1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/ctype.h> 34 #include <linux/aer.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/msi.h> 40 #include <linux/irq.h> 41 #include <linux/bitops.h> 42 #include <linux/crash_dump.h> 43 #include <linux/cpu.h> 44 #include <linux/cpuhotplug.h> 45 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_host.h> 49 #include <scsi/scsi_transport_fc.h> 50 #include <scsi/scsi_tcq.h> 51 #include <scsi/fc/fc_fs.h> 52 53 #include "lpfc_hw4.h" 54 #include "lpfc_hw.h" 55 #include "lpfc_sli.h" 56 #include "lpfc_sli4.h" 57 #include "lpfc_nl.h" 58 #include "lpfc_disc.h" 59 #include "lpfc.h" 60 #include "lpfc_scsi.h" 61 #include "lpfc_nvme.h" 62 #include "lpfc_logmsg.h" 63 #include "lpfc_crtn.h" 64 #include "lpfc_vport.h" 65 #include "lpfc_version.h" 66 #include "lpfc_ids.h" 67 68 static enum cpuhp_state lpfc_cpuhp_state; 69 /* Used when mapping IRQ vectors in a driver centric manner */ 70 static uint32_t lpfc_present_cpu; 71 72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 76 static int lpfc_post_rcv_buf(struct lpfc_hba *); 77 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 79 static int lpfc_setup_endian_order(struct lpfc_hba *); 80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 81 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 83 static void lpfc_init_sgl_list(struct lpfc_hba *); 84 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 85 static void lpfc_free_active_sgl(struct lpfc_hba *); 86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 91 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 96 97 static struct scsi_transport_template *lpfc_transport_template = NULL; 98 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 99 static DEFINE_IDR(lpfc_hba_index); 100 #define LPFC_NVMET_BUF_POST 254 101 102 /** 103 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 104 * @phba: pointer to lpfc hba data structure. 105 * 106 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 107 * mailbox command. It retrieves the revision information from the HBA and 108 * collects the Vital Product Data (VPD) about the HBA for preparing the 109 * configuration of the HBA. 110 * 111 * Return codes: 112 * 0 - success. 113 * -ERESTART - requests the SLI layer to reset the HBA and try again. 114 * Any other value - indicates an error. 115 **/ 116 int 117 lpfc_config_port_prep(struct lpfc_hba *phba) 118 { 119 lpfc_vpd_t *vp = &phba->vpd; 120 int i = 0, rc; 121 LPFC_MBOXQ_t *pmb; 122 MAILBOX_t *mb; 123 char *lpfc_vpd_data = NULL; 124 uint16_t offset = 0; 125 static char licensed[56] = 126 "key unlock for use with gnu public licensed code only\0"; 127 static int init_key = 1; 128 129 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 130 if (!pmb) { 131 phba->link_state = LPFC_HBA_ERROR; 132 return -ENOMEM; 133 } 134 135 mb = &pmb->u.mb; 136 phba->link_state = LPFC_INIT_MBX_CMDS; 137 138 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 139 if (init_key) { 140 uint32_t *ptext = (uint32_t *) licensed; 141 142 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 143 *ptext = cpu_to_be32(*ptext); 144 init_key = 0; 145 } 146 147 lpfc_read_nv(phba, pmb); 148 memset((char*)mb->un.varRDnvp.rsvd3, 0, 149 sizeof (mb->un.varRDnvp.rsvd3)); 150 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 151 sizeof (licensed)); 152 153 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 154 155 if (rc != MBX_SUCCESS) { 156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 157 "0324 Config Port initialization " 158 "error, mbxCmd x%x READ_NVPARM, " 159 "mbxStatus x%x\n", 160 mb->mbxCommand, mb->mbxStatus); 161 mempool_free(pmb, phba->mbox_mem_pool); 162 return -ERESTART; 163 } 164 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 165 sizeof(phba->wwnn)); 166 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 167 sizeof(phba->wwpn)); 168 } 169 170 /* 171 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 172 * which was already set in lpfc_get_cfgparam() 173 */ 174 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 175 176 /* Setup and issue mailbox READ REV command */ 177 lpfc_read_rev(phba, pmb); 178 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 179 if (rc != MBX_SUCCESS) { 180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 181 "0439 Adapter failed to init, mbxCmd x%x " 182 "READ_REV, mbxStatus x%x\n", 183 mb->mbxCommand, mb->mbxStatus); 184 mempool_free( pmb, phba->mbox_mem_pool); 185 return -ERESTART; 186 } 187 188 189 /* 190 * The value of rr must be 1 since the driver set the cv field to 1. 191 * This setting requires the FW to set all revision fields. 192 */ 193 if (mb->un.varRdRev.rr == 0) { 194 vp->rev.rBit = 0; 195 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 196 "0440 Adapter failed to init, READ_REV has " 197 "missing revision information.\n"); 198 mempool_free(pmb, phba->mbox_mem_pool); 199 return -ERESTART; 200 } 201 202 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 203 mempool_free(pmb, phba->mbox_mem_pool); 204 return -EINVAL; 205 } 206 207 /* Save information as VPD data */ 208 vp->rev.rBit = 1; 209 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 210 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 211 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 212 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 213 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 214 vp->rev.biuRev = mb->un.varRdRev.biuRev; 215 vp->rev.smRev = mb->un.varRdRev.smRev; 216 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 217 vp->rev.endecRev = mb->un.varRdRev.endecRev; 218 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 219 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 220 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 221 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 222 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 223 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 224 225 /* If the sli feature level is less then 9, we must 226 * tear down all RPIs and VPIs on link down if NPIV 227 * is enabled. 228 */ 229 if (vp->rev.feaLevelHigh < 9) 230 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 231 232 if (lpfc_is_LC_HBA(phba->pcidev->device)) 233 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 234 sizeof (phba->RandomData)); 235 236 /* Get adapter VPD information */ 237 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 238 if (!lpfc_vpd_data) 239 goto out_free_mbox; 240 do { 241 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 242 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 243 244 if (rc != MBX_SUCCESS) { 245 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 246 "0441 VPD not present on adapter, " 247 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 248 mb->mbxCommand, mb->mbxStatus); 249 mb->un.varDmp.word_cnt = 0; 250 } 251 /* dump mem may return a zero when finished or we got a 252 * mailbox error, either way we are done. 253 */ 254 if (mb->un.varDmp.word_cnt == 0) 255 break; 256 257 i = mb->un.varDmp.word_cnt * sizeof(uint32_t); 258 if (offset + i > DMP_VPD_SIZE) 259 i = DMP_VPD_SIZE - offset; 260 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 261 lpfc_vpd_data + offset, i); 262 offset += i; 263 } while (offset < DMP_VPD_SIZE); 264 265 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 266 267 kfree(lpfc_vpd_data); 268 out_free_mbox: 269 mempool_free(pmb, phba->mbox_mem_pool); 270 return 0; 271 } 272 273 /** 274 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 275 * @phba: pointer to lpfc hba data structure. 276 * @pmboxq: pointer to the driver internal queue element for mailbox command. 277 * 278 * This is the completion handler for driver's configuring asynchronous event 279 * mailbox command to the device. If the mailbox command returns successfully, 280 * it will set internal async event support flag to 1; otherwise, it will 281 * set internal async event support flag to 0. 282 **/ 283 static void 284 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 285 { 286 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 287 phba->temp_sensor_support = 1; 288 else 289 phba->temp_sensor_support = 0; 290 mempool_free(pmboxq, phba->mbox_mem_pool); 291 return; 292 } 293 294 /** 295 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 296 * @phba: pointer to lpfc hba data structure. 297 * @pmboxq: pointer to the driver internal queue element for mailbox command. 298 * 299 * This is the completion handler for dump mailbox command for getting 300 * wake up parameters. When this command complete, the response contain 301 * Option rom version of the HBA. This function translate the version number 302 * into a human readable string and store it in OptionROMVersion. 303 **/ 304 static void 305 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 306 { 307 struct prog_id *prg; 308 uint32_t prog_id_word; 309 char dist = ' '; 310 /* character array used for decoding dist type. */ 311 char dist_char[] = "nabx"; 312 313 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 314 mempool_free(pmboxq, phba->mbox_mem_pool); 315 return; 316 } 317 318 prg = (struct prog_id *) &prog_id_word; 319 320 /* word 7 contain option rom version */ 321 prog_id_word = pmboxq->u.mb.un.varWords[7]; 322 323 /* Decode the Option rom version word to a readable string */ 324 if (prg->dist < 4) 325 dist = dist_char[prg->dist]; 326 327 if ((prg->dist == 3) && (prg->num == 0)) 328 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 329 prg->ver, prg->rev, prg->lev); 330 else 331 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 332 prg->ver, prg->rev, prg->lev, 333 dist, prg->num); 334 mempool_free(pmboxq, phba->mbox_mem_pool); 335 return; 336 } 337 338 /** 339 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 340 * cfg_soft_wwnn, cfg_soft_wwpn 341 * @vport: pointer to lpfc vport data structure. 342 * 343 * 344 * Return codes 345 * None. 346 **/ 347 void 348 lpfc_update_vport_wwn(struct lpfc_vport *vport) 349 { 350 uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level; 351 u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0]; 352 353 /* If the soft name exists then update it using the service params */ 354 if (vport->phba->cfg_soft_wwnn) 355 u64_to_wwn(vport->phba->cfg_soft_wwnn, 356 vport->fc_sparam.nodeName.u.wwn); 357 if (vport->phba->cfg_soft_wwpn) 358 u64_to_wwn(vport->phba->cfg_soft_wwpn, 359 vport->fc_sparam.portName.u.wwn); 360 361 /* 362 * If the name is empty or there exists a soft name 363 * then copy the service params name, otherwise use the fc name 364 */ 365 if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn) 366 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 367 sizeof(struct lpfc_name)); 368 else 369 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 370 sizeof(struct lpfc_name)); 371 372 /* 373 * If the port name has changed, then set the Param changes flag 374 * to unreg the login 375 */ 376 if (vport->fc_portname.u.wwn[0] != 0 && 377 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 378 sizeof(struct lpfc_name))) 379 vport->vport_flag |= FAWWPN_PARAM_CHG; 380 381 if (vport->fc_portname.u.wwn[0] == 0 || 382 vport->phba->cfg_soft_wwpn || 383 (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) || 384 vport->vport_flag & FAWWPN_SET) { 385 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 386 sizeof(struct lpfc_name)); 387 vport->vport_flag &= ~FAWWPN_SET; 388 if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) 389 vport->vport_flag |= FAWWPN_SET; 390 } 391 else 392 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 393 sizeof(struct lpfc_name)); 394 } 395 396 /** 397 * lpfc_config_port_post - Perform lpfc initialization after config port 398 * @phba: pointer to lpfc hba data structure. 399 * 400 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 401 * command call. It performs all internal resource and state setups on the 402 * port: post IOCB buffers, enable appropriate host interrupt attentions, 403 * ELS ring timers, etc. 404 * 405 * Return codes 406 * 0 - success. 407 * Any other value - error. 408 **/ 409 int 410 lpfc_config_port_post(struct lpfc_hba *phba) 411 { 412 struct lpfc_vport *vport = phba->pport; 413 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 414 LPFC_MBOXQ_t *pmb; 415 MAILBOX_t *mb; 416 struct lpfc_dmabuf *mp; 417 struct lpfc_sli *psli = &phba->sli; 418 uint32_t status, timeout; 419 int i, j; 420 int rc; 421 422 spin_lock_irq(&phba->hbalock); 423 /* 424 * If the Config port completed correctly the HBA is not 425 * over heated any more. 426 */ 427 if (phba->over_temp_state == HBA_OVER_TEMP) 428 phba->over_temp_state = HBA_NORMAL_TEMP; 429 spin_unlock_irq(&phba->hbalock); 430 431 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 432 if (!pmb) { 433 phba->link_state = LPFC_HBA_ERROR; 434 return -ENOMEM; 435 } 436 mb = &pmb->u.mb; 437 438 /* Get login parameters for NID. */ 439 rc = lpfc_read_sparam(phba, pmb, 0); 440 if (rc) { 441 mempool_free(pmb, phba->mbox_mem_pool); 442 return -ENOMEM; 443 } 444 445 pmb->vport = vport; 446 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 448 "0448 Adapter failed init, mbxCmd x%x " 449 "READ_SPARM mbxStatus x%x\n", 450 mb->mbxCommand, mb->mbxStatus); 451 phba->link_state = LPFC_HBA_ERROR; 452 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 453 mempool_free(pmb, phba->mbox_mem_pool); 454 lpfc_mbuf_free(phba, mp->virt, mp->phys); 455 kfree(mp); 456 return -EIO; 457 } 458 459 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 460 461 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 462 lpfc_mbuf_free(phba, mp->virt, mp->phys); 463 kfree(mp); 464 pmb->ctx_buf = NULL; 465 lpfc_update_vport_wwn(vport); 466 467 /* Update the fc_host data structures with new wwn. */ 468 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 469 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 470 fc_host_max_npiv_vports(shost) = phba->max_vpi; 471 472 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 473 /* This should be consolidated into parse_vpd ? - mr */ 474 if (phba->SerialNumber[0] == 0) { 475 uint8_t *outptr; 476 477 outptr = &vport->fc_nodename.u.s.IEEE[0]; 478 for (i = 0; i < 12; i++) { 479 status = *outptr++; 480 j = ((status & 0xf0) >> 4); 481 if (j <= 9) 482 phba->SerialNumber[i] = 483 (char)((uint8_t) 0x30 + (uint8_t) j); 484 else 485 phba->SerialNumber[i] = 486 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 487 i++; 488 j = (status & 0xf); 489 if (j <= 9) 490 phba->SerialNumber[i] = 491 (char)((uint8_t) 0x30 + (uint8_t) j); 492 else 493 phba->SerialNumber[i] = 494 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 495 } 496 } 497 498 lpfc_read_config(phba, pmb); 499 pmb->vport = vport; 500 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 502 "0453 Adapter failed to init, mbxCmd x%x " 503 "READ_CONFIG, mbxStatus x%x\n", 504 mb->mbxCommand, mb->mbxStatus); 505 phba->link_state = LPFC_HBA_ERROR; 506 mempool_free( pmb, phba->mbox_mem_pool); 507 return -EIO; 508 } 509 510 /* Check if the port is disabled */ 511 lpfc_sli_read_link_ste(phba); 512 513 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 514 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 515 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 516 "3359 HBA queue depth changed from %d to %d\n", 517 phba->cfg_hba_queue_depth, 518 mb->un.varRdConfig.max_xri); 519 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 520 } 521 522 phba->lmt = mb->un.varRdConfig.lmt; 523 524 /* Get the default values for Model Name and Description */ 525 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 526 527 phba->link_state = LPFC_LINK_DOWN; 528 529 /* Only process IOCBs on ELS ring till hba_state is READY */ 530 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 531 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 532 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 533 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 534 535 /* Post receive buffers for desired rings */ 536 if (phba->sli_rev != 3) 537 lpfc_post_rcv_buf(phba); 538 539 /* 540 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 541 */ 542 if (phba->intr_type == MSIX) { 543 rc = lpfc_config_msi(phba, pmb); 544 if (rc) { 545 mempool_free(pmb, phba->mbox_mem_pool); 546 return -EIO; 547 } 548 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 549 if (rc != MBX_SUCCESS) { 550 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 551 "0352 Config MSI mailbox command " 552 "failed, mbxCmd x%x, mbxStatus x%x\n", 553 pmb->u.mb.mbxCommand, 554 pmb->u.mb.mbxStatus); 555 mempool_free(pmb, phba->mbox_mem_pool); 556 return -EIO; 557 } 558 } 559 560 spin_lock_irq(&phba->hbalock); 561 /* Initialize ERATT handling flag */ 562 phba->hba_flag &= ~HBA_ERATT_HANDLED; 563 564 /* Enable appropriate host interrupts */ 565 if (lpfc_readl(phba->HCregaddr, &status)) { 566 spin_unlock_irq(&phba->hbalock); 567 return -EIO; 568 } 569 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 570 if (psli->num_rings > 0) 571 status |= HC_R0INT_ENA; 572 if (psli->num_rings > 1) 573 status |= HC_R1INT_ENA; 574 if (psli->num_rings > 2) 575 status |= HC_R2INT_ENA; 576 if (psli->num_rings > 3) 577 status |= HC_R3INT_ENA; 578 579 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 580 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 581 status &= ~(HC_R0INT_ENA); 582 583 writel(status, phba->HCregaddr); 584 readl(phba->HCregaddr); /* flush */ 585 spin_unlock_irq(&phba->hbalock); 586 587 /* Set up ring-0 (ELS) timer */ 588 timeout = phba->fc_ratov * 2; 589 mod_timer(&vport->els_tmofunc, 590 jiffies + msecs_to_jiffies(1000 * timeout)); 591 /* Set up heart beat (HB) timer */ 592 mod_timer(&phba->hb_tmofunc, 593 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 594 phba->hb_outstanding = 0; 595 phba->last_completion_time = jiffies; 596 /* Set up error attention (ERATT) polling timer */ 597 mod_timer(&phba->eratt_poll, 598 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 599 600 if (phba->hba_flag & LINK_DISABLED) { 601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 602 "2598 Adapter Link is disabled.\n"); 603 lpfc_down_link(phba, pmb); 604 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 605 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 606 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 607 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 608 "2599 Adapter failed to issue DOWN_LINK" 609 " mbox command rc 0x%x\n", rc); 610 611 mempool_free(pmb, phba->mbox_mem_pool); 612 return -EIO; 613 } 614 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 615 mempool_free(pmb, phba->mbox_mem_pool); 616 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 617 if (rc) 618 return rc; 619 } 620 /* MBOX buffer will be freed in mbox compl */ 621 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 622 if (!pmb) { 623 phba->link_state = LPFC_HBA_ERROR; 624 return -ENOMEM; 625 } 626 627 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 628 pmb->mbox_cmpl = lpfc_config_async_cmpl; 629 pmb->vport = phba->pport; 630 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 631 632 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 633 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 634 "0456 Adapter failed to issue " 635 "ASYNCEVT_ENABLE mbox status x%x\n", 636 rc); 637 mempool_free(pmb, phba->mbox_mem_pool); 638 } 639 640 /* Get Option rom version */ 641 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 642 if (!pmb) { 643 phba->link_state = LPFC_HBA_ERROR; 644 return -ENOMEM; 645 } 646 647 lpfc_dump_wakeup_param(phba, pmb); 648 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 649 pmb->vport = phba->pport; 650 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 651 652 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 653 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 654 "0435 Adapter failed " 655 "to get Option ROM version status x%x\n", rc); 656 mempool_free(pmb, phba->mbox_mem_pool); 657 } 658 659 return 0; 660 } 661 662 /** 663 * lpfc_hba_init_link - Initialize the FC link 664 * @phba: pointer to lpfc hba data structure. 665 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 666 * 667 * This routine will issue the INIT_LINK mailbox command call. 668 * It is available to other drivers through the lpfc_hba data 669 * structure for use as a delayed link up mechanism with the 670 * module parameter lpfc_suppress_link_up. 671 * 672 * Return code 673 * 0 - success 674 * Any other value - error 675 **/ 676 static int 677 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 678 { 679 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 680 } 681 682 /** 683 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 684 * @phba: pointer to lpfc hba data structure. 685 * @fc_topology: desired fc topology. 686 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 687 * 688 * This routine will issue the INIT_LINK mailbox command call. 689 * It is available to other drivers through the lpfc_hba data 690 * structure for use as a delayed link up mechanism with the 691 * module parameter lpfc_suppress_link_up. 692 * 693 * Return code 694 * 0 - success 695 * Any other value - error 696 **/ 697 int 698 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 699 uint32_t flag) 700 { 701 struct lpfc_vport *vport = phba->pport; 702 LPFC_MBOXQ_t *pmb; 703 MAILBOX_t *mb; 704 int rc; 705 706 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 707 if (!pmb) { 708 phba->link_state = LPFC_HBA_ERROR; 709 return -ENOMEM; 710 } 711 mb = &pmb->u.mb; 712 pmb->vport = vport; 713 714 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 715 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 716 !(phba->lmt & LMT_1Gb)) || 717 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 718 !(phba->lmt & LMT_2Gb)) || 719 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 720 !(phba->lmt & LMT_4Gb)) || 721 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 722 !(phba->lmt & LMT_8Gb)) || 723 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 724 !(phba->lmt & LMT_10Gb)) || 725 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 726 !(phba->lmt & LMT_16Gb)) || 727 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 728 !(phba->lmt & LMT_32Gb)) || 729 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 730 !(phba->lmt & LMT_64Gb))) { 731 /* Reset link speed to auto */ 732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 733 "1302 Invalid speed for this board:%d " 734 "Reset link speed to auto.\n", 735 phba->cfg_link_speed); 736 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 737 } 738 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 739 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 740 if (phba->sli_rev < LPFC_SLI_REV4) 741 lpfc_set_loopback_flag(phba); 742 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 743 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 744 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 745 "0498 Adapter failed to init, mbxCmd x%x " 746 "INIT_LINK, mbxStatus x%x\n", 747 mb->mbxCommand, mb->mbxStatus); 748 if (phba->sli_rev <= LPFC_SLI_REV3) { 749 /* Clear all interrupt enable conditions */ 750 writel(0, phba->HCregaddr); 751 readl(phba->HCregaddr); /* flush */ 752 /* Clear all pending interrupts */ 753 writel(0xffffffff, phba->HAregaddr); 754 readl(phba->HAregaddr); /* flush */ 755 } 756 phba->link_state = LPFC_HBA_ERROR; 757 if (rc != MBX_BUSY || flag == MBX_POLL) 758 mempool_free(pmb, phba->mbox_mem_pool); 759 return -EIO; 760 } 761 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 762 if (flag == MBX_POLL) 763 mempool_free(pmb, phba->mbox_mem_pool); 764 765 return 0; 766 } 767 768 /** 769 * lpfc_hba_down_link - this routine downs the FC link 770 * @phba: pointer to lpfc hba data structure. 771 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 772 * 773 * This routine will issue the DOWN_LINK mailbox command call. 774 * It is available to other drivers through the lpfc_hba data 775 * structure for use to stop the link. 776 * 777 * Return code 778 * 0 - success 779 * Any other value - error 780 **/ 781 static int 782 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 783 { 784 LPFC_MBOXQ_t *pmb; 785 int rc; 786 787 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 788 if (!pmb) { 789 phba->link_state = LPFC_HBA_ERROR; 790 return -ENOMEM; 791 } 792 793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 794 "0491 Adapter Link is disabled.\n"); 795 lpfc_down_link(phba, pmb); 796 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 797 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 798 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 800 "2522 Adapter failed to issue DOWN_LINK" 801 " mbox command rc 0x%x\n", rc); 802 803 mempool_free(pmb, phba->mbox_mem_pool); 804 return -EIO; 805 } 806 if (flag == MBX_POLL) 807 mempool_free(pmb, phba->mbox_mem_pool); 808 809 return 0; 810 } 811 812 /** 813 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 814 * @phba: pointer to lpfc HBA data structure. 815 * 816 * This routine will do LPFC uninitialization before the HBA is reset when 817 * bringing down the SLI Layer. 818 * 819 * Return codes 820 * 0 - success. 821 * Any other value - error. 822 **/ 823 int 824 lpfc_hba_down_prep(struct lpfc_hba *phba) 825 { 826 struct lpfc_vport **vports; 827 int i; 828 829 if (phba->sli_rev <= LPFC_SLI_REV3) { 830 /* Disable interrupts */ 831 writel(0, phba->HCregaddr); 832 readl(phba->HCregaddr); /* flush */ 833 } 834 835 if (phba->pport->load_flag & FC_UNLOADING) 836 lpfc_cleanup_discovery_resources(phba->pport); 837 else { 838 vports = lpfc_create_vport_work_array(phba); 839 if (vports != NULL) 840 for (i = 0; i <= phba->max_vports && 841 vports[i] != NULL; i++) 842 lpfc_cleanup_discovery_resources(vports[i]); 843 lpfc_destroy_vport_work_array(phba, vports); 844 } 845 return 0; 846 } 847 848 /** 849 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 850 * rspiocb which got deferred 851 * 852 * @phba: pointer to lpfc HBA data structure. 853 * 854 * This routine will cleanup completed slow path events after HBA is reset 855 * when bringing down the SLI Layer. 856 * 857 * 858 * Return codes 859 * void. 860 **/ 861 static void 862 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 863 { 864 struct lpfc_iocbq *rspiocbq; 865 struct hbq_dmabuf *dmabuf; 866 struct lpfc_cq_event *cq_event; 867 868 spin_lock_irq(&phba->hbalock); 869 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 870 spin_unlock_irq(&phba->hbalock); 871 872 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 873 /* Get the response iocb from the head of work queue */ 874 spin_lock_irq(&phba->hbalock); 875 list_remove_head(&phba->sli4_hba.sp_queue_event, 876 cq_event, struct lpfc_cq_event, list); 877 spin_unlock_irq(&phba->hbalock); 878 879 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 880 case CQE_CODE_COMPL_WQE: 881 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 882 cq_event); 883 lpfc_sli_release_iocbq(phba, rspiocbq); 884 break; 885 case CQE_CODE_RECEIVE: 886 case CQE_CODE_RECEIVE_V1: 887 dmabuf = container_of(cq_event, struct hbq_dmabuf, 888 cq_event); 889 lpfc_in_buf_free(phba, &dmabuf->dbuf); 890 } 891 } 892 } 893 894 /** 895 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 896 * @phba: pointer to lpfc HBA data structure. 897 * 898 * This routine will cleanup posted ELS buffers after the HBA is reset 899 * when bringing down the SLI Layer. 900 * 901 * 902 * Return codes 903 * void. 904 **/ 905 static void 906 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 907 { 908 struct lpfc_sli *psli = &phba->sli; 909 struct lpfc_sli_ring *pring; 910 struct lpfc_dmabuf *mp, *next_mp; 911 LIST_HEAD(buflist); 912 int count; 913 914 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 915 lpfc_sli_hbqbuf_free_all(phba); 916 else { 917 /* Cleanup preposted buffers on the ELS ring */ 918 pring = &psli->sli3_ring[LPFC_ELS_RING]; 919 spin_lock_irq(&phba->hbalock); 920 list_splice_init(&pring->postbufq, &buflist); 921 spin_unlock_irq(&phba->hbalock); 922 923 count = 0; 924 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 925 list_del(&mp->list); 926 count++; 927 lpfc_mbuf_free(phba, mp->virt, mp->phys); 928 kfree(mp); 929 } 930 931 spin_lock_irq(&phba->hbalock); 932 pring->postbufq_cnt -= count; 933 spin_unlock_irq(&phba->hbalock); 934 } 935 } 936 937 /** 938 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 939 * @phba: pointer to lpfc HBA data structure. 940 * 941 * This routine will cleanup the txcmplq after the HBA is reset when bringing 942 * down the SLI Layer. 943 * 944 * Return codes 945 * void 946 **/ 947 static void 948 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 949 { 950 struct lpfc_sli *psli = &phba->sli; 951 struct lpfc_queue *qp = NULL; 952 struct lpfc_sli_ring *pring; 953 LIST_HEAD(completions); 954 int i; 955 struct lpfc_iocbq *piocb, *next_iocb; 956 957 if (phba->sli_rev != LPFC_SLI_REV4) { 958 for (i = 0; i < psli->num_rings; i++) { 959 pring = &psli->sli3_ring[i]; 960 spin_lock_irq(&phba->hbalock); 961 /* At this point in time the HBA is either reset or DOA 962 * Nothing should be on txcmplq as it will 963 * NEVER complete. 964 */ 965 list_splice_init(&pring->txcmplq, &completions); 966 pring->txcmplq_cnt = 0; 967 spin_unlock_irq(&phba->hbalock); 968 969 lpfc_sli_abort_iocb_ring(phba, pring); 970 } 971 /* Cancel all the IOCBs from the completions list */ 972 lpfc_sli_cancel_iocbs(phba, &completions, 973 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 974 return; 975 } 976 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 977 pring = qp->pring; 978 if (!pring) 979 continue; 980 spin_lock_irq(&pring->ring_lock); 981 list_for_each_entry_safe(piocb, next_iocb, 982 &pring->txcmplq, list) 983 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 984 list_splice_init(&pring->txcmplq, &completions); 985 pring->txcmplq_cnt = 0; 986 spin_unlock_irq(&pring->ring_lock); 987 lpfc_sli_abort_iocb_ring(phba, pring); 988 } 989 /* Cancel all the IOCBs from the completions list */ 990 lpfc_sli_cancel_iocbs(phba, &completions, 991 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 992 } 993 994 /** 995 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 996 * @phba: pointer to lpfc HBA data structure. 997 * 998 * This routine will do uninitialization after the HBA is reset when bring 999 * down the SLI Layer. 1000 * 1001 * Return codes 1002 * 0 - success. 1003 * Any other value - error. 1004 **/ 1005 static int 1006 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1007 { 1008 lpfc_hba_free_post_buf(phba); 1009 lpfc_hba_clean_txcmplq(phba); 1010 return 0; 1011 } 1012 1013 /** 1014 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1015 * @phba: pointer to lpfc HBA data structure. 1016 * 1017 * This routine will do uninitialization after the HBA is reset when bring 1018 * down the SLI Layer. 1019 * 1020 * Return codes 1021 * 0 - success. 1022 * Any other value - error. 1023 **/ 1024 static int 1025 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1026 { 1027 struct lpfc_io_buf *psb, *psb_next; 1028 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1029 struct lpfc_sli4_hdw_queue *qp; 1030 LIST_HEAD(aborts); 1031 LIST_HEAD(nvme_aborts); 1032 LIST_HEAD(nvmet_aborts); 1033 struct lpfc_sglq *sglq_entry = NULL; 1034 int cnt, idx; 1035 1036 1037 lpfc_sli_hbqbuf_free_all(phba); 1038 lpfc_hba_clean_txcmplq(phba); 1039 1040 /* At this point in time the HBA is either reset or DOA. Either 1041 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1042 * on the lpfc_els_sgl_list so that it can either be freed if the 1043 * driver is unloading or reposted if the driver is restarting 1044 * the port. 1045 */ 1046 spin_lock_irq(&phba->hbalock); /* required for lpfc_els_sgl_list and */ 1047 /* scsl_buf_list */ 1048 /* sgl_list_lock required because worker thread uses this 1049 * list. 1050 */ 1051 spin_lock(&phba->sli4_hba.sgl_list_lock); 1052 list_for_each_entry(sglq_entry, 1053 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1054 sglq_entry->state = SGL_FREED; 1055 1056 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1057 &phba->sli4_hba.lpfc_els_sgl_list); 1058 1059 1060 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1061 1062 /* abts_xxxx_buf_list_lock required because worker thread uses this 1063 * list. 1064 */ 1065 cnt = 0; 1066 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1067 qp = &phba->sli4_hba.hdwq[idx]; 1068 1069 spin_lock(&qp->abts_io_buf_list_lock); 1070 list_splice_init(&qp->lpfc_abts_io_buf_list, 1071 &aborts); 1072 1073 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1074 psb->pCmd = NULL; 1075 psb->status = IOSTAT_SUCCESS; 1076 cnt++; 1077 } 1078 spin_lock(&qp->io_buf_list_put_lock); 1079 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1080 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1081 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1082 qp->abts_scsi_io_bufs = 0; 1083 qp->abts_nvme_io_bufs = 0; 1084 spin_unlock(&qp->io_buf_list_put_lock); 1085 spin_unlock(&qp->abts_io_buf_list_lock); 1086 } 1087 spin_unlock_irq(&phba->hbalock); 1088 1089 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1090 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1091 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1092 &nvmet_aborts); 1093 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1094 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1095 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1096 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1097 } 1098 } 1099 1100 lpfc_sli4_free_sp_events(phba); 1101 return cnt; 1102 } 1103 1104 /** 1105 * lpfc_hba_down_post - Wrapper func for hba down post routine 1106 * @phba: pointer to lpfc HBA data structure. 1107 * 1108 * This routine wraps the actual SLI3 or SLI4 routine for performing 1109 * uninitialization after the HBA is reset when bring down the SLI Layer. 1110 * 1111 * Return codes 1112 * 0 - success. 1113 * Any other value - error. 1114 **/ 1115 int 1116 lpfc_hba_down_post(struct lpfc_hba *phba) 1117 { 1118 return (*phba->lpfc_hba_down_post)(phba); 1119 } 1120 1121 /** 1122 * lpfc_hb_timeout - The HBA-timer timeout handler 1123 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1124 * 1125 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1126 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1127 * work-port-events bitmap and the worker thread is notified. This timeout 1128 * event will be used by the worker thread to invoke the actual timeout 1129 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1130 * be performed in the timeout handler and the HBA timeout event bit shall 1131 * be cleared by the worker thread after it has taken the event bitmap out. 1132 **/ 1133 static void 1134 lpfc_hb_timeout(struct timer_list *t) 1135 { 1136 struct lpfc_hba *phba; 1137 uint32_t tmo_posted; 1138 unsigned long iflag; 1139 1140 phba = from_timer(phba, t, hb_tmofunc); 1141 1142 /* Check for heart beat timeout conditions */ 1143 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1144 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1145 if (!tmo_posted) 1146 phba->pport->work_port_events |= WORKER_HB_TMO; 1147 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1148 1149 /* Tell the worker thread there is work to do */ 1150 if (!tmo_posted) 1151 lpfc_worker_wake_up(phba); 1152 return; 1153 } 1154 1155 /** 1156 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1157 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1158 * 1159 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1160 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1161 * work-port-events bitmap and the worker thread is notified. This timeout 1162 * event will be used by the worker thread to invoke the actual timeout 1163 * handler routine, lpfc_rrq_handler. Any periodical operations will 1164 * be performed in the timeout handler and the RRQ timeout event bit shall 1165 * be cleared by the worker thread after it has taken the event bitmap out. 1166 **/ 1167 static void 1168 lpfc_rrq_timeout(struct timer_list *t) 1169 { 1170 struct lpfc_hba *phba; 1171 unsigned long iflag; 1172 1173 phba = from_timer(phba, t, rrq_tmr); 1174 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1175 if (!(phba->pport->load_flag & FC_UNLOADING)) 1176 phba->hba_flag |= HBA_RRQ_ACTIVE; 1177 else 1178 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1179 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1180 1181 if (!(phba->pport->load_flag & FC_UNLOADING)) 1182 lpfc_worker_wake_up(phba); 1183 } 1184 1185 /** 1186 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1187 * @phba: pointer to lpfc hba data structure. 1188 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1189 * 1190 * This is the callback function to the lpfc heart-beat mailbox command. 1191 * If configured, the lpfc driver issues the heart-beat mailbox command to 1192 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1193 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1194 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1195 * heart-beat outstanding state. Once the mailbox command comes back and 1196 * no error conditions detected, the heart-beat mailbox command timer is 1197 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1198 * state is cleared for the next heart-beat. If the timer expired with the 1199 * heart-beat outstanding state set, the driver will put the HBA offline. 1200 **/ 1201 static void 1202 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1203 { 1204 unsigned long drvr_flag; 1205 1206 spin_lock_irqsave(&phba->hbalock, drvr_flag); 1207 phba->hb_outstanding = 0; 1208 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 1209 1210 /* Check and reset heart-beat timer is necessary */ 1211 mempool_free(pmboxq, phba->mbox_mem_pool); 1212 if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) && 1213 !(phba->link_state == LPFC_HBA_ERROR) && 1214 !(phba->pport->load_flag & FC_UNLOADING)) 1215 mod_timer(&phba->hb_tmofunc, 1216 jiffies + 1217 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1218 return; 1219 } 1220 1221 /* 1222 * lpfc_idle_stat_delay_work - idle_stat tracking 1223 * 1224 * This routine tracks per-cq idle_stat and determines polling decisions. 1225 * 1226 * Return codes: 1227 * None 1228 **/ 1229 static void 1230 lpfc_idle_stat_delay_work(struct work_struct *work) 1231 { 1232 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1233 struct lpfc_hba, 1234 idle_stat_delay_work); 1235 struct lpfc_queue *cq; 1236 struct lpfc_sli4_hdw_queue *hdwq; 1237 struct lpfc_idle_stat *idle_stat; 1238 u32 i, idle_percent; 1239 u64 wall, wall_idle, diff_wall, diff_idle, busy_time; 1240 1241 if (phba->pport->load_flag & FC_UNLOADING) 1242 return; 1243 1244 if (phba->link_state == LPFC_HBA_ERROR || 1245 phba->pport->fc_flag & FC_OFFLINE_MODE) 1246 goto requeue; 1247 1248 for_each_present_cpu(i) { 1249 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 1250 cq = hdwq->io_cq; 1251 1252 /* Skip if we've already handled this cq's primary CPU */ 1253 if (cq->chann != i) 1254 continue; 1255 1256 idle_stat = &phba->sli4_hba.idle_stat[i]; 1257 1258 /* get_cpu_idle_time returns values as running counters. Thus, 1259 * to know the amount for this period, the prior counter values 1260 * need to be subtracted from the current counter values. 1261 * From there, the idle time stat can be calculated as a 1262 * percentage of 100 - the sum of the other consumption times. 1263 */ 1264 wall_idle = get_cpu_idle_time(i, &wall, 1); 1265 diff_idle = wall_idle - idle_stat->prev_idle; 1266 diff_wall = wall - idle_stat->prev_wall; 1267 1268 if (diff_wall <= diff_idle) 1269 busy_time = 0; 1270 else 1271 busy_time = diff_wall - diff_idle; 1272 1273 idle_percent = div64_u64(100 * busy_time, diff_wall); 1274 idle_percent = 100 - idle_percent; 1275 1276 if (idle_percent < 15) 1277 cq->poll_mode = LPFC_QUEUE_WORK; 1278 else 1279 cq->poll_mode = LPFC_IRQ_POLL; 1280 1281 idle_stat->prev_idle = wall_idle; 1282 idle_stat->prev_wall = wall; 1283 } 1284 1285 requeue: 1286 schedule_delayed_work(&phba->idle_stat_delay_work, 1287 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 1288 } 1289 1290 static void 1291 lpfc_hb_eq_delay_work(struct work_struct *work) 1292 { 1293 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1294 struct lpfc_hba, eq_delay_work); 1295 struct lpfc_eq_intr_info *eqi, *eqi_new; 1296 struct lpfc_queue *eq, *eq_next; 1297 unsigned char *ena_delay = NULL; 1298 uint32_t usdelay; 1299 int i; 1300 1301 if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING) 1302 return; 1303 1304 if (phba->link_state == LPFC_HBA_ERROR || 1305 phba->pport->fc_flag & FC_OFFLINE_MODE) 1306 goto requeue; 1307 1308 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1309 GFP_KERNEL); 1310 if (!ena_delay) 1311 goto requeue; 1312 1313 for (i = 0; i < phba->cfg_irq_chann; i++) { 1314 /* Get the EQ corresponding to the IRQ vector */ 1315 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1316 if (!eq) 1317 continue; 1318 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1319 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1320 ena_delay[eq->last_cpu] = 1; 1321 } 1322 } 1323 1324 for_each_present_cpu(i) { 1325 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1326 if (ena_delay[i]) { 1327 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1328 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1329 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1330 } else { 1331 usdelay = 0; 1332 } 1333 1334 eqi->icnt = 0; 1335 1336 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1337 if (unlikely(eq->last_cpu != i)) { 1338 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1339 eq->last_cpu); 1340 list_move_tail(&eq->cpu_list, &eqi_new->list); 1341 continue; 1342 } 1343 if (usdelay != eq->q_mode) 1344 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1345 usdelay); 1346 } 1347 } 1348 1349 kfree(ena_delay); 1350 1351 requeue: 1352 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1353 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1354 } 1355 1356 /** 1357 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1358 * @phba: pointer to lpfc hba data structure. 1359 * 1360 * For each heartbeat, this routine does some heuristic methods to adjust 1361 * XRI distribution. The goal is to fully utilize free XRIs. 1362 **/ 1363 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1364 { 1365 u32 i; 1366 u32 hwq_count; 1367 1368 hwq_count = phba->cfg_hdw_queue; 1369 for (i = 0; i < hwq_count; i++) { 1370 /* Adjust XRIs in private pool */ 1371 lpfc_adjust_pvt_pool_count(phba, i); 1372 1373 /* Adjust high watermark */ 1374 lpfc_adjust_high_watermark(phba, i); 1375 1376 #ifdef LPFC_MXP_STAT 1377 /* Snapshot pbl, pvt and busy count */ 1378 lpfc_snapshot_mxp(phba, i); 1379 #endif 1380 } 1381 } 1382 1383 /** 1384 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1385 * @phba: pointer to lpfc hba data structure. 1386 * 1387 * This is the actual HBA-timer timeout handler to be invoked by the worker 1388 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1389 * handler performs any periodic operations needed for the device. If such 1390 * periodic event has already been attended to either in the interrupt handler 1391 * or by processing slow-ring or fast-ring events within the HBA-timer 1392 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1393 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1394 * is configured and there is no heart-beat mailbox command outstanding, a 1395 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1396 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1397 * to offline. 1398 **/ 1399 void 1400 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1401 { 1402 struct lpfc_vport **vports; 1403 LPFC_MBOXQ_t *pmboxq; 1404 struct lpfc_dmabuf *buf_ptr; 1405 int retval, i; 1406 struct lpfc_sli *psli = &phba->sli; 1407 LIST_HEAD(completions); 1408 1409 if (phba->cfg_xri_rebalancing) { 1410 /* Multi-XRI pools handler */ 1411 lpfc_hb_mxp_handler(phba); 1412 } 1413 1414 vports = lpfc_create_vport_work_array(phba); 1415 if (vports != NULL) 1416 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1417 lpfc_rcv_seq_check_edtov(vports[i]); 1418 lpfc_fdmi_change_check(vports[i]); 1419 } 1420 lpfc_destroy_vport_work_array(phba, vports); 1421 1422 if ((phba->link_state == LPFC_HBA_ERROR) || 1423 (phba->pport->load_flag & FC_UNLOADING) || 1424 (phba->pport->fc_flag & FC_OFFLINE_MODE)) 1425 return; 1426 1427 spin_lock_irq(&phba->pport->work_port_lock); 1428 1429 if (time_after(phba->last_completion_time + 1430 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL), 1431 jiffies)) { 1432 spin_unlock_irq(&phba->pport->work_port_lock); 1433 if (!phba->hb_outstanding) 1434 mod_timer(&phba->hb_tmofunc, 1435 jiffies + 1436 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1437 else 1438 mod_timer(&phba->hb_tmofunc, 1439 jiffies + 1440 msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT)); 1441 return; 1442 } 1443 spin_unlock_irq(&phba->pport->work_port_lock); 1444 1445 if (phba->elsbuf_cnt && 1446 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1447 spin_lock_irq(&phba->hbalock); 1448 list_splice_init(&phba->elsbuf, &completions); 1449 phba->elsbuf_cnt = 0; 1450 phba->elsbuf_prev_cnt = 0; 1451 spin_unlock_irq(&phba->hbalock); 1452 1453 while (!list_empty(&completions)) { 1454 list_remove_head(&completions, buf_ptr, 1455 struct lpfc_dmabuf, list); 1456 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1457 kfree(buf_ptr); 1458 } 1459 } 1460 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1461 1462 /* If there is no heart beat outstanding, issue a heartbeat command */ 1463 if (phba->cfg_enable_hba_heartbeat) { 1464 if (!phba->hb_outstanding) { 1465 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1466 (list_empty(&psli->mboxq))) { 1467 pmboxq = mempool_alloc(phba->mbox_mem_pool, 1468 GFP_KERNEL); 1469 if (!pmboxq) { 1470 mod_timer(&phba->hb_tmofunc, 1471 jiffies + 1472 msecs_to_jiffies(1000 * 1473 LPFC_HB_MBOX_INTERVAL)); 1474 return; 1475 } 1476 1477 lpfc_heart_beat(phba, pmboxq); 1478 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1479 pmboxq->vport = phba->pport; 1480 retval = lpfc_sli_issue_mbox(phba, pmboxq, 1481 MBX_NOWAIT); 1482 1483 if (retval != MBX_BUSY && 1484 retval != MBX_SUCCESS) { 1485 mempool_free(pmboxq, 1486 phba->mbox_mem_pool); 1487 mod_timer(&phba->hb_tmofunc, 1488 jiffies + 1489 msecs_to_jiffies(1000 * 1490 LPFC_HB_MBOX_INTERVAL)); 1491 return; 1492 } 1493 phba->skipped_hb = 0; 1494 phba->hb_outstanding = 1; 1495 } else if (time_before_eq(phba->last_completion_time, 1496 phba->skipped_hb)) { 1497 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1498 "2857 Last completion time not " 1499 " updated in %d ms\n", 1500 jiffies_to_msecs(jiffies 1501 - phba->last_completion_time)); 1502 } else 1503 phba->skipped_hb = jiffies; 1504 1505 mod_timer(&phba->hb_tmofunc, 1506 jiffies + 1507 msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT)); 1508 return; 1509 } else { 1510 /* 1511 * If heart beat timeout called with hb_outstanding set 1512 * we need to give the hb mailbox cmd a chance to 1513 * complete or TMO. 1514 */ 1515 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1516 "0459 Adapter heartbeat still out" 1517 "standing:last compl time was %d ms.\n", 1518 jiffies_to_msecs(jiffies 1519 - phba->last_completion_time)); 1520 mod_timer(&phba->hb_tmofunc, 1521 jiffies + 1522 msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT)); 1523 } 1524 } else { 1525 mod_timer(&phba->hb_tmofunc, 1526 jiffies + 1527 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1528 } 1529 } 1530 1531 /** 1532 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1533 * @phba: pointer to lpfc hba data structure. 1534 * 1535 * This routine is called to bring the HBA offline when HBA hardware error 1536 * other than Port Error 6 has been detected. 1537 **/ 1538 static void 1539 lpfc_offline_eratt(struct lpfc_hba *phba) 1540 { 1541 struct lpfc_sli *psli = &phba->sli; 1542 1543 spin_lock_irq(&phba->hbalock); 1544 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1545 spin_unlock_irq(&phba->hbalock); 1546 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1547 1548 lpfc_offline(phba); 1549 lpfc_reset_barrier(phba); 1550 spin_lock_irq(&phba->hbalock); 1551 lpfc_sli_brdreset(phba); 1552 spin_unlock_irq(&phba->hbalock); 1553 lpfc_hba_down_post(phba); 1554 lpfc_sli_brdready(phba, HS_MBRDY); 1555 lpfc_unblock_mgmt_io(phba); 1556 phba->link_state = LPFC_HBA_ERROR; 1557 return; 1558 } 1559 1560 /** 1561 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1562 * @phba: pointer to lpfc hba data structure. 1563 * 1564 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1565 * other than Port Error 6 has been detected. 1566 **/ 1567 void 1568 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1569 { 1570 spin_lock_irq(&phba->hbalock); 1571 phba->link_state = LPFC_HBA_ERROR; 1572 spin_unlock_irq(&phba->hbalock); 1573 1574 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1575 lpfc_sli_flush_io_rings(phba); 1576 lpfc_offline(phba); 1577 lpfc_hba_down_post(phba); 1578 lpfc_unblock_mgmt_io(phba); 1579 } 1580 1581 /** 1582 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1583 * @phba: pointer to lpfc hba data structure. 1584 * 1585 * This routine is invoked to handle the deferred HBA hardware error 1586 * conditions. This type of error is indicated by HBA by setting ER1 1587 * and another ER bit in the host status register. The driver will 1588 * wait until the ER1 bit clears before handling the error condition. 1589 **/ 1590 static void 1591 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1592 { 1593 uint32_t old_host_status = phba->work_hs; 1594 struct lpfc_sli *psli = &phba->sli; 1595 1596 /* If the pci channel is offline, ignore possible errors, 1597 * since we cannot communicate with the pci card anyway. 1598 */ 1599 if (pci_channel_offline(phba->pcidev)) { 1600 spin_lock_irq(&phba->hbalock); 1601 phba->hba_flag &= ~DEFER_ERATT; 1602 spin_unlock_irq(&phba->hbalock); 1603 return; 1604 } 1605 1606 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1607 "0479 Deferred Adapter Hardware Error " 1608 "Data: x%x x%x x%x\n", 1609 phba->work_hs, phba->work_status[0], 1610 phba->work_status[1]); 1611 1612 spin_lock_irq(&phba->hbalock); 1613 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1614 spin_unlock_irq(&phba->hbalock); 1615 1616 1617 /* 1618 * Firmware stops when it triggred erratt. That could cause the I/Os 1619 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1620 * SCSI layer retry it after re-establishing link. 1621 */ 1622 lpfc_sli_abort_fcp_rings(phba); 1623 1624 /* 1625 * There was a firmware error. Take the hba offline and then 1626 * attempt to restart it. 1627 */ 1628 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1629 lpfc_offline(phba); 1630 1631 /* Wait for the ER1 bit to clear.*/ 1632 while (phba->work_hs & HS_FFER1) { 1633 msleep(100); 1634 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1635 phba->work_hs = UNPLUG_ERR ; 1636 break; 1637 } 1638 /* If driver is unloading let the worker thread continue */ 1639 if (phba->pport->load_flag & FC_UNLOADING) { 1640 phba->work_hs = 0; 1641 break; 1642 } 1643 } 1644 1645 /* 1646 * This is to ptrotect against a race condition in which 1647 * first write to the host attention register clear the 1648 * host status register. 1649 */ 1650 if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING))) 1651 phba->work_hs = old_host_status & ~HS_FFER1; 1652 1653 spin_lock_irq(&phba->hbalock); 1654 phba->hba_flag &= ~DEFER_ERATT; 1655 spin_unlock_irq(&phba->hbalock); 1656 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1657 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1658 } 1659 1660 static void 1661 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1662 { 1663 struct lpfc_board_event_header board_event; 1664 struct Scsi_Host *shost; 1665 1666 board_event.event_type = FC_REG_BOARD_EVENT; 1667 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1668 shost = lpfc_shost_from_vport(phba->pport); 1669 fc_host_post_vendor_event(shost, fc_get_event_number(), 1670 sizeof(board_event), 1671 (char *) &board_event, 1672 LPFC_NL_VENDOR_ID); 1673 } 1674 1675 /** 1676 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1677 * @phba: pointer to lpfc hba data structure. 1678 * 1679 * This routine is invoked to handle the following HBA hardware error 1680 * conditions: 1681 * 1 - HBA error attention interrupt 1682 * 2 - DMA ring index out of range 1683 * 3 - Mailbox command came back as unknown 1684 **/ 1685 static void 1686 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1687 { 1688 struct lpfc_vport *vport = phba->pport; 1689 struct lpfc_sli *psli = &phba->sli; 1690 uint32_t event_data; 1691 unsigned long temperature; 1692 struct temp_event temp_event_data; 1693 struct Scsi_Host *shost; 1694 1695 /* If the pci channel is offline, ignore possible errors, 1696 * since we cannot communicate with the pci card anyway. 1697 */ 1698 if (pci_channel_offline(phba->pcidev)) { 1699 spin_lock_irq(&phba->hbalock); 1700 phba->hba_flag &= ~DEFER_ERATT; 1701 spin_unlock_irq(&phba->hbalock); 1702 return; 1703 } 1704 1705 /* If resets are disabled then leave the HBA alone and return */ 1706 if (!phba->cfg_enable_hba_reset) 1707 return; 1708 1709 /* Send an internal error event to mgmt application */ 1710 lpfc_board_errevt_to_mgmt(phba); 1711 1712 if (phba->hba_flag & DEFER_ERATT) 1713 lpfc_handle_deferred_eratt(phba); 1714 1715 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1716 if (phba->work_hs & HS_FFER6) 1717 /* Re-establishing Link */ 1718 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1719 "1301 Re-establishing Link " 1720 "Data: x%x x%x x%x\n", 1721 phba->work_hs, phba->work_status[0], 1722 phba->work_status[1]); 1723 if (phba->work_hs & HS_FFER8) 1724 /* Device Zeroization */ 1725 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1726 "2861 Host Authentication device " 1727 "zeroization Data:x%x x%x x%x\n", 1728 phba->work_hs, phba->work_status[0], 1729 phba->work_status[1]); 1730 1731 spin_lock_irq(&phba->hbalock); 1732 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1733 spin_unlock_irq(&phba->hbalock); 1734 1735 /* 1736 * Firmware stops when it triggled erratt with HS_FFER6. 1737 * That could cause the I/Os dropped by the firmware. 1738 * Error iocb (I/O) on txcmplq and let the SCSI layer 1739 * retry it after re-establishing link. 1740 */ 1741 lpfc_sli_abort_fcp_rings(phba); 1742 1743 /* 1744 * There was a firmware error. Take the hba offline and then 1745 * attempt to restart it. 1746 */ 1747 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1748 lpfc_offline(phba); 1749 lpfc_sli_brdrestart(phba); 1750 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1751 lpfc_unblock_mgmt_io(phba); 1752 return; 1753 } 1754 lpfc_unblock_mgmt_io(phba); 1755 } else if (phba->work_hs & HS_CRIT_TEMP) { 1756 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1757 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1758 temp_event_data.event_code = LPFC_CRIT_TEMP; 1759 temp_event_data.data = (uint32_t)temperature; 1760 1761 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1762 "0406 Adapter maximum temperature exceeded " 1763 "(%ld), taking this port offline " 1764 "Data: x%x x%x x%x\n", 1765 temperature, phba->work_hs, 1766 phba->work_status[0], phba->work_status[1]); 1767 1768 shost = lpfc_shost_from_vport(phba->pport); 1769 fc_host_post_vendor_event(shost, fc_get_event_number(), 1770 sizeof(temp_event_data), 1771 (char *) &temp_event_data, 1772 SCSI_NL_VID_TYPE_PCI 1773 | PCI_VENDOR_ID_EMULEX); 1774 1775 spin_lock_irq(&phba->hbalock); 1776 phba->over_temp_state = HBA_OVER_TEMP; 1777 spin_unlock_irq(&phba->hbalock); 1778 lpfc_offline_eratt(phba); 1779 1780 } else { 1781 /* The if clause above forces this code path when the status 1782 * failure is a value other than FFER6. Do not call the offline 1783 * twice. This is the adapter hardware error path. 1784 */ 1785 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1786 "0457 Adapter Hardware Error " 1787 "Data: x%x x%x x%x\n", 1788 phba->work_hs, 1789 phba->work_status[0], phba->work_status[1]); 1790 1791 event_data = FC_REG_DUMP_EVENT; 1792 shost = lpfc_shost_from_vport(vport); 1793 fc_host_post_vendor_event(shost, fc_get_event_number(), 1794 sizeof(event_data), (char *) &event_data, 1795 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1796 1797 lpfc_offline_eratt(phba); 1798 } 1799 return; 1800 } 1801 1802 /** 1803 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1804 * @phba: pointer to lpfc hba data structure. 1805 * @mbx_action: flag for mailbox shutdown action. 1806 * @en_rn_msg: send reset/port recovery message. 1807 * This routine is invoked to perform an SLI4 port PCI function reset in 1808 * response to port status register polling attention. It waits for port 1809 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1810 * During this process, interrupt vectors are freed and later requested 1811 * for handling possible port resource change. 1812 **/ 1813 static int 1814 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1815 bool en_rn_msg) 1816 { 1817 int rc; 1818 uint32_t intr_mode; 1819 1820 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1821 LPFC_SLI_INTF_IF_TYPE_2) { 1822 /* 1823 * On error status condition, driver need to wait for port 1824 * ready before performing reset. 1825 */ 1826 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1827 if (rc) 1828 return rc; 1829 } 1830 1831 /* need reset: attempt for port recovery */ 1832 if (en_rn_msg) 1833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1834 "2887 Reset Needed: Attempting Port " 1835 "Recovery...\n"); 1836 lpfc_offline_prep(phba, mbx_action); 1837 lpfc_sli_flush_io_rings(phba); 1838 lpfc_offline(phba); 1839 /* release interrupt for possible resource change */ 1840 lpfc_sli4_disable_intr(phba); 1841 rc = lpfc_sli_brdrestart(phba); 1842 if (rc) { 1843 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1844 "6309 Failed to restart board\n"); 1845 return rc; 1846 } 1847 /* request and enable interrupt */ 1848 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1849 if (intr_mode == LPFC_INTR_ERROR) { 1850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1851 "3175 Failed to enable interrupt\n"); 1852 return -EIO; 1853 } 1854 phba->intr_mode = intr_mode; 1855 rc = lpfc_online(phba); 1856 if (rc == 0) 1857 lpfc_unblock_mgmt_io(phba); 1858 1859 return rc; 1860 } 1861 1862 /** 1863 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1864 * @phba: pointer to lpfc hba data structure. 1865 * 1866 * This routine is invoked to handle the SLI4 HBA hardware error attention 1867 * conditions. 1868 **/ 1869 static void 1870 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1871 { 1872 struct lpfc_vport *vport = phba->pport; 1873 uint32_t event_data; 1874 struct Scsi_Host *shost; 1875 uint32_t if_type; 1876 struct lpfc_register portstat_reg = {0}; 1877 uint32_t reg_err1, reg_err2; 1878 uint32_t uerrlo_reg, uemasklo_reg; 1879 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1880 bool en_rn_msg = true; 1881 struct temp_event temp_event_data; 1882 struct lpfc_register portsmphr_reg; 1883 int rc, i; 1884 1885 /* If the pci channel is offline, ignore possible errors, since 1886 * we cannot communicate with the pci card anyway. 1887 */ 1888 if (pci_channel_offline(phba->pcidev)) { 1889 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1890 "3166 pci channel is offline\n"); 1891 lpfc_sli4_offline_eratt(phba); 1892 return; 1893 } 1894 1895 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 1896 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 1897 switch (if_type) { 1898 case LPFC_SLI_INTF_IF_TYPE_0: 1899 pci_rd_rc1 = lpfc_readl( 1900 phba->sli4_hba.u.if_type0.UERRLOregaddr, 1901 &uerrlo_reg); 1902 pci_rd_rc2 = lpfc_readl( 1903 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 1904 &uemasklo_reg); 1905 /* consider PCI bus read error as pci_channel_offline */ 1906 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 1907 return; 1908 if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) { 1909 lpfc_sli4_offline_eratt(phba); 1910 return; 1911 } 1912 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1913 "7623 Checking UE recoverable"); 1914 1915 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 1916 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 1917 &portsmphr_reg.word0)) 1918 continue; 1919 1920 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 1921 &portsmphr_reg); 1922 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 1923 LPFC_PORT_SEM_UE_RECOVERABLE) 1924 break; 1925 /*Sleep for 1Sec, before checking SEMAPHORE */ 1926 msleep(1000); 1927 } 1928 1929 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1930 "4827 smphr_port_status x%x : Waited %dSec", 1931 smphr_port_status, i); 1932 1933 /* Recoverable UE, reset the HBA device */ 1934 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 1935 LPFC_PORT_SEM_UE_RECOVERABLE) { 1936 for (i = 0; i < 20; i++) { 1937 msleep(1000); 1938 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 1939 &portsmphr_reg.word0) && 1940 (LPFC_POST_STAGE_PORT_READY == 1941 bf_get(lpfc_port_smphr_port_status, 1942 &portsmphr_reg))) { 1943 rc = lpfc_sli4_port_sta_fn_reset(phba, 1944 LPFC_MBX_NO_WAIT, en_rn_msg); 1945 if (rc == 0) 1946 return; 1947 lpfc_printf_log(phba, KERN_ERR, 1948 LOG_TRACE_EVENT, 1949 "4215 Failed to recover UE"); 1950 break; 1951 } 1952 } 1953 } 1954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1955 "7624 Firmware not ready: Failing UE recovery," 1956 " waited %dSec", i); 1957 phba->link_state = LPFC_HBA_ERROR; 1958 break; 1959 1960 case LPFC_SLI_INTF_IF_TYPE_2: 1961 case LPFC_SLI_INTF_IF_TYPE_6: 1962 pci_rd_rc1 = lpfc_readl( 1963 phba->sli4_hba.u.if_type2.STATUSregaddr, 1964 &portstat_reg.word0); 1965 /* consider PCI bus read error as pci_channel_offline */ 1966 if (pci_rd_rc1 == -EIO) { 1967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1968 "3151 PCI bus read access failure: x%x\n", 1969 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 1970 lpfc_sli4_offline_eratt(phba); 1971 return; 1972 } 1973 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 1974 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 1975 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 1976 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1977 "2889 Port Overtemperature event, " 1978 "taking port offline Data: x%x x%x\n", 1979 reg_err1, reg_err2); 1980 1981 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 1982 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1983 temp_event_data.event_code = LPFC_CRIT_TEMP; 1984 temp_event_data.data = 0xFFFFFFFF; 1985 1986 shost = lpfc_shost_from_vport(phba->pport); 1987 fc_host_post_vendor_event(shost, fc_get_event_number(), 1988 sizeof(temp_event_data), 1989 (char *)&temp_event_data, 1990 SCSI_NL_VID_TYPE_PCI 1991 | PCI_VENDOR_ID_EMULEX); 1992 1993 spin_lock_irq(&phba->hbalock); 1994 phba->over_temp_state = HBA_OVER_TEMP; 1995 spin_unlock_irq(&phba->hbalock); 1996 lpfc_sli4_offline_eratt(phba); 1997 return; 1998 } 1999 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2000 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 2001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2002 "3143 Port Down: Firmware Update " 2003 "Detected\n"); 2004 en_rn_msg = false; 2005 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2006 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2007 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2008 "3144 Port Down: Debug Dump\n"); 2009 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2010 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 2011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2012 "3145 Port Down: Provisioning\n"); 2013 2014 /* If resets are disabled then leave the HBA alone and return */ 2015 if (!phba->cfg_enable_hba_reset) 2016 return; 2017 2018 /* Check port status register for function reset */ 2019 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 2020 en_rn_msg); 2021 if (rc == 0) { 2022 /* don't report event on forced debug dump */ 2023 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2024 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2025 return; 2026 else 2027 break; 2028 } 2029 /* fall through for not able to recover */ 2030 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2031 "3152 Unrecoverable error\n"); 2032 phba->link_state = LPFC_HBA_ERROR; 2033 break; 2034 case LPFC_SLI_INTF_IF_TYPE_1: 2035 default: 2036 break; 2037 } 2038 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 2039 "3123 Report dump event to upper layer\n"); 2040 /* Send an internal error event to mgmt application */ 2041 lpfc_board_errevt_to_mgmt(phba); 2042 2043 event_data = FC_REG_DUMP_EVENT; 2044 shost = lpfc_shost_from_vport(vport); 2045 fc_host_post_vendor_event(shost, fc_get_event_number(), 2046 sizeof(event_data), (char *) &event_data, 2047 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 2048 } 2049 2050 /** 2051 * lpfc_handle_eratt - Wrapper func for handling hba error attention 2052 * @phba: pointer to lpfc HBA data structure. 2053 * 2054 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 2055 * routine from the API jump table function pointer from the lpfc_hba struct. 2056 * 2057 * Return codes 2058 * 0 - success. 2059 * Any other value - error. 2060 **/ 2061 void 2062 lpfc_handle_eratt(struct lpfc_hba *phba) 2063 { 2064 (*phba->lpfc_handle_eratt)(phba); 2065 } 2066 2067 /** 2068 * lpfc_handle_latt - The HBA link event handler 2069 * @phba: pointer to lpfc hba data structure. 2070 * 2071 * This routine is invoked from the worker thread to handle a HBA host 2072 * attention link event. SLI3 only. 2073 **/ 2074 void 2075 lpfc_handle_latt(struct lpfc_hba *phba) 2076 { 2077 struct lpfc_vport *vport = phba->pport; 2078 struct lpfc_sli *psli = &phba->sli; 2079 LPFC_MBOXQ_t *pmb; 2080 volatile uint32_t control; 2081 struct lpfc_dmabuf *mp; 2082 int rc = 0; 2083 2084 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2085 if (!pmb) { 2086 rc = 1; 2087 goto lpfc_handle_latt_err_exit; 2088 } 2089 2090 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 2091 if (!mp) { 2092 rc = 2; 2093 goto lpfc_handle_latt_free_pmb; 2094 } 2095 2096 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 2097 if (!mp->virt) { 2098 rc = 3; 2099 goto lpfc_handle_latt_free_mp; 2100 } 2101 2102 /* Cleanup any outstanding ELS commands */ 2103 lpfc_els_flush_all_cmd(phba); 2104 2105 psli->slistat.link_event++; 2106 lpfc_read_topology(phba, pmb, mp); 2107 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2108 pmb->vport = vport; 2109 /* Block ELS IOCBs until we have processed this mbox command */ 2110 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2111 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2112 if (rc == MBX_NOT_FINISHED) { 2113 rc = 4; 2114 goto lpfc_handle_latt_free_mbuf; 2115 } 2116 2117 /* Clear Link Attention in HA REG */ 2118 spin_lock_irq(&phba->hbalock); 2119 writel(HA_LATT, phba->HAregaddr); 2120 readl(phba->HAregaddr); /* flush */ 2121 spin_unlock_irq(&phba->hbalock); 2122 2123 return; 2124 2125 lpfc_handle_latt_free_mbuf: 2126 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2127 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2128 lpfc_handle_latt_free_mp: 2129 kfree(mp); 2130 lpfc_handle_latt_free_pmb: 2131 mempool_free(pmb, phba->mbox_mem_pool); 2132 lpfc_handle_latt_err_exit: 2133 /* Enable Link attention interrupts */ 2134 spin_lock_irq(&phba->hbalock); 2135 psli->sli_flag |= LPFC_PROCESS_LA; 2136 control = readl(phba->HCregaddr); 2137 control |= HC_LAINT_ENA; 2138 writel(control, phba->HCregaddr); 2139 readl(phba->HCregaddr); /* flush */ 2140 2141 /* Clear Link Attention in HA REG */ 2142 writel(HA_LATT, phba->HAregaddr); 2143 readl(phba->HAregaddr); /* flush */ 2144 spin_unlock_irq(&phba->hbalock); 2145 lpfc_linkdown(phba); 2146 phba->link_state = LPFC_HBA_ERROR; 2147 2148 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2149 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2150 2151 return; 2152 } 2153 2154 /** 2155 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2156 * @phba: pointer to lpfc hba data structure. 2157 * @vpd: pointer to the vital product data. 2158 * @len: length of the vital product data in bytes. 2159 * 2160 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2161 * an array of characters. In this routine, the ModelName, ProgramType, and 2162 * ModelDesc, etc. fields of the phba data structure will be populated. 2163 * 2164 * Return codes 2165 * 0 - pointer to the VPD passed in is NULL 2166 * 1 - success 2167 **/ 2168 int 2169 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2170 { 2171 uint8_t lenlo, lenhi; 2172 int Length; 2173 int i, j; 2174 int finished = 0; 2175 int index = 0; 2176 2177 if (!vpd) 2178 return 0; 2179 2180 /* Vital Product */ 2181 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2182 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2183 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2184 (uint32_t) vpd[3]); 2185 while (!finished && (index < (len - 4))) { 2186 switch (vpd[index]) { 2187 case 0x82: 2188 case 0x91: 2189 index += 1; 2190 lenlo = vpd[index]; 2191 index += 1; 2192 lenhi = vpd[index]; 2193 index += 1; 2194 i = ((((unsigned short)lenhi) << 8) + lenlo); 2195 index += i; 2196 break; 2197 case 0x90: 2198 index += 1; 2199 lenlo = vpd[index]; 2200 index += 1; 2201 lenhi = vpd[index]; 2202 index += 1; 2203 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2204 if (Length > len - index) 2205 Length = len - index; 2206 while (Length > 0) { 2207 /* Look for Serial Number */ 2208 if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) { 2209 index += 2; 2210 i = vpd[index]; 2211 index += 1; 2212 j = 0; 2213 Length -= (3+i); 2214 while(i--) { 2215 phba->SerialNumber[j++] = vpd[index++]; 2216 if (j == 31) 2217 break; 2218 } 2219 phba->SerialNumber[j] = 0; 2220 continue; 2221 } 2222 else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) { 2223 phba->vpd_flag |= VPD_MODEL_DESC; 2224 index += 2; 2225 i = vpd[index]; 2226 index += 1; 2227 j = 0; 2228 Length -= (3+i); 2229 while(i--) { 2230 phba->ModelDesc[j++] = vpd[index++]; 2231 if (j == 255) 2232 break; 2233 } 2234 phba->ModelDesc[j] = 0; 2235 continue; 2236 } 2237 else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) { 2238 phba->vpd_flag |= VPD_MODEL_NAME; 2239 index += 2; 2240 i = vpd[index]; 2241 index += 1; 2242 j = 0; 2243 Length -= (3+i); 2244 while(i--) { 2245 phba->ModelName[j++] = vpd[index++]; 2246 if (j == 79) 2247 break; 2248 } 2249 phba->ModelName[j] = 0; 2250 continue; 2251 } 2252 else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) { 2253 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2254 index += 2; 2255 i = vpd[index]; 2256 index += 1; 2257 j = 0; 2258 Length -= (3+i); 2259 while(i--) { 2260 phba->ProgramType[j++] = vpd[index++]; 2261 if (j == 255) 2262 break; 2263 } 2264 phba->ProgramType[j] = 0; 2265 continue; 2266 } 2267 else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) { 2268 phba->vpd_flag |= VPD_PORT; 2269 index += 2; 2270 i = vpd[index]; 2271 index += 1; 2272 j = 0; 2273 Length -= (3+i); 2274 while(i--) { 2275 if ((phba->sli_rev == LPFC_SLI_REV4) && 2276 (phba->sli4_hba.pport_name_sta == 2277 LPFC_SLI4_PPNAME_GET)) { 2278 j++; 2279 index++; 2280 } else 2281 phba->Port[j++] = vpd[index++]; 2282 if (j == 19) 2283 break; 2284 } 2285 if ((phba->sli_rev != LPFC_SLI_REV4) || 2286 (phba->sli4_hba.pport_name_sta == 2287 LPFC_SLI4_PPNAME_NON)) 2288 phba->Port[j] = 0; 2289 continue; 2290 } 2291 else { 2292 index += 2; 2293 i = vpd[index]; 2294 index += 1; 2295 index += i; 2296 Length -= (3 + i); 2297 } 2298 } 2299 finished = 0; 2300 break; 2301 case 0x78: 2302 finished = 1; 2303 break; 2304 default: 2305 index ++; 2306 break; 2307 } 2308 } 2309 2310 return(1); 2311 } 2312 2313 /** 2314 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2315 * @phba: pointer to lpfc hba data structure. 2316 * @mdp: pointer to the data structure to hold the derived model name. 2317 * @descp: pointer to the data structure to hold the derived description. 2318 * 2319 * This routine retrieves HBA's description based on its registered PCI device 2320 * ID. The @descp passed into this function points to an array of 256 chars. It 2321 * shall be returned with the model name, maximum speed, and the host bus type. 2322 * The @mdp passed into this function points to an array of 80 chars. When the 2323 * function returns, the @mdp will be filled with the model name. 2324 **/ 2325 static void 2326 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2327 { 2328 lpfc_vpd_t *vp; 2329 uint16_t dev_id = phba->pcidev->device; 2330 int max_speed; 2331 int GE = 0; 2332 int oneConnect = 0; /* default is not a oneConnect */ 2333 struct { 2334 char *name; 2335 char *bus; 2336 char *function; 2337 } m = {"<Unknown>", "", ""}; 2338 2339 if (mdp && mdp[0] != '\0' 2340 && descp && descp[0] != '\0') 2341 return; 2342 2343 if (phba->lmt & LMT_64Gb) 2344 max_speed = 64; 2345 else if (phba->lmt & LMT_32Gb) 2346 max_speed = 32; 2347 else if (phba->lmt & LMT_16Gb) 2348 max_speed = 16; 2349 else if (phba->lmt & LMT_10Gb) 2350 max_speed = 10; 2351 else if (phba->lmt & LMT_8Gb) 2352 max_speed = 8; 2353 else if (phba->lmt & LMT_4Gb) 2354 max_speed = 4; 2355 else if (phba->lmt & LMT_2Gb) 2356 max_speed = 2; 2357 else if (phba->lmt & LMT_1Gb) 2358 max_speed = 1; 2359 else 2360 max_speed = 0; 2361 2362 vp = &phba->vpd; 2363 2364 switch (dev_id) { 2365 case PCI_DEVICE_ID_FIREFLY: 2366 m = (typeof(m)){"LP6000", "PCI", 2367 "Obsolete, Unsupported Fibre Channel Adapter"}; 2368 break; 2369 case PCI_DEVICE_ID_SUPERFLY: 2370 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2371 m = (typeof(m)){"LP7000", "PCI", ""}; 2372 else 2373 m = (typeof(m)){"LP7000E", "PCI", ""}; 2374 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2375 break; 2376 case PCI_DEVICE_ID_DRAGONFLY: 2377 m = (typeof(m)){"LP8000", "PCI", 2378 "Obsolete, Unsupported Fibre Channel Adapter"}; 2379 break; 2380 case PCI_DEVICE_ID_CENTAUR: 2381 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2382 m = (typeof(m)){"LP9002", "PCI", ""}; 2383 else 2384 m = (typeof(m)){"LP9000", "PCI", ""}; 2385 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2386 break; 2387 case PCI_DEVICE_ID_RFLY: 2388 m = (typeof(m)){"LP952", "PCI", 2389 "Obsolete, Unsupported Fibre Channel Adapter"}; 2390 break; 2391 case PCI_DEVICE_ID_PEGASUS: 2392 m = (typeof(m)){"LP9802", "PCI-X", 2393 "Obsolete, Unsupported Fibre Channel Adapter"}; 2394 break; 2395 case PCI_DEVICE_ID_THOR: 2396 m = (typeof(m)){"LP10000", "PCI-X", 2397 "Obsolete, Unsupported Fibre Channel Adapter"}; 2398 break; 2399 case PCI_DEVICE_ID_VIPER: 2400 m = (typeof(m)){"LPX1000", "PCI-X", 2401 "Obsolete, Unsupported Fibre Channel Adapter"}; 2402 break; 2403 case PCI_DEVICE_ID_PFLY: 2404 m = (typeof(m)){"LP982", "PCI-X", 2405 "Obsolete, Unsupported Fibre Channel Adapter"}; 2406 break; 2407 case PCI_DEVICE_ID_TFLY: 2408 m = (typeof(m)){"LP1050", "PCI-X", 2409 "Obsolete, Unsupported Fibre Channel Adapter"}; 2410 break; 2411 case PCI_DEVICE_ID_HELIOS: 2412 m = (typeof(m)){"LP11000", "PCI-X2", 2413 "Obsolete, Unsupported Fibre Channel Adapter"}; 2414 break; 2415 case PCI_DEVICE_ID_HELIOS_SCSP: 2416 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2417 "Obsolete, Unsupported Fibre Channel Adapter"}; 2418 break; 2419 case PCI_DEVICE_ID_HELIOS_DCSP: 2420 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2421 "Obsolete, Unsupported Fibre Channel Adapter"}; 2422 break; 2423 case PCI_DEVICE_ID_NEPTUNE: 2424 m = (typeof(m)){"LPe1000", "PCIe", 2425 "Obsolete, Unsupported Fibre Channel Adapter"}; 2426 break; 2427 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2428 m = (typeof(m)){"LPe1000-SP", "PCIe", 2429 "Obsolete, Unsupported Fibre Channel Adapter"}; 2430 break; 2431 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2432 m = (typeof(m)){"LPe1002-SP", "PCIe", 2433 "Obsolete, Unsupported Fibre Channel Adapter"}; 2434 break; 2435 case PCI_DEVICE_ID_BMID: 2436 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; 2437 break; 2438 case PCI_DEVICE_ID_BSMB: 2439 m = (typeof(m)){"LP111", "PCI-X2", 2440 "Obsolete, Unsupported Fibre Channel Adapter"}; 2441 break; 2442 case PCI_DEVICE_ID_ZEPHYR: 2443 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2444 break; 2445 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2446 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2447 break; 2448 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2449 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; 2450 GE = 1; 2451 break; 2452 case PCI_DEVICE_ID_ZMID: 2453 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; 2454 break; 2455 case PCI_DEVICE_ID_ZSMB: 2456 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; 2457 break; 2458 case PCI_DEVICE_ID_LP101: 2459 m = (typeof(m)){"LP101", "PCI-X", 2460 "Obsolete, Unsupported Fibre Channel Adapter"}; 2461 break; 2462 case PCI_DEVICE_ID_LP10000S: 2463 m = (typeof(m)){"LP10000-S", "PCI", 2464 "Obsolete, Unsupported Fibre Channel Adapter"}; 2465 break; 2466 case PCI_DEVICE_ID_LP11000S: 2467 m = (typeof(m)){"LP11000-S", "PCI-X2", 2468 "Obsolete, Unsupported Fibre Channel Adapter"}; 2469 break; 2470 case PCI_DEVICE_ID_LPE11000S: 2471 m = (typeof(m)){"LPe11000-S", "PCIe", 2472 "Obsolete, Unsupported Fibre Channel Adapter"}; 2473 break; 2474 case PCI_DEVICE_ID_SAT: 2475 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; 2476 break; 2477 case PCI_DEVICE_ID_SAT_MID: 2478 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; 2479 break; 2480 case PCI_DEVICE_ID_SAT_SMB: 2481 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; 2482 break; 2483 case PCI_DEVICE_ID_SAT_DCSP: 2484 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; 2485 break; 2486 case PCI_DEVICE_ID_SAT_SCSP: 2487 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; 2488 break; 2489 case PCI_DEVICE_ID_SAT_S: 2490 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; 2491 break; 2492 case PCI_DEVICE_ID_HORNET: 2493 m = (typeof(m)){"LP21000", "PCIe", 2494 "Obsolete, Unsupported FCoE Adapter"}; 2495 GE = 1; 2496 break; 2497 case PCI_DEVICE_ID_PROTEUS_VF: 2498 m = (typeof(m)){"LPev12000", "PCIe IOV", 2499 "Obsolete, Unsupported Fibre Channel Adapter"}; 2500 break; 2501 case PCI_DEVICE_ID_PROTEUS_PF: 2502 m = (typeof(m)){"LPev12000", "PCIe IOV", 2503 "Obsolete, Unsupported Fibre Channel Adapter"}; 2504 break; 2505 case PCI_DEVICE_ID_PROTEUS_S: 2506 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2507 "Obsolete, Unsupported Fibre Channel Adapter"}; 2508 break; 2509 case PCI_DEVICE_ID_TIGERSHARK: 2510 oneConnect = 1; 2511 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; 2512 break; 2513 case PCI_DEVICE_ID_TOMCAT: 2514 oneConnect = 1; 2515 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; 2516 break; 2517 case PCI_DEVICE_ID_FALCON: 2518 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2519 "EmulexSecure Fibre"}; 2520 break; 2521 case PCI_DEVICE_ID_BALIUS: 2522 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2523 "Obsolete, Unsupported Fibre Channel Adapter"}; 2524 break; 2525 case PCI_DEVICE_ID_LANCER_FC: 2526 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; 2527 break; 2528 case PCI_DEVICE_ID_LANCER_FC_VF: 2529 m = (typeof(m)){"LPe16000", "PCIe", 2530 "Obsolete, Unsupported Fibre Channel Adapter"}; 2531 break; 2532 case PCI_DEVICE_ID_LANCER_FCOE: 2533 oneConnect = 1; 2534 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; 2535 break; 2536 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2537 oneConnect = 1; 2538 m = (typeof(m)){"OCe15100", "PCIe", 2539 "Obsolete, Unsupported FCoE"}; 2540 break; 2541 case PCI_DEVICE_ID_LANCER_G6_FC: 2542 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2543 break; 2544 case PCI_DEVICE_ID_LANCER_G7_FC: 2545 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2546 break; 2547 case PCI_DEVICE_ID_SKYHAWK: 2548 case PCI_DEVICE_ID_SKYHAWK_VF: 2549 oneConnect = 1; 2550 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; 2551 break; 2552 default: 2553 m = (typeof(m)){"Unknown", "", ""}; 2554 break; 2555 } 2556 2557 if (mdp && mdp[0] == '\0') 2558 snprintf(mdp, 79,"%s", m.name); 2559 /* 2560 * oneConnect hba requires special processing, they are all initiators 2561 * and we put the port number on the end 2562 */ 2563 if (descp && descp[0] == '\0') { 2564 if (oneConnect) 2565 snprintf(descp, 255, 2566 "Emulex OneConnect %s, %s Initiator %s", 2567 m.name, m.function, 2568 phba->Port); 2569 else if (max_speed == 0) 2570 snprintf(descp, 255, 2571 "Emulex %s %s %s", 2572 m.name, m.bus, m.function); 2573 else 2574 snprintf(descp, 255, 2575 "Emulex %s %d%s %s %s", 2576 m.name, max_speed, (GE) ? "GE" : "Gb", 2577 m.bus, m.function); 2578 } 2579 } 2580 2581 /** 2582 * lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2583 * @phba: pointer to lpfc hba data structure. 2584 * @pring: pointer to a IOCB ring. 2585 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2586 * 2587 * This routine posts a given number of IOCBs with the associated DMA buffer 2588 * descriptors specified by the cnt argument to the given IOCB ring. 2589 * 2590 * Return codes 2591 * The number of IOCBs NOT able to be posted to the IOCB ring. 2592 **/ 2593 int 2594 lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2595 { 2596 IOCB_t *icmd; 2597 struct lpfc_iocbq *iocb; 2598 struct lpfc_dmabuf *mp1, *mp2; 2599 2600 cnt += pring->missbufcnt; 2601 2602 /* While there are buffers to post */ 2603 while (cnt > 0) { 2604 /* Allocate buffer for command iocb */ 2605 iocb = lpfc_sli_get_iocbq(phba); 2606 if (iocb == NULL) { 2607 pring->missbufcnt = cnt; 2608 return cnt; 2609 } 2610 icmd = &iocb->iocb; 2611 2612 /* 2 buffers can be posted per command */ 2613 /* Allocate buffer to post */ 2614 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2615 if (mp1) 2616 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2617 if (!mp1 || !mp1->virt) { 2618 kfree(mp1); 2619 lpfc_sli_release_iocbq(phba, iocb); 2620 pring->missbufcnt = cnt; 2621 return cnt; 2622 } 2623 2624 INIT_LIST_HEAD(&mp1->list); 2625 /* Allocate buffer to post */ 2626 if (cnt > 1) { 2627 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2628 if (mp2) 2629 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2630 &mp2->phys); 2631 if (!mp2 || !mp2->virt) { 2632 kfree(mp2); 2633 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2634 kfree(mp1); 2635 lpfc_sli_release_iocbq(phba, iocb); 2636 pring->missbufcnt = cnt; 2637 return cnt; 2638 } 2639 2640 INIT_LIST_HEAD(&mp2->list); 2641 } else { 2642 mp2 = NULL; 2643 } 2644 2645 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2646 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2647 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2648 icmd->ulpBdeCount = 1; 2649 cnt--; 2650 if (mp2) { 2651 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2652 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2653 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2654 cnt--; 2655 icmd->ulpBdeCount = 2; 2656 } 2657 2658 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2659 icmd->ulpLe = 1; 2660 2661 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2662 IOCB_ERROR) { 2663 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2664 kfree(mp1); 2665 cnt++; 2666 if (mp2) { 2667 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2668 kfree(mp2); 2669 cnt++; 2670 } 2671 lpfc_sli_release_iocbq(phba, iocb); 2672 pring->missbufcnt = cnt; 2673 return cnt; 2674 } 2675 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2676 if (mp2) 2677 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2678 } 2679 pring->missbufcnt = 0; 2680 return 0; 2681 } 2682 2683 /** 2684 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2685 * @phba: pointer to lpfc hba data structure. 2686 * 2687 * This routine posts initial receive IOCB buffers to the ELS ring. The 2688 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2689 * set to 64 IOCBs. SLI3 only. 2690 * 2691 * Return codes 2692 * 0 - success (currently always success) 2693 **/ 2694 static int 2695 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2696 { 2697 struct lpfc_sli *psli = &phba->sli; 2698 2699 /* Ring 0, ELS / CT buffers */ 2700 lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2701 /* Ring 2 - FCP no buffers needed */ 2702 2703 return 0; 2704 } 2705 2706 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2707 2708 /** 2709 * lpfc_sha_init - Set up initial array of hash table entries 2710 * @HashResultPointer: pointer to an array as hash table. 2711 * 2712 * This routine sets up the initial values to the array of hash table entries 2713 * for the LC HBAs. 2714 **/ 2715 static void 2716 lpfc_sha_init(uint32_t * HashResultPointer) 2717 { 2718 HashResultPointer[0] = 0x67452301; 2719 HashResultPointer[1] = 0xEFCDAB89; 2720 HashResultPointer[2] = 0x98BADCFE; 2721 HashResultPointer[3] = 0x10325476; 2722 HashResultPointer[4] = 0xC3D2E1F0; 2723 } 2724 2725 /** 2726 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2727 * @HashResultPointer: pointer to an initial/result hash table. 2728 * @HashWorkingPointer: pointer to an working hash table. 2729 * 2730 * This routine iterates an initial hash table pointed by @HashResultPointer 2731 * with the values from the working hash table pointeed by @HashWorkingPointer. 2732 * The results are putting back to the initial hash table, returned through 2733 * the @HashResultPointer as the result hash table. 2734 **/ 2735 static void 2736 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2737 { 2738 int t; 2739 uint32_t TEMP; 2740 uint32_t A, B, C, D, E; 2741 t = 16; 2742 do { 2743 HashWorkingPointer[t] = 2744 S(1, 2745 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2746 8] ^ 2747 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2748 } while (++t <= 79); 2749 t = 0; 2750 A = HashResultPointer[0]; 2751 B = HashResultPointer[1]; 2752 C = HashResultPointer[2]; 2753 D = HashResultPointer[3]; 2754 E = HashResultPointer[4]; 2755 2756 do { 2757 if (t < 20) { 2758 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2759 } else if (t < 40) { 2760 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2761 } else if (t < 60) { 2762 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2763 } else { 2764 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2765 } 2766 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2767 E = D; 2768 D = C; 2769 C = S(30, B); 2770 B = A; 2771 A = TEMP; 2772 } while (++t <= 79); 2773 2774 HashResultPointer[0] += A; 2775 HashResultPointer[1] += B; 2776 HashResultPointer[2] += C; 2777 HashResultPointer[3] += D; 2778 HashResultPointer[4] += E; 2779 2780 } 2781 2782 /** 2783 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2784 * @RandomChallenge: pointer to the entry of host challenge random number array. 2785 * @HashWorking: pointer to the entry of the working hash array. 2786 * 2787 * This routine calculates the working hash array referred by @HashWorking 2788 * from the challenge random numbers associated with the host, referred by 2789 * @RandomChallenge. The result is put into the entry of the working hash 2790 * array and returned by reference through @HashWorking. 2791 **/ 2792 static void 2793 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 2794 { 2795 *HashWorking = (*RandomChallenge ^ *HashWorking); 2796 } 2797 2798 /** 2799 * lpfc_hba_init - Perform special handling for LC HBA initialization 2800 * @phba: pointer to lpfc hba data structure. 2801 * @hbainit: pointer to an array of unsigned 32-bit integers. 2802 * 2803 * This routine performs the special handling for LC HBA initialization. 2804 **/ 2805 void 2806 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 2807 { 2808 int t; 2809 uint32_t *HashWorking; 2810 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 2811 2812 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 2813 if (!HashWorking) 2814 return; 2815 2816 HashWorking[0] = HashWorking[78] = *pwwnn++; 2817 HashWorking[1] = HashWorking[79] = *pwwnn; 2818 2819 for (t = 0; t < 7; t++) 2820 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 2821 2822 lpfc_sha_init(hbainit); 2823 lpfc_sha_iterate(hbainit, HashWorking); 2824 kfree(HashWorking); 2825 } 2826 2827 /** 2828 * lpfc_cleanup - Performs vport cleanups before deleting a vport 2829 * @vport: pointer to a virtual N_Port data structure. 2830 * 2831 * This routine performs the necessary cleanups before deleting the @vport. 2832 * It invokes the discovery state machine to perform necessary state 2833 * transitions and to release the ndlps associated with the @vport. Note, 2834 * the physical port is treated as @vport 0. 2835 **/ 2836 void 2837 lpfc_cleanup(struct lpfc_vport *vport) 2838 { 2839 struct lpfc_hba *phba = vport->phba; 2840 struct lpfc_nodelist *ndlp, *next_ndlp; 2841 int i = 0; 2842 2843 if (phba->link_state > LPFC_LINK_DOWN) 2844 lpfc_port_link_failure(vport); 2845 2846 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 2847 if (!NLP_CHK_NODE_ACT(ndlp)) { 2848 ndlp = lpfc_enable_node(vport, ndlp, 2849 NLP_STE_UNUSED_NODE); 2850 if (!ndlp) 2851 continue; 2852 spin_lock_irq(&phba->ndlp_lock); 2853 NLP_SET_FREE_REQ(ndlp); 2854 spin_unlock_irq(&phba->ndlp_lock); 2855 /* Trigger the release of the ndlp memory */ 2856 lpfc_nlp_put(ndlp); 2857 continue; 2858 } 2859 spin_lock_irq(&phba->ndlp_lock); 2860 if (NLP_CHK_FREE_REQ(ndlp)) { 2861 /* The ndlp should not be in memory free mode already */ 2862 spin_unlock_irq(&phba->ndlp_lock); 2863 continue; 2864 } else 2865 /* Indicate request for freeing ndlp memory */ 2866 NLP_SET_FREE_REQ(ndlp); 2867 spin_unlock_irq(&phba->ndlp_lock); 2868 2869 if (vport->port_type != LPFC_PHYSICAL_PORT && 2870 ndlp->nlp_DID == Fabric_DID) { 2871 /* Just free up ndlp with Fabric_DID for vports */ 2872 lpfc_nlp_put(ndlp); 2873 continue; 2874 } 2875 2876 /* take care of nodes in unused state before the state 2877 * machine taking action. 2878 */ 2879 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 2880 lpfc_nlp_put(ndlp); 2881 continue; 2882 } 2883 2884 if (ndlp->nlp_type & NLP_FABRIC) 2885 lpfc_disc_state_machine(vport, ndlp, NULL, 2886 NLP_EVT_DEVICE_RECOVERY); 2887 2888 lpfc_disc_state_machine(vport, ndlp, NULL, 2889 NLP_EVT_DEVICE_RM); 2890 } 2891 2892 /* At this point, ALL ndlp's should be gone 2893 * because of the previous NLP_EVT_DEVICE_RM. 2894 * Lets wait for this to happen, if needed. 2895 */ 2896 while (!list_empty(&vport->fc_nodes)) { 2897 if (i++ > 3000) { 2898 lpfc_printf_vlog(vport, KERN_ERR, 2899 LOG_TRACE_EVENT, 2900 "0233 Nodelist not empty\n"); 2901 list_for_each_entry_safe(ndlp, next_ndlp, 2902 &vport->fc_nodes, nlp_listp) { 2903 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 2904 LOG_TRACE_EVENT, 2905 "0282 did:x%x ndlp:x%px " 2906 "usgmap:x%x refcnt:%d\n", 2907 ndlp->nlp_DID, (void *)ndlp, 2908 ndlp->nlp_usg_map, 2909 kref_read(&ndlp->kref)); 2910 } 2911 break; 2912 } 2913 2914 /* Wait for any activity on ndlps to settle */ 2915 msleep(10); 2916 } 2917 lpfc_cleanup_vports_rrqs(vport, NULL); 2918 } 2919 2920 /** 2921 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 2922 * @vport: pointer to a virtual N_Port data structure. 2923 * 2924 * This routine stops all the timers associated with a @vport. This function 2925 * is invoked before disabling or deleting a @vport. Note that the physical 2926 * port is treated as @vport 0. 2927 **/ 2928 void 2929 lpfc_stop_vport_timers(struct lpfc_vport *vport) 2930 { 2931 del_timer_sync(&vport->els_tmofunc); 2932 del_timer_sync(&vport->delayed_disc_tmo); 2933 lpfc_can_disctmo(vport); 2934 return; 2935 } 2936 2937 /** 2938 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 2939 * @phba: pointer to lpfc hba data structure. 2940 * 2941 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 2942 * caller of this routine should already hold the host lock. 2943 **/ 2944 void 2945 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 2946 { 2947 /* Clear pending FCF rediscovery wait flag */ 2948 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 2949 2950 /* Now, try to stop the timer */ 2951 del_timer(&phba->fcf.redisc_wait); 2952 } 2953 2954 /** 2955 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 2956 * @phba: pointer to lpfc hba data structure. 2957 * 2958 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 2959 * checks whether the FCF rediscovery wait timer is pending with the host 2960 * lock held before proceeding with disabling the timer and clearing the 2961 * wait timer pendig flag. 2962 **/ 2963 void 2964 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 2965 { 2966 spin_lock_irq(&phba->hbalock); 2967 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 2968 /* FCF rediscovery timer already fired or stopped */ 2969 spin_unlock_irq(&phba->hbalock); 2970 return; 2971 } 2972 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 2973 /* Clear failover in progress flags */ 2974 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 2975 spin_unlock_irq(&phba->hbalock); 2976 } 2977 2978 /** 2979 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 2980 * @phba: pointer to lpfc hba data structure. 2981 * 2982 * This routine stops all the timers associated with a HBA. This function is 2983 * invoked before either putting a HBA offline or unloading the driver. 2984 **/ 2985 void 2986 lpfc_stop_hba_timers(struct lpfc_hba *phba) 2987 { 2988 if (phba->pport) 2989 lpfc_stop_vport_timers(phba->pport); 2990 cancel_delayed_work_sync(&phba->eq_delay_work); 2991 cancel_delayed_work_sync(&phba->idle_stat_delay_work); 2992 del_timer_sync(&phba->sli.mbox_tmo); 2993 del_timer_sync(&phba->fabric_block_timer); 2994 del_timer_sync(&phba->eratt_poll); 2995 del_timer_sync(&phba->hb_tmofunc); 2996 if (phba->sli_rev == LPFC_SLI_REV4) { 2997 del_timer_sync(&phba->rrq_tmr); 2998 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 2999 } 3000 phba->hb_outstanding = 0; 3001 3002 switch (phba->pci_dev_grp) { 3003 case LPFC_PCI_DEV_LP: 3004 /* Stop any LightPulse device specific driver timers */ 3005 del_timer_sync(&phba->fcp_poll_timer); 3006 break; 3007 case LPFC_PCI_DEV_OC: 3008 /* Stop any OneConnect device specific driver timers */ 3009 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3010 break; 3011 default: 3012 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3013 "0297 Invalid device group (x%x)\n", 3014 phba->pci_dev_grp); 3015 break; 3016 } 3017 return; 3018 } 3019 3020 /** 3021 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 3022 * @phba: pointer to lpfc hba data structure. 3023 * @mbx_action: flag for mailbox no wait action. 3024 * 3025 * This routine marks a HBA's management interface as blocked. Once the HBA's 3026 * management interface is marked as blocked, all the user space access to 3027 * the HBA, whether they are from sysfs interface or libdfc interface will 3028 * all be blocked. The HBA is set to block the management interface when the 3029 * driver prepares the HBA interface for online or offline. 3030 **/ 3031 static void 3032 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 3033 { 3034 unsigned long iflag; 3035 uint8_t actcmd = MBX_HEARTBEAT; 3036 unsigned long timeout; 3037 3038 spin_lock_irqsave(&phba->hbalock, iflag); 3039 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 3040 spin_unlock_irqrestore(&phba->hbalock, iflag); 3041 if (mbx_action == LPFC_MBX_NO_WAIT) 3042 return; 3043 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 3044 spin_lock_irqsave(&phba->hbalock, iflag); 3045 if (phba->sli.mbox_active) { 3046 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 3047 /* Determine how long we might wait for the active mailbox 3048 * command to be gracefully completed by firmware. 3049 */ 3050 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 3051 phba->sli.mbox_active) * 1000) + jiffies; 3052 } 3053 spin_unlock_irqrestore(&phba->hbalock, iflag); 3054 3055 /* Wait for the outstnading mailbox command to complete */ 3056 while (phba->sli.mbox_active) { 3057 /* Check active mailbox complete status every 2ms */ 3058 msleep(2); 3059 if (time_after(jiffies, timeout)) { 3060 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3061 "2813 Mgmt IO is Blocked %x " 3062 "- mbox cmd %x still active\n", 3063 phba->sli.sli_flag, actcmd); 3064 break; 3065 } 3066 } 3067 } 3068 3069 /** 3070 * lpfc_sli4_node_prep - Assign RPIs for active nodes. 3071 * @phba: pointer to lpfc hba data structure. 3072 * 3073 * Allocate RPIs for all active remote nodes. This is needed whenever 3074 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3075 * is to fixup the temporary rpi assignments. 3076 **/ 3077 void 3078 lpfc_sli4_node_prep(struct lpfc_hba *phba) 3079 { 3080 struct lpfc_nodelist *ndlp, *next_ndlp; 3081 struct lpfc_vport **vports; 3082 int i, rpi; 3083 unsigned long flags; 3084 3085 if (phba->sli_rev != LPFC_SLI_REV4) 3086 return; 3087 3088 vports = lpfc_create_vport_work_array(phba); 3089 if (vports == NULL) 3090 return; 3091 3092 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3093 if (vports[i]->load_flag & FC_UNLOADING) 3094 continue; 3095 3096 list_for_each_entry_safe(ndlp, next_ndlp, 3097 &vports[i]->fc_nodes, 3098 nlp_listp) { 3099 if (!NLP_CHK_NODE_ACT(ndlp)) 3100 continue; 3101 rpi = lpfc_sli4_alloc_rpi(phba); 3102 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3103 spin_lock_irqsave(&phba->ndlp_lock, flags); 3104 NLP_CLR_NODE_ACT(ndlp); 3105 spin_unlock_irqrestore(&phba->ndlp_lock, flags); 3106 continue; 3107 } 3108 ndlp->nlp_rpi = rpi; 3109 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3110 LOG_NODE | LOG_DISCOVERY, 3111 "0009 Assign RPI x%x to ndlp x%px " 3112 "DID:x%06x flg:x%x map:x%x\n", 3113 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3114 ndlp->nlp_flag, ndlp->nlp_usg_map); 3115 } 3116 } 3117 lpfc_destroy_vport_work_array(phba, vports); 3118 } 3119 3120 /** 3121 * lpfc_create_expedite_pool - create expedite pool 3122 * @phba: pointer to lpfc hba data structure. 3123 * 3124 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3125 * to expedite pool. Mark them as expedite. 3126 **/ 3127 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3128 { 3129 struct lpfc_sli4_hdw_queue *qp; 3130 struct lpfc_io_buf *lpfc_ncmd; 3131 struct lpfc_io_buf *lpfc_ncmd_next; 3132 struct lpfc_epd_pool *epd_pool; 3133 unsigned long iflag; 3134 3135 epd_pool = &phba->epd_pool; 3136 qp = &phba->sli4_hba.hdwq[0]; 3137 3138 spin_lock_init(&epd_pool->lock); 3139 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3140 spin_lock(&epd_pool->lock); 3141 INIT_LIST_HEAD(&epd_pool->list); 3142 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3143 &qp->lpfc_io_buf_list_put, list) { 3144 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3145 lpfc_ncmd->expedite = true; 3146 qp->put_io_bufs--; 3147 epd_pool->count++; 3148 if (epd_pool->count >= XRI_BATCH) 3149 break; 3150 } 3151 spin_unlock(&epd_pool->lock); 3152 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3153 } 3154 3155 /** 3156 * lpfc_destroy_expedite_pool - destroy expedite pool 3157 * @phba: pointer to lpfc hba data structure. 3158 * 3159 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3160 * of HWQ 0. Clear the mark. 3161 **/ 3162 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3163 { 3164 struct lpfc_sli4_hdw_queue *qp; 3165 struct lpfc_io_buf *lpfc_ncmd; 3166 struct lpfc_io_buf *lpfc_ncmd_next; 3167 struct lpfc_epd_pool *epd_pool; 3168 unsigned long iflag; 3169 3170 epd_pool = &phba->epd_pool; 3171 qp = &phba->sli4_hba.hdwq[0]; 3172 3173 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3174 spin_lock(&epd_pool->lock); 3175 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3176 &epd_pool->list, list) { 3177 list_move_tail(&lpfc_ncmd->list, 3178 &qp->lpfc_io_buf_list_put); 3179 lpfc_ncmd->flags = false; 3180 qp->put_io_bufs++; 3181 epd_pool->count--; 3182 } 3183 spin_unlock(&epd_pool->lock); 3184 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3185 } 3186 3187 /** 3188 * lpfc_create_multixri_pools - create multi-XRI pools 3189 * @phba: pointer to lpfc hba data structure. 3190 * 3191 * This routine initialize public, private per HWQ. Then, move XRIs from 3192 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3193 * Initialized. 3194 **/ 3195 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3196 { 3197 u32 i, j; 3198 u32 hwq_count; 3199 u32 count_per_hwq; 3200 struct lpfc_io_buf *lpfc_ncmd; 3201 struct lpfc_io_buf *lpfc_ncmd_next; 3202 unsigned long iflag; 3203 struct lpfc_sli4_hdw_queue *qp; 3204 struct lpfc_multixri_pool *multixri_pool; 3205 struct lpfc_pbl_pool *pbl_pool; 3206 struct lpfc_pvt_pool *pvt_pool; 3207 3208 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3209 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3210 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3211 phba->sli4_hba.io_xri_cnt); 3212 3213 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3214 lpfc_create_expedite_pool(phba); 3215 3216 hwq_count = phba->cfg_hdw_queue; 3217 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3218 3219 for (i = 0; i < hwq_count; i++) { 3220 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3221 3222 if (!multixri_pool) { 3223 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3224 "1238 Failed to allocate memory for " 3225 "multixri_pool\n"); 3226 3227 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3228 lpfc_destroy_expedite_pool(phba); 3229 3230 j = 0; 3231 while (j < i) { 3232 qp = &phba->sli4_hba.hdwq[j]; 3233 kfree(qp->p_multixri_pool); 3234 j++; 3235 } 3236 phba->cfg_xri_rebalancing = 0; 3237 return; 3238 } 3239 3240 qp = &phba->sli4_hba.hdwq[i]; 3241 qp->p_multixri_pool = multixri_pool; 3242 3243 multixri_pool->xri_limit = count_per_hwq; 3244 multixri_pool->rrb_next_hwqid = i; 3245 3246 /* Deal with public free xri pool */ 3247 pbl_pool = &multixri_pool->pbl_pool; 3248 spin_lock_init(&pbl_pool->lock); 3249 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3250 spin_lock(&pbl_pool->lock); 3251 INIT_LIST_HEAD(&pbl_pool->list); 3252 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3253 &qp->lpfc_io_buf_list_put, list) { 3254 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3255 qp->put_io_bufs--; 3256 pbl_pool->count++; 3257 } 3258 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3259 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3260 pbl_pool->count, i); 3261 spin_unlock(&pbl_pool->lock); 3262 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3263 3264 /* Deal with private free xri pool */ 3265 pvt_pool = &multixri_pool->pvt_pool; 3266 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3267 pvt_pool->low_watermark = XRI_BATCH; 3268 spin_lock_init(&pvt_pool->lock); 3269 spin_lock_irqsave(&pvt_pool->lock, iflag); 3270 INIT_LIST_HEAD(&pvt_pool->list); 3271 pvt_pool->count = 0; 3272 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3273 } 3274 } 3275 3276 /** 3277 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3278 * @phba: pointer to lpfc hba data structure. 3279 * 3280 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3281 **/ 3282 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3283 { 3284 u32 i; 3285 u32 hwq_count; 3286 struct lpfc_io_buf *lpfc_ncmd; 3287 struct lpfc_io_buf *lpfc_ncmd_next; 3288 unsigned long iflag; 3289 struct lpfc_sli4_hdw_queue *qp; 3290 struct lpfc_multixri_pool *multixri_pool; 3291 struct lpfc_pbl_pool *pbl_pool; 3292 struct lpfc_pvt_pool *pvt_pool; 3293 3294 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3295 lpfc_destroy_expedite_pool(phba); 3296 3297 if (!(phba->pport->load_flag & FC_UNLOADING)) 3298 lpfc_sli_flush_io_rings(phba); 3299 3300 hwq_count = phba->cfg_hdw_queue; 3301 3302 for (i = 0; i < hwq_count; i++) { 3303 qp = &phba->sli4_hba.hdwq[i]; 3304 multixri_pool = qp->p_multixri_pool; 3305 if (!multixri_pool) 3306 continue; 3307 3308 qp->p_multixri_pool = NULL; 3309 3310 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3311 3312 /* Deal with public free xri pool */ 3313 pbl_pool = &multixri_pool->pbl_pool; 3314 spin_lock(&pbl_pool->lock); 3315 3316 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3317 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3318 pbl_pool->count, i); 3319 3320 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3321 &pbl_pool->list, list) { 3322 list_move_tail(&lpfc_ncmd->list, 3323 &qp->lpfc_io_buf_list_put); 3324 qp->put_io_bufs++; 3325 pbl_pool->count--; 3326 } 3327 3328 INIT_LIST_HEAD(&pbl_pool->list); 3329 pbl_pool->count = 0; 3330 3331 spin_unlock(&pbl_pool->lock); 3332 3333 /* Deal with private free xri pool */ 3334 pvt_pool = &multixri_pool->pvt_pool; 3335 spin_lock(&pvt_pool->lock); 3336 3337 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3338 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3339 pvt_pool->count, i); 3340 3341 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3342 &pvt_pool->list, list) { 3343 list_move_tail(&lpfc_ncmd->list, 3344 &qp->lpfc_io_buf_list_put); 3345 qp->put_io_bufs++; 3346 pvt_pool->count--; 3347 } 3348 3349 INIT_LIST_HEAD(&pvt_pool->list); 3350 pvt_pool->count = 0; 3351 3352 spin_unlock(&pvt_pool->lock); 3353 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3354 3355 kfree(multixri_pool); 3356 } 3357 } 3358 3359 /** 3360 * lpfc_online - Initialize and bring a HBA online 3361 * @phba: pointer to lpfc hba data structure. 3362 * 3363 * This routine initializes the HBA and brings a HBA online. During this 3364 * process, the management interface is blocked to prevent user space access 3365 * to the HBA interfering with the driver initialization. 3366 * 3367 * Return codes 3368 * 0 - successful 3369 * 1 - failed 3370 **/ 3371 int 3372 lpfc_online(struct lpfc_hba *phba) 3373 { 3374 struct lpfc_vport *vport; 3375 struct lpfc_vport **vports; 3376 int i, error = 0; 3377 bool vpis_cleared = false; 3378 3379 if (!phba) 3380 return 0; 3381 vport = phba->pport; 3382 3383 if (!(vport->fc_flag & FC_OFFLINE_MODE)) 3384 return 0; 3385 3386 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3387 "0458 Bring Adapter online\n"); 3388 3389 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3390 3391 if (phba->sli_rev == LPFC_SLI_REV4) { 3392 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3393 lpfc_unblock_mgmt_io(phba); 3394 return 1; 3395 } 3396 spin_lock_irq(&phba->hbalock); 3397 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3398 vpis_cleared = true; 3399 spin_unlock_irq(&phba->hbalock); 3400 3401 /* Reestablish the local initiator port. 3402 * The offline process destroyed the previous lport. 3403 */ 3404 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3405 !phba->nvmet_support) { 3406 error = lpfc_nvme_create_localport(phba->pport); 3407 if (error) 3408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3409 "6132 NVME restore reg failed " 3410 "on nvmei error x%x\n", error); 3411 } 3412 } else { 3413 lpfc_sli_queue_init(phba); 3414 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3415 lpfc_unblock_mgmt_io(phba); 3416 return 1; 3417 } 3418 } 3419 3420 vports = lpfc_create_vport_work_array(phba); 3421 if (vports != NULL) { 3422 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3423 struct Scsi_Host *shost; 3424 shost = lpfc_shost_from_vport(vports[i]); 3425 spin_lock_irq(shost->host_lock); 3426 vports[i]->fc_flag &= ~FC_OFFLINE_MODE; 3427 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3428 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3429 if (phba->sli_rev == LPFC_SLI_REV4) { 3430 vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI; 3431 if ((vpis_cleared) && 3432 (vports[i]->port_type != 3433 LPFC_PHYSICAL_PORT)) 3434 vports[i]->vpi = 0; 3435 } 3436 spin_unlock_irq(shost->host_lock); 3437 } 3438 } 3439 lpfc_destroy_vport_work_array(phba, vports); 3440 3441 if (phba->cfg_xri_rebalancing) 3442 lpfc_create_multixri_pools(phba); 3443 3444 lpfc_cpuhp_add(phba); 3445 3446 lpfc_unblock_mgmt_io(phba); 3447 return 0; 3448 } 3449 3450 /** 3451 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3452 * @phba: pointer to lpfc hba data structure. 3453 * 3454 * This routine marks a HBA's management interface as not blocked. Once the 3455 * HBA's management interface is marked as not blocked, all the user space 3456 * access to the HBA, whether they are from sysfs interface or libdfc 3457 * interface will be allowed. The HBA is set to block the management interface 3458 * when the driver prepares the HBA interface for online or offline and then 3459 * set to unblock the management interface afterwards. 3460 **/ 3461 void 3462 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3463 { 3464 unsigned long iflag; 3465 3466 spin_lock_irqsave(&phba->hbalock, iflag); 3467 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3468 spin_unlock_irqrestore(&phba->hbalock, iflag); 3469 } 3470 3471 /** 3472 * lpfc_offline_prep - Prepare a HBA to be brought offline 3473 * @phba: pointer to lpfc hba data structure. 3474 * @mbx_action: flag for mailbox shutdown action. 3475 * 3476 * This routine is invoked to prepare a HBA to be brought offline. It performs 3477 * unregistration login to all the nodes on all vports and flushes the mailbox 3478 * queue to make it ready to be brought offline. 3479 **/ 3480 void 3481 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3482 { 3483 struct lpfc_vport *vport = phba->pport; 3484 struct lpfc_nodelist *ndlp, *next_ndlp; 3485 struct lpfc_vport **vports; 3486 struct Scsi_Host *shost; 3487 int i; 3488 3489 if (vport->fc_flag & FC_OFFLINE_MODE) 3490 return; 3491 3492 lpfc_block_mgmt_io(phba, mbx_action); 3493 3494 lpfc_linkdown(phba); 3495 3496 /* Issue an unreg_login to all nodes on all vports */ 3497 vports = lpfc_create_vport_work_array(phba); 3498 if (vports != NULL) { 3499 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3500 if (vports[i]->load_flag & FC_UNLOADING) 3501 continue; 3502 shost = lpfc_shost_from_vport(vports[i]); 3503 spin_lock_irq(shost->host_lock); 3504 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3505 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3506 vports[i]->fc_flag &= ~FC_VFI_REGISTERED; 3507 spin_unlock_irq(shost->host_lock); 3508 3509 shost = lpfc_shost_from_vport(vports[i]); 3510 list_for_each_entry_safe(ndlp, next_ndlp, 3511 &vports[i]->fc_nodes, 3512 nlp_listp) { 3513 if ((!NLP_CHK_NODE_ACT(ndlp)) || 3514 ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 3515 /* Driver must assume RPI is invalid for 3516 * any unused or inactive node. 3517 */ 3518 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3519 continue; 3520 } 3521 3522 if (ndlp->nlp_type & NLP_FABRIC) { 3523 lpfc_disc_state_machine(vports[i], ndlp, 3524 NULL, NLP_EVT_DEVICE_RECOVERY); 3525 lpfc_disc_state_machine(vports[i], ndlp, 3526 NULL, NLP_EVT_DEVICE_RM); 3527 } 3528 spin_lock_irq(shost->host_lock); 3529 ndlp->nlp_flag &= ~NLP_NPR_ADISC; 3530 spin_unlock_irq(shost->host_lock); 3531 /* 3532 * Whenever an SLI4 port goes offline, free the 3533 * RPI. Get a new RPI when the adapter port 3534 * comes back online. 3535 */ 3536 if (phba->sli_rev == LPFC_SLI_REV4) { 3537 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3538 LOG_NODE | LOG_DISCOVERY, 3539 "0011 Free RPI x%x on " 3540 "ndlp:x%px did x%x " 3541 "usgmap:x%x\n", 3542 ndlp->nlp_rpi, ndlp, 3543 ndlp->nlp_DID, 3544 ndlp->nlp_usg_map); 3545 lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); 3546 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3547 } 3548 lpfc_unreg_rpi(vports[i], ndlp); 3549 } 3550 } 3551 } 3552 lpfc_destroy_vport_work_array(phba, vports); 3553 3554 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3555 3556 if (phba->wq) 3557 flush_workqueue(phba->wq); 3558 } 3559 3560 /** 3561 * lpfc_offline - Bring a HBA offline 3562 * @phba: pointer to lpfc hba data structure. 3563 * 3564 * This routine actually brings a HBA offline. It stops all the timers 3565 * associated with the HBA, brings down the SLI layer, and eventually 3566 * marks the HBA as in offline state for the upper layer protocol. 3567 **/ 3568 void 3569 lpfc_offline(struct lpfc_hba *phba) 3570 { 3571 struct Scsi_Host *shost; 3572 struct lpfc_vport **vports; 3573 int i; 3574 3575 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3576 return; 3577 3578 /* stop port and all timers associated with this hba */ 3579 lpfc_stop_port(phba); 3580 3581 /* Tear down the local and target port registrations. The 3582 * nvme transports need to cleanup. 3583 */ 3584 lpfc_nvmet_destroy_targetport(phba); 3585 lpfc_nvme_destroy_localport(phba->pport); 3586 3587 vports = lpfc_create_vport_work_array(phba); 3588 if (vports != NULL) 3589 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3590 lpfc_stop_vport_timers(vports[i]); 3591 lpfc_destroy_vport_work_array(phba, vports); 3592 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3593 "0460 Bring Adapter offline\n"); 3594 /* Bring down the SLI Layer and cleanup. The HBA is offline 3595 now. */ 3596 lpfc_sli_hba_down(phba); 3597 spin_lock_irq(&phba->hbalock); 3598 phba->work_ha = 0; 3599 spin_unlock_irq(&phba->hbalock); 3600 vports = lpfc_create_vport_work_array(phba); 3601 if (vports != NULL) 3602 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3603 shost = lpfc_shost_from_vport(vports[i]); 3604 spin_lock_irq(shost->host_lock); 3605 vports[i]->work_port_events = 0; 3606 vports[i]->fc_flag |= FC_OFFLINE_MODE; 3607 spin_unlock_irq(shost->host_lock); 3608 } 3609 lpfc_destroy_vport_work_array(phba, vports); 3610 __lpfc_cpuhp_remove(phba); 3611 3612 if (phba->cfg_xri_rebalancing) 3613 lpfc_destroy_multixri_pools(phba); 3614 } 3615 3616 /** 3617 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3618 * @phba: pointer to lpfc hba data structure. 3619 * 3620 * This routine is to free all the SCSI buffers and IOCBs from the driver 3621 * list back to kernel. It is called from lpfc_pci_remove_one to free 3622 * the internal resources before the device is removed from the system. 3623 **/ 3624 static void 3625 lpfc_scsi_free(struct lpfc_hba *phba) 3626 { 3627 struct lpfc_io_buf *sb, *sb_next; 3628 3629 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3630 return; 3631 3632 spin_lock_irq(&phba->hbalock); 3633 3634 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3635 3636 spin_lock(&phba->scsi_buf_list_put_lock); 3637 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3638 list) { 3639 list_del(&sb->list); 3640 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3641 sb->dma_handle); 3642 kfree(sb); 3643 phba->total_scsi_bufs--; 3644 } 3645 spin_unlock(&phba->scsi_buf_list_put_lock); 3646 3647 spin_lock(&phba->scsi_buf_list_get_lock); 3648 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3649 list) { 3650 list_del(&sb->list); 3651 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3652 sb->dma_handle); 3653 kfree(sb); 3654 phba->total_scsi_bufs--; 3655 } 3656 spin_unlock(&phba->scsi_buf_list_get_lock); 3657 spin_unlock_irq(&phba->hbalock); 3658 } 3659 3660 /** 3661 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 3662 * @phba: pointer to lpfc hba data structure. 3663 * 3664 * This routine is to free all the IO buffers and IOCBs from the driver 3665 * list back to kernel. It is called from lpfc_pci_remove_one to free 3666 * the internal resources before the device is removed from the system. 3667 **/ 3668 void 3669 lpfc_io_free(struct lpfc_hba *phba) 3670 { 3671 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 3672 struct lpfc_sli4_hdw_queue *qp; 3673 int idx; 3674 3675 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3676 qp = &phba->sli4_hba.hdwq[idx]; 3677 /* Release all the lpfc_nvme_bufs maintained by this host. */ 3678 spin_lock(&qp->io_buf_list_put_lock); 3679 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3680 &qp->lpfc_io_buf_list_put, 3681 list) { 3682 list_del(&lpfc_ncmd->list); 3683 qp->put_io_bufs--; 3684 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3685 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3686 if (phba->cfg_xpsgl && !phba->nvmet_support) 3687 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3688 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3689 kfree(lpfc_ncmd); 3690 qp->total_io_bufs--; 3691 } 3692 spin_unlock(&qp->io_buf_list_put_lock); 3693 3694 spin_lock(&qp->io_buf_list_get_lock); 3695 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3696 &qp->lpfc_io_buf_list_get, 3697 list) { 3698 list_del(&lpfc_ncmd->list); 3699 qp->get_io_bufs--; 3700 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3701 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3702 if (phba->cfg_xpsgl && !phba->nvmet_support) 3703 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3704 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3705 kfree(lpfc_ncmd); 3706 qp->total_io_bufs--; 3707 } 3708 spin_unlock(&qp->io_buf_list_get_lock); 3709 } 3710 } 3711 3712 /** 3713 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 3714 * @phba: pointer to lpfc hba data structure. 3715 * 3716 * This routine first calculates the sizes of the current els and allocated 3717 * scsi sgl lists, and then goes through all sgls to updates the physical 3718 * XRIs assigned due to port function reset. During port initialization, the 3719 * current els and allocated scsi sgl lists are 0s. 3720 * 3721 * Return codes 3722 * 0 - successful (for now, it always returns 0) 3723 **/ 3724 int 3725 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 3726 { 3727 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 3728 uint16_t i, lxri, xri_cnt, els_xri_cnt; 3729 LIST_HEAD(els_sgl_list); 3730 int rc; 3731 3732 /* 3733 * update on pci function's els xri-sgl list 3734 */ 3735 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 3736 3737 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 3738 /* els xri-sgl expanded */ 3739 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 3740 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3741 "3157 ELS xri-sgl count increased from " 3742 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3743 els_xri_cnt); 3744 /* allocate the additional els sgls */ 3745 for (i = 0; i < xri_cnt; i++) { 3746 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 3747 GFP_KERNEL); 3748 if (sglq_entry == NULL) { 3749 lpfc_printf_log(phba, KERN_ERR, 3750 LOG_TRACE_EVENT, 3751 "2562 Failure to allocate an " 3752 "ELS sgl entry:%d\n", i); 3753 rc = -ENOMEM; 3754 goto out_free_mem; 3755 } 3756 sglq_entry->buff_type = GEN_BUFF_TYPE; 3757 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 3758 &sglq_entry->phys); 3759 if (sglq_entry->virt == NULL) { 3760 kfree(sglq_entry); 3761 lpfc_printf_log(phba, KERN_ERR, 3762 LOG_TRACE_EVENT, 3763 "2563 Failure to allocate an " 3764 "ELS mbuf:%d\n", i); 3765 rc = -ENOMEM; 3766 goto out_free_mem; 3767 } 3768 sglq_entry->sgl = sglq_entry->virt; 3769 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 3770 sglq_entry->state = SGL_FREED; 3771 list_add_tail(&sglq_entry->list, &els_sgl_list); 3772 } 3773 spin_lock_irq(&phba->hbalock); 3774 spin_lock(&phba->sli4_hba.sgl_list_lock); 3775 list_splice_init(&els_sgl_list, 3776 &phba->sli4_hba.lpfc_els_sgl_list); 3777 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3778 spin_unlock_irq(&phba->hbalock); 3779 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 3780 /* els xri-sgl shrinked */ 3781 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 3782 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3783 "3158 ELS xri-sgl count decreased from " 3784 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3785 els_xri_cnt); 3786 spin_lock_irq(&phba->hbalock); 3787 spin_lock(&phba->sli4_hba.sgl_list_lock); 3788 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 3789 &els_sgl_list); 3790 /* release extra els sgls from list */ 3791 for (i = 0; i < xri_cnt; i++) { 3792 list_remove_head(&els_sgl_list, 3793 sglq_entry, struct lpfc_sglq, list); 3794 if (sglq_entry) { 3795 __lpfc_mbuf_free(phba, sglq_entry->virt, 3796 sglq_entry->phys); 3797 kfree(sglq_entry); 3798 } 3799 } 3800 list_splice_init(&els_sgl_list, 3801 &phba->sli4_hba.lpfc_els_sgl_list); 3802 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3803 spin_unlock_irq(&phba->hbalock); 3804 } else 3805 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3806 "3163 ELS xri-sgl count unchanged: %d\n", 3807 els_xri_cnt); 3808 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 3809 3810 /* update xris to els sgls on the list */ 3811 sglq_entry = NULL; 3812 sglq_entry_next = NULL; 3813 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 3814 &phba->sli4_hba.lpfc_els_sgl_list, list) { 3815 lxri = lpfc_sli4_next_xritag(phba); 3816 if (lxri == NO_XRI) { 3817 lpfc_printf_log(phba, KERN_ERR, 3818 LOG_TRACE_EVENT, 3819 "2400 Failed to allocate xri for " 3820 "ELS sgl\n"); 3821 rc = -ENOMEM; 3822 goto out_free_mem; 3823 } 3824 sglq_entry->sli4_lxritag = lxri; 3825 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 3826 } 3827 return 0; 3828 3829 out_free_mem: 3830 lpfc_free_els_sgl_list(phba); 3831 return rc; 3832 } 3833 3834 /** 3835 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 3836 * @phba: pointer to lpfc hba data structure. 3837 * 3838 * This routine first calculates the sizes of the current els and allocated 3839 * scsi sgl lists, and then goes through all sgls to updates the physical 3840 * XRIs assigned due to port function reset. During port initialization, the 3841 * current els and allocated scsi sgl lists are 0s. 3842 * 3843 * Return codes 3844 * 0 - successful (for now, it always returns 0) 3845 **/ 3846 int 3847 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 3848 { 3849 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 3850 uint16_t i, lxri, xri_cnt, els_xri_cnt; 3851 uint16_t nvmet_xri_cnt; 3852 LIST_HEAD(nvmet_sgl_list); 3853 int rc; 3854 3855 /* 3856 * update on pci function's nvmet xri-sgl list 3857 */ 3858 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 3859 3860 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 3861 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 3862 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 3863 /* els xri-sgl expanded */ 3864 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 3865 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3866 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 3867 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 3868 /* allocate the additional nvmet sgls */ 3869 for (i = 0; i < xri_cnt; i++) { 3870 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 3871 GFP_KERNEL); 3872 if (sglq_entry == NULL) { 3873 lpfc_printf_log(phba, KERN_ERR, 3874 LOG_TRACE_EVENT, 3875 "6303 Failure to allocate an " 3876 "NVMET sgl entry:%d\n", i); 3877 rc = -ENOMEM; 3878 goto out_free_mem; 3879 } 3880 sglq_entry->buff_type = NVMET_BUFF_TYPE; 3881 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 3882 &sglq_entry->phys); 3883 if (sglq_entry->virt == NULL) { 3884 kfree(sglq_entry); 3885 lpfc_printf_log(phba, KERN_ERR, 3886 LOG_TRACE_EVENT, 3887 "6304 Failure to allocate an " 3888 "NVMET buf:%d\n", i); 3889 rc = -ENOMEM; 3890 goto out_free_mem; 3891 } 3892 sglq_entry->sgl = sglq_entry->virt; 3893 memset(sglq_entry->sgl, 0, 3894 phba->cfg_sg_dma_buf_size); 3895 sglq_entry->state = SGL_FREED; 3896 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 3897 } 3898 spin_lock_irq(&phba->hbalock); 3899 spin_lock(&phba->sli4_hba.sgl_list_lock); 3900 list_splice_init(&nvmet_sgl_list, 3901 &phba->sli4_hba.lpfc_nvmet_sgl_list); 3902 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3903 spin_unlock_irq(&phba->hbalock); 3904 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 3905 /* nvmet xri-sgl shrunk */ 3906 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 3907 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3908 "6305 NVMET xri-sgl count decreased from " 3909 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 3910 nvmet_xri_cnt); 3911 spin_lock_irq(&phba->hbalock); 3912 spin_lock(&phba->sli4_hba.sgl_list_lock); 3913 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 3914 &nvmet_sgl_list); 3915 /* release extra nvmet sgls from list */ 3916 for (i = 0; i < xri_cnt; i++) { 3917 list_remove_head(&nvmet_sgl_list, 3918 sglq_entry, struct lpfc_sglq, list); 3919 if (sglq_entry) { 3920 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 3921 sglq_entry->phys); 3922 kfree(sglq_entry); 3923 } 3924 } 3925 list_splice_init(&nvmet_sgl_list, 3926 &phba->sli4_hba.lpfc_nvmet_sgl_list); 3927 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3928 spin_unlock_irq(&phba->hbalock); 3929 } else 3930 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3931 "6306 NVMET xri-sgl count unchanged: %d\n", 3932 nvmet_xri_cnt); 3933 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 3934 3935 /* update xris to nvmet sgls on the list */ 3936 sglq_entry = NULL; 3937 sglq_entry_next = NULL; 3938 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 3939 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 3940 lxri = lpfc_sli4_next_xritag(phba); 3941 if (lxri == NO_XRI) { 3942 lpfc_printf_log(phba, KERN_ERR, 3943 LOG_TRACE_EVENT, 3944 "6307 Failed to allocate xri for " 3945 "NVMET sgl\n"); 3946 rc = -ENOMEM; 3947 goto out_free_mem; 3948 } 3949 sglq_entry->sli4_lxritag = lxri; 3950 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 3951 } 3952 return 0; 3953 3954 out_free_mem: 3955 lpfc_free_nvmet_sgl_list(phba); 3956 return rc; 3957 } 3958 3959 int 3960 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 3961 { 3962 LIST_HEAD(blist); 3963 struct lpfc_sli4_hdw_queue *qp; 3964 struct lpfc_io_buf *lpfc_cmd; 3965 struct lpfc_io_buf *iobufp, *prev_iobufp; 3966 int idx, cnt, xri, inserted; 3967 3968 cnt = 0; 3969 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3970 qp = &phba->sli4_hba.hdwq[idx]; 3971 spin_lock_irq(&qp->io_buf_list_get_lock); 3972 spin_lock(&qp->io_buf_list_put_lock); 3973 3974 /* Take everything off the get and put lists */ 3975 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 3976 list_splice(&qp->lpfc_io_buf_list_put, &blist); 3977 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 3978 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 3979 cnt += qp->get_io_bufs + qp->put_io_bufs; 3980 qp->get_io_bufs = 0; 3981 qp->put_io_bufs = 0; 3982 qp->total_io_bufs = 0; 3983 spin_unlock(&qp->io_buf_list_put_lock); 3984 spin_unlock_irq(&qp->io_buf_list_get_lock); 3985 } 3986 3987 /* 3988 * Take IO buffers off blist and put on cbuf sorted by XRI. 3989 * This is because POST_SGL takes a sequential range of XRIs 3990 * to post to the firmware. 3991 */ 3992 for (idx = 0; idx < cnt; idx++) { 3993 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 3994 if (!lpfc_cmd) 3995 return cnt; 3996 if (idx == 0) { 3997 list_add_tail(&lpfc_cmd->list, cbuf); 3998 continue; 3999 } 4000 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 4001 inserted = 0; 4002 prev_iobufp = NULL; 4003 list_for_each_entry(iobufp, cbuf, list) { 4004 if (xri < iobufp->cur_iocbq.sli4_xritag) { 4005 if (prev_iobufp) 4006 list_add(&lpfc_cmd->list, 4007 &prev_iobufp->list); 4008 else 4009 list_add(&lpfc_cmd->list, cbuf); 4010 inserted = 1; 4011 break; 4012 } 4013 prev_iobufp = iobufp; 4014 } 4015 if (!inserted) 4016 list_add_tail(&lpfc_cmd->list, cbuf); 4017 } 4018 return cnt; 4019 } 4020 4021 int 4022 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 4023 { 4024 struct lpfc_sli4_hdw_queue *qp; 4025 struct lpfc_io_buf *lpfc_cmd; 4026 int idx, cnt; 4027 4028 qp = phba->sli4_hba.hdwq; 4029 cnt = 0; 4030 while (!list_empty(cbuf)) { 4031 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4032 list_remove_head(cbuf, lpfc_cmd, 4033 struct lpfc_io_buf, list); 4034 if (!lpfc_cmd) 4035 return cnt; 4036 cnt++; 4037 qp = &phba->sli4_hba.hdwq[idx]; 4038 lpfc_cmd->hdwq_no = idx; 4039 lpfc_cmd->hdwq = qp; 4040 lpfc_cmd->cur_iocbq.wqe_cmpl = NULL; 4041 lpfc_cmd->cur_iocbq.iocb_cmpl = NULL; 4042 spin_lock(&qp->io_buf_list_put_lock); 4043 list_add_tail(&lpfc_cmd->list, 4044 &qp->lpfc_io_buf_list_put); 4045 qp->put_io_bufs++; 4046 qp->total_io_bufs++; 4047 spin_unlock(&qp->io_buf_list_put_lock); 4048 } 4049 } 4050 return cnt; 4051 } 4052 4053 /** 4054 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 4055 * @phba: pointer to lpfc hba data structure. 4056 * 4057 * This routine first calculates the sizes of the current els and allocated 4058 * scsi sgl lists, and then goes through all sgls to updates the physical 4059 * XRIs assigned due to port function reset. During port initialization, the 4060 * current els and allocated scsi sgl lists are 0s. 4061 * 4062 * Return codes 4063 * 0 - successful (for now, it always returns 0) 4064 **/ 4065 int 4066 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 4067 { 4068 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 4069 uint16_t i, lxri, els_xri_cnt; 4070 uint16_t io_xri_cnt, io_xri_max; 4071 LIST_HEAD(io_sgl_list); 4072 int rc, cnt; 4073 4074 /* 4075 * update on pci function's allocated nvme xri-sgl list 4076 */ 4077 4078 /* maximum number of xris available for nvme buffers */ 4079 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4080 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4081 phba->sli4_hba.io_xri_max = io_xri_max; 4082 4083 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4084 "6074 Current allocated XRI sgl count:%d, " 4085 "maximum XRI count:%d\n", 4086 phba->sli4_hba.io_xri_cnt, 4087 phba->sli4_hba.io_xri_max); 4088 4089 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4090 4091 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4092 /* max nvme xri shrunk below the allocated nvme buffers */ 4093 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4094 phba->sli4_hba.io_xri_max; 4095 /* release the extra allocated nvme buffers */ 4096 for (i = 0; i < io_xri_cnt; i++) { 4097 list_remove_head(&io_sgl_list, lpfc_ncmd, 4098 struct lpfc_io_buf, list); 4099 if (lpfc_ncmd) { 4100 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4101 lpfc_ncmd->data, 4102 lpfc_ncmd->dma_handle); 4103 kfree(lpfc_ncmd); 4104 } 4105 } 4106 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4107 } 4108 4109 /* update xris associated to remaining allocated nvme buffers */ 4110 lpfc_ncmd = NULL; 4111 lpfc_ncmd_next = NULL; 4112 phba->sli4_hba.io_xri_cnt = cnt; 4113 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4114 &io_sgl_list, list) { 4115 lxri = lpfc_sli4_next_xritag(phba); 4116 if (lxri == NO_XRI) { 4117 lpfc_printf_log(phba, KERN_ERR, 4118 LOG_TRACE_EVENT, 4119 "6075 Failed to allocate xri for " 4120 "nvme buffer\n"); 4121 rc = -ENOMEM; 4122 goto out_free_mem; 4123 } 4124 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4125 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4126 } 4127 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4128 return 0; 4129 4130 out_free_mem: 4131 lpfc_io_free(phba); 4132 return rc; 4133 } 4134 4135 /** 4136 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4137 * @phba: Pointer to lpfc hba data structure. 4138 * @num_to_alloc: The requested number of buffers to allocate. 4139 * 4140 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4141 * the nvme buffer contains all the necessary information needed to initiate 4142 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4143 * them on a list, it post them to the port by using SGL block post. 4144 * 4145 * Return codes: 4146 * int - number of IO buffers that were allocated and posted. 4147 * 0 = failure, less than num_to_alloc is a partial failure. 4148 **/ 4149 int 4150 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4151 { 4152 struct lpfc_io_buf *lpfc_ncmd; 4153 struct lpfc_iocbq *pwqeq; 4154 uint16_t iotag, lxri = 0; 4155 int bcnt, num_posted; 4156 LIST_HEAD(prep_nblist); 4157 LIST_HEAD(post_nblist); 4158 LIST_HEAD(nvme_nblist); 4159 4160 phba->sli4_hba.io_xri_cnt = 0; 4161 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4162 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4163 if (!lpfc_ncmd) 4164 break; 4165 /* 4166 * Get memory from the pci pool to map the virt space to 4167 * pci bus space for an I/O. The DMA buffer includes the 4168 * number of SGE's necessary to support the sg_tablesize. 4169 */ 4170 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4171 GFP_KERNEL, 4172 &lpfc_ncmd->dma_handle); 4173 if (!lpfc_ncmd->data) { 4174 kfree(lpfc_ncmd); 4175 break; 4176 } 4177 4178 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4179 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4180 } else { 4181 /* 4182 * 4K Page alignment is CRITICAL to BlockGuard, double 4183 * check to be sure. 4184 */ 4185 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4186 (((unsigned long)(lpfc_ncmd->data) & 4187 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4188 lpfc_printf_log(phba, KERN_ERR, 4189 LOG_TRACE_EVENT, 4190 "3369 Memory alignment err: " 4191 "addr=%lx\n", 4192 (unsigned long)lpfc_ncmd->data); 4193 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4194 lpfc_ncmd->data, 4195 lpfc_ncmd->dma_handle); 4196 kfree(lpfc_ncmd); 4197 break; 4198 } 4199 } 4200 4201 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4202 4203 lxri = lpfc_sli4_next_xritag(phba); 4204 if (lxri == NO_XRI) { 4205 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4206 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4207 kfree(lpfc_ncmd); 4208 break; 4209 } 4210 pwqeq = &lpfc_ncmd->cur_iocbq; 4211 4212 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4213 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4214 if (iotag == 0) { 4215 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4216 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4217 kfree(lpfc_ncmd); 4218 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4219 "6121 Failed to allocate IOTAG for" 4220 " XRI:0x%x\n", lxri); 4221 lpfc_sli4_free_xri(phba, lxri); 4222 break; 4223 } 4224 pwqeq->sli4_lxritag = lxri; 4225 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4226 pwqeq->context1 = lpfc_ncmd; 4227 4228 /* Initialize local short-hand pointers. */ 4229 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4230 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4231 lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd; 4232 spin_lock_init(&lpfc_ncmd->buf_lock); 4233 4234 /* add the nvme buffer to a post list */ 4235 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4236 phba->sli4_hba.io_xri_cnt++; 4237 } 4238 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4239 "6114 Allocate %d out of %d requested new NVME " 4240 "buffers\n", bcnt, num_to_alloc); 4241 4242 /* post the list of nvme buffer sgls to port if available */ 4243 if (!list_empty(&post_nblist)) 4244 num_posted = lpfc_sli4_post_io_sgl_list( 4245 phba, &post_nblist, bcnt); 4246 else 4247 num_posted = 0; 4248 4249 return num_posted; 4250 } 4251 4252 static uint64_t 4253 lpfc_get_wwpn(struct lpfc_hba *phba) 4254 { 4255 uint64_t wwn; 4256 int rc; 4257 LPFC_MBOXQ_t *mboxq; 4258 MAILBOX_t *mb; 4259 4260 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4261 GFP_KERNEL); 4262 if (!mboxq) 4263 return (uint64_t)-1; 4264 4265 /* First get WWN of HBA instance */ 4266 lpfc_read_nv(phba, mboxq); 4267 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4268 if (rc != MBX_SUCCESS) { 4269 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4270 "6019 Mailbox failed , mbxCmd x%x " 4271 "READ_NV, mbxStatus x%x\n", 4272 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4273 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4274 mempool_free(mboxq, phba->mbox_mem_pool); 4275 return (uint64_t) -1; 4276 } 4277 mb = &mboxq->u.mb; 4278 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4279 /* wwn is WWPN of HBA instance */ 4280 mempool_free(mboxq, phba->mbox_mem_pool); 4281 if (phba->sli_rev == LPFC_SLI_REV4) 4282 return be64_to_cpu(wwn); 4283 else 4284 return rol64(wwn, 32); 4285 } 4286 4287 /** 4288 * lpfc_create_port - Create an FC port 4289 * @phba: pointer to lpfc hba data structure. 4290 * @instance: a unique integer ID to this FC port. 4291 * @dev: pointer to the device data structure. 4292 * 4293 * This routine creates a FC port for the upper layer protocol. The FC port 4294 * can be created on top of either a physical port or a virtual port provided 4295 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4296 * and associates the FC port created before adding the shost into the SCSI 4297 * layer. 4298 * 4299 * Return codes 4300 * @vport - pointer to the virtual N_Port data structure. 4301 * NULL - port create failed. 4302 **/ 4303 struct lpfc_vport * 4304 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4305 { 4306 struct lpfc_vport *vport; 4307 struct Scsi_Host *shost = NULL; 4308 struct scsi_host_template *template; 4309 int error = 0; 4310 int i; 4311 uint64_t wwn; 4312 bool use_no_reset_hba = false; 4313 int rc; 4314 4315 if (lpfc_no_hba_reset_cnt) { 4316 if (phba->sli_rev < LPFC_SLI_REV4 && 4317 dev == &phba->pcidev->dev) { 4318 /* Reset the port first */ 4319 lpfc_sli_brdrestart(phba); 4320 rc = lpfc_sli_chipset_init(phba); 4321 if (rc) 4322 return NULL; 4323 } 4324 wwn = lpfc_get_wwpn(phba); 4325 } 4326 4327 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4328 if (wwn == lpfc_no_hba_reset[i]) { 4329 lpfc_printf_log(phba, KERN_ERR, 4330 LOG_TRACE_EVENT, 4331 "6020 Setting use_no_reset port=%llx\n", 4332 wwn); 4333 use_no_reset_hba = true; 4334 break; 4335 } 4336 } 4337 4338 /* Seed template for SCSI host registration */ 4339 if (dev == &phba->pcidev->dev) { 4340 template = &phba->port_template; 4341 4342 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4343 /* Seed physical port template */ 4344 memcpy(template, &lpfc_template, sizeof(*template)); 4345 4346 if (use_no_reset_hba) { 4347 /* template is for a no reset SCSI Host */ 4348 template->max_sectors = 0xffff; 4349 template->eh_host_reset_handler = NULL; 4350 } 4351 4352 /* Template for all vports this physical port creates */ 4353 memcpy(&phba->vport_template, &lpfc_template, 4354 sizeof(*template)); 4355 phba->vport_template.max_sectors = 0xffff; 4356 phba->vport_template.shost_attrs = lpfc_vport_attrs; 4357 phba->vport_template.eh_bus_reset_handler = NULL; 4358 phba->vport_template.eh_host_reset_handler = NULL; 4359 phba->vport_template.vendor_id = 0; 4360 4361 /* Initialize the host templates with updated value */ 4362 if (phba->sli_rev == LPFC_SLI_REV4) { 4363 template->sg_tablesize = phba->cfg_scsi_seg_cnt; 4364 phba->vport_template.sg_tablesize = 4365 phba->cfg_scsi_seg_cnt; 4366 } else { 4367 template->sg_tablesize = phba->cfg_sg_seg_cnt; 4368 phba->vport_template.sg_tablesize = 4369 phba->cfg_sg_seg_cnt; 4370 } 4371 4372 } else { 4373 /* NVMET is for physical port only */ 4374 memcpy(template, &lpfc_template_nvme, 4375 sizeof(*template)); 4376 } 4377 } else { 4378 template = &phba->vport_template; 4379 } 4380 4381 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4382 if (!shost) 4383 goto out; 4384 4385 vport = (struct lpfc_vport *) shost->hostdata; 4386 vport->phba = phba; 4387 vport->load_flag |= FC_LOADING; 4388 vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 4389 vport->fc_rscn_flush = 0; 4390 lpfc_get_vport_cfgparam(vport); 4391 4392 /* Adjust value in vport */ 4393 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4394 4395 shost->unique_id = instance; 4396 shost->max_id = LPFC_MAX_TARGET; 4397 shost->max_lun = vport->cfg_max_luns; 4398 shost->this_id = -1; 4399 shost->max_cmd_len = 16; 4400 4401 if (phba->sli_rev == LPFC_SLI_REV4) { 4402 if (!phba->cfg_fcp_mq_threshold || 4403 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4404 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4405 4406 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4407 phba->cfg_fcp_mq_threshold); 4408 4409 shost->dma_boundary = 4410 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4411 4412 if (phba->cfg_xpsgl && !phba->nvmet_support) 4413 shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE; 4414 else 4415 shost->sg_tablesize = phba->cfg_scsi_seg_cnt; 4416 } else 4417 /* SLI-3 has a limited number of hardware queues (3), 4418 * thus there is only one for FCP processing. 4419 */ 4420 shost->nr_hw_queues = 1; 4421 4422 /* 4423 * Set initial can_queue value since 0 is no longer supported and 4424 * scsi_add_host will fail. This will be adjusted later based on the 4425 * max xri value determined in hba setup. 4426 */ 4427 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4428 if (dev != &phba->pcidev->dev) { 4429 shost->transportt = lpfc_vport_transport_template; 4430 vport->port_type = LPFC_NPIV_PORT; 4431 } else { 4432 shost->transportt = lpfc_transport_template; 4433 vport->port_type = LPFC_PHYSICAL_PORT; 4434 } 4435 4436 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4437 "9081 CreatePort TMPLATE type %x TBLsize %d " 4438 "SEGcnt %d/%d\n", 4439 vport->port_type, shost->sg_tablesize, 4440 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4441 4442 /* Initialize all internally managed lists. */ 4443 INIT_LIST_HEAD(&vport->fc_nodes); 4444 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4445 spin_lock_init(&vport->work_port_lock); 4446 4447 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4448 4449 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4450 4451 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4452 4453 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4454 lpfc_setup_bg(phba, shost); 4455 4456 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4457 if (error) 4458 goto out_put_shost; 4459 4460 spin_lock_irq(&phba->port_list_lock); 4461 list_add_tail(&vport->listentry, &phba->port_list); 4462 spin_unlock_irq(&phba->port_list_lock); 4463 return vport; 4464 4465 out_put_shost: 4466 scsi_host_put(shost); 4467 out: 4468 return NULL; 4469 } 4470 4471 /** 4472 * destroy_port - destroy an FC port 4473 * @vport: pointer to an lpfc virtual N_Port data structure. 4474 * 4475 * This routine destroys a FC port from the upper layer protocol. All the 4476 * resources associated with the port are released. 4477 **/ 4478 void 4479 destroy_port(struct lpfc_vport *vport) 4480 { 4481 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4482 struct lpfc_hba *phba = vport->phba; 4483 4484 lpfc_debugfs_terminate(vport); 4485 fc_remove_host(shost); 4486 scsi_remove_host(shost); 4487 4488 spin_lock_irq(&phba->port_list_lock); 4489 list_del_init(&vport->listentry); 4490 spin_unlock_irq(&phba->port_list_lock); 4491 4492 lpfc_cleanup(vport); 4493 return; 4494 } 4495 4496 /** 4497 * lpfc_get_instance - Get a unique integer ID 4498 * 4499 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4500 * uses the kernel idr facility to perform the task. 4501 * 4502 * Return codes: 4503 * instance - a unique integer ID allocated as the new instance. 4504 * -1 - lpfc get instance failed. 4505 **/ 4506 int 4507 lpfc_get_instance(void) 4508 { 4509 int ret; 4510 4511 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4512 return ret < 0 ? -1 : ret; 4513 } 4514 4515 /** 4516 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4517 * @shost: pointer to SCSI host data structure. 4518 * @time: elapsed time of the scan in jiffies. 4519 * 4520 * This routine is called by the SCSI layer with a SCSI host to determine 4521 * whether the scan host is finished. 4522 * 4523 * Note: there is no scan_start function as adapter initialization will have 4524 * asynchronously kicked off the link initialization. 4525 * 4526 * Return codes 4527 * 0 - SCSI host scan is not over yet. 4528 * 1 - SCSI host scan is over. 4529 **/ 4530 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4531 { 4532 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4533 struct lpfc_hba *phba = vport->phba; 4534 int stat = 0; 4535 4536 spin_lock_irq(shost->host_lock); 4537 4538 if (vport->load_flag & FC_UNLOADING) { 4539 stat = 1; 4540 goto finished; 4541 } 4542 if (time >= msecs_to_jiffies(30 * 1000)) { 4543 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4544 "0461 Scanning longer than 30 " 4545 "seconds. Continuing initialization\n"); 4546 stat = 1; 4547 goto finished; 4548 } 4549 if (time >= msecs_to_jiffies(15 * 1000) && 4550 phba->link_state <= LPFC_LINK_DOWN) { 4551 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4552 "0465 Link down longer than 15 " 4553 "seconds. Continuing initialization\n"); 4554 stat = 1; 4555 goto finished; 4556 } 4557 4558 if (vport->port_state != LPFC_VPORT_READY) 4559 goto finished; 4560 if (vport->num_disc_nodes || vport->fc_prli_sent) 4561 goto finished; 4562 if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000)) 4563 goto finished; 4564 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4565 goto finished; 4566 4567 stat = 1; 4568 4569 finished: 4570 spin_unlock_irq(shost->host_lock); 4571 return stat; 4572 } 4573 4574 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4575 { 4576 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4577 struct lpfc_hba *phba = vport->phba; 4578 4579 fc_host_supported_speeds(shost) = 0; 4580 if (phba->lmt & LMT_128Gb) 4581 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4582 if (phba->lmt & LMT_64Gb) 4583 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4584 if (phba->lmt & LMT_32Gb) 4585 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4586 if (phba->lmt & LMT_16Gb) 4587 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4588 if (phba->lmt & LMT_10Gb) 4589 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4590 if (phba->lmt & LMT_8Gb) 4591 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4592 if (phba->lmt & LMT_4Gb) 4593 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4594 if (phba->lmt & LMT_2Gb) 4595 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4596 if (phba->lmt & LMT_1Gb) 4597 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 4598 } 4599 4600 /** 4601 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 4602 * @shost: pointer to SCSI host data structure. 4603 * 4604 * This routine initializes a given SCSI host attributes on a FC port. The 4605 * SCSI host can be either on top of a physical port or a virtual port. 4606 **/ 4607 void lpfc_host_attrib_init(struct Scsi_Host *shost) 4608 { 4609 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4610 struct lpfc_hba *phba = vport->phba; 4611 /* 4612 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 4613 */ 4614 4615 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 4616 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 4617 fc_host_supported_classes(shost) = FC_COS_CLASS3; 4618 4619 memset(fc_host_supported_fc4s(shost), 0, 4620 sizeof(fc_host_supported_fc4s(shost))); 4621 fc_host_supported_fc4s(shost)[2] = 1; 4622 fc_host_supported_fc4s(shost)[7] = 1; 4623 4624 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 4625 sizeof fc_host_symbolic_name(shost)); 4626 4627 lpfc_host_supported_speeds_set(shost); 4628 4629 fc_host_maxframe_size(shost) = 4630 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 4631 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 4632 4633 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 4634 4635 /* This value is also unchanging */ 4636 memset(fc_host_active_fc4s(shost), 0, 4637 sizeof(fc_host_active_fc4s(shost))); 4638 fc_host_active_fc4s(shost)[2] = 1; 4639 fc_host_active_fc4s(shost)[7] = 1; 4640 4641 fc_host_max_npiv_vports(shost) = phba->max_vpi; 4642 spin_lock_irq(shost->host_lock); 4643 vport->load_flag &= ~FC_LOADING; 4644 spin_unlock_irq(shost->host_lock); 4645 } 4646 4647 /** 4648 * lpfc_stop_port_s3 - Stop SLI3 device port 4649 * @phba: pointer to lpfc hba data structure. 4650 * 4651 * This routine is invoked to stop an SLI3 device port, it stops the device 4652 * from generating interrupts and stops the device driver's timers for the 4653 * device. 4654 **/ 4655 static void 4656 lpfc_stop_port_s3(struct lpfc_hba *phba) 4657 { 4658 /* Clear all interrupt enable conditions */ 4659 writel(0, phba->HCregaddr); 4660 readl(phba->HCregaddr); /* flush */ 4661 /* Clear all pending interrupts */ 4662 writel(0xffffffff, phba->HAregaddr); 4663 readl(phba->HAregaddr); /* flush */ 4664 4665 /* Reset some HBA SLI setup states */ 4666 lpfc_stop_hba_timers(phba); 4667 phba->pport->work_port_events = 0; 4668 } 4669 4670 /** 4671 * lpfc_stop_port_s4 - Stop SLI4 device port 4672 * @phba: pointer to lpfc hba data structure. 4673 * 4674 * This routine is invoked to stop an SLI4 device port, it stops the device 4675 * from generating interrupts and stops the device driver's timers for the 4676 * device. 4677 **/ 4678 static void 4679 lpfc_stop_port_s4(struct lpfc_hba *phba) 4680 { 4681 /* Reset some HBA SLI4 setup states */ 4682 lpfc_stop_hba_timers(phba); 4683 if (phba->pport) 4684 phba->pport->work_port_events = 0; 4685 phba->sli4_hba.intr_enable = 0; 4686 } 4687 4688 /** 4689 * lpfc_stop_port - Wrapper function for stopping hba port 4690 * @phba: Pointer to HBA context object. 4691 * 4692 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 4693 * the API jump table function pointer from the lpfc_hba struct. 4694 **/ 4695 void 4696 lpfc_stop_port(struct lpfc_hba *phba) 4697 { 4698 phba->lpfc_stop_port(phba); 4699 4700 if (phba->wq) 4701 flush_workqueue(phba->wq); 4702 } 4703 4704 /** 4705 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 4706 * @phba: Pointer to hba for which this call is being executed. 4707 * 4708 * This routine starts the timer waiting for the FCF rediscovery to complete. 4709 **/ 4710 void 4711 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 4712 { 4713 unsigned long fcf_redisc_wait_tmo = 4714 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 4715 /* Start fcf rediscovery wait period timer */ 4716 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 4717 spin_lock_irq(&phba->hbalock); 4718 /* Allow action to new fcf asynchronous event */ 4719 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 4720 /* Mark the FCF rediscovery pending state */ 4721 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 4722 spin_unlock_irq(&phba->hbalock); 4723 } 4724 4725 /** 4726 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 4727 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 4728 * 4729 * This routine is invoked when waiting for FCF table rediscover has been 4730 * timed out. If new FCF record(s) has (have) been discovered during the 4731 * wait period, a new FCF event shall be added to the FCOE async event 4732 * list, and then worker thread shall be waked up for processing from the 4733 * worker thread context. 4734 **/ 4735 static void 4736 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 4737 { 4738 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); 4739 4740 /* Don't send FCF rediscovery event if timer cancelled */ 4741 spin_lock_irq(&phba->hbalock); 4742 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 4743 spin_unlock_irq(&phba->hbalock); 4744 return; 4745 } 4746 /* Clear FCF rediscovery timer pending flag */ 4747 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 4748 /* FCF rediscovery event to worker thread */ 4749 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 4750 spin_unlock_irq(&phba->hbalock); 4751 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 4752 "2776 FCF rediscover quiescent timer expired\n"); 4753 /* wake up worker thread */ 4754 lpfc_worker_wake_up(phba); 4755 } 4756 4757 /** 4758 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 4759 * @phba: pointer to lpfc hba data structure. 4760 * @acqe_link: pointer to the async link completion queue entry. 4761 * 4762 * This routine is to parse the SLI4 link-attention link fault code. 4763 **/ 4764 static void 4765 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 4766 struct lpfc_acqe_link *acqe_link) 4767 { 4768 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 4769 case LPFC_ASYNC_LINK_FAULT_NONE: 4770 case LPFC_ASYNC_LINK_FAULT_LOCAL: 4771 case LPFC_ASYNC_LINK_FAULT_REMOTE: 4772 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 4773 break; 4774 default: 4775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4776 "0398 Unknown link fault code: x%x\n", 4777 bf_get(lpfc_acqe_link_fault, acqe_link)); 4778 break; 4779 } 4780 } 4781 4782 /** 4783 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 4784 * @phba: pointer to lpfc hba data structure. 4785 * @acqe_link: pointer to the async link completion queue entry. 4786 * 4787 * This routine is to parse the SLI4 link attention type and translate it 4788 * into the base driver's link attention type coding. 4789 * 4790 * Return: Link attention type in terms of base driver's coding. 4791 **/ 4792 static uint8_t 4793 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 4794 struct lpfc_acqe_link *acqe_link) 4795 { 4796 uint8_t att_type; 4797 4798 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 4799 case LPFC_ASYNC_LINK_STATUS_DOWN: 4800 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 4801 att_type = LPFC_ATT_LINK_DOWN; 4802 break; 4803 case LPFC_ASYNC_LINK_STATUS_UP: 4804 /* Ignore physical link up events - wait for logical link up */ 4805 att_type = LPFC_ATT_RESERVED; 4806 break; 4807 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 4808 att_type = LPFC_ATT_LINK_UP; 4809 break; 4810 default: 4811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4812 "0399 Invalid link attention type: x%x\n", 4813 bf_get(lpfc_acqe_link_status, acqe_link)); 4814 att_type = LPFC_ATT_RESERVED; 4815 break; 4816 } 4817 return att_type; 4818 } 4819 4820 /** 4821 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 4822 * @phba: pointer to lpfc hba data structure. 4823 * 4824 * This routine is to get an SLI3 FC port's link speed in Mbps. 4825 * 4826 * Return: link speed in terms of Mbps. 4827 **/ 4828 uint32_t 4829 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 4830 { 4831 uint32_t link_speed; 4832 4833 if (!lpfc_is_link_up(phba)) 4834 return 0; 4835 4836 if (phba->sli_rev <= LPFC_SLI_REV3) { 4837 switch (phba->fc_linkspeed) { 4838 case LPFC_LINK_SPEED_1GHZ: 4839 link_speed = 1000; 4840 break; 4841 case LPFC_LINK_SPEED_2GHZ: 4842 link_speed = 2000; 4843 break; 4844 case LPFC_LINK_SPEED_4GHZ: 4845 link_speed = 4000; 4846 break; 4847 case LPFC_LINK_SPEED_8GHZ: 4848 link_speed = 8000; 4849 break; 4850 case LPFC_LINK_SPEED_10GHZ: 4851 link_speed = 10000; 4852 break; 4853 case LPFC_LINK_SPEED_16GHZ: 4854 link_speed = 16000; 4855 break; 4856 default: 4857 link_speed = 0; 4858 } 4859 } else { 4860 if (phba->sli4_hba.link_state.logical_speed) 4861 link_speed = 4862 phba->sli4_hba.link_state.logical_speed; 4863 else 4864 link_speed = phba->sli4_hba.link_state.speed; 4865 } 4866 return link_speed; 4867 } 4868 4869 /** 4870 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 4871 * @phba: pointer to lpfc hba data structure. 4872 * @evt_code: asynchronous event code. 4873 * @speed_code: asynchronous event link speed code. 4874 * 4875 * This routine is to parse the giving SLI4 async event link speed code into 4876 * value of Mbps for the link speed. 4877 * 4878 * Return: link speed in terms of Mbps. 4879 **/ 4880 static uint32_t 4881 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 4882 uint8_t speed_code) 4883 { 4884 uint32_t port_speed; 4885 4886 switch (evt_code) { 4887 case LPFC_TRAILER_CODE_LINK: 4888 switch (speed_code) { 4889 case LPFC_ASYNC_LINK_SPEED_ZERO: 4890 port_speed = 0; 4891 break; 4892 case LPFC_ASYNC_LINK_SPEED_10MBPS: 4893 port_speed = 10; 4894 break; 4895 case LPFC_ASYNC_LINK_SPEED_100MBPS: 4896 port_speed = 100; 4897 break; 4898 case LPFC_ASYNC_LINK_SPEED_1GBPS: 4899 port_speed = 1000; 4900 break; 4901 case LPFC_ASYNC_LINK_SPEED_10GBPS: 4902 port_speed = 10000; 4903 break; 4904 case LPFC_ASYNC_LINK_SPEED_20GBPS: 4905 port_speed = 20000; 4906 break; 4907 case LPFC_ASYNC_LINK_SPEED_25GBPS: 4908 port_speed = 25000; 4909 break; 4910 case LPFC_ASYNC_LINK_SPEED_40GBPS: 4911 port_speed = 40000; 4912 break; 4913 default: 4914 port_speed = 0; 4915 } 4916 break; 4917 case LPFC_TRAILER_CODE_FC: 4918 switch (speed_code) { 4919 case LPFC_FC_LA_SPEED_UNKNOWN: 4920 port_speed = 0; 4921 break; 4922 case LPFC_FC_LA_SPEED_1G: 4923 port_speed = 1000; 4924 break; 4925 case LPFC_FC_LA_SPEED_2G: 4926 port_speed = 2000; 4927 break; 4928 case LPFC_FC_LA_SPEED_4G: 4929 port_speed = 4000; 4930 break; 4931 case LPFC_FC_LA_SPEED_8G: 4932 port_speed = 8000; 4933 break; 4934 case LPFC_FC_LA_SPEED_10G: 4935 port_speed = 10000; 4936 break; 4937 case LPFC_FC_LA_SPEED_16G: 4938 port_speed = 16000; 4939 break; 4940 case LPFC_FC_LA_SPEED_32G: 4941 port_speed = 32000; 4942 break; 4943 case LPFC_FC_LA_SPEED_64G: 4944 port_speed = 64000; 4945 break; 4946 case LPFC_FC_LA_SPEED_128G: 4947 port_speed = 128000; 4948 break; 4949 default: 4950 port_speed = 0; 4951 } 4952 break; 4953 default: 4954 port_speed = 0; 4955 } 4956 return port_speed; 4957 } 4958 4959 /** 4960 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 4961 * @phba: pointer to lpfc hba data structure. 4962 * @acqe_link: pointer to the async link completion queue entry. 4963 * 4964 * This routine is to handle the SLI4 asynchronous FCoE link event. 4965 **/ 4966 static void 4967 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 4968 struct lpfc_acqe_link *acqe_link) 4969 { 4970 struct lpfc_dmabuf *mp; 4971 LPFC_MBOXQ_t *pmb; 4972 MAILBOX_t *mb; 4973 struct lpfc_mbx_read_top *la; 4974 uint8_t att_type; 4975 int rc; 4976 4977 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 4978 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 4979 return; 4980 phba->fcoe_eventtag = acqe_link->event_tag; 4981 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4982 if (!pmb) { 4983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4984 "0395 The mboxq allocation failed\n"); 4985 return; 4986 } 4987 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 4988 if (!mp) { 4989 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4990 "0396 The lpfc_dmabuf allocation failed\n"); 4991 goto out_free_pmb; 4992 } 4993 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 4994 if (!mp->virt) { 4995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4996 "0397 The mbuf allocation failed\n"); 4997 goto out_free_dmabuf; 4998 } 4999 5000 /* Cleanup any outstanding ELS commands */ 5001 lpfc_els_flush_all_cmd(phba); 5002 5003 /* Block ELS IOCBs until we have done process link event */ 5004 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5005 5006 /* Update link event statistics */ 5007 phba->sli.slistat.link_event++; 5008 5009 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5010 lpfc_read_topology(phba, pmb, mp); 5011 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5012 pmb->vport = phba->pport; 5013 5014 /* Keep the link status for extra SLI4 state machine reference */ 5015 phba->sli4_hba.link_state.speed = 5016 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 5017 bf_get(lpfc_acqe_link_speed, acqe_link)); 5018 phba->sli4_hba.link_state.duplex = 5019 bf_get(lpfc_acqe_link_duplex, acqe_link); 5020 phba->sli4_hba.link_state.status = 5021 bf_get(lpfc_acqe_link_status, acqe_link); 5022 phba->sli4_hba.link_state.type = 5023 bf_get(lpfc_acqe_link_type, acqe_link); 5024 phba->sli4_hba.link_state.number = 5025 bf_get(lpfc_acqe_link_number, acqe_link); 5026 phba->sli4_hba.link_state.fault = 5027 bf_get(lpfc_acqe_link_fault, acqe_link); 5028 phba->sli4_hba.link_state.logical_speed = 5029 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 5030 5031 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5032 "2900 Async FC/FCoE Link event - Speed:%dGBit " 5033 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 5034 "Logical speed:%dMbps Fault:%d\n", 5035 phba->sli4_hba.link_state.speed, 5036 phba->sli4_hba.link_state.topology, 5037 phba->sli4_hba.link_state.status, 5038 phba->sli4_hba.link_state.type, 5039 phba->sli4_hba.link_state.number, 5040 phba->sli4_hba.link_state.logical_speed, 5041 phba->sli4_hba.link_state.fault); 5042 /* 5043 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 5044 * topology info. Note: Optional for non FC-AL ports. 5045 */ 5046 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 5047 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5048 if (rc == MBX_NOT_FINISHED) 5049 goto out_free_dmabuf; 5050 return; 5051 } 5052 /* 5053 * For FCoE Mode: fill in all the topology information we need and call 5054 * the READ_TOPOLOGY completion routine to continue without actually 5055 * sending the READ_TOPOLOGY mailbox command to the port. 5056 */ 5057 /* Initialize completion status */ 5058 mb = &pmb->u.mb; 5059 mb->mbxStatus = MBX_SUCCESS; 5060 5061 /* Parse port fault information field */ 5062 lpfc_sli4_parse_latt_fault(phba, acqe_link); 5063 5064 /* Parse and translate link attention fields */ 5065 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 5066 la->eventTag = acqe_link->event_tag; 5067 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 5068 bf_set(lpfc_mbx_read_top_link_spd, la, 5069 (bf_get(lpfc_acqe_link_speed, acqe_link))); 5070 5071 /* Fake the the following irrelvant fields */ 5072 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 5073 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 5074 bf_set(lpfc_mbx_read_top_il, la, 0); 5075 bf_set(lpfc_mbx_read_top_pb, la, 0); 5076 bf_set(lpfc_mbx_read_top_fa, la, 0); 5077 bf_set(lpfc_mbx_read_top_mm, la, 0); 5078 5079 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5080 lpfc_mbx_cmpl_read_topology(phba, pmb); 5081 5082 return; 5083 5084 out_free_dmabuf: 5085 kfree(mp); 5086 out_free_pmb: 5087 mempool_free(pmb, phba->mbox_mem_pool); 5088 } 5089 5090 /** 5091 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5092 * topology. 5093 * @phba: pointer to lpfc hba data structure. 5094 * @speed_code: asynchronous event link speed code. 5095 * 5096 * This routine is to parse the giving SLI4 async event link speed code into 5097 * value of Read topology link speed. 5098 * 5099 * Return: link speed in terms of Read topology. 5100 **/ 5101 static uint8_t 5102 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5103 { 5104 uint8_t port_speed; 5105 5106 switch (speed_code) { 5107 case LPFC_FC_LA_SPEED_1G: 5108 port_speed = LPFC_LINK_SPEED_1GHZ; 5109 break; 5110 case LPFC_FC_LA_SPEED_2G: 5111 port_speed = LPFC_LINK_SPEED_2GHZ; 5112 break; 5113 case LPFC_FC_LA_SPEED_4G: 5114 port_speed = LPFC_LINK_SPEED_4GHZ; 5115 break; 5116 case LPFC_FC_LA_SPEED_8G: 5117 port_speed = LPFC_LINK_SPEED_8GHZ; 5118 break; 5119 case LPFC_FC_LA_SPEED_16G: 5120 port_speed = LPFC_LINK_SPEED_16GHZ; 5121 break; 5122 case LPFC_FC_LA_SPEED_32G: 5123 port_speed = LPFC_LINK_SPEED_32GHZ; 5124 break; 5125 case LPFC_FC_LA_SPEED_64G: 5126 port_speed = LPFC_LINK_SPEED_64GHZ; 5127 break; 5128 case LPFC_FC_LA_SPEED_128G: 5129 port_speed = LPFC_LINK_SPEED_128GHZ; 5130 break; 5131 case LPFC_FC_LA_SPEED_256G: 5132 port_speed = LPFC_LINK_SPEED_256GHZ; 5133 break; 5134 default: 5135 port_speed = 0; 5136 break; 5137 } 5138 5139 return port_speed; 5140 } 5141 5142 #define trunk_link_status(__idx)\ 5143 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 5144 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 5145 "Link up" : "Link down") : "NA" 5146 /* Did port __idx reported an error */ 5147 #define trunk_port_fault(__idx)\ 5148 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 5149 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 5150 5151 static void 5152 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 5153 struct lpfc_acqe_fc_la *acqe_fc) 5154 { 5155 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 5156 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 5157 5158 phba->sli4_hba.link_state.speed = 5159 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 5160 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5161 5162 phba->sli4_hba.link_state.logical_speed = 5163 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 5164 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 5165 phba->fc_linkspeed = 5166 lpfc_async_link_speed_to_read_top( 5167 phba, 5168 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5169 5170 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 5171 phba->trunk_link.link0.state = 5172 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 5173 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5174 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 5175 } 5176 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 5177 phba->trunk_link.link1.state = 5178 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 5179 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5180 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 5181 } 5182 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 5183 phba->trunk_link.link2.state = 5184 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 5185 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5186 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 5187 } 5188 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 5189 phba->trunk_link.link3.state = 5190 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 5191 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5192 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 5193 } 5194 5195 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5196 "2910 Async FC Trunking Event - Speed:%d\n" 5197 "\tLogical speed:%d " 5198 "port0: %s port1: %s port2: %s port3: %s\n", 5199 phba->sli4_hba.link_state.speed, 5200 phba->sli4_hba.link_state.logical_speed, 5201 trunk_link_status(0), trunk_link_status(1), 5202 trunk_link_status(2), trunk_link_status(3)); 5203 5204 if (port_fault) 5205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5206 "3202 trunk error:0x%x (%s) seen on port0:%s " 5207 /* 5208 * SLI-4: We have only 0xA error codes 5209 * defined as of now. print an appropriate 5210 * message in case driver needs to be updated. 5211 */ 5212 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 5213 "UNDEFINED. update driver." : trunk_errmsg[err], 5214 trunk_port_fault(0), trunk_port_fault(1), 5215 trunk_port_fault(2), trunk_port_fault(3)); 5216 } 5217 5218 5219 /** 5220 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 5221 * @phba: pointer to lpfc hba data structure. 5222 * @acqe_fc: pointer to the async fc completion queue entry. 5223 * 5224 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 5225 * that the event was received and then issue a read_topology mailbox command so 5226 * that the rest of the driver will treat it the same as SLI3. 5227 **/ 5228 static void 5229 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 5230 { 5231 struct lpfc_dmabuf *mp; 5232 LPFC_MBOXQ_t *pmb; 5233 MAILBOX_t *mb; 5234 struct lpfc_mbx_read_top *la; 5235 int rc; 5236 5237 if (bf_get(lpfc_trailer_type, acqe_fc) != 5238 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 5239 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5240 "2895 Non FC link Event detected.(%d)\n", 5241 bf_get(lpfc_trailer_type, acqe_fc)); 5242 return; 5243 } 5244 5245 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 5246 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 5247 lpfc_update_trunk_link_status(phba, acqe_fc); 5248 return; 5249 } 5250 5251 /* Keep the link status for extra SLI4 state machine reference */ 5252 phba->sli4_hba.link_state.speed = 5253 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 5254 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5255 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 5256 phba->sli4_hba.link_state.topology = 5257 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 5258 phba->sli4_hba.link_state.status = 5259 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 5260 phba->sli4_hba.link_state.type = 5261 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 5262 phba->sli4_hba.link_state.number = 5263 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 5264 phba->sli4_hba.link_state.fault = 5265 bf_get(lpfc_acqe_link_fault, acqe_fc); 5266 5267 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 5268 LPFC_FC_LA_TYPE_LINK_DOWN) 5269 phba->sli4_hba.link_state.logical_speed = 0; 5270 else if (!phba->sli4_hba.conf_trunk) 5271 phba->sli4_hba.link_state.logical_speed = 5272 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 5273 5274 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5275 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 5276 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 5277 "%dMbps Fault:%d\n", 5278 phba->sli4_hba.link_state.speed, 5279 phba->sli4_hba.link_state.topology, 5280 phba->sli4_hba.link_state.status, 5281 phba->sli4_hba.link_state.type, 5282 phba->sli4_hba.link_state.number, 5283 phba->sli4_hba.link_state.logical_speed, 5284 phba->sli4_hba.link_state.fault); 5285 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5286 if (!pmb) { 5287 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5288 "2897 The mboxq allocation failed\n"); 5289 return; 5290 } 5291 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5292 if (!mp) { 5293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5294 "2898 The lpfc_dmabuf allocation failed\n"); 5295 goto out_free_pmb; 5296 } 5297 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 5298 if (!mp->virt) { 5299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5300 "2899 The mbuf allocation failed\n"); 5301 goto out_free_dmabuf; 5302 } 5303 5304 /* Cleanup any outstanding ELS commands */ 5305 lpfc_els_flush_all_cmd(phba); 5306 5307 /* Block ELS IOCBs until we have done process link event */ 5308 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5309 5310 /* Update link event statistics */ 5311 phba->sli.slistat.link_event++; 5312 5313 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5314 lpfc_read_topology(phba, pmb, mp); 5315 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5316 pmb->vport = phba->pport; 5317 5318 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 5319 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 5320 5321 switch (phba->sli4_hba.link_state.status) { 5322 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 5323 phba->link_flag |= LS_MDS_LINK_DOWN; 5324 break; 5325 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 5326 phba->link_flag |= LS_MDS_LOOPBACK; 5327 break; 5328 default: 5329 break; 5330 } 5331 5332 /* Initialize completion status */ 5333 mb = &pmb->u.mb; 5334 mb->mbxStatus = MBX_SUCCESS; 5335 5336 /* Parse port fault information field */ 5337 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 5338 5339 /* Parse and translate link attention fields */ 5340 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 5341 la->eventTag = acqe_fc->event_tag; 5342 5343 if (phba->sli4_hba.link_state.status == 5344 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 5345 bf_set(lpfc_mbx_read_top_att_type, la, 5346 LPFC_FC_LA_TYPE_UNEXP_WWPN); 5347 } else { 5348 bf_set(lpfc_mbx_read_top_att_type, la, 5349 LPFC_FC_LA_TYPE_LINK_DOWN); 5350 } 5351 /* Invoke the mailbox command callback function */ 5352 lpfc_mbx_cmpl_read_topology(phba, pmb); 5353 5354 return; 5355 } 5356 5357 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5358 if (rc == MBX_NOT_FINISHED) 5359 goto out_free_dmabuf; 5360 return; 5361 5362 out_free_dmabuf: 5363 kfree(mp); 5364 out_free_pmb: 5365 mempool_free(pmb, phba->mbox_mem_pool); 5366 } 5367 5368 /** 5369 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 5370 * @phba: pointer to lpfc hba data structure. 5371 * @acqe_sli: pointer to the async SLI completion queue entry. 5372 * 5373 * This routine is to handle the SLI4 asynchronous SLI events. 5374 **/ 5375 static void 5376 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 5377 { 5378 char port_name; 5379 char message[128]; 5380 uint8_t status; 5381 uint8_t evt_type; 5382 uint8_t operational = 0; 5383 struct temp_event temp_event_data; 5384 struct lpfc_acqe_misconfigured_event *misconfigured; 5385 struct Scsi_Host *shost; 5386 struct lpfc_vport **vports; 5387 int rc, i; 5388 5389 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 5390 5391 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5392 "2901 Async SLI event - Type:%d, Event Data: x%08x " 5393 "x%08x x%08x x%08x\n", evt_type, 5394 acqe_sli->event_data1, acqe_sli->event_data2, 5395 acqe_sli->reserved, acqe_sli->trailer); 5396 5397 port_name = phba->Port[0]; 5398 if (port_name == 0x00) 5399 port_name = '?'; /* get port name is empty */ 5400 5401 switch (evt_type) { 5402 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 5403 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 5404 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 5405 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 5406 5407 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5408 "3190 Over Temperature:%d Celsius- Port Name %c\n", 5409 acqe_sli->event_data1, port_name); 5410 5411 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 5412 shost = lpfc_shost_from_vport(phba->pport); 5413 fc_host_post_vendor_event(shost, fc_get_event_number(), 5414 sizeof(temp_event_data), 5415 (char *)&temp_event_data, 5416 SCSI_NL_VID_TYPE_PCI 5417 | PCI_VENDOR_ID_EMULEX); 5418 break; 5419 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 5420 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 5421 temp_event_data.event_code = LPFC_NORMAL_TEMP; 5422 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 5423 5424 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5425 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 5426 acqe_sli->event_data1, port_name); 5427 5428 shost = lpfc_shost_from_vport(phba->pport); 5429 fc_host_post_vendor_event(shost, fc_get_event_number(), 5430 sizeof(temp_event_data), 5431 (char *)&temp_event_data, 5432 SCSI_NL_VID_TYPE_PCI 5433 | PCI_VENDOR_ID_EMULEX); 5434 break; 5435 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 5436 misconfigured = (struct lpfc_acqe_misconfigured_event *) 5437 &acqe_sli->event_data1; 5438 5439 /* fetch the status for this port */ 5440 switch (phba->sli4_hba.lnk_info.lnk_no) { 5441 case LPFC_LINK_NUMBER_0: 5442 status = bf_get(lpfc_sli_misconfigured_port0_state, 5443 &misconfigured->theEvent); 5444 operational = bf_get(lpfc_sli_misconfigured_port0_op, 5445 &misconfigured->theEvent); 5446 break; 5447 case LPFC_LINK_NUMBER_1: 5448 status = bf_get(lpfc_sli_misconfigured_port1_state, 5449 &misconfigured->theEvent); 5450 operational = bf_get(lpfc_sli_misconfigured_port1_op, 5451 &misconfigured->theEvent); 5452 break; 5453 case LPFC_LINK_NUMBER_2: 5454 status = bf_get(lpfc_sli_misconfigured_port2_state, 5455 &misconfigured->theEvent); 5456 operational = bf_get(lpfc_sli_misconfigured_port2_op, 5457 &misconfigured->theEvent); 5458 break; 5459 case LPFC_LINK_NUMBER_3: 5460 status = bf_get(lpfc_sli_misconfigured_port3_state, 5461 &misconfigured->theEvent); 5462 operational = bf_get(lpfc_sli_misconfigured_port3_op, 5463 &misconfigured->theEvent); 5464 break; 5465 default: 5466 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5467 "3296 " 5468 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 5469 "event: Invalid link %d", 5470 phba->sli4_hba.lnk_info.lnk_no); 5471 return; 5472 } 5473 5474 /* Skip if optic state unchanged */ 5475 if (phba->sli4_hba.lnk_info.optic_state == status) 5476 return; 5477 5478 switch (status) { 5479 case LPFC_SLI_EVENT_STATUS_VALID: 5480 sprintf(message, "Physical Link is functional"); 5481 break; 5482 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 5483 sprintf(message, "Optics faulted/incorrectly " 5484 "installed/not installed - Reseat optics, " 5485 "if issue not resolved, replace."); 5486 break; 5487 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 5488 sprintf(message, 5489 "Optics of two types installed - Remove one " 5490 "optic or install matching pair of optics."); 5491 break; 5492 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 5493 sprintf(message, "Incompatible optics - Replace with " 5494 "compatible optics for card to function."); 5495 break; 5496 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 5497 sprintf(message, "Unqualified optics - Replace with " 5498 "Avago optics for Warranty and Technical " 5499 "Support - Link is%s operational", 5500 (operational) ? " not" : ""); 5501 break; 5502 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 5503 sprintf(message, "Uncertified optics - Replace with " 5504 "Avago-certified optics to enable link " 5505 "operation - Link is%s operational", 5506 (operational) ? " not" : ""); 5507 break; 5508 default: 5509 /* firmware is reporting a status we don't know about */ 5510 sprintf(message, "Unknown event status x%02x", status); 5511 break; 5512 } 5513 5514 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 5515 rc = lpfc_sli4_read_config(phba); 5516 if (rc) { 5517 phba->lmt = 0; 5518 lpfc_printf_log(phba, KERN_ERR, 5519 LOG_TRACE_EVENT, 5520 "3194 Unable to retrieve supported " 5521 "speeds, rc = 0x%x\n", rc); 5522 } 5523 vports = lpfc_create_vport_work_array(phba); 5524 if (vports != NULL) { 5525 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 5526 i++) { 5527 shost = lpfc_shost_from_vport(vports[i]); 5528 lpfc_host_supported_speeds_set(shost); 5529 } 5530 } 5531 lpfc_destroy_vport_work_array(phba, vports); 5532 5533 phba->sli4_hba.lnk_info.optic_state = status; 5534 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5535 "3176 Port Name %c %s\n", port_name, message); 5536 break; 5537 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 5538 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5539 "3192 Remote DPort Test Initiated - " 5540 "Event Data1:x%08x Event Data2: x%08x\n", 5541 acqe_sli->event_data1, acqe_sli->event_data2); 5542 break; 5543 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 5544 /* Misconfigured WWN. Reports that the SLI Port is configured 5545 * to use FA-WWN, but the attached device doesn’t support it. 5546 * No driver action is required. 5547 * Event Data1 - N.A, Event Data2 - N.A 5548 */ 5549 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI, 5550 "2699 Misconfigured FA-WWN - Attached device does " 5551 "not support FA-WWN\n"); 5552 break; 5553 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 5554 /* EEPROM failure. No driver action is required */ 5555 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5556 "2518 EEPROM failure - " 5557 "Event Data1: x%08x Event Data2: x%08x\n", 5558 acqe_sli->event_data1, acqe_sli->event_data2); 5559 break; 5560 default: 5561 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5562 "3193 Unrecognized SLI event, type: 0x%x", 5563 evt_type); 5564 break; 5565 } 5566 } 5567 5568 /** 5569 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 5570 * @vport: pointer to vport data structure. 5571 * 5572 * This routine is to perform Clear Virtual Link (CVL) on a vport in 5573 * response to a CVL event. 5574 * 5575 * Return the pointer to the ndlp with the vport if successful, otherwise 5576 * return NULL. 5577 **/ 5578 static struct lpfc_nodelist * 5579 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 5580 { 5581 struct lpfc_nodelist *ndlp; 5582 struct Scsi_Host *shost; 5583 struct lpfc_hba *phba; 5584 5585 if (!vport) 5586 return NULL; 5587 phba = vport->phba; 5588 if (!phba) 5589 return NULL; 5590 ndlp = lpfc_findnode_did(vport, Fabric_DID); 5591 if (!ndlp) { 5592 /* Cannot find existing Fabric ndlp, so allocate a new one */ 5593 ndlp = lpfc_nlp_init(vport, Fabric_DID); 5594 if (!ndlp) 5595 return 0; 5596 /* Set the node type */ 5597 ndlp->nlp_type |= NLP_FABRIC; 5598 /* Put ndlp onto node list */ 5599 lpfc_enqueue_node(vport, ndlp); 5600 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 5601 /* re-setup ndlp without removing from node list */ 5602 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 5603 if (!ndlp) 5604 return 0; 5605 } 5606 if ((phba->pport->port_state < LPFC_FLOGI) && 5607 (phba->pport->port_state != LPFC_VPORT_FAILED)) 5608 return NULL; 5609 /* If virtual link is not yet instantiated ignore CVL */ 5610 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 5611 && (vport->port_state != LPFC_VPORT_FAILED)) 5612 return NULL; 5613 shost = lpfc_shost_from_vport(vport); 5614 if (!shost) 5615 return NULL; 5616 lpfc_linkdown_port(vport); 5617 lpfc_cleanup_pending_mbox(vport); 5618 spin_lock_irq(shost->host_lock); 5619 vport->fc_flag |= FC_VPORT_CVL_RCVD; 5620 spin_unlock_irq(shost->host_lock); 5621 5622 return ndlp; 5623 } 5624 5625 /** 5626 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 5627 * @phba: pointer to lpfc hba data structure. 5628 * 5629 * This routine is to perform Clear Virtual Link (CVL) on all vports in 5630 * response to a FCF dead event. 5631 **/ 5632 static void 5633 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 5634 { 5635 struct lpfc_vport **vports; 5636 int i; 5637 5638 vports = lpfc_create_vport_work_array(phba); 5639 if (vports) 5640 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 5641 lpfc_sli4_perform_vport_cvl(vports[i]); 5642 lpfc_destroy_vport_work_array(phba, vports); 5643 } 5644 5645 /** 5646 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 5647 * @phba: pointer to lpfc hba data structure. 5648 * @acqe_fip: pointer to the async fcoe completion queue entry. 5649 * 5650 * This routine is to handle the SLI4 asynchronous fcoe event. 5651 **/ 5652 static void 5653 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 5654 struct lpfc_acqe_fip *acqe_fip) 5655 { 5656 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 5657 int rc; 5658 struct lpfc_vport *vport; 5659 struct lpfc_nodelist *ndlp; 5660 struct Scsi_Host *shost; 5661 int active_vlink_present; 5662 struct lpfc_vport **vports; 5663 int i; 5664 5665 phba->fc_eventTag = acqe_fip->event_tag; 5666 phba->fcoe_eventtag = acqe_fip->event_tag; 5667 switch (event_type) { 5668 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 5669 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 5670 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 5671 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5672 "2546 New FCF event, evt_tag:x%x, " 5673 "index:x%x\n", 5674 acqe_fip->event_tag, 5675 acqe_fip->index); 5676 else 5677 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 5678 LOG_DISCOVERY, 5679 "2788 FCF param modified event, " 5680 "evt_tag:x%x, index:x%x\n", 5681 acqe_fip->event_tag, 5682 acqe_fip->index); 5683 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 5684 /* 5685 * During period of FCF discovery, read the FCF 5686 * table record indexed by the event to update 5687 * FCF roundrobin failover eligible FCF bmask. 5688 */ 5689 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 5690 LOG_DISCOVERY, 5691 "2779 Read FCF (x%x) for updating " 5692 "roundrobin FCF failover bmask\n", 5693 acqe_fip->index); 5694 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 5695 } 5696 5697 /* If the FCF discovery is in progress, do nothing. */ 5698 spin_lock_irq(&phba->hbalock); 5699 if (phba->hba_flag & FCF_TS_INPROG) { 5700 spin_unlock_irq(&phba->hbalock); 5701 break; 5702 } 5703 /* If fast FCF failover rescan event is pending, do nothing */ 5704 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 5705 spin_unlock_irq(&phba->hbalock); 5706 break; 5707 } 5708 5709 /* If the FCF has been in discovered state, do nothing. */ 5710 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 5711 spin_unlock_irq(&phba->hbalock); 5712 break; 5713 } 5714 spin_unlock_irq(&phba->hbalock); 5715 5716 /* Otherwise, scan the entire FCF table and re-discover SAN */ 5717 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 5718 "2770 Start FCF table scan per async FCF " 5719 "event, evt_tag:x%x, index:x%x\n", 5720 acqe_fip->event_tag, acqe_fip->index); 5721 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 5722 LPFC_FCOE_FCF_GET_FIRST); 5723 if (rc) 5724 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5725 "2547 Issue FCF scan read FCF mailbox " 5726 "command failed (x%x)\n", rc); 5727 break; 5728 5729 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 5730 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5731 "2548 FCF Table full count 0x%x tag 0x%x\n", 5732 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 5733 acqe_fip->event_tag); 5734 break; 5735 5736 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 5737 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 5738 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5739 "2549 FCF (x%x) disconnected from network, " 5740 "tag:x%x\n", acqe_fip->index, 5741 acqe_fip->event_tag); 5742 /* 5743 * If we are in the middle of FCF failover process, clear 5744 * the corresponding FCF bit in the roundrobin bitmap. 5745 */ 5746 spin_lock_irq(&phba->hbalock); 5747 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 5748 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 5749 spin_unlock_irq(&phba->hbalock); 5750 /* Update FLOGI FCF failover eligible FCF bmask */ 5751 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 5752 break; 5753 } 5754 spin_unlock_irq(&phba->hbalock); 5755 5756 /* If the event is not for currently used fcf do nothing */ 5757 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 5758 break; 5759 5760 /* 5761 * Otherwise, request the port to rediscover the entire FCF 5762 * table for a fast recovery from case that the current FCF 5763 * is no longer valid as we are not in the middle of FCF 5764 * failover process already. 5765 */ 5766 spin_lock_irq(&phba->hbalock); 5767 /* Mark the fast failover process in progress */ 5768 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 5769 spin_unlock_irq(&phba->hbalock); 5770 5771 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 5772 "2771 Start FCF fast failover process due to " 5773 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 5774 "\n", acqe_fip->event_tag, acqe_fip->index); 5775 rc = lpfc_sli4_redisc_fcf_table(phba); 5776 if (rc) { 5777 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 5778 LOG_TRACE_EVENT, 5779 "2772 Issue FCF rediscover mailbox " 5780 "command failed, fail through to FCF " 5781 "dead event\n"); 5782 spin_lock_irq(&phba->hbalock); 5783 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 5784 spin_unlock_irq(&phba->hbalock); 5785 /* 5786 * Last resort will fail over by treating this 5787 * as a link down to FCF registration. 5788 */ 5789 lpfc_sli4_fcf_dead_failthrough(phba); 5790 } else { 5791 /* Reset FCF roundrobin bmask for new discovery */ 5792 lpfc_sli4_clear_fcf_rr_bmask(phba); 5793 /* 5794 * Handling fast FCF failover to a DEAD FCF event is 5795 * considered equalivant to receiving CVL to all vports. 5796 */ 5797 lpfc_sli4_perform_all_vport_cvl(phba); 5798 } 5799 break; 5800 case LPFC_FIP_EVENT_TYPE_CVL: 5801 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 5802 lpfc_printf_log(phba, KERN_ERR, 5803 LOG_TRACE_EVENT, 5804 "2718 Clear Virtual Link Received for VPI 0x%x" 5805 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 5806 5807 vport = lpfc_find_vport_by_vpid(phba, 5808 acqe_fip->index); 5809 ndlp = lpfc_sli4_perform_vport_cvl(vport); 5810 if (!ndlp) 5811 break; 5812 active_vlink_present = 0; 5813 5814 vports = lpfc_create_vport_work_array(phba); 5815 if (vports) { 5816 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 5817 i++) { 5818 if ((!(vports[i]->fc_flag & 5819 FC_VPORT_CVL_RCVD)) && 5820 (vports[i]->port_state > LPFC_FDISC)) { 5821 active_vlink_present = 1; 5822 break; 5823 } 5824 } 5825 lpfc_destroy_vport_work_array(phba, vports); 5826 } 5827 5828 /* 5829 * Don't re-instantiate if vport is marked for deletion. 5830 * If we are here first then vport_delete is going to wait 5831 * for discovery to complete. 5832 */ 5833 if (!(vport->load_flag & FC_UNLOADING) && 5834 active_vlink_present) { 5835 /* 5836 * If there are other active VLinks present, 5837 * re-instantiate the Vlink using FDISC. 5838 */ 5839 mod_timer(&ndlp->nlp_delayfunc, 5840 jiffies + msecs_to_jiffies(1000)); 5841 shost = lpfc_shost_from_vport(vport); 5842 spin_lock_irq(shost->host_lock); 5843 ndlp->nlp_flag |= NLP_DELAY_TMO; 5844 spin_unlock_irq(shost->host_lock); 5845 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 5846 vport->port_state = LPFC_FDISC; 5847 } else { 5848 /* 5849 * Otherwise, we request port to rediscover 5850 * the entire FCF table for a fast recovery 5851 * from possible case that the current FCF 5852 * is no longer valid if we are not already 5853 * in the FCF failover process. 5854 */ 5855 spin_lock_irq(&phba->hbalock); 5856 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 5857 spin_unlock_irq(&phba->hbalock); 5858 break; 5859 } 5860 /* Mark the fast failover process in progress */ 5861 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 5862 spin_unlock_irq(&phba->hbalock); 5863 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 5864 LOG_DISCOVERY, 5865 "2773 Start FCF failover per CVL, " 5866 "evt_tag:x%x\n", acqe_fip->event_tag); 5867 rc = lpfc_sli4_redisc_fcf_table(phba); 5868 if (rc) { 5869 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 5870 LOG_TRACE_EVENT, 5871 "2774 Issue FCF rediscover " 5872 "mailbox command failed, " 5873 "through to CVL event\n"); 5874 spin_lock_irq(&phba->hbalock); 5875 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 5876 spin_unlock_irq(&phba->hbalock); 5877 /* 5878 * Last resort will be re-try on the 5879 * the current registered FCF entry. 5880 */ 5881 lpfc_retry_pport_discovery(phba); 5882 } else 5883 /* 5884 * Reset FCF roundrobin bmask for new 5885 * discovery. 5886 */ 5887 lpfc_sli4_clear_fcf_rr_bmask(phba); 5888 } 5889 break; 5890 default: 5891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5892 "0288 Unknown FCoE event type 0x%x event tag " 5893 "0x%x\n", event_type, acqe_fip->event_tag); 5894 break; 5895 } 5896 } 5897 5898 /** 5899 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 5900 * @phba: pointer to lpfc hba data structure. 5901 * @acqe_dcbx: pointer to the async dcbx completion queue entry. 5902 * 5903 * This routine is to handle the SLI4 asynchronous dcbx event. 5904 **/ 5905 static void 5906 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 5907 struct lpfc_acqe_dcbx *acqe_dcbx) 5908 { 5909 phba->fc_eventTag = acqe_dcbx->event_tag; 5910 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5911 "0290 The SLI4 DCBX asynchronous event is not " 5912 "handled yet\n"); 5913 } 5914 5915 /** 5916 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 5917 * @phba: pointer to lpfc hba data structure. 5918 * @acqe_grp5: pointer to the async grp5 completion queue entry. 5919 * 5920 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 5921 * is an asynchronous notified of a logical link speed change. The Port 5922 * reports the logical link speed in units of 10Mbps. 5923 **/ 5924 static void 5925 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 5926 struct lpfc_acqe_grp5 *acqe_grp5) 5927 { 5928 uint16_t prev_ll_spd; 5929 5930 phba->fc_eventTag = acqe_grp5->event_tag; 5931 phba->fcoe_eventtag = acqe_grp5->event_tag; 5932 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 5933 phba->sli4_hba.link_state.logical_speed = 5934 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 5935 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5936 "2789 GRP5 Async Event: Updating logical link speed " 5937 "from %dMbps to %dMbps\n", prev_ll_spd, 5938 phba->sli4_hba.link_state.logical_speed); 5939 } 5940 5941 /** 5942 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 5943 * @phba: pointer to lpfc hba data structure. 5944 * 5945 * This routine is invoked by the worker thread to process all the pending 5946 * SLI4 asynchronous events. 5947 **/ 5948 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 5949 { 5950 struct lpfc_cq_event *cq_event; 5951 5952 /* First, declare the async event has been handled */ 5953 spin_lock_irq(&phba->hbalock); 5954 phba->hba_flag &= ~ASYNC_EVENT; 5955 spin_unlock_irq(&phba->hbalock); 5956 /* Now, handle all the async events */ 5957 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 5958 /* Get the first event from the head of the event queue */ 5959 spin_lock_irq(&phba->hbalock); 5960 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 5961 cq_event, struct lpfc_cq_event, list); 5962 spin_unlock_irq(&phba->hbalock); 5963 /* Process the asynchronous event */ 5964 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 5965 case LPFC_TRAILER_CODE_LINK: 5966 lpfc_sli4_async_link_evt(phba, 5967 &cq_event->cqe.acqe_link); 5968 break; 5969 case LPFC_TRAILER_CODE_FCOE: 5970 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 5971 break; 5972 case LPFC_TRAILER_CODE_DCBX: 5973 lpfc_sli4_async_dcbx_evt(phba, 5974 &cq_event->cqe.acqe_dcbx); 5975 break; 5976 case LPFC_TRAILER_CODE_GRP5: 5977 lpfc_sli4_async_grp5_evt(phba, 5978 &cq_event->cqe.acqe_grp5); 5979 break; 5980 case LPFC_TRAILER_CODE_FC: 5981 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 5982 break; 5983 case LPFC_TRAILER_CODE_SLI: 5984 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 5985 break; 5986 default: 5987 lpfc_printf_log(phba, KERN_ERR, 5988 LOG_TRACE_EVENT, 5989 "1804 Invalid asynchronous event code: " 5990 "x%x\n", bf_get(lpfc_trailer_code, 5991 &cq_event->cqe.mcqe_cmpl)); 5992 break; 5993 } 5994 /* Free the completion event processed to the free pool */ 5995 lpfc_sli4_cq_event_release(phba, cq_event); 5996 } 5997 } 5998 5999 /** 6000 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 6001 * @phba: pointer to lpfc hba data structure. 6002 * 6003 * This routine is invoked by the worker thread to process FCF table 6004 * rediscovery pending completion event. 6005 **/ 6006 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 6007 { 6008 int rc; 6009 6010 spin_lock_irq(&phba->hbalock); 6011 /* Clear FCF rediscovery timeout event */ 6012 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 6013 /* Clear driver fast failover FCF record flag */ 6014 phba->fcf.failover_rec.flag = 0; 6015 /* Set state for FCF fast failover */ 6016 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 6017 spin_unlock_irq(&phba->hbalock); 6018 6019 /* Scan FCF table from the first entry to re-discover SAN */ 6020 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6021 "2777 Start post-quiescent FCF table scan\n"); 6022 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 6023 if (rc) 6024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6025 "2747 Issue FCF scan read FCF mailbox " 6026 "command failed 0x%x\n", rc); 6027 } 6028 6029 /** 6030 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 6031 * @phba: pointer to lpfc hba data structure. 6032 * @dev_grp: The HBA PCI-Device group number. 6033 * 6034 * This routine is invoked to set up the per HBA PCI-Device group function 6035 * API jump table entries. 6036 * 6037 * Return: 0 if success, otherwise -ENODEV 6038 **/ 6039 int 6040 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 6041 { 6042 int rc; 6043 6044 /* Set up lpfc PCI-device group */ 6045 phba->pci_dev_grp = dev_grp; 6046 6047 /* The LPFC_PCI_DEV_OC uses SLI4 */ 6048 if (dev_grp == LPFC_PCI_DEV_OC) 6049 phba->sli_rev = LPFC_SLI_REV4; 6050 6051 /* Set up device INIT API function jump table */ 6052 rc = lpfc_init_api_table_setup(phba, dev_grp); 6053 if (rc) 6054 return -ENODEV; 6055 /* Set up SCSI API function jump table */ 6056 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 6057 if (rc) 6058 return -ENODEV; 6059 /* Set up SLI API function jump table */ 6060 rc = lpfc_sli_api_table_setup(phba, dev_grp); 6061 if (rc) 6062 return -ENODEV; 6063 /* Set up MBOX API function jump table */ 6064 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 6065 if (rc) 6066 return -ENODEV; 6067 6068 return 0; 6069 } 6070 6071 /** 6072 * lpfc_log_intr_mode - Log the active interrupt mode 6073 * @phba: pointer to lpfc hba data structure. 6074 * @intr_mode: active interrupt mode adopted. 6075 * 6076 * This routine it invoked to log the currently used active interrupt mode 6077 * to the device. 6078 **/ 6079 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 6080 { 6081 switch (intr_mode) { 6082 case 0: 6083 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6084 "0470 Enable INTx interrupt mode.\n"); 6085 break; 6086 case 1: 6087 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6088 "0481 Enabled MSI interrupt mode.\n"); 6089 break; 6090 case 2: 6091 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6092 "0480 Enabled MSI-X interrupt mode.\n"); 6093 break; 6094 default: 6095 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6096 "0482 Illegal interrupt mode.\n"); 6097 break; 6098 } 6099 return; 6100 } 6101 6102 /** 6103 * lpfc_enable_pci_dev - Enable a generic PCI device. 6104 * @phba: pointer to lpfc hba data structure. 6105 * 6106 * This routine is invoked to enable the PCI device that is common to all 6107 * PCI devices. 6108 * 6109 * Return codes 6110 * 0 - successful 6111 * other values - error 6112 **/ 6113 static int 6114 lpfc_enable_pci_dev(struct lpfc_hba *phba) 6115 { 6116 struct pci_dev *pdev; 6117 6118 /* Obtain PCI device reference */ 6119 if (!phba->pcidev) 6120 goto out_error; 6121 else 6122 pdev = phba->pcidev; 6123 /* Enable PCI device */ 6124 if (pci_enable_device_mem(pdev)) 6125 goto out_error; 6126 /* Request PCI resource for the device */ 6127 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 6128 goto out_disable_device; 6129 /* Set up device as PCI master and save state for EEH */ 6130 pci_set_master(pdev); 6131 pci_try_set_mwi(pdev); 6132 pci_save_state(pdev); 6133 6134 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6135 if (pci_is_pcie(pdev)) 6136 pdev->needs_freset = 1; 6137 6138 return 0; 6139 6140 out_disable_device: 6141 pci_disable_device(pdev); 6142 out_error: 6143 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6144 "1401 Failed to enable pci device\n"); 6145 return -ENODEV; 6146 } 6147 6148 /** 6149 * lpfc_disable_pci_dev - Disable a generic PCI device. 6150 * @phba: pointer to lpfc hba data structure. 6151 * 6152 * This routine is invoked to disable the PCI device that is common to all 6153 * PCI devices. 6154 **/ 6155 static void 6156 lpfc_disable_pci_dev(struct lpfc_hba *phba) 6157 { 6158 struct pci_dev *pdev; 6159 6160 /* Obtain PCI device reference */ 6161 if (!phba->pcidev) 6162 return; 6163 else 6164 pdev = phba->pcidev; 6165 /* Release PCI resource and disable PCI device */ 6166 pci_release_mem_regions(pdev); 6167 pci_disable_device(pdev); 6168 6169 return; 6170 } 6171 6172 /** 6173 * lpfc_reset_hba - Reset a hba 6174 * @phba: pointer to lpfc hba data structure. 6175 * 6176 * This routine is invoked to reset a hba device. It brings the HBA 6177 * offline, performs a board restart, and then brings the board back 6178 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 6179 * on outstanding mailbox commands. 6180 **/ 6181 void 6182 lpfc_reset_hba(struct lpfc_hba *phba) 6183 { 6184 /* If resets are disabled then set error state and return. */ 6185 if (!phba->cfg_enable_hba_reset) { 6186 phba->link_state = LPFC_HBA_ERROR; 6187 return; 6188 } 6189 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 6190 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 6191 else 6192 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 6193 lpfc_offline(phba); 6194 lpfc_sli_brdrestart(phba); 6195 lpfc_online(phba); 6196 lpfc_unblock_mgmt_io(phba); 6197 } 6198 6199 /** 6200 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 6201 * @phba: pointer to lpfc hba data structure. 6202 * 6203 * This function enables the PCI SR-IOV virtual functions to a physical 6204 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 6205 * enable the number of virtual functions to the physical function. As 6206 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 6207 * API call does not considered as an error condition for most of the device. 6208 **/ 6209 uint16_t 6210 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 6211 { 6212 struct pci_dev *pdev = phba->pcidev; 6213 uint16_t nr_virtfn; 6214 int pos; 6215 6216 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 6217 if (pos == 0) 6218 return 0; 6219 6220 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 6221 return nr_virtfn; 6222 } 6223 6224 /** 6225 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 6226 * @phba: pointer to lpfc hba data structure. 6227 * @nr_vfn: number of virtual functions to be enabled. 6228 * 6229 * This function enables the PCI SR-IOV virtual functions to a physical 6230 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 6231 * enable the number of virtual functions to the physical function. As 6232 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 6233 * API call does not considered as an error condition for most of the device. 6234 **/ 6235 int 6236 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 6237 { 6238 struct pci_dev *pdev = phba->pcidev; 6239 uint16_t max_nr_vfn; 6240 int rc; 6241 6242 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 6243 if (nr_vfn > max_nr_vfn) { 6244 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6245 "3057 Requested vfs (%d) greater than " 6246 "supported vfs (%d)", nr_vfn, max_nr_vfn); 6247 return -EINVAL; 6248 } 6249 6250 rc = pci_enable_sriov(pdev, nr_vfn); 6251 if (rc) { 6252 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6253 "2806 Failed to enable sriov on this device " 6254 "with vfn number nr_vf:%d, rc:%d\n", 6255 nr_vfn, rc); 6256 } else 6257 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6258 "2807 Successful enable sriov on this device " 6259 "with vfn number nr_vf:%d\n", nr_vfn); 6260 return rc; 6261 } 6262 6263 /** 6264 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 6265 * @phba: pointer to lpfc hba data structure. 6266 * 6267 * This routine is invoked to set up the driver internal resources before the 6268 * device specific resource setup to support the HBA device it attached to. 6269 * 6270 * Return codes 6271 * 0 - successful 6272 * other values - error 6273 **/ 6274 static int 6275 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 6276 { 6277 struct lpfc_sli *psli = &phba->sli; 6278 6279 /* 6280 * Driver resources common to all SLI revisions 6281 */ 6282 atomic_set(&phba->fast_event_count, 0); 6283 atomic_set(&phba->dbg_log_idx, 0); 6284 atomic_set(&phba->dbg_log_cnt, 0); 6285 atomic_set(&phba->dbg_log_dmping, 0); 6286 spin_lock_init(&phba->hbalock); 6287 6288 /* Initialize ndlp management spinlock */ 6289 spin_lock_init(&phba->ndlp_lock); 6290 6291 /* Initialize port_list spinlock */ 6292 spin_lock_init(&phba->port_list_lock); 6293 INIT_LIST_HEAD(&phba->port_list); 6294 6295 INIT_LIST_HEAD(&phba->work_list); 6296 init_waitqueue_head(&phba->wait_4_mlo_m_q); 6297 6298 /* Initialize the wait queue head for the kernel thread */ 6299 init_waitqueue_head(&phba->work_waitq); 6300 6301 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6302 "1403 Protocols supported %s %s %s\n", 6303 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 6304 "SCSI" : " "), 6305 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 6306 "NVME" : " "), 6307 (phba->nvmet_support ? "NVMET" : " ")); 6308 6309 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 6310 spin_lock_init(&phba->scsi_buf_list_get_lock); 6311 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 6312 spin_lock_init(&phba->scsi_buf_list_put_lock); 6313 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 6314 6315 /* Initialize the fabric iocb list */ 6316 INIT_LIST_HEAD(&phba->fabric_iocb_list); 6317 6318 /* Initialize list to save ELS buffers */ 6319 INIT_LIST_HEAD(&phba->elsbuf); 6320 6321 /* Initialize FCF connection rec list */ 6322 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 6323 6324 /* Initialize OAS configuration list */ 6325 spin_lock_init(&phba->devicelock); 6326 INIT_LIST_HEAD(&phba->luns); 6327 6328 /* MBOX heartbeat timer */ 6329 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 6330 /* Fabric block timer */ 6331 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 6332 /* EA polling mode timer */ 6333 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 6334 /* Heartbeat timer */ 6335 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 6336 6337 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 6338 6339 INIT_DELAYED_WORK(&phba->idle_stat_delay_work, 6340 lpfc_idle_stat_delay_work); 6341 6342 return 0; 6343 } 6344 6345 /** 6346 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 6347 * @phba: pointer to lpfc hba data structure. 6348 * 6349 * This routine is invoked to set up the driver internal resources specific to 6350 * support the SLI-3 HBA device it attached to. 6351 * 6352 * Return codes 6353 * 0 - successful 6354 * other values - error 6355 **/ 6356 static int 6357 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 6358 { 6359 int rc, entry_sz; 6360 6361 /* 6362 * Initialize timers used by driver 6363 */ 6364 6365 /* FCP polling mode timer */ 6366 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 6367 6368 /* Host attention work mask setup */ 6369 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 6370 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 6371 6372 /* Get all the module params for configuring this host */ 6373 lpfc_get_cfgparam(phba); 6374 /* Set up phase-1 common device driver resources */ 6375 6376 rc = lpfc_setup_driver_resource_phase1(phba); 6377 if (rc) 6378 return -ENODEV; 6379 6380 if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) { 6381 phba->menlo_flag |= HBA_MENLO_SUPPORT; 6382 /* check for menlo minimum sg count */ 6383 if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT) 6384 phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT; 6385 } 6386 6387 if (!phba->sli.sli3_ring) 6388 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 6389 sizeof(struct lpfc_sli_ring), 6390 GFP_KERNEL); 6391 if (!phba->sli.sli3_ring) 6392 return -ENOMEM; 6393 6394 /* 6395 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 6396 * used to create the sg_dma_buf_pool must be dynamically calculated. 6397 */ 6398 6399 if (phba->sli_rev == LPFC_SLI_REV4) 6400 entry_sz = sizeof(struct sli4_sge); 6401 else 6402 entry_sz = sizeof(struct ulp_bde64); 6403 6404 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 6405 if (phba->cfg_enable_bg) { 6406 /* 6407 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 6408 * the FCP rsp, and a BDE for each. Sice we have no control 6409 * over how many protection data segments the SCSI Layer 6410 * will hand us (ie: there could be one for every block 6411 * in the IO), we just allocate enough BDEs to accomidate 6412 * our max amount and we need to limit lpfc_sg_seg_cnt to 6413 * minimize the risk of running out. 6414 */ 6415 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6416 sizeof(struct fcp_rsp) + 6417 (LPFC_MAX_SG_SEG_CNT * entry_sz); 6418 6419 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 6420 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 6421 6422 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 6423 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 6424 } else { 6425 /* 6426 * The scsi_buf for a regular I/O will hold the FCP cmnd, 6427 * the FCP rsp, a BDE for each, and a BDE for up to 6428 * cfg_sg_seg_cnt data segments. 6429 */ 6430 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6431 sizeof(struct fcp_rsp) + 6432 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 6433 6434 /* Total BDEs in BPL for scsi_sg_list */ 6435 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 6436 } 6437 6438 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 6439 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 6440 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 6441 phba->cfg_total_seg_cnt); 6442 6443 phba->max_vpi = LPFC_MAX_VPI; 6444 /* This will be set to correct value after config_port mbox */ 6445 phba->max_vports = 0; 6446 6447 /* 6448 * Initialize the SLI Layer to run with lpfc HBAs. 6449 */ 6450 lpfc_sli_setup(phba); 6451 lpfc_sli_queue_init(phba); 6452 6453 /* Allocate device driver memory */ 6454 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 6455 return -ENOMEM; 6456 6457 phba->lpfc_sg_dma_buf_pool = 6458 dma_pool_create("lpfc_sg_dma_buf_pool", 6459 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 6460 BPL_ALIGN_SZ, 0); 6461 6462 if (!phba->lpfc_sg_dma_buf_pool) 6463 goto fail_free_mem; 6464 6465 phba->lpfc_cmd_rsp_buf_pool = 6466 dma_pool_create("lpfc_cmd_rsp_buf_pool", 6467 &phba->pcidev->dev, 6468 sizeof(struct fcp_cmnd) + 6469 sizeof(struct fcp_rsp), 6470 BPL_ALIGN_SZ, 0); 6471 6472 if (!phba->lpfc_cmd_rsp_buf_pool) 6473 goto fail_free_dma_buf_pool; 6474 6475 /* 6476 * Enable sr-iov virtual functions if supported and configured 6477 * through the module parameter. 6478 */ 6479 if (phba->cfg_sriov_nr_virtfn > 0) { 6480 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 6481 phba->cfg_sriov_nr_virtfn); 6482 if (rc) { 6483 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6484 "2808 Requested number of SR-IOV " 6485 "virtual functions (%d) is not " 6486 "supported\n", 6487 phba->cfg_sriov_nr_virtfn); 6488 phba->cfg_sriov_nr_virtfn = 0; 6489 } 6490 } 6491 6492 return 0; 6493 6494 fail_free_dma_buf_pool: 6495 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 6496 phba->lpfc_sg_dma_buf_pool = NULL; 6497 fail_free_mem: 6498 lpfc_mem_free(phba); 6499 return -ENOMEM; 6500 } 6501 6502 /** 6503 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 6504 * @phba: pointer to lpfc hba data structure. 6505 * 6506 * This routine is invoked to unset the driver internal resources set up 6507 * specific for supporting the SLI-3 HBA device it attached to. 6508 **/ 6509 static void 6510 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 6511 { 6512 /* Free device driver memory allocated */ 6513 lpfc_mem_free_all(phba); 6514 6515 return; 6516 } 6517 6518 /** 6519 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 6520 * @phba: pointer to lpfc hba data structure. 6521 * 6522 * This routine is invoked to set up the driver internal resources specific to 6523 * support the SLI-4 HBA device it attached to. 6524 * 6525 * Return codes 6526 * 0 - successful 6527 * other values - error 6528 **/ 6529 static int 6530 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 6531 { 6532 LPFC_MBOXQ_t *mboxq; 6533 MAILBOX_t *mb; 6534 int rc, i, max_buf_size; 6535 uint8_t pn_page[LPFC_MAX_SUPPORTED_PAGES] = {0}; 6536 struct lpfc_mqe *mqe; 6537 int longs; 6538 int extra; 6539 uint64_t wwn; 6540 u32 if_type; 6541 u32 if_fam; 6542 6543 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 6544 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 6545 phba->sli4_hba.curr_disp_cpu = 0; 6546 6547 /* Get all the module params for configuring this host */ 6548 lpfc_get_cfgparam(phba); 6549 6550 /* Set up phase-1 common device driver resources */ 6551 rc = lpfc_setup_driver_resource_phase1(phba); 6552 if (rc) 6553 return -ENODEV; 6554 6555 /* Before proceed, wait for POST done and device ready */ 6556 rc = lpfc_sli4_post_status_check(phba); 6557 if (rc) 6558 return -ENODEV; 6559 6560 /* Allocate all driver workqueues here */ 6561 6562 /* The lpfc_wq workqueue for deferred irq use */ 6563 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); 6564 6565 /* 6566 * Initialize timers used by driver 6567 */ 6568 6569 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 6570 6571 /* FCF rediscover timer */ 6572 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 6573 6574 /* 6575 * Control structure for handling external multi-buffer mailbox 6576 * command pass-through. 6577 */ 6578 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 6579 sizeof(struct lpfc_mbox_ext_buf_ctx)); 6580 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 6581 6582 phba->max_vpi = LPFC_MAX_VPI; 6583 6584 /* This will be set to correct value after the read_config mbox */ 6585 phba->max_vports = 0; 6586 6587 /* Program the default value of vlan_id and fc_map */ 6588 phba->valid_vlan = 0; 6589 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 6590 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 6591 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 6592 6593 /* 6594 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 6595 * we will associate a new ring, for each EQ/CQ/WQ tuple. 6596 * The WQ create will allocate the ring. 6597 */ 6598 6599 /* Initialize buffer queue management fields */ 6600 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 6601 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 6602 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 6603 6604 /* 6605 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 6606 */ 6607 /* Initialize the Abort buffer list used by driver */ 6608 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 6609 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 6610 6611 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 6612 /* Initialize the Abort nvme buffer list used by driver */ 6613 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 6614 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 6615 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 6616 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 6617 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 6618 } 6619 6620 /* This abort list used by worker thread */ 6621 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 6622 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 6623 6624 /* 6625 * Initialize driver internal slow-path work queues 6626 */ 6627 6628 /* Driver internel slow-path CQ Event pool */ 6629 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 6630 /* Response IOCB work queue list */ 6631 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 6632 /* Asynchronous event CQ Event work queue list */ 6633 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 6634 /* Fast-path XRI aborted CQ Event work queue list */ 6635 INIT_LIST_HEAD(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 6636 /* Slow-path XRI aborted CQ Event work queue list */ 6637 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 6638 /* Receive queue CQ Event work queue list */ 6639 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 6640 6641 /* Initialize extent block lists. */ 6642 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 6643 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 6644 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 6645 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 6646 6647 /* Initialize mboxq lists. If the early init routines fail 6648 * these lists need to be correctly initialized. 6649 */ 6650 INIT_LIST_HEAD(&phba->sli.mboxq); 6651 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 6652 6653 /* initialize optic_state to 0xFF */ 6654 phba->sli4_hba.lnk_info.optic_state = 0xff; 6655 6656 /* Allocate device driver memory */ 6657 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 6658 if (rc) 6659 return -ENOMEM; 6660 6661 /* IF Type 2 ports get initialized now. */ 6662 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 6663 LPFC_SLI_INTF_IF_TYPE_2) { 6664 rc = lpfc_pci_function_reset(phba); 6665 if (unlikely(rc)) { 6666 rc = -ENODEV; 6667 goto out_free_mem; 6668 } 6669 phba->temp_sensor_support = 1; 6670 } 6671 6672 /* Create the bootstrap mailbox command */ 6673 rc = lpfc_create_bootstrap_mbox(phba); 6674 if (unlikely(rc)) 6675 goto out_free_mem; 6676 6677 /* Set up the host's endian order with the device. */ 6678 rc = lpfc_setup_endian_order(phba); 6679 if (unlikely(rc)) 6680 goto out_free_bsmbx; 6681 6682 /* Set up the hba's configuration parameters. */ 6683 rc = lpfc_sli4_read_config(phba); 6684 if (unlikely(rc)) 6685 goto out_free_bsmbx; 6686 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 6687 if (unlikely(rc)) 6688 goto out_free_bsmbx; 6689 6690 /* IF Type 0 ports get initialized now. */ 6691 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6692 LPFC_SLI_INTF_IF_TYPE_0) { 6693 rc = lpfc_pci_function_reset(phba); 6694 if (unlikely(rc)) 6695 goto out_free_bsmbx; 6696 } 6697 6698 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 6699 GFP_KERNEL); 6700 if (!mboxq) { 6701 rc = -ENOMEM; 6702 goto out_free_bsmbx; 6703 } 6704 6705 /* Check for NVMET being configured */ 6706 phba->nvmet_support = 0; 6707 if (lpfc_enable_nvmet_cnt) { 6708 6709 /* First get WWN of HBA instance */ 6710 lpfc_read_nv(phba, mboxq); 6711 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6712 if (rc != MBX_SUCCESS) { 6713 lpfc_printf_log(phba, KERN_ERR, 6714 LOG_TRACE_EVENT, 6715 "6016 Mailbox failed , mbxCmd x%x " 6716 "READ_NV, mbxStatus x%x\n", 6717 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6718 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 6719 mempool_free(mboxq, phba->mbox_mem_pool); 6720 rc = -EIO; 6721 goto out_free_bsmbx; 6722 } 6723 mb = &mboxq->u.mb; 6724 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 6725 sizeof(uint64_t)); 6726 wwn = cpu_to_be64(wwn); 6727 phba->sli4_hba.wwnn.u.name = wwn; 6728 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 6729 sizeof(uint64_t)); 6730 /* wwn is WWPN of HBA instance */ 6731 wwn = cpu_to_be64(wwn); 6732 phba->sli4_hba.wwpn.u.name = wwn; 6733 6734 /* Check to see if it matches any module parameter */ 6735 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 6736 if (wwn == lpfc_enable_nvmet[i]) { 6737 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 6738 if (lpfc_nvmet_mem_alloc(phba)) 6739 break; 6740 6741 phba->nvmet_support = 1; /* a match */ 6742 6743 lpfc_printf_log(phba, KERN_ERR, 6744 LOG_TRACE_EVENT, 6745 "6017 NVME Target %016llx\n", 6746 wwn); 6747 #else 6748 lpfc_printf_log(phba, KERN_ERR, 6749 LOG_TRACE_EVENT, 6750 "6021 Can't enable NVME Target." 6751 " NVME_TARGET_FC infrastructure" 6752 " is not in kernel\n"); 6753 #endif 6754 /* Not supported for NVMET */ 6755 phba->cfg_xri_rebalancing = 0; 6756 if (phba->irq_chann_mode == NHT_MODE) { 6757 phba->cfg_irq_chann = 6758 phba->sli4_hba.num_present_cpu; 6759 phba->cfg_hdw_queue = 6760 phba->sli4_hba.num_present_cpu; 6761 phba->irq_chann_mode = NORMAL_MODE; 6762 } 6763 break; 6764 } 6765 } 6766 } 6767 6768 lpfc_nvme_mod_param_dep(phba); 6769 6770 /* Get the Supported Pages if PORT_CAPABILITIES is supported by port. */ 6771 lpfc_supported_pages(mboxq); 6772 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6773 if (!rc) { 6774 mqe = &mboxq->u.mqe; 6775 memcpy(&pn_page[0], ((uint8_t *)&mqe->un.supp_pages.word3), 6776 LPFC_MAX_SUPPORTED_PAGES); 6777 for (i = 0; i < LPFC_MAX_SUPPORTED_PAGES; i++) { 6778 switch (pn_page[i]) { 6779 case LPFC_SLI4_PARAMETERS: 6780 phba->sli4_hba.pc_sli4_params.supported = 1; 6781 break; 6782 default: 6783 break; 6784 } 6785 } 6786 /* Read the port's SLI4 Parameters capabilities if supported. */ 6787 if (phba->sli4_hba.pc_sli4_params.supported) 6788 rc = lpfc_pc_sli4_params_get(phba, mboxq); 6789 if (rc) { 6790 mempool_free(mboxq, phba->mbox_mem_pool); 6791 rc = -EIO; 6792 goto out_free_bsmbx; 6793 } 6794 } 6795 6796 /* 6797 * Get sli4 parameters that override parameters from Port capabilities. 6798 * If this call fails, it isn't critical unless the SLI4 parameters come 6799 * back in conflict. 6800 */ 6801 rc = lpfc_get_sli4_parameters(phba, mboxq); 6802 if (rc) { 6803 if_type = bf_get(lpfc_sli_intf_if_type, 6804 &phba->sli4_hba.sli_intf); 6805 if_fam = bf_get(lpfc_sli_intf_sli_family, 6806 &phba->sli4_hba.sli_intf); 6807 if (phba->sli4_hba.extents_in_use && 6808 phba->sli4_hba.rpi_hdrs_in_use) { 6809 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6810 "2999 Unsupported SLI4 Parameters " 6811 "Extents and RPI headers enabled.\n"); 6812 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && 6813 if_fam == LPFC_SLI_INTF_FAMILY_BE2) { 6814 mempool_free(mboxq, phba->mbox_mem_pool); 6815 rc = -EIO; 6816 goto out_free_bsmbx; 6817 } 6818 } 6819 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && 6820 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { 6821 mempool_free(mboxq, phba->mbox_mem_pool); 6822 rc = -EIO; 6823 goto out_free_bsmbx; 6824 } 6825 } 6826 6827 /* 6828 * 1 for cmd, 1 for rsp, NVME adds an extra one 6829 * for boundary conditions in its max_sgl_segment template. 6830 */ 6831 extra = 2; 6832 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 6833 extra++; 6834 6835 /* 6836 * It doesn't matter what family our adapter is in, we are 6837 * limited to 2 Pages, 512 SGEs, for our SGL. 6838 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 6839 */ 6840 max_buf_size = (2 * SLI4_PAGE_SIZE); 6841 6842 /* 6843 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 6844 * used to create the sg_dma_buf_pool must be calculated. 6845 */ 6846 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 6847 /* Both cfg_enable_bg and cfg_external_dif code paths */ 6848 6849 /* 6850 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 6851 * the FCP rsp, and a SGE. Sice we have no control 6852 * over how many protection segments the SCSI Layer 6853 * will hand us (ie: there could be one for every block 6854 * in the IO), just allocate enough SGEs to accomidate 6855 * our max amount and we need to limit lpfc_sg_seg_cnt 6856 * to minimize the risk of running out. 6857 */ 6858 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6859 sizeof(struct fcp_rsp) + max_buf_size; 6860 6861 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 6862 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 6863 6864 /* 6865 * If supporting DIF, reduce the seg count for scsi to 6866 * allow room for the DIF sges. 6867 */ 6868 if (phba->cfg_enable_bg && 6869 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 6870 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 6871 else 6872 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 6873 6874 } else { 6875 /* 6876 * The scsi_buf for a regular I/O holds the FCP cmnd, 6877 * the FCP rsp, a SGE for each, and a SGE for up to 6878 * cfg_sg_seg_cnt data segments. 6879 */ 6880 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6881 sizeof(struct fcp_rsp) + 6882 ((phba->cfg_sg_seg_cnt + extra) * 6883 sizeof(struct sli4_sge)); 6884 6885 /* Total SGEs for scsi_sg_list */ 6886 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 6887 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 6888 6889 /* 6890 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 6891 * need to post 1 page for the SGL. 6892 */ 6893 } 6894 6895 if (phba->cfg_xpsgl && !phba->nvmet_support) 6896 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 6897 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 6898 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 6899 else 6900 phba->cfg_sg_dma_buf_size = 6901 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 6902 6903 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 6904 sizeof(struct sli4_sge); 6905 6906 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 6907 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 6908 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 6909 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 6910 "6300 Reducing NVME sg segment " 6911 "cnt to %d\n", 6912 LPFC_MAX_NVME_SEG_CNT); 6913 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 6914 } else 6915 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 6916 } 6917 6918 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 6919 "9087 sg_seg_cnt:%d dmabuf_size:%d " 6920 "total:%d scsi:%d nvme:%d\n", 6921 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 6922 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 6923 phba->cfg_nvme_seg_cnt); 6924 6925 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) 6926 i = phba->cfg_sg_dma_buf_size; 6927 else 6928 i = SLI4_PAGE_SIZE; 6929 6930 phba->lpfc_sg_dma_buf_pool = 6931 dma_pool_create("lpfc_sg_dma_buf_pool", 6932 &phba->pcidev->dev, 6933 phba->cfg_sg_dma_buf_size, 6934 i, 0); 6935 if (!phba->lpfc_sg_dma_buf_pool) 6936 goto out_free_bsmbx; 6937 6938 phba->lpfc_cmd_rsp_buf_pool = 6939 dma_pool_create("lpfc_cmd_rsp_buf_pool", 6940 &phba->pcidev->dev, 6941 sizeof(struct fcp_cmnd) + 6942 sizeof(struct fcp_rsp), 6943 i, 0); 6944 if (!phba->lpfc_cmd_rsp_buf_pool) 6945 goto out_free_sg_dma_buf; 6946 6947 mempool_free(mboxq, phba->mbox_mem_pool); 6948 6949 /* Verify OAS is supported */ 6950 lpfc_sli4_oas_verify(phba); 6951 6952 /* Verify RAS support on adapter */ 6953 lpfc_sli4_ras_init(phba); 6954 6955 /* Verify all the SLI4 queues */ 6956 rc = lpfc_sli4_queue_verify(phba); 6957 if (rc) 6958 goto out_free_cmd_rsp_buf; 6959 6960 /* Create driver internal CQE event pool */ 6961 rc = lpfc_sli4_cq_event_pool_create(phba); 6962 if (rc) 6963 goto out_free_cmd_rsp_buf; 6964 6965 /* Initialize sgl lists per host */ 6966 lpfc_init_sgl_list(phba); 6967 6968 /* Allocate and initialize active sgl array */ 6969 rc = lpfc_init_active_sgl_array(phba); 6970 if (rc) { 6971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6972 "1430 Failed to initialize sgl list.\n"); 6973 goto out_destroy_cq_event_pool; 6974 } 6975 rc = lpfc_sli4_init_rpi_hdrs(phba); 6976 if (rc) { 6977 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6978 "1432 Failed to initialize rpi headers.\n"); 6979 goto out_free_active_sgl; 6980 } 6981 6982 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 6983 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 6984 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 6985 GFP_KERNEL); 6986 if (!phba->fcf.fcf_rr_bmask) { 6987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6988 "2759 Failed allocate memory for FCF round " 6989 "robin failover bmask\n"); 6990 rc = -ENOMEM; 6991 goto out_remove_rpi_hdrs; 6992 } 6993 6994 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 6995 sizeof(struct lpfc_hba_eq_hdl), 6996 GFP_KERNEL); 6997 if (!phba->sli4_hba.hba_eq_hdl) { 6998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6999 "2572 Failed allocate memory for " 7000 "fast-path per-EQ handle array\n"); 7001 rc = -ENOMEM; 7002 goto out_free_fcf_rr_bmask; 7003 } 7004 7005 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 7006 sizeof(struct lpfc_vector_map_info), 7007 GFP_KERNEL); 7008 if (!phba->sli4_hba.cpu_map) { 7009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7010 "3327 Failed allocate memory for msi-x " 7011 "interrupt vector mapping\n"); 7012 rc = -ENOMEM; 7013 goto out_free_hba_eq_hdl; 7014 } 7015 7016 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 7017 if (!phba->sli4_hba.eq_info) { 7018 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7019 "3321 Failed allocation for per_cpu stats\n"); 7020 rc = -ENOMEM; 7021 goto out_free_hba_cpu_map; 7022 } 7023 7024 phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu, 7025 sizeof(*phba->sli4_hba.idle_stat), 7026 GFP_KERNEL); 7027 if (!phba->sli4_hba.idle_stat) { 7028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7029 "3390 Failed allocation for idle_stat\n"); 7030 rc = -ENOMEM; 7031 goto out_free_hba_eq_info; 7032 } 7033 7034 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 7035 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 7036 if (!phba->sli4_hba.c_stat) { 7037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7038 "3332 Failed allocating per cpu hdwq stats\n"); 7039 rc = -ENOMEM; 7040 goto out_free_hba_idle_stat; 7041 } 7042 #endif 7043 7044 /* 7045 * Enable sr-iov virtual functions if supported and configured 7046 * through the module parameter. 7047 */ 7048 if (phba->cfg_sriov_nr_virtfn > 0) { 7049 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 7050 phba->cfg_sriov_nr_virtfn); 7051 if (rc) { 7052 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7053 "3020 Requested number of SR-IOV " 7054 "virtual functions (%d) is not " 7055 "supported\n", 7056 phba->cfg_sriov_nr_virtfn); 7057 phba->cfg_sriov_nr_virtfn = 0; 7058 } 7059 } 7060 7061 return 0; 7062 7063 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 7064 out_free_hba_idle_stat: 7065 kfree(phba->sli4_hba.idle_stat); 7066 #endif 7067 out_free_hba_eq_info: 7068 free_percpu(phba->sli4_hba.eq_info); 7069 out_free_hba_cpu_map: 7070 kfree(phba->sli4_hba.cpu_map); 7071 out_free_hba_eq_hdl: 7072 kfree(phba->sli4_hba.hba_eq_hdl); 7073 out_free_fcf_rr_bmask: 7074 kfree(phba->fcf.fcf_rr_bmask); 7075 out_remove_rpi_hdrs: 7076 lpfc_sli4_remove_rpi_hdrs(phba); 7077 out_free_active_sgl: 7078 lpfc_free_active_sgl(phba); 7079 out_destroy_cq_event_pool: 7080 lpfc_sli4_cq_event_pool_destroy(phba); 7081 out_free_cmd_rsp_buf: 7082 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 7083 phba->lpfc_cmd_rsp_buf_pool = NULL; 7084 out_free_sg_dma_buf: 7085 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 7086 phba->lpfc_sg_dma_buf_pool = NULL; 7087 out_free_bsmbx: 7088 lpfc_destroy_bootstrap_mbox(phba); 7089 out_free_mem: 7090 lpfc_mem_free(phba); 7091 return rc; 7092 } 7093 7094 /** 7095 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 7096 * @phba: pointer to lpfc hba data structure. 7097 * 7098 * This routine is invoked to unset the driver internal resources set up 7099 * specific for supporting the SLI-4 HBA device it attached to. 7100 **/ 7101 static void 7102 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 7103 { 7104 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 7105 7106 free_percpu(phba->sli4_hba.eq_info); 7107 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 7108 free_percpu(phba->sli4_hba.c_stat); 7109 #endif 7110 kfree(phba->sli4_hba.idle_stat); 7111 7112 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 7113 kfree(phba->sli4_hba.cpu_map); 7114 phba->sli4_hba.num_possible_cpu = 0; 7115 phba->sli4_hba.num_present_cpu = 0; 7116 phba->sli4_hba.curr_disp_cpu = 0; 7117 cpumask_clear(&phba->sli4_hba.irq_aff_mask); 7118 7119 /* Free memory allocated for fast-path work queue handles */ 7120 kfree(phba->sli4_hba.hba_eq_hdl); 7121 7122 /* Free the allocated rpi headers. */ 7123 lpfc_sli4_remove_rpi_hdrs(phba); 7124 lpfc_sli4_remove_rpis(phba); 7125 7126 /* Free eligible FCF index bmask */ 7127 kfree(phba->fcf.fcf_rr_bmask); 7128 7129 /* Free the ELS sgl list */ 7130 lpfc_free_active_sgl(phba); 7131 lpfc_free_els_sgl_list(phba); 7132 lpfc_free_nvmet_sgl_list(phba); 7133 7134 /* Free the completion queue EQ event pool */ 7135 lpfc_sli4_cq_event_release_all(phba); 7136 lpfc_sli4_cq_event_pool_destroy(phba); 7137 7138 /* Release resource identifiers. */ 7139 lpfc_sli4_dealloc_resource_identifiers(phba); 7140 7141 /* Free the bsmbx region. */ 7142 lpfc_destroy_bootstrap_mbox(phba); 7143 7144 /* Free the SLI Layer memory with SLI4 HBAs */ 7145 lpfc_mem_free_all(phba); 7146 7147 /* Free the current connect table */ 7148 list_for_each_entry_safe(conn_entry, next_conn_entry, 7149 &phba->fcf_conn_rec_list, list) { 7150 list_del_init(&conn_entry->list); 7151 kfree(conn_entry); 7152 } 7153 7154 return; 7155 } 7156 7157 /** 7158 * lpfc_init_api_table_setup - Set up init api function jump table 7159 * @phba: The hba struct for which this call is being executed. 7160 * @dev_grp: The HBA PCI-Device group number. 7161 * 7162 * This routine sets up the device INIT interface API function jump table 7163 * in @phba struct. 7164 * 7165 * Returns: 0 - success, -ENODEV - failure. 7166 **/ 7167 int 7168 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7169 { 7170 phba->lpfc_hba_init_link = lpfc_hba_init_link; 7171 phba->lpfc_hba_down_link = lpfc_hba_down_link; 7172 phba->lpfc_selective_reset = lpfc_selective_reset; 7173 switch (dev_grp) { 7174 case LPFC_PCI_DEV_LP: 7175 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 7176 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 7177 phba->lpfc_stop_port = lpfc_stop_port_s3; 7178 break; 7179 case LPFC_PCI_DEV_OC: 7180 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 7181 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 7182 phba->lpfc_stop_port = lpfc_stop_port_s4; 7183 break; 7184 default: 7185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7186 "1431 Invalid HBA PCI-device group: 0x%x\n", 7187 dev_grp); 7188 return -ENODEV; 7189 break; 7190 } 7191 return 0; 7192 } 7193 7194 /** 7195 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 7196 * @phba: pointer to lpfc hba data structure. 7197 * 7198 * This routine is invoked to set up the driver internal resources after the 7199 * device specific resource setup to support the HBA device it attached to. 7200 * 7201 * Return codes 7202 * 0 - successful 7203 * other values - error 7204 **/ 7205 static int 7206 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 7207 { 7208 int error; 7209 7210 /* Startup the kernel thread for this host adapter. */ 7211 phba->worker_thread = kthread_run(lpfc_do_work, phba, 7212 "lpfc_worker_%d", phba->brd_no); 7213 if (IS_ERR(phba->worker_thread)) { 7214 error = PTR_ERR(phba->worker_thread); 7215 return error; 7216 } 7217 7218 return 0; 7219 } 7220 7221 /** 7222 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 7223 * @phba: pointer to lpfc hba data structure. 7224 * 7225 * This routine is invoked to unset the driver internal resources set up after 7226 * the device specific resource setup for supporting the HBA device it 7227 * attached to. 7228 **/ 7229 static void 7230 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 7231 { 7232 if (phba->wq) { 7233 flush_workqueue(phba->wq); 7234 destroy_workqueue(phba->wq); 7235 phba->wq = NULL; 7236 } 7237 7238 /* Stop kernel worker thread */ 7239 if (phba->worker_thread) 7240 kthread_stop(phba->worker_thread); 7241 } 7242 7243 /** 7244 * lpfc_free_iocb_list - Free iocb list. 7245 * @phba: pointer to lpfc hba data structure. 7246 * 7247 * This routine is invoked to free the driver's IOCB list and memory. 7248 **/ 7249 void 7250 lpfc_free_iocb_list(struct lpfc_hba *phba) 7251 { 7252 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 7253 7254 spin_lock_irq(&phba->hbalock); 7255 list_for_each_entry_safe(iocbq_entry, iocbq_next, 7256 &phba->lpfc_iocb_list, list) { 7257 list_del(&iocbq_entry->list); 7258 kfree(iocbq_entry); 7259 phba->total_iocbq_bufs--; 7260 } 7261 spin_unlock_irq(&phba->hbalock); 7262 7263 return; 7264 } 7265 7266 /** 7267 * lpfc_init_iocb_list - Allocate and initialize iocb list. 7268 * @phba: pointer to lpfc hba data structure. 7269 * @iocb_count: number of requested iocbs 7270 * 7271 * This routine is invoked to allocate and initizlize the driver's IOCB 7272 * list and set up the IOCB tag array accordingly. 7273 * 7274 * Return codes 7275 * 0 - successful 7276 * other values - error 7277 **/ 7278 int 7279 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 7280 { 7281 struct lpfc_iocbq *iocbq_entry = NULL; 7282 uint16_t iotag; 7283 int i; 7284 7285 /* Initialize and populate the iocb list per host. */ 7286 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 7287 for (i = 0; i < iocb_count; i++) { 7288 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 7289 if (iocbq_entry == NULL) { 7290 printk(KERN_ERR "%s: only allocated %d iocbs of " 7291 "expected %d count. Unloading driver.\n", 7292 __func__, i, iocb_count); 7293 goto out_free_iocbq; 7294 } 7295 7296 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 7297 if (iotag == 0) { 7298 kfree(iocbq_entry); 7299 printk(KERN_ERR "%s: failed to allocate IOTAG. " 7300 "Unloading driver.\n", __func__); 7301 goto out_free_iocbq; 7302 } 7303 iocbq_entry->sli4_lxritag = NO_XRI; 7304 iocbq_entry->sli4_xritag = NO_XRI; 7305 7306 spin_lock_irq(&phba->hbalock); 7307 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 7308 phba->total_iocbq_bufs++; 7309 spin_unlock_irq(&phba->hbalock); 7310 } 7311 7312 return 0; 7313 7314 out_free_iocbq: 7315 lpfc_free_iocb_list(phba); 7316 7317 return -ENOMEM; 7318 } 7319 7320 /** 7321 * lpfc_free_sgl_list - Free a given sgl list. 7322 * @phba: pointer to lpfc hba data structure. 7323 * @sglq_list: pointer to the head of sgl list. 7324 * 7325 * This routine is invoked to free a give sgl list and memory. 7326 **/ 7327 void 7328 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 7329 { 7330 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 7331 7332 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 7333 list_del(&sglq_entry->list); 7334 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 7335 kfree(sglq_entry); 7336 } 7337 } 7338 7339 /** 7340 * lpfc_free_els_sgl_list - Free els sgl list. 7341 * @phba: pointer to lpfc hba data structure. 7342 * 7343 * This routine is invoked to free the driver's els sgl list and memory. 7344 **/ 7345 static void 7346 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 7347 { 7348 LIST_HEAD(sglq_list); 7349 7350 /* Retrieve all els sgls from driver list */ 7351 spin_lock_irq(&phba->hbalock); 7352 spin_lock(&phba->sli4_hba.sgl_list_lock); 7353 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 7354 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7355 spin_unlock_irq(&phba->hbalock); 7356 7357 /* Now free the sgl list */ 7358 lpfc_free_sgl_list(phba, &sglq_list); 7359 } 7360 7361 /** 7362 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 7363 * @phba: pointer to lpfc hba data structure. 7364 * 7365 * This routine is invoked to free the driver's nvmet sgl list and memory. 7366 **/ 7367 static void 7368 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 7369 { 7370 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 7371 LIST_HEAD(sglq_list); 7372 7373 /* Retrieve all nvmet sgls from driver list */ 7374 spin_lock_irq(&phba->hbalock); 7375 spin_lock(&phba->sli4_hba.sgl_list_lock); 7376 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 7377 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7378 spin_unlock_irq(&phba->hbalock); 7379 7380 /* Now free the sgl list */ 7381 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 7382 list_del(&sglq_entry->list); 7383 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 7384 kfree(sglq_entry); 7385 } 7386 7387 /* Update the nvmet_xri_cnt to reflect no current sgls. 7388 * The next initialization cycle sets the count and allocates 7389 * the sgls over again. 7390 */ 7391 phba->sli4_hba.nvmet_xri_cnt = 0; 7392 } 7393 7394 /** 7395 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 7396 * @phba: pointer to lpfc hba data structure. 7397 * 7398 * This routine is invoked to allocate the driver's active sgl memory. 7399 * This array will hold the sglq_entry's for active IOs. 7400 **/ 7401 static int 7402 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 7403 { 7404 int size; 7405 size = sizeof(struct lpfc_sglq *); 7406 size *= phba->sli4_hba.max_cfg_param.max_xri; 7407 7408 phba->sli4_hba.lpfc_sglq_active_list = 7409 kzalloc(size, GFP_KERNEL); 7410 if (!phba->sli4_hba.lpfc_sglq_active_list) 7411 return -ENOMEM; 7412 return 0; 7413 } 7414 7415 /** 7416 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 7417 * @phba: pointer to lpfc hba data structure. 7418 * 7419 * This routine is invoked to walk through the array of active sglq entries 7420 * and free all of the resources. 7421 * This is just a place holder for now. 7422 **/ 7423 static void 7424 lpfc_free_active_sgl(struct lpfc_hba *phba) 7425 { 7426 kfree(phba->sli4_hba.lpfc_sglq_active_list); 7427 } 7428 7429 /** 7430 * lpfc_init_sgl_list - Allocate and initialize sgl list. 7431 * @phba: pointer to lpfc hba data structure. 7432 * 7433 * This routine is invoked to allocate and initizlize the driver's sgl 7434 * list and set up the sgl xritag tag array accordingly. 7435 * 7436 **/ 7437 static void 7438 lpfc_init_sgl_list(struct lpfc_hba *phba) 7439 { 7440 /* Initialize and populate the sglq list per host/VF. */ 7441 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 7442 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 7443 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 7444 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 7445 7446 /* els xri-sgl book keeping */ 7447 phba->sli4_hba.els_xri_cnt = 0; 7448 7449 /* nvme xri-buffer book keeping */ 7450 phba->sli4_hba.io_xri_cnt = 0; 7451 } 7452 7453 /** 7454 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 7455 * @phba: pointer to lpfc hba data structure. 7456 * 7457 * This routine is invoked to post rpi header templates to the 7458 * port for those SLI4 ports that do not support extents. This routine 7459 * posts a PAGE_SIZE memory region to the port to hold up to 7460 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 7461 * and should be called only when interrupts are disabled. 7462 * 7463 * Return codes 7464 * 0 - successful 7465 * -ERROR - otherwise. 7466 **/ 7467 int 7468 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 7469 { 7470 int rc = 0; 7471 struct lpfc_rpi_hdr *rpi_hdr; 7472 7473 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 7474 if (!phba->sli4_hba.rpi_hdrs_in_use) 7475 return rc; 7476 if (phba->sli4_hba.extents_in_use) 7477 return -EIO; 7478 7479 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 7480 if (!rpi_hdr) { 7481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7482 "0391 Error during rpi post operation\n"); 7483 lpfc_sli4_remove_rpis(phba); 7484 rc = -ENODEV; 7485 } 7486 7487 return rc; 7488 } 7489 7490 /** 7491 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 7492 * @phba: pointer to lpfc hba data structure. 7493 * 7494 * This routine is invoked to allocate a single 4KB memory region to 7495 * support rpis and stores them in the phba. This single region 7496 * provides support for up to 64 rpis. The region is used globally 7497 * by the device. 7498 * 7499 * Returns: 7500 * A valid rpi hdr on success. 7501 * A NULL pointer on any failure. 7502 **/ 7503 struct lpfc_rpi_hdr * 7504 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 7505 { 7506 uint16_t rpi_limit, curr_rpi_range; 7507 struct lpfc_dmabuf *dmabuf; 7508 struct lpfc_rpi_hdr *rpi_hdr; 7509 7510 /* 7511 * If the SLI4 port supports extents, posting the rpi header isn't 7512 * required. Set the expected maximum count and let the actual value 7513 * get set when extents are fully allocated. 7514 */ 7515 if (!phba->sli4_hba.rpi_hdrs_in_use) 7516 return NULL; 7517 if (phba->sli4_hba.extents_in_use) 7518 return NULL; 7519 7520 /* The limit on the logical index is just the max_rpi count. */ 7521 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 7522 7523 spin_lock_irq(&phba->hbalock); 7524 /* 7525 * Establish the starting RPI in this header block. The starting 7526 * rpi is normalized to a zero base because the physical rpi is 7527 * port based. 7528 */ 7529 curr_rpi_range = phba->sli4_hba.next_rpi; 7530 spin_unlock_irq(&phba->hbalock); 7531 7532 /* Reached full RPI range */ 7533 if (curr_rpi_range == rpi_limit) 7534 return NULL; 7535 7536 /* 7537 * First allocate the protocol header region for the port. The 7538 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 7539 */ 7540 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 7541 if (!dmabuf) 7542 return NULL; 7543 7544 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 7545 LPFC_HDR_TEMPLATE_SIZE, 7546 &dmabuf->phys, GFP_KERNEL); 7547 if (!dmabuf->virt) { 7548 rpi_hdr = NULL; 7549 goto err_free_dmabuf; 7550 } 7551 7552 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 7553 rpi_hdr = NULL; 7554 goto err_free_coherent; 7555 } 7556 7557 /* Save the rpi header data for cleanup later. */ 7558 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 7559 if (!rpi_hdr) 7560 goto err_free_coherent; 7561 7562 rpi_hdr->dmabuf = dmabuf; 7563 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 7564 rpi_hdr->page_count = 1; 7565 spin_lock_irq(&phba->hbalock); 7566 7567 /* The rpi_hdr stores the logical index only. */ 7568 rpi_hdr->start_rpi = curr_rpi_range; 7569 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 7570 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 7571 7572 spin_unlock_irq(&phba->hbalock); 7573 return rpi_hdr; 7574 7575 err_free_coherent: 7576 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 7577 dmabuf->virt, dmabuf->phys); 7578 err_free_dmabuf: 7579 kfree(dmabuf); 7580 return NULL; 7581 } 7582 7583 /** 7584 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 7585 * @phba: pointer to lpfc hba data structure. 7586 * 7587 * This routine is invoked to remove all memory resources allocated 7588 * to support rpis for SLI4 ports not supporting extents. This routine 7589 * presumes the caller has released all rpis consumed by fabric or port 7590 * logins and is prepared to have the header pages removed. 7591 **/ 7592 void 7593 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 7594 { 7595 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 7596 7597 if (!phba->sli4_hba.rpi_hdrs_in_use) 7598 goto exit; 7599 7600 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 7601 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 7602 list_del(&rpi_hdr->list); 7603 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 7604 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 7605 kfree(rpi_hdr->dmabuf); 7606 kfree(rpi_hdr); 7607 } 7608 exit: 7609 /* There are no rpis available to the port now. */ 7610 phba->sli4_hba.next_rpi = 0; 7611 } 7612 7613 /** 7614 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 7615 * @pdev: pointer to pci device data structure. 7616 * 7617 * This routine is invoked to allocate the driver hba data structure for an 7618 * HBA device. If the allocation is successful, the phba reference to the 7619 * PCI device data structure is set. 7620 * 7621 * Return codes 7622 * pointer to @phba - successful 7623 * NULL - error 7624 **/ 7625 static struct lpfc_hba * 7626 lpfc_hba_alloc(struct pci_dev *pdev) 7627 { 7628 struct lpfc_hba *phba; 7629 7630 /* Allocate memory for HBA structure */ 7631 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 7632 if (!phba) { 7633 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 7634 return NULL; 7635 } 7636 7637 /* Set reference to PCI device in HBA structure */ 7638 phba->pcidev = pdev; 7639 7640 /* Assign an unused board number */ 7641 phba->brd_no = lpfc_get_instance(); 7642 if (phba->brd_no < 0) { 7643 kfree(phba); 7644 return NULL; 7645 } 7646 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 7647 7648 spin_lock_init(&phba->ct_ev_lock); 7649 INIT_LIST_HEAD(&phba->ct_ev_waiters); 7650 7651 return phba; 7652 } 7653 7654 /** 7655 * lpfc_hba_free - Free driver hba data structure with a device. 7656 * @phba: pointer to lpfc hba data structure. 7657 * 7658 * This routine is invoked to free the driver hba data structure with an 7659 * HBA device. 7660 **/ 7661 static void 7662 lpfc_hba_free(struct lpfc_hba *phba) 7663 { 7664 if (phba->sli_rev == LPFC_SLI_REV4) 7665 kfree(phba->sli4_hba.hdwq); 7666 7667 /* Release the driver assigned board number */ 7668 idr_remove(&lpfc_hba_index, phba->brd_no); 7669 7670 /* Free memory allocated with sli3 rings */ 7671 kfree(phba->sli.sli3_ring); 7672 phba->sli.sli3_ring = NULL; 7673 7674 kfree(phba); 7675 return; 7676 } 7677 7678 /** 7679 * lpfc_create_shost - Create hba physical port with associated scsi host. 7680 * @phba: pointer to lpfc hba data structure. 7681 * 7682 * This routine is invoked to create HBA physical port and associate a SCSI 7683 * host with it. 7684 * 7685 * Return codes 7686 * 0 - successful 7687 * other values - error 7688 **/ 7689 static int 7690 lpfc_create_shost(struct lpfc_hba *phba) 7691 { 7692 struct lpfc_vport *vport; 7693 struct Scsi_Host *shost; 7694 7695 /* Initialize HBA FC structure */ 7696 phba->fc_edtov = FF_DEF_EDTOV; 7697 phba->fc_ratov = FF_DEF_RATOV; 7698 phba->fc_altov = FF_DEF_ALTOV; 7699 phba->fc_arbtov = FF_DEF_ARBTOV; 7700 7701 atomic_set(&phba->sdev_cnt, 0); 7702 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 7703 if (!vport) 7704 return -ENODEV; 7705 7706 shost = lpfc_shost_from_vport(vport); 7707 phba->pport = vport; 7708 7709 if (phba->nvmet_support) { 7710 /* Only 1 vport (pport) will support NVME target */ 7711 phba->targetport = NULL; 7712 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 7713 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 7714 "6076 NVME Target Found\n"); 7715 } 7716 7717 lpfc_debugfs_initialize(vport); 7718 /* Put reference to SCSI host to driver's device private data */ 7719 pci_set_drvdata(phba->pcidev, shost); 7720 7721 /* 7722 * At this point we are fully registered with PSA. In addition, 7723 * any initial discovery should be completed. 7724 */ 7725 vport->load_flag |= FC_ALLOW_FDMI; 7726 if (phba->cfg_enable_SmartSAN || 7727 (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) { 7728 7729 /* Setup appropriate attribute masks */ 7730 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 7731 if (phba->cfg_enable_SmartSAN) 7732 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 7733 else 7734 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 7735 } 7736 return 0; 7737 } 7738 7739 /** 7740 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 7741 * @phba: pointer to lpfc hba data structure. 7742 * 7743 * This routine is invoked to destroy HBA physical port and the associated 7744 * SCSI host. 7745 **/ 7746 static void 7747 lpfc_destroy_shost(struct lpfc_hba *phba) 7748 { 7749 struct lpfc_vport *vport = phba->pport; 7750 7751 /* Destroy physical port that associated with the SCSI host */ 7752 destroy_port(vport); 7753 7754 return; 7755 } 7756 7757 /** 7758 * lpfc_setup_bg - Setup Block guard structures and debug areas. 7759 * @phba: pointer to lpfc hba data structure. 7760 * @shost: the shost to be used to detect Block guard settings. 7761 * 7762 * This routine sets up the local Block guard protocol settings for @shost. 7763 * This routine also allocates memory for debugging bg buffers. 7764 **/ 7765 static void 7766 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 7767 { 7768 uint32_t old_mask; 7769 uint32_t old_guard; 7770 7771 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 7772 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7773 "1478 Registering BlockGuard with the " 7774 "SCSI layer\n"); 7775 7776 old_mask = phba->cfg_prot_mask; 7777 old_guard = phba->cfg_prot_guard; 7778 7779 /* Only allow supported values */ 7780 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 7781 SHOST_DIX_TYPE0_PROTECTION | 7782 SHOST_DIX_TYPE1_PROTECTION); 7783 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 7784 SHOST_DIX_GUARD_CRC); 7785 7786 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 7787 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 7788 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 7789 7790 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 7791 if ((old_mask != phba->cfg_prot_mask) || 7792 (old_guard != phba->cfg_prot_guard)) 7793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7794 "1475 Registering BlockGuard with the " 7795 "SCSI layer: mask %d guard %d\n", 7796 phba->cfg_prot_mask, 7797 phba->cfg_prot_guard); 7798 7799 scsi_host_set_prot(shost, phba->cfg_prot_mask); 7800 scsi_host_set_guard(shost, phba->cfg_prot_guard); 7801 } else 7802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7803 "1479 Not Registering BlockGuard with the SCSI " 7804 "layer, Bad protection parameters: %d %d\n", 7805 old_mask, old_guard); 7806 } 7807 } 7808 7809 /** 7810 * lpfc_post_init_setup - Perform necessary device post initialization setup. 7811 * @phba: pointer to lpfc hba data structure. 7812 * 7813 * This routine is invoked to perform all the necessary post initialization 7814 * setup for the device. 7815 **/ 7816 static void 7817 lpfc_post_init_setup(struct lpfc_hba *phba) 7818 { 7819 struct Scsi_Host *shost; 7820 struct lpfc_adapter_event_header adapter_event; 7821 7822 /* Get the default values for Model Name and Description */ 7823 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 7824 7825 /* 7826 * hba setup may have changed the hba_queue_depth so we need to 7827 * adjust the value of can_queue. 7828 */ 7829 shost = pci_get_drvdata(phba->pcidev); 7830 shost->can_queue = phba->cfg_hba_queue_depth - 10; 7831 7832 lpfc_host_attrib_init(shost); 7833 7834 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 7835 spin_lock_irq(shost->host_lock); 7836 lpfc_poll_start_timer(phba); 7837 spin_unlock_irq(shost->host_lock); 7838 } 7839 7840 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7841 "0428 Perform SCSI scan\n"); 7842 /* Send board arrival event to upper layer */ 7843 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 7844 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 7845 fc_host_post_vendor_event(shost, fc_get_event_number(), 7846 sizeof(adapter_event), 7847 (char *) &adapter_event, 7848 LPFC_NL_VENDOR_ID); 7849 return; 7850 } 7851 7852 /** 7853 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 7854 * @phba: pointer to lpfc hba data structure. 7855 * 7856 * This routine is invoked to set up the PCI device memory space for device 7857 * with SLI-3 interface spec. 7858 * 7859 * Return codes 7860 * 0 - successful 7861 * other values - error 7862 **/ 7863 static int 7864 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 7865 { 7866 struct pci_dev *pdev = phba->pcidev; 7867 unsigned long bar0map_len, bar2map_len; 7868 int i, hbq_count; 7869 void *ptr; 7870 int error; 7871 7872 if (!pdev) 7873 return -ENODEV; 7874 7875 /* Set the device DMA mask size */ 7876 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 7877 if (error) 7878 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 7879 if (error) 7880 return error; 7881 error = -ENODEV; 7882 7883 /* Get the bus address of Bar0 and Bar2 and the number of bytes 7884 * required by each mapping. 7885 */ 7886 phba->pci_bar0_map = pci_resource_start(pdev, 0); 7887 bar0map_len = pci_resource_len(pdev, 0); 7888 7889 phba->pci_bar2_map = pci_resource_start(pdev, 2); 7890 bar2map_len = pci_resource_len(pdev, 2); 7891 7892 /* Map HBA SLIM to a kernel virtual address. */ 7893 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 7894 if (!phba->slim_memmap_p) { 7895 dev_printk(KERN_ERR, &pdev->dev, 7896 "ioremap failed for SLIM memory.\n"); 7897 goto out; 7898 } 7899 7900 /* Map HBA Control Registers to a kernel virtual address. */ 7901 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 7902 if (!phba->ctrl_regs_memmap_p) { 7903 dev_printk(KERN_ERR, &pdev->dev, 7904 "ioremap failed for HBA control registers.\n"); 7905 goto out_iounmap_slim; 7906 } 7907 7908 /* Allocate memory for SLI-2 structures */ 7909 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7910 &phba->slim2p.phys, GFP_KERNEL); 7911 if (!phba->slim2p.virt) 7912 goto out_iounmap; 7913 7914 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 7915 phba->mbox_ext = (phba->slim2p.virt + 7916 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 7917 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 7918 phba->IOCBs = (phba->slim2p.virt + 7919 offsetof(struct lpfc_sli2_slim, IOCBs)); 7920 7921 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 7922 lpfc_sli_hbq_size(), 7923 &phba->hbqslimp.phys, 7924 GFP_KERNEL); 7925 if (!phba->hbqslimp.virt) 7926 goto out_free_slim; 7927 7928 hbq_count = lpfc_sli_hbq_count(); 7929 ptr = phba->hbqslimp.virt; 7930 for (i = 0; i < hbq_count; ++i) { 7931 phba->hbqs[i].hbq_virt = ptr; 7932 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 7933 ptr += (lpfc_hbq_defs[i]->entry_count * 7934 sizeof(struct lpfc_hbq_entry)); 7935 } 7936 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 7937 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 7938 7939 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 7940 7941 phba->MBslimaddr = phba->slim_memmap_p; 7942 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 7943 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 7944 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 7945 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 7946 7947 return 0; 7948 7949 out_free_slim: 7950 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7951 phba->slim2p.virt, phba->slim2p.phys); 7952 out_iounmap: 7953 iounmap(phba->ctrl_regs_memmap_p); 7954 out_iounmap_slim: 7955 iounmap(phba->slim_memmap_p); 7956 out: 7957 return error; 7958 } 7959 7960 /** 7961 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 7962 * @phba: pointer to lpfc hba data structure. 7963 * 7964 * This routine is invoked to unset the PCI device memory space for device 7965 * with SLI-3 interface spec. 7966 **/ 7967 static void 7968 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 7969 { 7970 struct pci_dev *pdev; 7971 7972 /* Obtain PCI device reference */ 7973 if (!phba->pcidev) 7974 return; 7975 else 7976 pdev = phba->pcidev; 7977 7978 /* Free coherent DMA memory allocated */ 7979 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 7980 phba->hbqslimp.virt, phba->hbqslimp.phys); 7981 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7982 phba->slim2p.virt, phba->slim2p.phys); 7983 7984 /* I/O memory unmap */ 7985 iounmap(phba->ctrl_regs_memmap_p); 7986 iounmap(phba->slim_memmap_p); 7987 7988 return; 7989 } 7990 7991 /** 7992 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 7993 * @phba: pointer to lpfc hba data structure. 7994 * 7995 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 7996 * done and check status. 7997 * 7998 * Return 0 if successful, otherwise -ENODEV. 7999 **/ 8000 int 8001 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 8002 { 8003 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 8004 struct lpfc_register reg_data; 8005 int i, port_error = 0; 8006 uint32_t if_type; 8007 8008 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 8009 memset(®_data, 0, sizeof(reg_data)); 8010 if (!phba->sli4_hba.PSMPHRregaddr) 8011 return -ENODEV; 8012 8013 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 8014 for (i = 0; i < 3000; i++) { 8015 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 8016 &portsmphr_reg.word0) || 8017 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 8018 /* Port has a fatal POST error, break out */ 8019 port_error = -ENODEV; 8020 break; 8021 } 8022 if (LPFC_POST_STAGE_PORT_READY == 8023 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 8024 break; 8025 msleep(10); 8026 } 8027 8028 /* 8029 * If there was a port error during POST, then don't proceed with 8030 * other register reads as the data may not be valid. Just exit. 8031 */ 8032 if (port_error) { 8033 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8034 "1408 Port Failed POST - portsmphr=0x%x, " 8035 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 8036 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 8037 portsmphr_reg.word0, 8038 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 8039 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 8040 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 8041 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 8042 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 8043 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 8044 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 8045 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 8046 } else { 8047 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8048 "2534 Device Info: SLIFamily=0x%x, " 8049 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 8050 "SLIHint_2=0x%x, FT=0x%x\n", 8051 bf_get(lpfc_sli_intf_sli_family, 8052 &phba->sli4_hba.sli_intf), 8053 bf_get(lpfc_sli_intf_slirev, 8054 &phba->sli4_hba.sli_intf), 8055 bf_get(lpfc_sli_intf_if_type, 8056 &phba->sli4_hba.sli_intf), 8057 bf_get(lpfc_sli_intf_sli_hint1, 8058 &phba->sli4_hba.sli_intf), 8059 bf_get(lpfc_sli_intf_sli_hint2, 8060 &phba->sli4_hba.sli_intf), 8061 bf_get(lpfc_sli_intf_func_type, 8062 &phba->sli4_hba.sli_intf)); 8063 /* 8064 * Check for other Port errors during the initialization 8065 * process. Fail the load if the port did not come up 8066 * correctly. 8067 */ 8068 if_type = bf_get(lpfc_sli_intf_if_type, 8069 &phba->sli4_hba.sli_intf); 8070 switch (if_type) { 8071 case LPFC_SLI_INTF_IF_TYPE_0: 8072 phba->sli4_hba.ue_mask_lo = 8073 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 8074 phba->sli4_hba.ue_mask_hi = 8075 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 8076 uerrlo_reg.word0 = 8077 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 8078 uerrhi_reg.word0 = 8079 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 8080 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 8081 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 8082 lpfc_printf_log(phba, KERN_ERR, 8083 LOG_TRACE_EVENT, 8084 "1422 Unrecoverable Error " 8085 "Detected during POST " 8086 "uerr_lo_reg=0x%x, " 8087 "uerr_hi_reg=0x%x, " 8088 "ue_mask_lo_reg=0x%x, " 8089 "ue_mask_hi_reg=0x%x\n", 8090 uerrlo_reg.word0, 8091 uerrhi_reg.word0, 8092 phba->sli4_hba.ue_mask_lo, 8093 phba->sli4_hba.ue_mask_hi); 8094 port_error = -ENODEV; 8095 } 8096 break; 8097 case LPFC_SLI_INTF_IF_TYPE_2: 8098 case LPFC_SLI_INTF_IF_TYPE_6: 8099 /* Final checks. The port status should be clean. */ 8100 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8101 ®_data.word0) || 8102 (bf_get(lpfc_sliport_status_err, ®_data) && 8103 !bf_get(lpfc_sliport_status_rn, ®_data))) { 8104 phba->work_status[0] = 8105 readl(phba->sli4_hba.u.if_type2. 8106 ERR1regaddr); 8107 phba->work_status[1] = 8108 readl(phba->sli4_hba.u.if_type2. 8109 ERR2regaddr); 8110 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8111 "2888 Unrecoverable port error " 8112 "following POST: port status reg " 8113 "0x%x, port_smphr reg 0x%x, " 8114 "error 1=0x%x, error 2=0x%x\n", 8115 reg_data.word0, 8116 portsmphr_reg.word0, 8117 phba->work_status[0], 8118 phba->work_status[1]); 8119 port_error = -ENODEV; 8120 } 8121 break; 8122 case LPFC_SLI_INTF_IF_TYPE_1: 8123 default: 8124 break; 8125 } 8126 } 8127 return port_error; 8128 } 8129 8130 /** 8131 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 8132 * @phba: pointer to lpfc hba data structure. 8133 * @if_type: The SLI4 interface type getting configured. 8134 * 8135 * This routine is invoked to set up SLI4 BAR0 PCI config space register 8136 * memory map. 8137 **/ 8138 static void 8139 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 8140 { 8141 switch (if_type) { 8142 case LPFC_SLI_INTF_IF_TYPE_0: 8143 phba->sli4_hba.u.if_type0.UERRLOregaddr = 8144 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 8145 phba->sli4_hba.u.if_type0.UERRHIregaddr = 8146 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 8147 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 8148 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 8149 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 8150 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 8151 phba->sli4_hba.SLIINTFregaddr = 8152 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 8153 break; 8154 case LPFC_SLI_INTF_IF_TYPE_2: 8155 phba->sli4_hba.u.if_type2.EQDregaddr = 8156 phba->sli4_hba.conf_regs_memmap_p + 8157 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 8158 phba->sli4_hba.u.if_type2.ERR1regaddr = 8159 phba->sli4_hba.conf_regs_memmap_p + 8160 LPFC_CTL_PORT_ER1_OFFSET; 8161 phba->sli4_hba.u.if_type2.ERR2regaddr = 8162 phba->sli4_hba.conf_regs_memmap_p + 8163 LPFC_CTL_PORT_ER2_OFFSET; 8164 phba->sli4_hba.u.if_type2.CTRLregaddr = 8165 phba->sli4_hba.conf_regs_memmap_p + 8166 LPFC_CTL_PORT_CTL_OFFSET; 8167 phba->sli4_hba.u.if_type2.STATUSregaddr = 8168 phba->sli4_hba.conf_regs_memmap_p + 8169 LPFC_CTL_PORT_STA_OFFSET; 8170 phba->sli4_hba.SLIINTFregaddr = 8171 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 8172 phba->sli4_hba.PSMPHRregaddr = 8173 phba->sli4_hba.conf_regs_memmap_p + 8174 LPFC_CTL_PORT_SEM_OFFSET; 8175 phba->sli4_hba.RQDBregaddr = 8176 phba->sli4_hba.conf_regs_memmap_p + 8177 LPFC_ULP0_RQ_DOORBELL; 8178 phba->sli4_hba.WQDBregaddr = 8179 phba->sli4_hba.conf_regs_memmap_p + 8180 LPFC_ULP0_WQ_DOORBELL; 8181 phba->sli4_hba.CQDBregaddr = 8182 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 8183 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 8184 phba->sli4_hba.MQDBregaddr = 8185 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 8186 phba->sli4_hba.BMBXregaddr = 8187 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 8188 break; 8189 case LPFC_SLI_INTF_IF_TYPE_6: 8190 phba->sli4_hba.u.if_type2.EQDregaddr = 8191 phba->sli4_hba.conf_regs_memmap_p + 8192 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 8193 phba->sli4_hba.u.if_type2.ERR1regaddr = 8194 phba->sli4_hba.conf_regs_memmap_p + 8195 LPFC_CTL_PORT_ER1_OFFSET; 8196 phba->sli4_hba.u.if_type2.ERR2regaddr = 8197 phba->sli4_hba.conf_regs_memmap_p + 8198 LPFC_CTL_PORT_ER2_OFFSET; 8199 phba->sli4_hba.u.if_type2.CTRLregaddr = 8200 phba->sli4_hba.conf_regs_memmap_p + 8201 LPFC_CTL_PORT_CTL_OFFSET; 8202 phba->sli4_hba.u.if_type2.STATUSregaddr = 8203 phba->sli4_hba.conf_regs_memmap_p + 8204 LPFC_CTL_PORT_STA_OFFSET; 8205 phba->sli4_hba.PSMPHRregaddr = 8206 phba->sli4_hba.conf_regs_memmap_p + 8207 LPFC_CTL_PORT_SEM_OFFSET; 8208 phba->sli4_hba.BMBXregaddr = 8209 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 8210 break; 8211 case LPFC_SLI_INTF_IF_TYPE_1: 8212 default: 8213 dev_printk(KERN_ERR, &phba->pcidev->dev, 8214 "FATAL - unsupported SLI4 interface type - %d\n", 8215 if_type); 8216 break; 8217 } 8218 } 8219 8220 /** 8221 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 8222 * @phba: pointer to lpfc hba data structure. 8223 * @if_type: sli if type to operate on. 8224 * 8225 * This routine is invoked to set up SLI4 BAR1 register memory map. 8226 **/ 8227 static void 8228 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 8229 { 8230 switch (if_type) { 8231 case LPFC_SLI_INTF_IF_TYPE_0: 8232 phba->sli4_hba.PSMPHRregaddr = 8233 phba->sli4_hba.ctrl_regs_memmap_p + 8234 LPFC_SLIPORT_IF0_SMPHR; 8235 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8236 LPFC_HST_ISR0; 8237 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8238 LPFC_HST_IMR0; 8239 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8240 LPFC_HST_ISCR0; 8241 break; 8242 case LPFC_SLI_INTF_IF_TYPE_6: 8243 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8244 LPFC_IF6_RQ_DOORBELL; 8245 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8246 LPFC_IF6_WQ_DOORBELL; 8247 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8248 LPFC_IF6_CQ_DOORBELL; 8249 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8250 LPFC_IF6_EQ_DOORBELL; 8251 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8252 LPFC_IF6_MQ_DOORBELL; 8253 break; 8254 case LPFC_SLI_INTF_IF_TYPE_2: 8255 case LPFC_SLI_INTF_IF_TYPE_1: 8256 default: 8257 dev_err(&phba->pcidev->dev, 8258 "FATAL - unsupported SLI4 interface type - %d\n", 8259 if_type); 8260 break; 8261 } 8262 } 8263 8264 /** 8265 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 8266 * @phba: pointer to lpfc hba data structure. 8267 * @vf: virtual function number 8268 * 8269 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 8270 * based on the given viftual function number, @vf. 8271 * 8272 * Return 0 if successful, otherwise -ENODEV. 8273 **/ 8274 static int 8275 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 8276 { 8277 if (vf > LPFC_VIR_FUNC_MAX) 8278 return -ENODEV; 8279 8280 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8281 vf * LPFC_VFR_PAGE_SIZE + 8282 LPFC_ULP0_RQ_DOORBELL); 8283 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8284 vf * LPFC_VFR_PAGE_SIZE + 8285 LPFC_ULP0_WQ_DOORBELL); 8286 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8287 vf * LPFC_VFR_PAGE_SIZE + 8288 LPFC_EQCQ_DOORBELL); 8289 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 8290 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8291 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 8292 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8293 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 8294 return 0; 8295 } 8296 8297 /** 8298 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 8299 * @phba: pointer to lpfc hba data structure. 8300 * 8301 * This routine is invoked to create the bootstrap mailbox 8302 * region consistent with the SLI-4 interface spec. This 8303 * routine allocates all memory necessary to communicate 8304 * mailbox commands to the port and sets up all alignment 8305 * needs. No locks are expected to be held when calling 8306 * this routine. 8307 * 8308 * Return codes 8309 * 0 - successful 8310 * -ENOMEM - could not allocated memory. 8311 **/ 8312 static int 8313 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 8314 { 8315 uint32_t bmbx_size; 8316 struct lpfc_dmabuf *dmabuf; 8317 struct dma_address *dma_address; 8318 uint32_t pa_addr; 8319 uint64_t phys_addr; 8320 8321 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8322 if (!dmabuf) 8323 return -ENOMEM; 8324 8325 /* 8326 * The bootstrap mailbox region is comprised of 2 parts 8327 * plus an alignment restriction of 16 bytes. 8328 */ 8329 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 8330 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 8331 &dmabuf->phys, GFP_KERNEL); 8332 if (!dmabuf->virt) { 8333 kfree(dmabuf); 8334 return -ENOMEM; 8335 } 8336 8337 /* 8338 * Initialize the bootstrap mailbox pointers now so that the register 8339 * operations are simple later. The mailbox dma address is required 8340 * to be 16-byte aligned. Also align the virtual memory as each 8341 * maibox is copied into the bmbx mailbox region before issuing the 8342 * command to the port. 8343 */ 8344 phba->sli4_hba.bmbx.dmabuf = dmabuf; 8345 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 8346 8347 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 8348 LPFC_ALIGN_16_BYTE); 8349 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 8350 LPFC_ALIGN_16_BYTE); 8351 8352 /* 8353 * Set the high and low physical addresses now. The SLI4 alignment 8354 * requirement is 16 bytes and the mailbox is posted to the port 8355 * as two 30-bit addresses. The other data is a bit marking whether 8356 * the 30-bit address is the high or low address. 8357 * Upcast bmbx aphys to 64bits so shift instruction compiles 8358 * clean on 32 bit machines. 8359 */ 8360 dma_address = &phba->sli4_hba.bmbx.dma_address; 8361 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 8362 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 8363 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 8364 LPFC_BMBX_BIT1_ADDR_HI); 8365 8366 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 8367 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 8368 LPFC_BMBX_BIT1_ADDR_LO); 8369 return 0; 8370 } 8371 8372 /** 8373 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 8374 * @phba: pointer to lpfc hba data structure. 8375 * 8376 * This routine is invoked to teardown the bootstrap mailbox 8377 * region and release all host resources. This routine requires 8378 * the caller to ensure all mailbox commands recovered, no 8379 * additional mailbox comands are sent, and interrupts are disabled 8380 * before calling this routine. 8381 * 8382 **/ 8383 static void 8384 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 8385 { 8386 dma_free_coherent(&phba->pcidev->dev, 8387 phba->sli4_hba.bmbx.bmbx_size, 8388 phba->sli4_hba.bmbx.dmabuf->virt, 8389 phba->sli4_hba.bmbx.dmabuf->phys); 8390 8391 kfree(phba->sli4_hba.bmbx.dmabuf); 8392 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 8393 } 8394 8395 static const char * const lpfc_topo_to_str[] = { 8396 "Loop then P2P", 8397 "Loopback", 8398 "P2P Only", 8399 "Unsupported", 8400 "Loop Only", 8401 "Unsupported", 8402 "P2P then Loop", 8403 }; 8404 8405 #define LINK_FLAGS_DEF 0x0 8406 #define LINK_FLAGS_P2P 0x1 8407 #define LINK_FLAGS_LOOP 0x2 8408 /** 8409 * lpfc_map_topology - Map the topology read from READ_CONFIG 8410 * @phba: pointer to lpfc hba data structure. 8411 * @rd_config: pointer to read config data 8412 * 8413 * This routine is invoked to map the topology values as read 8414 * from the read config mailbox command. If the persistent 8415 * topology feature is supported, the firmware will provide the 8416 * saved topology information to be used in INIT_LINK 8417 **/ 8418 static void 8419 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 8420 { 8421 u8 ptv, tf, pt; 8422 8423 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 8424 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 8425 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 8426 8427 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8428 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 8429 ptv, tf, pt); 8430 if (!ptv) { 8431 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8432 "2019 FW does not support persistent topology " 8433 "Using driver parameter defined value [%s]", 8434 lpfc_topo_to_str[phba->cfg_topology]); 8435 return; 8436 } 8437 /* FW supports persistent topology - override module parameter value */ 8438 phba->hba_flag |= HBA_PERSISTENT_TOPO; 8439 switch (phba->pcidev->device) { 8440 case PCI_DEVICE_ID_LANCER_G7_FC: 8441 case PCI_DEVICE_ID_LANCER_G6_FC: 8442 if (!tf) { 8443 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 8444 ? FLAGS_TOPOLOGY_MODE_LOOP 8445 : FLAGS_TOPOLOGY_MODE_PT_PT); 8446 } else { 8447 phba->hba_flag &= ~HBA_PERSISTENT_TOPO; 8448 } 8449 break; 8450 default: /* G5 */ 8451 if (tf) { 8452 /* If topology failover set - pt is '0' or '1' */ 8453 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 8454 FLAGS_TOPOLOGY_MODE_LOOP_PT); 8455 } else { 8456 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 8457 ? FLAGS_TOPOLOGY_MODE_PT_PT 8458 : FLAGS_TOPOLOGY_MODE_LOOP); 8459 } 8460 break; 8461 } 8462 if (phba->hba_flag & HBA_PERSISTENT_TOPO) { 8463 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8464 "2020 Using persistent topology value [%s]", 8465 lpfc_topo_to_str[phba->cfg_topology]); 8466 } else { 8467 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8468 "2021 Invalid topology values from FW " 8469 "Using driver parameter defined value [%s]", 8470 lpfc_topo_to_str[phba->cfg_topology]); 8471 } 8472 } 8473 8474 /** 8475 * lpfc_sli4_read_config - Get the config parameters. 8476 * @phba: pointer to lpfc hba data structure. 8477 * 8478 * This routine is invoked to read the configuration parameters from the HBA. 8479 * The configuration parameters are used to set the base and maximum values 8480 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 8481 * allocation for the port. 8482 * 8483 * Return codes 8484 * 0 - successful 8485 * -ENOMEM - No available memory 8486 * -EIO - The mailbox failed to complete successfully. 8487 **/ 8488 int 8489 lpfc_sli4_read_config(struct lpfc_hba *phba) 8490 { 8491 LPFC_MBOXQ_t *pmb; 8492 struct lpfc_mbx_read_config *rd_config; 8493 union lpfc_sli4_cfg_shdr *shdr; 8494 uint32_t shdr_status, shdr_add_status; 8495 struct lpfc_mbx_get_func_cfg *get_func_cfg; 8496 struct lpfc_rsrc_desc_fcfcoe *desc; 8497 char *pdesc_0; 8498 uint16_t forced_link_speed; 8499 uint32_t if_type, qmin; 8500 int length, i, rc = 0, rc2; 8501 8502 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8503 if (!pmb) { 8504 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8505 "2011 Unable to allocate memory for issuing " 8506 "SLI_CONFIG_SPECIAL mailbox command\n"); 8507 return -ENOMEM; 8508 } 8509 8510 lpfc_read_config(phba, pmb); 8511 8512 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 8513 if (rc != MBX_SUCCESS) { 8514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8515 "2012 Mailbox failed , mbxCmd x%x " 8516 "READ_CONFIG, mbxStatus x%x\n", 8517 bf_get(lpfc_mqe_command, &pmb->u.mqe), 8518 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 8519 rc = -EIO; 8520 } else { 8521 rd_config = &pmb->u.mqe.un.rd_config; 8522 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 8523 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 8524 phba->sli4_hba.lnk_info.lnk_tp = 8525 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 8526 phba->sli4_hba.lnk_info.lnk_no = 8527 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 8528 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8529 "3081 lnk_type:%d, lnk_numb:%d\n", 8530 phba->sli4_hba.lnk_info.lnk_tp, 8531 phba->sli4_hba.lnk_info.lnk_no); 8532 } else 8533 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8534 "3082 Mailbox (x%x) returned ldv:x0\n", 8535 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 8536 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 8537 phba->bbcredit_support = 1; 8538 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 8539 } 8540 8541 phba->sli4_hba.conf_trunk = 8542 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 8543 phba->sli4_hba.extents_in_use = 8544 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 8545 phba->sli4_hba.max_cfg_param.max_xri = 8546 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 8547 /* Reduce resource usage in kdump environment */ 8548 if (is_kdump_kernel() && 8549 phba->sli4_hba.max_cfg_param.max_xri > 512) 8550 phba->sli4_hba.max_cfg_param.max_xri = 512; 8551 phba->sli4_hba.max_cfg_param.xri_base = 8552 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 8553 phba->sli4_hba.max_cfg_param.max_vpi = 8554 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 8555 /* Limit the max we support */ 8556 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 8557 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 8558 phba->sli4_hba.max_cfg_param.vpi_base = 8559 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 8560 phba->sli4_hba.max_cfg_param.max_rpi = 8561 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 8562 phba->sli4_hba.max_cfg_param.rpi_base = 8563 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 8564 phba->sli4_hba.max_cfg_param.max_vfi = 8565 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 8566 phba->sli4_hba.max_cfg_param.vfi_base = 8567 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 8568 phba->sli4_hba.max_cfg_param.max_fcfi = 8569 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 8570 phba->sli4_hba.max_cfg_param.max_eq = 8571 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 8572 phba->sli4_hba.max_cfg_param.max_rq = 8573 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 8574 phba->sli4_hba.max_cfg_param.max_wq = 8575 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 8576 phba->sli4_hba.max_cfg_param.max_cq = 8577 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 8578 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 8579 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 8580 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 8581 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 8582 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 8583 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 8584 phba->max_vports = phba->max_vpi; 8585 lpfc_map_topology(phba, rd_config); 8586 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8587 "2003 cfg params Extents? %d " 8588 "XRI(B:%d M:%d), " 8589 "VPI(B:%d M:%d) " 8590 "VFI(B:%d M:%d) " 8591 "RPI(B:%d M:%d) " 8592 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d\n", 8593 phba->sli4_hba.extents_in_use, 8594 phba->sli4_hba.max_cfg_param.xri_base, 8595 phba->sli4_hba.max_cfg_param.max_xri, 8596 phba->sli4_hba.max_cfg_param.vpi_base, 8597 phba->sli4_hba.max_cfg_param.max_vpi, 8598 phba->sli4_hba.max_cfg_param.vfi_base, 8599 phba->sli4_hba.max_cfg_param.max_vfi, 8600 phba->sli4_hba.max_cfg_param.rpi_base, 8601 phba->sli4_hba.max_cfg_param.max_rpi, 8602 phba->sli4_hba.max_cfg_param.max_fcfi, 8603 phba->sli4_hba.max_cfg_param.max_eq, 8604 phba->sli4_hba.max_cfg_param.max_cq, 8605 phba->sli4_hba.max_cfg_param.max_wq, 8606 phba->sli4_hba.max_cfg_param.max_rq); 8607 8608 /* 8609 * Calculate queue resources based on how 8610 * many WQ/CQ/EQs are available. 8611 */ 8612 qmin = phba->sli4_hba.max_cfg_param.max_wq; 8613 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 8614 qmin = phba->sli4_hba.max_cfg_param.max_cq; 8615 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 8616 qmin = phba->sli4_hba.max_cfg_param.max_eq; 8617 /* 8618 * Whats left after this can go toward NVME / FCP. 8619 * The minus 4 accounts for ELS, NVME LS, MBOX 8620 * plus one extra. When configured for 8621 * NVMET, FCP io channel WQs are not created. 8622 */ 8623 qmin -= 4; 8624 8625 /* Check to see if there is enough for NVME */ 8626 if ((phba->cfg_irq_chann > qmin) || 8627 (phba->cfg_hdw_queue > qmin)) { 8628 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8629 "2005 Reducing Queues: " 8630 "WQ %d CQ %d EQ %d: min %d: " 8631 "IRQ %d HDWQ %d\n", 8632 phba->sli4_hba.max_cfg_param.max_wq, 8633 phba->sli4_hba.max_cfg_param.max_cq, 8634 phba->sli4_hba.max_cfg_param.max_eq, 8635 qmin, phba->cfg_irq_chann, 8636 phba->cfg_hdw_queue); 8637 8638 if (phba->cfg_irq_chann > qmin) 8639 phba->cfg_irq_chann = qmin; 8640 if (phba->cfg_hdw_queue > qmin) 8641 phba->cfg_hdw_queue = qmin; 8642 } 8643 } 8644 8645 if (rc) 8646 goto read_cfg_out; 8647 8648 /* Update link speed if forced link speed is supported */ 8649 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8650 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 8651 forced_link_speed = 8652 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 8653 if (forced_link_speed) { 8654 phba->hba_flag |= HBA_FORCED_LINK_SPEED; 8655 8656 switch (forced_link_speed) { 8657 case LINK_SPEED_1G: 8658 phba->cfg_link_speed = 8659 LPFC_USER_LINK_SPEED_1G; 8660 break; 8661 case LINK_SPEED_2G: 8662 phba->cfg_link_speed = 8663 LPFC_USER_LINK_SPEED_2G; 8664 break; 8665 case LINK_SPEED_4G: 8666 phba->cfg_link_speed = 8667 LPFC_USER_LINK_SPEED_4G; 8668 break; 8669 case LINK_SPEED_8G: 8670 phba->cfg_link_speed = 8671 LPFC_USER_LINK_SPEED_8G; 8672 break; 8673 case LINK_SPEED_10G: 8674 phba->cfg_link_speed = 8675 LPFC_USER_LINK_SPEED_10G; 8676 break; 8677 case LINK_SPEED_16G: 8678 phba->cfg_link_speed = 8679 LPFC_USER_LINK_SPEED_16G; 8680 break; 8681 case LINK_SPEED_32G: 8682 phba->cfg_link_speed = 8683 LPFC_USER_LINK_SPEED_32G; 8684 break; 8685 case LINK_SPEED_64G: 8686 phba->cfg_link_speed = 8687 LPFC_USER_LINK_SPEED_64G; 8688 break; 8689 case 0xffff: 8690 phba->cfg_link_speed = 8691 LPFC_USER_LINK_SPEED_AUTO; 8692 break; 8693 default: 8694 lpfc_printf_log(phba, KERN_ERR, 8695 LOG_TRACE_EVENT, 8696 "0047 Unrecognized link " 8697 "speed : %d\n", 8698 forced_link_speed); 8699 phba->cfg_link_speed = 8700 LPFC_USER_LINK_SPEED_AUTO; 8701 } 8702 } 8703 } 8704 8705 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 8706 length = phba->sli4_hba.max_cfg_param.max_xri - 8707 lpfc_sli4_get_els_iocb_cnt(phba); 8708 if (phba->cfg_hba_queue_depth > length) { 8709 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8710 "3361 HBA queue depth changed from %d to %d\n", 8711 phba->cfg_hba_queue_depth, length); 8712 phba->cfg_hba_queue_depth = length; 8713 } 8714 8715 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 8716 LPFC_SLI_INTF_IF_TYPE_2) 8717 goto read_cfg_out; 8718 8719 /* get the pf# and vf# for SLI4 if_type 2 port */ 8720 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 8721 sizeof(struct lpfc_sli4_cfg_mhdr)); 8722 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 8723 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 8724 length, LPFC_SLI4_MBX_EMBED); 8725 8726 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 8727 shdr = (union lpfc_sli4_cfg_shdr *) 8728 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 8729 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 8730 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 8731 if (rc2 || shdr_status || shdr_add_status) { 8732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8733 "3026 Mailbox failed , mbxCmd x%x " 8734 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 8735 bf_get(lpfc_mqe_command, &pmb->u.mqe), 8736 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 8737 goto read_cfg_out; 8738 } 8739 8740 /* search for fc_fcoe resrouce descriptor */ 8741 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 8742 8743 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 8744 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 8745 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 8746 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 8747 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 8748 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 8749 goto read_cfg_out; 8750 8751 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 8752 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 8753 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 8754 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 8755 phba->sli4_hba.iov.pf_number = 8756 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 8757 phba->sli4_hba.iov.vf_number = 8758 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 8759 break; 8760 } 8761 } 8762 8763 if (i < LPFC_RSRC_DESC_MAX_NUM) 8764 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8765 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 8766 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 8767 phba->sli4_hba.iov.vf_number); 8768 else 8769 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8770 "3028 GET_FUNCTION_CONFIG: failed to find " 8771 "Resource Descriptor:x%x\n", 8772 LPFC_RSRC_DESC_TYPE_FCFCOE); 8773 8774 read_cfg_out: 8775 mempool_free(pmb, phba->mbox_mem_pool); 8776 return rc; 8777 } 8778 8779 /** 8780 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 8781 * @phba: pointer to lpfc hba data structure. 8782 * 8783 * This routine is invoked to setup the port-side endian order when 8784 * the port if_type is 0. This routine has no function for other 8785 * if_types. 8786 * 8787 * Return codes 8788 * 0 - successful 8789 * -ENOMEM - No available memory 8790 * -EIO - The mailbox failed to complete successfully. 8791 **/ 8792 static int 8793 lpfc_setup_endian_order(struct lpfc_hba *phba) 8794 { 8795 LPFC_MBOXQ_t *mboxq; 8796 uint32_t if_type, rc = 0; 8797 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 8798 HOST_ENDIAN_HIGH_WORD1}; 8799 8800 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8801 switch (if_type) { 8802 case LPFC_SLI_INTF_IF_TYPE_0: 8803 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 8804 GFP_KERNEL); 8805 if (!mboxq) { 8806 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8807 "0492 Unable to allocate memory for " 8808 "issuing SLI_CONFIG_SPECIAL mailbox " 8809 "command\n"); 8810 return -ENOMEM; 8811 } 8812 8813 /* 8814 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 8815 * two words to contain special data values and no other data. 8816 */ 8817 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 8818 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 8819 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8820 if (rc != MBX_SUCCESS) { 8821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8822 "0493 SLI_CONFIG_SPECIAL mailbox " 8823 "failed with status x%x\n", 8824 rc); 8825 rc = -EIO; 8826 } 8827 mempool_free(mboxq, phba->mbox_mem_pool); 8828 break; 8829 case LPFC_SLI_INTF_IF_TYPE_6: 8830 case LPFC_SLI_INTF_IF_TYPE_2: 8831 case LPFC_SLI_INTF_IF_TYPE_1: 8832 default: 8833 break; 8834 } 8835 return rc; 8836 } 8837 8838 /** 8839 * lpfc_sli4_queue_verify - Verify and update EQ counts 8840 * @phba: pointer to lpfc hba data structure. 8841 * 8842 * This routine is invoked to check the user settable queue counts for EQs. 8843 * After this routine is called the counts will be set to valid values that 8844 * adhere to the constraints of the system's interrupt vectors and the port's 8845 * queue resources. 8846 * 8847 * Return codes 8848 * 0 - successful 8849 * -ENOMEM - No available memory 8850 **/ 8851 static int 8852 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 8853 { 8854 /* 8855 * Sanity check for configured queue parameters against the run-time 8856 * device parameters 8857 */ 8858 8859 if (phba->nvmet_support) { 8860 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 8861 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 8862 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 8863 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 8864 } 8865 8866 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8867 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 8868 phba->cfg_hdw_queue, phba->cfg_irq_chann, 8869 phba->cfg_nvmet_mrq); 8870 8871 /* Get EQ depth from module parameter, fake the default for now */ 8872 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 8873 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 8874 8875 /* Get CQ depth from module parameter, fake the default for now */ 8876 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 8877 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 8878 return 0; 8879 } 8880 8881 static int 8882 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 8883 { 8884 struct lpfc_queue *qdesc; 8885 u32 wqesize; 8886 int cpu; 8887 8888 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 8889 /* Create Fast Path IO CQs */ 8890 if (phba->enab_exp_wqcq_pages) 8891 /* Increase the CQ size when WQEs contain an embedded cdb */ 8892 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 8893 phba->sli4_hba.cq_esize, 8894 LPFC_CQE_EXP_COUNT, cpu); 8895 8896 else 8897 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 8898 phba->sli4_hba.cq_esize, 8899 phba->sli4_hba.cq_ecount, cpu); 8900 if (!qdesc) { 8901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8902 "0499 Failed allocate fast-path IO CQ (%d)\n", 8903 idx); 8904 return 1; 8905 } 8906 qdesc->qe_valid = 1; 8907 qdesc->hdwq = idx; 8908 qdesc->chann = cpu; 8909 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 8910 8911 /* Create Fast Path IO WQs */ 8912 if (phba->enab_exp_wqcq_pages) { 8913 /* Increase the WQ size when WQEs contain an embedded cdb */ 8914 wqesize = (phba->fcp_embed_io) ? 8915 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 8916 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 8917 wqesize, 8918 LPFC_WQE_EXP_COUNT, cpu); 8919 } else 8920 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 8921 phba->sli4_hba.wq_esize, 8922 phba->sli4_hba.wq_ecount, cpu); 8923 8924 if (!qdesc) { 8925 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8926 "0503 Failed allocate fast-path IO WQ (%d)\n", 8927 idx); 8928 return 1; 8929 } 8930 qdesc->hdwq = idx; 8931 qdesc->chann = cpu; 8932 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 8933 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 8934 return 0; 8935 } 8936 8937 /** 8938 * lpfc_sli4_queue_create - Create all the SLI4 queues 8939 * @phba: pointer to lpfc hba data structure. 8940 * 8941 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 8942 * operation. For each SLI4 queue type, the parameters such as queue entry 8943 * count (queue depth) shall be taken from the module parameter. For now, 8944 * we just use some constant number as place holder. 8945 * 8946 * Return codes 8947 * 0 - successful 8948 * -ENOMEM - No availble memory 8949 * -EIO - The mailbox failed to complete successfully. 8950 **/ 8951 int 8952 lpfc_sli4_queue_create(struct lpfc_hba *phba) 8953 { 8954 struct lpfc_queue *qdesc; 8955 int idx, cpu, eqcpu; 8956 struct lpfc_sli4_hdw_queue *qp; 8957 struct lpfc_vector_map_info *cpup; 8958 struct lpfc_vector_map_info *eqcpup; 8959 struct lpfc_eq_intr_info *eqi; 8960 8961 /* 8962 * Create HBA Record arrays. 8963 * Both NVME and FCP will share that same vectors / EQs 8964 */ 8965 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 8966 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 8967 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 8968 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 8969 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 8970 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 8971 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 8972 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 8973 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 8974 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 8975 8976 if (!phba->sli4_hba.hdwq) { 8977 phba->sli4_hba.hdwq = kcalloc( 8978 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 8979 GFP_KERNEL); 8980 if (!phba->sli4_hba.hdwq) { 8981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8982 "6427 Failed allocate memory for " 8983 "fast-path Hardware Queue array\n"); 8984 goto out_error; 8985 } 8986 /* Prepare hardware queues to take IO buffers */ 8987 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 8988 qp = &phba->sli4_hba.hdwq[idx]; 8989 spin_lock_init(&qp->io_buf_list_get_lock); 8990 spin_lock_init(&qp->io_buf_list_put_lock); 8991 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 8992 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 8993 qp->get_io_bufs = 0; 8994 qp->put_io_bufs = 0; 8995 qp->total_io_bufs = 0; 8996 spin_lock_init(&qp->abts_io_buf_list_lock); 8997 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 8998 qp->abts_scsi_io_bufs = 0; 8999 qp->abts_nvme_io_bufs = 0; 9000 INIT_LIST_HEAD(&qp->sgl_list); 9001 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 9002 spin_lock_init(&qp->hdwq_lock); 9003 } 9004 } 9005 9006 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9007 if (phba->nvmet_support) { 9008 phba->sli4_hba.nvmet_cqset = kcalloc( 9009 phba->cfg_nvmet_mrq, 9010 sizeof(struct lpfc_queue *), 9011 GFP_KERNEL); 9012 if (!phba->sli4_hba.nvmet_cqset) { 9013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9014 "3121 Fail allocate memory for " 9015 "fast-path CQ set array\n"); 9016 goto out_error; 9017 } 9018 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 9019 phba->cfg_nvmet_mrq, 9020 sizeof(struct lpfc_queue *), 9021 GFP_KERNEL); 9022 if (!phba->sli4_hba.nvmet_mrq_hdr) { 9023 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9024 "3122 Fail allocate memory for " 9025 "fast-path RQ set hdr array\n"); 9026 goto out_error; 9027 } 9028 phba->sli4_hba.nvmet_mrq_data = kcalloc( 9029 phba->cfg_nvmet_mrq, 9030 sizeof(struct lpfc_queue *), 9031 GFP_KERNEL); 9032 if (!phba->sli4_hba.nvmet_mrq_data) { 9033 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9034 "3124 Fail allocate memory for " 9035 "fast-path RQ set data array\n"); 9036 goto out_error; 9037 } 9038 } 9039 } 9040 9041 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 9042 9043 /* Create HBA Event Queues (EQs) */ 9044 for_each_present_cpu(cpu) { 9045 /* We only want to create 1 EQ per vector, even though 9046 * multiple CPUs might be using that vector. so only 9047 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 9048 */ 9049 cpup = &phba->sli4_hba.cpu_map[cpu]; 9050 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 9051 continue; 9052 9053 /* Get a ptr to the Hardware Queue associated with this CPU */ 9054 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 9055 9056 /* Allocate an EQ */ 9057 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9058 phba->sli4_hba.eq_esize, 9059 phba->sli4_hba.eq_ecount, cpu); 9060 if (!qdesc) { 9061 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9062 "0497 Failed allocate EQ (%d)\n", 9063 cpup->hdwq); 9064 goto out_error; 9065 } 9066 qdesc->qe_valid = 1; 9067 qdesc->hdwq = cpup->hdwq; 9068 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 9069 qdesc->last_cpu = qdesc->chann; 9070 9071 /* Save the allocated EQ in the Hardware Queue */ 9072 qp->hba_eq = qdesc; 9073 9074 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 9075 list_add(&qdesc->cpu_list, &eqi->list); 9076 } 9077 9078 /* Now we need to populate the other Hardware Queues, that share 9079 * an IRQ vector, with the associated EQ ptr. 9080 */ 9081 for_each_present_cpu(cpu) { 9082 cpup = &phba->sli4_hba.cpu_map[cpu]; 9083 9084 /* Check for EQ already allocated in previous loop */ 9085 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 9086 continue; 9087 9088 /* Check for multiple CPUs per hdwq */ 9089 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 9090 if (qp->hba_eq) 9091 continue; 9092 9093 /* We need to share an EQ for this hdwq */ 9094 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 9095 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 9096 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 9097 } 9098 9099 /* Allocate IO Path SLI4 CQ/WQs */ 9100 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9101 if (lpfc_alloc_io_wq_cq(phba, idx)) 9102 goto out_error; 9103 } 9104 9105 if (phba->nvmet_support) { 9106 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 9107 cpu = lpfc_find_cpu_handle(phba, idx, 9108 LPFC_FIND_BY_HDWQ); 9109 qdesc = lpfc_sli4_queue_alloc(phba, 9110 LPFC_DEFAULT_PAGE_SIZE, 9111 phba->sli4_hba.cq_esize, 9112 phba->sli4_hba.cq_ecount, 9113 cpu); 9114 if (!qdesc) { 9115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9116 "3142 Failed allocate NVME " 9117 "CQ Set (%d)\n", idx); 9118 goto out_error; 9119 } 9120 qdesc->qe_valid = 1; 9121 qdesc->hdwq = idx; 9122 qdesc->chann = cpu; 9123 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 9124 } 9125 } 9126 9127 /* 9128 * Create Slow Path Completion Queues (CQs) 9129 */ 9130 9131 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 9132 /* Create slow-path Mailbox Command Complete Queue */ 9133 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9134 phba->sli4_hba.cq_esize, 9135 phba->sli4_hba.cq_ecount, cpu); 9136 if (!qdesc) { 9137 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9138 "0500 Failed allocate slow-path mailbox CQ\n"); 9139 goto out_error; 9140 } 9141 qdesc->qe_valid = 1; 9142 phba->sli4_hba.mbx_cq = qdesc; 9143 9144 /* Create slow-path ELS Complete Queue */ 9145 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9146 phba->sli4_hba.cq_esize, 9147 phba->sli4_hba.cq_ecount, cpu); 9148 if (!qdesc) { 9149 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9150 "0501 Failed allocate slow-path ELS CQ\n"); 9151 goto out_error; 9152 } 9153 qdesc->qe_valid = 1; 9154 qdesc->chann = cpu; 9155 phba->sli4_hba.els_cq = qdesc; 9156 9157 9158 /* 9159 * Create Slow Path Work Queues (WQs) 9160 */ 9161 9162 /* Create Mailbox Command Queue */ 9163 9164 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9165 phba->sli4_hba.mq_esize, 9166 phba->sli4_hba.mq_ecount, cpu); 9167 if (!qdesc) { 9168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9169 "0505 Failed allocate slow-path MQ\n"); 9170 goto out_error; 9171 } 9172 qdesc->chann = cpu; 9173 phba->sli4_hba.mbx_wq = qdesc; 9174 9175 /* 9176 * Create ELS Work Queues 9177 */ 9178 9179 /* Create slow-path ELS Work Queue */ 9180 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9181 phba->sli4_hba.wq_esize, 9182 phba->sli4_hba.wq_ecount, cpu); 9183 if (!qdesc) { 9184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9185 "0504 Failed allocate slow-path ELS WQ\n"); 9186 goto out_error; 9187 } 9188 qdesc->chann = cpu; 9189 phba->sli4_hba.els_wq = qdesc; 9190 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 9191 9192 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9193 /* Create NVME LS Complete Queue */ 9194 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9195 phba->sli4_hba.cq_esize, 9196 phba->sli4_hba.cq_ecount, cpu); 9197 if (!qdesc) { 9198 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9199 "6079 Failed allocate NVME LS CQ\n"); 9200 goto out_error; 9201 } 9202 qdesc->chann = cpu; 9203 qdesc->qe_valid = 1; 9204 phba->sli4_hba.nvmels_cq = qdesc; 9205 9206 /* Create NVME LS Work Queue */ 9207 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9208 phba->sli4_hba.wq_esize, 9209 phba->sli4_hba.wq_ecount, cpu); 9210 if (!qdesc) { 9211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9212 "6080 Failed allocate NVME LS WQ\n"); 9213 goto out_error; 9214 } 9215 qdesc->chann = cpu; 9216 phba->sli4_hba.nvmels_wq = qdesc; 9217 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 9218 } 9219 9220 /* 9221 * Create Receive Queue (RQ) 9222 */ 9223 9224 /* Create Receive Queue for header */ 9225 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9226 phba->sli4_hba.rq_esize, 9227 phba->sli4_hba.rq_ecount, cpu); 9228 if (!qdesc) { 9229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9230 "0506 Failed allocate receive HRQ\n"); 9231 goto out_error; 9232 } 9233 phba->sli4_hba.hdr_rq = qdesc; 9234 9235 /* Create Receive Queue for data */ 9236 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9237 phba->sli4_hba.rq_esize, 9238 phba->sli4_hba.rq_ecount, cpu); 9239 if (!qdesc) { 9240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9241 "0507 Failed allocate receive DRQ\n"); 9242 goto out_error; 9243 } 9244 phba->sli4_hba.dat_rq = qdesc; 9245 9246 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 9247 phba->nvmet_support) { 9248 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 9249 cpu = lpfc_find_cpu_handle(phba, idx, 9250 LPFC_FIND_BY_HDWQ); 9251 /* Create NVMET Receive Queue for header */ 9252 qdesc = lpfc_sli4_queue_alloc(phba, 9253 LPFC_DEFAULT_PAGE_SIZE, 9254 phba->sli4_hba.rq_esize, 9255 LPFC_NVMET_RQE_DEF_COUNT, 9256 cpu); 9257 if (!qdesc) { 9258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9259 "3146 Failed allocate " 9260 "receive HRQ\n"); 9261 goto out_error; 9262 } 9263 qdesc->hdwq = idx; 9264 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 9265 9266 /* Only needed for header of RQ pair */ 9267 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 9268 GFP_KERNEL, 9269 cpu_to_node(cpu)); 9270 if (qdesc->rqbp == NULL) { 9271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9272 "6131 Failed allocate " 9273 "Header RQBP\n"); 9274 goto out_error; 9275 } 9276 9277 /* Put list in known state in case driver load fails. */ 9278 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 9279 9280 /* Create NVMET Receive Queue for data */ 9281 qdesc = lpfc_sli4_queue_alloc(phba, 9282 LPFC_DEFAULT_PAGE_SIZE, 9283 phba->sli4_hba.rq_esize, 9284 LPFC_NVMET_RQE_DEF_COUNT, 9285 cpu); 9286 if (!qdesc) { 9287 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9288 "3156 Failed allocate " 9289 "receive DRQ\n"); 9290 goto out_error; 9291 } 9292 qdesc->hdwq = idx; 9293 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 9294 } 9295 } 9296 9297 /* Clear NVME stats */ 9298 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9299 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9300 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 9301 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 9302 } 9303 } 9304 9305 /* Clear SCSI stats */ 9306 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 9307 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9308 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 9309 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 9310 } 9311 } 9312 9313 return 0; 9314 9315 out_error: 9316 lpfc_sli4_queue_destroy(phba); 9317 return -ENOMEM; 9318 } 9319 9320 static inline void 9321 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 9322 { 9323 if (*qp != NULL) { 9324 lpfc_sli4_queue_free(*qp); 9325 *qp = NULL; 9326 } 9327 } 9328 9329 static inline void 9330 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 9331 { 9332 int idx; 9333 9334 if (*qs == NULL) 9335 return; 9336 9337 for (idx = 0; idx < max; idx++) 9338 __lpfc_sli4_release_queue(&(*qs)[idx]); 9339 9340 kfree(*qs); 9341 *qs = NULL; 9342 } 9343 9344 static inline void 9345 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 9346 { 9347 struct lpfc_sli4_hdw_queue *hdwq; 9348 struct lpfc_queue *eq; 9349 uint32_t idx; 9350 9351 hdwq = phba->sli4_hba.hdwq; 9352 9353 /* Loop thru all Hardware Queues */ 9354 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9355 /* Free the CQ/WQ corresponding to the Hardware Queue */ 9356 lpfc_sli4_queue_free(hdwq[idx].io_cq); 9357 lpfc_sli4_queue_free(hdwq[idx].io_wq); 9358 hdwq[idx].hba_eq = NULL; 9359 hdwq[idx].io_cq = NULL; 9360 hdwq[idx].io_wq = NULL; 9361 if (phba->cfg_xpsgl && !phba->nvmet_support) 9362 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 9363 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 9364 } 9365 /* Loop thru all IRQ vectors */ 9366 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 9367 /* Free the EQ corresponding to the IRQ vector */ 9368 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 9369 lpfc_sli4_queue_free(eq); 9370 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 9371 } 9372 } 9373 9374 /** 9375 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 9376 * @phba: pointer to lpfc hba data structure. 9377 * 9378 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 9379 * operation. 9380 * 9381 * Return codes 9382 * 0 - successful 9383 * -ENOMEM - No available memory 9384 * -EIO - The mailbox failed to complete successfully. 9385 **/ 9386 void 9387 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 9388 { 9389 /* 9390 * Set FREE_INIT before beginning to free the queues. 9391 * Wait until the users of queues to acknowledge to 9392 * release queues by clearing FREE_WAIT. 9393 */ 9394 spin_lock_irq(&phba->hbalock); 9395 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 9396 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 9397 spin_unlock_irq(&phba->hbalock); 9398 msleep(20); 9399 spin_lock_irq(&phba->hbalock); 9400 } 9401 spin_unlock_irq(&phba->hbalock); 9402 9403 lpfc_sli4_cleanup_poll_list(phba); 9404 9405 /* Release HBA eqs */ 9406 if (phba->sli4_hba.hdwq) 9407 lpfc_sli4_release_hdwq(phba); 9408 9409 if (phba->nvmet_support) { 9410 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 9411 phba->cfg_nvmet_mrq); 9412 9413 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 9414 phba->cfg_nvmet_mrq); 9415 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 9416 phba->cfg_nvmet_mrq); 9417 } 9418 9419 /* Release mailbox command work queue */ 9420 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 9421 9422 /* Release ELS work queue */ 9423 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 9424 9425 /* Release ELS work queue */ 9426 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 9427 9428 /* Release unsolicited receive queue */ 9429 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 9430 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 9431 9432 /* Release ELS complete queue */ 9433 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 9434 9435 /* Release NVME LS complete queue */ 9436 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 9437 9438 /* Release mailbox command complete queue */ 9439 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 9440 9441 /* Everything on this list has been freed */ 9442 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 9443 9444 /* Done with freeing the queues */ 9445 spin_lock_irq(&phba->hbalock); 9446 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 9447 spin_unlock_irq(&phba->hbalock); 9448 } 9449 9450 int 9451 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 9452 { 9453 struct lpfc_rqb *rqbp; 9454 struct lpfc_dmabuf *h_buf; 9455 struct rqb_dmabuf *rqb_buffer; 9456 9457 rqbp = rq->rqbp; 9458 while (!list_empty(&rqbp->rqb_buffer_list)) { 9459 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 9460 struct lpfc_dmabuf, list); 9461 9462 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 9463 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 9464 rqbp->buffer_count--; 9465 } 9466 return 1; 9467 } 9468 9469 static int 9470 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 9471 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 9472 int qidx, uint32_t qtype) 9473 { 9474 struct lpfc_sli_ring *pring; 9475 int rc; 9476 9477 if (!eq || !cq || !wq) { 9478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9479 "6085 Fast-path %s (%d) not allocated\n", 9480 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 9481 return -ENOMEM; 9482 } 9483 9484 /* create the Cq first */ 9485 rc = lpfc_cq_create(phba, cq, eq, 9486 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 9487 if (rc) { 9488 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9489 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 9490 qidx, (uint32_t)rc); 9491 return rc; 9492 } 9493 9494 if (qtype != LPFC_MBOX) { 9495 /* Setup cq_map for fast lookup */ 9496 if (cq_map) 9497 *cq_map = cq->queue_id; 9498 9499 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9500 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 9501 qidx, cq->queue_id, qidx, eq->queue_id); 9502 9503 /* create the wq */ 9504 rc = lpfc_wq_create(phba, wq, cq, qtype); 9505 if (rc) { 9506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9507 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 9508 qidx, (uint32_t)rc); 9509 /* no need to tear down cq - caller will do so */ 9510 return rc; 9511 } 9512 9513 /* Bind this CQ/WQ to the NVME ring */ 9514 pring = wq->pring; 9515 pring->sli.sli4.wqp = (void *)wq; 9516 cq->pring = pring; 9517 9518 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9519 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 9520 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 9521 } else { 9522 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 9523 if (rc) { 9524 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9525 "0539 Failed setup of slow-path MQ: " 9526 "rc = 0x%x\n", rc); 9527 /* no need to tear down cq - caller will do so */ 9528 return rc; 9529 } 9530 9531 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9532 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 9533 phba->sli4_hba.mbx_wq->queue_id, 9534 phba->sli4_hba.mbx_cq->queue_id); 9535 } 9536 9537 return 0; 9538 } 9539 9540 /** 9541 * lpfc_setup_cq_lookup - Setup the CQ lookup table 9542 * @phba: pointer to lpfc hba data structure. 9543 * 9544 * This routine will populate the cq_lookup table by all 9545 * available CQ queue_id's. 9546 **/ 9547 static void 9548 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 9549 { 9550 struct lpfc_queue *eq, *childq; 9551 int qidx; 9552 9553 memset(phba->sli4_hba.cq_lookup, 0, 9554 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 9555 /* Loop thru all IRQ vectors */ 9556 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 9557 /* Get the EQ corresponding to the IRQ vector */ 9558 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 9559 if (!eq) 9560 continue; 9561 /* Loop through all CQs associated with that EQ */ 9562 list_for_each_entry(childq, &eq->child_list, list) { 9563 if (childq->queue_id > phba->sli4_hba.cq_max) 9564 continue; 9565 if (childq->subtype == LPFC_IO) 9566 phba->sli4_hba.cq_lookup[childq->queue_id] = 9567 childq; 9568 } 9569 } 9570 } 9571 9572 /** 9573 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 9574 * @phba: pointer to lpfc hba data structure. 9575 * 9576 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 9577 * operation. 9578 * 9579 * Return codes 9580 * 0 - successful 9581 * -ENOMEM - No available memory 9582 * -EIO - The mailbox failed to complete successfully. 9583 **/ 9584 int 9585 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 9586 { 9587 uint32_t shdr_status, shdr_add_status; 9588 union lpfc_sli4_cfg_shdr *shdr; 9589 struct lpfc_vector_map_info *cpup; 9590 struct lpfc_sli4_hdw_queue *qp; 9591 LPFC_MBOXQ_t *mboxq; 9592 int qidx, cpu; 9593 uint32_t length, usdelay; 9594 int rc = -ENOMEM; 9595 9596 /* Check for dual-ULP support */ 9597 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9598 if (!mboxq) { 9599 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9600 "3249 Unable to allocate memory for " 9601 "QUERY_FW_CFG mailbox command\n"); 9602 return -ENOMEM; 9603 } 9604 length = (sizeof(struct lpfc_mbx_query_fw_config) - 9605 sizeof(struct lpfc_sli4_cfg_mhdr)); 9606 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 9607 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 9608 length, LPFC_SLI4_MBX_EMBED); 9609 9610 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9611 9612 shdr = (union lpfc_sli4_cfg_shdr *) 9613 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 9614 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 9615 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 9616 if (shdr_status || shdr_add_status || rc) { 9617 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9618 "3250 QUERY_FW_CFG mailbox failed with status " 9619 "x%x add_status x%x, mbx status x%x\n", 9620 shdr_status, shdr_add_status, rc); 9621 if (rc != MBX_TIMEOUT) 9622 mempool_free(mboxq, phba->mbox_mem_pool); 9623 rc = -ENXIO; 9624 goto out_error; 9625 } 9626 9627 phba->sli4_hba.fw_func_mode = 9628 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 9629 phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode; 9630 phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode; 9631 phba->sli4_hba.physical_port = 9632 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 9633 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9634 "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, " 9635 "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode, 9636 phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode); 9637 9638 if (rc != MBX_TIMEOUT) 9639 mempool_free(mboxq, phba->mbox_mem_pool); 9640 9641 /* 9642 * Set up HBA Event Queues (EQs) 9643 */ 9644 qp = phba->sli4_hba.hdwq; 9645 9646 /* Set up HBA event queue */ 9647 if (!qp) { 9648 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9649 "3147 Fast-path EQs not allocated\n"); 9650 rc = -ENOMEM; 9651 goto out_error; 9652 } 9653 9654 /* Loop thru all IRQ vectors */ 9655 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 9656 /* Create HBA Event Queues (EQs) in order */ 9657 for_each_present_cpu(cpu) { 9658 cpup = &phba->sli4_hba.cpu_map[cpu]; 9659 9660 /* Look for the CPU thats using that vector with 9661 * LPFC_CPU_FIRST_IRQ set. 9662 */ 9663 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 9664 continue; 9665 if (qidx != cpup->eq) 9666 continue; 9667 9668 /* Create an EQ for that vector */ 9669 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 9670 phba->cfg_fcp_imax); 9671 if (rc) { 9672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9673 "0523 Failed setup of fast-path" 9674 " EQ (%d), rc = 0x%x\n", 9675 cpup->eq, (uint32_t)rc); 9676 goto out_destroy; 9677 } 9678 9679 /* Save the EQ for that vector in the hba_eq_hdl */ 9680 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 9681 qp[cpup->hdwq].hba_eq; 9682 9683 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9684 "2584 HBA EQ setup: queue[%d]-id=%d\n", 9685 cpup->eq, 9686 qp[cpup->hdwq].hba_eq->queue_id); 9687 } 9688 } 9689 9690 /* Loop thru all Hardware Queues */ 9691 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 9692 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 9693 cpup = &phba->sli4_hba.cpu_map[cpu]; 9694 9695 /* Create the CQ/WQ corresponding to the Hardware Queue */ 9696 rc = lpfc_create_wq_cq(phba, 9697 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 9698 qp[qidx].io_cq, 9699 qp[qidx].io_wq, 9700 &phba->sli4_hba.hdwq[qidx].io_cq_map, 9701 qidx, 9702 LPFC_IO); 9703 if (rc) { 9704 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9705 "0535 Failed to setup fastpath " 9706 "IO WQ/CQ (%d), rc = 0x%x\n", 9707 qidx, (uint32_t)rc); 9708 goto out_destroy; 9709 } 9710 } 9711 9712 /* 9713 * Set up Slow Path Complete Queues (CQs) 9714 */ 9715 9716 /* Set up slow-path MBOX CQ/MQ */ 9717 9718 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 9719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9720 "0528 %s not allocated\n", 9721 phba->sli4_hba.mbx_cq ? 9722 "Mailbox WQ" : "Mailbox CQ"); 9723 rc = -ENOMEM; 9724 goto out_destroy; 9725 } 9726 9727 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9728 phba->sli4_hba.mbx_cq, 9729 phba->sli4_hba.mbx_wq, 9730 NULL, 0, LPFC_MBOX); 9731 if (rc) { 9732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9733 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 9734 (uint32_t)rc); 9735 goto out_destroy; 9736 } 9737 if (phba->nvmet_support) { 9738 if (!phba->sli4_hba.nvmet_cqset) { 9739 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9740 "3165 Fast-path NVME CQ Set " 9741 "array not allocated\n"); 9742 rc = -ENOMEM; 9743 goto out_destroy; 9744 } 9745 if (phba->cfg_nvmet_mrq > 1) { 9746 rc = lpfc_cq_create_set(phba, 9747 phba->sli4_hba.nvmet_cqset, 9748 qp, 9749 LPFC_WCQ, LPFC_NVMET); 9750 if (rc) { 9751 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9752 "3164 Failed setup of NVME CQ " 9753 "Set, rc = 0x%x\n", 9754 (uint32_t)rc); 9755 goto out_destroy; 9756 } 9757 } else { 9758 /* Set up NVMET Receive Complete Queue */ 9759 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 9760 qp[0].hba_eq, 9761 LPFC_WCQ, LPFC_NVMET); 9762 if (rc) { 9763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9764 "6089 Failed setup NVMET CQ: " 9765 "rc = 0x%x\n", (uint32_t)rc); 9766 goto out_destroy; 9767 } 9768 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 9769 9770 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9771 "6090 NVMET CQ setup: cq-id=%d, " 9772 "parent eq-id=%d\n", 9773 phba->sli4_hba.nvmet_cqset[0]->queue_id, 9774 qp[0].hba_eq->queue_id); 9775 } 9776 } 9777 9778 /* Set up slow-path ELS WQ/CQ */ 9779 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 9780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9781 "0530 ELS %s not allocated\n", 9782 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 9783 rc = -ENOMEM; 9784 goto out_destroy; 9785 } 9786 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9787 phba->sli4_hba.els_cq, 9788 phba->sli4_hba.els_wq, 9789 NULL, 0, LPFC_ELS); 9790 if (rc) { 9791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9792 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 9793 (uint32_t)rc); 9794 goto out_destroy; 9795 } 9796 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9797 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 9798 phba->sli4_hba.els_wq->queue_id, 9799 phba->sli4_hba.els_cq->queue_id); 9800 9801 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9802 /* Set up NVME LS Complete Queue */ 9803 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 9804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9805 "6091 LS %s not allocated\n", 9806 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 9807 rc = -ENOMEM; 9808 goto out_destroy; 9809 } 9810 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9811 phba->sli4_hba.nvmels_cq, 9812 phba->sli4_hba.nvmels_wq, 9813 NULL, 0, LPFC_NVME_LS); 9814 if (rc) { 9815 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9816 "0526 Failed setup of NVVME LS WQ/CQ: " 9817 "rc = 0x%x\n", (uint32_t)rc); 9818 goto out_destroy; 9819 } 9820 9821 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9822 "6096 ELS WQ setup: wq-id=%d, " 9823 "parent cq-id=%d\n", 9824 phba->sli4_hba.nvmels_wq->queue_id, 9825 phba->sli4_hba.nvmels_cq->queue_id); 9826 } 9827 9828 /* 9829 * Create NVMET Receive Queue (RQ) 9830 */ 9831 if (phba->nvmet_support) { 9832 if ((!phba->sli4_hba.nvmet_cqset) || 9833 (!phba->sli4_hba.nvmet_mrq_hdr) || 9834 (!phba->sli4_hba.nvmet_mrq_data)) { 9835 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9836 "6130 MRQ CQ Queues not " 9837 "allocated\n"); 9838 rc = -ENOMEM; 9839 goto out_destroy; 9840 } 9841 if (phba->cfg_nvmet_mrq > 1) { 9842 rc = lpfc_mrq_create(phba, 9843 phba->sli4_hba.nvmet_mrq_hdr, 9844 phba->sli4_hba.nvmet_mrq_data, 9845 phba->sli4_hba.nvmet_cqset, 9846 LPFC_NVMET); 9847 if (rc) { 9848 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9849 "6098 Failed setup of NVMET " 9850 "MRQ: rc = 0x%x\n", 9851 (uint32_t)rc); 9852 goto out_destroy; 9853 } 9854 9855 } else { 9856 rc = lpfc_rq_create(phba, 9857 phba->sli4_hba.nvmet_mrq_hdr[0], 9858 phba->sli4_hba.nvmet_mrq_data[0], 9859 phba->sli4_hba.nvmet_cqset[0], 9860 LPFC_NVMET); 9861 if (rc) { 9862 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9863 "6057 Failed setup of NVMET " 9864 "Receive Queue: rc = 0x%x\n", 9865 (uint32_t)rc); 9866 goto out_destroy; 9867 } 9868 9869 lpfc_printf_log( 9870 phba, KERN_INFO, LOG_INIT, 9871 "6099 NVMET RQ setup: hdr-rq-id=%d, " 9872 "dat-rq-id=%d parent cq-id=%d\n", 9873 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 9874 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 9875 phba->sli4_hba.nvmet_cqset[0]->queue_id); 9876 9877 } 9878 } 9879 9880 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 9881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9882 "0540 Receive Queue not allocated\n"); 9883 rc = -ENOMEM; 9884 goto out_destroy; 9885 } 9886 9887 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 9888 phba->sli4_hba.els_cq, LPFC_USOL); 9889 if (rc) { 9890 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9891 "0541 Failed setup of Receive Queue: " 9892 "rc = 0x%x\n", (uint32_t)rc); 9893 goto out_destroy; 9894 } 9895 9896 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9897 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 9898 "parent cq-id=%d\n", 9899 phba->sli4_hba.hdr_rq->queue_id, 9900 phba->sli4_hba.dat_rq->queue_id, 9901 phba->sli4_hba.els_cq->queue_id); 9902 9903 if (phba->cfg_fcp_imax) 9904 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 9905 else 9906 usdelay = 0; 9907 9908 for (qidx = 0; qidx < phba->cfg_irq_chann; 9909 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 9910 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 9911 usdelay); 9912 9913 if (phba->sli4_hba.cq_max) { 9914 kfree(phba->sli4_hba.cq_lookup); 9915 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 9916 sizeof(struct lpfc_queue *), GFP_KERNEL); 9917 if (!phba->sli4_hba.cq_lookup) { 9918 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9919 "0549 Failed setup of CQ Lookup table: " 9920 "size 0x%x\n", phba->sli4_hba.cq_max); 9921 rc = -ENOMEM; 9922 goto out_destroy; 9923 } 9924 lpfc_setup_cq_lookup(phba); 9925 } 9926 return 0; 9927 9928 out_destroy: 9929 lpfc_sli4_queue_unset(phba); 9930 out_error: 9931 return rc; 9932 } 9933 9934 /** 9935 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 9936 * @phba: pointer to lpfc hba data structure. 9937 * 9938 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 9939 * operation. 9940 * 9941 * Return codes 9942 * 0 - successful 9943 * -ENOMEM - No available memory 9944 * -EIO - The mailbox failed to complete successfully. 9945 **/ 9946 void 9947 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 9948 { 9949 struct lpfc_sli4_hdw_queue *qp; 9950 struct lpfc_queue *eq; 9951 int qidx; 9952 9953 /* Unset mailbox command work queue */ 9954 if (phba->sli4_hba.mbx_wq) 9955 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 9956 9957 /* Unset NVME LS work queue */ 9958 if (phba->sli4_hba.nvmels_wq) 9959 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 9960 9961 /* Unset ELS work queue */ 9962 if (phba->sli4_hba.els_wq) 9963 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 9964 9965 /* Unset unsolicited receive queue */ 9966 if (phba->sli4_hba.hdr_rq) 9967 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 9968 phba->sli4_hba.dat_rq); 9969 9970 /* Unset mailbox command complete queue */ 9971 if (phba->sli4_hba.mbx_cq) 9972 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 9973 9974 /* Unset ELS complete queue */ 9975 if (phba->sli4_hba.els_cq) 9976 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 9977 9978 /* Unset NVME LS complete queue */ 9979 if (phba->sli4_hba.nvmels_cq) 9980 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 9981 9982 if (phba->nvmet_support) { 9983 /* Unset NVMET MRQ queue */ 9984 if (phba->sli4_hba.nvmet_mrq_hdr) { 9985 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 9986 lpfc_rq_destroy( 9987 phba, 9988 phba->sli4_hba.nvmet_mrq_hdr[qidx], 9989 phba->sli4_hba.nvmet_mrq_data[qidx]); 9990 } 9991 9992 /* Unset NVMET CQ Set complete queue */ 9993 if (phba->sli4_hba.nvmet_cqset) { 9994 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 9995 lpfc_cq_destroy( 9996 phba, phba->sli4_hba.nvmet_cqset[qidx]); 9997 } 9998 } 9999 10000 /* Unset fast-path SLI4 queues */ 10001 if (phba->sli4_hba.hdwq) { 10002 /* Loop thru all Hardware Queues */ 10003 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 10004 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 10005 qp = &phba->sli4_hba.hdwq[qidx]; 10006 lpfc_wq_destroy(phba, qp->io_wq); 10007 lpfc_cq_destroy(phba, qp->io_cq); 10008 } 10009 /* Loop thru all IRQ vectors */ 10010 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 10011 /* Destroy the EQ corresponding to the IRQ vector */ 10012 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 10013 lpfc_eq_destroy(phba, eq); 10014 } 10015 } 10016 10017 kfree(phba->sli4_hba.cq_lookup); 10018 phba->sli4_hba.cq_lookup = NULL; 10019 phba->sli4_hba.cq_max = 0; 10020 } 10021 10022 /** 10023 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 10024 * @phba: pointer to lpfc hba data structure. 10025 * 10026 * This routine is invoked to allocate and set up a pool of completion queue 10027 * events. The body of the completion queue event is a completion queue entry 10028 * CQE. For now, this pool is used for the interrupt service routine to queue 10029 * the following HBA completion queue events for the worker thread to process: 10030 * - Mailbox asynchronous events 10031 * - Receive queue completion unsolicited events 10032 * Later, this can be used for all the slow-path events. 10033 * 10034 * Return codes 10035 * 0 - successful 10036 * -ENOMEM - No available memory 10037 **/ 10038 static int 10039 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 10040 { 10041 struct lpfc_cq_event *cq_event; 10042 int i; 10043 10044 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 10045 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 10046 if (!cq_event) 10047 goto out_pool_create_fail; 10048 list_add_tail(&cq_event->list, 10049 &phba->sli4_hba.sp_cqe_event_pool); 10050 } 10051 return 0; 10052 10053 out_pool_create_fail: 10054 lpfc_sli4_cq_event_pool_destroy(phba); 10055 return -ENOMEM; 10056 } 10057 10058 /** 10059 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 10060 * @phba: pointer to lpfc hba data structure. 10061 * 10062 * This routine is invoked to free the pool of completion queue events at 10063 * driver unload time. Note that, it is the responsibility of the driver 10064 * cleanup routine to free all the outstanding completion-queue events 10065 * allocated from this pool back into the pool before invoking this routine 10066 * to destroy the pool. 10067 **/ 10068 static void 10069 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 10070 { 10071 struct lpfc_cq_event *cq_event, *next_cq_event; 10072 10073 list_for_each_entry_safe(cq_event, next_cq_event, 10074 &phba->sli4_hba.sp_cqe_event_pool, list) { 10075 list_del(&cq_event->list); 10076 kfree(cq_event); 10077 } 10078 } 10079 10080 /** 10081 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 10082 * @phba: pointer to lpfc hba data structure. 10083 * 10084 * This routine is the lock free version of the API invoked to allocate a 10085 * completion-queue event from the free pool. 10086 * 10087 * Return: Pointer to the newly allocated completion-queue event if successful 10088 * NULL otherwise. 10089 **/ 10090 struct lpfc_cq_event * 10091 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 10092 { 10093 struct lpfc_cq_event *cq_event = NULL; 10094 10095 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 10096 struct lpfc_cq_event, list); 10097 return cq_event; 10098 } 10099 10100 /** 10101 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 10102 * @phba: pointer to lpfc hba data structure. 10103 * 10104 * This routine is the lock version of the API invoked to allocate a 10105 * completion-queue event from the free pool. 10106 * 10107 * Return: Pointer to the newly allocated completion-queue event if successful 10108 * NULL otherwise. 10109 **/ 10110 struct lpfc_cq_event * 10111 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 10112 { 10113 struct lpfc_cq_event *cq_event; 10114 unsigned long iflags; 10115 10116 spin_lock_irqsave(&phba->hbalock, iflags); 10117 cq_event = __lpfc_sli4_cq_event_alloc(phba); 10118 spin_unlock_irqrestore(&phba->hbalock, iflags); 10119 return cq_event; 10120 } 10121 10122 /** 10123 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 10124 * @phba: pointer to lpfc hba data structure. 10125 * @cq_event: pointer to the completion queue event to be freed. 10126 * 10127 * This routine is the lock free version of the API invoked to release a 10128 * completion-queue event back into the free pool. 10129 **/ 10130 void 10131 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 10132 struct lpfc_cq_event *cq_event) 10133 { 10134 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 10135 } 10136 10137 /** 10138 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 10139 * @phba: pointer to lpfc hba data structure. 10140 * @cq_event: pointer to the completion queue event to be freed. 10141 * 10142 * This routine is the lock version of the API invoked to release a 10143 * completion-queue event back into the free pool. 10144 **/ 10145 void 10146 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 10147 struct lpfc_cq_event *cq_event) 10148 { 10149 unsigned long iflags; 10150 spin_lock_irqsave(&phba->hbalock, iflags); 10151 __lpfc_sli4_cq_event_release(phba, cq_event); 10152 spin_unlock_irqrestore(&phba->hbalock, iflags); 10153 } 10154 10155 /** 10156 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 10157 * @phba: pointer to lpfc hba data structure. 10158 * 10159 * This routine is to free all the pending completion-queue events to the 10160 * back into the free pool for device reset. 10161 **/ 10162 static void 10163 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 10164 { 10165 LIST_HEAD(cqelist); 10166 struct lpfc_cq_event *cqe; 10167 unsigned long iflags; 10168 10169 /* Retrieve all the pending WCQEs from pending WCQE lists */ 10170 spin_lock_irqsave(&phba->hbalock, iflags); 10171 /* Pending FCP XRI abort events */ 10172 list_splice_init(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 10173 &cqelist); 10174 /* Pending ELS XRI abort events */ 10175 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 10176 &cqelist); 10177 /* Pending asynnc events */ 10178 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 10179 &cqelist); 10180 spin_unlock_irqrestore(&phba->hbalock, iflags); 10181 10182 while (!list_empty(&cqelist)) { 10183 list_remove_head(&cqelist, cqe, struct lpfc_cq_event, list); 10184 lpfc_sli4_cq_event_release(phba, cqe); 10185 } 10186 } 10187 10188 /** 10189 * lpfc_pci_function_reset - Reset pci function. 10190 * @phba: pointer to lpfc hba data structure. 10191 * 10192 * This routine is invoked to request a PCI function reset. It will destroys 10193 * all resources assigned to the PCI function which originates this request. 10194 * 10195 * Return codes 10196 * 0 - successful 10197 * -ENOMEM - No available memory 10198 * -EIO - The mailbox failed to complete successfully. 10199 **/ 10200 int 10201 lpfc_pci_function_reset(struct lpfc_hba *phba) 10202 { 10203 LPFC_MBOXQ_t *mboxq; 10204 uint32_t rc = 0, if_type; 10205 uint32_t shdr_status, shdr_add_status; 10206 uint32_t rdy_chk; 10207 uint32_t port_reset = 0; 10208 union lpfc_sli4_cfg_shdr *shdr; 10209 struct lpfc_register reg_data; 10210 uint16_t devid; 10211 10212 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10213 switch (if_type) { 10214 case LPFC_SLI_INTF_IF_TYPE_0: 10215 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10216 GFP_KERNEL); 10217 if (!mboxq) { 10218 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10219 "0494 Unable to allocate memory for " 10220 "issuing SLI_FUNCTION_RESET mailbox " 10221 "command\n"); 10222 return -ENOMEM; 10223 } 10224 10225 /* Setup PCI function reset mailbox-ioctl command */ 10226 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 10227 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 10228 LPFC_SLI4_MBX_EMBED); 10229 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10230 shdr = (union lpfc_sli4_cfg_shdr *) 10231 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 10232 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10233 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 10234 &shdr->response); 10235 if (rc != MBX_TIMEOUT) 10236 mempool_free(mboxq, phba->mbox_mem_pool); 10237 if (shdr_status || shdr_add_status || rc) { 10238 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10239 "0495 SLI_FUNCTION_RESET mailbox " 10240 "failed with status x%x add_status x%x," 10241 " mbx status x%x\n", 10242 shdr_status, shdr_add_status, rc); 10243 rc = -ENXIO; 10244 } 10245 break; 10246 case LPFC_SLI_INTF_IF_TYPE_2: 10247 case LPFC_SLI_INTF_IF_TYPE_6: 10248 wait: 10249 /* 10250 * Poll the Port Status Register and wait for RDY for 10251 * up to 30 seconds. If the port doesn't respond, treat 10252 * it as an error. 10253 */ 10254 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 10255 if (lpfc_readl(phba->sli4_hba.u.if_type2. 10256 STATUSregaddr, ®_data.word0)) { 10257 rc = -ENODEV; 10258 goto out; 10259 } 10260 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 10261 break; 10262 msleep(20); 10263 } 10264 10265 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 10266 phba->work_status[0] = readl( 10267 phba->sli4_hba.u.if_type2.ERR1regaddr); 10268 phba->work_status[1] = readl( 10269 phba->sli4_hba.u.if_type2.ERR2regaddr); 10270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10271 "2890 Port not ready, port status reg " 10272 "0x%x error 1=0x%x, error 2=0x%x\n", 10273 reg_data.word0, 10274 phba->work_status[0], 10275 phba->work_status[1]); 10276 rc = -ENODEV; 10277 goto out; 10278 } 10279 10280 if (!port_reset) { 10281 /* 10282 * Reset the port now 10283 */ 10284 reg_data.word0 = 0; 10285 bf_set(lpfc_sliport_ctrl_end, ®_data, 10286 LPFC_SLIPORT_LITTLE_ENDIAN); 10287 bf_set(lpfc_sliport_ctrl_ip, ®_data, 10288 LPFC_SLIPORT_INIT_PORT); 10289 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 10290 CTRLregaddr); 10291 /* flush */ 10292 pci_read_config_word(phba->pcidev, 10293 PCI_DEVICE_ID, &devid); 10294 10295 port_reset = 1; 10296 msleep(20); 10297 goto wait; 10298 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 10299 rc = -ENODEV; 10300 goto out; 10301 } 10302 break; 10303 10304 case LPFC_SLI_INTF_IF_TYPE_1: 10305 default: 10306 break; 10307 } 10308 10309 out: 10310 /* Catch the not-ready port failure after a port reset. */ 10311 if (rc) { 10312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10313 "3317 HBA not functional: IP Reset Failed " 10314 "try: echo fw_reset > board_mode\n"); 10315 rc = -ENODEV; 10316 } 10317 10318 return rc; 10319 } 10320 10321 /** 10322 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 10323 * @phba: pointer to lpfc hba data structure. 10324 * 10325 * This routine is invoked to set up the PCI device memory space for device 10326 * with SLI-4 interface spec. 10327 * 10328 * Return codes 10329 * 0 - successful 10330 * other values - error 10331 **/ 10332 static int 10333 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 10334 { 10335 struct pci_dev *pdev = phba->pcidev; 10336 unsigned long bar0map_len, bar1map_len, bar2map_len; 10337 int error; 10338 uint32_t if_type; 10339 10340 if (!pdev) 10341 return -ENODEV; 10342 10343 /* Set the device DMA mask size */ 10344 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 10345 if (error) 10346 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 10347 if (error) 10348 return error; 10349 10350 /* 10351 * The BARs and register set definitions and offset locations are 10352 * dependent on the if_type. 10353 */ 10354 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 10355 &phba->sli4_hba.sli_intf.word0)) { 10356 return -ENODEV; 10357 } 10358 10359 /* There is no SLI3 failback for SLI4 devices. */ 10360 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 10361 LPFC_SLI_INTF_VALID) { 10362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10363 "2894 SLI_INTF reg contents invalid " 10364 "sli_intf reg 0x%x\n", 10365 phba->sli4_hba.sli_intf.word0); 10366 return -ENODEV; 10367 } 10368 10369 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10370 /* 10371 * Get the bus address of SLI4 device Bar regions and the 10372 * number of bytes required by each mapping. The mapping of the 10373 * particular PCI BARs regions is dependent on the type of 10374 * SLI4 device. 10375 */ 10376 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 10377 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 10378 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 10379 10380 /* 10381 * Map SLI4 PCI Config Space Register base to a kernel virtual 10382 * addr 10383 */ 10384 phba->sli4_hba.conf_regs_memmap_p = 10385 ioremap(phba->pci_bar0_map, bar0map_len); 10386 if (!phba->sli4_hba.conf_regs_memmap_p) { 10387 dev_printk(KERN_ERR, &pdev->dev, 10388 "ioremap failed for SLI4 PCI config " 10389 "registers.\n"); 10390 return -ENODEV; 10391 } 10392 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 10393 /* Set up BAR0 PCI config space register memory map */ 10394 lpfc_sli4_bar0_register_memmap(phba, if_type); 10395 } else { 10396 phba->pci_bar0_map = pci_resource_start(pdev, 1); 10397 bar0map_len = pci_resource_len(pdev, 1); 10398 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10399 dev_printk(KERN_ERR, &pdev->dev, 10400 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 10401 return -ENODEV; 10402 } 10403 phba->sli4_hba.conf_regs_memmap_p = 10404 ioremap(phba->pci_bar0_map, bar0map_len); 10405 if (!phba->sli4_hba.conf_regs_memmap_p) { 10406 dev_printk(KERN_ERR, &pdev->dev, 10407 "ioremap failed for SLI4 PCI config " 10408 "registers.\n"); 10409 return -ENODEV; 10410 } 10411 lpfc_sli4_bar0_register_memmap(phba, if_type); 10412 } 10413 10414 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 10415 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 10416 /* 10417 * Map SLI4 if type 0 HBA Control Register base to a 10418 * kernel virtual address and setup the registers. 10419 */ 10420 phba->pci_bar1_map = pci_resource_start(pdev, 10421 PCI_64BIT_BAR2); 10422 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 10423 phba->sli4_hba.ctrl_regs_memmap_p = 10424 ioremap(phba->pci_bar1_map, 10425 bar1map_len); 10426 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 10427 dev_err(&pdev->dev, 10428 "ioremap failed for SLI4 HBA " 10429 "control registers.\n"); 10430 error = -ENOMEM; 10431 goto out_iounmap_conf; 10432 } 10433 phba->pci_bar2_memmap_p = 10434 phba->sli4_hba.ctrl_regs_memmap_p; 10435 lpfc_sli4_bar1_register_memmap(phba, if_type); 10436 } else { 10437 error = -ENOMEM; 10438 goto out_iounmap_conf; 10439 } 10440 } 10441 10442 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 10443 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 10444 /* 10445 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 10446 * virtual address and setup the registers. 10447 */ 10448 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 10449 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 10450 phba->sli4_hba.drbl_regs_memmap_p = 10451 ioremap(phba->pci_bar1_map, bar1map_len); 10452 if (!phba->sli4_hba.drbl_regs_memmap_p) { 10453 dev_err(&pdev->dev, 10454 "ioremap failed for SLI4 HBA doorbell registers.\n"); 10455 error = -ENOMEM; 10456 goto out_iounmap_conf; 10457 } 10458 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 10459 lpfc_sli4_bar1_register_memmap(phba, if_type); 10460 } 10461 10462 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 10463 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 10464 /* 10465 * Map SLI4 if type 0 HBA Doorbell Register base to 10466 * a kernel virtual address and setup the registers. 10467 */ 10468 phba->pci_bar2_map = pci_resource_start(pdev, 10469 PCI_64BIT_BAR4); 10470 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 10471 phba->sli4_hba.drbl_regs_memmap_p = 10472 ioremap(phba->pci_bar2_map, 10473 bar2map_len); 10474 if (!phba->sli4_hba.drbl_regs_memmap_p) { 10475 dev_err(&pdev->dev, 10476 "ioremap failed for SLI4 HBA" 10477 " doorbell registers.\n"); 10478 error = -ENOMEM; 10479 goto out_iounmap_ctrl; 10480 } 10481 phba->pci_bar4_memmap_p = 10482 phba->sli4_hba.drbl_regs_memmap_p; 10483 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 10484 if (error) 10485 goto out_iounmap_all; 10486 } else { 10487 error = -ENOMEM; 10488 goto out_iounmap_all; 10489 } 10490 } 10491 10492 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 10493 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 10494 /* 10495 * Map SLI4 if type 6 HBA DPP Register base to a kernel 10496 * virtual address and setup the registers. 10497 */ 10498 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 10499 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 10500 phba->sli4_hba.dpp_regs_memmap_p = 10501 ioremap(phba->pci_bar2_map, bar2map_len); 10502 if (!phba->sli4_hba.dpp_regs_memmap_p) { 10503 dev_err(&pdev->dev, 10504 "ioremap failed for SLI4 HBA dpp registers.\n"); 10505 error = -ENOMEM; 10506 goto out_iounmap_ctrl; 10507 } 10508 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 10509 } 10510 10511 /* Set up the EQ/CQ register handeling functions now */ 10512 switch (if_type) { 10513 case LPFC_SLI_INTF_IF_TYPE_0: 10514 case LPFC_SLI_INTF_IF_TYPE_2: 10515 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 10516 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 10517 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 10518 break; 10519 case LPFC_SLI_INTF_IF_TYPE_6: 10520 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 10521 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 10522 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 10523 break; 10524 default: 10525 break; 10526 } 10527 10528 return 0; 10529 10530 out_iounmap_all: 10531 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10532 out_iounmap_ctrl: 10533 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 10534 out_iounmap_conf: 10535 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10536 10537 return error; 10538 } 10539 10540 /** 10541 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 10542 * @phba: pointer to lpfc hba data structure. 10543 * 10544 * This routine is invoked to unset the PCI device memory space for device 10545 * with SLI-4 interface spec. 10546 **/ 10547 static void 10548 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 10549 { 10550 uint32_t if_type; 10551 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10552 10553 switch (if_type) { 10554 case LPFC_SLI_INTF_IF_TYPE_0: 10555 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10556 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 10557 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10558 break; 10559 case LPFC_SLI_INTF_IF_TYPE_2: 10560 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10561 break; 10562 case LPFC_SLI_INTF_IF_TYPE_6: 10563 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10564 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10565 if (phba->sli4_hba.dpp_regs_memmap_p) 10566 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 10567 break; 10568 case LPFC_SLI_INTF_IF_TYPE_1: 10569 default: 10570 dev_printk(KERN_ERR, &phba->pcidev->dev, 10571 "FATAL - unsupported SLI4 interface type - %d\n", 10572 if_type); 10573 break; 10574 } 10575 } 10576 10577 /** 10578 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 10579 * @phba: pointer to lpfc hba data structure. 10580 * 10581 * This routine is invoked to enable the MSI-X interrupt vectors to device 10582 * with SLI-3 interface specs. 10583 * 10584 * Return codes 10585 * 0 - successful 10586 * other values - error 10587 **/ 10588 static int 10589 lpfc_sli_enable_msix(struct lpfc_hba *phba) 10590 { 10591 int rc; 10592 LPFC_MBOXQ_t *pmb; 10593 10594 /* Set up MSI-X multi-message vectors */ 10595 rc = pci_alloc_irq_vectors(phba->pcidev, 10596 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 10597 if (rc < 0) { 10598 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10599 "0420 PCI enable MSI-X failed (%d)\n", rc); 10600 goto vec_fail_out; 10601 } 10602 10603 /* 10604 * Assign MSI-X vectors to interrupt handlers 10605 */ 10606 10607 /* vector-0 is associated to slow-path handler */ 10608 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 10609 &lpfc_sli_sp_intr_handler, 0, 10610 LPFC_SP_DRIVER_HANDLER_NAME, phba); 10611 if (rc) { 10612 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10613 "0421 MSI-X slow-path request_irq failed " 10614 "(%d)\n", rc); 10615 goto msi_fail_out; 10616 } 10617 10618 /* vector-1 is associated to fast-path handler */ 10619 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 10620 &lpfc_sli_fp_intr_handler, 0, 10621 LPFC_FP_DRIVER_HANDLER_NAME, phba); 10622 10623 if (rc) { 10624 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10625 "0429 MSI-X fast-path request_irq failed " 10626 "(%d)\n", rc); 10627 goto irq_fail_out; 10628 } 10629 10630 /* 10631 * Configure HBA MSI-X attention conditions to messages 10632 */ 10633 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 10634 10635 if (!pmb) { 10636 rc = -ENOMEM; 10637 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10638 "0474 Unable to allocate memory for issuing " 10639 "MBOX_CONFIG_MSI command\n"); 10640 goto mem_fail_out; 10641 } 10642 rc = lpfc_config_msi(phba, pmb); 10643 if (rc) 10644 goto mbx_fail_out; 10645 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 10646 if (rc != MBX_SUCCESS) { 10647 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 10648 "0351 Config MSI mailbox command failed, " 10649 "mbxCmd x%x, mbxStatus x%x\n", 10650 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 10651 goto mbx_fail_out; 10652 } 10653 10654 /* Free memory allocated for mailbox command */ 10655 mempool_free(pmb, phba->mbox_mem_pool); 10656 return rc; 10657 10658 mbx_fail_out: 10659 /* Free memory allocated for mailbox command */ 10660 mempool_free(pmb, phba->mbox_mem_pool); 10661 10662 mem_fail_out: 10663 /* free the irq already requested */ 10664 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 10665 10666 irq_fail_out: 10667 /* free the irq already requested */ 10668 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 10669 10670 msi_fail_out: 10671 /* Unconfigure MSI-X capability structure */ 10672 pci_free_irq_vectors(phba->pcidev); 10673 10674 vec_fail_out: 10675 return rc; 10676 } 10677 10678 /** 10679 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 10680 * @phba: pointer to lpfc hba data structure. 10681 * 10682 * This routine is invoked to enable the MSI interrupt mode to device with 10683 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 10684 * enable the MSI vector. The device driver is responsible for calling the 10685 * request_irq() to register MSI vector with a interrupt the handler, which 10686 * is done in this function. 10687 * 10688 * Return codes 10689 * 0 - successful 10690 * other values - error 10691 */ 10692 static int 10693 lpfc_sli_enable_msi(struct lpfc_hba *phba) 10694 { 10695 int rc; 10696 10697 rc = pci_enable_msi(phba->pcidev); 10698 if (!rc) 10699 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10700 "0462 PCI enable MSI mode success.\n"); 10701 else { 10702 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10703 "0471 PCI enable MSI mode failed (%d)\n", rc); 10704 return rc; 10705 } 10706 10707 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 10708 0, LPFC_DRIVER_NAME, phba); 10709 if (rc) { 10710 pci_disable_msi(phba->pcidev); 10711 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10712 "0478 MSI request_irq failed (%d)\n", rc); 10713 } 10714 return rc; 10715 } 10716 10717 /** 10718 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 10719 * @phba: pointer to lpfc hba data structure. 10720 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 10721 * 10722 * This routine is invoked to enable device interrupt and associate driver's 10723 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 10724 * spec. Depends on the interrupt mode configured to the driver, the driver 10725 * will try to fallback from the configured interrupt mode to an interrupt 10726 * mode which is supported by the platform, kernel, and device in the order 10727 * of: 10728 * MSI-X -> MSI -> IRQ. 10729 * 10730 * Return codes 10731 * 0 - successful 10732 * other values - error 10733 **/ 10734 static uint32_t 10735 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 10736 { 10737 uint32_t intr_mode = LPFC_INTR_ERROR; 10738 int retval; 10739 10740 if (cfg_mode == 2) { 10741 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 10742 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 10743 if (!retval) { 10744 /* Now, try to enable MSI-X interrupt mode */ 10745 retval = lpfc_sli_enable_msix(phba); 10746 if (!retval) { 10747 /* Indicate initialization to MSI-X mode */ 10748 phba->intr_type = MSIX; 10749 intr_mode = 2; 10750 } 10751 } 10752 } 10753 10754 /* Fallback to MSI if MSI-X initialization failed */ 10755 if (cfg_mode >= 1 && phba->intr_type == NONE) { 10756 retval = lpfc_sli_enable_msi(phba); 10757 if (!retval) { 10758 /* Indicate initialization to MSI mode */ 10759 phba->intr_type = MSI; 10760 intr_mode = 1; 10761 } 10762 } 10763 10764 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 10765 if (phba->intr_type == NONE) { 10766 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 10767 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 10768 if (!retval) { 10769 /* Indicate initialization to INTx mode */ 10770 phba->intr_type = INTx; 10771 intr_mode = 0; 10772 } 10773 } 10774 return intr_mode; 10775 } 10776 10777 /** 10778 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 10779 * @phba: pointer to lpfc hba data structure. 10780 * 10781 * This routine is invoked to disable device interrupt and disassociate the 10782 * driver's interrupt handler(s) from interrupt vector(s) to device with 10783 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 10784 * release the interrupt vector(s) for the message signaled interrupt. 10785 **/ 10786 static void 10787 lpfc_sli_disable_intr(struct lpfc_hba *phba) 10788 { 10789 int nr_irqs, i; 10790 10791 if (phba->intr_type == MSIX) 10792 nr_irqs = LPFC_MSIX_VECTORS; 10793 else 10794 nr_irqs = 1; 10795 10796 for (i = 0; i < nr_irqs; i++) 10797 free_irq(pci_irq_vector(phba->pcidev, i), phba); 10798 pci_free_irq_vectors(phba->pcidev); 10799 10800 /* Reset interrupt management states */ 10801 phba->intr_type = NONE; 10802 phba->sli.slistat.sli_intr = 0; 10803 } 10804 10805 /** 10806 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 10807 * @phba: pointer to lpfc hba data structure. 10808 * @id: EQ vector index or Hardware Queue index 10809 * @match: LPFC_FIND_BY_EQ = match by EQ 10810 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 10811 * Return the CPU that matches the selection criteria 10812 */ 10813 static uint16_t 10814 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 10815 { 10816 struct lpfc_vector_map_info *cpup; 10817 int cpu; 10818 10819 /* Loop through all CPUs */ 10820 for_each_present_cpu(cpu) { 10821 cpup = &phba->sli4_hba.cpu_map[cpu]; 10822 10823 /* If we are matching by EQ, there may be multiple CPUs using 10824 * using the same vector, so select the one with 10825 * LPFC_CPU_FIRST_IRQ set. 10826 */ 10827 if ((match == LPFC_FIND_BY_EQ) && 10828 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 10829 (cpup->eq == id)) 10830 return cpu; 10831 10832 /* If matching by HDWQ, select the first CPU that matches */ 10833 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 10834 return cpu; 10835 } 10836 return 0; 10837 } 10838 10839 #ifdef CONFIG_X86 10840 /** 10841 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 10842 * @phba: pointer to lpfc hba data structure. 10843 * @cpu: CPU map index 10844 * @phys_id: CPU package physical id 10845 * @core_id: CPU core id 10846 */ 10847 static int 10848 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 10849 uint16_t phys_id, uint16_t core_id) 10850 { 10851 struct lpfc_vector_map_info *cpup; 10852 int idx; 10853 10854 for_each_present_cpu(idx) { 10855 cpup = &phba->sli4_hba.cpu_map[idx]; 10856 /* Does the cpup match the one we are looking for */ 10857 if ((cpup->phys_id == phys_id) && 10858 (cpup->core_id == core_id) && 10859 (cpu != idx)) 10860 return 1; 10861 } 10862 return 0; 10863 } 10864 #endif 10865 10866 /* 10867 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 10868 * @phba: pointer to lpfc hba data structure. 10869 * @eqidx: index for eq and irq vector 10870 * @flag: flags to set for vector_map structure 10871 * @cpu: cpu used to index vector_map structure 10872 * 10873 * The routine assigns eq info into vector_map structure 10874 */ 10875 static inline void 10876 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 10877 unsigned int cpu) 10878 { 10879 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 10880 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 10881 10882 cpup->eq = eqidx; 10883 cpup->flag |= flag; 10884 10885 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10886 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 10887 cpu, eqhdl->irq, cpup->eq, cpup->flag); 10888 } 10889 10890 /** 10891 * lpfc_cpu_map_array_init - Initialize cpu_map structure 10892 * @phba: pointer to lpfc hba data structure. 10893 * 10894 * The routine initializes the cpu_map array structure 10895 */ 10896 static void 10897 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 10898 { 10899 struct lpfc_vector_map_info *cpup; 10900 struct lpfc_eq_intr_info *eqi; 10901 int cpu; 10902 10903 for_each_possible_cpu(cpu) { 10904 cpup = &phba->sli4_hba.cpu_map[cpu]; 10905 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 10906 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 10907 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 10908 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 10909 cpup->flag = 0; 10910 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 10911 INIT_LIST_HEAD(&eqi->list); 10912 eqi->icnt = 0; 10913 } 10914 } 10915 10916 /** 10917 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 10918 * @phba: pointer to lpfc hba data structure. 10919 * 10920 * The routine initializes the hba_eq_hdl array structure 10921 */ 10922 static void 10923 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 10924 { 10925 struct lpfc_hba_eq_hdl *eqhdl; 10926 int i; 10927 10928 for (i = 0; i < phba->cfg_irq_chann; i++) { 10929 eqhdl = lpfc_get_eq_hdl(i); 10930 eqhdl->irq = LPFC_VECTOR_MAP_EMPTY; 10931 eqhdl->phba = phba; 10932 } 10933 } 10934 10935 /** 10936 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 10937 * @phba: pointer to lpfc hba data structure. 10938 * @vectors: number of msix vectors allocated. 10939 * 10940 * The routine will figure out the CPU affinity assignment for every 10941 * MSI-X vector allocated for the HBA. 10942 * In addition, the CPU to IO channel mapping will be calculated 10943 * and the phba->sli4_hba.cpu_map array will reflect this. 10944 */ 10945 static void 10946 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 10947 { 10948 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 10949 int max_phys_id, min_phys_id; 10950 int max_core_id, min_core_id; 10951 struct lpfc_vector_map_info *cpup; 10952 struct lpfc_vector_map_info *new_cpup; 10953 #ifdef CONFIG_X86 10954 struct cpuinfo_x86 *cpuinfo; 10955 #endif 10956 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 10957 struct lpfc_hdwq_stat *c_stat; 10958 #endif 10959 10960 max_phys_id = 0; 10961 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 10962 max_core_id = 0; 10963 min_core_id = LPFC_VECTOR_MAP_EMPTY; 10964 10965 /* Update CPU map with physical id and core id of each CPU */ 10966 for_each_present_cpu(cpu) { 10967 cpup = &phba->sli4_hba.cpu_map[cpu]; 10968 #ifdef CONFIG_X86 10969 cpuinfo = &cpu_data(cpu); 10970 cpup->phys_id = cpuinfo->phys_proc_id; 10971 cpup->core_id = cpuinfo->cpu_core_id; 10972 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 10973 cpup->flag |= LPFC_CPU_MAP_HYPER; 10974 #else 10975 /* No distinction between CPUs for other platforms */ 10976 cpup->phys_id = 0; 10977 cpup->core_id = cpu; 10978 #endif 10979 10980 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10981 "3328 CPU %d physid %d coreid %d flag x%x\n", 10982 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 10983 10984 if (cpup->phys_id > max_phys_id) 10985 max_phys_id = cpup->phys_id; 10986 if (cpup->phys_id < min_phys_id) 10987 min_phys_id = cpup->phys_id; 10988 10989 if (cpup->core_id > max_core_id) 10990 max_core_id = cpup->core_id; 10991 if (cpup->core_id < min_core_id) 10992 min_core_id = cpup->core_id; 10993 } 10994 10995 /* After looking at each irq vector assigned to this pcidev, its 10996 * possible to see that not ALL CPUs have been accounted for. 10997 * Next we will set any unassigned (unaffinitized) cpu map 10998 * entries to a IRQ on the same phys_id. 10999 */ 11000 first_cpu = cpumask_first(cpu_present_mask); 11001 start_cpu = first_cpu; 11002 11003 for_each_present_cpu(cpu) { 11004 cpup = &phba->sli4_hba.cpu_map[cpu]; 11005 11006 /* Is this CPU entry unassigned */ 11007 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 11008 /* Mark CPU as IRQ not assigned by the kernel */ 11009 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 11010 11011 /* If so, find a new_cpup thats on the the SAME 11012 * phys_id as cpup. start_cpu will start where we 11013 * left off so all unassigned entries don't get assgined 11014 * the IRQ of the first entry. 11015 */ 11016 new_cpu = start_cpu; 11017 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11018 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11019 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 11020 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 11021 (new_cpup->phys_id == cpup->phys_id)) 11022 goto found_same; 11023 new_cpu = cpumask_next( 11024 new_cpu, cpu_present_mask); 11025 if (new_cpu == nr_cpumask_bits) 11026 new_cpu = first_cpu; 11027 } 11028 /* At this point, we leave the CPU as unassigned */ 11029 continue; 11030 found_same: 11031 /* We found a matching phys_id, so copy the IRQ info */ 11032 cpup->eq = new_cpup->eq; 11033 11034 /* Bump start_cpu to the next slot to minmize the 11035 * chance of having multiple unassigned CPU entries 11036 * selecting the same IRQ. 11037 */ 11038 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 11039 if (start_cpu == nr_cpumask_bits) 11040 start_cpu = first_cpu; 11041 11042 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11043 "3337 Set Affinity: CPU %d " 11044 "eq %d from peer cpu %d same " 11045 "phys_id (%d)\n", 11046 cpu, cpup->eq, new_cpu, 11047 cpup->phys_id); 11048 } 11049 } 11050 11051 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 11052 start_cpu = first_cpu; 11053 11054 for_each_present_cpu(cpu) { 11055 cpup = &phba->sli4_hba.cpu_map[cpu]; 11056 11057 /* Is this entry unassigned */ 11058 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 11059 /* Mark it as IRQ not assigned by the kernel */ 11060 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 11061 11062 /* If so, find a new_cpup thats on ANY phys_id 11063 * as the cpup. start_cpu will start where we 11064 * left off so all unassigned entries don't get 11065 * assigned the IRQ of the first entry. 11066 */ 11067 new_cpu = start_cpu; 11068 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11069 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11070 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 11071 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 11072 goto found_any; 11073 new_cpu = cpumask_next( 11074 new_cpu, cpu_present_mask); 11075 if (new_cpu == nr_cpumask_bits) 11076 new_cpu = first_cpu; 11077 } 11078 /* We should never leave an entry unassigned */ 11079 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11080 "3339 Set Affinity: CPU %d " 11081 "eq %d UNASSIGNED\n", 11082 cpup->hdwq, cpup->eq); 11083 continue; 11084 found_any: 11085 /* We found an available entry, copy the IRQ info */ 11086 cpup->eq = new_cpup->eq; 11087 11088 /* Bump start_cpu to the next slot to minmize the 11089 * chance of having multiple unassigned CPU entries 11090 * selecting the same IRQ. 11091 */ 11092 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 11093 if (start_cpu == nr_cpumask_bits) 11094 start_cpu = first_cpu; 11095 11096 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11097 "3338 Set Affinity: CPU %d " 11098 "eq %d from peer cpu %d (%d/%d)\n", 11099 cpu, cpup->eq, new_cpu, 11100 new_cpup->phys_id, new_cpup->core_id); 11101 } 11102 } 11103 11104 /* Assign hdwq indices that are unique across all cpus in the map 11105 * that are also FIRST_CPUs. 11106 */ 11107 idx = 0; 11108 for_each_present_cpu(cpu) { 11109 cpup = &phba->sli4_hba.cpu_map[cpu]; 11110 11111 /* Only FIRST IRQs get a hdwq index assignment. */ 11112 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11113 continue; 11114 11115 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 11116 cpup->hdwq = idx; 11117 idx++; 11118 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11119 "3333 Set Affinity: CPU %d (phys %d core %d): " 11120 "hdwq %d eq %d flg x%x\n", 11121 cpu, cpup->phys_id, cpup->core_id, 11122 cpup->hdwq, cpup->eq, cpup->flag); 11123 } 11124 /* Associate a hdwq with each cpu_map entry 11125 * This will be 1 to 1 - hdwq to cpu, unless there are less 11126 * hardware queues then CPUs. For that case we will just round-robin 11127 * the available hardware queues as they get assigned to CPUs. 11128 * The next_idx is the idx from the FIRST_CPU loop above to account 11129 * for irq_chann < hdwq. The idx is used for round-robin assignments 11130 * and needs to start at 0. 11131 */ 11132 next_idx = idx; 11133 start_cpu = 0; 11134 idx = 0; 11135 for_each_present_cpu(cpu) { 11136 cpup = &phba->sli4_hba.cpu_map[cpu]; 11137 11138 /* FIRST cpus are already mapped. */ 11139 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 11140 continue; 11141 11142 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 11143 * of the unassigned cpus to the next idx so that all 11144 * hdw queues are fully utilized. 11145 */ 11146 if (next_idx < phba->cfg_hdw_queue) { 11147 cpup->hdwq = next_idx; 11148 next_idx++; 11149 continue; 11150 } 11151 11152 /* Not a First CPU and all hdw_queues are used. Reuse a 11153 * Hardware Queue for another CPU, so be smart about it 11154 * and pick one that has its IRQ/EQ mapped to the same phys_id 11155 * (CPU package) and core_id. 11156 */ 11157 new_cpu = start_cpu; 11158 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11159 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11160 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 11161 new_cpup->phys_id == cpup->phys_id && 11162 new_cpup->core_id == cpup->core_id) { 11163 goto found_hdwq; 11164 } 11165 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 11166 if (new_cpu == nr_cpumask_bits) 11167 new_cpu = first_cpu; 11168 } 11169 11170 /* If we can't match both phys_id and core_id, 11171 * settle for just a phys_id match. 11172 */ 11173 new_cpu = start_cpu; 11174 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11175 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11176 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 11177 new_cpup->phys_id == cpup->phys_id) 11178 goto found_hdwq; 11179 11180 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 11181 if (new_cpu == nr_cpumask_bits) 11182 new_cpu = first_cpu; 11183 } 11184 11185 /* Otherwise just round robin on cfg_hdw_queue */ 11186 cpup->hdwq = idx % phba->cfg_hdw_queue; 11187 idx++; 11188 goto logit; 11189 found_hdwq: 11190 /* We found an available entry, copy the IRQ info */ 11191 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 11192 if (start_cpu == nr_cpumask_bits) 11193 start_cpu = first_cpu; 11194 cpup->hdwq = new_cpup->hdwq; 11195 logit: 11196 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11197 "3335 Set Affinity: CPU %d (phys %d core %d): " 11198 "hdwq %d eq %d flg x%x\n", 11199 cpu, cpup->phys_id, cpup->core_id, 11200 cpup->hdwq, cpup->eq, cpup->flag); 11201 } 11202 11203 /* 11204 * Initialize the cpu_map slots for not-present cpus in case 11205 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 11206 */ 11207 idx = 0; 11208 for_each_possible_cpu(cpu) { 11209 cpup = &phba->sli4_hba.cpu_map[cpu]; 11210 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 11211 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 11212 c_stat->hdwq_no = cpup->hdwq; 11213 #endif 11214 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 11215 continue; 11216 11217 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 11218 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 11219 c_stat->hdwq_no = cpup->hdwq; 11220 #endif 11221 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11222 "3340 Set Affinity: not present " 11223 "CPU %d hdwq %d\n", 11224 cpu, cpup->hdwq); 11225 } 11226 11227 /* The cpu_map array will be used later during initialization 11228 * when EQ / CQ / WQs are allocated and configured. 11229 */ 11230 return; 11231 } 11232 11233 /** 11234 * lpfc_cpuhp_get_eq 11235 * 11236 * @phba: pointer to lpfc hba data structure. 11237 * @cpu: cpu going offline 11238 * @eqlist: eq list to append to 11239 */ 11240 static int 11241 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 11242 struct list_head *eqlist) 11243 { 11244 const struct cpumask *maskp; 11245 struct lpfc_queue *eq; 11246 struct cpumask *tmp; 11247 u16 idx; 11248 11249 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 11250 if (!tmp) 11251 return -ENOMEM; 11252 11253 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11254 maskp = pci_irq_get_affinity(phba->pcidev, idx); 11255 if (!maskp) 11256 continue; 11257 /* 11258 * if irq is not affinitized to the cpu going 11259 * then we don't need to poll the eq attached 11260 * to it. 11261 */ 11262 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 11263 continue; 11264 /* get the cpus that are online and are affini- 11265 * tized to this irq vector. If the count is 11266 * more than 1 then cpuhp is not going to shut- 11267 * down this vector. Since this cpu has not 11268 * gone offline yet, we need >1. 11269 */ 11270 cpumask_and(tmp, maskp, cpu_online_mask); 11271 if (cpumask_weight(tmp) > 1) 11272 continue; 11273 11274 /* Now that we have an irq to shutdown, get the eq 11275 * mapped to this irq. Note: multiple hdwq's in 11276 * the software can share an eq, but eventually 11277 * only eq will be mapped to this vector 11278 */ 11279 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 11280 list_add(&eq->_poll_list, eqlist); 11281 } 11282 kfree(tmp); 11283 return 0; 11284 } 11285 11286 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 11287 { 11288 if (phba->sli_rev != LPFC_SLI_REV4) 11289 return; 11290 11291 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 11292 &phba->cpuhp); 11293 /* 11294 * unregistering the instance doesn't stop the polling 11295 * timer. Wait for the poll timer to retire. 11296 */ 11297 synchronize_rcu(); 11298 del_timer_sync(&phba->cpuhp_poll_timer); 11299 } 11300 11301 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 11302 { 11303 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 11304 return; 11305 11306 __lpfc_cpuhp_remove(phba); 11307 } 11308 11309 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 11310 { 11311 if (phba->sli_rev != LPFC_SLI_REV4) 11312 return; 11313 11314 rcu_read_lock(); 11315 11316 if (!list_empty(&phba->poll_list)) 11317 mod_timer(&phba->cpuhp_poll_timer, 11318 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 11319 11320 rcu_read_unlock(); 11321 11322 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 11323 &phba->cpuhp); 11324 } 11325 11326 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 11327 { 11328 if (phba->pport->load_flag & FC_UNLOADING) { 11329 *retval = -EAGAIN; 11330 return true; 11331 } 11332 11333 if (phba->sli_rev != LPFC_SLI_REV4) { 11334 *retval = 0; 11335 return true; 11336 } 11337 11338 /* proceed with the hotplug */ 11339 return false; 11340 } 11341 11342 /** 11343 * lpfc_irq_set_aff - set IRQ affinity 11344 * @eqhdl: EQ handle 11345 * @cpu: cpu to set affinity 11346 * 11347 **/ 11348 static inline void 11349 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 11350 { 11351 cpumask_clear(&eqhdl->aff_mask); 11352 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 11353 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 11354 irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask); 11355 } 11356 11357 /** 11358 * lpfc_irq_clear_aff - clear IRQ affinity 11359 * @eqhdl: EQ handle 11360 * 11361 **/ 11362 static inline void 11363 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 11364 { 11365 cpumask_clear(&eqhdl->aff_mask); 11366 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 11367 irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask); 11368 } 11369 11370 /** 11371 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 11372 * @phba: pointer to HBA context object. 11373 * @cpu: cpu going offline/online 11374 * @offline: true, cpu is going offline. false, cpu is coming online. 11375 * 11376 * If cpu is going offline, we'll try our best effort to find the next 11377 * online cpu on the phba's original_mask and migrate all offlining IRQ 11378 * affinities. 11379 * 11380 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. 11381 * 11382 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on 11383 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 11384 * 11385 **/ 11386 static void 11387 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 11388 { 11389 struct lpfc_vector_map_info *cpup; 11390 struct cpumask *aff_mask; 11391 unsigned int cpu_select, cpu_next, idx; 11392 const struct cpumask *orig_mask; 11393 11394 if (phba->irq_chann_mode == NORMAL_MODE) 11395 return; 11396 11397 orig_mask = &phba->sli4_hba.irq_aff_mask; 11398 11399 if (!cpumask_test_cpu(cpu, orig_mask)) 11400 return; 11401 11402 cpup = &phba->sli4_hba.cpu_map[cpu]; 11403 11404 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11405 return; 11406 11407 if (offline) { 11408 /* Find next online CPU on original mask */ 11409 cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true); 11410 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); 11411 11412 /* Found a valid CPU */ 11413 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 11414 /* Go through each eqhdl and ensure offlining 11415 * cpu aff_mask is migrated 11416 */ 11417 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11418 aff_mask = lpfc_get_aff_mask(idx); 11419 11420 /* Migrate affinity */ 11421 if (cpumask_test_cpu(cpu, aff_mask)) 11422 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 11423 cpu_select); 11424 } 11425 } else { 11426 /* Rely on irqbalance if no online CPUs left on NUMA */ 11427 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 11428 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 11429 } 11430 } else { 11431 /* Migrate affinity back to this CPU */ 11432 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 11433 } 11434 } 11435 11436 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 11437 { 11438 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 11439 struct lpfc_queue *eq, *next; 11440 LIST_HEAD(eqlist); 11441 int retval; 11442 11443 if (!phba) { 11444 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 11445 return 0; 11446 } 11447 11448 if (__lpfc_cpuhp_checks(phba, &retval)) 11449 return retval; 11450 11451 lpfc_irq_rebalance(phba, cpu, true); 11452 11453 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 11454 if (retval) 11455 return retval; 11456 11457 /* start polling on these eq's */ 11458 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 11459 list_del_init(&eq->_poll_list); 11460 lpfc_sli4_start_polling(eq); 11461 } 11462 11463 return 0; 11464 } 11465 11466 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 11467 { 11468 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 11469 struct lpfc_queue *eq, *next; 11470 unsigned int n; 11471 int retval; 11472 11473 if (!phba) { 11474 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 11475 return 0; 11476 } 11477 11478 if (__lpfc_cpuhp_checks(phba, &retval)) 11479 return retval; 11480 11481 lpfc_irq_rebalance(phba, cpu, false); 11482 11483 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 11484 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 11485 if (n == cpu) 11486 lpfc_sli4_stop_polling(eq); 11487 } 11488 11489 return 0; 11490 } 11491 11492 /** 11493 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 11494 * @phba: pointer to lpfc hba data structure. 11495 * 11496 * This routine is invoked to enable the MSI-X interrupt vectors to device 11497 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 11498 * to cpus on the system. 11499 * 11500 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 11501 * the number of cpus on the same numa node as this adapter. The vectors are 11502 * allocated without requesting OS affinity mapping. A vector will be 11503 * allocated and assigned to each online and offline cpu. If the cpu is 11504 * online, then affinity will be set to that cpu. If the cpu is offline, then 11505 * affinity will be set to the nearest peer cpu within the numa node that is 11506 * online. If there are no online cpus within the numa node, affinity is not 11507 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 11508 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 11509 * configured. 11510 * 11511 * If numa mode is not enabled and there is more than 1 vector allocated, then 11512 * the driver relies on the managed irq interface where the OS assigns vector to 11513 * cpu affinity. The driver will then use that affinity mapping to setup its 11514 * cpu mapping table. 11515 * 11516 * Return codes 11517 * 0 - successful 11518 * other values - error 11519 **/ 11520 static int 11521 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 11522 { 11523 int vectors, rc, index; 11524 char *name; 11525 const struct cpumask *aff_mask = NULL; 11526 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 11527 struct lpfc_vector_map_info *cpup; 11528 struct lpfc_hba_eq_hdl *eqhdl; 11529 const struct cpumask *maskp; 11530 unsigned int flags = PCI_IRQ_MSIX; 11531 11532 /* Set up MSI-X multi-message vectors */ 11533 vectors = phba->cfg_irq_chann; 11534 11535 if (phba->irq_chann_mode != NORMAL_MODE) 11536 aff_mask = &phba->sli4_hba.irq_aff_mask; 11537 11538 if (aff_mask) { 11539 cpu_cnt = cpumask_weight(aff_mask); 11540 vectors = min(phba->cfg_irq_chann, cpu_cnt); 11541 11542 /* cpu: iterates over aff_mask including offline or online 11543 * cpu_select: iterates over online aff_mask to set affinity 11544 */ 11545 cpu = cpumask_first(aff_mask); 11546 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 11547 } else { 11548 flags |= PCI_IRQ_AFFINITY; 11549 } 11550 11551 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 11552 if (rc < 0) { 11553 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11554 "0484 PCI enable MSI-X failed (%d)\n", rc); 11555 goto vec_fail_out; 11556 } 11557 vectors = rc; 11558 11559 /* Assign MSI-X vectors to interrupt handlers */ 11560 for (index = 0; index < vectors; index++) { 11561 eqhdl = lpfc_get_eq_hdl(index); 11562 name = eqhdl->handler_name; 11563 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 11564 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 11565 LPFC_DRIVER_HANDLER_NAME"%d", index); 11566 11567 eqhdl->idx = index; 11568 rc = request_irq(pci_irq_vector(phba->pcidev, index), 11569 &lpfc_sli4_hba_intr_handler, 0, 11570 name, eqhdl); 11571 if (rc) { 11572 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11573 "0486 MSI-X fast-path (%d) " 11574 "request_irq failed (%d)\n", index, rc); 11575 goto cfg_fail_out; 11576 } 11577 11578 eqhdl->irq = pci_irq_vector(phba->pcidev, index); 11579 11580 if (aff_mask) { 11581 /* If found a neighboring online cpu, set affinity */ 11582 if (cpu_select < nr_cpu_ids) 11583 lpfc_irq_set_aff(eqhdl, cpu_select); 11584 11585 /* Assign EQ to cpu_map */ 11586 lpfc_assign_eq_map_info(phba, index, 11587 LPFC_CPU_FIRST_IRQ, 11588 cpu); 11589 11590 /* Iterate to next offline or online cpu in aff_mask */ 11591 cpu = cpumask_next(cpu, aff_mask); 11592 11593 /* Find next online cpu in aff_mask to set affinity */ 11594 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 11595 } else if (vectors == 1) { 11596 cpu = cpumask_first(cpu_present_mask); 11597 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 11598 cpu); 11599 } else { 11600 maskp = pci_irq_get_affinity(phba->pcidev, index); 11601 11602 /* Loop through all CPUs associated with vector index */ 11603 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 11604 cpup = &phba->sli4_hba.cpu_map[cpu]; 11605 11606 /* If this is the first CPU thats assigned to 11607 * this vector, set LPFC_CPU_FIRST_IRQ. 11608 * 11609 * With certain platforms its possible that irq 11610 * vectors are affinitized to all the cpu's. 11611 * This can result in each cpu_map.eq to be set 11612 * to the last vector, resulting in overwrite 11613 * of all the previous cpu_map.eq. Ensure that 11614 * each vector receives a place in cpu_map. 11615 * Later call to lpfc_cpu_affinity_check will 11616 * ensure we are nicely balanced out. 11617 */ 11618 if (cpup->eq != LPFC_VECTOR_MAP_EMPTY) 11619 continue; 11620 lpfc_assign_eq_map_info(phba, index, 11621 LPFC_CPU_FIRST_IRQ, 11622 cpu); 11623 break; 11624 } 11625 } 11626 } 11627 11628 if (vectors != phba->cfg_irq_chann) { 11629 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11630 "3238 Reducing IO channels to match number of " 11631 "MSI-X vectors, requested %d got %d\n", 11632 phba->cfg_irq_chann, vectors); 11633 if (phba->cfg_irq_chann > vectors) 11634 phba->cfg_irq_chann = vectors; 11635 } 11636 11637 return rc; 11638 11639 cfg_fail_out: 11640 /* free the irq already requested */ 11641 for (--index; index >= 0; index--) { 11642 eqhdl = lpfc_get_eq_hdl(index); 11643 lpfc_irq_clear_aff(eqhdl); 11644 irq_set_affinity_hint(eqhdl->irq, NULL); 11645 free_irq(eqhdl->irq, eqhdl); 11646 } 11647 11648 /* Unconfigure MSI-X capability structure */ 11649 pci_free_irq_vectors(phba->pcidev); 11650 11651 vec_fail_out: 11652 return rc; 11653 } 11654 11655 /** 11656 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 11657 * @phba: pointer to lpfc hba data structure. 11658 * 11659 * This routine is invoked to enable the MSI interrupt mode to device with 11660 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 11661 * called to enable the MSI vector. The device driver is responsible for 11662 * calling the request_irq() to register MSI vector with a interrupt the 11663 * handler, which is done in this function. 11664 * 11665 * Return codes 11666 * 0 - successful 11667 * other values - error 11668 **/ 11669 static int 11670 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 11671 { 11672 int rc, index; 11673 unsigned int cpu; 11674 struct lpfc_hba_eq_hdl *eqhdl; 11675 11676 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 11677 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 11678 if (rc > 0) 11679 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11680 "0487 PCI enable MSI mode success.\n"); 11681 else { 11682 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11683 "0488 PCI enable MSI mode failed (%d)\n", rc); 11684 return rc ? rc : -1; 11685 } 11686 11687 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 11688 0, LPFC_DRIVER_NAME, phba); 11689 if (rc) { 11690 pci_free_irq_vectors(phba->pcidev); 11691 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11692 "0490 MSI request_irq failed (%d)\n", rc); 11693 return rc; 11694 } 11695 11696 eqhdl = lpfc_get_eq_hdl(0); 11697 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 11698 11699 cpu = cpumask_first(cpu_present_mask); 11700 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 11701 11702 for (index = 0; index < phba->cfg_irq_chann; index++) { 11703 eqhdl = lpfc_get_eq_hdl(index); 11704 eqhdl->idx = index; 11705 } 11706 11707 return 0; 11708 } 11709 11710 /** 11711 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 11712 * @phba: pointer to lpfc hba data structure. 11713 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 11714 * 11715 * This routine is invoked to enable device interrupt and associate driver's 11716 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 11717 * interface spec. Depends on the interrupt mode configured to the driver, 11718 * the driver will try to fallback from the configured interrupt mode to an 11719 * interrupt mode which is supported by the platform, kernel, and device in 11720 * the order of: 11721 * MSI-X -> MSI -> IRQ. 11722 * 11723 * Return codes 11724 * 0 - successful 11725 * other values - error 11726 **/ 11727 static uint32_t 11728 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 11729 { 11730 uint32_t intr_mode = LPFC_INTR_ERROR; 11731 int retval, idx; 11732 11733 if (cfg_mode == 2) { 11734 /* Preparation before conf_msi mbox cmd */ 11735 retval = 0; 11736 if (!retval) { 11737 /* Now, try to enable MSI-X interrupt mode */ 11738 retval = lpfc_sli4_enable_msix(phba); 11739 if (!retval) { 11740 /* Indicate initialization to MSI-X mode */ 11741 phba->intr_type = MSIX; 11742 intr_mode = 2; 11743 } 11744 } 11745 } 11746 11747 /* Fallback to MSI if MSI-X initialization failed */ 11748 if (cfg_mode >= 1 && phba->intr_type == NONE) { 11749 retval = lpfc_sli4_enable_msi(phba); 11750 if (!retval) { 11751 /* Indicate initialization to MSI mode */ 11752 phba->intr_type = MSI; 11753 intr_mode = 1; 11754 } 11755 } 11756 11757 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 11758 if (phba->intr_type == NONE) { 11759 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 11760 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 11761 if (!retval) { 11762 struct lpfc_hba_eq_hdl *eqhdl; 11763 unsigned int cpu; 11764 11765 /* Indicate initialization to INTx mode */ 11766 phba->intr_type = INTx; 11767 intr_mode = 0; 11768 11769 eqhdl = lpfc_get_eq_hdl(0); 11770 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 11771 11772 cpu = cpumask_first(cpu_present_mask); 11773 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 11774 cpu); 11775 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11776 eqhdl = lpfc_get_eq_hdl(idx); 11777 eqhdl->idx = idx; 11778 } 11779 } 11780 } 11781 return intr_mode; 11782 } 11783 11784 /** 11785 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 11786 * @phba: pointer to lpfc hba data structure. 11787 * 11788 * This routine is invoked to disable device interrupt and disassociate 11789 * the driver's interrupt handler(s) from interrupt vector(s) to device 11790 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 11791 * will release the interrupt vector(s) for the message signaled interrupt. 11792 **/ 11793 static void 11794 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 11795 { 11796 /* Disable the currently initialized interrupt mode */ 11797 if (phba->intr_type == MSIX) { 11798 int index; 11799 struct lpfc_hba_eq_hdl *eqhdl; 11800 11801 /* Free up MSI-X multi-message vectors */ 11802 for (index = 0; index < phba->cfg_irq_chann; index++) { 11803 eqhdl = lpfc_get_eq_hdl(index); 11804 lpfc_irq_clear_aff(eqhdl); 11805 irq_set_affinity_hint(eqhdl->irq, NULL); 11806 free_irq(eqhdl->irq, eqhdl); 11807 } 11808 } else { 11809 free_irq(phba->pcidev->irq, phba); 11810 } 11811 11812 pci_free_irq_vectors(phba->pcidev); 11813 11814 /* Reset interrupt management states */ 11815 phba->intr_type = NONE; 11816 phba->sli.slistat.sli_intr = 0; 11817 } 11818 11819 /** 11820 * lpfc_unset_hba - Unset SLI3 hba device initialization 11821 * @phba: pointer to lpfc hba data structure. 11822 * 11823 * This routine is invoked to unset the HBA device initialization steps to 11824 * a device with SLI-3 interface spec. 11825 **/ 11826 static void 11827 lpfc_unset_hba(struct lpfc_hba *phba) 11828 { 11829 struct lpfc_vport *vport = phba->pport; 11830 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 11831 11832 spin_lock_irq(shost->host_lock); 11833 vport->load_flag |= FC_UNLOADING; 11834 spin_unlock_irq(shost->host_lock); 11835 11836 kfree(phba->vpi_bmask); 11837 kfree(phba->vpi_ids); 11838 11839 lpfc_stop_hba_timers(phba); 11840 11841 phba->pport->work_port_events = 0; 11842 11843 lpfc_sli_hba_down(phba); 11844 11845 lpfc_sli_brdrestart(phba); 11846 11847 lpfc_sli_disable_intr(phba); 11848 11849 return; 11850 } 11851 11852 /** 11853 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 11854 * @phba: Pointer to HBA context object. 11855 * 11856 * This function is called in the SLI4 code path to wait for completion 11857 * of device's XRIs exchange busy. It will check the XRI exchange busy 11858 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 11859 * that, it will check the XRI exchange busy on outstanding FCP and ELS 11860 * I/Os every 30 seconds, log error message, and wait forever. Only when 11861 * all XRI exchange busy complete, the driver unload shall proceed with 11862 * invoking the function reset ioctl mailbox command to the CNA and the 11863 * the rest of the driver unload resource release. 11864 **/ 11865 static void 11866 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 11867 { 11868 struct lpfc_sli4_hdw_queue *qp; 11869 int idx, ccnt; 11870 int wait_time = 0; 11871 int io_xri_cmpl = 1; 11872 int nvmet_xri_cmpl = 1; 11873 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 11874 11875 /* Driver just aborted IOs during the hba_unset process. Pause 11876 * here to give the HBA time to complete the IO and get entries 11877 * into the abts lists. 11878 */ 11879 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 11880 11881 /* Wait for NVME pending IO to flush back to transport. */ 11882 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 11883 lpfc_nvme_wait_for_io_drain(phba); 11884 11885 ccnt = 0; 11886 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 11887 qp = &phba->sli4_hba.hdwq[idx]; 11888 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 11889 if (!io_xri_cmpl) /* if list is NOT empty */ 11890 ccnt++; 11891 } 11892 if (ccnt) 11893 io_xri_cmpl = 0; 11894 11895 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11896 nvmet_xri_cmpl = 11897 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 11898 } 11899 11900 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 11901 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 11902 if (!nvmet_xri_cmpl) 11903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11904 "6424 NVMET XRI exchange busy " 11905 "wait time: %d seconds.\n", 11906 wait_time/1000); 11907 if (!io_xri_cmpl) 11908 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11909 "6100 IO XRI exchange busy " 11910 "wait time: %d seconds.\n", 11911 wait_time/1000); 11912 if (!els_xri_cmpl) 11913 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11914 "2878 ELS XRI exchange busy " 11915 "wait time: %d seconds.\n", 11916 wait_time/1000); 11917 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 11918 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 11919 } else { 11920 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 11921 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 11922 } 11923 11924 ccnt = 0; 11925 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 11926 qp = &phba->sli4_hba.hdwq[idx]; 11927 io_xri_cmpl = list_empty( 11928 &qp->lpfc_abts_io_buf_list); 11929 if (!io_xri_cmpl) /* if list is NOT empty */ 11930 ccnt++; 11931 } 11932 if (ccnt) 11933 io_xri_cmpl = 0; 11934 11935 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11936 nvmet_xri_cmpl = list_empty( 11937 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 11938 } 11939 els_xri_cmpl = 11940 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 11941 11942 } 11943 } 11944 11945 /** 11946 * lpfc_sli4_hba_unset - Unset the fcoe hba 11947 * @phba: Pointer to HBA context object. 11948 * 11949 * This function is called in the SLI4 code path to reset the HBA's FCoE 11950 * function. The caller is not required to hold any lock. This routine 11951 * issues PCI function reset mailbox command to reset the FCoE function. 11952 * At the end of the function, it calls lpfc_hba_down_post function to 11953 * free any pending commands. 11954 **/ 11955 static void 11956 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 11957 { 11958 int wait_cnt = 0; 11959 LPFC_MBOXQ_t *mboxq; 11960 struct pci_dev *pdev = phba->pcidev; 11961 11962 lpfc_stop_hba_timers(phba); 11963 if (phba->pport) 11964 phba->sli4_hba.intr_enable = 0; 11965 11966 /* 11967 * Gracefully wait out the potential current outstanding asynchronous 11968 * mailbox command. 11969 */ 11970 11971 /* First, block any pending async mailbox command from posted */ 11972 spin_lock_irq(&phba->hbalock); 11973 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11974 spin_unlock_irq(&phba->hbalock); 11975 /* Now, trying to wait it out if we can */ 11976 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 11977 msleep(10); 11978 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 11979 break; 11980 } 11981 /* Forcefully release the outstanding mailbox command if timed out */ 11982 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 11983 spin_lock_irq(&phba->hbalock); 11984 mboxq = phba->sli.mbox_active; 11985 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 11986 __lpfc_mbox_cmpl_put(phba, mboxq); 11987 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11988 phba->sli.mbox_active = NULL; 11989 spin_unlock_irq(&phba->hbalock); 11990 } 11991 11992 /* Abort all iocbs associated with the hba */ 11993 lpfc_sli_hba_iocb_abort(phba); 11994 11995 /* Wait for completion of device XRI exchange busy */ 11996 lpfc_sli4_xri_exchange_busy_wait(phba); 11997 11998 /* per-phba callback de-registration for hotplug event */ 11999 if (phba->pport) 12000 lpfc_cpuhp_remove(phba); 12001 12002 /* Disable PCI subsystem interrupt */ 12003 lpfc_sli4_disable_intr(phba); 12004 12005 /* Disable SR-IOV if enabled */ 12006 if (phba->cfg_sriov_nr_virtfn) 12007 pci_disable_sriov(pdev); 12008 12009 /* Stop kthread signal shall trigger work_done one more time */ 12010 kthread_stop(phba->worker_thread); 12011 12012 /* Disable FW logging to host memory */ 12013 lpfc_ras_stop_fwlog(phba); 12014 12015 /* Unset the queues shared with the hardware then release all 12016 * allocated resources. 12017 */ 12018 lpfc_sli4_queue_unset(phba); 12019 lpfc_sli4_queue_destroy(phba); 12020 12021 /* Reset SLI4 HBA FCoE function */ 12022 lpfc_pci_function_reset(phba); 12023 12024 /* Free RAS DMA memory */ 12025 if (phba->ras_fwlog.ras_enabled) 12026 lpfc_sli4_ras_dma_free(phba); 12027 12028 /* Stop the SLI4 device port */ 12029 if (phba->pport) 12030 phba->pport->work_port_events = 0; 12031 } 12032 12033 /** 12034 * lpfc_pc_sli4_params_get - Get the SLI4_PARAMS port capabilities. 12035 * @phba: Pointer to HBA context object. 12036 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 12037 * 12038 * This function is called in the SLI4 code path to read the port's 12039 * sli4 capabilities. 12040 * 12041 * This function may be be called from any context that can block-wait 12042 * for the completion. The expectation is that this routine is called 12043 * typically from probe_one or from the online routine. 12044 **/ 12045 int 12046 lpfc_pc_sli4_params_get(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 12047 { 12048 int rc; 12049 struct lpfc_mqe *mqe; 12050 struct lpfc_pc_sli4_params *sli4_params; 12051 uint32_t mbox_tmo; 12052 12053 rc = 0; 12054 mqe = &mboxq->u.mqe; 12055 12056 /* Read the port's SLI4 Parameters port capabilities */ 12057 lpfc_pc_sli4_params(mboxq); 12058 if (!phba->sli4_hba.intr_enable) 12059 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 12060 else { 12061 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 12062 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 12063 } 12064 12065 if (unlikely(rc)) 12066 return 1; 12067 12068 sli4_params = &phba->sli4_hba.pc_sli4_params; 12069 sli4_params->if_type = bf_get(if_type, &mqe->un.sli4_params); 12070 sli4_params->sli_rev = bf_get(sli_rev, &mqe->un.sli4_params); 12071 sli4_params->sli_family = bf_get(sli_family, &mqe->un.sli4_params); 12072 sli4_params->featurelevel_1 = bf_get(featurelevel_1, 12073 &mqe->un.sli4_params); 12074 sli4_params->featurelevel_2 = bf_get(featurelevel_2, 12075 &mqe->un.sli4_params); 12076 sli4_params->proto_types = mqe->un.sli4_params.word3; 12077 sli4_params->sge_supp_len = mqe->un.sli4_params.sge_supp_len; 12078 sli4_params->if_page_sz = bf_get(if_page_sz, &mqe->un.sli4_params); 12079 sli4_params->rq_db_window = bf_get(rq_db_window, &mqe->un.sli4_params); 12080 sli4_params->loopbk_scope = bf_get(loopbk_scope, &mqe->un.sli4_params); 12081 sli4_params->eq_pages_max = bf_get(eq_pages, &mqe->un.sli4_params); 12082 sli4_params->eqe_size = bf_get(eqe_size, &mqe->un.sli4_params); 12083 sli4_params->cq_pages_max = bf_get(cq_pages, &mqe->un.sli4_params); 12084 sli4_params->cqe_size = bf_get(cqe_size, &mqe->un.sli4_params); 12085 sli4_params->mq_pages_max = bf_get(mq_pages, &mqe->un.sli4_params); 12086 sli4_params->mqe_size = bf_get(mqe_size, &mqe->un.sli4_params); 12087 sli4_params->mq_elem_cnt = bf_get(mq_elem_cnt, &mqe->un.sli4_params); 12088 sli4_params->wq_pages_max = bf_get(wq_pages, &mqe->un.sli4_params); 12089 sli4_params->wqe_size = bf_get(wqe_size, &mqe->un.sli4_params); 12090 sli4_params->rq_pages_max = bf_get(rq_pages, &mqe->un.sli4_params); 12091 sli4_params->rqe_size = bf_get(rqe_size, &mqe->un.sli4_params); 12092 sli4_params->hdr_pages_max = bf_get(hdr_pages, &mqe->un.sli4_params); 12093 sli4_params->hdr_size = bf_get(hdr_size, &mqe->un.sli4_params); 12094 sli4_params->hdr_pp_align = bf_get(hdr_pp_align, &mqe->un.sli4_params); 12095 sli4_params->sgl_pages_max = bf_get(sgl_pages, &mqe->un.sli4_params); 12096 sli4_params->sgl_pp_align = bf_get(sgl_pp_align, &mqe->un.sli4_params); 12097 12098 /* Make sure that sge_supp_len can be handled by the driver */ 12099 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 12100 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 12101 12102 return rc; 12103 } 12104 12105 /** 12106 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 12107 * @phba: Pointer to HBA context object. 12108 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 12109 * 12110 * This function is called in the SLI4 code path to read the port's 12111 * sli4 capabilities. 12112 * 12113 * This function may be be called from any context that can block-wait 12114 * for the completion. The expectation is that this routine is called 12115 * typically from probe_one or from the online routine. 12116 **/ 12117 int 12118 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 12119 { 12120 int rc; 12121 struct lpfc_mqe *mqe = &mboxq->u.mqe; 12122 struct lpfc_pc_sli4_params *sli4_params; 12123 uint32_t mbox_tmo; 12124 int length; 12125 bool exp_wqcq_pages = true; 12126 struct lpfc_sli4_parameters *mbx_sli4_parameters; 12127 12128 /* 12129 * By default, the driver assumes the SLI4 port requires RPI 12130 * header postings. The SLI4_PARAM response will correct this 12131 * assumption. 12132 */ 12133 phba->sli4_hba.rpi_hdrs_in_use = 1; 12134 12135 /* Read the port's SLI4 Config Parameters */ 12136 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 12137 sizeof(struct lpfc_sli4_cfg_mhdr)); 12138 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 12139 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 12140 length, LPFC_SLI4_MBX_EMBED); 12141 if (!phba->sli4_hba.intr_enable) 12142 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 12143 else { 12144 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 12145 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 12146 } 12147 if (unlikely(rc)) 12148 return rc; 12149 sli4_params = &phba->sli4_hba.pc_sli4_params; 12150 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 12151 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 12152 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 12153 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 12154 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 12155 mbx_sli4_parameters); 12156 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 12157 mbx_sli4_parameters); 12158 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 12159 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 12160 else 12161 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 12162 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 12163 sli4_params->loopbk_scope = bf_get(loopbk_scope, mbx_sli4_parameters); 12164 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 12165 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 12166 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 12167 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 12168 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 12169 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 12170 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 12171 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 12172 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 12173 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 12174 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 12175 mbx_sli4_parameters); 12176 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 12177 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 12178 mbx_sli4_parameters); 12179 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 12180 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 12181 12182 /* Check for Extended Pre-Registered SGL support */ 12183 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 12184 12185 /* Check for firmware nvme support */ 12186 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 12187 bf_get(cfg_xib, mbx_sli4_parameters)); 12188 12189 if (rc) { 12190 /* Save this to indicate the Firmware supports NVME */ 12191 sli4_params->nvme = 1; 12192 12193 /* Firmware NVME support, check driver FC4 NVME support */ 12194 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 12195 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 12196 "6133 Disabling NVME support: " 12197 "FC4 type not supported: x%x\n", 12198 phba->cfg_enable_fc4_type); 12199 goto fcponly; 12200 } 12201 } else { 12202 /* No firmware NVME support, check driver FC4 NVME support */ 12203 sli4_params->nvme = 0; 12204 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 12205 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 12206 "6101 Disabling NVME support: Not " 12207 "supported by firmware (%d %d) x%x\n", 12208 bf_get(cfg_nvme, mbx_sli4_parameters), 12209 bf_get(cfg_xib, mbx_sli4_parameters), 12210 phba->cfg_enable_fc4_type); 12211 fcponly: 12212 phba->nvme_support = 0; 12213 phba->nvmet_support = 0; 12214 phba->cfg_nvmet_mrq = 0; 12215 phba->cfg_nvme_seg_cnt = 0; 12216 12217 /* If no FC4 type support, move to just SCSI support */ 12218 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 12219 return -ENODEV; 12220 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 12221 } 12222 } 12223 12224 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 12225 * accommodate 512K and 1M IOs in a single nvme buf. 12226 */ 12227 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 12228 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 12229 12230 /* Only embed PBDE for if_type 6, PBDE support requires xib be set */ 12231 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) != 12232 LPFC_SLI_INTF_IF_TYPE_6) || (!bf_get(cfg_xib, mbx_sli4_parameters))) 12233 phba->cfg_enable_pbde = 0; 12234 12235 /* 12236 * To support Suppress Response feature we must satisfy 3 conditions. 12237 * lpfc_suppress_rsp module parameter must be set (default). 12238 * In SLI4-Parameters Descriptor: 12239 * Extended Inline Buffers (XIB) must be supported. 12240 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 12241 * (double negative). 12242 */ 12243 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 12244 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 12245 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 12246 else 12247 phba->cfg_suppress_rsp = 0; 12248 12249 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 12250 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 12251 12252 /* Make sure that sge_supp_len can be handled by the driver */ 12253 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 12254 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 12255 12256 /* 12257 * Check whether the adapter supports an embedded copy of the 12258 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 12259 * to use this option, 128-byte WQEs must be used. 12260 */ 12261 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 12262 phba->fcp_embed_io = 1; 12263 else 12264 phba->fcp_embed_io = 0; 12265 12266 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 12267 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 12268 bf_get(cfg_xib, mbx_sli4_parameters), 12269 phba->cfg_enable_pbde, 12270 phba->fcp_embed_io, phba->nvme_support, 12271 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 12272 12273 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 12274 LPFC_SLI_INTF_IF_TYPE_2) && 12275 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 12276 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 12277 exp_wqcq_pages = false; 12278 12279 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 12280 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 12281 exp_wqcq_pages && 12282 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 12283 phba->enab_exp_wqcq_pages = 1; 12284 else 12285 phba->enab_exp_wqcq_pages = 0; 12286 /* 12287 * Check if the SLI port supports MDS Diagnostics 12288 */ 12289 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 12290 phba->mds_diags_support = 1; 12291 else 12292 phba->mds_diags_support = 0; 12293 12294 /* 12295 * Check if the SLI port supports NSLER 12296 */ 12297 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 12298 phba->nsler = 1; 12299 else 12300 phba->nsler = 0; 12301 12302 return 0; 12303 } 12304 12305 /** 12306 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 12307 * @pdev: pointer to PCI device 12308 * @pid: pointer to PCI device identifier 12309 * 12310 * This routine is to be called to attach a device with SLI-3 interface spec 12311 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 12312 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 12313 * information of the device and driver to see if the driver state that it can 12314 * support this kind of device. If the match is successful, the driver core 12315 * invokes this routine. If this routine determines it can claim the HBA, it 12316 * does all the initialization that it needs to do to handle the HBA properly. 12317 * 12318 * Return code 12319 * 0 - driver can claim the device 12320 * negative value - driver can not claim the device 12321 **/ 12322 static int 12323 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 12324 { 12325 struct lpfc_hba *phba; 12326 struct lpfc_vport *vport = NULL; 12327 struct Scsi_Host *shost = NULL; 12328 int error; 12329 uint32_t cfg_mode, intr_mode; 12330 12331 /* Allocate memory for HBA structure */ 12332 phba = lpfc_hba_alloc(pdev); 12333 if (!phba) 12334 return -ENOMEM; 12335 12336 /* Perform generic PCI device enabling operation */ 12337 error = lpfc_enable_pci_dev(phba); 12338 if (error) 12339 goto out_free_phba; 12340 12341 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 12342 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 12343 if (error) 12344 goto out_disable_pci_dev; 12345 12346 /* Set up SLI-3 specific device PCI memory space */ 12347 error = lpfc_sli_pci_mem_setup(phba); 12348 if (error) { 12349 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12350 "1402 Failed to set up pci memory space.\n"); 12351 goto out_disable_pci_dev; 12352 } 12353 12354 /* Set up SLI-3 specific device driver resources */ 12355 error = lpfc_sli_driver_resource_setup(phba); 12356 if (error) { 12357 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12358 "1404 Failed to set up driver resource.\n"); 12359 goto out_unset_pci_mem_s3; 12360 } 12361 12362 /* Initialize and populate the iocb list per host */ 12363 12364 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 12365 if (error) { 12366 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12367 "1405 Failed to initialize iocb list.\n"); 12368 goto out_unset_driver_resource_s3; 12369 } 12370 12371 /* Set up common device driver resources */ 12372 error = lpfc_setup_driver_resource_phase2(phba); 12373 if (error) { 12374 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12375 "1406 Failed to set up driver resource.\n"); 12376 goto out_free_iocb_list; 12377 } 12378 12379 /* Get the default values for Model Name and Description */ 12380 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 12381 12382 /* Create SCSI host to the physical port */ 12383 error = lpfc_create_shost(phba); 12384 if (error) { 12385 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12386 "1407 Failed to create scsi host.\n"); 12387 goto out_unset_driver_resource; 12388 } 12389 12390 /* Configure sysfs attributes */ 12391 vport = phba->pport; 12392 error = lpfc_alloc_sysfs_attr(vport); 12393 if (error) { 12394 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12395 "1476 Failed to allocate sysfs attr\n"); 12396 goto out_destroy_shost; 12397 } 12398 12399 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 12400 /* Now, trying to enable interrupt and bring up the device */ 12401 cfg_mode = phba->cfg_use_msi; 12402 while (true) { 12403 /* Put device to a known state before enabling interrupt */ 12404 lpfc_stop_port(phba); 12405 /* Configure and enable interrupt */ 12406 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 12407 if (intr_mode == LPFC_INTR_ERROR) { 12408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12409 "0431 Failed to enable interrupt.\n"); 12410 error = -ENODEV; 12411 goto out_free_sysfs_attr; 12412 } 12413 /* SLI-3 HBA setup */ 12414 if (lpfc_sli_hba_setup(phba)) { 12415 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12416 "1477 Failed to set up hba\n"); 12417 error = -ENODEV; 12418 goto out_remove_device; 12419 } 12420 12421 /* Wait 50ms for the interrupts of previous mailbox commands */ 12422 msleep(50); 12423 /* Check active interrupts on message signaled interrupts */ 12424 if (intr_mode == 0 || 12425 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 12426 /* Log the current active interrupt mode */ 12427 phba->intr_mode = intr_mode; 12428 lpfc_log_intr_mode(phba, intr_mode); 12429 break; 12430 } else { 12431 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12432 "0447 Configure interrupt mode (%d) " 12433 "failed active interrupt test.\n", 12434 intr_mode); 12435 /* Disable the current interrupt mode */ 12436 lpfc_sli_disable_intr(phba); 12437 /* Try next level of interrupt mode */ 12438 cfg_mode = --intr_mode; 12439 } 12440 } 12441 12442 /* Perform post initialization setup */ 12443 lpfc_post_init_setup(phba); 12444 12445 /* Check if there are static vports to be created. */ 12446 lpfc_create_static_vport(phba); 12447 12448 return 0; 12449 12450 out_remove_device: 12451 lpfc_unset_hba(phba); 12452 out_free_sysfs_attr: 12453 lpfc_free_sysfs_attr(vport); 12454 out_destroy_shost: 12455 lpfc_destroy_shost(phba); 12456 out_unset_driver_resource: 12457 lpfc_unset_driver_resource_phase2(phba); 12458 out_free_iocb_list: 12459 lpfc_free_iocb_list(phba); 12460 out_unset_driver_resource_s3: 12461 lpfc_sli_driver_resource_unset(phba); 12462 out_unset_pci_mem_s3: 12463 lpfc_sli_pci_mem_unset(phba); 12464 out_disable_pci_dev: 12465 lpfc_disable_pci_dev(phba); 12466 if (shost) 12467 scsi_host_put(shost); 12468 out_free_phba: 12469 lpfc_hba_free(phba); 12470 return error; 12471 } 12472 12473 /** 12474 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 12475 * @pdev: pointer to PCI device 12476 * 12477 * This routine is to be called to disattach a device with SLI-3 interface 12478 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 12479 * removed from PCI bus, it performs all the necessary cleanup for the HBA 12480 * device to be removed from the PCI subsystem properly. 12481 **/ 12482 static void 12483 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 12484 { 12485 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12486 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 12487 struct lpfc_vport **vports; 12488 struct lpfc_hba *phba = vport->phba; 12489 int i; 12490 12491 spin_lock_irq(&phba->hbalock); 12492 vport->load_flag |= FC_UNLOADING; 12493 spin_unlock_irq(&phba->hbalock); 12494 12495 lpfc_free_sysfs_attr(vport); 12496 12497 /* Release all the vports against this physical port */ 12498 vports = lpfc_create_vport_work_array(phba); 12499 if (vports != NULL) 12500 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 12501 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 12502 continue; 12503 fc_vport_terminate(vports[i]->fc_vport); 12504 } 12505 lpfc_destroy_vport_work_array(phba, vports); 12506 12507 /* Remove FC host and then SCSI host with the physical port */ 12508 fc_remove_host(shost); 12509 scsi_remove_host(shost); 12510 12511 lpfc_cleanup(vport); 12512 12513 /* 12514 * Bring down the SLI Layer. This step disable all interrupts, 12515 * clears the rings, discards all mailbox commands, and resets 12516 * the HBA. 12517 */ 12518 12519 /* HBA interrupt will be disabled after this call */ 12520 lpfc_sli_hba_down(phba); 12521 /* Stop kthread signal shall trigger work_done one more time */ 12522 kthread_stop(phba->worker_thread); 12523 /* Final cleanup of txcmplq and reset the HBA */ 12524 lpfc_sli_brdrestart(phba); 12525 12526 kfree(phba->vpi_bmask); 12527 kfree(phba->vpi_ids); 12528 12529 lpfc_stop_hba_timers(phba); 12530 spin_lock_irq(&phba->port_list_lock); 12531 list_del_init(&vport->listentry); 12532 spin_unlock_irq(&phba->port_list_lock); 12533 12534 lpfc_debugfs_terminate(vport); 12535 12536 /* Disable SR-IOV if enabled */ 12537 if (phba->cfg_sriov_nr_virtfn) 12538 pci_disable_sriov(pdev); 12539 12540 /* Disable interrupt */ 12541 lpfc_sli_disable_intr(phba); 12542 12543 scsi_host_put(shost); 12544 12545 /* 12546 * Call scsi_free before mem_free since scsi bufs are released to their 12547 * corresponding pools here. 12548 */ 12549 lpfc_scsi_free(phba); 12550 lpfc_free_iocb_list(phba); 12551 12552 lpfc_mem_free_all(phba); 12553 12554 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 12555 phba->hbqslimp.virt, phba->hbqslimp.phys); 12556 12557 /* Free resources associated with SLI2 interface */ 12558 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 12559 phba->slim2p.virt, phba->slim2p.phys); 12560 12561 /* unmap adapter SLIM and Control Registers */ 12562 iounmap(phba->ctrl_regs_memmap_p); 12563 iounmap(phba->slim_memmap_p); 12564 12565 lpfc_hba_free(phba); 12566 12567 pci_release_mem_regions(pdev); 12568 pci_disable_device(pdev); 12569 } 12570 12571 /** 12572 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 12573 * @pdev: pointer to PCI device 12574 * @msg: power management message 12575 * 12576 * This routine is to be called from the kernel's PCI subsystem to support 12577 * system Power Management (PM) to device with SLI-3 interface spec. When 12578 * PM invokes this method, it quiesces the device by stopping the driver's 12579 * worker thread for the device, turning off device's interrupt and DMA, 12580 * and bring the device offline. Note that as the driver implements the 12581 * minimum PM requirements to a power-aware driver's PM support for the 12582 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 12583 * to the suspend() method call will be treated as SUSPEND and the driver will 12584 * fully reinitialize its device during resume() method call, the driver will 12585 * set device to PCI_D3hot state in PCI config space instead of setting it 12586 * according to the @msg provided by the PM. 12587 * 12588 * Return code 12589 * 0 - driver suspended the device 12590 * Error otherwise 12591 **/ 12592 static int 12593 lpfc_pci_suspend_one_s3(struct pci_dev *pdev, pm_message_t msg) 12594 { 12595 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12596 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12597 12598 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12599 "0473 PCI device Power Management suspend.\n"); 12600 12601 /* Bring down the device */ 12602 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 12603 lpfc_offline(phba); 12604 kthread_stop(phba->worker_thread); 12605 12606 /* Disable interrupt from device */ 12607 lpfc_sli_disable_intr(phba); 12608 12609 /* Save device state to PCI config space */ 12610 pci_save_state(pdev); 12611 pci_set_power_state(pdev, PCI_D3hot); 12612 12613 return 0; 12614 } 12615 12616 /** 12617 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 12618 * @pdev: pointer to PCI device 12619 * 12620 * This routine is to be called from the kernel's PCI subsystem to support 12621 * system Power Management (PM) to device with SLI-3 interface spec. When PM 12622 * invokes this method, it restores the device's PCI config space state and 12623 * fully reinitializes the device and brings it online. Note that as the 12624 * driver implements the minimum PM requirements to a power-aware driver's 12625 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 12626 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 12627 * driver will fully reinitialize its device during resume() method call, 12628 * the device will be set to PCI_D0 directly in PCI config space before 12629 * restoring the state. 12630 * 12631 * Return code 12632 * 0 - driver suspended the device 12633 * Error otherwise 12634 **/ 12635 static int 12636 lpfc_pci_resume_one_s3(struct pci_dev *pdev) 12637 { 12638 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12639 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12640 uint32_t intr_mode; 12641 int error; 12642 12643 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12644 "0452 PCI device Power Management resume.\n"); 12645 12646 /* Restore device state from PCI config space */ 12647 pci_set_power_state(pdev, PCI_D0); 12648 pci_restore_state(pdev); 12649 12650 /* 12651 * As the new kernel behavior of pci_restore_state() API call clears 12652 * device saved_state flag, need to save the restored state again. 12653 */ 12654 pci_save_state(pdev); 12655 12656 if (pdev->is_busmaster) 12657 pci_set_master(pdev); 12658 12659 /* Startup the kernel thread for this host adapter. */ 12660 phba->worker_thread = kthread_run(lpfc_do_work, phba, 12661 "lpfc_worker_%d", phba->brd_no); 12662 if (IS_ERR(phba->worker_thread)) { 12663 error = PTR_ERR(phba->worker_thread); 12664 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12665 "0434 PM resume failed to start worker " 12666 "thread: error=x%x.\n", error); 12667 return error; 12668 } 12669 12670 /* Configure and enable interrupt */ 12671 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 12672 if (intr_mode == LPFC_INTR_ERROR) { 12673 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12674 "0430 PM resume Failed to enable interrupt\n"); 12675 return -EIO; 12676 } else 12677 phba->intr_mode = intr_mode; 12678 12679 /* Restart HBA and bring it online */ 12680 lpfc_sli_brdrestart(phba); 12681 lpfc_online(phba); 12682 12683 /* Log the current active interrupt mode */ 12684 lpfc_log_intr_mode(phba, phba->intr_mode); 12685 12686 return 0; 12687 } 12688 12689 /** 12690 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 12691 * @phba: pointer to lpfc hba data structure. 12692 * 12693 * This routine is called to prepare the SLI3 device for PCI slot recover. It 12694 * aborts all the outstanding SCSI I/Os to the pci device. 12695 **/ 12696 static void 12697 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 12698 { 12699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12700 "2723 PCI channel I/O abort preparing for recovery\n"); 12701 12702 /* 12703 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 12704 * and let the SCSI mid-layer to retry them to recover. 12705 */ 12706 lpfc_sli_abort_fcp_rings(phba); 12707 } 12708 12709 /** 12710 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 12711 * @phba: pointer to lpfc hba data structure. 12712 * 12713 * This routine is called to prepare the SLI3 device for PCI slot reset. It 12714 * disables the device interrupt and pci device, and aborts the internal FCP 12715 * pending I/Os. 12716 **/ 12717 static void 12718 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 12719 { 12720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12721 "2710 PCI channel disable preparing for reset\n"); 12722 12723 /* Block any management I/Os to the device */ 12724 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 12725 12726 /* Block all SCSI devices' I/Os on the host */ 12727 lpfc_scsi_dev_block(phba); 12728 12729 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 12730 lpfc_sli_flush_io_rings(phba); 12731 12732 /* stop all timers */ 12733 lpfc_stop_hba_timers(phba); 12734 12735 /* Disable interrupt and pci device */ 12736 lpfc_sli_disable_intr(phba); 12737 pci_disable_device(phba->pcidev); 12738 } 12739 12740 /** 12741 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 12742 * @phba: pointer to lpfc hba data structure. 12743 * 12744 * This routine is called to prepare the SLI3 device for PCI slot permanently 12745 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 12746 * pending I/Os. 12747 **/ 12748 static void 12749 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 12750 { 12751 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12752 "2711 PCI channel permanent disable for failure\n"); 12753 /* Block all SCSI devices' I/Os on the host */ 12754 lpfc_scsi_dev_block(phba); 12755 12756 /* stop all timers */ 12757 lpfc_stop_hba_timers(phba); 12758 12759 /* Clean up all driver's outstanding SCSI I/Os */ 12760 lpfc_sli_flush_io_rings(phba); 12761 } 12762 12763 /** 12764 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 12765 * @pdev: pointer to PCI device. 12766 * @state: the current PCI connection state. 12767 * 12768 * This routine is called from the PCI subsystem for I/O error handling to 12769 * device with SLI-3 interface spec. This function is called by the PCI 12770 * subsystem after a PCI bus error affecting this device has been detected. 12771 * When this function is invoked, it will need to stop all the I/Os and 12772 * interrupt(s) to the device. Once that is done, it will return 12773 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 12774 * as desired. 12775 * 12776 * Return codes 12777 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link 12778 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 12779 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 12780 **/ 12781 static pci_ers_result_t 12782 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 12783 { 12784 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12785 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12786 12787 switch (state) { 12788 case pci_channel_io_normal: 12789 /* Non-fatal error, prepare for recovery */ 12790 lpfc_sli_prep_dev_for_recover(phba); 12791 return PCI_ERS_RESULT_CAN_RECOVER; 12792 case pci_channel_io_frozen: 12793 /* Fatal error, prepare for slot reset */ 12794 lpfc_sli_prep_dev_for_reset(phba); 12795 return PCI_ERS_RESULT_NEED_RESET; 12796 case pci_channel_io_perm_failure: 12797 /* Permanent failure, prepare for device down */ 12798 lpfc_sli_prep_dev_for_perm_failure(phba); 12799 return PCI_ERS_RESULT_DISCONNECT; 12800 default: 12801 /* Unknown state, prepare and request slot reset */ 12802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12803 "0472 Unknown PCI error state: x%x\n", state); 12804 lpfc_sli_prep_dev_for_reset(phba); 12805 return PCI_ERS_RESULT_NEED_RESET; 12806 } 12807 } 12808 12809 /** 12810 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 12811 * @pdev: pointer to PCI device. 12812 * 12813 * This routine is called from the PCI subsystem for error handling to 12814 * device with SLI-3 interface spec. This is called after PCI bus has been 12815 * reset to restart the PCI card from scratch, as if from a cold-boot. 12816 * During the PCI subsystem error recovery, after driver returns 12817 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 12818 * recovery and then call this routine before calling the .resume method 12819 * to recover the device. This function will initialize the HBA device, 12820 * enable the interrupt, but it will just put the HBA to offline state 12821 * without passing any I/O traffic. 12822 * 12823 * Return codes 12824 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 12825 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 12826 */ 12827 static pci_ers_result_t 12828 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 12829 { 12830 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12831 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12832 struct lpfc_sli *psli = &phba->sli; 12833 uint32_t intr_mode; 12834 12835 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 12836 if (pci_enable_device_mem(pdev)) { 12837 printk(KERN_ERR "lpfc: Cannot re-enable " 12838 "PCI device after reset.\n"); 12839 return PCI_ERS_RESULT_DISCONNECT; 12840 } 12841 12842 pci_restore_state(pdev); 12843 12844 /* 12845 * As the new kernel behavior of pci_restore_state() API call clears 12846 * device saved_state flag, need to save the restored state again. 12847 */ 12848 pci_save_state(pdev); 12849 12850 if (pdev->is_busmaster) 12851 pci_set_master(pdev); 12852 12853 spin_lock_irq(&phba->hbalock); 12854 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 12855 spin_unlock_irq(&phba->hbalock); 12856 12857 /* Configure and enable interrupt */ 12858 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 12859 if (intr_mode == LPFC_INTR_ERROR) { 12860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12861 "0427 Cannot re-enable interrupt after " 12862 "slot reset.\n"); 12863 return PCI_ERS_RESULT_DISCONNECT; 12864 } else 12865 phba->intr_mode = intr_mode; 12866 12867 /* Take device offline, it will perform cleanup */ 12868 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 12869 lpfc_offline(phba); 12870 lpfc_sli_brdrestart(phba); 12871 12872 /* Log the current active interrupt mode */ 12873 lpfc_log_intr_mode(phba, phba->intr_mode); 12874 12875 return PCI_ERS_RESULT_RECOVERED; 12876 } 12877 12878 /** 12879 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 12880 * @pdev: pointer to PCI device 12881 * 12882 * This routine is called from the PCI subsystem for error handling to device 12883 * with SLI-3 interface spec. It is called when kernel error recovery tells 12884 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 12885 * error recovery. After this call, traffic can start to flow from this device 12886 * again. 12887 */ 12888 static void 12889 lpfc_io_resume_s3(struct pci_dev *pdev) 12890 { 12891 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12892 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12893 12894 /* Bring device online, it will be no-op for non-fatal error resume */ 12895 lpfc_online(phba); 12896 } 12897 12898 /** 12899 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 12900 * @phba: pointer to lpfc hba data structure. 12901 * 12902 * returns the number of ELS/CT IOCBs to reserve 12903 **/ 12904 int 12905 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 12906 { 12907 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 12908 12909 if (phba->sli_rev == LPFC_SLI_REV4) { 12910 if (max_xri <= 100) 12911 return 10; 12912 else if (max_xri <= 256) 12913 return 25; 12914 else if (max_xri <= 512) 12915 return 50; 12916 else if (max_xri <= 1024) 12917 return 100; 12918 else if (max_xri <= 1536) 12919 return 150; 12920 else if (max_xri <= 2048) 12921 return 200; 12922 else 12923 return 250; 12924 } else 12925 return 0; 12926 } 12927 12928 /** 12929 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 12930 * @phba: pointer to lpfc hba data structure. 12931 * 12932 * returns the number of ELS/CT + NVMET IOCBs to reserve 12933 **/ 12934 int 12935 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 12936 { 12937 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 12938 12939 if (phba->nvmet_support) 12940 max_xri += LPFC_NVMET_BUF_POST; 12941 return max_xri; 12942 } 12943 12944 12945 static int 12946 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 12947 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 12948 const struct firmware *fw) 12949 { 12950 int rc; 12951 12952 /* Three cases: (1) FW was not supported on the detected adapter. 12953 * (2) FW update has been locked out administratively. 12954 * (3) Some other error during FW update. 12955 * In each case, an unmaskable message is written to the console 12956 * for admin diagnosis. 12957 */ 12958 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 12959 (phba->pcidev->device == PCI_DEVICE_ID_LANCER_G6_FC && 12960 magic_number != MAGIC_NUMBER_G6) || 12961 (phba->pcidev->device == PCI_DEVICE_ID_LANCER_G7_FC && 12962 magic_number != MAGIC_NUMBER_G7)) { 12963 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12964 "3030 This firmware version is not supported on" 12965 " this HBA model. Device:%x Magic:%x Type:%x " 12966 "ID:%x Size %d %zd\n", 12967 phba->pcidev->device, magic_number, ftype, fid, 12968 fsize, fw->size); 12969 rc = -EINVAL; 12970 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 12971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12972 "3021 Firmware downloads have been prohibited " 12973 "by a system configuration setting on " 12974 "Device:%x Magic:%x Type:%x ID:%x Size %d " 12975 "%zd\n", 12976 phba->pcidev->device, magic_number, ftype, fid, 12977 fsize, fw->size); 12978 rc = -EACCES; 12979 } else { 12980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12981 "3022 FW Download failed. Add Status x%x " 12982 "Device:%x Magic:%x Type:%x ID:%x Size %d " 12983 "%zd\n", 12984 offset, phba->pcidev->device, magic_number, 12985 ftype, fid, fsize, fw->size); 12986 rc = -EIO; 12987 } 12988 return rc; 12989 } 12990 12991 /** 12992 * lpfc_write_firmware - attempt to write a firmware image to the port 12993 * @fw: pointer to firmware image returned from request_firmware. 12994 * @context: pointer to firmware image returned from request_firmware. 12995 * 12996 **/ 12997 static void 12998 lpfc_write_firmware(const struct firmware *fw, void *context) 12999 { 13000 struct lpfc_hba *phba = (struct lpfc_hba *)context; 13001 char fwrev[FW_REV_STR_SIZE]; 13002 struct lpfc_grp_hdr *image; 13003 struct list_head dma_buffer_list; 13004 int i, rc = 0; 13005 struct lpfc_dmabuf *dmabuf, *next; 13006 uint32_t offset = 0, temp_offset = 0; 13007 uint32_t magic_number, ftype, fid, fsize; 13008 13009 /* It can be null in no-wait mode, sanity check */ 13010 if (!fw) { 13011 rc = -ENXIO; 13012 goto out; 13013 } 13014 image = (struct lpfc_grp_hdr *)fw->data; 13015 13016 magic_number = be32_to_cpu(image->magic_number); 13017 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 13018 fid = bf_get_be32(lpfc_grp_hdr_id, image); 13019 fsize = be32_to_cpu(image->size); 13020 13021 INIT_LIST_HEAD(&dma_buffer_list); 13022 lpfc_decode_firmware_rev(phba, fwrev, 1); 13023 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 13024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13025 "3023 Updating Firmware, Current Version:%s " 13026 "New Version:%s\n", 13027 fwrev, image->revision); 13028 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 13029 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 13030 GFP_KERNEL); 13031 if (!dmabuf) { 13032 rc = -ENOMEM; 13033 goto release_out; 13034 } 13035 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 13036 SLI4_PAGE_SIZE, 13037 &dmabuf->phys, 13038 GFP_KERNEL); 13039 if (!dmabuf->virt) { 13040 kfree(dmabuf); 13041 rc = -ENOMEM; 13042 goto release_out; 13043 } 13044 list_add_tail(&dmabuf->list, &dma_buffer_list); 13045 } 13046 while (offset < fw->size) { 13047 temp_offset = offset; 13048 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 13049 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 13050 memcpy(dmabuf->virt, 13051 fw->data + temp_offset, 13052 fw->size - temp_offset); 13053 temp_offset = fw->size; 13054 break; 13055 } 13056 memcpy(dmabuf->virt, fw->data + temp_offset, 13057 SLI4_PAGE_SIZE); 13058 temp_offset += SLI4_PAGE_SIZE; 13059 } 13060 rc = lpfc_wr_object(phba, &dma_buffer_list, 13061 (fw->size - offset), &offset); 13062 if (rc) { 13063 rc = lpfc_log_write_firmware_error(phba, offset, 13064 magic_number, 13065 ftype, 13066 fid, 13067 fsize, 13068 fw); 13069 goto release_out; 13070 } 13071 } 13072 rc = offset; 13073 } else 13074 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13075 "3029 Skipped Firmware update, Current " 13076 "Version:%s New Version:%s\n", 13077 fwrev, image->revision); 13078 13079 release_out: 13080 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 13081 list_del(&dmabuf->list); 13082 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 13083 dmabuf->virt, dmabuf->phys); 13084 kfree(dmabuf); 13085 } 13086 release_firmware(fw); 13087 out: 13088 if (rc < 0) 13089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13090 "3062 Firmware update error, status %d.\n", rc); 13091 else 13092 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13093 "3024 Firmware update success: size %d.\n", rc); 13094 } 13095 13096 /** 13097 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 13098 * @phba: pointer to lpfc hba data structure. 13099 * @fw_upgrade: which firmware to update. 13100 * 13101 * This routine is called to perform Linux generic firmware upgrade on device 13102 * that supports such feature. 13103 **/ 13104 int 13105 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 13106 { 13107 uint8_t file_name[ELX_MODEL_NAME_SIZE]; 13108 int ret; 13109 const struct firmware *fw; 13110 13111 /* Only supported on SLI4 interface type 2 for now */ 13112 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 13113 LPFC_SLI_INTF_IF_TYPE_2) 13114 return -EPERM; 13115 13116 snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName); 13117 13118 if (fw_upgrade == INT_FW_UPGRADE) { 13119 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 13120 file_name, &phba->pcidev->dev, 13121 GFP_KERNEL, (void *)phba, 13122 lpfc_write_firmware); 13123 } else if (fw_upgrade == RUN_FW_UPGRADE) { 13124 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 13125 if (!ret) 13126 lpfc_write_firmware(fw, (void *)phba); 13127 } else { 13128 ret = -EINVAL; 13129 } 13130 13131 return ret; 13132 } 13133 13134 /** 13135 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 13136 * @pdev: pointer to PCI device 13137 * @pid: pointer to PCI device identifier 13138 * 13139 * This routine is called from the kernel's PCI subsystem to device with 13140 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 13141 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13142 * information of the device and driver to see if the driver state that it 13143 * can support this kind of device. If the match is successful, the driver 13144 * core invokes this routine. If this routine determines it can claim the HBA, 13145 * it does all the initialization that it needs to do to handle the HBA 13146 * properly. 13147 * 13148 * Return code 13149 * 0 - driver can claim the device 13150 * negative value - driver can not claim the device 13151 **/ 13152 static int 13153 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 13154 { 13155 struct lpfc_hba *phba; 13156 struct lpfc_vport *vport = NULL; 13157 struct Scsi_Host *shost = NULL; 13158 int error; 13159 uint32_t cfg_mode, intr_mode; 13160 13161 /* Allocate memory for HBA structure */ 13162 phba = lpfc_hba_alloc(pdev); 13163 if (!phba) 13164 return -ENOMEM; 13165 13166 /* Perform generic PCI device enabling operation */ 13167 error = lpfc_enable_pci_dev(phba); 13168 if (error) 13169 goto out_free_phba; 13170 13171 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 13172 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 13173 if (error) 13174 goto out_disable_pci_dev; 13175 13176 /* Set up SLI-4 specific device PCI memory space */ 13177 error = lpfc_sli4_pci_mem_setup(phba); 13178 if (error) { 13179 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13180 "1410 Failed to set up pci memory space.\n"); 13181 goto out_disable_pci_dev; 13182 } 13183 13184 /* Set up SLI-4 Specific device driver resources */ 13185 error = lpfc_sli4_driver_resource_setup(phba); 13186 if (error) { 13187 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13188 "1412 Failed to set up driver resource.\n"); 13189 goto out_unset_pci_mem_s4; 13190 } 13191 13192 INIT_LIST_HEAD(&phba->active_rrq_list); 13193 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 13194 13195 /* Set up common device driver resources */ 13196 error = lpfc_setup_driver_resource_phase2(phba); 13197 if (error) { 13198 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13199 "1414 Failed to set up driver resource.\n"); 13200 goto out_unset_driver_resource_s4; 13201 } 13202 13203 /* Get the default values for Model Name and Description */ 13204 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 13205 13206 /* Now, trying to enable interrupt and bring up the device */ 13207 cfg_mode = phba->cfg_use_msi; 13208 13209 /* Put device to a known state before enabling interrupt */ 13210 phba->pport = NULL; 13211 lpfc_stop_port(phba); 13212 13213 /* Init cpu_map array */ 13214 lpfc_cpu_map_array_init(phba); 13215 13216 /* Init hba_eq_hdl array */ 13217 lpfc_hba_eq_hdl_array_init(phba); 13218 13219 /* Configure and enable interrupt */ 13220 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 13221 if (intr_mode == LPFC_INTR_ERROR) { 13222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13223 "0426 Failed to enable interrupt.\n"); 13224 error = -ENODEV; 13225 goto out_unset_driver_resource; 13226 } 13227 /* Default to single EQ for non-MSI-X */ 13228 if (phba->intr_type != MSIX) { 13229 phba->cfg_irq_chann = 1; 13230 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13231 if (phba->nvmet_support) 13232 phba->cfg_nvmet_mrq = 1; 13233 } 13234 } 13235 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 13236 13237 /* Create SCSI host to the physical port */ 13238 error = lpfc_create_shost(phba); 13239 if (error) { 13240 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13241 "1415 Failed to create scsi host.\n"); 13242 goto out_disable_intr; 13243 } 13244 vport = phba->pport; 13245 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 13246 13247 /* Configure sysfs attributes */ 13248 error = lpfc_alloc_sysfs_attr(vport); 13249 if (error) { 13250 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13251 "1416 Failed to allocate sysfs attr\n"); 13252 goto out_destroy_shost; 13253 } 13254 13255 /* Set up SLI-4 HBA */ 13256 if (lpfc_sli4_hba_setup(phba)) { 13257 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13258 "1421 Failed to set up hba\n"); 13259 error = -ENODEV; 13260 goto out_free_sysfs_attr; 13261 } 13262 13263 /* Log the current active interrupt mode */ 13264 phba->intr_mode = intr_mode; 13265 lpfc_log_intr_mode(phba, intr_mode); 13266 13267 /* Perform post initialization setup */ 13268 lpfc_post_init_setup(phba); 13269 13270 /* NVME support in FW earlier in the driver load corrects the 13271 * FC4 type making a check for nvme_support unnecessary. 13272 */ 13273 if (phba->nvmet_support == 0) { 13274 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13275 /* Create NVME binding with nvme_fc_transport. This 13276 * ensures the vport is initialized. If the localport 13277 * create fails, it should not unload the driver to 13278 * support field issues. 13279 */ 13280 error = lpfc_nvme_create_localport(vport); 13281 if (error) { 13282 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13283 "6004 NVME registration " 13284 "failed, error x%x\n", 13285 error); 13286 } 13287 } 13288 } 13289 13290 /* check for firmware upgrade or downgrade */ 13291 if (phba->cfg_request_firmware_upgrade) 13292 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 13293 13294 /* Check if there are static vports to be created. */ 13295 lpfc_create_static_vport(phba); 13296 13297 /* Enable RAS FW log support */ 13298 lpfc_sli4_ras_setup(phba); 13299 13300 INIT_LIST_HEAD(&phba->poll_list); 13301 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 13302 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 13303 13304 return 0; 13305 13306 out_free_sysfs_attr: 13307 lpfc_free_sysfs_attr(vport); 13308 out_destroy_shost: 13309 lpfc_destroy_shost(phba); 13310 out_disable_intr: 13311 lpfc_sli4_disable_intr(phba); 13312 out_unset_driver_resource: 13313 lpfc_unset_driver_resource_phase2(phba); 13314 out_unset_driver_resource_s4: 13315 lpfc_sli4_driver_resource_unset(phba); 13316 out_unset_pci_mem_s4: 13317 lpfc_sli4_pci_mem_unset(phba); 13318 out_disable_pci_dev: 13319 lpfc_disable_pci_dev(phba); 13320 if (shost) 13321 scsi_host_put(shost); 13322 out_free_phba: 13323 lpfc_hba_free(phba); 13324 return error; 13325 } 13326 13327 /** 13328 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 13329 * @pdev: pointer to PCI device 13330 * 13331 * This routine is called from the kernel's PCI subsystem to device with 13332 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 13333 * removed from PCI bus, it performs all the necessary cleanup for the HBA 13334 * device to be removed from the PCI subsystem properly. 13335 **/ 13336 static void 13337 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 13338 { 13339 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13340 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 13341 struct lpfc_vport **vports; 13342 struct lpfc_hba *phba = vport->phba; 13343 int i; 13344 13345 /* Mark the device unloading flag */ 13346 spin_lock_irq(&phba->hbalock); 13347 vport->load_flag |= FC_UNLOADING; 13348 spin_unlock_irq(&phba->hbalock); 13349 13350 /* Free the HBA sysfs attributes */ 13351 lpfc_free_sysfs_attr(vport); 13352 13353 /* Release all the vports against this physical port */ 13354 vports = lpfc_create_vport_work_array(phba); 13355 if (vports != NULL) 13356 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 13357 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 13358 continue; 13359 fc_vport_terminate(vports[i]->fc_vport); 13360 } 13361 lpfc_destroy_vport_work_array(phba, vports); 13362 13363 /* Remove FC host and then SCSI host with the physical port */ 13364 fc_remove_host(shost); 13365 scsi_remove_host(shost); 13366 13367 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 13368 * localports are destroyed after to cleanup all transport memory. 13369 */ 13370 lpfc_cleanup(vport); 13371 lpfc_nvmet_destroy_targetport(phba); 13372 lpfc_nvme_destroy_localport(vport); 13373 13374 /* De-allocate multi-XRI pools */ 13375 if (phba->cfg_xri_rebalancing) 13376 lpfc_destroy_multixri_pools(phba); 13377 13378 /* 13379 * Bring down the SLI Layer. This step disables all interrupts, 13380 * clears the rings, discards all mailbox commands, and resets 13381 * the HBA FCoE function. 13382 */ 13383 lpfc_debugfs_terminate(vport); 13384 13385 lpfc_stop_hba_timers(phba); 13386 spin_lock_irq(&phba->port_list_lock); 13387 list_del_init(&vport->listentry); 13388 spin_unlock_irq(&phba->port_list_lock); 13389 13390 /* Perform scsi free before driver resource_unset since scsi 13391 * buffers are released to their corresponding pools here. 13392 */ 13393 lpfc_io_free(phba); 13394 lpfc_free_iocb_list(phba); 13395 lpfc_sli4_hba_unset(phba); 13396 13397 lpfc_unset_driver_resource_phase2(phba); 13398 lpfc_sli4_driver_resource_unset(phba); 13399 13400 /* Unmap adapter Control and Doorbell registers */ 13401 lpfc_sli4_pci_mem_unset(phba); 13402 13403 /* Release PCI resources and disable device's PCI function */ 13404 scsi_host_put(shost); 13405 lpfc_disable_pci_dev(phba); 13406 13407 /* Finally, free the driver's device data structure */ 13408 lpfc_hba_free(phba); 13409 13410 return; 13411 } 13412 13413 /** 13414 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 13415 * @pdev: pointer to PCI device 13416 * @msg: power management message 13417 * 13418 * This routine is called from the kernel's PCI subsystem to support system 13419 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 13420 * this method, it quiesces the device by stopping the driver's worker 13421 * thread for the device, turning off device's interrupt and DMA, and bring 13422 * the device offline. Note that as the driver implements the minimum PM 13423 * requirements to a power-aware driver's PM support for suspend/resume -- all 13424 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 13425 * method call will be treated as SUSPEND and the driver will fully 13426 * reinitialize its device during resume() method call, the driver will set 13427 * device to PCI_D3hot state in PCI config space instead of setting it 13428 * according to the @msg provided by the PM. 13429 * 13430 * Return code 13431 * 0 - driver suspended the device 13432 * Error otherwise 13433 **/ 13434 static int 13435 lpfc_pci_suspend_one_s4(struct pci_dev *pdev, pm_message_t msg) 13436 { 13437 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13438 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13439 13440 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13441 "2843 PCI device Power Management suspend.\n"); 13442 13443 /* Bring down the device */ 13444 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 13445 lpfc_offline(phba); 13446 kthread_stop(phba->worker_thread); 13447 13448 /* Disable interrupt from device */ 13449 lpfc_sli4_disable_intr(phba); 13450 lpfc_sli4_queue_destroy(phba); 13451 13452 /* Save device state to PCI config space */ 13453 pci_save_state(pdev); 13454 pci_set_power_state(pdev, PCI_D3hot); 13455 13456 return 0; 13457 } 13458 13459 /** 13460 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 13461 * @pdev: pointer to PCI device 13462 * 13463 * This routine is called from the kernel's PCI subsystem to support system 13464 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 13465 * this method, it restores the device's PCI config space state and fully 13466 * reinitializes the device and brings it online. Note that as the driver 13467 * implements the minimum PM requirements to a power-aware driver's PM for 13468 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 13469 * to the suspend() method call will be treated as SUSPEND and the driver 13470 * will fully reinitialize its device during resume() method call, the device 13471 * will be set to PCI_D0 directly in PCI config space before restoring the 13472 * state. 13473 * 13474 * Return code 13475 * 0 - driver suspended the device 13476 * Error otherwise 13477 **/ 13478 static int 13479 lpfc_pci_resume_one_s4(struct pci_dev *pdev) 13480 { 13481 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13482 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13483 uint32_t intr_mode; 13484 int error; 13485 13486 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13487 "0292 PCI device Power Management resume.\n"); 13488 13489 /* Restore device state from PCI config space */ 13490 pci_set_power_state(pdev, PCI_D0); 13491 pci_restore_state(pdev); 13492 13493 /* 13494 * As the new kernel behavior of pci_restore_state() API call clears 13495 * device saved_state flag, need to save the restored state again. 13496 */ 13497 pci_save_state(pdev); 13498 13499 if (pdev->is_busmaster) 13500 pci_set_master(pdev); 13501 13502 /* Startup the kernel thread for this host adapter. */ 13503 phba->worker_thread = kthread_run(lpfc_do_work, phba, 13504 "lpfc_worker_%d", phba->brd_no); 13505 if (IS_ERR(phba->worker_thread)) { 13506 error = PTR_ERR(phba->worker_thread); 13507 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13508 "0293 PM resume failed to start worker " 13509 "thread: error=x%x.\n", error); 13510 return error; 13511 } 13512 13513 /* Configure and enable interrupt */ 13514 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 13515 if (intr_mode == LPFC_INTR_ERROR) { 13516 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13517 "0294 PM resume Failed to enable interrupt\n"); 13518 return -EIO; 13519 } else 13520 phba->intr_mode = intr_mode; 13521 13522 /* Restart HBA and bring it online */ 13523 lpfc_sli_brdrestart(phba); 13524 lpfc_online(phba); 13525 13526 /* Log the current active interrupt mode */ 13527 lpfc_log_intr_mode(phba, phba->intr_mode); 13528 13529 return 0; 13530 } 13531 13532 /** 13533 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 13534 * @phba: pointer to lpfc hba data structure. 13535 * 13536 * This routine is called to prepare the SLI4 device for PCI slot recover. It 13537 * aborts all the outstanding SCSI I/Os to the pci device. 13538 **/ 13539 static void 13540 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 13541 { 13542 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13543 "2828 PCI channel I/O abort preparing for recovery\n"); 13544 /* 13545 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 13546 * and let the SCSI mid-layer to retry them to recover. 13547 */ 13548 lpfc_sli_abort_fcp_rings(phba); 13549 } 13550 13551 /** 13552 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 13553 * @phba: pointer to lpfc hba data structure. 13554 * 13555 * This routine is called to prepare the SLI4 device for PCI slot reset. It 13556 * disables the device interrupt and pci device, and aborts the internal FCP 13557 * pending I/Os. 13558 **/ 13559 static void 13560 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 13561 { 13562 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13563 "2826 PCI channel disable preparing for reset\n"); 13564 13565 /* Block any management I/Os to the device */ 13566 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 13567 13568 /* Block all SCSI devices' I/Os on the host */ 13569 lpfc_scsi_dev_block(phba); 13570 13571 /* Flush all driver's outstanding I/Os as we are to reset */ 13572 lpfc_sli_flush_io_rings(phba); 13573 13574 /* stop all timers */ 13575 lpfc_stop_hba_timers(phba); 13576 13577 /* Disable interrupt and pci device */ 13578 lpfc_sli4_disable_intr(phba); 13579 lpfc_sli4_queue_destroy(phba); 13580 pci_disable_device(phba->pcidev); 13581 } 13582 13583 /** 13584 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 13585 * @phba: pointer to lpfc hba data structure. 13586 * 13587 * This routine is called to prepare the SLI4 device for PCI slot permanently 13588 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 13589 * pending I/Os. 13590 **/ 13591 static void 13592 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 13593 { 13594 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13595 "2827 PCI channel permanent disable for failure\n"); 13596 13597 /* Block all SCSI devices' I/Os on the host */ 13598 lpfc_scsi_dev_block(phba); 13599 13600 /* stop all timers */ 13601 lpfc_stop_hba_timers(phba); 13602 13603 /* Clean up all driver's outstanding I/Os */ 13604 lpfc_sli_flush_io_rings(phba); 13605 } 13606 13607 /** 13608 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 13609 * @pdev: pointer to PCI device. 13610 * @state: the current PCI connection state. 13611 * 13612 * This routine is called from the PCI subsystem for error handling to device 13613 * with SLI-4 interface spec. This function is called by the PCI subsystem 13614 * after a PCI bus error affecting this device has been detected. When this 13615 * function is invoked, it will need to stop all the I/Os and interrupt(s) 13616 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 13617 * for the PCI subsystem to perform proper recovery as desired. 13618 * 13619 * Return codes 13620 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 13621 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13622 **/ 13623 static pci_ers_result_t 13624 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 13625 { 13626 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13627 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13628 13629 switch (state) { 13630 case pci_channel_io_normal: 13631 /* Non-fatal error, prepare for recovery */ 13632 lpfc_sli4_prep_dev_for_recover(phba); 13633 return PCI_ERS_RESULT_CAN_RECOVER; 13634 case pci_channel_io_frozen: 13635 /* Fatal error, prepare for slot reset */ 13636 lpfc_sli4_prep_dev_for_reset(phba); 13637 return PCI_ERS_RESULT_NEED_RESET; 13638 case pci_channel_io_perm_failure: 13639 /* Permanent failure, prepare for device down */ 13640 lpfc_sli4_prep_dev_for_perm_failure(phba); 13641 return PCI_ERS_RESULT_DISCONNECT; 13642 default: 13643 /* Unknown state, prepare and request slot reset */ 13644 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13645 "2825 Unknown PCI error state: x%x\n", state); 13646 lpfc_sli4_prep_dev_for_reset(phba); 13647 return PCI_ERS_RESULT_NEED_RESET; 13648 } 13649 } 13650 13651 /** 13652 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 13653 * @pdev: pointer to PCI device. 13654 * 13655 * This routine is called from the PCI subsystem for error handling to device 13656 * with SLI-4 interface spec. It is called after PCI bus has been reset to 13657 * restart the PCI card from scratch, as if from a cold-boot. During the 13658 * PCI subsystem error recovery, after the driver returns 13659 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 13660 * recovery and then call this routine before calling the .resume method to 13661 * recover the device. This function will initialize the HBA device, enable 13662 * the interrupt, but it will just put the HBA to offline state without 13663 * passing any I/O traffic. 13664 * 13665 * Return codes 13666 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 13667 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13668 */ 13669 static pci_ers_result_t 13670 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 13671 { 13672 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13673 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13674 struct lpfc_sli *psli = &phba->sli; 13675 uint32_t intr_mode; 13676 13677 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 13678 if (pci_enable_device_mem(pdev)) { 13679 printk(KERN_ERR "lpfc: Cannot re-enable " 13680 "PCI device after reset.\n"); 13681 return PCI_ERS_RESULT_DISCONNECT; 13682 } 13683 13684 pci_restore_state(pdev); 13685 13686 /* 13687 * As the new kernel behavior of pci_restore_state() API call clears 13688 * device saved_state flag, need to save the restored state again. 13689 */ 13690 pci_save_state(pdev); 13691 13692 if (pdev->is_busmaster) 13693 pci_set_master(pdev); 13694 13695 spin_lock_irq(&phba->hbalock); 13696 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 13697 spin_unlock_irq(&phba->hbalock); 13698 13699 /* Configure and enable interrupt */ 13700 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 13701 if (intr_mode == LPFC_INTR_ERROR) { 13702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13703 "2824 Cannot re-enable interrupt after " 13704 "slot reset.\n"); 13705 return PCI_ERS_RESULT_DISCONNECT; 13706 } else 13707 phba->intr_mode = intr_mode; 13708 13709 /* Log the current active interrupt mode */ 13710 lpfc_log_intr_mode(phba, phba->intr_mode); 13711 13712 return PCI_ERS_RESULT_RECOVERED; 13713 } 13714 13715 /** 13716 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 13717 * @pdev: pointer to PCI device 13718 * 13719 * This routine is called from the PCI subsystem for error handling to device 13720 * with SLI-4 interface spec. It is called when kernel error recovery tells 13721 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 13722 * error recovery. After this call, traffic can start to flow from this device 13723 * again. 13724 **/ 13725 static void 13726 lpfc_io_resume_s4(struct pci_dev *pdev) 13727 { 13728 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13729 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13730 13731 /* 13732 * In case of slot reset, as function reset is performed through 13733 * mailbox command which needs DMA to be enabled, this operation 13734 * has to be moved to the io resume phase. Taking device offline 13735 * will perform the necessary cleanup. 13736 */ 13737 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 13738 /* Perform device reset */ 13739 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 13740 lpfc_offline(phba); 13741 lpfc_sli_brdrestart(phba); 13742 /* Bring the device back online */ 13743 lpfc_online(phba); 13744 } 13745 } 13746 13747 /** 13748 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 13749 * @pdev: pointer to PCI device 13750 * @pid: pointer to PCI device identifier 13751 * 13752 * This routine is to be registered to the kernel's PCI subsystem. When an 13753 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 13754 * at PCI device-specific information of the device and driver to see if the 13755 * driver state that it can support this kind of device. If the match is 13756 * successful, the driver core invokes this routine. This routine dispatches 13757 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 13758 * do all the initialization that it needs to do to handle the HBA device 13759 * properly. 13760 * 13761 * Return code 13762 * 0 - driver can claim the device 13763 * negative value - driver can not claim the device 13764 **/ 13765 static int 13766 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 13767 { 13768 int rc; 13769 struct lpfc_sli_intf intf; 13770 13771 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 13772 return -ENODEV; 13773 13774 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 13775 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 13776 rc = lpfc_pci_probe_one_s4(pdev, pid); 13777 else 13778 rc = lpfc_pci_probe_one_s3(pdev, pid); 13779 13780 return rc; 13781 } 13782 13783 /** 13784 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 13785 * @pdev: pointer to PCI device 13786 * 13787 * This routine is to be registered to the kernel's PCI subsystem. When an 13788 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 13789 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 13790 * remove routine, which will perform all the necessary cleanup for the 13791 * device to be removed from the PCI subsystem properly. 13792 **/ 13793 static void 13794 lpfc_pci_remove_one(struct pci_dev *pdev) 13795 { 13796 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13797 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13798 13799 switch (phba->pci_dev_grp) { 13800 case LPFC_PCI_DEV_LP: 13801 lpfc_pci_remove_one_s3(pdev); 13802 break; 13803 case LPFC_PCI_DEV_OC: 13804 lpfc_pci_remove_one_s4(pdev); 13805 break; 13806 default: 13807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13808 "1424 Invalid PCI device group: 0x%x\n", 13809 phba->pci_dev_grp); 13810 break; 13811 } 13812 return; 13813 } 13814 13815 /** 13816 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 13817 * @pdev: pointer to PCI device 13818 * @msg: power management message 13819 * 13820 * This routine is to be registered to the kernel's PCI subsystem to support 13821 * system Power Management (PM). When PM invokes this method, it dispatches 13822 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 13823 * suspend the device. 13824 * 13825 * Return code 13826 * 0 - driver suspended the device 13827 * Error otherwise 13828 **/ 13829 static int 13830 lpfc_pci_suspend_one(struct pci_dev *pdev, pm_message_t msg) 13831 { 13832 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13833 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13834 int rc = -ENODEV; 13835 13836 switch (phba->pci_dev_grp) { 13837 case LPFC_PCI_DEV_LP: 13838 rc = lpfc_pci_suspend_one_s3(pdev, msg); 13839 break; 13840 case LPFC_PCI_DEV_OC: 13841 rc = lpfc_pci_suspend_one_s4(pdev, msg); 13842 break; 13843 default: 13844 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13845 "1425 Invalid PCI device group: 0x%x\n", 13846 phba->pci_dev_grp); 13847 break; 13848 } 13849 return rc; 13850 } 13851 13852 /** 13853 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 13854 * @pdev: pointer to PCI device 13855 * 13856 * This routine is to be registered to the kernel's PCI subsystem to support 13857 * system Power Management (PM). When PM invokes this method, it dispatches 13858 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 13859 * resume the device. 13860 * 13861 * Return code 13862 * 0 - driver suspended the device 13863 * Error otherwise 13864 **/ 13865 static int 13866 lpfc_pci_resume_one(struct pci_dev *pdev) 13867 { 13868 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13869 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13870 int rc = -ENODEV; 13871 13872 switch (phba->pci_dev_grp) { 13873 case LPFC_PCI_DEV_LP: 13874 rc = lpfc_pci_resume_one_s3(pdev); 13875 break; 13876 case LPFC_PCI_DEV_OC: 13877 rc = lpfc_pci_resume_one_s4(pdev); 13878 break; 13879 default: 13880 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13881 "1426 Invalid PCI device group: 0x%x\n", 13882 phba->pci_dev_grp); 13883 break; 13884 } 13885 return rc; 13886 } 13887 13888 /** 13889 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 13890 * @pdev: pointer to PCI device. 13891 * @state: the current PCI connection state. 13892 * 13893 * This routine is registered to the PCI subsystem for error handling. This 13894 * function is called by the PCI subsystem after a PCI bus error affecting 13895 * this device has been detected. When this routine is invoked, it dispatches 13896 * the action to the proper SLI-3 or SLI-4 device error detected handling 13897 * routine, which will perform the proper error detected operation. 13898 * 13899 * Return codes 13900 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 13901 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13902 **/ 13903 static pci_ers_result_t 13904 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 13905 { 13906 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13907 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13908 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 13909 13910 switch (phba->pci_dev_grp) { 13911 case LPFC_PCI_DEV_LP: 13912 rc = lpfc_io_error_detected_s3(pdev, state); 13913 break; 13914 case LPFC_PCI_DEV_OC: 13915 rc = lpfc_io_error_detected_s4(pdev, state); 13916 break; 13917 default: 13918 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13919 "1427 Invalid PCI device group: 0x%x\n", 13920 phba->pci_dev_grp); 13921 break; 13922 } 13923 return rc; 13924 } 13925 13926 /** 13927 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 13928 * @pdev: pointer to PCI device. 13929 * 13930 * This routine is registered to the PCI subsystem for error handling. This 13931 * function is called after PCI bus has been reset to restart the PCI card 13932 * from scratch, as if from a cold-boot. When this routine is invoked, it 13933 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 13934 * routine, which will perform the proper device reset. 13935 * 13936 * Return codes 13937 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 13938 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13939 **/ 13940 static pci_ers_result_t 13941 lpfc_io_slot_reset(struct pci_dev *pdev) 13942 { 13943 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13944 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13945 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 13946 13947 switch (phba->pci_dev_grp) { 13948 case LPFC_PCI_DEV_LP: 13949 rc = lpfc_io_slot_reset_s3(pdev); 13950 break; 13951 case LPFC_PCI_DEV_OC: 13952 rc = lpfc_io_slot_reset_s4(pdev); 13953 break; 13954 default: 13955 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13956 "1428 Invalid PCI device group: 0x%x\n", 13957 phba->pci_dev_grp); 13958 break; 13959 } 13960 return rc; 13961 } 13962 13963 /** 13964 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 13965 * @pdev: pointer to PCI device 13966 * 13967 * This routine is registered to the PCI subsystem for error handling. It 13968 * is called when kernel error recovery tells the lpfc driver that it is 13969 * OK to resume normal PCI operation after PCI bus error recovery. When 13970 * this routine is invoked, it dispatches the action to the proper SLI-3 13971 * or SLI-4 device io_resume routine, which will resume the device operation. 13972 **/ 13973 static void 13974 lpfc_io_resume(struct pci_dev *pdev) 13975 { 13976 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13977 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13978 13979 switch (phba->pci_dev_grp) { 13980 case LPFC_PCI_DEV_LP: 13981 lpfc_io_resume_s3(pdev); 13982 break; 13983 case LPFC_PCI_DEV_OC: 13984 lpfc_io_resume_s4(pdev); 13985 break; 13986 default: 13987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13988 "1429 Invalid PCI device group: 0x%x\n", 13989 phba->pci_dev_grp); 13990 break; 13991 } 13992 return; 13993 } 13994 13995 /** 13996 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 13997 * @phba: pointer to lpfc hba data structure. 13998 * 13999 * This routine checks to see if OAS is supported for this adapter. If 14000 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 14001 * the enable oas flag is cleared and the pool created for OAS device data 14002 * is destroyed. 14003 * 14004 **/ 14005 static void 14006 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 14007 { 14008 14009 if (!phba->cfg_EnableXLane) 14010 return; 14011 14012 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 14013 phba->cfg_fof = 1; 14014 } else { 14015 phba->cfg_fof = 0; 14016 mempool_destroy(phba->device_data_mem_pool); 14017 phba->device_data_mem_pool = NULL; 14018 } 14019 14020 return; 14021 } 14022 14023 /** 14024 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 14025 * @phba: pointer to lpfc hba data structure. 14026 * 14027 * This routine checks to see if RAS is supported by the adapter. Check the 14028 * function through which RAS support enablement is to be done. 14029 **/ 14030 void 14031 lpfc_sli4_ras_init(struct lpfc_hba *phba) 14032 { 14033 switch (phba->pcidev->device) { 14034 case PCI_DEVICE_ID_LANCER_G6_FC: 14035 case PCI_DEVICE_ID_LANCER_G7_FC: 14036 phba->ras_fwlog.ras_hwsupport = true; 14037 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 14038 phba->cfg_ras_fwlog_buffsize) 14039 phba->ras_fwlog.ras_enabled = true; 14040 else 14041 phba->ras_fwlog.ras_enabled = false; 14042 break; 14043 default: 14044 phba->ras_fwlog.ras_hwsupport = false; 14045 } 14046 } 14047 14048 14049 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 14050 14051 static const struct pci_error_handlers lpfc_err_handler = { 14052 .error_detected = lpfc_io_error_detected, 14053 .slot_reset = lpfc_io_slot_reset, 14054 .resume = lpfc_io_resume, 14055 }; 14056 14057 static struct pci_driver lpfc_driver = { 14058 .name = LPFC_DRIVER_NAME, 14059 .id_table = lpfc_id_table, 14060 .probe = lpfc_pci_probe_one, 14061 .remove = lpfc_pci_remove_one, 14062 .shutdown = lpfc_pci_remove_one, 14063 .suspend = lpfc_pci_suspend_one, 14064 .resume = lpfc_pci_resume_one, 14065 .err_handler = &lpfc_err_handler, 14066 }; 14067 14068 static const struct file_operations lpfc_mgmt_fop = { 14069 .owner = THIS_MODULE, 14070 }; 14071 14072 static struct miscdevice lpfc_mgmt_dev = { 14073 .minor = MISC_DYNAMIC_MINOR, 14074 .name = "lpfcmgmt", 14075 .fops = &lpfc_mgmt_fop, 14076 }; 14077 14078 /** 14079 * lpfc_init - lpfc module initialization routine 14080 * 14081 * This routine is to be invoked when the lpfc module is loaded into the 14082 * kernel. The special kernel macro module_init() is used to indicate the 14083 * role of this routine to the kernel as lpfc module entry point. 14084 * 14085 * Return codes 14086 * 0 - successful 14087 * -ENOMEM - FC attach transport failed 14088 * all others - failed 14089 */ 14090 static int __init 14091 lpfc_init(void) 14092 { 14093 int error = 0; 14094 14095 pr_info(LPFC_MODULE_DESC "\n"); 14096 pr_info(LPFC_COPYRIGHT "\n"); 14097 14098 error = misc_register(&lpfc_mgmt_dev); 14099 if (error) 14100 printk(KERN_ERR "Could not register lpfcmgmt device, " 14101 "misc_register returned with status %d", error); 14102 14103 lpfc_transport_functions.vport_create = lpfc_vport_create; 14104 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 14105 lpfc_transport_template = 14106 fc_attach_transport(&lpfc_transport_functions); 14107 if (lpfc_transport_template == NULL) 14108 return -ENOMEM; 14109 lpfc_vport_transport_template = 14110 fc_attach_transport(&lpfc_vport_transport_functions); 14111 if (lpfc_vport_transport_template == NULL) { 14112 fc_release_transport(lpfc_transport_template); 14113 return -ENOMEM; 14114 } 14115 lpfc_nvme_cmd_template(); 14116 lpfc_nvmet_cmd_template(); 14117 14118 /* Initialize in case vector mapping is needed */ 14119 lpfc_present_cpu = num_present_cpus(); 14120 14121 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 14122 "lpfc/sli4:online", 14123 lpfc_cpu_online, lpfc_cpu_offline); 14124 if (error < 0) 14125 goto cpuhp_failure; 14126 lpfc_cpuhp_state = error; 14127 14128 error = pci_register_driver(&lpfc_driver); 14129 if (error) 14130 goto unwind; 14131 14132 return error; 14133 14134 unwind: 14135 cpuhp_remove_multi_state(lpfc_cpuhp_state); 14136 cpuhp_failure: 14137 fc_release_transport(lpfc_transport_template); 14138 fc_release_transport(lpfc_vport_transport_template); 14139 14140 return error; 14141 } 14142 14143 void lpfc_dmp_dbg(struct lpfc_hba *phba) 14144 { 14145 unsigned int start_idx; 14146 unsigned int dbg_cnt; 14147 unsigned int temp_idx; 14148 int i; 14149 int j = 0; 14150 unsigned long rem_nsec; 14151 14152 if (phba->cfg_log_verbose) 14153 return; 14154 14155 if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0) 14156 return; 14157 14158 start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ; 14159 dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt); 14160 temp_idx = start_idx; 14161 if (dbg_cnt >= DBG_LOG_SZ) { 14162 dbg_cnt = DBG_LOG_SZ; 14163 temp_idx -= 1; 14164 } else { 14165 if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) { 14166 temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ; 14167 } else { 14168 if (start_idx < dbg_cnt) 14169 start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx); 14170 else 14171 start_idx -= dbg_cnt; 14172 } 14173 } 14174 dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n", 14175 start_idx, temp_idx, dbg_cnt); 14176 14177 for (i = 0; i < dbg_cnt; i++) { 14178 if ((start_idx + i) < DBG_LOG_SZ) 14179 temp_idx = (start_idx + i) % DBG_LOG_SZ; 14180 else 14181 temp_idx = j++; 14182 rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC); 14183 dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s", 14184 temp_idx, 14185 (unsigned long)phba->dbg_log[temp_idx].t_ns, 14186 rem_nsec / 1000, 14187 phba->dbg_log[temp_idx].log); 14188 } 14189 atomic_set(&phba->dbg_log_cnt, 0); 14190 atomic_set(&phba->dbg_log_dmping, 0); 14191 } 14192 14193 __printf(2, 3) 14194 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...) 14195 { 14196 unsigned int idx; 14197 va_list args; 14198 int dbg_dmping = atomic_read(&phba->dbg_log_dmping); 14199 struct va_format vaf; 14200 14201 14202 va_start(args, fmt); 14203 if (unlikely(dbg_dmping)) { 14204 vaf.fmt = fmt; 14205 vaf.va = &args; 14206 dev_info(&phba->pcidev->dev, "%pV", &vaf); 14207 va_end(args); 14208 return; 14209 } 14210 idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) % 14211 DBG_LOG_SZ; 14212 14213 atomic_inc(&phba->dbg_log_cnt); 14214 14215 vscnprintf(phba->dbg_log[idx].log, 14216 sizeof(phba->dbg_log[idx].log), fmt, args); 14217 va_end(args); 14218 14219 phba->dbg_log[idx].t_ns = local_clock(); 14220 } 14221 14222 /** 14223 * lpfc_exit - lpfc module removal routine 14224 * 14225 * This routine is invoked when the lpfc module is removed from the kernel. 14226 * The special kernel macro module_exit() is used to indicate the role of 14227 * this routine to the kernel as lpfc module exit point. 14228 */ 14229 static void __exit 14230 lpfc_exit(void) 14231 { 14232 misc_deregister(&lpfc_mgmt_dev); 14233 pci_unregister_driver(&lpfc_driver); 14234 cpuhp_remove_multi_state(lpfc_cpuhp_state); 14235 fc_release_transport(lpfc_transport_template); 14236 fc_release_transport(lpfc_vport_transport_template); 14237 idr_destroy(&lpfc_hba_index); 14238 } 14239 14240 module_init(lpfc_init); 14241 module_exit(lpfc_exit); 14242 MODULE_LICENSE("GPL"); 14243 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 14244 MODULE_AUTHOR("Broadcom"); 14245 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 14246