514 {
7515 	struct pci_dev *pdev = phba->pcidev;
7516 	uint16_t nr_virtfn;
7517 	int pos;
7518 
7519 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7520 	if (pos == 0)
7521 		return 0;
7522 
7523 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7524 	return nr_virtfn;
7525 }
7526 
7527 /**
7528  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7529  * @phba: pointer to lpfc hba data structure.
7530  * @nr_vfn: number of virtual functions to be enabled.
7531  *
7532  * This function enables the PCI SR-IOV virtual functions to a physical
7533  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7534  * enable the number of virtual functions to the physical function. As
7535  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7536  * API call does not considered as an error condition for most of the device.
7537  **/
7538 int
7539 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7540 {
7541 	struct pci_dev *pdev = phba->pcidev;
7542 	uint16_t max_nr_vfn;
7543 	int rc;
7544 
7545 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7546 	if (nr_vfn > max_nr_vfn) {
7547 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7548 				"3057 Requested vfs (%d) greater than "
7549 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7550 		return -EINVAL;
7551 	}
7552 
7553 	rc = pci_enable_sriov(pdev, nr_vfn);
7554 	if (rc) {
7555 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7556 				"2806 Failed to enable sriov on this device "
7557 				"with vfn number nr_vf:%d, rc:%d\n",
7558 				nr_vfn, rc);
7559 	} else
7560 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7561 				"2807 Successful enable sriov on this device "
7562 				"with vfn number nr_vf:%d\n", nr_vfn);
7563 	return rc;
7564 }
7565 
7566 static void
7567 lpfc_unblock_requests_work(struct work_struct *work)
7568 {
7569 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7570 					     unblock_request_work);
7571 
7572 	lpfc_unblock_requests(phba);
7573 }
7574 
7575 /**
7576  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7577  * @phba: pointer to lpfc hba data structure.
7578  *
7579  * This routine is invoked to set up the driver internal resources before the
7580  * device specific resource setup to support the HBA device it attached to.
7581  *
7582  * Return codes
7583  *	0 - successful
7584  *	other values - error
7585  **/
7586 static int
7587 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7588 {
7589 	struct lpfc_sli *psli = &phba->sli;
7590 
7591 	/*
7592 	 * Driver resources common to all SLI revisions
7593 	 */
7594 	atomic_set(&phba->fast_event_count, 0);
7595 	atomic_set(&phba->dbg_log_idx, 0);
7596 	atomic_set(&phba->dbg_log_cnt, 0);
7597 	atomic_set(&phba->dbg_log_dmping, 0);
7598 	spin_lock_init(&phba->hbalock);
7599 
7600 	/* Initialize port_list spinlock */
7601 	spin_lock_init(&phba->port_list_lock);
7602 	INIT_LIST_HEAD(&phba->port_list);
7603 
7604 	INIT_LIST_HEAD(&phba->work_list);
7605 	init_waitqueue_head(&phba->wait_4_mlo_m_q);
7606 
7607 	/* Initialize the wait queue head for the kernel thread */
7608 	init_waitqueue_head(&phba->work_waitq);
7609 
7610 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7611 			"1403 Protocols supported %s %s %s\n",
7612 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7613 				"SCSI" : " "),
7614 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7615 				"NVME" : " "),
7616 			(phba->nvmet_support ? "NVMET" : " "));
7617 
7618 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7619 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7620 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7621 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7622 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7623 
7624 	/* Initialize the fabric iocb list */
7625 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7626 
7627 	/* Initialize list to save ELS buffers */
7628 	INIT_LIST_HEAD(&phba->elsbuf);
7629 
7630 	/* Initialize FCF connection rec list */
7631 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7632 
7633 	/* Initialize OAS configuration list */
7634 	spin_lock_init(&phba->devicelock);
7635 	INIT_LIST_HEAD(&phba->luns);
7636 
7637 	/* MBOX heartbeat timer */
7638 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7639 	/* Fabric block timer */
7640 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7641 	/* EA polling mode timer */
7642 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7643 	/* Heartbeat timer */
7644 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7645 
7646 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7647 
7648 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7649 			  lpfc_idle_stat_delay_work);
7650 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7651 	return 0;
7652 }
7653 
7654 /**
7655  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7656  * @phba: pointer to lpfc hba data structure.
7657  *
7658  * This routine is invoked to set up the driver internal resources specific to
7659  * support the SLI-3 HBA device it attached to.
7660  *
7661  * Return codes
7662  * 0 - successful
7663  * other values - error
7664  **/
7665 static int
7666 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7667 {
7668 	int rc, entry_sz;
7669 
7670 	/*
7671 	 * Initialize timers used by driver
7672 	 */
7673 
7674 	/* FCP polling mode timer */
7675 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7676 
7677 	/* Host attention work mask setup */
7678 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7679 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7680 
7681 	/* Get all the module params for configuring this host */
7682 	lpfc_get_cfgparam(phba);
7683 	/* Set up phase-1 common device driver resources */
7684 
7685 	rc = lpfc_setup_driver_resource_phase1(phba);
7686 	if (rc)
7687 		return -ENODEV;
7688 
7689 	if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) {
7690 		phba->menlo_flag |= HBA_MENLO_SUPPORT;
7691 		/* check for menlo minimum sg count */
7692 		if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT)
7693 			phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT;
7694 	}
7695 
7696 	if (!phba->sli.sli3_ring)
7697 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7698 					      sizeof(struct lpfc_sli_ring),
7699 					      GFP_KERNEL);
7700 	if (!phba->sli.sli3_ring)
7701 		return -ENOMEM;
7702 
7703 	/*
7704 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7705 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7706 	 */
7707 
7708 	if (phba->sli_rev == LPFC_SLI_REV4)
7709 		entry_sz = sizeof(struct sli4_sge);
7710 	else
7711 		entry_sz = sizeof(struct ulp_bde64);
7712 
7713 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7714 	if (phba->cfg_enable_bg) {
7715 		/*
7716 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7717 		 * the FCP rsp, and a BDE for each. Sice we have no control
7718 		 * over how many protection data segments the SCSI Layer
7719 		 * will hand us (ie: there could be one for every block
7720 		 * in the IO), we just allocate enough BDEs to accomidate
7721 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7722 		 * minimize the risk of running out.
7723 		 */
7724 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7725 			sizeof(struct fcp_rsp) +
7726 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7727 
7728 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7729 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7730 
7731 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7732 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7733 	} else {
7734 		/*
7735 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7736 		 * the FCP rsp, a BDE for each, and a BDE for up to
7737 		 * cfg_sg_seg_cnt data segments.
7738 		 */
7739 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7740 			sizeof(struct fcp_rsp) +
7741 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7742 
7743 		/* Total BDEs in BPL for scsi_sg_list */
7744 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7745 	}
7746 
7747 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7748 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7749 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7750 			phba->cfg_total_seg_cnt);
7751 
7752 	phba->max_vpi = LPFC_MAX_VPI;
7753 	/* This will be set to correct value after config_port mbox */
7754 	phba->max_vports = 0;
7755 
7756 	/*
7757 	 * Initialize the SLI Layer to run with lpfc HBAs.
7758 	 */
7759 	lpfc_sli_setup(phba);
7760 	lpfc_sli_queue_init(phba);
7761 
7762 	/* Allocate device driver memory */
7763 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7764 		return -ENOMEM;
7765 
7766 	phba->lpfc_sg_dma_buf_pool =
7767 		dma_pool_create("lpfc_sg_dma_buf_pool",
7768 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7769 				BPL_ALIGN_SZ, 0);
7770 
7771 	if (!phba->lpfc_sg_dma_buf_pool)
7772 		goto fail_free_mem;
7773 
7774 	phba->lpfc_cmd_rsp_buf_pool =
7775 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7776 					&phba->pcidev->dev,
7777 					sizeof(struct fcp_cmnd) +
7778 					sizeof(struct fcp_rsp),
7779 					BPL_ALIGN_SZ, 0);
7780 
7781 	if (!phba->lpfc_cmd_rsp_buf_pool)
7782 		goto fail_free_dma_buf_pool;
7783 
7784 	/*
7785 	 * Enable sr-iov virtual functions if supported and configured
7786 	 * through the module parameter.
7787 	 */
7788 	if (phba->cfg_sriov_nr_virtfn > 0) {
7789 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7790 						 phba->cfg_sriov_nr_virtfn);
7791 		if (rc) {
7792 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7793 					"2808 Requested number of SR-IOV "
7794 					"virtual functions (%d) is not "
7795 					"supported\n",
7796 					phba->cfg_sriov_nr_virtfn);
7797 			phba->cfg_sriov_nr_virtfn = 0;
7798 		}
7799 	}
7800 
7801 	return 0;
7802 
7803 fail_free_dma_buf_pool:
7804 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7805 	phba->lpfc_sg_dma_buf_pool = NULL;
7806 fail_free_mem:
7807 	lpfc_mem_free(phba);
7808 	return -ENOMEM;
7809 }
7810 
7811 /**
7812  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7813  * @phba: pointer to lpfc hba data structure.
7814  *
7815  * This routine is invoked to unset the driver internal resources set up
7816  * specific for supporting the SLI-3 HBA device it attached to.
7817  **/
7818 static void
7819 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7820 {
7821 	/* Free device driver memory allocated */
7822 	lpfc_mem_free_all(phba);
7823 
7824 	return;
7825 }
7826 
7827 /**
7828  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7829  * @phba: pointer to lpfc hba data structure.
7830  *
7831  * This routine is invoked to set up the driver internal resources specific to
7832  * support the SLI-4 HBA device it attached to.
7833  *
7834  * Return codes
7835  * 	0 - successful
7836  * 	other values - error
7837  **/
7838 static int
7839 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7840 {
7841 	LPFC_MBOXQ_t *mboxq;
7842 	MAILBOX_t *mb;
7843 	int rc, i, max_buf_size;
7844 	int longs;
7845 	int extra;
7846 	uint64_t wwn;
7847 	u32 if_type;
7848 	u32 if_fam;
7849 
7850 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7851 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7852 	phba->sli4_hba.curr_disp_cpu = 0;
7853 
7854 	/* Get all the module params for configuring this host */
7855 	lpfc_get_cfgparam(phba);
7856 
7857 	/* Set up phase-1 common device driver resources */
7858 	rc = lpfc_setup_driver_resource_phase1(phba);
7859 	if (rc)
7860 		return -ENODEV;
7861 
7862 	/* Before proceed, wait for POST done and device ready */
7863 	rc = lpfc_sli4_post_status_check(phba);
7864 	if (rc)
7865 		return -ENODEV;
7866 
7867 	/* Allocate all driver workqueues here */
7868 
7869 	/* The lpfc_wq workqueue for deferred irq use */
7870 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7871 
7872 	/*
7873 	 * Initialize timers used by driver
7874 	 */
7875 
7876 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7877 
7878 	/* FCF rediscover timer */
7879 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7880 
7881 	/* CMF congestion timer */
7882 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7883 	phba->cmf_timer.function = lpfc_cmf_timer;
7884 
7885 	/*
7886 	 * Control structure for handling external multi-buffer mailbox
7887 	 * command pass-through.
7888 	 */
7889 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7890 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7891 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7892 
7893 	phba->max_vpi = LPFC_MAX_VPI;
7894 
7895 	/* This will be set to correct value after the read_config mbox */
7896 	phba->max_vports = 0;
7897 
7898 	/* Program the default value of vlan_id and fc_map */
7899 	phba->valid_vlan = 0;
7900 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7901 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7902 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7903 
7904 	/*
7905 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7906 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7907 	 * The WQ create will allocate the ring.
7908 	 */
7909 
7910 	/* Initialize buffer queue management fields */
7911 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7912 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7913 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7914 
7915 	/* for VMID idle timeout if VMID is enabled */
7916 	if (lpfc_is_vmid_enabled(phba))
7917 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7918 
7919 	/*
7920 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7921 	 */
7922 	/* Initialize the Abort buffer list used by driver */
7923 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
7924 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
7925 
7926 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
7927 		/* Initialize the Abort nvme buffer list used by driver */
7928 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
7929 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
7930 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
7931 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
7932 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
7933 	}
7934 
7935 	/* This abort list used by worker thread */
7936 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
7937 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
7938 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
7939 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
7940 
7941 	/*
7942 	 * Initialize driver internal slow-path work queues
7943 	 */
7944 
7945 	/* Driver internel slow-path CQ Event pool */
7946 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
7947 	/* Response IOCB work queue list */
7948 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
7949 	/* Asynchronous event CQ Event work queue list */
7950 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
7951 	/* Slow-path XRI aborted CQ Event work queue list */
7952 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
7953 	/* Receive queue CQ Event work queue list */
7954 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
7955 
7956 	/* Initialize extent block lists. */
7957 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
7958 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
7959 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
7960 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
7961 
7962 	/* Initialize mboxq lists. If the early init routines fail
7963 	 * these lists need to be correctly initialized.
7964 	 */
7965 	INIT_LIST_HEAD(&phba->sli.mboxq);
7966 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
7967 
7968 	/* initialize optic_state to 0xFF */
7969 	phba->sli4_hba.lnk_info.optic_state = 0xff;
7970 
7971 	/* Allocate device driver memory */
7972 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
7973 	if (rc)
7974 		return -ENOMEM;
7975 
7976 	/* IF Type 2 ports get initialized now. */
7977 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
7978 	    LPFC_SLI_INTF_IF_TYPE_2) {
7979 		rc = lpfc_pci_function_reset(phba);
7980 		if (unlikely(rc)) {
7981 			rc = -ENODEV;
7982 			goto out_free_mem;
7983 		}
7984 		phba->temp_sensor_support = 1;
7985 	}
7986 
7987 	/* Create the bootstrap mailbox command */
7988 	rc = lpfc_create_bootstrap_mbox(phba);
7989 	if (unlikely(rc))
7990 		goto out_free_mem;
7991 
7992 	/* Set up the host's endian order with the device. */
7993 	rc = lpfc_setup_endian_order(phba);
7994 	if (unlikely(rc))
7995 		goto out_free_bsmbx;
7996 
7997 	/* Set up the hba's configuration parameters. */
7998 	rc = lpfc_sli4_read_config(phba);
7999 	if (unlikely(rc))
8000 		goto out_free_bsmbx;
8001 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8002 	if (unlikely(rc))
8003 		goto out_free_bsmbx;
8004 
8005 	/* IF Type 0 ports get initialized now. */
8006 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8007 	    LPFC_SLI_INTF_IF_TYPE_0) {
8008 		rc = lpfc_pci_function_reset(phba);
8009 		if (unlikely(rc))
8010 			goto out_free_bsmbx;
8011 	}
8012 
8013 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8014 						       GFP_KERNEL);
8015 	if (!mboxq) {
8016 		rc = -ENOMEM;
8017 		goto out_free_bsmbx;
8018 	}
8019 
8020 	/* Check for NVMET being configured */
8021 	phba->nvmet_support = 0;
8022 	if (lpfc_enable_nvmet_cnt) {
8023 
8024 		/* First get WWN of HBA instance */
8025 		lpfc_read_nv(phba, mboxq);
8026 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8027 		if (rc != MBX_SUCCESS) {
8028 			lpfc_printf_log(phba, KERN_ERR,
8029 					LOG_TRACE_EVENT,
8030 					"6016 Mailbox failed , mbxCmd x%x "
8031 					"READ_NV, mbxStatus x%x\n",
8032 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8033 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8034 			mempool_free(mboxq, phba->mbox_mem_pool);
8035 			rc = -EIO;
8036 			goto out_free_bsmbx;
8037 		}
8038 		mb = &mboxq->u.mb;
8039 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8040 		       sizeof(uint64_t));
8041 		wwn = cpu_to_be64(wwn);
8042 		phba->sli4_hba.wwnn.u.name = wwn;
8043 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8044 		       sizeof(uint64_t));
8045 		/* wwn is WWPN of HBA instance */
8046 		wwn = cpu_to_be64(wwn);
8047 		phba->sli4_hba.wwpn.u.name = wwn;
8048 
8049 		/* Check to see if it matches any module parameter */
8050 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8051 			if (wwn == lpfc_enable_nvmet[i]) {
8052 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8053 				if (lpfc_nvmet_mem_alloc(phba))
8054 					break;
8055 
8056 				phba->nvmet_support = 1; /* a match */
8057 
8058 				lpfc_printf_log(phba, KERN_ERR,
8059 						LOG_TRACE_EVENT,
8060 						"6017 NVME Target %016llx\n",
8061 						wwn);
8062 #else
8063 				lpfc_printf_log(phba, KERN_ERR,
8064 						LOG_TRACE_EVENT,
8065 						"6021 Can't enable NVME Target."
8066 						" NVME_TARGET_FC infrastructure"
8067 						" is not in kernel\n");
8068 #endif
8069 				/* Not supported for NVMET */
8070 				phba->cfg_xri_rebalancing = 0;
8071 				if (phba->irq_chann_mode == NHT_MODE) {
8072 					phba->cfg_irq_chann =
8073 						phba->sli4_hba.num_present_cpu;
8074 					phba->cfg_hdw_queue =
8075 						phba->sli4_hba.num_present_cpu;
8076 					phba->irq_chann_mode = NORMAL_MODE;
8077 				}
8078 				break;
8079 			}
8080 		}
8081 	}
8082 
8083 	lpfc_nvme_mod_param_dep(phba);
8084 
8085 	/*
8086 	 * Get sli4 parameters that override parameters from Port capabilities.
8087 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8088 	 * back in conflict.
8089 	 */
8090 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8091 	if (rc) {
8092 		if_type = bf_get(lpfc_sli_intf_if_type,
8093 				 &phba->sli4_hba.sli_intf);
8094 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8095 				&phba->sli4_hba.sli_intf);
8096 		if (phba->sli4_hba.extents_in_use &&
8097 		    phba->sli4_hba.rpi_hdrs_in_use) {
8098 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8099 					"2999 Unsupported SLI4 Parameters "
8100 					"Extents and RPI headers enabled.\n");
8101 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8102 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8103 				mempool_free(mboxq, phba->mbox_mem_pool);
8104 				rc = -EIO;
8105 				goto out_free_bsmbx;
8106 			}
8107 		}
8108 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8109 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8110 			mempool_free(mboxq, phba->mbox_mem_pool);
8111 			rc = -EIO;
8112 			goto out_free_bsmbx;
8113 		}
8114 	}
8115 
8116 	/*
8117 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8118 	 * for boundary conditions in its max_sgl_segment template.
8119 	 */
8120 	extra = 2;
8121 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8122 		extra++;
8123 
8124 	/*
8125 	 * It doesn't matter what family our adapter is in, we are
8126 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8127 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8128 	 */
8129 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8130 
8131 	/*
8132 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8133 	 * used to create the sg_dma_buf_pool must be calculated.
8134 	 */
8135 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8136 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8137 
8138 		/*
8139 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8140 		 * the FCP rsp, and a SGE. Sice we have no control
8141 		 * over how many protection segments the SCSI Layer
8142 		 * will hand us (ie: there could be one for every block
8143 		 * in the IO), just allocate enough SGEs to accomidate
8144 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8145 		 * to minimize the risk of running out.
8146 		 */
8147 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8148 				sizeof(struct fcp_rsp) + max_buf_size;
8149 
8150 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8151 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8152 
8153 		/*
8154 		 * If supporting DIF, reduce the seg count for scsi to
8155 		 * allow room for the DIF sges.
8156 		 */
8157 		if (phba->cfg_enable_bg &&
8158 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8159 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8160 		else
8161 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8162 
8163 	} else {
8164 		/*
8165 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8166 		 * the FCP rsp, a SGE for each, and a SGE for up to
8167 		 * cfg_sg_seg_cnt data segments.
8168 		 */
8169 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8170 				sizeof(struct fcp_rsp) +
8171 				((phba->cfg_sg_seg_cnt + extra) *
8172 				sizeof(struct sli4_sge));
8173 
8174 		/* Total SGEs for scsi_sg_list */
8175 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8176 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8177 
8178 		/*
8179 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8180 		 * need to post 1 page for the SGL.
8181 		 */
8182 	}
8183 
8184 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8185 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8186 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8187 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8188 	else
8189 		phba->cfg_sg_dma_buf_size =
8190 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8191 
8192 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8193 			       sizeof(struct sli4_sge);
8194 
8195 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8196 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8197 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8198 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8199 					"6300 Reducing NVME sg segment "
8200 					"cnt to %d\n",
8201 					LPFC_MAX_NVME_SEG_CNT);
8202 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8203 		} else
8204 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8205 	}
8206 
8207 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8208 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8209 			"total:%d scsi:%d nvme:%d\n",
8210 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8211 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8212 			phba->cfg_nvme_seg_cnt);
8213 
8214 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8215 		i = phba->cfg_sg_dma_buf_size;
8216 	else
8217 		i = SLI4_PAGE_SIZE;
8218 
8219 	phba->lpfc_sg_dma_buf_pool =
8220 			dma_pool_create("lpfc_sg_dma_buf_pool",
8221 					&phba->pcidev->dev,
8222 					phba->cfg_sg_dma_buf_size,
8223 					i, 0);
8224 	if (!phba->lpfc_sg_dma_buf_pool)
8225 		goto out_free_bsmbx;
8226 
8227 	phba->lpfc_cmd_rsp_buf_pool =
8228 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8229 					&phba->pcidev->dev,
8230 					sizeof(struct fcp_cmnd) +
8231 					sizeof(struct fcp_rsp),
8232 					i, 0);
8233 	if (!phba->lpfc_cmd_rsp_buf_pool)
8234 		goto out_free_sg_dma_buf;
8235 
8236 	mempool_free(mboxq, phba->mbox_mem_pool);
8237 
8238 	/* Verify OAS is supported */
8239 	lpfc_sli4_oas_verify(phba);
8240 
8241 	/* Verify RAS support on adapter */
8242 	lpfc_sli4_ras_init(phba);
8243 
8244 	/* Verify all the SLI4 queues */
8245 	rc = lpfc_sli4_queue_verify(phba);
8246 	if (rc)
8247 		goto out_free_cmd_rsp_buf;
8248 
8249 	/* Create driver internal CQE event pool */
8250 	rc = lpfc_sli4_cq_event_pool_create(phba);
8251 	if (rc)
8252 		goto out_free_cmd_rsp_buf;
8253 
8254 	/* Initialize sgl lists per host */
8255 	lpfc_init_sgl_list(phba);
8256 
8257 	/* Allocate and initialize active sgl array */
8258 	rc = lpfc_init_active_sgl_array(phba);
8259 	if (rc) {
8260 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8261 				"1430 Failed to initialize sgl list.\n");
8262 		goto out_destroy_cq_event_pool;
8263 	}
8264 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8265 	if (rc) {
8266 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8267 				"1432 Failed to initialize rpi headers.\n");
8268 		goto out_free_active_sgl;
8269 	}
8270 
8271 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8272 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8273 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8274 					 GFP_KERNEL);
8275 	if (!phba->fcf.fcf_rr_bmask) {
8276 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8277 				"2759 Failed allocate memory for FCF round "
8278 				"robin failover bmask\n");
8279 		rc = -ENOMEM;
8280 		goto out_remove_rpi_hdrs;
8281 	}
8282 
8283 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8284 					    sizeof(struct lpfc_hba_eq_hdl),
8285 					    GFP_KERNEL);
8286 	if (!phba->sli4_hba.hba_eq_hdl) {
8287 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8288 				"2572 Failed allocate memory for "
8289 				"fast-path per-EQ handle array\n");
8290 		rc = -ENOMEM;
8291 		goto out_free_fcf_rr_bmask;
8292 	}
8293 
8294 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8295 					sizeof(struct lpfc_vector_map_info),
8296 					GFP_KERNEL);
8297 	if (!phba->sli4_hba.cpu_map) {
8298 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8299 				"3327 Failed allocate memory for msi-x "
8300 				"interrupt vector mapping\n");
8301 		rc = -ENOMEM;
8302 		goto out_free_hba_eq_hdl;
8303 	}
8304 
8305 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8306 	if (!phba->sli4_hba.eq_info) {
8307 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8308 				"3321 Failed allocation for per_cpu stats\n");
8309 		rc = -ENOMEM;
8310 		goto out_free_hba_cpu_map;
8311 	}
8312 
8313 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8314 					   sizeof(*phba->sli4_hba.idle_stat),
8315 					   GFP_KERNEL);
8316 	if (!phba->sli4_hba.idle_stat) {
8317 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8318 				"3390 Failed allocation for idle_stat\n");
8319 		rc = -ENOMEM;
8320 		goto out_free_hba_eq_info;
8321 	}
8322 
8323 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8324 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8325 	if (!phba->sli4_hba.c_stat) {
8326 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8327 				"3332 Failed allocating per cpu hdwq stats\n");
8328 		rc = -ENOMEM;
8329 		goto out_free_hba_idle_stat;
8330 	}
8331 #endif
8332 
8333 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8334 	if (!phba->cmf_stat) {
8335 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8336 				"3331 Failed allocating per cpu cgn stats\n");
8337 		rc = -ENOMEM;
8338 		goto out_free_hba_hdwq_info;
8339 	}
8340 
8341 	/*
8342 	 * Enable sr-iov virtual functions if supported and configured
8343 	 * through the module parameter.
8344 	 */
8345 	if (phba->cfg_sriov_nr_virtfn > 0) {
8346 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8347 						 phba->cfg_sriov_nr_virtfn);
8348 		if (rc) {
8349 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8350 					"3020 Requested number of SR-IOV "
8351 					"virtual functions (%d) is not "
8352 					"supported\n",
8353 					phba->cfg_sriov_nr_virtfn);
8354 			phba->cfg_sriov_nr_virtfn = 0;
8355 		}
8356 	}
8357 
8358 	return 0;
8359 
8360 out_free_hba_hdwq_info:
8361 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8362 	free_percpu(phba->sli4_hba.c_stat);
8363 out_free_hba_idle_stat:
8364 #endif
8365 	kfree(phba->sli4_hba.idle_stat);
8366 out_free_hba_eq_info:
8367 	free_percpu(phba->sli4_hba.eq_info);
8368 out_free_hba_cpu_map:
8369 	kfree(phba->sli4_hba.cpu_map);
8370 out_free_hba_eq_hdl:
8371 	kfree(phba->sli4_hba.hba_eq_hdl);
8372 out_free_fcf_rr_bmask:
8373 	kfree(phba->fcf.fcf_rr_bmask);
8374 out_remove_rpi_hdrs:
8375 	lpfc_sli4_remove_rpi_hdrs(phba);
8376 out_free_active_sgl:
8377 	lpfc_free_active_sgl(phba);
8378 out_destroy_cq_event_pool:
8379 	lpfc_sli4_cq_event_pool_destroy(phba);
8380 out_free_cmd_rsp_buf:
8381 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8382 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8383 out_free_sg_dma_buf:
8384 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8385 	phba->lpfc_sg_dma_buf_pool = NULL;
8386 out_free_bsmbx:
8387 	lpfc_destroy_bootstrap_mbox(phba);
8388 out_free_mem:
8389 	lpfc_mem_free(phba);
8390 	return rc;
8391 }
8392 
8393 /**
8394  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8395  * @phba: pointer to lpfc hba data structure.
8396  *
8397  * This routine is invoked to unset the driver internal resources set up
8398  * specific for supporting the SLI-4 HBA device it attached to.
8399  **/
8400 static void
8401 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8402 {
8403 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8404 
8405 	free_percpu(phba->sli4_hba.eq_info);
8406 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8407 	free_percpu(phba->sli4_hba.c_stat);
8408 #endif
8409 	free_percpu(phba->cmf_stat);
8410 	kfree(phba->sli4_hba.idle_stat);
8411 
8412 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8413 	kfree(phba->sli4_hba.cpu_map);
8414 	phba->sli4_hba.num_possible_cpu = 0;
8415 	phba->sli4_hba.num_present_cpu = 0;
8416 	phba->sli4_hba.curr_disp_cpu = 0;
8417 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8418 
8419 	/* Free memory allocated for fast-path work queue handles */
8420 	kfree(phba->sli4_hba.hba_eq_hdl);
8421 
8422 	/* Free the allocated rpi headers. */
8423 	lpfc_sli4_remove_rpi_hdrs(phba);
8424 	lpfc_sli4_remove_rpis(phba);
8425 
8426 	/* Free eligible FCF index bmask */
8427 	kfree(phba->fcf.fcf_rr_bmask);
8428 
8429 	/* Free the ELS sgl list */
8430 	lpfc_free_active_sgl(phba);
8431 	lpfc_free_els_sgl_list(phba);
8432 	lpfc_free_nvmet_sgl_list(phba);
8433 
8434 	/* Free the completion queue EQ event pool */
8435 	lpfc_sli4_cq_event_release_all(phba);
8436 	lpfc_sli4_cq_event_pool_destroy(phba);
8437 
8438 	/* Release resource identifiers. */
8439 	lpfc_sli4_dealloc_resource_identifiers(phba);
8440 
8441 	/* Free the bsmbx region. */
8442 	lpfc_destroy_bootstrap_mbox(phba);
8443 
8444 	/* Free the SLI Layer memory with SLI4 HBAs */
8445 	lpfc_mem_free_all(phba);
8446 
8447 	/* Free the current connect table */
8448 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8449 		&phba->fcf_conn_rec_list, list) {
8450 		list_del_init(&conn_entry->list);
8451 		kfree(conn_entry);
8452 	}
8453 
8454 	return;
8455 }
8456 
8457 /**
8458  * lpfc_init_api_table_setup - Set up init api function jump table
8459  * @phba: The hba struct for which this call is being executed.
8460  * @dev_grp: The HBA PCI-Device group number.
8461  *
8462  * This routine sets up the device INIT interface API function jump table
8463  * in @phba struct.
8464  *
8465  * Returns: 0 - success, -ENODEV - failure.
8466  **/
8467 int
8468 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8469 {
8470 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8471 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8472 	phba->lpfc_selective_reset = lpfc_selective_reset;
8473 	switch (dev_grp) {
8474 	case LPFC_PCI_DEV_LP:
8475 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8476 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8477 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8478 		break;
8479 	case LPFC_PCI_DEV_OC:
8480 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8481 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8482 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8483 		break;
8484 	default:
8485 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8486 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8487 				dev_grp);
8488 		return -ENODEV;
8489 	}
8490 	return 0;
8491 }
8492 
8493 /**
8494  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8495  * @phba: pointer to lpfc hba data structure.
8496  *
8497  * This routine is invoked to set up the driver internal resources after the
8498  * device specific resource setup to support the HBA device it attached to.
8499  *
8500  * Return codes
8501  * 	0 - successful
8502  * 	other values - error
8503  **/
8504 static int
8505 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8506 {
8507 	int error;
8508 
8509 	/* Startup the kernel thread for this host adapter. */
8510 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8511 					  "lpfc_worker_%d", phba->brd_no);
8512 	if (IS_ERR(phba->worker_thread)) {
8513 		error = PTR_ERR(phba->worker_thread);
8514 		return error;
8515 	}
8516 
8517 	return 0;
8518 }
8519 
8520 /**
8521  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8522  * @phba: pointer to lpfc hba data structure.
8523  *
8524  * This routine is invoked to unset the driver internal resources set up after
8525  * the device specific resource setup for supporting the HBA device it
8526  * attached to.
8527  **/
8528 static void
8529 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8530 {
8531 	if (phba->wq) {
8532 		flush_workqueue(phba->wq);
8533 		destroy_workqueue(phba->wq);
8534 		phba->wq = NULL;
8535 	}
8536 
8537 	/* Stop kernel worker thread */
8538 	if (phba->worker_thread)
8539 		kthread_stop(phba->worker_thread);
8540 }
8541 
8542 /**
8543  * lpfc_free_iocb_list - Free iocb list.
8544  * @phba: pointer to lpfc hba data structure.
8545  *
8546  * This routine is invoked to free the driver's IOCB list and memory.
8547  **/
8548 void
8549 lpfc_free_iocb_list(struct lpfc_hba *phba)
8550 {
8551 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8552 
8553 	spin_lock_irq(&phba->hbalock);
8554 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8555 				 &phba->lpfc_iocb_list, list) {
8556 		list_del(&iocbq_entry->list);
8557 		kfree(iocbq_entry);
8558 		phba->total_iocbq_bufs--;
8559 	}
8560 	spin_unlock_irq(&phba->hbalock);
8561 
8562 	return;
8563 }
8564 
8565 /**
8566  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8567  * @phba: pointer to lpfc hba data structure.
8568  * @iocb_count: number of requested iocbs
8569  *
8570  * This routine is invoked to allocate and initizlize the driver's IOCB
8571  * list and set up the IOCB tag array accordingly.
8572  *
8573  * Return codes
8574  *	0 - successful
8575  *	other values - error
8576  **/
8577 int
8578 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8579 {
8580 	struct lpfc_iocbq *iocbq_entry = NULL;
8581 	uint16_t iotag;
8582 	int i;
8583 
8584 	/* Initialize and populate the iocb list per host.  */
8585 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8586 	for (i = 0; i < iocb_count; i++) {
8587 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8588 		if (iocbq_entry == NULL) {
8589 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8590 				"expected %d count. Unloading driver.\n",
8591 				__func__, i, iocb_count);
8592 			goto out_free_iocbq;
8593 		}
8594 
8595 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8596 		if (iotag == 0) {
8597 			kfree(iocbq_entry);
8598 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8599 				"Unloading driver.\n", __func__);
8600 			goto out_free_iocbq;
8601 		}
8602 		iocbq_entry->sli4_lxritag = NO_XRI;
8603 		iocbq_entry->sli4_xritag = NO_XRI;
8604 
8605 		spin_lock_irq(&phba->hbalock);
8606 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8607 		phba->total_iocbq_bufs++;
8608 		spin_unlock_irq(&phba->hbalock);
8609 	}
8610 
8611 	return 0;
8612 
8613 out_free_iocbq:
8614 	lpfc_free_iocb_list(phba);
8615 
8616 	return -ENOMEM;
8617 }
8618 
8619 /**
8620  * lpfc_free_sgl_list - Free a given sgl list.
8621  * @phba: pointer to lpfc hba data structure.
8622  * @sglq_list: pointer to the head of sgl list.
8623  *
8624  * This routine is invoked to free a give sgl list and memory.
8625  **/
8626 void
8627 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8628 {
8629 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8630 
8631 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8632 		list_del(&sglq_entry->list);
8633 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8634 		kfree(sglq_entry);
8635 	}
8636 }
8637 
8638 /**
8639  * lpfc_free_els_sgl_list - Free els sgl list.
8640  * @phba: pointer to lpfc hba data structure.
8641  *
8642  * This routine is invoked to free the driver's els sgl list and memory.
8643  **/
8644 static void
8645 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8646 {
8647 	LIST_HEAD(sglq_list);
8648 
8649 	/* Retrieve all els sgls from driver list */
8650 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8651 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8652 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8653 
8654 	/* Now free the sgl list */
8655 	lpfc_free_sgl_list(phba, &sglq_list);
8656 }
8657 
8658 /**
8659  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8660  * @phba: pointer to lpfc hba data structure.
8661  *
8662  * This routine is invoked to free the driver's nvmet sgl list and memory.
8663  **/
8664 static void
8665 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8666 {
8667 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8668 	LIST_HEAD(sglq_list);
8669 
8670 	/* Retrieve all nvmet sgls from driver list */
8671 	spin_lock_irq(&phba->hbalock);
8672 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8673 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8674 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8675 	spin_unlock_irq(&phba->hbalock);
8676 
8677 	/* Now free the sgl list */
8678 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8679 		list_del(&sglq_entry->list);
8680 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8681 		kfree(sglq_entry);
8682 	}
8683 
8684 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8685 	 * The next initialization cycle sets the count and allocates
8686 	 * the sgls over again.
8687 	 */
8688 	phba->sli4_hba.nvmet_xri_cnt = 0;
8689 }
8690 
8691 /**
8692  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8693  * @phba: pointer to lpfc hba data structure.
8694  *
8695  * This routine is invoked to allocate the driver's active sgl memory.
8696  * This array will hold the sglq_entry's for active IOs.
8697  **/
8698 static int
8699 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8700 {
8701 	int size;
8702 	size = sizeof(struct lpfc_sglq *);
8703 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8704 
8705 	phba->sli4_hba.lpfc_sglq_active_list =
8706 		kzalloc(size, GFP_KERNEL);
8707 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8708 		return -ENOMEM;
8709 	return 0;
8710 }
8711 
8712 /**
8713  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8714  * @phba: pointer to lpfc hba data structure.
8715  *
8716  * This routine is invoked to walk through the array of active sglq entries
8717  * and free all of the resources.
8718  * This is just a place holder for now.
8719  **/
8720 static void
8721 lpfc_free_active_sgl(struct lpfc_hba *phba)
8722 {
8723 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8724 }
8725 
8726 /**
8727  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8728  * @phba: pointer to lpfc hba data structure.
8729  *
8730  * This routine is invoked to allocate and initizlize the driver's sgl
8731  * list and set up the sgl xritag tag array accordingly.
8732  *
8733  **/
8734 static void
8735 lpfc_init_sgl_list(struct lpfc_hba *phba)
8736 {
8737 	/* Initialize and populate the sglq list per host/VF. */
8738 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8739 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8740 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8741 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8742 
8743 	/* els xri-sgl book keeping */
8744 	phba->sli4_hba.els_xri_cnt = 0;
8745 
8746 	/* nvme xri-buffer book keeping */
8747 	phba->sli4_hba.io_xri_cnt = 0;
8748 }
8749 
8750 /**
8751  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8752  * @phba: pointer to lpfc hba data structure.
8753  *
8754  * This routine is invoked to post rpi header templates to the
8755  * port for those SLI4 ports that do not support extents.  This routine
8756  * posts a PAGE_SIZE memory region to the port to hold up to
8757  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8758  * and should be called only when interrupts are disabled.
8759  *
8760  * Return codes
8761  * 	0 - successful
8762  *	-ERROR - otherwise.
8763  **/
8764 int
8765 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8766 {
8767 	int rc = 0;
8768 	struct lpfc_rpi_hdr *rpi_hdr;
8769 
8770 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8771 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8772 		return rc;
8773 	if (phba->sli4_hba.extents_in_use)
8774 		return -EIO;
8775 
8776 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8777 	if (!rpi_hdr) {
8778 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8779 				"0391 Error during rpi post operation\n");
8780 		lpfc_sli4_remove_rpis(phba);
8781 		rc = -ENODEV;
8782 	}
8783 
8784 	return rc;
8785 }
8786 
8787 /**
8788  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8789  * @phba: pointer to lpfc hba data structure.
8790  *
8791  * This routine is invoked to allocate a single 4KB memory region to
8792  * support rpis and stores them in the phba.  This single region
8793  * provides support for up to 64 rpis.  The region is used globally
8794  * by the device.
8795  *
8796  * Returns:
8797  *   A valid rpi hdr on success.
8798  *   A NULL pointer on any failure.
8799  **/
8800 struct lpfc_rpi_hdr *
8801 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8802 {
8803 	uint16_t rpi_limit, curr_rpi_range;
8804 	struct lpfc_dmabuf *dmabuf;
8805 	struct lpfc_rpi_hdr *rpi_hdr;
8806 
8807 	/*
8808 	 * If the SLI4 port supports extents, posting the rpi header isn't
8809 	 * required.  Set the expected maximum count and let the actual value
8810 	 * get set when extents are fully allocated.
8811 	 */
8812 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8813 		return NULL;
8814 	if (phba->sli4_hba.extents_in_use)
8815 		return NULL;
8816 
8817 	/* The limit on the logical index is just the max_rpi count. */
8818 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8819 
8820 	spin_lock_irq(&phba->hbalock);
8821 	/*
8822 	 * Establish the starting RPI in this header block.  The starting
8823 	 * rpi is normalized to a zero base because the physical rpi is
8824 	 * port based.
8825 	 */
8826 	curr_rpi_range = phba->sli4_hba.next_rpi;
8827 	spin_unlock_irq(&phba->hbalock);
8828 
8829 	/* Reached full RPI range */
8830 	if (curr_rpi_range == rpi_limit)
8831 		return NULL;
8832 
8833 	/*
8834 	 * First allocate the protocol header region for the port.  The
8835 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8836 	 */
8837 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8838 	if (!dmabuf)
8839 		return NULL;
8840 
8841 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8842 					  LPFC_HDR_TEMPLATE_SIZE,
8843 					  &dmabuf->phys, GFP_KERNEL);
8844 	if (!dmabuf->virt) {
8845 		rpi_hdr = NULL;
8846 		goto err_free_dmabuf;
8847 	}
8848 
8849 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8850 		rpi_hdr = NULL;
8851 		goto err_free_coherent;
8852 	}
8853 
8854 	/* Save the rpi header data for cleanup later. */
8855 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8856 	if (!rpi_hdr)
8857 		goto err_free_coherent;
8858 
8859 	rpi_hdr->dmabuf = dmabuf;
8860 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8861 	rpi_hdr->page_count = 1;
8862 	spin_lock_irq(&phba->hbalock);
8863 
8864 	/* The rpi_hdr stores the logical index only. */
8865 	rpi_hdr->start_rpi = curr_rpi_range;
8866 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8867 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8868 
8869 	spin_unlock_irq(&phba->hbalock);
8870 	return rpi_hdr;
8871 
8872  err_free_coherent:
8873 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8874 			  dmabuf->virt, dmabuf->phys);
8875  err_free_dmabuf:
8876 	kfree(dmabuf);
8877 	return NULL;
8878 }
8879 
8880 /**
8881  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8882  * @phba: pointer to lpfc hba data structure.
8883  *
8884  * This routine is invoked to remove all memory resources allocated
8885  * to support rpis for SLI4 ports not supporting extents. This routine
8886  * presumes the caller has released all rpis consumed by fabric or port
8887  * logins and is prepared to have the header pages removed.
8888  **/
8889 void
8890 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8891 {
8892 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8893 
8894 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8895 		goto exit;
8896 
8897 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8898 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8899 		list_del(&rpi_hdr->list);
8900 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8901 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8902 		kfree(rpi_hdr->dmabuf);
8903 		kfree(rpi_hdr);
8904 	}
8905  exit:
8906 	/* There are no rpis available to the port now. */
8907 	phba->sli4_hba.next_rpi = 0;
8908 }
8909 
8910 /**
8911  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
8912  * @pdev: pointer to pci device data structure.
8913  *
8914  * This routine is invoked to allocate the driver hba data structure for an
8915  * HBA device. If the allocation is successful, the phba reference to the
8916  * PCI device data structure is set.
8917  *
8918  * Return codes
8919  *      pointer to @phba - successful
8920  *      NULL - error
8921  **/
8922 static struct lpfc_hba *
8923 lpfc_hba_alloc(struct pci_dev *pdev)
8924 {
8925 	struct lpfc_hba *phba;
8926 
8927 	/* Allocate memory for HBA structure */
8928 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
8929 	if (!phba) {
8930 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
8931 		return NULL;
8932 	}
8933 
8934 	/* Set reference to PCI device in HBA structure */
8935 	phba->pcidev = pdev;
8936 
8937 	/* Assign an unused board number */
8938 	phba->brd_no = lpfc_get_instance();
8939 	if (phba->brd_no < 0) {
8940 		kfree(phba);
8941 		return NULL;
8942 	}
8943 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
8944 
8945 	spin_lock_init(&phba->ct_ev_lock);
8946 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
8947 
8948 	return phba;
8949 }
8950 
8951 /**
8952  * lpfc_hba_free - Free driver hba data structure with a device.
8953  * @phba: pointer to lpfc hba data structure.
8954  *
8955  * This routine is invoked to free the driver hba data structure with an
8956  * HBA device.
8957  **/
8958 static void
8959 lpfc_hba_free(struct lpfc_hba *phba)
8960 {
8961 	if (phba->sli_rev == LPFC_SLI_REV4)
8962 		kfree(phba->sli4_hba.hdwq);
8963 
8964 	/* Release the driver assigned board number */
8965 	idr_remove(&lpfc_hba_index, phba->brd_no);
8966 
8967 	/* Free memory allocated with sli3 rings */
8968 	kfree(phba->sli.sli3_ring);
8969 	phba->sli.sli3_ring = NULL;
8970 
8971 	kfree(phba);
8972 	return;
8973 }
8974 
8975 /**
8976  * lpfc_create_shost - Create hba physical port with associated scsi host.
8977  * @phba: pointer to lpfc hba data structure.
8978  *
8979  * This routine is invoked to create HBA physical port and associate a SCSI
8980  * host with it.
8981  *
8982  * Return codes
8983  *      0 - successful
8984  *      other values - error
8985  **/
8986 static int
8987 lpfc_create_shost(struct lpfc_hba *phba)
8988 {
8989 	struct lpfc_vport *vport;
8990 	struct Scsi_Host  *shost;
8991 
8992 	/* Initialize HBA FC structure */
8993 	phba->fc_edtov = FF_DEF_EDTOV;
8994 	phba->fc_ratov = FF_DEF_RATOV;
8995 	phba->fc_altov = FF_DEF_ALTOV;
8996 	phba->fc_arbtov = FF_DEF_ARBTOV;
8997 
8998 	atomic_set(&phba->sdev_cnt, 0);
8999 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9000 	if (!vport)
9001 		return -ENODEV;
9002 
9003 	shost = lpfc_shost_from_vport(vport);
9004 	phba->pport = vport;
9005 
9006 	if (phba->nvmet_support) {
9007 		/* Only 1 vport (pport) will support NVME target */
9008 		phba->targetport = NULL;
9009 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9010 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9011 				"6076 NVME Target Found\n");
9012 	}
9013 
9014 	lpfc_debugfs_initialize(vport);
9015 	/* Put reference to SCSI host to driver's device private data */
9016 	pci_set_drvdata(phba->pcidev, shost);
9017 
9018 	/*
9019 	 * At this point we are fully registered with PSA. In addition,
9020 	 * any initial discovery should be completed.
9021 	 */
9022 	vport->load_flag |= FC_ALLOW_FDMI;
9023 	if (phba->cfg_enable_SmartSAN ||
9024 	    (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) {
9025 
9026 		/* Setup appropriate attribute masks */
9027 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9028 		if (phba->cfg_enable_SmartSAN)
9029 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9030 		else
9031 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9032 	}
9033 	return 0;
9034 }
9035 
9036 /**
9037  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9038  * @phba: pointer to lpfc hba data structure.
9039  *
9040  * This routine is invoked to destroy HBA physical port and the associated
9041  * SCSI host.
9042  **/
9043 static void
9044 lpfc_destroy_shost(struct lpfc_hba *phba)
9045 {
9046 	struct lpfc_vport *vport = phba->pport;
9047 
9048 	/* Destroy physical port that associated with the SCSI host */
9049 	destroy_port(vport);
9050 
9051 	return;
9052 }
9053 
9054 /**
9055  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9056  * @phba: pointer to lpfc hba data structure.
9057  * @shost: the shost to be used to detect Block guard settings.
9058  *
9059  * This routine sets up the local Block guard protocol settings for @shost.
9060  * This routine also allocates memory for debugging bg buffers.
9061  **/
9062 static void
9063 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9064 {
9065 	uint32_t old_mask;
9066 	uint32_t old_guard;
9067 
9068 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9069 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9070 				"1478 Registering BlockGuard with the "
9071 				"SCSI layer\n");
9072 
9073 		old_mask = phba->cfg_prot_mask;
9074 		old_guard = phba->cfg_prot_guard;
9075 
9076 		/* Only allow supported values */
9077 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9078 			SHOST_DIX_TYPE0_PROTECTION |
9079 			SHOST_DIX_TYPE1_PROTECTION);
9080 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9081 					 SHOST_DIX_GUARD_CRC);
9082 
9083 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9084 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9085 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9086 
9087 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9088 			if ((old_mask != phba->cfg_prot_mask) ||
9089 				(old_guard != phba->cfg_prot_guard))
9090 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9091 					"1475 Registering BlockGuard with the "
9092 					"SCSI layer: mask %d  guard %d\n",
9093 					phba->cfg_prot_mask,
9094 					phba->cfg_prot_guard);
9095 
9096 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9097 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9098 		} else
9099 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9100 				"1479 Not Registering BlockGuard with the SCSI "
9101 				"layer, Bad protection parameters: %d %d\n",
9102 				old_mask, old_guard);
9103 	}
9104 }
9105 
9106 /**
9107  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9108  * @phba: pointer to lpfc hba data structure.
9109  *
9110  * This routine is invoked to perform all the necessary post initialization
9111  * setup for the device.
9112  **/
9113 static void
9114 lpfc_post_init_setup(struct lpfc_hba *phba)
9115 {
9116 	struct Scsi_Host  *shost;
9117 	struct lpfc_adapter_event_header adapter_event;
9118 
9119 	/* Get the default values for Model Name and Description */
9120 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9121 
9122 	/*
9123 	 * hba setup may have changed the hba_queue_depth so we need to
9124 	 * adjust the value of can_queue.
9125 	 */
9126 	shost = pci_get_drvdata(phba->pcidev);
9127 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9128 
9129 	lpfc_host_attrib_init(shost);
9130 
9131 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9132 		spin_lock_irq(shost->host_lock);
9133 		lpfc_poll_start_timer(phba);
9134 		spin_unlock_irq(shost->host_lock);
9135 	}
9136 
9137 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9138 			"0428 Perform SCSI scan\n");
9139 	/* Send board arrival event to upper layer */
9140 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9141 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9142 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9143 				  sizeof(adapter_event),
9144 				  (char *) &adapter_event,
9145 				  LPFC_NL_VENDOR_ID);
9146 	return;
9147 }
9148 
9149 /**
9150  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9151  * @phba: pointer to lpfc hba data structure.
9152  *
9153  * This routine is invoked to set up the PCI device memory space for device
9154  * with SLI-3 interface spec.
9155  *
9156  * Return codes
9157  * 	0 - successful
9158  * 	other values - error
9159  **/
9160 static int
9161 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9162 {
9163 	struct pci_dev *pdev = phba->pcidev;
9164 	unsigned long bar0map_len, bar2map_len;
9165 	int i, hbq_count;
9166 	void *ptr;
9167 	int error;
9168 
9169 	if (!pdev)
9170 		return -ENODEV;
9171 
9172 	/* Set the device DMA mask size */
9173 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9174 	if (error)
9175 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9176 	if (error)
9177 		return error;
9178 	error = -ENODEV;
9179 
9180 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9181 	 * required by each mapping.
9182 	 */
9183 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9184 	bar0map_len = pci_resource_len(pdev, 0);
9185 
9186 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9187 	bar2map_len = pci_resource_len(pdev, 2);
9188 
9189 	/* Map HBA SLIM to a kernel virtual address. */
9190 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9191 	if (!phba->slim_memmap_p) {
9192 		dev_printk(KERN_ERR, &pdev->dev,
9193 			   "ioremap failed for SLIM memory.\n");
9194 		goto out;
9195 	}
9196 
9197 	/* Map HBA Control Registers to a kernel virtual address. */
9198 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9199 	if (!phba->ctrl_regs_memmap_p) {
9200 		dev_printk(KERN_ERR, &pdev->dev,
9201 			   "ioremap failed for HBA control registers.\n");
9202 		goto out_iounmap_slim;
9203 	}
9204 
9205 	/* Allocate memory for SLI-2 structures */
9206 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9207 					       &phba->slim2p.phys, GFP_KERNEL);
9208 	if (!phba->slim2p.virt)
9209 		goto out_iounmap;
9210 
9211 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9212 	phba->mbox_ext = (phba->slim2p.virt +
9213 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9214 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9215 	phba->IOCBs = (phba->slim2p.virt +
9216 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9217 
9218 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9219 						 lpfc_sli_hbq_size(),
9220 						 &phba->hbqslimp.phys,
9221 						 GFP_KERNEL);
9222 	if (!phba->hbqslimp.virt)
9223 		goto out_free_slim;
9224 
9225 	hbq_count = lpfc_sli_hbq_count();
9226 	ptr = phba->hbqslimp.virt;
9227 	for (i = 0; i < hbq_count; ++i) {
9228 		phba->hbqs[i].hbq_virt = ptr;
9229 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9230 		ptr += (lpfc_hbq_defs[i]->entry_count *
9231 			sizeof(struct lpfc_hbq_entry));
9232 	}
9233 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9234 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9235 
9236 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9237 
9238 	phba->MBslimaddr = phba->slim_memmap_p;
9239 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9240 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9241 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9242 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9243 
9244 	return 0;
9245 
9246 out_free_slim:
9247 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9248 			  phba->slim2p.virt, phba->slim2p.phys);
9249 out_iounmap:
9250 	iounmap(phba->ctrl_regs_memmap_p);
9251 out_iounmap_slim:
9252 	iounmap(phba->slim_memmap_p);
9253 out:
9254 	return error;
9255 }
9256 
9257 /**
9258  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9259  * @phba: pointer to lpfc hba data structure.
9260  *
9261  * This routine is invoked to unset the PCI device memory space for device
9262  * with SLI-3 interface spec.
9263  **/
9264 static void
9265 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9266 {
9267 	struct pci_dev *pdev;
9268 
9269 	/* Obtain PCI device reference */
9270 	if (!phba->pcidev)
9271 		return;
9272 	else
9273 		pdev = phba->pcidev;
9274 
9275 	/* Free coherent DMA memory allocated */
9276 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9277 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9278 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9279 			  phba->slim2p.virt, phba->slim2p.phys);
9280 
9281 	/* I/O memory unmap */
9282 	iounmap(phba->ctrl_regs_memmap_p);
9283 	iounmap(phba->slim_memmap_p);
9284 
9285 	return;
9286 }
9287 
9288 /**
9289  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9290  * @phba: pointer to lpfc hba data structure.
9291  *
9292  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9293  * done and check status.
9294  *
9295  * Return 0 if successful, otherwise -ENODEV.
9296  **/
9297 int
9298 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9299 {
9300 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9301 	struct lpfc_register reg_data;
9302 	int i, port_error = 0;
9303 	uint32_t if_type;
9304 
9305 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9306 	memset(&reg_data, 0, sizeof(reg_data));
9307 	if (!phba->sli4_hba.PSMPHRregaddr)
9308 		return -ENODEV;
9309 
9310 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9311 	for (i = 0; i < 3000; i++) {
9312 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9313 			&portsmphr_reg.word0) ||
9314 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9315 			/* Port has a fatal POST error, break out */
9316 			port_error = -ENODEV;
9317 			break;
9318 		}
9319 		if (LPFC_POST_STAGE_PORT_READY ==
9320 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9321 			break;
9322 		msleep(10);
9323 	}
9324 
9325 	/*
9326 	 * If there was a port error during POST, then don't proceed with
9327 	 * other register reads as the data may not be valid.  Just exit.
9328 	 */
9329 	if (port_error) {
9330 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9331 			"1408 Port Failed POST - portsmphr=0x%x, "
9332 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9333 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9334 			portsmphr_reg.word0,
9335 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9336 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9337 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9338 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9339 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9340 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9341 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9342 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9343 	} else {
9344 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9345 				"2534 Device Info: SLIFamily=0x%x, "
9346 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9347 				"SLIHint_2=0x%x, FT=0x%x\n",
9348 				bf_get(lpfc_sli_intf_sli_family,
9349 				       &phba->sli4_hba.sli_intf),
9350 				bf_get(lpfc_sli_intf_slirev,
9351 				       &phba->sli4_hba.sli_intf),
9352 				bf_get(lpfc_sli_intf_if_type,
9353 				       &phba->sli4_hba.sli_intf),
9354 				bf_get(lpfc_sli_intf_sli_hint1,
9355 				       &phba->sli4_hba.sli_intf),
9356 				bf_get(lpfc_sli_intf_sli_hint2,
9357 				       &phba->sli4_hba.sli_intf),
9358 				bf_get(lpfc_sli_intf_func_type,
9359 				       &phba->sli4_hba.sli_intf));
9360 		/*
9361 		 * Check for other Port errors during the initialization
9362 		 * process.  Fail the load if the port did not come up
9363 		 * correctly.
9364 		 */
9365 		if_type = bf_get(lpfc_sli_intf_if_type,
9366 				 &phba->sli4_hba.sli_intf);
9367 		switch (if_type) {
9368 		case LPFC_SLI_INTF_IF_TYPE_0:
9369 			phba->sli4_hba.ue_mask_lo =
9370 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9371 			phba->sli4_hba.ue_mask_hi =
9372 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9373 			uerrlo_reg.word0 =
9374 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9375 			uerrhi_reg.word0 =
9376 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9377 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9378 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9379 				lpfc_printf_log(phba, KERN_ERR,
9380 						LOG_TRACE_EVENT,
9381 						"1422 Unrecoverable Error "
9382 						"Detected during POST "
9383 						"uerr_lo_reg=0x%x, "
9384 						"uerr_hi_reg=0x%x, "
9385 						"ue_mask_lo_reg=0x%x, "
9386 						"ue_mask_hi_reg=0x%x\n",
9387 						uerrlo_reg.word0,
9388 						uerrhi_reg.word0,
9389 						phba->sli4_hba.ue_mask_lo,
9390 						phba->sli4_hba.ue_mask_hi);
9391 				port_error = -ENODEV;
9392 			}
9393 			break;
9394 		case LPFC_SLI_INTF_IF_TYPE_2:
9395 		case LPFC_SLI_INTF_IF_TYPE_6:
9396 			/* Final checks.  The port status should be clean. */
9397 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9398 				&reg_data.word0) ||
9399 				(bf_get(lpfc_sliport_status_err, &reg_data) &&
9400 				 !bf_get(lpfc_sliport_status_rn, &reg_data))) {
9401 				phba->work_status[0] =
9402 					readl(phba->sli4_hba.u.if_type2.
9403 					      ERR1regaddr);
9404 				phba->work_status[1] =
9405 					readl(phba->sli4_hba.u.if_type2.
9406 					      ERR2regaddr);
9407 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9408 					"2888 Unrecoverable port error "
9409 					"following POST: port status reg "
9410 					"0x%x, port_smphr reg 0x%x, "
9411 					"error 1=0x%x, error 2=0x%x\n",
9412 					reg_data.word0,
9413 					portsmphr_reg.word0,
9414 					phba->work_status[0],
9415 					phba->work_status[1]);
9416 				port_error = -ENODEV;
9417 				break;
9418 			}
9419 
9420 			if (lpfc_pldv_detect &&
9421 			    bf_get(lpfc_sli_intf_sli_family,
9422 				   &phba->sli4_hba.sli_intf) ==
9423 					LPFC_SLI_INTF_FAMILY_G6)
9424 				pci_write_config_byte(phba->pcidev,
9425 						      LPFC_SLI_INTF, CFG_PLD);
9426 			break;
9427 		case LPFC_SLI_INTF_IF_TYPE_1:
9428 		default:
9429 			break;
9430 		}
9431 	}
9432 	return port_error;
9433 }
9434 
9435 /**
9436  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9437  * @phba: pointer to lpfc hba data structure.
9438  * @if_type:  The SLI4 interface type getting configured.
9439  *
9440  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9441  * memory map.
9442  **/
9443 static void
9444 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9445 {
9446 	switch (if_type) {
9447 	case LPFC_SLI_INTF_IF_TYPE_0:
9448 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9449 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9450 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9451 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9452 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9453 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9454 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9455 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9456 		phba->sli4_hba.SLIINTFregaddr =
9457 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9458 		break;
9459 	case LPFC_SLI_INTF_IF_TYPE_2:
9460 		phba->sli4_hba.u.if_type2.EQDregaddr =
9461 			phba->sli4_hba.conf_regs_memmap_p +
9462 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9463 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9464 			phba->sli4_hba.conf_regs_memmap_p +
9465 						LPFC_CTL_PORT_ER1_OFFSET;
9466 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9467 			phba->sli4_hba.conf_regs_memmap_p +
9468 						LPFC_CTL_PORT_ER2_OFFSET;
9469 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9470 			phba->sli4_hba.conf_regs_memmap_p +
9471 						LPFC_CTL_PORT_CTL_OFFSET;
9472 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9473 			phba->sli4_hba.conf_regs_memmap_p +
9474 						LPFC_CTL_PORT_STA_OFFSET;
9475 		phba->sli4_hba.SLIINTFregaddr =
9476 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9477 		phba->sli4_hba.PSMPHRregaddr =
9478 			phba->sli4_hba.conf_regs_memmap_p +
9479 						LPFC_CTL_PORT_SEM_OFFSET;
9480 		phba->sli4_hba.RQDBregaddr =
9481 			phba->sli4_hba.conf_regs_memmap_p +
9482 						LPFC_ULP0_RQ_DOORBELL;
9483 		phba->sli4_hba.WQDBregaddr =
9484 			phba->sli4_hba.conf_regs_memmap_p +
9485 						LPFC_ULP0_WQ_DOORBELL;
9486 		phba->sli4_hba.CQDBregaddr =
9487 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9488 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9489 		phba->sli4_hba.MQDBregaddr =
9490 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9491 		phba->sli4_hba.BMBXregaddr =
9492 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9493 		break;
9494 	case LPFC_SLI_INTF_IF_TYPE_6:
9495 		phba->sli4_hba.u.if_type2.EQDregaddr =
9496 			phba->sli4_hba.conf_regs_memmap_p +
9497 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9498 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9499 			phba->sli4_hba.conf_regs_memmap_p +
9500 						LPFC_CTL_PORT_ER1_OFFSET;
9501 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9502 			phba->sli4_hba.conf_regs_memmap_p +
9503 						LPFC_CTL_PORT_ER2_OFFSET;
9504 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9505 			phba->sli4_hba.conf_regs_memmap_p +
9506 						LPFC_CTL_PORT_CTL_OFFSET;
9507 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9508 			phba->sli4_hba.conf_regs_memmap_p +
9509 						LPFC_CTL_PORT_STA_OFFSET;
9510 		phba->sli4_hba.PSMPHRregaddr =
9511 			phba->sli4_hba.conf_regs_memmap_p +
9512 						LPFC_CTL_PORT_SEM_OFFSET;
9513 		phba->sli4_hba.BMBXregaddr =
9514 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9515 		break;
9516 	case LPFC_SLI_INTF_IF_TYPE_1:
9517 	default:
9518 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9519 			   "FATAL - unsupported SLI4 interface type - %d\n",
9520 			   if_type);
9521 		break;
9522 	}
9523 }
9524 
9525 /**
9526  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9527  * @phba: pointer to lpfc hba data structure.
9528  * @if_type: sli if type to operate on.
9529  *
9530  * This routine is invoked to set up SLI4 BAR1 register memory map.
9531  **/
9532 static void
9533 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9534 {
9535 	switch (if_type) {
9536 	case LPFC_SLI_INTF_IF_TYPE_0:
9537 		phba->sli4_hba.PSMPHRregaddr =
9538 			phba->sli4_hba.ctrl_regs_memmap_p +
9539 			LPFC_SLIPORT_IF0_SMPHR;
9540 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9541 			LPFC_HST_ISR0;
9542 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9543 			LPFC_HST_IMR0;
9544 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9545 			LPFC_HST_ISCR0;
9546 		break;
9547 	case LPFC_SLI_INTF_IF_TYPE_6:
9548 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9549 			LPFC_IF6_RQ_DOORBELL;
9550 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9551 			LPFC_IF6_WQ_DOORBELL;
9552 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9553 			LPFC_IF6_CQ_DOORBELL;
9554 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9555 			LPFC_IF6_EQ_DOORBELL;
9556 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9557 			LPFC_IF6_MQ_DOORBELL;
9558 		break;
9559 	case LPFC_SLI_INTF_IF_TYPE_2:
9560 	case LPFC_SLI_INTF_IF_TYPE_1:
9561 	default:
9562 		dev_err(&phba->pcidev->dev,
9563 			   "FATAL - unsupported SLI4 interface type - %d\n",
9564 			   if_type);
9565 		break;
9566 	}
9567 }
9568 
9569 /**
9570  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9571  * @phba: pointer to lpfc hba data structure.
9572  * @vf: virtual function number
9573  *
9574  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9575  * based on the given viftual function number, @vf.
9576  *
9577  * Return 0 if successful, otherwise -ENODEV.
9578  **/
9579 static int
9580 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9581 {
9582 	if (vf > LPFC_VIR_FUNC_MAX)
9583 		return -ENODEV;
9584 
9585 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9586 				vf * LPFC_VFR_PAGE_SIZE +
9587 					LPFC_ULP0_RQ_DOORBELL);
9588 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9589 				vf * LPFC_VFR_PAGE_SIZE +
9590 					LPFC_ULP0_WQ_DOORBELL);
9591 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9592 				vf * LPFC_VFR_PAGE_SIZE +
9593 					LPFC_EQCQ_DOORBELL);
9594 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9595 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9596 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9597 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9598 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9599 	return 0;
9600 }
9601 
9602 /**
9603  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9604  * @phba: pointer to lpfc hba data structure.
9605  *
9606  * This routine is invoked to create the bootstrap mailbox
9607  * region consistent with the SLI-4 interface spec.  This
9608  * routine allocates all memory necessary to communicate
9609  * mailbox commands to the port and sets up all alignment
9610  * needs.  No locks are expected to be held when calling
9611  * this routine.
9612  *
9613  * Return codes
9614  * 	0 - successful
9615  * 	-ENOMEM - could not allocated memory.
9616  **/
9617 static int
9618 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9619 {
9620 	uint32_t bmbx_size;
9621 	struct lpfc_dmabuf *dmabuf;
9622 	struct dma_address *dma_address;
9623 	uint32_t pa_addr;
9624 	uint64_t phys_addr;
9625 
9626 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9627 	if (!dmabuf)
9628 		return -ENOMEM;
9629 
9630 	/*
9631 	 * The bootstrap mailbox region is comprised of 2 parts
9632 	 * plus an alignment restriction of 16 bytes.
9633 	 */
9634 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9635 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9636 					  &dmabuf->phys, GFP_KERNEL);
9637 	if (!dmabuf->virt) {
9638 		kfree(dmabuf);
9639 		return -ENOMEM;
9640 	}
9641 
9642 	/*
9643 	 * Initialize the bootstrap mailbox pointers now so that the register
9644 	 * operations are simple later.  The mailbox dma address is required
9645 	 * to be 16-byte aligned.  Also align the virtual memory as each
9646 	 * maibox is copied into the bmbx mailbox region before issuing the
9647 	 * command to the port.
9648 	 */
9649 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9650 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9651 
9652 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9653 					      LPFC_ALIGN_16_BYTE);
9654 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9655 					      LPFC_ALIGN_16_BYTE);
9656 
9657 	/*
9658 	 * Set the high and low physical addresses now.  The SLI4 alignment
9659 	 * requirement is 16 bytes and the mailbox is posted to the port
9660 	 * as two 30-bit addresses.  The other data is a bit marking whether
9661 	 * the 30-bit address is the high or low address.
9662 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9663 	 * clean on 32 bit machines.
9664 	 */
9665 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9666 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9667 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9668 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9669 					   LPFC_BMBX_BIT1_ADDR_HI);
9670 
9671 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9672 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9673 					   LPFC_BMBX_BIT1_ADDR_LO);
9674 	return 0;
9675 }
9676 
9677 /**
9678  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9679  * @phba: pointer to lpfc hba data structure.
9680  *
9681  * This routine is invoked to teardown the bootstrap mailbox
9682  * region and release all host resources. This routine requires
9683  * the caller to ensure all mailbox commands recovered, no
9684  * additional mailbox comands are sent, and interrupts are disabled
9685  * before calling this routine.
9686  *
9687  **/
9688 static void
9689 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9690 {
9691 	dma_free_coherent(&phba->pcidev->dev,
9692 			  phba->sli4_hba.bmbx.bmbx_size,
9693 			  phba->sli4_hba.bmbx.dmabuf->virt,
9694 			  phba->sli4_hba.bmbx.dmabuf->phys);
9695 
9696 	kfree(phba->sli4_hba.bmbx.dmabuf);
9697 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9698 }
9699 
9700 static const char * const lpfc_topo_to_str[] = {
9701 	"Loop then P2P",
9702 	"Loopback",
9703 	"P2P Only",
9704 	"Unsupported",
9705 	"Loop Only",
9706 	"Unsupported",
9707 	"P2P then Loop",
9708 };
9709 
9710 #define	LINK_FLAGS_DEF	0x0
9711 #define	LINK_FLAGS_P2P	0x1
9712 #define	LINK_FLAGS_LOOP	0x2
9713 /**
9714  * lpfc_map_topology - Map the topology read from READ_CONFIG
9715  * @phba: pointer to lpfc hba data structure.
9716  * @rd_config: pointer to read config data
9717  *
9718  * This routine is invoked to map the topology values as read
9719  * from the read config mailbox command. If the persistent
9720  * topology feature is supported, the firmware will provide the
9721  * saved topology information to be used in INIT_LINK
9722  **/
9723 static void
9724 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9725 {
9726 	u8 ptv, tf, pt;
9727 
9728 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9729 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9730 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9731 
9732 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9733 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9734 			 ptv, tf, pt);
9735 	if (!ptv) {
9736 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9737 				"2019 FW does not support persistent topology "
9738 				"Using driver parameter defined value [%s]",
9739 				lpfc_topo_to_str[phba->cfg_topology]);
9740 		return;
9741 	}
9742 	/* FW supports persistent topology - override module parameter value */
9743 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9744 
9745 	/* if ASIC_GEN_NUM >= 0xC) */
9746 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9747 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9748 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9749 		    LPFC_SLI_INTF_FAMILY_G6)) {
9750 		if (!tf) {
9751 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9752 					? FLAGS_TOPOLOGY_MODE_LOOP
9753 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9754 		} else {
9755 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9756 		}
9757 	} else { /* G5 */
9758 		if (tf) {
9759 			/* If topology failover set - pt is '0' or '1' */
9760 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9761 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9762 		} else {
9763 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9764 					? FLAGS_TOPOLOGY_MODE_PT_PT
9765 					: FLAGS_TOPOLOGY_MODE_LOOP);
9766 		}
9767 	}
9768 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9769 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9770 				"2020 Using persistent topology value [%s]",
9771 				lpfc_topo_to_str[phba->cfg_topology]);
9772 	} else {
9773 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9774 				"2021 Invalid topology values from FW "
9775 				"Using driver parameter defined value [%s]",
9776 				lpfc_topo_to_str[phba->cfg_topology]);
9777 	}
9778 }
9779 
9780 /**
9781  * lpfc_sli4_read_config - Get the config parameters.
9782  * @phba: pointer to lpfc hba data structure.
9783  *
9784  * This routine is invoked to read the configuration parameters from the HBA.
9785  * The configuration parameters are used to set the base and maximum values
9786  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9787  * allocation for the port.
9788  *
9789  * Return codes
9790  * 	0 - successful
9791  * 	-ENOMEM - No available memory
9792  *      -EIO - The mailbox failed to complete successfully.
9793  **/
9794 int
9795 lpfc_sli4_read_config(struct lpfc_hba *phba)
9796 {
9797 	LPFC_MBOXQ_t *pmb;
9798 	struct lpfc_mbx_read_config *rd_config;
9799 	union  lpfc_sli4_cfg_shdr *shdr;
9800 	uint32_t shdr_status, shdr_add_status;
9801 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9802 	struct lpfc_rsrc_desc_fcfcoe *desc;
9803 	char *pdesc_0;
9804 	uint16_t forced_link_speed;
9805 	uint32_t if_type, qmin;
9806 	int length, i, rc = 0, rc2;
9807 
9808 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9809 	if (!pmb) {
9810 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9811 				"2011 Unable to allocate memory for issuing "
9812 				"SLI_CONFIG_SPECIAL mailbox command\n");
9813 		return -ENOMEM;
9814 	}
9815 
9816 	lpfc_read_config(phba, pmb);
9817 
9818 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9819 	if (rc != MBX_SUCCESS) {
9820 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9821 				"2012 Mailbox failed , mbxCmd x%x "
9822 				"READ_CONFIG, mbxStatus x%x\n",
9823 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9824 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9825 		rc = -EIO;
9826 	} else {
9827 		rd_config = &pmb->u.mqe.un.rd_config;
9828 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9829 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9830 			phba->sli4_hba.lnk_info.lnk_tp =
9831 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9832 			phba->sli4_hba.lnk_info.lnk_no =
9833 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9834 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9835 					"3081 lnk_type:%d, lnk_numb:%d\n",
9836 					phba->sli4_hba.lnk_info.lnk_tp,
9837 					phba->sli4_hba.lnk_info.lnk_no);
9838 		} else
9839 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9840 					"3082 Mailbox (x%x) returned ldv:x0\n",
9841 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9842 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9843 			phba->bbcredit_support = 1;
9844 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9845 		}
9846 
9847 		phba->sli4_hba.conf_trunk =
9848 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9849 		phba->sli4_hba.extents_in_use =
9850 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9851 		phba->sli4_hba.max_cfg_param.max_xri =
9852 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9853 		/* Reduce resource usage in kdump environment */
9854 		if (is_kdump_kernel() &&
9855 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9856 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9857 		phba->sli4_hba.max_cfg_param.xri_base =
9858 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9859 		phba->sli4_hba.max_cfg_param.max_vpi =
9860 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9861 		/* Limit the max we support */
9862 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9863 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9864 		phba->sli4_hba.max_cfg_param.vpi_base =
9865 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9866 		phba->sli4_hba.max_cfg_param.max_rpi =
9867 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9868 		phba->sli4_hba.max_cfg_param.rpi_base =
9869 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9870 		phba->sli4_hba.max_cfg_param.max_vfi =
9871 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
9872 		phba->sli4_hba.max_cfg_param.vfi_base =
9873 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
9874 		phba->sli4_hba.max_cfg_param.max_fcfi =
9875 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
9876 		phba->sli4_hba.max_cfg_param.max_eq =
9877 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
9878 		phba->sli4_hba.max_cfg_param.max_rq =
9879 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
9880 		phba->sli4_hba.max_cfg_param.max_wq =
9881 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
9882 		phba->sli4_hba.max_cfg_param.max_cq =
9883 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
9884 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
9885 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
9886 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
9887 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
9888 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
9889 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
9890 		phba->max_vports = phba->max_vpi;
9891 
9892 		/* Next decide on FPIN or Signal E2E CGN support
9893 		 * For congestion alarms and warnings valid combination are:
9894 		 * 1. FPIN alarms / FPIN warnings
9895 		 * 2. Signal alarms / Signal warnings
9896 		 * 3. FPIN alarms / Signal warnings
9897 		 * 4. Signal alarms / FPIN warnings
9898 		 *
9899 		 * Initialize the adapter frequency to 100 mSecs
9900 		 */
9901 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9902 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
9903 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
9904 
9905 		if (lpfc_use_cgn_signal) {
9906 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
9907 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
9908 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
9909 			}
9910 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
9911 				/* MUST support both alarm and warning
9912 				 * because EDC does not support alarm alone.
9913 				 */
9914 				if (phba->cgn_reg_signal !=
9915 				    EDC_CG_SIG_WARN_ONLY) {
9916 					/* Must support both or none */
9917 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9918 					phba->cgn_reg_signal =
9919 						EDC_CG_SIG_NOTSUPPORTED;
9920 				} else {
9921 					phba->cgn_reg_signal =
9922 						EDC_CG_SIG_WARN_ALARM;
9923 					phba->cgn_reg_fpin =
9924 						LPFC_CGN_FPIN_NONE;
9925 				}
9926 			}
9927 		}
9928 
9929 		/* Set the congestion initial signal and fpin values. */
9930 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
9931 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
9932 
9933 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
9934 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
9935 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
9936 
9937 		lpfc_map_topology(phba, rd_config);
9938 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9939 				"2003 cfg params Extents? %d "
9940 				"XRI(B:%d M:%d), "
9941 				"VPI(B:%d M:%d) "
9942 				"VFI(B:%d M:%d) "
9943 				"RPI(B:%d M:%d) "
9944 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
9945 				phba->sli4_hba.extents_in_use,
9946 				phba->sli4_hba.max_cfg_param.xri_base,
9947 				phba->sli4_hba.max_cfg_param.max_xri,
9948 				phba->sli4_hba.max_cfg_param.vpi_base,
9949 				phba->sli4_hba.max_cfg_param.max_vpi,
9950 				phba->sli4_hba.max_cfg_param.vfi_base,
9951 				phba->sli4_hba.max_cfg_param.max_vfi,
9952 				phba->sli4_hba.max_cfg_param.rpi_base,
9953 				phba->sli4_hba.max_cfg_param.max_rpi,
9954 				phba->sli4_hba.max_cfg_param.max_fcfi,
9955 				phba->sli4_hba.max_cfg_param.max_eq,
9956 				phba->sli4_hba.max_cfg_param.max_cq,
9957 				phba->sli4_hba.max_cfg_param.max_wq,
9958 				phba->sli4_hba.max_cfg_param.max_rq,
9959 				phba->lmt);
9960 
9961 		/*
9962 		 * Calculate queue resources based on how
9963 		 * many WQ/CQ/EQs are available.
9964 		 */
9965 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
9966 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
9967 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
9968 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
9969 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
9970 		/*
9971 		 * Whats left after this can go toward NVME / FCP.
9972 		 * The minus 4 accounts for ELS, NVME LS, MBOX
9973 		 * plus one extra. When configured for
9974 		 * NVMET, FCP io channel WQs are not created.
9975 		 */
9976 		qmin -= 4;
9977 
9978 		/* Check to see if there is enough for NVME */
9979 		if ((phba->cfg_irq_chann > qmin) ||
9980 		    (phba->cfg_hdw_queue > qmin)) {
9981 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9982 					"2005 Reducing Queues - "
9983 					"FW resource limitation: "
9984 					"WQ %d CQ %d EQ %d: min %d: "
9985 					"IRQ %d HDWQ %d\n",
9986 					phba->sli4_hba.max_cfg_param.max_wq,
9987 					phba->sli4_hba.max_cfg_param.max_cq,
9988 					phba->sli4_hba.max_cfg_param.max_eq,
9989 					qmin, phba->cfg_irq_chann,
9990 					phba->cfg_hdw_queue);
9991 
9992 			if (phba->cfg_irq_chann > qmin)
9993 				phba->cfg_irq_chann = qmin;
9994 			if (phba->cfg_hdw_queue > qmin)
9995 				phba->cfg_hdw_queue = qmin;
9996 		}
9997 	}
9998 
9999 	if (rc)
10000 		goto read_cfg_out;
10001 
10002 	/* Update link speed if forced link speed is supported */
10003 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10004 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10005 		forced_link_speed =
10006 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10007 		if (forced_link_speed) {
10008 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10009 
10010 			switch (forced_link_speed) {
10011 			case LINK_SPEED_1G:
10012 				phba->cfg_link_speed =
10013 					LPFC_USER_LINK_SPEED_1G;
10014 				break;
10015 			case LINK_SPEED_2G:
10016 				phba->cfg_link_speed =
10017 					LPFC_USER_LINK_SPEED_2G;
10018 				break;
10019 			case LINK_SPEED_4G:
10020 				phba->cfg_link_speed =
10021 					LPFC_USER_LINK_SPEED_4G;
10022 				break;
10023 			case LINK_SPEED_8G:
10024 				phba->cfg_link_speed =
10025 					LPFC_USER_LINK_SPEED_8G;
10026 				break;
10027 			case LINK_SPEED_10G:
10028 				phba->cfg_link_speed =
10029 					LPFC_USER_LINK_SPEED_10G;
10030 				break;
10031 			case LINK_SPEED_16G:
10032 				phba->cfg_link_speed =
10033 					LPFC_USER_LINK_SPEED_16G;
10034 				break;
10035 			case LINK_SPEED_32G:
10036 				phba->cfg_link_speed =
10037 					LPFC_USER_LINK_SPEED_32G;
10038 				break;
10039 			case LINK_SPEED_64G:
10040 				phba->cfg_link_speed =
10041 					LPFC_USER_LINK_SPEED_64G;
10042 				break;
10043 			case 0xffff:
10044 				phba->cfg_link_speed =
10045 					LPFC_USER_LINK_SPEED_AUTO;
10046 				break;
10047 			default:
10048 				lpfc_printf_log(phba, KERN_ERR,
10049 						LOG_TRACE_EVENT,
10050 						"0047 Unrecognized link "
10051 						"speed : %d\n",
10052 						forced_link_speed);
10053 				phba->cfg_link_speed =
10054 					LPFC_USER_LINK_SPEED_AUTO;
10055 			}
10056 		}
10057 	}
10058 
10059 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10060 	length = phba->sli4_hba.max_cfg_param.max_xri -
10061 			lpfc_sli4_get_els_iocb_cnt(phba);
10062 	if (phba->cfg_hba_queue_depth > length) {
10063 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10064 				"3361 HBA queue depth changed from %d to %d\n",
10065 				phba->cfg_hba_queue_depth, length);
10066 		phba->cfg_hba_queue_depth = length;
10067 	}
10068 
10069 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10070 	    LPFC_SLI_INTF_IF_TYPE_2)
10071 		goto read_cfg_out;
10072 
10073 	/* get the pf# and vf# for SLI4 if_type 2 port */
10074 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10075 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10076 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10077 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10078 			 length, LPFC_SLI4_MBX_EMBED);
10079 
10080 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10081 	shdr = (union lpfc_sli4_cfg_shdr *)
10082 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10083 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10084 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10085 	if (rc2 || shdr_status || shdr_add_status) {
10086 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10087 				"3026 Mailbox failed , mbxCmd x%x "
10088 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10089 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10090 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10091 		goto read_cfg_out;
10092 	}
10093 
10094 	/* search for fc_fcoe resrouce descriptor */
10095 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10096 
10097 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10098 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10099 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10100 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10101 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10102 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10103 		goto read_cfg_out;
10104 
10105 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10106 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10107 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10108 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10109 			phba->sli4_hba.iov.pf_number =
10110 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10111 			phba->sli4_hba.iov.vf_number =
10112 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10113 			break;
10114 		}
10115 	}
10116 
10117 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10118 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10119 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10120 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10121 				phba->sli4_hba.iov.vf_number);
10122 	else
10123 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10124 				"3028 GET_FUNCTION_CONFIG: failed to find "
10125 				"Resource Descriptor:x%x\n",
10126 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10127 
10128 read_cfg_out:
10129 	mempool_free(pmb, phba->mbox_mem_pool);
10130 	return rc;
10131 }
10132 
10133 /**
10134  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10135  * @phba: pointer to lpfc hba data structure.
10136  *
10137  * This routine is invoked to setup the port-side endian order when
10138  * the port if_type is 0.  This routine has no function for other
10139  * if_types.
10140  *
10141  * Return codes
10142  * 	0 - successful
10143  * 	-ENOMEM - No available memory
10144  *      -EIO - The mailbox failed to complete successfully.
10145  **/
10146 static int
10147 lpfc_setup_endian_order(struct lpfc_hba *phba)
10148 {
10149 	LPFC_MBOXQ_t *mboxq;
10150 	uint32_t if_type, rc = 0;
10151 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10152 				      HOST_ENDIAN_HIGH_WORD1};
10153 
10154 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10155 	switch (if_type) {
10156 	case LPFC_SLI_INTF_IF_TYPE_0:
10157 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10158 						       GFP_KERNEL);
10159 		if (!mboxq) {
10160 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10161 					"0492 Unable to allocate memory for "
10162 					"issuing SLI_CONFIG_SPECIAL mailbox "
10163 					"command\n");
10164 			return -ENOMEM;
10165 		}
10166 
10167 		/*
10168 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10169 		 * two words to contain special data values and no other data.
10170 		 */
10171 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10172 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10173 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10174 		if (rc != MBX_SUCCESS) {
10175 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10176 					"0493 SLI_CONFIG_SPECIAL mailbox "
10177 					"failed with status x%x\n",
10178 					rc);
10179 			rc = -EIO;
10180 		}
10181 		mempool_free(mboxq, phba->mbox_mem_pool);
10182 		break;
10183 	case LPFC_SLI_INTF_IF_TYPE_6:
10184 	case LPFC_SLI_INTF_IF_TYPE_2:
10185 	case LPFC_SLI_INTF_IF_TYPE_1:
10186 	default:
10187 		break;
10188 	}
10189 	return rc;
10190 }
10191 
10192 /**
10193  * lpfc_sli4_queue_verify - Verify and update EQ counts
10194  * @phba: pointer to lpfc hba data structure.
10195  *
10196  * This routine is invoked to check the user settable queue counts for EQs.
10197  * After this routine is called the counts will be set to valid values that
10198  * adhere to the constraints of the system's interrupt vectors and the port's
10199  * queue resources.
10200  *
10201  * Return codes
10202  *      0 - successful
10203  *      -ENOMEM - No available memory
10204  **/
10205 static int
10206 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10207 {
10208 	/*
10209 	 * Sanity check for configured queue parameters against the run-time
10210 	 * device parameters
10211 	 */
10212 
10213 	if (phba->nvmet_support) {
10214 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10215 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10216 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10217 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10218 	}
10219 
10220 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10221 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10222 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10223 			phba->cfg_nvmet_mrq);
10224 
10225 	/* Get EQ depth from module parameter, fake the default for now */
10226 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10227 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10228 
10229 	/* Get CQ depth from module parameter, fake the default for now */
10230 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10231 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10232 	return 0;
10233 }
10234 
10235 static int
10236 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10237 {
10238 	struct lpfc_queue *qdesc;
10239 	u32 wqesize;
10240 	int cpu;
10241 
10242 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10243 	/* Create Fast Path IO CQs */
10244 	if (phba->enab_exp_wqcq_pages)
10245 		/* Increase the CQ size when WQEs contain an embedded cdb */
10246 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10247 					      phba->sli4_hba.cq_esize,
10248 					      LPFC_CQE_EXP_COUNT, cpu);
10249 
10250 	else
10251 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10252 					      phba->sli4_hba.cq_esize,
10253 					      phba->sli4_hba.cq_ecount, cpu);
10254 	if (!qdesc) {
10255 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10256 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10257 				idx);
10258 		return 1;
10259 	}
10260 	qdesc->qe_valid = 1;
10261 	qdesc->hdwq = idx;
10262 	qdesc->chann = cpu;
10263 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10264 
10265 	/* Create Fast Path IO WQs */
10266 	if (phba->enab_exp_wqcq_pages) {
10267 		/* Increase the WQ size when WQEs contain an embedded cdb */
10268 		wqesize = (phba->fcp_embed_io) ?
10269 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10270 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10271 					      wqesize,
10272 					      LPFC_WQE_EXP_COUNT, cpu);
10273 	} else
10274 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10275 					      phba->sli4_hba.wq_esize,
10276 					      phba->sli4_hba.wq_ecount, cpu);
10277 
10278 	if (!qdesc) {
10279 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10280 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10281 				idx);
10282 		return 1;
10283 	}
10284 	qdesc->hdwq = idx;
10285 	qdesc->chann = cpu;
10286 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10287 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10288 	return 0;
10289 }
10290 
10291 /**
10292  * lpfc_sli4_queue_create - Create all the SLI4 queues
10293  * @phba: pointer to lpfc hba data structure.
10294  *
10295  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10296  * operation. For each SLI4 queue type, the parameters such as queue entry
10297  * count (queue depth) shall be taken from the module parameter. For now,
10298  * we just use some constant number as place holder.
10299  *
10300  * Return codes
10301  *      0 - successful
10302  *      -ENOMEM - No availble memory
10303  *      -EIO - The mailbox failed to complete successfully.
10304  **/
10305 int
10306 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10307 {
10308 	struct lpfc_queue *qdesc;
10309 	int idx, cpu, eqcpu;
10310 	struct lpfc_sli4_hdw_queue *qp;
10311 	struct lpfc_vector_map_info *cpup;
10312 	struct lpfc_vector_map_info *eqcpup;
10313 	struct lpfc_eq_intr_info *eqi;
10314 
10315 	/*
10316 	 * Create HBA Record arrays.
10317 	 * Both NVME and FCP will share that same vectors / EQs
10318 	 */
10319 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10320 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10321 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10322 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10323 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10324 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10325 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10326 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10327 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10328 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10329 
10330 	if (!phba->sli4_hba.hdwq) {
10331 		phba->sli4_hba.hdwq = kcalloc(
10332 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10333 			GFP_KERNEL);
10334 		if (!phba->sli4_hba.hdwq) {
10335 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10336 					"6427 Failed allocate memory for "
10337 					"fast-path Hardware Queue array\n");
10338 			goto out_error;
10339 		}
10340 		/* Prepare hardware queues to take IO buffers */
10341 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10342 			qp = &phba->sli4_hba.hdwq[idx];
10343 			spin_lock_init(&qp->io_buf_list_get_lock);
10344 			spin_lock_init(&qp->io_buf_list_put_lock);
10345 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10346 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10347 			qp->get_io_bufs = 0;
10348 			qp->put_io_bufs = 0;
10349 			qp->total_io_bufs = 0;
10350 			spin_lock_init(&qp->abts_io_buf_list_lock);
10351 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10352 			qp->abts_scsi_io_bufs = 0;
10353 			qp->abts_nvme_io_bufs = 0;
10354 			INIT_LIST_HEAD(&qp->sgl_list);
10355 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10356 			spin_lock_init(&qp->hdwq_lock);
10357 		}
10358 	}
10359 
10360 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10361 		if (phba->nvmet_support) {
10362 			phba->sli4_hba.nvmet_cqset = kcalloc(
10363 					phba->cfg_nvmet_mrq,
10364 					sizeof(struct lpfc_queue *),
10365 					GFP_KERNEL);
10366 			if (!phba->sli4_hba.nvmet_cqset) {
10367 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10368 					"3121 Fail allocate memory for "
10369 					"fast-path CQ set array\n");
10370 				goto out_error;
10371 			}
10372 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10373 					phba->cfg_nvmet_mrq,
10374 					sizeof(struct lpfc_queue *),
10375 					GFP_KERNEL);
10376 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10377 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10378 					"3122 Fail allocate memory for "
10379 					"fast-path RQ set hdr array\n");
10380 				goto out_error;
10381 			}
10382 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10383 					phba->cfg_nvmet_mrq,
10384 					sizeof(struct lpfc_queue *),
10385 					GFP_KERNEL);
10386 			if (!phba->sli4_hba.nvmet_mrq_data) {
10387 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10388 					"3124 Fail allocate memory for "
10389 					"fast-path RQ set data array\n");
10390 				goto out_error;
10391 			}
10392 		}
10393 	}
10394 
10395 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10396 
10397 	/* Create HBA Event Queues (EQs) */
10398 	for_each_present_cpu(cpu) {
10399 		/* We only want to create 1 EQ per vector, even though
10400 		 * multiple CPUs might be using that vector. so only
10401 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10402 		 */
10403 		cpup = &phba->sli4_hba.cpu_map[cpu];
10404 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10405 			continue;
10406 
10407 		/* Get a ptr to the Hardware Queue associated with this CPU */
10408 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10409 
10410 		/* Allocate an EQ */
10411 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10412 					      phba->sli4_hba.eq_esize,
10413 					      phba->sli4_hba.eq_ecount, cpu);
10414 		if (!qdesc) {
10415 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10416 					"0497 Failed allocate EQ (%d)\n",
10417 					cpup->hdwq);
10418 			goto out_error;
10419 		}
10420 		qdesc->qe_valid = 1;
10421 		qdesc->hdwq = cpup->hdwq;
10422 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10423 		qdesc->last_cpu = qdesc->chann;
10424 
10425 		/* Save the allocated EQ in the Hardware Queue */
10426 		qp->hba_eq = qdesc;
10427 
10428 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10429 		list_add(&qdesc->cpu_list, &eqi->list);
10430 	}
10431 
10432 	/* Now we need to populate the other Hardware Queues, that share
10433 	 * an IRQ vector, with the associated EQ ptr.
10434 	 */
10435 	for_each_present_cpu(cpu) {
10436 		cpup = &phba->sli4_hba.cpu_map[cpu];
10437 
10438 		/* Check for EQ already allocated in previous loop */
10439 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10440 			continue;
10441 
10442 		/* Check for multiple CPUs per hdwq */
10443 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10444 		if (qp->hba_eq)
10445 			continue;
10446 
10447 		/* We need to share an EQ for this hdwq */
10448 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10449 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10450 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10451 	}
10452 
10453 	/* Allocate IO Path SLI4 CQ/WQs */
10454 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10455 		if (lpfc_alloc_io_wq_cq(phba, idx))
10456 			goto out_error;
10457 	}
10458 
10459 	if (phba->nvmet_support) {
10460 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10461 			cpu = lpfc_find_cpu_handle(phba, idx,
10462 						   LPFC_FIND_BY_HDWQ);
10463 			qdesc = lpfc_sli4_queue_alloc(phba,
10464 						      LPFC_DEFAULT_PAGE_SIZE,
10465 						      phba->sli4_hba.cq_esize,
10466 						      phba->sli4_hba.cq_ecount,
10467 						      cpu);
10468 			if (!qdesc) {
10469 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10470 						"3142 Failed allocate NVME "
10471 						"CQ Set (%d)\n", idx);
10472 				goto out_error;
10473 			}
10474 			qdesc->qe_valid = 1;
10475 			qdesc->hdwq = idx;
10476 			qdesc->chann = cpu;
10477 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10478 		}
10479 	}
10480 
10481 	/*
10482 	 * Create Slow Path Completion Queues (CQs)
10483 	 */
10484 
10485 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10486 	/* Create slow-path Mailbox Command Complete Queue */
10487 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10488 				      phba->sli4_hba.cq_esize,
10489 				      phba->sli4_hba.cq_ecount, cpu);
10490 	if (!qdesc) {
10491 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10492 				"0500 Failed allocate slow-path mailbox CQ\n");
10493 		goto out_error;
10494 	}
10495 	qdesc->qe_valid = 1;
10496 	phba->sli4_hba.mbx_cq = qdesc;
10497 
10498 	/* Create slow-path ELS Complete Queue */
10499 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10500 				      phba->sli4_hba.cq_esize,
10501 				      phba->sli4_hba.cq_ecount, cpu);
10502 	if (!qdesc) {
10503 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10504 				"0501 Failed allocate slow-path ELS CQ\n");
10505 		goto out_error;
10506 	}
10507 	qdesc->qe_valid = 1;
10508 	qdesc->chann = cpu;
10509 	phba->sli4_hba.els_cq = qdesc;
10510 
10511 
10512 	/*
10513 	 * Create Slow Path Work Queues (WQs)
10514 	 */
10515 
10516 	/* Create Mailbox Command Queue */
10517 
10518 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10519 				      phba->sli4_hba.mq_esize,
10520 				      phba->sli4_hba.mq_ecount, cpu);
10521 	if (!qdesc) {
10522 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10523 				"0505 Failed allocate slow-path MQ\n");
10524 		goto out_error;
10525 	}
10526 	qdesc->chann = cpu;
10527 	phba->sli4_hba.mbx_wq = qdesc;
10528 
10529 	/*
10530 	 * Create ELS Work Queues
10531 	 */
10532 
10533 	/* Create slow-path ELS Work Queue */
10534 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10535 				      phba->sli4_hba.wq_esize,
10536 				      phba->sli4_hba.wq_ecount, cpu);
10537 	if (!qdesc) {
10538 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10539 				"0504 Failed allocate slow-path ELS WQ\n");
10540 		goto out_error;
10541 	}
10542 	qdesc->chann = cpu;
10543 	phba->sli4_hba.els_wq = qdesc;
10544 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10545 
10546 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10547 		/* Create NVME LS Complete Queue */
10548 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10549 					      phba->sli4_hba.cq_esize,
10550 					      phba->sli4_hba.cq_ecount, cpu);
10551 		if (!qdesc) {
10552 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10553 					"6079 Failed allocate NVME LS CQ\n");
10554 			goto out_error;
10555 		}
10556 		qdesc->chann = cpu;
10557 		qdesc->qe_valid = 1;
10558 		phba->sli4_hba.nvmels_cq = qdesc;
10559 
10560 		/* Create NVME LS Work Queue */
10561 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10562 					      phba->sli4_hba.wq_esize,
10563 					      phba->sli4_hba.wq_ecount, cpu);
10564 		if (!qdesc) {
10565 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10566 					"6080 Failed allocate NVME LS WQ\n");
10567 			goto out_error;
10568 		}
10569 		qdesc->chann = cpu;
10570 		phba->sli4_hba.nvmels_wq = qdesc;
10571 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10572 	}
10573 
10574 	/*
10575 	 * Create Receive Queue (RQ)
10576 	 */
10577 
10578 	/* Create Receive Queue for header */
10579 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10580 				      phba->sli4_hba.rq_esize,
10581 				      phba->sli4_hba.rq_ecount, cpu);
10582 	if (!qdesc) {
10583 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10584 				"0506 Failed allocate receive HRQ\n");
10585 		goto out_error;
10586 	}
10587 	phba->sli4_hba.hdr_rq = qdesc;
10588 
10589 	/* Create Receive Queue for data */
10590 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10591 				      phba->sli4_hba.rq_esize,
10592 				      phba->sli4_hba.rq_ecount, cpu);
10593 	if (!qdesc) {
10594 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10595 				"0507 Failed allocate receive DRQ\n");
10596 		goto out_error;
10597 	}
10598 	phba->sli4_hba.dat_rq = qdesc;
10599 
10600 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10601 	    phba->nvmet_support) {
10602 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10603 			cpu = lpfc_find_cpu_handle(phba, idx,
10604 						   LPFC_FIND_BY_HDWQ);
10605 			/* Create NVMET Receive Queue for header */
10606 			qdesc = lpfc_sli4_queue_alloc(phba,
10607 						      LPFC_DEFAULT_PAGE_SIZE,
10608 						      phba->sli4_hba.rq_esize,
10609 						      LPFC_NVMET_RQE_DEF_COUNT,
10610 						      cpu);
10611 			if (!qdesc) {
10612 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10613 						"3146 Failed allocate "
10614 						"receive HRQ\n");
10615 				goto out_error;
10616 			}
10617 			qdesc->hdwq = idx;
10618 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10619 
10620 			/* Only needed for header of RQ pair */
10621 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10622 						   GFP_KERNEL,
10623 						   cpu_to_node(cpu));
10624 			if (qdesc->rqbp == NULL) {
10625 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10626 						"6131 Failed allocate "
10627 						"Header RQBP\n");
10628 				goto out_error;
10629 			}
10630 
10631 			/* Put list in known state in case driver load fails. */
10632 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10633 
10634 			/* Create NVMET Receive Queue for data */
10635 			qdesc = lpfc_sli4_queue_alloc(phba,
10636 						      LPFC_DEFAULT_PAGE_SIZE,
10637 						      phba->sli4_hba.rq_esize,
10638 						      LPFC_NVMET_RQE_DEF_COUNT,
10639 						      cpu);
10640 			if (!qdesc) {
10641 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10642 						"3156 Failed allocate "
10643 						"receive DRQ\n");
10644 				goto out_error;
10645 			}
10646 			qdesc->hdwq = idx;
10647 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10648 		}
10649 	}
10650 
10651 	/* Clear NVME stats */
10652 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10653 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10654 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10655 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10656 		}
10657 	}
10658 
10659 	/* Clear SCSI stats */
10660 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10661 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10662 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10663 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10664 		}
10665 	}
10666 
10667 	return 0;
10668 
10669 out_error:
10670 	lpfc_sli4_queue_destroy(phba);
10671 	return -ENOMEM;
10672 }
10673 
10674 static inline void
10675 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10676 {
10677 	if (*qp != NULL) {
10678 		lpfc_sli4_queue_free(*qp);
10679 		*qp = NULL;
10680 	}
10681 }
10682 
10683 static inline void
10684 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10685 {
10686 	int idx;
10687 
10688 	if (*qs == NULL)
10689 		return;
10690 
10691 	for (idx = 0; idx < max; idx++)
10692 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10693 
10694 	kfree(*qs);
10695 	*qs = NULL;
10696 }
10697 
10698 static inline void
10699 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10700 {
10701 	struct lpfc_sli4_hdw_queue *hdwq;
10702 	struct lpfc_queue *eq;
10703 	uint32_t idx;
10704 
10705 	hdwq = phba->sli4_hba.hdwq;
10706 
10707 	/* Loop thru all Hardware Queues */
10708 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10709 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10710 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10711 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10712 		hdwq[idx].hba_eq = NULL;
10713 		hdwq[idx].io_cq = NULL;
10714 		hdwq[idx].io_wq = NULL;
10715 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10716 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10717 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10718 	}
10719 	/* Loop thru all IRQ vectors */
10720 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10721 		/* Free the EQ corresponding to the IRQ vector */
10722 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10723 		lpfc_sli4_queue_free(eq);
10724 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10725 	}
10726 }
10727 
10728 /**
10729  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10730  * @phba: pointer to lpfc hba data structure.
10731  *
10732  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10733  * operation.
10734  *
10735  * Return codes
10736  *      0 - successful
10737  *      -ENOMEM - No available memory
10738  *      -EIO - The mailbox failed to complete successfully.
10739  **/
10740 void
10741 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10742 {
10743 	/*
10744 	 * Set FREE_INIT before beginning to free the queues.
10745 	 * Wait until the users of queues to acknowledge to
10746 	 * release queues by clearing FREE_WAIT.
10747 	 */
10748 	spin_lock_irq(&phba->hbalock);
10749 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10750 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10751 		spin_unlock_irq(&phba->hbalock);
10752 		msleep(20);
10753 		spin_lock_irq(&phba->hbalock);
10754 	}
10755 	spin_unlock_irq(&phba->hbalock);
10756 
10757 	lpfc_sli4_cleanup_poll_list(phba);
10758 
10759 	/* Release HBA eqs */
10760 	if (phba->sli4_hba.hdwq)
10761 		lpfc_sli4_release_hdwq(phba);
10762 
10763 	if (phba->nvmet_support) {
10764 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10765 					 phba->cfg_nvmet_mrq);
10766 
10767 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10768 					 phba->cfg_nvmet_mrq);
10769 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10770 					 phba->cfg_nvmet_mrq);
10771 	}
10772 
10773 	/* Release mailbox command work queue */
10774 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10775 
10776 	/* Release ELS work queue */
10777 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10778 
10779 	/* Release ELS work queue */
10780 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10781 
10782 	/* Release unsolicited receive queue */
10783 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10784 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10785 
10786 	/* Release ELS complete queue */
10787 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10788 
10789 	/* Release NVME LS complete queue */
10790 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10791 
10792 	/* Release mailbox command complete queue */
10793 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10794 
10795 	/* Everything on this list has been freed */
10796 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10797 
10798 	/* Done with freeing the queues */
10799 	spin_lock_irq(&phba->hbalock);
10800 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10801 	spin_unlock_irq(&phba->hbalock);
10802 }
10803 
10804 int
10805 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10806 {
10807 	struct lpfc_rqb *rqbp;
10808 	struct lpfc_dmabuf *h_buf;
10809 	struct rqb_dmabuf *rqb_buffer;
10810 
10811 	rqbp = rq->rqbp;
10812 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10813 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10814 				 struct lpfc_dmabuf, list);
10815 
10816 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10817 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10818 		rqbp->buffer_count--;
10819 	}
10820 	return 1;
10821 }
10822 
10823 static int
10824 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10825 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10826 	int qidx, uint32_t qtype)
10827 {
10828 	struct lpfc_sli_ring *pring;
10829 	int rc;
10830 
10831 	if (!eq || !cq || !wq) {
10832 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10833 			"6085 Fast-path %s (%d) not allocated\n",
10834 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10835 		return -ENOMEM;
10836 	}
10837 
10838 	/* create the Cq first */
10839 	rc = lpfc_cq_create(phba, cq, eq,
10840 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10841 	if (rc) {
10842 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10843 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10844 				qidx, (uint32_t)rc);
10845 		return rc;
10846 	}
10847 
10848 	if (qtype != LPFC_MBOX) {
10849 		/* Setup cq_map for fast lookup */
10850 		if (cq_map)
10851 			*cq_map = cq->queue_id;
10852 
10853 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10854 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10855 			qidx, cq->queue_id, qidx, eq->queue_id);
10856 
10857 		/* create the wq */
10858 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10859 		if (rc) {
10860 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10861 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10862 				qidx, (uint32_t)rc);
10863 			/* no need to tear down cq - caller will do so */
10864 			return rc;
10865 		}
10866 
10867 		/* Bind this CQ/WQ to the NVME ring */
10868 		pring = wq->pring;
10869 		pring->sli.sli4.wqp = (void *)wq;
10870 		cq->pring = pring;
10871 
10872 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10873 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
10874 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
10875 	} else {
10876 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
10877 		if (rc) {
10878 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10879 					"0539 Failed setup of slow-path MQ: "
10880 					"rc = 0x%x\n", rc);
10881 			/* no need to tear down cq - caller will do so */
10882 			return rc;
10883 		}
10884 
10885 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10886 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
10887 			phba->sli4_hba.mbx_wq->queue_id,
10888 			phba->sli4_hba.mbx_cq->queue_id);
10889 	}
10890 
10891 	return 0;
10892 }
10893 
10894 /**
10895  * lpfc_setup_cq_lookup - Setup the CQ lookup table
10896  * @phba: pointer to lpfc hba data structure.
10897  *
10898  * This routine will populate the cq_lookup table by all
10899  * available CQ queue_id's.
10900  **/
10901 static void
10902 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
10903 {
10904 	struct lpfc_queue *eq, *childq;
10905 	int qidx;
10906 
10907 	memset(phba->sli4_hba.cq_lookup, 0,
10908 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
10909 	/* Loop thru all IRQ vectors */
10910 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
10911 		/* Get the EQ corresponding to the IRQ vector */
10912 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
10913 		if (!eq)
10914 			continue;
10915 		/* Loop through all CQs associated with that EQ */
10916 		list_for_each_entry(childq, &eq->child_list, list) {
10917 			if (childq->queue_id > phba->sli4_hba.cq_max)
10918 				continue;
10919 			if (childq->subtype == LPFC_IO)
10920 				phba->sli4_hba.cq_lookup[childq->queue_id] =
10921 					childq;
10922 		}
10923 	}
10924 }
10925 
10926 /**
10927  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
10928  * @phba: pointer to lpfc hba data structure.
10929  *
10930  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
10931  * operation.
10932  *
10933  * Return codes
10934  *      0 - successful
10935  *      -ENOMEM - No available memory
10936  *      -EIO - The mailbox failed to complete successfully.
10937  **/
10938 int
10939 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
10940 {
10941 	uint32_t shdr_status, shdr_add_status;
10942 	union lpfc_sli4_cfg_shdr *shdr;
10943 	struct lpfc_vector_map_info *cpup;
10944 	struct lpfc_sli4_hdw_queue *qp;
10945 	LPFC_MBOXQ_t *mboxq;
10946 	int qidx, cpu;
10947 	uint32_t length, usdelay;
10948 	int rc = -ENOMEM;
10949 
10950 	/* Check for dual-ULP support */
10951 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10952 	if (!mboxq) {
10953 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10954 				"3249 Unable to allocate memory for "
10955 				"QUERY_FW_CFG mailbox command\n");
10956 		return -ENOMEM;
10957 	}
10958 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
10959 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10960 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
10961 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
10962 			 length, LPFC_SLI4_MBX_EMBED);
10963 
10964 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10965 
10966 	shdr = (union lpfc_sli4_cfg_shdr *)
10967 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
10968 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10969 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10970 	if (shdr_status || shdr_add_status || rc) {
10971 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10972 				"3250 QUERY_FW_CFG mailbox failed with status "
10973 				"x%x add_status x%x, mbx status x%x\n",
10974 				shdr_status, shdr_add_status, rc);
10975 		mempool_free(mboxq, phba->mbox_mem_pool);
10976 		rc = -ENXIO;
10977 		goto out_error;
10978 	}
10979 
10980 	phba->sli4_hba.fw_func_mode =
10981 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
10982 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
10983 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
10984 	phba->sli4_hba.physical_port =
10985 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
10986 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10987 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
10988 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
10989 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
10990 
10991 	mempool_free(mboxq, phba->mbox_mem_pool);
10992 
10993 	/*
10994 	 * Set up HBA Event Queues (EQs)
10995 	 */
10996 	qp = phba->sli4_hba.hdwq;
10997 
10998 	/* Set up HBA event queue */
10999 	if (!qp) {
11000 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11001 				"3147 Fast-path EQs not allocated\n");
11002 		rc = -ENOMEM;
11003 		goto out_error;
11004 	}
11005 
11006 	/* Loop thru all IRQ vectors */
11007 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11008 		/* Create HBA Event Queues (EQs) in order */
11009 		for_each_present_cpu(cpu) {
11010 			cpup = &phba->sli4_hba.cpu_map[cpu];
11011 
11012 			/* Look for the CPU thats using that vector with
11013 			 * LPFC_CPU_FIRST_IRQ set.
11014 			 */
11015 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11016 				continue;
11017 			if (qidx != cpup->eq)
11018 				continue;
11019 
11020 			/* Create an EQ for that vector */
11021 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11022 					    phba->cfg_fcp_imax);
11023 			if (rc) {
11024 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11025 						"0523 Failed setup of fast-path"
11026 						" EQ (%d), rc = 0x%x\n",
11027 						cpup->eq, (uint32_t)rc);
11028 				goto out_destroy;
11029 			}
11030 
11031 			/* Save the EQ for that vector in the hba_eq_hdl */
11032 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11033 				qp[cpup->hdwq].hba_eq;
11034 
11035 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11036 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11037 					cpup->eq,
11038 					qp[cpup->hdwq].hba_eq->queue_id);
11039 		}
11040 	}
11041 
11042 	/* Loop thru all Hardware Queues */
11043 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11044 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11045 		cpup = &phba->sli4_hba.cpu_map[cpu];
11046 
11047 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11048 		rc = lpfc_create_wq_cq(phba,
11049 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11050 				       qp[qidx].io_cq,
11051 				       qp[qidx].io_wq,
11052 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11053 				       qidx,
11054 				       LPFC_IO);
11055 		if (rc) {
11056 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11057 					"0535 Failed to setup fastpath "
11058 					"IO WQ/CQ (%d), rc = 0x%x\n",
11059 					qidx, (uint32_t)rc);
11060 			goto out_destroy;
11061 		}
11062 	}
11063 
11064 	/*
11065 	 * Set up Slow Path Complete Queues (CQs)
11066 	 */
11067 
11068 	/* Set up slow-path MBOX CQ/MQ */
11069 
11070 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11071 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11072 				"0528 %s not allocated\n",
11073 				phba->sli4_hba.mbx_cq ?
11074 				"Mailbox WQ" : "Mailbox CQ");
11075 		rc = -ENOMEM;
11076 		goto out_destroy;
11077 	}
11078 
11079 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11080 			       phba->sli4_hba.mbx_cq,
11081 			       phba->sli4_hba.mbx_wq,
11082 			       NULL, 0, LPFC_MBOX);
11083 	if (rc) {
11084 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11085 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11086 			(uint32_t)rc);
11087 		goto out_destroy;
11088 	}
11089 	if (phba->nvmet_support) {
11090 		if (!phba->sli4_hba.nvmet_cqset) {
11091 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11092 					"3165 Fast-path NVME CQ Set "
11093 					"array not allocated\n");
11094 			rc = -ENOMEM;
11095 			goto out_destroy;
11096 		}
11097 		if (phba->cfg_nvmet_mrq > 1) {
11098 			rc = lpfc_cq_create_set(phba,
11099 					phba->sli4_hba.nvmet_cqset,
11100 					qp,
11101 					LPFC_WCQ, LPFC_NVMET);
11102 			if (rc) {
11103 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11104 						"3164 Failed setup of NVME CQ "
11105 						"Set, rc = 0x%x\n",
11106 						(uint32_t)rc);
11107 				goto out_destroy;
11108 			}
11109 		} else {
11110 			/* Set up NVMET Receive Complete Queue */
11111 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11112 					    qp[0].hba_eq,
11113 					    LPFC_WCQ, LPFC_NVMET);
11114 			if (rc) {
11115 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11116 						"6089 Failed setup NVMET CQ: "
11117 						"rc = 0x%x\n", (uint32_t)rc);
11118 				goto out_destroy;
11119 			}
11120 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11121 
11122 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11123 					"6090 NVMET CQ setup: cq-id=%d, "
11124 					"parent eq-id=%d\n",
11125 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11126 					qp[0].hba_eq->queue_id);
11127 		}
11128 	}
11129 
11130 	/* Set up slow-path ELS WQ/CQ */
11131 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11132 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11133 				"0530 ELS %s not allocated\n",
11134 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11135 		rc = -ENOMEM;
11136 		goto out_destroy;
11137 	}
11138 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11139 			       phba->sli4_hba.els_cq,
11140 			       phba->sli4_hba.els_wq,
11141 			       NULL, 0, LPFC_ELS);
11142 	if (rc) {
11143 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11144 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11145 				(uint32_t)rc);
11146 		goto out_destroy;
11147 	}
11148 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11149 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11150 			phba->sli4_hba.els_wq->queue_id,
11151 			phba->sli4_hba.els_cq->queue_id);
11152 
11153 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11154 		/* Set up NVME LS Complete Queue */
11155 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11156 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11157 					"6091 LS %s not allocated\n",
11158 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11159 			rc = -ENOMEM;
11160 			goto out_destroy;
11161 		}
11162 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11163 				       phba->sli4_hba.nvmels_cq,
11164 				       phba->sli4_hba.nvmels_wq,
11165 				       NULL, 0, LPFC_NVME_LS);
11166 		if (rc) {
11167 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11168 					"0526 Failed setup of NVVME LS WQ/CQ: "
11169 					"rc = 0x%x\n", (uint32_t)rc);
11170 			goto out_destroy;
11171 		}
11172 
11173 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11174 				"6096 ELS WQ setup: wq-id=%d, "
11175 				"parent cq-id=%d\n",
11176 				phba->sli4_hba.nvmels_wq->queue_id,
11177 				phba->sli4_hba.nvmels_cq->queue_id);
11178 	}
11179 
11180 	/*
11181 	 * Create NVMET Receive Queue (RQ)
11182 	 */
11183 	if (phba->nvmet_support) {
11184 		if ((!phba->sli4_hba.nvmet_cqset) ||
11185 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11186 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11187 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11188 					"6130 MRQ CQ Queues not "
11189 					"allocated\n");
11190 			rc = -ENOMEM;
11191 			goto out_destroy;
11192 		}
11193 		if (phba->cfg_nvmet_mrq > 1) {
11194 			rc = lpfc_mrq_create(phba,
11195 					     phba->sli4_hba.nvmet_mrq_hdr,
11196 					     phba->sli4_hba.nvmet_mrq_data,
11197 					     phba->sli4_hba.nvmet_cqset,
11198 					     LPFC_NVMET);
11199 			if (rc) {
11200 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11201 						"6098 Failed setup of NVMET "
11202 						"MRQ: rc = 0x%x\n",
11203 						(uint32_t)rc);
11204 				goto out_destroy;
11205 			}
11206 
11207 		} else {
11208 			rc = lpfc_rq_create(phba,
11209 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11210 					    phba->sli4_hba.nvmet_mrq_data[0],
11211 					    phba->sli4_hba.nvmet_cqset[0],
11212 					    LPFC_NVMET);
11213 			if (rc) {
11214 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11215 						"6057 Failed setup of NVMET "
11216 						"Receive Queue: rc = 0x%x\n",
11217 						(uint32_t)rc);
11218 				goto out_destroy;
11219 			}
11220 
11221 			lpfc_printf_log(
11222 				phba, KERN_INFO, LOG_INIT,
11223 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11224 				"dat-rq-id=%d parent cq-id=%d\n",
11225 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11226 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11227 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11228 
11229 		}
11230 	}
11231 
11232 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11233 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11234 				"0540 Receive Queue not allocated\n");
11235 		rc = -ENOMEM;
11236 		goto out_destroy;
11237 	}
11238 
11239 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11240 			    phba->sli4_hba.els_cq, LPFC_USOL);
11241 	if (rc) {
11242 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11243 				"0541 Failed setup of Receive Queue: "
11244 				"rc = 0x%x\n", (uint32_t)rc);
11245 		goto out_destroy;
11246 	}
11247 
11248 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11249 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11250 			"parent cq-id=%d\n",
11251 			phba->sli4_hba.hdr_rq->queue_id,
11252 			phba->sli4_hba.dat_rq->queue_id,
11253 			phba->sli4_hba.els_cq->queue_id);
11254 
11255 	if (phba->cfg_fcp_imax)
11256 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11257 	else
11258 		usdelay = 0;
11259 
11260 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11261 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11262 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11263 					 usdelay);
11264 
11265 	if (phba->sli4_hba.cq_max) {
11266 		kfree(phba->sli4_hba.cq_lookup);
11267 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11268 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11269 		if (!phba->sli4_hba.cq_lookup) {
11270 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11271 					"0549 Failed setup of CQ Lookup table: "
11272 					"size 0x%x\n", phba->sli4_hba.cq_max);
11273 			rc = -ENOMEM;
11274 			goto out_destroy;
11275 		}
11276 		lpfc_setup_cq_lookup(phba);
11277 	}
11278 	return 0;
11279 
11280 out_destroy:
11281 	lpfc_sli4_queue_unset(phba);
11282 out_error:
11283 	return rc;
11284 }
11285 
11286 /**
11287  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11288  * @phba: pointer to lpfc hba data structure.
11289  *
11290  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11291  * operation.
11292  *
11293  * Return codes
11294  *      0 - successful
11295  *      -ENOMEM - No available memory
11296  *      -EIO - The mailbox failed to complete successfully.
11297  **/
11298 void
11299 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11300 {
11301 	struct lpfc_sli4_hdw_queue *qp;
11302 	struct lpfc_queue *eq;
11303 	int qidx;
11304 
11305 	/* Unset mailbox command work queue */
11306 	if (phba->sli4_hba.mbx_wq)
11307 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11308 
11309 	/* Unset NVME LS work queue */
11310 	if (phba->sli4_hba.nvmels_wq)
11311 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11312 
11313 	/* Unset ELS work queue */
11314 	if (phba->sli4_hba.els_wq)
11315 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11316 
11317 	/* Unset unsolicited receive queue */
11318 	if (phba->sli4_hba.hdr_rq)
11319 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11320 				phba->sli4_hba.dat_rq);
11321 
11322 	/* Unset mailbox command complete queue */
11323 	if (phba->sli4_hba.mbx_cq)
11324 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11325 
11326 	/* Unset ELS complete queue */
11327 	if (phba->sli4_hba.els_cq)
11328 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11329 
11330 	/* Unset NVME LS complete queue */
11331 	if (phba->sli4_hba.nvmels_cq)
11332 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11333 
11334 	if (phba->nvmet_support) {
11335 		/* Unset NVMET MRQ queue */
11336 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11337 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11338 				lpfc_rq_destroy(
11339 					phba,
11340 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11341 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11342 		}
11343 
11344 		/* Unset NVMET CQ Set complete queue */
11345 		if (phba->sli4_hba.nvmet_cqset) {
11346 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11347 				lpfc_cq_destroy(
11348 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11349 		}
11350 	}
11351 
11352 	/* Unset fast-path SLI4 queues */
11353 	if (phba->sli4_hba.hdwq) {
11354 		/* Loop thru all Hardware Queues */
11355 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11356 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11357 			qp = &phba->sli4_hba.hdwq[qidx];
11358 			lpfc_wq_destroy(phba, qp->io_wq);
11359 			lpfc_cq_destroy(phba, qp->io_cq);
11360 		}
11361 		/* Loop thru all IRQ vectors */
11362 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11363 			/* Destroy the EQ corresponding to the IRQ vector */
11364 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11365 			lpfc_eq_destroy(phba, eq);
11366 		}
11367 	}
11368 
11369 	kfree(phba->sli4_hba.cq_lookup);
11370 	phba->sli4_hba.cq_lookup = NULL;
11371 	phba->sli4_hba.cq_max = 0;
11372 }
11373 
11374 /**
11375  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11376  * @phba: pointer to lpfc hba data structure.
11377  *
11378  * This routine is invoked to allocate and set up a pool of completion queue
11379  * events. The body of the completion queue event is a completion queue entry
11380  * CQE. For now, this pool is used for the interrupt service routine to queue
11381  * the following HBA completion queue events for the worker thread to process:
11382  *   - Mailbox asynchronous events
11383  *   - Receive queue completion unsolicited events
11384  * Later, this can be used for all the slow-path events.
11385  *
11386  * Return codes
11387  *      0 - successful
11388  *      -ENOMEM - No available memory
11389  **/
11390 static int
11391 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11392 {
11393 	struct lpfc_cq_event *cq_event;
11394 	int i;
11395 
11396 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11397 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11398 		if (!cq_event)
11399 			goto out_pool_create_fail;
11400 		list_add_tail(&cq_event->list,
11401 			      &phba->sli4_hba.sp_cqe_event_pool);
11402 	}
11403 	return 0;
11404 
11405 out_pool_create_fail:
11406 	lpfc_sli4_cq_event_pool_destroy(phba);
11407 	return -ENOMEM;
11408 }
11409 
11410 /**
11411  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11412  * @phba: pointer to lpfc hba data structure.
11413  *
11414  * This routine is invoked to free the pool of completion queue events at
11415  * driver unload time. Note that, it is the responsibility of the driver
11416  * cleanup routine to free all the outstanding completion-queue events
11417  * allocated from this pool back into the pool before invoking this routine
11418  * to destroy the pool.
11419  **/
11420 static void
11421 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11422 {
11423 	struct lpfc_cq_event *cq_event, *next_cq_event;
11424 
11425 	list_for_each_entry_safe(cq_event, next_cq_event,
11426 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11427 		list_del(&cq_event->list);
11428 		kfree(cq_event);
11429 	}
11430 }
11431 
11432 /**
11433  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11434  * @phba: pointer to lpfc hba data structure.
11435  *
11436  * This routine is the lock free version of the API invoked to allocate a
11437  * completion-queue event from the free pool.
11438  *
11439  * Return: Pointer to the newly allocated completion-queue event if successful
11440  *         NULL otherwise.
11441  **/
11442 struct lpfc_cq_event *
11443 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11444 {
11445 	struct lpfc_cq_event *cq_event = NULL;
11446 
11447 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11448 			 struct lpfc_cq_event, list);
11449 	return cq_event;
11450 }
11451 
11452 /**
11453  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11454  * @phba: pointer to lpfc hba data structure.
11455  *
11456  * This routine is the lock version of the API invoked to allocate a
11457  * completion-queue event from the free pool.
11458  *
11459  * Return: Pointer to the newly allocated completion-queue event if successful
11460  *         NULL otherwise.
11461  **/
11462 struct lpfc_cq_event *
11463 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11464 {
11465 	struct lpfc_cq_event *cq_event;
11466 	unsigned long iflags;
11467 
11468 	spin_lock_irqsave(&phba->hbalock, iflags);
11469 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11470 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11471 	return cq_event;
11472 }
11473 
11474 /**
11475  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11476  * @phba: pointer to lpfc hba data structure.
11477  * @cq_event: pointer to the completion queue event to be freed.
11478  *
11479  * This routine is the lock free version of the API invoked to release a
11480  * completion-queue event back into the free pool.
11481  **/
11482 void
11483 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11484 			     struct lpfc_cq_event *cq_event)
11485 {
11486 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11487 }
11488 
11489 /**
11490  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11491  * @phba: pointer to lpfc hba data structure.
11492  * @cq_event: pointer to the completion queue event to be freed.
11493  *
11494  * This routine is the lock version of the API invoked to release a
11495  * completion-queue event back into the free pool.
11496  **/
11497 void
11498 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11499 			   struct lpfc_cq_event *cq_event)
11500 {
11501 	unsigned long iflags;
11502 	spin_lock_irqsave(&phba->hbalock, iflags);
11503 	__lpfc_sli4_cq_event_release(phba, cq_event);
11504 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11505 }
11506 
11507 /**
11508  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11509  * @phba: pointer to lpfc hba data structure.
11510  *
11511  * This routine is to free all the pending completion-queue events to the
11512  * back into the free pool for device reset.
11513  **/
11514 static void
11515 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11516 {
11517 	LIST_HEAD(cq_event_list);
11518 	struct lpfc_cq_event *cq_event;
11519 	unsigned long iflags;
11520 
11521 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11522 
11523 	/* Pending ELS XRI abort events */
11524 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11525 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11526 			 &cq_event_list);
11527 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11528 
11529 	/* Pending asynnc events */
11530 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11531 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11532 			 &cq_event_list);
11533 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11534 
11535 	while (!list_empty(&cq_event_list)) {
11536 		list_remove_head(&cq_event_list, cq_event,
11537 				 struct lpfc_cq_event, list);
11538 		lpfc_sli4_cq_event_release(phba, cq_event);
11539 	}
11540 }
11541 
11542 /**
11543  * lpfc_pci_function_reset - Reset pci function.
11544  * @phba: pointer to lpfc hba data structure.
11545  *
11546  * This routine is invoked to request a PCI function reset. It will destroys
11547  * all resources assigned to the PCI function which originates this request.
11548  *
11549  * Return codes
11550  *      0 - successful
11551  *      -ENOMEM - No available memory
11552  *      -EIO - The mailbox failed to complete successfully.
11553  **/
11554 int
11555 lpfc_pci_function_reset(struct lpfc_hba *phba)
11556 {
11557 	LPFC_MBOXQ_t *mboxq;
11558 	uint32_t rc = 0, if_type;
11559 	uint32_t shdr_status, shdr_add_status;
11560 	uint32_t rdy_chk;
11561 	uint32_t port_reset = 0;
11562 	union lpfc_sli4_cfg_shdr *shdr;
11563 	struct lpfc_register reg_data;
11564 	uint16_t devid;
11565 
11566 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11567 	switch (if_type) {
11568 	case LPFC_SLI_INTF_IF_TYPE_0:
11569 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11570 						       GFP_KERNEL);
11571 		if (!mboxq) {
11572 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11573 					"0494 Unable to allocate memory for "
11574 					"issuing SLI_FUNCTION_RESET mailbox "
11575 					"command\n");
11576 			return -ENOMEM;
11577 		}
11578 
11579 		/* Setup PCI function reset mailbox-ioctl command */
11580 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11581 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11582 				 LPFC_SLI4_MBX_EMBED);
11583 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11584 		shdr = (union lpfc_sli4_cfg_shdr *)
11585 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11586 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11587 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11588 					 &shdr->response);
11589 		mempool_free(mboxq, phba->mbox_mem_pool);
11590 		if (shdr_status || shdr_add_status || rc) {
11591 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11592 					"0495 SLI_FUNCTION_RESET mailbox "
11593 					"failed with status x%x add_status x%x,"
11594 					" mbx status x%x\n",
11595 					shdr_status, shdr_add_status, rc);
11596 			rc = -ENXIO;
11597 		}
11598 		break;
11599 	case LPFC_SLI_INTF_IF_TYPE_2:
11600 	case LPFC_SLI_INTF_IF_TYPE_6:
11601 wait:
11602 		/*
11603 		 * Poll the Port Status Register and wait for RDY for
11604 		 * up to 30 seconds. If the port doesn't respond, treat
11605 		 * it as an error.
11606 		 */
11607 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11608 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11609 				STATUSregaddr, &reg_data.word0)) {
11610 				rc = -ENODEV;
11611 				goto out;
11612 			}
11613 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11614 				break;
11615 			msleep(20);
11616 		}
11617 
11618 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11619 			phba->work_status[0] = readl(
11620 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11621 			phba->work_status[1] = readl(
11622 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11623 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11624 					"2890 Port not ready, port status reg "
11625 					"0x%x error 1=0x%x, error 2=0x%x\n",
11626 					reg_data.word0,
11627 					phba->work_status[0],
11628 					phba->work_status[1]);
11629 			rc = -ENODEV;
11630 			goto out;
11631 		}
11632 
11633 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11634 			lpfc_pldv_detect = true;
11635 
11636 		if (!port_reset) {
11637 			/*
11638 			 * Reset the port now
11639 			 */
11640 			reg_data.word0 = 0;
11641 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11642 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11643 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11644 			       LPFC_SLIPORT_INIT_PORT);
11645 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11646 			       CTRLregaddr);
11647 			/* flush */
11648 			pci_read_config_word(phba->pcidev,
11649 					     PCI_DEVICE_ID, &devid);
11650 
11651 			port_reset = 1;
11652 			msleep(20);
11653 			goto wait;
11654 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11655 			rc = -ENODEV;
11656 			goto out;
11657 		}
11658 		break;
11659 
11660 	case LPFC_SLI_INTF_IF_TYPE_1:
11661 	default:
11662 		break;
11663 	}
11664 
11665 out:
11666 	/* Catch the not-ready port failure after a port reset. */
11667 	if (rc) {
11668 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11669 				"3317 HBA not functional: IP Reset Failed "
11670 				"try: echo fw_reset > board_mode\n");
11671 		rc = -ENODEV;
11672 	}
11673 
11674 	return rc;
11675 }
11676 
11677 /**
11678  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11679  * @phba: pointer to lpfc hba data structure.
11680  *
11681  * This routine is invoked to set up the PCI device memory space for device
11682  * with SLI-4 interface spec.
11683  *
11684  * Return codes
11685  * 	0 - successful
11686  * 	other values - error
11687  **/
11688 static int
11689 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11690 {
11691 	struct pci_dev *pdev = phba->pcidev;
11692 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11693 	int error;
11694 	uint32_t if_type;
11695 
11696 	if (!pdev)
11697 		return -ENODEV;
11698 
11699 	/* Set the device DMA mask size */
11700 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11701 	if (error)
11702 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11703 	if (error)
11704 		return error;
11705 
11706 	/*
11707 	 * The BARs and register set definitions and offset locations are
11708 	 * dependent on the if_type.
11709 	 */
11710 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11711 				  &phba->sli4_hba.sli_intf.word0)) {
11712 		return -ENODEV;
11713 	}
11714 
11715 	/* There is no SLI3 failback for SLI4 devices. */
11716 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11717 	    LPFC_SLI_INTF_VALID) {
11718 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11719 				"2894 SLI_INTF reg contents invalid "
11720 				"sli_intf reg 0x%x\n",
11721 				phba->sli4_hba.sli_intf.word0);
11722 		return -ENODEV;
11723 	}
11724 
11725 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11726 	/*
11727 	 * Get the bus address of SLI4 device Bar regions and the
11728 	 * number of bytes required by each mapping. The mapping of the
11729 	 * particular PCI BARs regions is dependent on the type of
11730 	 * SLI4 device.
11731 	 */
11732 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11733 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11734 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11735 
11736 		/*
11737 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11738 		 * addr
11739 		 */
11740 		phba->sli4_hba.conf_regs_memmap_p =
11741 			ioremap(phba->pci_bar0_map, bar0map_len);
11742 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11743 			dev_printk(KERN_ERR, &pdev->dev,
11744 				   "ioremap failed for SLI4 PCI config "
11745 				   "registers.\n");
11746 			return -ENODEV;
11747 		}
11748 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11749 		/* Set up BAR0 PCI config space register memory map */
11750 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11751 	} else {
11752 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11753 		bar0map_len = pci_resource_len(pdev, 1);
11754 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11755 			dev_printk(KERN_ERR, &pdev->dev,
11756 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11757 			return -ENODEV;
11758 		}
11759 		phba->sli4_hba.conf_regs_memmap_p =
11760 				ioremap(phba->pci_bar0_map, bar0map_len);
11761 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11762 			dev_printk(KERN_ERR, &pdev->dev,
11763 				"ioremap failed for SLI4 PCI config "
11764 				"registers.\n");
11765 			return -ENODEV;
11766 		}
11767 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11768 	}
11769 
11770 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11771 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11772 			/*
11773 			 * Map SLI4 if type 0 HBA Control Register base to a
11774 			 * kernel virtual address and setup the registers.
11775 			 */
11776 			phba->pci_bar1_map = pci_resource_start(pdev,
11777 								PCI_64BIT_BAR2);
11778 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11779 			phba->sli4_hba.ctrl_regs_memmap_p =
11780 					ioremap(phba->pci_bar1_map,
11781 						bar1map_len);
11782 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11783 				dev_err(&pdev->dev,
11784 					   "ioremap failed for SLI4 HBA "
11785 					    "control registers.\n");
11786 				error = -ENOMEM;
11787 				goto out_iounmap_conf;
11788 			}
11789 			phba->pci_bar2_memmap_p =
11790 					 phba->sli4_hba.ctrl_regs_memmap_p;
11791 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11792 		} else {
11793 			error = -ENOMEM;
11794 			goto out_iounmap_conf;
11795 		}
11796 	}
11797 
11798 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11799 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11800 		/*
11801 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11802 		 * virtual address and setup the registers.
11803 		 */
11804 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11805 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11806 		phba->sli4_hba.drbl_regs_memmap_p =
11807 				ioremap(phba->pci_bar1_map, bar1map_len);
11808 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11809 			dev_err(&pdev->dev,
11810 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11811 			error = -ENOMEM;
11812 			goto out_iounmap_conf;
11813 		}
11814 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11815 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11816 	}
11817 
11818 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11819 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11820 			/*
11821 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11822 			 * a kernel virtual address and setup the registers.
11823 			 */
11824 			phba->pci_bar2_map = pci_resource_start(pdev,
11825 								PCI_64BIT_BAR4);
11826 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11827 			phba->sli4_hba.drbl_regs_memmap_p =
11828 					ioremap(phba->pci_bar2_map,
11829 						bar2map_len);
11830 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11831 				dev_err(&pdev->dev,
11832 					   "ioremap failed for SLI4 HBA"
11833 					   " doorbell registers.\n");
11834 				error = -ENOMEM;
11835 				goto out_iounmap_ctrl;
11836 			}
11837 			phba->pci_bar4_memmap_p =
11838 					phba->sli4_hba.drbl_regs_memmap_p;
11839 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11840 			if (error)
11841 				goto out_iounmap_all;
11842 		} else {
11843 			error = -ENOMEM;
11844 			goto out_iounmap_all;
11845 		}
11846 	}
11847 
11848 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11849 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11850 		/*
11851 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11852 		 * virtual address and setup the registers.
11853 		 */
11854 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11855 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11856 		phba->sli4_hba.dpp_regs_memmap_p =
11857 				ioremap(phba->pci_bar2_map, bar2map_len);
11858 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11859 			dev_err(&pdev->dev,
11860 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11861 			error = -ENOMEM;
11862 			goto out_iounmap_ctrl;
11863 		}
11864 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11865 	}
11866 
11867 	/* Set up the EQ/CQ register handeling functions now */
11868 	switch (if_type) {
11869 	case LPFC_SLI_INTF_IF_TYPE_0:
11870 	case LPFC_SLI_INTF_IF_TYPE_2:
11871 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
11872 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
11873 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
11874 		break;
11875 	case LPFC_SLI_INTF_IF_TYPE_6:
11876 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
11877 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
11878 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
11879 		break;
11880 	default:
11881 		break;
11882 	}
11883 
11884 	return 0;
11885 
11886 out_iounmap_all:
11887 	iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11888 out_iounmap_ctrl:
11889 	iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11890 out_iounmap_conf:
11891 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
11892 
11893 	return error;
11894 }
11895 
11896 /**
11897  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
11898  * @phba: pointer to lpfc hba data structure.
11899  *
11900  * This routine is invoked to unset the PCI device memory space for device
11901  * with SLI-4 interface spec.
11902  **/
11903 static void
11904 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
11905 {
11906 	uint32_t if_type;
11907 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11908 
11909 	switch (if_type) {
11910 	case LPFC_SLI_INTF_IF_TYPE_0:
11911 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11912 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11913 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11914 		break;
11915 	case LPFC_SLI_INTF_IF_TYPE_2:
11916 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11917 		break;
11918 	case LPFC_SLI_INTF_IF_TYPE_6:
11919 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11920 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11921 		if (phba->sli4_hba.dpp_regs_memmap_p)
11922 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
11923 		break;
11924 	case LPFC_SLI_INTF_IF_TYPE_1:
11925 	default:
11926 		dev_printk(KERN_ERR, &phba->pcidev->dev,
11927 			   "FATAL - unsupported SLI4 interface type - %d\n",
11928 			   if_type);
11929 		break;
11930 	}
11931 }
11932 
11933 /**
11934  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
11935  * @phba: pointer to lpfc hba data structure.
11936  *
11937  * This routine is invoked to enable the MSI-X interrupt vectors to device
11938  * with SLI-3 interface specs.
11939  *
11940  * Return codes
11941  *   0 - successful
11942  *   other values - error
11943  **/
11944 static int
11945 lpfc_sli_enable_msix(struct lpfc_hba *phba)
11946 {
11947 	int rc;
11948 	LPFC_MBOXQ_t *pmb;
11949 
11950 	/* Set up MSI-X multi-message vectors */
11951 	rc = pci_alloc_irq_vectors(phba->pcidev,
11952 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
11953 	if (rc < 0) {
11954 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11955 				"0420 PCI enable MSI-X failed (%d)\n", rc);
11956 		goto vec_fail_out;
11957 	}
11958 
11959 	/*
11960 	 * Assign MSI-X vectors to interrupt handlers
11961 	 */
11962 
11963 	/* vector-0 is associated to slow-path handler */
11964 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
11965 			 &lpfc_sli_sp_intr_handler, 0,
11966 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
11967 	if (rc) {
11968 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11969 				"0421 MSI-X slow-path request_irq failed "
11970 				"(%d)\n", rc);
11971 		goto msi_fail_out;
11972 	}
11973 
11974 	/* vector-1 is associated to fast-path handler */
11975 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
11976 			 &lpfc_sli_fp_intr_handler, 0,
11977 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
11978 
11979 	if (rc) {
11980 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11981 				"0429 MSI-X fast-path request_irq failed "
11982 				"(%d)\n", rc);
11983 		goto irq_fail_out;
11984 	}
11985 
11986 	/*
11987 	 * Configure HBA MSI-X attention conditions to messages
11988 	 */
11989 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11990 
11991 	if (!pmb) {
11992 		rc = -ENOMEM;
11993 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11994 				"0474 Unable to allocate memory for issuing "
11995 				"MBOX_CONFIG_MSI command\n");
11996 		goto mem_fail_out;
11997 	}
11998 	rc = lpfc_config_msi(phba, pmb);
11999 	if (rc)
12000 		goto mbx_fail_out;
12001 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12002 	if (rc != MBX_SUCCESS) {
12003 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12004 				"0351 Config MSI mailbox command failed, "
12005 				"mbxCmd x%x, mbxStatus x%x\n",
12006 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12007 		goto mbx_fail_out;
12008 	}
12009 
12010 	/* Free memory allocated for mailbox command */
12011 	mempool_free(pmb, phba->mbox_mem_pool);
12012 	return rc;
12013 
12014 mbx_fail_out:
12015 	/* Free memory allocated for mailbox command */
12016 	mempool_free(pmb, phba->mbox_mem_pool);
12017 
12018 mem_fail_out:
12019 	/* free the irq already requested */
12020 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12021 
12022 irq_fail_out:
12023 	/* free the irq already requested */
12024 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12025 
12026 msi_fail_out:
12027 	/* Unconfigure MSI-X capability structure */
12028 	pci_free_irq_vectors(phba->pcidev);
12029 
12030 vec_fail_out:
12031 	return rc;
12032 }
12033 
12034 /**
12035  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12036  * @phba: pointer to lpfc hba data structure.
12037  *
12038  * This routine is invoked to enable the MSI interrupt mode to device with
12039  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12040  * enable the MSI vector. The device driver is responsible for calling the
12041  * request_irq() to register MSI vector with a interrupt the handler, which
12042  * is done in this function.
12043  *
12044  * Return codes
12045  * 	0 - successful
12046  * 	other values - error
12047  */
12048 static int
12049 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12050 {
12051 	int rc;
12052 
12053 	rc = pci_enable_msi(phba->pcidev);
12054 	if (!rc)
12055 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12056 				"0462 PCI enable MSI mode success.\n");
12057 	else {
12058 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12059 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12060 		return rc;
12061 	}
12062 
12063 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12064 			 0, LPFC_DRIVER_NAME, phba);
12065 	if (rc) {
12066 		pci_disable_msi(phba->pcidev);
12067 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12068 				"0478 MSI request_irq failed (%d)\n", rc);
12069 	}
12070 	return rc;
12071 }
12072 
12073 /**
12074  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12075  * @phba: pointer to lpfc hba data structure.
12076  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12077  *
12078  * This routine is invoked to enable device interrupt and associate driver's
12079  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12080  * spec. Depends on the interrupt mode configured to the driver, the driver
12081  * will try to fallback from the configured interrupt mode to an interrupt
12082  * mode which is supported by the platform, kernel, and device in the order
12083  * of:
12084  * MSI-X -> MSI -> IRQ.
12085  *
12086  * Return codes
12087  *   0 - successful
12088  *   other values - error
12089  **/
12090 static uint32_t
12091 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12092 {
12093 	uint32_t intr_mode = LPFC_INTR_ERROR;
12094 	int retval;
12095 
12096 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12097 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12098 	if (retval)
12099 		return intr_mode;
12100 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12101 
12102 	if (cfg_mode == 2) {
12103 		/* Now, try to enable MSI-X interrupt mode */
12104 		retval = lpfc_sli_enable_msix(phba);
12105 		if (!retval) {
12106 			/* Indicate initialization to MSI-X mode */
12107 			phba->intr_type = MSIX;
12108 			intr_mode = 2;
12109 		}
12110 	}
12111 
12112 	/* Fallback to MSI if MSI-X initialization failed */
12113 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12114 		retval = lpfc_sli_enable_msi(phba);
12115 		if (!retval) {
12116 			/* Indicate initialization to MSI mode */
12117 			phba->intr_type = MSI;
12118 			intr_mode = 1;
12119 		}
12120 	}
12121 
12122 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12123 	if (phba->intr_type == NONE) {
12124 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12125 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12126 		if (!retval) {
12127 			/* Indicate initialization to INTx mode */
12128 			phba->intr_type = INTx;
12129 			intr_mode = 0;
12130 		}
12131 	}
12132 	return intr_mode;
12133 }
12134 
12135 /**
12136  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12137  * @phba: pointer to lpfc hba data structure.
12138  *
12139  * This routine is invoked to disable device interrupt and disassociate the
12140  * driver's interrupt handler(s) from interrupt vector(s) to device with
12141  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12142  * release the interrupt vector(s) for the message signaled interrupt.
12143  **/
12144 static void
12145 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12146 {
12147 	int nr_irqs, i;
12148 
12149 	if (phba->intr_type == MSIX)
12150 		nr_irqs = LPFC_MSIX_VECTORS;
12151 	else
12152 		nr_irqs = 1;
12153 
12154 	for (i = 0; i < nr_irqs; i++)
12155 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12156 	pci_free_irq_vectors(phba->pcidev);
12157 
12158 	/* Reset interrupt management states */
12159 	phba->intr_type = NONE;
12160 	phba->sli.slistat.sli_intr = 0;
12161 }
12162 
12163 /**
12164  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12165  * @phba: pointer to lpfc hba data structure.
12166  * @id: EQ vector index or Hardware Queue index
12167  * @match: LPFC_FIND_BY_EQ = match by EQ
12168  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12169  * Return the CPU that matches the selection criteria
12170  */
12171 static uint16_t
12172 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12173 {
12174 	struct lpfc_vector_map_info *cpup;
12175 	int cpu;
12176 
12177 	/* Loop through all CPUs */
12178 	for_each_present_cpu(cpu) {
12179 		cpup = &phba->sli4_hba.cpu_map[cpu];
12180 
12181 		/* If we are matching by EQ, there may be multiple CPUs using
12182 		 * using the same vector, so select the one with
12183 		 * LPFC_CPU_FIRST_IRQ set.
12184 		 */
12185 		if ((match == LPFC_FIND_BY_EQ) &&
12186 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12187 		    (cpup->eq == id))
12188 			return cpu;
12189 
12190 		/* If matching by HDWQ, select the first CPU that matches */
12191 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12192 			return cpu;
12193 	}
12194 	return 0;
12195 }
12196 
12197 #ifdef CONFIG_X86
12198 /**
12199  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12200  * @phba: pointer to lpfc hba data structure.
12201  * @cpu: CPU map index
12202  * @phys_id: CPU package physical id
12203  * @core_id: CPU core id
12204  */
12205 static int
12206 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12207 		uint16_t phys_id, uint16_t core_id)
12208 {
12209 	struct lpfc_vector_map_info *cpup;
12210 	int idx;
12211 
12212 	for_each_present_cpu(idx) {
12213 		cpup = &phba->sli4_hba.cpu_map[idx];
12214 		/* Does the cpup match the one we are looking for */
12215 		if ((cpup->phys_id == phys_id) &&
12216 		    (cpup->core_id == core_id) &&
12217 		    (cpu != idx))
12218 			return 1;
12219 	}
12220 	return 0;
12221 }
12222 #endif
12223 
12224 /*
12225  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12226  * @phba: pointer to lpfc hba data structure.
12227  * @eqidx: index for eq and irq vector
12228  * @flag: flags to set for vector_map structure
12229  * @cpu: cpu used to index vector_map structure
12230  *
12231  * The routine assigns eq info into vector_map structure
12232  */
12233 static inline void
12234 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12235 			unsigned int cpu)
12236 {
12237 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12238 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12239 
12240 	cpup->eq = eqidx;
12241 	cpup->flag |= flag;
12242 
12243 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12244 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12245 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12246 }
12247 
12248 /**
12249  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12250  * @phba: pointer to lpfc hba data structure.
12251  *
12252  * The routine initializes the cpu_map array structure
12253  */
12254 static void
12255 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12256 {
12257 	struct lpfc_vector_map_info *cpup;
12258 	struct lpfc_eq_intr_info *eqi;
12259 	int cpu;
12260 
12261 	for_each_possible_cpu(cpu) {
12262 		cpup = &phba->sli4_hba.cpu_map[cpu];
12263 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12264 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12265 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12266 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12267 		cpup->flag = 0;
12268 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12269 		INIT_LIST_HEAD(&eqi->list);
12270 		eqi->icnt = 0;
12271 	}
12272 }
12273 
12274 /**
12275  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12276  * @phba: pointer to lpfc hba data structure.
12277  *
12278  * The routine initializes the hba_eq_hdl array structure
12279  */
12280 static void
12281 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12282 {
12283 	struct lpfc_hba_eq_hdl *eqhdl;
12284 	int i;
12285 
12286 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12287 		eqhdl = lpfc_get_eq_hdl(i);
12288 		eqhdl->irq = LPFC_VECTOR_MAP_EMPTY;
12289 		eqhdl->phba = phba;
12290 	}
12291 }
12292 
12293 /**
12294  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12295  * @phba: pointer to lpfc hba data structure.
12296  * @vectors: number of msix vectors allocated.
12297  *
12298  * The routine will figure out the CPU affinity assignment for every
12299  * MSI-X vector allocated for the HBA.
12300  * In addition, the CPU to IO channel mapping will be calculated
12301  * and the phba->sli4_hba.cpu_map array will reflect this.
12302  */
12303 static void
12304 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12305 {
12306 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12307 	int max_phys_id, min_phys_id;
12308 	int max_core_id, min_core_id;
12309 	struct lpfc_vector_map_info *cpup;
12310 	struct lpfc_vector_map_info *new_cpup;
12311 #ifdef CONFIG_X86
12312 	struct cpuinfo_x86 *cpuinfo;
12313 #endif
12314 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12315 	struct lpfc_hdwq_stat *c_stat;
12316 #endif
12317 
12318 	max_phys_id = 0;
12319 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12320 	max_core_id = 0;
12321 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12322 
12323 	/* Update CPU map with physical id and core id of each CPU */
12324 	for_each_present_cpu(cpu) {
12325 		cpup = &phba->sli4_hba.cpu_map[cpu];
12326 #ifdef CONFIG_X86
12327 		cpuinfo = &cpu_data(cpu);
12328 		cpup->phys_id = cpuinfo->phys_proc_id;
12329 		cpup->core_id = cpuinfo->cpu_core_id;
12330 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12331 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12332 #else
12333 		/* No distinction between CPUs for other platforms */
12334 		cpup->phys_id = 0;
12335 		cpup->core_id = cpu;
12336 #endif
12337 
12338 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12339 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12340 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12341 
12342 		if (cpup->phys_id > max_phys_id)
12343 			max_phys_id = cpup->phys_id;
12344 		if (cpup->phys_id < min_phys_id)
12345 			min_phys_id = cpup->phys_id;
12346 
12347 		if (cpup->core_id > max_core_id)
12348 			max_core_id = cpup->core_id;
12349 		if (cpup->core_id < min_core_id)
12350 			min_core_id = cpup->core_id;
12351 	}
12352 
12353 	/* After looking at each irq vector assigned to this pcidev, its
12354 	 * possible to see that not ALL CPUs have been accounted for.
12355 	 * Next we will set any unassigned (unaffinitized) cpu map
12356 	 * entries to a IRQ on the same phys_id.
12357 	 */
12358 	first_cpu = cpumask_first(cpu_present_mask);
12359 	start_cpu = first_cpu;
12360 
12361 	for_each_present_cpu(cpu) {
12362 		cpup = &phba->sli4_hba.cpu_map[cpu];
12363 
12364 		/* Is this CPU entry unassigned */
12365 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12366 			/* Mark CPU as IRQ not assigned by the kernel */
12367 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12368 
12369 			/* If so, find a new_cpup thats on the the SAME
12370 			 * phys_id as cpup. start_cpu will start where we
12371 			 * left off so all unassigned entries don't get assgined
12372 			 * the IRQ of the first entry.
12373 			 */
12374 			new_cpu = start_cpu;
12375 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12376 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12377 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12378 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12379 				    (new_cpup->phys_id == cpup->phys_id))
12380 					goto found_same;
12381 				new_cpu = cpumask_next(
12382 					new_cpu, cpu_present_mask);
12383 				if (new_cpu == nr_cpumask_bits)
12384 					new_cpu = first_cpu;
12385 			}
12386 			/* At this point, we leave the CPU as unassigned */
12387 			continue;
12388 found_same:
12389 			/* We found a matching phys_id, so copy the IRQ info */
12390 			cpup->eq = new_cpup->eq;
12391 
12392 			/* Bump start_cpu to the next slot to minmize the
12393 			 * chance of having multiple unassigned CPU entries
12394 			 * selecting the same IRQ.
12395 			 */
12396 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12397 			if (start_cpu == nr_cpumask_bits)
12398 				start_cpu = first_cpu;
12399 
12400 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12401 					"3337 Set Affinity: CPU %d "
12402 					"eq %d from peer cpu %d same "
12403 					"phys_id (%d)\n",
12404 					cpu, cpup->eq, new_cpu,
12405 					cpup->phys_id);
12406 		}
12407 	}
12408 
12409 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12410 	start_cpu = first_cpu;
12411 
12412 	for_each_present_cpu(cpu) {
12413 		cpup = &phba->sli4_hba.cpu_map[cpu];
12414 
12415 		/* Is this entry unassigned */
12416 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12417 			/* Mark it as IRQ not assigned by the kernel */
12418 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12419 
12420 			/* If so, find a new_cpup thats on ANY phys_id
12421 			 * as the cpup. start_cpu will start where we
12422 			 * left off so all unassigned entries don't get
12423 			 * assigned the IRQ of the first entry.
12424 			 */
12425 			new_cpu = start_cpu;
12426 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12427 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12428 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12429 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12430 					goto found_any;
12431 				new_cpu = cpumask_next(
12432 					new_cpu, cpu_present_mask);
12433 				if (new_cpu == nr_cpumask_bits)
12434 					new_cpu = first_cpu;
12435 			}
12436 			/* We should never leave an entry unassigned */
12437 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12438 					"3339 Set Affinity: CPU %d "
12439 					"eq %d UNASSIGNED\n",
12440 					cpup->hdwq, cpup->eq);
12441 			continue;
12442 found_any:
12443 			/* We found an available entry, copy the IRQ info */
12444 			cpup->eq = new_cpup->eq;
12445 
12446 			/* Bump start_cpu to the next slot to minmize the
12447 			 * chance of having multiple unassigned CPU entries
12448 			 * selecting the same IRQ.
12449 			 */
12450 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12451 			if (start_cpu == nr_cpumask_bits)
12452 				start_cpu = first_cpu;
12453 
12454 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12455 					"3338 Set Affinity: CPU %d "
12456 					"eq %d from peer cpu %d (%d/%d)\n",
12457 					cpu, cpup->eq, new_cpu,
12458 					new_cpup->phys_id, new_cpup->core_id);
12459 		}
12460 	}
12461 
12462 	/* Assign hdwq indices that are unique across all cpus in the map
12463 	 * that are also FIRST_CPUs.
12464 	 */
12465 	idx = 0;
12466 	for_each_present_cpu(cpu) {
12467 		cpup = &phba->sli4_hba.cpu_map[cpu];
12468 
12469 		/* Only FIRST IRQs get a hdwq index assignment. */
12470 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12471 			continue;
12472 
12473 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12474 		cpup->hdwq = idx;
12475 		idx++;
12476 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12477 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12478 				"hdwq %d eq %d flg x%x\n",
12479 				cpu, cpup->phys_id, cpup->core_id,
12480 				cpup->hdwq, cpup->eq, cpup->flag);
12481 	}
12482 	/* Associate a hdwq with each cpu_map entry
12483 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12484 	 * hardware queues then CPUs. For that case we will just round-robin
12485 	 * the available hardware queues as they get assigned to CPUs.
12486 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12487 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12488 	 * and needs to start at 0.
12489 	 */
12490 	next_idx = idx;
12491 	start_cpu = 0;
12492 	idx = 0;
12493 	for_each_present_cpu(cpu) {
12494 		cpup = &phba->sli4_hba.cpu_map[cpu];
12495 
12496 		/* FIRST cpus are already mapped. */
12497 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12498 			continue;
12499 
12500 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12501 		 * of the unassigned cpus to the next idx so that all
12502 		 * hdw queues are fully utilized.
12503 		 */
12504 		if (next_idx < phba->cfg_hdw_queue) {
12505 			cpup->hdwq = next_idx;
12506 			next_idx++;
12507 			continue;
12508 		}
12509 
12510 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12511 		 * Hardware Queue for another CPU, so be smart about it
12512 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12513 		 * (CPU package) and core_id.
12514 		 */
12515 		new_cpu = start_cpu;
12516 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12517 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12518 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12519 			    new_cpup->phys_id == cpup->phys_id &&
12520 			    new_cpup->core_id == cpup->core_id) {
12521 				goto found_hdwq;
12522 			}
12523 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12524 			if (new_cpu == nr_cpumask_bits)
12525 				new_cpu = first_cpu;
12526 		}
12527 
12528 		/* If we can't match both phys_id and core_id,
12529 		 * settle for just a phys_id match.
12530 		 */
12531 		new_cpu = start_cpu;
12532 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12533 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12534 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12535 			    new_cpup->phys_id == cpup->phys_id)
12536 				goto found_hdwq;
12537 
12538 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12539 			if (new_cpu == nr_cpumask_bits)
12540 				new_cpu = first_cpu;
12541 		}
12542 
12543 		/* Otherwise just round robin on cfg_hdw_queue */
12544 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12545 		idx++;
12546 		goto logit;
12547  found_hdwq:
12548 		/* We found an available entry, copy the IRQ info */
12549 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12550 		if (start_cpu == nr_cpumask_bits)
12551 			start_cpu = first_cpu;
12552 		cpup->hdwq = new_cpup->hdwq;
12553  logit:
12554 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12555 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12556 				"hdwq %d eq %d flg x%x\n",
12557 				cpu, cpup->phys_id, cpup->core_id,
12558 				cpup->hdwq, cpup->eq, cpup->flag);
12559 	}
12560 
12561 	/*
12562 	 * Initialize the cpu_map slots for not-present cpus in case
12563 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12564 	 */
12565 	idx = 0;
12566 	for_each_possible_cpu(cpu) {
12567 		cpup = &phba->sli4_hba.cpu_map[cpu];
12568 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12569 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12570 		c_stat->hdwq_no = cpup->hdwq;
12571 #endif
12572 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12573 			continue;
12574 
12575 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12576 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12577 		c_stat->hdwq_no = cpup->hdwq;
12578 #endif
12579 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12580 				"3340 Set Affinity: not present "
12581 				"CPU %d hdwq %d\n",
12582 				cpu, cpup->hdwq);
12583 	}
12584 
12585 	/* The cpu_map array will be used later during initialization
12586 	 * when EQ / CQ / WQs are allocated and configured.
12587 	 */
12588 	return;
12589 }
12590 
12591 /**
12592  * lpfc_cpuhp_get_eq
12593  *
12594  * @phba:   pointer to lpfc hba data structure.
12595  * @cpu:    cpu going offline
12596  * @eqlist: eq list to append to
12597  */
12598 static int
12599 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12600 		  struct list_head *eqlist)
12601 {
12602 	const struct cpumask *maskp;
12603 	struct lpfc_queue *eq;
12604 	struct cpumask *tmp;
12605 	u16 idx;
12606 
12607 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12608 	if (!tmp)
12609 		return -ENOMEM;
12610 
12611 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12612 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12613 		if (!maskp)
12614 			continue;
12615 		/*
12616 		 * if irq is not affinitized to the cpu going
12617 		 * then we don't need to poll the eq attached
12618 		 * to it.
12619 		 */
12620 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12621 			continue;
12622 		/* get the cpus that are online and are affini-
12623 		 * tized to this irq vector.  If the count is
12624 		 * more than 1 then cpuhp is not going to shut-
12625 		 * down this vector.  Since this cpu has not
12626 		 * gone offline yet, we need >1.
12627 		 */
12628 		cpumask_and(tmp, maskp, cpu_online_mask);
12629 		if (cpumask_weight(tmp) > 1)
12630 			continue;
12631 
12632 		/* Now that we have an irq to shutdown, get the eq
12633 		 * mapped to this irq.  Note: multiple hdwq's in
12634 		 * the software can share an eq, but eventually
12635 		 * only eq will be mapped to this vector
12636 		 */
12637 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12638 		list_add(&eq->_poll_list, eqlist);
12639 	}
12640 	kfree(tmp);
12641 	return 0;
12642 }
12643 
12644 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12645 {
12646 	if (phba->sli_rev != LPFC_SLI_REV4)
12647 		return;
12648 
12649 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12650 					    &phba->cpuhp);
12651 	/*
12652 	 * unregistering the instance doesn't stop the polling
12653 	 * timer. Wait for the poll timer to retire.
12654 	 */
12655 	synchronize_rcu();
12656 	del_timer_sync(&phba->cpuhp_poll_timer);
12657 }
12658 
12659 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12660 {
12661 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
12662 		return;
12663 
12664 	__lpfc_cpuhp_remove(phba);
12665 }
12666 
12667 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12668 {
12669 	if (phba->sli_rev != LPFC_SLI_REV4)
12670 		return;
12671 
12672 	rcu_read_lock();
12673 
12674 	if (!list_empty(&phba->poll_list))
12675 		mod_timer(&phba->cpuhp_poll_timer,
12676 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12677 
12678 	rcu_read_unlock();
12679 
12680 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12681 					 &phba->cpuhp);
12682 }
12683 
12684 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12685 {
12686 	if (phba->pport->load_flag & FC_UNLOADING) {
12687 		*retval = -EAGAIN;
12688 		return true;
12689 	}
12690 
12691 	if (phba->sli_rev != LPFC_SLI_REV4) {
12692 		*retval = 0;
12693 		return true;
12694 	}
12695 
12696 	/* proceed with the hotplug */
12697 	return false;
12698 }
12699 
12700 /**
12701  * lpfc_irq_set_aff - set IRQ affinity
12702  * @eqhdl: EQ handle
12703  * @cpu: cpu to set affinity
12704  *
12705  **/
12706 static inline void
12707 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12708 {
12709 	cpumask_clear(&eqhdl->aff_mask);
12710 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12711 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12712 	irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask);
12713 }
12714 
12715 /**
12716  * lpfc_irq_clear_aff - clear IRQ affinity
12717  * @eqhdl: EQ handle
12718  *
12719  **/
12720 static inline void
12721 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12722 {
12723 	cpumask_clear(&eqhdl->aff_mask);
12724 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12725 }
12726 
12727 /**
12728  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12729  * @phba: pointer to HBA context object.
12730  * @cpu: cpu going offline/online
12731  * @offline: true, cpu is going offline. false, cpu is coming online.
12732  *
12733  * If cpu is going offline, we'll try our best effort to find the next
12734  * online cpu on the phba's original_mask and migrate all offlining IRQ
12735  * affinities.
12736  *
12737  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12738  *
12739  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12740  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12741  *
12742  **/
12743 static void
12744 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12745 {
12746 	struct lpfc_vector_map_info *cpup;
12747 	struct cpumask *aff_mask;
12748 	unsigned int cpu_select, cpu_next, idx;
12749 	const struct cpumask *orig_mask;
12750 
12751 	if (phba->irq_chann_mode == NORMAL_MODE)
12752 		return;
12753 
12754 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12755 
12756 	if (!cpumask_test_cpu(cpu, orig_mask))
12757 		return;
12758 
12759 	cpup = &phba->sli4_hba.cpu_map[cpu];
12760 
12761 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12762 		return;
12763 
12764 	if (offline) {
12765 		/* Find next online CPU on original mask */
12766 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12767 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12768 
12769 		/* Found a valid CPU */
12770 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12771 			/* Go through each eqhdl and ensure offlining
12772 			 * cpu aff_mask is migrated
12773 			 */
12774 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12775 				aff_mask = lpfc_get_aff_mask(idx);
12776 
12777 				/* Migrate affinity */
12778 				if (cpumask_test_cpu(cpu, aff_mask))
12779 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12780 							 cpu_select);
12781 			}
12782 		} else {
12783 			/* Rely on irqbalance if no online CPUs left on NUMA */
12784 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12785 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12786 		}
12787 	} else {
12788 		/* Migrate affinity back to this CPU */
12789 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12790 	}
12791 }
12792 
12793 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12794 {
12795 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12796 	struct lpfc_queue *eq, *next;
12797 	LIST_HEAD(eqlist);
12798 	int retval;
12799 
12800 	if (!phba) {
12801 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12802 		return 0;
12803 	}
12804 
12805 	if (__lpfc_cpuhp_checks(phba, &retval))
12806 		return retval;
12807 
12808 	lpfc_irq_rebalance(phba, cpu, true);
12809 
12810 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12811 	if (retval)
12812 		return retval;
12813 
12814 	/* start polling on these eq's */
12815 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12816 		list_del_init(&eq->_poll_list);
12817 		lpfc_sli4_start_polling(eq);
12818 	}
12819 
12820 	return 0;
12821 }
12822 
12823 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12824 {
12825 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12826 	struct lpfc_queue *eq, *next;
12827 	unsigned int n;
12828 	int retval;
12829 
12830 	if (!phba) {
12831 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12832 		return 0;
12833 	}
12834 
12835 	if (__lpfc_cpuhp_checks(phba, &retval))
12836 		return retval;
12837 
12838 	lpfc_irq_rebalance(phba, cpu, false);
12839 
12840 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12841 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12842 		if (n == cpu)
12843 			lpfc_sli4_stop_polling(eq);
12844 	}
12845 
12846 	return 0;
12847 }
12848 
12849 /**
12850  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12851  * @phba: pointer to lpfc hba data structure.
12852  *
12853  * This routine is invoked to enable the MSI-X interrupt vectors to device
12854  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12855  * to cpus on the system.
12856  *
12857  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12858  * the number of cpus on the same numa node as this adapter.  The vectors are
12859  * allocated without requesting OS affinity mapping.  A vector will be
12860  * allocated and assigned to each online and offline cpu.  If the cpu is
12861  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12862  * affinity will be set to the nearest peer cpu within the numa node that is
12863  * online.  If there are no online cpus within the numa node, affinity is not
12864  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12865  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12866  * configured.
12867  *
12868  * If numa mode is not enabled and there is more than 1 vector allocated, then
12869  * the driver relies on the managed irq interface where the OS assigns vector to
12870  * cpu affinity.  The driver will then use that affinity mapping to setup its
12871  * cpu mapping table.
12872  *
12873  * Return codes
12874  * 0 - successful
12875  * other values - error
12876  **/
12877 static int
12878 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
12879 {
12880 	int vectors, rc, index;
12881 	char *name;
12882 	const struct cpumask *aff_mask = NULL;
12883 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
12884 	struct lpfc_vector_map_info *cpup;
12885 	struct lpfc_hba_eq_hdl *eqhdl;
12886 	const struct cpumask *maskp;
12887 	unsigned int flags = PCI_IRQ_MSIX;
12888 
12889 	/* Set up MSI-X multi-message vectors */
12890 	vectors = phba->cfg_irq_chann;
12891 
12892 	if (phba->irq_chann_mode != NORMAL_MODE)
12893 		aff_mask = &phba->sli4_hba.irq_aff_mask;
12894 
12895 	if (aff_mask) {
12896 		cpu_cnt = cpumask_weight(aff_mask);
12897 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
12898 
12899 		/* cpu: iterates over aff_mask including offline or online
12900 		 * cpu_select: iterates over online aff_mask to set affinity
12901 		 */
12902 		cpu = cpumask_first(aff_mask);
12903 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12904 	} else {
12905 		flags |= PCI_IRQ_AFFINITY;
12906 	}
12907 
12908 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
12909 	if (rc < 0) {
12910 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12911 				"0484 PCI enable MSI-X failed (%d)\n", rc);
12912 		goto vec_fail_out;
12913 	}
12914 	vectors = rc;
12915 
12916 	/* Assign MSI-X vectors to interrupt handlers */
12917 	for (index = 0; index < vectors; index++) {
12918 		eqhdl = lpfc_get_eq_hdl(index);
12919 		name = eqhdl->handler_name;
12920 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
12921 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
12922 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
12923 
12924 		eqhdl->idx = index;
12925 		rc = request_irq(pci_irq_vector(phba->pcidev, index),
12926 			 &lpfc_sli4_hba_intr_handler, 0,
12927 			 name, eqhdl);
12928 		if (rc) {
12929 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12930 					"0486 MSI-X fast-path (%d) "
12931 					"request_irq failed (%d)\n", index, rc);
12932 			goto cfg_fail_out;
12933 		}
12934 
12935 		eqhdl->irq = pci_irq_vector(phba->pcidev, index);
12936 
12937 		if (aff_mask) {
12938 			/* If found a neighboring online cpu, set affinity */
12939 			if (cpu_select < nr_cpu_ids)
12940 				lpfc_irq_set_aff(eqhdl, cpu_select);
12941 
12942 			/* Assign EQ to cpu_map */
12943 			lpfc_assign_eq_map_info(phba, index,
12944 						LPFC_CPU_FIRST_IRQ,
12945 						cpu);
12946 
12947 			/* Iterate to next offline or online cpu in aff_mask */
12948 			cpu = cpumask_next(cpu, aff_mask);
12949 
12950 			/* Find next online cpu in aff_mask to set affinity */
12951 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12952 		} else if (vectors == 1) {
12953 			cpu = cpumask_first(cpu_present_mask);
12954 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
12955 						cpu);
12956 		} else {
12957 			maskp = pci_irq_get_affinity(phba->pcidev, index);
12958 
12959 			/* Loop through all CPUs associated with vector index */
12960 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
12961 				cpup = &phba->sli4_hba.cpu_map[cpu];
12962 
12963 				/* If this is the first CPU thats assigned to
12964 				 * this vector, set LPFC_CPU_FIRST_IRQ.
12965 				 *
12966 				 * With certain platforms its possible that irq
12967 				 * vectors are affinitized to all the cpu's.
12968 				 * This can result in each cpu_map.eq to be set
12969 				 * to the last vector, resulting in overwrite
12970 				 * of all the previous cpu_map.eq.  Ensure that
12971 				 * each vector receives a place in cpu_map.
12972 				 * Later call to lpfc_cpu_affinity_check will
12973 				 * ensure we are nicely balanced out.
12974 				 */
12975 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
12976 					continue;
12977 				lpfc_assign_eq_map_info(phba, index,
12978 							LPFC_CPU_FIRST_IRQ,
12979 							cpu);
12980 				break;
12981 			}
12982 		}
12983 	}
12984 
12985 	if (vectors != phba->cfg_irq_chann) {
12986 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12987 				"3238 Reducing IO channels to match number of "
12988 				"MSI-X vectors, requested %d got %d\n",
12989 				phba->cfg_irq_chann, vectors);
12990 		if (phba->cfg_irq_chann > vectors)
12991 			phba->cfg_irq_chann = vectors;
12992 	}
12993 
12994 	return rc;
12995 
12996 cfg_fail_out:
12997 	/* free the irq already requested */
12998 	for (--index; index >= 0; index--) {
12999 		eqhdl = lpfc_get_eq_hdl(index);
13000 		lpfc_irq_clear_aff(eqhdl);
13001 		irq_set_affinity_hint(eqhdl->irq, NULL);
13002 		free_irq(eqhdl->irq, eqhdl);
13003 	}
13004 
13005 	/* Unconfigure MSI-X capability structure */
13006 	pci_free_irq_vectors(phba->pcidev);
13007 
13008 vec_fail_out:
13009 	return rc;
13010 }
13011 
13012 /**
13013  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13014  * @phba: pointer to lpfc hba data structure.
13015  *
13016  * This routine is invoked to enable the MSI interrupt mode to device with
13017  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13018  * called to enable the MSI vector. The device driver is responsible for
13019  * calling the request_irq() to register MSI vector with a interrupt the
13020  * handler, which is done in this function.
13021  *
13022  * Return codes
13023  * 	0 - successful
13024  * 	other values - error
13025  **/
13026 static int
13027 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13028 {
13029 	int rc, index;
13030 	unsigned int cpu;
13031 	struct lpfc_hba_eq_hdl *eqhdl;
13032 
13033 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13034 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13035 	if (rc > 0)
13036 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13037 				"0487 PCI enable MSI mode success.\n");
13038 	else {
13039 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13040 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13041 		return rc ? rc : -1;
13042 	}
13043 
13044 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13045 			 0, LPFC_DRIVER_NAME, phba);
13046 	if (rc) {
13047 		pci_free_irq_vectors(phba->pcidev);
13048 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13049 				"0490 MSI request_irq failed (%d)\n", rc);
13050 		return rc;
13051 	}
13052 
13053 	eqhdl = lpfc_get_eq_hdl(0);
13054 	eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13055 
13056 	cpu = cpumask_first(cpu_present_mask);
13057 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13058 
13059 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13060 		eqhdl = lpfc_get_eq_hdl(index);
13061 		eqhdl->idx = index;
13062 	}
13063 
13064 	return 0;
13065 }
13066 
13067 /**
13068  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13069  * @phba: pointer to lpfc hba data structure.
13070  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13071  *
13072  * This routine is invoked to enable device interrupt and associate driver's
13073  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13074  * interface spec. Depends on the interrupt mode configured to the driver,
13075  * the driver will try to fallback from the configured interrupt mode to an
13076  * interrupt mode which is supported by the platform, kernel, and device in
13077  * the order of:
13078  * MSI-X -> MSI -> IRQ.
13079  *
13080  * Return codes
13081  * 	0 - successful
13082  * 	other values - error
13083  **/
13084 static uint32_t
13085 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13086 {
13087 	uint32_t intr_mode = LPFC_INTR_ERROR;
13088 	int retval, idx;
13089 
13090 	if (cfg_mode == 2) {
13091 		/* Preparation before conf_msi mbox cmd */
13092 		retval = 0;
13093 		if (!retval) {
13094 			/* Now, try to enable MSI-X interrupt mode */
13095 			retval = lpfc_sli4_enable_msix(phba);
13096 			if (!retval) {
13097 				/* Indicate initialization to MSI-X mode */
13098 				phba->intr_type = MSIX;
13099 				intr_mode = 2;
13100 			}
13101 		}
13102 	}
13103 
13104 	/* Fallback to MSI if MSI-X initialization failed */
13105 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13106 		retval = lpfc_sli4_enable_msi(phba);
13107 		if (!retval) {
13108 			/* Indicate initialization to MSI mode */
13109 			phba->intr_type = MSI;
13110 			intr_mode = 1;
13111 		}
13112 	}
13113 
13114 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13115 	if (phba->intr_type == NONE) {
13116 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13117 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13118 		if (!retval) {
13119 			struct lpfc_hba_eq_hdl *eqhdl;
13120 			unsigned int cpu;
13121 
13122 			/* Indicate initialization to INTx mode */
13123 			phba->intr_type = INTx;
13124 			intr_mode = 0;
13125 
13126 			eqhdl = lpfc_get_eq_hdl(0);
13127 			eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13128 
13129 			cpu = cpumask_first(cpu_present_mask);
13130 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13131 						cpu);
13132 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13133 				eqhdl = lpfc_get_eq_hdl(idx);
13134 				eqhdl->idx = idx;
13135 			}
13136 		}
13137 	}
13138 	return intr_mode;
13139 }
13140 
13141 /**
13142  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13143  * @phba: pointer to lpfc hba data structure.
13144  *
13145  * This routine is invoked to disable device interrupt and disassociate
13146  * the driver's interrupt handler(s) from interrupt vector(s) to device
13147  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13148  * will release the interrupt vector(s) for the message signaled interrupt.
13149  **/
13150 static void
13151 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13152 {
13153 	/* Disable the currently initialized interrupt mode */
13154 	if (phba->intr_type == MSIX) {
13155 		int index;
13156 		struct lpfc_hba_eq_hdl *eqhdl;
13157 
13158 		/* Free up MSI-X multi-message vectors */
13159 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13160 			eqhdl = lpfc_get_eq_hdl(index);
13161 			lpfc_irq_clear_aff(eqhdl);
13162 			irq_set_affinity_hint(eqhdl->irq, NULL);
13163 			free_irq(eqhdl->irq, eqhdl);
13164 		}
13165 	} else {
13166 		free_irq(phba->pcidev->irq, phba);
13167 	}
13168 
13169 	pci_free_irq_vectors(phba->pcidev);
13170 
13171 	/* Reset interrupt management states */
13172 	phba->intr_type = NONE;
13173 	phba->sli.slistat.sli_intr = 0;
13174 }
13175 
13176 /**
13177  * lpfc_unset_hba - Unset SLI3 hba device initialization
13178  * @phba: pointer to lpfc hba data structure.
13179  *
13180  * This routine is invoked to unset the HBA device initialization steps to
13181  * a device with SLI-3 interface spec.
13182  **/
13183 static void
13184 lpfc_unset_hba(struct lpfc_hba *phba)
13185 {
13186 	struct lpfc_vport *vport = phba->pport;
13187 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13188 
13189 	spin_lock_irq(shost->host_lock);
13190 	vport->load_flag |= FC_UNLOADING;
13191 	spin_unlock_irq(shost->host_lock);
13192 
13193 	kfree(phba->vpi_bmask);
13194 	kfree(phba->vpi_ids);
13195 
13196 	lpfc_stop_hba_timers(phba);
13197 
13198 	phba->pport->work_port_events = 0;
13199 
13200 	lpfc_sli_hba_down(phba);
13201 
13202 	lpfc_sli_brdrestart(phba);
13203 
13204 	lpfc_sli_disable_intr(phba);
13205 
13206 	return;
13207 }
13208 
13209 /**
13210  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13211  * @phba: Pointer to HBA context object.
13212  *
13213  * This function is called in the SLI4 code path to wait for completion
13214  * of device's XRIs exchange busy. It will check the XRI exchange busy
13215  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13216  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13217  * I/Os every 30 seconds, log error message, and wait forever. Only when
13218  * all XRI exchange busy complete, the driver unload shall proceed with
13219  * invoking the function reset ioctl mailbox command to the CNA and the
13220  * the rest of the driver unload resource release.
13221  **/
13222 static void
13223 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13224 {
13225 	struct lpfc_sli4_hdw_queue *qp;
13226 	int idx, ccnt;
13227 	int wait_time = 0;
13228 	int io_xri_cmpl = 1;
13229 	int nvmet_xri_cmpl = 1;
13230 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13231 
13232 	/* Driver just aborted IOs during the hba_unset process.  Pause
13233 	 * here to give the HBA time to complete the IO and get entries
13234 	 * into the abts lists.
13235 	 */
13236 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13237 
13238 	/* Wait for NVME pending IO to flush back to transport. */
13239 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13240 		lpfc_nvme_wait_for_io_drain(phba);
13241 
13242 	ccnt = 0;
13243 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13244 		qp = &phba->sli4_hba.hdwq[idx];
13245 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13246 		if (!io_xri_cmpl) /* if list is NOT empty */
13247 			ccnt++;
13248 	}
13249 	if (ccnt)
13250 		io_xri_cmpl = 0;
13251 
13252 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13253 		nvmet_xri_cmpl =
13254 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13255 	}
13256 
13257 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13258 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13259 			if (!nvmet_xri_cmpl)
13260 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13261 						"6424 NVMET XRI exchange busy "
13262 						"wait time: %d seconds.\n",
13263 						wait_time/1000);
13264 			if (!io_xri_cmpl)
13265 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13266 						"6100 IO XRI exchange busy "
13267 						"wait time: %d seconds.\n",
13268 						wait_time/1000);
13269 			if (!els_xri_cmpl)
13270 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13271 						"2878 ELS XRI exchange busy "
13272 						"wait time: %d seconds.\n",
13273 						wait_time/1000);
13274 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13275 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13276 		} else {
13277 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13278 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13279 		}
13280 
13281 		ccnt = 0;
13282 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13283 			qp = &phba->sli4_hba.hdwq[idx];
13284 			io_xri_cmpl = list_empty(
13285 			    &qp->lpfc_abts_io_buf_list);
13286 			if (!io_xri_cmpl) /* if list is NOT empty */
13287 				ccnt++;
13288 		}
13289 		if (ccnt)
13290 			io_xri_cmpl = 0;
13291 
13292 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13293 			nvmet_xri_cmpl = list_empty(
13294 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13295 		}
13296 		els_xri_cmpl =
13297 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13298 
13299 	}
13300 }
13301 
13302 /**
13303  * lpfc_sli4_hba_unset - Unset the fcoe hba
13304  * @phba: Pointer to HBA context object.
13305  *
13306  * This function is called in the SLI4 code path to reset the HBA's FCoE
13307  * function. The caller is not required to hold any lock. This routine
13308  * issues PCI function reset mailbox command to reset the FCoE function.
13309  * At the end of the function, it calls lpfc_hba_down_post function to
13310  * free any pending commands.
13311  **/
13312 static void
13313 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13314 {
13315 	int wait_cnt = 0;
13316 	LPFC_MBOXQ_t *mboxq;
13317 	struct pci_dev *pdev = phba->pcidev;
13318 
13319 	lpfc_stop_hba_timers(phba);
13320 	hrtimer_cancel(&phba->cmf_timer);
13321 
13322 	if (phba->pport)
13323 		phba->sli4_hba.intr_enable = 0;
13324 
13325 	/*
13326 	 * Gracefully wait out the potential current outstanding asynchronous
13327 	 * mailbox command.
13328 	 */
13329 
13330 	/* First, block any pending async mailbox command from posted */
13331 	spin_lock_irq(&phba->hbalock);
13332 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13333 	spin_unlock_irq(&phba->hbalock);
13334 	/* Now, trying to wait it out if we can */
13335 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13336 		msleep(10);
13337 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13338 			break;
13339 	}
13340 	/* Forcefully release the outstanding mailbox command if timed out */
13341 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13342 		spin_lock_irq(&phba->hbalock);
13343 		mboxq = phba->sli.mbox_active;
13344 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13345 		__lpfc_mbox_cmpl_put(phba, mboxq);
13346 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13347 		phba->sli.mbox_active = NULL;
13348 		spin_unlock_irq(&phba->hbalock);
13349 	}
13350 
13351 	/* Abort all iocbs associated with the hba */
13352 	lpfc_sli_hba_iocb_abort(phba);
13353 
13354 	/* Wait for completion of device XRI exchange busy */
13355 	lpfc_sli4_xri_exchange_busy_wait(phba);
13356 
13357 	/* per-phba callback de-registration for hotplug event */
13358 	if (phba->pport)
13359 		lpfc_cpuhp_remove(phba);
13360 
13361 	/* Disable PCI subsystem interrupt */
13362 	lpfc_sli4_disable_intr(phba);
13363 
13364 	/* Disable SR-IOV if enabled */
13365 	if (phba->cfg_sriov_nr_virtfn)
13366 		pci_disable_sriov(pdev);
13367 
13368 	/* Stop kthread signal shall trigger work_done one more time */
13369 	kthread_stop(phba->worker_thread);
13370 
13371 	/* Disable FW logging to host memory */
13372 	lpfc_ras_stop_fwlog(phba);
13373 
13374 	/* Unset the queues shared with the hardware then release all
13375 	 * allocated resources.
13376 	 */
13377 	lpfc_sli4_queue_unset(phba);
13378 	lpfc_sli4_queue_destroy(phba);
13379 
13380 	/* Reset SLI4 HBA FCoE function */
13381 	lpfc_pci_function_reset(phba);
13382 
13383 	/* Free RAS DMA memory */
13384 	if (phba->ras_fwlog.ras_enabled)
13385 		lpfc_sli4_ras_dma_free(phba);
13386 
13387 	/* Stop the SLI4 device port */
13388 	if (phba->pport)
13389 		phba->pport->work_port_events = 0;
13390 }
13391 
13392 static uint32_t
13393 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13394 {
13395 	uint32_t msb = 0;
13396 	uint32_t bit;
13397 
13398 	for (bit = 0; bit < 8; bit++) {
13399 		msb = (crc >> 31) & 1;
13400 		crc <<= 1;
13401 
13402 		if (msb ^ (byte & 1)) {
13403 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13404 			crc |= 1;
13405 		}
13406 		byte >>= 1;
13407 	}
13408 	return crc;
13409 }
13410 
13411 static uint32_t
13412 lpfc_cgn_reverse_bits(uint32_t wd)
13413 {
13414 	uint32_t result = 0;
13415 	uint32_t i;
13416 
13417 	for (i = 0; i < 32; i++) {
13418 		result <<= 1;
13419 		result |= (1 & (wd >> i));
13420 	}
13421 	return result;
13422 }
13423 
13424 /*
13425  * The routine corresponds with the algorithm the HBA firmware
13426  * uses to validate the data integrity.
13427  */
13428 uint32_t
13429 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13430 {
13431 	uint32_t  i;
13432 	uint32_t result;
13433 	uint8_t  *data = (uint8_t *)ptr;
13434 
13435 	for (i = 0; i < byteLen; ++i)
13436 		crc = lpfc_cgn_crc32(crc, data[i]);
13437 
13438 	result = ~lpfc_cgn_reverse_bits(crc);
13439 	return result;
13440 }
13441 
13442 void
13443 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13444 {
13445 	struct lpfc_cgn_info *cp;
13446 	struct timespec64 cmpl_time;
13447 	struct tm broken;
13448 	uint16_t size;
13449 	uint32_t crc;
13450 
13451 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13452 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13453 
13454 	if (!phba->cgn_i)
13455 		return;
13456 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13457 
13458 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13459 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13460 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13461 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13462 
13463 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13464 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13465 	atomic64_set(&phba->cgn_latency_evt, 0);
13466 	phba->cgn_evt_minute = 0;
13467 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13468 
13469 	memset(cp, 0xff, LPFC_CGN_DATA_SIZE);
13470 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13471 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13472 
13473 	/* cgn parameters */
13474 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13475 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13476 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13477 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13478 
13479 	ktime_get_real_ts64(&cmpl_time);
13480 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13481 
13482 	cp->cgn_info_month = broken.tm_mon + 1;
13483 	cp->cgn_info_day = broken.tm_mday;
13484 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13485 	cp->cgn_info_hour = broken.tm_hour;
13486 	cp->cgn_info_minute = broken.tm_min;
13487 	cp->cgn_info_second = broken.tm_sec;
13488 
13489 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13490 			"2643 CGNInfo Init: Start Time "
13491 			"%d/%d/%d %d:%d:%d\n",
13492 			cp->cgn_info_day, cp->cgn_info_month,
13493 			cp->cgn_info_year, cp->cgn_info_hour,
13494 			cp->cgn_info_minute, cp->cgn_info_second);
13495 
13496 	/* Fill in default LUN qdepth */
13497 	if (phba->pport) {
13498 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13499 		cp->cgn_lunq = cpu_to_le16(size);
13500 	}
13501 
13502 	/* last used Index initialized to 0xff already */
13503 
13504 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13505 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13506 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13507 	cp->cgn_info_crc = cpu_to_le32(crc);
13508 
13509 	phba->cgn_evt_timestamp = jiffies +
13510 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13511 }
13512 
13513 void
13514 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13515 {
13516 	struct lpfc_cgn_info *cp;
13517 	struct timespec64 cmpl_time;
13518 	struct tm broken;
13519 	uint32_t crc;
13520 
13521 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13522 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13523 
13524 	if (!phba->cgn_i)
13525 		return;
13526 
13527 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13528 	memset(&cp->cgn_stat_npm, 0, LPFC_CGN_STAT_SIZE);
13529 
13530 	ktime_get_real_ts64(&cmpl_time);
13531 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13532 
13533 	cp->cgn_stat_month = broken.tm_mon + 1;
13534 	cp->cgn_stat_day = broken.tm_mday;
13535 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13536 	cp->cgn_stat_hour = broken.tm_hour;
13537 	cp->cgn_stat_minute = broken.tm_min;
13538 
13539 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13540 			"2647 CGNstat Init: Start Time "
13541 			"%d/%d/%d %d:%d\n",
13542 			cp->cgn_stat_day, cp->cgn_stat_month,
13543 			cp->cgn_stat_year, cp->cgn_stat_hour,
13544 			cp->cgn_stat_minute);
13545 
13546 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13547 	cp->cgn_info_crc = cpu_to_le32(crc);
13548 }
13549 
13550 /**
13551  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13552  * @phba: Pointer to hba context object.
13553  * @reg: flag to determine register or unregister.
13554  */
13555 static int
13556 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13557 {
13558 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13559 	union  lpfc_sli4_cfg_shdr *shdr;
13560 	uint32_t shdr_status, shdr_add_status;
13561 	LPFC_MBOXQ_t *mboxq;
13562 	int length, rc;
13563 
13564 	if (!phba->cgn_i)
13565 		return -ENXIO;
13566 
13567 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13568 	if (!mboxq) {
13569 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13570 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13571 				"HBA state x%x reg %d\n",
13572 				phba->pport->port_state, reg);
13573 		return -ENOMEM;
13574 	}
13575 
13576 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13577 		sizeof(struct lpfc_sli4_cfg_mhdr));
13578 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13579 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13580 			 LPFC_SLI4_MBX_EMBED);
13581 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13582 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13583 	if (reg > 0)
13584 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13585 	else
13586 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13587 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13588 	reg_congestion_buf->addr_lo =
13589 		putPaddrLow(phba->cgn_i->phys);
13590 	reg_congestion_buf->addr_hi =
13591 		putPaddrHigh(phba->cgn_i->phys);
13592 
13593 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13594 	shdr = (union lpfc_sli4_cfg_shdr *)
13595 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13596 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13597 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13598 				 &shdr->response);
13599 	mempool_free(mboxq, phba->mbox_mem_pool);
13600 	if (shdr_status || shdr_add_status || rc) {
13601 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13602 				"2642 REG_CONGESTION_BUF mailbox "
13603 				"failed with status x%x add_status x%x,"
13604 				" mbx status x%x reg %d\n",
13605 				shdr_status, shdr_add_status, rc, reg);
13606 		return -ENXIO;
13607 	}
13608 	return 0;
13609 }
13610 
13611 int
13612 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13613 {
13614 	lpfc_cmf_stop(phba);
13615 	return __lpfc_reg_congestion_buf(phba, 0);
13616 }
13617 
13618 int
13619 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13620 {
13621 	return __lpfc_reg_congestion_buf(phba, 1);
13622 }
13623 
13624 /**
13625  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13626  * @phba: Pointer to HBA context object.
13627  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13628  *
13629  * This function is called in the SLI4 code path to read the port's
13630  * sli4 capabilities.
13631  *
13632  * This function may be be called from any context that can block-wait
13633  * for the completion.  The expectation is that this routine is called
13634  * typically from probe_one or from the online routine.
13635  **/
13636 int
13637 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13638 {
13639 	int rc;
13640 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13641 	struct lpfc_pc_sli4_params *sli4_params;
13642 	uint32_t mbox_tmo;
13643 	int length;
13644 	bool exp_wqcq_pages = true;
13645 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13646 
13647 	/*
13648 	 * By default, the driver assumes the SLI4 port requires RPI
13649 	 * header postings.  The SLI4_PARAM response will correct this
13650 	 * assumption.
13651 	 */
13652 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13653 
13654 	/* Read the port's SLI4 Config Parameters */
13655 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13656 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13657 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13658 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13659 			 length, LPFC_SLI4_MBX_EMBED);
13660 	if (!phba->sli4_hba.intr_enable)
13661 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13662 	else {
13663 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13664 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13665 	}
13666 	if (unlikely(rc))
13667 		return rc;
13668 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13669 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13670 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13671 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13672 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13673 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13674 					     mbx_sli4_parameters);
13675 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13676 					     mbx_sli4_parameters);
13677 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13678 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13679 	else
13680 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13681 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13682 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13683 					   mbx_sli4_parameters);
13684 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13685 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13686 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13687 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13688 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13689 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13690 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13691 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13692 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13693 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13694 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13695 					    mbx_sli4_parameters);
13696 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13697 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13698 					   mbx_sli4_parameters);
13699 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13700 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13701 
13702 	/* Check for Extended Pre-Registered SGL support */
13703 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13704 
13705 	/* Check for firmware nvme support */
13706 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13707 		     bf_get(cfg_xib, mbx_sli4_parameters));
13708 
13709 	if (rc) {
13710 		/* Save this to indicate the Firmware supports NVME */
13711 		sli4_params->nvme = 1;
13712 
13713 		/* Firmware NVME support, check driver FC4 NVME support */
13714 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13715 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13716 					"6133 Disabling NVME support: "
13717 					"FC4 type not supported: x%x\n",
13718 					phba->cfg_enable_fc4_type);
13719 			goto fcponly;
13720 		}
13721 	} else {
13722 		/* No firmware NVME support, check driver FC4 NVME support */
13723 		sli4_params->nvme = 0;
13724 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13725 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13726 					"6101 Disabling NVME support: Not "
13727 					"supported by firmware (%d %d) x%x\n",
13728 					bf_get(cfg_nvme, mbx_sli4_parameters),
13729 					bf_get(cfg_xib, mbx_sli4_parameters),
13730 					phba->cfg_enable_fc4_type);
13731 fcponly:
13732 			phba->nvmet_support = 0;
13733 			phba->cfg_nvmet_mrq = 0;
13734 			phba->cfg_nvme_seg_cnt = 0;
13735 
13736 			/* If no FC4 type support, move to just SCSI support */
13737 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13738 				return -ENODEV;
13739 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13740 		}
13741 	}
13742 
13743 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13744 	 * accommodate 512K and 1M IOs in a single nvme buf.
13745 	 */
13746 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13747 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13748 
13749 	/* Enable embedded Payload BDE if support is indicated */
13750 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13751 		phba->cfg_enable_pbde = 1;
13752 	else
13753 		phba->cfg_enable_pbde = 0;
13754 
13755 	/*
13756 	 * To support Suppress Response feature we must satisfy 3 conditions.
13757 	 * lpfc_suppress_rsp module parameter must be set (default).
13758 	 * In SLI4-Parameters Descriptor:
13759 	 * Extended Inline Buffers (XIB) must be supported.
13760 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13761 	 * (double negative).
13762 	 */
13763 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13764 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13765 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13766 	else
13767 		phba->cfg_suppress_rsp = 0;
13768 
13769 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13770 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13771 
13772 	/* Make sure that sge_supp_len can be handled by the driver */
13773 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13774 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13775 
13776 	/*
13777 	 * Check whether the adapter supports an embedded copy of the
13778 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13779 	 * to use this option, 128-byte WQEs must be used.
13780 	 */
13781 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13782 		phba->fcp_embed_io = 1;
13783 	else
13784 		phba->fcp_embed_io = 0;
13785 
13786 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13787 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13788 			bf_get(cfg_xib, mbx_sli4_parameters),
13789 			phba->cfg_enable_pbde,
13790 			phba->fcp_embed_io, sli4_params->nvme,
13791 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13792 
13793 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13794 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13795 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13796 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13797 		exp_wqcq_pages = false;
13798 
13799 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13800 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13801 	    exp_wqcq_pages &&
13802 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13803 		phba->enab_exp_wqcq_pages = 1;
13804 	else
13805 		phba->enab_exp_wqcq_pages = 0;
13806 	/*
13807 	 * Check if the SLI port supports MDS Diagnostics
13808 	 */
13809 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13810 		phba->mds_diags_support = 1;
13811 	else
13812 		phba->mds_diags_support = 0;
13813 
13814 	/*
13815 	 * Check if the SLI port supports NSLER
13816 	 */
13817 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13818 		phba->nsler = 1;
13819 	else
13820 		phba->nsler = 0;
13821 
13822 	return 0;
13823 }
13824 
13825 /**
13826  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13827  * @pdev: pointer to PCI device
13828  * @pid: pointer to PCI device identifier
13829  *
13830  * This routine is to be called to attach a device with SLI-3 interface spec
13831  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13832  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13833  * information of the device and driver to see if the driver state that it can
13834  * support this kind of device. If the match is successful, the driver core
13835  * invokes this routine. If this routine determines it can claim the HBA, it
13836  * does all the initialization that it needs to do to handle the HBA properly.
13837  *
13838  * Return code
13839  * 	0 - driver can claim the device
13840  * 	negative value - driver can not claim the device
13841  **/
13842 static int
13843 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13844 {
13845 	struct lpfc_hba   *phba;
13846 	struct lpfc_vport *vport = NULL;
13847 	struct Scsi_Host  *shost = NULL;
13848 	int error;
13849 	uint32_t cfg_mode, intr_mode;
13850 
13851 	/* Allocate memory for HBA structure */
13852 	phba = lpfc_hba_alloc(pdev);
13853 	if (!phba)
13854 		return -ENOMEM;
13855 
13856 	/* Perform generic PCI device enabling operation */
13857 	error = lpfc_enable_pci_dev(phba);
13858 	if (error)
13859 		goto out_free_phba;
13860 
13861 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13862 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13863 	if (error)
13864 		goto out_disable_pci_dev;
13865 
13866 	/* Set up SLI-3 specific device PCI memory space */
13867 	error = lpfc_sli_pci_mem_setup(phba);
13868 	if (error) {
13869 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13870 				"1402 Failed to set up pci memory space.\n");
13871 		goto out_disable_pci_dev;
13872 	}
13873 
13874 	/* Set up SLI-3 specific device driver resources */
13875 	error = lpfc_sli_driver_resource_setup(phba);
13876 	if (error) {
13877 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13878 				"1404 Failed to set up driver resource.\n");
13879 		goto out_unset_pci_mem_s3;
13880 	}
13881 
13882 	/* Initialize and populate the iocb list per host */
13883 
13884 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13885 	if (error) {
13886 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13887 				"1405 Failed to initialize iocb list.\n");
13888 		goto out_unset_driver_resource_s3;
13889 	}
13890 
13891 	/* Set up common device driver resources */
13892 	error = lpfc_setup_driver_resource_phase2(phba);
13893 	if (error) {
13894 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13895 				"1406 Failed to set up driver resource.\n");
13896 		goto out_free_iocb_list;
13897 	}
13898 
13899 	/* Get the default values for Model Name and Description */
13900 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
13901 
13902 	/* Create SCSI host to the physical port */
13903 	error = lpfc_create_shost(phba);
13904 	if (error) {
13905 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13906 				"1407 Failed to create scsi host.\n");
13907 		goto out_unset_driver_resource;
13908 	}
13909 
13910 	/* Configure sysfs attributes */
13911 	vport = phba->pport;
13912 	error = lpfc_alloc_sysfs_attr(vport);
13913 	if (error) {
13914 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13915 				"1476 Failed to allocate sysfs attr\n");
13916 		goto out_destroy_shost;
13917 	}
13918 
13919 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
13920 	/* Now, trying to enable interrupt and bring up the device */
13921 	cfg_mode = phba->cfg_use_msi;
13922 	while (true) {
13923 		/* Put device to a known state before enabling interrupt */
13924 		lpfc_stop_port(phba);
13925 		/* Configure and enable interrupt */
13926 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
13927 		if (intr_mode == LPFC_INTR_ERROR) {
13928 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13929 					"0431 Failed to enable interrupt.\n");
13930 			error = -ENODEV;
13931 			goto out_free_sysfs_attr;
13932 		}
13933 		/* SLI-3 HBA setup */
13934 		if (lpfc_sli_hba_setup(phba)) {
13935 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13936 					"1477 Failed to set up hba\n");
13937 			error = -ENODEV;
13938 			goto out_remove_device;
13939 		}
13940 
13941 		/* Wait 50ms for the interrupts of previous mailbox commands */
13942 		msleep(50);
13943 		/* Check active interrupts on message signaled interrupts */
13944 		if (intr_mode == 0 ||
13945 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
13946 			/* Log the current active interrupt mode */
13947 			phba->intr_mode = intr_mode;
13948 			lpfc_log_intr_mode(phba, intr_mode);
13949 			break;
13950 		} else {
13951 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13952 					"0447 Configure interrupt mode (%d) "
13953 					"failed active interrupt test.\n",
13954 					intr_mode);
13955 			/* Disable the current interrupt mode */
13956 			lpfc_sli_disable_intr(phba);
13957 			/* Try next level of interrupt mode */
13958 			cfg_mode = --intr_mode;
13959 		}
13960 	}
13961 
13962 	/* Perform post initialization setup */
13963 	lpfc_post_init_setup(phba);
13964 
13965 	/* Check if there are static vports to be created. */
13966 	lpfc_create_static_vport(phba);
13967 
13968 	return 0;
13969 
13970 out_remove_device:
13971 	lpfc_unset_hba(phba);
13972 out_free_sysfs_attr:
13973 	lpfc_free_sysfs_attr(vport);
13974 out_destroy_shost:
13975 	lpfc_destroy_shost(phba);
13976 out_unset_driver_resource:
13977 	lpfc_unset_driver_resource_phase2(phba);
13978 out_free_iocb_list:
13979 	lpfc_free_iocb_list(phba);
13980 out_unset_driver_resource_s3:
13981 	lpfc_sli_driver_resource_unset(phba);
13982 out_unset_pci_mem_s3:
13983 	lpfc_sli_pci_mem_unset(phba);
13984 out_disable_pci_dev:
13985 	lpfc_disable_pci_dev(phba);
13986 	if (shost)
13987 		scsi_host_put(shost);
13988 out_free_phba:
13989 	lpfc_hba_free(phba);
13990 	return error;
13991 }
13992 
13993 /**
13994  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
13995  * @pdev: pointer to PCI device
13996  *
13997  * This routine is to be called to disattach a device with SLI-3 interface
13998  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13999  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14000  * device to be removed from the PCI subsystem properly.
14001  **/
14002 static void
14003 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14004 {
14005 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14006 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14007 	struct lpfc_vport **vports;
14008 	struct lpfc_hba   *phba = vport->phba;
14009 	int i;
14010 
14011 	spin_lock_irq(&phba->hbalock);
14012 	vport->load_flag |= FC_UNLOADING;
14013 	spin_unlock_irq(&phba->hbalock);
14014 
14015 	lpfc_free_sysfs_attr(vport);
14016 
14017 	/* Release all the vports against this physical port */
14018 	vports = lpfc_create_vport_work_array(phba);
14019 	if (vports != NULL)
14020 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14021 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14022 				continue;
14023 			fc_vport_terminate(vports[i]->fc_vport);
14024 		}
14025 	lpfc_destroy_vport_work_array(phba, vports);
14026 
14027 	/* Remove FC host with the physical port */
14028 	fc_remove_host(shost);
14029 	scsi_remove_host(shost);
14030 
14031 	/* Clean up all nodes, mailboxes and IOs. */
14032 	lpfc_cleanup(vport);
14033 
14034 	/*
14035 	 * Bring down the SLI Layer. This step disable all interrupts,
14036 	 * clears the rings, discards all mailbox commands, and resets
14037 	 * the HBA.
14038 	 */
14039 
14040 	/* HBA interrupt will be disabled after this call */
14041 	lpfc_sli_hba_down(phba);
14042 	/* Stop kthread signal shall trigger work_done one more time */
14043 	kthread_stop(phba->worker_thread);
14044 	/* Final cleanup of txcmplq and reset the HBA */
14045 	lpfc_sli_brdrestart(phba);
14046 
14047 	kfree(phba->vpi_bmask);
14048 	kfree(phba->vpi_ids);
14049 
14050 	lpfc_stop_hba_timers(phba);
14051 	spin_lock_irq(&phba->port_list_lock);
14052 	list_del_init(&vport->listentry);
14053 	spin_unlock_irq(&phba->port_list_lock);
14054 
14055 	lpfc_debugfs_terminate(vport);
14056 
14057 	/* Disable SR-IOV if enabled */
14058 	if (phba->cfg_sriov_nr_virtfn)
14059 		pci_disable_sriov(pdev);
14060 
14061 	/* Disable interrupt */
14062 	lpfc_sli_disable_intr(phba);
14063 
14064 	scsi_host_put(shost);
14065 
14066 	/*
14067 	 * Call scsi_free before mem_free since scsi bufs are released to their
14068 	 * corresponding pools here.
14069 	 */
14070 	lpfc_scsi_free(phba);
14071 	lpfc_free_iocb_list(phba);
14072 
14073 	lpfc_mem_free_all(phba);
14074 
14075 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14076 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14077 
14078 	/* Free resources associated with SLI2 interface */
14079 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14080 			  phba->slim2p.virt, phba->slim2p.phys);
14081 
14082 	/* unmap adapter SLIM and Control Registers */
14083 	iounmap(phba->ctrl_regs_memmap_p);
14084 	iounmap(phba->slim_memmap_p);
14085 
14086 	lpfc_hba_free(phba);
14087 
14088 	pci_release_mem_regions(pdev);
14089 	pci_disable_device(pdev);
14090 }
14091 
14092 /**
14093  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14094  * @dev_d: pointer to device
14095  *
14096  * This routine is to be called from the kernel's PCI subsystem to support
14097  * system Power Management (PM) to device with SLI-3 interface spec. When
14098  * PM invokes this method, it quiesces the device by stopping the driver's
14099  * worker thread for the device, turning off device's interrupt and DMA,
14100  * and bring the device offline. Note that as the driver implements the
14101  * minimum PM requirements to a power-aware driver's PM support for the
14102  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14103  * to the suspend() method call will be treated as SUSPEND and the driver will
14104  * fully reinitialize its device during resume() method call, the driver will
14105  * set device to PCI_D3hot state in PCI config space instead of setting it
14106  * according to the @msg provided by the PM.
14107  *
14108  * Return code
14109  * 	0 - driver suspended the device
14110  * 	Error otherwise
14111  **/
14112 static int __maybe_unused
14113 lpfc_pci_suspend_one_s3(struct device *dev_d)
14114 {
14115 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14116 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14117 
14118 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14119 			"0473 PCI device Power Management suspend.\n");
14120 
14121 	/* Bring down the device */
14122 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14123 	lpfc_offline(phba);
14124 	kthread_stop(phba->worker_thread);
14125 
14126 	/* Disable interrupt from device */
14127 	lpfc_sli_disable_intr(phba);
14128 
14129 	return 0;
14130 }
14131 
14132 /**
14133  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14134  * @dev_d: pointer to device
14135  *
14136  * This routine is to be called from the kernel's PCI subsystem to support
14137  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14138  * invokes this method, it restores the device's PCI config space state and
14139  * fully reinitializes the device and brings it online. Note that as the
14140  * driver implements the minimum PM requirements to a power-aware driver's
14141  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14142  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14143  * driver will fully reinitialize its device during resume() method call,
14144  * the device will be set to PCI_D0 directly in PCI config space before
14145  * restoring the state.
14146  *
14147  * Return code
14148  * 	0 - driver suspended the device
14149  * 	Error otherwise
14150  **/
14151 static int __maybe_unused
14152 lpfc_pci_resume_one_s3(struct device *dev_d)
14153 {
14154 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14155 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14156 	uint32_t intr_mode;
14157 	int error;
14158 
14159 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14160 			"0452 PCI device Power Management resume.\n");
14161 
14162 	/* Startup the kernel thread for this host adapter. */
14163 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14164 					"lpfc_worker_%d", phba->brd_no);
14165 	if (IS_ERR(phba->worker_thread)) {
14166 		error = PTR_ERR(phba->worker_thread);
14167 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14168 				"0434 PM resume failed to start worker "
14169 				"thread: error=x%x.\n", error);
14170 		return error;
14171 	}
14172 
14173 	/* Init cpu_map array */
14174 	lpfc_cpu_map_array_init(phba);
14175 	/* Init hba_eq_hdl array */
14176 	lpfc_hba_eq_hdl_array_init(phba);
14177 	/* Configure and enable interrupt */
14178 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14179 	if (intr_mode == LPFC_INTR_ERROR) {
14180 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14181 				"0430 PM resume Failed to enable interrupt\n");
14182 		return -EIO;
14183 	} else
14184 		phba->intr_mode = intr_mode;
14185 
14186 	/* Restart HBA and bring it online */
14187 	lpfc_sli_brdrestart(phba);
14188 	lpfc_online(phba);
14189 
14190 	/* Log the current active interrupt mode */
14191 	lpfc_log_intr_mode(phba, phba->intr_mode);
14192 
14193 	return 0;
14194 }
14195 
14196 /**
14197  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14198  * @phba: pointer to lpfc hba data structure.
14199  *
14200  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14201  * aborts all the outstanding SCSI I/Os to the pci device.
14202  **/
14203 static void
14204 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14205 {
14206 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14207 			"2723 PCI channel I/O abort preparing for recovery\n");
14208 
14209 	/*
14210 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14211 	 * and let the SCSI mid-layer to retry them to recover.
14212 	 */
14213 	lpfc_sli_abort_fcp_rings(phba);
14214 }
14215 
14216 /**
14217  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14218  * @phba: pointer to lpfc hba data structure.
14219  *
14220  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14221  * disables the device interrupt and pci device, and aborts the internal FCP
14222  * pending I/Os.
14223  **/
14224 static void
14225 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14226 {
14227 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14228 			"2710 PCI channel disable preparing for reset\n");
14229 
14230 	/* Block any management I/Os to the device */
14231 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14232 
14233 	/* Block all SCSI devices' I/Os on the host */
14234 	lpfc_scsi_dev_block(phba);
14235 
14236 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14237 	lpfc_sli_flush_io_rings(phba);
14238 
14239 	/* stop all timers */
14240 	lpfc_stop_hba_timers(phba);
14241 
14242 	/* Disable interrupt and pci device */
14243 	lpfc_sli_disable_intr(phba);
14244 	pci_disable_device(phba->pcidev);
14245 }
14246 
14247 /**
14248  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14249  * @phba: pointer to lpfc hba data structure.
14250  *
14251  * This routine is called to prepare the SLI3 device for PCI slot permanently
14252  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14253  * pending I/Os.
14254  **/
14255 static void
14256 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14257 {
14258 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14259 			"2711 PCI channel permanent disable for failure\n");
14260 	/* Block all SCSI devices' I/Os on the host */
14261 	lpfc_scsi_dev_block(phba);
14262 
14263 	/* stop all timers */
14264 	lpfc_stop_hba_timers(phba);
14265 
14266 	/* Clean up all driver's outstanding SCSI I/Os */
14267 	lpfc_sli_flush_io_rings(phba);
14268 }
14269 
14270 /**
14271  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14272  * @pdev: pointer to PCI device.
14273  * @state: the current PCI connection state.
14274  *
14275  * This routine is called from the PCI subsystem for I/O error handling to
14276  * device with SLI-3 interface spec. This function is called by the PCI
14277  * subsystem after a PCI bus error affecting this device has been detected.
14278  * When this function is invoked, it will need to stop all the I/Os and
14279  * interrupt(s) to the device. Once that is done, it will return
14280  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14281  * as desired.
14282  *
14283  * Return codes
14284  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14285  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14286  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14287  **/
14288 static pci_ers_result_t
14289 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14290 {
14291 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14292 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14293 
14294 	switch (state) {
14295 	case pci_channel_io_normal:
14296 		/* Non-fatal error, prepare for recovery */
14297 		lpfc_sli_prep_dev_for_recover(phba);
14298 		return PCI_ERS_RESULT_CAN_RECOVER;
14299 	case pci_channel_io_frozen:
14300 		/* Fatal error, prepare for slot reset */
14301 		lpfc_sli_prep_dev_for_reset(phba);
14302 		return PCI_ERS_RESULT_NEED_RESET;
14303 	case pci_channel_io_perm_failure:
14304 		/* Permanent failure, prepare for device down */
14305 		lpfc_sli_prep_dev_for_perm_failure(phba);
14306 		return PCI_ERS_RESULT_DISCONNECT;
14307 	default:
14308 		/* Unknown state, prepare and request slot reset */
14309 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14310 				"0472 Unknown PCI error state: x%x\n", state);
14311 		lpfc_sli_prep_dev_for_reset(phba);
14312 		return PCI_ERS_RESULT_NEED_RESET;
14313 	}
14314 }
14315 
14316 /**
14317  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14318  * @pdev: pointer to PCI device.
14319  *
14320  * This routine is called from the PCI subsystem for error handling to
14321  * device with SLI-3 interface spec. This is called after PCI bus has been
14322  * reset to restart the PCI card from scratch, as if from a cold-boot.
14323  * During the PCI subsystem error recovery, after driver returns
14324  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14325  * recovery and then call this routine before calling the .resume method
14326  * to recover the device. This function will initialize the HBA device,
14327  * enable the interrupt, but it will just put the HBA to offline state
14328  * without passing any I/O traffic.
14329  *
14330  * Return codes
14331  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14332  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14333  */
14334 static pci_ers_result_t
14335 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14336 {
14337 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14338 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14339 	struct lpfc_sli *psli = &phba->sli;
14340 	uint32_t intr_mode;
14341 
14342 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14343 	if (pci_enable_device_mem(pdev)) {
14344 		printk(KERN_ERR "lpfc: Cannot re-enable "
14345 			"PCI device after reset.\n");
14346 		return PCI_ERS_RESULT_DISCONNECT;
14347 	}
14348 
14349 	pci_restore_state(pdev);
14350 
14351 	/*
14352 	 * As the new kernel behavior of pci_restore_state() API call clears
14353 	 * device saved_state flag, need to save the restored state again.
14354 	 */
14355 	pci_save_state(pdev);
14356 
14357 	if (pdev->is_busmaster)
14358 		pci_set_master(pdev);
14359 
14360 	spin_lock_irq(&phba->hbalock);
14361 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14362 	spin_unlock_irq(&phba->hbalock);
14363 
14364 	/* Configure and enable interrupt */
14365 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14366 	if (intr_mode == LPFC_INTR_ERROR) {
14367 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14368 				"0427 Cannot re-enable interrupt after "
14369 				"slot reset.\n");
14370 		return PCI_ERS_RESULT_DISCONNECT;
14371 	} else
14372 		phba->intr_mode = intr_mode;
14373 
14374 	/* Take device offline, it will perform cleanup */
14375 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14376 	lpfc_offline(phba);
14377 	lpfc_sli_brdrestart(phba);
14378 
14379 	/* Log the current active interrupt mode */
14380 	lpfc_log_intr_mode(phba, phba->intr_mode);
14381 
14382 	return PCI_ERS_RESULT_RECOVERED;
14383 }
14384 
14385 /**
14386  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14387  * @pdev: pointer to PCI device
14388  *
14389  * This routine is called from the PCI subsystem for error handling to device
14390  * with SLI-3 interface spec. It is called when kernel error recovery tells
14391  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14392  * error recovery. After this call, traffic can start to flow from this device
14393  * again.
14394  */
14395 static void
14396 lpfc_io_resume_s3(struct pci_dev *pdev)
14397 {
14398 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14399 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14400 
14401 	/* Bring device online, it will be no-op for non-fatal error resume */
14402 	lpfc_online(phba);
14403 }
14404 
14405 /**
14406  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14407  * @phba: pointer to lpfc hba data structure.
14408  *
14409  * returns the number of ELS/CT IOCBs to reserve
14410  **/
14411 int
14412 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14413 {
14414 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14415 
14416 	if (phba->sli_rev == LPFC_SLI_REV4) {
14417 		if (max_xri <= 100)
14418 			return 10;
14419 		else if (max_xri <= 256)
14420 			return 25;
14421 		else if (max_xri <= 512)
14422 			return 50;
14423 		else if (max_xri <= 1024)
14424 			return 100;
14425 		else if (max_xri <= 1536)
14426 			return 150;
14427 		else if (max_xri <= 2048)
14428 			return 200;
14429 		else
14430 			return 250;
14431 	} else
14432 		return 0;
14433 }
14434 
14435 /**
14436  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14437  * @phba: pointer to lpfc hba data structure.
14438  *
14439  * returns the number of ELS/CT + NVMET IOCBs to reserve
14440  **/
14441 int
14442 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14443 {
14444 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14445 
14446 	if (phba->nvmet_support)
14447 		max_xri += LPFC_NVMET_BUF_POST;
14448 	return max_xri;
14449 }
14450 
14451 
14452 static int
14453 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14454 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14455 	const struct firmware *fw)
14456 {
14457 	int rc;
14458 	u8 sli_family;
14459 
14460 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14461 	/* Three cases:  (1) FW was not supported on the detected adapter.
14462 	 * (2) FW update has been locked out administratively.
14463 	 * (3) Some other error during FW update.
14464 	 * In each case, an unmaskable message is written to the console
14465 	 * for admin diagnosis.
14466 	 */
14467 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14468 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14469 	     magic_number != MAGIC_NUMBER_G6) ||
14470 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14471 	     magic_number != MAGIC_NUMBER_G7) ||
14472 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14473 	     magic_number != MAGIC_NUMBER_G7P)) {
14474 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14475 				"3030 This firmware version is not supported on"
14476 				" this HBA model. Device:%x Magic:%x Type:%x "
14477 				"ID:%x Size %d %zd\n",
14478 				phba->pcidev->device, magic_number, ftype, fid,
14479 				fsize, fw->size);
14480 		rc = -EINVAL;
14481 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14482 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14483 				"3021 Firmware downloads have been prohibited "
14484 				"by a system configuration setting on "
14485 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14486 				"%zd\n",
14487 				phba->pcidev->device, magic_number, ftype, fid,
14488 				fsize, fw->size);
14489 		rc = -EACCES;
14490 	} else {
14491 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14492 				"3022 FW Download failed. Add Status x%x "
14493 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14494 				"%zd\n",
14495 				offset, phba->pcidev->device, magic_number,
14496 				ftype, fid, fsize, fw->size);
14497 		rc = -EIO;
14498 	}
14499 	return rc;
14500 }
14501 
14502 /**
14503  * lpfc_write_firmware - attempt to write a firmware image to the port
14504  * @fw: pointer to firmware image returned from request_firmware.
14505  * @context: pointer to firmware image returned from request_firmware.
14506  *
14507  **/
14508 static void
14509 lpfc_write_firmware(const struct firmware *fw, void *context)
14510 {
14511 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14512 	char fwrev[FW_REV_STR_SIZE];
14513 	struct lpfc_grp_hdr *image;
14514 	struct list_head dma_buffer_list;
14515 	int i, rc = 0;
14516 	struct lpfc_dmabuf *dmabuf, *next;
14517 	uint32_t offset = 0, temp_offset = 0;
14518 	uint32_t magic_number, ftype, fid, fsize;
14519 
14520 	/* It can be null in no-wait mode, sanity check */
14521 	if (!fw) {
14522 		rc = -ENXIO;
14523 		goto out;
14524 	}
14525 	image = (struct lpfc_grp_hdr *)fw->data;
14526 
14527 	magic_number = be32_to_cpu(image->magic_number);
14528 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14529 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14530 	fsize = be32_to_cpu(image->size);
14531 
14532 	INIT_LIST_HEAD(&dma_buffer_list);
14533 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14534 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14535 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14536 				"3023 Updating Firmware, Current Version:%s "
14537 				"New Version:%s\n",
14538 				fwrev, image->revision);
14539 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14540 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14541 					 GFP_KERNEL);
14542 			if (!dmabuf) {
14543 				rc = -ENOMEM;
14544 				goto release_out;
14545 			}
14546 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14547 							  SLI4_PAGE_SIZE,
14548 							  &dmabuf->phys,
14549 							  GFP_KERNEL);
14550 			if (!dmabuf->virt) {
14551 				kfree(dmabuf);
14552 				rc = -ENOMEM;
14553 				goto release_out;
14554 			}
14555 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14556 		}
14557 		while (offset < fw->size) {
14558 			temp_offset = offset;
14559 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14560 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14561 					memcpy(dmabuf->virt,
14562 					       fw->data + temp_offset,
14563 					       fw->size - temp_offset);
14564 					temp_offset = fw->size;
14565 					break;
14566 				}
14567 				memcpy(dmabuf->virt, fw->data + temp_offset,
14568 				       SLI4_PAGE_SIZE);
14569 				temp_offset += SLI4_PAGE_SIZE;
14570 			}
14571 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14572 				    (fw->size - offset), &offset);
14573 			if (rc) {
14574 				rc = lpfc_log_write_firmware_error(phba, offset,
14575 								   magic_number,
14576 								   ftype,
14577 								   fid,
14578 								   fsize,
14579 								   fw);
14580 				goto release_out;
14581 			}
14582 		}
14583 		rc = offset;
14584 	} else
14585 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14586 				"3029 Skipped Firmware update, Current "
14587 				"Version:%s New Version:%s\n",
14588 				fwrev, image->revision);
14589 
14590 release_out:
14591 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14592 		list_del(&dmabuf->list);
14593 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14594 				  dmabuf->virt, dmabuf->phys);
14595 		kfree(dmabuf);
14596 	}
14597 	release_firmware(fw);
14598 out:
14599 	if (rc < 0)
14600 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14601 				"3062 Firmware update error, status %d.\n", rc);
14602 	else
14603 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14604 				"3024 Firmware update success: size %d.\n", rc);
14605 }
14606 
14607 /**
14608  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14609  * @phba: pointer to lpfc hba data structure.
14610  * @fw_upgrade: which firmware to update.
14611  *
14612  * This routine is called to perform Linux generic firmware upgrade on device
14613  * that supports such feature.
14614  **/
14615 int
14616 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14617 {
14618 	uint8_t file_name[ELX_MODEL_NAME_SIZE];
14619 	int ret;
14620 	const struct firmware *fw;
14621 
14622 	/* Only supported on SLI4 interface type 2 for now */
14623 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14624 	    LPFC_SLI_INTF_IF_TYPE_2)
14625 		return -EPERM;
14626 
14627 	snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
14628 
14629 	if (fw_upgrade == INT_FW_UPGRADE) {
14630 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14631 					file_name, &phba->pcidev->dev,
14632 					GFP_KERNEL, (void *)phba,
14633 					lpfc_write_firmware);
14634 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14635 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14636 		if (!ret)
14637 			lpfc_write_firmware(fw, (void *)phba);
14638 	} else {
14639 		ret = -EINVAL;
14640 	}
14641 
14642 	return ret;
14643 }
14644 
14645 /**
14646  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14647  * @pdev: pointer to PCI device
14648  * @pid: pointer to PCI device identifier
14649  *
14650  * This routine is called from the kernel's PCI subsystem to device with
14651  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14652  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14653  * information of the device and driver to see if the driver state that it
14654  * can support this kind of device. If the match is successful, the driver
14655  * core invokes this routine. If this routine determines it can claim the HBA,
14656  * it does all the initialization that it needs to do to handle the HBA
14657  * properly.
14658  *
14659  * Return code
14660  * 	0 - driver can claim the device
14661  * 	negative value - driver can not claim the device
14662  **/
14663 static int
14664 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14665 {
14666 	struct lpfc_hba   *phba;
14667 	struct lpfc_vport *vport = NULL;
14668 	struct Scsi_Host  *shost = NULL;
14669 	int error;
14670 	uint32_t cfg_mode, intr_mode;
14671 
14672 	/* Allocate memory for HBA structure */
14673 	phba = lpfc_hba_alloc(pdev);
14674 	if (!phba)
14675 		return -ENOMEM;
14676 
14677 	INIT_LIST_HEAD(&phba->poll_list);
14678 
14679 	/* Perform generic PCI device enabling operation */
14680 	error = lpfc_enable_pci_dev(phba);
14681 	if (error)
14682 		goto out_free_phba;
14683 
14684 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14685 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14686 	if (error)
14687 		goto out_disable_pci_dev;
14688 
14689 	/* Set up SLI-4 specific device PCI memory space */
14690 	error = lpfc_sli4_pci_mem_setup(phba);
14691 	if (error) {
14692 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14693 				"1410 Failed to set up pci memory space.\n");
14694 		goto out_disable_pci_dev;
14695 	}
14696 
14697 	/* Set up SLI-4 Specific device driver resources */
14698 	error = lpfc_sli4_driver_resource_setup(phba);
14699 	if (error) {
14700 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14701 				"1412 Failed to set up driver resource.\n");
14702 		goto out_unset_pci_mem_s4;
14703 	}
14704 
14705 	INIT_LIST_HEAD(&phba->active_rrq_list);
14706 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14707 
14708 	/* Set up common device driver resources */
14709 	error = lpfc_setup_driver_resource_phase2(phba);
14710 	if (error) {
14711 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14712 				"1414 Failed to set up driver resource.\n");
14713 		goto out_unset_driver_resource_s4;
14714 	}
14715 
14716 	/* Get the default values for Model Name and Description */
14717 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14718 
14719 	/* Now, trying to enable interrupt and bring up the device */
14720 	cfg_mode = phba->cfg_use_msi;
14721 
14722 	/* Put device to a known state before enabling interrupt */
14723 	phba->pport = NULL;
14724 	lpfc_stop_port(phba);
14725 
14726 	/* Init cpu_map array */
14727 	lpfc_cpu_map_array_init(phba);
14728 
14729 	/* Init hba_eq_hdl array */
14730 	lpfc_hba_eq_hdl_array_init(phba);
14731 
14732 	/* Configure and enable interrupt */
14733 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14734 	if (intr_mode == LPFC_INTR_ERROR) {
14735 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14736 				"0426 Failed to enable interrupt.\n");
14737 		error = -ENODEV;
14738 		goto out_unset_driver_resource;
14739 	}
14740 	/* Default to single EQ for non-MSI-X */
14741 	if (phba->intr_type != MSIX) {
14742 		phba->cfg_irq_chann = 1;
14743 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14744 			if (phba->nvmet_support)
14745 				phba->cfg_nvmet_mrq = 1;
14746 		}
14747 	}
14748 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14749 
14750 	/* Create SCSI host to the physical port */
14751 	error = lpfc_create_shost(phba);
14752 	if (error) {
14753 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14754 				"1415 Failed to create scsi host.\n");
14755 		goto out_disable_intr;
14756 	}
14757 	vport = phba->pport;
14758 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14759 
14760 	/* Configure sysfs attributes */
14761 	error = lpfc_alloc_sysfs_attr(vport);
14762 	if (error) {
14763 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14764 				"1416 Failed to allocate sysfs attr\n");
14765 		goto out_destroy_shost;
14766 	}
14767 
14768 	/* Set up SLI-4 HBA */
14769 	if (lpfc_sli4_hba_setup(phba)) {
14770 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14771 				"1421 Failed to set up hba\n");
14772 		error = -ENODEV;
14773 		goto out_free_sysfs_attr;
14774 	}
14775 
14776 	/* Log the current active interrupt mode */
14777 	phba->intr_mode = intr_mode;
14778 	lpfc_log_intr_mode(phba, intr_mode);
14779 
14780 	/* Perform post initialization setup */
14781 	lpfc_post_init_setup(phba);
14782 
14783 	/* NVME support in FW earlier in the driver load corrects the
14784 	 * FC4 type making a check for nvme_support unnecessary.
14785 	 */
14786 	if (phba->nvmet_support == 0) {
14787 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14788 			/* Create NVME binding with nvme_fc_transport. This
14789 			 * ensures the vport is initialized.  If the localport
14790 			 * create fails, it should not unload the driver to
14791 			 * support field issues.
14792 			 */
14793 			error = lpfc_nvme_create_localport(vport);
14794 			if (error) {
14795 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14796 						"6004 NVME registration "
14797 						"failed, error x%x\n",
14798 						error);
14799 			}
14800 		}
14801 	}
14802 
14803 	/* check for firmware upgrade or downgrade */
14804 	if (phba->cfg_request_firmware_upgrade)
14805 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14806 
14807 	/* Check if there are static vports to be created. */
14808 	lpfc_create_static_vport(phba);
14809 
14810 	/* Enable RAS FW log support */
14811 	lpfc_sli4_ras_setup(phba);
14812 
14813 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14814 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14815 
14816 	return 0;
14817 
14818 out_free_sysfs_attr:
14819 	lpfc_free_sysfs_attr(vport);
14820 out_destroy_shost:
14821 	lpfc_destroy_shost(phba);
14822 out_disable_intr:
14823 	lpfc_sli4_disable_intr(phba);
14824 out_unset_driver_resource:
14825 	lpfc_unset_driver_resource_phase2(phba);
14826 out_unset_driver_resource_s4:
14827 	lpfc_sli4_driver_resource_unset(phba);
14828 out_unset_pci_mem_s4:
14829 	lpfc_sli4_pci_mem_unset(phba);
14830 out_disable_pci_dev:
14831 	lpfc_disable_pci_dev(phba);
14832 	if (shost)
14833 		scsi_host_put(shost);
14834 out_free_phba:
14835 	lpfc_hba_free(phba);
14836 	return error;
14837 }
14838 
14839 /**
14840  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14841  * @pdev: pointer to PCI device
14842  *
14843  * This routine is called from the kernel's PCI subsystem to device with
14844  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14845  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14846  * device to be removed from the PCI subsystem properly.
14847  **/
14848 static void
14849 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14850 {
14851 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14852 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14853 	struct lpfc_vport **vports;
14854 	struct lpfc_hba *phba = vport->phba;
14855 	int i;
14856 
14857 	/* Mark the device unloading flag */
14858 	spin_lock_irq(&phba->hbalock);
14859 	vport->load_flag |= FC_UNLOADING;
14860 	spin_unlock_irq(&phba->hbalock);
14861 	if (phba->cgn_i)
14862 		lpfc_unreg_congestion_buf(phba);
14863 
14864 	lpfc_free_sysfs_attr(vport);
14865 
14866 	/* Release all the vports against this physical port */
14867 	vports = lpfc_create_vport_work_array(phba);
14868 	if (vports != NULL)
14869 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14870 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14871 				continue;
14872 			fc_vport_terminate(vports[i]->fc_vport);
14873 		}
14874 	lpfc_destroy_vport_work_array(phba, vports);
14875 
14876 	/* Remove FC host with the physical port */
14877 	fc_remove_host(shost);
14878 	scsi_remove_host(shost);
14879 
14880 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14881 	 * localports are destroyed after to cleanup all transport memory.
14882 	 */
14883 	lpfc_cleanup(vport);
14884 	lpfc_nvmet_destroy_targetport(phba);
14885 	lpfc_nvme_destroy_localport(vport);
14886 
14887 	/* De-allocate multi-XRI pools */
14888 	if (phba->cfg_xri_rebalancing)
14889 		lpfc_destroy_multixri_pools(phba);
14890 
14891 	/*
14892 	 * Bring down the SLI Layer. This step disables all interrupts,
14893 	 * clears the rings, discards all mailbox commands, and resets
14894 	 * the HBA FCoE function.
14895 	 */
14896 	lpfc_debugfs_terminate(vport);
14897 
14898 	lpfc_stop_hba_timers(phba);
14899 	spin_lock_irq(&phba->port_list_lock);
14900 	list_del_init(&vport->listentry);
14901 	spin_unlock_irq(&phba->port_list_lock);
14902 
14903 	/* Perform scsi free before driver resource_unset since scsi
14904 	 * buffers are released to their corresponding pools here.
14905 	 */
14906 	lpfc_io_free(phba);
14907 	lpfc_free_iocb_list(phba);
14908 	lpfc_sli4_hba_unset(phba);
14909 
14910 	lpfc_unset_driver_resource_phase2(phba);
14911 	lpfc_sli4_driver_resource_unset(phba);
14912 
14913 	/* Unmap adapter Control and Doorbell registers */
14914 	lpfc_sli4_pci_mem_unset(phba);
14915 
14916 	/* Release PCI resources and disable device's PCI function */
14917 	scsi_host_put(shost);
14918 	lpfc_disable_pci_dev(phba);
14919 
14920 	/* Finally, free the driver's device data structure */
14921 	lpfc_hba_free(phba);
14922 
14923 	return;
14924 }
14925 
14926 /**
14927  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
14928  * @dev_d: pointer to device
14929  *
14930  * This routine is called from the kernel's PCI subsystem to support system
14931  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
14932  * this method, it quiesces the device by stopping the driver's worker
14933  * thread for the device, turning off device's interrupt and DMA, and bring
14934  * the device offline. Note that as the driver implements the minimum PM
14935  * requirements to a power-aware driver's PM support for suspend/resume -- all
14936  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
14937  * method call will be treated as SUSPEND and the driver will fully
14938  * reinitialize its device during resume() method call, the driver will set
14939  * device to PCI_D3hot state in PCI config space instead of setting it
14940  * according to the @msg provided by the PM.
14941  *
14942  * Return code
14943  * 	0 - driver suspended the device
14944  * 	Error otherwise
14945  **/
14946 static int __maybe_unused
14947 lpfc_pci_suspend_one_s4(struct device *dev_d)
14948 {
14949 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14950 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14951 
14952 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14953 			"2843 PCI device Power Management suspend.\n");
14954 
14955 	/* Bring down the device */
14956 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14957 	lpfc_offline(phba);
14958 	kthread_stop(phba->worker_thread);
14959 
14960 	/* Disable interrupt from device */
14961 	lpfc_sli4_disable_intr(phba);
14962 	lpfc_sli4_queue_destroy(phba);
14963 
14964 	return 0;
14965 }
14966 
14967 /**
14968  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
14969  * @dev_d: pointer to device
14970  *
14971  * This routine is called from the kernel's PCI subsystem to support system
14972  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
14973  * this method, it restores the device's PCI config space state and fully
14974  * reinitializes the device and brings it online. Note that as the driver
14975  * implements the minimum PM requirements to a power-aware driver's PM for
14976  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14977  * to the suspend() method call will be treated as SUSPEND and the driver
14978  * will fully reinitialize its device during resume() method call, the device
14979  * will be set to PCI_D0 directly in PCI config space before restoring the
14980  * state.
14981  *
14982  * Return code
14983  * 	0 - driver suspended the device
14984  * 	Error otherwise
14985  **/
14986 static int __maybe_unused
14987 lpfc_pci_resume_one_s4(struct device *dev_d)
14988 {
14989 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14990 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14991 	uint32_t intr_mode;
14992 	int error;
14993 
14994 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14995 			"0292 PCI device Power Management resume.\n");
14996 
14997 	 /* Startup the kernel thread for this host adapter. */
14998 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14999 					"lpfc_worker_%d", phba->brd_no);
15000 	if (IS_ERR(phba->worker_thread)) {
15001 		error = PTR_ERR(phba->worker_thread);
15002 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15003 				"0293 PM resume failed to start worker "
15004 				"thread: error=x%x.\n", error);
15005 		return error;
15006 	}
15007 
15008 	/* Configure and enable interrupt */
15009 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15010 	if (intr_mode == LPFC_INTR_ERROR) {
15011 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15012 				"0294 PM resume Failed to enable interrupt\n");
15013 		return -EIO;
15014 	} else
15015 		phba->intr_mode = intr_mode;
15016 
15017 	/* Restart HBA and bring it online */
15018 	lpfc_sli_brdrestart(phba);
15019 	lpfc_online(phba);
15020 
15021 	/* Log the current active interrupt mode */
15022 	lpfc_log_intr_mode(phba, phba->intr_mode);
15023 
15024 	return 0;
15025 }
15026 
15027 /**
15028  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15029  * @phba: pointer to lpfc hba data structure.
15030  *
15031  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15032  * aborts all the outstanding SCSI I/Os to the pci device.
15033  **/
15034 static void
15035 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15036 {
15037 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15038 			"2828 PCI channel I/O abort preparing for recovery\n");
15039 	/*
15040 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15041 	 * and let the SCSI mid-layer to retry them to recover.
15042 	 */
15043 	lpfc_sli_abort_fcp_rings(phba);
15044 }
15045 
15046 /**
15047  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15048  * @phba: pointer to lpfc hba data structure.
15049  *
15050  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15051  * disables the device interrupt and pci device, and aborts the internal FCP
15052  * pending I/Os.
15053  **/
15054 static void
15055 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15056 {
15057 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15058 			"2826 PCI channel disable preparing for reset\n");
15059 
15060 	/* Block any management I/Os to the device */
15061 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15062 
15063 	/* Block all SCSI devices' I/Os on the host */
15064 	lpfc_scsi_dev_block(phba);
15065 
15066 	/* Flush all driver's outstanding I/Os as we are to reset */
15067 	lpfc_sli_flush_io_rings(phba);
15068 
15069 	/* stop all timers */
15070 	lpfc_stop_hba_timers(phba);
15071 
15072 	/* Disable interrupt and pci device */
15073 	lpfc_sli4_disable_intr(phba);
15074 	lpfc_sli4_queue_destroy(phba);
15075 	pci_disable_device(phba->pcidev);
15076 }
15077 
15078 /**
15079  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15080  * @phba: pointer to lpfc hba data structure.
15081  *
15082  * This routine is called to prepare the SLI4 device for PCI slot permanently
15083  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15084  * pending I/Os.
15085  **/
15086 static void
15087 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15088 {
15089 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15090 			"2827 PCI channel permanent disable for failure\n");
15091 
15092 	/* Block all SCSI devices' I/Os on the host */
15093 	lpfc_scsi_dev_block(phba);
15094 
15095 	/* stop all timers */
15096 	lpfc_stop_hba_timers(phba);
15097 
15098 	/* Clean up all driver's outstanding I/Os */
15099 	lpfc_sli_flush_io_rings(phba);
15100 }
15101 
15102 /**
15103  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15104  * @pdev: pointer to PCI device.
15105  * @state: the current PCI connection state.
15106  *
15107  * This routine is called from the PCI subsystem for error handling to device
15108  * with SLI-4 interface spec. This function is called by the PCI subsystem
15109  * after a PCI bus error affecting this device has been detected. When this
15110  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15111  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15112  * for the PCI subsystem to perform proper recovery as desired.
15113  *
15114  * Return codes
15115  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15116  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15117  **/
15118 static pci_ers_result_t
15119 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15120 {
15121 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15122 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15123 
15124 	switch (state) {
15125 	case pci_channel_io_normal:
15126 		/* Non-fatal error, prepare for recovery */
15127 		lpfc_sli4_prep_dev_for_recover(phba);
15128 		return PCI_ERS_RESULT_CAN_RECOVER;
15129 	case pci_channel_io_frozen:
15130 		phba->hba_flag |= HBA_PCI_ERR;
15131 		/* Fatal error, prepare for slot reset */
15132 		lpfc_sli4_prep_dev_for_reset(phba);
15133 		return PCI_ERS_RESULT_NEED_RESET;
15134 	case pci_channel_io_perm_failure:
15135 		phba->hba_flag |= HBA_PCI_ERR;
15136 		/* Permanent failure, prepare for device down */
15137 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15138 		return PCI_ERS_RESULT_DISCONNECT;
15139 	default:
15140 		phba->hba_flag |= HBA_PCI_ERR;
15141 		/* Unknown state, prepare and request slot reset */
15142 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15143 				"2825 Unknown PCI error state: x%x\n", state);
15144 		lpfc_sli4_prep_dev_for_reset(phba);
15145 		return PCI_ERS_RESULT_NEED_RESET;
15146 	}
15147 }
15148 
15149 /**
15150  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15151  * @pdev: pointer to PCI device.
15152  *
15153  * This routine is called from the PCI subsystem for error handling to device
15154  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15155  * restart the PCI card from scratch, as if from a cold-boot. During the
15156  * PCI subsystem error recovery, after the driver returns
15157  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15158  * recovery and then call this routine before calling the .resume method to
15159  * recover the device. This function will initialize the HBA device, enable
15160  * the interrupt, but it will just put the HBA to offline state without
15161  * passing any I/O traffic.
15162  *
15163  * Return codes
15164  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15165  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15166  */
15167 static pci_ers_result_t
15168 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15169 {
15170 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15171 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15172 	struct lpfc_sli *psli = &phba->sli;
15173 	uint32_t intr_mode;
15174 
15175 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15176 	if (pci_enable_device_mem(pdev)) {
15177 		printk(KERN_ERR "lpfc: Cannot re-enable "
15178 			"PCI device after reset.\n");
15179 		return PCI_ERS_RESULT_DISCONNECT;
15180 	}
15181 
15182 	pci_restore_state(pdev);
15183 
15184 	phba->hba_flag &= ~HBA_PCI_ERR;
15185 	/*
15186 	 * As the new kernel behavior of pci_restore_state() API call clears
15187 	 * device saved_state flag, need to save the restored state again.
15188 	 */
15189 	pci_save_state(pdev);
15190 
15191 	if (pdev->is_busmaster)
15192 		pci_set_master(pdev);
15193 
15194 	spin_lock_irq(&phba->hbalock);
15195 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15196 	spin_unlock_irq(&phba->hbalock);
15197 
15198 	/* Configure and enable interrupt */
15199 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15200 	if (intr_mode == LPFC_INTR_ERROR) {
15201 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15202 				"2824 Cannot re-enable interrupt after "
15203 				"slot reset.\n");
15204 		return PCI_ERS_RESULT_DISCONNECT;
15205 	} else
15206 		phba->intr_mode = intr_mode;
15207 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15208 
15209 	/* Log the current active interrupt mode */
15210 	lpfc_log_intr_mode(phba, phba->intr_mode);
15211 
15212 	return PCI_ERS_RESULT_RECOVERED;
15213 }
15214 
15215 /**
15216  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15217  * @pdev: pointer to PCI device
15218  *
15219  * This routine is called from the PCI subsystem for error handling to device
15220  * with SLI-4 interface spec. It is called when kernel error recovery tells
15221  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15222  * error recovery. After this call, traffic can start to flow from this device
15223  * again.
15224  **/
15225 static void
15226 lpfc_io_resume_s4(struct pci_dev *pdev)
15227 {
15228 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15229 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15230 
15231 	/*
15232 	 * In case of slot reset, as function reset is performed through
15233 	 * mailbox command which needs DMA to be enabled, this operation
15234 	 * has to be moved to the io resume phase. Taking device offline
15235 	 * will perform the necessary cleanup.
15236 	 */
15237 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15238 		/* Perform device reset */
15239 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15240 		lpfc_offline(phba);
15241 		lpfc_sli_brdrestart(phba);
15242 		/* Bring the device back online */
15243 		lpfc_online(phba);
15244 	}
15245 }
15246 
15247 /**
15248  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15249  * @pdev: pointer to PCI device
15250  * @pid: pointer to PCI device identifier
15251  *
15252  * This routine is to be registered to the kernel's PCI subsystem. When an
15253  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15254  * at PCI device-specific information of the device and driver to see if the
15255  * driver state that it can support this kind of device. If the match is
15256  * successful, the driver core invokes this routine. This routine dispatches
15257  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15258  * do all the initialization that it needs to do to handle the HBA device
15259  * properly.
15260  *
15261  * Return code
15262  * 	0 - driver can claim the device
15263  * 	negative value - driver can not claim the device
15264  **/
15265 static int
15266 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15267 {
15268 	int rc;
15269 	struct lpfc_sli_intf intf;
15270 
15271 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15272 		return -ENODEV;
15273 
15274 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15275 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15276 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15277 	else
15278 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15279 
15280 	return rc;
15281 }
15282 
15283 /**
15284  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15285  * @pdev: pointer to PCI device
15286  *
15287  * This routine is to be registered to the kernel's PCI subsystem. When an
15288  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15289  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15290  * remove routine, which will perform all the necessary cleanup for the
15291  * device to be removed from the PCI subsystem properly.
15292  **/
15293 static void
15294 lpfc_pci_remove_one(struct pci_dev *pdev)
15295 {
15296 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15297 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15298 
15299 	switch (phba->pci_dev_grp) {
15300 	case LPFC_PCI_DEV_LP:
15301 		lpfc_pci_remove_one_s3(pdev);
15302 		break;
15303 	case LPFC_PCI_DEV_OC:
15304 		lpfc_pci_remove_one_s4(pdev);
15305 		break;
15306 	default:
15307 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15308 				"1424 Invalid PCI device group: 0x%x\n",
15309 				phba->pci_dev_grp);
15310 		break;
15311 	}
15312 	return;
15313 }
15314 
15315 /**
15316  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15317  * @dev: pointer to device
15318  *
15319  * This routine is to be registered to the kernel's PCI subsystem to support
15320  * system Power Management (PM). When PM invokes this method, it dispatches
15321  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15322  * suspend the device.
15323  *
15324  * Return code
15325  * 	0 - driver suspended the device
15326  * 	Error otherwise
15327  **/
15328 static int __maybe_unused
15329 lpfc_pci_suspend_one(struct device *dev)
15330 {
15331 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15332 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15333 	int rc = -ENODEV;
15334 
15335 	switch (phba->pci_dev_grp) {
15336 	case LPFC_PCI_DEV_LP:
15337 		rc = lpfc_pci_suspend_one_s3(dev);
15338 		break;
15339 	case LPFC_PCI_DEV_OC:
15340 		rc = lpfc_pci_suspend_one_s4(dev);
15341 		break;
15342 	default:
15343 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15344 				"1425 Invalid PCI device group: 0x%x\n",
15345 				phba->pci_dev_grp);
15346 		break;
15347 	}
15348 	return rc;
15349 }
15350 
15351 /**
15352  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15353  * @dev: pointer to device
15354  *
15355  * This routine is to be registered to the kernel's PCI subsystem to support
15356  * system Power Management (PM). When PM invokes this method, it dispatches
15357  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15358  * resume the device.
15359  *
15360  * Return code
15361  * 	0 - driver suspended the device
15362  * 	Error otherwise
15363  **/
15364 static int __maybe_unused
15365 lpfc_pci_resume_one(struct device *dev)
15366 {
15367 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15368 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15369 	int rc = -ENODEV;
15370 
15371 	switch (phba->pci_dev_grp) {
15372 	case LPFC_PCI_DEV_LP:
15373 		rc = lpfc_pci_resume_one_s3(dev);
15374 		break;
15375 	case LPFC_PCI_DEV_OC:
15376 		rc = lpfc_pci_resume_one_s4(dev);
15377 		break;
15378 	default:
15379 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15380 				"1426 Invalid PCI device group: 0x%x\n",
15381 				phba->pci_dev_grp);
15382 		break;
15383 	}
15384 	return rc;
15385 }
15386 
15387 /**
15388  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15389  * @pdev: pointer to PCI device.
15390  * @state: the current PCI connection state.
15391  *
15392  * This routine is registered to the PCI subsystem for error handling. This
15393  * function is called by the PCI subsystem after a PCI bus error affecting
15394  * this device has been detected. When this routine is invoked, it dispatches
15395  * the action to the proper SLI-3 or SLI-4 device error detected handling
15396  * routine, which will perform the proper error detected operation.
15397  *
15398  * Return codes
15399  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15400  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15401  **/
15402 static pci_ers_result_t
15403 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15404 {
15405 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15406 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15407 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15408 
15409 	if (phba->link_state == LPFC_HBA_ERROR &&
15410 	    phba->hba_flag & HBA_IOQ_FLUSH)
15411 		return PCI_ERS_RESULT_NEED_RESET;
15412 
15413 	switch (phba->pci_dev_grp) {
15414 	case LPFC_PCI_DEV_LP:
15415 		rc = lpfc_io_error_detected_s3(pdev, state);
15416 		break;
15417 	case LPFC_PCI_DEV_OC:
15418 		rc = lpfc_io_error_detected_s4(pdev, state);
15419 		break;
15420 	default:
15421 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15422 				"1427 Invalid PCI device group: 0x%x\n",
15423 				phba->pci_dev_grp);
15424 		break;
15425 	}
15426 	return rc;
15427 }
15428 
15429 /**
15430  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15431  * @pdev: pointer to PCI device.
15432  *
15433  * This routine is registered to the PCI subsystem for error handling. This
15434  * function is called after PCI bus has been reset to restart the PCI card
15435  * from scratch, as if from a cold-boot. When this routine is invoked, it
15436  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15437  * routine, which will perform the proper device reset.
15438  *
15439  * Return codes
15440  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15441  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15442  **/
15443 static pci_ers_result_t
15444 lpfc_io_slot_reset(struct pci_dev *pdev)
15445 {
15446 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15447 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15448 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15449 
15450 	switch (phba->pci_dev_grp) {
15451 	case LPFC_PCI_DEV_LP:
15452 		rc = lpfc_io_slot_reset_s3(pdev);
15453 		break;
15454 	case LPFC_PCI_DEV_OC:
15455 		rc = lpfc_io_slot_reset_s4(pdev);
15456 		break;
15457 	default:
15458 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15459 				"1428 Invalid PCI device group: 0x%x\n",
15460 				phba->pci_dev_grp);
15461 		break;
15462 	}
15463 	return rc;
15464 }
15465 
15466 /**
15467  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15468  * @pdev: pointer to PCI device
15469  *
15470  * This routine is registered to the PCI subsystem for error handling. It
15471  * is called when kernel error recovery tells the lpfc driver that it is
15472  * OK to resume normal PCI operation after PCI bus error recovery. When
15473  * this routine is invoked, it dispatches the action to the proper SLI-3
15474  * or SLI-4 device io_resume routine, which will resume the device operation.
15475  **/
15476 static void
15477 lpfc_io_resume(struct pci_dev *pdev)
15478 {
15479 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15480 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15481 
15482 	switch (phba->pci_dev_grp) {
15483 	case LPFC_PCI_DEV_LP:
15484 		lpfc_io_resume_s3(pdev);
15485 		break;
15486 	case LPFC_PCI_DEV_OC:
15487 		lpfc_io_resume_s4(pdev);
15488 		break;
15489 	default:
15490 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15491 				"1429 Invalid PCI device group: 0x%x\n",
15492 				phba->pci_dev_grp);
15493 		break;
15494 	}
15495 	return;
15496 }
15497 
15498 /**
15499  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15500  * @phba: pointer to lpfc hba data structure.
15501  *
15502  * This routine checks to see if OAS is supported for this adapter. If
15503  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15504  * the enable oas flag is cleared and the pool created for OAS device data
15505  * is destroyed.
15506  *
15507  **/
15508 static void
15509 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15510 {
15511 
15512 	if (!phba->cfg_EnableXLane)
15513 		return;
15514 
15515 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15516 		phba->cfg_fof = 1;
15517 	} else {
15518 		phba->cfg_fof = 0;
15519 		mempool_destroy(phba->device_data_mem_pool);
15520 		phba->device_data_mem_pool = NULL;
15521 	}
15522 
15523 	return;
15524 }
15525 
15526 /**
15527  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15528  * @phba: pointer to lpfc hba data structure.
15529  *
15530  * This routine checks to see if RAS is supported by the adapter. Check the
15531  * function through which RAS support enablement is to be done.
15532  **/
15533 void
15534 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15535 {
15536 	/* if ASIC_GEN_NUM >= 0xC) */
15537 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15538 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15539 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15540 		    LPFC_SLI_INTF_FAMILY_G6)) {
15541 		phba->ras_fwlog.ras_hwsupport = true;
15542 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15543 		    phba->cfg_ras_fwlog_buffsize)
15544 			phba->ras_fwlog.ras_enabled = true;
15545 		else
15546 			phba->ras_fwlog.ras_enabled = false;
15547 	} else {
15548 		phba->ras_fwlog.ras_hwsupport = false;
15549 	}
15550 }
15551 
15552 
15553 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15554 
15555 static const struct pci_error_handlers lpfc_err_handler = {
15556 	.error_detected = lpfc_io_error_detected,
15557 	.slot_reset = lpfc_io_slot_reset,
15558 	.resume = lpfc_io_resume,
15559 };
15560 
15561 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15562 			 lpfc_pci_suspend_one,
15563 			 lpfc_pci_resume_one);
15564 
15565 static struct pci_driver lpfc_driver = {
15566 	.name		= LPFC_DRIVER_NAME,
15567 	.id_table	= lpfc_id_table,
15568 	.probe		= lpfc_pci_probe_one,
15569 	.remove		= lpfc_pci_remove_one,
15570 	.shutdown	= lpfc_pci_remove_one,
15571 	.driver.pm	= &lpfc_pci_pm_ops_one,
15572 	.err_handler    = &lpfc_err_handler,
15573 };
15574 
15575 static const struct file_operations lpfc_mgmt_fop = {
15576 	.owner = THIS_MODULE,
15577 };
15578 
15579 static struct miscdevice lpfc_mgmt_dev = {
15580 	.minor = MISC_DYNAMIC_MINOR,
15581 	.name = "lpfcmgmt",
15582 	.fops = &lpfc_mgmt_fop,
15583 };
15584 
15585 /**
15586  * lpfc_init - lpfc module initialization routine
15587  *
15588  * This routine is to be invoked when the lpfc module is loaded into the
15589  * kernel. The special kernel macro module_init() is used to indicate the
15590  * role of this routine to the kernel as lpfc module entry point.
15591  *
15592  * Return codes
15593  *   0 - successful
15594  *   -ENOMEM - FC attach transport failed
15595  *   all others - failed
15596  */
15597 static int __init
15598 lpfc_init(void)
15599 {
15600 	int error = 0;
15601 
15602 	pr_info(LPFC_MODULE_DESC "\n");
15603 	pr_info(LPFC_COPYRIGHT "\n");
15604 
15605 	error = misc_register(&lpfc_mgmt_dev);
15606 	if (error)
15607 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15608 			"misc_register returned with status %d", error);
15609 
15610 	error = -ENOMEM;
15611 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15612 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15613 	lpfc_transport_template =
15614 				fc_attach_transport(&lpfc_transport_functions);
15615 	if (lpfc_transport_template == NULL)
15616 		goto unregister;
15617 	lpfc_vport_transport_template =
15618 		fc_attach_transport(&lpfc_vport_transport_functions);
15619 	if (lpfc_vport_transport_template == NULL) {
15620 		fc_release_transport(lpfc_transport_template);
15621 		goto unregister;
15622 	}
15623 	lpfc_wqe_cmd_template();
15624 	lpfc_nvmet_cmd_template();
15625 
15626 	/* Initialize in case vector mapping is needed */
15627 	lpfc_present_cpu = num_present_cpus();
15628 
15629 	lpfc_pldv_detect = false;
15630 
15631 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15632 					"lpfc/sli4:online",
15633 					lpfc_cpu_online, lpfc_cpu_offline);
15634 	if (error < 0)
15635 		goto cpuhp_failure;
15636 	lpfc_cpuhp_state = error;
15637 
15638 	error = pci_register_driver(&lpfc_driver);
15639 	if (error)
15640 		goto unwind;
15641 
15642 	return error;
15643 
15644 unwind:
15645 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15646 cpuhp_failure:
15647 	fc_release_transport(lpfc_transport_template);
15648 	fc_release_transport(lpfc_vport_transport_template);
15649 unregister:
15650 	misc_deregister(&lpfc_mgmt_dev);
15651 
15652 	return error;
15653 }
15654 
15655 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15656 {
15657 	unsigned int start_idx;
15658 	unsigned int dbg_cnt;
15659 	unsigned int temp_idx;
15660 	int i;
15661 	int j = 0;
15662 	unsigned long rem_nsec, iflags;
15663 	bool log_verbose = false;
15664 	struct lpfc_vport *port_iterator;
15665 
15666 	/* Don't dump messages if we explicitly set log_verbose for the
15667 	 * physical port or any vport.
15668 	 */
15669 	if (phba->cfg_log_verbose)
15670 		return;
15671 
15672 	spin_lock_irqsave(&phba->port_list_lock, iflags);
15673 	list_for_each_entry(port_iterator, &phba->port_list, listentry) {
15674 		if (port_iterator->load_flag & FC_UNLOADING)
15675 			continue;
15676 		if (scsi_host_get(lpfc_shost_from_vport(port_iterator))) {
15677 			if (port_iterator->cfg_log_verbose)
15678 				log_verbose = true;
15679 
15680 			scsi_host_put(lpfc_shost_from_vport(port_iterator));
15681 
15682 			if (log_verbose) {
15683 				spin_unlock_irqrestore(&phba->port_list_lock,
15684 						       iflags);
15685 				return;
15686 			}
15687 		}
15688 	}
15689 	spin_unlock_irqrestore(&phba->port_list_lock, iflags);
15690 
15691 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15692 		return;
15693 
15694 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15695 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15696 	if (!dbg_cnt)
15697 		goto out;
15698 	temp_idx = start_idx;
15699 	if (dbg_cnt >= DBG_LOG_SZ) {
15700 		dbg_cnt = DBG_LOG_SZ;
15701 		temp_idx -= 1;
15702 	} else {
15703 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15704 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15705 		} else {
15706 			if (start_idx < dbg_cnt)
15707 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15708 			else
15709 				start_idx -= dbg_cnt;
15710 		}
15711 	}
15712 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15713 		 start_idx, temp_idx, dbg_cnt);
15714 
15715 	for (i = 0; i < dbg_cnt; i++) {
15716 		if ((start_idx + i) < DBG_LOG_SZ)
15717 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15718 		else
15719 			temp_idx = j++;
15720 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15721 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15722 			 temp_idx,
15723 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15724 			 rem_nsec / 1000,
15725 			 phba->dbg_log[temp_idx].log);
15726 	}
15727 out:
15728 	atomic_set(&phba->dbg_log_cnt, 0);
15729 	atomic_set(&phba->dbg_log_dmping, 0);
15730 }
15731 
15732 __printf(2, 3)
15733 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15734 {
15735 	unsigned int idx;
15736 	va_list args;
15737 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15738 	struct va_format vaf;
15739 
15740 
15741 	va_start(args, fmt);
15742 	if (unlikely(dbg_dmping)) {
15743 		vaf.fmt = fmt;
15744 		vaf.va = &args;
15745 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15746 		va_end(args);
15747 		return;
15748 	}
15749 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15750 		DBG_LOG_SZ;
15751 
15752 	atomic_inc(&phba->dbg_log_cnt);
15753 
15754 	vscnprintf(phba->dbg_log[idx].log,
15755 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15756 	va_end(args);
15757 
15758 	phba->dbg_log[idx].t_ns = local_clock();
15759 }
15760 
15761 /**
15762  * lpfc_exit - lpfc module removal routine
15763  *
15764  * This routine is invoked when the lpfc module is removed from the kernel.
15765  * The special kernel macro module_exit() is used to indicate the role of
15766  * this routine to the kernel as lpfc module exit point.
15767  */
15768 static void __exit
15769 lpfc_exit(void)
15770 {
15771 	misc_deregister(&lpfc_mgmt_dev);
15772 	pci_unregister_driver(&lpfc_driver);
15773 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15774 	fc_release_transport(lpfc_transport_template);
15775 	fc_release_transport(lpfc_vport_transport_template);
15776 	idr_destroy(&lpfc_hba_index);
15777 }
15778 
15779 module_init(lpfc_init);
15780 module_exit(lpfc_exit);
15781 MODULE_LICENSE("GPL");
15782 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15783 MODULE_AUTHOR("Broadcom");
15784 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15785