xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision a9d85efb)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/ctype.h>
34 #include <linux/aer.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/msi.h>
40 #include <linux/irq.h>
41 #include <linux/bitops.h>
42 #include <linux/crash_dump.h>
43 #include <linux/cpu.h>
44 #include <linux/cpuhotplug.h>
45 
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_transport_fc.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/fc/fc_fs.h>
52 
53 #include "lpfc_hw4.h"
54 #include "lpfc_hw.h"
55 #include "lpfc_sli.h"
56 #include "lpfc_sli4.h"
57 #include "lpfc_nl.h"
58 #include "lpfc_disc.h"
59 #include "lpfc.h"
60 #include "lpfc_scsi.h"
61 #include "lpfc_nvme.h"
62 #include "lpfc_logmsg.h"
63 #include "lpfc_crtn.h"
64 #include "lpfc_vport.h"
65 #include "lpfc_version.h"
66 #include "lpfc_ids.h"
67 
68 static enum cpuhp_state lpfc_cpuhp_state;
69 /* Used when mapping IRQ vectors in a driver centric manner */
70 static uint32_t lpfc_present_cpu;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 
98 static struct scsi_transport_template *lpfc_transport_template = NULL;
99 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
100 static DEFINE_IDR(lpfc_hba_index);
101 #define LPFC_NVMET_BUF_POST 254
102 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
103 
104 /**
105  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
106  * @phba: pointer to lpfc hba data structure.
107  *
108  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
109  * mailbox command. It retrieves the revision information from the HBA and
110  * collects the Vital Product Data (VPD) about the HBA for preparing the
111  * configuration of the HBA.
112  *
113  * Return codes:
114  *   0 - success.
115  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
116  *   Any other value - indicates an error.
117  **/
118 int
119 lpfc_config_port_prep(struct lpfc_hba *phba)
120 {
121 	lpfc_vpd_t *vp = &phba->vpd;
122 	int i = 0, rc;
123 	LPFC_MBOXQ_t *pmb;
124 	MAILBOX_t *mb;
125 	char *lpfc_vpd_data = NULL;
126 	uint16_t offset = 0;
127 	static char licensed[56] =
128 		    "key unlock for use with gnu public licensed code only\0";
129 	static int init_key = 1;
130 
131 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
132 	if (!pmb) {
133 		phba->link_state = LPFC_HBA_ERROR;
134 		return -ENOMEM;
135 	}
136 
137 	mb = &pmb->u.mb;
138 	phba->link_state = LPFC_INIT_MBX_CMDS;
139 
140 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
141 		if (init_key) {
142 			uint32_t *ptext = (uint32_t *) licensed;
143 
144 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
145 				*ptext = cpu_to_be32(*ptext);
146 			init_key = 0;
147 		}
148 
149 		lpfc_read_nv(phba, pmb);
150 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
151 			sizeof (mb->un.varRDnvp.rsvd3));
152 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
153 			 sizeof (licensed));
154 
155 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
156 
157 		if (rc != MBX_SUCCESS) {
158 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
159 					"0324 Config Port initialization "
160 					"error, mbxCmd x%x READ_NVPARM, "
161 					"mbxStatus x%x\n",
162 					mb->mbxCommand, mb->mbxStatus);
163 			mempool_free(pmb, phba->mbox_mem_pool);
164 			return -ERESTART;
165 		}
166 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
167 		       sizeof(phba->wwnn));
168 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
169 		       sizeof(phba->wwpn));
170 	}
171 
172 	/*
173 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
174 	 * which was already set in lpfc_get_cfgparam()
175 	 */
176 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
177 
178 	/* Setup and issue mailbox READ REV command */
179 	lpfc_read_rev(phba, pmb);
180 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
181 	if (rc != MBX_SUCCESS) {
182 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
183 				"0439 Adapter failed to init, mbxCmd x%x "
184 				"READ_REV, mbxStatus x%x\n",
185 				mb->mbxCommand, mb->mbxStatus);
186 		mempool_free( pmb, phba->mbox_mem_pool);
187 		return -ERESTART;
188 	}
189 
190 
191 	/*
192 	 * The value of rr must be 1 since the driver set the cv field to 1.
193 	 * This setting requires the FW to set all revision fields.
194 	 */
195 	if (mb->un.varRdRev.rr == 0) {
196 		vp->rev.rBit = 0;
197 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
198 				"0440 Adapter failed to init, READ_REV has "
199 				"missing revision information.\n");
200 		mempool_free(pmb, phba->mbox_mem_pool);
201 		return -ERESTART;
202 	}
203 
204 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
205 		mempool_free(pmb, phba->mbox_mem_pool);
206 		return -EINVAL;
207 	}
208 
209 	/* Save information as VPD data */
210 	vp->rev.rBit = 1;
211 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
212 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
213 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
214 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
215 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
216 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
217 	vp->rev.smRev = mb->un.varRdRev.smRev;
218 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
219 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
220 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
221 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
222 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
223 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
224 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
225 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
226 
227 	/* If the sli feature level is less then 9, we must
228 	 * tear down all RPIs and VPIs on link down if NPIV
229 	 * is enabled.
230 	 */
231 	if (vp->rev.feaLevelHigh < 9)
232 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
233 
234 	if (lpfc_is_LC_HBA(phba->pcidev->device))
235 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
236 						sizeof (phba->RandomData));
237 
238 	/* Get adapter VPD information */
239 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
240 	if (!lpfc_vpd_data)
241 		goto out_free_mbox;
242 	do {
243 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
244 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
245 
246 		if (rc != MBX_SUCCESS) {
247 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
248 					"0441 VPD not present on adapter, "
249 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
250 					mb->mbxCommand, mb->mbxStatus);
251 			mb->un.varDmp.word_cnt = 0;
252 		}
253 		/* dump mem may return a zero when finished or we got a
254 		 * mailbox error, either way we are done.
255 		 */
256 		if (mb->un.varDmp.word_cnt == 0)
257 			break;
258 
259 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
260 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
261 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
262 				      lpfc_vpd_data + offset,
263 				      mb->un.varDmp.word_cnt);
264 		offset += mb->un.varDmp.word_cnt;
265 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
266 
267 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
268 
269 	kfree(lpfc_vpd_data);
270 out_free_mbox:
271 	mempool_free(pmb, phba->mbox_mem_pool);
272 	return 0;
273 }
274 
275 /**
276  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
277  * @phba: pointer to lpfc hba data structure.
278  * @pmboxq: pointer to the driver internal queue element for mailbox command.
279  *
280  * This is the completion handler for driver's configuring asynchronous event
281  * mailbox command to the device. If the mailbox command returns successfully,
282  * it will set internal async event support flag to 1; otherwise, it will
283  * set internal async event support flag to 0.
284  **/
285 static void
286 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
287 {
288 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
289 		phba->temp_sensor_support = 1;
290 	else
291 		phba->temp_sensor_support = 0;
292 	mempool_free(pmboxq, phba->mbox_mem_pool);
293 	return;
294 }
295 
296 /**
297  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
298  * @phba: pointer to lpfc hba data structure.
299  * @pmboxq: pointer to the driver internal queue element for mailbox command.
300  *
301  * This is the completion handler for dump mailbox command for getting
302  * wake up parameters. When this command complete, the response contain
303  * Option rom version of the HBA. This function translate the version number
304  * into a human readable string and store it in OptionROMVersion.
305  **/
306 static void
307 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
308 {
309 	struct prog_id *prg;
310 	uint32_t prog_id_word;
311 	char dist = ' ';
312 	/* character array used for decoding dist type. */
313 	char dist_char[] = "nabx";
314 
315 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
316 		mempool_free(pmboxq, phba->mbox_mem_pool);
317 		return;
318 	}
319 
320 	prg = (struct prog_id *) &prog_id_word;
321 
322 	/* word 7 contain option rom version */
323 	prog_id_word = pmboxq->u.mb.un.varWords[7];
324 
325 	/* Decode the Option rom version word to a readable string */
326 	if (prg->dist < 4)
327 		dist = dist_char[prg->dist];
328 
329 	if ((prg->dist == 3) && (prg->num == 0))
330 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
331 			prg->ver, prg->rev, prg->lev);
332 	else
333 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
334 			prg->ver, prg->rev, prg->lev,
335 			dist, prg->num);
336 	mempool_free(pmboxq, phba->mbox_mem_pool);
337 	return;
338 }
339 
340 /**
341  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
342  *	cfg_soft_wwnn, cfg_soft_wwpn
343  * @vport: pointer to lpfc vport data structure.
344  *
345  *
346  * Return codes
347  *   None.
348  **/
349 void
350 lpfc_update_vport_wwn(struct lpfc_vport *vport)
351 {
352 	uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level;
353 	u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0];
354 
355 	/* If the soft name exists then update it using the service params */
356 	if (vport->phba->cfg_soft_wwnn)
357 		u64_to_wwn(vport->phba->cfg_soft_wwnn,
358 			   vport->fc_sparam.nodeName.u.wwn);
359 	if (vport->phba->cfg_soft_wwpn)
360 		u64_to_wwn(vport->phba->cfg_soft_wwpn,
361 			   vport->fc_sparam.portName.u.wwn);
362 
363 	/*
364 	 * If the name is empty or there exists a soft name
365 	 * then copy the service params name, otherwise use the fc name
366 	 */
367 	if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn)
368 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
369 			sizeof(struct lpfc_name));
370 	else
371 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
372 			sizeof(struct lpfc_name));
373 
374 	/*
375 	 * If the port name has changed, then set the Param changes flag
376 	 * to unreg the login
377 	 */
378 	if (vport->fc_portname.u.wwn[0] != 0 &&
379 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
380 			sizeof(struct lpfc_name)))
381 		vport->vport_flag |= FAWWPN_PARAM_CHG;
382 
383 	if (vport->fc_portname.u.wwn[0] == 0 ||
384 	    vport->phba->cfg_soft_wwpn ||
385 	    (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) ||
386 	    vport->vport_flag & FAWWPN_SET) {
387 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
388 			sizeof(struct lpfc_name));
389 		vport->vport_flag &= ~FAWWPN_SET;
390 		if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR)
391 			vport->vport_flag |= FAWWPN_SET;
392 	}
393 	else
394 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
395 			sizeof(struct lpfc_name));
396 }
397 
398 /**
399  * lpfc_config_port_post - Perform lpfc initialization after config port
400  * @phba: pointer to lpfc hba data structure.
401  *
402  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
403  * command call. It performs all internal resource and state setups on the
404  * port: post IOCB buffers, enable appropriate host interrupt attentions,
405  * ELS ring timers, etc.
406  *
407  * Return codes
408  *   0 - success.
409  *   Any other value - error.
410  **/
411 int
412 lpfc_config_port_post(struct lpfc_hba *phba)
413 {
414 	struct lpfc_vport *vport = phba->pport;
415 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
416 	LPFC_MBOXQ_t *pmb;
417 	MAILBOX_t *mb;
418 	struct lpfc_dmabuf *mp;
419 	struct lpfc_sli *psli = &phba->sli;
420 	uint32_t status, timeout;
421 	int i, j;
422 	int rc;
423 
424 	spin_lock_irq(&phba->hbalock);
425 	/*
426 	 * If the Config port completed correctly the HBA is not
427 	 * over heated any more.
428 	 */
429 	if (phba->over_temp_state == HBA_OVER_TEMP)
430 		phba->over_temp_state = HBA_NORMAL_TEMP;
431 	spin_unlock_irq(&phba->hbalock);
432 
433 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
434 	if (!pmb) {
435 		phba->link_state = LPFC_HBA_ERROR;
436 		return -ENOMEM;
437 	}
438 	mb = &pmb->u.mb;
439 
440 	/* Get login parameters for NID.  */
441 	rc = lpfc_read_sparam(phba, pmb, 0);
442 	if (rc) {
443 		mempool_free(pmb, phba->mbox_mem_pool);
444 		return -ENOMEM;
445 	}
446 
447 	pmb->vport = vport;
448 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
449 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
450 				"0448 Adapter failed init, mbxCmd x%x "
451 				"READ_SPARM mbxStatus x%x\n",
452 				mb->mbxCommand, mb->mbxStatus);
453 		phba->link_state = LPFC_HBA_ERROR;
454 		mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
455 		mempool_free(pmb, phba->mbox_mem_pool);
456 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
457 		kfree(mp);
458 		return -EIO;
459 	}
460 
461 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
462 
463 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
464 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
465 	kfree(mp);
466 	pmb->ctx_buf = NULL;
467 	lpfc_update_vport_wwn(vport);
468 
469 	/* Update the fc_host data structures with new wwn. */
470 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
471 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
472 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
473 
474 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
475 	/* This should be consolidated into parse_vpd ? - mr */
476 	if (phba->SerialNumber[0] == 0) {
477 		uint8_t *outptr;
478 
479 		outptr = &vport->fc_nodename.u.s.IEEE[0];
480 		for (i = 0; i < 12; i++) {
481 			status = *outptr++;
482 			j = ((status & 0xf0) >> 4);
483 			if (j <= 9)
484 				phba->SerialNumber[i] =
485 				    (char)((uint8_t) 0x30 + (uint8_t) j);
486 			else
487 				phba->SerialNumber[i] =
488 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
489 			i++;
490 			j = (status & 0xf);
491 			if (j <= 9)
492 				phba->SerialNumber[i] =
493 				    (char)((uint8_t) 0x30 + (uint8_t) j);
494 			else
495 				phba->SerialNumber[i] =
496 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
497 		}
498 	}
499 
500 	lpfc_read_config(phba, pmb);
501 	pmb->vport = vport;
502 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
503 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
504 				"0453 Adapter failed to init, mbxCmd x%x "
505 				"READ_CONFIG, mbxStatus x%x\n",
506 				mb->mbxCommand, mb->mbxStatus);
507 		phba->link_state = LPFC_HBA_ERROR;
508 		mempool_free( pmb, phba->mbox_mem_pool);
509 		return -EIO;
510 	}
511 
512 	/* Check if the port is disabled */
513 	lpfc_sli_read_link_ste(phba);
514 
515 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
516 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
517 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
518 				"3359 HBA queue depth changed from %d to %d\n",
519 				phba->cfg_hba_queue_depth,
520 				mb->un.varRdConfig.max_xri);
521 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
522 	}
523 
524 	phba->lmt = mb->un.varRdConfig.lmt;
525 
526 	/* Get the default values for Model Name and Description */
527 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
528 
529 	phba->link_state = LPFC_LINK_DOWN;
530 
531 	/* Only process IOCBs on ELS ring till hba_state is READY */
532 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
533 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
534 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
535 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
536 
537 	/* Post receive buffers for desired rings */
538 	if (phba->sli_rev != 3)
539 		lpfc_post_rcv_buf(phba);
540 
541 	/*
542 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
543 	 */
544 	if (phba->intr_type == MSIX) {
545 		rc = lpfc_config_msi(phba, pmb);
546 		if (rc) {
547 			mempool_free(pmb, phba->mbox_mem_pool);
548 			return -EIO;
549 		}
550 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
551 		if (rc != MBX_SUCCESS) {
552 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
553 					"0352 Config MSI mailbox command "
554 					"failed, mbxCmd x%x, mbxStatus x%x\n",
555 					pmb->u.mb.mbxCommand,
556 					pmb->u.mb.mbxStatus);
557 			mempool_free(pmb, phba->mbox_mem_pool);
558 			return -EIO;
559 		}
560 	}
561 
562 	spin_lock_irq(&phba->hbalock);
563 	/* Initialize ERATT handling flag */
564 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
565 
566 	/* Enable appropriate host interrupts */
567 	if (lpfc_readl(phba->HCregaddr, &status)) {
568 		spin_unlock_irq(&phba->hbalock);
569 		return -EIO;
570 	}
571 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
572 	if (psli->num_rings > 0)
573 		status |= HC_R0INT_ENA;
574 	if (psli->num_rings > 1)
575 		status |= HC_R1INT_ENA;
576 	if (psli->num_rings > 2)
577 		status |= HC_R2INT_ENA;
578 	if (psli->num_rings > 3)
579 		status |= HC_R3INT_ENA;
580 
581 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
582 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
583 		status &= ~(HC_R0INT_ENA);
584 
585 	writel(status, phba->HCregaddr);
586 	readl(phba->HCregaddr); /* flush */
587 	spin_unlock_irq(&phba->hbalock);
588 
589 	/* Set up ring-0 (ELS) timer */
590 	timeout = phba->fc_ratov * 2;
591 	mod_timer(&vport->els_tmofunc,
592 		  jiffies + msecs_to_jiffies(1000 * timeout));
593 	/* Set up heart beat (HB) timer */
594 	mod_timer(&phba->hb_tmofunc,
595 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
596 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
597 	phba->last_completion_time = jiffies;
598 	/* Set up error attention (ERATT) polling timer */
599 	mod_timer(&phba->eratt_poll,
600 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
601 
602 	if (phba->hba_flag & LINK_DISABLED) {
603 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
604 				"2598 Adapter Link is disabled.\n");
605 		lpfc_down_link(phba, pmb);
606 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
607 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
608 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
609 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
610 					"2599 Adapter failed to issue DOWN_LINK"
611 					" mbox command rc 0x%x\n", rc);
612 
613 			mempool_free(pmb, phba->mbox_mem_pool);
614 			return -EIO;
615 		}
616 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
617 		mempool_free(pmb, phba->mbox_mem_pool);
618 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
619 		if (rc)
620 			return rc;
621 	}
622 	/* MBOX buffer will be freed in mbox compl */
623 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
624 	if (!pmb) {
625 		phba->link_state = LPFC_HBA_ERROR;
626 		return -ENOMEM;
627 	}
628 
629 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
630 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
631 	pmb->vport = phba->pport;
632 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
633 
634 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
635 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
636 				"0456 Adapter failed to issue "
637 				"ASYNCEVT_ENABLE mbox status x%x\n",
638 				rc);
639 		mempool_free(pmb, phba->mbox_mem_pool);
640 	}
641 
642 	/* Get Option rom version */
643 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
644 	if (!pmb) {
645 		phba->link_state = LPFC_HBA_ERROR;
646 		return -ENOMEM;
647 	}
648 
649 	lpfc_dump_wakeup_param(phba, pmb);
650 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
651 	pmb->vport = phba->pport;
652 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
653 
654 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
655 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
656 				"0435 Adapter failed "
657 				"to get Option ROM version status x%x\n", rc);
658 		mempool_free(pmb, phba->mbox_mem_pool);
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  * lpfc_hba_init_link - Initialize the FC link
666  * @phba: pointer to lpfc hba data structure.
667  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
668  *
669  * This routine will issue the INIT_LINK mailbox command call.
670  * It is available to other drivers through the lpfc_hba data
671  * structure for use as a delayed link up mechanism with the
672  * module parameter lpfc_suppress_link_up.
673  *
674  * Return code
675  *		0 - success
676  *		Any other value - error
677  **/
678 static int
679 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
680 {
681 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
682 }
683 
684 /**
685  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
686  * @phba: pointer to lpfc hba data structure.
687  * @fc_topology: desired fc topology.
688  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
689  *
690  * This routine will issue the INIT_LINK mailbox command call.
691  * It is available to other drivers through the lpfc_hba data
692  * structure for use as a delayed link up mechanism with the
693  * module parameter lpfc_suppress_link_up.
694  *
695  * Return code
696  *              0 - success
697  *              Any other value - error
698  **/
699 int
700 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
701 			       uint32_t flag)
702 {
703 	struct lpfc_vport *vport = phba->pport;
704 	LPFC_MBOXQ_t *pmb;
705 	MAILBOX_t *mb;
706 	int rc;
707 
708 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
709 	if (!pmb) {
710 		phba->link_state = LPFC_HBA_ERROR;
711 		return -ENOMEM;
712 	}
713 	mb = &pmb->u.mb;
714 	pmb->vport = vport;
715 
716 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
717 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
718 	     !(phba->lmt & LMT_1Gb)) ||
719 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
720 	     !(phba->lmt & LMT_2Gb)) ||
721 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
722 	     !(phba->lmt & LMT_4Gb)) ||
723 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
724 	     !(phba->lmt & LMT_8Gb)) ||
725 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
726 	     !(phba->lmt & LMT_10Gb)) ||
727 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
728 	     !(phba->lmt & LMT_16Gb)) ||
729 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
730 	     !(phba->lmt & LMT_32Gb)) ||
731 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
732 	     !(phba->lmt & LMT_64Gb))) {
733 		/* Reset link speed to auto */
734 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
735 				"1302 Invalid speed for this board:%d "
736 				"Reset link speed to auto.\n",
737 				phba->cfg_link_speed);
738 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
739 	}
740 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
741 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
742 	if (phba->sli_rev < LPFC_SLI_REV4)
743 		lpfc_set_loopback_flag(phba);
744 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
745 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
746 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
747 				"0498 Adapter failed to init, mbxCmd x%x "
748 				"INIT_LINK, mbxStatus x%x\n",
749 				mb->mbxCommand, mb->mbxStatus);
750 		if (phba->sli_rev <= LPFC_SLI_REV3) {
751 			/* Clear all interrupt enable conditions */
752 			writel(0, phba->HCregaddr);
753 			readl(phba->HCregaddr); /* flush */
754 			/* Clear all pending interrupts */
755 			writel(0xffffffff, phba->HAregaddr);
756 			readl(phba->HAregaddr); /* flush */
757 		}
758 		phba->link_state = LPFC_HBA_ERROR;
759 		if (rc != MBX_BUSY || flag == MBX_POLL)
760 			mempool_free(pmb, phba->mbox_mem_pool);
761 		return -EIO;
762 	}
763 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
764 	if (flag == MBX_POLL)
765 		mempool_free(pmb, phba->mbox_mem_pool);
766 
767 	return 0;
768 }
769 
770 /**
771  * lpfc_hba_down_link - this routine downs the FC link
772  * @phba: pointer to lpfc hba data structure.
773  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
774  *
775  * This routine will issue the DOWN_LINK mailbox command call.
776  * It is available to other drivers through the lpfc_hba data
777  * structure for use to stop the link.
778  *
779  * Return code
780  *		0 - success
781  *		Any other value - error
782  **/
783 static int
784 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
785 {
786 	LPFC_MBOXQ_t *pmb;
787 	int rc;
788 
789 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
790 	if (!pmb) {
791 		phba->link_state = LPFC_HBA_ERROR;
792 		return -ENOMEM;
793 	}
794 
795 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
796 			"0491 Adapter Link is disabled.\n");
797 	lpfc_down_link(phba, pmb);
798 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
799 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
800 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
801 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
802 				"2522 Adapter failed to issue DOWN_LINK"
803 				" mbox command rc 0x%x\n", rc);
804 
805 		mempool_free(pmb, phba->mbox_mem_pool);
806 		return -EIO;
807 	}
808 	if (flag == MBX_POLL)
809 		mempool_free(pmb, phba->mbox_mem_pool);
810 
811 	return 0;
812 }
813 
814 /**
815  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
816  * @phba: pointer to lpfc HBA data structure.
817  *
818  * This routine will do LPFC uninitialization before the HBA is reset when
819  * bringing down the SLI Layer.
820  *
821  * Return codes
822  *   0 - success.
823  *   Any other value - error.
824  **/
825 int
826 lpfc_hba_down_prep(struct lpfc_hba *phba)
827 {
828 	struct lpfc_vport **vports;
829 	int i;
830 
831 	if (phba->sli_rev <= LPFC_SLI_REV3) {
832 		/* Disable interrupts */
833 		writel(0, phba->HCregaddr);
834 		readl(phba->HCregaddr); /* flush */
835 	}
836 
837 	if (phba->pport->load_flag & FC_UNLOADING)
838 		lpfc_cleanup_discovery_resources(phba->pport);
839 	else {
840 		vports = lpfc_create_vport_work_array(phba);
841 		if (vports != NULL)
842 			for (i = 0; i <= phba->max_vports &&
843 				vports[i] != NULL; i++)
844 				lpfc_cleanup_discovery_resources(vports[i]);
845 		lpfc_destroy_vport_work_array(phba, vports);
846 	}
847 	return 0;
848 }
849 
850 /**
851  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
852  * rspiocb which got deferred
853  *
854  * @phba: pointer to lpfc HBA data structure.
855  *
856  * This routine will cleanup completed slow path events after HBA is reset
857  * when bringing down the SLI Layer.
858  *
859  *
860  * Return codes
861  *   void.
862  **/
863 static void
864 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
865 {
866 	struct lpfc_iocbq *rspiocbq;
867 	struct hbq_dmabuf *dmabuf;
868 	struct lpfc_cq_event *cq_event;
869 
870 	spin_lock_irq(&phba->hbalock);
871 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
872 	spin_unlock_irq(&phba->hbalock);
873 
874 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
875 		/* Get the response iocb from the head of work queue */
876 		spin_lock_irq(&phba->hbalock);
877 		list_remove_head(&phba->sli4_hba.sp_queue_event,
878 				 cq_event, struct lpfc_cq_event, list);
879 		spin_unlock_irq(&phba->hbalock);
880 
881 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
882 		case CQE_CODE_COMPL_WQE:
883 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
884 						 cq_event);
885 			lpfc_sli_release_iocbq(phba, rspiocbq);
886 			break;
887 		case CQE_CODE_RECEIVE:
888 		case CQE_CODE_RECEIVE_V1:
889 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
890 					      cq_event);
891 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
892 		}
893 	}
894 }
895 
896 /**
897  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
898  * @phba: pointer to lpfc HBA data structure.
899  *
900  * This routine will cleanup posted ELS buffers after the HBA is reset
901  * when bringing down the SLI Layer.
902  *
903  *
904  * Return codes
905  *   void.
906  **/
907 static void
908 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
909 {
910 	struct lpfc_sli *psli = &phba->sli;
911 	struct lpfc_sli_ring *pring;
912 	struct lpfc_dmabuf *mp, *next_mp;
913 	LIST_HEAD(buflist);
914 	int count;
915 
916 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
917 		lpfc_sli_hbqbuf_free_all(phba);
918 	else {
919 		/* Cleanup preposted buffers on the ELS ring */
920 		pring = &psli->sli3_ring[LPFC_ELS_RING];
921 		spin_lock_irq(&phba->hbalock);
922 		list_splice_init(&pring->postbufq, &buflist);
923 		spin_unlock_irq(&phba->hbalock);
924 
925 		count = 0;
926 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
927 			list_del(&mp->list);
928 			count++;
929 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
930 			kfree(mp);
931 		}
932 
933 		spin_lock_irq(&phba->hbalock);
934 		pring->postbufq_cnt -= count;
935 		spin_unlock_irq(&phba->hbalock);
936 	}
937 }
938 
939 /**
940  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
941  * @phba: pointer to lpfc HBA data structure.
942  *
943  * This routine will cleanup the txcmplq after the HBA is reset when bringing
944  * down the SLI Layer.
945  *
946  * Return codes
947  *   void
948  **/
949 static void
950 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
951 {
952 	struct lpfc_sli *psli = &phba->sli;
953 	struct lpfc_queue *qp = NULL;
954 	struct lpfc_sli_ring *pring;
955 	LIST_HEAD(completions);
956 	int i;
957 	struct lpfc_iocbq *piocb, *next_iocb;
958 
959 	if (phba->sli_rev != LPFC_SLI_REV4) {
960 		for (i = 0; i < psli->num_rings; i++) {
961 			pring = &psli->sli3_ring[i];
962 			spin_lock_irq(&phba->hbalock);
963 			/* At this point in time the HBA is either reset or DOA
964 			 * Nothing should be on txcmplq as it will
965 			 * NEVER complete.
966 			 */
967 			list_splice_init(&pring->txcmplq, &completions);
968 			pring->txcmplq_cnt = 0;
969 			spin_unlock_irq(&phba->hbalock);
970 
971 			lpfc_sli_abort_iocb_ring(phba, pring);
972 		}
973 		/* Cancel all the IOCBs from the completions list */
974 		lpfc_sli_cancel_iocbs(phba, &completions,
975 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
976 		return;
977 	}
978 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
979 		pring = qp->pring;
980 		if (!pring)
981 			continue;
982 		spin_lock_irq(&pring->ring_lock);
983 		list_for_each_entry_safe(piocb, next_iocb,
984 					 &pring->txcmplq, list)
985 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
986 		list_splice_init(&pring->txcmplq, &completions);
987 		pring->txcmplq_cnt = 0;
988 		spin_unlock_irq(&pring->ring_lock);
989 		lpfc_sli_abort_iocb_ring(phba, pring);
990 	}
991 	/* Cancel all the IOCBs from the completions list */
992 	lpfc_sli_cancel_iocbs(phba, &completions,
993 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
994 }
995 
996 /**
997  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
998  * @phba: pointer to lpfc HBA data structure.
999  *
1000  * This routine will do uninitialization after the HBA is reset when bring
1001  * down the SLI Layer.
1002  *
1003  * Return codes
1004  *   0 - success.
1005  *   Any other value - error.
1006  **/
1007 static int
1008 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1009 {
1010 	lpfc_hba_free_post_buf(phba);
1011 	lpfc_hba_clean_txcmplq(phba);
1012 	return 0;
1013 }
1014 
1015 /**
1016  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1017  * @phba: pointer to lpfc HBA data structure.
1018  *
1019  * This routine will do uninitialization after the HBA is reset when bring
1020  * down the SLI Layer.
1021  *
1022  * Return codes
1023  *   0 - success.
1024  *   Any other value - error.
1025  **/
1026 static int
1027 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1028 {
1029 	struct lpfc_io_buf *psb, *psb_next;
1030 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1031 	struct lpfc_sli4_hdw_queue *qp;
1032 	LIST_HEAD(aborts);
1033 	LIST_HEAD(nvme_aborts);
1034 	LIST_HEAD(nvmet_aborts);
1035 	struct lpfc_sglq *sglq_entry = NULL;
1036 	int cnt, idx;
1037 
1038 
1039 	lpfc_sli_hbqbuf_free_all(phba);
1040 	lpfc_hba_clean_txcmplq(phba);
1041 
1042 	/* At this point in time the HBA is either reset or DOA. Either
1043 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1044 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1045 	 * driver is unloading or reposted if the driver is restarting
1046 	 * the port.
1047 	 */
1048 
1049 	/* sgl_list_lock required because worker thread uses this
1050 	 * list.
1051 	 */
1052 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1053 	list_for_each_entry(sglq_entry,
1054 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1055 		sglq_entry->state = SGL_FREED;
1056 
1057 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1058 			&phba->sli4_hba.lpfc_els_sgl_list);
1059 
1060 
1061 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1062 
1063 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1064 	 * list.
1065 	 */
1066 	spin_lock_irq(&phba->hbalock);
1067 	cnt = 0;
1068 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1069 		qp = &phba->sli4_hba.hdwq[idx];
1070 
1071 		spin_lock(&qp->abts_io_buf_list_lock);
1072 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1073 				 &aborts);
1074 
1075 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1076 			psb->pCmd = NULL;
1077 			psb->status = IOSTAT_SUCCESS;
1078 			cnt++;
1079 		}
1080 		spin_lock(&qp->io_buf_list_put_lock);
1081 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1082 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1083 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1084 		qp->abts_scsi_io_bufs = 0;
1085 		qp->abts_nvme_io_bufs = 0;
1086 		spin_unlock(&qp->io_buf_list_put_lock);
1087 		spin_unlock(&qp->abts_io_buf_list_lock);
1088 	}
1089 	spin_unlock_irq(&phba->hbalock);
1090 
1091 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1092 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1093 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1094 				 &nvmet_aborts);
1095 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1096 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1097 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1098 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1099 		}
1100 	}
1101 
1102 	lpfc_sli4_free_sp_events(phba);
1103 	return cnt;
1104 }
1105 
1106 /**
1107  * lpfc_hba_down_post - Wrapper func for hba down post routine
1108  * @phba: pointer to lpfc HBA data structure.
1109  *
1110  * This routine wraps the actual SLI3 or SLI4 routine for performing
1111  * uninitialization after the HBA is reset when bring down the SLI Layer.
1112  *
1113  * Return codes
1114  *   0 - success.
1115  *   Any other value - error.
1116  **/
1117 int
1118 lpfc_hba_down_post(struct lpfc_hba *phba)
1119 {
1120 	return (*phba->lpfc_hba_down_post)(phba);
1121 }
1122 
1123 /**
1124  * lpfc_hb_timeout - The HBA-timer timeout handler
1125  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1126  *
1127  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1128  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1129  * work-port-events bitmap and the worker thread is notified. This timeout
1130  * event will be used by the worker thread to invoke the actual timeout
1131  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1132  * be performed in the timeout handler and the HBA timeout event bit shall
1133  * be cleared by the worker thread after it has taken the event bitmap out.
1134  **/
1135 static void
1136 lpfc_hb_timeout(struct timer_list *t)
1137 {
1138 	struct lpfc_hba *phba;
1139 	uint32_t tmo_posted;
1140 	unsigned long iflag;
1141 
1142 	phba = from_timer(phba, t, hb_tmofunc);
1143 
1144 	/* Check for heart beat timeout conditions */
1145 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1146 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1147 	if (!tmo_posted)
1148 		phba->pport->work_port_events |= WORKER_HB_TMO;
1149 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1150 
1151 	/* Tell the worker thread there is work to do */
1152 	if (!tmo_posted)
1153 		lpfc_worker_wake_up(phba);
1154 	return;
1155 }
1156 
1157 /**
1158  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1159  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1160  *
1161  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1162  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1163  * work-port-events bitmap and the worker thread is notified. This timeout
1164  * event will be used by the worker thread to invoke the actual timeout
1165  * handler routine, lpfc_rrq_handler. Any periodical operations will
1166  * be performed in the timeout handler and the RRQ timeout event bit shall
1167  * be cleared by the worker thread after it has taken the event bitmap out.
1168  **/
1169 static void
1170 lpfc_rrq_timeout(struct timer_list *t)
1171 {
1172 	struct lpfc_hba *phba;
1173 	unsigned long iflag;
1174 
1175 	phba = from_timer(phba, t, rrq_tmr);
1176 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1177 	if (!(phba->pport->load_flag & FC_UNLOADING))
1178 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1179 	else
1180 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1181 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1182 
1183 	if (!(phba->pport->load_flag & FC_UNLOADING))
1184 		lpfc_worker_wake_up(phba);
1185 }
1186 
1187 /**
1188  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1189  * @phba: pointer to lpfc hba data structure.
1190  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1191  *
1192  * This is the callback function to the lpfc heart-beat mailbox command.
1193  * If configured, the lpfc driver issues the heart-beat mailbox command to
1194  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1195  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1196  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1197  * heart-beat outstanding state. Once the mailbox command comes back and
1198  * no error conditions detected, the heart-beat mailbox command timer is
1199  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1200  * state is cleared for the next heart-beat. If the timer expired with the
1201  * heart-beat outstanding state set, the driver will put the HBA offline.
1202  **/
1203 static void
1204 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1205 {
1206 	unsigned long drvr_flag;
1207 
1208 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1209 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1210 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1211 
1212 	/* Check and reset heart-beat timer if necessary */
1213 	mempool_free(pmboxq, phba->mbox_mem_pool);
1214 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1215 		!(phba->link_state == LPFC_HBA_ERROR) &&
1216 		!(phba->pport->load_flag & FC_UNLOADING))
1217 		mod_timer(&phba->hb_tmofunc,
1218 			  jiffies +
1219 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1220 	return;
1221 }
1222 
1223 /*
1224  * lpfc_idle_stat_delay_work - idle_stat tracking
1225  *
1226  * This routine tracks per-cq idle_stat and determines polling decisions.
1227  *
1228  * Return codes:
1229  *   None
1230  **/
1231 static void
1232 lpfc_idle_stat_delay_work(struct work_struct *work)
1233 {
1234 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1235 					     struct lpfc_hba,
1236 					     idle_stat_delay_work);
1237 	struct lpfc_queue *cq;
1238 	struct lpfc_sli4_hdw_queue *hdwq;
1239 	struct lpfc_idle_stat *idle_stat;
1240 	u32 i, idle_percent;
1241 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1242 
1243 	if (phba->pport->load_flag & FC_UNLOADING)
1244 		return;
1245 
1246 	if (phba->link_state == LPFC_HBA_ERROR ||
1247 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1248 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1249 		goto requeue;
1250 
1251 	for_each_present_cpu(i) {
1252 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1253 		cq = hdwq->io_cq;
1254 
1255 		/* Skip if we've already handled this cq's primary CPU */
1256 		if (cq->chann != i)
1257 			continue;
1258 
1259 		idle_stat = &phba->sli4_hba.idle_stat[i];
1260 
1261 		/* get_cpu_idle_time returns values as running counters. Thus,
1262 		 * to know the amount for this period, the prior counter values
1263 		 * need to be subtracted from the current counter values.
1264 		 * From there, the idle time stat can be calculated as a
1265 		 * percentage of 100 - the sum of the other consumption times.
1266 		 */
1267 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1268 		diff_idle = wall_idle - idle_stat->prev_idle;
1269 		diff_wall = wall - idle_stat->prev_wall;
1270 
1271 		if (diff_wall <= diff_idle)
1272 			busy_time = 0;
1273 		else
1274 			busy_time = diff_wall - diff_idle;
1275 
1276 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1277 		idle_percent = 100 - idle_percent;
1278 
1279 		if (idle_percent < 15)
1280 			cq->poll_mode = LPFC_QUEUE_WORK;
1281 		else
1282 			cq->poll_mode = LPFC_IRQ_POLL;
1283 
1284 		idle_stat->prev_idle = wall_idle;
1285 		idle_stat->prev_wall = wall;
1286 	}
1287 
1288 requeue:
1289 	schedule_delayed_work(&phba->idle_stat_delay_work,
1290 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1291 }
1292 
1293 static void
1294 lpfc_hb_eq_delay_work(struct work_struct *work)
1295 {
1296 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1297 					     struct lpfc_hba, eq_delay_work);
1298 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1299 	struct lpfc_queue *eq, *eq_next;
1300 	unsigned char *ena_delay = NULL;
1301 	uint32_t usdelay;
1302 	int i;
1303 
1304 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1305 		return;
1306 
1307 	if (phba->link_state == LPFC_HBA_ERROR ||
1308 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1309 		goto requeue;
1310 
1311 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1312 			    GFP_KERNEL);
1313 	if (!ena_delay)
1314 		goto requeue;
1315 
1316 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1317 		/* Get the EQ corresponding to the IRQ vector */
1318 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1319 		if (!eq)
1320 			continue;
1321 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1322 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1323 			ena_delay[eq->last_cpu] = 1;
1324 		}
1325 	}
1326 
1327 	for_each_present_cpu(i) {
1328 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1329 		if (ena_delay[i]) {
1330 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1331 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1332 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1333 		} else {
1334 			usdelay = 0;
1335 		}
1336 
1337 		eqi->icnt = 0;
1338 
1339 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1340 			if (unlikely(eq->last_cpu != i)) {
1341 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1342 						      eq->last_cpu);
1343 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1344 				continue;
1345 			}
1346 			if (usdelay != eq->q_mode)
1347 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1348 							 usdelay);
1349 		}
1350 	}
1351 
1352 	kfree(ena_delay);
1353 
1354 requeue:
1355 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1356 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1357 }
1358 
1359 /**
1360  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1361  * @phba: pointer to lpfc hba data structure.
1362  *
1363  * For each heartbeat, this routine does some heuristic methods to adjust
1364  * XRI distribution. The goal is to fully utilize free XRIs.
1365  **/
1366 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1367 {
1368 	u32 i;
1369 	u32 hwq_count;
1370 
1371 	hwq_count = phba->cfg_hdw_queue;
1372 	for (i = 0; i < hwq_count; i++) {
1373 		/* Adjust XRIs in private pool */
1374 		lpfc_adjust_pvt_pool_count(phba, i);
1375 
1376 		/* Adjust high watermark */
1377 		lpfc_adjust_high_watermark(phba, i);
1378 
1379 #ifdef LPFC_MXP_STAT
1380 		/* Snapshot pbl, pvt and busy count */
1381 		lpfc_snapshot_mxp(phba, i);
1382 #endif
1383 	}
1384 }
1385 
1386 /**
1387  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1388  * @phba: pointer to lpfc hba data structure.
1389  *
1390  * If a HB mbox is not already in progrees, this routine will allocate
1391  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1392  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1393  **/
1394 int
1395 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1396 {
1397 	LPFC_MBOXQ_t *pmboxq;
1398 	int retval;
1399 
1400 	/* Is a Heartbeat mbox already in progress */
1401 	if (phba->hba_flag & HBA_HBEAT_INP)
1402 		return 0;
1403 
1404 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1405 	if (!pmboxq)
1406 		return -ENOMEM;
1407 
1408 	lpfc_heart_beat(phba, pmboxq);
1409 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1410 	pmboxq->vport = phba->pport;
1411 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1412 
1413 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1414 		mempool_free(pmboxq, phba->mbox_mem_pool);
1415 		return -ENXIO;
1416 	}
1417 	phba->hba_flag |= HBA_HBEAT_INP;
1418 
1419 	return 0;
1420 }
1421 
1422 /**
1423  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1424  * @phba: pointer to lpfc hba data structure.
1425  *
1426  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1427  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1428  * of the value of lpfc_enable_hba_heartbeat.
1429  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1430  * try to issue a MBX_HEARTBEAT mbox command.
1431  **/
1432 void
1433 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1434 {
1435 	if (phba->cfg_enable_hba_heartbeat)
1436 		return;
1437 	phba->hba_flag |= HBA_HBEAT_TMO;
1438 }
1439 
1440 /**
1441  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1442  * @phba: pointer to lpfc hba data structure.
1443  *
1444  * This is the actual HBA-timer timeout handler to be invoked by the worker
1445  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1446  * handler performs any periodic operations needed for the device. If such
1447  * periodic event has already been attended to either in the interrupt handler
1448  * or by processing slow-ring or fast-ring events within the HBA-timer
1449  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1450  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1451  * is configured and there is no heart-beat mailbox command outstanding, a
1452  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1453  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1454  * to offline.
1455  **/
1456 void
1457 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1458 {
1459 	struct lpfc_vport **vports;
1460 	struct lpfc_dmabuf *buf_ptr;
1461 	int retval = 0;
1462 	int i, tmo;
1463 	struct lpfc_sli *psli = &phba->sli;
1464 	LIST_HEAD(completions);
1465 
1466 	if (phba->cfg_xri_rebalancing) {
1467 		/* Multi-XRI pools handler */
1468 		lpfc_hb_mxp_handler(phba);
1469 	}
1470 
1471 	vports = lpfc_create_vport_work_array(phba);
1472 	if (vports != NULL)
1473 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1474 			lpfc_rcv_seq_check_edtov(vports[i]);
1475 			lpfc_fdmi_change_check(vports[i]);
1476 		}
1477 	lpfc_destroy_vport_work_array(phba, vports);
1478 
1479 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1480 		(phba->pport->load_flag & FC_UNLOADING) ||
1481 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1482 		return;
1483 
1484 	if (phba->elsbuf_cnt &&
1485 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1486 		spin_lock_irq(&phba->hbalock);
1487 		list_splice_init(&phba->elsbuf, &completions);
1488 		phba->elsbuf_cnt = 0;
1489 		phba->elsbuf_prev_cnt = 0;
1490 		spin_unlock_irq(&phba->hbalock);
1491 
1492 		while (!list_empty(&completions)) {
1493 			list_remove_head(&completions, buf_ptr,
1494 				struct lpfc_dmabuf, list);
1495 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1496 			kfree(buf_ptr);
1497 		}
1498 	}
1499 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1500 
1501 	/* If there is no heart beat outstanding, issue a heartbeat command */
1502 	if (phba->cfg_enable_hba_heartbeat) {
1503 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1504 		spin_lock_irq(&phba->pport->work_port_lock);
1505 		if (time_after(phba->last_completion_time +
1506 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1507 				jiffies)) {
1508 			spin_unlock_irq(&phba->pport->work_port_lock);
1509 			if (phba->hba_flag & HBA_HBEAT_INP)
1510 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1511 			else
1512 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1513 			goto out;
1514 		}
1515 		spin_unlock_irq(&phba->pport->work_port_lock);
1516 
1517 		/* Check if a MBX_HEARTBEAT is already in progress */
1518 		if (phba->hba_flag & HBA_HBEAT_INP) {
1519 			/*
1520 			 * If heart beat timeout called with HBA_HBEAT_INP set
1521 			 * we need to give the hb mailbox cmd a chance to
1522 			 * complete or TMO.
1523 			 */
1524 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1525 				"0459 Adapter heartbeat still outstanding: "
1526 				"last compl time was %d ms.\n",
1527 				jiffies_to_msecs(jiffies
1528 					 - phba->last_completion_time));
1529 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1530 		} else {
1531 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1532 				(list_empty(&psli->mboxq))) {
1533 
1534 				retval = lpfc_issue_hb_mbox(phba);
1535 				if (retval) {
1536 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1537 					goto out;
1538 				}
1539 				phba->skipped_hb = 0;
1540 			} else if (time_before_eq(phba->last_completion_time,
1541 					phba->skipped_hb)) {
1542 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1543 					"2857 Last completion time not "
1544 					" updated in %d ms\n",
1545 					jiffies_to_msecs(jiffies
1546 						 - phba->last_completion_time));
1547 			} else
1548 				phba->skipped_hb = jiffies;
1549 
1550 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1551 			goto out;
1552 		}
1553 	} else {
1554 		/* Check to see if we want to force a MBX_HEARTBEAT */
1555 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1556 			retval = lpfc_issue_hb_mbox(phba);
1557 			if (retval)
1558 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1559 			else
1560 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1561 			goto out;
1562 		}
1563 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1564 	}
1565 out:
1566 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1567 }
1568 
1569 /**
1570  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1571  * @phba: pointer to lpfc hba data structure.
1572  *
1573  * This routine is called to bring the HBA offline when HBA hardware error
1574  * other than Port Error 6 has been detected.
1575  **/
1576 static void
1577 lpfc_offline_eratt(struct lpfc_hba *phba)
1578 {
1579 	struct lpfc_sli   *psli = &phba->sli;
1580 
1581 	spin_lock_irq(&phba->hbalock);
1582 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1583 	spin_unlock_irq(&phba->hbalock);
1584 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1585 
1586 	lpfc_offline(phba);
1587 	lpfc_reset_barrier(phba);
1588 	spin_lock_irq(&phba->hbalock);
1589 	lpfc_sli_brdreset(phba);
1590 	spin_unlock_irq(&phba->hbalock);
1591 	lpfc_hba_down_post(phba);
1592 	lpfc_sli_brdready(phba, HS_MBRDY);
1593 	lpfc_unblock_mgmt_io(phba);
1594 	phba->link_state = LPFC_HBA_ERROR;
1595 	return;
1596 }
1597 
1598 /**
1599  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1600  * @phba: pointer to lpfc hba data structure.
1601  *
1602  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1603  * other than Port Error 6 has been detected.
1604  **/
1605 void
1606 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1607 {
1608 	spin_lock_irq(&phba->hbalock);
1609 	phba->link_state = LPFC_HBA_ERROR;
1610 	spin_unlock_irq(&phba->hbalock);
1611 
1612 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1613 	lpfc_sli_flush_io_rings(phba);
1614 	lpfc_offline(phba);
1615 	lpfc_hba_down_post(phba);
1616 	lpfc_unblock_mgmt_io(phba);
1617 }
1618 
1619 /**
1620  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1621  * @phba: pointer to lpfc hba data structure.
1622  *
1623  * This routine is invoked to handle the deferred HBA hardware error
1624  * conditions. This type of error is indicated by HBA by setting ER1
1625  * and another ER bit in the host status register. The driver will
1626  * wait until the ER1 bit clears before handling the error condition.
1627  **/
1628 static void
1629 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1630 {
1631 	uint32_t old_host_status = phba->work_hs;
1632 	struct lpfc_sli *psli = &phba->sli;
1633 
1634 	/* If the pci channel is offline, ignore possible errors,
1635 	 * since we cannot communicate with the pci card anyway.
1636 	 */
1637 	if (pci_channel_offline(phba->pcidev)) {
1638 		spin_lock_irq(&phba->hbalock);
1639 		phba->hba_flag &= ~DEFER_ERATT;
1640 		spin_unlock_irq(&phba->hbalock);
1641 		return;
1642 	}
1643 
1644 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1645 			"0479 Deferred Adapter Hardware Error "
1646 			"Data: x%x x%x x%x\n",
1647 			phba->work_hs, phba->work_status[0],
1648 			phba->work_status[1]);
1649 
1650 	spin_lock_irq(&phba->hbalock);
1651 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1652 	spin_unlock_irq(&phba->hbalock);
1653 
1654 
1655 	/*
1656 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1657 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1658 	 * SCSI layer retry it after re-establishing link.
1659 	 */
1660 	lpfc_sli_abort_fcp_rings(phba);
1661 
1662 	/*
1663 	 * There was a firmware error. Take the hba offline and then
1664 	 * attempt to restart it.
1665 	 */
1666 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1667 	lpfc_offline(phba);
1668 
1669 	/* Wait for the ER1 bit to clear.*/
1670 	while (phba->work_hs & HS_FFER1) {
1671 		msleep(100);
1672 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1673 			phba->work_hs = UNPLUG_ERR ;
1674 			break;
1675 		}
1676 		/* If driver is unloading let the worker thread continue */
1677 		if (phba->pport->load_flag & FC_UNLOADING) {
1678 			phba->work_hs = 0;
1679 			break;
1680 		}
1681 	}
1682 
1683 	/*
1684 	 * This is to ptrotect against a race condition in which
1685 	 * first write to the host attention register clear the
1686 	 * host status register.
1687 	 */
1688 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1689 		phba->work_hs = old_host_status & ~HS_FFER1;
1690 
1691 	spin_lock_irq(&phba->hbalock);
1692 	phba->hba_flag &= ~DEFER_ERATT;
1693 	spin_unlock_irq(&phba->hbalock);
1694 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1695 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1696 }
1697 
1698 static void
1699 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1700 {
1701 	struct lpfc_board_event_header board_event;
1702 	struct Scsi_Host *shost;
1703 
1704 	board_event.event_type = FC_REG_BOARD_EVENT;
1705 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1706 	shost = lpfc_shost_from_vport(phba->pport);
1707 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1708 				  sizeof(board_event),
1709 				  (char *) &board_event,
1710 				  LPFC_NL_VENDOR_ID);
1711 }
1712 
1713 /**
1714  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1715  * @phba: pointer to lpfc hba data structure.
1716  *
1717  * This routine is invoked to handle the following HBA hardware error
1718  * conditions:
1719  * 1 - HBA error attention interrupt
1720  * 2 - DMA ring index out of range
1721  * 3 - Mailbox command came back as unknown
1722  **/
1723 static void
1724 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1725 {
1726 	struct lpfc_vport *vport = phba->pport;
1727 	struct lpfc_sli   *psli = &phba->sli;
1728 	uint32_t event_data;
1729 	unsigned long temperature;
1730 	struct temp_event temp_event_data;
1731 	struct Scsi_Host  *shost;
1732 
1733 	/* If the pci channel is offline, ignore possible errors,
1734 	 * since we cannot communicate with the pci card anyway.
1735 	 */
1736 	if (pci_channel_offline(phba->pcidev)) {
1737 		spin_lock_irq(&phba->hbalock);
1738 		phba->hba_flag &= ~DEFER_ERATT;
1739 		spin_unlock_irq(&phba->hbalock);
1740 		return;
1741 	}
1742 
1743 	/* If resets are disabled then leave the HBA alone and return */
1744 	if (!phba->cfg_enable_hba_reset)
1745 		return;
1746 
1747 	/* Send an internal error event to mgmt application */
1748 	lpfc_board_errevt_to_mgmt(phba);
1749 
1750 	if (phba->hba_flag & DEFER_ERATT)
1751 		lpfc_handle_deferred_eratt(phba);
1752 
1753 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1754 		if (phba->work_hs & HS_FFER6)
1755 			/* Re-establishing Link */
1756 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1757 					"1301 Re-establishing Link "
1758 					"Data: x%x x%x x%x\n",
1759 					phba->work_hs, phba->work_status[0],
1760 					phba->work_status[1]);
1761 		if (phba->work_hs & HS_FFER8)
1762 			/* Device Zeroization */
1763 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1764 					"2861 Host Authentication device "
1765 					"zeroization Data:x%x x%x x%x\n",
1766 					phba->work_hs, phba->work_status[0],
1767 					phba->work_status[1]);
1768 
1769 		spin_lock_irq(&phba->hbalock);
1770 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1771 		spin_unlock_irq(&phba->hbalock);
1772 
1773 		/*
1774 		* Firmware stops when it triggled erratt with HS_FFER6.
1775 		* That could cause the I/Os dropped by the firmware.
1776 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1777 		* retry it after re-establishing link.
1778 		*/
1779 		lpfc_sli_abort_fcp_rings(phba);
1780 
1781 		/*
1782 		 * There was a firmware error.  Take the hba offline and then
1783 		 * attempt to restart it.
1784 		 */
1785 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1786 		lpfc_offline(phba);
1787 		lpfc_sli_brdrestart(phba);
1788 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1789 			lpfc_unblock_mgmt_io(phba);
1790 			return;
1791 		}
1792 		lpfc_unblock_mgmt_io(phba);
1793 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1794 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1795 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1796 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1797 		temp_event_data.data = (uint32_t)temperature;
1798 
1799 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1800 				"0406 Adapter maximum temperature exceeded "
1801 				"(%ld), taking this port offline "
1802 				"Data: x%x x%x x%x\n",
1803 				temperature, phba->work_hs,
1804 				phba->work_status[0], phba->work_status[1]);
1805 
1806 		shost = lpfc_shost_from_vport(phba->pport);
1807 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1808 					  sizeof(temp_event_data),
1809 					  (char *) &temp_event_data,
1810 					  SCSI_NL_VID_TYPE_PCI
1811 					  | PCI_VENDOR_ID_EMULEX);
1812 
1813 		spin_lock_irq(&phba->hbalock);
1814 		phba->over_temp_state = HBA_OVER_TEMP;
1815 		spin_unlock_irq(&phba->hbalock);
1816 		lpfc_offline_eratt(phba);
1817 
1818 	} else {
1819 		/* The if clause above forces this code path when the status
1820 		 * failure is a value other than FFER6. Do not call the offline
1821 		 * twice. This is the adapter hardware error path.
1822 		 */
1823 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1824 				"0457 Adapter Hardware Error "
1825 				"Data: x%x x%x x%x\n",
1826 				phba->work_hs,
1827 				phba->work_status[0], phba->work_status[1]);
1828 
1829 		event_data = FC_REG_DUMP_EVENT;
1830 		shost = lpfc_shost_from_vport(vport);
1831 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1832 				sizeof(event_data), (char *) &event_data,
1833 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1834 
1835 		lpfc_offline_eratt(phba);
1836 	}
1837 	return;
1838 }
1839 
1840 /**
1841  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1842  * @phba: pointer to lpfc hba data structure.
1843  * @mbx_action: flag for mailbox shutdown action.
1844  * @en_rn_msg: send reset/port recovery message.
1845  * This routine is invoked to perform an SLI4 port PCI function reset in
1846  * response to port status register polling attention. It waits for port
1847  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1848  * During this process, interrupt vectors are freed and later requested
1849  * for handling possible port resource change.
1850  **/
1851 static int
1852 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1853 			    bool en_rn_msg)
1854 {
1855 	int rc;
1856 	uint32_t intr_mode;
1857 	LPFC_MBOXQ_t *mboxq;
1858 
1859 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1860 	    LPFC_SLI_INTF_IF_TYPE_2) {
1861 		/*
1862 		 * On error status condition, driver need to wait for port
1863 		 * ready before performing reset.
1864 		 */
1865 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1866 		if (rc)
1867 			return rc;
1868 	}
1869 
1870 	/* need reset: attempt for port recovery */
1871 	if (en_rn_msg)
1872 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1873 				"2887 Reset Needed: Attempting Port "
1874 				"Recovery...\n");
1875 
1876 	/* If we are no wait, the HBA has been reset and is not
1877 	 * functional, thus we should clear
1878 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1879 	 */
1880 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1881 		spin_lock_irq(&phba->hbalock);
1882 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1883 		if (phba->sli.mbox_active) {
1884 			mboxq = phba->sli.mbox_active;
1885 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1886 			__lpfc_mbox_cmpl_put(phba, mboxq);
1887 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1888 			phba->sli.mbox_active = NULL;
1889 		}
1890 		spin_unlock_irq(&phba->hbalock);
1891 	}
1892 
1893 	lpfc_offline_prep(phba, mbx_action);
1894 	lpfc_sli_flush_io_rings(phba);
1895 	lpfc_offline(phba);
1896 	/* release interrupt for possible resource change */
1897 	lpfc_sli4_disable_intr(phba);
1898 	rc = lpfc_sli_brdrestart(phba);
1899 	if (rc) {
1900 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1901 				"6309 Failed to restart board\n");
1902 		return rc;
1903 	}
1904 	/* request and enable interrupt */
1905 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1906 	if (intr_mode == LPFC_INTR_ERROR) {
1907 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1908 				"3175 Failed to enable interrupt\n");
1909 		return -EIO;
1910 	}
1911 	phba->intr_mode = intr_mode;
1912 	rc = lpfc_online(phba);
1913 	if (rc == 0)
1914 		lpfc_unblock_mgmt_io(phba);
1915 
1916 	return rc;
1917 }
1918 
1919 /**
1920  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1921  * @phba: pointer to lpfc hba data structure.
1922  *
1923  * This routine is invoked to handle the SLI4 HBA hardware error attention
1924  * conditions.
1925  **/
1926 static void
1927 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1928 {
1929 	struct lpfc_vport *vport = phba->pport;
1930 	uint32_t event_data;
1931 	struct Scsi_Host *shost;
1932 	uint32_t if_type;
1933 	struct lpfc_register portstat_reg = {0};
1934 	uint32_t reg_err1, reg_err2;
1935 	uint32_t uerrlo_reg, uemasklo_reg;
1936 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1937 	bool en_rn_msg = true;
1938 	struct temp_event temp_event_data;
1939 	struct lpfc_register portsmphr_reg;
1940 	int rc, i;
1941 
1942 	/* If the pci channel is offline, ignore possible errors, since
1943 	 * we cannot communicate with the pci card anyway.
1944 	 */
1945 	if (pci_channel_offline(phba->pcidev)) {
1946 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1947 				"3166 pci channel is offline\n");
1948 		lpfc_sli4_offline_eratt(phba);
1949 		return;
1950 	}
1951 
1952 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
1953 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
1954 	switch (if_type) {
1955 	case LPFC_SLI_INTF_IF_TYPE_0:
1956 		pci_rd_rc1 = lpfc_readl(
1957 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
1958 				&uerrlo_reg);
1959 		pci_rd_rc2 = lpfc_readl(
1960 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
1961 				&uemasklo_reg);
1962 		/* consider PCI bus read error as pci_channel_offline */
1963 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
1964 			return;
1965 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
1966 			lpfc_sli4_offline_eratt(phba);
1967 			return;
1968 		}
1969 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1970 				"7623 Checking UE recoverable");
1971 
1972 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
1973 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
1974 				       &portsmphr_reg.word0))
1975 				continue;
1976 
1977 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
1978 						   &portsmphr_reg);
1979 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
1980 			    LPFC_PORT_SEM_UE_RECOVERABLE)
1981 				break;
1982 			/*Sleep for 1Sec, before checking SEMAPHORE */
1983 			msleep(1000);
1984 		}
1985 
1986 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1987 				"4827 smphr_port_status x%x : Waited %dSec",
1988 				smphr_port_status, i);
1989 
1990 		/* Recoverable UE, reset the HBA device */
1991 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
1992 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
1993 			for (i = 0; i < 20; i++) {
1994 				msleep(1000);
1995 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
1996 				    &portsmphr_reg.word0) &&
1997 				    (LPFC_POST_STAGE_PORT_READY ==
1998 				     bf_get(lpfc_port_smphr_port_status,
1999 				     &portsmphr_reg))) {
2000 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2001 						LPFC_MBX_NO_WAIT, en_rn_msg);
2002 					if (rc == 0)
2003 						return;
2004 					lpfc_printf_log(phba, KERN_ERR,
2005 						LOG_TRACE_EVENT,
2006 						"4215 Failed to recover UE");
2007 					break;
2008 				}
2009 			}
2010 		}
2011 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2012 				"7624 Firmware not ready: Failing UE recovery,"
2013 				" waited %dSec", i);
2014 		phba->link_state = LPFC_HBA_ERROR;
2015 		break;
2016 
2017 	case LPFC_SLI_INTF_IF_TYPE_2:
2018 	case LPFC_SLI_INTF_IF_TYPE_6:
2019 		pci_rd_rc1 = lpfc_readl(
2020 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2021 				&portstat_reg.word0);
2022 		/* consider PCI bus read error as pci_channel_offline */
2023 		if (pci_rd_rc1 == -EIO) {
2024 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2025 				"3151 PCI bus read access failure: x%x\n",
2026 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2027 			lpfc_sli4_offline_eratt(phba);
2028 			return;
2029 		}
2030 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2031 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2032 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2033 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2034 					"2889 Port Overtemperature event, "
2035 					"taking port offline Data: x%x x%x\n",
2036 					reg_err1, reg_err2);
2037 
2038 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2039 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2040 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2041 			temp_event_data.data = 0xFFFFFFFF;
2042 
2043 			shost = lpfc_shost_from_vport(phba->pport);
2044 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2045 						  sizeof(temp_event_data),
2046 						  (char *)&temp_event_data,
2047 						  SCSI_NL_VID_TYPE_PCI
2048 						  | PCI_VENDOR_ID_EMULEX);
2049 
2050 			spin_lock_irq(&phba->hbalock);
2051 			phba->over_temp_state = HBA_OVER_TEMP;
2052 			spin_unlock_irq(&phba->hbalock);
2053 			lpfc_sli4_offline_eratt(phba);
2054 			return;
2055 		}
2056 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2057 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2058 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2059 					"3143 Port Down: Firmware Update "
2060 					"Detected\n");
2061 			en_rn_msg = false;
2062 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2063 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2064 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2065 					"3144 Port Down: Debug Dump\n");
2066 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2067 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2068 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2069 					"3145 Port Down: Provisioning\n");
2070 
2071 		/* If resets are disabled then leave the HBA alone and return */
2072 		if (!phba->cfg_enable_hba_reset)
2073 			return;
2074 
2075 		/* Check port status register for function reset */
2076 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2077 				en_rn_msg);
2078 		if (rc == 0) {
2079 			/* don't report event on forced debug dump */
2080 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2081 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2082 				return;
2083 			else
2084 				break;
2085 		}
2086 		/* fall through for not able to recover */
2087 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2088 				"3152 Unrecoverable error\n");
2089 		phba->link_state = LPFC_HBA_ERROR;
2090 		break;
2091 	case LPFC_SLI_INTF_IF_TYPE_1:
2092 	default:
2093 		break;
2094 	}
2095 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2096 			"3123 Report dump event to upper layer\n");
2097 	/* Send an internal error event to mgmt application */
2098 	lpfc_board_errevt_to_mgmt(phba);
2099 
2100 	event_data = FC_REG_DUMP_EVENT;
2101 	shost = lpfc_shost_from_vport(vport);
2102 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2103 				  sizeof(event_data), (char *) &event_data,
2104 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2105 }
2106 
2107 /**
2108  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2109  * @phba: pointer to lpfc HBA data structure.
2110  *
2111  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2112  * routine from the API jump table function pointer from the lpfc_hba struct.
2113  *
2114  * Return codes
2115  *   0 - success.
2116  *   Any other value - error.
2117  **/
2118 void
2119 lpfc_handle_eratt(struct lpfc_hba *phba)
2120 {
2121 	(*phba->lpfc_handle_eratt)(phba);
2122 }
2123 
2124 /**
2125  * lpfc_handle_latt - The HBA link event handler
2126  * @phba: pointer to lpfc hba data structure.
2127  *
2128  * This routine is invoked from the worker thread to handle a HBA host
2129  * attention link event. SLI3 only.
2130  **/
2131 void
2132 lpfc_handle_latt(struct lpfc_hba *phba)
2133 {
2134 	struct lpfc_vport *vport = phba->pport;
2135 	struct lpfc_sli   *psli = &phba->sli;
2136 	LPFC_MBOXQ_t *pmb;
2137 	volatile uint32_t control;
2138 	struct lpfc_dmabuf *mp;
2139 	int rc = 0;
2140 
2141 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2142 	if (!pmb) {
2143 		rc = 1;
2144 		goto lpfc_handle_latt_err_exit;
2145 	}
2146 
2147 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
2148 	if (!mp) {
2149 		rc = 2;
2150 		goto lpfc_handle_latt_free_pmb;
2151 	}
2152 
2153 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
2154 	if (!mp->virt) {
2155 		rc = 3;
2156 		goto lpfc_handle_latt_free_mp;
2157 	}
2158 
2159 	/* Cleanup any outstanding ELS commands */
2160 	lpfc_els_flush_all_cmd(phba);
2161 
2162 	psli->slistat.link_event++;
2163 	lpfc_read_topology(phba, pmb, mp);
2164 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2165 	pmb->vport = vport;
2166 	/* Block ELS IOCBs until we have processed this mbox command */
2167 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2168 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2169 	if (rc == MBX_NOT_FINISHED) {
2170 		rc = 4;
2171 		goto lpfc_handle_latt_free_mbuf;
2172 	}
2173 
2174 	/* Clear Link Attention in HA REG */
2175 	spin_lock_irq(&phba->hbalock);
2176 	writel(HA_LATT, phba->HAregaddr);
2177 	readl(phba->HAregaddr); /* flush */
2178 	spin_unlock_irq(&phba->hbalock);
2179 
2180 	return;
2181 
2182 lpfc_handle_latt_free_mbuf:
2183 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2184 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
2185 lpfc_handle_latt_free_mp:
2186 	kfree(mp);
2187 lpfc_handle_latt_free_pmb:
2188 	mempool_free(pmb, phba->mbox_mem_pool);
2189 lpfc_handle_latt_err_exit:
2190 	/* Enable Link attention interrupts */
2191 	spin_lock_irq(&phba->hbalock);
2192 	psli->sli_flag |= LPFC_PROCESS_LA;
2193 	control = readl(phba->HCregaddr);
2194 	control |= HC_LAINT_ENA;
2195 	writel(control, phba->HCregaddr);
2196 	readl(phba->HCregaddr); /* flush */
2197 
2198 	/* Clear Link Attention in HA REG */
2199 	writel(HA_LATT, phba->HAregaddr);
2200 	readl(phba->HAregaddr); /* flush */
2201 	spin_unlock_irq(&phba->hbalock);
2202 	lpfc_linkdown(phba);
2203 	phba->link_state = LPFC_HBA_ERROR;
2204 
2205 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2206 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2207 
2208 	return;
2209 }
2210 
2211 /**
2212  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2213  * @phba: pointer to lpfc hba data structure.
2214  * @vpd: pointer to the vital product data.
2215  * @len: length of the vital product data in bytes.
2216  *
2217  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2218  * an array of characters. In this routine, the ModelName, ProgramType, and
2219  * ModelDesc, etc. fields of the phba data structure will be populated.
2220  *
2221  * Return codes
2222  *   0 - pointer to the VPD passed in is NULL
2223  *   1 - success
2224  **/
2225 int
2226 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2227 {
2228 	uint8_t lenlo, lenhi;
2229 	int Length;
2230 	int i, j;
2231 	int finished = 0;
2232 	int index = 0;
2233 
2234 	if (!vpd)
2235 		return 0;
2236 
2237 	/* Vital Product */
2238 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2239 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2240 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2241 			(uint32_t) vpd[3]);
2242 	while (!finished && (index < (len - 4))) {
2243 		switch (vpd[index]) {
2244 		case 0x82:
2245 		case 0x91:
2246 			index += 1;
2247 			lenlo = vpd[index];
2248 			index += 1;
2249 			lenhi = vpd[index];
2250 			index += 1;
2251 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2252 			index += i;
2253 			break;
2254 		case 0x90:
2255 			index += 1;
2256 			lenlo = vpd[index];
2257 			index += 1;
2258 			lenhi = vpd[index];
2259 			index += 1;
2260 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2261 			if (Length > len - index)
2262 				Length = len - index;
2263 			while (Length > 0) {
2264 			/* Look for Serial Number */
2265 			if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) {
2266 				index += 2;
2267 				i = vpd[index];
2268 				index += 1;
2269 				j = 0;
2270 				Length -= (3+i);
2271 				while(i--) {
2272 					phba->SerialNumber[j++] = vpd[index++];
2273 					if (j == 31)
2274 						break;
2275 				}
2276 				phba->SerialNumber[j] = 0;
2277 				continue;
2278 			}
2279 			else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) {
2280 				phba->vpd_flag |= VPD_MODEL_DESC;
2281 				index += 2;
2282 				i = vpd[index];
2283 				index += 1;
2284 				j = 0;
2285 				Length -= (3+i);
2286 				while(i--) {
2287 					phba->ModelDesc[j++] = vpd[index++];
2288 					if (j == 255)
2289 						break;
2290 				}
2291 				phba->ModelDesc[j] = 0;
2292 				continue;
2293 			}
2294 			else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) {
2295 				phba->vpd_flag |= VPD_MODEL_NAME;
2296 				index += 2;
2297 				i = vpd[index];
2298 				index += 1;
2299 				j = 0;
2300 				Length -= (3+i);
2301 				while(i--) {
2302 					phba->ModelName[j++] = vpd[index++];
2303 					if (j == 79)
2304 						break;
2305 				}
2306 				phba->ModelName[j] = 0;
2307 				continue;
2308 			}
2309 			else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) {
2310 				phba->vpd_flag |= VPD_PROGRAM_TYPE;
2311 				index += 2;
2312 				i = vpd[index];
2313 				index += 1;
2314 				j = 0;
2315 				Length -= (3+i);
2316 				while(i--) {
2317 					phba->ProgramType[j++] = vpd[index++];
2318 					if (j == 255)
2319 						break;
2320 				}
2321 				phba->ProgramType[j] = 0;
2322 				continue;
2323 			}
2324 			else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) {
2325 				phba->vpd_flag |= VPD_PORT;
2326 				index += 2;
2327 				i = vpd[index];
2328 				index += 1;
2329 				j = 0;
2330 				Length -= (3+i);
2331 				while(i--) {
2332 					if ((phba->sli_rev == LPFC_SLI_REV4) &&
2333 					    (phba->sli4_hba.pport_name_sta ==
2334 					     LPFC_SLI4_PPNAME_GET)) {
2335 						j++;
2336 						index++;
2337 					} else
2338 						phba->Port[j++] = vpd[index++];
2339 					if (j == 19)
2340 						break;
2341 				}
2342 				if ((phba->sli_rev != LPFC_SLI_REV4) ||
2343 				    (phba->sli4_hba.pport_name_sta ==
2344 				     LPFC_SLI4_PPNAME_NON))
2345 					phba->Port[j] = 0;
2346 				continue;
2347 			}
2348 			else {
2349 				index += 2;
2350 				i = vpd[index];
2351 				index += 1;
2352 				index += i;
2353 				Length -= (3 + i);
2354 			}
2355 		}
2356 		finished = 0;
2357 		break;
2358 		case 0x78:
2359 			finished = 1;
2360 			break;
2361 		default:
2362 			index ++;
2363 			break;
2364 		}
2365 	}
2366 
2367 	return(1);
2368 }
2369 
2370 /**
2371  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2372  * @phba: pointer to lpfc hba data structure.
2373  * @mdp: pointer to the data structure to hold the derived model name.
2374  * @descp: pointer to the data structure to hold the derived description.
2375  *
2376  * This routine retrieves HBA's description based on its registered PCI device
2377  * ID. The @descp passed into this function points to an array of 256 chars. It
2378  * shall be returned with the model name, maximum speed, and the host bus type.
2379  * The @mdp passed into this function points to an array of 80 chars. When the
2380  * function returns, the @mdp will be filled with the model name.
2381  **/
2382 static void
2383 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2384 {
2385 	lpfc_vpd_t *vp;
2386 	uint16_t dev_id = phba->pcidev->device;
2387 	int max_speed;
2388 	int GE = 0;
2389 	int oneConnect = 0; /* default is not a oneConnect */
2390 	struct {
2391 		char *name;
2392 		char *bus;
2393 		char *function;
2394 	} m = {"<Unknown>", "", ""};
2395 
2396 	if (mdp && mdp[0] != '\0'
2397 		&& descp && descp[0] != '\0')
2398 		return;
2399 
2400 	if (phba->lmt & LMT_64Gb)
2401 		max_speed = 64;
2402 	else if (phba->lmt & LMT_32Gb)
2403 		max_speed = 32;
2404 	else if (phba->lmt & LMT_16Gb)
2405 		max_speed = 16;
2406 	else if (phba->lmt & LMT_10Gb)
2407 		max_speed = 10;
2408 	else if (phba->lmt & LMT_8Gb)
2409 		max_speed = 8;
2410 	else if (phba->lmt & LMT_4Gb)
2411 		max_speed = 4;
2412 	else if (phba->lmt & LMT_2Gb)
2413 		max_speed = 2;
2414 	else if (phba->lmt & LMT_1Gb)
2415 		max_speed = 1;
2416 	else
2417 		max_speed = 0;
2418 
2419 	vp = &phba->vpd;
2420 
2421 	switch (dev_id) {
2422 	case PCI_DEVICE_ID_FIREFLY:
2423 		m = (typeof(m)){"LP6000", "PCI",
2424 				"Obsolete, Unsupported Fibre Channel Adapter"};
2425 		break;
2426 	case PCI_DEVICE_ID_SUPERFLY:
2427 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2428 			m = (typeof(m)){"LP7000", "PCI", ""};
2429 		else
2430 			m = (typeof(m)){"LP7000E", "PCI", ""};
2431 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2432 		break;
2433 	case PCI_DEVICE_ID_DRAGONFLY:
2434 		m = (typeof(m)){"LP8000", "PCI",
2435 				"Obsolete, Unsupported Fibre Channel Adapter"};
2436 		break;
2437 	case PCI_DEVICE_ID_CENTAUR:
2438 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2439 			m = (typeof(m)){"LP9002", "PCI", ""};
2440 		else
2441 			m = (typeof(m)){"LP9000", "PCI", ""};
2442 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2443 		break;
2444 	case PCI_DEVICE_ID_RFLY:
2445 		m = (typeof(m)){"LP952", "PCI",
2446 				"Obsolete, Unsupported Fibre Channel Adapter"};
2447 		break;
2448 	case PCI_DEVICE_ID_PEGASUS:
2449 		m = (typeof(m)){"LP9802", "PCI-X",
2450 				"Obsolete, Unsupported Fibre Channel Adapter"};
2451 		break;
2452 	case PCI_DEVICE_ID_THOR:
2453 		m = (typeof(m)){"LP10000", "PCI-X",
2454 				"Obsolete, Unsupported Fibre Channel Adapter"};
2455 		break;
2456 	case PCI_DEVICE_ID_VIPER:
2457 		m = (typeof(m)){"LPX1000",  "PCI-X",
2458 				"Obsolete, Unsupported Fibre Channel Adapter"};
2459 		break;
2460 	case PCI_DEVICE_ID_PFLY:
2461 		m = (typeof(m)){"LP982", "PCI-X",
2462 				"Obsolete, Unsupported Fibre Channel Adapter"};
2463 		break;
2464 	case PCI_DEVICE_ID_TFLY:
2465 		m = (typeof(m)){"LP1050", "PCI-X",
2466 				"Obsolete, Unsupported Fibre Channel Adapter"};
2467 		break;
2468 	case PCI_DEVICE_ID_HELIOS:
2469 		m = (typeof(m)){"LP11000", "PCI-X2",
2470 				"Obsolete, Unsupported Fibre Channel Adapter"};
2471 		break;
2472 	case PCI_DEVICE_ID_HELIOS_SCSP:
2473 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2474 				"Obsolete, Unsupported Fibre Channel Adapter"};
2475 		break;
2476 	case PCI_DEVICE_ID_HELIOS_DCSP:
2477 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2478 				"Obsolete, Unsupported Fibre Channel Adapter"};
2479 		break;
2480 	case PCI_DEVICE_ID_NEPTUNE:
2481 		m = (typeof(m)){"LPe1000", "PCIe",
2482 				"Obsolete, Unsupported Fibre Channel Adapter"};
2483 		break;
2484 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2485 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2486 				"Obsolete, Unsupported Fibre Channel Adapter"};
2487 		break;
2488 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2489 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2490 				"Obsolete, Unsupported Fibre Channel Adapter"};
2491 		break;
2492 	case PCI_DEVICE_ID_BMID:
2493 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2494 		break;
2495 	case PCI_DEVICE_ID_BSMB:
2496 		m = (typeof(m)){"LP111", "PCI-X2",
2497 				"Obsolete, Unsupported Fibre Channel Adapter"};
2498 		break;
2499 	case PCI_DEVICE_ID_ZEPHYR:
2500 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2501 		break;
2502 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2503 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2504 		break;
2505 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2506 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2507 		GE = 1;
2508 		break;
2509 	case PCI_DEVICE_ID_ZMID:
2510 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2511 		break;
2512 	case PCI_DEVICE_ID_ZSMB:
2513 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2514 		break;
2515 	case PCI_DEVICE_ID_LP101:
2516 		m = (typeof(m)){"LP101", "PCI-X",
2517 				"Obsolete, Unsupported Fibre Channel Adapter"};
2518 		break;
2519 	case PCI_DEVICE_ID_LP10000S:
2520 		m = (typeof(m)){"LP10000-S", "PCI",
2521 				"Obsolete, Unsupported Fibre Channel Adapter"};
2522 		break;
2523 	case PCI_DEVICE_ID_LP11000S:
2524 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2525 				"Obsolete, Unsupported Fibre Channel Adapter"};
2526 		break;
2527 	case PCI_DEVICE_ID_LPE11000S:
2528 		m = (typeof(m)){"LPe11000-S", "PCIe",
2529 				"Obsolete, Unsupported Fibre Channel Adapter"};
2530 		break;
2531 	case PCI_DEVICE_ID_SAT:
2532 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2533 		break;
2534 	case PCI_DEVICE_ID_SAT_MID:
2535 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2536 		break;
2537 	case PCI_DEVICE_ID_SAT_SMB:
2538 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2539 		break;
2540 	case PCI_DEVICE_ID_SAT_DCSP:
2541 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2542 		break;
2543 	case PCI_DEVICE_ID_SAT_SCSP:
2544 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2545 		break;
2546 	case PCI_DEVICE_ID_SAT_S:
2547 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2548 		break;
2549 	case PCI_DEVICE_ID_HORNET:
2550 		m = (typeof(m)){"LP21000", "PCIe",
2551 				"Obsolete, Unsupported FCoE Adapter"};
2552 		GE = 1;
2553 		break;
2554 	case PCI_DEVICE_ID_PROTEUS_VF:
2555 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2556 				"Obsolete, Unsupported Fibre Channel Adapter"};
2557 		break;
2558 	case PCI_DEVICE_ID_PROTEUS_PF:
2559 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2560 				"Obsolete, Unsupported Fibre Channel Adapter"};
2561 		break;
2562 	case PCI_DEVICE_ID_PROTEUS_S:
2563 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2564 				"Obsolete, Unsupported Fibre Channel Adapter"};
2565 		break;
2566 	case PCI_DEVICE_ID_TIGERSHARK:
2567 		oneConnect = 1;
2568 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2569 		break;
2570 	case PCI_DEVICE_ID_TOMCAT:
2571 		oneConnect = 1;
2572 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2573 		break;
2574 	case PCI_DEVICE_ID_FALCON:
2575 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2576 				"EmulexSecure Fibre"};
2577 		break;
2578 	case PCI_DEVICE_ID_BALIUS:
2579 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2580 				"Obsolete, Unsupported Fibre Channel Adapter"};
2581 		break;
2582 	case PCI_DEVICE_ID_LANCER_FC:
2583 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2584 		break;
2585 	case PCI_DEVICE_ID_LANCER_FC_VF:
2586 		m = (typeof(m)){"LPe16000", "PCIe",
2587 				"Obsolete, Unsupported Fibre Channel Adapter"};
2588 		break;
2589 	case PCI_DEVICE_ID_LANCER_FCOE:
2590 		oneConnect = 1;
2591 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2592 		break;
2593 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2594 		oneConnect = 1;
2595 		m = (typeof(m)){"OCe15100", "PCIe",
2596 				"Obsolete, Unsupported FCoE"};
2597 		break;
2598 	case PCI_DEVICE_ID_LANCER_G6_FC:
2599 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2600 		break;
2601 	case PCI_DEVICE_ID_LANCER_G7_FC:
2602 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2603 		break;
2604 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2605 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2606 		break;
2607 	case PCI_DEVICE_ID_SKYHAWK:
2608 	case PCI_DEVICE_ID_SKYHAWK_VF:
2609 		oneConnect = 1;
2610 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2611 		break;
2612 	default:
2613 		m = (typeof(m)){"Unknown", "", ""};
2614 		break;
2615 	}
2616 
2617 	if (mdp && mdp[0] == '\0')
2618 		snprintf(mdp, 79,"%s", m.name);
2619 	/*
2620 	 * oneConnect hba requires special processing, they are all initiators
2621 	 * and we put the port number on the end
2622 	 */
2623 	if (descp && descp[0] == '\0') {
2624 		if (oneConnect)
2625 			snprintf(descp, 255,
2626 				"Emulex OneConnect %s, %s Initiator %s",
2627 				m.name, m.function,
2628 				phba->Port);
2629 		else if (max_speed == 0)
2630 			snprintf(descp, 255,
2631 				"Emulex %s %s %s",
2632 				m.name, m.bus, m.function);
2633 		else
2634 			snprintf(descp, 255,
2635 				"Emulex %s %d%s %s %s",
2636 				m.name, max_speed, (GE) ? "GE" : "Gb",
2637 				m.bus, m.function);
2638 	}
2639 }
2640 
2641 /**
2642  * lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2643  * @phba: pointer to lpfc hba data structure.
2644  * @pring: pointer to a IOCB ring.
2645  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2646  *
2647  * This routine posts a given number of IOCBs with the associated DMA buffer
2648  * descriptors specified by the cnt argument to the given IOCB ring.
2649  *
2650  * Return codes
2651  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2652  **/
2653 int
2654 lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2655 {
2656 	IOCB_t *icmd;
2657 	struct lpfc_iocbq *iocb;
2658 	struct lpfc_dmabuf *mp1, *mp2;
2659 
2660 	cnt += pring->missbufcnt;
2661 
2662 	/* While there are buffers to post */
2663 	while (cnt > 0) {
2664 		/* Allocate buffer for  command iocb */
2665 		iocb = lpfc_sli_get_iocbq(phba);
2666 		if (iocb == NULL) {
2667 			pring->missbufcnt = cnt;
2668 			return cnt;
2669 		}
2670 		icmd = &iocb->iocb;
2671 
2672 		/* 2 buffers can be posted per command */
2673 		/* Allocate buffer to post */
2674 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2675 		if (mp1)
2676 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2677 		if (!mp1 || !mp1->virt) {
2678 			kfree(mp1);
2679 			lpfc_sli_release_iocbq(phba, iocb);
2680 			pring->missbufcnt = cnt;
2681 			return cnt;
2682 		}
2683 
2684 		INIT_LIST_HEAD(&mp1->list);
2685 		/* Allocate buffer to post */
2686 		if (cnt > 1) {
2687 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2688 			if (mp2)
2689 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2690 							    &mp2->phys);
2691 			if (!mp2 || !mp2->virt) {
2692 				kfree(mp2);
2693 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2694 				kfree(mp1);
2695 				lpfc_sli_release_iocbq(phba, iocb);
2696 				pring->missbufcnt = cnt;
2697 				return cnt;
2698 			}
2699 
2700 			INIT_LIST_HEAD(&mp2->list);
2701 		} else {
2702 			mp2 = NULL;
2703 		}
2704 
2705 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2706 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2707 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2708 		icmd->ulpBdeCount = 1;
2709 		cnt--;
2710 		if (mp2) {
2711 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2712 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2713 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2714 			cnt--;
2715 			icmd->ulpBdeCount = 2;
2716 		}
2717 
2718 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2719 		icmd->ulpLe = 1;
2720 
2721 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2722 		    IOCB_ERROR) {
2723 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2724 			kfree(mp1);
2725 			cnt++;
2726 			if (mp2) {
2727 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2728 				kfree(mp2);
2729 				cnt++;
2730 			}
2731 			lpfc_sli_release_iocbq(phba, iocb);
2732 			pring->missbufcnt = cnt;
2733 			return cnt;
2734 		}
2735 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2736 		if (mp2)
2737 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2738 	}
2739 	pring->missbufcnt = 0;
2740 	return 0;
2741 }
2742 
2743 /**
2744  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2745  * @phba: pointer to lpfc hba data structure.
2746  *
2747  * This routine posts initial receive IOCB buffers to the ELS ring. The
2748  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2749  * set to 64 IOCBs. SLI3 only.
2750  *
2751  * Return codes
2752  *   0 - success (currently always success)
2753  **/
2754 static int
2755 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2756 {
2757 	struct lpfc_sli *psli = &phba->sli;
2758 
2759 	/* Ring 0, ELS / CT buffers */
2760 	lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2761 	/* Ring 2 - FCP no buffers needed */
2762 
2763 	return 0;
2764 }
2765 
2766 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2767 
2768 /**
2769  * lpfc_sha_init - Set up initial array of hash table entries
2770  * @HashResultPointer: pointer to an array as hash table.
2771  *
2772  * This routine sets up the initial values to the array of hash table entries
2773  * for the LC HBAs.
2774  **/
2775 static void
2776 lpfc_sha_init(uint32_t * HashResultPointer)
2777 {
2778 	HashResultPointer[0] = 0x67452301;
2779 	HashResultPointer[1] = 0xEFCDAB89;
2780 	HashResultPointer[2] = 0x98BADCFE;
2781 	HashResultPointer[3] = 0x10325476;
2782 	HashResultPointer[4] = 0xC3D2E1F0;
2783 }
2784 
2785 /**
2786  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2787  * @HashResultPointer: pointer to an initial/result hash table.
2788  * @HashWorkingPointer: pointer to an working hash table.
2789  *
2790  * This routine iterates an initial hash table pointed by @HashResultPointer
2791  * with the values from the working hash table pointeed by @HashWorkingPointer.
2792  * The results are putting back to the initial hash table, returned through
2793  * the @HashResultPointer as the result hash table.
2794  **/
2795 static void
2796 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2797 {
2798 	int t;
2799 	uint32_t TEMP;
2800 	uint32_t A, B, C, D, E;
2801 	t = 16;
2802 	do {
2803 		HashWorkingPointer[t] =
2804 		    S(1,
2805 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2806 								     8] ^
2807 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2808 	} while (++t <= 79);
2809 	t = 0;
2810 	A = HashResultPointer[0];
2811 	B = HashResultPointer[1];
2812 	C = HashResultPointer[2];
2813 	D = HashResultPointer[3];
2814 	E = HashResultPointer[4];
2815 
2816 	do {
2817 		if (t < 20) {
2818 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2819 		} else if (t < 40) {
2820 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2821 		} else if (t < 60) {
2822 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2823 		} else {
2824 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2825 		}
2826 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2827 		E = D;
2828 		D = C;
2829 		C = S(30, B);
2830 		B = A;
2831 		A = TEMP;
2832 	} while (++t <= 79);
2833 
2834 	HashResultPointer[0] += A;
2835 	HashResultPointer[1] += B;
2836 	HashResultPointer[2] += C;
2837 	HashResultPointer[3] += D;
2838 	HashResultPointer[4] += E;
2839 
2840 }
2841 
2842 /**
2843  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2844  * @RandomChallenge: pointer to the entry of host challenge random number array.
2845  * @HashWorking: pointer to the entry of the working hash array.
2846  *
2847  * This routine calculates the working hash array referred by @HashWorking
2848  * from the challenge random numbers associated with the host, referred by
2849  * @RandomChallenge. The result is put into the entry of the working hash
2850  * array and returned by reference through @HashWorking.
2851  **/
2852 static void
2853 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2854 {
2855 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2856 }
2857 
2858 /**
2859  * lpfc_hba_init - Perform special handling for LC HBA initialization
2860  * @phba: pointer to lpfc hba data structure.
2861  * @hbainit: pointer to an array of unsigned 32-bit integers.
2862  *
2863  * This routine performs the special handling for LC HBA initialization.
2864  **/
2865 void
2866 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
2867 {
2868 	int t;
2869 	uint32_t *HashWorking;
2870 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
2871 
2872 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
2873 	if (!HashWorking)
2874 		return;
2875 
2876 	HashWorking[0] = HashWorking[78] = *pwwnn++;
2877 	HashWorking[1] = HashWorking[79] = *pwwnn;
2878 
2879 	for (t = 0; t < 7; t++)
2880 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
2881 
2882 	lpfc_sha_init(hbainit);
2883 	lpfc_sha_iterate(hbainit, HashWorking);
2884 	kfree(HashWorking);
2885 }
2886 
2887 /**
2888  * lpfc_cleanup - Performs vport cleanups before deleting a vport
2889  * @vport: pointer to a virtual N_Port data structure.
2890  *
2891  * This routine performs the necessary cleanups before deleting the @vport.
2892  * It invokes the discovery state machine to perform necessary state
2893  * transitions and to release the ndlps associated with the @vport. Note,
2894  * the physical port is treated as @vport 0.
2895  **/
2896 void
2897 lpfc_cleanup(struct lpfc_vport *vport)
2898 {
2899 	struct lpfc_hba   *phba = vport->phba;
2900 	struct lpfc_nodelist *ndlp, *next_ndlp;
2901 	int i = 0;
2902 
2903 	if (phba->link_state > LPFC_LINK_DOWN)
2904 		lpfc_port_link_failure(vport);
2905 
2906 	/* Clean up VMID resources */
2907 	if (lpfc_is_vmid_enabled(phba))
2908 		lpfc_vmid_vport_cleanup(vport);
2909 
2910 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
2911 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
2912 		    ndlp->nlp_DID == Fabric_DID) {
2913 			/* Just free up ndlp with Fabric_DID for vports */
2914 			lpfc_nlp_put(ndlp);
2915 			continue;
2916 		}
2917 
2918 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
2919 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
2920 			lpfc_nlp_put(ndlp);
2921 			continue;
2922 		}
2923 
2924 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
2925 		 * DEVICE_RM event.
2926 		 */
2927 		if (ndlp->nlp_type & NLP_FABRIC &&
2928 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
2929 			lpfc_disc_state_machine(vport, ndlp, NULL,
2930 					NLP_EVT_DEVICE_RECOVERY);
2931 
2932 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
2933 			lpfc_disc_state_machine(vport, ndlp, NULL,
2934 					NLP_EVT_DEVICE_RM);
2935 	}
2936 
2937 	/* At this point, ALL ndlp's should be gone
2938 	 * because of the previous NLP_EVT_DEVICE_RM.
2939 	 * Lets wait for this to happen, if needed.
2940 	 */
2941 	while (!list_empty(&vport->fc_nodes)) {
2942 		if (i++ > 3000) {
2943 			lpfc_printf_vlog(vport, KERN_ERR,
2944 					 LOG_TRACE_EVENT,
2945 				"0233 Nodelist not empty\n");
2946 			list_for_each_entry_safe(ndlp, next_ndlp,
2947 						&vport->fc_nodes, nlp_listp) {
2948 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
2949 						 LOG_TRACE_EVENT,
2950 						 "0282 did:x%x ndlp:x%px "
2951 						 "refcnt:%d xflags x%x nflag x%x\n",
2952 						 ndlp->nlp_DID, (void *)ndlp,
2953 						 kref_read(&ndlp->kref),
2954 						 ndlp->fc4_xpt_flags,
2955 						 ndlp->nlp_flag);
2956 			}
2957 			break;
2958 		}
2959 
2960 		/* Wait for any activity on ndlps to settle */
2961 		msleep(10);
2962 	}
2963 	lpfc_cleanup_vports_rrqs(vport, NULL);
2964 }
2965 
2966 /**
2967  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
2968  * @vport: pointer to a virtual N_Port data structure.
2969  *
2970  * This routine stops all the timers associated with a @vport. This function
2971  * is invoked before disabling or deleting a @vport. Note that the physical
2972  * port is treated as @vport 0.
2973  **/
2974 void
2975 lpfc_stop_vport_timers(struct lpfc_vport *vport)
2976 {
2977 	del_timer_sync(&vport->els_tmofunc);
2978 	del_timer_sync(&vport->delayed_disc_tmo);
2979 	lpfc_can_disctmo(vport);
2980 	return;
2981 }
2982 
2983 /**
2984  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
2985  * @phba: pointer to lpfc hba data structure.
2986  *
2987  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
2988  * caller of this routine should already hold the host lock.
2989  **/
2990 void
2991 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
2992 {
2993 	/* Clear pending FCF rediscovery wait flag */
2994 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
2995 
2996 	/* Now, try to stop the timer */
2997 	del_timer(&phba->fcf.redisc_wait);
2998 }
2999 
3000 /**
3001  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3002  * @phba: pointer to lpfc hba data structure.
3003  *
3004  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3005  * checks whether the FCF rediscovery wait timer is pending with the host
3006  * lock held before proceeding with disabling the timer and clearing the
3007  * wait timer pendig flag.
3008  **/
3009 void
3010 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3011 {
3012 	spin_lock_irq(&phba->hbalock);
3013 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3014 		/* FCF rediscovery timer already fired or stopped */
3015 		spin_unlock_irq(&phba->hbalock);
3016 		return;
3017 	}
3018 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3019 	/* Clear failover in progress flags */
3020 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3021 	spin_unlock_irq(&phba->hbalock);
3022 }
3023 
3024 /**
3025  * lpfc_cmf_stop - Stop CMF processing
3026  * @phba: pointer to lpfc hba data structure.
3027  *
3028  * This is called when the link goes down or if CMF mode is turned OFF.
3029  * It is also called when going offline or unloaded just before the
3030  * congestion info buffer is unregistered.
3031  **/
3032 void
3033 lpfc_cmf_stop(struct lpfc_hba *phba)
3034 {
3035 	int cpu;
3036 	struct lpfc_cgn_stat *cgs;
3037 
3038 	/* We only do something if CMF is enabled */
3039 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3040 		return;
3041 
3042 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3043 			"6221 Stop CMF / Cancel Timer\n");
3044 
3045 	/* Cancel the CMF timer */
3046 	hrtimer_cancel(&phba->cmf_timer);
3047 
3048 	/* Zero CMF counters */
3049 	atomic_set(&phba->cmf_busy, 0);
3050 	for_each_present_cpu(cpu) {
3051 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3052 		atomic64_set(&cgs->total_bytes, 0);
3053 		atomic64_set(&cgs->rcv_bytes, 0);
3054 		atomic_set(&cgs->rx_io_cnt, 0);
3055 		atomic64_set(&cgs->rx_latency, 0);
3056 	}
3057 	atomic_set(&phba->cmf_bw_wait, 0);
3058 
3059 	/* Resume any blocked IO - Queue unblock on workqueue */
3060 	queue_work(phba->wq, &phba->unblock_request_work);
3061 }
3062 
3063 static inline uint64_t
3064 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3065 {
3066 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3067 
3068 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3069 }
3070 
3071 void
3072 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3073 {
3074 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3075 			"6223 Signal CMF init\n");
3076 
3077 	/* Use the new fc_linkspeed to recalculate */
3078 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3079 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3080 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3081 					    phba->cmf_interval_rate, 1000);
3082 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3083 
3084 	/* This is a signal to firmware to sync up CMF BW with link speed */
3085 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3086 }
3087 
3088 /**
3089  * lpfc_cmf_start - Start CMF processing
3090  * @phba: pointer to lpfc hba data structure.
3091  *
3092  * This is called when the link comes up or if CMF mode is turned OFF
3093  * to Monitor or Managed.
3094  **/
3095 void
3096 lpfc_cmf_start(struct lpfc_hba *phba)
3097 {
3098 	struct lpfc_cgn_stat *cgs;
3099 	int cpu;
3100 
3101 	/* We only do something if CMF is enabled */
3102 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3103 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3104 		return;
3105 
3106 	/* Reinitialize congestion buffer info */
3107 	lpfc_init_congestion_buf(phba);
3108 
3109 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3110 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3111 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3112 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3113 
3114 	atomic_set(&phba->cmf_busy, 0);
3115 	for_each_present_cpu(cpu) {
3116 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3117 		atomic64_set(&cgs->total_bytes, 0);
3118 		atomic64_set(&cgs->rcv_bytes, 0);
3119 		atomic_set(&cgs->rx_io_cnt, 0);
3120 		atomic64_set(&cgs->rx_latency, 0);
3121 	}
3122 	phba->cmf_latency.tv_sec = 0;
3123 	phba->cmf_latency.tv_nsec = 0;
3124 
3125 	lpfc_cmf_signal_init(phba);
3126 
3127 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3128 			"6222 Start CMF / Timer\n");
3129 
3130 	phba->cmf_timer_cnt = 0;
3131 	hrtimer_start(&phba->cmf_timer,
3132 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3133 		      HRTIMER_MODE_REL);
3134 	/* Setup for latency check in IO cmpl routines */
3135 	ktime_get_real_ts64(&phba->cmf_latency);
3136 
3137 	atomic_set(&phba->cmf_bw_wait, 0);
3138 	atomic_set(&phba->cmf_stop_io, 0);
3139 }
3140 
3141 /**
3142  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3143  * @phba: pointer to lpfc hba data structure.
3144  *
3145  * This routine stops all the timers associated with a HBA. This function is
3146  * invoked before either putting a HBA offline or unloading the driver.
3147  **/
3148 void
3149 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3150 {
3151 	if (phba->pport)
3152 		lpfc_stop_vport_timers(phba->pport);
3153 	cancel_delayed_work_sync(&phba->eq_delay_work);
3154 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3155 	del_timer_sync(&phba->sli.mbox_tmo);
3156 	del_timer_sync(&phba->fabric_block_timer);
3157 	del_timer_sync(&phba->eratt_poll);
3158 	del_timer_sync(&phba->hb_tmofunc);
3159 	if (phba->sli_rev == LPFC_SLI_REV4) {
3160 		del_timer_sync(&phba->rrq_tmr);
3161 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3162 	}
3163 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3164 
3165 	switch (phba->pci_dev_grp) {
3166 	case LPFC_PCI_DEV_LP:
3167 		/* Stop any LightPulse device specific driver timers */
3168 		del_timer_sync(&phba->fcp_poll_timer);
3169 		break;
3170 	case LPFC_PCI_DEV_OC:
3171 		/* Stop any OneConnect device specific driver timers */
3172 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3173 		break;
3174 	default:
3175 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3176 				"0297 Invalid device group (x%x)\n",
3177 				phba->pci_dev_grp);
3178 		break;
3179 	}
3180 	return;
3181 }
3182 
3183 /**
3184  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3185  * @phba: pointer to lpfc hba data structure.
3186  * @mbx_action: flag for mailbox no wait action.
3187  *
3188  * This routine marks a HBA's management interface as blocked. Once the HBA's
3189  * management interface is marked as blocked, all the user space access to
3190  * the HBA, whether they are from sysfs interface or libdfc interface will
3191  * all be blocked. The HBA is set to block the management interface when the
3192  * driver prepares the HBA interface for online or offline.
3193  **/
3194 static void
3195 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3196 {
3197 	unsigned long iflag;
3198 	uint8_t actcmd = MBX_HEARTBEAT;
3199 	unsigned long timeout;
3200 
3201 	spin_lock_irqsave(&phba->hbalock, iflag);
3202 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3203 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3204 	if (mbx_action == LPFC_MBX_NO_WAIT)
3205 		return;
3206 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3207 	spin_lock_irqsave(&phba->hbalock, iflag);
3208 	if (phba->sli.mbox_active) {
3209 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3210 		/* Determine how long we might wait for the active mailbox
3211 		 * command to be gracefully completed by firmware.
3212 		 */
3213 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3214 				phba->sli.mbox_active) * 1000) + jiffies;
3215 	}
3216 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3217 
3218 	/* Wait for the outstnading mailbox command to complete */
3219 	while (phba->sli.mbox_active) {
3220 		/* Check active mailbox complete status every 2ms */
3221 		msleep(2);
3222 		if (time_after(jiffies, timeout)) {
3223 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3224 					"2813 Mgmt IO is Blocked %x "
3225 					"- mbox cmd %x still active\n",
3226 					phba->sli.sli_flag, actcmd);
3227 			break;
3228 		}
3229 	}
3230 }
3231 
3232 /**
3233  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3234  * @phba: pointer to lpfc hba data structure.
3235  *
3236  * Allocate RPIs for all active remote nodes. This is needed whenever
3237  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3238  * is to fixup the temporary rpi assignments.
3239  **/
3240 void
3241 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3242 {
3243 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3244 	struct lpfc_vport **vports;
3245 	int i, rpi;
3246 
3247 	if (phba->sli_rev != LPFC_SLI_REV4)
3248 		return;
3249 
3250 	vports = lpfc_create_vport_work_array(phba);
3251 	if (vports == NULL)
3252 		return;
3253 
3254 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3255 		if (vports[i]->load_flag & FC_UNLOADING)
3256 			continue;
3257 
3258 		list_for_each_entry_safe(ndlp, next_ndlp,
3259 					 &vports[i]->fc_nodes,
3260 					 nlp_listp) {
3261 			rpi = lpfc_sli4_alloc_rpi(phba);
3262 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3263 				/* TODO print log? */
3264 				continue;
3265 			}
3266 			ndlp->nlp_rpi = rpi;
3267 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3268 					 LOG_NODE | LOG_DISCOVERY,
3269 					 "0009 Assign RPI x%x to ndlp x%px "
3270 					 "DID:x%06x flg:x%x\n",
3271 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3272 					 ndlp->nlp_flag);
3273 		}
3274 	}
3275 	lpfc_destroy_vport_work_array(phba, vports);
3276 }
3277 
3278 /**
3279  * lpfc_create_expedite_pool - create expedite pool
3280  * @phba: pointer to lpfc hba data structure.
3281  *
3282  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3283  * to expedite pool. Mark them as expedite.
3284  **/
3285 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3286 {
3287 	struct lpfc_sli4_hdw_queue *qp;
3288 	struct lpfc_io_buf *lpfc_ncmd;
3289 	struct lpfc_io_buf *lpfc_ncmd_next;
3290 	struct lpfc_epd_pool *epd_pool;
3291 	unsigned long iflag;
3292 
3293 	epd_pool = &phba->epd_pool;
3294 	qp = &phba->sli4_hba.hdwq[0];
3295 
3296 	spin_lock_init(&epd_pool->lock);
3297 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3298 	spin_lock(&epd_pool->lock);
3299 	INIT_LIST_HEAD(&epd_pool->list);
3300 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3301 				 &qp->lpfc_io_buf_list_put, list) {
3302 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3303 		lpfc_ncmd->expedite = true;
3304 		qp->put_io_bufs--;
3305 		epd_pool->count++;
3306 		if (epd_pool->count >= XRI_BATCH)
3307 			break;
3308 	}
3309 	spin_unlock(&epd_pool->lock);
3310 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3311 }
3312 
3313 /**
3314  * lpfc_destroy_expedite_pool - destroy expedite pool
3315  * @phba: pointer to lpfc hba data structure.
3316  *
3317  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3318  * of HWQ 0. Clear the mark.
3319  **/
3320 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3321 {
3322 	struct lpfc_sli4_hdw_queue *qp;
3323 	struct lpfc_io_buf *lpfc_ncmd;
3324 	struct lpfc_io_buf *lpfc_ncmd_next;
3325 	struct lpfc_epd_pool *epd_pool;
3326 	unsigned long iflag;
3327 
3328 	epd_pool = &phba->epd_pool;
3329 	qp = &phba->sli4_hba.hdwq[0];
3330 
3331 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3332 	spin_lock(&epd_pool->lock);
3333 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3334 				 &epd_pool->list, list) {
3335 		list_move_tail(&lpfc_ncmd->list,
3336 			       &qp->lpfc_io_buf_list_put);
3337 		lpfc_ncmd->flags = false;
3338 		qp->put_io_bufs++;
3339 		epd_pool->count--;
3340 	}
3341 	spin_unlock(&epd_pool->lock);
3342 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3343 }
3344 
3345 /**
3346  * lpfc_create_multixri_pools - create multi-XRI pools
3347  * @phba: pointer to lpfc hba data structure.
3348  *
3349  * This routine initialize public, private per HWQ. Then, move XRIs from
3350  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3351  * Initialized.
3352  **/
3353 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3354 {
3355 	u32 i, j;
3356 	u32 hwq_count;
3357 	u32 count_per_hwq;
3358 	struct lpfc_io_buf *lpfc_ncmd;
3359 	struct lpfc_io_buf *lpfc_ncmd_next;
3360 	unsigned long iflag;
3361 	struct lpfc_sli4_hdw_queue *qp;
3362 	struct lpfc_multixri_pool *multixri_pool;
3363 	struct lpfc_pbl_pool *pbl_pool;
3364 	struct lpfc_pvt_pool *pvt_pool;
3365 
3366 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3367 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3368 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3369 			phba->sli4_hba.io_xri_cnt);
3370 
3371 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3372 		lpfc_create_expedite_pool(phba);
3373 
3374 	hwq_count = phba->cfg_hdw_queue;
3375 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3376 
3377 	for (i = 0; i < hwq_count; i++) {
3378 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3379 
3380 		if (!multixri_pool) {
3381 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3382 					"1238 Failed to allocate memory for "
3383 					"multixri_pool\n");
3384 
3385 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3386 				lpfc_destroy_expedite_pool(phba);
3387 
3388 			j = 0;
3389 			while (j < i) {
3390 				qp = &phba->sli4_hba.hdwq[j];
3391 				kfree(qp->p_multixri_pool);
3392 				j++;
3393 			}
3394 			phba->cfg_xri_rebalancing = 0;
3395 			return;
3396 		}
3397 
3398 		qp = &phba->sli4_hba.hdwq[i];
3399 		qp->p_multixri_pool = multixri_pool;
3400 
3401 		multixri_pool->xri_limit = count_per_hwq;
3402 		multixri_pool->rrb_next_hwqid = i;
3403 
3404 		/* Deal with public free xri pool */
3405 		pbl_pool = &multixri_pool->pbl_pool;
3406 		spin_lock_init(&pbl_pool->lock);
3407 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3408 		spin_lock(&pbl_pool->lock);
3409 		INIT_LIST_HEAD(&pbl_pool->list);
3410 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3411 					 &qp->lpfc_io_buf_list_put, list) {
3412 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3413 			qp->put_io_bufs--;
3414 			pbl_pool->count++;
3415 		}
3416 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3417 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3418 				pbl_pool->count, i);
3419 		spin_unlock(&pbl_pool->lock);
3420 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3421 
3422 		/* Deal with private free xri pool */
3423 		pvt_pool = &multixri_pool->pvt_pool;
3424 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3425 		pvt_pool->low_watermark = XRI_BATCH;
3426 		spin_lock_init(&pvt_pool->lock);
3427 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3428 		INIT_LIST_HEAD(&pvt_pool->list);
3429 		pvt_pool->count = 0;
3430 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3431 	}
3432 }
3433 
3434 /**
3435  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3436  * @phba: pointer to lpfc hba data structure.
3437  *
3438  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3439  **/
3440 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3441 {
3442 	u32 i;
3443 	u32 hwq_count;
3444 	struct lpfc_io_buf *lpfc_ncmd;
3445 	struct lpfc_io_buf *lpfc_ncmd_next;
3446 	unsigned long iflag;
3447 	struct lpfc_sli4_hdw_queue *qp;
3448 	struct lpfc_multixri_pool *multixri_pool;
3449 	struct lpfc_pbl_pool *pbl_pool;
3450 	struct lpfc_pvt_pool *pvt_pool;
3451 
3452 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3453 		lpfc_destroy_expedite_pool(phba);
3454 
3455 	if (!(phba->pport->load_flag & FC_UNLOADING))
3456 		lpfc_sli_flush_io_rings(phba);
3457 
3458 	hwq_count = phba->cfg_hdw_queue;
3459 
3460 	for (i = 0; i < hwq_count; i++) {
3461 		qp = &phba->sli4_hba.hdwq[i];
3462 		multixri_pool = qp->p_multixri_pool;
3463 		if (!multixri_pool)
3464 			continue;
3465 
3466 		qp->p_multixri_pool = NULL;
3467 
3468 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3469 
3470 		/* Deal with public free xri pool */
3471 		pbl_pool = &multixri_pool->pbl_pool;
3472 		spin_lock(&pbl_pool->lock);
3473 
3474 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3475 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3476 				pbl_pool->count, i);
3477 
3478 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3479 					 &pbl_pool->list, list) {
3480 			list_move_tail(&lpfc_ncmd->list,
3481 				       &qp->lpfc_io_buf_list_put);
3482 			qp->put_io_bufs++;
3483 			pbl_pool->count--;
3484 		}
3485 
3486 		INIT_LIST_HEAD(&pbl_pool->list);
3487 		pbl_pool->count = 0;
3488 
3489 		spin_unlock(&pbl_pool->lock);
3490 
3491 		/* Deal with private free xri pool */
3492 		pvt_pool = &multixri_pool->pvt_pool;
3493 		spin_lock(&pvt_pool->lock);
3494 
3495 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3496 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3497 				pvt_pool->count, i);
3498 
3499 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3500 					 &pvt_pool->list, list) {
3501 			list_move_tail(&lpfc_ncmd->list,
3502 				       &qp->lpfc_io_buf_list_put);
3503 			qp->put_io_bufs++;
3504 			pvt_pool->count--;
3505 		}
3506 
3507 		INIT_LIST_HEAD(&pvt_pool->list);
3508 		pvt_pool->count = 0;
3509 
3510 		spin_unlock(&pvt_pool->lock);
3511 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3512 
3513 		kfree(multixri_pool);
3514 	}
3515 }
3516 
3517 /**
3518  * lpfc_online - Initialize and bring a HBA online
3519  * @phba: pointer to lpfc hba data structure.
3520  *
3521  * This routine initializes the HBA and brings a HBA online. During this
3522  * process, the management interface is blocked to prevent user space access
3523  * to the HBA interfering with the driver initialization.
3524  *
3525  * Return codes
3526  *   0 - successful
3527  *   1 - failed
3528  **/
3529 int
3530 lpfc_online(struct lpfc_hba *phba)
3531 {
3532 	struct lpfc_vport *vport;
3533 	struct lpfc_vport **vports;
3534 	int i, error = 0;
3535 	bool vpis_cleared = false;
3536 
3537 	if (!phba)
3538 		return 0;
3539 	vport = phba->pport;
3540 
3541 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3542 		return 0;
3543 
3544 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3545 			"0458 Bring Adapter online\n");
3546 
3547 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3548 
3549 	if (phba->sli_rev == LPFC_SLI_REV4) {
3550 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3551 			lpfc_unblock_mgmt_io(phba);
3552 			return 1;
3553 		}
3554 		spin_lock_irq(&phba->hbalock);
3555 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3556 			vpis_cleared = true;
3557 		spin_unlock_irq(&phba->hbalock);
3558 
3559 		/* Reestablish the local initiator port.
3560 		 * The offline process destroyed the previous lport.
3561 		 */
3562 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3563 				!phba->nvmet_support) {
3564 			error = lpfc_nvme_create_localport(phba->pport);
3565 			if (error)
3566 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3567 					"6132 NVME restore reg failed "
3568 					"on nvmei error x%x\n", error);
3569 		}
3570 	} else {
3571 		lpfc_sli_queue_init(phba);
3572 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3573 			lpfc_unblock_mgmt_io(phba);
3574 			return 1;
3575 		}
3576 	}
3577 
3578 	vports = lpfc_create_vport_work_array(phba);
3579 	if (vports != NULL) {
3580 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3581 			struct Scsi_Host *shost;
3582 			shost = lpfc_shost_from_vport(vports[i]);
3583 			spin_lock_irq(shost->host_lock);
3584 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3585 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3586 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3587 			if (phba->sli_rev == LPFC_SLI_REV4) {
3588 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3589 				if ((vpis_cleared) &&
3590 				    (vports[i]->port_type !=
3591 					LPFC_PHYSICAL_PORT))
3592 					vports[i]->vpi = 0;
3593 			}
3594 			spin_unlock_irq(shost->host_lock);
3595 		}
3596 	}
3597 	lpfc_destroy_vport_work_array(phba, vports);
3598 
3599 	if (phba->cfg_xri_rebalancing)
3600 		lpfc_create_multixri_pools(phba);
3601 
3602 	lpfc_cpuhp_add(phba);
3603 
3604 	lpfc_unblock_mgmt_io(phba);
3605 	return 0;
3606 }
3607 
3608 /**
3609  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3610  * @phba: pointer to lpfc hba data structure.
3611  *
3612  * This routine marks a HBA's management interface as not blocked. Once the
3613  * HBA's management interface is marked as not blocked, all the user space
3614  * access to the HBA, whether they are from sysfs interface or libdfc
3615  * interface will be allowed. The HBA is set to block the management interface
3616  * when the driver prepares the HBA interface for online or offline and then
3617  * set to unblock the management interface afterwards.
3618  **/
3619 void
3620 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3621 {
3622 	unsigned long iflag;
3623 
3624 	spin_lock_irqsave(&phba->hbalock, iflag);
3625 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3626 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3627 }
3628 
3629 /**
3630  * lpfc_offline_prep - Prepare a HBA to be brought offline
3631  * @phba: pointer to lpfc hba data structure.
3632  * @mbx_action: flag for mailbox shutdown action.
3633  *
3634  * This routine is invoked to prepare a HBA to be brought offline. It performs
3635  * unregistration login to all the nodes on all vports and flushes the mailbox
3636  * queue to make it ready to be brought offline.
3637  **/
3638 void
3639 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3640 {
3641 	struct lpfc_vport *vport = phba->pport;
3642 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3643 	struct lpfc_vport **vports;
3644 	struct Scsi_Host *shost;
3645 	int i;
3646 
3647 	if (vport->fc_flag & FC_OFFLINE_MODE)
3648 		return;
3649 
3650 	lpfc_block_mgmt_io(phba, mbx_action);
3651 
3652 	lpfc_linkdown(phba);
3653 
3654 	/* Issue an unreg_login to all nodes on all vports */
3655 	vports = lpfc_create_vport_work_array(phba);
3656 	if (vports != NULL) {
3657 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3658 			if (vports[i]->load_flag & FC_UNLOADING)
3659 				continue;
3660 			shost = lpfc_shost_from_vport(vports[i]);
3661 			spin_lock_irq(shost->host_lock);
3662 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3663 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3664 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3665 			spin_unlock_irq(shost->host_lock);
3666 
3667 			shost =	lpfc_shost_from_vport(vports[i]);
3668 			list_for_each_entry_safe(ndlp, next_ndlp,
3669 						 &vports[i]->fc_nodes,
3670 						 nlp_listp) {
3671 
3672 				spin_lock_irq(&ndlp->lock);
3673 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3674 				spin_unlock_irq(&ndlp->lock);
3675 
3676 				lpfc_unreg_rpi(vports[i], ndlp);
3677 				/*
3678 				 * Whenever an SLI4 port goes offline, free the
3679 				 * RPI. Get a new RPI when the adapter port
3680 				 * comes back online.
3681 				 */
3682 				if (phba->sli_rev == LPFC_SLI_REV4) {
3683 					lpfc_printf_vlog(vports[i], KERN_INFO,
3684 						 LOG_NODE | LOG_DISCOVERY,
3685 						 "0011 Free RPI x%x on "
3686 						 "ndlp: x%px did x%x\n",
3687 						 ndlp->nlp_rpi, ndlp,
3688 						 ndlp->nlp_DID);
3689 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3690 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3691 				}
3692 
3693 				if (ndlp->nlp_type & NLP_FABRIC) {
3694 					lpfc_disc_state_machine(vports[i], ndlp,
3695 						NULL, NLP_EVT_DEVICE_RECOVERY);
3696 
3697 					/* Don't remove the node unless the
3698 					 * has been unregistered with the
3699 					 * transport.  If so, let dev_loss
3700 					 * take care of the node.
3701 					 */
3702 					if (!(ndlp->fc4_xpt_flags &
3703 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3704 						lpfc_disc_state_machine
3705 							(vports[i], ndlp,
3706 							 NULL,
3707 							 NLP_EVT_DEVICE_RM);
3708 				}
3709 			}
3710 		}
3711 	}
3712 	lpfc_destroy_vport_work_array(phba, vports);
3713 
3714 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3715 
3716 	if (phba->wq)
3717 		flush_workqueue(phba->wq);
3718 }
3719 
3720 /**
3721  * lpfc_offline - Bring a HBA offline
3722  * @phba: pointer to lpfc hba data structure.
3723  *
3724  * This routine actually brings a HBA offline. It stops all the timers
3725  * associated with the HBA, brings down the SLI layer, and eventually
3726  * marks the HBA as in offline state for the upper layer protocol.
3727  **/
3728 void
3729 lpfc_offline(struct lpfc_hba *phba)
3730 {
3731 	struct Scsi_Host  *shost;
3732 	struct lpfc_vport **vports;
3733 	int i;
3734 
3735 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3736 		return;
3737 
3738 	/* stop port and all timers associated with this hba */
3739 	lpfc_stop_port(phba);
3740 
3741 	/* Tear down the local and target port registrations.  The
3742 	 * nvme transports need to cleanup.
3743 	 */
3744 	lpfc_nvmet_destroy_targetport(phba);
3745 	lpfc_nvme_destroy_localport(phba->pport);
3746 
3747 	vports = lpfc_create_vport_work_array(phba);
3748 	if (vports != NULL)
3749 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3750 			lpfc_stop_vport_timers(vports[i]);
3751 	lpfc_destroy_vport_work_array(phba, vports);
3752 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3753 			"0460 Bring Adapter offline\n");
3754 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3755 	   now.  */
3756 	lpfc_sli_hba_down(phba);
3757 	spin_lock_irq(&phba->hbalock);
3758 	phba->work_ha = 0;
3759 	spin_unlock_irq(&phba->hbalock);
3760 	vports = lpfc_create_vport_work_array(phba);
3761 	if (vports != NULL)
3762 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3763 			shost = lpfc_shost_from_vport(vports[i]);
3764 			spin_lock_irq(shost->host_lock);
3765 			vports[i]->work_port_events = 0;
3766 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3767 			spin_unlock_irq(shost->host_lock);
3768 		}
3769 	lpfc_destroy_vport_work_array(phba, vports);
3770 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3771 	 * in hba_unset
3772 	 */
3773 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3774 		__lpfc_cpuhp_remove(phba);
3775 
3776 	if (phba->cfg_xri_rebalancing)
3777 		lpfc_destroy_multixri_pools(phba);
3778 }
3779 
3780 /**
3781  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3782  * @phba: pointer to lpfc hba data structure.
3783  *
3784  * This routine is to free all the SCSI buffers and IOCBs from the driver
3785  * list back to kernel. It is called from lpfc_pci_remove_one to free
3786  * the internal resources before the device is removed from the system.
3787  **/
3788 static void
3789 lpfc_scsi_free(struct lpfc_hba *phba)
3790 {
3791 	struct lpfc_io_buf *sb, *sb_next;
3792 
3793 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3794 		return;
3795 
3796 	spin_lock_irq(&phba->hbalock);
3797 
3798 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3799 
3800 	spin_lock(&phba->scsi_buf_list_put_lock);
3801 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3802 				 list) {
3803 		list_del(&sb->list);
3804 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3805 			      sb->dma_handle);
3806 		kfree(sb);
3807 		phba->total_scsi_bufs--;
3808 	}
3809 	spin_unlock(&phba->scsi_buf_list_put_lock);
3810 
3811 	spin_lock(&phba->scsi_buf_list_get_lock);
3812 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3813 				 list) {
3814 		list_del(&sb->list);
3815 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3816 			      sb->dma_handle);
3817 		kfree(sb);
3818 		phba->total_scsi_bufs--;
3819 	}
3820 	spin_unlock(&phba->scsi_buf_list_get_lock);
3821 	spin_unlock_irq(&phba->hbalock);
3822 }
3823 
3824 /**
3825  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3826  * @phba: pointer to lpfc hba data structure.
3827  *
3828  * This routine is to free all the IO buffers and IOCBs from the driver
3829  * list back to kernel. It is called from lpfc_pci_remove_one to free
3830  * the internal resources before the device is removed from the system.
3831  **/
3832 void
3833 lpfc_io_free(struct lpfc_hba *phba)
3834 {
3835 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
3836 	struct lpfc_sli4_hdw_queue *qp;
3837 	int idx;
3838 
3839 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
3840 		qp = &phba->sli4_hba.hdwq[idx];
3841 		/* Release all the lpfc_nvme_bufs maintained by this host. */
3842 		spin_lock(&qp->io_buf_list_put_lock);
3843 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3844 					 &qp->lpfc_io_buf_list_put,
3845 					 list) {
3846 			list_del(&lpfc_ncmd->list);
3847 			qp->put_io_bufs--;
3848 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3849 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3850 			if (phba->cfg_xpsgl && !phba->nvmet_support)
3851 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3852 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3853 			kfree(lpfc_ncmd);
3854 			qp->total_io_bufs--;
3855 		}
3856 		spin_unlock(&qp->io_buf_list_put_lock);
3857 
3858 		spin_lock(&qp->io_buf_list_get_lock);
3859 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3860 					 &qp->lpfc_io_buf_list_get,
3861 					 list) {
3862 			list_del(&lpfc_ncmd->list);
3863 			qp->get_io_bufs--;
3864 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3865 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3866 			if (phba->cfg_xpsgl && !phba->nvmet_support)
3867 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3868 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3869 			kfree(lpfc_ncmd);
3870 			qp->total_io_bufs--;
3871 		}
3872 		spin_unlock(&qp->io_buf_list_get_lock);
3873 	}
3874 }
3875 
3876 /**
3877  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
3878  * @phba: pointer to lpfc hba data structure.
3879  *
3880  * This routine first calculates the sizes of the current els and allocated
3881  * scsi sgl lists, and then goes through all sgls to updates the physical
3882  * XRIs assigned due to port function reset. During port initialization, the
3883  * current els and allocated scsi sgl lists are 0s.
3884  *
3885  * Return codes
3886  *   0 - successful (for now, it always returns 0)
3887  **/
3888 int
3889 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
3890 {
3891 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
3892 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
3893 	LIST_HEAD(els_sgl_list);
3894 	int rc;
3895 
3896 	/*
3897 	 * update on pci function's els xri-sgl list
3898 	 */
3899 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
3900 
3901 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
3902 		/* els xri-sgl expanded */
3903 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
3904 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3905 				"3157 ELS xri-sgl count increased from "
3906 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
3907 				els_xri_cnt);
3908 		/* allocate the additional els sgls */
3909 		for (i = 0; i < xri_cnt; i++) {
3910 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
3911 					     GFP_KERNEL);
3912 			if (sglq_entry == NULL) {
3913 				lpfc_printf_log(phba, KERN_ERR,
3914 						LOG_TRACE_EVENT,
3915 						"2562 Failure to allocate an "
3916 						"ELS sgl entry:%d\n", i);
3917 				rc = -ENOMEM;
3918 				goto out_free_mem;
3919 			}
3920 			sglq_entry->buff_type = GEN_BUFF_TYPE;
3921 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
3922 							   &sglq_entry->phys);
3923 			if (sglq_entry->virt == NULL) {
3924 				kfree(sglq_entry);
3925 				lpfc_printf_log(phba, KERN_ERR,
3926 						LOG_TRACE_EVENT,
3927 						"2563 Failure to allocate an "
3928 						"ELS mbuf:%d\n", i);
3929 				rc = -ENOMEM;
3930 				goto out_free_mem;
3931 			}
3932 			sglq_entry->sgl = sglq_entry->virt;
3933 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
3934 			sglq_entry->state = SGL_FREED;
3935 			list_add_tail(&sglq_entry->list, &els_sgl_list);
3936 		}
3937 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
3938 		list_splice_init(&els_sgl_list,
3939 				 &phba->sli4_hba.lpfc_els_sgl_list);
3940 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
3941 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
3942 		/* els xri-sgl shrinked */
3943 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
3944 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3945 				"3158 ELS xri-sgl count decreased from "
3946 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
3947 				els_xri_cnt);
3948 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
3949 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
3950 				 &els_sgl_list);
3951 		/* release extra els sgls from list */
3952 		for (i = 0; i < xri_cnt; i++) {
3953 			list_remove_head(&els_sgl_list,
3954 					 sglq_entry, struct lpfc_sglq, list);
3955 			if (sglq_entry) {
3956 				__lpfc_mbuf_free(phba, sglq_entry->virt,
3957 						 sglq_entry->phys);
3958 				kfree(sglq_entry);
3959 			}
3960 		}
3961 		list_splice_init(&els_sgl_list,
3962 				 &phba->sli4_hba.lpfc_els_sgl_list);
3963 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
3964 	} else
3965 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3966 				"3163 ELS xri-sgl count unchanged: %d\n",
3967 				els_xri_cnt);
3968 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
3969 
3970 	/* update xris to els sgls on the list */
3971 	sglq_entry = NULL;
3972 	sglq_entry_next = NULL;
3973 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
3974 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
3975 		lxri = lpfc_sli4_next_xritag(phba);
3976 		if (lxri == NO_XRI) {
3977 			lpfc_printf_log(phba, KERN_ERR,
3978 					LOG_TRACE_EVENT,
3979 					"2400 Failed to allocate xri for "
3980 					"ELS sgl\n");
3981 			rc = -ENOMEM;
3982 			goto out_free_mem;
3983 		}
3984 		sglq_entry->sli4_lxritag = lxri;
3985 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
3986 	}
3987 	return 0;
3988 
3989 out_free_mem:
3990 	lpfc_free_els_sgl_list(phba);
3991 	return rc;
3992 }
3993 
3994 /**
3995  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
3996  * @phba: pointer to lpfc hba data structure.
3997  *
3998  * This routine first calculates the sizes of the current els and allocated
3999  * scsi sgl lists, and then goes through all sgls to updates the physical
4000  * XRIs assigned due to port function reset. During port initialization, the
4001  * current els and allocated scsi sgl lists are 0s.
4002  *
4003  * Return codes
4004  *   0 - successful (for now, it always returns 0)
4005  **/
4006 int
4007 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4008 {
4009 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4010 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4011 	uint16_t nvmet_xri_cnt;
4012 	LIST_HEAD(nvmet_sgl_list);
4013 	int rc;
4014 
4015 	/*
4016 	 * update on pci function's nvmet xri-sgl list
4017 	 */
4018 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4019 
4020 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4021 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4022 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4023 		/* els xri-sgl expanded */
4024 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4025 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4026 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4027 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4028 		/* allocate the additional nvmet sgls */
4029 		for (i = 0; i < xri_cnt; i++) {
4030 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4031 					     GFP_KERNEL);
4032 			if (sglq_entry == NULL) {
4033 				lpfc_printf_log(phba, KERN_ERR,
4034 						LOG_TRACE_EVENT,
4035 						"6303 Failure to allocate an "
4036 						"NVMET sgl entry:%d\n", i);
4037 				rc = -ENOMEM;
4038 				goto out_free_mem;
4039 			}
4040 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4041 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4042 							   &sglq_entry->phys);
4043 			if (sglq_entry->virt == NULL) {
4044 				kfree(sglq_entry);
4045 				lpfc_printf_log(phba, KERN_ERR,
4046 						LOG_TRACE_EVENT,
4047 						"6304 Failure to allocate an "
4048 						"NVMET buf:%d\n", i);
4049 				rc = -ENOMEM;
4050 				goto out_free_mem;
4051 			}
4052 			sglq_entry->sgl = sglq_entry->virt;
4053 			memset(sglq_entry->sgl, 0,
4054 			       phba->cfg_sg_dma_buf_size);
4055 			sglq_entry->state = SGL_FREED;
4056 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4057 		}
4058 		spin_lock_irq(&phba->hbalock);
4059 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4060 		list_splice_init(&nvmet_sgl_list,
4061 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4062 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4063 		spin_unlock_irq(&phba->hbalock);
4064 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4065 		/* nvmet xri-sgl shrunk */
4066 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4067 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4068 				"6305 NVMET xri-sgl count decreased from "
4069 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4070 				nvmet_xri_cnt);
4071 		spin_lock_irq(&phba->hbalock);
4072 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4073 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4074 				 &nvmet_sgl_list);
4075 		/* release extra nvmet sgls from list */
4076 		for (i = 0; i < xri_cnt; i++) {
4077 			list_remove_head(&nvmet_sgl_list,
4078 					 sglq_entry, struct lpfc_sglq, list);
4079 			if (sglq_entry) {
4080 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4081 						    sglq_entry->phys);
4082 				kfree(sglq_entry);
4083 			}
4084 		}
4085 		list_splice_init(&nvmet_sgl_list,
4086 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4087 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4088 		spin_unlock_irq(&phba->hbalock);
4089 	} else
4090 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4091 				"6306 NVMET xri-sgl count unchanged: %d\n",
4092 				nvmet_xri_cnt);
4093 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4094 
4095 	/* update xris to nvmet sgls on the list */
4096 	sglq_entry = NULL;
4097 	sglq_entry_next = NULL;
4098 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4099 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4100 		lxri = lpfc_sli4_next_xritag(phba);
4101 		if (lxri == NO_XRI) {
4102 			lpfc_printf_log(phba, KERN_ERR,
4103 					LOG_TRACE_EVENT,
4104 					"6307 Failed to allocate xri for "
4105 					"NVMET sgl\n");
4106 			rc = -ENOMEM;
4107 			goto out_free_mem;
4108 		}
4109 		sglq_entry->sli4_lxritag = lxri;
4110 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4111 	}
4112 	return 0;
4113 
4114 out_free_mem:
4115 	lpfc_free_nvmet_sgl_list(phba);
4116 	return rc;
4117 }
4118 
4119 int
4120 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4121 {
4122 	LIST_HEAD(blist);
4123 	struct lpfc_sli4_hdw_queue *qp;
4124 	struct lpfc_io_buf *lpfc_cmd;
4125 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4126 	int idx, cnt, xri, inserted;
4127 
4128 	cnt = 0;
4129 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4130 		qp = &phba->sli4_hba.hdwq[idx];
4131 		spin_lock_irq(&qp->io_buf_list_get_lock);
4132 		spin_lock(&qp->io_buf_list_put_lock);
4133 
4134 		/* Take everything off the get and put lists */
4135 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4136 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4137 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4138 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4139 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4140 		qp->get_io_bufs = 0;
4141 		qp->put_io_bufs = 0;
4142 		qp->total_io_bufs = 0;
4143 		spin_unlock(&qp->io_buf_list_put_lock);
4144 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4145 	}
4146 
4147 	/*
4148 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4149 	 * This is because POST_SGL takes a sequential range of XRIs
4150 	 * to post to the firmware.
4151 	 */
4152 	for (idx = 0; idx < cnt; idx++) {
4153 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4154 		if (!lpfc_cmd)
4155 			return cnt;
4156 		if (idx == 0) {
4157 			list_add_tail(&lpfc_cmd->list, cbuf);
4158 			continue;
4159 		}
4160 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4161 		inserted = 0;
4162 		prev_iobufp = NULL;
4163 		list_for_each_entry(iobufp, cbuf, list) {
4164 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4165 				if (prev_iobufp)
4166 					list_add(&lpfc_cmd->list,
4167 						 &prev_iobufp->list);
4168 				else
4169 					list_add(&lpfc_cmd->list, cbuf);
4170 				inserted = 1;
4171 				break;
4172 			}
4173 			prev_iobufp = iobufp;
4174 		}
4175 		if (!inserted)
4176 			list_add_tail(&lpfc_cmd->list, cbuf);
4177 	}
4178 	return cnt;
4179 }
4180 
4181 int
4182 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4183 {
4184 	struct lpfc_sli4_hdw_queue *qp;
4185 	struct lpfc_io_buf *lpfc_cmd;
4186 	int idx, cnt;
4187 
4188 	qp = phba->sli4_hba.hdwq;
4189 	cnt = 0;
4190 	while (!list_empty(cbuf)) {
4191 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4192 			list_remove_head(cbuf, lpfc_cmd,
4193 					 struct lpfc_io_buf, list);
4194 			if (!lpfc_cmd)
4195 				return cnt;
4196 			cnt++;
4197 			qp = &phba->sli4_hba.hdwq[idx];
4198 			lpfc_cmd->hdwq_no = idx;
4199 			lpfc_cmd->hdwq = qp;
4200 			lpfc_cmd->cur_iocbq.wqe_cmpl = NULL;
4201 			lpfc_cmd->cur_iocbq.iocb_cmpl = NULL;
4202 			spin_lock(&qp->io_buf_list_put_lock);
4203 			list_add_tail(&lpfc_cmd->list,
4204 				      &qp->lpfc_io_buf_list_put);
4205 			qp->put_io_bufs++;
4206 			qp->total_io_bufs++;
4207 			spin_unlock(&qp->io_buf_list_put_lock);
4208 		}
4209 	}
4210 	return cnt;
4211 }
4212 
4213 /**
4214  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4215  * @phba: pointer to lpfc hba data structure.
4216  *
4217  * This routine first calculates the sizes of the current els and allocated
4218  * scsi sgl lists, and then goes through all sgls to updates the physical
4219  * XRIs assigned due to port function reset. During port initialization, the
4220  * current els and allocated scsi sgl lists are 0s.
4221  *
4222  * Return codes
4223  *   0 - successful (for now, it always returns 0)
4224  **/
4225 int
4226 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4227 {
4228 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4229 	uint16_t i, lxri, els_xri_cnt;
4230 	uint16_t io_xri_cnt, io_xri_max;
4231 	LIST_HEAD(io_sgl_list);
4232 	int rc, cnt;
4233 
4234 	/*
4235 	 * update on pci function's allocated nvme xri-sgl list
4236 	 */
4237 
4238 	/* maximum number of xris available for nvme buffers */
4239 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4240 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4241 	phba->sli4_hba.io_xri_max = io_xri_max;
4242 
4243 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4244 			"6074 Current allocated XRI sgl count:%d, "
4245 			"maximum XRI count:%d\n",
4246 			phba->sli4_hba.io_xri_cnt,
4247 			phba->sli4_hba.io_xri_max);
4248 
4249 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4250 
4251 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4252 		/* max nvme xri shrunk below the allocated nvme buffers */
4253 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4254 					phba->sli4_hba.io_xri_max;
4255 		/* release the extra allocated nvme buffers */
4256 		for (i = 0; i < io_xri_cnt; i++) {
4257 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4258 					 struct lpfc_io_buf, list);
4259 			if (lpfc_ncmd) {
4260 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4261 					      lpfc_ncmd->data,
4262 					      lpfc_ncmd->dma_handle);
4263 				kfree(lpfc_ncmd);
4264 			}
4265 		}
4266 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4267 	}
4268 
4269 	/* update xris associated to remaining allocated nvme buffers */
4270 	lpfc_ncmd = NULL;
4271 	lpfc_ncmd_next = NULL;
4272 	phba->sli4_hba.io_xri_cnt = cnt;
4273 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4274 				 &io_sgl_list, list) {
4275 		lxri = lpfc_sli4_next_xritag(phba);
4276 		if (lxri == NO_XRI) {
4277 			lpfc_printf_log(phba, KERN_ERR,
4278 					LOG_TRACE_EVENT,
4279 					"6075 Failed to allocate xri for "
4280 					"nvme buffer\n");
4281 			rc = -ENOMEM;
4282 			goto out_free_mem;
4283 		}
4284 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4285 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4286 	}
4287 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4288 	return 0;
4289 
4290 out_free_mem:
4291 	lpfc_io_free(phba);
4292 	return rc;
4293 }
4294 
4295 /**
4296  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4297  * @phba: Pointer to lpfc hba data structure.
4298  * @num_to_alloc: The requested number of buffers to allocate.
4299  *
4300  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4301  * the nvme buffer contains all the necessary information needed to initiate
4302  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4303  * them on a list, it post them to the port by using SGL block post.
4304  *
4305  * Return codes:
4306  *   int - number of IO buffers that were allocated and posted.
4307  *   0 = failure, less than num_to_alloc is a partial failure.
4308  **/
4309 int
4310 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4311 {
4312 	struct lpfc_io_buf *lpfc_ncmd;
4313 	struct lpfc_iocbq *pwqeq;
4314 	uint16_t iotag, lxri = 0;
4315 	int bcnt, num_posted;
4316 	LIST_HEAD(prep_nblist);
4317 	LIST_HEAD(post_nblist);
4318 	LIST_HEAD(nvme_nblist);
4319 
4320 	phba->sli4_hba.io_xri_cnt = 0;
4321 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4322 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4323 		if (!lpfc_ncmd)
4324 			break;
4325 		/*
4326 		 * Get memory from the pci pool to map the virt space to
4327 		 * pci bus space for an I/O. The DMA buffer includes the
4328 		 * number of SGE's necessary to support the sg_tablesize.
4329 		 */
4330 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4331 						  GFP_KERNEL,
4332 						  &lpfc_ncmd->dma_handle);
4333 		if (!lpfc_ncmd->data) {
4334 			kfree(lpfc_ncmd);
4335 			break;
4336 		}
4337 
4338 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4339 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4340 		} else {
4341 			/*
4342 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4343 			 * check to be sure.
4344 			 */
4345 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4346 			    (((unsigned long)(lpfc_ncmd->data) &
4347 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4348 				lpfc_printf_log(phba, KERN_ERR,
4349 						LOG_TRACE_EVENT,
4350 						"3369 Memory alignment err: "
4351 						"addr=%lx\n",
4352 						(unsigned long)lpfc_ncmd->data);
4353 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4354 					      lpfc_ncmd->data,
4355 					      lpfc_ncmd->dma_handle);
4356 				kfree(lpfc_ncmd);
4357 				break;
4358 			}
4359 		}
4360 
4361 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4362 
4363 		lxri = lpfc_sli4_next_xritag(phba);
4364 		if (lxri == NO_XRI) {
4365 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4366 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4367 			kfree(lpfc_ncmd);
4368 			break;
4369 		}
4370 		pwqeq = &lpfc_ncmd->cur_iocbq;
4371 
4372 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4373 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4374 		if (iotag == 0) {
4375 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4376 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4377 			kfree(lpfc_ncmd);
4378 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4379 					"6121 Failed to allocate IOTAG for"
4380 					" XRI:0x%x\n", lxri);
4381 			lpfc_sli4_free_xri(phba, lxri);
4382 			break;
4383 		}
4384 		pwqeq->sli4_lxritag = lxri;
4385 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4386 		pwqeq->context1 = lpfc_ncmd;
4387 
4388 		/* Initialize local short-hand pointers. */
4389 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4390 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4391 		lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd;
4392 		spin_lock_init(&lpfc_ncmd->buf_lock);
4393 
4394 		/* add the nvme buffer to a post list */
4395 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4396 		phba->sli4_hba.io_xri_cnt++;
4397 	}
4398 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4399 			"6114 Allocate %d out of %d requested new NVME "
4400 			"buffers\n", bcnt, num_to_alloc);
4401 
4402 	/* post the list of nvme buffer sgls to port if available */
4403 	if (!list_empty(&post_nblist))
4404 		num_posted = lpfc_sli4_post_io_sgl_list(
4405 				phba, &post_nblist, bcnt);
4406 	else
4407 		num_posted = 0;
4408 
4409 	return num_posted;
4410 }
4411 
4412 static uint64_t
4413 lpfc_get_wwpn(struct lpfc_hba *phba)
4414 {
4415 	uint64_t wwn;
4416 	int rc;
4417 	LPFC_MBOXQ_t *mboxq;
4418 	MAILBOX_t *mb;
4419 
4420 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4421 						GFP_KERNEL);
4422 	if (!mboxq)
4423 		return (uint64_t)-1;
4424 
4425 	/* First get WWN of HBA instance */
4426 	lpfc_read_nv(phba, mboxq);
4427 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4428 	if (rc != MBX_SUCCESS) {
4429 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4430 				"6019 Mailbox failed , mbxCmd x%x "
4431 				"READ_NV, mbxStatus x%x\n",
4432 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4433 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4434 		mempool_free(mboxq, phba->mbox_mem_pool);
4435 		return (uint64_t) -1;
4436 	}
4437 	mb = &mboxq->u.mb;
4438 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4439 	/* wwn is WWPN of HBA instance */
4440 	mempool_free(mboxq, phba->mbox_mem_pool);
4441 	if (phba->sli_rev == LPFC_SLI_REV4)
4442 		return be64_to_cpu(wwn);
4443 	else
4444 		return rol64(wwn, 32);
4445 }
4446 
4447 /**
4448  * lpfc_vmid_res_alloc - Allocates resources for VMID
4449  * @phba: pointer to lpfc hba data structure.
4450  * @vport: pointer to vport data structure
4451  *
4452  * This routine allocated the resources needed for the VMID.
4453  *
4454  * Return codes
4455  *	0 on Success
4456  *	Non-0 on Failure
4457  */
4458 static int
4459 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4460 {
4461 	/* VMID feature is supported only on SLI4 */
4462 	if (phba->sli_rev == LPFC_SLI_REV3) {
4463 		phba->cfg_vmid_app_header = 0;
4464 		phba->cfg_vmid_priority_tagging = 0;
4465 	}
4466 
4467 	if (lpfc_is_vmid_enabled(phba)) {
4468 		vport->vmid =
4469 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4470 			    GFP_KERNEL);
4471 		if (!vport->vmid)
4472 			return -ENOMEM;
4473 
4474 		rwlock_init(&vport->vmid_lock);
4475 
4476 		/* Set the VMID parameters for the vport */
4477 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4478 		vport->vmid_inactivity_timeout =
4479 		    phba->cfg_vmid_inactivity_timeout;
4480 		vport->max_vmid = phba->cfg_max_vmid;
4481 		vport->cur_vmid_cnt = 0;
4482 
4483 		vport->vmid_priority_range = bitmap_zalloc
4484 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4485 
4486 		if (!vport->vmid_priority_range) {
4487 			kfree(vport->vmid);
4488 			return -ENOMEM;
4489 		}
4490 
4491 		hash_init(vport->hash_table);
4492 	}
4493 	return 0;
4494 }
4495 
4496 /**
4497  * lpfc_create_port - Create an FC port
4498  * @phba: pointer to lpfc hba data structure.
4499  * @instance: a unique integer ID to this FC port.
4500  * @dev: pointer to the device data structure.
4501  *
4502  * This routine creates a FC port for the upper layer protocol. The FC port
4503  * can be created on top of either a physical port or a virtual port provided
4504  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4505  * and associates the FC port created before adding the shost into the SCSI
4506  * layer.
4507  *
4508  * Return codes
4509  *   @vport - pointer to the virtual N_Port data structure.
4510  *   NULL - port create failed.
4511  **/
4512 struct lpfc_vport *
4513 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4514 {
4515 	struct lpfc_vport *vport;
4516 	struct Scsi_Host  *shost = NULL;
4517 	struct scsi_host_template *template;
4518 	int error = 0;
4519 	int i;
4520 	uint64_t wwn;
4521 	bool use_no_reset_hba = false;
4522 	int rc;
4523 
4524 	if (lpfc_no_hba_reset_cnt) {
4525 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4526 		    dev == &phba->pcidev->dev) {
4527 			/* Reset the port first */
4528 			lpfc_sli_brdrestart(phba);
4529 			rc = lpfc_sli_chipset_init(phba);
4530 			if (rc)
4531 				return NULL;
4532 		}
4533 		wwn = lpfc_get_wwpn(phba);
4534 	}
4535 
4536 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4537 		if (wwn == lpfc_no_hba_reset[i]) {
4538 			lpfc_printf_log(phba, KERN_ERR,
4539 					LOG_TRACE_EVENT,
4540 					"6020 Setting use_no_reset port=%llx\n",
4541 					wwn);
4542 			use_no_reset_hba = true;
4543 			break;
4544 		}
4545 	}
4546 
4547 	/* Seed template for SCSI host registration */
4548 	if (dev == &phba->pcidev->dev) {
4549 		template = &phba->port_template;
4550 
4551 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4552 			/* Seed physical port template */
4553 			memcpy(template, &lpfc_template, sizeof(*template));
4554 
4555 			if (use_no_reset_hba)
4556 				/* template is for a no reset SCSI Host */
4557 				template->eh_host_reset_handler = NULL;
4558 
4559 			/* Template for all vports this physical port creates */
4560 			memcpy(&phba->vport_template, &lpfc_template,
4561 			       sizeof(*template));
4562 			phba->vport_template.shost_attrs = lpfc_vport_attrs;
4563 			phba->vport_template.eh_bus_reset_handler = NULL;
4564 			phba->vport_template.eh_host_reset_handler = NULL;
4565 			phba->vport_template.vendor_id = 0;
4566 
4567 			/* Initialize the host templates with updated value */
4568 			if (phba->sli_rev == LPFC_SLI_REV4) {
4569 				template->sg_tablesize = phba->cfg_scsi_seg_cnt;
4570 				phba->vport_template.sg_tablesize =
4571 					phba->cfg_scsi_seg_cnt;
4572 			} else {
4573 				template->sg_tablesize = phba->cfg_sg_seg_cnt;
4574 				phba->vport_template.sg_tablesize =
4575 					phba->cfg_sg_seg_cnt;
4576 			}
4577 
4578 		} else {
4579 			/* NVMET is for physical port only */
4580 			memcpy(template, &lpfc_template_nvme,
4581 			       sizeof(*template));
4582 		}
4583 	} else {
4584 		template = &phba->vport_template;
4585 	}
4586 
4587 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4588 	if (!shost)
4589 		goto out;
4590 
4591 	vport = (struct lpfc_vport *) shost->hostdata;
4592 	vport->phba = phba;
4593 	vport->load_flag |= FC_LOADING;
4594 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4595 	vport->fc_rscn_flush = 0;
4596 	lpfc_get_vport_cfgparam(vport);
4597 
4598 	/* Adjust value in vport */
4599 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4600 
4601 	shost->unique_id = instance;
4602 	shost->max_id = LPFC_MAX_TARGET;
4603 	shost->max_lun = vport->cfg_max_luns;
4604 	shost->this_id = -1;
4605 	shost->max_cmd_len = 16;
4606 
4607 	if (phba->sli_rev == LPFC_SLI_REV4) {
4608 		if (!phba->cfg_fcp_mq_threshold ||
4609 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4610 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4611 
4612 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4613 					    phba->cfg_fcp_mq_threshold);
4614 
4615 		shost->dma_boundary =
4616 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4617 
4618 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4619 			shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE;
4620 		else
4621 			shost->sg_tablesize = phba->cfg_scsi_seg_cnt;
4622 	} else
4623 		/* SLI-3 has a limited number of hardware queues (3),
4624 		 * thus there is only one for FCP processing.
4625 		 */
4626 		shost->nr_hw_queues = 1;
4627 
4628 	/*
4629 	 * Set initial can_queue value since 0 is no longer supported and
4630 	 * scsi_add_host will fail. This will be adjusted later based on the
4631 	 * max xri value determined in hba setup.
4632 	 */
4633 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4634 	if (dev != &phba->pcidev->dev) {
4635 		shost->transportt = lpfc_vport_transport_template;
4636 		vport->port_type = LPFC_NPIV_PORT;
4637 	} else {
4638 		shost->transportt = lpfc_transport_template;
4639 		vport->port_type = LPFC_PHYSICAL_PORT;
4640 	}
4641 
4642 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4643 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4644 			"SEGcnt %d/%d\n",
4645 			vport->port_type, shost->sg_tablesize,
4646 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4647 
4648 	/* Allocate the resources for VMID */
4649 	rc = lpfc_vmid_res_alloc(phba, vport);
4650 
4651 	if (rc)
4652 		goto out;
4653 
4654 	/* Initialize all internally managed lists. */
4655 	INIT_LIST_HEAD(&vport->fc_nodes);
4656 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4657 	spin_lock_init(&vport->work_port_lock);
4658 
4659 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4660 
4661 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4662 
4663 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4664 
4665 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4666 		lpfc_setup_bg(phba, shost);
4667 
4668 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4669 	if (error)
4670 		goto out_put_shost;
4671 
4672 	spin_lock_irq(&phba->port_list_lock);
4673 	list_add_tail(&vport->listentry, &phba->port_list);
4674 	spin_unlock_irq(&phba->port_list_lock);
4675 	return vport;
4676 
4677 out_put_shost:
4678 	kfree(vport->vmid);
4679 	bitmap_free(vport->vmid_priority_range);
4680 	scsi_host_put(shost);
4681 out:
4682 	return NULL;
4683 }
4684 
4685 /**
4686  * destroy_port -  destroy an FC port
4687  * @vport: pointer to an lpfc virtual N_Port data structure.
4688  *
4689  * This routine destroys a FC port from the upper layer protocol. All the
4690  * resources associated with the port are released.
4691  **/
4692 void
4693 destroy_port(struct lpfc_vport *vport)
4694 {
4695 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4696 	struct lpfc_hba  *phba = vport->phba;
4697 
4698 	lpfc_debugfs_terminate(vport);
4699 	fc_remove_host(shost);
4700 	scsi_remove_host(shost);
4701 
4702 	spin_lock_irq(&phba->port_list_lock);
4703 	list_del_init(&vport->listentry);
4704 	spin_unlock_irq(&phba->port_list_lock);
4705 
4706 	lpfc_cleanup(vport);
4707 	return;
4708 }
4709 
4710 /**
4711  * lpfc_get_instance - Get a unique integer ID
4712  *
4713  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4714  * uses the kernel idr facility to perform the task.
4715  *
4716  * Return codes:
4717  *   instance - a unique integer ID allocated as the new instance.
4718  *   -1 - lpfc get instance failed.
4719  **/
4720 int
4721 lpfc_get_instance(void)
4722 {
4723 	int ret;
4724 
4725 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4726 	return ret < 0 ? -1 : ret;
4727 }
4728 
4729 /**
4730  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4731  * @shost: pointer to SCSI host data structure.
4732  * @time: elapsed time of the scan in jiffies.
4733  *
4734  * This routine is called by the SCSI layer with a SCSI host to determine
4735  * whether the scan host is finished.
4736  *
4737  * Note: there is no scan_start function as adapter initialization will have
4738  * asynchronously kicked off the link initialization.
4739  *
4740  * Return codes
4741  *   0 - SCSI host scan is not over yet.
4742  *   1 - SCSI host scan is over.
4743  **/
4744 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4745 {
4746 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4747 	struct lpfc_hba   *phba = vport->phba;
4748 	int stat = 0;
4749 
4750 	spin_lock_irq(shost->host_lock);
4751 
4752 	if (vport->load_flag & FC_UNLOADING) {
4753 		stat = 1;
4754 		goto finished;
4755 	}
4756 	if (time >= msecs_to_jiffies(30 * 1000)) {
4757 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4758 				"0461 Scanning longer than 30 "
4759 				"seconds.  Continuing initialization\n");
4760 		stat = 1;
4761 		goto finished;
4762 	}
4763 	if (time >= msecs_to_jiffies(15 * 1000) &&
4764 	    phba->link_state <= LPFC_LINK_DOWN) {
4765 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4766 				"0465 Link down longer than 15 "
4767 				"seconds.  Continuing initialization\n");
4768 		stat = 1;
4769 		goto finished;
4770 	}
4771 
4772 	if (vport->port_state != LPFC_VPORT_READY)
4773 		goto finished;
4774 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4775 		goto finished;
4776 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4777 		goto finished;
4778 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4779 		goto finished;
4780 
4781 	stat = 1;
4782 
4783 finished:
4784 	spin_unlock_irq(shost->host_lock);
4785 	return stat;
4786 }
4787 
4788 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4789 {
4790 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4791 	struct lpfc_hba   *phba = vport->phba;
4792 
4793 	fc_host_supported_speeds(shost) = 0;
4794 	/*
4795 	 * Avoid reporting supported link speed for FCoE as it can't be
4796 	 * controlled via FCoE.
4797 	 */
4798 	if (phba->hba_flag & HBA_FCOE_MODE)
4799 		return;
4800 
4801 	if (phba->lmt & LMT_256Gb)
4802 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4803 	if (phba->lmt & LMT_128Gb)
4804 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4805 	if (phba->lmt & LMT_64Gb)
4806 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4807 	if (phba->lmt & LMT_32Gb)
4808 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4809 	if (phba->lmt & LMT_16Gb)
4810 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4811 	if (phba->lmt & LMT_10Gb)
4812 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4813 	if (phba->lmt & LMT_8Gb)
4814 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4815 	if (phba->lmt & LMT_4Gb)
4816 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4817 	if (phba->lmt & LMT_2Gb)
4818 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4819 	if (phba->lmt & LMT_1Gb)
4820 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4821 }
4822 
4823 /**
4824  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4825  * @shost: pointer to SCSI host data structure.
4826  *
4827  * This routine initializes a given SCSI host attributes on a FC port. The
4828  * SCSI host can be either on top of a physical port or a virtual port.
4829  **/
4830 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4831 {
4832 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4833 	struct lpfc_hba   *phba = vport->phba;
4834 	/*
4835 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
4836 	 */
4837 
4838 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
4839 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
4840 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
4841 
4842 	memset(fc_host_supported_fc4s(shost), 0,
4843 	       sizeof(fc_host_supported_fc4s(shost)));
4844 	fc_host_supported_fc4s(shost)[2] = 1;
4845 	fc_host_supported_fc4s(shost)[7] = 1;
4846 
4847 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
4848 				 sizeof fc_host_symbolic_name(shost));
4849 
4850 	lpfc_host_supported_speeds_set(shost);
4851 
4852 	fc_host_maxframe_size(shost) =
4853 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
4854 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
4855 
4856 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
4857 
4858 	/* This value is also unchanging */
4859 	memset(fc_host_active_fc4s(shost), 0,
4860 	       sizeof(fc_host_active_fc4s(shost)));
4861 	fc_host_active_fc4s(shost)[2] = 1;
4862 	fc_host_active_fc4s(shost)[7] = 1;
4863 
4864 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
4865 	spin_lock_irq(shost->host_lock);
4866 	vport->load_flag &= ~FC_LOADING;
4867 	spin_unlock_irq(shost->host_lock);
4868 }
4869 
4870 /**
4871  * lpfc_stop_port_s3 - Stop SLI3 device port
4872  * @phba: pointer to lpfc hba data structure.
4873  *
4874  * This routine is invoked to stop an SLI3 device port, it stops the device
4875  * from generating interrupts and stops the device driver's timers for the
4876  * device.
4877  **/
4878 static void
4879 lpfc_stop_port_s3(struct lpfc_hba *phba)
4880 {
4881 	/* Clear all interrupt enable conditions */
4882 	writel(0, phba->HCregaddr);
4883 	readl(phba->HCregaddr); /* flush */
4884 	/* Clear all pending interrupts */
4885 	writel(0xffffffff, phba->HAregaddr);
4886 	readl(phba->HAregaddr); /* flush */
4887 
4888 	/* Reset some HBA SLI setup states */
4889 	lpfc_stop_hba_timers(phba);
4890 	phba->pport->work_port_events = 0;
4891 }
4892 
4893 /**
4894  * lpfc_stop_port_s4 - Stop SLI4 device port
4895  * @phba: pointer to lpfc hba data structure.
4896  *
4897  * This routine is invoked to stop an SLI4 device port, it stops the device
4898  * from generating interrupts and stops the device driver's timers for the
4899  * device.
4900  **/
4901 static void
4902 lpfc_stop_port_s4(struct lpfc_hba *phba)
4903 {
4904 	/* Reset some HBA SLI4 setup states */
4905 	lpfc_stop_hba_timers(phba);
4906 	if (phba->pport)
4907 		phba->pport->work_port_events = 0;
4908 	phba->sli4_hba.intr_enable = 0;
4909 }
4910 
4911 /**
4912  * lpfc_stop_port - Wrapper function for stopping hba port
4913  * @phba: Pointer to HBA context object.
4914  *
4915  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
4916  * the API jump table function pointer from the lpfc_hba struct.
4917  **/
4918 void
4919 lpfc_stop_port(struct lpfc_hba *phba)
4920 {
4921 	phba->lpfc_stop_port(phba);
4922 
4923 	if (phba->wq)
4924 		flush_workqueue(phba->wq);
4925 }
4926 
4927 /**
4928  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
4929  * @phba: Pointer to hba for which this call is being executed.
4930  *
4931  * This routine starts the timer waiting for the FCF rediscovery to complete.
4932  **/
4933 void
4934 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
4935 {
4936 	unsigned long fcf_redisc_wait_tmo =
4937 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
4938 	/* Start fcf rediscovery wait period timer */
4939 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
4940 	spin_lock_irq(&phba->hbalock);
4941 	/* Allow action to new fcf asynchronous event */
4942 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
4943 	/* Mark the FCF rediscovery pending state */
4944 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
4945 	spin_unlock_irq(&phba->hbalock);
4946 }
4947 
4948 /**
4949  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
4950  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
4951  *
4952  * This routine is invoked when waiting for FCF table rediscover has been
4953  * timed out. If new FCF record(s) has (have) been discovered during the
4954  * wait period, a new FCF event shall be added to the FCOE async event
4955  * list, and then worker thread shall be waked up for processing from the
4956  * worker thread context.
4957  **/
4958 static void
4959 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
4960 {
4961 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
4962 
4963 	/* Don't send FCF rediscovery event if timer cancelled */
4964 	spin_lock_irq(&phba->hbalock);
4965 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
4966 		spin_unlock_irq(&phba->hbalock);
4967 		return;
4968 	}
4969 	/* Clear FCF rediscovery timer pending flag */
4970 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
4971 	/* FCF rediscovery event to worker thread */
4972 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
4973 	spin_unlock_irq(&phba->hbalock);
4974 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
4975 			"2776 FCF rediscover quiescent timer expired\n");
4976 	/* wake up worker thread */
4977 	lpfc_worker_wake_up(phba);
4978 }
4979 
4980 /**
4981  * lpfc_vmid_poll - VMID timeout detection
4982  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
4983  *
4984  * This routine is invoked when there is no I/O on by a VM for the specified
4985  * amount of time. When this situation is detected, the VMID has to be
4986  * deregistered from the switch and all the local resources freed. The VMID
4987  * will be reassigned to the VM once the I/O begins.
4988  **/
4989 static void
4990 lpfc_vmid_poll(struct timer_list *t)
4991 {
4992 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
4993 	u32 wake_up = 0;
4994 
4995 	/* check if there is a need to issue QFPA */
4996 	if (phba->pport->vmid_priority_tagging) {
4997 		wake_up = 1;
4998 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
4999 	}
5000 
5001 	/* Is the vmid inactivity timer enabled */
5002 	if (phba->pport->vmid_inactivity_timeout ||
5003 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5004 		wake_up = 1;
5005 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5006 	}
5007 
5008 	if (wake_up)
5009 		lpfc_worker_wake_up(phba);
5010 
5011 	/* restart the timer for the next iteration */
5012 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5013 							LPFC_VMID_TIMER));
5014 }
5015 
5016 /**
5017  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5018  * @phba: pointer to lpfc hba data structure.
5019  * @acqe_link: pointer to the async link completion queue entry.
5020  *
5021  * This routine is to parse the SLI4 link-attention link fault code.
5022  **/
5023 static void
5024 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5025 			   struct lpfc_acqe_link *acqe_link)
5026 {
5027 	switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5028 	case LPFC_ASYNC_LINK_FAULT_NONE:
5029 	case LPFC_ASYNC_LINK_FAULT_LOCAL:
5030 	case LPFC_ASYNC_LINK_FAULT_REMOTE:
5031 	case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5032 		break;
5033 	default:
5034 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5035 				"0398 Unknown link fault code: x%x\n",
5036 				bf_get(lpfc_acqe_link_fault, acqe_link));
5037 		break;
5038 	}
5039 }
5040 
5041 /**
5042  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5043  * @phba: pointer to lpfc hba data structure.
5044  * @acqe_link: pointer to the async link completion queue entry.
5045  *
5046  * This routine is to parse the SLI4 link attention type and translate it
5047  * into the base driver's link attention type coding.
5048  *
5049  * Return: Link attention type in terms of base driver's coding.
5050  **/
5051 static uint8_t
5052 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5053 			  struct lpfc_acqe_link *acqe_link)
5054 {
5055 	uint8_t att_type;
5056 
5057 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5058 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5059 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5060 		att_type = LPFC_ATT_LINK_DOWN;
5061 		break;
5062 	case LPFC_ASYNC_LINK_STATUS_UP:
5063 		/* Ignore physical link up events - wait for logical link up */
5064 		att_type = LPFC_ATT_RESERVED;
5065 		break;
5066 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5067 		att_type = LPFC_ATT_LINK_UP;
5068 		break;
5069 	default:
5070 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5071 				"0399 Invalid link attention type: x%x\n",
5072 				bf_get(lpfc_acqe_link_status, acqe_link));
5073 		att_type = LPFC_ATT_RESERVED;
5074 		break;
5075 	}
5076 	return att_type;
5077 }
5078 
5079 /**
5080  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5081  * @phba: pointer to lpfc hba data structure.
5082  *
5083  * This routine is to get an SLI3 FC port's link speed in Mbps.
5084  *
5085  * Return: link speed in terms of Mbps.
5086  **/
5087 uint32_t
5088 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5089 {
5090 	uint32_t link_speed;
5091 
5092 	if (!lpfc_is_link_up(phba))
5093 		return 0;
5094 
5095 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5096 		switch (phba->fc_linkspeed) {
5097 		case LPFC_LINK_SPEED_1GHZ:
5098 			link_speed = 1000;
5099 			break;
5100 		case LPFC_LINK_SPEED_2GHZ:
5101 			link_speed = 2000;
5102 			break;
5103 		case LPFC_LINK_SPEED_4GHZ:
5104 			link_speed = 4000;
5105 			break;
5106 		case LPFC_LINK_SPEED_8GHZ:
5107 			link_speed = 8000;
5108 			break;
5109 		case LPFC_LINK_SPEED_10GHZ:
5110 			link_speed = 10000;
5111 			break;
5112 		case LPFC_LINK_SPEED_16GHZ:
5113 			link_speed = 16000;
5114 			break;
5115 		default:
5116 			link_speed = 0;
5117 		}
5118 	} else {
5119 		if (phba->sli4_hba.link_state.logical_speed)
5120 			link_speed =
5121 			      phba->sli4_hba.link_state.logical_speed;
5122 		else
5123 			link_speed = phba->sli4_hba.link_state.speed;
5124 	}
5125 	return link_speed;
5126 }
5127 
5128 /**
5129  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5130  * @phba: pointer to lpfc hba data structure.
5131  * @evt_code: asynchronous event code.
5132  * @speed_code: asynchronous event link speed code.
5133  *
5134  * This routine is to parse the giving SLI4 async event link speed code into
5135  * value of Mbps for the link speed.
5136  *
5137  * Return: link speed in terms of Mbps.
5138  **/
5139 static uint32_t
5140 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5141 			   uint8_t speed_code)
5142 {
5143 	uint32_t port_speed;
5144 
5145 	switch (evt_code) {
5146 	case LPFC_TRAILER_CODE_LINK:
5147 		switch (speed_code) {
5148 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5149 			port_speed = 0;
5150 			break;
5151 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5152 			port_speed = 10;
5153 			break;
5154 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5155 			port_speed = 100;
5156 			break;
5157 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5158 			port_speed = 1000;
5159 			break;
5160 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5161 			port_speed = 10000;
5162 			break;
5163 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5164 			port_speed = 20000;
5165 			break;
5166 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5167 			port_speed = 25000;
5168 			break;
5169 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5170 			port_speed = 40000;
5171 			break;
5172 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5173 			port_speed = 100000;
5174 			break;
5175 		default:
5176 			port_speed = 0;
5177 		}
5178 		break;
5179 	case LPFC_TRAILER_CODE_FC:
5180 		switch (speed_code) {
5181 		case LPFC_FC_LA_SPEED_UNKNOWN:
5182 			port_speed = 0;
5183 			break;
5184 		case LPFC_FC_LA_SPEED_1G:
5185 			port_speed = 1000;
5186 			break;
5187 		case LPFC_FC_LA_SPEED_2G:
5188 			port_speed = 2000;
5189 			break;
5190 		case LPFC_FC_LA_SPEED_4G:
5191 			port_speed = 4000;
5192 			break;
5193 		case LPFC_FC_LA_SPEED_8G:
5194 			port_speed = 8000;
5195 			break;
5196 		case LPFC_FC_LA_SPEED_10G:
5197 			port_speed = 10000;
5198 			break;
5199 		case LPFC_FC_LA_SPEED_16G:
5200 			port_speed = 16000;
5201 			break;
5202 		case LPFC_FC_LA_SPEED_32G:
5203 			port_speed = 32000;
5204 			break;
5205 		case LPFC_FC_LA_SPEED_64G:
5206 			port_speed = 64000;
5207 			break;
5208 		case LPFC_FC_LA_SPEED_128G:
5209 			port_speed = 128000;
5210 			break;
5211 		case LPFC_FC_LA_SPEED_256G:
5212 			port_speed = 256000;
5213 			break;
5214 		default:
5215 			port_speed = 0;
5216 		}
5217 		break;
5218 	default:
5219 		port_speed = 0;
5220 	}
5221 	return port_speed;
5222 }
5223 
5224 /**
5225  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5226  * @phba: pointer to lpfc hba data structure.
5227  * @acqe_link: pointer to the async link completion queue entry.
5228  *
5229  * This routine is to handle the SLI4 asynchronous FCoE link event.
5230  **/
5231 static void
5232 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5233 			 struct lpfc_acqe_link *acqe_link)
5234 {
5235 	struct lpfc_dmabuf *mp;
5236 	LPFC_MBOXQ_t *pmb;
5237 	MAILBOX_t *mb;
5238 	struct lpfc_mbx_read_top *la;
5239 	uint8_t att_type;
5240 	int rc;
5241 
5242 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5243 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5244 		return;
5245 	phba->fcoe_eventtag = acqe_link->event_tag;
5246 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5247 	if (!pmb) {
5248 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5249 				"0395 The mboxq allocation failed\n");
5250 		return;
5251 	}
5252 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5253 	if (!mp) {
5254 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5255 				"0396 The lpfc_dmabuf allocation failed\n");
5256 		goto out_free_pmb;
5257 	}
5258 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
5259 	if (!mp->virt) {
5260 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5261 				"0397 The mbuf allocation failed\n");
5262 		goto out_free_dmabuf;
5263 	}
5264 
5265 	/* Cleanup any outstanding ELS commands */
5266 	lpfc_els_flush_all_cmd(phba);
5267 
5268 	/* Block ELS IOCBs until we have done process link event */
5269 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5270 
5271 	/* Update link event statistics */
5272 	phba->sli.slistat.link_event++;
5273 
5274 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5275 	lpfc_read_topology(phba, pmb, mp);
5276 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5277 	pmb->vport = phba->pport;
5278 
5279 	/* Keep the link status for extra SLI4 state machine reference */
5280 	phba->sli4_hba.link_state.speed =
5281 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5282 				bf_get(lpfc_acqe_link_speed, acqe_link));
5283 	phba->sli4_hba.link_state.duplex =
5284 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5285 	phba->sli4_hba.link_state.status =
5286 				bf_get(lpfc_acqe_link_status, acqe_link);
5287 	phba->sli4_hba.link_state.type =
5288 				bf_get(lpfc_acqe_link_type, acqe_link);
5289 	phba->sli4_hba.link_state.number =
5290 				bf_get(lpfc_acqe_link_number, acqe_link);
5291 	phba->sli4_hba.link_state.fault =
5292 				bf_get(lpfc_acqe_link_fault, acqe_link);
5293 	phba->sli4_hba.link_state.logical_speed =
5294 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5295 
5296 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5297 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5298 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5299 			"Logical speed:%dMbps Fault:%d\n",
5300 			phba->sli4_hba.link_state.speed,
5301 			phba->sli4_hba.link_state.topology,
5302 			phba->sli4_hba.link_state.status,
5303 			phba->sli4_hba.link_state.type,
5304 			phba->sli4_hba.link_state.number,
5305 			phba->sli4_hba.link_state.logical_speed,
5306 			phba->sli4_hba.link_state.fault);
5307 	/*
5308 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5309 	 * topology info. Note: Optional for non FC-AL ports.
5310 	 */
5311 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5312 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5313 		if (rc == MBX_NOT_FINISHED)
5314 			goto out_free_dmabuf;
5315 		return;
5316 	}
5317 	/*
5318 	 * For FCoE Mode: fill in all the topology information we need and call
5319 	 * the READ_TOPOLOGY completion routine to continue without actually
5320 	 * sending the READ_TOPOLOGY mailbox command to the port.
5321 	 */
5322 	/* Initialize completion status */
5323 	mb = &pmb->u.mb;
5324 	mb->mbxStatus = MBX_SUCCESS;
5325 
5326 	/* Parse port fault information field */
5327 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5328 
5329 	/* Parse and translate link attention fields */
5330 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5331 	la->eventTag = acqe_link->event_tag;
5332 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5333 	bf_set(lpfc_mbx_read_top_link_spd, la,
5334 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5335 
5336 	/* Fake the the following irrelvant fields */
5337 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5338 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5339 	bf_set(lpfc_mbx_read_top_il, la, 0);
5340 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5341 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5342 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5343 
5344 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5345 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5346 
5347 	return;
5348 
5349 out_free_dmabuf:
5350 	kfree(mp);
5351 out_free_pmb:
5352 	mempool_free(pmb, phba->mbox_mem_pool);
5353 }
5354 
5355 /**
5356  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5357  * topology.
5358  * @phba: pointer to lpfc hba data structure.
5359  * @speed_code: asynchronous event link speed code.
5360  *
5361  * This routine is to parse the giving SLI4 async event link speed code into
5362  * value of Read topology link speed.
5363  *
5364  * Return: link speed in terms of Read topology.
5365  **/
5366 static uint8_t
5367 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5368 {
5369 	uint8_t port_speed;
5370 
5371 	switch (speed_code) {
5372 	case LPFC_FC_LA_SPEED_1G:
5373 		port_speed = LPFC_LINK_SPEED_1GHZ;
5374 		break;
5375 	case LPFC_FC_LA_SPEED_2G:
5376 		port_speed = LPFC_LINK_SPEED_2GHZ;
5377 		break;
5378 	case LPFC_FC_LA_SPEED_4G:
5379 		port_speed = LPFC_LINK_SPEED_4GHZ;
5380 		break;
5381 	case LPFC_FC_LA_SPEED_8G:
5382 		port_speed = LPFC_LINK_SPEED_8GHZ;
5383 		break;
5384 	case LPFC_FC_LA_SPEED_16G:
5385 		port_speed = LPFC_LINK_SPEED_16GHZ;
5386 		break;
5387 	case LPFC_FC_LA_SPEED_32G:
5388 		port_speed = LPFC_LINK_SPEED_32GHZ;
5389 		break;
5390 	case LPFC_FC_LA_SPEED_64G:
5391 		port_speed = LPFC_LINK_SPEED_64GHZ;
5392 		break;
5393 	case LPFC_FC_LA_SPEED_128G:
5394 		port_speed = LPFC_LINK_SPEED_128GHZ;
5395 		break;
5396 	case LPFC_FC_LA_SPEED_256G:
5397 		port_speed = LPFC_LINK_SPEED_256GHZ;
5398 		break;
5399 	default:
5400 		port_speed = 0;
5401 		break;
5402 	}
5403 
5404 	return port_speed;
5405 }
5406 
5407 void
5408 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5409 {
5410 	struct rxtable_entry *entry;
5411 	int cnt = 0, head, tail, last, start;
5412 
5413 	head = atomic_read(&phba->rxtable_idx_head);
5414 	tail = atomic_read(&phba->rxtable_idx_tail);
5415 	if (!phba->rxtable || head == tail) {
5416 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
5417 				"4411 Rxtable is empty\n");
5418 		return;
5419 	}
5420 	last = tail;
5421 	start = head;
5422 
5423 	/* Display the last LPFC_MAX_RXMONITOR_DUMP entries from the rxtable */
5424 	while (start != last) {
5425 		if (start)
5426 			start--;
5427 		else
5428 			start = LPFC_MAX_RXMONITOR_ENTRY - 1;
5429 		entry = &phba->rxtable[start];
5430 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5431 				"4410 %02d: MBPI %lld Xmit %lld Cmpl %lld "
5432 				"Lat %lld ASz %lld Info %02d BWUtil %d "
5433 				"Int %d slot %d\n",
5434 				cnt, entry->max_bytes_per_interval,
5435 				entry->total_bytes, entry->rcv_bytes,
5436 				entry->avg_io_latency, entry->avg_io_size,
5437 				entry->cmf_info, entry->timer_utilization,
5438 				entry->timer_interval, start);
5439 		cnt++;
5440 		if (cnt >= LPFC_MAX_RXMONITOR_DUMP)
5441 			return;
5442 	}
5443 }
5444 
5445 /**
5446  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5447  * @phba: pointer to lpfc hba data structure.
5448  * @dtag: FPIN descriptor received
5449  *
5450  * Increment the FPIN received counter/time when it happens.
5451  */
5452 void
5453 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5454 {
5455 	struct lpfc_cgn_info *cp;
5456 	struct tm broken;
5457 	struct timespec64 cur_time;
5458 	u32 cnt;
5459 	u16 value;
5460 
5461 	/* Make sure we have a congestion info buffer */
5462 	if (!phba->cgn_i)
5463 		return;
5464 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5465 	ktime_get_real_ts64(&cur_time);
5466 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5467 
5468 	/* Update congestion statistics */
5469 	switch (dtag) {
5470 	case ELS_DTAG_LNK_INTEGRITY:
5471 		cnt = le32_to_cpu(cp->link_integ_notification);
5472 		cnt++;
5473 		cp->link_integ_notification = cpu_to_le32(cnt);
5474 
5475 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5476 		cp->cgn_stat_lnk_day = broken.tm_mday;
5477 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5478 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5479 		cp->cgn_stat_lnk_min = broken.tm_min;
5480 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5481 		break;
5482 	case ELS_DTAG_DELIVERY:
5483 		cnt = le32_to_cpu(cp->delivery_notification);
5484 		cnt++;
5485 		cp->delivery_notification = cpu_to_le32(cnt);
5486 
5487 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5488 		cp->cgn_stat_del_day = broken.tm_mday;
5489 		cp->cgn_stat_del_year = broken.tm_year - 100;
5490 		cp->cgn_stat_del_hour = broken.tm_hour;
5491 		cp->cgn_stat_del_min = broken.tm_min;
5492 		cp->cgn_stat_del_sec = broken.tm_sec;
5493 		break;
5494 	case ELS_DTAG_PEER_CONGEST:
5495 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5496 		cnt++;
5497 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5498 
5499 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5500 		cp->cgn_stat_peer_day = broken.tm_mday;
5501 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5502 		cp->cgn_stat_peer_hour = broken.tm_hour;
5503 		cp->cgn_stat_peer_min = broken.tm_min;
5504 		cp->cgn_stat_peer_sec = broken.tm_sec;
5505 		break;
5506 	case ELS_DTAG_CONGESTION:
5507 		cnt = le32_to_cpu(cp->cgn_notification);
5508 		cnt++;
5509 		cp->cgn_notification = cpu_to_le32(cnt);
5510 
5511 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5512 		cp->cgn_stat_cgn_day = broken.tm_mday;
5513 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5514 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5515 		cp->cgn_stat_cgn_min = broken.tm_min;
5516 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5517 	}
5518 	if (phba->cgn_fpin_frequency &&
5519 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5520 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5521 		cp->cgn_stat_npm = value;
5522 	}
5523 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5524 				    LPFC_CGN_CRC32_SEED);
5525 	cp->cgn_info_crc = cpu_to_le32(value);
5526 }
5527 
5528 /**
5529  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5530  * @phba: pointer to lpfc hba data structure.
5531  *
5532  * Save the congestion event data every minute.
5533  * On the hour collapse all the minute data into hour data. Every day
5534  * collapse all the hour data into daily data. Separate driver
5535  * and fabrc congestion event counters that will be saved out
5536  * to the registered congestion buffer every minute.
5537  */
5538 static void
5539 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5540 {
5541 	struct lpfc_cgn_info *cp;
5542 	struct tm broken;
5543 	struct timespec64 cur_time;
5544 	uint32_t i, index;
5545 	uint16_t value, mvalue;
5546 	uint64_t bps;
5547 	uint32_t mbps;
5548 	uint32_t dvalue, wvalue, lvalue, avalue;
5549 	uint64_t latsum;
5550 	__le16 *ptr;
5551 	__le32 *lptr;
5552 	__le16 *mptr;
5553 
5554 	/* Make sure we have a congestion info buffer */
5555 	if (!phba->cgn_i)
5556 		return;
5557 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5558 
5559 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5560 		return;
5561 	phba->cgn_evt_timestamp = jiffies +
5562 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5563 	phba->cgn_evt_minute++;
5564 
5565 	/* We should get to this point in the routine on 1 minute intervals */
5566 
5567 	ktime_get_real_ts64(&cur_time);
5568 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5569 
5570 	if (phba->cgn_fpin_frequency &&
5571 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5572 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5573 		cp->cgn_stat_npm = value;
5574 	}
5575 
5576 	/* Read and clear the latency counters for this minute */
5577 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5578 	latsum = atomic64_read(&phba->cgn_latency_evt);
5579 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5580 	atomic64_set(&phba->cgn_latency_evt, 0);
5581 
5582 	/* We need to store MB/sec bandwidth in the congestion information.
5583 	 * block_cnt is count of 512 byte blocks for the entire minute,
5584 	 * bps will get bytes per sec before finally converting to MB/sec.
5585 	 */
5586 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5587 	phba->rx_block_cnt = 0;
5588 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5589 
5590 	/* Every minute */
5591 	/* cgn parameters */
5592 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5593 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5594 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5595 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5596 
5597 	/* Fill in default LUN qdepth */
5598 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5599 	cp->cgn_lunq = cpu_to_le16(value);
5600 
5601 	/* Record congestion buffer info - every minute
5602 	 * cgn_driver_evt_cnt (Driver events)
5603 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5604 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5605 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5606 	 */
5607 	index = ++cp->cgn_index_minute;
5608 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5609 		cp->cgn_index_minute = 0;
5610 		index = 0;
5611 	}
5612 
5613 	/* Get the number of driver events in this sample and reset counter */
5614 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5615 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5616 
5617 	/* Get the number of warning events - FPIN and Signal for this minute */
5618 	wvalue = 0;
5619 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5620 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5621 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5622 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5623 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5624 
5625 	/* Get the number of alarm events - FPIN and Signal for this minute */
5626 	avalue = 0;
5627 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5628 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5629 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5630 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5631 
5632 	/* Collect the driver, warning, alarm and latency counts for this
5633 	 * minute into the driver congestion buffer.
5634 	 */
5635 	ptr = &cp->cgn_drvr_min[index];
5636 	value = (uint16_t)dvalue;
5637 	*ptr = cpu_to_le16(value);
5638 
5639 	ptr = &cp->cgn_warn_min[index];
5640 	value = (uint16_t)wvalue;
5641 	*ptr = cpu_to_le16(value);
5642 
5643 	ptr = &cp->cgn_alarm_min[index];
5644 	value = (uint16_t)avalue;
5645 	*ptr = cpu_to_le16(value);
5646 
5647 	lptr = &cp->cgn_latency_min[index];
5648 	if (lvalue) {
5649 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5650 		*lptr = cpu_to_le32(lvalue);
5651 	} else {
5652 		*lptr = 0;
5653 	}
5654 
5655 	/* Collect the bandwidth value into the driver's congesion buffer. */
5656 	mptr = &cp->cgn_bw_min[index];
5657 	*mptr = cpu_to_le16(mvalue);
5658 
5659 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5660 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5661 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5662 
5663 	/* Every hour */
5664 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5665 		/* Record congestion buffer info - every hour
5666 		 * Collapse all minutes into an hour
5667 		 */
5668 		index = ++cp->cgn_index_hour;
5669 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5670 			cp->cgn_index_hour = 0;
5671 			index = 0;
5672 		}
5673 
5674 		dvalue = 0;
5675 		wvalue = 0;
5676 		lvalue = 0;
5677 		avalue = 0;
5678 		mvalue = 0;
5679 		mbps = 0;
5680 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5681 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5682 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5683 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5684 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5685 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5686 		}
5687 		if (lvalue)		/* Avg of latency averages */
5688 			lvalue /= LPFC_MIN_HOUR;
5689 		if (mbps)		/* Avg of Bandwidth averages */
5690 			mvalue = mbps / LPFC_MIN_HOUR;
5691 
5692 		lptr = &cp->cgn_drvr_hr[index];
5693 		*lptr = cpu_to_le32(dvalue);
5694 		lptr = &cp->cgn_warn_hr[index];
5695 		*lptr = cpu_to_le32(wvalue);
5696 		lptr = &cp->cgn_latency_hr[index];
5697 		*lptr = cpu_to_le32(lvalue);
5698 		mptr = &cp->cgn_bw_hr[index];
5699 		*mptr = cpu_to_le16(mvalue);
5700 		lptr = &cp->cgn_alarm_hr[index];
5701 		*lptr = cpu_to_le32(avalue);
5702 
5703 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5704 				"2419 Congestion Info - hour "
5705 				"(%d): %d %d %d %d %d\n",
5706 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5707 	}
5708 
5709 	/* Every day */
5710 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5711 		/* Record congestion buffer info - every hour
5712 		 * Collapse all hours into a day. Rotate days
5713 		 * after LPFC_MAX_CGN_DAYS.
5714 		 */
5715 		index = ++cp->cgn_index_day;
5716 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5717 			cp->cgn_index_day = 0;
5718 			index = 0;
5719 		}
5720 
5721 		/* Anytime we overwrite daily index 0, after we wrap,
5722 		 * we will be overwriting the oldest day, so we must
5723 		 * update the congestion data start time for that day.
5724 		 * That start time should have previously been saved after
5725 		 * we wrote the last days worth of data.
5726 		 */
5727 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5728 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5729 
5730 			cp->cgn_info_month = broken.tm_mon + 1;
5731 			cp->cgn_info_day = broken.tm_mday;
5732 			cp->cgn_info_year = broken.tm_year - 100;
5733 			cp->cgn_info_hour = broken.tm_hour;
5734 			cp->cgn_info_minute = broken.tm_min;
5735 			cp->cgn_info_second = broken.tm_sec;
5736 
5737 			lpfc_printf_log
5738 				(phba, KERN_INFO, LOG_CGN_MGMT,
5739 				"2646 CGNInfo idx0 Start Time: "
5740 				"%d/%d/%d %d:%d:%d\n",
5741 				cp->cgn_info_day, cp->cgn_info_month,
5742 				cp->cgn_info_year, cp->cgn_info_hour,
5743 				cp->cgn_info_minute, cp->cgn_info_second);
5744 		}
5745 
5746 		dvalue = 0;
5747 		wvalue = 0;
5748 		lvalue = 0;
5749 		mvalue = 0;
5750 		mbps = 0;
5751 		avalue = 0;
5752 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5753 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5754 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5755 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5756 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5757 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5758 		}
5759 		if (lvalue)		/* Avg of latency averages */
5760 			lvalue /= LPFC_HOUR_DAY;
5761 		if (mbps)		/* Avg of Bandwidth averages */
5762 			mvalue = mbps / LPFC_HOUR_DAY;
5763 
5764 		lptr = &cp->cgn_drvr_day[index];
5765 		*lptr = cpu_to_le32(dvalue);
5766 		lptr = &cp->cgn_warn_day[index];
5767 		*lptr = cpu_to_le32(wvalue);
5768 		lptr = &cp->cgn_latency_day[index];
5769 		*lptr = cpu_to_le32(lvalue);
5770 		mptr = &cp->cgn_bw_day[index];
5771 		*mptr = cpu_to_le16(mvalue);
5772 		lptr = &cp->cgn_alarm_day[index];
5773 		*lptr = cpu_to_le32(avalue);
5774 
5775 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5776 				"2420 Congestion Info - daily (%d): "
5777 				"%d %d %d %d %d\n",
5778 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5779 
5780 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5781 		 * so we are wrapped on any data after this.
5782 		 * Save this as the start time for the next day.
5783 		 */
5784 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5785 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5786 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5787 		}
5788 	}
5789 
5790 	/* Use the frequency found in the last rcv'ed FPIN */
5791 	value = phba->cgn_fpin_frequency;
5792 	if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN)
5793 		cp->cgn_warn_freq = cpu_to_le16(value);
5794 	if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM)
5795 		cp->cgn_alarm_freq = cpu_to_le16(value);
5796 
5797 	/* Frequency (in ms) Signal Warning/Signal Congestion Notifications
5798 	 * are received by the HBA
5799 	 */
5800 	value = phba->cgn_sig_freq;
5801 
5802 	if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5803 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5804 		cp->cgn_warn_freq = cpu_to_le16(value);
5805 	if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5806 		cp->cgn_alarm_freq = cpu_to_le16(value);
5807 
5808 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5809 				     LPFC_CGN_CRC32_SEED);
5810 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5811 }
5812 
5813 /**
5814  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5815  * @phba: The Hba for which this call is being executed.
5816  *
5817  * The routine calculates the latency from the beginning of the CMF timer
5818  * interval to the current point in time. It is called from IO completion
5819  * when we exceed our Bandwidth limitation for the time interval.
5820  */
5821 uint32_t
5822 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5823 {
5824 	struct timespec64 cmpl_time;
5825 	uint32_t msec = 0;
5826 
5827 	ktime_get_real_ts64(&cmpl_time);
5828 
5829 	/* This routine works on a ms granularity so sec and usec are
5830 	 * converted accordingly.
5831 	 */
5832 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5833 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5834 			NSEC_PER_MSEC;
5835 	} else {
5836 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5837 			msec = (cmpl_time.tv_sec -
5838 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5839 			msec += ((cmpl_time.tv_nsec -
5840 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5841 		} else {
5842 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5843 				1) * MSEC_PER_SEC;
5844 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5845 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5846 		}
5847 	}
5848 	return msec;
5849 }
5850 
5851 /**
5852  * lpfc_cmf_timer -  This is the timer function for one congestion
5853  * rate interval.
5854  * @timer: Pointer to the high resolution timer that expired
5855  */
5856 static enum hrtimer_restart
5857 lpfc_cmf_timer(struct hrtimer *timer)
5858 {
5859 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5860 					     cmf_timer);
5861 	struct rxtable_entry *entry;
5862 	uint32_t io_cnt;
5863 	uint32_t head, tail;
5864 	uint32_t busy, max_read;
5865 	uint64_t total, rcv, lat, mbpi;
5866 	int timer_interval = LPFC_CMF_INTERVAL;
5867 	uint32_t ms;
5868 	struct lpfc_cgn_stat *cgs;
5869 	int cpu;
5870 
5871 	/* Only restart the timer if congestion mgmt is on */
5872 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5873 	    !phba->cmf_latency.tv_sec) {
5874 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5875 				"6224 CMF timer exit: %d %lld\n",
5876 				phba->cmf_active_mode,
5877 				(uint64_t)phba->cmf_latency.tv_sec);
5878 		return HRTIMER_NORESTART;
5879 	}
5880 
5881 	/* If pport is not ready yet, just exit and wait for
5882 	 * the next timer cycle to hit.
5883 	 */
5884 	if (!phba->pport)
5885 		goto skip;
5886 
5887 	/* Do not block SCSI IO while in the timer routine since
5888 	 * total_bytes will be cleared
5889 	 */
5890 	atomic_set(&phba->cmf_stop_io, 1);
5891 
5892 	/* First we need to calculate the actual ms between
5893 	 * the last timer interrupt and this one. We ask for
5894 	 * LPFC_CMF_INTERVAL, however the actual time may
5895 	 * vary depending on system overhead.
5896 	 */
5897 	ms = lpfc_calc_cmf_latency(phba);
5898 
5899 
5900 	/* Immediately after we calculate the time since the last
5901 	 * timer interrupt, set the start time for the next
5902 	 * interrupt
5903 	 */
5904 	ktime_get_real_ts64(&phba->cmf_latency);
5905 
5906 	phba->cmf_link_byte_count =
5907 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
5908 
5909 	/* Collect all the stats from the prior timer interval */
5910 	total = 0;
5911 	io_cnt = 0;
5912 	lat = 0;
5913 	rcv = 0;
5914 	for_each_present_cpu(cpu) {
5915 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
5916 		total += atomic64_xchg(&cgs->total_bytes, 0);
5917 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
5918 		lat += atomic64_xchg(&cgs->rx_latency, 0);
5919 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
5920 	}
5921 
5922 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
5923 	 * returned from the last CMF_SYNC_WQE issued, from
5924 	 * cmf_last_sync_bw. This will be the target BW for
5925 	 * this next timer interval.
5926 	 */
5927 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
5928 	    phba->link_state != LPFC_LINK_DOWN &&
5929 	    phba->hba_flag & HBA_SETUP) {
5930 		mbpi = phba->cmf_last_sync_bw;
5931 		phba->cmf_last_sync_bw = 0;
5932 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total);
5933 	} else {
5934 		/* For Monitor mode or link down we want mbpi
5935 		 * to be the full link speed
5936 		 */
5937 		mbpi = phba->cmf_link_byte_count;
5938 	}
5939 	phba->cmf_timer_cnt++;
5940 
5941 	if (io_cnt) {
5942 		/* Update congestion info buffer latency in us */
5943 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
5944 		atomic64_add(lat, &phba->cgn_latency_evt);
5945 	}
5946 	busy = atomic_xchg(&phba->cmf_busy, 0);
5947 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
5948 
5949 	/* Calculate MBPI for the next timer interval */
5950 	if (mbpi) {
5951 		if (mbpi > phba->cmf_link_byte_count ||
5952 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
5953 			mbpi = phba->cmf_link_byte_count;
5954 
5955 		/* Change max_bytes_per_interval to what the prior
5956 		 * CMF_SYNC_WQE cmpl indicated.
5957 		 */
5958 		if (mbpi != phba->cmf_max_bytes_per_interval)
5959 			phba->cmf_max_bytes_per_interval = mbpi;
5960 	}
5961 
5962 	/* Save rxmonitor information for debug */
5963 	if (phba->rxtable) {
5964 		head = atomic_xchg(&phba->rxtable_idx_head,
5965 				   LPFC_RXMONITOR_TABLE_IN_USE);
5966 		entry = &phba->rxtable[head];
5967 		entry->total_bytes = total;
5968 		entry->rcv_bytes = rcv;
5969 		entry->cmf_busy = busy;
5970 		entry->cmf_info = phba->cmf_active_info;
5971 		if (io_cnt) {
5972 			entry->avg_io_latency = div_u64(lat, io_cnt);
5973 			entry->avg_io_size = div_u64(rcv, io_cnt);
5974 		} else {
5975 			entry->avg_io_latency = 0;
5976 			entry->avg_io_size = 0;
5977 		}
5978 		entry->max_read_cnt = max_read;
5979 		entry->io_cnt = io_cnt;
5980 		entry->max_bytes_per_interval = mbpi;
5981 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
5982 			entry->timer_utilization = phba->cmf_last_ts;
5983 		else
5984 			entry->timer_utilization = ms;
5985 		entry->timer_interval = ms;
5986 		phba->cmf_last_ts = 0;
5987 
5988 		/* Increment rxtable index */
5989 		head = (head + 1) % LPFC_MAX_RXMONITOR_ENTRY;
5990 		tail = atomic_read(&phba->rxtable_idx_tail);
5991 		if (head == tail) {
5992 			tail = (tail + 1) % LPFC_MAX_RXMONITOR_ENTRY;
5993 			atomic_set(&phba->rxtable_idx_tail, tail);
5994 		}
5995 		atomic_set(&phba->rxtable_idx_head, head);
5996 	}
5997 
5998 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
5999 		/* If Monitor mode, check if we are oversubscribed
6000 		 * against the full line rate.
6001 		 */
6002 		if (mbpi && total > mbpi)
6003 			atomic_inc(&phba->cgn_driver_evt_cnt);
6004 	}
6005 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6006 
6007 	/* Each minute save Fabric and Driver congestion information */
6008 	lpfc_cgn_save_evt_cnt(phba);
6009 
6010 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
6011 	 * minute, adjust our next timer interval, if needed, to ensure a
6012 	 * 1 minute granularity when we get the next timer interrupt.
6013 	 */
6014 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6015 		       phba->cgn_evt_timestamp)) {
6016 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6017 						  jiffies);
6018 		if (timer_interval <= 0)
6019 			timer_interval = LPFC_CMF_INTERVAL;
6020 
6021 		/* If we adjust timer_interval, max_bytes_per_interval
6022 		 * needs to be adjusted as well.
6023 		 */
6024 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6025 						    timer_interval, 1000);
6026 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6027 			phba->cmf_max_bytes_per_interval =
6028 				phba->cmf_link_byte_count;
6029 	}
6030 
6031 	/* Since total_bytes has already been zero'ed, its okay to unblock
6032 	 * after max_bytes_per_interval is setup.
6033 	 */
6034 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6035 		queue_work(phba->wq, &phba->unblock_request_work);
6036 
6037 	/* SCSI IO is now unblocked */
6038 	atomic_set(&phba->cmf_stop_io, 0);
6039 
6040 skip:
6041 	hrtimer_forward_now(timer,
6042 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6043 	return HRTIMER_RESTART;
6044 }
6045 
6046 #define trunk_link_status(__idx)\
6047 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6048 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6049 		"Link up" : "Link down") : "NA"
6050 /* Did port __idx reported an error */
6051 #define trunk_port_fault(__idx)\
6052 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6053 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6054 
6055 static void
6056 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6057 			      struct lpfc_acqe_fc_la *acqe_fc)
6058 {
6059 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6060 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6061 
6062 	phba->sli4_hba.link_state.speed =
6063 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6064 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6065 
6066 	phba->sli4_hba.link_state.logical_speed =
6067 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6068 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6069 	phba->fc_linkspeed =
6070 		 lpfc_async_link_speed_to_read_top(
6071 				phba,
6072 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6073 
6074 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6075 		phba->trunk_link.link0.state =
6076 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6077 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6078 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6079 	}
6080 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6081 		phba->trunk_link.link1.state =
6082 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6083 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6084 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6085 	}
6086 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6087 		phba->trunk_link.link2.state =
6088 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6089 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6090 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6091 	}
6092 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6093 		phba->trunk_link.link3.state =
6094 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6095 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6096 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6097 	}
6098 
6099 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6100 			"2910 Async FC Trunking Event - Speed:%d\n"
6101 			"\tLogical speed:%d "
6102 			"port0: %s port1: %s port2: %s port3: %s\n",
6103 			phba->sli4_hba.link_state.speed,
6104 			phba->sli4_hba.link_state.logical_speed,
6105 			trunk_link_status(0), trunk_link_status(1),
6106 			trunk_link_status(2), trunk_link_status(3));
6107 
6108 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6109 		lpfc_cmf_signal_init(phba);
6110 
6111 	if (port_fault)
6112 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6113 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6114 				/*
6115 				 * SLI-4: We have only 0xA error codes
6116 				 * defined as of now. print an appropriate
6117 				 * message in case driver needs to be updated.
6118 				 */
6119 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6120 				"UNDEFINED. update driver." : trunk_errmsg[err],
6121 				trunk_port_fault(0), trunk_port_fault(1),
6122 				trunk_port_fault(2), trunk_port_fault(3));
6123 }
6124 
6125 
6126 /**
6127  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6128  * @phba: pointer to lpfc hba data structure.
6129  * @acqe_fc: pointer to the async fc completion queue entry.
6130  *
6131  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6132  * that the event was received and then issue a read_topology mailbox command so
6133  * that the rest of the driver will treat it the same as SLI3.
6134  **/
6135 static void
6136 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6137 {
6138 	struct lpfc_dmabuf *mp;
6139 	LPFC_MBOXQ_t *pmb;
6140 	MAILBOX_t *mb;
6141 	struct lpfc_mbx_read_top *la;
6142 	int rc;
6143 
6144 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6145 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6146 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6147 				"2895 Non FC link Event detected.(%d)\n",
6148 				bf_get(lpfc_trailer_type, acqe_fc));
6149 		return;
6150 	}
6151 
6152 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6153 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6154 		lpfc_update_trunk_link_status(phba, acqe_fc);
6155 		return;
6156 	}
6157 
6158 	/* Keep the link status for extra SLI4 state machine reference */
6159 	phba->sli4_hba.link_state.speed =
6160 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6161 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6162 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6163 	phba->sli4_hba.link_state.topology =
6164 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6165 	phba->sli4_hba.link_state.status =
6166 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6167 	phba->sli4_hba.link_state.type =
6168 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6169 	phba->sli4_hba.link_state.number =
6170 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6171 	phba->sli4_hba.link_state.fault =
6172 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6173 
6174 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6175 	    LPFC_FC_LA_TYPE_LINK_DOWN)
6176 		phba->sli4_hba.link_state.logical_speed = 0;
6177 	else if	(!phba->sli4_hba.conf_trunk)
6178 		phba->sli4_hba.link_state.logical_speed =
6179 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6180 
6181 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6182 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6183 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6184 			"%dMbps Fault:%d\n",
6185 			phba->sli4_hba.link_state.speed,
6186 			phba->sli4_hba.link_state.topology,
6187 			phba->sli4_hba.link_state.status,
6188 			phba->sli4_hba.link_state.type,
6189 			phba->sli4_hba.link_state.number,
6190 			phba->sli4_hba.link_state.logical_speed,
6191 			phba->sli4_hba.link_state.fault);
6192 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6193 	if (!pmb) {
6194 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6195 				"2897 The mboxq allocation failed\n");
6196 		return;
6197 	}
6198 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
6199 	if (!mp) {
6200 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6201 				"2898 The lpfc_dmabuf allocation failed\n");
6202 		goto out_free_pmb;
6203 	}
6204 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
6205 	if (!mp->virt) {
6206 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6207 				"2899 The mbuf allocation failed\n");
6208 		goto out_free_dmabuf;
6209 	}
6210 
6211 	/* Cleanup any outstanding ELS commands */
6212 	lpfc_els_flush_all_cmd(phba);
6213 
6214 	/* Block ELS IOCBs until we have done process link event */
6215 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6216 
6217 	/* Update link event statistics */
6218 	phba->sli.slistat.link_event++;
6219 
6220 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6221 	lpfc_read_topology(phba, pmb, mp);
6222 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6223 	pmb->vport = phba->pport;
6224 
6225 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6226 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6227 
6228 		switch (phba->sli4_hba.link_state.status) {
6229 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6230 			phba->link_flag |= LS_MDS_LINK_DOWN;
6231 			break;
6232 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6233 			phba->link_flag |= LS_MDS_LOOPBACK;
6234 			break;
6235 		default:
6236 			break;
6237 		}
6238 
6239 		/* Initialize completion status */
6240 		mb = &pmb->u.mb;
6241 		mb->mbxStatus = MBX_SUCCESS;
6242 
6243 		/* Parse port fault information field */
6244 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6245 
6246 		/* Parse and translate link attention fields */
6247 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6248 		la->eventTag = acqe_fc->event_tag;
6249 
6250 		if (phba->sli4_hba.link_state.status ==
6251 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6252 			bf_set(lpfc_mbx_read_top_att_type, la,
6253 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6254 		} else {
6255 			bf_set(lpfc_mbx_read_top_att_type, la,
6256 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6257 		}
6258 		/* Invoke the mailbox command callback function */
6259 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6260 
6261 		return;
6262 	}
6263 
6264 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6265 	if (rc == MBX_NOT_FINISHED)
6266 		goto out_free_dmabuf;
6267 	return;
6268 
6269 out_free_dmabuf:
6270 	kfree(mp);
6271 out_free_pmb:
6272 	mempool_free(pmb, phba->mbox_mem_pool);
6273 }
6274 
6275 /**
6276  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6277  * @phba: pointer to lpfc hba data structure.
6278  * @acqe_sli: pointer to the async SLI completion queue entry.
6279  *
6280  * This routine is to handle the SLI4 asynchronous SLI events.
6281  **/
6282 static void
6283 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6284 {
6285 	char port_name;
6286 	char message[128];
6287 	uint8_t status;
6288 	uint8_t evt_type;
6289 	uint8_t operational = 0;
6290 	struct temp_event temp_event_data;
6291 	struct lpfc_acqe_misconfigured_event *misconfigured;
6292 	struct lpfc_acqe_cgn_signal *cgn_signal;
6293 	struct Scsi_Host  *shost;
6294 	struct lpfc_vport **vports;
6295 	int rc, i, cnt;
6296 
6297 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6298 
6299 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6300 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6301 			"x%08x x%08x x%08x\n", evt_type,
6302 			acqe_sli->event_data1, acqe_sli->event_data2,
6303 			acqe_sli->reserved, acqe_sli->trailer);
6304 
6305 	port_name = phba->Port[0];
6306 	if (port_name == 0x00)
6307 		port_name = '?'; /* get port name is empty */
6308 
6309 	switch (evt_type) {
6310 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6311 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6312 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6313 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6314 
6315 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6316 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6317 				acqe_sli->event_data1, port_name);
6318 
6319 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6320 		shost = lpfc_shost_from_vport(phba->pport);
6321 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6322 					  sizeof(temp_event_data),
6323 					  (char *)&temp_event_data,
6324 					  SCSI_NL_VID_TYPE_PCI
6325 					  | PCI_VENDOR_ID_EMULEX);
6326 		break;
6327 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6328 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6329 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6330 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6331 
6332 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6333 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6334 				acqe_sli->event_data1, port_name);
6335 
6336 		shost = lpfc_shost_from_vport(phba->pport);
6337 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6338 					  sizeof(temp_event_data),
6339 					  (char *)&temp_event_data,
6340 					  SCSI_NL_VID_TYPE_PCI
6341 					  | PCI_VENDOR_ID_EMULEX);
6342 		break;
6343 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6344 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6345 					&acqe_sli->event_data1;
6346 
6347 		/* fetch the status for this port */
6348 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6349 		case LPFC_LINK_NUMBER_0:
6350 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6351 					&misconfigured->theEvent);
6352 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6353 					&misconfigured->theEvent);
6354 			break;
6355 		case LPFC_LINK_NUMBER_1:
6356 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6357 					&misconfigured->theEvent);
6358 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6359 					&misconfigured->theEvent);
6360 			break;
6361 		case LPFC_LINK_NUMBER_2:
6362 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6363 					&misconfigured->theEvent);
6364 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6365 					&misconfigured->theEvent);
6366 			break;
6367 		case LPFC_LINK_NUMBER_3:
6368 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6369 					&misconfigured->theEvent);
6370 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6371 					&misconfigured->theEvent);
6372 			break;
6373 		default:
6374 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6375 					"3296 "
6376 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6377 					"event: Invalid link %d",
6378 					phba->sli4_hba.lnk_info.lnk_no);
6379 			return;
6380 		}
6381 
6382 		/* Skip if optic state unchanged */
6383 		if (phba->sli4_hba.lnk_info.optic_state == status)
6384 			return;
6385 
6386 		switch (status) {
6387 		case LPFC_SLI_EVENT_STATUS_VALID:
6388 			sprintf(message, "Physical Link is functional");
6389 			break;
6390 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6391 			sprintf(message, "Optics faulted/incorrectly "
6392 				"installed/not installed - Reseat optics, "
6393 				"if issue not resolved, replace.");
6394 			break;
6395 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6396 			sprintf(message,
6397 				"Optics of two types installed - Remove one "
6398 				"optic or install matching pair of optics.");
6399 			break;
6400 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6401 			sprintf(message, "Incompatible optics - Replace with "
6402 				"compatible optics for card to function.");
6403 			break;
6404 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6405 			sprintf(message, "Unqualified optics - Replace with "
6406 				"Avago optics for Warranty and Technical "
6407 				"Support - Link is%s operational",
6408 				(operational) ? " not" : "");
6409 			break;
6410 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6411 			sprintf(message, "Uncertified optics - Replace with "
6412 				"Avago-certified optics to enable link "
6413 				"operation - Link is%s operational",
6414 				(operational) ? " not" : "");
6415 			break;
6416 		default:
6417 			/* firmware is reporting a status we don't know about */
6418 			sprintf(message, "Unknown event status x%02x", status);
6419 			break;
6420 		}
6421 
6422 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6423 		rc = lpfc_sli4_read_config(phba);
6424 		if (rc) {
6425 			phba->lmt = 0;
6426 			lpfc_printf_log(phba, KERN_ERR,
6427 					LOG_TRACE_EVENT,
6428 					"3194 Unable to retrieve supported "
6429 					"speeds, rc = 0x%x\n", rc);
6430 		}
6431 		vports = lpfc_create_vport_work_array(phba);
6432 		if (vports != NULL) {
6433 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6434 					i++) {
6435 				shost = lpfc_shost_from_vport(vports[i]);
6436 				lpfc_host_supported_speeds_set(shost);
6437 			}
6438 		}
6439 		lpfc_destroy_vport_work_array(phba, vports);
6440 
6441 		phba->sli4_hba.lnk_info.optic_state = status;
6442 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6443 				"3176 Port Name %c %s\n", port_name, message);
6444 		break;
6445 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6446 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6447 				"3192 Remote DPort Test Initiated - "
6448 				"Event Data1:x%08x Event Data2: x%08x\n",
6449 				acqe_sli->event_data1, acqe_sli->event_data2);
6450 		break;
6451 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6452 		/* Call FW to obtain active parms */
6453 		lpfc_sli4_cgn_parm_chg_evt(phba);
6454 		break;
6455 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6456 		/* Misconfigured WWN. Reports that the SLI Port is configured
6457 		 * to use FA-WWN, but the attached device doesn’t support it.
6458 		 * No driver action is required.
6459 		 * Event Data1 - N.A, Event Data2 - N.A
6460 		 */
6461 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI,
6462 			     "2699 Misconfigured FA-WWN - Attached device does "
6463 			     "not support FA-WWN\n");
6464 		break;
6465 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6466 		/* EEPROM failure. No driver action is required */
6467 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6468 			     "2518 EEPROM failure - "
6469 			     "Event Data1: x%08x Event Data2: x%08x\n",
6470 			     acqe_sli->event_data1, acqe_sli->event_data2);
6471 		break;
6472 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6473 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6474 			break;
6475 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6476 					&acqe_sli->event_data1;
6477 		phba->cgn_acqe_cnt++;
6478 
6479 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6480 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6481 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6482 
6483 		/* no threshold for CMF, even 1 signal will trigger an event */
6484 
6485 		/* Alarm overrides warning, so check that first */
6486 		if (cgn_signal->alarm_cnt) {
6487 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6488 				/* Keep track of alarm cnt for cgn_info */
6489 				atomic_add(cgn_signal->alarm_cnt,
6490 					   &phba->cgn_fabric_alarm_cnt);
6491 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6492 				atomic_add(cgn_signal->alarm_cnt,
6493 					   &phba->cgn_sync_alarm_cnt);
6494 			}
6495 		} else if (cnt) {
6496 			/* signal action needs to be taken */
6497 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6498 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6499 				/* Keep track of warning cnt for cgn_info */
6500 				atomic_add(cnt, &phba->cgn_fabric_warn_cnt);
6501 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6502 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6503 			}
6504 		}
6505 		break;
6506 	default:
6507 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6508 				"3193 Unrecognized SLI event, type: 0x%x",
6509 				evt_type);
6510 		break;
6511 	}
6512 }
6513 
6514 /**
6515  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6516  * @vport: pointer to vport data structure.
6517  *
6518  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6519  * response to a CVL event.
6520  *
6521  * Return the pointer to the ndlp with the vport if successful, otherwise
6522  * return NULL.
6523  **/
6524 static struct lpfc_nodelist *
6525 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6526 {
6527 	struct lpfc_nodelist *ndlp;
6528 	struct Scsi_Host *shost;
6529 	struct lpfc_hba *phba;
6530 
6531 	if (!vport)
6532 		return NULL;
6533 	phba = vport->phba;
6534 	if (!phba)
6535 		return NULL;
6536 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6537 	if (!ndlp) {
6538 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6539 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6540 		if (!ndlp)
6541 			return 0;
6542 		/* Set the node type */
6543 		ndlp->nlp_type |= NLP_FABRIC;
6544 		/* Put ndlp onto node list */
6545 		lpfc_enqueue_node(vport, ndlp);
6546 	}
6547 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6548 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6549 		return NULL;
6550 	/* If virtual link is not yet instantiated ignore CVL */
6551 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6552 		&& (vport->port_state != LPFC_VPORT_FAILED))
6553 		return NULL;
6554 	shost = lpfc_shost_from_vport(vport);
6555 	if (!shost)
6556 		return NULL;
6557 	lpfc_linkdown_port(vport);
6558 	lpfc_cleanup_pending_mbox(vport);
6559 	spin_lock_irq(shost->host_lock);
6560 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6561 	spin_unlock_irq(shost->host_lock);
6562 
6563 	return ndlp;
6564 }
6565 
6566 /**
6567  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6568  * @phba: pointer to lpfc hba data structure.
6569  *
6570  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6571  * response to a FCF dead event.
6572  **/
6573 static void
6574 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6575 {
6576 	struct lpfc_vport **vports;
6577 	int i;
6578 
6579 	vports = lpfc_create_vport_work_array(phba);
6580 	if (vports)
6581 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6582 			lpfc_sli4_perform_vport_cvl(vports[i]);
6583 	lpfc_destroy_vport_work_array(phba, vports);
6584 }
6585 
6586 /**
6587  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6588  * @phba: pointer to lpfc hba data structure.
6589  * @acqe_fip: pointer to the async fcoe completion queue entry.
6590  *
6591  * This routine is to handle the SLI4 asynchronous fcoe event.
6592  **/
6593 static void
6594 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6595 			struct lpfc_acqe_fip *acqe_fip)
6596 {
6597 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6598 	int rc;
6599 	struct lpfc_vport *vport;
6600 	struct lpfc_nodelist *ndlp;
6601 	int active_vlink_present;
6602 	struct lpfc_vport **vports;
6603 	int i;
6604 
6605 	phba->fc_eventTag = acqe_fip->event_tag;
6606 	phba->fcoe_eventtag = acqe_fip->event_tag;
6607 	switch (event_type) {
6608 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6609 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6610 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6611 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6612 					"2546 New FCF event, evt_tag:x%x, "
6613 					"index:x%x\n",
6614 					acqe_fip->event_tag,
6615 					acqe_fip->index);
6616 		else
6617 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6618 					LOG_DISCOVERY,
6619 					"2788 FCF param modified event, "
6620 					"evt_tag:x%x, index:x%x\n",
6621 					acqe_fip->event_tag,
6622 					acqe_fip->index);
6623 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6624 			/*
6625 			 * During period of FCF discovery, read the FCF
6626 			 * table record indexed by the event to update
6627 			 * FCF roundrobin failover eligible FCF bmask.
6628 			 */
6629 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6630 					LOG_DISCOVERY,
6631 					"2779 Read FCF (x%x) for updating "
6632 					"roundrobin FCF failover bmask\n",
6633 					acqe_fip->index);
6634 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6635 		}
6636 
6637 		/* If the FCF discovery is in progress, do nothing. */
6638 		spin_lock_irq(&phba->hbalock);
6639 		if (phba->hba_flag & FCF_TS_INPROG) {
6640 			spin_unlock_irq(&phba->hbalock);
6641 			break;
6642 		}
6643 		/* If fast FCF failover rescan event is pending, do nothing */
6644 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6645 			spin_unlock_irq(&phba->hbalock);
6646 			break;
6647 		}
6648 
6649 		/* If the FCF has been in discovered state, do nothing. */
6650 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6651 			spin_unlock_irq(&phba->hbalock);
6652 			break;
6653 		}
6654 		spin_unlock_irq(&phba->hbalock);
6655 
6656 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6657 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6658 				"2770 Start FCF table scan per async FCF "
6659 				"event, evt_tag:x%x, index:x%x\n",
6660 				acqe_fip->event_tag, acqe_fip->index);
6661 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6662 						     LPFC_FCOE_FCF_GET_FIRST);
6663 		if (rc)
6664 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6665 					"2547 Issue FCF scan read FCF mailbox "
6666 					"command failed (x%x)\n", rc);
6667 		break;
6668 
6669 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6670 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6671 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6672 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6673 				acqe_fip->event_tag);
6674 		break;
6675 
6676 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6677 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6678 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6679 				"2549 FCF (x%x) disconnected from network, "
6680 				 "tag:x%x\n", acqe_fip->index,
6681 				 acqe_fip->event_tag);
6682 		/*
6683 		 * If we are in the middle of FCF failover process, clear
6684 		 * the corresponding FCF bit in the roundrobin bitmap.
6685 		 */
6686 		spin_lock_irq(&phba->hbalock);
6687 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6688 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6689 			spin_unlock_irq(&phba->hbalock);
6690 			/* Update FLOGI FCF failover eligible FCF bmask */
6691 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6692 			break;
6693 		}
6694 		spin_unlock_irq(&phba->hbalock);
6695 
6696 		/* If the event is not for currently used fcf do nothing */
6697 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6698 			break;
6699 
6700 		/*
6701 		 * Otherwise, request the port to rediscover the entire FCF
6702 		 * table for a fast recovery from case that the current FCF
6703 		 * is no longer valid as we are not in the middle of FCF
6704 		 * failover process already.
6705 		 */
6706 		spin_lock_irq(&phba->hbalock);
6707 		/* Mark the fast failover process in progress */
6708 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6709 		spin_unlock_irq(&phba->hbalock);
6710 
6711 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6712 				"2771 Start FCF fast failover process due to "
6713 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6714 				"\n", acqe_fip->event_tag, acqe_fip->index);
6715 		rc = lpfc_sli4_redisc_fcf_table(phba);
6716 		if (rc) {
6717 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6718 					LOG_TRACE_EVENT,
6719 					"2772 Issue FCF rediscover mailbox "
6720 					"command failed, fail through to FCF "
6721 					"dead event\n");
6722 			spin_lock_irq(&phba->hbalock);
6723 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6724 			spin_unlock_irq(&phba->hbalock);
6725 			/*
6726 			 * Last resort will fail over by treating this
6727 			 * as a link down to FCF registration.
6728 			 */
6729 			lpfc_sli4_fcf_dead_failthrough(phba);
6730 		} else {
6731 			/* Reset FCF roundrobin bmask for new discovery */
6732 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6733 			/*
6734 			 * Handling fast FCF failover to a DEAD FCF event is
6735 			 * considered equalivant to receiving CVL to all vports.
6736 			 */
6737 			lpfc_sli4_perform_all_vport_cvl(phba);
6738 		}
6739 		break;
6740 	case LPFC_FIP_EVENT_TYPE_CVL:
6741 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6742 		lpfc_printf_log(phba, KERN_ERR,
6743 				LOG_TRACE_EVENT,
6744 			"2718 Clear Virtual Link Received for VPI 0x%x"
6745 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6746 
6747 		vport = lpfc_find_vport_by_vpid(phba,
6748 						acqe_fip->index);
6749 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6750 		if (!ndlp)
6751 			break;
6752 		active_vlink_present = 0;
6753 
6754 		vports = lpfc_create_vport_work_array(phba);
6755 		if (vports) {
6756 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6757 					i++) {
6758 				if ((!(vports[i]->fc_flag &
6759 					FC_VPORT_CVL_RCVD)) &&
6760 					(vports[i]->port_state > LPFC_FDISC)) {
6761 					active_vlink_present = 1;
6762 					break;
6763 				}
6764 			}
6765 			lpfc_destroy_vport_work_array(phba, vports);
6766 		}
6767 
6768 		/*
6769 		 * Don't re-instantiate if vport is marked for deletion.
6770 		 * If we are here first then vport_delete is going to wait
6771 		 * for discovery to complete.
6772 		 */
6773 		if (!(vport->load_flag & FC_UNLOADING) &&
6774 					active_vlink_present) {
6775 			/*
6776 			 * If there are other active VLinks present,
6777 			 * re-instantiate the Vlink using FDISC.
6778 			 */
6779 			mod_timer(&ndlp->nlp_delayfunc,
6780 				  jiffies + msecs_to_jiffies(1000));
6781 			spin_lock_irq(&ndlp->lock);
6782 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6783 			spin_unlock_irq(&ndlp->lock);
6784 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6785 			vport->port_state = LPFC_FDISC;
6786 		} else {
6787 			/*
6788 			 * Otherwise, we request port to rediscover
6789 			 * the entire FCF table for a fast recovery
6790 			 * from possible case that the current FCF
6791 			 * is no longer valid if we are not already
6792 			 * in the FCF failover process.
6793 			 */
6794 			spin_lock_irq(&phba->hbalock);
6795 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6796 				spin_unlock_irq(&phba->hbalock);
6797 				break;
6798 			}
6799 			/* Mark the fast failover process in progress */
6800 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6801 			spin_unlock_irq(&phba->hbalock);
6802 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6803 					LOG_DISCOVERY,
6804 					"2773 Start FCF failover per CVL, "
6805 					"evt_tag:x%x\n", acqe_fip->event_tag);
6806 			rc = lpfc_sli4_redisc_fcf_table(phba);
6807 			if (rc) {
6808 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6809 						LOG_TRACE_EVENT,
6810 						"2774 Issue FCF rediscover "
6811 						"mailbox command failed, "
6812 						"through to CVL event\n");
6813 				spin_lock_irq(&phba->hbalock);
6814 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6815 				spin_unlock_irq(&phba->hbalock);
6816 				/*
6817 				 * Last resort will be re-try on the
6818 				 * the current registered FCF entry.
6819 				 */
6820 				lpfc_retry_pport_discovery(phba);
6821 			} else
6822 				/*
6823 				 * Reset FCF roundrobin bmask for new
6824 				 * discovery.
6825 				 */
6826 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6827 		}
6828 		break;
6829 	default:
6830 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6831 				"0288 Unknown FCoE event type 0x%x event tag "
6832 				"0x%x\n", event_type, acqe_fip->event_tag);
6833 		break;
6834 	}
6835 }
6836 
6837 /**
6838  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6839  * @phba: pointer to lpfc hba data structure.
6840  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6841  *
6842  * This routine is to handle the SLI4 asynchronous dcbx event.
6843  **/
6844 static void
6845 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6846 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6847 {
6848 	phba->fc_eventTag = acqe_dcbx->event_tag;
6849 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6850 			"0290 The SLI4 DCBX asynchronous event is not "
6851 			"handled yet\n");
6852 }
6853 
6854 /**
6855  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6856  * @phba: pointer to lpfc hba data structure.
6857  * @acqe_grp5: pointer to the async grp5 completion queue entry.
6858  *
6859  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
6860  * is an asynchronous notified of a logical link speed change.  The Port
6861  * reports the logical link speed in units of 10Mbps.
6862  **/
6863 static void
6864 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
6865 			 struct lpfc_acqe_grp5 *acqe_grp5)
6866 {
6867 	uint16_t prev_ll_spd;
6868 
6869 	phba->fc_eventTag = acqe_grp5->event_tag;
6870 	phba->fcoe_eventtag = acqe_grp5->event_tag;
6871 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
6872 	phba->sli4_hba.link_state.logical_speed =
6873 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
6874 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6875 			"2789 GRP5 Async Event: Updating logical link speed "
6876 			"from %dMbps to %dMbps\n", prev_ll_spd,
6877 			phba->sli4_hba.link_state.logical_speed);
6878 }
6879 
6880 /**
6881  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
6882  * @phba: pointer to lpfc hba data structure.
6883  *
6884  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
6885  * is an asynchronous notification of a request to reset CM stats.
6886  **/
6887 static void
6888 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
6889 {
6890 	if (!phba->cgn_i)
6891 		return;
6892 	lpfc_init_congestion_stat(phba);
6893 }
6894 
6895 /**
6896  * lpfc_cgn_params_val - Validate FW congestion parameters.
6897  * @phba: pointer to lpfc hba data structure.
6898  * @p_cfg_param: pointer to FW provided congestion parameters.
6899  *
6900  * This routine validates the congestion parameters passed
6901  * by the FW to the driver via an ACQE event.
6902  **/
6903 static void
6904 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
6905 {
6906 	spin_lock_irq(&phba->hbalock);
6907 
6908 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
6909 			     LPFC_CFG_MONITOR)) {
6910 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
6911 				"6225 CMF mode param out of range: %d\n",
6912 				 p_cfg_param->cgn_param_mode);
6913 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
6914 	}
6915 
6916 	spin_unlock_irq(&phba->hbalock);
6917 }
6918 
6919 /**
6920  * lpfc_cgn_params_parse - Process a FW cong parm change event
6921  * @phba: pointer to lpfc hba data structure.
6922  * @p_cgn_param: pointer to a data buffer with the FW cong params.
6923  * @len: the size of pdata in bytes.
6924  *
6925  * This routine validates the congestion management buffer signature
6926  * from the FW, validates the contents and makes corrections for
6927  * valid, in-range values.  If the signature magic is correct and
6928  * after parameter validation, the contents are copied to the driver's
6929  * @phba structure. If the magic is incorrect, an error message is
6930  * logged.
6931  **/
6932 static void
6933 lpfc_cgn_params_parse(struct lpfc_hba *phba,
6934 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
6935 {
6936 	struct lpfc_cgn_info *cp;
6937 	uint32_t crc, oldmode;
6938 
6939 	/* Make sure the FW has encoded the correct magic number to
6940 	 * validate the congestion parameter in FW memory.
6941 	 */
6942 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
6943 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
6944 				"4668 FW cgn parm buffer data: "
6945 				"magic 0x%x version %d mode %d "
6946 				"level0 %d level1 %d "
6947 				"level2 %d byte13 %d "
6948 				"byte14 %d byte15 %d "
6949 				"byte11 %d byte12 %d activeMode %d\n",
6950 				p_cgn_param->cgn_param_magic,
6951 				p_cgn_param->cgn_param_version,
6952 				p_cgn_param->cgn_param_mode,
6953 				p_cgn_param->cgn_param_level0,
6954 				p_cgn_param->cgn_param_level1,
6955 				p_cgn_param->cgn_param_level2,
6956 				p_cgn_param->byte13,
6957 				p_cgn_param->byte14,
6958 				p_cgn_param->byte15,
6959 				p_cgn_param->byte11,
6960 				p_cgn_param->byte12,
6961 				phba->cmf_active_mode);
6962 
6963 		oldmode = phba->cmf_active_mode;
6964 
6965 		/* Any parameters out of range are corrected to defaults
6966 		 * by this routine.  No need to fail.
6967 		 */
6968 		lpfc_cgn_params_val(phba, p_cgn_param);
6969 
6970 		/* Parameters are verified, move them into driver storage */
6971 		spin_lock_irq(&phba->hbalock);
6972 		memcpy(&phba->cgn_p, p_cgn_param,
6973 		       sizeof(struct lpfc_cgn_param));
6974 
6975 		/* Update parameters in congestion info buffer now */
6976 		if (phba->cgn_i) {
6977 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
6978 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
6979 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
6980 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
6981 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
6982 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
6983 						  LPFC_CGN_CRC32_SEED);
6984 			cp->cgn_info_crc = cpu_to_le32(crc);
6985 		}
6986 		spin_unlock_irq(&phba->hbalock);
6987 
6988 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
6989 
6990 		switch (oldmode) {
6991 		case LPFC_CFG_OFF:
6992 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
6993 				/* Turning CMF on */
6994 				lpfc_cmf_start(phba);
6995 
6996 				if (phba->link_state >= LPFC_LINK_UP) {
6997 					phba->cgn_reg_fpin =
6998 						phba->cgn_init_reg_fpin;
6999 					phba->cgn_reg_signal =
7000 						phba->cgn_init_reg_signal;
7001 					lpfc_issue_els_edc(phba->pport, 0);
7002 				}
7003 			}
7004 			break;
7005 		case LPFC_CFG_MANAGED:
7006 			switch (phba->cgn_p.cgn_param_mode) {
7007 			case LPFC_CFG_OFF:
7008 				/* Turning CMF off */
7009 				lpfc_cmf_stop(phba);
7010 				if (phba->link_state >= LPFC_LINK_UP)
7011 					lpfc_issue_els_edc(phba->pport, 0);
7012 				break;
7013 			case LPFC_CFG_MONITOR:
7014 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7015 						"4661 Switch from MANAGED to "
7016 						"`MONITOR mode\n");
7017 				phba->cmf_max_bytes_per_interval =
7018 					phba->cmf_link_byte_count;
7019 
7020 				/* Resume blocked IO - unblock on workqueue */
7021 				queue_work(phba->wq,
7022 					   &phba->unblock_request_work);
7023 				break;
7024 			}
7025 			break;
7026 		case LPFC_CFG_MONITOR:
7027 			switch (phba->cgn_p.cgn_param_mode) {
7028 			case LPFC_CFG_OFF:
7029 				/* Turning CMF off */
7030 				lpfc_cmf_stop(phba);
7031 				if (phba->link_state >= LPFC_LINK_UP)
7032 					lpfc_issue_els_edc(phba->pport, 0);
7033 				break;
7034 			case LPFC_CFG_MANAGED:
7035 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7036 						"4662 Switch from MONITOR to "
7037 						"MANAGED mode\n");
7038 				lpfc_cmf_signal_init(phba);
7039 				break;
7040 			}
7041 			break;
7042 		}
7043 	} else {
7044 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7045 				"4669 FW cgn parm buf wrong magic 0x%x "
7046 				"version %d\n", p_cgn_param->cgn_param_magic,
7047 				p_cgn_param->cgn_param_version);
7048 	}
7049 }
7050 
7051 /**
7052  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7053  * @phba: pointer to lpfc hba data structure.
7054  *
7055  * This routine issues a read_object mailbox command to
7056  * get the congestion management parameters from the FW
7057  * parses it and updates the driver maintained values.
7058  *
7059  * Returns
7060  *  0     if the object was empty
7061  *  -Eval if an error was encountered
7062  *  Count if bytes were read from object
7063  **/
7064 int
7065 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7066 {
7067 	int ret = 0;
7068 	struct lpfc_cgn_param *p_cgn_param = NULL;
7069 	u32 *pdata = NULL;
7070 	u32 len = 0;
7071 
7072 	/* Find out if the FW has a new set of congestion parameters. */
7073 	len = sizeof(struct lpfc_cgn_param);
7074 	pdata = kzalloc(len, GFP_KERNEL);
7075 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7076 			       pdata, len);
7077 
7078 	/* 0 means no data.  A negative means error.  A positive means
7079 	 * bytes were copied.
7080 	 */
7081 	if (!ret) {
7082 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7083 				"4670 CGN RD OBJ returns no data\n");
7084 		goto rd_obj_err;
7085 	} else if (ret < 0) {
7086 		/* Some error.  Just exit and return it to the caller.*/
7087 		goto rd_obj_err;
7088 	}
7089 
7090 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7091 			"6234 READ CGN PARAMS Successful %d\n", len);
7092 
7093 	/* Parse data pointer over len and update the phba congestion
7094 	 * parameters with values passed back.  The receive rate values
7095 	 * may have been altered in FW, but take no action here.
7096 	 */
7097 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7098 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7099 
7100  rd_obj_err:
7101 	kfree(pdata);
7102 	return ret;
7103 }
7104 
7105 /**
7106  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7107  * @phba: pointer to lpfc hba data structure.
7108  *
7109  * The FW generated Async ACQE SLI event calls this routine when
7110  * the event type is an SLI Internal Port Event and the Event Code
7111  * indicates a change to the FW maintained congestion parameters.
7112  *
7113  * This routine executes a Read_Object mailbox call to obtain the
7114  * current congestion parameters maintained in FW and corrects
7115  * the driver's active congestion parameters.
7116  *
7117  * The acqe event is not passed because there is no further data
7118  * required.
7119  *
7120  * Returns nonzero error if event processing encountered an error.
7121  * Zero otherwise for success.
7122  **/
7123 static int
7124 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7125 {
7126 	int ret = 0;
7127 
7128 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7129 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7130 				"4664 Cgn Evt when E2E off. Drop event\n");
7131 		return -EACCES;
7132 	}
7133 
7134 	/* If the event is claiming an empty object, it's ok.  A write
7135 	 * could have cleared it.  Only error is a negative return
7136 	 * status.
7137 	 */
7138 	ret = lpfc_sli4_cgn_params_read(phba);
7139 	if (ret < 0) {
7140 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7141 				"4667 Error reading Cgn Params (%d)\n",
7142 				ret);
7143 	} else if (!ret) {
7144 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7145 				"4673 CGN Event empty object.\n");
7146 	}
7147 	return ret;
7148 }
7149 
7150 /**
7151  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7152  * @phba: pointer to lpfc hba data structure.
7153  *
7154  * This routine is invoked by the worker thread to process all the pending
7155  * SLI4 asynchronous events.
7156  **/
7157 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7158 {
7159 	struct lpfc_cq_event *cq_event;
7160 	unsigned long iflags;
7161 
7162 	/* First, declare the async event has been handled */
7163 	spin_lock_irqsave(&phba->hbalock, iflags);
7164 	phba->hba_flag &= ~ASYNC_EVENT;
7165 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7166 
7167 	/* Now, handle all the async events */
7168 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7169 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7170 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7171 				 cq_event, struct lpfc_cq_event, list);
7172 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7173 				       iflags);
7174 
7175 		/* Process the asynchronous event */
7176 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7177 		case LPFC_TRAILER_CODE_LINK:
7178 			lpfc_sli4_async_link_evt(phba,
7179 						 &cq_event->cqe.acqe_link);
7180 			break;
7181 		case LPFC_TRAILER_CODE_FCOE:
7182 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7183 			break;
7184 		case LPFC_TRAILER_CODE_DCBX:
7185 			lpfc_sli4_async_dcbx_evt(phba,
7186 						 &cq_event->cqe.acqe_dcbx);
7187 			break;
7188 		case LPFC_TRAILER_CODE_GRP5:
7189 			lpfc_sli4_async_grp5_evt(phba,
7190 						 &cq_event->cqe.acqe_grp5);
7191 			break;
7192 		case LPFC_TRAILER_CODE_FC:
7193 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7194 			break;
7195 		case LPFC_TRAILER_CODE_SLI:
7196 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7197 			break;
7198 		case LPFC_TRAILER_CODE_CMSTAT:
7199 			lpfc_sli4_async_cmstat_evt(phba);
7200 			break;
7201 		default:
7202 			lpfc_printf_log(phba, KERN_ERR,
7203 					LOG_TRACE_EVENT,
7204 					"1804 Invalid asynchronous event code: "
7205 					"x%x\n", bf_get(lpfc_trailer_code,
7206 					&cq_event->cqe.mcqe_cmpl));
7207 			break;
7208 		}
7209 
7210 		/* Free the completion event processed to the free pool */
7211 		lpfc_sli4_cq_event_release(phba, cq_event);
7212 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7213 	}
7214 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7215 }
7216 
7217 /**
7218  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7219  * @phba: pointer to lpfc hba data structure.
7220  *
7221  * This routine is invoked by the worker thread to process FCF table
7222  * rediscovery pending completion event.
7223  **/
7224 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7225 {
7226 	int rc;
7227 
7228 	spin_lock_irq(&phba->hbalock);
7229 	/* Clear FCF rediscovery timeout event */
7230 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7231 	/* Clear driver fast failover FCF record flag */
7232 	phba->fcf.failover_rec.flag = 0;
7233 	/* Set state for FCF fast failover */
7234 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7235 	spin_unlock_irq(&phba->hbalock);
7236 
7237 	/* Scan FCF table from the first entry to re-discover SAN */
7238 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7239 			"2777 Start post-quiescent FCF table scan\n");
7240 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7241 	if (rc)
7242 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7243 				"2747 Issue FCF scan read FCF mailbox "
7244 				"command failed 0x%x\n", rc);
7245 }
7246 
7247 /**
7248  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7249  * @phba: pointer to lpfc hba data structure.
7250  * @dev_grp: The HBA PCI-Device group number.
7251  *
7252  * This routine is invoked to set up the per HBA PCI-Device group function
7253  * API jump table entries.
7254  *
7255  * Return: 0 if success, otherwise -ENODEV
7256  **/
7257 int
7258 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7259 {
7260 	int rc;
7261 
7262 	/* Set up lpfc PCI-device group */
7263 	phba->pci_dev_grp = dev_grp;
7264 
7265 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7266 	if (dev_grp == LPFC_PCI_DEV_OC)
7267 		phba->sli_rev = LPFC_SLI_REV4;
7268 
7269 	/* Set up device INIT API function jump table */
7270 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7271 	if (rc)
7272 		return -ENODEV;
7273 	/* Set up SCSI API function jump table */
7274 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7275 	if (rc)
7276 		return -ENODEV;
7277 	/* Set up SLI API function jump table */
7278 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7279 	if (rc)
7280 		return -ENODEV;
7281 	/* Set up MBOX API function jump table */
7282 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7283 	if (rc)
7284 		return -ENODEV;
7285 
7286 	return 0;
7287 }
7288 
7289 /**
7290  * lpfc_log_intr_mode - Log the active interrupt mode
7291  * @phba: pointer to lpfc hba data structure.
7292  * @intr_mode: active interrupt mode adopted.
7293  *
7294  * This routine it invoked to log the currently used active interrupt mode
7295  * to the device.
7296  **/
7297 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7298 {
7299 	switch (intr_mode) {
7300 	case 0:
7301 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7302 				"0470 Enable INTx interrupt mode.\n");
7303 		break;
7304 	case 1:
7305 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7306 				"0481 Enabled MSI interrupt mode.\n");
7307 		break;
7308 	case 2:
7309 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7310 				"0480 Enabled MSI-X interrupt mode.\n");
7311 		break;
7312 	default:
7313 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7314 				"0482 Illegal interrupt mode.\n");
7315 		break;
7316 	}
7317 	return;
7318 }
7319 
7320 /**
7321  * lpfc_enable_pci_dev - Enable a generic PCI device.
7322  * @phba: pointer to lpfc hba data structure.
7323  *
7324  * This routine is invoked to enable the PCI device that is common to all
7325  * PCI devices.
7326  *
7327  * Return codes
7328  * 	0 - successful
7329  * 	other values - error
7330  **/
7331 static int
7332 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7333 {
7334 	struct pci_dev *pdev;
7335 
7336 	/* Obtain PCI device reference */
7337 	if (!phba->pcidev)
7338 		goto out_error;
7339 	else
7340 		pdev = phba->pcidev;
7341 	/* Enable PCI device */
7342 	if (pci_enable_device_mem(pdev))
7343 		goto out_error;
7344 	/* Request PCI resource for the device */
7345 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7346 		goto out_disable_device;
7347 	/* Set up device as PCI master and save state for EEH */
7348 	pci_set_master(pdev);
7349 	pci_try_set_mwi(pdev);
7350 	pci_save_state(pdev);
7351 
7352 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7353 	if (pci_is_pcie(pdev))
7354 		pdev->needs_freset = 1;
7355 
7356 	return 0;
7357 
7358 out_disable_device:
7359 	pci_disable_device(pdev);
7360 out_error:
7361 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7362 			"1401 Failed to enable pci device\n");
7363 	return -ENODEV;
7364 }
7365 
7366 /**
7367  * lpfc_disable_pci_dev - Disable a generic PCI device.
7368  * @phba: pointer to lpfc hba data structure.
7369  *
7370  * This routine is invoked to disable the PCI device that is common to all
7371  * PCI devices.
7372  **/
7373 static void
7374 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7375 {
7376 	struct pci_dev *pdev;
7377 
7378 	/* Obtain PCI device reference */
7379 	if (!phba->pcidev)
7380 		return;
7381 	else
7382 		pdev = phba->pcidev;
7383 	/* Release PCI resource and disable PCI device */
7384 	pci_release_mem_regions(pdev);
7385 	pci_disable_device(pdev);
7386 
7387 	return;
7388 }
7389 
7390 /**
7391  * lpfc_reset_hba - Reset a hba
7392  * @phba: pointer to lpfc hba data structure.
7393  *
7394  * This routine is invoked to reset a hba device. It brings the HBA
7395  * offline, performs a board restart, and then brings the board back
7396  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7397  * on outstanding mailbox commands.
7398  **/
7399 void
7400 lpfc_reset_hba(struct lpfc_hba *phba)
7401 {
7402 	/* If resets are disabled then set error state and return. */
7403 	if (!phba->cfg_enable_hba_reset) {
7404 		phba->link_state = LPFC_HBA_ERROR;
7405 		return;
7406 	}
7407 
7408 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7409 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7410 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7411 	} else {
7412 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7413 		lpfc_sli_flush_io_rings(phba);
7414 	}
7415 	lpfc_offline(phba);
7416 	lpfc_sli_brdrestart(phba);
7417 	lpfc_online(phba);
7418 	lpfc_unblock_mgmt_io(phba);
7419 }
7420 
7421 /**
7422  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7423  * @phba: pointer to lpfc hba data structure.
7424  *
7425  * This function enables the PCI SR-IOV virtual functions to a physical
7426  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7427  * enable the number of virtual functions to the physical function. As
7428  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7429  * API call does not considered as an error condition for most of the device.
7430  **/
7431 uint16_t
7432 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7433 {
7434 	struct pci_dev *pdev = phba->pcidev;
7435 	uint16_t nr_virtfn;
7436 	int pos;
7437 
7438 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7439 	if (pos == 0)
7440 		return 0;
7441 
7442 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7443 	return nr_virtfn;
7444 }
7445 
7446 /**
7447  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7448  * @phba: pointer to lpfc hba data structure.
7449  * @nr_vfn: number of virtual functions to be enabled.
7450  *
7451  * This function enables the PCI SR-IOV virtual functions to a physical
7452  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7453  * enable the number of virtual functions to the physical function. As
7454  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7455  * API call does not considered as an error condition for most of the device.
7456  **/
7457 int
7458 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7459 {
7460 	struct pci_dev *pdev = phba->pcidev;
7461 	uint16_t max_nr_vfn;
7462 	int rc;
7463 
7464 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7465 	if (nr_vfn > max_nr_vfn) {
7466 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7467 				"3057 Requested vfs (%d) greater than "
7468 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7469 		return -EINVAL;
7470 	}
7471 
7472 	rc = pci_enable_sriov(pdev, nr_vfn);
7473 	if (rc) {
7474 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7475 				"2806 Failed to enable sriov on this device "
7476 				"with vfn number nr_vf:%d, rc:%d\n",
7477 				nr_vfn, rc);
7478 	} else
7479 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7480 				"2807 Successful enable sriov on this device "
7481 				"with vfn number nr_vf:%d\n", nr_vfn);
7482 	return rc;
7483 }
7484 
7485 static void
7486 lpfc_unblock_requests_work(struct work_struct *work)
7487 {
7488 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7489 					     unblock_request_work);
7490 
7491 	lpfc_unblock_requests(phba);
7492 }
7493 
7494 /**
7495  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7496  * @phba: pointer to lpfc hba data structure.
7497  *
7498  * This routine is invoked to set up the driver internal resources before the
7499  * device specific resource setup to support the HBA device it attached to.
7500  *
7501  * Return codes
7502  *	0 - successful
7503  *	other values - error
7504  **/
7505 static int
7506 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7507 {
7508 	struct lpfc_sli *psli = &phba->sli;
7509 
7510 	/*
7511 	 * Driver resources common to all SLI revisions
7512 	 */
7513 	atomic_set(&phba->fast_event_count, 0);
7514 	atomic_set(&phba->dbg_log_idx, 0);
7515 	atomic_set(&phba->dbg_log_cnt, 0);
7516 	atomic_set(&phba->dbg_log_dmping, 0);
7517 	spin_lock_init(&phba->hbalock);
7518 
7519 	/* Initialize port_list spinlock */
7520 	spin_lock_init(&phba->port_list_lock);
7521 	INIT_LIST_HEAD(&phba->port_list);
7522 
7523 	INIT_LIST_HEAD(&phba->work_list);
7524 	init_waitqueue_head(&phba->wait_4_mlo_m_q);
7525 
7526 	/* Initialize the wait queue head for the kernel thread */
7527 	init_waitqueue_head(&phba->work_waitq);
7528 
7529 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7530 			"1403 Protocols supported %s %s %s\n",
7531 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7532 				"SCSI" : " "),
7533 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7534 				"NVME" : " "),
7535 			(phba->nvmet_support ? "NVMET" : " "));
7536 
7537 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7538 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7539 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7540 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7541 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7542 
7543 	/* Initialize the fabric iocb list */
7544 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7545 
7546 	/* Initialize list to save ELS buffers */
7547 	INIT_LIST_HEAD(&phba->elsbuf);
7548 
7549 	/* Initialize FCF connection rec list */
7550 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7551 
7552 	/* Initialize OAS configuration list */
7553 	spin_lock_init(&phba->devicelock);
7554 	INIT_LIST_HEAD(&phba->luns);
7555 
7556 	/* MBOX heartbeat timer */
7557 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7558 	/* Fabric block timer */
7559 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7560 	/* EA polling mode timer */
7561 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7562 	/* Heartbeat timer */
7563 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7564 
7565 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7566 
7567 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7568 			  lpfc_idle_stat_delay_work);
7569 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7570 	return 0;
7571 }
7572 
7573 /**
7574  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7575  * @phba: pointer to lpfc hba data structure.
7576  *
7577  * This routine is invoked to set up the driver internal resources specific to
7578  * support the SLI-3 HBA device it attached to.
7579  *
7580  * Return codes
7581  * 0 - successful
7582  * other values - error
7583  **/
7584 static int
7585 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7586 {
7587 	int rc, entry_sz;
7588 
7589 	/*
7590 	 * Initialize timers used by driver
7591 	 */
7592 
7593 	/* FCP polling mode timer */
7594 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7595 
7596 	/* Host attention work mask setup */
7597 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7598 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7599 
7600 	/* Get all the module params for configuring this host */
7601 	lpfc_get_cfgparam(phba);
7602 	/* Set up phase-1 common device driver resources */
7603 
7604 	rc = lpfc_setup_driver_resource_phase1(phba);
7605 	if (rc)
7606 		return -ENODEV;
7607 
7608 	if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) {
7609 		phba->menlo_flag |= HBA_MENLO_SUPPORT;
7610 		/* check for menlo minimum sg count */
7611 		if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT)
7612 			phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT;
7613 	}
7614 
7615 	if (!phba->sli.sli3_ring)
7616 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7617 					      sizeof(struct lpfc_sli_ring),
7618 					      GFP_KERNEL);
7619 	if (!phba->sli.sli3_ring)
7620 		return -ENOMEM;
7621 
7622 	/*
7623 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7624 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7625 	 */
7626 
7627 	if (phba->sli_rev == LPFC_SLI_REV4)
7628 		entry_sz = sizeof(struct sli4_sge);
7629 	else
7630 		entry_sz = sizeof(struct ulp_bde64);
7631 
7632 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7633 	if (phba->cfg_enable_bg) {
7634 		/*
7635 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7636 		 * the FCP rsp, and a BDE for each. Sice we have no control
7637 		 * over how many protection data segments the SCSI Layer
7638 		 * will hand us (ie: there could be one for every block
7639 		 * in the IO), we just allocate enough BDEs to accomidate
7640 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7641 		 * minimize the risk of running out.
7642 		 */
7643 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7644 			sizeof(struct fcp_rsp) +
7645 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7646 
7647 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7648 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7649 
7650 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7651 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7652 	} else {
7653 		/*
7654 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7655 		 * the FCP rsp, a BDE for each, and a BDE for up to
7656 		 * cfg_sg_seg_cnt data segments.
7657 		 */
7658 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7659 			sizeof(struct fcp_rsp) +
7660 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7661 
7662 		/* Total BDEs in BPL for scsi_sg_list */
7663 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7664 	}
7665 
7666 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7667 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7668 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7669 			phba->cfg_total_seg_cnt);
7670 
7671 	phba->max_vpi = LPFC_MAX_VPI;
7672 	/* This will be set to correct value after config_port mbox */
7673 	phba->max_vports = 0;
7674 
7675 	/*
7676 	 * Initialize the SLI Layer to run with lpfc HBAs.
7677 	 */
7678 	lpfc_sli_setup(phba);
7679 	lpfc_sli_queue_init(phba);
7680 
7681 	/* Allocate device driver memory */
7682 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7683 		return -ENOMEM;
7684 
7685 	phba->lpfc_sg_dma_buf_pool =
7686 		dma_pool_create("lpfc_sg_dma_buf_pool",
7687 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7688 				BPL_ALIGN_SZ, 0);
7689 
7690 	if (!phba->lpfc_sg_dma_buf_pool)
7691 		goto fail_free_mem;
7692 
7693 	phba->lpfc_cmd_rsp_buf_pool =
7694 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7695 					&phba->pcidev->dev,
7696 					sizeof(struct fcp_cmnd) +
7697 					sizeof(struct fcp_rsp),
7698 					BPL_ALIGN_SZ, 0);
7699 
7700 	if (!phba->lpfc_cmd_rsp_buf_pool)
7701 		goto fail_free_dma_buf_pool;
7702 
7703 	/*
7704 	 * Enable sr-iov virtual functions if supported and configured
7705 	 * through the module parameter.
7706 	 */
7707 	if (phba->cfg_sriov_nr_virtfn > 0) {
7708 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7709 						 phba->cfg_sriov_nr_virtfn);
7710 		if (rc) {
7711 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7712 					"2808 Requested number of SR-IOV "
7713 					"virtual functions (%d) is not "
7714 					"supported\n",
7715 					phba->cfg_sriov_nr_virtfn);
7716 			phba->cfg_sriov_nr_virtfn = 0;
7717 		}
7718 	}
7719 
7720 	return 0;
7721 
7722 fail_free_dma_buf_pool:
7723 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7724 	phba->lpfc_sg_dma_buf_pool = NULL;
7725 fail_free_mem:
7726 	lpfc_mem_free(phba);
7727 	return -ENOMEM;
7728 }
7729 
7730 /**
7731  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7732  * @phba: pointer to lpfc hba data structure.
7733  *
7734  * This routine is invoked to unset the driver internal resources set up
7735  * specific for supporting the SLI-3 HBA device it attached to.
7736  **/
7737 static void
7738 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7739 {
7740 	/* Free device driver memory allocated */
7741 	lpfc_mem_free_all(phba);
7742 
7743 	return;
7744 }
7745 
7746 /**
7747  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7748  * @phba: pointer to lpfc hba data structure.
7749  *
7750  * This routine is invoked to set up the driver internal resources specific to
7751  * support the SLI-4 HBA device it attached to.
7752  *
7753  * Return codes
7754  * 	0 - successful
7755  * 	other values - error
7756  **/
7757 static int
7758 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7759 {
7760 	LPFC_MBOXQ_t *mboxq;
7761 	MAILBOX_t *mb;
7762 	int rc, i, max_buf_size;
7763 	int longs;
7764 	int extra;
7765 	uint64_t wwn;
7766 	u32 if_type;
7767 	u32 if_fam;
7768 
7769 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7770 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7771 	phba->sli4_hba.curr_disp_cpu = 0;
7772 
7773 	/* Get all the module params for configuring this host */
7774 	lpfc_get_cfgparam(phba);
7775 
7776 	/* Set up phase-1 common device driver resources */
7777 	rc = lpfc_setup_driver_resource_phase1(phba);
7778 	if (rc)
7779 		return -ENODEV;
7780 
7781 	/* Before proceed, wait for POST done and device ready */
7782 	rc = lpfc_sli4_post_status_check(phba);
7783 	if (rc)
7784 		return -ENODEV;
7785 
7786 	/* Allocate all driver workqueues here */
7787 
7788 	/* The lpfc_wq workqueue for deferred irq use */
7789 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7790 
7791 	/*
7792 	 * Initialize timers used by driver
7793 	 */
7794 
7795 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7796 
7797 	/* FCF rediscover timer */
7798 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7799 
7800 	/* CMF congestion timer */
7801 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7802 	phba->cmf_timer.function = lpfc_cmf_timer;
7803 
7804 	/*
7805 	 * Control structure for handling external multi-buffer mailbox
7806 	 * command pass-through.
7807 	 */
7808 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7809 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7810 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7811 
7812 	phba->max_vpi = LPFC_MAX_VPI;
7813 
7814 	/* This will be set to correct value after the read_config mbox */
7815 	phba->max_vports = 0;
7816 
7817 	/* Program the default value of vlan_id and fc_map */
7818 	phba->valid_vlan = 0;
7819 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7820 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7821 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7822 
7823 	/*
7824 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7825 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7826 	 * The WQ create will allocate the ring.
7827 	 */
7828 
7829 	/* Initialize buffer queue management fields */
7830 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7831 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7832 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7833 
7834 	/* for VMID idle timeout if VMID is enabled */
7835 	if (lpfc_is_vmid_enabled(phba))
7836 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7837 
7838 	/*
7839 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7840 	 */
7841 	/* Initialize the Abort buffer list used by driver */
7842 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
7843 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
7844 
7845 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
7846 		/* Initialize the Abort nvme buffer list used by driver */
7847 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
7848 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
7849 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
7850 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
7851 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
7852 	}
7853 
7854 	/* This abort list used by worker thread */
7855 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
7856 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
7857 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
7858 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
7859 
7860 	/*
7861 	 * Initialize driver internal slow-path work queues
7862 	 */
7863 
7864 	/* Driver internel slow-path CQ Event pool */
7865 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
7866 	/* Response IOCB work queue list */
7867 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
7868 	/* Asynchronous event CQ Event work queue list */
7869 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
7870 	/* Slow-path XRI aborted CQ Event work queue list */
7871 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
7872 	/* Receive queue CQ Event work queue list */
7873 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
7874 
7875 	/* Initialize extent block lists. */
7876 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
7877 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
7878 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
7879 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
7880 
7881 	/* Initialize mboxq lists. If the early init routines fail
7882 	 * these lists need to be correctly initialized.
7883 	 */
7884 	INIT_LIST_HEAD(&phba->sli.mboxq);
7885 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
7886 
7887 	/* initialize optic_state to 0xFF */
7888 	phba->sli4_hba.lnk_info.optic_state = 0xff;
7889 
7890 	/* Allocate device driver memory */
7891 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
7892 	if (rc)
7893 		return -ENOMEM;
7894 
7895 	/* IF Type 2 ports get initialized now. */
7896 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
7897 	    LPFC_SLI_INTF_IF_TYPE_2) {
7898 		rc = lpfc_pci_function_reset(phba);
7899 		if (unlikely(rc)) {
7900 			rc = -ENODEV;
7901 			goto out_free_mem;
7902 		}
7903 		phba->temp_sensor_support = 1;
7904 	}
7905 
7906 	/* Create the bootstrap mailbox command */
7907 	rc = lpfc_create_bootstrap_mbox(phba);
7908 	if (unlikely(rc))
7909 		goto out_free_mem;
7910 
7911 	/* Set up the host's endian order with the device. */
7912 	rc = lpfc_setup_endian_order(phba);
7913 	if (unlikely(rc))
7914 		goto out_free_bsmbx;
7915 
7916 	/* Set up the hba's configuration parameters. */
7917 	rc = lpfc_sli4_read_config(phba);
7918 	if (unlikely(rc))
7919 		goto out_free_bsmbx;
7920 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
7921 	if (unlikely(rc))
7922 		goto out_free_bsmbx;
7923 
7924 	/* IF Type 0 ports get initialized now. */
7925 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7926 	    LPFC_SLI_INTF_IF_TYPE_0) {
7927 		rc = lpfc_pci_function_reset(phba);
7928 		if (unlikely(rc))
7929 			goto out_free_bsmbx;
7930 	}
7931 
7932 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
7933 						       GFP_KERNEL);
7934 	if (!mboxq) {
7935 		rc = -ENOMEM;
7936 		goto out_free_bsmbx;
7937 	}
7938 
7939 	/* Check for NVMET being configured */
7940 	phba->nvmet_support = 0;
7941 	if (lpfc_enable_nvmet_cnt) {
7942 
7943 		/* First get WWN of HBA instance */
7944 		lpfc_read_nv(phba, mboxq);
7945 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7946 		if (rc != MBX_SUCCESS) {
7947 			lpfc_printf_log(phba, KERN_ERR,
7948 					LOG_TRACE_EVENT,
7949 					"6016 Mailbox failed , mbxCmd x%x "
7950 					"READ_NV, mbxStatus x%x\n",
7951 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7952 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
7953 			mempool_free(mboxq, phba->mbox_mem_pool);
7954 			rc = -EIO;
7955 			goto out_free_bsmbx;
7956 		}
7957 		mb = &mboxq->u.mb;
7958 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
7959 		       sizeof(uint64_t));
7960 		wwn = cpu_to_be64(wwn);
7961 		phba->sli4_hba.wwnn.u.name = wwn;
7962 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
7963 		       sizeof(uint64_t));
7964 		/* wwn is WWPN of HBA instance */
7965 		wwn = cpu_to_be64(wwn);
7966 		phba->sli4_hba.wwpn.u.name = wwn;
7967 
7968 		/* Check to see if it matches any module parameter */
7969 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
7970 			if (wwn == lpfc_enable_nvmet[i]) {
7971 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
7972 				if (lpfc_nvmet_mem_alloc(phba))
7973 					break;
7974 
7975 				phba->nvmet_support = 1; /* a match */
7976 
7977 				lpfc_printf_log(phba, KERN_ERR,
7978 						LOG_TRACE_EVENT,
7979 						"6017 NVME Target %016llx\n",
7980 						wwn);
7981 #else
7982 				lpfc_printf_log(phba, KERN_ERR,
7983 						LOG_TRACE_EVENT,
7984 						"6021 Can't enable NVME Target."
7985 						" NVME_TARGET_FC infrastructure"
7986 						" is not in kernel\n");
7987 #endif
7988 				/* Not supported for NVMET */
7989 				phba->cfg_xri_rebalancing = 0;
7990 				if (phba->irq_chann_mode == NHT_MODE) {
7991 					phba->cfg_irq_chann =
7992 						phba->sli4_hba.num_present_cpu;
7993 					phba->cfg_hdw_queue =
7994 						phba->sli4_hba.num_present_cpu;
7995 					phba->irq_chann_mode = NORMAL_MODE;
7996 				}
7997 				break;
7998 			}
7999 		}
8000 	}
8001 
8002 	lpfc_nvme_mod_param_dep(phba);
8003 
8004 	/*
8005 	 * Get sli4 parameters that override parameters from Port capabilities.
8006 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8007 	 * back in conflict.
8008 	 */
8009 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8010 	if (rc) {
8011 		if_type = bf_get(lpfc_sli_intf_if_type,
8012 				 &phba->sli4_hba.sli_intf);
8013 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8014 				&phba->sli4_hba.sli_intf);
8015 		if (phba->sli4_hba.extents_in_use &&
8016 		    phba->sli4_hba.rpi_hdrs_in_use) {
8017 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8018 					"2999 Unsupported SLI4 Parameters "
8019 					"Extents and RPI headers enabled.\n");
8020 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8021 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8022 				mempool_free(mboxq, phba->mbox_mem_pool);
8023 				rc = -EIO;
8024 				goto out_free_bsmbx;
8025 			}
8026 		}
8027 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8028 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8029 			mempool_free(mboxq, phba->mbox_mem_pool);
8030 			rc = -EIO;
8031 			goto out_free_bsmbx;
8032 		}
8033 	}
8034 
8035 	/*
8036 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8037 	 * for boundary conditions in its max_sgl_segment template.
8038 	 */
8039 	extra = 2;
8040 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8041 		extra++;
8042 
8043 	/*
8044 	 * It doesn't matter what family our adapter is in, we are
8045 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8046 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8047 	 */
8048 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8049 
8050 	/*
8051 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8052 	 * used to create the sg_dma_buf_pool must be calculated.
8053 	 */
8054 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8055 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8056 
8057 		/*
8058 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8059 		 * the FCP rsp, and a SGE. Sice we have no control
8060 		 * over how many protection segments the SCSI Layer
8061 		 * will hand us (ie: there could be one for every block
8062 		 * in the IO), just allocate enough SGEs to accomidate
8063 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8064 		 * to minimize the risk of running out.
8065 		 */
8066 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8067 				sizeof(struct fcp_rsp) + max_buf_size;
8068 
8069 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8070 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8071 
8072 		/*
8073 		 * If supporting DIF, reduce the seg count for scsi to
8074 		 * allow room for the DIF sges.
8075 		 */
8076 		if (phba->cfg_enable_bg &&
8077 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8078 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8079 		else
8080 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8081 
8082 	} else {
8083 		/*
8084 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8085 		 * the FCP rsp, a SGE for each, and a SGE for up to
8086 		 * cfg_sg_seg_cnt data segments.
8087 		 */
8088 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8089 				sizeof(struct fcp_rsp) +
8090 				((phba->cfg_sg_seg_cnt + extra) *
8091 				sizeof(struct sli4_sge));
8092 
8093 		/* Total SGEs for scsi_sg_list */
8094 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8095 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8096 
8097 		/*
8098 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8099 		 * need to post 1 page for the SGL.
8100 		 */
8101 	}
8102 
8103 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8104 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8105 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8106 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8107 	else
8108 		phba->cfg_sg_dma_buf_size =
8109 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8110 
8111 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8112 			       sizeof(struct sli4_sge);
8113 
8114 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8115 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8116 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8117 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8118 					"6300 Reducing NVME sg segment "
8119 					"cnt to %d\n",
8120 					LPFC_MAX_NVME_SEG_CNT);
8121 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8122 		} else
8123 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8124 	}
8125 
8126 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8127 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8128 			"total:%d scsi:%d nvme:%d\n",
8129 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8130 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8131 			phba->cfg_nvme_seg_cnt);
8132 
8133 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8134 		i = phba->cfg_sg_dma_buf_size;
8135 	else
8136 		i = SLI4_PAGE_SIZE;
8137 
8138 	phba->lpfc_sg_dma_buf_pool =
8139 			dma_pool_create("lpfc_sg_dma_buf_pool",
8140 					&phba->pcidev->dev,
8141 					phba->cfg_sg_dma_buf_size,
8142 					i, 0);
8143 	if (!phba->lpfc_sg_dma_buf_pool)
8144 		goto out_free_bsmbx;
8145 
8146 	phba->lpfc_cmd_rsp_buf_pool =
8147 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8148 					&phba->pcidev->dev,
8149 					sizeof(struct fcp_cmnd) +
8150 					sizeof(struct fcp_rsp),
8151 					i, 0);
8152 	if (!phba->lpfc_cmd_rsp_buf_pool)
8153 		goto out_free_sg_dma_buf;
8154 
8155 	mempool_free(mboxq, phba->mbox_mem_pool);
8156 
8157 	/* Verify OAS is supported */
8158 	lpfc_sli4_oas_verify(phba);
8159 
8160 	/* Verify RAS support on adapter */
8161 	lpfc_sli4_ras_init(phba);
8162 
8163 	/* Verify all the SLI4 queues */
8164 	rc = lpfc_sli4_queue_verify(phba);
8165 	if (rc)
8166 		goto out_free_cmd_rsp_buf;
8167 
8168 	/* Create driver internal CQE event pool */
8169 	rc = lpfc_sli4_cq_event_pool_create(phba);
8170 	if (rc)
8171 		goto out_free_cmd_rsp_buf;
8172 
8173 	/* Initialize sgl lists per host */
8174 	lpfc_init_sgl_list(phba);
8175 
8176 	/* Allocate and initialize active sgl array */
8177 	rc = lpfc_init_active_sgl_array(phba);
8178 	if (rc) {
8179 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8180 				"1430 Failed to initialize sgl list.\n");
8181 		goto out_destroy_cq_event_pool;
8182 	}
8183 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8184 	if (rc) {
8185 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8186 				"1432 Failed to initialize rpi headers.\n");
8187 		goto out_free_active_sgl;
8188 	}
8189 
8190 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8191 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8192 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8193 					 GFP_KERNEL);
8194 	if (!phba->fcf.fcf_rr_bmask) {
8195 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8196 				"2759 Failed allocate memory for FCF round "
8197 				"robin failover bmask\n");
8198 		rc = -ENOMEM;
8199 		goto out_remove_rpi_hdrs;
8200 	}
8201 
8202 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8203 					    sizeof(struct lpfc_hba_eq_hdl),
8204 					    GFP_KERNEL);
8205 	if (!phba->sli4_hba.hba_eq_hdl) {
8206 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8207 				"2572 Failed allocate memory for "
8208 				"fast-path per-EQ handle array\n");
8209 		rc = -ENOMEM;
8210 		goto out_free_fcf_rr_bmask;
8211 	}
8212 
8213 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8214 					sizeof(struct lpfc_vector_map_info),
8215 					GFP_KERNEL);
8216 	if (!phba->sli4_hba.cpu_map) {
8217 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8218 				"3327 Failed allocate memory for msi-x "
8219 				"interrupt vector mapping\n");
8220 		rc = -ENOMEM;
8221 		goto out_free_hba_eq_hdl;
8222 	}
8223 
8224 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8225 	if (!phba->sli4_hba.eq_info) {
8226 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8227 				"3321 Failed allocation for per_cpu stats\n");
8228 		rc = -ENOMEM;
8229 		goto out_free_hba_cpu_map;
8230 	}
8231 
8232 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8233 					   sizeof(*phba->sli4_hba.idle_stat),
8234 					   GFP_KERNEL);
8235 	if (!phba->sli4_hba.idle_stat) {
8236 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8237 				"3390 Failed allocation for idle_stat\n");
8238 		rc = -ENOMEM;
8239 		goto out_free_hba_eq_info;
8240 	}
8241 
8242 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8243 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8244 	if (!phba->sli4_hba.c_stat) {
8245 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8246 				"3332 Failed allocating per cpu hdwq stats\n");
8247 		rc = -ENOMEM;
8248 		goto out_free_hba_idle_stat;
8249 	}
8250 #endif
8251 
8252 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8253 	if (!phba->cmf_stat) {
8254 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8255 				"3331 Failed allocating per cpu cgn stats\n");
8256 		rc = -ENOMEM;
8257 		goto out_free_hba_hdwq_info;
8258 	}
8259 
8260 	/*
8261 	 * Enable sr-iov virtual functions if supported and configured
8262 	 * through the module parameter.
8263 	 */
8264 	if (phba->cfg_sriov_nr_virtfn > 0) {
8265 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8266 						 phba->cfg_sriov_nr_virtfn);
8267 		if (rc) {
8268 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8269 					"3020 Requested number of SR-IOV "
8270 					"virtual functions (%d) is not "
8271 					"supported\n",
8272 					phba->cfg_sriov_nr_virtfn);
8273 			phba->cfg_sriov_nr_virtfn = 0;
8274 		}
8275 	}
8276 
8277 	return 0;
8278 
8279 out_free_hba_hdwq_info:
8280 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8281 	free_percpu(phba->sli4_hba.c_stat);
8282 out_free_hba_idle_stat:
8283 #endif
8284 	kfree(phba->sli4_hba.idle_stat);
8285 out_free_hba_eq_info:
8286 	free_percpu(phba->sli4_hba.eq_info);
8287 out_free_hba_cpu_map:
8288 	kfree(phba->sli4_hba.cpu_map);
8289 out_free_hba_eq_hdl:
8290 	kfree(phba->sli4_hba.hba_eq_hdl);
8291 out_free_fcf_rr_bmask:
8292 	kfree(phba->fcf.fcf_rr_bmask);
8293 out_remove_rpi_hdrs:
8294 	lpfc_sli4_remove_rpi_hdrs(phba);
8295 out_free_active_sgl:
8296 	lpfc_free_active_sgl(phba);
8297 out_destroy_cq_event_pool:
8298 	lpfc_sli4_cq_event_pool_destroy(phba);
8299 out_free_cmd_rsp_buf:
8300 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8301 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8302 out_free_sg_dma_buf:
8303 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8304 	phba->lpfc_sg_dma_buf_pool = NULL;
8305 out_free_bsmbx:
8306 	lpfc_destroy_bootstrap_mbox(phba);
8307 out_free_mem:
8308 	lpfc_mem_free(phba);
8309 	return rc;
8310 }
8311 
8312 /**
8313  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8314  * @phba: pointer to lpfc hba data structure.
8315  *
8316  * This routine is invoked to unset the driver internal resources set up
8317  * specific for supporting the SLI-4 HBA device it attached to.
8318  **/
8319 static void
8320 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8321 {
8322 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8323 
8324 	free_percpu(phba->sli4_hba.eq_info);
8325 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8326 	free_percpu(phba->sli4_hba.c_stat);
8327 #endif
8328 	free_percpu(phba->cmf_stat);
8329 	kfree(phba->sli4_hba.idle_stat);
8330 
8331 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8332 	kfree(phba->sli4_hba.cpu_map);
8333 	phba->sli4_hba.num_possible_cpu = 0;
8334 	phba->sli4_hba.num_present_cpu = 0;
8335 	phba->sli4_hba.curr_disp_cpu = 0;
8336 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8337 
8338 	/* Free memory allocated for fast-path work queue handles */
8339 	kfree(phba->sli4_hba.hba_eq_hdl);
8340 
8341 	/* Free the allocated rpi headers. */
8342 	lpfc_sli4_remove_rpi_hdrs(phba);
8343 	lpfc_sli4_remove_rpis(phba);
8344 
8345 	/* Free eligible FCF index bmask */
8346 	kfree(phba->fcf.fcf_rr_bmask);
8347 
8348 	/* Free the ELS sgl list */
8349 	lpfc_free_active_sgl(phba);
8350 	lpfc_free_els_sgl_list(phba);
8351 	lpfc_free_nvmet_sgl_list(phba);
8352 
8353 	/* Free the completion queue EQ event pool */
8354 	lpfc_sli4_cq_event_release_all(phba);
8355 	lpfc_sli4_cq_event_pool_destroy(phba);
8356 
8357 	/* Release resource identifiers. */
8358 	lpfc_sli4_dealloc_resource_identifiers(phba);
8359 
8360 	/* Free the bsmbx region. */
8361 	lpfc_destroy_bootstrap_mbox(phba);
8362 
8363 	/* Free the SLI Layer memory with SLI4 HBAs */
8364 	lpfc_mem_free_all(phba);
8365 
8366 	/* Free the current connect table */
8367 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8368 		&phba->fcf_conn_rec_list, list) {
8369 		list_del_init(&conn_entry->list);
8370 		kfree(conn_entry);
8371 	}
8372 
8373 	return;
8374 }
8375 
8376 /**
8377  * lpfc_init_api_table_setup - Set up init api function jump table
8378  * @phba: The hba struct for which this call is being executed.
8379  * @dev_grp: The HBA PCI-Device group number.
8380  *
8381  * This routine sets up the device INIT interface API function jump table
8382  * in @phba struct.
8383  *
8384  * Returns: 0 - success, -ENODEV - failure.
8385  **/
8386 int
8387 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8388 {
8389 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8390 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8391 	phba->lpfc_selective_reset = lpfc_selective_reset;
8392 	switch (dev_grp) {
8393 	case LPFC_PCI_DEV_LP:
8394 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8395 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8396 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8397 		break;
8398 	case LPFC_PCI_DEV_OC:
8399 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8400 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8401 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8402 		break;
8403 	default:
8404 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8405 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8406 				dev_grp);
8407 		return -ENODEV;
8408 	}
8409 	return 0;
8410 }
8411 
8412 /**
8413  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8414  * @phba: pointer to lpfc hba data structure.
8415  *
8416  * This routine is invoked to set up the driver internal resources after the
8417  * device specific resource setup to support the HBA device it attached to.
8418  *
8419  * Return codes
8420  * 	0 - successful
8421  * 	other values - error
8422  **/
8423 static int
8424 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8425 {
8426 	int error;
8427 
8428 	/* Startup the kernel thread for this host adapter. */
8429 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8430 					  "lpfc_worker_%d", phba->brd_no);
8431 	if (IS_ERR(phba->worker_thread)) {
8432 		error = PTR_ERR(phba->worker_thread);
8433 		return error;
8434 	}
8435 
8436 	return 0;
8437 }
8438 
8439 /**
8440  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8441  * @phba: pointer to lpfc hba data structure.
8442  *
8443  * This routine is invoked to unset the driver internal resources set up after
8444  * the device specific resource setup for supporting the HBA device it
8445  * attached to.
8446  **/
8447 static void
8448 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8449 {
8450 	if (phba->wq) {
8451 		flush_workqueue(phba->wq);
8452 		destroy_workqueue(phba->wq);
8453 		phba->wq = NULL;
8454 	}
8455 
8456 	/* Stop kernel worker thread */
8457 	if (phba->worker_thread)
8458 		kthread_stop(phba->worker_thread);
8459 }
8460 
8461 /**
8462  * lpfc_free_iocb_list - Free iocb list.
8463  * @phba: pointer to lpfc hba data structure.
8464  *
8465  * This routine is invoked to free the driver's IOCB list and memory.
8466  **/
8467 void
8468 lpfc_free_iocb_list(struct lpfc_hba *phba)
8469 {
8470 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8471 
8472 	spin_lock_irq(&phba->hbalock);
8473 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8474 				 &phba->lpfc_iocb_list, list) {
8475 		list_del(&iocbq_entry->list);
8476 		kfree(iocbq_entry);
8477 		phba->total_iocbq_bufs--;
8478 	}
8479 	spin_unlock_irq(&phba->hbalock);
8480 
8481 	return;
8482 }
8483 
8484 /**
8485  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8486  * @phba: pointer to lpfc hba data structure.
8487  * @iocb_count: number of requested iocbs
8488  *
8489  * This routine is invoked to allocate and initizlize the driver's IOCB
8490  * list and set up the IOCB tag array accordingly.
8491  *
8492  * Return codes
8493  *	0 - successful
8494  *	other values - error
8495  **/
8496 int
8497 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8498 {
8499 	struct lpfc_iocbq *iocbq_entry = NULL;
8500 	uint16_t iotag;
8501 	int i;
8502 
8503 	/* Initialize and populate the iocb list per host.  */
8504 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8505 	for (i = 0; i < iocb_count; i++) {
8506 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8507 		if (iocbq_entry == NULL) {
8508 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8509 				"expected %d count. Unloading driver.\n",
8510 				__func__, i, iocb_count);
8511 			goto out_free_iocbq;
8512 		}
8513 
8514 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8515 		if (iotag == 0) {
8516 			kfree(iocbq_entry);
8517 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8518 				"Unloading driver.\n", __func__);
8519 			goto out_free_iocbq;
8520 		}
8521 		iocbq_entry->sli4_lxritag = NO_XRI;
8522 		iocbq_entry->sli4_xritag = NO_XRI;
8523 
8524 		spin_lock_irq(&phba->hbalock);
8525 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8526 		phba->total_iocbq_bufs++;
8527 		spin_unlock_irq(&phba->hbalock);
8528 	}
8529 
8530 	return 0;
8531 
8532 out_free_iocbq:
8533 	lpfc_free_iocb_list(phba);
8534 
8535 	return -ENOMEM;
8536 }
8537 
8538 /**
8539  * lpfc_free_sgl_list - Free a given sgl list.
8540  * @phba: pointer to lpfc hba data structure.
8541  * @sglq_list: pointer to the head of sgl list.
8542  *
8543  * This routine is invoked to free a give sgl list and memory.
8544  **/
8545 void
8546 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8547 {
8548 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8549 
8550 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8551 		list_del(&sglq_entry->list);
8552 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8553 		kfree(sglq_entry);
8554 	}
8555 }
8556 
8557 /**
8558  * lpfc_free_els_sgl_list - Free els sgl list.
8559  * @phba: pointer to lpfc hba data structure.
8560  *
8561  * This routine is invoked to free the driver's els sgl list and memory.
8562  **/
8563 static void
8564 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8565 {
8566 	LIST_HEAD(sglq_list);
8567 
8568 	/* Retrieve all els sgls from driver list */
8569 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8570 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8571 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8572 
8573 	/* Now free the sgl list */
8574 	lpfc_free_sgl_list(phba, &sglq_list);
8575 }
8576 
8577 /**
8578  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8579  * @phba: pointer to lpfc hba data structure.
8580  *
8581  * This routine is invoked to free the driver's nvmet sgl list and memory.
8582  **/
8583 static void
8584 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8585 {
8586 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8587 	LIST_HEAD(sglq_list);
8588 
8589 	/* Retrieve all nvmet sgls from driver list */
8590 	spin_lock_irq(&phba->hbalock);
8591 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8592 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8593 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8594 	spin_unlock_irq(&phba->hbalock);
8595 
8596 	/* Now free the sgl list */
8597 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8598 		list_del(&sglq_entry->list);
8599 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8600 		kfree(sglq_entry);
8601 	}
8602 
8603 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8604 	 * The next initialization cycle sets the count and allocates
8605 	 * the sgls over again.
8606 	 */
8607 	phba->sli4_hba.nvmet_xri_cnt = 0;
8608 }
8609 
8610 /**
8611  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8612  * @phba: pointer to lpfc hba data structure.
8613  *
8614  * This routine is invoked to allocate the driver's active sgl memory.
8615  * This array will hold the sglq_entry's for active IOs.
8616  **/
8617 static int
8618 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8619 {
8620 	int size;
8621 	size = sizeof(struct lpfc_sglq *);
8622 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8623 
8624 	phba->sli4_hba.lpfc_sglq_active_list =
8625 		kzalloc(size, GFP_KERNEL);
8626 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8627 		return -ENOMEM;
8628 	return 0;
8629 }
8630 
8631 /**
8632  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8633  * @phba: pointer to lpfc hba data structure.
8634  *
8635  * This routine is invoked to walk through the array of active sglq entries
8636  * and free all of the resources.
8637  * This is just a place holder for now.
8638  **/
8639 static void
8640 lpfc_free_active_sgl(struct lpfc_hba *phba)
8641 {
8642 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8643 }
8644 
8645 /**
8646  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8647  * @phba: pointer to lpfc hba data structure.
8648  *
8649  * This routine is invoked to allocate and initizlize the driver's sgl
8650  * list and set up the sgl xritag tag array accordingly.
8651  *
8652  **/
8653 static void
8654 lpfc_init_sgl_list(struct lpfc_hba *phba)
8655 {
8656 	/* Initialize and populate the sglq list per host/VF. */
8657 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8658 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8659 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8660 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8661 
8662 	/* els xri-sgl book keeping */
8663 	phba->sli4_hba.els_xri_cnt = 0;
8664 
8665 	/* nvme xri-buffer book keeping */
8666 	phba->sli4_hba.io_xri_cnt = 0;
8667 }
8668 
8669 /**
8670  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8671  * @phba: pointer to lpfc hba data structure.
8672  *
8673  * This routine is invoked to post rpi header templates to the
8674  * port for those SLI4 ports that do not support extents.  This routine
8675  * posts a PAGE_SIZE memory region to the port to hold up to
8676  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8677  * and should be called only when interrupts are disabled.
8678  *
8679  * Return codes
8680  * 	0 - successful
8681  *	-ERROR - otherwise.
8682  **/
8683 int
8684 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8685 {
8686 	int rc = 0;
8687 	struct lpfc_rpi_hdr *rpi_hdr;
8688 
8689 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8690 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8691 		return rc;
8692 	if (phba->sli4_hba.extents_in_use)
8693 		return -EIO;
8694 
8695 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8696 	if (!rpi_hdr) {
8697 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8698 				"0391 Error during rpi post operation\n");
8699 		lpfc_sli4_remove_rpis(phba);
8700 		rc = -ENODEV;
8701 	}
8702 
8703 	return rc;
8704 }
8705 
8706 /**
8707  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8708  * @phba: pointer to lpfc hba data structure.
8709  *
8710  * This routine is invoked to allocate a single 4KB memory region to
8711  * support rpis and stores them in the phba.  This single region
8712  * provides support for up to 64 rpis.  The region is used globally
8713  * by the device.
8714  *
8715  * Returns:
8716  *   A valid rpi hdr on success.
8717  *   A NULL pointer on any failure.
8718  **/
8719 struct lpfc_rpi_hdr *
8720 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8721 {
8722 	uint16_t rpi_limit, curr_rpi_range;
8723 	struct lpfc_dmabuf *dmabuf;
8724 	struct lpfc_rpi_hdr *rpi_hdr;
8725 
8726 	/*
8727 	 * If the SLI4 port supports extents, posting the rpi header isn't
8728 	 * required.  Set the expected maximum count and let the actual value
8729 	 * get set when extents are fully allocated.
8730 	 */
8731 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8732 		return NULL;
8733 	if (phba->sli4_hba.extents_in_use)
8734 		return NULL;
8735 
8736 	/* The limit on the logical index is just the max_rpi count. */
8737 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8738 
8739 	spin_lock_irq(&phba->hbalock);
8740 	/*
8741 	 * Establish the starting RPI in this header block.  The starting
8742 	 * rpi is normalized to a zero base because the physical rpi is
8743 	 * port based.
8744 	 */
8745 	curr_rpi_range = phba->sli4_hba.next_rpi;
8746 	spin_unlock_irq(&phba->hbalock);
8747 
8748 	/* Reached full RPI range */
8749 	if (curr_rpi_range == rpi_limit)
8750 		return NULL;
8751 
8752 	/*
8753 	 * First allocate the protocol header region for the port.  The
8754 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8755 	 */
8756 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8757 	if (!dmabuf)
8758 		return NULL;
8759 
8760 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8761 					  LPFC_HDR_TEMPLATE_SIZE,
8762 					  &dmabuf->phys, GFP_KERNEL);
8763 	if (!dmabuf->virt) {
8764 		rpi_hdr = NULL;
8765 		goto err_free_dmabuf;
8766 	}
8767 
8768 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8769 		rpi_hdr = NULL;
8770 		goto err_free_coherent;
8771 	}
8772 
8773 	/* Save the rpi header data for cleanup later. */
8774 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8775 	if (!rpi_hdr)
8776 		goto err_free_coherent;
8777 
8778 	rpi_hdr->dmabuf = dmabuf;
8779 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8780 	rpi_hdr->page_count = 1;
8781 	spin_lock_irq(&phba->hbalock);
8782 
8783 	/* The rpi_hdr stores the logical index only. */
8784 	rpi_hdr->start_rpi = curr_rpi_range;
8785 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8786 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8787 
8788 	spin_unlock_irq(&phba->hbalock);
8789 	return rpi_hdr;
8790 
8791  err_free_coherent:
8792 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8793 			  dmabuf->virt, dmabuf->phys);
8794  err_free_dmabuf:
8795 	kfree(dmabuf);
8796 	return NULL;
8797 }
8798 
8799 /**
8800  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8801  * @phba: pointer to lpfc hba data structure.
8802  *
8803  * This routine is invoked to remove all memory resources allocated
8804  * to support rpis for SLI4 ports not supporting extents. This routine
8805  * presumes the caller has released all rpis consumed by fabric or port
8806  * logins and is prepared to have the header pages removed.
8807  **/
8808 void
8809 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8810 {
8811 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8812 
8813 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8814 		goto exit;
8815 
8816 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8817 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8818 		list_del(&rpi_hdr->list);
8819 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8820 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8821 		kfree(rpi_hdr->dmabuf);
8822 		kfree(rpi_hdr);
8823 	}
8824  exit:
8825 	/* There are no rpis available to the port now. */
8826 	phba->sli4_hba.next_rpi = 0;
8827 }
8828 
8829 /**
8830  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
8831  * @pdev: pointer to pci device data structure.
8832  *
8833  * This routine is invoked to allocate the driver hba data structure for an
8834  * HBA device. If the allocation is successful, the phba reference to the
8835  * PCI device data structure is set.
8836  *
8837  * Return codes
8838  *      pointer to @phba - successful
8839  *      NULL - error
8840  **/
8841 static struct lpfc_hba *
8842 lpfc_hba_alloc(struct pci_dev *pdev)
8843 {
8844 	struct lpfc_hba *phba;
8845 
8846 	/* Allocate memory for HBA structure */
8847 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
8848 	if (!phba) {
8849 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
8850 		return NULL;
8851 	}
8852 
8853 	/* Set reference to PCI device in HBA structure */
8854 	phba->pcidev = pdev;
8855 
8856 	/* Assign an unused board number */
8857 	phba->brd_no = lpfc_get_instance();
8858 	if (phba->brd_no < 0) {
8859 		kfree(phba);
8860 		return NULL;
8861 	}
8862 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
8863 
8864 	spin_lock_init(&phba->ct_ev_lock);
8865 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
8866 
8867 	return phba;
8868 }
8869 
8870 /**
8871  * lpfc_hba_free - Free driver hba data structure with a device.
8872  * @phba: pointer to lpfc hba data structure.
8873  *
8874  * This routine is invoked to free the driver hba data structure with an
8875  * HBA device.
8876  **/
8877 static void
8878 lpfc_hba_free(struct lpfc_hba *phba)
8879 {
8880 	if (phba->sli_rev == LPFC_SLI_REV4)
8881 		kfree(phba->sli4_hba.hdwq);
8882 
8883 	/* Release the driver assigned board number */
8884 	idr_remove(&lpfc_hba_index, phba->brd_no);
8885 
8886 	/* Free memory allocated with sli3 rings */
8887 	kfree(phba->sli.sli3_ring);
8888 	phba->sli.sli3_ring = NULL;
8889 
8890 	kfree(phba);
8891 	return;
8892 }
8893 
8894 /**
8895  * lpfc_create_shost - Create hba physical port with associated scsi host.
8896  * @phba: pointer to lpfc hba data structure.
8897  *
8898  * This routine is invoked to create HBA physical port and associate a SCSI
8899  * host with it.
8900  *
8901  * Return codes
8902  *      0 - successful
8903  *      other values - error
8904  **/
8905 static int
8906 lpfc_create_shost(struct lpfc_hba *phba)
8907 {
8908 	struct lpfc_vport *vport;
8909 	struct Scsi_Host  *shost;
8910 
8911 	/* Initialize HBA FC structure */
8912 	phba->fc_edtov = FF_DEF_EDTOV;
8913 	phba->fc_ratov = FF_DEF_RATOV;
8914 	phba->fc_altov = FF_DEF_ALTOV;
8915 	phba->fc_arbtov = FF_DEF_ARBTOV;
8916 
8917 	atomic_set(&phba->sdev_cnt, 0);
8918 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
8919 	if (!vport)
8920 		return -ENODEV;
8921 
8922 	shost = lpfc_shost_from_vport(vport);
8923 	phba->pport = vport;
8924 
8925 	if (phba->nvmet_support) {
8926 		/* Only 1 vport (pport) will support NVME target */
8927 		phba->targetport = NULL;
8928 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
8929 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
8930 				"6076 NVME Target Found\n");
8931 	}
8932 
8933 	lpfc_debugfs_initialize(vport);
8934 	/* Put reference to SCSI host to driver's device private data */
8935 	pci_set_drvdata(phba->pcidev, shost);
8936 
8937 	/*
8938 	 * At this point we are fully registered with PSA. In addition,
8939 	 * any initial discovery should be completed.
8940 	 */
8941 	vport->load_flag |= FC_ALLOW_FDMI;
8942 	if (phba->cfg_enable_SmartSAN ||
8943 	    (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) {
8944 
8945 		/* Setup appropriate attribute masks */
8946 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
8947 		if (phba->cfg_enable_SmartSAN)
8948 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
8949 		else
8950 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
8951 	}
8952 	return 0;
8953 }
8954 
8955 /**
8956  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
8957  * @phba: pointer to lpfc hba data structure.
8958  *
8959  * This routine is invoked to destroy HBA physical port and the associated
8960  * SCSI host.
8961  **/
8962 static void
8963 lpfc_destroy_shost(struct lpfc_hba *phba)
8964 {
8965 	struct lpfc_vport *vport = phba->pport;
8966 
8967 	/* Destroy physical port that associated with the SCSI host */
8968 	destroy_port(vport);
8969 
8970 	return;
8971 }
8972 
8973 /**
8974  * lpfc_setup_bg - Setup Block guard structures and debug areas.
8975  * @phba: pointer to lpfc hba data structure.
8976  * @shost: the shost to be used to detect Block guard settings.
8977  *
8978  * This routine sets up the local Block guard protocol settings for @shost.
8979  * This routine also allocates memory for debugging bg buffers.
8980  **/
8981 static void
8982 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
8983 {
8984 	uint32_t old_mask;
8985 	uint32_t old_guard;
8986 
8987 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
8988 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8989 				"1478 Registering BlockGuard with the "
8990 				"SCSI layer\n");
8991 
8992 		old_mask = phba->cfg_prot_mask;
8993 		old_guard = phba->cfg_prot_guard;
8994 
8995 		/* Only allow supported values */
8996 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
8997 			SHOST_DIX_TYPE0_PROTECTION |
8998 			SHOST_DIX_TYPE1_PROTECTION);
8999 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9000 					 SHOST_DIX_GUARD_CRC);
9001 
9002 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9003 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9004 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9005 
9006 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9007 			if ((old_mask != phba->cfg_prot_mask) ||
9008 				(old_guard != phba->cfg_prot_guard))
9009 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9010 					"1475 Registering BlockGuard with the "
9011 					"SCSI layer: mask %d  guard %d\n",
9012 					phba->cfg_prot_mask,
9013 					phba->cfg_prot_guard);
9014 
9015 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9016 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9017 		} else
9018 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9019 				"1479 Not Registering BlockGuard with the SCSI "
9020 				"layer, Bad protection parameters: %d %d\n",
9021 				old_mask, old_guard);
9022 	}
9023 }
9024 
9025 /**
9026  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9027  * @phba: pointer to lpfc hba data structure.
9028  *
9029  * This routine is invoked to perform all the necessary post initialization
9030  * setup for the device.
9031  **/
9032 static void
9033 lpfc_post_init_setup(struct lpfc_hba *phba)
9034 {
9035 	struct Scsi_Host  *shost;
9036 	struct lpfc_adapter_event_header adapter_event;
9037 
9038 	/* Get the default values for Model Name and Description */
9039 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9040 
9041 	/*
9042 	 * hba setup may have changed the hba_queue_depth so we need to
9043 	 * adjust the value of can_queue.
9044 	 */
9045 	shost = pci_get_drvdata(phba->pcidev);
9046 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9047 
9048 	lpfc_host_attrib_init(shost);
9049 
9050 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9051 		spin_lock_irq(shost->host_lock);
9052 		lpfc_poll_start_timer(phba);
9053 		spin_unlock_irq(shost->host_lock);
9054 	}
9055 
9056 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9057 			"0428 Perform SCSI scan\n");
9058 	/* Send board arrival event to upper layer */
9059 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9060 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9061 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9062 				  sizeof(adapter_event),
9063 				  (char *) &adapter_event,
9064 				  LPFC_NL_VENDOR_ID);
9065 	return;
9066 }
9067 
9068 /**
9069  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9070  * @phba: pointer to lpfc hba data structure.
9071  *
9072  * This routine is invoked to set up the PCI device memory space for device
9073  * with SLI-3 interface spec.
9074  *
9075  * Return codes
9076  * 	0 - successful
9077  * 	other values - error
9078  **/
9079 static int
9080 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9081 {
9082 	struct pci_dev *pdev = phba->pcidev;
9083 	unsigned long bar0map_len, bar2map_len;
9084 	int i, hbq_count;
9085 	void *ptr;
9086 	int error;
9087 
9088 	if (!pdev)
9089 		return -ENODEV;
9090 
9091 	/* Set the device DMA mask size */
9092 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9093 	if (error)
9094 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9095 	if (error)
9096 		return error;
9097 	error = -ENODEV;
9098 
9099 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9100 	 * required by each mapping.
9101 	 */
9102 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9103 	bar0map_len = pci_resource_len(pdev, 0);
9104 
9105 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9106 	bar2map_len = pci_resource_len(pdev, 2);
9107 
9108 	/* Map HBA SLIM to a kernel virtual address. */
9109 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9110 	if (!phba->slim_memmap_p) {
9111 		dev_printk(KERN_ERR, &pdev->dev,
9112 			   "ioremap failed for SLIM memory.\n");
9113 		goto out;
9114 	}
9115 
9116 	/* Map HBA Control Registers to a kernel virtual address. */
9117 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9118 	if (!phba->ctrl_regs_memmap_p) {
9119 		dev_printk(KERN_ERR, &pdev->dev,
9120 			   "ioremap failed for HBA control registers.\n");
9121 		goto out_iounmap_slim;
9122 	}
9123 
9124 	/* Allocate memory for SLI-2 structures */
9125 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9126 					       &phba->slim2p.phys, GFP_KERNEL);
9127 	if (!phba->slim2p.virt)
9128 		goto out_iounmap;
9129 
9130 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9131 	phba->mbox_ext = (phba->slim2p.virt +
9132 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9133 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9134 	phba->IOCBs = (phba->slim2p.virt +
9135 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9136 
9137 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9138 						 lpfc_sli_hbq_size(),
9139 						 &phba->hbqslimp.phys,
9140 						 GFP_KERNEL);
9141 	if (!phba->hbqslimp.virt)
9142 		goto out_free_slim;
9143 
9144 	hbq_count = lpfc_sli_hbq_count();
9145 	ptr = phba->hbqslimp.virt;
9146 	for (i = 0; i < hbq_count; ++i) {
9147 		phba->hbqs[i].hbq_virt = ptr;
9148 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9149 		ptr += (lpfc_hbq_defs[i]->entry_count *
9150 			sizeof(struct lpfc_hbq_entry));
9151 	}
9152 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9153 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9154 
9155 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9156 
9157 	phba->MBslimaddr = phba->slim_memmap_p;
9158 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9159 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9160 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9161 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9162 
9163 	return 0;
9164 
9165 out_free_slim:
9166 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9167 			  phba->slim2p.virt, phba->slim2p.phys);
9168 out_iounmap:
9169 	iounmap(phba->ctrl_regs_memmap_p);
9170 out_iounmap_slim:
9171 	iounmap(phba->slim_memmap_p);
9172 out:
9173 	return error;
9174 }
9175 
9176 /**
9177  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9178  * @phba: pointer to lpfc hba data structure.
9179  *
9180  * This routine is invoked to unset the PCI device memory space for device
9181  * with SLI-3 interface spec.
9182  **/
9183 static void
9184 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9185 {
9186 	struct pci_dev *pdev;
9187 
9188 	/* Obtain PCI device reference */
9189 	if (!phba->pcidev)
9190 		return;
9191 	else
9192 		pdev = phba->pcidev;
9193 
9194 	/* Free coherent DMA memory allocated */
9195 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9196 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9197 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9198 			  phba->slim2p.virt, phba->slim2p.phys);
9199 
9200 	/* I/O memory unmap */
9201 	iounmap(phba->ctrl_regs_memmap_p);
9202 	iounmap(phba->slim_memmap_p);
9203 
9204 	return;
9205 }
9206 
9207 /**
9208  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9209  * @phba: pointer to lpfc hba data structure.
9210  *
9211  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9212  * done and check status.
9213  *
9214  * Return 0 if successful, otherwise -ENODEV.
9215  **/
9216 int
9217 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9218 {
9219 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9220 	struct lpfc_register reg_data;
9221 	int i, port_error = 0;
9222 	uint32_t if_type;
9223 
9224 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9225 	memset(&reg_data, 0, sizeof(reg_data));
9226 	if (!phba->sli4_hba.PSMPHRregaddr)
9227 		return -ENODEV;
9228 
9229 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9230 	for (i = 0; i < 3000; i++) {
9231 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9232 			&portsmphr_reg.word0) ||
9233 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9234 			/* Port has a fatal POST error, break out */
9235 			port_error = -ENODEV;
9236 			break;
9237 		}
9238 		if (LPFC_POST_STAGE_PORT_READY ==
9239 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9240 			break;
9241 		msleep(10);
9242 	}
9243 
9244 	/*
9245 	 * If there was a port error during POST, then don't proceed with
9246 	 * other register reads as the data may not be valid.  Just exit.
9247 	 */
9248 	if (port_error) {
9249 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9250 			"1408 Port Failed POST - portsmphr=0x%x, "
9251 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9252 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9253 			portsmphr_reg.word0,
9254 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9255 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9256 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9257 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9258 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9259 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9260 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9261 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9262 	} else {
9263 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9264 				"2534 Device Info: SLIFamily=0x%x, "
9265 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9266 				"SLIHint_2=0x%x, FT=0x%x\n",
9267 				bf_get(lpfc_sli_intf_sli_family,
9268 				       &phba->sli4_hba.sli_intf),
9269 				bf_get(lpfc_sli_intf_slirev,
9270 				       &phba->sli4_hba.sli_intf),
9271 				bf_get(lpfc_sli_intf_if_type,
9272 				       &phba->sli4_hba.sli_intf),
9273 				bf_get(lpfc_sli_intf_sli_hint1,
9274 				       &phba->sli4_hba.sli_intf),
9275 				bf_get(lpfc_sli_intf_sli_hint2,
9276 				       &phba->sli4_hba.sli_intf),
9277 				bf_get(lpfc_sli_intf_func_type,
9278 				       &phba->sli4_hba.sli_intf));
9279 		/*
9280 		 * Check for other Port errors during the initialization
9281 		 * process.  Fail the load if the port did not come up
9282 		 * correctly.
9283 		 */
9284 		if_type = bf_get(lpfc_sli_intf_if_type,
9285 				 &phba->sli4_hba.sli_intf);
9286 		switch (if_type) {
9287 		case LPFC_SLI_INTF_IF_TYPE_0:
9288 			phba->sli4_hba.ue_mask_lo =
9289 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9290 			phba->sli4_hba.ue_mask_hi =
9291 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9292 			uerrlo_reg.word0 =
9293 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9294 			uerrhi_reg.word0 =
9295 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9296 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9297 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9298 				lpfc_printf_log(phba, KERN_ERR,
9299 						LOG_TRACE_EVENT,
9300 						"1422 Unrecoverable Error "
9301 						"Detected during POST "
9302 						"uerr_lo_reg=0x%x, "
9303 						"uerr_hi_reg=0x%x, "
9304 						"ue_mask_lo_reg=0x%x, "
9305 						"ue_mask_hi_reg=0x%x\n",
9306 						uerrlo_reg.word0,
9307 						uerrhi_reg.word0,
9308 						phba->sli4_hba.ue_mask_lo,
9309 						phba->sli4_hba.ue_mask_hi);
9310 				port_error = -ENODEV;
9311 			}
9312 			break;
9313 		case LPFC_SLI_INTF_IF_TYPE_2:
9314 		case LPFC_SLI_INTF_IF_TYPE_6:
9315 			/* Final checks.  The port status should be clean. */
9316 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9317 				&reg_data.word0) ||
9318 				(bf_get(lpfc_sliport_status_err, &reg_data) &&
9319 				 !bf_get(lpfc_sliport_status_rn, &reg_data))) {
9320 				phba->work_status[0] =
9321 					readl(phba->sli4_hba.u.if_type2.
9322 					      ERR1regaddr);
9323 				phba->work_status[1] =
9324 					readl(phba->sli4_hba.u.if_type2.
9325 					      ERR2regaddr);
9326 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9327 					"2888 Unrecoverable port error "
9328 					"following POST: port status reg "
9329 					"0x%x, port_smphr reg 0x%x, "
9330 					"error 1=0x%x, error 2=0x%x\n",
9331 					reg_data.word0,
9332 					portsmphr_reg.word0,
9333 					phba->work_status[0],
9334 					phba->work_status[1]);
9335 				port_error = -ENODEV;
9336 			}
9337 			break;
9338 		case LPFC_SLI_INTF_IF_TYPE_1:
9339 		default:
9340 			break;
9341 		}
9342 	}
9343 	return port_error;
9344 }
9345 
9346 /**
9347  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9348  * @phba: pointer to lpfc hba data structure.
9349  * @if_type:  The SLI4 interface type getting configured.
9350  *
9351  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9352  * memory map.
9353  **/
9354 static void
9355 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9356 {
9357 	switch (if_type) {
9358 	case LPFC_SLI_INTF_IF_TYPE_0:
9359 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9360 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9361 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9362 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9363 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9364 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9365 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9366 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9367 		phba->sli4_hba.SLIINTFregaddr =
9368 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9369 		break;
9370 	case LPFC_SLI_INTF_IF_TYPE_2:
9371 		phba->sli4_hba.u.if_type2.EQDregaddr =
9372 			phba->sli4_hba.conf_regs_memmap_p +
9373 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9374 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9375 			phba->sli4_hba.conf_regs_memmap_p +
9376 						LPFC_CTL_PORT_ER1_OFFSET;
9377 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9378 			phba->sli4_hba.conf_regs_memmap_p +
9379 						LPFC_CTL_PORT_ER2_OFFSET;
9380 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9381 			phba->sli4_hba.conf_regs_memmap_p +
9382 						LPFC_CTL_PORT_CTL_OFFSET;
9383 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9384 			phba->sli4_hba.conf_regs_memmap_p +
9385 						LPFC_CTL_PORT_STA_OFFSET;
9386 		phba->sli4_hba.SLIINTFregaddr =
9387 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9388 		phba->sli4_hba.PSMPHRregaddr =
9389 			phba->sli4_hba.conf_regs_memmap_p +
9390 						LPFC_CTL_PORT_SEM_OFFSET;
9391 		phba->sli4_hba.RQDBregaddr =
9392 			phba->sli4_hba.conf_regs_memmap_p +
9393 						LPFC_ULP0_RQ_DOORBELL;
9394 		phba->sli4_hba.WQDBregaddr =
9395 			phba->sli4_hba.conf_regs_memmap_p +
9396 						LPFC_ULP0_WQ_DOORBELL;
9397 		phba->sli4_hba.CQDBregaddr =
9398 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9399 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9400 		phba->sli4_hba.MQDBregaddr =
9401 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9402 		phba->sli4_hba.BMBXregaddr =
9403 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9404 		break;
9405 	case LPFC_SLI_INTF_IF_TYPE_6:
9406 		phba->sli4_hba.u.if_type2.EQDregaddr =
9407 			phba->sli4_hba.conf_regs_memmap_p +
9408 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9409 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9410 			phba->sli4_hba.conf_regs_memmap_p +
9411 						LPFC_CTL_PORT_ER1_OFFSET;
9412 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9413 			phba->sli4_hba.conf_regs_memmap_p +
9414 						LPFC_CTL_PORT_ER2_OFFSET;
9415 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9416 			phba->sli4_hba.conf_regs_memmap_p +
9417 						LPFC_CTL_PORT_CTL_OFFSET;
9418 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9419 			phba->sli4_hba.conf_regs_memmap_p +
9420 						LPFC_CTL_PORT_STA_OFFSET;
9421 		phba->sli4_hba.PSMPHRregaddr =
9422 			phba->sli4_hba.conf_regs_memmap_p +
9423 						LPFC_CTL_PORT_SEM_OFFSET;
9424 		phba->sli4_hba.BMBXregaddr =
9425 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9426 		break;
9427 	case LPFC_SLI_INTF_IF_TYPE_1:
9428 	default:
9429 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9430 			   "FATAL - unsupported SLI4 interface type - %d\n",
9431 			   if_type);
9432 		break;
9433 	}
9434 }
9435 
9436 /**
9437  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9438  * @phba: pointer to lpfc hba data structure.
9439  * @if_type: sli if type to operate on.
9440  *
9441  * This routine is invoked to set up SLI4 BAR1 register memory map.
9442  **/
9443 static void
9444 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9445 {
9446 	switch (if_type) {
9447 	case LPFC_SLI_INTF_IF_TYPE_0:
9448 		phba->sli4_hba.PSMPHRregaddr =
9449 			phba->sli4_hba.ctrl_regs_memmap_p +
9450 			LPFC_SLIPORT_IF0_SMPHR;
9451 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9452 			LPFC_HST_ISR0;
9453 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9454 			LPFC_HST_IMR0;
9455 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9456 			LPFC_HST_ISCR0;
9457 		break;
9458 	case LPFC_SLI_INTF_IF_TYPE_6:
9459 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9460 			LPFC_IF6_RQ_DOORBELL;
9461 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9462 			LPFC_IF6_WQ_DOORBELL;
9463 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9464 			LPFC_IF6_CQ_DOORBELL;
9465 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9466 			LPFC_IF6_EQ_DOORBELL;
9467 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9468 			LPFC_IF6_MQ_DOORBELL;
9469 		break;
9470 	case LPFC_SLI_INTF_IF_TYPE_2:
9471 	case LPFC_SLI_INTF_IF_TYPE_1:
9472 	default:
9473 		dev_err(&phba->pcidev->dev,
9474 			   "FATAL - unsupported SLI4 interface type - %d\n",
9475 			   if_type);
9476 		break;
9477 	}
9478 }
9479 
9480 /**
9481  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9482  * @phba: pointer to lpfc hba data structure.
9483  * @vf: virtual function number
9484  *
9485  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9486  * based on the given viftual function number, @vf.
9487  *
9488  * Return 0 if successful, otherwise -ENODEV.
9489  **/
9490 static int
9491 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9492 {
9493 	if (vf > LPFC_VIR_FUNC_MAX)
9494 		return -ENODEV;
9495 
9496 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9497 				vf * LPFC_VFR_PAGE_SIZE +
9498 					LPFC_ULP0_RQ_DOORBELL);
9499 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9500 				vf * LPFC_VFR_PAGE_SIZE +
9501 					LPFC_ULP0_WQ_DOORBELL);
9502 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9503 				vf * LPFC_VFR_PAGE_SIZE +
9504 					LPFC_EQCQ_DOORBELL);
9505 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9506 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9507 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9508 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9509 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9510 	return 0;
9511 }
9512 
9513 /**
9514  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9515  * @phba: pointer to lpfc hba data structure.
9516  *
9517  * This routine is invoked to create the bootstrap mailbox
9518  * region consistent with the SLI-4 interface spec.  This
9519  * routine allocates all memory necessary to communicate
9520  * mailbox commands to the port and sets up all alignment
9521  * needs.  No locks are expected to be held when calling
9522  * this routine.
9523  *
9524  * Return codes
9525  * 	0 - successful
9526  * 	-ENOMEM - could not allocated memory.
9527  **/
9528 static int
9529 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9530 {
9531 	uint32_t bmbx_size;
9532 	struct lpfc_dmabuf *dmabuf;
9533 	struct dma_address *dma_address;
9534 	uint32_t pa_addr;
9535 	uint64_t phys_addr;
9536 
9537 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9538 	if (!dmabuf)
9539 		return -ENOMEM;
9540 
9541 	/*
9542 	 * The bootstrap mailbox region is comprised of 2 parts
9543 	 * plus an alignment restriction of 16 bytes.
9544 	 */
9545 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9546 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9547 					  &dmabuf->phys, GFP_KERNEL);
9548 	if (!dmabuf->virt) {
9549 		kfree(dmabuf);
9550 		return -ENOMEM;
9551 	}
9552 
9553 	/*
9554 	 * Initialize the bootstrap mailbox pointers now so that the register
9555 	 * operations are simple later.  The mailbox dma address is required
9556 	 * to be 16-byte aligned.  Also align the virtual memory as each
9557 	 * maibox is copied into the bmbx mailbox region before issuing the
9558 	 * command to the port.
9559 	 */
9560 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9561 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9562 
9563 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9564 					      LPFC_ALIGN_16_BYTE);
9565 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9566 					      LPFC_ALIGN_16_BYTE);
9567 
9568 	/*
9569 	 * Set the high and low physical addresses now.  The SLI4 alignment
9570 	 * requirement is 16 bytes and the mailbox is posted to the port
9571 	 * as two 30-bit addresses.  The other data is a bit marking whether
9572 	 * the 30-bit address is the high or low address.
9573 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9574 	 * clean on 32 bit machines.
9575 	 */
9576 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9577 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9578 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9579 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9580 					   LPFC_BMBX_BIT1_ADDR_HI);
9581 
9582 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9583 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9584 					   LPFC_BMBX_BIT1_ADDR_LO);
9585 	return 0;
9586 }
9587 
9588 /**
9589  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9590  * @phba: pointer to lpfc hba data structure.
9591  *
9592  * This routine is invoked to teardown the bootstrap mailbox
9593  * region and release all host resources. This routine requires
9594  * the caller to ensure all mailbox commands recovered, no
9595  * additional mailbox comands are sent, and interrupts are disabled
9596  * before calling this routine.
9597  *
9598  **/
9599 static void
9600 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9601 {
9602 	dma_free_coherent(&phba->pcidev->dev,
9603 			  phba->sli4_hba.bmbx.bmbx_size,
9604 			  phba->sli4_hba.bmbx.dmabuf->virt,
9605 			  phba->sli4_hba.bmbx.dmabuf->phys);
9606 
9607 	kfree(phba->sli4_hba.bmbx.dmabuf);
9608 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9609 }
9610 
9611 static const char * const lpfc_topo_to_str[] = {
9612 	"Loop then P2P",
9613 	"Loopback",
9614 	"P2P Only",
9615 	"Unsupported",
9616 	"Loop Only",
9617 	"Unsupported",
9618 	"P2P then Loop",
9619 };
9620 
9621 #define	LINK_FLAGS_DEF	0x0
9622 #define	LINK_FLAGS_P2P	0x1
9623 #define	LINK_FLAGS_LOOP	0x2
9624 /**
9625  * lpfc_map_topology - Map the topology read from READ_CONFIG
9626  * @phba: pointer to lpfc hba data structure.
9627  * @rd_config: pointer to read config data
9628  *
9629  * This routine is invoked to map the topology values as read
9630  * from the read config mailbox command. If the persistent
9631  * topology feature is supported, the firmware will provide the
9632  * saved topology information to be used in INIT_LINK
9633  **/
9634 static void
9635 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9636 {
9637 	u8 ptv, tf, pt;
9638 
9639 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9640 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9641 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9642 
9643 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9644 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9645 			 ptv, tf, pt);
9646 	if (!ptv) {
9647 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9648 				"2019 FW does not support persistent topology "
9649 				"Using driver parameter defined value [%s]",
9650 				lpfc_topo_to_str[phba->cfg_topology]);
9651 		return;
9652 	}
9653 	/* FW supports persistent topology - override module parameter value */
9654 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9655 
9656 	/* if ASIC_GEN_NUM >= 0xC) */
9657 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9658 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9659 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9660 		    LPFC_SLI_INTF_FAMILY_G6)) {
9661 		if (!tf) {
9662 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9663 					? FLAGS_TOPOLOGY_MODE_LOOP
9664 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9665 		} else {
9666 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9667 		}
9668 	} else { /* G5 */
9669 		if (tf) {
9670 			/* If topology failover set - pt is '0' or '1' */
9671 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9672 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9673 		} else {
9674 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9675 					? FLAGS_TOPOLOGY_MODE_PT_PT
9676 					: FLAGS_TOPOLOGY_MODE_LOOP);
9677 		}
9678 	}
9679 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9680 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9681 				"2020 Using persistent topology value [%s]",
9682 				lpfc_topo_to_str[phba->cfg_topology]);
9683 	} else {
9684 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9685 				"2021 Invalid topology values from FW "
9686 				"Using driver parameter defined value [%s]",
9687 				lpfc_topo_to_str[phba->cfg_topology]);
9688 	}
9689 }
9690 
9691 /**
9692  * lpfc_sli4_read_config - Get the config parameters.
9693  * @phba: pointer to lpfc hba data structure.
9694  *
9695  * This routine is invoked to read the configuration parameters from the HBA.
9696  * The configuration parameters are used to set the base and maximum values
9697  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9698  * allocation for the port.
9699  *
9700  * Return codes
9701  * 	0 - successful
9702  * 	-ENOMEM - No available memory
9703  *      -EIO - The mailbox failed to complete successfully.
9704  **/
9705 int
9706 lpfc_sli4_read_config(struct lpfc_hba *phba)
9707 {
9708 	LPFC_MBOXQ_t *pmb;
9709 	struct lpfc_mbx_read_config *rd_config;
9710 	union  lpfc_sli4_cfg_shdr *shdr;
9711 	uint32_t shdr_status, shdr_add_status;
9712 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9713 	struct lpfc_rsrc_desc_fcfcoe *desc;
9714 	char *pdesc_0;
9715 	uint16_t forced_link_speed;
9716 	uint32_t if_type, qmin;
9717 	int length, i, rc = 0, rc2;
9718 
9719 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9720 	if (!pmb) {
9721 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9722 				"2011 Unable to allocate memory for issuing "
9723 				"SLI_CONFIG_SPECIAL mailbox command\n");
9724 		return -ENOMEM;
9725 	}
9726 
9727 	lpfc_read_config(phba, pmb);
9728 
9729 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9730 	if (rc != MBX_SUCCESS) {
9731 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9732 				"2012 Mailbox failed , mbxCmd x%x "
9733 				"READ_CONFIG, mbxStatus x%x\n",
9734 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9735 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9736 		rc = -EIO;
9737 	} else {
9738 		rd_config = &pmb->u.mqe.un.rd_config;
9739 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9740 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9741 			phba->sli4_hba.lnk_info.lnk_tp =
9742 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9743 			phba->sli4_hba.lnk_info.lnk_no =
9744 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9745 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9746 					"3081 lnk_type:%d, lnk_numb:%d\n",
9747 					phba->sli4_hba.lnk_info.lnk_tp,
9748 					phba->sli4_hba.lnk_info.lnk_no);
9749 		} else
9750 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9751 					"3082 Mailbox (x%x) returned ldv:x0\n",
9752 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9753 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9754 			phba->bbcredit_support = 1;
9755 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9756 		}
9757 
9758 		phba->sli4_hba.conf_trunk =
9759 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9760 		phba->sli4_hba.extents_in_use =
9761 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9762 		phba->sli4_hba.max_cfg_param.max_xri =
9763 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9764 		/* Reduce resource usage in kdump environment */
9765 		if (is_kdump_kernel() &&
9766 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9767 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9768 		phba->sli4_hba.max_cfg_param.xri_base =
9769 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9770 		phba->sli4_hba.max_cfg_param.max_vpi =
9771 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9772 		/* Limit the max we support */
9773 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9774 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9775 		phba->sli4_hba.max_cfg_param.vpi_base =
9776 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9777 		phba->sli4_hba.max_cfg_param.max_rpi =
9778 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9779 		phba->sli4_hba.max_cfg_param.rpi_base =
9780 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9781 		phba->sli4_hba.max_cfg_param.max_vfi =
9782 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
9783 		phba->sli4_hba.max_cfg_param.vfi_base =
9784 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
9785 		phba->sli4_hba.max_cfg_param.max_fcfi =
9786 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
9787 		phba->sli4_hba.max_cfg_param.max_eq =
9788 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
9789 		phba->sli4_hba.max_cfg_param.max_rq =
9790 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
9791 		phba->sli4_hba.max_cfg_param.max_wq =
9792 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
9793 		phba->sli4_hba.max_cfg_param.max_cq =
9794 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
9795 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
9796 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
9797 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
9798 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
9799 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
9800 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
9801 		phba->max_vports = phba->max_vpi;
9802 
9803 		/* Next decide on FPIN or Signal E2E CGN support
9804 		 * For congestion alarms and warnings valid combination are:
9805 		 * 1. FPIN alarms / FPIN warnings
9806 		 * 2. Signal alarms / Signal warnings
9807 		 * 3. FPIN alarms / Signal warnings
9808 		 * 4. Signal alarms / FPIN warnings
9809 		 *
9810 		 * Initialize the adapter frequency to 100 mSecs
9811 		 */
9812 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9813 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
9814 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
9815 
9816 		if (lpfc_use_cgn_signal) {
9817 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
9818 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
9819 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
9820 			}
9821 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
9822 				/* MUST support both alarm and warning
9823 				 * because EDC does not support alarm alone.
9824 				 */
9825 				if (phba->cgn_reg_signal !=
9826 				    EDC_CG_SIG_WARN_ONLY) {
9827 					/* Must support both or none */
9828 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9829 					phba->cgn_reg_signal =
9830 						EDC_CG_SIG_NOTSUPPORTED;
9831 				} else {
9832 					phba->cgn_reg_signal =
9833 						EDC_CG_SIG_WARN_ALARM;
9834 					phba->cgn_reg_fpin =
9835 						LPFC_CGN_FPIN_NONE;
9836 				}
9837 			}
9838 		}
9839 
9840 		/* Set the congestion initial signal and fpin values. */
9841 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
9842 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
9843 
9844 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
9845 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
9846 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
9847 
9848 		lpfc_map_topology(phba, rd_config);
9849 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9850 				"2003 cfg params Extents? %d "
9851 				"XRI(B:%d M:%d), "
9852 				"VPI(B:%d M:%d) "
9853 				"VFI(B:%d M:%d) "
9854 				"RPI(B:%d M:%d) "
9855 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
9856 				phba->sli4_hba.extents_in_use,
9857 				phba->sli4_hba.max_cfg_param.xri_base,
9858 				phba->sli4_hba.max_cfg_param.max_xri,
9859 				phba->sli4_hba.max_cfg_param.vpi_base,
9860 				phba->sli4_hba.max_cfg_param.max_vpi,
9861 				phba->sli4_hba.max_cfg_param.vfi_base,
9862 				phba->sli4_hba.max_cfg_param.max_vfi,
9863 				phba->sli4_hba.max_cfg_param.rpi_base,
9864 				phba->sli4_hba.max_cfg_param.max_rpi,
9865 				phba->sli4_hba.max_cfg_param.max_fcfi,
9866 				phba->sli4_hba.max_cfg_param.max_eq,
9867 				phba->sli4_hba.max_cfg_param.max_cq,
9868 				phba->sli4_hba.max_cfg_param.max_wq,
9869 				phba->sli4_hba.max_cfg_param.max_rq,
9870 				phba->lmt);
9871 
9872 		/*
9873 		 * Calculate queue resources based on how
9874 		 * many WQ/CQ/EQs are available.
9875 		 */
9876 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
9877 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
9878 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
9879 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
9880 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
9881 		/*
9882 		 * Whats left after this can go toward NVME / FCP.
9883 		 * The minus 4 accounts for ELS, NVME LS, MBOX
9884 		 * plus one extra. When configured for
9885 		 * NVMET, FCP io channel WQs are not created.
9886 		 */
9887 		qmin -= 4;
9888 
9889 		/* Check to see if there is enough for NVME */
9890 		if ((phba->cfg_irq_chann > qmin) ||
9891 		    (phba->cfg_hdw_queue > qmin)) {
9892 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9893 					"2005 Reducing Queues - "
9894 					"FW resource limitation: "
9895 					"WQ %d CQ %d EQ %d: min %d: "
9896 					"IRQ %d HDWQ %d\n",
9897 					phba->sli4_hba.max_cfg_param.max_wq,
9898 					phba->sli4_hba.max_cfg_param.max_cq,
9899 					phba->sli4_hba.max_cfg_param.max_eq,
9900 					qmin, phba->cfg_irq_chann,
9901 					phba->cfg_hdw_queue);
9902 
9903 			if (phba->cfg_irq_chann > qmin)
9904 				phba->cfg_irq_chann = qmin;
9905 			if (phba->cfg_hdw_queue > qmin)
9906 				phba->cfg_hdw_queue = qmin;
9907 		}
9908 	}
9909 
9910 	if (rc)
9911 		goto read_cfg_out;
9912 
9913 	/* Update link speed if forced link speed is supported */
9914 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
9915 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9916 		forced_link_speed =
9917 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
9918 		if (forced_link_speed) {
9919 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
9920 
9921 			switch (forced_link_speed) {
9922 			case LINK_SPEED_1G:
9923 				phba->cfg_link_speed =
9924 					LPFC_USER_LINK_SPEED_1G;
9925 				break;
9926 			case LINK_SPEED_2G:
9927 				phba->cfg_link_speed =
9928 					LPFC_USER_LINK_SPEED_2G;
9929 				break;
9930 			case LINK_SPEED_4G:
9931 				phba->cfg_link_speed =
9932 					LPFC_USER_LINK_SPEED_4G;
9933 				break;
9934 			case LINK_SPEED_8G:
9935 				phba->cfg_link_speed =
9936 					LPFC_USER_LINK_SPEED_8G;
9937 				break;
9938 			case LINK_SPEED_10G:
9939 				phba->cfg_link_speed =
9940 					LPFC_USER_LINK_SPEED_10G;
9941 				break;
9942 			case LINK_SPEED_16G:
9943 				phba->cfg_link_speed =
9944 					LPFC_USER_LINK_SPEED_16G;
9945 				break;
9946 			case LINK_SPEED_32G:
9947 				phba->cfg_link_speed =
9948 					LPFC_USER_LINK_SPEED_32G;
9949 				break;
9950 			case LINK_SPEED_64G:
9951 				phba->cfg_link_speed =
9952 					LPFC_USER_LINK_SPEED_64G;
9953 				break;
9954 			case 0xffff:
9955 				phba->cfg_link_speed =
9956 					LPFC_USER_LINK_SPEED_AUTO;
9957 				break;
9958 			default:
9959 				lpfc_printf_log(phba, KERN_ERR,
9960 						LOG_TRACE_EVENT,
9961 						"0047 Unrecognized link "
9962 						"speed : %d\n",
9963 						forced_link_speed);
9964 				phba->cfg_link_speed =
9965 					LPFC_USER_LINK_SPEED_AUTO;
9966 			}
9967 		}
9968 	}
9969 
9970 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
9971 	length = phba->sli4_hba.max_cfg_param.max_xri -
9972 			lpfc_sli4_get_els_iocb_cnt(phba);
9973 	if (phba->cfg_hba_queue_depth > length) {
9974 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
9975 				"3361 HBA queue depth changed from %d to %d\n",
9976 				phba->cfg_hba_queue_depth, length);
9977 		phba->cfg_hba_queue_depth = length;
9978 	}
9979 
9980 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
9981 	    LPFC_SLI_INTF_IF_TYPE_2)
9982 		goto read_cfg_out;
9983 
9984 	/* get the pf# and vf# for SLI4 if_type 2 port */
9985 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
9986 		  sizeof(struct lpfc_sli4_cfg_mhdr));
9987 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
9988 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
9989 			 length, LPFC_SLI4_MBX_EMBED);
9990 
9991 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9992 	shdr = (union lpfc_sli4_cfg_shdr *)
9993 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
9994 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
9995 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
9996 	if (rc2 || shdr_status || shdr_add_status) {
9997 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9998 				"3026 Mailbox failed , mbxCmd x%x "
9999 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10000 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10001 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10002 		goto read_cfg_out;
10003 	}
10004 
10005 	/* search for fc_fcoe resrouce descriptor */
10006 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10007 
10008 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10009 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10010 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10011 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10012 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10013 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10014 		goto read_cfg_out;
10015 
10016 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10017 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10018 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10019 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10020 			phba->sli4_hba.iov.pf_number =
10021 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10022 			phba->sli4_hba.iov.vf_number =
10023 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10024 			break;
10025 		}
10026 	}
10027 
10028 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10029 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10030 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10031 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10032 				phba->sli4_hba.iov.vf_number);
10033 	else
10034 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10035 				"3028 GET_FUNCTION_CONFIG: failed to find "
10036 				"Resource Descriptor:x%x\n",
10037 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10038 
10039 read_cfg_out:
10040 	mempool_free(pmb, phba->mbox_mem_pool);
10041 	return rc;
10042 }
10043 
10044 /**
10045  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10046  * @phba: pointer to lpfc hba data structure.
10047  *
10048  * This routine is invoked to setup the port-side endian order when
10049  * the port if_type is 0.  This routine has no function for other
10050  * if_types.
10051  *
10052  * Return codes
10053  * 	0 - successful
10054  * 	-ENOMEM - No available memory
10055  *      -EIO - The mailbox failed to complete successfully.
10056  **/
10057 static int
10058 lpfc_setup_endian_order(struct lpfc_hba *phba)
10059 {
10060 	LPFC_MBOXQ_t *mboxq;
10061 	uint32_t if_type, rc = 0;
10062 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10063 				      HOST_ENDIAN_HIGH_WORD1};
10064 
10065 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10066 	switch (if_type) {
10067 	case LPFC_SLI_INTF_IF_TYPE_0:
10068 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10069 						       GFP_KERNEL);
10070 		if (!mboxq) {
10071 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10072 					"0492 Unable to allocate memory for "
10073 					"issuing SLI_CONFIG_SPECIAL mailbox "
10074 					"command\n");
10075 			return -ENOMEM;
10076 		}
10077 
10078 		/*
10079 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10080 		 * two words to contain special data values and no other data.
10081 		 */
10082 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10083 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10084 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10085 		if (rc != MBX_SUCCESS) {
10086 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10087 					"0493 SLI_CONFIG_SPECIAL mailbox "
10088 					"failed with status x%x\n",
10089 					rc);
10090 			rc = -EIO;
10091 		}
10092 		mempool_free(mboxq, phba->mbox_mem_pool);
10093 		break;
10094 	case LPFC_SLI_INTF_IF_TYPE_6:
10095 	case LPFC_SLI_INTF_IF_TYPE_2:
10096 	case LPFC_SLI_INTF_IF_TYPE_1:
10097 	default:
10098 		break;
10099 	}
10100 	return rc;
10101 }
10102 
10103 /**
10104  * lpfc_sli4_queue_verify - Verify and update EQ counts
10105  * @phba: pointer to lpfc hba data structure.
10106  *
10107  * This routine is invoked to check the user settable queue counts for EQs.
10108  * After this routine is called the counts will be set to valid values that
10109  * adhere to the constraints of the system's interrupt vectors and the port's
10110  * queue resources.
10111  *
10112  * Return codes
10113  *      0 - successful
10114  *      -ENOMEM - No available memory
10115  **/
10116 static int
10117 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10118 {
10119 	/*
10120 	 * Sanity check for configured queue parameters against the run-time
10121 	 * device parameters
10122 	 */
10123 
10124 	if (phba->nvmet_support) {
10125 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10126 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10127 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10128 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10129 	}
10130 
10131 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10132 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10133 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10134 			phba->cfg_nvmet_mrq);
10135 
10136 	/* Get EQ depth from module parameter, fake the default for now */
10137 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10138 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10139 
10140 	/* Get CQ depth from module parameter, fake the default for now */
10141 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10142 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10143 	return 0;
10144 }
10145 
10146 static int
10147 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10148 {
10149 	struct lpfc_queue *qdesc;
10150 	u32 wqesize;
10151 	int cpu;
10152 
10153 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10154 	/* Create Fast Path IO CQs */
10155 	if (phba->enab_exp_wqcq_pages)
10156 		/* Increase the CQ size when WQEs contain an embedded cdb */
10157 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10158 					      phba->sli4_hba.cq_esize,
10159 					      LPFC_CQE_EXP_COUNT, cpu);
10160 
10161 	else
10162 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10163 					      phba->sli4_hba.cq_esize,
10164 					      phba->sli4_hba.cq_ecount, cpu);
10165 	if (!qdesc) {
10166 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10167 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10168 				idx);
10169 		return 1;
10170 	}
10171 	qdesc->qe_valid = 1;
10172 	qdesc->hdwq = idx;
10173 	qdesc->chann = cpu;
10174 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10175 
10176 	/* Create Fast Path IO WQs */
10177 	if (phba->enab_exp_wqcq_pages) {
10178 		/* Increase the WQ size when WQEs contain an embedded cdb */
10179 		wqesize = (phba->fcp_embed_io) ?
10180 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10181 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10182 					      wqesize,
10183 					      LPFC_WQE_EXP_COUNT, cpu);
10184 	} else
10185 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10186 					      phba->sli4_hba.wq_esize,
10187 					      phba->sli4_hba.wq_ecount, cpu);
10188 
10189 	if (!qdesc) {
10190 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10191 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10192 				idx);
10193 		return 1;
10194 	}
10195 	qdesc->hdwq = idx;
10196 	qdesc->chann = cpu;
10197 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10198 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10199 	return 0;
10200 }
10201 
10202 /**
10203  * lpfc_sli4_queue_create - Create all the SLI4 queues
10204  * @phba: pointer to lpfc hba data structure.
10205  *
10206  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10207  * operation. For each SLI4 queue type, the parameters such as queue entry
10208  * count (queue depth) shall be taken from the module parameter. For now,
10209  * we just use some constant number as place holder.
10210  *
10211  * Return codes
10212  *      0 - successful
10213  *      -ENOMEM - No availble memory
10214  *      -EIO - The mailbox failed to complete successfully.
10215  **/
10216 int
10217 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10218 {
10219 	struct lpfc_queue *qdesc;
10220 	int idx, cpu, eqcpu;
10221 	struct lpfc_sli4_hdw_queue *qp;
10222 	struct lpfc_vector_map_info *cpup;
10223 	struct lpfc_vector_map_info *eqcpup;
10224 	struct lpfc_eq_intr_info *eqi;
10225 
10226 	/*
10227 	 * Create HBA Record arrays.
10228 	 * Both NVME and FCP will share that same vectors / EQs
10229 	 */
10230 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10231 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10232 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10233 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10234 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10235 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10236 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10237 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10238 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10239 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10240 
10241 	if (!phba->sli4_hba.hdwq) {
10242 		phba->sli4_hba.hdwq = kcalloc(
10243 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10244 			GFP_KERNEL);
10245 		if (!phba->sli4_hba.hdwq) {
10246 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10247 					"6427 Failed allocate memory for "
10248 					"fast-path Hardware Queue array\n");
10249 			goto out_error;
10250 		}
10251 		/* Prepare hardware queues to take IO buffers */
10252 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10253 			qp = &phba->sli4_hba.hdwq[idx];
10254 			spin_lock_init(&qp->io_buf_list_get_lock);
10255 			spin_lock_init(&qp->io_buf_list_put_lock);
10256 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10257 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10258 			qp->get_io_bufs = 0;
10259 			qp->put_io_bufs = 0;
10260 			qp->total_io_bufs = 0;
10261 			spin_lock_init(&qp->abts_io_buf_list_lock);
10262 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10263 			qp->abts_scsi_io_bufs = 0;
10264 			qp->abts_nvme_io_bufs = 0;
10265 			INIT_LIST_HEAD(&qp->sgl_list);
10266 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10267 			spin_lock_init(&qp->hdwq_lock);
10268 		}
10269 	}
10270 
10271 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10272 		if (phba->nvmet_support) {
10273 			phba->sli4_hba.nvmet_cqset = kcalloc(
10274 					phba->cfg_nvmet_mrq,
10275 					sizeof(struct lpfc_queue *),
10276 					GFP_KERNEL);
10277 			if (!phba->sli4_hba.nvmet_cqset) {
10278 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10279 					"3121 Fail allocate memory for "
10280 					"fast-path CQ set array\n");
10281 				goto out_error;
10282 			}
10283 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10284 					phba->cfg_nvmet_mrq,
10285 					sizeof(struct lpfc_queue *),
10286 					GFP_KERNEL);
10287 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10288 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10289 					"3122 Fail allocate memory for "
10290 					"fast-path RQ set hdr array\n");
10291 				goto out_error;
10292 			}
10293 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10294 					phba->cfg_nvmet_mrq,
10295 					sizeof(struct lpfc_queue *),
10296 					GFP_KERNEL);
10297 			if (!phba->sli4_hba.nvmet_mrq_data) {
10298 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10299 					"3124 Fail allocate memory for "
10300 					"fast-path RQ set data array\n");
10301 				goto out_error;
10302 			}
10303 		}
10304 	}
10305 
10306 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10307 
10308 	/* Create HBA Event Queues (EQs) */
10309 	for_each_present_cpu(cpu) {
10310 		/* We only want to create 1 EQ per vector, even though
10311 		 * multiple CPUs might be using that vector. so only
10312 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10313 		 */
10314 		cpup = &phba->sli4_hba.cpu_map[cpu];
10315 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10316 			continue;
10317 
10318 		/* Get a ptr to the Hardware Queue associated with this CPU */
10319 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10320 
10321 		/* Allocate an EQ */
10322 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10323 					      phba->sli4_hba.eq_esize,
10324 					      phba->sli4_hba.eq_ecount, cpu);
10325 		if (!qdesc) {
10326 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10327 					"0497 Failed allocate EQ (%d)\n",
10328 					cpup->hdwq);
10329 			goto out_error;
10330 		}
10331 		qdesc->qe_valid = 1;
10332 		qdesc->hdwq = cpup->hdwq;
10333 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10334 		qdesc->last_cpu = qdesc->chann;
10335 
10336 		/* Save the allocated EQ in the Hardware Queue */
10337 		qp->hba_eq = qdesc;
10338 
10339 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10340 		list_add(&qdesc->cpu_list, &eqi->list);
10341 	}
10342 
10343 	/* Now we need to populate the other Hardware Queues, that share
10344 	 * an IRQ vector, with the associated EQ ptr.
10345 	 */
10346 	for_each_present_cpu(cpu) {
10347 		cpup = &phba->sli4_hba.cpu_map[cpu];
10348 
10349 		/* Check for EQ already allocated in previous loop */
10350 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10351 			continue;
10352 
10353 		/* Check for multiple CPUs per hdwq */
10354 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10355 		if (qp->hba_eq)
10356 			continue;
10357 
10358 		/* We need to share an EQ for this hdwq */
10359 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10360 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10361 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10362 	}
10363 
10364 	/* Allocate IO Path SLI4 CQ/WQs */
10365 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10366 		if (lpfc_alloc_io_wq_cq(phba, idx))
10367 			goto out_error;
10368 	}
10369 
10370 	if (phba->nvmet_support) {
10371 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10372 			cpu = lpfc_find_cpu_handle(phba, idx,
10373 						   LPFC_FIND_BY_HDWQ);
10374 			qdesc = lpfc_sli4_queue_alloc(phba,
10375 						      LPFC_DEFAULT_PAGE_SIZE,
10376 						      phba->sli4_hba.cq_esize,
10377 						      phba->sli4_hba.cq_ecount,
10378 						      cpu);
10379 			if (!qdesc) {
10380 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10381 						"3142 Failed allocate NVME "
10382 						"CQ Set (%d)\n", idx);
10383 				goto out_error;
10384 			}
10385 			qdesc->qe_valid = 1;
10386 			qdesc->hdwq = idx;
10387 			qdesc->chann = cpu;
10388 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10389 		}
10390 	}
10391 
10392 	/*
10393 	 * Create Slow Path Completion Queues (CQs)
10394 	 */
10395 
10396 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10397 	/* Create slow-path Mailbox Command Complete Queue */
10398 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10399 				      phba->sli4_hba.cq_esize,
10400 				      phba->sli4_hba.cq_ecount, cpu);
10401 	if (!qdesc) {
10402 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10403 				"0500 Failed allocate slow-path mailbox CQ\n");
10404 		goto out_error;
10405 	}
10406 	qdesc->qe_valid = 1;
10407 	phba->sli4_hba.mbx_cq = qdesc;
10408 
10409 	/* Create slow-path ELS Complete Queue */
10410 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10411 				      phba->sli4_hba.cq_esize,
10412 				      phba->sli4_hba.cq_ecount, cpu);
10413 	if (!qdesc) {
10414 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10415 				"0501 Failed allocate slow-path ELS CQ\n");
10416 		goto out_error;
10417 	}
10418 	qdesc->qe_valid = 1;
10419 	qdesc->chann = cpu;
10420 	phba->sli4_hba.els_cq = qdesc;
10421 
10422 
10423 	/*
10424 	 * Create Slow Path Work Queues (WQs)
10425 	 */
10426 
10427 	/* Create Mailbox Command Queue */
10428 
10429 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10430 				      phba->sli4_hba.mq_esize,
10431 				      phba->sli4_hba.mq_ecount, cpu);
10432 	if (!qdesc) {
10433 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10434 				"0505 Failed allocate slow-path MQ\n");
10435 		goto out_error;
10436 	}
10437 	qdesc->chann = cpu;
10438 	phba->sli4_hba.mbx_wq = qdesc;
10439 
10440 	/*
10441 	 * Create ELS Work Queues
10442 	 */
10443 
10444 	/* Create slow-path ELS Work Queue */
10445 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10446 				      phba->sli4_hba.wq_esize,
10447 				      phba->sli4_hba.wq_ecount, cpu);
10448 	if (!qdesc) {
10449 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10450 				"0504 Failed allocate slow-path ELS WQ\n");
10451 		goto out_error;
10452 	}
10453 	qdesc->chann = cpu;
10454 	phba->sli4_hba.els_wq = qdesc;
10455 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10456 
10457 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10458 		/* Create NVME LS Complete Queue */
10459 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10460 					      phba->sli4_hba.cq_esize,
10461 					      phba->sli4_hba.cq_ecount, cpu);
10462 		if (!qdesc) {
10463 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10464 					"6079 Failed allocate NVME LS CQ\n");
10465 			goto out_error;
10466 		}
10467 		qdesc->chann = cpu;
10468 		qdesc->qe_valid = 1;
10469 		phba->sli4_hba.nvmels_cq = qdesc;
10470 
10471 		/* Create NVME LS Work Queue */
10472 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10473 					      phba->sli4_hba.wq_esize,
10474 					      phba->sli4_hba.wq_ecount, cpu);
10475 		if (!qdesc) {
10476 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10477 					"6080 Failed allocate NVME LS WQ\n");
10478 			goto out_error;
10479 		}
10480 		qdesc->chann = cpu;
10481 		phba->sli4_hba.nvmels_wq = qdesc;
10482 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10483 	}
10484 
10485 	/*
10486 	 * Create Receive Queue (RQ)
10487 	 */
10488 
10489 	/* Create Receive Queue for header */
10490 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10491 				      phba->sli4_hba.rq_esize,
10492 				      phba->sli4_hba.rq_ecount, cpu);
10493 	if (!qdesc) {
10494 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10495 				"0506 Failed allocate receive HRQ\n");
10496 		goto out_error;
10497 	}
10498 	phba->sli4_hba.hdr_rq = qdesc;
10499 
10500 	/* Create Receive Queue for data */
10501 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10502 				      phba->sli4_hba.rq_esize,
10503 				      phba->sli4_hba.rq_ecount, cpu);
10504 	if (!qdesc) {
10505 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10506 				"0507 Failed allocate receive DRQ\n");
10507 		goto out_error;
10508 	}
10509 	phba->sli4_hba.dat_rq = qdesc;
10510 
10511 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10512 	    phba->nvmet_support) {
10513 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10514 			cpu = lpfc_find_cpu_handle(phba, idx,
10515 						   LPFC_FIND_BY_HDWQ);
10516 			/* Create NVMET Receive Queue for header */
10517 			qdesc = lpfc_sli4_queue_alloc(phba,
10518 						      LPFC_DEFAULT_PAGE_SIZE,
10519 						      phba->sli4_hba.rq_esize,
10520 						      LPFC_NVMET_RQE_DEF_COUNT,
10521 						      cpu);
10522 			if (!qdesc) {
10523 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10524 						"3146 Failed allocate "
10525 						"receive HRQ\n");
10526 				goto out_error;
10527 			}
10528 			qdesc->hdwq = idx;
10529 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10530 
10531 			/* Only needed for header of RQ pair */
10532 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10533 						   GFP_KERNEL,
10534 						   cpu_to_node(cpu));
10535 			if (qdesc->rqbp == NULL) {
10536 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10537 						"6131 Failed allocate "
10538 						"Header RQBP\n");
10539 				goto out_error;
10540 			}
10541 
10542 			/* Put list in known state in case driver load fails. */
10543 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10544 
10545 			/* Create NVMET Receive Queue for data */
10546 			qdesc = lpfc_sli4_queue_alloc(phba,
10547 						      LPFC_DEFAULT_PAGE_SIZE,
10548 						      phba->sli4_hba.rq_esize,
10549 						      LPFC_NVMET_RQE_DEF_COUNT,
10550 						      cpu);
10551 			if (!qdesc) {
10552 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10553 						"3156 Failed allocate "
10554 						"receive DRQ\n");
10555 				goto out_error;
10556 			}
10557 			qdesc->hdwq = idx;
10558 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10559 		}
10560 	}
10561 
10562 	/* Clear NVME stats */
10563 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10564 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10565 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10566 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10567 		}
10568 	}
10569 
10570 	/* Clear SCSI stats */
10571 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10572 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10573 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10574 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10575 		}
10576 	}
10577 
10578 	return 0;
10579 
10580 out_error:
10581 	lpfc_sli4_queue_destroy(phba);
10582 	return -ENOMEM;
10583 }
10584 
10585 static inline void
10586 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10587 {
10588 	if (*qp != NULL) {
10589 		lpfc_sli4_queue_free(*qp);
10590 		*qp = NULL;
10591 	}
10592 }
10593 
10594 static inline void
10595 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10596 {
10597 	int idx;
10598 
10599 	if (*qs == NULL)
10600 		return;
10601 
10602 	for (idx = 0; idx < max; idx++)
10603 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10604 
10605 	kfree(*qs);
10606 	*qs = NULL;
10607 }
10608 
10609 static inline void
10610 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10611 {
10612 	struct lpfc_sli4_hdw_queue *hdwq;
10613 	struct lpfc_queue *eq;
10614 	uint32_t idx;
10615 
10616 	hdwq = phba->sli4_hba.hdwq;
10617 
10618 	/* Loop thru all Hardware Queues */
10619 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10620 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10621 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10622 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10623 		hdwq[idx].hba_eq = NULL;
10624 		hdwq[idx].io_cq = NULL;
10625 		hdwq[idx].io_wq = NULL;
10626 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10627 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10628 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10629 	}
10630 	/* Loop thru all IRQ vectors */
10631 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10632 		/* Free the EQ corresponding to the IRQ vector */
10633 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10634 		lpfc_sli4_queue_free(eq);
10635 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10636 	}
10637 }
10638 
10639 /**
10640  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10641  * @phba: pointer to lpfc hba data structure.
10642  *
10643  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10644  * operation.
10645  *
10646  * Return codes
10647  *      0 - successful
10648  *      -ENOMEM - No available memory
10649  *      -EIO - The mailbox failed to complete successfully.
10650  **/
10651 void
10652 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10653 {
10654 	/*
10655 	 * Set FREE_INIT before beginning to free the queues.
10656 	 * Wait until the users of queues to acknowledge to
10657 	 * release queues by clearing FREE_WAIT.
10658 	 */
10659 	spin_lock_irq(&phba->hbalock);
10660 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10661 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10662 		spin_unlock_irq(&phba->hbalock);
10663 		msleep(20);
10664 		spin_lock_irq(&phba->hbalock);
10665 	}
10666 	spin_unlock_irq(&phba->hbalock);
10667 
10668 	lpfc_sli4_cleanup_poll_list(phba);
10669 
10670 	/* Release HBA eqs */
10671 	if (phba->sli4_hba.hdwq)
10672 		lpfc_sli4_release_hdwq(phba);
10673 
10674 	if (phba->nvmet_support) {
10675 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10676 					 phba->cfg_nvmet_mrq);
10677 
10678 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10679 					 phba->cfg_nvmet_mrq);
10680 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10681 					 phba->cfg_nvmet_mrq);
10682 	}
10683 
10684 	/* Release mailbox command work queue */
10685 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10686 
10687 	/* Release ELS work queue */
10688 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10689 
10690 	/* Release ELS work queue */
10691 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10692 
10693 	/* Release unsolicited receive queue */
10694 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10695 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10696 
10697 	/* Release ELS complete queue */
10698 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10699 
10700 	/* Release NVME LS complete queue */
10701 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10702 
10703 	/* Release mailbox command complete queue */
10704 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10705 
10706 	/* Everything on this list has been freed */
10707 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10708 
10709 	/* Done with freeing the queues */
10710 	spin_lock_irq(&phba->hbalock);
10711 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10712 	spin_unlock_irq(&phba->hbalock);
10713 }
10714 
10715 int
10716 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10717 {
10718 	struct lpfc_rqb *rqbp;
10719 	struct lpfc_dmabuf *h_buf;
10720 	struct rqb_dmabuf *rqb_buffer;
10721 
10722 	rqbp = rq->rqbp;
10723 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10724 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10725 				 struct lpfc_dmabuf, list);
10726 
10727 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10728 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10729 		rqbp->buffer_count--;
10730 	}
10731 	return 1;
10732 }
10733 
10734 static int
10735 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10736 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10737 	int qidx, uint32_t qtype)
10738 {
10739 	struct lpfc_sli_ring *pring;
10740 	int rc;
10741 
10742 	if (!eq || !cq || !wq) {
10743 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10744 			"6085 Fast-path %s (%d) not allocated\n",
10745 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10746 		return -ENOMEM;
10747 	}
10748 
10749 	/* create the Cq first */
10750 	rc = lpfc_cq_create(phba, cq, eq,
10751 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10752 	if (rc) {
10753 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10754 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10755 				qidx, (uint32_t)rc);
10756 		return rc;
10757 	}
10758 
10759 	if (qtype != LPFC_MBOX) {
10760 		/* Setup cq_map for fast lookup */
10761 		if (cq_map)
10762 			*cq_map = cq->queue_id;
10763 
10764 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10765 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10766 			qidx, cq->queue_id, qidx, eq->queue_id);
10767 
10768 		/* create the wq */
10769 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10770 		if (rc) {
10771 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10772 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10773 				qidx, (uint32_t)rc);
10774 			/* no need to tear down cq - caller will do so */
10775 			return rc;
10776 		}
10777 
10778 		/* Bind this CQ/WQ to the NVME ring */
10779 		pring = wq->pring;
10780 		pring->sli.sli4.wqp = (void *)wq;
10781 		cq->pring = pring;
10782 
10783 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10784 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
10785 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
10786 	} else {
10787 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
10788 		if (rc) {
10789 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10790 					"0539 Failed setup of slow-path MQ: "
10791 					"rc = 0x%x\n", rc);
10792 			/* no need to tear down cq - caller will do so */
10793 			return rc;
10794 		}
10795 
10796 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10797 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
10798 			phba->sli4_hba.mbx_wq->queue_id,
10799 			phba->sli4_hba.mbx_cq->queue_id);
10800 	}
10801 
10802 	return 0;
10803 }
10804 
10805 /**
10806  * lpfc_setup_cq_lookup - Setup the CQ lookup table
10807  * @phba: pointer to lpfc hba data structure.
10808  *
10809  * This routine will populate the cq_lookup table by all
10810  * available CQ queue_id's.
10811  **/
10812 static void
10813 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
10814 {
10815 	struct lpfc_queue *eq, *childq;
10816 	int qidx;
10817 
10818 	memset(phba->sli4_hba.cq_lookup, 0,
10819 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
10820 	/* Loop thru all IRQ vectors */
10821 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
10822 		/* Get the EQ corresponding to the IRQ vector */
10823 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
10824 		if (!eq)
10825 			continue;
10826 		/* Loop through all CQs associated with that EQ */
10827 		list_for_each_entry(childq, &eq->child_list, list) {
10828 			if (childq->queue_id > phba->sli4_hba.cq_max)
10829 				continue;
10830 			if (childq->subtype == LPFC_IO)
10831 				phba->sli4_hba.cq_lookup[childq->queue_id] =
10832 					childq;
10833 		}
10834 	}
10835 }
10836 
10837 /**
10838  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
10839  * @phba: pointer to lpfc hba data structure.
10840  *
10841  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
10842  * operation.
10843  *
10844  * Return codes
10845  *      0 - successful
10846  *      -ENOMEM - No available memory
10847  *      -EIO - The mailbox failed to complete successfully.
10848  **/
10849 int
10850 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
10851 {
10852 	uint32_t shdr_status, shdr_add_status;
10853 	union lpfc_sli4_cfg_shdr *shdr;
10854 	struct lpfc_vector_map_info *cpup;
10855 	struct lpfc_sli4_hdw_queue *qp;
10856 	LPFC_MBOXQ_t *mboxq;
10857 	int qidx, cpu;
10858 	uint32_t length, usdelay;
10859 	int rc = -ENOMEM;
10860 
10861 	/* Check for dual-ULP support */
10862 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10863 	if (!mboxq) {
10864 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10865 				"3249 Unable to allocate memory for "
10866 				"QUERY_FW_CFG mailbox command\n");
10867 		return -ENOMEM;
10868 	}
10869 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
10870 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10871 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
10872 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
10873 			 length, LPFC_SLI4_MBX_EMBED);
10874 
10875 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10876 
10877 	shdr = (union lpfc_sli4_cfg_shdr *)
10878 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
10879 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10880 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10881 	if (shdr_status || shdr_add_status || rc) {
10882 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10883 				"3250 QUERY_FW_CFG mailbox failed with status "
10884 				"x%x add_status x%x, mbx status x%x\n",
10885 				shdr_status, shdr_add_status, rc);
10886 		mempool_free(mboxq, phba->mbox_mem_pool);
10887 		rc = -ENXIO;
10888 		goto out_error;
10889 	}
10890 
10891 	phba->sli4_hba.fw_func_mode =
10892 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
10893 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
10894 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
10895 	phba->sli4_hba.physical_port =
10896 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
10897 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10898 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
10899 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
10900 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
10901 
10902 	mempool_free(mboxq, phba->mbox_mem_pool);
10903 
10904 	/*
10905 	 * Set up HBA Event Queues (EQs)
10906 	 */
10907 	qp = phba->sli4_hba.hdwq;
10908 
10909 	/* Set up HBA event queue */
10910 	if (!qp) {
10911 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10912 				"3147 Fast-path EQs not allocated\n");
10913 		rc = -ENOMEM;
10914 		goto out_error;
10915 	}
10916 
10917 	/* Loop thru all IRQ vectors */
10918 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
10919 		/* Create HBA Event Queues (EQs) in order */
10920 		for_each_present_cpu(cpu) {
10921 			cpup = &phba->sli4_hba.cpu_map[cpu];
10922 
10923 			/* Look for the CPU thats using that vector with
10924 			 * LPFC_CPU_FIRST_IRQ set.
10925 			 */
10926 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10927 				continue;
10928 			if (qidx != cpup->eq)
10929 				continue;
10930 
10931 			/* Create an EQ for that vector */
10932 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
10933 					    phba->cfg_fcp_imax);
10934 			if (rc) {
10935 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10936 						"0523 Failed setup of fast-path"
10937 						" EQ (%d), rc = 0x%x\n",
10938 						cpup->eq, (uint32_t)rc);
10939 				goto out_destroy;
10940 			}
10941 
10942 			/* Save the EQ for that vector in the hba_eq_hdl */
10943 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
10944 				qp[cpup->hdwq].hba_eq;
10945 
10946 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10947 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
10948 					cpup->eq,
10949 					qp[cpup->hdwq].hba_eq->queue_id);
10950 		}
10951 	}
10952 
10953 	/* Loop thru all Hardware Queues */
10954 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
10955 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
10956 		cpup = &phba->sli4_hba.cpu_map[cpu];
10957 
10958 		/* Create the CQ/WQ corresponding to the Hardware Queue */
10959 		rc = lpfc_create_wq_cq(phba,
10960 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
10961 				       qp[qidx].io_cq,
10962 				       qp[qidx].io_wq,
10963 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
10964 				       qidx,
10965 				       LPFC_IO);
10966 		if (rc) {
10967 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10968 					"0535 Failed to setup fastpath "
10969 					"IO WQ/CQ (%d), rc = 0x%x\n",
10970 					qidx, (uint32_t)rc);
10971 			goto out_destroy;
10972 		}
10973 	}
10974 
10975 	/*
10976 	 * Set up Slow Path Complete Queues (CQs)
10977 	 */
10978 
10979 	/* Set up slow-path MBOX CQ/MQ */
10980 
10981 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
10982 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10983 				"0528 %s not allocated\n",
10984 				phba->sli4_hba.mbx_cq ?
10985 				"Mailbox WQ" : "Mailbox CQ");
10986 		rc = -ENOMEM;
10987 		goto out_destroy;
10988 	}
10989 
10990 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
10991 			       phba->sli4_hba.mbx_cq,
10992 			       phba->sli4_hba.mbx_wq,
10993 			       NULL, 0, LPFC_MBOX);
10994 	if (rc) {
10995 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10996 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
10997 			(uint32_t)rc);
10998 		goto out_destroy;
10999 	}
11000 	if (phba->nvmet_support) {
11001 		if (!phba->sli4_hba.nvmet_cqset) {
11002 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11003 					"3165 Fast-path NVME CQ Set "
11004 					"array not allocated\n");
11005 			rc = -ENOMEM;
11006 			goto out_destroy;
11007 		}
11008 		if (phba->cfg_nvmet_mrq > 1) {
11009 			rc = lpfc_cq_create_set(phba,
11010 					phba->sli4_hba.nvmet_cqset,
11011 					qp,
11012 					LPFC_WCQ, LPFC_NVMET);
11013 			if (rc) {
11014 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11015 						"3164 Failed setup of NVME CQ "
11016 						"Set, rc = 0x%x\n",
11017 						(uint32_t)rc);
11018 				goto out_destroy;
11019 			}
11020 		} else {
11021 			/* Set up NVMET Receive Complete Queue */
11022 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11023 					    qp[0].hba_eq,
11024 					    LPFC_WCQ, LPFC_NVMET);
11025 			if (rc) {
11026 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11027 						"6089 Failed setup NVMET CQ: "
11028 						"rc = 0x%x\n", (uint32_t)rc);
11029 				goto out_destroy;
11030 			}
11031 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11032 
11033 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11034 					"6090 NVMET CQ setup: cq-id=%d, "
11035 					"parent eq-id=%d\n",
11036 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11037 					qp[0].hba_eq->queue_id);
11038 		}
11039 	}
11040 
11041 	/* Set up slow-path ELS WQ/CQ */
11042 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11043 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11044 				"0530 ELS %s not allocated\n",
11045 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11046 		rc = -ENOMEM;
11047 		goto out_destroy;
11048 	}
11049 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11050 			       phba->sli4_hba.els_cq,
11051 			       phba->sli4_hba.els_wq,
11052 			       NULL, 0, LPFC_ELS);
11053 	if (rc) {
11054 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11055 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11056 				(uint32_t)rc);
11057 		goto out_destroy;
11058 	}
11059 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11060 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11061 			phba->sli4_hba.els_wq->queue_id,
11062 			phba->sli4_hba.els_cq->queue_id);
11063 
11064 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11065 		/* Set up NVME LS Complete Queue */
11066 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11067 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11068 					"6091 LS %s not allocated\n",
11069 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11070 			rc = -ENOMEM;
11071 			goto out_destroy;
11072 		}
11073 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11074 				       phba->sli4_hba.nvmels_cq,
11075 				       phba->sli4_hba.nvmels_wq,
11076 				       NULL, 0, LPFC_NVME_LS);
11077 		if (rc) {
11078 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11079 					"0526 Failed setup of NVVME LS WQ/CQ: "
11080 					"rc = 0x%x\n", (uint32_t)rc);
11081 			goto out_destroy;
11082 		}
11083 
11084 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11085 				"6096 ELS WQ setup: wq-id=%d, "
11086 				"parent cq-id=%d\n",
11087 				phba->sli4_hba.nvmels_wq->queue_id,
11088 				phba->sli4_hba.nvmels_cq->queue_id);
11089 	}
11090 
11091 	/*
11092 	 * Create NVMET Receive Queue (RQ)
11093 	 */
11094 	if (phba->nvmet_support) {
11095 		if ((!phba->sli4_hba.nvmet_cqset) ||
11096 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11097 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11098 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11099 					"6130 MRQ CQ Queues not "
11100 					"allocated\n");
11101 			rc = -ENOMEM;
11102 			goto out_destroy;
11103 		}
11104 		if (phba->cfg_nvmet_mrq > 1) {
11105 			rc = lpfc_mrq_create(phba,
11106 					     phba->sli4_hba.nvmet_mrq_hdr,
11107 					     phba->sli4_hba.nvmet_mrq_data,
11108 					     phba->sli4_hba.nvmet_cqset,
11109 					     LPFC_NVMET);
11110 			if (rc) {
11111 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11112 						"6098 Failed setup of NVMET "
11113 						"MRQ: rc = 0x%x\n",
11114 						(uint32_t)rc);
11115 				goto out_destroy;
11116 			}
11117 
11118 		} else {
11119 			rc = lpfc_rq_create(phba,
11120 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11121 					    phba->sli4_hba.nvmet_mrq_data[0],
11122 					    phba->sli4_hba.nvmet_cqset[0],
11123 					    LPFC_NVMET);
11124 			if (rc) {
11125 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11126 						"6057 Failed setup of NVMET "
11127 						"Receive Queue: rc = 0x%x\n",
11128 						(uint32_t)rc);
11129 				goto out_destroy;
11130 			}
11131 
11132 			lpfc_printf_log(
11133 				phba, KERN_INFO, LOG_INIT,
11134 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11135 				"dat-rq-id=%d parent cq-id=%d\n",
11136 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11137 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11138 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11139 
11140 		}
11141 	}
11142 
11143 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11144 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11145 				"0540 Receive Queue not allocated\n");
11146 		rc = -ENOMEM;
11147 		goto out_destroy;
11148 	}
11149 
11150 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11151 			    phba->sli4_hba.els_cq, LPFC_USOL);
11152 	if (rc) {
11153 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11154 				"0541 Failed setup of Receive Queue: "
11155 				"rc = 0x%x\n", (uint32_t)rc);
11156 		goto out_destroy;
11157 	}
11158 
11159 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11160 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11161 			"parent cq-id=%d\n",
11162 			phba->sli4_hba.hdr_rq->queue_id,
11163 			phba->sli4_hba.dat_rq->queue_id,
11164 			phba->sli4_hba.els_cq->queue_id);
11165 
11166 	if (phba->cfg_fcp_imax)
11167 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11168 	else
11169 		usdelay = 0;
11170 
11171 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11172 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11173 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11174 					 usdelay);
11175 
11176 	if (phba->sli4_hba.cq_max) {
11177 		kfree(phba->sli4_hba.cq_lookup);
11178 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11179 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11180 		if (!phba->sli4_hba.cq_lookup) {
11181 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11182 					"0549 Failed setup of CQ Lookup table: "
11183 					"size 0x%x\n", phba->sli4_hba.cq_max);
11184 			rc = -ENOMEM;
11185 			goto out_destroy;
11186 		}
11187 		lpfc_setup_cq_lookup(phba);
11188 	}
11189 	return 0;
11190 
11191 out_destroy:
11192 	lpfc_sli4_queue_unset(phba);
11193 out_error:
11194 	return rc;
11195 }
11196 
11197 /**
11198  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11199  * @phba: pointer to lpfc hba data structure.
11200  *
11201  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11202  * operation.
11203  *
11204  * Return codes
11205  *      0 - successful
11206  *      -ENOMEM - No available memory
11207  *      -EIO - The mailbox failed to complete successfully.
11208  **/
11209 void
11210 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11211 {
11212 	struct lpfc_sli4_hdw_queue *qp;
11213 	struct lpfc_queue *eq;
11214 	int qidx;
11215 
11216 	/* Unset mailbox command work queue */
11217 	if (phba->sli4_hba.mbx_wq)
11218 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11219 
11220 	/* Unset NVME LS work queue */
11221 	if (phba->sli4_hba.nvmels_wq)
11222 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11223 
11224 	/* Unset ELS work queue */
11225 	if (phba->sli4_hba.els_wq)
11226 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11227 
11228 	/* Unset unsolicited receive queue */
11229 	if (phba->sli4_hba.hdr_rq)
11230 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11231 				phba->sli4_hba.dat_rq);
11232 
11233 	/* Unset mailbox command complete queue */
11234 	if (phba->sli4_hba.mbx_cq)
11235 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11236 
11237 	/* Unset ELS complete queue */
11238 	if (phba->sli4_hba.els_cq)
11239 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11240 
11241 	/* Unset NVME LS complete queue */
11242 	if (phba->sli4_hba.nvmels_cq)
11243 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11244 
11245 	if (phba->nvmet_support) {
11246 		/* Unset NVMET MRQ queue */
11247 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11248 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11249 				lpfc_rq_destroy(
11250 					phba,
11251 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11252 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11253 		}
11254 
11255 		/* Unset NVMET CQ Set complete queue */
11256 		if (phba->sli4_hba.nvmet_cqset) {
11257 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11258 				lpfc_cq_destroy(
11259 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11260 		}
11261 	}
11262 
11263 	/* Unset fast-path SLI4 queues */
11264 	if (phba->sli4_hba.hdwq) {
11265 		/* Loop thru all Hardware Queues */
11266 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11267 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11268 			qp = &phba->sli4_hba.hdwq[qidx];
11269 			lpfc_wq_destroy(phba, qp->io_wq);
11270 			lpfc_cq_destroy(phba, qp->io_cq);
11271 		}
11272 		/* Loop thru all IRQ vectors */
11273 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11274 			/* Destroy the EQ corresponding to the IRQ vector */
11275 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11276 			lpfc_eq_destroy(phba, eq);
11277 		}
11278 	}
11279 
11280 	kfree(phba->sli4_hba.cq_lookup);
11281 	phba->sli4_hba.cq_lookup = NULL;
11282 	phba->sli4_hba.cq_max = 0;
11283 }
11284 
11285 /**
11286  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11287  * @phba: pointer to lpfc hba data structure.
11288  *
11289  * This routine is invoked to allocate and set up a pool of completion queue
11290  * events. The body of the completion queue event is a completion queue entry
11291  * CQE. For now, this pool is used for the interrupt service routine to queue
11292  * the following HBA completion queue events for the worker thread to process:
11293  *   - Mailbox asynchronous events
11294  *   - Receive queue completion unsolicited events
11295  * Later, this can be used for all the slow-path events.
11296  *
11297  * Return codes
11298  *      0 - successful
11299  *      -ENOMEM - No available memory
11300  **/
11301 static int
11302 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11303 {
11304 	struct lpfc_cq_event *cq_event;
11305 	int i;
11306 
11307 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11308 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11309 		if (!cq_event)
11310 			goto out_pool_create_fail;
11311 		list_add_tail(&cq_event->list,
11312 			      &phba->sli4_hba.sp_cqe_event_pool);
11313 	}
11314 	return 0;
11315 
11316 out_pool_create_fail:
11317 	lpfc_sli4_cq_event_pool_destroy(phba);
11318 	return -ENOMEM;
11319 }
11320 
11321 /**
11322  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11323  * @phba: pointer to lpfc hba data structure.
11324  *
11325  * This routine is invoked to free the pool of completion queue events at
11326  * driver unload time. Note that, it is the responsibility of the driver
11327  * cleanup routine to free all the outstanding completion-queue events
11328  * allocated from this pool back into the pool before invoking this routine
11329  * to destroy the pool.
11330  **/
11331 static void
11332 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11333 {
11334 	struct lpfc_cq_event *cq_event, *next_cq_event;
11335 
11336 	list_for_each_entry_safe(cq_event, next_cq_event,
11337 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11338 		list_del(&cq_event->list);
11339 		kfree(cq_event);
11340 	}
11341 }
11342 
11343 /**
11344  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11345  * @phba: pointer to lpfc hba data structure.
11346  *
11347  * This routine is the lock free version of the API invoked to allocate a
11348  * completion-queue event from the free pool.
11349  *
11350  * Return: Pointer to the newly allocated completion-queue event if successful
11351  *         NULL otherwise.
11352  **/
11353 struct lpfc_cq_event *
11354 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11355 {
11356 	struct lpfc_cq_event *cq_event = NULL;
11357 
11358 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11359 			 struct lpfc_cq_event, list);
11360 	return cq_event;
11361 }
11362 
11363 /**
11364  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11365  * @phba: pointer to lpfc hba data structure.
11366  *
11367  * This routine is the lock version of the API invoked to allocate a
11368  * completion-queue event from the free pool.
11369  *
11370  * Return: Pointer to the newly allocated completion-queue event if successful
11371  *         NULL otherwise.
11372  **/
11373 struct lpfc_cq_event *
11374 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11375 {
11376 	struct lpfc_cq_event *cq_event;
11377 	unsigned long iflags;
11378 
11379 	spin_lock_irqsave(&phba->hbalock, iflags);
11380 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11381 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11382 	return cq_event;
11383 }
11384 
11385 /**
11386  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11387  * @phba: pointer to lpfc hba data structure.
11388  * @cq_event: pointer to the completion queue event to be freed.
11389  *
11390  * This routine is the lock free version of the API invoked to release a
11391  * completion-queue event back into the free pool.
11392  **/
11393 void
11394 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11395 			     struct lpfc_cq_event *cq_event)
11396 {
11397 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11398 }
11399 
11400 /**
11401  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11402  * @phba: pointer to lpfc hba data structure.
11403  * @cq_event: pointer to the completion queue event to be freed.
11404  *
11405  * This routine is the lock version of the API invoked to release a
11406  * completion-queue event back into the free pool.
11407  **/
11408 void
11409 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11410 			   struct lpfc_cq_event *cq_event)
11411 {
11412 	unsigned long iflags;
11413 	spin_lock_irqsave(&phba->hbalock, iflags);
11414 	__lpfc_sli4_cq_event_release(phba, cq_event);
11415 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11416 }
11417 
11418 /**
11419  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11420  * @phba: pointer to lpfc hba data structure.
11421  *
11422  * This routine is to free all the pending completion-queue events to the
11423  * back into the free pool for device reset.
11424  **/
11425 static void
11426 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11427 {
11428 	LIST_HEAD(cq_event_list);
11429 	struct lpfc_cq_event *cq_event;
11430 	unsigned long iflags;
11431 
11432 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11433 
11434 	/* Pending ELS XRI abort events */
11435 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11436 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11437 			 &cq_event_list);
11438 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11439 
11440 	/* Pending asynnc events */
11441 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11442 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11443 			 &cq_event_list);
11444 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11445 
11446 	while (!list_empty(&cq_event_list)) {
11447 		list_remove_head(&cq_event_list, cq_event,
11448 				 struct lpfc_cq_event, list);
11449 		lpfc_sli4_cq_event_release(phba, cq_event);
11450 	}
11451 }
11452 
11453 /**
11454  * lpfc_pci_function_reset - Reset pci function.
11455  * @phba: pointer to lpfc hba data structure.
11456  *
11457  * This routine is invoked to request a PCI function reset. It will destroys
11458  * all resources assigned to the PCI function which originates this request.
11459  *
11460  * Return codes
11461  *      0 - successful
11462  *      -ENOMEM - No available memory
11463  *      -EIO - The mailbox failed to complete successfully.
11464  **/
11465 int
11466 lpfc_pci_function_reset(struct lpfc_hba *phba)
11467 {
11468 	LPFC_MBOXQ_t *mboxq;
11469 	uint32_t rc = 0, if_type;
11470 	uint32_t shdr_status, shdr_add_status;
11471 	uint32_t rdy_chk;
11472 	uint32_t port_reset = 0;
11473 	union lpfc_sli4_cfg_shdr *shdr;
11474 	struct lpfc_register reg_data;
11475 	uint16_t devid;
11476 
11477 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11478 	switch (if_type) {
11479 	case LPFC_SLI_INTF_IF_TYPE_0:
11480 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11481 						       GFP_KERNEL);
11482 		if (!mboxq) {
11483 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11484 					"0494 Unable to allocate memory for "
11485 					"issuing SLI_FUNCTION_RESET mailbox "
11486 					"command\n");
11487 			return -ENOMEM;
11488 		}
11489 
11490 		/* Setup PCI function reset mailbox-ioctl command */
11491 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11492 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11493 				 LPFC_SLI4_MBX_EMBED);
11494 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11495 		shdr = (union lpfc_sli4_cfg_shdr *)
11496 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11497 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11498 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11499 					 &shdr->response);
11500 		mempool_free(mboxq, phba->mbox_mem_pool);
11501 		if (shdr_status || shdr_add_status || rc) {
11502 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11503 					"0495 SLI_FUNCTION_RESET mailbox "
11504 					"failed with status x%x add_status x%x,"
11505 					" mbx status x%x\n",
11506 					shdr_status, shdr_add_status, rc);
11507 			rc = -ENXIO;
11508 		}
11509 		break;
11510 	case LPFC_SLI_INTF_IF_TYPE_2:
11511 	case LPFC_SLI_INTF_IF_TYPE_6:
11512 wait:
11513 		/*
11514 		 * Poll the Port Status Register and wait for RDY for
11515 		 * up to 30 seconds. If the port doesn't respond, treat
11516 		 * it as an error.
11517 		 */
11518 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11519 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11520 				STATUSregaddr, &reg_data.word0)) {
11521 				rc = -ENODEV;
11522 				goto out;
11523 			}
11524 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11525 				break;
11526 			msleep(20);
11527 		}
11528 
11529 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11530 			phba->work_status[0] = readl(
11531 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11532 			phba->work_status[1] = readl(
11533 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11534 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11535 					"2890 Port not ready, port status reg "
11536 					"0x%x error 1=0x%x, error 2=0x%x\n",
11537 					reg_data.word0,
11538 					phba->work_status[0],
11539 					phba->work_status[1]);
11540 			rc = -ENODEV;
11541 			goto out;
11542 		}
11543 
11544 		if (!port_reset) {
11545 			/*
11546 			 * Reset the port now
11547 			 */
11548 			reg_data.word0 = 0;
11549 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11550 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11551 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11552 			       LPFC_SLIPORT_INIT_PORT);
11553 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11554 			       CTRLregaddr);
11555 			/* flush */
11556 			pci_read_config_word(phba->pcidev,
11557 					     PCI_DEVICE_ID, &devid);
11558 
11559 			port_reset = 1;
11560 			msleep(20);
11561 			goto wait;
11562 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11563 			rc = -ENODEV;
11564 			goto out;
11565 		}
11566 		break;
11567 
11568 	case LPFC_SLI_INTF_IF_TYPE_1:
11569 	default:
11570 		break;
11571 	}
11572 
11573 out:
11574 	/* Catch the not-ready port failure after a port reset. */
11575 	if (rc) {
11576 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11577 				"3317 HBA not functional: IP Reset Failed "
11578 				"try: echo fw_reset > board_mode\n");
11579 		rc = -ENODEV;
11580 	}
11581 
11582 	return rc;
11583 }
11584 
11585 /**
11586  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11587  * @phba: pointer to lpfc hba data structure.
11588  *
11589  * This routine is invoked to set up the PCI device memory space for device
11590  * with SLI-4 interface spec.
11591  *
11592  * Return codes
11593  * 	0 - successful
11594  * 	other values - error
11595  **/
11596 static int
11597 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11598 {
11599 	struct pci_dev *pdev = phba->pcidev;
11600 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11601 	int error;
11602 	uint32_t if_type;
11603 
11604 	if (!pdev)
11605 		return -ENODEV;
11606 
11607 	/* Set the device DMA mask size */
11608 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11609 	if (error)
11610 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11611 	if (error)
11612 		return error;
11613 
11614 	/*
11615 	 * The BARs and register set definitions and offset locations are
11616 	 * dependent on the if_type.
11617 	 */
11618 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11619 				  &phba->sli4_hba.sli_intf.word0)) {
11620 		return -ENODEV;
11621 	}
11622 
11623 	/* There is no SLI3 failback for SLI4 devices. */
11624 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11625 	    LPFC_SLI_INTF_VALID) {
11626 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11627 				"2894 SLI_INTF reg contents invalid "
11628 				"sli_intf reg 0x%x\n",
11629 				phba->sli4_hba.sli_intf.word0);
11630 		return -ENODEV;
11631 	}
11632 
11633 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11634 	/*
11635 	 * Get the bus address of SLI4 device Bar regions and the
11636 	 * number of bytes required by each mapping. The mapping of the
11637 	 * particular PCI BARs regions is dependent on the type of
11638 	 * SLI4 device.
11639 	 */
11640 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11641 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11642 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11643 
11644 		/*
11645 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11646 		 * addr
11647 		 */
11648 		phba->sli4_hba.conf_regs_memmap_p =
11649 			ioremap(phba->pci_bar0_map, bar0map_len);
11650 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11651 			dev_printk(KERN_ERR, &pdev->dev,
11652 				   "ioremap failed for SLI4 PCI config "
11653 				   "registers.\n");
11654 			return -ENODEV;
11655 		}
11656 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11657 		/* Set up BAR0 PCI config space register memory map */
11658 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11659 	} else {
11660 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11661 		bar0map_len = pci_resource_len(pdev, 1);
11662 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11663 			dev_printk(KERN_ERR, &pdev->dev,
11664 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11665 			return -ENODEV;
11666 		}
11667 		phba->sli4_hba.conf_regs_memmap_p =
11668 				ioremap(phba->pci_bar0_map, bar0map_len);
11669 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11670 			dev_printk(KERN_ERR, &pdev->dev,
11671 				"ioremap failed for SLI4 PCI config "
11672 				"registers.\n");
11673 			return -ENODEV;
11674 		}
11675 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11676 	}
11677 
11678 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11679 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11680 			/*
11681 			 * Map SLI4 if type 0 HBA Control Register base to a
11682 			 * kernel virtual address and setup the registers.
11683 			 */
11684 			phba->pci_bar1_map = pci_resource_start(pdev,
11685 								PCI_64BIT_BAR2);
11686 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11687 			phba->sli4_hba.ctrl_regs_memmap_p =
11688 					ioremap(phba->pci_bar1_map,
11689 						bar1map_len);
11690 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11691 				dev_err(&pdev->dev,
11692 					   "ioremap failed for SLI4 HBA "
11693 					    "control registers.\n");
11694 				error = -ENOMEM;
11695 				goto out_iounmap_conf;
11696 			}
11697 			phba->pci_bar2_memmap_p =
11698 					 phba->sli4_hba.ctrl_regs_memmap_p;
11699 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11700 		} else {
11701 			error = -ENOMEM;
11702 			goto out_iounmap_conf;
11703 		}
11704 	}
11705 
11706 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11707 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11708 		/*
11709 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11710 		 * virtual address and setup the registers.
11711 		 */
11712 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11713 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11714 		phba->sli4_hba.drbl_regs_memmap_p =
11715 				ioremap(phba->pci_bar1_map, bar1map_len);
11716 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11717 			dev_err(&pdev->dev,
11718 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11719 			error = -ENOMEM;
11720 			goto out_iounmap_conf;
11721 		}
11722 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11723 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11724 	}
11725 
11726 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11727 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11728 			/*
11729 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11730 			 * a kernel virtual address and setup the registers.
11731 			 */
11732 			phba->pci_bar2_map = pci_resource_start(pdev,
11733 								PCI_64BIT_BAR4);
11734 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11735 			phba->sli4_hba.drbl_regs_memmap_p =
11736 					ioremap(phba->pci_bar2_map,
11737 						bar2map_len);
11738 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11739 				dev_err(&pdev->dev,
11740 					   "ioremap failed for SLI4 HBA"
11741 					   " doorbell registers.\n");
11742 				error = -ENOMEM;
11743 				goto out_iounmap_ctrl;
11744 			}
11745 			phba->pci_bar4_memmap_p =
11746 					phba->sli4_hba.drbl_regs_memmap_p;
11747 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11748 			if (error)
11749 				goto out_iounmap_all;
11750 		} else {
11751 			error = -ENOMEM;
11752 			goto out_iounmap_all;
11753 		}
11754 	}
11755 
11756 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11757 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11758 		/*
11759 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11760 		 * virtual address and setup the registers.
11761 		 */
11762 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11763 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11764 		phba->sli4_hba.dpp_regs_memmap_p =
11765 				ioremap(phba->pci_bar2_map, bar2map_len);
11766 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11767 			dev_err(&pdev->dev,
11768 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11769 			error = -ENOMEM;
11770 			goto out_iounmap_ctrl;
11771 		}
11772 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11773 	}
11774 
11775 	/* Set up the EQ/CQ register handeling functions now */
11776 	switch (if_type) {
11777 	case LPFC_SLI_INTF_IF_TYPE_0:
11778 	case LPFC_SLI_INTF_IF_TYPE_2:
11779 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
11780 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
11781 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
11782 		break;
11783 	case LPFC_SLI_INTF_IF_TYPE_6:
11784 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
11785 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
11786 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
11787 		break;
11788 	default:
11789 		break;
11790 	}
11791 
11792 	return 0;
11793 
11794 out_iounmap_all:
11795 	iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11796 out_iounmap_ctrl:
11797 	iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11798 out_iounmap_conf:
11799 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
11800 
11801 	return error;
11802 }
11803 
11804 /**
11805  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
11806  * @phba: pointer to lpfc hba data structure.
11807  *
11808  * This routine is invoked to unset the PCI device memory space for device
11809  * with SLI-4 interface spec.
11810  **/
11811 static void
11812 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
11813 {
11814 	uint32_t if_type;
11815 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11816 
11817 	switch (if_type) {
11818 	case LPFC_SLI_INTF_IF_TYPE_0:
11819 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11820 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11821 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11822 		break;
11823 	case LPFC_SLI_INTF_IF_TYPE_2:
11824 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11825 		break;
11826 	case LPFC_SLI_INTF_IF_TYPE_6:
11827 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11828 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11829 		if (phba->sli4_hba.dpp_regs_memmap_p)
11830 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
11831 		break;
11832 	case LPFC_SLI_INTF_IF_TYPE_1:
11833 	default:
11834 		dev_printk(KERN_ERR, &phba->pcidev->dev,
11835 			   "FATAL - unsupported SLI4 interface type - %d\n",
11836 			   if_type);
11837 		break;
11838 	}
11839 }
11840 
11841 /**
11842  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
11843  * @phba: pointer to lpfc hba data structure.
11844  *
11845  * This routine is invoked to enable the MSI-X interrupt vectors to device
11846  * with SLI-3 interface specs.
11847  *
11848  * Return codes
11849  *   0 - successful
11850  *   other values - error
11851  **/
11852 static int
11853 lpfc_sli_enable_msix(struct lpfc_hba *phba)
11854 {
11855 	int rc;
11856 	LPFC_MBOXQ_t *pmb;
11857 
11858 	/* Set up MSI-X multi-message vectors */
11859 	rc = pci_alloc_irq_vectors(phba->pcidev,
11860 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
11861 	if (rc < 0) {
11862 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11863 				"0420 PCI enable MSI-X failed (%d)\n", rc);
11864 		goto vec_fail_out;
11865 	}
11866 
11867 	/*
11868 	 * Assign MSI-X vectors to interrupt handlers
11869 	 */
11870 
11871 	/* vector-0 is associated to slow-path handler */
11872 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
11873 			 &lpfc_sli_sp_intr_handler, 0,
11874 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
11875 	if (rc) {
11876 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11877 				"0421 MSI-X slow-path request_irq failed "
11878 				"(%d)\n", rc);
11879 		goto msi_fail_out;
11880 	}
11881 
11882 	/* vector-1 is associated to fast-path handler */
11883 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
11884 			 &lpfc_sli_fp_intr_handler, 0,
11885 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
11886 
11887 	if (rc) {
11888 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11889 				"0429 MSI-X fast-path request_irq failed "
11890 				"(%d)\n", rc);
11891 		goto irq_fail_out;
11892 	}
11893 
11894 	/*
11895 	 * Configure HBA MSI-X attention conditions to messages
11896 	 */
11897 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11898 
11899 	if (!pmb) {
11900 		rc = -ENOMEM;
11901 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11902 				"0474 Unable to allocate memory for issuing "
11903 				"MBOX_CONFIG_MSI command\n");
11904 		goto mem_fail_out;
11905 	}
11906 	rc = lpfc_config_msi(phba, pmb);
11907 	if (rc)
11908 		goto mbx_fail_out;
11909 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
11910 	if (rc != MBX_SUCCESS) {
11911 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
11912 				"0351 Config MSI mailbox command failed, "
11913 				"mbxCmd x%x, mbxStatus x%x\n",
11914 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
11915 		goto mbx_fail_out;
11916 	}
11917 
11918 	/* Free memory allocated for mailbox command */
11919 	mempool_free(pmb, phba->mbox_mem_pool);
11920 	return rc;
11921 
11922 mbx_fail_out:
11923 	/* Free memory allocated for mailbox command */
11924 	mempool_free(pmb, phba->mbox_mem_pool);
11925 
11926 mem_fail_out:
11927 	/* free the irq already requested */
11928 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
11929 
11930 irq_fail_out:
11931 	/* free the irq already requested */
11932 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
11933 
11934 msi_fail_out:
11935 	/* Unconfigure MSI-X capability structure */
11936 	pci_free_irq_vectors(phba->pcidev);
11937 
11938 vec_fail_out:
11939 	return rc;
11940 }
11941 
11942 /**
11943  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
11944  * @phba: pointer to lpfc hba data structure.
11945  *
11946  * This routine is invoked to enable the MSI interrupt mode to device with
11947  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
11948  * enable the MSI vector. The device driver is responsible for calling the
11949  * request_irq() to register MSI vector with a interrupt the handler, which
11950  * is done in this function.
11951  *
11952  * Return codes
11953  * 	0 - successful
11954  * 	other values - error
11955  */
11956 static int
11957 lpfc_sli_enable_msi(struct lpfc_hba *phba)
11958 {
11959 	int rc;
11960 
11961 	rc = pci_enable_msi(phba->pcidev);
11962 	if (!rc)
11963 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11964 				"0462 PCI enable MSI mode success.\n");
11965 	else {
11966 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11967 				"0471 PCI enable MSI mode failed (%d)\n", rc);
11968 		return rc;
11969 	}
11970 
11971 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
11972 			 0, LPFC_DRIVER_NAME, phba);
11973 	if (rc) {
11974 		pci_disable_msi(phba->pcidev);
11975 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11976 				"0478 MSI request_irq failed (%d)\n", rc);
11977 	}
11978 	return rc;
11979 }
11980 
11981 /**
11982  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
11983  * @phba: pointer to lpfc hba data structure.
11984  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
11985  *
11986  * This routine is invoked to enable device interrupt and associate driver's
11987  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
11988  * spec. Depends on the interrupt mode configured to the driver, the driver
11989  * will try to fallback from the configured interrupt mode to an interrupt
11990  * mode which is supported by the platform, kernel, and device in the order
11991  * of:
11992  * MSI-X -> MSI -> IRQ.
11993  *
11994  * Return codes
11995  *   0 - successful
11996  *   other values - error
11997  **/
11998 static uint32_t
11999 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12000 {
12001 	uint32_t intr_mode = LPFC_INTR_ERROR;
12002 	int retval;
12003 
12004 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12005 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12006 	if (retval)
12007 		return intr_mode;
12008 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12009 
12010 	if (cfg_mode == 2) {
12011 		/* Now, try to enable MSI-X interrupt mode */
12012 		retval = lpfc_sli_enable_msix(phba);
12013 		if (!retval) {
12014 			/* Indicate initialization to MSI-X mode */
12015 			phba->intr_type = MSIX;
12016 			intr_mode = 2;
12017 		}
12018 	}
12019 
12020 	/* Fallback to MSI if MSI-X initialization failed */
12021 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12022 		retval = lpfc_sli_enable_msi(phba);
12023 		if (!retval) {
12024 			/* Indicate initialization to MSI mode */
12025 			phba->intr_type = MSI;
12026 			intr_mode = 1;
12027 		}
12028 	}
12029 
12030 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12031 	if (phba->intr_type == NONE) {
12032 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12033 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12034 		if (!retval) {
12035 			/* Indicate initialization to INTx mode */
12036 			phba->intr_type = INTx;
12037 			intr_mode = 0;
12038 		}
12039 	}
12040 	return intr_mode;
12041 }
12042 
12043 /**
12044  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12045  * @phba: pointer to lpfc hba data structure.
12046  *
12047  * This routine is invoked to disable device interrupt and disassociate the
12048  * driver's interrupt handler(s) from interrupt vector(s) to device with
12049  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12050  * release the interrupt vector(s) for the message signaled interrupt.
12051  **/
12052 static void
12053 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12054 {
12055 	int nr_irqs, i;
12056 
12057 	if (phba->intr_type == MSIX)
12058 		nr_irqs = LPFC_MSIX_VECTORS;
12059 	else
12060 		nr_irqs = 1;
12061 
12062 	for (i = 0; i < nr_irqs; i++)
12063 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12064 	pci_free_irq_vectors(phba->pcidev);
12065 
12066 	/* Reset interrupt management states */
12067 	phba->intr_type = NONE;
12068 	phba->sli.slistat.sli_intr = 0;
12069 }
12070 
12071 /**
12072  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12073  * @phba: pointer to lpfc hba data structure.
12074  * @id: EQ vector index or Hardware Queue index
12075  * @match: LPFC_FIND_BY_EQ = match by EQ
12076  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12077  * Return the CPU that matches the selection criteria
12078  */
12079 static uint16_t
12080 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12081 {
12082 	struct lpfc_vector_map_info *cpup;
12083 	int cpu;
12084 
12085 	/* Loop through all CPUs */
12086 	for_each_present_cpu(cpu) {
12087 		cpup = &phba->sli4_hba.cpu_map[cpu];
12088 
12089 		/* If we are matching by EQ, there may be multiple CPUs using
12090 		 * using the same vector, so select the one with
12091 		 * LPFC_CPU_FIRST_IRQ set.
12092 		 */
12093 		if ((match == LPFC_FIND_BY_EQ) &&
12094 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12095 		    (cpup->eq == id))
12096 			return cpu;
12097 
12098 		/* If matching by HDWQ, select the first CPU that matches */
12099 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12100 			return cpu;
12101 	}
12102 	return 0;
12103 }
12104 
12105 #ifdef CONFIG_X86
12106 /**
12107  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12108  * @phba: pointer to lpfc hba data structure.
12109  * @cpu: CPU map index
12110  * @phys_id: CPU package physical id
12111  * @core_id: CPU core id
12112  */
12113 static int
12114 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12115 		uint16_t phys_id, uint16_t core_id)
12116 {
12117 	struct lpfc_vector_map_info *cpup;
12118 	int idx;
12119 
12120 	for_each_present_cpu(idx) {
12121 		cpup = &phba->sli4_hba.cpu_map[idx];
12122 		/* Does the cpup match the one we are looking for */
12123 		if ((cpup->phys_id == phys_id) &&
12124 		    (cpup->core_id == core_id) &&
12125 		    (cpu != idx))
12126 			return 1;
12127 	}
12128 	return 0;
12129 }
12130 #endif
12131 
12132 /*
12133  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12134  * @phba: pointer to lpfc hba data structure.
12135  * @eqidx: index for eq and irq vector
12136  * @flag: flags to set for vector_map structure
12137  * @cpu: cpu used to index vector_map structure
12138  *
12139  * The routine assigns eq info into vector_map structure
12140  */
12141 static inline void
12142 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12143 			unsigned int cpu)
12144 {
12145 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12146 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12147 
12148 	cpup->eq = eqidx;
12149 	cpup->flag |= flag;
12150 
12151 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12152 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12153 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12154 }
12155 
12156 /**
12157  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12158  * @phba: pointer to lpfc hba data structure.
12159  *
12160  * The routine initializes the cpu_map array structure
12161  */
12162 static void
12163 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12164 {
12165 	struct lpfc_vector_map_info *cpup;
12166 	struct lpfc_eq_intr_info *eqi;
12167 	int cpu;
12168 
12169 	for_each_possible_cpu(cpu) {
12170 		cpup = &phba->sli4_hba.cpu_map[cpu];
12171 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12172 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12173 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12174 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12175 		cpup->flag = 0;
12176 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12177 		INIT_LIST_HEAD(&eqi->list);
12178 		eqi->icnt = 0;
12179 	}
12180 }
12181 
12182 /**
12183  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12184  * @phba: pointer to lpfc hba data structure.
12185  *
12186  * The routine initializes the hba_eq_hdl array structure
12187  */
12188 static void
12189 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12190 {
12191 	struct lpfc_hba_eq_hdl *eqhdl;
12192 	int i;
12193 
12194 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12195 		eqhdl = lpfc_get_eq_hdl(i);
12196 		eqhdl->irq = LPFC_VECTOR_MAP_EMPTY;
12197 		eqhdl->phba = phba;
12198 	}
12199 }
12200 
12201 /**
12202  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12203  * @phba: pointer to lpfc hba data structure.
12204  * @vectors: number of msix vectors allocated.
12205  *
12206  * The routine will figure out the CPU affinity assignment for every
12207  * MSI-X vector allocated for the HBA.
12208  * In addition, the CPU to IO channel mapping will be calculated
12209  * and the phba->sli4_hba.cpu_map array will reflect this.
12210  */
12211 static void
12212 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12213 {
12214 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12215 	int max_phys_id, min_phys_id;
12216 	int max_core_id, min_core_id;
12217 	struct lpfc_vector_map_info *cpup;
12218 	struct lpfc_vector_map_info *new_cpup;
12219 #ifdef CONFIG_X86
12220 	struct cpuinfo_x86 *cpuinfo;
12221 #endif
12222 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12223 	struct lpfc_hdwq_stat *c_stat;
12224 #endif
12225 
12226 	max_phys_id = 0;
12227 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12228 	max_core_id = 0;
12229 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12230 
12231 	/* Update CPU map with physical id and core id of each CPU */
12232 	for_each_present_cpu(cpu) {
12233 		cpup = &phba->sli4_hba.cpu_map[cpu];
12234 #ifdef CONFIG_X86
12235 		cpuinfo = &cpu_data(cpu);
12236 		cpup->phys_id = cpuinfo->phys_proc_id;
12237 		cpup->core_id = cpuinfo->cpu_core_id;
12238 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12239 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12240 #else
12241 		/* No distinction between CPUs for other platforms */
12242 		cpup->phys_id = 0;
12243 		cpup->core_id = cpu;
12244 #endif
12245 
12246 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12247 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12248 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12249 
12250 		if (cpup->phys_id > max_phys_id)
12251 			max_phys_id = cpup->phys_id;
12252 		if (cpup->phys_id < min_phys_id)
12253 			min_phys_id = cpup->phys_id;
12254 
12255 		if (cpup->core_id > max_core_id)
12256 			max_core_id = cpup->core_id;
12257 		if (cpup->core_id < min_core_id)
12258 			min_core_id = cpup->core_id;
12259 	}
12260 
12261 	/* After looking at each irq vector assigned to this pcidev, its
12262 	 * possible to see that not ALL CPUs have been accounted for.
12263 	 * Next we will set any unassigned (unaffinitized) cpu map
12264 	 * entries to a IRQ on the same phys_id.
12265 	 */
12266 	first_cpu = cpumask_first(cpu_present_mask);
12267 	start_cpu = first_cpu;
12268 
12269 	for_each_present_cpu(cpu) {
12270 		cpup = &phba->sli4_hba.cpu_map[cpu];
12271 
12272 		/* Is this CPU entry unassigned */
12273 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12274 			/* Mark CPU as IRQ not assigned by the kernel */
12275 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12276 
12277 			/* If so, find a new_cpup thats on the the SAME
12278 			 * phys_id as cpup. start_cpu will start where we
12279 			 * left off so all unassigned entries don't get assgined
12280 			 * the IRQ of the first entry.
12281 			 */
12282 			new_cpu = start_cpu;
12283 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12284 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12285 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12286 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12287 				    (new_cpup->phys_id == cpup->phys_id))
12288 					goto found_same;
12289 				new_cpu = cpumask_next(
12290 					new_cpu, cpu_present_mask);
12291 				if (new_cpu == nr_cpumask_bits)
12292 					new_cpu = first_cpu;
12293 			}
12294 			/* At this point, we leave the CPU as unassigned */
12295 			continue;
12296 found_same:
12297 			/* We found a matching phys_id, so copy the IRQ info */
12298 			cpup->eq = new_cpup->eq;
12299 
12300 			/* Bump start_cpu to the next slot to minmize the
12301 			 * chance of having multiple unassigned CPU entries
12302 			 * selecting the same IRQ.
12303 			 */
12304 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12305 			if (start_cpu == nr_cpumask_bits)
12306 				start_cpu = first_cpu;
12307 
12308 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12309 					"3337 Set Affinity: CPU %d "
12310 					"eq %d from peer cpu %d same "
12311 					"phys_id (%d)\n",
12312 					cpu, cpup->eq, new_cpu,
12313 					cpup->phys_id);
12314 		}
12315 	}
12316 
12317 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12318 	start_cpu = first_cpu;
12319 
12320 	for_each_present_cpu(cpu) {
12321 		cpup = &phba->sli4_hba.cpu_map[cpu];
12322 
12323 		/* Is this entry unassigned */
12324 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12325 			/* Mark it as IRQ not assigned by the kernel */
12326 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12327 
12328 			/* If so, find a new_cpup thats on ANY phys_id
12329 			 * as the cpup. start_cpu will start where we
12330 			 * left off so all unassigned entries don't get
12331 			 * assigned the IRQ of the first entry.
12332 			 */
12333 			new_cpu = start_cpu;
12334 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12335 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12336 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12337 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12338 					goto found_any;
12339 				new_cpu = cpumask_next(
12340 					new_cpu, cpu_present_mask);
12341 				if (new_cpu == nr_cpumask_bits)
12342 					new_cpu = first_cpu;
12343 			}
12344 			/* We should never leave an entry unassigned */
12345 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12346 					"3339 Set Affinity: CPU %d "
12347 					"eq %d UNASSIGNED\n",
12348 					cpup->hdwq, cpup->eq);
12349 			continue;
12350 found_any:
12351 			/* We found an available entry, copy the IRQ info */
12352 			cpup->eq = new_cpup->eq;
12353 
12354 			/* Bump start_cpu to the next slot to minmize the
12355 			 * chance of having multiple unassigned CPU entries
12356 			 * selecting the same IRQ.
12357 			 */
12358 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12359 			if (start_cpu == nr_cpumask_bits)
12360 				start_cpu = first_cpu;
12361 
12362 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12363 					"3338 Set Affinity: CPU %d "
12364 					"eq %d from peer cpu %d (%d/%d)\n",
12365 					cpu, cpup->eq, new_cpu,
12366 					new_cpup->phys_id, new_cpup->core_id);
12367 		}
12368 	}
12369 
12370 	/* Assign hdwq indices that are unique across all cpus in the map
12371 	 * that are also FIRST_CPUs.
12372 	 */
12373 	idx = 0;
12374 	for_each_present_cpu(cpu) {
12375 		cpup = &phba->sli4_hba.cpu_map[cpu];
12376 
12377 		/* Only FIRST IRQs get a hdwq index assignment. */
12378 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12379 			continue;
12380 
12381 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12382 		cpup->hdwq = idx;
12383 		idx++;
12384 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12385 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12386 				"hdwq %d eq %d flg x%x\n",
12387 				cpu, cpup->phys_id, cpup->core_id,
12388 				cpup->hdwq, cpup->eq, cpup->flag);
12389 	}
12390 	/* Associate a hdwq with each cpu_map entry
12391 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12392 	 * hardware queues then CPUs. For that case we will just round-robin
12393 	 * the available hardware queues as they get assigned to CPUs.
12394 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12395 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12396 	 * and needs to start at 0.
12397 	 */
12398 	next_idx = idx;
12399 	start_cpu = 0;
12400 	idx = 0;
12401 	for_each_present_cpu(cpu) {
12402 		cpup = &phba->sli4_hba.cpu_map[cpu];
12403 
12404 		/* FIRST cpus are already mapped. */
12405 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12406 			continue;
12407 
12408 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12409 		 * of the unassigned cpus to the next idx so that all
12410 		 * hdw queues are fully utilized.
12411 		 */
12412 		if (next_idx < phba->cfg_hdw_queue) {
12413 			cpup->hdwq = next_idx;
12414 			next_idx++;
12415 			continue;
12416 		}
12417 
12418 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12419 		 * Hardware Queue for another CPU, so be smart about it
12420 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12421 		 * (CPU package) and core_id.
12422 		 */
12423 		new_cpu = start_cpu;
12424 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12425 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12426 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12427 			    new_cpup->phys_id == cpup->phys_id &&
12428 			    new_cpup->core_id == cpup->core_id) {
12429 				goto found_hdwq;
12430 			}
12431 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12432 			if (new_cpu == nr_cpumask_bits)
12433 				new_cpu = first_cpu;
12434 		}
12435 
12436 		/* If we can't match both phys_id and core_id,
12437 		 * settle for just a phys_id match.
12438 		 */
12439 		new_cpu = start_cpu;
12440 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12441 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12442 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12443 			    new_cpup->phys_id == cpup->phys_id)
12444 				goto found_hdwq;
12445 
12446 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12447 			if (new_cpu == nr_cpumask_bits)
12448 				new_cpu = first_cpu;
12449 		}
12450 
12451 		/* Otherwise just round robin on cfg_hdw_queue */
12452 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12453 		idx++;
12454 		goto logit;
12455  found_hdwq:
12456 		/* We found an available entry, copy the IRQ info */
12457 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12458 		if (start_cpu == nr_cpumask_bits)
12459 			start_cpu = first_cpu;
12460 		cpup->hdwq = new_cpup->hdwq;
12461  logit:
12462 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12463 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12464 				"hdwq %d eq %d flg x%x\n",
12465 				cpu, cpup->phys_id, cpup->core_id,
12466 				cpup->hdwq, cpup->eq, cpup->flag);
12467 	}
12468 
12469 	/*
12470 	 * Initialize the cpu_map slots for not-present cpus in case
12471 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12472 	 */
12473 	idx = 0;
12474 	for_each_possible_cpu(cpu) {
12475 		cpup = &phba->sli4_hba.cpu_map[cpu];
12476 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12477 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12478 		c_stat->hdwq_no = cpup->hdwq;
12479 #endif
12480 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12481 			continue;
12482 
12483 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12484 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12485 		c_stat->hdwq_no = cpup->hdwq;
12486 #endif
12487 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12488 				"3340 Set Affinity: not present "
12489 				"CPU %d hdwq %d\n",
12490 				cpu, cpup->hdwq);
12491 	}
12492 
12493 	/* The cpu_map array will be used later during initialization
12494 	 * when EQ / CQ / WQs are allocated and configured.
12495 	 */
12496 	return;
12497 }
12498 
12499 /**
12500  * lpfc_cpuhp_get_eq
12501  *
12502  * @phba:   pointer to lpfc hba data structure.
12503  * @cpu:    cpu going offline
12504  * @eqlist: eq list to append to
12505  */
12506 static int
12507 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12508 		  struct list_head *eqlist)
12509 {
12510 	const struct cpumask *maskp;
12511 	struct lpfc_queue *eq;
12512 	struct cpumask *tmp;
12513 	u16 idx;
12514 
12515 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12516 	if (!tmp)
12517 		return -ENOMEM;
12518 
12519 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12520 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12521 		if (!maskp)
12522 			continue;
12523 		/*
12524 		 * if irq is not affinitized to the cpu going
12525 		 * then we don't need to poll the eq attached
12526 		 * to it.
12527 		 */
12528 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12529 			continue;
12530 		/* get the cpus that are online and are affini-
12531 		 * tized to this irq vector.  If the count is
12532 		 * more than 1 then cpuhp is not going to shut-
12533 		 * down this vector.  Since this cpu has not
12534 		 * gone offline yet, we need >1.
12535 		 */
12536 		cpumask_and(tmp, maskp, cpu_online_mask);
12537 		if (cpumask_weight(tmp) > 1)
12538 			continue;
12539 
12540 		/* Now that we have an irq to shutdown, get the eq
12541 		 * mapped to this irq.  Note: multiple hdwq's in
12542 		 * the software can share an eq, but eventually
12543 		 * only eq will be mapped to this vector
12544 		 */
12545 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12546 		list_add(&eq->_poll_list, eqlist);
12547 	}
12548 	kfree(tmp);
12549 	return 0;
12550 }
12551 
12552 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12553 {
12554 	if (phba->sli_rev != LPFC_SLI_REV4)
12555 		return;
12556 
12557 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12558 					    &phba->cpuhp);
12559 	/*
12560 	 * unregistering the instance doesn't stop the polling
12561 	 * timer. Wait for the poll timer to retire.
12562 	 */
12563 	synchronize_rcu();
12564 	del_timer_sync(&phba->cpuhp_poll_timer);
12565 }
12566 
12567 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12568 {
12569 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
12570 		return;
12571 
12572 	__lpfc_cpuhp_remove(phba);
12573 }
12574 
12575 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12576 {
12577 	if (phba->sli_rev != LPFC_SLI_REV4)
12578 		return;
12579 
12580 	rcu_read_lock();
12581 
12582 	if (!list_empty(&phba->poll_list))
12583 		mod_timer(&phba->cpuhp_poll_timer,
12584 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12585 
12586 	rcu_read_unlock();
12587 
12588 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12589 					 &phba->cpuhp);
12590 }
12591 
12592 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12593 {
12594 	if (phba->pport->load_flag & FC_UNLOADING) {
12595 		*retval = -EAGAIN;
12596 		return true;
12597 	}
12598 
12599 	if (phba->sli_rev != LPFC_SLI_REV4) {
12600 		*retval = 0;
12601 		return true;
12602 	}
12603 
12604 	/* proceed with the hotplug */
12605 	return false;
12606 }
12607 
12608 /**
12609  * lpfc_irq_set_aff - set IRQ affinity
12610  * @eqhdl: EQ handle
12611  * @cpu: cpu to set affinity
12612  *
12613  **/
12614 static inline void
12615 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12616 {
12617 	cpumask_clear(&eqhdl->aff_mask);
12618 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12619 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12620 	irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask);
12621 }
12622 
12623 /**
12624  * lpfc_irq_clear_aff - clear IRQ affinity
12625  * @eqhdl: EQ handle
12626  *
12627  **/
12628 static inline void
12629 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12630 {
12631 	cpumask_clear(&eqhdl->aff_mask);
12632 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12633 }
12634 
12635 /**
12636  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12637  * @phba: pointer to HBA context object.
12638  * @cpu: cpu going offline/online
12639  * @offline: true, cpu is going offline. false, cpu is coming online.
12640  *
12641  * If cpu is going offline, we'll try our best effort to find the next
12642  * online cpu on the phba's original_mask and migrate all offlining IRQ
12643  * affinities.
12644  *
12645  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12646  *
12647  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12648  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12649  *
12650  **/
12651 static void
12652 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12653 {
12654 	struct lpfc_vector_map_info *cpup;
12655 	struct cpumask *aff_mask;
12656 	unsigned int cpu_select, cpu_next, idx;
12657 	const struct cpumask *orig_mask;
12658 
12659 	if (phba->irq_chann_mode == NORMAL_MODE)
12660 		return;
12661 
12662 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12663 
12664 	if (!cpumask_test_cpu(cpu, orig_mask))
12665 		return;
12666 
12667 	cpup = &phba->sli4_hba.cpu_map[cpu];
12668 
12669 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12670 		return;
12671 
12672 	if (offline) {
12673 		/* Find next online CPU on original mask */
12674 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12675 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12676 
12677 		/* Found a valid CPU */
12678 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12679 			/* Go through each eqhdl and ensure offlining
12680 			 * cpu aff_mask is migrated
12681 			 */
12682 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12683 				aff_mask = lpfc_get_aff_mask(idx);
12684 
12685 				/* Migrate affinity */
12686 				if (cpumask_test_cpu(cpu, aff_mask))
12687 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12688 							 cpu_select);
12689 			}
12690 		} else {
12691 			/* Rely on irqbalance if no online CPUs left on NUMA */
12692 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12693 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12694 		}
12695 	} else {
12696 		/* Migrate affinity back to this CPU */
12697 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12698 	}
12699 }
12700 
12701 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12702 {
12703 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12704 	struct lpfc_queue *eq, *next;
12705 	LIST_HEAD(eqlist);
12706 	int retval;
12707 
12708 	if (!phba) {
12709 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12710 		return 0;
12711 	}
12712 
12713 	if (__lpfc_cpuhp_checks(phba, &retval))
12714 		return retval;
12715 
12716 	lpfc_irq_rebalance(phba, cpu, true);
12717 
12718 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12719 	if (retval)
12720 		return retval;
12721 
12722 	/* start polling on these eq's */
12723 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12724 		list_del_init(&eq->_poll_list);
12725 		lpfc_sli4_start_polling(eq);
12726 	}
12727 
12728 	return 0;
12729 }
12730 
12731 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12732 {
12733 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12734 	struct lpfc_queue *eq, *next;
12735 	unsigned int n;
12736 	int retval;
12737 
12738 	if (!phba) {
12739 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12740 		return 0;
12741 	}
12742 
12743 	if (__lpfc_cpuhp_checks(phba, &retval))
12744 		return retval;
12745 
12746 	lpfc_irq_rebalance(phba, cpu, false);
12747 
12748 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12749 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12750 		if (n == cpu)
12751 			lpfc_sli4_stop_polling(eq);
12752 	}
12753 
12754 	return 0;
12755 }
12756 
12757 /**
12758  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12759  * @phba: pointer to lpfc hba data structure.
12760  *
12761  * This routine is invoked to enable the MSI-X interrupt vectors to device
12762  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12763  * to cpus on the system.
12764  *
12765  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12766  * the number of cpus on the same numa node as this adapter.  The vectors are
12767  * allocated without requesting OS affinity mapping.  A vector will be
12768  * allocated and assigned to each online and offline cpu.  If the cpu is
12769  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12770  * affinity will be set to the nearest peer cpu within the numa node that is
12771  * online.  If there are no online cpus within the numa node, affinity is not
12772  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12773  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12774  * configured.
12775  *
12776  * If numa mode is not enabled and there is more than 1 vector allocated, then
12777  * the driver relies on the managed irq interface where the OS assigns vector to
12778  * cpu affinity.  The driver will then use that affinity mapping to setup its
12779  * cpu mapping table.
12780  *
12781  * Return codes
12782  * 0 - successful
12783  * other values - error
12784  **/
12785 static int
12786 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
12787 {
12788 	int vectors, rc, index;
12789 	char *name;
12790 	const struct cpumask *aff_mask = NULL;
12791 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
12792 	struct lpfc_vector_map_info *cpup;
12793 	struct lpfc_hba_eq_hdl *eqhdl;
12794 	const struct cpumask *maskp;
12795 	unsigned int flags = PCI_IRQ_MSIX;
12796 
12797 	/* Set up MSI-X multi-message vectors */
12798 	vectors = phba->cfg_irq_chann;
12799 
12800 	if (phba->irq_chann_mode != NORMAL_MODE)
12801 		aff_mask = &phba->sli4_hba.irq_aff_mask;
12802 
12803 	if (aff_mask) {
12804 		cpu_cnt = cpumask_weight(aff_mask);
12805 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
12806 
12807 		/* cpu: iterates over aff_mask including offline or online
12808 		 * cpu_select: iterates over online aff_mask to set affinity
12809 		 */
12810 		cpu = cpumask_first(aff_mask);
12811 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12812 	} else {
12813 		flags |= PCI_IRQ_AFFINITY;
12814 	}
12815 
12816 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
12817 	if (rc < 0) {
12818 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12819 				"0484 PCI enable MSI-X failed (%d)\n", rc);
12820 		goto vec_fail_out;
12821 	}
12822 	vectors = rc;
12823 
12824 	/* Assign MSI-X vectors to interrupt handlers */
12825 	for (index = 0; index < vectors; index++) {
12826 		eqhdl = lpfc_get_eq_hdl(index);
12827 		name = eqhdl->handler_name;
12828 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
12829 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
12830 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
12831 
12832 		eqhdl->idx = index;
12833 		rc = request_irq(pci_irq_vector(phba->pcidev, index),
12834 			 &lpfc_sli4_hba_intr_handler, 0,
12835 			 name, eqhdl);
12836 		if (rc) {
12837 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12838 					"0486 MSI-X fast-path (%d) "
12839 					"request_irq failed (%d)\n", index, rc);
12840 			goto cfg_fail_out;
12841 		}
12842 
12843 		eqhdl->irq = pci_irq_vector(phba->pcidev, index);
12844 
12845 		if (aff_mask) {
12846 			/* If found a neighboring online cpu, set affinity */
12847 			if (cpu_select < nr_cpu_ids)
12848 				lpfc_irq_set_aff(eqhdl, cpu_select);
12849 
12850 			/* Assign EQ to cpu_map */
12851 			lpfc_assign_eq_map_info(phba, index,
12852 						LPFC_CPU_FIRST_IRQ,
12853 						cpu);
12854 
12855 			/* Iterate to next offline or online cpu in aff_mask */
12856 			cpu = cpumask_next(cpu, aff_mask);
12857 
12858 			/* Find next online cpu in aff_mask to set affinity */
12859 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12860 		} else if (vectors == 1) {
12861 			cpu = cpumask_first(cpu_present_mask);
12862 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
12863 						cpu);
12864 		} else {
12865 			maskp = pci_irq_get_affinity(phba->pcidev, index);
12866 
12867 			/* Loop through all CPUs associated with vector index */
12868 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
12869 				cpup = &phba->sli4_hba.cpu_map[cpu];
12870 
12871 				/* If this is the first CPU thats assigned to
12872 				 * this vector, set LPFC_CPU_FIRST_IRQ.
12873 				 *
12874 				 * With certain platforms its possible that irq
12875 				 * vectors are affinitized to all the cpu's.
12876 				 * This can result in each cpu_map.eq to be set
12877 				 * to the last vector, resulting in overwrite
12878 				 * of all the previous cpu_map.eq.  Ensure that
12879 				 * each vector receives a place in cpu_map.
12880 				 * Later call to lpfc_cpu_affinity_check will
12881 				 * ensure we are nicely balanced out.
12882 				 */
12883 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
12884 					continue;
12885 				lpfc_assign_eq_map_info(phba, index,
12886 							LPFC_CPU_FIRST_IRQ,
12887 							cpu);
12888 				break;
12889 			}
12890 		}
12891 	}
12892 
12893 	if (vectors != phba->cfg_irq_chann) {
12894 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12895 				"3238 Reducing IO channels to match number of "
12896 				"MSI-X vectors, requested %d got %d\n",
12897 				phba->cfg_irq_chann, vectors);
12898 		if (phba->cfg_irq_chann > vectors)
12899 			phba->cfg_irq_chann = vectors;
12900 	}
12901 
12902 	return rc;
12903 
12904 cfg_fail_out:
12905 	/* free the irq already requested */
12906 	for (--index; index >= 0; index--) {
12907 		eqhdl = lpfc_get_eq_hdl(index);
12908 		lpfc_irq_clear_aff(eqhdl);
12909 		irq_set_affinity_hint(eqhdl->irq, NULL);
12910 		free_irq(eqhdl->irq, eqhdl);
12911 	}
12912 
12913 	/* Unconfigure MSI-X capability structure */
12914 	pci_free_irq_vectors(phba->pcidev);
12915 
12916 vec_fail_out:
12917 	return rc;
12918 }
12919 
12920 /**
12921  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
12922  * @phba: pointer to lpfc hba data structure.
12923  *
12924  * This routine is invoked to enable the MSI interrupt mode to device with
12925  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
12926  * called to enable the MSI vector. The device driver is responsible for
12927  * calling the request_irq() to register MSI vector with a interrupt the
12928  * handler, which is done in this function.
12929  *
12930  * Return codes
12931  * 	0 - successful
12932  * 	other values - error
12933  **/
12934 static int
12935 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
12936 {
12937 	int rc, index;
12938 	unsigned int cpu;
12939 	struct lpfc_hba_eq_hdl *eqhdl;
12940 
12941 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
12942 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
12943 	if (rc > 0)
12944 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12945 				"0487 PCI enable MSI mode success.\n");
12946 	else {
12947 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12948 				"0488 PCI enable MSI mode failed (%d)\n", rc);
12949 		return rc ? rc : -1;
12950 	}
12951 
12952 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
12953 			 0, LPFC_DRIVER_NAME, phba);
12954 	if (rc) {
12955 		pci_free_irq_vectors(phba->pcidev);
12956 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12957 				"0490 MSI request_irq failed (%d)\n", rc);
12958 		return rc;
12959 	}
12960 
12961 	eqhdl = lpfc_get_eq_hdl(0);
12962 	eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
12963 
12964 	cpu = cpumask_first(cpu_present_mask);
12965 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
12966 
12967 	for (index = 0; index < phba->cfg_irq_chann; index++) {
12968 		eqhdl = lpfc_get_eq_hdl(index);
12969 		eqhdl->idx = index;
12970 	}
12971 
12972 	return 0;
12973 }
12974 
12975 /**
12976  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
12977  * @phba: pointer to lpfc hba data structure.
12978  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12979  *
12980  * This routine is invoked to enable device interrupt and associate driver's
12981  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
12982  * interface spec. Depends on the interrupt mode configured to the driver,
12983  * the driver will try to fallback from the configured interrupt mode to an
12984  * interrupt mode which is supported by the platform, kernel, and device in
12985  * the order of:
12986  * MSI-X -> MSI -> IRQ.
12987  *
12988  * Return codes
12989  * 	0 - successful
12990  * 	other values - error
12991  **/
12992 static uint32_t
12993 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12994 {
12995 	uint32_t intr_mode = LPFC_INTR_ERROR;
12996 	int retval, idx;
12997 
12998 	if (cfg_mode == 2) {
12999 		/* Preparation before conf_msi mbox cmd */
13000 		retval = 0;
13001 		if (!retval) {
13002 			/* Now, try to enable MSI-X interrupt mode */
13003 			retval = lpfc_sli4_enable_msix(phba);
13004 			if (!retval) {
13005 				/* Indicate initialization to MSI-X mode */
13006 				phba->intr_type = MSIX;
13007 				intr_mode = 2;
13008 			}
13009 		}
13010 	}
13011 
13012 	/* Fallback to MSI if MSI-X initialization failed */
13013 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13014 		retval = lpfc_sli4_enable_msi(phba);
13015 		if (!retval) {
13016 			/* Indicate initialization to MSI mode */
13017 			phba->intr_type = MSI;
13018 			intr_mode = 1;
13019 		}
13020 	}
13021 
13022 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13023 	if (phba->intr_type == NONE) {
13024 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13025 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13026 		if (!retval) {
13027 			struct lpfc_hba_eq_hdl *eqhdl;
13028 			unsigned int cpu;
13029 
13030 			/* Indicate initialization to INTx mode */
13031 			phba->intr_type = INTx;
13032 			intr_mode = 0;
13033 
13034 			eqhdl = lpfc_get_eq_hdl(0);
13035 			eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13036 
13037 			cpu = cpumask_first(cpu_present_mask);
13038 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13039 						cpu);
13040 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13041 				eqhdl = lpfc_get_eq_hdl(idx);
13042 				eqhdl->idx = idx;
13043 			}
13044 		}
13045 	}
13046 	return intr_mode;
13047 }
13048 
13049 /**
13050  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13051  * @phba: pointer to lpfc hba data structure.
13052  *
13053  * This routine is invoked to disable device interrupt and disassociate
13054  * the driver's interrupt handler(s) from interrupt vector(s) to device
13055  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13056  * will release the interrupt vector(s) for the message signaled interrupt.
13057  **/
13058 static void
13059 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13060 {
13061 	/* Disable the currently initialized interrupt mode */
13062 	if (phba->intr_type == MSIX) {
13063 		int index;
13064 		struct lpfc_hba_eq_hdl *eqhdl;
13065 
13066 		/* Free up MSI-X multi-message vectors */
13067 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13068 			eqhdl = lpfc_get_eq_hdl(index);
13069 			lpfc_irq_clear_aff(eqhdl);
13070 			irq_set_affinity_hint(eqhdl->irq, NULL);
13071 			free_irq(eqhdl->irq, eqhdl);
13072 		}
13073 	} else {
13074 		free_irq(phba->pcidev->irq, phba);
13075 	}
13076 
13077 	pci_free_irq_vectors(phba->pcidev);
13078 
13079 	/* Reset interrupt management states */
13080 	phba->intr_type = NONE;
13081 	phba->sli.slistat.sli_intr = 0;
13082 }
13083 
13084 /**
13085  * lpfc_unset_hba - Unset SLI3 hba device initialization
13086  * @phba: pointer to lpfc hba data structure.
13087  *
13088  * This routine is invoked to unset the HBA device initialization steps to
13089  * a device with SLI-3 interface spec.
13090  **/
13091 static void
13092 lpfc_unset_hba(struct lpfc_hba *phba)
13093 {
13094 	struct lpfc_vport *vport = phba->pport;
13095 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13096 
13097 	spin_lock_irq(shost->host_lock);
13098 	vport->load_flag |= FC_UNLOADING;
13099 	spin_unlock_irq(shost->host_lock);
13100 
13101 	kfree(phba->vpi_bmask);
13102 	kfree(phba->vpi_ids);
13103 
13104 	lpfc_stop_hba_timers(phba);
13105 
13106 	phba->pport->work_port_events = 0;
13107 
13108 	lpfc_sli_hba_down(phba);
13109 
13110 	lpfc_sli_brdrestart(phba);
13111 
13112 	lpfc_sli_disable_intr(phba);
13113 
13114 	return;
13115 }
13116 
13117 /**
13118  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13119  * @phba: Pointer to HBA context object.
13120  *
13121  * This function is called in the SLI4 code path to wait for completion
13122  * of device's XRIs exchange busy. It will check the XRI exchange busy
13123  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13124  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13125  * I/Os every 30 seconds, log error message, and wait forever. Only when
13126  * all XRI exchange busy complete, the driver unload shall proceed with
13127  * invoking the function reset ioctl mailbox command to the CNA and the
13128  * the rest of the driver unload resource release.
13129  **/
13130 static void
13131 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13132 {
13133 	struct lpfc_sli4_hdw_queue *qp;
13134 	int idx, ccnt;
13135 	int wait_time = 0;
13136 	int io_xri_cmpl = 1;
13137 	int nvmet_xri_cmpl = 1;
13138 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13139 
13140 	/* Driver just aborted IOs during the hba_unset process.  Pause
13141 	 * here to give the HBA time to complete the IO and get entries
13142 	 * into the abts lists.
13143 	 */
13144 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13145 
13146 	/* Wait for NVME pending IO to flush back to transport. */
13147 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13148 		lpfc_nvme_wait_for_io_drain(phba);
13149 
13150 	ccnt = 0;
13151 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13152 		qp = &phba->sli4_hba.hdwq[idx];
13153 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13154 		if (!io_xri_cmpl) /* if list is NOT empty */
13155 			ccnt++;
13156 	}
13157 	if (ccnt)
13158 		io_xri_cmpl = 0;
13159 
13160 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13161 		nvmet_xri_cmpl =
13162 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13163 	}
13164 
13165 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13166 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13167 			if (!nvmet_xri_cmpl)
13168 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13169 						"6424 NVMET XRI exchange busy "
13170 						"wait time: %d seconds.\n",
13171 						wait_time/1000);
13172 			if (!io_xri_cmpl)
13173 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13174 						"6100 IO XRI exchange busy "
13175 						"wait time: %d seconds.\n",
13176 						wait_time/1000);
13177 			if (!els_xri_cmpl)
13178 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13179 						"2878 ELS XRI exchange busy "
13180 						"wait time: %d seconds.\n",
13181 						wait_time/1000);
13182 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13183 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13184 		} else {
13185 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13186 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13187 		}
13188 
13189 		ccnt = 0;
13190 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13191 			qp = &phba->sli4_hba.hdwq[idx];
13192 			io_xri_cmpl = list_empty(
13193 			    &qp->lpfc_abts_io_buf_list);
13194 			if (!io_xri_cmpl) /* if list is NOT empty */
13195 				ccnt++;
13196 		}
13197 		if (ccnt)
13198 			io_xri_cmpl = 0;
13199 
13200 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13201 			nvmet_xri_cmpl = list_empty(
13202 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13203 		}
13204 		els_xri_cmpl =
13205 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13206 
13207 	}
13208 }
13209 
13210 /**
13211  * lpfc_sli4_hba_unset - Unset the fcoe hba
13212  * @phba: Pointer to HBA context object.
13213  *
13214  * This function is called in the SLI4 code path to reset the HBA's FCoE
13215  * function. The caller is not required to hold any lock. This routine
13216  * issues PCI function reset mailbox command to reset the FCoE function.
13217  * At the end of the function, it calls lpfc_hba_down_post function to
13218  * free any pending commands.
13219  **/
13220 static void
13221 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13222 {
13223 	int wait_cnt = 0;
13224 	LPFC_MBOXQ_t *mboxq;
13225 	struct pci_dev *pdev = phba->pcidev;
13226 
13227 	lpfc_stop_hba_timers(phba);
13228 	hrtimer_cancel(&phba->cmf_timer);
13229 
13230 	if (phba->pport)
13231 		phba->sli4_hba.intr_enable = 0;
13232 
13233 	/*
13234 	 * Gracefully wait out the potential current outstanding asynchronous
13235 	 * mailbox command.
13236 	 */
13237 
13238 	/* First, block any pending async mailbox command from posted */
13239 	spin_lock_irq(&phba->hbalock);
13240 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13241 	spin_unlock_irq(&phba->hbalock);
13242 	/* Now, trying to wait it out if we can */
13243 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13244 		msleep(10);
13245 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13246 			break;
13247 	}
13248 	/* Forcefully release the outstanding mailbox command if timed out */
13249 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13250 		spin_lock_irq(&phba->hbalock);
13251 		mboxq = phba->sli.mbox_active;
13252 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13253 		__lpfc_mbox_cmpl_put(phba, mboxq);
13254 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13255 		phba->sli.mbox_active = NULL;
13256 		spin_unlock_irq(&phba->hbalock);
13257 	}
13258 
13259 	/* Abort all iocbs associated with the hba */
13260 	lpfc_sli_hba_iocb_abort(phba);
13261 
13262 	/* Wait for completion of device XRI exchange busy */
13263 	lpfc_sli4_xri_exchange_busy_wait(phba);
13264 
13265 	/* per-phba callback de-registration for hotplug event */
13266 	if (phba->pport)
13267 		lpfc_cpuhp_remove(phba);
13268 
13269 	/* Disable PCI subsystem interrupt */
13270 	lpfc_sli4_disable_intr(phba);
13271 
13272 	/* Disable SR-IOV if enabled */
13273 	if (phba->cfg_sriov_nr_virtfn)
13274 		pci_disable_sriov(pdev);
13275 
13276 	/* Stop kthread signal shall trigger work_done one more time */
13277 	kthread_stop(phba->worker_thread);
13278 
13279 	/* Disable FW logging to host memory */
13280 	lpfc_ras_stop_fwlog(phba);
13281 
13282 	/* Unset the queues shared with the hardware then release all
13283 	 * allocated resources.
13284 	 */
13285 	lpfc_sli4_queue_unset(phba);
13286 	lpfc_sli4_queue_destroy(phba);
13287 
13288 	/* Reset SLI4 HBA FCoE function */
13289 	lpfc_pci_function_reset(phba);
13290 
13291 	/* Free RAS DMA memory */
13292 	if (phba->ras_fwlog.ras_enabled)
13293 		lpfc_sli4_ras_dma_free(phba);
13294 
13295 	/* Stop the SLI4 device port */
13296 	if (phba->pport)
13297 		phba->pport->work_port_events = 0;
13298 }
13299 
13300 static uint32_t
13301 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13302 {
13303 	uint32_t msb = 0;
13304 	uint32_t bit;
13305 
13306 	for (bit = 0; bit < 8; bit++) {
13307 		msb = (crc >> 31) & 1;
13308 		crc <<= 1;
13309 
13310 		if (msb ^ (byte & 1)) {
13311 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13312 			crc |= 1;
13313 		}
13314 		byte >>= 1;
13315 	}
13316 	return crc;
13317 }
13318 
13319 static uint32_t
13320 lpfc_cgn_reverse_bits(uint32_t wd)
13321 {
13322 	uint32_t result = 0;
13323 	uint32_t i;
13324 
13325 	for (i = 0; i < 32; i++) {
13326 		result <<= 1;
13327 		result |= (1 & (wd >> i));
13328 	}
13329 	return result;
13330 }
13331 
13332 /*
13333  * The routine corresponds with the algorithm the HBA firmware
13334  * uses to validate the data integrity.
13335  */
13336 uint32_t
13337 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13338 {
13339 	uint32_t  i;
13340 	uint32_t result;
13341 	uint8_t  *data = (uint8_t *)ptr;
13342 
13343 	for (i = 0; i < byteLen; ++i)
13344 		crc = lpfc_cgn_crc32(crc, data[i]);
13345 
13346 	result = ~lpfc_cgn_reverse_bits(crc);
13347 	return result;
13348 }
13349 
13350 void
13351 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13352 {
13353 	struct lpfc_cgn_info *cp;
13354 	struct timespec64 cmpl_time;
13355 	struct tm broken;
13356 	uint16_t size;
13357 	uint32_t crc;
13358 
13359 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13360 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13361 
13362 	if (!phba->cgn_i)
13363 		return;
13364 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13365 
13366 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13367 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13368 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13369 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13370 
13371 	atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
13372 	atomic64_set(&phba->cgn_acqe_stat.warn, 0);
13373 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13374 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13375 	atomic64_set(&phba->cgn_latency_evt, 0);
13376 	phba->cgn_evt_minute = 0;
13377 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13378 
13379 	memset(cp, 0xff, LPFC_CGN_DATA_SIZE);
13380 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13381 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13382 
13383 	/* cgn parameters */
13384 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13385 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13386 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13387 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13388 
13389 	ktime_get_real_ts64(&cmpl_time);
13390 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13391 
13392 	cp->cgn_info_month = broken.tm_mon + 1;
13393 	cp->cgn_info_day = broken.tm_mday;
13394 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13395 	cp->cgn_info_hour = broken.tm_hour;
13396 	cp->cgn_info_minute = broken.tm_min;
13397 	cp->cgn_info_second = broken.tm_sec;
13398 
13399 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13400 			"2643 CGNInfo Init: Start Time "
13401 			"%d/%d/%d %d:%d:%d\n",
13402 			cp->cgn_info_day, cp->cgn_info_month,
13403 			cp->cgn_info_year, cp->cgn_info_hour,
13404 			cp->cgn_info_minute, cp->cgn_info_second);
13405 
13406 	/* Fill in default LUN qdepth */
13407 	if (phba->pport) {
13408 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13409 		cp->cgn_lunq = cpu_to_le16(size);
13410 	}
13411 
13412 	/* last used Index initialized to 0xff already */
13413 
13414 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13415 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13416 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13417 	cp->cgn_info_crc = cpu_to_le32(crc);
13418 
13419 	phba->cgn_evt_timestamp = jiffies +
13420 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13421 }
13422 
13423 void
13424 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13425 {
13426 	struct lpfc_cgn_info *cp;
13427 	struct timespec64 cmpl_time;
13428 	struct tm broken;
13429 	uint32_t crc;
13430 
13431 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13432 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13433 
13434 	if (!phba->cgn_i)
13435 		return;
13436 
13437 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13438 	memset(&cp->cgn_stat_npm, 0, LPFC_CGN_STAT_SIZE);
13439 
13440 	ktime_get_real_ts64(&cmpl_time);
13441 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13442 
13443 	cp->cgn_stat_month = broken.tm_mon + 1;
13444 	cp->cgn_stat_day = broken.tm_mday;
13445 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13446 	cp->cgn_stat_hour = broken.tm_hour;
13447 	cp->cgn_stat_minute = broken.tm_min;
13448 
13449 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13450 			"2647 CGNstat Init: Start Time "
13451 			"%d/%d/%d %d:%d\n",
13452 			cp->cgn_stat_day, cp->cgn_stat_month,
13453 			cp->cgn_stat_year, cp->cgn_stat_hour,
13454 			cp->cgn_stat_minute);
13455 
13456 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13457 	cp->cgn_info_crc = cpu_to_le32(crc);
13458 }
13459 
13460 /**
13461  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13462  * @phba: Pointer to hba context object.
13463  * @reg: flag to determine register or unregister.
13464  */
13465 static int
13466 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13467 {
13468 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13469 	union  lpfc_sli4_cfg_shdr *shdr;
13470 	uint32_t shdr_status, shdr_add_status;
13471 	LPFC_MBOXQ_t *mboxq;
13472 	int length, rc;
13473 
13474 	if (!phba->cgn_i)
13475 		return -ENXIO;
13476 
13477 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13478 	if (!mboxq) {
13479 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13480 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13481 				"HBA state x%x reg %d\n",
13482 				phba->pport->port_state, reg);
13483 		return -ENOMEM;
13484 	}
13485 
13486 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13487 		sizeof(struct lpfc_sli4_cfg_mhdr));
13488 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13489 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13490 			 LPFC_SLI4_MBX_EMBED);
13491 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13492 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13493 	if (reg > 0)
13494 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13495 	else
13496 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13497 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13498 	reg_congestion_buf->addr_lo =
13499 		putPaddrLow(phba->cgn_i->phys);
13500 	reg_congestion_buf->addr_hi =
13501 		putPaddrHigh(phba->cgn_i->phys);
13502 
13503 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13504 	shdr = (union lpfc_sli4_cfg_shdr *)
13505 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13506 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13507 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13508 				 &shdr->response);
13509 	mempool_free(mboxq, phba->mbox_mem_pool);
13510 	if (shdr_status || shdr_add_status || rc) {
13511 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13512 				"2642 REG_CONGESTION_BUF mailbox "
13513 				"failed with status x%x add_status x%x,"
13514 				" mbx status x%x reg %d\n",
13515 				shdr_status, shdr_add_status, rc, reg);
13516 		return -ENXIO;
13517 	}
13518 	return 0;
13519 }
13520 
13521 int
13522 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13523 {
13524 	lpfc_cmf_stop(phba);
13525 	return __lpfc_reg_congestion_buf(phba, 0);
13526 }
13527 
13528 int
13529 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13530 {
13531 	return __lpfc_reg_congestion_buf(phba, 1);
13532 }
13533 
13534 /**
13535  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13536  * @phba: Pointer to HBA context object.
13537  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13538  *
13539  * This function is called in the SLI4 code path to read the port's
13540  * sli4 capabilities.
13541  *
13542  * This function may be be called from any context that can block-wait
13543  * for the completion.  The expectation is that this routine is called
13544  * typically from probe_one or from the online routine.
13545  **/
13546 int
13547 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13548 {
13549 	int rc;
13550 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13551 	struct lpfc_pc_sli4_params *sli4_params;
13552 	uint32_t mbox_tmo;
13553 	int length;
13554 	bool exp_wqcq_pages = true;
13555 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13556 
13557 	/*
13558 	 * By default, the driver assumes the SLI4 port requires RPI
13559 	 * header postings.  The SLI4_PARAM response will correct this
13560 	 * assumption.
13561 	 */
13562 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13563 
13564 	/* Read the port's SLI4 Config Parameters */
13565 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13566 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13567 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13568 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13569 			 length, LPFC_SLI4_MBX_EMBED);
13570 	if (!phba->sli4_hba.intr_enable)
13571 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13572 	else {
13573 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13574 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13575 	}
13576 	if (unlikely(rc))
13577 		return rc;
13578 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13579 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13580 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13581 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13582 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13583 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13584 					     mbx_sli4_parameters);
13585 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13586 					     mbx_sli4_parameters);
13587 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13588 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13589 	else
13590 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13591 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13592 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13593 					   mbx_sli4_parameters);
13594 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13595 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13596 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13597 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13598 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13599 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13600 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13601 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13602 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13603 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13604 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13605 					    mbx_sli4_parameters);
13606 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13607 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13608 					   mbx_sli4_parameters);
13609 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13610 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13611 
13612 	/* Check for Extended Pre-Registered SGL support */
13613 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13614 
13615 	/* Check for firmware nvme support */
13616 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13617 		     bf_get(cfg_xib, mbx_sli4_parameters));
13618 
13619 	if (rc) {
13620 		/* Save this to indicate the Firmware supports NVME */
13621 		sli4_params->nvme = 1;
13622 
13623 		/* Firmware NVME support, check driver FC4 NVME support */
13624 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13625 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13626 					"6133 Disabling NVME support: "
13627 					"FC4 type not supported: x%x\n",
13628 					phba->cfg_enable_fc4_type);
13629 			goto fcponly;
13630 		}
13631 	} else {
13632 		/* No firmware NVME support, check driver FC4 NVME support */
13633 		sli4_params->nvme = 0;
13634 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13635 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13636 					"6101 Disabling NVME support: Not "
13637 					"supported by firmware (%d %d) x%x\n",
13638 					bf_get(cfg_nvme, mbx_sli4_parameters),
13639 					bf_get(cfg_xib, mbx_sli4_parameters),
13640 					phba->cfg_enable_fc4_type);
13641 fcponly:
13642 			phba->nvmet_support = 0;
13643 			phba->cfg_nvmet_mrq = 0;
13644 			phba->cfg_nvme_seg_cnt = 0;
13645 
13646 			/* If no FC4 type support, move to just SCSI support */
13647 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13648 				return -ENODEV;
13649 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13650 		}
13651 	}
13652 
13653 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13654 	 * accommodate 512K and 1M IOs in a single nvme buf.
13655 	 */
13656 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13657 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13658 
13659 	/* Enable embedded Payload BDE if support is indicated */
13660 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13661 		phba->cfg_enable_pbde = 1;
13662 	else
13663 		phba->cfg_enable_pbde = 0;
13664 
13665 	/*
13666 	 * To support Suppress Response feature we must satisfy 3 conditions.
13667 	 * lpfc_suppress_rsp module parameter must be set (default).
13668 	 * In SLI4-Parameters Descriptor:
13669 	 * Extended Inline Buffers (XIB) must be supported.
13670 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13671 	 * (double negative).
13672 	 */
13673 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13674 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13675 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13676 	else
13677 		phba->cfg_suppress_rsp = 0;
13678 
13679 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13680 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13681 
13682 	/* Make sure that sge_supp_len can be handled by the driver */
13683 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13684 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13685 
13686 	/*
13687 	 * Check whether the adapter supports an embedded copy of the
13688 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13689 	 * to use this option, 128-byte WQEs must be used.
13690 	 */
13691 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13692 		phba->fcp_embed_io = 1;
13693 	else
13694 		phba->fcp_embed_io = 0;
13695 
13696 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13697 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13698 			bf_get(cfg_xib, mbx_sli4_parameters),
13699 			phba->cfg_enable_pbde,
13700 			phba->fcp_embed_io, sli4_params->nvme,
13701 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13702 
13703 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13704 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13705 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13706 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13707 		exp_wqcq_pages = false;
13708 
13709 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13710 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13711 	    exp_wqcq_pages &&
13712 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13713 		phba->enab_exp_wqcq_pages = 1;
13714 	else
13715 		phba->enab_exp_wqcq_pages = 0;
13716 	/*
13717 	 * Check if the SLI port supports MDS Diagnostics
13718 	 */
13719 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13720 		phba->mds_diags_support = 1;
13721 	else
13722 		phba->mds_diags_support = 0;
13723 
13724 	/*
13725 	 * Check if the SLI port supports NSLER
13726 	 */
13727 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13728 		phba->nsler = 1;
13729 	else
13730 		phba->nsler = 0;
13731 
13732 	return 0;
13733 }
13734 
13735 /**
13736  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13737  * @pdev: pointer to PCI device
13738  * @pid: pointer to PCI device identifier
13739  *
13740  * This routine is to be called to attach a device with SLI-3 interface spec
13741  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13742  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13743  * information of the device and driver to see if the driver state that it can
13744  * support this kind of device. If the match is successful, the driver core
13745  * invokes this routine. If this routine determines it can claim the HBA, it
13746  * does all the initialization that it needs to do to handle the HBA properly.
13747  *
13748  * Return code
13749  * 	0 - driver can claim the device
13750  * 	negative value - driver can not claim the device
13751  **/
13752 static int
13753 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13754 {
13755 	struct lpfc_hba   *phba;
13756 	struct lpfc_vport *vport = NULL;
13757 	struct Scsi_Host  *shost = NULL;
13758 	int error;
13759 	uint32_t cfg_mode, intr_mode;
13760 
13761 	/* Allocate memory for HBA structure */
13762 	phba = lpfc_hba_alloc(pdev);
13763 	if (!phba)
13764 		return -ENOMEM;
13765 
13766 	/* Perform generic PCI device enabling operation */
13767 	error = lpfc_enable_pci_dev(phba);
13768 	if (error)
13769 		goto out_free_phba;
13770 
13771 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13772 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13773 	if (error)
13774 		goto out_disable_pci_dev;
13775 
13776 	/* Set up SLI-3 specific device PCI memory space */
13777 	error = lpfc_sli_pci_mem_setup(phba);
13778 	if (error) {
13779 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13780 				"1402 Failed to set up pci memory space.\n");
13781 		goto out_disable_pci_dev;
13782 	}
13783 
13784 	/* Set up SLI-3 specific device driver resources */
13785 	error = lpfc_sli_driver_resource_setup(phba);
13786 	if (error) {
13787 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13788 				"1404 Failed to set up driver resource.\n");
13789 		goto out_unset_pci_mem_s3;
13790 	}
13791 
13792 	/* Initialize and populate the iocb list per host */
13793 
13794 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13795 	if (error) {
13796 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13797 				"1405 Failed to initialize iocb list.\n");
13798 		goto out_unset_driver_resource_s3;
13799 	}
13800 
13801 	/* Set up common device driver resources */
13802 	error = lpfc_setup_driver_resource_phase2(phba);
13803 	if (error) {
13804 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13805 				"1406 Failed to set up driver resource.\n");
13806 		goto out_free_iocb_list;
13807 	}
13808 
13809 	/* Get the default values for Model Name and Description */
13810 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
13811 
13812 	/* Create SCSI host to the physical port */
13813 	error = lpfc_create_shost(phba);
13814 	if (error) {
13815 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13816 				"1407 Failed to create scsi host.\n");
13817 		goto out_unset_driver_resource;
13818 	}
13819 
13820 	/* Configure sysfs attributes */
13821 	vport = phba->pport;
13822 	error = lpfc_alloc_sysfs_attr(vport);
13823 	if (error) {
13824 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13825 				"1476 Failed to allocate sysfs attr\n");
13826 		goto out_destroy_shost;
13827 	}
13828 
13829 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
13830 	/* Now, trying to enable interrupt and bring up the device */
13831 	cfg_mode = phba->cfg_use_msi;
13832 	while (true) {
13833 		/* Put device to a known state before enabling interrupt */
13834 		lpfc_stop_port(phba);
13835 		/* Configure and enable interrupt */
13836 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
13837 		if (intr_mode == LPFC_INTR_ERROR) {
13838 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13839 					"0431 Failed to enable interrupt.\n");
13840 			error = -ENODEV;
13841 			goto out_free_sysfs_attr;
13842 		}
13843 		/* SLI-3 HBA setup */
13844 		if (lpfc_sli_hba_setup(phba)) {
13845 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13846 					"1477 Failed to set up hba\n");
13847 			error = -ENODEV;
13848 			goto out_remove_device;
13849 		}
13850 
13851 		/* Wait 50ms for the interrupts of previous mailbox commands */
13852 		msleep(50);
13853 		/* Check active interrupts on message signaled interrupts */
13854 		if (intr_mode == 0 ||
13855 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
13856 			/* Log the current active interrupt mode */
13857 			phba->intr_mode = intr_mode;
13858 			lpfc_log_intr_mode(phba, intr_mode);
13859 			break;
13860 		} else {
13861 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13862 					"0447 Configure interrupt mode (%d) "
13863 					"failed active interrupt test.\n",
13864 					intr_mode);
13865 			/* Disable the current interrupt mode */
13866 			lpfc_sli_disable_intr(phba);
13867 			/* Try next level of interrupt mode */
13868 			cfg_mode = --intr_mode;
13869 		}
13870 	}
13871 
13872 	/* Perform post initialization setup */
13873 	lpfc_post_init_setup(phba);
13874 
13875 	/* Check if there are static vports to be created. */
13876 	lpfc_create_static_vport(phba);
13877 
13878 	return 0;
13879 
13880 out_remove_device:
13881 	lpfc_unset_hba(phba);
13882 out_free_sysfs_attr:
13883 	lpfc_free_sysfs_attr(vport);
13884 out_destroy_shost:
13885 	lpfc_destroy_shost(phba);
13886 out_unset_driver_resource:
13887 	lpfc_unset_driver_resource_phase2(phba);
13888 out_free_iocb_list:
13889 	lpfc_free_iocb_list(phba);
13890 out_unset_driver_resource_s3:
13891 	lpfc_sli_driver_resource_unset(phba);
13892 out_unset_pci_mem_s3:
13893 	lpfc_sli_pci_mem_unset(phba);
13894 out_disable_pci_dev:
13895 	lpfc_disable_pci_dev(phba);
13896 	if (shost)
13897 		scsi_host_put(shost);
13898 out_free_phba:
13899 	lpfc_hba_free(phba);
13900 	return error;
13901 }
13902 
13903 /**
13904  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
13905  * @pdev: pointer to PCI device
13906  *
13907  * This routine is to be called to disattach a device with SLI-3 interface
13908  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13909  * removed from PCI bus, it performs all the necessary cleanup for the HBA
13910  * device to be removed from the PCI subsystem properly.
13911  **/
13912 static void
13913 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
13914 {
13915 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
13916 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
13917 	struct lpfc_vport **vports;
13918 	struct lpfc_hba   *phba = vport->phba;
13919 	int i;
13920 
13921 	spin_lock_irq(&phba->hbalock);
13922 	vport->load_flag |= FC_UNLOADING;
13923 	spin_unlock_irq(&phba->hbalock);
13924 
13925 	lpfc_free_sysfs_attr(vport);
13926 
13927 	/* Release all the vports against this physical port */
13928 	vports = lpfc_create_vport_work_array(phba);
13929 	if (vports != NULL)
13930 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
13931 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
13932 				continue;
13933 			fc_vport_terminate(vports[i]->fc_vport);
13934 		}
13935 	lpfc_destroy_vport_work_array(phba, vports);
13936 
13937 	/* Remove FC host with the physical port */
13938 	fc_remove_host(shost);
13939 	scsi_remove_host(shost);
13940 
13941 	/* Clean up all nodes, mailboxes and IOs. */
13942 	lpfc_cleanup(vport);
13943 
13944 	/*
13945 	 * Bring down the SLI Layer. This step disable all interrupts,
13946 	 * clears the rings, discards all mailbox commands, and resets
13947 	 * the HBA.
13948 	 */
13949 
13950 	/* HBA interrupt will be disabled after this call */
13951 	lpfc_sli_hba_down(phba);
13952 	/* Stop kthread signal shall trigger work_done one more time */
13953 	kthread_stop(phba->worker_thread);
13954 	/* Final cleanup of txcmplq and reset the HBA */
13955 	lpfc_sli_brdrestart(phba);
13956 
13957 	kfree(phba->vpi_bmask);
13958 	kfree(phba->vpi_ids);
13959 
13960 	lpfc_stop_hba_timers(phba);
13961 	spin_lock_irq(&phba->port_list_lock);
13962 	list_del_init(&vport->listentry);
13963 	spin_unlock_irq(&phba->port_list_lock);
13964 
13965 	lpfc_debugfs_terminate(vport);
13966 
13967 	/* Disable SR-IOV if enabled */
13968 	if (phba->cfg_sriov_nr_virtfn)
13969 		pci_disable_sriov(pdev);
13970 
13971 	/* Disable interrupt */
13972 	lpfc_sli_disable_intr(phba);
13973 
13974 	scsi_host_put(shost);
13975 
13976 	/*
13977 	 * Call scsi_free before mem_free since scsi bufs are released to their
13978 	 * corresponding pools here.
13979 	 */
13980 	lpfc_scsi_free(phba);
13981 	lpfc_free_iocb_list(phba);
13982 
13983 	lpfc_mem_free_all(phba);
13984 
13985 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
13986 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
13987 
13988 	/* Free resources associated with SLI2 interface */
13989 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
13990 			  phba->slim2p.virt, phba->slim2p.phys);
13991 
13992 	/* unmap adapter SLIM and Control Registers */
13993 	iounmap(phba->ctrl_regs_memmap_p);
13994 	iounmap(phba->slim_memmap_p);
13995 
13996 	lpfc_hba_free(phba);
13997 
13998 	pci_release_mem_regions(pdev);
13999 	pci_disable_device(pdev);
14000 }
14001 
14002 /**
14003  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14004  * @dev_d: pointer to device
14005  *
14006  * This routine is to be called from the kernel's PCI subsystem to support
14007  * system Power Management (PM) to device with SLI-3 interface spec. When
14008  * PM invokes this method, it quiesces the device by stopping the driver's
14009  * worker thread for the device, turning off device's interrupt and DMA,
14010  * and bring the device offline. Note that as the driver implements the
14011  * minimum PM requirements to a power-aware driver's PM support for the
14012  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14013  * to the suspend() method call will be treated as SUSPEND and the driver will
14014  * fully reinitialize its device during resume() method call, the driver will
14015  * set device to PCI_D3hot state in PCI config space instead of setting it
14016  * according to the @msg provided by the PM.
14017  *
14018  * Return code
14019  * 	0 - driver suspended the device
14020  * 	Error otherwise
14021  **/
14022 static int __maybe_unused
14023 lpfc_pci_suspend_one_s3(struct device *dev_d)
14024 {
14025 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14026 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14027 
14028 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14029 			"0473 PCI device Power Management suspend.\n");
14030 
14031 	/* Bring down the device */
14032 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14033 	lpfc_offline(phba);
14034 	kthread_stop(phba->worker_thread);
14035 
14036 	/* Disable interrupt from device */
14037 	lpfc_sli_disable_intr(phba);
14038 
14039 	return 0;
14040 }
14041 
14042 /**
14043  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14044  * @dev_d: pointer to device
14045  *
14046  * This routine is to be called from the kernel's PCI subsystem to support
14047  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14048  * invokes this method, it restores the device's PCI config space state and
14049  * fully reinitializes the device and brings it online. Note that as the
14050  * driver implements the minimum PM requirements to a power-aware driver's
14051  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14052  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14053  * driver will fully reinitialize its device during resume() method call,
14054  * the device will be set to PCI_D0 directly in PCI config space before
14055  * restoring the state.
14056  *
14057  * Return code
14058  * 	0 - driver suspended the device
14059  * 	Error otherwise
14060  **/
14061 static int __maybe_unused
14062 lpfc_pci_resume_one_s3(struct device *dev_d)
14063 {
14064 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14065 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14066 	uint32_t intr_mode;
14067 	int error;
14068 
14069 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14070 			"0452 PCI device Power Management resume.\n");
14071 
14072 	/* Startup the kernel thread for this host adapter. */
14073 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14074 					"lpfc_worker_%d", phba->brd_no);
14075 	if (IS_ERR(phba->worker_thread)) {
14076 		error = PTR_ERR(phba->worker_thread);
14077 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14078 				"0434 PM resume failed to start worker "
14079 				"thread: error=x%x.\n", error);
14080 		return error;
14081 	}
14082 
14083 	/* Configure and enable interrupt */
14084 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14085 	if (intr_mode == LPFC_INTR_ERROR) {
14086 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14087 				"0430 PM resume Failed to enable interrupt\n");
14088 		return -EIO;
14089 	} else
14090 		phba->intr_mode = intr_mode;
14091 
14092 	/* Restart HBA and bring it online */
14093 	lpfc_sli_brdrestart(phba);
14094 	lpfc_online(phba);
14095 
14096 	/* Log the current active interrupt mode */
14097 	lpfc_log_intr_mode(phba, phba->intr_mode);
14098 
14099 	return 0;
14100 }
14101 
14102 /**
14103  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14104  * @phba: pointer to lpfc hba data structure.
14105  *
14106  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14107  * aborts all the outstanding SCSI I/Os to the pci device.
14108  **/
14109 static void
14110 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14111 {
14112 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14113 			"2723 PCI channel I/O abort preparing for recovery\n");
14114 
14115 	/*
14116 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14117 	 * and let the SCSI mid-layer to retry them to recover.
14118 	 */
14119 	lpfc_sli_abort_fcp_rings(phba);
14120 }
14121 
14122 /**
14123  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14124  * @phba: pointer to lpfc hba data structure.
14125  *
14126  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14127  * disables the device interrupt and pci device, and aborts the internal FCP
14128  * pending I/Os.
14129  **/
14130 static void
14131 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14132 {
14133 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14134 			"2710 PCI channel disable preparing for reset\n");
14135 
14136 	/* Block any management I/Os to the device */
14137 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14138 
14139 	/* Block all SCSI devices' I/Os on the host */
14140 	lpfc_scsi_dev_block(phba);
14141 
14142 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14143 	lpfc_sli_flush_io_rings(phba);
14144 
14145 	/* stop all timers */
14146 	lpfc_stop_hba_timers(phba);
14147 
14148 	/* Disable interrupt and pci device */
14149 	lpfc_sli_disable_intr(phba);
14150 	pci_disable_device(phba->pcidev);
14151 }
14152 
14153 /**
14154  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14155  * @phba: pointer to lpfc hba data structure.
14156  *
14157  * This routine is called to prepare the SLI3 device for PCI slot permanently
14158  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14159  * pending I/Os.
14160  **/
14161 static void
14162 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14163 {
14164 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14165 			"2711 PCI channel permanent disable for failure\n");
14166 	/* Block all SCSI devices' I/Os on the host */
14167 	lpfc_scsi_dev_block(phba);
14168 
14169 	/* stop all timers */
14170 	lpfc_stop_hba_timers(phba);
14171 
14172 	/* Clean up all driver's outstanding SCSI I/Os */
14173 	lpfc_sli_flush_io_rings(phba);
14174 }
14175 
14176 /**
14177  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14178  * @pdev: pointer to PCI device.
14179  * @state: the current PCI connection state.
14180  *
14181  * This routine is called from the PCI subsystem for I/O error handling to
14182  * device with SLI-3 interface spec. This function is called by the PCI
14183  * subsystem after a PCI bus error affecting this device has been detected.
14184  * When this function is invoked, it will need to stop all the I/Os and
14185  * interrupt(s) to the device. Once that is done, it will return
14186  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14187  * as desired.
14188  *
14189  * Return codes
14190  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14191  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14192  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14193  **/
14194 static pci_ers_result_t
14195 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14196 {
14197 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14198 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14199 
14200 	switch (state) {
14201 	case pci_channel_io_normal:
14202 		/* Non-fatal error, prepare for recovery */
14203 		lpfc_sli_prep_dev_for_recover(phba);
14204 		return PCI_ERS_RESULT_CAN_RECOVER;
14205 	case pci_channel_io_frozen:
14206 		/* Fatal error, prepare for slot reset */
14207 		lpfc_sli_prep_dev_for_reset(phba);
14208 		return PCI_ERS_RESULT_NEED_RESET;
14209 	case pci_channel_io_perm_failure:
14210 		/* Permanent failure, prepare for device down */
14211 		lpfc_sli_prep_dev_for_perm_failure(phba);
14212 		return PCI_ERS_RESULT_DISCONNECT;
14213 	default:
14214 		/* Unknown state, prepare and request slot reset */
14215 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14216 				"0472 Unknown PCI error state: x%x\n", state);
14217 		lpfc_sli_prep_dev_for_reset(phba);
14218 		return PCI_ERS_RESULT_NEED_RESET;
14219 	}
14220 }
14221 
14222 /**
14223  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14224  * @pdev: pointer to PCI device.
14225  *
14226  * This routine is called from the PCI subsystem for error handling to
14227  * device with SLI-3 interface spec. This is called after PCI bus has been
14228  * reset to restart the PCI card from scratch, as if from a cold-boot.
14229  * During the PCI subsystem error recovery, after driver returns
14230  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14231  * recovery and then call this routine before calling the .resume method
14232  * to recover the device. This function will initialize the HBA device,
14233  * enable the interrupt, but it will just put the HBA to offline state
14234  * without passing any I/O traffic.
14235  *
14236  * Return codes
14237  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14238  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14239  */
14240 static pci_ers_result_t
14241 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14242 {
14243 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14244 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14245 	struct lpfc_sli *psli = &phba->sli;
14246 	uint32_t intr_mode;
14247 
14248 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14249 	if (pci_enable_device_mem(pdev)) {
14250 		printk(KERN_ERR "lpfc: Cannot re-enable "
14251 			"PCI device after reset.\n");
14252 		return PCI_ERS_RESULT_DISCONNECT;
14253 	}
14254 
14255 	pci_restore_state(pdev);
14256 
14257 	/*
14258 	 * As the new kernel behavior of pci_restore_state() API call clears
14259 	 * device saved_state flag, need to save the restored state again.
14260 	 */
14261 	pci_save_state(pdev);
14262 
14263 	if (pdev->is_busmaster)
14264 		pci_set_master(pdev);
14265 
14266 	spin_lock_irq(&phba->hbalock);
14267 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14268 	spin_unlock_irq(&phba->hbalock);
14269 
14270 	/* Configure and enable interrupt */
14271 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14272 	if (intr_mode == LPFC_INTR_ERROR) {
14273 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14274 				"0427 Cannot re-enable interrupt after "
14275 				"slot reset.\n");
14276 		return PCI_ERS_RESULT_DISCONNECT;
14277 	} else
14278 		phba->intr_mode = intr_mode;
14279 
14280 	/* Take device offline, it will perform cleanup */
14281 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14282 	lpfc_offline(phba);
14283 	lpfc_sli_brdrestart(phba);
14284 
14285 	/* Log the current active interrupt mode */
14286 	lpfc_log_intr_mode(phba, phba->intr_mode);
14287 
14288 	return PCI_ERS_RESULT_RECOVERED;
14289 }
14290 
14291 /**
14292  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14293  * @pdev: pointer to PCI device
14294  *
14295  * This routine is called from the PCI subsystem for error handling to device
14296  * with SLI-3 interface spec. It is called when kernel error recovery tells
14297  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14298  * error recovery. After this call, traffic can start to flow from this device
14299  * again.
14300  */
14301 static void
14302 lpfc_io_resume_s3(struct pci_dev *pdev)
14303 {
14304 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14305 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14306 
14307 	/* Bring device online, it will be no-op for non-fatal error resume */
14308 	lpfc_online(phba);
14309 }
14310 
14311 /**
14312  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14313  * @phba: pointer to lpfc hba data structure.
14314  *
14315  * returns the number of ELS/CT IOCBs to reserve
14316  **/
14317 int
14318 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14319 {
14320 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14321 
14322 	if (phba->sli_rev == LPFC_SLI_REV4) {
14323 		if (max_xri <= 100)
14324 			return 10;
14325 		else if (max_xri <= 256)
14326 			return 25;
14327 		else if (max_xri <= 512)
14328 			return 50;
14329 		else if (max_xri <= 1024)
14330 			return 100;
14331 		else if (max_xri <= 1536)
14332 			return 150;
14333 		else if (max_xri <= 2048)
14334 			return 200;
14335 		else
14336 			return 250;
14337 	} else
14338 		return 0;
14339 }
14340 
14341 /**
14342  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14343  * @phba: pointer to lpfc hba data structure.
14344  *
14345  * returns the number of ELS/CT + NVMET IOCBs to reserve
14346  **/
14347 int
14348 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14349 {
14350 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14351 
14352 	if (phba->nvmet_support)
14353 		max_xri += LPFC_NVMET_BUF_POST;
14354 	return max_xri;
14355 }
14356 
14357 
14358 static int
14359 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14360 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14361 	const struct firmware *fw)
14362 {
14363 	int rc;
14364 	u8 sli_family;
14365 
14366 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14367 	/* Three cases:  (1) FW was not supported on the detected adapter.
14368 	 * (2) FW update has been locked out administratively.
14369 	 * (3) Some other error during FW update.
14370 	 * In each case, an unmaskable message is written to the console
14371 	 * for admin diagnosis.
14372 	 */
14373 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14374 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14375 	     magic_number != MAGIC_NUMBER_G6) ||
14376 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14377 	     magic_number != MAGIC_NUMBER_G7) ||
14378 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14379 	     magic_number != MAGIC_NUMBER_G7P)) {
14380 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14381 				"3030 This firmware version is not supported on"
14382 				" this HBA model. Device:%x Magic:%x Type:%x "
14383 				"ID:%x Size %d %zd\n",
14384 				phba->pcidev->device, magic_number, ftype, fid,
14385 				fsize, fw->size);
14386 		rc = -EINVAL;
14387 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14388 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14389 				"3021 Firmware downloads have been prohibited "
14390 				"by a system configuration setting on "
14391 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14392 				"%zd\n",
14393 				phba->pcidev->device, magic_number, ftype, fid,
14394 				fsize, fw->size);
14395 		rc = -EACCES;
14396 	} else {
14397 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14398 				"3022 FW Download failed. Add Status x%x "
14399 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14400 				"%zd\n",
14401 				offset, phba->pcidev->device, magic_number,
14402 				ftype, fid, fsize, fw->size);
14403 		rc = -EIO;
14404 	}
14405 	return rc;
14406 }
14407 
14408 /**
14409  * lpfc_write_firmware - attempt to write a firmware image to the port
14410  * @fw: pointer to firmware image returned from request_firmware.
14411  * @context: pointer to firmware image returned from request_firmware.
14412  *
14413  **/
14414 static void
14415 lpfc_write_firmware(const struct firmware *fw, void *context)
14416 {
14417 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14418 	char fwrev[FW_REV_STR_SIZE];
14419 	struct lpfc_grp_hdr *image;
14420 	struct list_head dma_buffer_list;
14421 	int i, rc = 0;
14422 	struct lpfc_dmabuf *dmabuf, *next;
14423 	uint32_t offset = 0, temp_offset = 0;
14424 	uint32_t magic_number, ftype, fid, fsize;
14425 
14426 	/* It can be null in no-wait mode, sanity check */
14427 	if (!fw) {
14428 		rc = -ENXIO;
14429 		goto out;
14430 	}
14431 	image = (struct lpfc_grp_hdr *)fw->data;
14432 
14433 	magic_number = be32_to_cpu(image->magic_number);
14434 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14435 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14436 	fsize = be32_to_cpu(image->size);
14437 
14438 	INIT_LIST_HEAD(&dma_buffer_list);
14439 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14440 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14441 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14442 				"3023 Updating Firmware, Current Version:%s "
14443 				"New Version:%s\n",
14444 				fwrev, image->revision);
14445 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14446 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14447 					 GFP_KERNEL);
14448 			if (!dmabuf) {
14449 				rc = -ENOMEM;
14450 				goto release_out;
14451 			}
14452 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14453 							  SLI4_PAGE_SIZE,
14454 							  &dmabuf->phys,
14455 							  GFP_KERNEL);
14456 			if (!dmabuf->virt) {
14457 				kfree(dmabuf);
14458 				rc = -ENOMEM;
14459 				goto release_out;
14460 			}
14461 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14462 		}
14463 		while (offset < fw->size) {
14464 			temp_offset = offset;
14465 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14466 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14467 					memcpy(dmabuf->virt,
14468 					       fw->data + temp_offset,
14469 					       fw->size - temp_offset);
14470 					temp_offset = fw->size;
14471 					break;
14472 				}
14473 				memcpy(dmabuf->virt, fw->data + temp_offset,
14474 				       SLI4_PAGE_SIZE);
14475 				temp_offset += SLI4_PAGE_SIZE;
14476 			}
14477 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14478 				    (fw->size - offset), &offset);
14479 			if (rc) {
14480 				rc = lpfc_log_write_firmware_error(phba, offset,
14481 								   magic_number,
14482 								   ftype,
14483 								   fid,
14484 								   fsize,
14485 								   fw);
14486 				goto release_out;
14487 			}
14488 		}
14489 		rc = offset;
14490 	} else
14491 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14492 				"3029 Skipped Firmware update, Current "
14493 				"Version:%s New Version:%s\n",
14494 				fwrev, image->revision);
14495 
14496 release_out:
14497 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14498 		list_del(&dmabuf->list);
14499 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14500 				  dmabuf->virt, dmabuf->phys);
14501 		kfree(dmabuf);
14502 	}
14503 	release_firmware(fw);
14504 out:
14505 	if (rc < 0)
14506 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14507 				"3062 Firmware update error, status %d.\n", rc);
14508 	else
14509 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14510 				"3024 Firmware update success: size %d.\n", rc);
14511 }
14512 
14513 /**
14514  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14515  * @phba: pointer to lpfc hba data structure.
14516  * @fw_upgrade: which firmware to update.
14517  *
14518  * This routine is called to perform Linux generic firmware upgrade on device
14519  * that supports such feature.
14520  **/
14521 int
14522 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14523 {
14524 	uint8_t file_name[ELX_MODEL_NAME_SIZE];
14525 	int ret;
14526 	const struct firmware *fw;
14527 
14528 	/* Only supported on SLI4 interface type 2 for now */
14529 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14530 	    LPFC_SLI_INTF_IF_TYPE_2)
14531 		return -EPERM;
14532 
14533 	snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
14534 
14535 	if (fw_upgrade == INT_FW_UPGRADE) {
14536 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14537 					file_name, &phba->pcidev->dev,
14538 					GFP_KERNEL, (void *)phba,
14539 					lpfc_write_firmware);
14540 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14541 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14542 		if (!ret)
14543 			lpfc_write_firmware(fw, (void *)phba);
14544 	} else {
14545 		ret = -EINVAL;
14546 	}
14547 
14548 	return ret;
14549 }
14550 
14551 /**
14552  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14553  * @pdev: pointer to PCI device
14554  * @pid: pointer to PCI device identifier
14555  *
14556  * This routine is called from the kernel's PCI subsystem to device with
14557  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14558  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14559  * information of the device and driver to see if the driver state that it
14560  * can support this kind of device. If the match is successful, the driver
14561  * core invokes this routine. If this routine determines it can claim the HBA,
14562  * it does all the initialization that it needs to do to handle the HBA
14563  * properly.
14564  *
14565  * Return code
14566  * 	0 - driver can claim the device
14567  * 	negative value - driver can not claim the device
14568  **/
14569 static int
14570 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14571 {
14572 	struct lpfc_hba   *phba;
14573 	struct lpfc_vport *vport = NULL;
14574 	struct Scsi_Host  *shost = NULL;
14575 	int error;
14576 	uint32_t cfg_mode, intr_mode;
14577 
14578 	/* Allocate memory for HBA structure */
14579 	phba = lpfc_hba_alloc(pdev);
14580 	if (!phba)
14581 		return -ENOMEM;
14582 
14583 	INIT_LIST_HEAD(&phba->poll_list);
14584 
14585 	/* Perform generic PCI device enabling operation */
14586 	error = lpfc_enable_pci_dev(phba);
14587 	if (error)
14588 		goto out_free_phba;
14589 
14590 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14591 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14592 	if (error)
14593 		goto out_disable_pci_dev;
14594 
14595 	/* Set up SLI-4 specific device PCI memory space */
14596 	error = lpfc_sli4_pci_mem_setup(phba);
14597 	if (error) {
14598 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14599 				"1410 Failed to set up pci memory space.\n");
14600 		goto out_disable_pci_dev;
14601 	}
14602 
14603 	/* Set up SLI-4 Specific device driver resources */
14604 	error = lpfc_sli4_driver_resource_setup(phba);
14605 	if (error) {
14606 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14607 				"1412 Failed to set up driver resource.\n");
14608 		goto out_unset_pci_mem_s4;
14609 	}
14610 
14611 	INIT_LIST_HEAD(&phba->active_rrq_list);
14612 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14613 
14614 	/* Set up common device driver resources */
14615 	error = lpfc_setup_driver_resource_phase2(phba);
14616 	if (error) {
14617 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14618 				"1414 Failed to set up driver resource.\n");
14619 		goto out_unset_driver_resource_s4;
14620 	}
14621 
14622 	/* Get the default values for Model Name and Description */
14623 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14624 
14625 	/* Now, trying to enable interrupt and bring up the device */
14626 	cfg_mode = phba->cfg_use_msi;
14627 
14628 	/* Put device to a known state before enabling interrupt */
14629 	phba->pport = NULL;
14630 	lpfc_stop_port(phba);
14631 
14632 	/* Init cpu_map array */
14633 	lpfc_cpu_map_array_init(phba);
14634 
14635 	/* Init hba_eq_hdl array */
14636 	lpfc_hba_eq_hdl_array_init(phba);
14637 
14638 	/* Configure and enable interrupt */
14639 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14640 	if (intr_mode == LPFC_INTR_ERROR) {
14641 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14642 				"0426 Failed to enable interrupt.\n");
14643 		error = -ENODEV;
14644 		goto out_unset_driver_resource;
14645 	}
14646 	/* Default to single EQ for non-MSI-X */
14647 	if (phba->intr_type != MSIX) {
14648 		phba->cfg_irq_chann = 1;
14649 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14650 			if (phba->nvmet_support)
14651 				phba->cfg_nvmet_mrq = 1;
14652 		}
14653 	}
14654 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14655 
14656 	/* Create SCSI host to the physical port */
14657 	error = lpfc_create_shost(phba);
14658 	if (error) {
14659 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14660 				"1415 Failed to create scsi host.\n");
14661 		goto out_disable_intr;
14662 	}
14663 	vport = phba->pport;
14664 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14665 
14666 	/* Configure sysfs attributes */
14667 	error = lpfc_alloc_sysfs_attr(vport);
14668 	if (error) {
14669 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14670 				"1416 Failed to allocate sysfs attr\n");
14671 		goto out_destroy_shost;
14672 	}
14673 
14674 	/* Set up SLI-4 HBA */
14675 	if (lpfc_sli4_hba_setup(phba)) {
14676 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14677 				"1421 Failed to set up hba\n");
14678 		error = -ENODEV;
14679 		goto out_free_sysfs_attr;
14680 	}
14681 
14682 	/* Log the current active interrupt mode */
14683 	phba->intr_mode = intr_mode;
14684 	lpfc_log_intr_mode(phba, intr_mode);
14685 
14686 	/* Perform post initialization setup */
14687 	lpfc_post_init_setup(phba);
14688 
14689 	/* NVME support in FW earlier in the driver load corrects the
14690 	 * FC4 type making a check for nvme_support unnecessary.
14691 	 */
14692 	if (phba->nvmet_support == 0) {
14693 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14694 			/* Create NVME binding with nvme_fc_transport. This
14695 			 * ensures the vport is initialized.  If the localport
14696 			 * create fails, it should not unload the driver to
14697 			 * support field issues.
14698 			 */
14699 			error = lpfc_nvme_create_localport(vport);
14700 			if (error) {
14701 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14702 						"6004 NVME registration "
14703 						"failed, error x%x\n",
14704 						error);
14705 			}
14706 		}
14707 	}
14708 
14709 	/* check for firmware upgrade or downgrade */
14710 	if (phba->cfg_request_firmware_upgrade)
14711 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14712 
14713 	/* Check if there are static vports to be created. */
14714 	lpfc_create_static_vport(phba);
14715 
14716 	/* Enable RAS FW log support */
14717 	lpfc_sli4_ras_setup(phba);
14718 
14719 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14720 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14721 
14722 	return 0;
14723 
14724 out_free_sysfs_attr:
14725 	lpfc_free_sysfs_attr(vport);
14726 out_destroy_shost:
14727 	lpfc_destroy_shost(phba);
14728 out_disable_intr:
14729 	lpfc_sli4_disable_intr(phba);
14730 out_unset_driver_resource:
14731 	lpfc_unset_driver_resource_phase2(phba);
14732 out_unset_driver_resource_s4:
14733 	lpfc_sli4_driver_resource_unset(phba);
14734 out_unset_pci_mem_s4:
14735 	lpfc_sli4_pci_mem_unset(phba);
14736 out_disable_pci_dev:
14737 	lpfc_disable_pci_dev(phba);
14738 	if (shost)
14739 		scsi_host_put(shost);
14740 out_free_phba:
14741 	lpfc_hba_free(phba);
14742 	return error;
14743 }
14744 
14745 /**
14746  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14747  * @pdev: pointer to PCI device
14748  *
14749  * This routine is called from the kernel's PCI subsystem to device with
14750  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14751  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14752  * device to be removed from the PCI subsystem properly.
14753  **/
14754 static void
14755 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14756 {
14757 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14758 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14759 	struct lpfc_vport **vports;
14760 	struct lpfc_hba *phba = vport->phba;
14761 	int i;
14762 
14763 	/* Mark the device unloading flag */
14764 	spin_lock_irq(&phba->hbalock);
14765 	vport->load_flag |= FC_UNLOADING;
14766 	spin_unlock_irq(&phba->hbalock);
14767 	if (phba->cgn_i)
14768 		lpfc_unreg_congestion_buf(phba);
14769 
14770 	lpfc_free_sysfs_attr(vport);
14771 
14772 	/* Release all the vports against this physical port */
14773 	vports = lpfc_create_vport_work_array(phba);
14774 	if (vports != NULL)
14775 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14776 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14777 				continue;
14778 			fc_vport_terminate(vports[i]->fc_vport);
14779 		}
14780 	lpfc_destroy_vport_work_array(phba, vports);
14781 
14782 	/* Remove FC host with the physical port */
14783 	fc_remove_host(shost);
14784 	scsi_remove_host(shost);
14785 
14786 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14787 	 * localports are destroyed after to cleanup all transport memory.
14788 	 */
14789 	lpfc_cleanup(vport);
14790 	lpfc_nvmet_destroy_targetport(phba);
14791 	lpfc_nvme_destroy_localport(vport);
14792 
14793 	/* De-allocate multi-XRI pools */
14794 	if (phba->cfg_xri_rebalancing)
14795 		lpfc_destroy_multixri_pools(phba);
14796 
14797 	/*
14798 	 * Bring down the SLI Layer. This step disables all interrupts,
14799 	 * clears the rings, discards all mailbox commands, and resets
14800 	 * the HBA FCoE function.
14801 	 */
14802 	lpfc_debugfs_terminate(vport);
14803 
14804 	lpfc_stop_hba_timers(phba);
14805 	spin_lock_irq(&phba->port_list_lock);
14806 	list_del_init(&vport->listentry);
14807 	spin_unlock_irq(&phba->port_list_lock);
14808 
14809 	/* Perform scsi free before driver resource_unset since scsi
14810 	 * buffers are released to their corresponding pools here.
14811 	 */
14812 	lpfc_io_free(phba);
14813 	lpfc_free_iocb_list(phba);
14814 	lpfc_sli4_hba_unset(phba);
14815 
14816 	lpfc_unset_driver_resource_phase2(phba);
14817 	lpfc_sli4_driver_resource_unset(phba);
14818 
14819 	/* Unmap adapter Control and Doorbell registers */
14820 	lpfc_sli4_pci_mem_unset(phba);
14821 
14822 	/* Release PCI resources and disable device's PCI function */
14823 	scsi_host_put(shost);
14824 	lpfc_disable_pci_dev(phba);
14825 
14826 	/* Finally, free the driver's device data structure */
14827 	lpfc_hba_free(phba);
14828 
14829 	return;
14830 }
14831 
14832 /**
14833  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
14834  * @dev_d: pointer to device
14835  *
14836  * This routine is called from the kernel's PCI subsystem to support system
14837  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
14838  * this method, it quiesces the device by stopping the driver's worker
14839  * thread for the device, turning off device's interrupt and DMA, and bring
14840  * the device offline. Note that as the driver implements the minimum PM
14841  * requirements to a power-aware driver's PM support for suspend/resume -- all
14842  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
14843  * method call will be treated as SUSPEND and the driver will fully
14844  * reinitialize its device during resume() method call, the driver will set
14845  * device to PCI_D3hot state in PCI config space instead of setting it
14846  * according to the @msg provided by the PM.
14847  *
14848  * Return code
14849  * 	0 - driver suspended the device
14850  * 	Error otherwise
14851  **/
14852 static int __maybe_unused
14853 lpfc_pci_suspend_one_s4(struct device *dev_d)
14854 {
14855 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14856 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14857 
14858 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14859 			"2843 PCI device Power Management suspend.\n");
14860 
14861 	/* Bring down the device */
14862 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14863 	lpfc_offline(phba);
14864 	kthread_stop(phba->worker_thread);
14865 
14866 	/* Disable interrupt from device */
14867 	lpfc_sli4_disable_intr(phba);
14868 	lpfc_sli4_queue_destroy(phba);
14869 
14870 	return 0;
14871 }
14872 
14873 /**
14874  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
14875  * @dev_d: pointer to device
14876  *
14877  * This routine is called from the kernel's PCI subsystem to support system
14878  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
14879  * this method, it restores the device's PCI config space state and fully
14880  * reinitializes the device and brings it online. Note that as the driver
14881  * implements the minimum PM requirements to a power-aware driver's PM for
14882  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14883  * to the suspend() method call will be treated as SUSPEND and the driver
14884  * will fully reinitialize its device during resume() method call, the device
14885  * will be set to PCI_D0 directly in PCI config space before restoring the
14886  * state.
14887  *
14888  * Return code
14889  * 	0 - driver suspended the device
14890  * 	Error otherwise
14891  **/
14892 static int __maybe_unused
14893 lpfc_pci_resume_one_s4(struct device *dev_d)
14894 {
14895 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14896 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14897 	uint32_t intr_mode;
14898 	int error;
14899 
14900 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14901 			"0292 PCI device Power Management resume.\n");
14902 
14903 	 /* Startup the kernel thread for this host adapter. */
14904 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14905 					"lpfc_worker_%d", phba->brd_no);
14906 	if (IS_ERR(phba->worker_thread)) {
14907 		error = PTR_ERR(phba->worker_thread);
14908 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14909 				"0293 PM resume failed to start worker "
14910 				"thread: error=x%x.\n", error);
14911 		return error;
14912 	}
14913 
14914 	/* Configure and enable interrupt */
14915 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
14916 	if (intr_mode == LPFC_INTR_ERROR) {
14917 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14918 				"0294 PM resume Failed to enable interrupt\n");
14919 		return -EIO;
14920 	} else
14921 		phba->intr_mode = intr_mode;
14922 
14923 	/* Restart HBA and bring it online */
14924 	lpfc_sli_brdrestart(phba);
14925 	lpfc_online(phba);
14926 
14927 	/* Log the current active interrupt mode */
14928 	lpfc_log_intr_mode(phba, phba->intr_mode);
14929 
14930 	return 0;
14931 }
14932 
14933 /**
14934  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
14935  * @phba: pointer to lpfc hba data structure.
14936  *
14937  * This routine is called to prepare the SLI4 device for PCI slot recover. It
14938  * aborts all the outstanding SCSI I/Os to the pci device.
14939  **/
14940 static void
14941 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
14942 {
14943 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14944 			"2828 PCI channel I/O abort preparing for recovery\n");
14945 	/*
14946 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14947 	 * and let the SCSI mid-layer to retry them to recover.
14948 	 */
14949 	lpfc_sli_abort_fcp_rings(phba);
14950 }
14951 
14952 /**
14953  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
14954  * @phba: pointer to lpfc hba data structure.
14955  *
14956  * This routine is called to prepare the SLI4 device for PCI slot reset. It
14957  * disables the device interrupt and pci device, and aborts the internal FCP
14958  * pending I/Os.
14959  **/
14960 static void
14961 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
14962 {
14963 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14964 			"2826 PCI channel disable preparing for reset\n");
14965 
14966 	/* Block any management I/Os to the device */
14967 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
14968 
14969 	/* Block all SCSI devices' I/Os on the host */
14970 	lpfc_scsi_dev_block(phba);
14971 
14972 	/* Flush all driver's outstanding I/Os as we are to reset */
14973 	lpfc_sli_flush_io_rings(phba);
14974 
14975 	/* stop all timers */
14976 	lpfc_stop_hba_timers(phba);
14977 
14978 	/* Disable interrupt and pci device */
14979 	lpfc_sli4_disable_intr(phba);
14980 	lpfc_sli4_queue_destroy(phba);
14981 	pci_disable_device(phba->pcidev);
14982 }
14983 
14984 /**
14985  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
14986  * @phba: pointer to lpfc hba data structure.
14987  *
14988  * This routine is called to prepare the SLI4 device for PCI slot permanently
14989  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14990  * pending I/Os.
14991  **/
14992 static void
14993 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14994 {
14995 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14996 			"2827 PCI channel permanent disable for failure\n");
14997 
14998 	/* Block all SCSI devices' I/Os on the host */
14999 	lpfc_scsi_dev_block(phba);
15000 
15001 	/* stop all timers */
15002 	lpfc_stop_hba_timers(phba);
15003 
15004 	/* Clean up all driver's outstanding I/Os */
15005 	lpfc_sli_flush_io_rings(phba);
15006 }
15007 
15008 /**
15009  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15010  * @pdev: pointer to PCI device.
15011  * @state: the current PCI connection state.
15012  *
15013  * This routine is called from the PCI subsystem for error handling to device
15014  * with SLI-4 interface spec. This function is called by the PCI subsystem
15015  * after a PCI bus error affecting this device has been detected. When this
15016  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15017  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15018  * for the PCI subsystem to perform proper recovery as desired.
15019  *
15020  * Return codes
15021  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15022  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15023  **/
15024 static pci_ers_result_t
15025 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15026 {
15027 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15028 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15029 
15030 	switch (state) {
15031 	case pci_channel_io_normal:
15032 		/* Non-fatal error, prepare for recovery */
15033 		lpfc_sli4_prep_dev_for_recover(phba);
15034 		return PCI_ERS_RESULT_CAN_RECOVER;
15035 	case pci_channel_io_frozen:
15036 		/* Fatal error, prepare for slot reset */
15037 		lpfc_sli4_prep_dev_for_reset(phba);
15038 		return PCI_ERS_RESULT_NEED_RESET;
15039 	case pci_channel_io_perm_failure:
15040 		/* Permanent failure, prepare for device down */
15041 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15042 		return PCI_ERS_RESULT_DISCONNECT;
15043 	default:
15044 		/* Unknown state, prepare and request slot reset */
15045 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15046 				"2825 Unknown PCI error state: x%x\n", state);
15047 		lpfc_sli4_prep_dev_for_reset(phba);
15048 		return PCI_ERS_RESULT_NEED_RESET;
15049 	}
15050 }
15051 
15052 /**
15053  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15054  * @pdev: pointer to PCI device.
15055  *
15056  * This routine is called from the PCI subsystem for error handling to device
15057  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15058  * restart the PCI card from scratch, as if from a cold-boot. During the
15059  * PCI subsystem error recovery, after the driver returns
15060  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15061  * recovery and then call this routine before calling the .resume method to
15062  * recover the device. This function will initialize the HBA device, enable
15063  * the interrupt, but it will just put the HBA to offline state without
15064  * passing any I/O traffic.
15065  *
15066  * Return codes
15067  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15068  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15069  */
15070 static pci_ers_result_t
15071 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15072 {
15073 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15074 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15075 	struct lpfc_sli *psli = &phba->sli;
15076 	uint32_t intr_mode;
15077 
15078 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15079 	if (pci_enable_device_mem(pdev)) {
15080 		printk(KERN_ERR "lpfc: Cannot re-enable "
15081 			"PCI device after reset.\n");
15082 		return PCI_ERS_RESULT_DISCONNECT;
15083 	}
15084 
15085 	pci_restore_state(pdev);
15086 
15087 	/*
15088 	 * As the new kernel behavior of pci_restore_state() API call clears
15089 	 * device saved_state flag, need to save the restored state again.
15090 	 */
15091 	pci_save_state(pdev);
15092 
15093 	if (pdev->is_busmaster)
15094 		pci_set_master(pdev);
15095 
15096 	spin_lock_irq(&phba->hbalock);
15097 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15098 	spin_unlock_irq(&phba->hbalock);
15099 
15100 	/* Configure and enable interrupt */
15101 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15102 	if (intr_mode == LPFC_INTR_ERROR) {
15103 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15104 				"2824 Cannot re-enable interrupt after "
15105 				"slot reset.\n");
15106 		return PCI_ERS_RESULT_DISCONNECT;
15107 	} else
15108 		phba->intr_mode = intr_mode;
15109 
15110 	/* Log the current active interrupt mode */
15111 	lpfc_log_intr_mode(phba, phba->intr_mode);
15112 
15113 	return PCI_ERS_RESULT_RECOVERED;
15114 }
15115 
15116 /**
15117  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15118  * @pdev: pointer to PCI device
15119  *
15120  * This routine is called from the PCI subsystem for error handling to device
15121  * with SLI-4 interface spec. It is called when kernel error recovery tells
15122  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15123  * error recovery. After this call, traffic can start to flow from this device
15124  * again.
15125  **/
15126 static void
15127 lpfc_io_resume_s4(struct pci_dev *pdev)
15128 {
15129 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15130 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15131 
15132 	/*
15133 	 * In case of slot reset, as function reset is performed through
15134 	 * mailbox command which needs DMA to be enabled, this operation
15135 	 * has to be moved to the io resume phase. Taking device offline
15136 	 * will perform the necessary cleanup.
15137 	 */
15138 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15139 		/* Perform device reset */
15140 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15141 		lpfc_offline(phba);
15142 		lpfc_sli_brdrestart(phba);
15143 		/* Bring the device back online */
15144 		lpfc_online(phba);
15145 	}
15146 }
15147 
15148 /**
15149  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15150  * @pdev: pointer to PCI device
15151  * @pid: pointer to PCI device identifier
15152  *
15153  * This routine is to be registered to the kernel's PCI subsystem. When an
15154  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15155  * at PCI device-specific information of the device and driver to see if the
15156  * driver state that it can support this kind of device. If the match is
15157  * successful, the driver core invokes this routine. This routine dispatches
15158  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15159  * do all the initialization that it needs to do to handle the HBA device
15160  * properly.
15161  *
15162  * Return code
15163  * 	0 - driver can claim the device
15164  * 	negative value - driver can not claim the device
15165  **/
15166 static int
15167 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15168 {
15169 	int rc;
15170 	struct lpfc_sli_intf intf;
15171 
15172 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15173 		return -ENODEV;
15174 
15175 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15176 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15177 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15178 	else
15179 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15180 
15181 	return rc;
15182 }
15183 
15184 /**
15185  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15186  * @pdev: pointer to PCI device
15187  *
15188  * This routine is to be registered to the kernel's PCI subsystem. When an
15189  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15190  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15191  * remove routine, which will perform all the necessary cleanup for the
15192  * device to be removed from the PCI subsystem properly.
15193  **/
15194 static void
15195 lpfc_pci_remove_one(struct pci_dev *pdev)
15196 {
15197 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15198 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15199 
15200 	switch (phba->pci_dev_grp) {
15201 	case LPFC_PCI_DEV_LP:
15202 		lpfc_pci_remove_one_s3(pdev);
15203 		break;
15204 	case LPFC_PCI_DEV_OC:
15205 		lpfc_pci_remove_one_s4(pdev);
15206 		break;
15207 	default:
15208 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15209 				"1424 Invalid PCI device group: 0x%x\n",
15210 				phba->pci_dev_grp);
15211 		break;
15212 	}
15213 	return;
15214 }
15215 
15216 /**
15217  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15218  * @dev: pointer to device
15219  *
15220  * This routine is to be registered to the kernel's PCI subsystem to support
15221  * system Power Management (PM). When PM invokes this method, it dispatches
15222  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15223  * suspend the device.
15224  *
15225  * Return code
15226  * 	0 - driver suspended the device
15227  * 	Error otherwise
15228  **/
15229 static int __maybe_unused
15230 lpfc_pci_suspend_one(struct device *dev)
15231 {
15232 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15233 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15234 	int rc = -ENODEV;
15235 
15236 	switch (phba->pci_dev_grp) {
15237 	case LPFC_PCI_DEV_LP:
15238 		rc = lpfc_pci_suspend_one_s3(dev);
15239 		break;
15240 	case LPFC_PCI_DEV_OC:
15241 		rc = lpfc_pci_suspend_one_s4(dev);
15242 		break;
15243 	default:
15244 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15245 				"1425 Invalid PCI device group: 0x%x\n",
15246 				phba->pci_dev_grp);
15247 		break;
15248 	}
15249 	return rc;
15250 }
15251 
15252 /**
15253  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15254  * @dev: pointer to device
15255  *
15256  * This routine is to be registered to the kernel's PCI subsystem to support
15257  * system Power Management (PM). When PM invokes this method, it dispatches
15258  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15259  * resume the device.
15260  *
15261  * Return code
15262  * 	0 - driver suspended the device
15263  * 	Error otherwise
15264  **/
15265 static int __maybe_unused
15266 lpfc_pci_resume_one(struct device *dev)
15267 {
15268 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15269 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15270 	int rc = -ENODEV;
15271 
15272 	switch (phba->pci_dev_grp) {
15273 	case LPFC_PCI_DEV_LP:
15274 		rc = lpfc_pci_resume_one_s3(dev);
15275 		break;
15276 	case LPFC_PCI_DEV_OC:
15277 		rc = lpfc_pci_resume_one_s4(dev);
15278 		break;
15279 	default:
15280 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15281 				"1426 Invalid PCI device group: 0x%x\n",
15282 				phba->pci_dev_grp);
15283 		break;
15284 	}
15285 	return rc;
15286 }
15287 
15288 /**
15289  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15290  * @pdev: pointer to PCI device.
15291  * @state: the current PCI connection state.
15292  *
15293  * This routine is registered to the PCI subsystem for error handling. This
15294  * function is called by the PCI subsystem after a PCI bus error affecting
15295  * this device has been detected. When this routine is invoked, it dispatches
15296  * the action to the proper SLI-3 or SLI-4 device error detected handling
15297  * routine, which will perform the proper error detected operation.
15298  *
15299  * Return codes
15300  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15301  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15302  **/
15303 static pci_ers_result_t
15304 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15305 {
15306 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15307 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15308 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15309 
15310 	switch (phba->pci_dev_grp) {
15311 	case LPFC_PCI_DEV_LP:
15312 		rc = lpfc_io_error_detected_s3(pdev, state);
15313 		break;
15314 	case LPFC_PCI_DEV_OC:
15315 		rc = lpfc_io_error_detected_s4(pdev, state);
15316 		break;
15317 	default:
15318 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15319 				"1427 Invalid PCI device group: 0x%x\n",
15320 				phba->pci_dev_grp);
15321 		break;
15322 	}
15323 	return rc;
15324 }
15325 
15326 /**
15327  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15328  * @pdev: pointer to PCI device.
15329  *
15330  * This routine is registered to the PCI subsystem for error handling. This
15331  * function is called after PCI bus has been reset to restart the PCI card
15332  * from scratch, as if from a cold-boot. When this routine is invoked, it
15333  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15334  * routine, which will perform the proper device reset.
15335  *
15336  * Return codes
15337  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15338  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15339  **/
15340 static pci_ers_result_t
15341 lpfc_io_slot_reset(struct pci_dev *pdev)
15342 {
15343 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15344 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15345 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15346 
15347 	switch (phba->pci_dev_grp) {
15348 	case LPFC_PCI_DEV_LP:
15349 		rc = lpfc_io_slot_reset_s3(pdev);
15350 		break;
15351 	case LPFC_PCI_DEV_OC:
15352 		rc = lpfc_io_slot_reset_s4(pdev);
15353 		break;
15354 	default:
15355 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15356 				"1428 Invalid PCI device group: 0x%x\n",
15357 				phba->pci_dev_grp);
15358 		break;
15359 	}
15360 	return rc;
15361 }
15362 
15363 /**
15364  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15365  * @pdev: pointer to PCI device
15366  *
15367  * This routine is registered to the PCI subsystem for error handling. It
15368  * is called when kernel error recovery tells the lpfc driver that it is
15369  * OK to resume normal PCI operation after PCI bus error recovery. When
15370  * this routine is invoked, it dispatches the action to the proper SLI-3
15371  * or SLI-4 device io_resume routine, which will resume the device operation.
15372  **/
15373 static void
15374 lpfc_io_resume(struct pci_dev *pdev)
15375 {
15376 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15377 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15378 
15379 	switch (phba->pci_dev_grp) {
15380 	case LPFC_PCI_DEV_LP:
15381 		lpfc_io_resume_s3(pdev);
15382 		break;
15383 	case LPFC_PCI_DEV_OC:
15384 		lpfc_io_resume_s4(pdev);
15385 		break;
15386 	default:
15387 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15388 				"1429 Invalid PCI device group: 0x%x\n",
15389 				phba->pci_dev_grp);
15390 		break;
15391 	}
15392 	return;
15393 }
15394 
15395 /**
15396  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15397  * @phba: pointer to lpfc hba data structure.
15398  *
15399  * This routine checks to see if OAS is supported for this adapter. If
15400  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15401  * the enable oas flag is cleared and the pool created for OAS device data
15402  * is destroyed.
15403  *
15404  **/
15405 static void
15406 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15407 {
15408 
15409 	if (!phba->cfg_EnableXLane)
15410 		return;
15411 
15412 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15413 		phba->cfg_fof = 1;
15414 	} else {
15415 		phba->cfg_fof = 0;
15416 		mempool_destroy(phba->device_data_mem_pool);
15417 		phba->device_data_mem_pool = NULL;
15418 	}
15419 
15420 	return;
15421 }
15422 
15423 /**
15424  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15425  * @phba: pointer to lpfc hba data structure.
15426  *
15427  * This routine checks to see if RAS is supported by the adapter. Check the
15428  * function through which RAS support enablement is to be done.
15429  **/
15430 void
15431 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15432 {
15433 	/* if ASIC_GEN_NUM >= 0xC) */
15434 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15435 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15436 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15437 		    LPFC_SLI_INTF_FAMILY_G6)) {
15438 		phba->ras_fwlog.ras_hwsupport = true;
15439 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15440 		    phba->cfg_ras_fwlog_buffsize)
15441 			phba->ras_fwlog.ras_enabled = true;
15442 		else
15443 			phba->ras_fwlog.ras_enabled = false;
15444 	} else {
15445 		phba->ras_fwlog.ras_hwsupport = false;
15446 	}
15447 }
15448 
15449 
15450 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15451 
15452 static const struct pci_error_handlers lpfc_err_handler = {
15453 	.error_detected = lpfc_io_error_detected,
15454 	.slot_reset = lpfc_io_slot_reset,
15455 	.resume = lpfc_io_resume,
15456 };
15457 
15458 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15459 			 lpfc_pci_suspend_one,
15460 			 lpfc_pci_resume_one);
15461 
15462 static struct pci_driver lpfc_driver = {
15463 	.name		= LPFC_DRIVER_NAME,
15464 	.id_table	= lpfc_id_table,
15465 	.probe		= lpfc_pci_probe_one,
15466 	.remove		= lpfc_pci_remove_one,
15467 	.shutdown	= lpfc_pci_remove_one,
15468 	.driver.pm	= &lpfc_pci_pm_ops_one,
15469 	.err_handler    = &lpfc_err_handler,
15470 };
15471 
15472 static const struct file_operations lpfc_mgmt_fop = {
15473 	.owner = THIS_MODULE,
15474 };
15475 
15476 static struct miscdevice lpfc_mgmt_dev = {
15477 	.minor = MISC_DYNAMIC_MINOR,
15478 	.name = "lpfcmgmt",
15479 	.fops = &lpfc_mgmt_fop,
15480 };
15481 
15482 /**
15483  * lpfc_init - lpfc module initialization routine
15484  *
15485  * This routine is to be invoked when the lpfc module is loaded into the
15486  * kernel. The special kernel macro module_init() is used to indicate the
15487  * role of this routine to the kernel as lpfc module entry point.
15488  *
15489  * Return codes
15490  *   0 - successful
15491  *   -ENOMEM - FC attach transport failed
15492  *   all others - failed
15493  */
15494 static int __init
15495 lpfc_init(void)
15496 {
15497 	int error = 0;
15498 
15499 	pr_info(LPFC_MODULE_DESC "\n");
15500 	pr_info(LPFC_COPYRIGHT "\n");
15501 
15502 	error = misc_register(&lpfc_mgmt_dev);
15503 	if (error)
15504 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15505 			"misc_register returned with status %d", error);
15506 
15507 	error = -ENOMEM;
15508 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15509 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15510 	lpfc_transport_template =
15511 				fc_attach_transport(&lpfc_transport_functions);
15512 	if (lpfc_transport_template == NULL)
15513 		goto unregister;
15514 	lpfc_vport_transport_template =
15515 		fc_attach_transport(&lpfc_vport_transport_functions);
15516 	if (lpfc_vport_transport_template == NULL) {
15517 		fc_release_transport(lpfc_transport_template);
15518 		goto unregister;
15519 	}
15520 	lpfc_wqe_cmd_template();
15521 	lpfc_nvmet_cmd_template();
15522 
15523 	/* Initialize in case vector mapping is needed */
15524 	lpfc_present_cpu = num_present_cpus();
15525 
15526 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15527 					"lpfc/sli4:online",
15528 					lpfc_cpu_online, lpfc_cpu_offline);
15529 	if (error < 0)
15530 		goto cpuhp_failure;
15531 	lpfc_cpuhp_state = error;
15532 
15533 	error = pci_register_driver(&lpfc_driver);
15534 	if (error)
15535 		goto unwind;
15536 
15537 	return error;
15538 
15539 unwind:
15540 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15541 cpuhp_failure:
15542 	fc_release_transport(lpfc_transport_template);
15543 	fc_release_transport(lpfc_vport_transport_template);
15544 unregister:
15545 	misc_deregister(&lpfc_mgmt_dev);
15546 
15547 	return error;
15548 }
15549 
15550 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15551 {
15552 	unsigned int start_idx;
15553 	unsigned int dbg_cnt;
15554 	unsigned int temp_idx;
15555 	int i;
15556 	int j = 0;
15557 	unsigned long rem_nsec, iflags;
15558 	bool log_verbose = false;
15559 	struct lpfc_vport *port_iterator;
15560 
15561 	/* Don't dump messages if we explicitly set log_verbose for the
15562 	 * physical port or any vport.
15563 	 */
15564 	if (phba->cfg_log_verbose)
15565 		return;
15566 
15567 	spin_lock_irqsave(&phba->port_list_lock, iflags);
15568 	list_for_each_entry(port_iterator, &phba->port_list, listentry) {
15569 		if (port_iterator->load_flag & FC_UNLOADING)
15570 			continue;
15571 		if (scsi_host_get(lpfc_shost_from_vport(port_iterator))) {
15572 			if (port_iterator->cfg_log_verbose)
15573 				log_verbose = true;
15574 
15575 			scsi_host_put(lpfc_shost_from_vport(port_iterator));
15576 
15577 			if (log_verbose) {
15578 				spin_unlock_irqrestore(&phba->port_list_lock,
15579 						       iflags);
15580 				return;
15581 			}
15582 		}
15583 	}
15584 	spin_unlock_irqrestore(&phba->port_list_lock, iflags);
15585 
15586 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15587 		return;
15588 
15589 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15590 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15591 	if (!dbg_cnt)
15592 		goto out;
15593 	temp_idx = start_idx;
15594 	if (dbg_cnt >= DBG_LOG_SZ) {
15595 		dbg_cnt = DBG_LOG_SZ;
15596 		temp_idx -= 1;
15597 	} else {
15598 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15599 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15600 		} else {
15601 			if (start_idx < dbg_cnt)
15602 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15603 			else
15604 				start_idx -= dbg_cnt;
15605 		}
15606 	}
15607 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15608 		 start_idx, temp_idx, dbg_cnt);
15609 
15610 	for (i = 0; i < dbg_cnt; i++) {
15611 		if ((start_idx + i) < DBG_LOG_SZ)
15612 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15613 		else
15614 			temp_idx = j++;
15615 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15616 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15617 			 temp_idx,
15618 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15619 			 rem_nsec / 1000,
15620 			 phba->dbg_log[temp_idx].log);
15621 	}
15622 out:
15623 	atomic_set(&phba->dbg_log_cnt, 0);
15624 	atomic_set(&phba->dbg_log_dmping, 0);
15625 }
15626 
15627 __printf(2, 3)
15628 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15629 {
15630 	unsigned int idx;
15631 	va_list args;
15632 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15633 	struct va_format vaf;
15634 
15635 
15636 	va_start(args, fmt);
15637 	if (unlikely(dbg_dmping)) {
15638 		vaf.fmt = fmt;
15639 		vaf.va = &args;
15640 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15641 		va_end(args);
15642 		return;
15643 	}
15644 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15645 		DBG_LOG_SZ;
15646 
15647 	atomic_inc(&phba->dbg_log_cnt);
15648 
15649 	vscnprintf(phba->dbg_log[idx].log,
15650 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15651 	va_end(args);
15652 
15653 	phba->dbg_log[idx].t_ns = local_clock();
15654 }
15655 
15656 /**
15657  * lpfc_exit - lpfc module removal routine
15658  *
15659  * This routine is invoked when the lpfc module is removed from the kernel.
15660  * The special kernel macro module_exit() is used to indicate the role of
15661  * this routine to the kernel as lpfc module exit point.
15662  */
15663 static void __exit
15664 lpfc_exit(void)
15665 {
15666 	misc_deregister(&lpfc_mgmt_dev);
15667 	pci_unregister_driver(&lpfc_driver);
15668 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15669 	fc_release_transport(lpfc_transport_template);
15670 	fc_release_transport(lpfc_vport_transport_template);
15671 	idr_destroy(&lpfc_hba_index);
15672 }
15673 
15674 module_init(lpfc_init);
15675 module_exit(lpfc_exit);
15676 MODULE_LICENSE("GPL");
15677 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15678 MODULE_AUTHOR("Broadcom");
15679 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15680