xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision a4e1d0b7)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/ctype.h>
34 #include <linux/aer.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/msi.h>
40 #include <linux/irq.h>
41 #include <linux/bitops.h>
42 #include <linux/crash_dump.h>
43 #include <linux/cpu.h>
44 #include <linux/cpuhotplug.h>
45 
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_transport_fc.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/fc/fc_fs.h>
52 
53 #include "lpfc_hw4.h"
54 #include "lpfc_hw.h"
55 #include "lpfc_sli.h"
56 #include "lpfc_sli4.h"
57 #include "lpfc_nl.h"
58 #include "lpfc_disc.h"
59 #include "lpfc.h"
60 #include "lpfc_scsi.h"
61 #include "lpfc_nvme.h"
62 #include "lpfc_logmsg.h"
63 #include "lpfc_crtn.h"
64 #include "lpfc_vport.h"
65 #include "lpfc_version.h"
66 #include "lpfc_ids.h"
67 
68 static enum cpuhp_state lpfc_cpuhp_state;
69 /* Used when mapping IRQ vectors in a driver centric manner */
70 static uint32_t lpfc_present_cpu;
71 static bool lpfc_pldv_detect;
72 
73 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
75 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
76 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
77 static int lpfc_post_rcv_buf(struct lpfc_hba *);
78 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
79 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
80 static int lpfc_setup_endian_order(struct lpfc_hba *);
81 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
82 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
83 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
84 static void lpfc_init_sgl_list(struct lpfc_hba *);
85 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
86 static void lpfc_free_active_sgl(struct lpfc_hba *);
87 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
88 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
89 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
91 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
92 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
93 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
94 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
95 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
96 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
97 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
99 
100 static struct scsi_transport_template *lpfc_transport_template = NULL;
101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
102 static DEFINE_IDR(lpfc_hba_index);
103 #define LPFC_NVMET_BUF_POST 254
104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
105 
106 /**
107  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
108  * @phba: pointer to lpfc hba data structure.
109  *
110  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
111  * mailbox command. It retrieves the revision information from the HBA and
112  * collects the Vital Product Data (VPD) about the HBA for preparing the
113  * configuration of the HBA.
114  *
115  * Return codes:
116  *   0 - success.
117  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
118  *   Any other value - indicates an error.
119  **/
120 int
121 lpfc_config_port_prep(struct lpfc_hba *phba)
122 {
123 	lpfc_vpd_t *vp = &phba->vpd;
124 	int i = 0, rc;
125 	LPFC_MBOXQ_t *pmb;
126 	MAILBOX_t *mb;
127 	char *lpfc_vpd_data = NULL;
128 	uint16_t offset = 0;
129 	static char licensed[56] =
130 		    "key unlock for use with gnu public licensed code only\0";
131 	static int init_key = 1;
132 
133 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
134 	if (!pmb) {
135 		phba->link_state = LPFC_HBA_ERROR;
136 		return -ENOMEM;
137 	}
138 
139 	mb = &pmb->u.mb;
140 	phba->link_state = LPFC_INIT_MBX_CMDS;
141 
142 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
143 		if (init_key) {
144 			uint32_t *ptext = (uint32_t *) licensed;
145 
146 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
147 				*ptext = cpu_to_be32(*ptext);
148 			init_key = 0;
149 		}
150 
151 		lpfc_read_nv(phba, pmb);
152 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
153 			sizeof (mb->un.varRDnvp.rsvd3));
154 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
155 			 sizeof (licensed));
156 
157 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
158 
159 		if (rc != MBX_SUCCESS) {
160 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
161 					"0324 Config Port initialization "
162 					"error, mbxCmd x%x READ_NVPARM, "
163 					"mbxStatus x%x\n",
164 					mb->mbxCommand, mb->mbxStatus);
165 			mempool_free(pmb, phba->mbox_mem_pool);
166 			return -ERESTART;
167 		}
168 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
169 		       sizeof(phba->wwnn));
170 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
171 		       sizeof(phba->wwpn));
172 	}
173 
174 	/*
175 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
176 	 * which was already set in lpfc_get_cfgparam()
177 	 */
178 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
179 
180 	/* Setup and issue mailbox READ REV command */
181 	lpfc_read_rev(phba, pmb);
182 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
183 	if (rc != MBX_SUCCESS) {
184 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
185 				"0439 Adapter failed to init, mbxCmd x%x "
186 				"READ_REV, mbxStatus x%x\n",
187 				mb->mbxCommand, mb->mbxStatus);
188 		mempool_free( pmb, phba->mbox_mem_pool);
189 		return -ERESTART;
190 	}
191 
192 
193 	/*
194 	 * The value of rr must be 1 since the driver set the cv field to 1.
195 	 * This setting requires the FW to set all revision fields.
196 	 */
197 	if (mb->un.varRdRev.rr == 0) {
198 		vp->rev.rBit = 0;
199 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
200 				"0440 Adapter failed to init, READ_REV has "
201 				"missing revision information.\n");
202 		mempool_free(pmb, phba->mbox_mem_pool);
203 		return -ERESTART;
204 	}
205 
206 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
207 		mempool_free(pmb, phba->mbox_mem_pool);
208 		return -EINVAL;
209 	}
210 
211 	/* Save information as VPD data */
212 	vp->rev.rBit = 1;
213 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
214 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
215 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
216 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
217 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
218 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
219 	vp->rev.smRev = mb->un.varRdRev.smRev;
220 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
221 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
222 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
223 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
224 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
225 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
226 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
227 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
228 
229 	/* If the sli feature level is less then 9, we must
230 	 * tear down all RPIs and VPIs on link down if NPIV
231 	 * is enabled.
232 	 */
233 	if (vp->rev.feaLevelHigh < 9)
234 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
235 
236 	if (lpfc_is_LC_HBA(phba->pcidev->device))
237 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
238 						sizeof (phba->RandomData));
239 
240 	/* Get adapter VPD information */
241 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
242 	if (!lpfc_vpd_data)
243 		goto out_free_mbox;
244 	do {
245 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
246 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
247 
248 		if (rc != MBX_SUCCESS) {
249 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
250 					"0441 VPD not present on adapter, "
251 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
252 					mb->mbxCommand, mb->mbxStatus);
253 			mb->un.varDmp.word_cnt = 0;
254 		}
255 		/* dump mem may return a zero when finished or we got a
256 		 * mailbox error, either way we are done.
257 		 */
258 		if (mb->un.varDmp.word_cnt == 0)
259 			break;
260 
261 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
262 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
263 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
264 				      lpfc_vpd_data + offset,
265 				      mb->un.varDmp.word_cnt);
266 		offset += mb->un.varDmp.word_cnt;
267 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
268 
269 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
270 
271 	kfree(lpfc_vpd_data);
272 out_free_mbox:
273 	mempool_free(pmb, phba->mbox_mem_pool);
274 	return 0;
275 }
276 
277 /**
278  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
279  * @phba: pointer to lpfc hba data structure.
280  * @pmboxq: pointer to the driver internal queue element for mailbox command.
281  *
282  * This is the completion handler for driver's configuring asynchronous event
283  * mailbox command to the device. If the mailbox command returns successfully,
284  * it will set internal async event support flag to 1; otherwise, it will
285  * set internal async event support flag to 0.
286  **/
287 static void
288 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
289 {
290 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
291 		phba->temp_sensor_support = 1;
292 	else
293 		phba->temp_sensor_support = 0;
294 	mempool_free(pmboxq, phba->mbox_mem_pool);
295 	return;
296 }
297 
298 /**
299  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
300  * @phba: pointer to lpfc hba data structure.
301  * @pmboxq: pointer to the driver internal queue element for mailbox command.
302  *
303  * This is the completion handler for dump mailbox command for getting
304  * wake up parameters. When this command complete, the response contain
305  * Option rom version of the HBA. This function translate the version number
306  * into a human readable string and store it in OptionROMVersion.
307  **/
308 static void
309 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
310 {
311 	struct prog_id *prg;
312 	uint32_t prog_id_word;
313 	char dist = ' ';
314 	/* character array used for decoding dist type. */
315 	char dist_char[] = "nabx";
316 
317 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
318 		mempool_free(pmboxq, phba->mbox_mem_pool);
319 		return;
320 	}
321 
322 	prg = (struct prog_id *) &prog_id_word;
323 
324 	/* word 7 contain option rom version */
325 	prog_id_word = pmboxq->u.mb.un.varWords[7];
326 
327 	/* Decode the Option rom version word to a readable string */
328 	if (prg->dist < 4)
329 		dist = dist_char[prg->dist];
330 
331 	if ((prg->dist == 3) && (prg->num == 0))
332 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
333 			prg->ver, prg->rev, prg->lev);
334 	else
335 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
336 			prg->ver, prg->rev, prg->lev,
337 			dist, prg->num);
338 	mempool_free(pmboxq, phba->mbox_mem_pool);
339 	return;
340 }
341 
342 /**
343  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
344  * @vport: pointer to lpfc vport data structure.
345  *
346  *
347  * Return codes
348  *   None.
349  **/
350 void
351 lpfc_update_vport_wwn(struct lpfc_vport *vport)
352 {
353 	struct lpfc_hba *phba = vport->phba;
354 
355 	/*
356 	 * If the name is empty or there exists a soft name
357 	 * then copy the service params name, otherwise use the fc name
358 	 */
359 	if (vport->fc_nodename.u.wwn[0] == 0)
360 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
361 			sizeof(struct lpfc_name));
362 	else
363 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
364 			sizeof(struct lpfc_name));
365 
366 	/*
367 	 * If the port name has changed, then set the Param changes flag
368 	 * to unreg the login
369 	 */
370 	if (vport->fc_portname.u.wwn[0] != 0 &&
371 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
372 		       sizeof(struct lpfc_name))) {
373 		vport->vport_flag |= FAWWPN_PARAM_CHG;
374 
375 		if (phba->sli_rev == LPFC_SLI_REV4 &&
376 		    vport->port_type == LPFC_PHYSICAL_PORT &&
377 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
378 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
379 				phba->sli4_hba.fawwpn_flag &=
380 						~LPFC_FAWWPN_FABRIC;
381 			lpfc_printf_log(phba, KERN_INFO,
382 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
383 					"2701 FA-PWWN change WWPN from %llx to "
384 					"%llx: vflag x%x fawwpn_flag x%x\n",
385 					wwn_to_u64(vport->fc_portname.u.wwn),
386 					wwn_to_u64
387 					   (vport->fc_sparam.portName.u.wwn),
388 					vport->vport_flag,
389 					phba->sli4_hba.fawwpn_flag);
390 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
391 			       sizeof(struct lpfc_name));
392 		}
393 	}
394 
395 	if (vport->fc_portname.u.wwn[0] == 0)
396 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
397 		       sizeof(struct lpfc_name));
398 	else
399 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
400 		       sizeof(struct lpfc_name));
401 }
402 
403 /**
404  * lpfc_config_port_post - Perform lpfc initialization after config port
405  * @phba: pointer to lpfc hba data structure.
406  *
407  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
408  * command call. It performs all internal resource and state setups on the
409  * port: post IOCB buffers, enable appropriate host interrupt attentions,
410  * ELS ring timers, etc.
411  *
412  * Return codes
413  *   0 - success.
414  *   Any other value - error.
415  **/
416 int
417 lpfc_config_port_post(struct lpfc_hba *phba)
418 {
419 	struct lpfc_vport *vport = phba->pport;
420 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
421 	LPFC_MBOXQ_t *pmb;
422 	MAILBOX_t *mb;
423 	struct lpfc_dmabuf *mp;
424 	struct lpfc_sli *psli = &phba->sli;
425 	uint32_t status, timeout;
426 	int i, j;
427 	int rc;
428 
429 	spin_lock_irq(&phba->hbalock);
430 	/*
431 	 * If the Config port completed correctly the HBA is not
432 	 * over heated any more.
433 	 */
434 	if (phba->over_temp_state == HBA_OVER_TEMP)
435 		phba->over_temp_state = HBA_NORMAL_TEMP;
436 	spin_unlock_irq(&phba->hbalock);
437 
438 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
439 	if (!pmb) {
440 		phba->link_state = LPFC_HBA_ERROR;
441 		return -ENOMEM;
442 	}
443 	mb = &pmb->u.mb;
444 
445 	/* Get login parameters for NID.  */
446 	rc = lpfc_read_sparam(phba, pmb, 0);
447 	if (rc) {
448 		mempool_free(pmb, phba->mbox_mem_pool);
449 		return -ENOMEM;
450 	}
451 
452 	pmb->vport = vport;
453 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
454 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
455 				"0448 Adapter failed init, mbxCmd x%x "
456 				"READ_SPARM mbxStatus x%x\n",
457 				mb->mbxCommand, mb->mbxStatus);
458 		phba->link_state = LPFC_HBA_ERROR;
459 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
460 		return -EIO;
461 	}
462 
463 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
464 
465 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
466 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
467 	 * reused.
468 	 */
469 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
470 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
471 	kfree(mp);
472 	pmb->ctx_buf = NULL;
473 	lpfc_update_vport_wwn(vport);
474 
475 	/* Update the fc_host data structures with new wwn. */
476 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
477 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
478 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
479 
480 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
481 	/* This should be consolidated into parse_vpd ? - mr */
482 	if (phba->SerialNumber[0] == 0) {
483 		uint8_t *outptr;
484 
485 		outptr = &vport->fc_nodename.u.s.IEEE[0];
486 		for (i = 0; i < 12; i++) {
487 			status = *outptr++;
488 			j = ((status & 0xf0) >> 4);
489 			if (j <= 9)
490 				phba->SerialNumber[i] =
491 				    (char)((uint8_t) 0x30 + (uint8_t) j);
492 			else
493 				phba->SerialNumber[i] =
494 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
495 			i++;
496 			j = (status & 0xf);
497 			if (j <= 9)
498 				phba->SerialNumber[i] =
499 				    (char)((uint8_t) 0x30 + (uint8_t) j);
500 			else
501 				phba->SerialNumber[i] =
502 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
503 		}
504 	}
505 
506 	lpfc_read_config(phba, pmb);
507 	pmb->vport = vport;
508 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
509 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
510 				"0453 Adapter failed to init, mbxCmd x%x "
511 				"READ_CONFIG, mbxStatus x%x\n",
512 				mb->mbxCommand, mb->mbxStatus);
513 		phba->link_state = LPFC_HBA_ERROR;
514 		mempool_free( pmb, phba->mbox_mem_pool);
515 		return -EIO;
516 	}
517 
518 	/* Check if the port is disabled */
519 	lpfc_sli_read_link_ste(phba);
520 
521 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
522 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
523 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
524 				"3359 HBA queue depth changed from %d to %d\n",
525 				phba->cfg_hba_queue_depth,
526 				mb->un.varRdConfig.max_xri);
527 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
528 	}
529 
530 	phba->lmt = mb->un.varRdConfig.lmt;
531 
532 	/* Get the default values for Model Name and Description */
533 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
534 
535 	phba->link_state = LPFC_LINK_DOWN;
536 
537 	/* Only process IOCBs on ELS ring till hba_state is READY */
538 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
539 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
540 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
541 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
542 
543 	/* Post receive buffers for desired rings */
544 	if (phba->sli_rev != 3)
545 		lpfc_post_rcv_buf(phba);
546 
547 	/*
548 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
549 	 */
550 	if (phba->intr_type == MSIX) {
551 		rc = lpfc_config_msi(phba, pmb);
552 		if (rc) {
553 			mempool_free(pmb, phba->mbox_mem_pool);
554 			return -EIO;
555 		}
556 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
557 		if (rc != MBX_SUCCESS) {
558 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
559 					"0352 Config MSI mailbox command "
560 					"failed, mbxCmd x%x, mbxStatus x%x\n",
561 					pmb->u.mb.mbxCommand,
562 					pmb->u.mb.mbxStatus);
563 			mempool_free(pmb, phba->mbox_mem_pool);
564 			return -EIO;
565 		}
566 	}
567 
568 	spin_lock_irq(&phba->hbalock);
569 	/* Initialize ERATT handling flag */
570 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
571 
572 	/* Enable appropriate host interrupts */
573 	if (lpfc_readl(phba->HCregaddr, &status)) {
574 		spin_unlock_irq(&phba->hbalock);
575 		return -EIO;
576 	}
577 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
578 	if (psli->num_rings > 0)
579 		status |= HC_R0INT_ENA;
580 	if (psli->num_rings > 1)
581 		status |= HC_R1INT_ENA;
582 	if (psli->num_rings > 2)
583 		status |= HC_R2INT_ENA;
584 	if (psli->num_rings > 3)
585 		status |= HC_R3INT_ENA;
586 
587 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
588 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
589 		status &= ~(HC_R0INT_ENA);
590 
591 	writel(status, phba->HCregaddr);
592 	readl(phba->HCregaddr); /* flush */
593 	spin_unlock_irq(&phba->hbalock);
594 
595 	/* Set up ring-0 (ELS) timer */
596 	timeout = phba->fc_ratov * 2;
597 	mod_timer(&vport->els_tmofunc,
598 		  jiffies + msecs_to_jiffies(1000 * timeout));
599 	/* Set up heart beat (HB) timer */
600 	mod_timer(&phba->hb_tmofunc,
601 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
602 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
603 	phba->last_completion_time = jiffies;
604 	/* Set up error attention (ERATT) polling timer */
605 	mod_timer(&phba->eratt_poll,
606 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
607 
608 	if (phba->hba_flag & LINK_DISABLED) {
609 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
610 				"2598 Adapter Link is disabled.\n");
611 		lpfc_down_link(phba, pmb);
612 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
613 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
614 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
615 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
616 					"2599 Adapter failed to issue DOWN_LINK"
617 					" mbox command rc 0x%x\n", rc);
618 
619 			mempool_free(pmb, phba->mbox_mem_pool);
620 			return -EIO;
621 		}
622 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
623 		mempool_free(pmb, phba->mbox_mem_pool);
624 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
625 		if (rc)
626 			return rc;
627 	}
628 	/* MBOX buffer will be freed in mbox compl */
629 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
630 	if (!pmb) {
631 		phba->link_state = LPFC_HBA_ERROR;
632 		return -ENOMEM;
633 	}
634 
635 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
636 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
637 	pmb->vport = phba->pport;
638 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
639 
640 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
641 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
642 				"0456 Adapter failed to issue "
643 				"ASYNCEVT_ENABLE mbox status x%x\n",
644 				rc);
645 		mempool_free(pmb, phba->mbox_mem_pool);
646 	}
647 
648 	/* Get Option rom version */
649 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
650 	if (!pmb) {
651 		phba->link_state = LPFC_HBA_ERROR;
652 		return -ENOMEM;
653 	}
654 
655 	lpfc_dump_wakeup_param(phba, pmb);
656 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
657 	pmb->vport = phba->pport;
658 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
659 
660 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
661 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
662 				"0435 Adapter failed "
663 				"to get Option ROM version status x%x\n", rc);
664 		mempool_free(pmb, phba->mbox_mem_pool);
665 	}
666 
667 	return 0;
668 }
669 
670 /**
671  * lpfc_sli4_refresh_params - update driver copy of params.
672  * @phba: Pointer to HBA context object.
673  *
674  * This is called to refresh driver copy of dynamic fields from the
675  * common_get_sli4_parameters descriptor.
676  **/
677 int
678 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
679 {
680 	LPFC_MBOXQ_t *mboxq;
681 	struct lpfc_mqe *mqe;
682 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
683 	int length, rc;
684 
685 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
686 	if (!mboxq)
687 		return -ENOMEM;
688 
689 	mqe = &mboxq->u.mqe;
690 	/* Read the port's SLI4 Config Parameters */
691 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
692 		  sizeof(struct lpfc_sli4_cfg_mhdr));
693 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
694 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
695 			 length, LPFC_SLI4_MBX_EMBED);
696 
697 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
698 	if (unlikely(rc)) {
699 		mempool_free(mboxq, phba->mbox_mem_pool);
700 		return rc;
701 	}
702 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
703 
704 	/* Are we forcing MI off via module parameter? */
705 	if (phba->cfg_enable_mi)
706 		phba->sli4_hba.pc_sli4_params.mi_ver =
707 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
708 	else
709 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
710 
711 	phba->sli4_hba.pc_sli4_params.cmf =
712 			bf_get(cfg_cmf, mbx_sli4_parameters);
713 	phba->sli4_hba.pc_sli4_params.pls =
714 			bf_get(cfg_pvl, mbx_sli4_parameters);
715 
716 	mempool_free(mboxq, phba->mbox_mem_pool);
717 	return rc;
718 }
719 
720 /**
721  * lpfc_hba_init_link - Initialize the FC link
722  * @phba: pointer to lpfc hba data structure.
723  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
724  *
725  * This routine will issue the INIT_LINK mailbox command call.
726  * It is available to other drivers through the lpfc_hba data
727  * structure for use as a delayed link up mechanism with the
728  * module parameter lpfc_suppress_link_up.
729  *
730  * Return code
731  *		0 - success
732  *		Any other value - error
733  **/
734 static int
735 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
736 {
737 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
738 }
739 
740 /**
741  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
742  * @phba: pointer to lpfc hba data structure.
743  * @fc_topology: desired fc topology.
744  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
745  *
746  * This routine will issue the INIT_LINK mailbox command call.
747  * It is available to other drivers through the lpfc_hba data
748  * structure for use as a delayed link up mechanism with the
749  * module parameter lpfc_suppress_link_up.
750  *
751  * Return code
752  *              0 - success
753  *              Any other value - error
754  **/
755 int
756 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
757 			       uint32_t flag)
758 {
759 	struct lpfc_vport *vport = phba->pport;
760 	LPFC_MBOXQ_t *pmb;
761 	MAILBOX_t *mb;
762 	int rc;
763 
764 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
765 	if (!pmb) {
766 		phba->link_state = LPFC_HBA_ERROR;
767 		return -ENOMEM;
768 	}
769 	mb = &pmb->u.mb;
770 	pmb->vport = vport;
771 
772 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
773 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
774 	     !(phba->lmt & LMT_1Gb)) ||
775 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
776 	     !(phba->lmt & LMT_2Gb)) ||
777 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
778 	     !(phba->lmt & LMT_4Gb)) ||
779 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
780 	     !(phba->lmt & LMT_8Gb)) ||
781 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
782 	     !(phba->lmt & LMT_10Gb)) ||
783 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
784 	     !(phba->lmt & LMT_16Gb)) ||
785 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
786 	     !(phba->lmt & LMT_32Gb)) ||
787 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
788 	     !(phba->lmt & LMT_64Gb))) {
789 		/* Reset link speed to auto */
790 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
791 				"1302 Invalid speed for this board:%d "
792 				"Reset link speed to auto.\n",
793 				phba->cfg_link_speed);
794 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
795 	}
796 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
797 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
798 	if (phba->sli_rev < LPFC_SLI_REV4)
799 		lpfc_set_loopback_flag(phba);
800 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
801 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
802 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
803 				"0498 Adapter failed to init, mbxCmd x%x "
804 				"INIT_LINK, mbxStatus x%x\n",
805 				mb->mbxCommand, mb->mbxStatus);
806 		if (phba->sli_rev <= LPFC_SLI_REV3) {
807 			/* Clear all interrupt enable conditions */
808 			writel(0, phba->HCregaddr);
809 			readl(phba->HCregaddr); /* flush */
810 			/* Clear all pending interrupts */
811 			writel(0xffffffff, phba->HAregaddr);
812 			readl(phba->HAregaddr); /* flush */
813 		}
814 		phba->link_state = LPFC_HBA_ERROR;
815 		if (rc != MBX_BUSY || flag == MBX_POLL)
816 			mempool_free(pmb, phba->mbox_mem_pool);
817 		return -EIO;
818 	}
819 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
820 	if (flag == MBX_POLL)
821 		mempool_free(pmb, phba->mbox_mem_pool);
822 
823 	return 0;
824 }
825 
826 /**
827  * lpfc_hba_down_link - this routine downs the FC link
828  * @phba: pointer to lpfc hba data structure.
829  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
830  *
831  * This routine will issue the DOWN_LINK mailbox command call.
832  * It is available to other drivers through the lpfc_hba data
833  * structure for use to stop the link.
834  *
835  * Return code
836  *		0 - success
837  *		Any other value - error
838  **/
839 static int
840 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
841 {
842 	LPFC_MBOXQ_t *pmb;
843 	int rc;
844 
845 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
846 	if (!pmb) {
847 		phba->link_state = LPFC_HBA_ERROR;
848 		return -ENOMEM;
849 	}
850 
851 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
852 			"0491 Adapter Link is disabled.\n");
853 	lpfc_down_link(phba, pmb);
854 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
855 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
856 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
857 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
858 				"2522 Adapter failed to issue DOWN_LINK"
859 				" mbox command rc 0x%x\n", rc);
860 
861 		mempool_free(pmb, phba->mbox_mem_pool);
862 		return -EIO;
863 	}
864 	if (flag == MBX_POLL)
865 		mempool_free(pmb, phba->mbox_mem_pool);
866 
867 	return 0;
868 }
869 
870 /**
871  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
872  * @phba: pointer to lpfc HBA data structure.
873  *
874  * This routine will do LPFC uninitialization before the HBA is reset when
875  * bringing down the SLI Layer.
876  *
877  * Return codes
878  *   0 - success.
879  *   Any other value - error.
880  **/
881 int
882 lpfc_hba_down_prep(struct lpfc_hba *phba)
883 {
884 	struct lpfc_vport **vports;
885 	int i;
886 
887 	if (phba->sli_rev <= LPFC_SLI_REV3) {
888 		/* Disable interrupts */
889 		writel(0, phba->HCregaddr);
890 		readl(phba->HCregaddr); /* flush */
891 	}
892 
893 	if (phba->pport->load_flag & FC_UNLOADING)
894 		lpfc_cleanup_discovery_resources(phba->pport);
895 	else {
896 		vports = lpfc_create_vport_work_array(phba);
897 		if (vports != NULL)
898 			for (i = 0; i <= phba->max_vports &&
899 				vports[i] != NULL; i++)
900 				lpfc_cleanup_discovery_resources(vports[i]);
901 		lpfc_destroy_vport_work_array(phba, vports);
902 	}
903 	return 0;
904 }
905 
906 /**
907  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
908  * rspiocb which got deferred
909  *
910  * @phba: pointer to lpfc HBA data structure.
911  *
912  * This routine will cleanup completed slow path events after HBA is reset
913  * when bringing down the SLI Layer.
914  *
915  *
916  * Return codes
917  *   void.
918  **/
919 static void
920 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
921 {
922 	struct lpfc_iocbq *rspiocbq;
923 	struct hbq_dmabuf *dmabuf;
924 	struct lpfc_cq_event *cq_event;
925 
926 	spin_lock_irq(&phba->hbalock);
927 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
928 	spin_unlock_irq(&phba->hbalock);
929 
930 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
931 		/* Get the response iocb from the head of work queue */
932 		spin_lock_irq(&phba->hbalock);
933 		list_remove_head(&phba->sli4_hba.sp_queue_event,
934 				 cq_event, struct lpfc_cq_event, list);
935 		spin_unlock_irq(&phba->hbalock);
936 
937 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
938 		case CQE_CODE_COMPL_WQE:
939 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
940 						 cq_event);
941 			lpfc_sli_release_iocbq(phba, rspiocbq);
942 			break;
943 		case CQE_CODE_RECEIVE:
944 		case CQE_CODE_RECEIVE_V1:
945 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
946 					      cq_event);
947 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
948 		}
949 	}
950 }
951 
952 /**
953  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
954  * @phba: pointer to lpfc HBA data structure.
955  *
956  * This routine will cleanup posted ELS buffers after the HBA is reset
957  * when bringing down the SLI Layer.
958  *
959  *
960  * Return codes
961  *   void.
962  **/
963 static void
964 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
965 {
966 	struct lpfc_sli *psli = &phba->sli;
967 	struct lpfc_sli_ring *pring;
968 	struct lpfc_dmabuf *mp, *next_mp;
969 	LIST_HEAD(buflist);
970 	int count;
971 
972 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
973 		lpfc_sli_hbqbuf_free_all(phba);
974 	else {
975 		/* Cleanup preposted buffers on the ELS ring */
976 		pring = &psli->sli3_ring[LPFC_ELS_RING];
977 		spin_lock_irq(&phba->hbalock);
978 		list_splice_init(&pring->postbufq, &buflist);
979 		spin_unlock_irq(&phba->hbalock);
980 
981 		count = 0;
982 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
983 			list_del(&mp->list);
984 			count++;
985 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
986 			kfree(mp);
987 		}
988 
989 		spin_lock_irq(&phba->hbalock);
990 		pring->postbufq_cnt -= count;
991 		spin_unlock_irq(&phba->hbalock);
992 	}
993 }
994 
995 /**
996  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
997  * @phba: pointer to lpfc HBA data structure.
998  *
999  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1000  * down the SLI Layer.
1001  *
1002  * Return codes
1003  *   void
1004  **/
1005 static void
1006 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1007 {
1008 	struct lpfc_sli *psli = &phba->sli;
1009 	struct lpfc_queue *qp = NULL;
1010 	struct lpfc_sli_ring *pring;
1011 	LIST_HEAD(completions);
1012 	int i;
1013 	struct lpfc_iocbq *piocb, *next_iocb;
1014 
1015 	if (phba->sli_rev != LPFC_SLI_REV4) {
1016 		for (i = 0; i < psli->num_rings; i++) {
1017 			pring = &psli->sli3_ring[i];
1018 			spin_lock_irq(&phba->hbalock);
1019 			/* At this point in time the HBA is either reset or DOA
1020 			 * Nothing should be on txcmplq as it will
1021 			 * NEVER complete.
1022 			 */
1023 			list_splice_init(&pring->txcmplq, &completions);
1024 			pring->txcmplq_cnt = 0;
1025 			spin_unlock_irq(&phba->hbalock);
1026 
1027 			lpfc_sli_abort_iocb_ring(phba, pring);
1028 		}
1029 		/* Cancel all the IOCBs from the completions list */
1030 		lpfc_sli_cancel_iocbs(phba, &completions,
1031 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1032 		return;
1033 	}
1034 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1035 		pring = qp->pring;
1036 		if (!pring)
1037 			continue;
1038 		spin_lock_irq(&pring->ring_lock);
1039 		list_for_each_entry_safe(piocb, next_iocb,
1040 					 &pring->txcmplq, list)
1041 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1042 		list_splice_init(&pring->txcmplq, &completions);
1043 		pring->txcmplq_cnt = 0;
1044 		spin_unlock_irq(&pring->ring_lock);
1045 		lpfc_sli_abort_iocb_ring(phba, pring);
1046 	}
1047 	/* Cancel all the IOCBs from the completions list */
1048 	lpfc_sli_cancel_iocbs(phba, &completions,
1049 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1050 }
1051 
1052 /**
1053  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1054  * @phba: pointer to lpfc HBA data structure.
1055  *
1056  * This routine will do uninitialization after the HBA is reset when bring
1057  * down the SLI Layer.
1058  *
1059  * Return codes
1060  *   0 - success.
1061  *   Any other value - error.
1062  **/
1063 static int
1064 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1065 {
1066 	lpfc_hba_free_post_buf(phba);
1067 	lpfc_hba_clean_txcmplq(phba);
1068 	return 0;
1069 }
1070 
1071 /**
1072  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1073  * @phba: pointer to lpfc HBA data structure.
1074  *
1075  * This routine will do uninitialization after the HBA is reset when bring
1076  * down the SLI Layer.
1077  *
1078  * Return codes
1079  *   0 - success.
1080  *   Any other value - error.
1081  **/
1082 static int
1083 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1084 {
1085 	struct lpfc_io_buf *psb, *psb_next;
1086 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1087 	struct lpfc_sli4_hdw_queue *qp;
1088 	LIST_HEAD(aborts);
1089 	LIST_HEAD(nvme_aborts);
1090 	LIST_HEAD(nvmet_aborts);
1091 	struct lpfc_sglq *sglq_entry = NULL;
1092 	int cnt, idx;
1093 
1094 
1095 	lpfc_sli_hbqbuf_free_all(phba);
1096 	lpfc_hba_clean_txcmplq(phba);
1097 
1098 	/* At this point in time the HBA is either reset or DOA. Either
1099 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1100 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1101 	 * driver is unloading or reposted if the driver is restarting
1102 	 * the port.
1103 	 */
1104 
1105 	/* sgl_list_lock required because worker thread uses this
1106 	 * list.
1107 	 */
1108 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1109 	list_for_each_entry(sglq_entry,
1110 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1111 		sglq_entry->state = SGL_FREED;
1112 
1113 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1114 			&phba->sli4_hba.lpfc_els_sgl_list);
1115 
1116 
1117 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1118 
1119 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1120 	 * list.
1121 	 */
1122 	spin_lock_irq(&phba->hbalock);
1123 	cnt = 0;
1124 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1125 		qp = &phba->sli4_hba.hdwq[idx];
1126 
1127 		spin_lock(&qp->abts_io_buf_list_lock);
1128 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1129 				 &aborts);
1130 
1131 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1132 			psb->pCmd = NULL;
1133 			psb->status = IOSTAT_SUCCESS;
1134 			cnt++;
1135 		}
1136 		spin_lock(&qp->io_buf_list_put_lock);
1137 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1138 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1139 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1140 		qp->abts_scsi_io_bufs = 0;
1141 		qp->abts_nvme_io_bufs = 0;
1142 		spin_unlock(&qp->io_buf_list_put_lock);
1143 		spin_unlock(&qp->abts_io_buf_list_lock);
1144 	}
1145 	spin_unlock_irq(&phba->hbalock);
1146 
1147 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1148 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1149 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1150 				 &nvmet_aborts);
1151 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1152 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1153 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1154 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1155 		}
1156 	}
1157 
1158 	lpfc_sli4_free_sp_events(phba);
1159 	return cnt;
1160 }
1161 
1162 /**
1163  * lpfc_hba_down_post - Wrapper func for hba down post routine
1164  * @phba: pointer to lpfc HBA data structure.
1165  *
1166  * This routine wraps the actual SLI3 or SLI4 routine for performing
1167  * uninitialization after the HBA is reset when bring down the SLI Layer.
1168  *
1169  * Return codes
1170  *   0 - success.
1171  *   Any other value - error.
1172  **/
1173 int
1174 lpfc_hba_down_post(struct lpfc_hba *phba)
1175 {
1176 	return (*phba->lpfc_hba_down_post)(phba);
1177 }
1178 
1179 /**
1180  * lpfc_hb_timeout - The HBA-timer timeout handler
1181  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1182  *
1183  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1184  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1185  * work-port-events bitmap and the worker thread is notified. This timeout
1186  * event will be used by the worker thread to invoke the actual timeout
1187  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1188  * be performed in the timeout handler and the HBA timeout event bit shall
1189  * be cleared by the worker thread after it has taken the event bitmap out.
1190  **/
1191 static void
1192 lpfc_hb_timeout(struct timer_list *t)
1193 {
1194 	struct lpfc_hba *phba;
1195 	uint32_t tmo_posted;
1196 	unsigned long iflag;
1197 
1198 	phba = from_timer(phba, t, hb_tmofunc);
1199 
1200 	/* Check for heart beat timeout conditions */
1201 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1202 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1203 	if (!tmo_posted)
1204 		phba->pport->work_port_events |= WORKER_HB_TMO;
1205 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1206 
1207 	/* Tell the worker thread there is work to do */
1208 	if (!tmo_posted)
1209 		lpfc_worker_wake_up(phba);
1210 	return;
1211 }
1212 
1213 /**
1214  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1215  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1216  *
1217  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1218  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1219  * work-port-events bitmap and the worker thread is notified. This timeout
1220  * event will be used by the worker thread to invoke the actual timeout
1221  * handler routine, lpfc_rrq_handler. Any periodical operations will
1222  * be performed in the timeout handler and the RRQ timeout event bit shall
1223  * be cleared by the worker thread after it has taken the event bitmap out.
1224  **/
1225 static void
1226 lpfc_rrq_timeout(struct timer_list *t)
1227 {
1228 	struct lpfc_hba *phba;
1229 	unsigned long iflag;
1230 
1231 	phba = from_timer(phba, t, rrq_tmr);
1232 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1233 	if (!(phba->pport->load_flag & FC_UNLOADING))
1234 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1235 	else
1236 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1237 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1238 
1239 	if (!(phba->pport->load_flag & FC_UNLOADING))
1240 		lpfc_worker_wake_up(phba);
1241 }
1242 
1243 /**
1244  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1245  * @phba: pointer to lpfc hba data structure.
1246  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1247  *
1248  * This is the callback function to the lpfc heart-beat mailbox command.
1249  * If configured, the lpfc driver issues the heart-beat mailbox command to
1250  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1251  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1252  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1253  * heart-beat outstanding state. Once the mailbox command comes back and
1254  * no error conditions detected, the heart-beat mailbox command timer is
1255  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1256  * state is cleared for the next heart-beat. If the timer expired with the
1257  * heart-beat outstanding state set, the driver will put the HBA offline.
1258  **/
1259 static void
1260 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1261 {
1262 	unsigned long drvr_flag;
1263 
1264 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1265 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1266 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1267 
1268 	/* Check and reset heart-beat timer if necessary */
1269 	mempool_free(pmboxq, phba->mbox_mem_pool);
1270 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1271 		!(phba->link_state == LPFC_HBA_ERROR) &&
1272 		!(phba->pport->load_flag & FC_UNLOADING))
1273 		mod_timer(&phba->hb_tmofunc,
1274 			  jiffies +
1275 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1276 	return;
1277 }
1278 
1279 /*
1280  * lpfc_idle_stat_delay_work - idle_stat tracking
1281  *
1282  * This routine tracks per-cq idle_stat and determines polling decisions.
1283  *
1284  * Return codes:
1285  *   None
1286  **/
1287 static void
1288 lpfc_idle_stat_delay_work(struct work_struct *work)
1289 {
1290 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1291 					     struct lpfc_hba,
1292 					     idle_stat_delay_work);
1293 	struct lpfc_queue *cq;
1294 	struct lpfc_sli4_hdw_queue *hdwq;
1295 	struct lpfc_idle_stat *idle_stat;
1296 	u32 i, idle_percent;
1297 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1298 
1299 	if (phba->pport->load_flag & FC_UNLOADING)
1300 		return;
1301 
1302 	if (phba->link_state == LPFC_HBA_ERROR ||
1303 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1304 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1305 		goto requeue;
1306 
1307 	for_each_present_cpu(i) {
1308 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1309 		cq = hdwq->io_cq;
1310 
1311 		/* Skip if we've already handled this cq's primary CPU */
1312 		if (cq->chann != i)
1313 			continue;
1314 
1315 		idle_stat = &phba->sli4_hba.idle_stat[i];
1316 
1317 		/* get_cpu_idle_time returns values as running counters. Thus,
1318 		 * to know the amount for this period, the prior counter values
1319 		 * need to be subtracted from the current counter values.
1320 		 * From there, the idle time stat can be calculated as a
1321 		 * percentage of 100 - the sum of the other consumption times.
1322 		 */
1323 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1324 		diff_idle = wall_idle - idle_stat->prev_idle;
1325 		diff_wall = wall - idle_stat->prev_wall;
1326 
1327 		if (diff_wall <= diff_idle)
1328 			busy_time = 0;
1329 		else
1330 			busy_time = diff_wall - diff_idle;
1331 
1332 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1333 		idle_percent = 100 - idle_percent;
1334 
1335 		if (idle_percent < 15)
1336 			cq->poll_mode = LPFC_QUEUE_WORK;
1337 		else
1338 			cq->poll_mode = LPFC_IRQ_POLL;
1339 
1340 		idle_stat->prev_idle = wall_idle;
1341 		idle_stat->prev_wall = wall;
1342 	}
1343 
1344 requeue:
1345 	schedule_delayed_work(&phba->idle_stat_delay_work,
1346 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1347 }
1348 
1349 static void
1350 lpfc_hb_eq_delay_work(struct work_struct *work)
1351 {
1352 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1353 					     struct lpfc_hba, eq_delay_work);
1354 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1355 	struct lpfc_queue *eq, *eq_next;
1356 	unsigned char *ena_delay = NULL;
1357 	uint32_t usdelay;
1358 	int i;
1359 
1360 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1361 		return;
1362 
1363 	if (phba->link_state == LPFC_HBA_ERROR ||
1364 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1365 		goto requeue;
1366 
1367 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1368 			    GFP_KERNEL);
1369 	if (!ena_delay)
1370 		goto requeue;
1371 
1372 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1373 		/* Get the EQ corresponding to the IRQ vector */
1374 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1375 		if (!eq)
1376 			continue;
1377 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1378 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1379 			ena_delay[eq->last_cpu] = 1;
1380 		}
1381 	}
1382 
1383 	for_each_present_cpu(i) {
1384 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1385 		if (ena_delay[i]) {
1386 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1387 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1388 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1389 		} else {
1390 			usdelay = 0;
1391 		}
1392 
1393 		eqi->icnt = 0;
1394 
1395 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1396 			if (unlikely(eq->last_cpu != i)) {
1397 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1398 						      eq->last_cpu);
1399 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1400 				continue;
1401 			}
1402 			if (usdelay != eq->q_mode)
1403 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1404 							 usdelay);
1405 		}
1406 	}
1407 
1408 	kfree(ena_delay);
1409 
1410 requeue:
1411 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1412 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1413 }
1414 
1415 /**
1416  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1417  * @phba: pointer to lpfc hba data structure.
1418  *
1419  * For each heartbeat, this routine does some heuristic methods to adjust
1420  * XRI distribution. The goal is to fully utilize free XRIs.
1421  **/
1422 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1423 {
1424 	u32 i;
1425 	u32 hwq_count;
1426 
1427 	hwq_count = phba->cfg_hdw_queue;
1428 	for (i = 0; i < hwq_count; i++) {
1429 		/* Adjust XRIs in private pool */
1430 		lpfc_adjust_pvt_pool_count(phba, i);
1431 
1432 		/* Adjust high watermark */
1433 		lpfc_adjust_high_watermark(phba, i);
1434 
1435 #ifdef LPFC_MXP_STAT
1436 		/* Snapshot pbl, pvt and busy count */
1437 		lpfc_snapshot_mxp(phba, i);
1438 #endif
1439 	}
1440 }
1441 
1442 /**
1443  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1444  * @phba: pointer to lpfc hba data structure.
1445  *
1446  * If a HB mbox is not already in progrees, this routine will allocate
1447  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1448  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1449  **/
1450 int
1451 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1452 {
1453 	LPFC_MBOXQ_t *pmboxq;
1454 	int retval;
1455 
1456 	/* Is a Heartbeat mbox already in progress */
1457 	if (phba->hba_flag & HBA_HBEAT_INP)
1458 		return 0;
1459 
1460 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1461 	if (!pmboxq)
1462 		return -ENOMEM;
1463 
1464 	lpfc_heart_beat(phba, pmboxq);
1465 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1466 	pmboxq->vport = phba->pport;
1467 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1468 
1469 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1470 		mempool_free(pmboxq, phba->mbox_mem_pool);
1471 		return -ENXIO;
1472 	}
1473 	phba->hba_flag |= HBA_HBEAT_INP;
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1480  * @phba: pointer to lpfc hba data structure.
1481  *
1482  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1483  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1484  * of the value of lpfc_enable_hba_heartbeat.
1485  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1486  * try to issue a MBX_HEARTBEAT mbox command.
1487  **/
1488 void
1489 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1490 {
1491 	if (phba->cfg_enable_hba_heartbeat)
1492 		return;
1493 	phba->hba_flag |= HBA_HBEAT_TMO;
1494 }
1495 
1496 /**
1497  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1498  * @phba: pointer to lpfc hba data structure.
1499  *
1500  * This is the actual HBA-timer timeout handler to be invoked by the worker
1501  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1502  * handler performs any periodic operations needed for the device. If such
1503  * periodic event has already been attended to either in the interrupt handler
1504  * or by processing slow-ring or fast-ring events within the HBA-timer
1505  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1506  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1507  * is configured and there is no heart-beat mailbox command outstanding, a
1508  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1509  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1510  * to offline.
1511  **/
1512 void
1513 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1514 {
1515 	struct lpfc_vport **vports;
1516 	struct lpfc_dmabuf *buf_ptr;
1517 	int retval = 0;
1518 	int i, tmo;
1519 	struct lpfc_sli *psli = &phba->sli;
1520 	LIST_HEAD(completions);
1521 
1522 	if (phba->cfg_xri_rebalancing) {
1523 		/* Multi-XRI pools handler */
1524 		lpfc_hb_mxp_handler(phba);
1525 	}
1526 
1527 	vports = lpfc_create_vport_work_array(phba);
1528 	if (vports != NULL)
1529 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1530 			lpfc_rcv_seq_check_edtov(vports[i]);
1531 			lpfc_fdmi_change_check(vports[i]);
1532 		}
1533 	lpfc_destroy_vport_work_array(phba, vports);
1534 
1535 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1536 		(phba->pport->load_flag & FC_UNLOADING) ||
1537 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1538 		return;
1539 
1540 	if (phba->elsbuf_cnt &&
1541 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1542 		spin_lock_irq(&phba->hbalock);
1543 		list_splice_init(&phba->elsbuf, &completions);
1544 		phba->elsbuf_cnt = 0;
1545 		phba->elsbuf_prev_cnt = 0;
1546 		spin_unlock_irq(&phba->hbalock);
1547 
1548 		while (!list_empty(&completions)) {
1549 			list_remove_head(&completions, buf_ptr,
1550 				struct lpfc_dmabuf, list);
1551 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1552 			kfree(buf_ptr);
1553 		}
1554 	}
1555 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1556 
1557 	/* If there is no heart beat outstanding, issue a heartbeat command */
1558 	if (phba->cfg_enable_hba_heartbeat) {
1559 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1560 		spin_lock_irq(&phba->pport->work_port_lock);
1561 		if (time_after(phba->last_completion_time +
1562 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1563 				jiffies)) {
1564 			spin_unlock_irq(&phba->pport->work_port_lock);
1565 			if (phba->hba_flag & HBA_HBEAT_INP)
1566 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1567 			else
1568 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1569 			goto out;
1570 		}
1571 		spin_unlock_irq(&phba->pport->work_port_lock);
1572 
1573 		/* Check if a MBX_HEARTBEAT is already in progress */
1574 		if (phba->hba_flag & HBA_HBEAT_INP) {
1575 			/*
1576 			 * If heart beat timeout called with HBA_HBEAT_INP set
1577 			 * we need to give the hb mailbox cmd a chance to
1578 			 * complete or TMO.
1579 			 */
1580 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1581 				"0459 Adapter heartbeat still outstanding: "
1582 				"last compl time was %d ms.\n",
1583 				jiffies_to_msecs(jiffies
1584 					 - phba->last_completion_time));
1585 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1586 		} else {
1587 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1588 				(list_empty(&psli->mboxq))) {
1589 
1590 				retval = lpfc_issue_hb_mbox(phba);
1591 				if (retval) {
1592 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1593 					goto out;
1594 				}
1595 				phba->skipped_hb = 0;
1596 			} else if (time_before_eq(phba->last_completion_time,
1597 					phba->skipped_hb)) {
1598 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1599 					"2857 Last completion time not "
1600 					" updated in %d ms\n",
1601 					jiffies_to_msecs(jiffies
1602 						 - phba->last_completion_time));
1603 			} else
1604 				phba->skipped_hb = jiffies;
1605 
1606 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1607 			goto out;
1608 		}
1609 	} else {
1610 		/* Check to see if we want to force a MBX_HEARTBEAT */
1611 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1612 			retval = lpfc_issue_hb_mbox(phba);
1613 			if (retval)
1614 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1615 			else
1616 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1617 			goto out;
1618 		}
1619 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1620 	}
1621 out:
1622 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1623 }
1624 
1625 /**
1626  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1627  * @phba: pointer to lpfc hba data structure.
1628  *
1629  * This routine is called to bring the HBA offline when HBA hardware error
1630  * other than Port Error 6 has been detected.
1631  **/
1632 static void
1633 lpfc_offline_eratt(struct lpfc_hba *phba)
1634 {
1635 	struct lpfc_sli   *psli = &phba->sli;
1636 
1637 	spin_lock_irq(&phba->hbalock);
1638 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1639 	spin_unlock_irq(&phba->hbalock);
1640 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1641 
1642 	lpfc_offline(phba);
1643 	lpfc_reset_barrier(phba);
1644 	spin_lock_irq(&phba->hbalock);
1645 	lpfc_sli_brdreset(phba);
1646 	spin_unlock_irq(&phba->hbalock);
1647 	lpfc_hba_down_post(phba);
1648 	lpfc_sli_brdready(phba, HS_MBRDY);
1649 	lpfc_unblock_mgmt_io(phba);
1650 	phba->link_state = LPFC_HBA_ERROR;
1651 	return;
1652 }
1653 
1654 /**
1655  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1656  * @phba: pointer to lpfc hba data structure.
1657  *
1658  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1659  * other than Port Error 6 has been detected.
1660  **/
1661 void
1662 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1663 {
1664 	spin_lock_irq(&phba->hbalock);
1665 	if (phba->link_state == LPFC_HBA_ERROR &&
1666 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1667 		spin_unlock_irq(&phba->hbalock);
1668 		return;
1669 	}
1670 	phba->link_state = LPFC_HBA_ERROR;
1671 	spin_unlock_irq(&phba->hbalock);
1672 
1673 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1674 	lpfc_sli_flush_io_rings(phba);
1675 	lpfc_offline(phba);
1676 	lpfc_hba_down_post(phba);
1677 	lpfc_unblock_mgmt_io(phba);
1678 }
1679 
1680 /**
1681  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1682  * @phba: pointer to lpfc hba data structure.
1683  *
1684  * This routine is invoked to handle the deferred HBA hardware error
1685  * conditions. This type of error is indicated by HBA by setting ER1
1686  * and another ER bit in the host status register. The driver will
1687  * wait until the ER1 bit clears before handling the error condition.
1688  **/
1689 static void
1690 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1691 {
1692 	uint32_t old_host_status = phba->work_hs;
1693 	struct lpfc_sli *psli = &phba->sli;
1694 
1695 	/* If the pci channel is offline, ignore possible errors,
1696 	 * since we cannot communicate with the pci card anyway.
1697 	 */
1698 	if (pci_channel_offline(phba->pcidev)) {
1699 		spin_lock_irq(&phba->hbalock);
1700 		phba->hba_flag &= ~DEFER_ERATT;
1701 		spin_unlock_irq(&phba->hbalock);
1702 		return;
1703 	}
1704 
1705 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1706 			"0479 Deferred Adapter Hardware Error "
1707 			"Data: x%x x%x x%x\n",
1708 			phba->work_hs, phba->work_status[0],
1709 			phba->work_status[1]);
1710 
1711 	spin_lock_irq(&phba->hbalock);
1712 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1713 	spin_unlock_irq(&phba->hbalock);
1714 
1715 
1716 	/*
1717 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1718 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1719 	 * SCSI layer retry it after re-establishing link.
1720 	 */
1721 	lpfc_sli_abort_fcp_rings(phba);
1722 
1723 	/*
1724 	 * There was a firmware error. Take the hba offline and then
1725 	 * attempt to restart it.
1726 	 */
1727 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1728 	lpfc_offline(phba);
1729 
1730 	/* Wait for the ER1 bit to clear.*/
1731 	while (phba->work_hs & HS_FFER1) {
1732 		msleep(100);
1733 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1734 			phba->work_hs = UNPLUG_ERR ;
1735 			break;
1736 		}
1737 		/* If driver is unloading let the worker thread continue */
1738 		if (phba->pport->load_flag & FC_UNLOADING) {
1739 			phba->work_hs = 0;
1740 			break;
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * This is to ptrotect against a race condition in which
1746 	 * first write to the host attention register clear the
1747 	 * host status register.
1748 	 */
1749 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1750 		phba->work_hs = old_host_status & ~HS_FFER1;
1751 
1752 	spin_lock_irq(&phba->hbalock);
1753 	phba->hba_flag &= ~DEFER_ERATT;
1754 	spin_unlock_irq(&phba->hbalock);
1755 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1756 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1757 }
1758 
1759 static void
1760 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1761 {
1762 	struct lpfc_board_event_header board_event;
1763 	struct Scsi_Host *shost;
1764 
1765 	board_event.event_type = FC_REG_BOARD_EVENT;
1766 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1767 	shost = lpfc_shost_from_vport(phba->pport);
1768 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1769 				  sizeof(board_event),
1770 				  (char *) &board_event,
1771 				  LPFC_NL_VENDOR_ID);
1772 }
1773 
1774 /**
1775  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1776  * @phba: pointer to lpfc hba data structure.
1777  *
1778  * This routine is invoked to handle the following HBA hardware error
1779  * conditions:
1780  * 1 - HBA error attention interrupt
1781  * 2 - DMA ring index out of range
1782  * 3 - Mailbox command came back as unknown
1783  **/
1784 static void
1785 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1786 {
1787 	struct lpfc_vport *vport = phba->pport;
1788 	struct lpfc_sli   *psli = &phba->sli;
1789 	uint32_t event_data;
1790 	unsigned long temperature;
1791 	struct temp_event temp_event_data;
1792 	struct Scsi_Host  *shost;
1793 
1794 	/* If the pci channel is offline, ignore possible errors,
1795 	 * since we cannot communicate with the pci card anyway.
1796 	 */
1797 	if (pci_channel_offline(phba->pcidev)) {
1798 		spin_lock_irq(&phba->hbalock);
1799 		phba->hba_flag &= ~DEFER_ERATT;
1800 		spin_unlock_irq(&phba->hbalock);
1801 		return;
1802 	}
1803 
1804 	/* If resets are disabled then leave the HBA alone and return */
1805 	if (!phba->cfg_enable_hba_reset)
1806 		return;
1807 
1808 	/* Send an internal error event to mgmt application */
1809 	lpfc_board_errevt_to_mgmt(phba);
1810 
1811 	if (phba->hba_flag & DEFER_ERATT)
1812 		lpfc_handle_deferred_eratt(phba);
1813 
1814 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1815 		if (phba->work_hs & HS_FFER6)
1816 			/* Re-establishing Link */
1817 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1818 					"1301 Re-establishing Link "
1819 					"Data: x%x x%x x%x\n",
1820 					phba->work_hs, phba->work_status[0],
1821 					phba->work_status[1]);
1822 		if (phba->work_hs & HS_FFER8)
1823 			/* Device Zeroization */
1824 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1825 					"2861 Host Authentication device "
1826 					"zeroization Data:x%x x%x x%x\n",
1827 					phba->work_hs, phba->work_status[0],
1828 					phba->work_status[1]);
1829 
1830 		spin_lock_irq(&phba->hbalock);
1831 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1832 		spin_unlock_irq(&phba->hbalock);
1833 
1834 		/*
1835 		* Firmware stops when it triggled erratt with HS_FFER6.
1836 		* That could cause the I/Os dropped by the firmware.
1837 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1838 		* retry it after re-establishing link.
1839 		*/
1840 		lpfc_sli_abort_fcp_rings(phba);
1841 
1842 		/*
1843 		 * There was a firmware error.  Take the hba offline and then
1844 		 * attempt to restart it.
1845 		 */
1846 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1847 		lpfc_offline(phba);
1848 		lpfc_sli_brdrestart(phba);
1849 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1850 			lpfc_unblock_mgmt_io(phba);
1851 			return;
1852 		}
1853 		lpfc_unblock_mgmt_io(phba);
1854 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1855 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1856 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1857 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1858 		temp_event_data.data = (uint32_t)temperature;
1859 
1860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1861 				"0406 Adapter maximum temperature exceeded "
1862 				"(%ld), taking this port offline "
1863 				"Data: x%x x%x x%x\n",
1864 				temperature, phba->work_hs,
1865 				phba->work_status[0], phba->work_status[1]);
1866 
1867 		shost = lpfc_shost_from_vport(phba->pport);
1868 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1869 					  sizeof(temp_event_data),
1870 					  (char *) &temp_event_data,
1871 					  SCSI_NL_VID_TYPE_PCI
1872 					  | PCI_VENDOR_ID_EMULEX);
1873 
1874 		spin_lock_irq(&phba->hbalock);
1875 		phba->over_temp_state = HBA_OVER_TEMP;
1876 		spin_unlock_irq(&phba->hbalock);
1877 		lpfc_offline_eratt(phba);
1878 
1879 	} else {
1880 		/* The if clause above forces this code path when the status
1881 		 * failure is a value other than FFER6. Do not call the offline
1882 		 * twice. This is the adapter hardware error path.
1883 		 */
1884 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1885 				"0457 Adapter Hardware Error "
1886 				"Data: x%x x%x x%x\n",
1887 				phba->work_hs,
1888 				phba->work_status[0], phba->work_status[1]);
1889 
1890 		event_data = FC_REG_DUMP_EVENT;
1891 		shost = lpfc_shost_from_vport(vport);
1892 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1893 				sizeof(event_data), (char *) &event_data,
1894 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1895 
1896 		lpfc_offline_eratt(phba);
1897 	}
1898 	return;
1899 }
1900 
1901 /**
1902  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1903  * @phba: pointer to lpfc hba data structure.
1904  * @mbx_action: flag for mailbox shutdown action.
1905  * @en_rn_msg: send reset/port recovery message.
1906  * This routine is invoked to perform an SLI4 port PCI function reset in
1907  * response to port status register polling attention. It waits for port
1908  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1909  * During this process, interrupt vectors are freed and later requested
1910  * for handling possible port resource change.
1911  **/
1912 static int
1913 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1914 			    bool en_rn_msg)
1915 {
1916 	int rc;
1917 	uint32_t intr_mode;
1918 	LPFC_MBOXQ_t *mboxq;
1919 
1920 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1921 	    LPFC_SLI_INTF_IF_TYPE_2) {
1922 		/*
1923 		 * On error status condition, driver need to wait for port
1924 		 * ready before performing reset.
1925 		 */
1926 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1927 		if (rc)
1928 			return rc;
1929 	}
1930 
1931 	/* need reset: attempt for port recovery */
1932 	if (en_rn_msg)
1933 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1934 				"2887 Reset Needed: Attempting Port "
1935 				"Recovery...\n");
1936 
1937 	/* If we are no wait, the HBA has been reset and is not
1938 	 * functional, thus we should clear
1939 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1940 	 */
1941 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1942 		spin_lock_irq(&phba->hbalock);
1943 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1944 		if (phba->sli.mbox_active) {
1945 			mboxq = phba->sli.mbox_active;
1946 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1947 			__lpfc_mbox_cmpl_put(phba, mboxq);
1948 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1949 			phba->sli.mbox_active = NULL;
1950 		}
1951 		spin_unlock_irq(&phba->hbalock);
1952 	}
1953 
1954 	lpfc_offline_prep(phba, mbx_action);
1955 	lpfc_sli_flush_io_rings(phba);
1956 	lpfc_offline(phba);
1957 	/* release interrupt for possible resource change */
1958 	lpfc_sli4_disable_intr(phba);
1959 	rc = lpfc_sli_brdrestart(phba);
1960 	if (rc) {
1961 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1962 				"6309 Failed to restart board\n");
1963 		return rc;
1964 	}
1965 	/* request and enable interrupt */
1966 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1967 	if (intr_mode == LPFC_INTR_ERROR) {
1968 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1969 				"3175 Failed to enable interrupt\n");
1970 		return -EIO;
1971 	}
1972 	phba->intr_mode = intr_mode;
1973 	rc = lpfc_online(phba);
1974 	if (rc == 0)
1975 		lpfc_unblock_mgmt_io(phba);
1976 
1977 	return rc;
1978 }
1979 
1980 /**
1981  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1982  * @phba: pointer to lpfc hba data structure.
1983  *
1984  * This routine is invoked to handle the SLI4 HBA hardware error attention
1985  * conditions.
1986  **/
1987 static void
1988 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1989 {
1990 	struct lpfc_vport *vport = phba->pport;
1991 	uint32_t event_data;
1992 	struct Scsi_Host *shost;
1993 	uint32_t if_type;
1994 	struct lpfc_register portstat_reg = {0};
1995 	uint32_t reg_err1, reg_err2;
1996 	uint32_t uerrlo_reg, uemasklo_reg;
1997 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1998 	bool en_rn_msg = true;
1999 	struct temp_event temp_event_data;
2000 	struct lpfc_register portsmphr_reg;
2001 	int rc, i;
2002 
2003 	/* If the pci channel is offline, ignore possible errors, since
2004 	 * we cannot communicate with the pci card anyway.
2005 	 */
2006 	if (pci_channel_offline(phba->pcidev)) {
2007 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2008 				"3166 pci channel is offline\n");
2009 		lpfc_sli_flush_io_rings(phba);
2010 		return;
2011 	}
2012 
2013 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2014 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2015 	switch (if_type) {
2016 	case LPFC_SLI_INTF_IF_TYPE_0:
2017 		pci_rd_rc1 = lpfc_readl(
2018 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2019 				&uerrlo_reg);
2020 		pci_rd_rc2 = lpfc_readl(
2021 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2022 				&uemasklo_reg);
2023 		/* consider PCI bus read error as pci_channel_offline */
2024 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2025 			return;
2026 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2027 			lpfc_sli4_offline_eratt(phba);
2028 			return;
2029 		}
2030 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2031 				"7623 Checking UE recoverable");
2032 
2033 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2034 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2035 				       &portsmphr_reg.word0))
2036 				continue;
2037 
2038 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2039 						   &portsmphr_reg);
2040 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2041 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2042 				break;
2043 			/*Sleep for 1Sec, before checking SEMAPHORE */
2044 			msleep(1000);
2045 		}
2046 
2047 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2048 				"4827 smphr_port_status x%x : Waited %dSec",
2049 				smphr_port_status, i);
2050 
2051 		/* Recoverable UE, reset the HBA device */
2052 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2053 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2054 			for (i = 0; i < 20; i++) {
2055 				msleep(1000);
2056 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2057 				    &portsmphr_reg.word0) &&
2058 				    (LPFC_POST_STAGE_PORT_READY ==
2059 				     bf_get(lpfc_port_smphr_port_status,
2060 				     &portsmphr_reg))) {
2061 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2062 						LPFC_MBX_NO_WAIT, en_rn_msg);
2063 					if (rc == 0)
2064 						return;
2065 					lpfc_printf_log(phba, KERN_ERR,
2066 						LOG_TRACE_EVENT,
2067 						"4215 Failed to recover UE");
2068 					break;
2069 				}
2070 			}
2071 		}
2072 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2073 				"7624 Firmware not ready: Failing UE recovery,"
2074 				" waited %dSec", i);
2075 		phba->link_state = LPFC_HBA_ERROR;
2076 		break;
2077 
2078 	case LPFC_SLI_INTF_IF_TYPE_2:
2079 	case LPFC_SLI_INTF_IF_TYPE_6:
2080 		pci_rd_rc1 = lpfc_readl(
2081 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2082 				&portstat_reg.word0);
2083 		/* consider PCI bus read error as pci_channel_offline */
2084 		if (pci_rd_rc1 == -EIO) {
2085 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2086 				"3151 PCI bus read access failure: x%x\n",
2087 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2088 			lpfc_sli4_offline_eratt(phba);
2089 			return;
2090 		}
2091 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2092 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2093 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2094 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2095 					"2889 Port Overtemperature event, "
2096 					"taking port offline Data: x%x x%x\n",
2097 					reg_err1, reg_err2);
2098 
2099 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2100 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2101 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2102 			temp_event_data.data = 0xFFFFFFFF;
2103 
2104 			shost = lpfc_shost_from_vport(phba->pport);
2105 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2106 						  sizeof(temp_event_data),
2107 						  (char *)&temp_event_data,
2108 						  SCSI_NL_VID_TYPE_PCI
2109 						  | PCI_VENDOR_ID_EMULEX);
2110 
2111 			spin_lock_irq(&phba->hbalock);
2112 			phba->over_temp_state = HBA_OVER_TEMP;
2113 			spin_unlock_irq(&phba->hbalock);
2114 			lpfc_sli4_offline_eratt(phba);
2115 			return;
2116 		}
2117 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2118 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2119 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2120 					"3143 Port Down: Firmware Update "
2121 					"Detected\n");
2122 			en_rn_msg = false;
2123 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2124 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2125 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2126 					"3144 Port Down: Debug Dump\n");
2127 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2128 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2129 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2130 					"3145 Port Down: Provisioning\n");
2131 
2132 		/* If resets are disabled then leave the HBA alone and return */
2133 		if (!phba->cfg_enable_hba_reset)
2134 			return;
2135 
2136 		/* Check port status register for function reset */
2137 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2138 				en_rn_msg);
2139 		if (rc == 0) {
2140 			/* don't report event on forced debug dump */
2141 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2142 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2143 				return;
2144 			else
2145 				break;
2146 		}
2147 		/* fall through for not able to recover */
2148 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2149 				"3152 Unrecoverable error\n");
2150 		phba->link_state = LPFC_HBA_ERROR;
2151 		break;
2152 	case LPFC_SLI_INTF_IF_TYPE_1:
2153 	default:
2154 		break;
2155 	}
2156 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2157 			"3123 Report dump event to upper layer\n");
2158 	/* Send an internal error event to mgmt application */
2159 	lpfc_board_errevt_to_mgmt(phba);
2160 
2161 	event_data = FC_REG_DUMP_EVENT;
2162 	shost = lpfc_shost_from_vport(vport);
2163 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2164 				  sizeof(event_data), (char *) &event_data,
2165 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2166 }
2167 
2168 /**
2169  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2170  * @phba: pointer to lpfc HBA data structure.
2171  *
2172  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2173  * routine from the API jump table function pointer from the lpfc_hba struct.
2174  *
2175  * Return codes
2176  *   0 - success.
2177  *   Any other value - error.
2178  **/
2179 void
2180 lpfc_handle_eratt(struct lpfc_hba *phba)
2181 {
2182 	(*phba->lpfc_handle_eratt)(phba);
2183 }
2184 
2185 /**
2186  * lpfc_handle_latt - The HBA link event handler
2187  * @phba: pointer to lpfc hba data structure.
2188  *
2189  * This routine is invoked from the worker thread to handle a HBA host
2190  * attention link event. SLI3 only.
2191  **/
2192 void
2193 lpfc_handle_latt(struct lpfc_hba *phba)
2194 {
2195 	struct lpfc_vport *vport = phba->pport;
2196 	struct lpfc_sli   *psli = &phba->sli;
2197 	LPFC_MBOXQ_t *pmb;
2198 	volatile uint32_t control;
2199 	int rc = 0;
2200 
2201 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2202 	if (!pmb) {
2203 		rc = 1;
2204 		goto lpfc_handle_latt_err_exit;
2205 	}
2206 
2207 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2208 	if (rc) {
2209 		rc = 2;
2210 		mempool_free(pmb, phba->mbox_mem_pool);
2211 		goto lpfc_handle_latt_err_exit;
2212 	}
2213 
2214 	/* Cleanup any outstanding ELS commands */
2215 	lpfc_els_flush_all_cmd(phba);
2216 	psli->slistat.link_event++;
2217 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
2218 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2219 	pmb->vport = vport;
2220 	/* Block ELS IOCBs until we have processed this mbox command */
2221 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2222 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2223 	if (rc == MBX_NOT_FINISHED) {
2224 		rc = 4;
2225 		goto lpfc_handle_latt_free_mbuf;
2226 	}
2227 
2228 	/* Clear Link Attention in HA REG */
2229 	spin_lock_irq(&phba->hbalock);
2230 	writel(HA_LATT, phba->HAregaddr);
2231 	readl(phba->HAregaddr); /* flush */
2232 	spin_unlock_irq(&phba->hbalock);
2233 
2234 	return;
2235 
2236 lpfc_handle_latt_free_mbuf:
2237 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2238 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2239 lpfc_handle_latt_err_exit:
2240 	/* Enable Link attention interrupts */
2241 	spin_lock_irq(&phba->hbalock);
2242 	psli->sli_flag |= LPFC_PROCESS_LA;
2243 	control = readl(phba->HCregaddr);
2244 	control |= HC_LAINT_ENA;
2245 	writel(control, phba->HCregaddr);
2246 	readl(phba->HCregaddr); /* flush */
2247 
2248 	/* Clear Link Attention in HA REG */
2249 	writel(HA_LATT, phba->HAregaddr);
2250 	readl(phba->HAregaddr); /* flush */
2251 	spin_unlock_irq(&phba->hbalock);
2252 	lpfc_linkdown(phba);
2253 	phba->link_state = LPFC_HBA_ERROR;
2254 
2255 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2256 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2257 
2258 	return;
2259 }
2260 
2261 /**
2262  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2263  * @phba: pointer to lpfc hba data structure.
2264  * @vpd: pointer to the vital product data.
2265  * @len: length of the vital product data in bytes.
2266  *
2267  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2268  * an array of characters. In this routine, the ModelName, ProgramType, and
2269  * ModelDesc, etc. fields of the phba data structure will be populated.
2270  *
2271  * Return codes
2272  *   0 - pointer to the VPD passed in is NULL
2273  *   1 - success
2274  **/
2275 int
2276 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2277 {
2278 	uint8_t lenlo, lenhi;
2279 	int Length;
2280 	int i, j;
2281 	int finished = 0;
2282 	int index = 0;
2283 
2284 	if (!vpd)
2285 		return 0;
2286 
2287 	/* Vital Product */
2288 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2289 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2290 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2291 			(uint32_t) vpd[3]);
2292 	while (!finished && (index < (len - 4))) {
2293 		switch (vpd[index]) {
2294 		case 0x82:
2295 		case 0x91:
2296 			index += 1;
2297 			lenlo = vpd[index];
2298 			index += 1;
2299 			lenhi = vpd[index];
2300 			index += 1;
2301 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2302 			index += i;
2303 			break;
2304 		case 0x90:
2305 			index += 1;
2306 			lenlo = vpd[index];
2307 			index += 1;
2308 			lenhi = vpd[index];
2309 			index += 1;
2310 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2311 			if (Length > len - index)
2312 				Length = len - index;
2313 			while (Length > 0) {
2314 			/* Look for Serial Number */
2315 			if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) {
2316 				index += 2;
2317 				i = vpd[index];
2318 				index += 1;
2319 				j = 0;
2320 				Length -= (3+i);
2321 				while(i--) {
2322 					phba->SerialNumber[j++] = vpd[index++];
2323 					if (j == 31)
2324 						break;
2325 				}
2326 				phba->SerialNumber[j] = 0;
2327 				continue;
2328 			}
2329 			else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) {
2330 				phba->vpd_flag |= VPD_MODEL_DESC;
2331 				index += 2;
2332 				i = vpd[index];
2333 				index += 1;
2334 				j = 0;
2335 				Length -= (3+i);
2336 				while(i--) {
2337 					phba->ModelDesc[j++] = vpd[index++];
2338 					if (j == 255)
2339 						break;
2340 				}
2341 				phba->ModelDesc[j] = 0;
2342 				continue;
2343 			}
2344 			else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) {
2345 				phba->vpd_flag |= VPD_MODEL_NAME;
2346 				index += 2;
2347 				i = vpd[index];
2348 				index += 1;
2349 				j = 0;
2350 				Length -= (3+i);
2351 				while(i--) {
2352 					phba->ModelName[j++] = vpd[index++];
2353 					if (j == 79)
2354 						break;
2355 				}
2356 				phba->ModelName[j] = 0;
2357 				continue;
2358 			}
2359 			else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) {
2360 				phba->vpd_flag |= VPD_PROGRAM_TYPE;
2361 				index += 2;
2362 				i = vpd[index];
2363 				index += 1;
2364 				j = 0;
2365 				Length -= (3+i);
2366 				while(i--) {
2367 					phba->ProgramType[j++] = vpd[index++];
2368 					if (j == 255)
2369 						break;
2370 				}
2371 				phba->ProgramType[j] = 0;
2372 				continue;
2373 			}
2374 			else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) {
2375 				phba->vpd_flag |= VPD_PORT;
2376 				index += 2;
2377 				i = vpd[index];
2378 				index += 1;
2379 				j = 0;
2380 				Length -= (3+i);
2381 				while(i--) {
2382 					if ((phba->sli_rev == LPFC_SLI_REV4) &&
2383 					    (phba->sli4_hba.pport_name_sta ==
2384 					     LPFC_SLI4_PPNAME_GET)) {
2385 						j++;
2386 						index++;
2387 					} else
2388 						phba->Port[j++] = vpd[index++];
2389 					if (j == 19)
2390 						break;
2391 				}
2392 				if ((phba->sli_rev != LPFC_SLI_REV4) ||
2393 				    (phba->sli4_hba.pport_name_sta ==
2394 				     LPFC_SLI4_PPNAME_NON))
2395 					phba->Port[j] = 0;
2396 				continue;
2397 			}
2398 			else {
2399 				index += 2;
2400 				i = vpd[index];
2401 				index += 1;
2402 				index += i;
2403 				Length -= (3 + i);
2404 			}
2405 		}
2406 		finished = 0;
2407 		break;
2408 		case 0x78:
2409 			finished = 1;
2410 			break;
2411 		default:
2412 			index ++;
2413 			break;
2414 		}
2415 	}
2416 
2417 	return(1);
2418 }
2419 
2420 /**
2421  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2422  * @phba: pointer to lpfc hba data structure.
2423  * @mdp: pointer to the data structure to hold the derived model name.
2424  * @descp: pointer to the data structure to hold the derived description.
2425  *
2426  * This routine retrieves HBA's description based on its registered PCI device
2427  * ID. The @descp passed into this function points to an array of 256 chars. It
2428  * shall be returned with the model name, maximum speed, and the host bus type.
2429  * The @mdp passed into this function points to an array of 80 chars. When the
2430  * function returns, the @mdp will be filled with the model name.
2431  **/
2432 static void
2433 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2434 {
2435 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2436 	char *model = "<Unknown>";
2437 	int tbolt = 0;
2438 
2439 	switch (sub_dev_id) {
2440 	case PCI_DEVICE_ID_CLRY_161E:
2441 		model = "161E";
2442 		break;
2443 	case PCI_DEVICE_ID_CLRY_162E:
2444 		model = "162E";
2445 		break;
2446 	case PCI_DEVICE_ID_CLRY_164E:
2447 		model = "164E";
2448 		break;
2449 	case PCI_DEVICE_ID_CLRY_161P:
2450 		model = "161P";
2451 		break;
2452 	case PCI_DEVICE_ID_CLRY_162P:
2453 		model = "162P";
2454 		break;
2455 	case PCI_DEVICE_ID_CLRY_164P:
2456 		model = "164P";
2457 		break;
2458 	case PCI_DEVICE_ID_CLRY_321E:
2459 		model = "321E";
2460 		break;
2461 	case PCI_DEVICE_ID_CLRY_322E:
2462 		model = "322E";
2463 		break;
2464 	case PCI_DEVICE_ID_CLRY_324E:
2465 		model = "324E";
2466 		break;
2467 	case PCI_DEVICE_ID_CLRY_321P:
2468 		model = "321P";
2469 		break;
2470 	case PCI_DEVICE_ID_CLRY_322P:
2471 		model = "322P";
2472 		break;
2473 	case PCI_DEVICE_ID_CLRY_324P:
2474 		model = "324P";
2475 		break;
2476 	case PCI_DEVICE_ID_TLFC_2XX2:
2477 		model = "2XX2";
2478 		tbolt = 1;
2479 		break;
2480 	case PCI_DEVICE_ID_TLFC_3162:
2481 		model = "3162";
2482 		tbolt = 1;
2483 		break;
2484 	case PCI_DEVICE_ID_TLFC_3322:
2485 		model = "3322";
2486 		tbolt = 1;
2487 		break;
2488 	default:
2489 		model = "Unknown";
2490 		break;
2491 	}
2492 
2493 	if (mdp && mdp[0] == '\0')
2494 		snprintf(mdp, 79, "%s", model);
2495 
2496 	if (descp && descp[0] == '\0')
2497 		snprintf(descp, 255,
2498 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2499 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2500 			 model,
2501 			 phba->Port);
2502 }
2503 
2504 /**
2505  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2506  * @phba: pointer to lpfc hba data structure.
2507  * @mdp: pointer to the data structure to hold the derived model name.
2508  * @descp: pointer to the data structure to hold the derived description.
2509  *
2510  * This routine retrieves HBA's description based on its registered PCI device
2511  * ID. The @descp passed into this function points to an array of 256 chars. It
2512  * shall be returned with the model name, maximum speed, and the host bus type.
2513  * The @mdp passed into this function points to an array of 80 chars. When the
2514  * function returns, the @mdp will be filled with the model name.
2515  **/
2516 static void
2517 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2518 {
2519 	lpfc_vpd_t *vp;
2520 	uint16_t dev_id = phba->pcidev->device;
2521 	int max_speed;
2522 	int GE = 0;
2523 	int oneConnect = 0; /* default is not a oneConnect */
2524 	struct {
2525 		char *name;
2526 		char *bus;
2527 		char *function;
2528 	} m = {"<Unknown>", "", ""};
2529 
2530 	if (mdp && mdp[0] != '\0'
2531 		&& descp && descp[0] != '\0')
2532 		return;
2533 
2534 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2535 		lpfc_get_atto_model_desc(phba, mdp, descp);
2536 		return;
2537 	}
2538 
2539 	if (phba->lmt & LMT_64Gb)
2540 		max_speed = 64;
2541 	else if (phba->lmt & LMT_32Gb)
2542 		max_speed = 32;
2543 	else if (phba->lmt & LMT_16Gb)
2544 		max_speed = 16;
2545 	else if (phba->lmt & LMT_10Gb)
2546 		max_speed = 10;
2547 	else if (phba->lmt & LMT_8Gb)
2548 		max_speed = 8;
2549 	else if (phba->lmt & LMT_4Gb)
2550 		max_speed = 4;
2551 	else if (phba->lmt & LMT_2Gb)
2552 		max_speed = 2;
2553 	else if (phba->lmt & LMT_1Gb)
2554 		max_speed = 1;
2555 	else
2556 		max_speed = 0;
2557 
2558 	vp = &phba->vpd;
2559 
2560 	switch (dev_id) {
2561 	case PCI_DEVICE_ID_FIREFLY:
2562 		m = (typeof(m)){"LP6000", "PCI",
2563 				"Obsolete, Unsupported Fibre Channel Adapter"};
2564 		break;
2565 	case PCI_DEVICE_ID_SUPERFLY:
2566 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2567 			m = (typeof(m)){"LP7000", "PCI", ""};
2568 		else
2569 			m = (typeof(m)){"LP7000E", "PCI", ""};
2570 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2571 		break;
2572 	case PCI_DEVICE_ID_DRAGONFLY:
2573 		m = (typeof(m)){"LP8000", "PCI",
2574 				"Obsolete, Unsupported Fibre Channel Adapter"};
2575 		break;
2576 	case PCI_DEVICE_ID_CENTAUR:
2577 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2578 			m = (typeof(m)){"LP9002", "PCI", ""};
2579 		else
2580 			m = (typeof(m)){"LP9000", "PCI", ""};
2581 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2582 		break;
2583 	case PCI_DEVICE_ID_RFLY:
2584 		m = (typeof(m)){"LP952", "PCI",
2585 				"Obsolete, Unsupported Fibre Channel Adapter"};
2586 		break;
2587 	case PCI_DEVICE_ID_PEGASUS:
2588 		m = (typeof(m)){"LP9802", "PCI-X",
2589 				"Obsolete, Unsupported Fibre Channel Adapter"};
2590 		break;
2591 	case PCI_DEVICE_ID_THOR:
2592 		m = (typeof(m)){"LP10000", "PCI-X",
2593 				"Obsolete, Unsupported Fibre Channel Adapter"};
2594 		break;
2595 	case PCI_DEVICE_ID_VIPER:
2596 		m = (typeof(m)){"LPX1000",  "PCI-X",
2597 				"Obsolete, Unsupported Fibre Channel Adapter"};
2598 		break;
2599 	case PCI_DEVICE_ID_PFLY:
2600 		m = (typeof(m)){"LP982", "PCI-X",
2601 				"Obsolete, Unsupported Fibre Channel Adapter"};
2602 		break;
2603 	case PCI_DEVICE_ID_TFLY:
2604 		m = (typeof(m)){"LP1050", "PCI-X",
2605 				"Obsolete, Unsupported Fibre Channel Adapter"};
2606 		break;
2607 	case PCI_DEVICE_ID_HELIOS:
2608 		m = (typeof(m)){"LP11000", "PCI-X2",
2609 				"Obsolete, Unsupported Fibre Channel Adapter"};
2610 		break;
2611 	case PCI_DEVICE_ID_HELIOS_SCSP:
2612 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2613 				"Obsolete, Unsupported Fibre Channel Adapter"};
2614 		break;
2615 	case PCI_DEVICE_ID_HELIOS_DCSP:
2616 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2617 				"Obsolete, Unsupported Fibre Channel Adapter"};
2618 		break;
2619 	case PCI_DEVICE_ID_NEPTUNE:
2620 		m = (typeof(m)){"LPe1000", "PCIe",
2621 				"Obsolete, Unsupported Fibre Channel Adapter"};
2622 		break;
2623 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2624 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2625 				"Obsolete, Unsupported Fibre Channel Adapter"};
2626 		break;
2627 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2628 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2629 				"Obsolete, Unsupported Fibre Channel Adapter"};
2630 		break;
2631 	case PCI_DEVICE_ID_BMID:
2632 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2633 		break;
2634 	case PCI_DEVICE_ID_BSMB:
2635 		m = (typeof(m)){"LP111", "PCI-X2",
2636 				"Obsolete, Unsupported Fibre Channel Adapter"};
2637 		break;
2638 	case PCI_DEVICE_ID_ZEPHYR:
2639 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2640 		break;
2641 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2642 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2643 		break;
2644 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2645 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2646 		GE = 1;
2647 		break;
2648 	case PCI_DEVICE_ID_ZMID:
2649 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2650 		break;
2651 	case PCI_DEVICE_ID_ZSMB:
2652 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2653 		break;
2654 	case PCI_DEVICE_ID_LP101:
2655 		m = (typeof(m)){"LP101", "PCI-X",
2656 				"Obsolete, Unsupported Fibre Channel Adapter"};
2657 		break;
2658 	case PCI_DEVICE_ID_LP10000S:
2659 		m = (typeof(m)){"LP10000-S", "PCI",
2660 				"Obsolete, Unsupported Fibre Channel Adapter"};
2661 		break;
2662 	case PCI_DEVICE_ID_LP11000S:
2663 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2664 				"Obsolete, Unsupported Fibre Channel Adapter"};
2665 		break;
2666 	case PCI_DEVICE_ID_LPE11000S:
2667 		m = (typeof(m)){"LPe11000-S", "PCIe",
2668 				"Obsolete, Unsupported Fibre Channel Adapter"};
2669 		break;
2670 	case PCI_DEVICE_ID_SAT:
2671 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2672 		break;
2673 	case PCI_DEVICE_ID_SAT_MID:
2674 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2675 		break;
2676 	case PCI_DEVICE_ID_SAT_SMB:
2677 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2678 		break;
2679 	case PCI_DEVICE_ID_SAT_DCSP:
2680 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2681 		break;
2682 	case PCI_DEVICE_ID_SAT_SCSP:
2683 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2684 		break;
2685 	case PCI_DEVICE_ID_SAT_S:
2686 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2687 		break;
2688 	case PCI_DEVICE_ID_PROTEUS_VF:
2689 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2690 				"Obsolete, Unsupported Fibre Channel Adapter"};
2691 		break;
2692 	case PCI_DEVICE_ID_PROTEUS_PF:
2693 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2694 				"Obsolete, Unsupported Fibre Channel Adapter"};
2695 		break;
2696 	case PCI_DEVICE_ID_PROTEUS_S:
2697 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2698 				"Obsolete, Unsupported Fibre Channel Adapter"};
2699 		break;
2700 	case PCI_DEVICE_ID_TIGERSHARK:
2701 		oneConnect = 1;
2702 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2703 		break;
2704 	case PCI_DEVICE_ID_TOMCAT:
2705 		oneConnect = 1;
2706 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2707 		break;
2708 	case PCI_DEVICE_ID_FALCON:
2709 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2710 				"EmulexSecure Fibre"};
2711 		break;
2712 	case PCI_DEVICE_ID_BALIUS:
2713 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2714 				"Obsolete, Unsupported Fibre Channel Adapter"};
2715 		break;
2716 	case PCI_DEVICE_ID_LANCER_FC:
2717 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2718 		break;
2719 	case PCI_DEVICE_ID_LANCER_FC_VF:
2720 		m = (typeof(m)){"LPe16000", "PCIe",
2721 				"Obsolete, Unsupported Fibre Channel Adapter"};
2722 		break;
2723 	case PCI_DEVICE_ID_LANCER_FCOE:
2724 		oneConnect = 1;
2725 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2726 		break;
2727 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2728 		oneConnect = 1;
2729 		m = (typeof(m)){"OCe15100", "PCIe",
2730 				"Obsolete, Unsupported FCoE"};
2731 		break;
2732 	case PCI_DEVICE_ID_LANCER_G6_FC:
2733 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2734 		break;
2735 	case PCI_DEVICE_ID_LANCER_G7_FC:
2736 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2737 		break;
2738 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2739 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2740 		break;
2741 	case PCI_DEVICE_ID_SKYHAWK:
2742 	case PCI_DEVICE_ID_SKYHAWK_VF:
2743 		oneConnect = 1;
2744 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2745 		break;
2746 	default:
2747 		m = (typeof(m)){"Unknown", "", ""};
2748 		break;
2749 	}
2750 
2751 	if (mdp && mdp[0] == '\0')
2752 		snprintf(mdp, 79,"%s", m.name);
2753 	/*
2754 	 * oneConnect hba requires special processing, they are all initiators
2755 	 * and we put the port number on the end
2756 	 */
2757 	if (descp && descp[0] == '\0') {
2758 		if (oneConnect)
2759 			snprintf(descp, 255,
2760 				"Emulex OneConnect %s, %s Initiator %s",
2761 				m.name, m.function,
2762 				phba->Port);
2763 		else if (max_speed == 0)
2764 			snprintf(descp, 255,
2765 				"Emulex %s %s %s",
2766 				m.name, m.bus, m.function);
2767 		else
2768 			snprintf(descp, 255,
2769 				"Emulex %s %d%s %s %s",
2770 				m.name, max_speed, (GE) ? "GE" : "Gb",
2771 				m.bus, m.function);
2772 	}
2773 }
2774 
2775 /**
2776  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2777  * @phba: pointer to lpfc hba data structure.
2778  * @pring: pointer to a IOCB ring.
2779  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2780  *
2781  * This routine posts a given number of IOCBs with the associated DMA buffer
2782  * descriptors specified by the cnt argument to the given IOCB ring.
2783  *
2784  * Return codes
2785  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2786  **/
2787 int
2788 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2789 {
2790 	IOCB_t *icmd;
2791 	struct lpfc_iocbq *iocb;
2792 	struct lpfc_dmabuf *mp1, *mp2;
2793 
2794 	cnt += pring->missbufcnt;
2795 
2796 	/* While there are buffers to post */
2797 	while (cnt > 0) {
2798 		/* Allocate buffer for  command iocb */
2799 		iocb = lpfc_sli_get_iocbq(phba);
2800 		if (iocb == NULL) {
2801 			pring->missbufcnt = cnt;
2802 			return cnt;
2803 		}
2804 		icmd = &iocb->iocb;
2805 
2806 		/* 2 buffers can be posted per command */
2807 		/* Allocate buffer to post */
2808 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2809 		if (mp1)
2810 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2811 		if (!mp1 || !mp1->virt) {
2812 			kfree(mp1);
2813 			lpfc_sli_release_iocbq(phba, iocb);
2814 			pring->missbufcnt = cnt;
2815 			return cnt;
2816 		}
2817 
2818 		INIT_LIST_HEAD(&mp1->list);
2819 		/* Allocate buffer to post */
2820 		if (cnt > 1) {
2821 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2822 			if (mp2)
2823 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2824 							    &mp2->phys);
2825 			if (!mp2 || !mp2->virt) {
2826 				kfree(mp2);
2827 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2828 				kfree(mp1);
2829 				lpfc_sli_release_iocbq(phba, iocb);
2830 				pring->missbufcnt = cnt;
2831 				return cnt;
2832 			}
2833 
2834 			INIT_LIST_HEAD(&mp2->list);
2835 		} else {
2836 			mp2 = NULL;
2837 		}
2838 
2839 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2840 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2841 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2842 		icmd->ulpBdeCount = 1;
2843 		cnt--;
2844 		if (mp2) {
2845 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2846 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2847 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2848 			cnt--;
2849 			icmd->ulpBdeCount = 2;
2850 		}
2851 
2852 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2853 		icmd->ulpLe = 1;
2854 
2855 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2856 		    IOCB_ERROR) {
2857 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2858 			kfree(mp1);
2859 			cnt++;
2860 			if (mp2) {
2861 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2862 				kfree(mp2);
2863 				cnt++;
2864 			}
2865 			lpfc_sli_release_iocbq(phba, iocb);
2866 			pring->missbufcnt = cnt;
2867 			return cnt;
2868 		}
2869 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2870 		if (mp2)
2871 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2872 	}
2873 	pring->missbufcnt = 0;
2874 	return 0;
2875 }
2876 
2877 /**
2878  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2879  * @phba: pointer to lpfc hba data structure.
2880  *
2881  * This routine posts initial receive IOCB buffers to the ELS ring. The
2882  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2883  * set to 64 IOCBs. SLI3 only.
2884  *
2885  * Return codes
2886  *   0 - success (currently always success)
2887  **/
2888 static int
2889 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2890 {
2891 	struct lpfc_sli *psli = &phba->sli;
2892 
2893 	/* Ring 0, ELS / CT buffers */
2894 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2895 	/* Ring 2 - FCP no buffers needed */
2896 
2897 	return 0;
2898 }
2899 
2900 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2901 
2902 /**
2903  * lpfc_sha_init - Set up initial array of hash table entries
2904  * @HashResultPointer: pointer to an array as hash table.
2905  *
2906  * This routine sets up the initial values to the array of hash table entries
2907  * for the LC HBAs.
2908  **/
2909 static void
2910 lpfc_sha_init(uint32_t * HashResultPointer)
2911 {
2912 	HashResultPointer[0] = 0x67452301;
2913 	HashResultPointer[1] = 0xEFCDAB89;
2914 	HashResultPointer[2] = 0x98BADCFE;
2915 	HashResultPointer[3] = 0x10325476;
2916 	HashResultPointer[4] = 0xC3D2E1F0;
2917 }
2918 
2919 /**
2920  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2921  * @HashResultPointer: pointer to an initial/result hash table.
2922  * @HashWorkingPointer: pointer to an working hash table.
2923  *
2924  * This routine iterates an initial hash table pointed by @HashResultPointer
2925  * with the values from the working hash table pointeed by @HashWorkingPointer.
2926  * The results are putting back to the initial hash table, returned through
2927  * the @HashResultPointer as the result hash table.
2928  **/
2929 static void
2930 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2931 {
2932 	int t;
2933 	uint32_t TEMP;
2934 	uint32_t A, B, C, D, E;
2935 	t = 16;
2936 	do {
2937 		HashWorkingPointer[t] =
2938 		    S(1,
2939 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2940 								     8] ^
2941 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2942 	} while (++t <= 79);
2943 	t = 0;
2944 	A = HashResultPointer[0];
2945 	B = HashResultPointer[1];
2946 	C = HashResultPointer[2];
2947 	D = HashResultPointer[3];
2948 	E = HashResultPointer[4];
2949 
2950 	do {
2951 		if (t < 20) {
2952 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2953 		} else if (t < 40) {
2954 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2955 		} else if (t < 60) {
2956 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2957 		} else {
2958 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2959 		}
2960 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2961 		E = D;
2962 		D = C;
2963 		C = S(30, B);
2964 		B = A;
2965 		A = TEMP;
2966 	} while (++t <= 79);
2967 
2968 	HashResultPointer[0] += A;
2969 	HashResultPointer[1] += B;
2970 	HashResultPointer[2] += C;
2971 	HashResultPointer[3] += D;
2972 	HashResultPointer[4] += E;
2973 
2974 }
2975 
2976 /**
2977  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2978  * @RandomChallenge: pointer to the entry of host challenge random number array.
2979  * @HashWorking: pointer to the entry of the working hash array.
2980  *
2981  * This routine calculates the working hash array referred by @HashWorking
2982  * from the challenge random numbers associated with the host, referred by
2983  * @RandomChallenge. The result is put into the entry of the working hash
2984  * array and returned by reference through @HashWorking.
2985  **/
2986 static void
2987 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2988 {
2989 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2990 }
2991 
2992 /**
2993  * lpfc_hba_init - Perform special handling for LC HBA initialization
2994  * @phba: pointer to lpfc hba data structure.
2995  * @hbainit: pointer to an array of unsigned 32-bit integers.
2996  *
2997  * This routine performs the special handling for LC HBA initialization.
2998  **/
2999 void
3000 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
3001 {
3002 	int t;
3003 	uint32_t *HashWorking;
3004 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
3005 
3006 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3007 	if (!HashWorking)
3008 		return;
3009 
3010 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3011 	HashWorking[1] = HashWorking[79] = *pwwnn;
3012 
3013 	for (t = 0; t < 7; t++)
3014 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3015 
3016 	lpfc_sha_init(hbainit);
3017 	lpfc_sha_iterate(hbainit, HashWorking);
3018 	kfree(HashWorking);
3019 }
3020 
3021 /**
3022  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3023  * @vport: pointer to a virtual N_Port data structure.
3024  *
3025  * This routine performs the necessary cleanups before deleting the @vport.
3026  * It invokes the discovery state machine to perform necessary state
3027  * transitions and to release the ndlps associated with the @vport. Note,
3028  * the physical port is treated as @vport 0.
3029  **/
3030 void
3031 lpfc_cleanup(struct lpfc_vport *vport)
3032 {
3033 	struct lpfc_hba   *phba = vport->phba;
3034 	struct lpfc_nodelist *ndlp, *next_ndlp;
3035 	int i = 0;
3036 
3037 	if (phba->link_state > LPFC_LINK_DOWN)
3038 		lpfc_port_link_failure(vport);
3039 
3040 	/* Clean up VMID resources */
3041 	if (lpfc_is_vmid_enabled(phba))
3042 		lpfc_vmid_vport_cleanup(vport);
3043 
3044 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3045 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3046 		    ndlp->nlp_DID == Fabric_DID) {
3047 			/* Just free up ndlp with Fabric_DID for vports */
3048 			lpfc_nlp_put(ndlp);
3049 			continue;
3050 		}
3051 
3052 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3053 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3054 			lpfc_nlp_put(ndlp);
3055 			continue;
3056 		}
3057 
3058 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3059 		 * DEVICE_RM event.
3060 		 */
3061 		if (ndlp->nlp_type & NLP_FABRIC &&
3062 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3063 			lpfc_disc_state_machine(vport, ndlp, NULL,
3064 					NLP_EVT_DEVICE_RECOVERY);
3065 
3066 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3067 			lpfc_disc_state_machine(vport, ndlp, NULL,
3068 					NLP_EVT_DEVICE_RM);
3069 	}
3070 
3071 	/* This is a special case flush to return all
3072 	 * IOs before entering this loop. There are
3073 	 * two points in the code where a flush is
3074 	 * avoided if the FC_UNLOADING flag is set.
3075 	 * one is in the multipool destroy,
3076 	 * (this prevents a crash) and the other is
3077 	 * in the nvme abort handler, ( also prevents
3078 	 * a crash). Both of these exceptions are
3079 	 * cases where the slot is still accessible.
3080 	 * The flush here is only when the pci slot
3081 	 * is offline.
3082 	 */
3083 	if (vport->load_flag & FC_UNLOADING &&
3084 	    pci_channel_offline(phba->pcidev))
3085 		lpfc_sli_flush_io_rings(vport->phba);
3086 
3087 	/* At this point, ALL ndlp's should be gone
3088 	 * because of the previous NLP_EVT_DEVICE_RM.
3089 	 * Lets wait for this to happen, if needed.
3090 	 */
3091 	while (!list_empty(&vport->fc_nodes)) {
3092 		if (i++ > 3000) {
3093 			lpfc_printf_vlog(vport, KERN_ERR,
3094 					 LOG_TRACE_EVENT,
3095 				"0233 Nodelist not empty\n");
3096 			list_for_each_entry_safe(ndlp, next_ndlp,
3097 						&vport->fc_nodes, nlp_listp) {
3098 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3099 						 LOG_DISCOVERY,
3100 						 "0282 did:x%x ndlp:x%px "
3101 						 "refcnt:%d xflags x%x nflag x%x\n",
3102 						 ndlp->nlp_DID, (void *)ndlp,
3103 						 kref_read(&ndlp->kref),
3104 						 ndlp->fc4_xpt_flags,
3105 						 ndlp->nlp_flag);
3106 			}
3107 			break;
3108 		}
3109 
3110 		/* Wait for any activity on ndlps to settle */
3111 		msleep(10);
3112 	}
3113 	lpfc_cleanup_vports_rrqs(vport, NULL);
3114 }
3115 
3116 /**
3117  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3118  * @vport: pointer to a virtual N_Port data structure.
3119  *
3120  * This routine stops all the timers associated with a @vport. This function
3121  * is invoked before disabling or deleting a @vport. Note that the physical
3122  * port is treated as @vport 0.
3123  **/
3124 void
3125 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3126 {
3127 	del_timer_sync(&vport->els_tmofunc);
3128 	del_timer_sync(&vport->delayed_disc_tmo);
3129 	lpfc_can_disctmo(vport);
3130 	return;
3131 }
3132 
3133 /**
3134  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3135  * @phba: pointer to lpfc hba data structure.
3136  *
3137  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3138  * caller of this routine should already hold the host lock.
3139  **/
3140 void
3141 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3142 {
3143 	/* Clear pending FCF rediscovery wait flag */
3144 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3145 
3146 	/* Now, try to stop the timer */
3147 	del_timer(&phba->fcf.redisc_wait);
3148 }
3149 
3150 /**
3151  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3152  * @phba: pointer to lpfc hba data structure.
3153  *
3154  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3155  * checks whether the FCF rediscovery wait timer is pending with the host
3156  * lock held before proceeding with disabling the timer and clearing the
3157  * wait timer pendig flag.
3158  **/
3159 void
3160 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3161 {
3162 	spin_lock_irq(&phba->hbalock);
3163 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3164 		/* FCF rediscovery timer already fired or stopped */
3165 		spin_unlock_irq(&phba->hbalock);
3166 		return;
3167 	}
3168 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3169 	/* Clear failover in progress flags */
3170 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3171 	spin_unlock_irq(&phba->hbalock);
3172 }
3173 
3174 /**
3175  * lpfc_cmf_stop - Stop CMF processing
3176  * @phba: pointer to lpfc hba data structure.
3177  *
3178  * This is called when the link goes down or if CMF mode is turned OFF.
3179  * It is also called when going offline or unloaded just before the
3180  * congestion info buffer is unregistered.
3181  **/
3182 void
3183 lpfc_cmf_stop(struct lpfc_hba *phba)
3184 {
3185 	int cpu;
3186 	struct lpfc_cgn_stat *cgs;
3187 
3188 	/* We only do something if CMF is enabled */
3189 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3190 		return;
3191 
3192 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3193 			"6221 Stop CMF / Cancel Timer\n");
3194 
3195 	/* Cancel the CMF timer */
3196 	hrtimer_cancel(&phba->cmf_timer);
3197 
3198 	/* Zero CMF counters */
3199 	atomic_set(&phba->cmf_busy, 0);
3200 	for_each_present_cpu(cpu) {
3201 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3202 		atomic64_set(&cgs->total_bytes, 0);
3203 		atomic64_set(&cgs->rcv_bytes, 0);
3204 		atomic_set(&cgs->rx_io_cnt, 0);
3205 		atomic64_set(&cgs->rx_latency, 0);
3206 	}
3207 	atomic_set(&phba->cmf_bw_wait, 0);
3208 
3209 	/* Resume any blocked IO - Queue unblock on workqueue */
3210 	queue_work(phba->wq, &phba->unblock_request_work);
3211 }
3212 
3213 static inline uint64_t
3214 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3215 {
3216 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3217 
3218 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3219 }
3220 
3221 void
3222 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3223 {
3224 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3225 			"6223 Signal CMF init\n");
3226 
3227 	/* Use the new fc_linkspeed to recalculate */
3228 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3229 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3230 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3231 					    phba->cmf_interval_rate, 1000);
3232 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3233 
3234 	/* This is a signal to firmware to sync up CMF BW with link speed */
3235 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3236 }
3237 
3238 /**
3239  * lpfc_cmf_start - Start CMF processing
3240  * @phba: pointer to lpfc hba data structure.
3241  *
3242  * This is called when the link comes up or if CMF mode is turned OFF
3243  * to Monitor or Managed.
3244  **/
3245 void
3246 lpfc_cmf_start(struct lpfc_hba *phba)
3247 {
3248 	struct lpfc_cgn_stat *cgs;
3249 	int cpu;
3250 
3251 	/* We only do something if CMF is enabled */
3252 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3253 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3254 		return;
3255 
3256 	/* Reinitialize congestion buffer info */
3257 	lpfc_init_congestion_buf(phba);
3258 
3259 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3260 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3261 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3262 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3263 
3264 	atomic_set(&phba->cmf_busy, 0);
3265 	for_each_present_cpu(cpu) {
3266 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3267 		atomic64_set(&cgs->total_bytes, 0);
3268 		atomic64_set(&cgs->rcv_bytes, 0);
3269 		atomic_set(&cgs->rx_io_cnt, 0);
3270 		atomic64_set(&cgs->rx_latency, 0);
3271 	}
3272 	phba->cmf_latency.tv_sec = 0;
3273 	phba->cmf_latency.tv_nsec = 0;
3274 
3275 	lpfc_cmf_signal_init(phba);
3276 
3277 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3278 			"6222 Start CMF / Timer\n");
3279 
3280 	phba->cmf_timer_cnt = 0;
3281 	hrtimer_start(&phba->cmf_timer,
3282 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3283 		      HRTIMER_MODE_REL);
3284 	/* Setup for latency check in IO cmpl routines */
3285 	ktime_get_real_ts64(&phba->cmf_latency);
3286 
3287 	atomic_set(&phba->cmf_bw_wait, 0);
3288 	atomic_set(&phba->cmf_stop_io, 0);
3289 }
3290 
3291 /**
3292  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3293  * @phba: pointer to lpfc hba data structure.
3294  *
3295  * This routine stops all the timers associated with a HBA. This function is
3296  * invoked before either putting a HBA offline or unloading the driver.
3297  **/
3298 void
3299 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3300 {
3301 	if (phba->pport)
3302 		lpfc_stop_vport_timers(phba->pport);
3303 	cancel_delayed_work_sync(&phba->eq_delay_work);
3304 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3305 	del_timer_sync(&phba->sli.mbox_tmo);
3306 	del_timer_sync(&phba->fabric_block_timer);
3307 	del_timer_sync(&phba->eratt_poll);
3308 	del_timer_sync(&phba->hb_tmofunc);
3309 	if (phba->sli_rev == LPFC_SLI_REV4) {
3310 		del_timer_sync(&phba->rrq_tmr);
3311 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3312 	}
3313 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3314 
3315 	switch (phba->pci_dev_grp) {
3316 	case LPFC_PCI_DEV_LP:
3317 		/* Stop any LightPulse device specific driver timers */
3318 		del_timer_sync(&phba->fcp_poll_timer);
3319 		break;
3320 	case LPFC_PCI_DEV_OC:
3321 		/* Stop any OneConnect device specific driver timers */
3322 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3323 		break;
3324 	default:
3325 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3326 				"0297 Invalid device group (x%x)\n",
3327 				phba->pci_dev_grp);
3328 		break;
3329 	}
3330 	return;
3331 }
3332 
3333 /**
3334  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3335  * @phba: pointer to lpfc hba data structure.
3336  * @mbx_action: flag for mailbox no wait action.
3337  *
3338  * This routine marks a HBA's management interface as blocked. Once the HBA's
3339  * management interface is marked as blocked, all the user space access to
3340  * the HBA, whether they are from sysfs interface or libdfc interface will
3341  * all be blocked. The HBA is set to block the management interface when the
3342  * driver prepares the HBA interface for online or offline.
3343  **/
3344 static void
3345 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3346 {
3347 	unsigned long iflag;
3348 	uint8_t actcmd = MBX_HEARTBEAT;
3349 	unsigned long timeout;
3350 
3351 	spin_lock_irqsave(&phba->hbalock, iflag);
3352 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3353 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3354 	if (mbx_action == LPFC_MBX_NO_WAIT)
3355 		return;
3356 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3357 	spin_lock_irqsave(&phba->hbalock, iflag);
3358 	if (phba->sli.mbox_active) {
3359 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3360 		/* Determine how long we might wait for the active mailbox
3361 		 * command to be gracefully completed by firmware.
3362 		 */
3363 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3364 				phba->sli.mbox_active) * 1000) + jiffies;
3365 	}
3366 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3367 
3368 	/* Wait for the outstnading mailbox command to complete */
3369 	while (phba->sli.mbox_active) {
3370 		/* Check active mailbox complete status every 2ms */
3371 		msleep(2);
3372 		if (time_after(jiffies, timeout)) {
3373 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3374 					"2813 Mgmt IO is Blocked %x "
3375 					"- mbox cmd %x still active\n",
3376 					phba->sli.sli_flag, actcmd);
3377 			break;
3378 		}
3379 	}
3380 }
3381 
3382 /**
3383  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3384  * @phba: pointer to lpfc hba data structure.
3385  *
3386  * Allocate RPIs for all active remote nodes. This is needed whenever
3387  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3388  * is to fixup the temporary rpi assignments.
3389  **/
3390 void
3391 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3392 {
3393 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3394 	struct lpfc_vport **vports;
3395 	int i, rpi;
3396 
3397 	if (phba->sli_rev != LPFC_SLI_REV4)
3398 		return;
3399 
3400 	vports = lpfc_create_vport_work_array(phba);
3401 	if (vports == NULL)
3402 		return;
3403 
3404 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3405 		if (vports[i]->load_flag & FC_UNLOADING)
3406 			continue;
3407 
3408 		list_for_each_entry_safe(ndlp, next_ndlp,
3409 					 &vports[i]->fc_nodes,
3410 					 nlp_listp) {
3411 			rpi = lpfc_sli4_alloc_rpi(phba);
3412 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3413 				/* TODO print log? */
3414 				continue;
3415 			}
3416 			ndlp->nlp_rpi = rpi;
3417 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3418 					 LOG_NODE | LOG_DISCOVERY,
3419 					 "0009 Assign RPI x%x to ndlp x%px "
3420 					 "DID:x%06x flg:x%x\n",
3421 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3422 					 ndlp->nlp_flag);
3423 		}
3424 	}
3425 	lpfc_destroy_vport_work_array(phba, vports);
3426 }
3427 
3428 /**
3429  * lpfc_create_expedite_pool - create expedite pool
3430  * @phba: pointer to lpfc hba data structure.
3431  *
3432  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3433  * to expedite pool. Mark them as expedite.
3434  **/
3435 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3436 {
3437 	struct lpfc_sli4_hdw_queue *qp;
3438 	struct lpfc_io_buf *lpfc_ncmd;
3439 	struct lpfc_io_buf *lpfc_ncmd_next;
3440 	struct lpfc_epd_pool *epd_pool;
3441 	unsigned long iflag;
3442 
3443 	epd_pool = &phba->epd_pool;
3444 	qp = &phba->sli4_hba.hdwq[0];
3445 
3446 	spin_lock_init(&epd_pool->lock);
3447 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3448 	spin_lock(&epd_pool->lock);
3449 	INIT_LIST_HEAD(&epd_pool->list);
3450 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3451 				 &qp->lpfc_io_buf_list_put, list) {
3452 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3453 		lpfc_ncmd->expedite = true;
3454 		qp->put_io_bufs--;
3455 		epd_pool->count++;
3456 		if (epd_pool->count >= XRI_BATCH)
3457 			break;
3458 	}
3459 	spin_unlock(&epd_pool->lock);
3460 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3461 }
3462 
3463 /**
3464  * lpfc_destroy_expedite_pool - destroy expedite pool
3465  * @phba: pointer to lpfc hba data structure.
3466  *
3467  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3468  * of HWQ 0. Clear the mark.
3469  **/
3470 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3471 {
3472 	struct lpfc_sli4_hdw_queue *qp;
3473 	struct lpfc_io_buf *lpfc_ncmd;
3474 	struct lpfc_io_buf *lpfc_ncmd_next;
3475 	struct lpfc_epd_pool *epd_pool;
3476 	unsigned long iflag;
3477 
3478 	epd_pool = &phba->epd_pool;
3479 	qp = &phba->sli4_hba.hdwq[0];
3480 
3481 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3482 	spin_lock(&epd_pool->lock);
3483 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3484 				 &epd_pool->list, list) {
3485 		list_move_tail(&lpfc_ncmd->list,
3486 			       &qp->lpfc_io_buf_list_put);
3487 		lpfc_ncmd->flags = false;
3488 		qp->put_io_bufs++;
3489 		epd_pool->count--;
3490 	}
3491 	spin_unlock(&epd_pool->lock);
3492 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3493 }
3494 
3495 /**
3496  * lpfc_create_multixri_pools - create multi-XRI pools
3497  * @phba: pointer to lpfc hba data structure.
3498  *
3499  * This routine initialize public, private per HWQ. Then, move XRIs from
3500  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3501  * Initialized.
3502  **/
3503 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3504 {
3505 	u32 i, j;
3506 	u32 hwq_count;
3507 	u32 count_per_hwq;
3508 	struct lpfc_io_buf *lpfc_ncmd;
3509 	struct lpfc_io_buf *lpfc_ncmd_next;
3510 	unsigned long iflag;
3511 	struct lpfc_sli4_hdw_queue *qp;
3512 	struct lpfc_multixri_pool *multixri_pool;
3513 	struct lpfc_pbl_pool *pbl_pool;
3514 	struct lpfc_pvt_pool *pvt_pool;
3515 
3516 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3517 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3518 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3519 			phba->sli4_hba.io_xri_cnt);
3520 
3521 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3522 		lpfc_create_expedite_pool(phba);
3523 
3524 	hwq_count = phba->cfg_hdw_queue;
3525 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3526 
3527 	for (i = 0; i < hwq_count; i++) {
3528 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3529 
3530 		if (!multixri_pool) {
3531 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3532 					"1238 Failed to allocate memory for "
3533 					"multixri_pool\n");
3534 
3535 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3536 				lpfc_destroy_expedite_pool(phba);
3537 
3538 			j = 0;
3539 			while (j < i) {
3540 				qp = &phba->sli4_hba.hdwq[j];
3541 				kfree(qp->p_multixri_pool);
3542 				j++;
3543 			}
3544 			phba->cfg_xri_rebalancing = 0;
3545 			return;
3546 		}
3547 
3548 		qp = &phba->sli4_hba.hdwq[i];
3549 		qp->p_multixri_pool = multixri_pool;
3550 
3551 		multixri_pool->xri_limit = count_per_hwq;
3552 		multixri_pool->rrb_next_hwqid = i;
3553 
3554 		/* Deal with public free xri pool */
3555 		pbl_pool = &multixri_pool->pbl_pool;
3556 		spin_lock_init(&pbl_pool->lock);
3557 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3558 		spin_lock(&pbl_pool->lock);
3559 		INIT_LIST_HEAD(&pbl_pool->list);
3560 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3561 					 &qp->lpfc_io_buf_list_put, list) {
3562 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3563 			qp->put_io_bufs--;
3564 			pbl_pool->count++;
3565 		}
3566 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3567 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3568 				pbl_pool->count, i);
3569 		spin_unlock(&pbl_pool->lock);
3570 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3571 
3572 		/* Deal with private free xri pool */
3573 		pvt_pool = &multixri_pool->pvt_pool;
3574 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3575 		pvt_pool->low_watermark = XRI_BATCH;
3576 		spin_lock_init(&pvt_pool->lock);
3577 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3578 		INIT_LIST_HEAD(&pvt_pool->list);
3579 		pvt_pool->count = 0;
3580 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3581 	}
3582 }
3583 
3584 /**
3585  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3586  * @phba: pointer to lpfc hba data structure.
3587  *
3588  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3589  **/
3590 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3591 {
3592 	u32 i;
3593 	u32 hwq_count;
3594 	struct lpfc_io_buf *lpfc_ncmd;
3595 	struct lpfc_io_buf *lpfc_ncmd_next;
3596 	unsigned long iflag;
3597 	struct lpfc_sli4_hdw_queue *qp;
3598 	struct lpfc_multixri_pool *multixri_pool;
3599 	struct lpfc_pbl_pool *pbl_pool;
3600 	struct lpfc_pvt_pool *pvt_pool;
3601 
3602 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3603 		lpfc_destroy_expedite_pool(phba);
3604 
3605 	if (!(phba->pport->load_flag & FC_UNLOADING))
3606 		lpfc_sli_flush_io_rings(phba);
3607 
3608 	hwq_count = phba->cfg_hdw_queue;
3609 
3610 	for (i = 0; i < hwq_count; i++) {
3611 		qp = &phba->sli4_hba.hdwq[i];
3612 		multixri_pool = qp->p_multixri_pool;
3613 		if (!multixri_pool)
3614 			continue;
3615 
3616 		qp->p_multixri_pool = NULL;
3617 
3618 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3619 
3620 		/* Deal with public free xri pool */
3621 		pbl_pool = &multixri_pool->pbl_pool;
3622 		spin_lock(&pbl_pool->lock);
3623 
3624 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3625 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3626 				pbl_pool->count, i);
3627 
3628 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3629 					 &pbl_pool->list, list) {
3630 			list_move_tail(&lpfc_ncmd->list,
3631 				       &qp->lpfc_io_buf_list_put);
3632 			qp->put_io_bufs++;
3633 			pbl_pool->count--;
3634 		}
3635 
3636 		INIT_LIST_HEAD(&pbl_pool->list);
3637 		pbl_pool->count = 0;
3638 
3639 		spin_unlock(&pbl_pool->lock);
3640 
3641 		/* Deal with private free xri pool */
3642 		pvt_pool = &multixri_pool->pvt_pool;
3643 		spin_lock(&pvt_pool->lock);
3644 
3645 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3646 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3647 				pvt_pool->count, i);
3648 
3649 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3650 					 &pvt_pool->list, list) {
3651 			list_move_tail(&lpfc_ncmd->list,
3652 				       &qp->lpfc_io_buf_list_put);
3653 			qp->put_io_bufs++;
3654 			pvt_pool->count--;
3655 		}
3656 
3657 		INIT_LIST_HEAD(&pvt_pool->list);
3658 		pvt_pool->count = 0;
3659 
3660 		spin_unlock(&pvt_pool->lock);
3661 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3662 
3663 		kfree(multixri_pool);
3664 	}
3665 }
3666 
3667 /**
3668  * lpfc_online - Initialize and bring a HBA online
3669  * @phba: pointer to lpfc hba data structure.
3670  *
3671  * This routine initializes the HBA and brings a HBA online. During this
3672  * process, the management interface is blocked to prevent user space access
3673  * to the HBA interfering with the driver initialization.
3674  *
3675  * Return codes
3676  *   0 - successful
3677  *   1 - failed
3678  **/
3679 int
3680 lpfc_online(struct lpfc_hba *phba)
3681 {
3682 	struct lpfc_vport *vport;
3683 	struct lpfc_vport **vports;
3684 	int i, error = 0;
3685 	bool vpis_cleared = false;
3686 
3687 	if (!phba)
3688 		return 0;
3689 	vport = phba->pport;
3690 
3691 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3692 		return 0;
3693 
3694 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3695 			"0458 Bring Adapter online\n");
3696 
3697 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3698 
3699 	if (phba->sli_rev == LPFC_SLI_REV4) {
3700 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3701 			lpfc_unblock_mgmt_io(phba);
3702 			return 1;
3703 		}
3704 		spin_lock_irq(&phba->hbalock);
3705 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3706 			vpis_cleared = true;
3707 		spin_unlock_irq(&phba->hbalock);
3708 
3709 		/* Reestablish the local initiator port.
3710 		 * The offline process destroyed the previous lport.
3711 		 */
3712 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3713 				!phba->nvmet_support) {
3714 			error = lpfc_nvme_create_localport(phba->pport);
3715 			if (error)
3716 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3717 					"6132 NVME restore reg failed "
3718 					"on nvmei error x%x\n", error);
3719 		}
3720 	} else {
3721 		lpfc_sli_queue_init(phba);
3722 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3723 			lpfc_unblock_mgmt_io(phba);
3724 			return 1;
3725 		}
3726 	}
3727 
3728 	vports = lpfc_create_vport_work_array(phba);
3729 	if (vports != NULL) {
3730 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3731 			struct Scsi_Host *shost;
3732 			shost = lpfc_shost_from_vport(vports[i]);
3733 			spin_lock_irq(shost->host_lock);
3734 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3735 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3736 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3737 			if (phba->sli_rev == LPFC_SLI_REV4) {
3738 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3739 				if ((vpis_cleared) &&
3740 				    (vports[i]->port_type !=
3741 					LPFC_PHYSICAL_PORT))
3742 					vports[i]->vpi = 0;
3743 			}
3744 			spin_unlock_irq(shost->host_lock);
3745 		}
3746 	}
3747 	lpfc_destroy_vport_work_array(phba, vports);
3748 
3749 	if (phba->cfg_xri_rebalancing)
3750 		lpfc_create_multixri_pools(phba);
3751 
3752 	lpfc_cpuhp_add(phba);
3753 
3754 	lpfc_unblock_mgmt_io(phba);
3755 	return 0;
3756 }
3757 
3758 /**
3759  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3760  * @phba: pointer to lpfc hba data structure.
3761  *
3762  * This routine marks a HBA's management interface as not blocked. Once the
3763  * HBA's management interface is marked as not blocked, all the user space
3764  * access to the HBA, whether they are from sysfs interface or libdfc
3765  * interface will be allowed. The HBA is set to block the management interface
3766  * when the driver prepares the HBA interface for online or offline and then
3767  * set to unblock the management interface afterwards.
3768  **/
3769 void
3770 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3771 {
3772 	unsigned long iflag;
3773 
3774 	spin_lock_irqsave(&phba->hbalock, iflag);
3775 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3776 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3777 }
3778 
3779 /**
3780  * lpfc_offline_prep - Prepare a HBA to be brought offline
3781  * @phba: pointer to lpfc hba data structure.
3782  * @mbx_action: flag for mailbox shutdown action.
3783  *
3784  * This routine is invoked to prepare a HBA to be brought offline. It performs
3785  * unregistration login to all the nodes on all vports and flushes the mailbox
3786  * queue to make it ready to be brought offline.
3787  **/
3788 void
3789 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3790 {
3791 	struct lpfc_vport *vport = phba->pport;
3792 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3793 	struct lpfc_vport **vports;
3794 	struct Scsi_Host *shost;
3795 	int i;
3796 	int offline;
3797 	bool hba_pci_err;
3798 
3799 	if (vport->fc_flag & FC_OFFLINE_MODE)
3800 		return;
3801 
3802 	lpfc_block_mgmt_io(phba, mbx_action);
3803 
3804 	lpfc_linkdown(phba);
3805 
3806 	offline =  pci_channel_offline(phba->pcidev);
3807 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3808 
3809 	/* Issue an unreg_login to all nodes on all vports */
3810 	vports = lpfc_create_vport_work_array(phba);
3811 	if (vports != NULL) {
3812 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3813 			if (vports[i]->load_flag & FC_UNLOADING)
3814 				continue;
3815 			shost = lpfc_shost_from_vport(vports[i]);
3816 			spin_lock_irq(shost->host_lock);
3817 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3818 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3819 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3820 			spin_unlock_irq(shost->host_lock);
3821 
3822 			shost =	lpfc_shost_from_vport(vports[i]);
3823 			list_for_each_entry_safe(ndlp, next_ndlp,
3824 						 &vports[i]->fc_nodes,
3825 						 nlp_listp) {
3826 
3827 				spin_lock_irq(&ndlp->lock);
3828 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3829 				spin_unlock_irq(&ndlp->lock);
3830 
3831 				if (offline || hba_pci_err) {
3832 					spin_lock_irq(&ndlp->lock);
3833 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3834 							    NLP_RPI_REGISTERED);
3835 					spin_unlock_irq(&ndlp->lock);
3836 					if (phba->sli_rev == LPFC_SLI_REV4)
3837 						lpfc_sli_rpi_release(vports[i],
3838 								     ndlp);
3839 				} else {
3840 					lpfc_unreg_rpi(vports[i], ndlp);
3841 				}
3842 				/*
3843 				 * Whenever an SLI4 port goes offline, free the
3844 				 * RPI. Get a new RPI when the adapter port
3845 				 * comes back online.
3846 				 */
3847 				if (phba->sli_rev == LPFC_SLI_REV4) {
3848 					lpfc_printf_vlog(vports[i], KERN_INFO,
3849 						 LOG_NODE | LOG_DISCOVERY,
3850 						 "0011 Free RPI x%x on "
3851 						 "ndlp: x%px did x%x\n",
3852 						 ndlp->nlp_rpi, ndlp,
3853 						 ndlp->nlp_DID);
3854 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3855 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3856 				}
3857 
3858 				if (ndlp->nlp_type & NLP_FABRIC) {
3859 					lpfc_disc_state_machine(vports[i], ndlp,
3860 						NULL, NLP_EVT_DEVICE_RECOVERY);
3861 
3862 					/* Don't remove the node unless the node
3863 					 * has been unregistered with the
3864 					 * transport, and we're not in recovery
3865 					 * before dev_loss_tmo triggered.
3866 					 * Otherwise, let dev_loss take care of
3867 					 * the node.
3868 					 */
3869 					if (!(ndlp->save_flags &
3870 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3871 					    !(ndlp->fc4_xpt_flags &
3872 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3873 						lpfc_disc_state_machine
3874 							(vports[i], ndlp,
3875 							 NULL,
3876 							 NLP_EVT_DEVICE_RM);
3877 				}
3878 			}
3879 		}
3880 	}
3881 	lpfc_destroy_vport_work_array(phba, vports);
3882 
3883 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3884 
3885 	if (phba->wq)
3886 		flush_workqueue(phba->wq);
3887 }
3888 
3889 /**
3890  * lpfc_offline - Bring a HBA offline
3891  * @phba: pointer to lpfc hba data structure.
3892  *
3893  * This routine actually brings a HBA offline. It stops all the timers
3894  * associated with the HBA, brings down the SLI layer, and eventually
3895  * marks the HBA as in offline state for the upper layer protocol.
3896  **/
3897 void
3898 lpfc_offline(struct lpfc_hba *phba)
3899 {
3900 	struct Scsi_Host  *shost;
3901 	struct lpfc_vport **vports;
3902 	int i;
3903 
3904 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3905 		return;
3906 
3907 	/* stop port and all timers associated with this hba */
3908 	lpfc_stop_port(phba);
3909 
3910 	/* Tear down the local and target port registrations.  The
3911 	 * nvme transports need to cleanup.
3912 	 */
3913 	lpfc_nvmet_destroy_targetport(phba);
3914 	lpfc_nvme_destroy_localport(phba->pport);
3915 
3916 	vports = lpfc_create_vport_work_array(phba);
3917 	if (vports != NULL)
3918 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3919 			lpfc_stop_vport_timers(vports[i]);
3920 	lpfc_destroy_vport_work_array(phba, vports);
3921 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3922 			"0460 Bring Adapter offline\n");
3923 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3924 	   now.  */
3925 	lpfc_sli_hba_down(phba);
3926 	spin_lock_irq(&phba->hbalock);
3927 	phba->work_ha = 0;
3928 	spin_unlock_irq(&phba->hbalock);
3929 	vports = lpfc_create_vport_work_array(phba);
3930 	if (vports != NULL)
3931 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3932 			shost = lpfc_shost_from_vport(vports[i]);
3933 			spin_lock_irq(shost->host_lock);
3934 			vports[i]->work_port_events = 0;
3935 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3936 			spin_unlock_irq(shost->host_lock);
3937 		}
3938 	lpfc_destroy_vport_work_array(phba, vports);
3939 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3940 	 * in hba_unset
3941 	 */
3942 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3943 		__lpfc_cpuhp_remove(phba);
3944 
3945 	if (phba->cfg_xri_rebalancing)
3946 		lpfc_destroy_multixri_pools(phba);
3947 }
3948 
3949 /**
3950  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3951  * @phba: pointer to lpfc hba data structure.
3952  *
3953  * This routine is to free all the SCSI buffers and IOCBs from the driver
3954  * list back to kernel. It is called from lpfc_pci_remove_one to free
3955  * the internal resources before the device is removed from the system.
3956  **/
3957 static void
3958 lpfc_scsi_free(struct lpfc_hba *phba)
3959 {
3960 	struct lpfc_io_buf *sb, *sb_next;
3961 
3962 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3963 		return;
3964 
3965 	spin_lock_irq(&phba->hbalock);
3966 
3967 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3968 
3969 	spin_lock(&phba->scsi_buf_list_put_lock);
3970 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3971 				 list) {
3972 		list_del(&sb->list);
3973 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3974 			      sb->dma_handle);
3975 		kfree(sb);
3976 		phba->total_scsi_bufs--;
3977 	}
3978 	spin_unlock(&phba->scsi_buf_list_put_lock);
3979 
3980 	spin_lock(&phba->scsi_buf_list_get_lock);
3981 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3982 				 list) {
3983 		list_del(&sb->list);
3984 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3985 			      sb->dma_handle);
3986 		kfree(sb);
3987 		phba->total_scsi_bufs--;
3988 	}
3989 	spin_unlock(&phba->scsi_buf_list_get_lock);
3990 	spin_unlock_irq(&phba->hbalock);
3991 }
3992 
3993 /**
3994  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3995  * @phba: pointer to lpfc hba data structure.
3996  *
3997  * This routine is to free all the IO buffers and IOCBs from the driver
3998  * list back to kernel. It is called from lpfc_pci_remove_one to free
3999  * the internal resources before the device is removed from the system.
4000  **/
4001 void
4002 lpfc_io_free(struct lpfc_hba *phba)
4003 {
4004 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4005 	struct lpfc_sli4_hdw_queue *qp;
4006 	int idx;
4007 
4008 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4009 		qp = &phba->sli4_hba.hdwq[idx];
4010 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4011 		spin_lock(&qp->io_buf_list_put_lock);
4012 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4013 					 &qp->lpfc_io_buf_list_put,
4014 					 list) {
4015 			list_del(&lpfc_ncmd->list);
4016 			qp->put_io_bufs--;
4017 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4018 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4019 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4020 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4021 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4022 			kfree(lpfc_ncmd);
4023 			qp->total_io_bufs--;
4024 		}
4025 		spin_unlock(&qp->io_buf_list_put_lock);
4026 
4027 		spin_lock(&qp->io_buf_list_get_lock);
4028 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4029 					 &qp->lpfc_io_buf_list_get,
4030 					 list) {
4031 			list_del(&lpfc_ncmd->list);
4032 			qp->get_io_bufs--;
4033 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4034 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4035 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4036 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4037 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4038 			kfree(lpfc_ncmd);
4039 			qp->total_io_bufs--;
4040 		}
4041 		spin_unlock(&qp->io_buf_list_get_lock);
4042 	}
4043 }
4044 
4045 /**
4046  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4047  * @phba: pointer to lpfc hba data structure.
4048  *
4049  * This routine first calculates the sizes of the current els and allocated
4050  * scsi sgl lists, and then goes through all sgls to updates the physical
4051  * XRIs assigned due to port function reset. During port initialization, the
4052  * current els and allocated scsi sgl lists are 0s.
4053  *
4054  * Return codes
4055  *   0 - successful (for now, it always returns 0)
4056  **/
4057 int
4058 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4059 {
4060 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4061 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4062 	LIST_HEAD(els_sgl_list);
4063 	int rc;
4064 
4065 	/*
4066 	 * update on pci function's els xri-sgl list
4067 	 */
4068 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4069 
4070 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4071 		/* els xri-sgl expanded */
4072 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4073 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4074 				"3157 ELS xri-sgl count increased from "
4075 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4076 				els_xri_cnt);
4077 		/* allocate the additional els sgls */
4078 		for (i = 0; i < xri_cnt; i++) {
4079 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4080 					     GFP_KERNEL);
4081 			if (sglq_entry == NULL) {
4082 				lpfc_printf_log(phba, KERN_ERR,
4083 						LOG_TRACE_EVENT,
4084 						"2562 Failure to allocate an "
4085 						"ELS sgl entry:%d\n", i);
4086 				rc = -ENOMEM;
4087 				goto out_free_mem;
4088 			}
4089 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4090 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4091 							   &sglq_entry->phys);
4092 			if (sglq_entry->virt == NULL) {
4093 				kfree(sglq_entry);
4094 				lpfc_printf_log(phba, KERN_ERR,
4095 						LOG_TRACE_EVENT,
4096 						"2563 Failure to allocate an "
4097 						"ELS mbuf:%d\n", i);
4098 				rc = -ENOMEM;
4099 				goto out_free_mem;
4100 			}
4101 			sglq_entry->sgl = sglq_entry->virt;
4102 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4103 			sglq_entry->state = SGL_FREED;
4104 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4105 		}
4106 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4107 		list_splice_init(&els_sgl_list,
4108 				 &phba->sli4_hba.lpfc_els_sgl_list);
4109 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4110 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4111 		/* els xri-sgl shrinked */
4112 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4113 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4114 				"3158 ELS xri-sgl count decreased from "
4115 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4116 				els_xri_cnt);
4117 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4118 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4119 				 &els_sgl_list);
4120 		/* release extra els sgls from list */
4121 		for (i = 0; i < xri_cnt; i++) {
4122 			list_remove_head(&els_sgl_list,
4123 					 sglq_entry, struct lpfc_sglq, list);
4124 			if (sglq_entry) {
4125 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4126 						 sglq_entry->phys);
4127 				kfree(sglq_entry);
4128 			}
4129 		}
4130 		list_splice_init(&els_sgl_list,
4131 				 &phba->sli4_hba.lpfc_els_sgl_list);
4132 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4133 	} else
4134 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4135 				"3163 ELS xri-sgl count unchanged: %d\n",
4136 				els_xri_cnt);
4137 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4138 
4139 	/* update xris to els sgls on the list */
4140 	sglq_entry = NULL;
4141 	sglq_entry_next = NULL;
4142 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4143 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4144 		lxri = lpfc_sli4_next_xritag(phba);
4145 		if (lxri == NO_XRI) {
4146 			lpfc_printf_log(phba, KERN_ERR,
4147 					LOG_TRACE_EVENT,
4148 					"2400 Failed to allocate xri for "
4149 					"ELS sgl\n");
4150 			rc = -ENOMEM;
4151 			goto out_free_mem;
4152 		}
4153 		sglq_entry->sli4_lxritag = lxri;
4154 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4155 	}
4156 	return 0;
4157 
4158 out_free_mem:
4159 	lpfc_free_els_sgl_list(phba);
4160 	return rc;
4161 }
4162 
4163 /**
4164  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4165  * @phba: pointer to lpfc hba data structure.
4166  *
4167  * This routine first calculates the sizes of the current els and allocated
4168  * scsi sgl lists, and then goes through all sgls to updates the physical
4169  * XRIs assigned due to port function reset. During port initialization, the
4170  * current els and allocated scsi sgl lists are 0s.
4171  *
4172  * Return codes
4173  *   0 - successful (for now, it always returns 0)
4174  **/
4175 int
4176 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4177 {
4178 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4179 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4180 	uint16_t nvmet_xri_cnt;
4181 	LIST_HEAD(nvmet_sgl_list);
4182 	int rc;
4183 
4184 	/*
4185 	 * update on pci function's nvmet xri-sgl list
4186 	 */
4187 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4188 
4189 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4190 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4191 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4192 		/* els xri-sgl expanded */
4193 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4194 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4195 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4196 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4197 		/* allocate the additional nvmet sgls */
4198 		for (i = 0; i < xri_cnt; i++) {
4199 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4200 					     GFP_KERNEL);
4201 			if (sglq_entry == NULL) {
4202 				lpfc_printf_log(phba, KERN_ERR,
4203 						LOG_TRACE_EVENT,
4204 						"6303 Failure to allocate an "
4205 						"NVMET sgl entry:%d\n", i);
4206 				rc = -ENOMEM;
4207 				goto out_free_mem;
4208 			}
4209 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4210 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4211 							   &sglq_entry->phys);
4212 			if (sglq_entry->virt == NULL) {
4213 				kfree(sglq_entry);
4214 				lpfc_printf_log(phba, KERN_ERR,
4215 						LOG_TRACE_EVENT,
4216 						"6304 Failure to allocate an "
4217 						"NVMET buf:%d\n", i);
4218 				rc = -ENOMEM;
4219 				goto out_free_mem;
4220 			}
4221 			sglq_entry->sgl = sglq_entry->virt;
4222 			memset(sglq_entry->sgl, 0,
4223 			       phba->cfg_sg_dma_buf_size);
4224 			sglq_entry->state = SGL_FREED;
4225 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4226 		}
4227 		spin_lock_irq(&phba->hbalock);
4228 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4229 		list_splice_init(&nvmet_sgl_list,
4230 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4231 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4232 		spin_unlock_irq(&phba->hbalock);
4233 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4234 		/* nvmet xri-sgl shrunk */
4235 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4236 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4237 				"6305 NVMET xri-sgl count decreased from "
4238 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4239 				nvmet_xri_cnt);
4240 		spin_lock_irq(&phba->hbalock);
4241 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4242 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4243 				 &nvmet_sgl_list);
4244 		/* release extra nvmet sgls from list */
4245 		for (i = 0; i < xri_cnt; i++) {
4246 			list_remove_head(&nvmet_sgl_list,
4247 					 sglq_entry, struct lpfc_sglq, list);
4248 			if (sglq_entry) {
4249 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4250 						    sglq_entry->phys);
4251 				kfree(sglq_entry);
4252 			}
4253 		}
4254 		list_splice_init(&nvmet_sgl_list,
4255 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4256 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4257 		spin_unlock_irq(&phba->hbalock);
4258 	} else
4259 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4260 				"6306 NVMET xri-sgl count unchanged: %d\n",
4261 				nvmet_xri_cnt);
4262 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4263 
4264 	/* update xris to nvmet sgls on the list */
4265 	sglq_entry = NULL;
4266 	sglq_entry_next = NULL;
4267 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4268 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4269 		lxri = lpfc_sli4_next_xritag(phba);
4270 		if (lxri == NO_XRI) {
4271 			lpfc_printf_log(phba, KERN_ERR,
4272 					LOG_TRACE_EVENT,
4273 					"6307 Failed to allocate xri for "
4274 					"NVMET sgl\n");
4275 			rc = -ENOMEM;
4276 			goto out_free_mem;
4277 		}
4278 		sglq_entry->sli4_lxritag = lxri;
4279 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4280 	}
4281 	return 0;
4282 
4283 out_free_mem:
4284 	lpfc_free_nvmet_sgl_list(phba);
4285 	return rc;
4286 }
4287 
4288 int
4289 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4290 {
4291 	LIST_HEAD(blist);
4292 	struct lpfc_sli4_hdw_queue *qp;
4293 	struct lpfc_io_buf *lpfc_cmd;
4294 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4295 	int idx, cnt, xri, inserted;
4296 
4297 	cnt = 0;
4298 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4299 		qp = &phba->sli4_hba.hdwq[idx];
4300 		spin_lock_irq(&qp->io_buf_list_get_lock);
4301 		spin_lock(&qp->io_buf_list_put_lock);
4302 
4303 		/* Take everything off the get and put lists */
4304 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4305 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4306 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4307 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4308 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4309 		qp->get_io_bufs = 0;
4310 		qp->put_io_bufs = 0;
4311 		qp->total_io_bufs = 0;
4312 		spin_unlock(&qp->io_buf_list_put_lock);
4313 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4314 	}
4315 
4316 	/*
4317 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4318 	 * This is because POST_SGL takes a sequential range of XRIs
4319 	 * to post to the firmware.
4320 	 */
4321 	for (idx = 0; idx < cnt; idx++) {
4322 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4323 		if (!lpfc_cmd)
4324 			return cnt;
4325 		if (idx == 0) {
4326 			list_add_tail(&lpfc_cmd->list, cbuf);
4327 			continue;
4328 		}
4329 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4330 		inserted = 0;
4331 		prev_iobufp = NULL;
4332 		list_for_each_entry(iobufp, cbuf, list) {
4333 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4334 				if (prev_iobufp)
4335 					list_add(&lpfc_cmd->list,
4336 						 &prev_iobufp->list);
4337 				else
4338 					list_add(&lpfc_cmd->list, cbuf);
4339 				inserted = 1;
4340 				break;
4341 			}
4342 			prev_iobufp = iobufp;
4343 		}
4344 		if (!inserted)
4345 			list_add_tail(&lpfc_cmd->list, cbuf);
4346 	}
4347 	return cnt;
4348 }
4349 
4350 int
4351 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4352 {
4353 	struct lpfc_sli4_hdw_queue *qp;
4354 	struct lpfc_io_buf *lpfc_cmd;
4355 	int idx, cnt;
4356 
4357 	qp = phba->sli4_hba.hdwq;
4358 	cnt = 0;
4359 	while (!list_empty(cbuf)) {
4360 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4361 			list_remove_head(cbuf, lpfc_cmd,
4362 					 struct lpfc_io_buf, list);
4363 			if (!lpfc_cmd)
4364 				return cnt;
4365 			cnt++;
4366 			qp = &phba->sli4_hba.hdwq[idx];
4367 			lpfc_cmd->hdwq_no = idx;
4368 			lpfc_cmd->hdwq = qp;
4369 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4370 			spin_lock(&qp->io_buf_list_put_lock);
4371 			list_add_tail(&lpfc_cmd->list,
4372 				      &qp->lpfc_io_buf_list_put);
4373 			qp->put_io_bufs++;
4374 			qp->total_io_bufs++;
4375 			spin_unlock(&qp->io_buf_list_put_lock);
4376 		}
4377 	}
4378 	return cnt;
4379 }
4380 
4381 /**
4382  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4383  * @phba: pointer to lpfc hba data structure.
4384  *
4385  * This routine first calculates the sizes of the current els and allocated
4386  * scsi sgl lists, and then goes through all sgls to updates the physical
4387  * XRIs assigned due to port function reset. During port initialization, the
4388  * current els and allocated scsi sgl lists are 0s.
4389  *
4390  * Return codes
4391  *   0 - successful (for now, it always returns 0)
4392  **/
4393 int
4394 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4395 {
4396 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4397 	uint16_t i, lxri, els_xri_cnt;
4398 	uint16_t io_xri_cnt, io_xri_max;
4399 	LIST_HEAD(io_sgl_list);
4400 	int rc, cnt;
4401 
4402 	/*
4403 	 * update on pci function's allocated nvme xri-sgl list
4404 	 */
4405 
4406 	/* maximum number of xris available for nvme buffers */
4407 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4408 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4409 	phba->sli4_hba.io_xri_max = io_xri_max;
4410 
4411 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4412 			"6074 Current allocated XRI sgl count:%d, "
4413 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4414 			phba->sli4_hba.io_xri_cnt,
4415 			phba->sli4_hba.io_xri_max,
4416 			els_xri_cnt);
4417 
4418 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4419 
4420 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4421 		/* max nvme xri shrunk below the allocated nvme buffers */
4422 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4423 					phba->sli4_hba.io_xri_max;
4424 		/* release the extra allocated nvme buffers */
4425 		for (i = 0; i < io_xri_cnt; i++) {
4426 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4427 					 struct lpfc_io_buf, list);
4428 			if (lpfc_ncmd) {
4429 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4430 					      lpfc_ncmd->data,
4431 					      lpfc_ncmd->dma_handle);
4432 				kfree(lpfc_ncmd);
4433 			}
4434 		}
4435 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4436 	}
4437 
4438 	/* update xris associated to remaining allocated nvme buffers */
4439 	lpfc_ncmd = NULL;
4440 	lpfc_ncmd_next = NULL;
4441 	phba->sli4_hba.io_xri_cnt = cnt;
4442 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4443 				 &io_sgl_list, list) {
4444 		lxri = lpfc_sli4_next_xritag(phba);
4445 		if (lxri == NO_XRI) {
4446 			lpfc_printf_log(phba, KERN_ERR,
4447 					LOG_TRACE_EVENT,
4448 					"6075 Failed to allocate xri for "
4449 					"nvme buffer\n");
4450 			rc = -ENOMEM;
4451 			goto out_free_mem;
4452 		}
4453 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4454 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4455 	}
4456 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4457 	return 0;
4458 
4459 out_free_mem:
4460 	lpfc_io_free(phba);
4461 	return rc;
4462 }
4463 
4464 /**
4465  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4466  * @phba: Pointer to lpfc hba data structure.
4467  * @num_to_alloc: The requested number of buffers to allocate.
4468  *
4469  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4470  * the nvme buffer contains all the necessary information needed to initiate
4471  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4472  * them on a list, it post them to the port by using SGL block post.
4473  *
4474  * Return codes:
4475  *   int - number of IO buffers that were allocated and posted.
4476  *   0 = failure, less than num_to_alloc is a partial failure.
4477  **/
4478 int
4479 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4480 {
4481 	struct lpfc_io_buf *lpfc_ncmd;
4482 	struct lpfc_iocbq *pwqeq;
4483 	uint16_t iotag, lxri = 0;
4484 	int bcnt, num_posted;
4485 	LIST_HEAD(prep_nblist);
4486 	LIST_HEAD(post_nblist);
4487 	LIST_HEAD(nvme_nblist);
4488 
4489 	phba->sli4_hba.io_xri_cnt = 0;
4490 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4491 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4492 		if (!lpfc_ncmd)
4493 			break;
4494 		/*
4495 		 * Get memory from the pci pool to map the virt space to
4496 		 * pci bus space for an I/O. The DMA buffer includes the
4497 		 * number of SGE's necessary to support the sg_tablesize.
4498 		 */
4499 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4500 						  GFP_KERNEL,
4501 						  &lpfc_ncmd->dma_handle);
4502 		if (!lpfc_ncmd->data) {
4503 			kfree(lpfc_ncmd);
4504 			break;
4505 		}
4506 
4507 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4508 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4509 		} else {
4510 			/*
4511 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4512 			 * check to be sure.
4513 			 */
4514 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4515 			    (((unsigned long)(lpfc_ncmd->data) &
4516 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4517 				lpfc_printf_log(phba, KERN_ERR,
4518 						LOG_TRACE_EVENT,
4519 						"3369 Memory alignment err: "
4520 						"addr=%lx\n",
4521 						(unsigned long)lpfc_ncmd->data);
4522 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4523 					      lpfc_ncmd->data,
4524 					      lpfc_ncmd->dma_handle);
4525 				kfree(lpfc_ncmd);
4526 				break;
4527 			}
4528 		}
4529 
4530 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4531 
4532 		lxri = lpfc_sli4_next_xritag(phba);
4533 		if (lxri == NO_XRI) {
4534 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4535 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4536 			kfree(lpfc_ncmd);
4537 			break;
4538 		}
4539 		pwqeq = &lpfc_ncmd->cur_iocbq;
4540 
4541 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4542 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4543 		if (iotag == 0) {
4544 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4545 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4546 			kfree(lpfc_ncmd);
4547 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4548 					"6121 Failed to allocate IOTAG for"
4549 					" XRI:0x%x\n", lxri);
4550 			lpfc_sli4_free_xri(phba, lxri);
4551 			break;
4552 		}
4553 		pwqeq->sli4_lxritag = lxri;
4554 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4555 
4556 		/* Initialize local short-hand pointers. */
4557 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4558 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4559 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4560 		spin_lock_init(&lpfc_ncmd->buf_lock);
4561 
4562 		/* add the nvme buffer to a post list */
4563 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4564 		phba->sli4_hba.io_xri_cnt++;
4565 	}
4566 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4567 			"6114 Allocate %d out of %d requested new NVME "
4568 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4569 			sizeof(*lpfc_ncmd));
4570 
4571 
4572 	/* post the list of nvme buffer sgls to port if available */
4573 	if (!list_empty(&post_nblist))
4574 		num_posted = lpfc_sli4_post_io_sgl_list(
4575 				phba, &post_nblist, bcnt);
4576 	else
4577 		num_posted = 0;
4578 
4579 	return num_posted;
4580 }
4581 
4582 static uint64_t
4583 lpfc_get_wwpn(struct lpfc_hba *phba)
4584 {
4585 	uint64_t wwn;
4586 	int rc;
4587 	LPFC_MBOXQ_t *mboxq;
4588 	MAILBOX_t *mb;
4589 
4590 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4591 						GFP_KERNEL);
4592 	if (!mboxq)
4593 		return (uint64_t)-1;
4594 
4595 	/* First get WWN of HBA instance */
4596 	lpfc_read_nv(phba, mboxq);
4597 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4598 	if (rc != MBX_SUCCESS) {
4599 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4600 				"6019 Mailbox failed , mbxCmd x%x "
4601 				"READ_NV, mbxStatus x%x\n",
4602 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4603 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4604 		mempool_free(mboxq, phba->mbox_mem_pool);
4605 		return (uint64_t) -1;
4606 	}
4607 	mb = &mboxq->u.mb;
4608 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4609 	/* wwn is WWPN of HBA instance */
4610 	mempool_free(mboxq, phba->mbox_mem_pool);
4611 	if (phba->sli_rev == LPFC_SLI_REV4)
4612 		return be64_to_cpu(wwn);
4613 	else
4614 		return rol64(wwn, 32);
4615 }
4616 
4617 /**
4618  * lpfc_vmid_res_alloc - Allocates resources for VMID
4619  * @phba: pointer to lpfc hba data structure.
4620  * @vport: pointer to vport data structure
4621  *
4622  * This routine allocated the resources needed for the VMID.
4623  *
4624  * Return codes
4625  *	0 on Success
4626  *	Non-0 on Failure
4627  */
4628 static int
4629 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4630 {
4631 	/* VMID feature is supported only on SLI4 */
4632 	if (phba->sli_rev == LPFC_SLI_REV3) {
4633 		phba->cfg_vmid_app_header = 0;
4634 		phba->cfg_vmid_priority_tagging = 0;
4635 	}
4636 
4637 	if (lpfc_is_vmid_enabled(phba)) {
4638 		vport->vmid =
4639 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4640 			    GFP_KERNEL);
4641 		if (!vport->vmid)
4642 			return -ENOMEM;
4643 
4644 		rwlock_init(&vport->vmid_lock);
4645 
4646 		/* Set the VMID parameters for the vport */
4647 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4648 		vport->vmid_inactivity_timeout =
4649 		    phba->cfg_vmid_inactivity_timeout;
4650 		vport->max_vmid = phba->cfg_max_vmid;
4651 		vport->cur_vmid_cnt = 0;
4652 
4653 		vport->vmid_priority_range = bitmap_zalloc
4654 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4655 
4656 		if (!vport->vmid_priority_range) {
4657 			kfree(vport->vmid);
4658 			return -ENOMEM;
4659 		}
4660 
4661 		hash_init(vport->hash_table);
4662 	}
4663 	return 0;
4664 }
4665 
4666 /**
4667  * lpfc_create_port - Create an FC port
4668  * @phba: pointer to lpfc hba data structure.
4669  * @instance: a unique integer ID to this FC port.
4670  * @dev: pointer to the device data structure.
4671  *
4672  * This routine creates a FC port for the upper layer protocol. The FC port
4673  * can be created on top of either a physical port or a virtual port provided
4674  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4675  * and associates the FC port created before adding the shost into the SCSI
4676  * layer.
4677  *
4678  * Return codes
4679  *   @vport - pointer to the virtual N_Port data structure.
4680  *   NULL - port create failed.
4681  **/
4682 struct lpfc_vport *
4683 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4684 {
4685 	struct lpfc_vport *vport;
4686 	struct Scsi_Host  *shost = NULL;
4687 	struct scsi_host_template *template;
4688 	int error = 0;
4689 	int i;
4690 	uint64_t wwn;
4691 	bool use_no_reset_hba = false;
4692 	int rc;
4693 
4694 	if (lpfc_no_hba_reset_cnt) {
4695 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4696 		    dev == &phba->pcidev->dev) {
4697 			/* Reset the port first */
4698 			lpfc_sli_brdrestart(phba);
4699 			rc = lpfc_sli_chipset_init(phba);
4700 			if (rc)
4701 				return NULL;
4702 		}
4703 		wwn = lpfc_get_wwpn(phba);
4704 	}
4705 
4706 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4707 		if (wwn == lpfc_no_hba_reset[i]) {
4708 			lpfc_printf_log(phba, KERN_ERR,
4709 					LOG_TRACE_EVENT,
4710 					"6020 Setting use_no_reset port=%llx\n",
4711 					wwn);
4712 			use_no_reset_hba = true;
4713 			break;
4714 		}
4715 	}
4716 
4717 	/* Seed template for SCSI host registration */
4718 	if (dev == &phba->pcidev->dev) {
4719 		template = &phba->port_template;
4720 
4721 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4722 			/* Seed physical port template */
4723 			memcpy(template, &lpfc_template, sizeof(*template));
4724 
4725 			if (use_no_reset_hba)
4726 				/* template is for a no reset SCSI Host */
4727 				template->eh_host_reset_handler = NULL;
4728 
4729 			/* Template for all vports this physical port creates */
4730 			memcpy(&phba->vport_template, &lpfc_template,
4731 			       sizeof(*template));
4732 			phba->vport_template.shost_groups = lpfc_vport_groups;
4733 			phba->vport_template.eh_bus_reset_handler = NULL;
4734 			phba->vport_template.eh_host_reset_handler = NULL;
4735 			phba->vport_template.vendor_id = 0;
4736 
4737 			/* Initialize the host templates with updated value */
4738 			if (phba->sli_rev == LPFC_SLI_REV4) {
4739 				template->sg_tablesize = phba->cfg_scsi_seg_cnt;
4740 				phba->vport_template.sg_tablesize =
4741 					phba->cfg_scsi_seg_cnt;
4742 			} else {
4743 				template->sg_tablesize = phba->cfg_sg_seg_cnt;
4744 				phba->vport_template.sg_tablesize =
4745 					phba->cfg_sg_seg_cnt;
4746 			}
4747 
4748 		} else {
4749 			/* NVMET is for physical port only */
4750 			memcpy(template, &lpfc_template_nvme,
4751 			       sizeof(*template));
4752 		}
4753 	} else {
4754 		template = &phba->vport_template;
4755 	}
4756 
4757 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4758 	if (!shost)
4759 		goto out;
4760 
4761 	vport = (struct lpfc_vport *) shost->hostdata;
4762 	vport->phba = phba;
4763 	vport->load_flag |= FC_LOADING;
4764 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4765 	vport->fc_rscn_flush = 0;
4766 	lpfc_get_vport_cfgparam(vport);
4767 
4768 	/* Adjust value in vport */
4769 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4770 
4771 	shost->unique_id = instance;
4772 	shost->max_id = LPFC_MAX_TARGET;
4773 	shost->max_lun = vport->cfg_max_luns;
4774 	shost->this_id = -1;
4775 	shost->max_cmd_len = 16;
4776 
4777 	if (phba->sli_rev == LPFC_SLI_REV4) {
4778 		if (!phba->cfg_fcp_mq_threshold ||
4779 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4780 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4781 
4782 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4783 					    phba->cfg_fcp_mq_threshold);
4784 
4785 		shost->dma_boundary =
4786 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4787 
4788 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4789 			shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE;
4790 		else
4791 			shost->sg_tablesize = phba->cfg_scsi_seg_cnt;
4792 	} else
4793 		/* SLI-3 has a limited number of hardware queues (3),
4794 		 * thus there is only one for FCP processing.
4795 		 */
4796 		shost->nr_hw_queues = 1;
4797 
4798 	/*
4799 	 * Set initial can_queue value since 0 is no longer supported and
4800 	 * scsi_add_host will fail. This will be adjusted later based on the
4801 	 * max xri value determined in hba setup.
4802 	 */
4803 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4804 	if (dev != &phba->pcidev->dev) {
4805 		shost->transportt = lpfc_vport_transport_template;
4806 		vport->port_type = LPFC_NPIV_PORT;
4807 	} else {
4808 		shost->transportt = lpfc_transport_template;
4809 		vport->port_type = LPFC_PHYSICAL_PORT;
4810 	}
4811 
4812 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4813 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4814 			"SEGcnt %d/%d\n",
4815 			vport->port_type, shost->sg_tablesize,
4816 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4817 
4818 	/* Allocate the resources for VMID */
4819 	rc = lpfc_vmid_res_alloc(phba, vport);
4820 
4821 	if (rc)
4822 		goto out;
4823 
4824 	/* Initialize all internally managed lists. */
4825 	INIT_LIST_HEAD(&vport->fc_nodes);
4826 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4827 	spin_lock_init(&vport->work_port_lock);
4828 
4829 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4830 
4831 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4832 
4833 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4834 
4835 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4836 		lpfc_setup_bg(phba, shost);
4837 
4838 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4839 	if (error)
4840 		goto out_put_shost;
4841 
4842 	spin_lock_irq(&phba->port_list_lock);
4843 	list_add_tail(&vport->listentry, &phba->port_list);
4844 	spin_unlock_irq(&phba->port_list_lock);
4845 	return vport;
4846 
4847 out_put_shost:
4848 	kfree(vport->vmid);
4849 	bitmap_free(vport->vmid_priority_range);
4850 	scsi_host_put(shost);
4851 out:
4852 	return NULL;
4853 }
4854 
4855 /**
4856  * destroy_port -  destroy an FC port
4857  * @vport: pointer to an lpfc virtual N_Port data structure.
4858  *
4859  * This routine destroys a FC port from the upper layer protocol. All the
4860  * resources associated with the port are released.
4861  **/
4862 void
4863 destroy_port(struct lpfc_vport *vport)
4864 {
4865 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4866 	struct lpfc_hba  *phba = vport->phba;
4867 
4868 	lpfc_debugfs_terminate(vport);
4869 	fc_remove_host(shost);
4870 	scsi_remove_host(shost);
4871 
4872 	spin_lock_irq(&phba->port_list_lock);
4873 	list_del_init(&vport->listentry);
4874 	spin_unlock_irq(&phba->port_list_lock);
4875 
4876 	lpfc_cleanup(vport);
4877 	return;
4878 }
4879 
4880 /**
4881  * lpfc_get_instance - Get a unique integer ID
4882  *
4883  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4884  * uses the kernel idr facility to perform the task.
4885  *
4886  * Return codes:
4887  *   instance - a unique integer ID allocated as the new instance.
4888  *   -1 - lpfc get instance failed.
4889  **/
4890 int
4891 lpfc_get_instance(void)
4892 {
4893 	int ret;
4894 
4895 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4896 	return ret < 0 ? -1 : ret;
4897 }
4898 
4899 /**
4900  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4901  * @shost: pointer to SCSI host data structure.
4902  * @time: elapsed time of the scan in jiffies.
4903  *
4904  * This routine is called by the SCSI layer with a SCSI host to determine
4905  * whether the scan host is finished.
4906  *
4907  * Note: there is no scan_start function as adapter initialization will have
4908  * asynchronously kicked off the link initialization.
4909  *
4910  * Return codes
4911  *   0 - SCSI host scan is not over yet.
4912  *   1 - SCSI host scan is over.
4913  **/
4914 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4915 {
4916 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4917 	struct lpfc_hba   *phba = vport->phba;
4918 	int stat = 0;
4919 
4920 	spin_lock_irq(shost->host_lock);
4921 
4922 	if (vport->load_flag & FC_UNLOADING) {
4923 		stat = 1;
4924 		goto finished;
4925 	}
4926 	if (time >= msecs_to_jiffies(30 * 1000)) {
4927 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4928 				"0461 Scanning longer than 30 "
4929 				"seconds.  Continuing initialization\n");
4930 		stat = 1;
4931 		goto finished;
4932 	}
4933 	if (time >= msecs_to_jiffies(15 * 1000) &&
4934 	    phba->link_state <= LPFC_LINK_DOWN) {
4935 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4936 				"0465 Link down longer than 15 "
4937 				"seconds.  Continuing initialization\n");
4938 		stat = 1;
4939 		goto finished;
4940 	}
4941 
4942 	if (vport->port_state != LPFC_VPORT_READY)
4943 		goto finished;
4944 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4945 		goto finished;
4946 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4947 		goto finished;
4948 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4949 		goto finished;
4950 
4951 	stat = 1;
4952 
4953 finished:
4954 	spin_unlock_irq(shost->host_lock);
4955 	return stat;
4956 }
4957 
4958 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4959 {
4960 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4961 	struct lpfc_hba   *phba = vport->phba;
4962 
4963 	fc_host_supported_speeds(shost) = 0;
4964 	/*
4965 	 * Avoid reporting supported link speed for FCoE as it can't be
4966 	 * controlled via FCoE.
4967 	 */
4968 	if (phba->hba_flag & HBA_FCOE_MODE)
4969 		return;
4970 
4971 	if (phba->lmt & LMT_256Gb)
4972 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4973 	if (phba->lmt & LMT_128Gb)
4974 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4975 	if (phba->lmt & LMT_64Gb)
4976 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4977 	if (phba->lmt & LMT_32Gb)
4978 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4979 	if (phba->lmt & LMT_16Gb)
4980 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4981 	if (phba->lmt & LMT_10Gb)
4982 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4983 	if (phba->lmt & LMT_8Gb)
4984 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4985 	if (phba->lmt & LMT_4Gb)
4986 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4987 	if (phba->lmt & LMT_2Gb)
4988 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4989 	if (phba->lmt & LMT_1Gb)
4990 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4991 }
4992 
4993 /**
4994  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4995  * @shost: pointer to SCSI host data structure.
4996  *
4997  * This routine initializes a given SCSI host attributes on a FC port. The
4998  * SCSI host can be either on top of a physical port or a virtual port.
4999  **/
5000 void lpfc_host_attrib_init(struct Scsi_Host *shost)
5001 {
5002 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
5003 	struct lpfc_hba   *phba = vport->phba;
5004 	/*
5005 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5006 	 */
5007 
5008 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5009 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5010 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5011 
5012 	memset(fc_host_supported_fc4s(shost), 0,
5013 	       sizeof(fc_host_supported_fc4s(shost)));
5014 	fc_host_supported_fc4s(shost)[2] = 1;
5015 	fc_host_supported_fc4s(shost)[7] = 1;
5016 
5017 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5018 				 sizeof fc_host_symbolic_name(shost));
5019 
5020 	lpfc_host_supported_speeds_set(shost);
5021 
5022 	fc_host_maxframe_size(shost) =
5023 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5024 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5025 
5026 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5027 
5028 	/* This value is also unchanging */
5029 	memset(fc_host_active_fc4s(shost), 0,
5030 	       sizeof(fc_host_active_fc4s(shost)));
5031 	fc_host_active_fc4s(shost)[2] = 1;
5032 	fc_host_active_fc4s(shost)[7] = 1;
5033 
5034 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5035 	spin_lock_irq(shost->host_lock);
5036 	vport->load_flag &= ~FC_LOADING;
5037 	spin_unlock_irq(shost->host_lock);
5038 }
5039 
5040 /**
5041  * lpfc_stop_port_s3 - Stop SLI3 device port
5042  * @phba: pointer to lpfc hba data structure.
5043  *
5044  * This routine is invoked to stop an SLI3 device port, it stops the device
5045  * from generating interrupts and stops the device driver's timers for the
5046  * device.
5047  **/
5048 static void
5049 lpfc_stop_port_s3(struct lpfc_hba *phba)
5050 {
5051 	/* Clear all interrupt enable conditions */
5052 	writel(0, phba->HCregaddr);
5053 	readl(phba->HCregaddr); /* flush */
5054 	/* Clear all pending interrupts */
5055 	writel(0xffffffff, phba->HAregaddr);
5056 	readl(phba->HAregaddr); /* flush */
5057 
5058 	/* Reset some HBA SLI setup states */
5059 	lpfc_stop_hba_timers(phba);
5060 	phba->pport->work_port_events = 0;
5061 }
5062 
5063 /**
5064  * lpfc_stop_port_s4 - Stop SLI4 device port
5065  * @phba: pointer to lpfc hba data structure.
5066  *
5067  * This routine is invoked to stop an SLI4 device port, it stops the device
5068  * from generating interrupts and stops the device driver's timers for the
5069  * device.
5070  **/
5071 static void
5072 lpfc_stop_port_s4(struct lpfc_hba *phba)
5073 {
5074 	/* Reset some HBA SLI4 setup states */
5075 	lpfc_stop_hba_timers(phba);
5076 	if (phba->pport)
5077 		phba->pport->work_port_events = 0;
5078 	phba->sli4_hba.intr_enable = 0;
5079 }
5080 
5081 /**
5082  * lpfc_stop_port - Wrapper function for stopping hba port
5083  * @phba: Pointer to HBA context object.
5084  *
5085  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5086  * the API jump table function pointer from the lpfc_hba struct.
5087  **/
5088 void
5089 lpfc_stop_port(struct lpfc_hba *phba)
5090 {
5091 	phba->lpfc_stop_port(phba);
5092 
5093 	if (phba->wq)
5094 		flush_workqueue(phba->wq);
5095 }
5096 
5097 /**
5098  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5099  * @phba: Pointer to hba for which this call is being executed.
5100  *
5101  * This routine starts the timer waiting for the FCF rediscovery to complete.
5102  **/
5103 void
5104 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5105 {
5106 	unsigned long fcf_redisc_wait_tmo =
5107 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5108 	/* Start fcf rediscovery wait period timer */
5109 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5110 	spin_lock_irq(&phba->hbalock);
5111 	/* Allow action to new fcf asynchronous event */
5112 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5113 	/* Mark the FCF rediscovery pending state */
5114 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5115 	spin_unlock_irq(&phba->hbalock);
5116 }
5117 
5118 /**
5119  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5120  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5121  *
5122  * This routine is invoked when waiting for FCF table rediscover has been
5123  * timed out. If new FCF record(s) has (have) been discovered during the
5124  * wait period, a new FCF event shall be added to the FCOE async event
5125  * list, and then worker thread shall be waked up for processing from the
5126  * worker thread context.
5127  **/
5128 static void
5129 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5130 {
5131 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5132 
5133 	/* Don't send FCF rediscovery event if timer cancelled */
5134 	spin_lock_irq(&phba->hbalock);
5135 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5136 		spin_unlock_irq(&phba->hbalock);
5137 		return;
5138 	}
5139 	/* Clear FCF rediscovery timer pending flag */
5140 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5141 	/* FCF rediscovery event to worker thread */
5142 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5143 	spin_unlock_irq(&phba->hbalock);
5144 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5145 			"2776 FCF rediscover quiescent timer expired\n");
5146 	/* wake up worker thread */
5147 	lpfc_worker_wake_up(phba);
5148 }
5149 
5150 /**
5151  * lpfc_vmid_poll - VMID timeout detection
5152  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5153  *
5154  * This routine is invoked when there is no I/O on by a VM for the specified
5155  * amount of time. When this situation is detected, the VMID has to be
5156  * deregistered from the switch and all the local resources freed. The VMID
5157  * will be reassigned to the VM once the I/O begins.
5158  **/
5159 static void
5160 lpfc_vmid_poll(struct timer_list *t)
5161 {
5162 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5163 	u32 wake_up = 0;
5164 
5165 	/* check if there is a need to issue QFPA */
5166 	if (phba->pport->vmid_priority_tagging) {
5167 		wake_up = 1;
5168 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5169 	}
5170 
5171 	/* Is the vmid inactivity timer enabled */
5172 	if (phba->pport->vmid_inactivity_timeout ||
5173 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5174 		wake_up = 1;
5175 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5176 	}
5177 
5178 	if (wake_up)
5179 		lpfc_worker_wake_up(phba);
5180 
5181 	/* restart the timer for the next iteration */
5182 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5183 							LPFC_VMID_TIMER));
5184 }
5185 
5186 /**
5187  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5188  * @phba: pointer to lpfc hba data structure.
5189  * @acqe_link: pointer to the async link completion queue entry.
5190  *
5191  * This routine is to parse the SLI4 link-attention link fault code.
5192  **/
5193 static void
5194 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5195 			   struct lpfc_acqe_link *acqe_link)
5196 {
5197 	switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5198 	case LPFC_ASYNC_LINK_FAULT_NONE:
5199 	case LPFC_ASYNC_LINK_FAULT_LOCAL:
5200 	case LPFC_ASYNC_LINK_FAULT_REMOTE:
5201 	case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5202 		break;
5203 	default:
5204 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5205 				"0398 Unknown link fault code: x%x\n",
5206 				bf_get(lpfc_acqe_link_fault, acqe_link));
5207 		break;
5208 	}
5209 }
5210 
5211 /**
5212  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5213  * @phba: pointer to lpfc hba data structure.
5214  * @acqe_link: pointer to the async link completion queue entry.
5215  *
5216  * This routine is to parse the SLI4 link attention type and translate it
5217  * into the base driver's link attention type coding.
5218  *
5219  * Return: Link attention type in terms of base driver's coding.
5220  **/
5221 static uint8_t
5222 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5223 			  struct lpfc_acqe_link *acqe_link)
5224 {
5225 	uint8_t att_type;
5226 
5227 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5228 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5229 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5230 		att_type = LPFC_ATT_LINK_DOWN;
5231 		break;
5232 	case LPFC_ASYNC_LINK_STATUS_UP:
5233 		/* Ignore physical link up events - wait for logical link up */
5234 		att_type = LPFC_ATT_RESERVED;
5235 		break;
5236 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5237 		att_type = LPFC_ATT_LINK_UP;
5238 		break;
5239 	default:
5240 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5241 				"0399 Invalid link attention type: x%x\n",
5242 				bf_get(lpfc_acqe_link_status, acqe_link));
5243 		att_type = LPFC_ATT_RESERVED;
5244 		break;
5245 	}
5246 	return att_type;
5247 }
5248 
5249 /**
5250  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5251  * @phba: pointer to lpfc hba data structure.
5252  *
5253  * This routine is to get an SLI3 FC port's link speed in Mbps.
5254  *
5255  * Return: link speed in terms of Mbps.
5256  **/
5257 uint32_t
5258 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5259 {
5260 	uint32_t link_speed;
5261 
5262 	if (!lpfc_is_link_up(phba))
5263 		return 0;
5264 
5265 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5266 		switch (phba->fc_linkspeed) {
5267 		case LPFC_LINK_SPEED_1GHZ:
5268 			link_speed = 1000;
5269 			break;
5270 		case LPFC_LINK_SPEED_2GHZ:
5271 			link_speed = 2000;
5272 			break;
5273 		case LPFC_LINK_SPEED_4GHZ:
5274 			link_speed = 4000;
5275 			break;
5276 		case LPFC_LINK_SPEED_8GHZ:
5277 			link_speed = 8000;
5278 			break;
5279 		case LPFC_LINK_SPEED_10GHZ:
5280 			link_speed = 10000;
5281 			break;
5282 		case LPFC_LINK_SPEED_16GHZ:
5283 			link_speed = 16000;
5284 			break;
5285 		default:
5286 			link_speed = 0;
5287 		}
5288 	} else {
5289 		if (phba->sli4_hba.link_state.logical_speed)
5290 			link_speed =
5291 			      phba->sli4_hba.link_state.logical_speed;
5292 		else
5293 			link_speed = phba->sli4_hba.link_state.speed;
5294 	}
5295 	return link_speed;
5296 }
5297 
5298 /**
5299  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5300  * @phba: pointer to lpfc hba data structure.
5301  * @evt_code: asynchronous event code.
5302  * @speed_code: asynchronous event link speed code.
5303  *
5304  * This routine is to parse the giving SLI4 async event link speed code into
5305  * value of Mbps for the link speed.
5306  *
5307  * Return: link speed in terms of Mbps.
5308  **/
5309 static uint32_t
5310 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5311 			   uint8_t speed_code)
5312 {
5313 	uint32_t port_speed;
5314 
5315 	switch (evt_code) {
5316 	case LPFC_TRAILER_CODE_LINK:
5317 		switch (speed_code) {
5318 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5319 			port_speed = 0;
5320 			break;
5321 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5322 			port_speed = 10;
5323 			break;
5324 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5325 			port_speed = 100;
5326 			break;
5327 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5328 			port_speed = 1000;
5329 			break;
5330 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5331 			port_speed = 10000;
5332 			break;
5333 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5334 			port_speed = 20000;
5335 			break;
5336 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5337 			port_speed = 25000;
5338 			break;
5339 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5340 			port_speed = 40000;
5341 			break;
5342 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5343 			port_speed = 100000;
5344 			break;
5345 		default:
5346 			port_speed = 0;
5347 		}
5348 		break;
5349 	case LPFC_TRAILER_CODE_FC:
5350 		switch (speed_code) {
5351 		case LPFC_FC_LA_SPEED_UNKNOWN:
5352 			port_speed = 0;
5353 			break;
5354 		case LPFC_FC_LA_SPEED_1G:
5355 			port_speed = 1000;
5356 			break;
5357 		case LPFC_FC_LA_SPEED_2G:
5358 			port_speed = 2000;
5359 			break;
5360 		case LPFC_FC_LA_SPEED_4G:
5361 			port_speed = 4000;
5362 			break;
5363 		case LPFC_FC_LA_SPEED_8G:
5364 			port_speed = 8000;
5365 			break;
5366 		case LPFC_FC_LA_SPEED_10G:
5367 			port_speed = 10000;
5368 			break;
5369 		case LPFC_FC_LA_SPEED_16G:
5370 			port_speed = 16000;
5371 			break;
5372 		case LPFC_FC_LA_SPEED_32G:
5373 			port_speed = 32000;
5374 			break;
5375 		case LPFC_FC_LA_SPEED_64G:
5376 			port_speed = 64000;
5377 			break;
5378 		case LPFC_FC_LA_SPEED_128G:
5379 			port_speed = 128000;
5380 			break;
5381 		case LPFC_FC_LA_SPEED_256G:
5382 			port_speed = 256000;
5383 			break;
5384 		default:
5385 			port_speed = 0;
5386 		}
5387 		break;
5388 	default:
5389 		port_speed = 0;
5390 	}
5391 	return port_speed;
5392 }
5393 
5394 /**
5395  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5396  * @phba: pointer to lpfc hba data structure.
5397  * @acqe_link: pointer to the async link completion queue entry.
5398  *
5399  * This routine is to handle the SLI4 asynchronous FCoE link event.
5400  **/
5401 static void
5402 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5403 			 struct lpfc_acqe_link *acqe_link)
5404 {
5405 	LPFC_MBOXQ_t *pmb;
5406 	MAILBOX_t *mb;
5407 	struct lpfc_mbx_read_top *la;
5408 	uint8_t att_type;
5409 	int rc;
5410 
5411 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5412 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5413 		return;
5414 	phba->fcoe_eventtag = acqe_link->event_tag;
5415 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5416 	if (!pmb) {
5417 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5418 				"0395 The mboxq allocation failed\n");
5419 		return;
5420 	}
5421 
5422 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5423 	if (rc) {
5424 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5425 				"0396 mailbox allocation failed\n");
5426 		goto out_free_pmb;
5427 	}
5428 
5429 	/* Cleanup any outstanding ELS commands */
5430 	lpfc_els_flush_all_cmd(phba);
5431 
5432 	/* Block ELS IOCBs until we have done process link event */
5433 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5434 
5435 	/* Update link event statistics */
5436 	phba->sli.slistat.link_event++;
5437 
5438 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5439 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
5440 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5441 	pmb->vport = phba->pport;
5442 
5443 	/* Keep the link status for extra SLI4 state machine reference */
5444 	phba->sli4_hba.link_state.speed =
5445 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5446 				bf_get(lpfc_acqe_link_speed, acqe_link));
5447 	phba->sli4_hba.link_state.duplex =
5448 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5449 	phba->sli4_hba.link_state.status =
5450 				bf_get(lpfc_acqe_link_status, acqe_link);
5451 	phba->sli4_hba.link_state.type =
5452 				bf_get(lpfc_acqe_link_type, acqe_link);
5453 	phba->sli4_hba.link_state.number =
5454 				bf_get(lpfc_acqe_link_number, acqe_link);
5455 	phba->sli4_hba.link_state.fault =
5456 				bf_get(lpfc_acqe_link_fault, acqe_link);
5457 	phba->sli4_hba.link_state.logical_speed =
5458 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5459 
5460 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5461 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5462 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5463 			"Logical speed:%dMbps Fault:%d\n",
5464 			phba->sli4_hba.link_state.speed,
5465 			phba->sli4_hba.link_state.topology,
5466 			phba->sli4_hba.link_state.status,
5467 			phba->sli4_hba.link_state.type,
5468 			phba->sli4_hba.link_state.number,
5469 			phba->sli4_hba.link_state.logical_speed,
5470 			phba->sli4_hba.link_state.fault);
5471 	/*
5472 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5473 	 * topology info. Note: Optional for non FC-AL ports.
5474 	 */
5475 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5476 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5477 		if (rc == MBX_NOT_FINISHED)
5478 			goto out_free_pmb;
5479 		return;
5480 	}
5481 	/*
5482 	 * For FCoE Mode: fill in all the topology information we need and call
5483 	 * the READ_TOPOLOGY completion routine to continue without actually
5484 	 * sending the READ_TOPOLOGY mailbox command to the port.
5485 	 */
5486 	/* Initialize completion status */
5487 	mb = &pmb->u.mb;
5488 	mb->mbxStatus = MBX_SUCCESS;
5489 
5490 	/* Parse port fault information field */
5491 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5492 
5493 	/* Parse and translate link attention fields */
5494 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5495 	la->eventTag = acqe_link->event_tag;
5496 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5497 	bf_set(lpfc_mbx_read_top_link_spd, la,
5498 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5499 
5500 	/* Fake the the following irrelvant fields */
5501 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5502 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5503 	bf_set(lpfc_mbx_read_top_il, la, 0);
5504 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5505 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5506 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5507 
5508 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5509 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5510 
5511 	return;
5512 
5513 out_free_pmb:
5514 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5515 }
5516 
5517 /**
5518  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5519  * topology.
5520  * @phba: pointer to lpfc hba data structure.
5521  * @speed_code: asynchronous event link speed code.
5522  *
5523  * This routine is to parse the giving SLI4 async event link speed code into
5524  * value of Read topology link speed.
5525  *
5526  * Return: link speed in terms of Read topology.
5527  **/
5528 static uint8_t
5529 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5530 {
5531 	uint8_t port_speed;
5532 
5533 	switch (speed_code) {
5534 	case LPFC_FC_LA_SPEED_1G:
5535 		port_speed = LPFC_LINK_SPEED_1GHZ;
5536 		break;
5537 	case LPFC_FC_LA_SPEED_2G:
5538 		port_speed = LPFC_LINK_SPEED_2GHZ;
5539 		break;
5540 	case LPFC_FC_LA_SPEED_4G:
5541 		port_speed = LPFC_LINK_SPEED_4GHZ;
5542 		break;
5543 	case LPFC_FC_LA_SPEED_8G:
5544 		port_speed = LPFC_LINK_SPEED_8GHZ;
5545 		break;
5546 	case LPFC_FC_LA_SPEED_16G:
5547 		port_speed = LPFC_LINK_SPEED_16GHZ;
5548 		break;
5549 	case LPFC_FC_LA_SPEED_32G:
5550 		port_speed = LPFC_LINK_SPEED_32GHZ;
5551 		break;
5552 	case LPFC_FC_LA_SPEED_64G:
5553 		port_speed = LPFC_LINK_SPEED_64GHZ;
5554 		break;
5555 	case LPFC_FC_LA_SPEED_128G:
5556 		port_speed = LPFC_LINK_SPEED_128GHZ;
5557 		break;
5558 	case LPFC_FC_LA_SPEED_256G:
5559 		port_speed = LPFC_LINK_SPEED_256GHZ;
5560 		break;
5561 	default:
5562 		port_speed = 0;
5563 		break;
5564 	}
5565 
5566 	return port_speed;
5567 }
5568 
5569 void
5570 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5571 {
5572 	struct rxtable_entry *entry;
5573 	int cnt = 0, head, tail, last, start;
5574 
5575 	head = atomic_read(&phba->rxtable_idx_head);
5576 	tail = atomic_read(&phba->rxtable_idx_tail);
5577 	if (!phba->rxtable || head == tail) {
5578 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
5579 				"4411 Rxtable is empty\n");
5580 		return;
5581 	}
5582 	last = tail;
5583 	start = head;
5584 
5585 	/* Display the last LPFC_MAX_RXMONITOR_DUMP entries from the rxtable */
5586 	while (start != last) {
5587 		if (start)
5588 			start--;
5589 		else
5590 			start = LPFC_MAX_RXMONITOR_ENTRY - 1;
5591 		entry = &phba->rxtable[start];
5592 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5593 				"4410 %02d: MBPI %lld Xmit %lld Cmpl %lld "
5594 				"Lat %lld ASz %lld Info %02d BWUtil %d "
5595 				"Int %d slot %d\n",
5596 				cnt, entry->max_bytes_per_interval,
5597 				entry->total_bytes, entry->rcv_bytes,
5598 				entry->avg_io_latency, entry->avg_io_size,
5599 				entry->cmf_info, entry->timer_utilization,
5600 				entry->timer_interval, start);
5601 		cnt++;
5602 		if (cnt >= LPFC_MAX_RXMONITOR_DUMP)
5603 			return;
5604 	}
5605 }
5606 
5607 /**
5608  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5609  * @phba: pointer to lpfc hba data structure.
5610  * @dtag: FPIN descriptor received
5611  *
5612  * Increment the FPIN received counter/time when it happens.
5613  */
5614 void
5615 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5616 {
5617 	struct lpfc_cgn_info *cp;
5618 	struct tm broken;
5619 	struct timespec64 cur_time;
5620 	u32 cnt;
5621 	u32 value;
5622 
5623 	/* Make sure we have a congestion info buffer */
5624 	if (!phba->cgn_i)
5625 		return;
5626 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5627 	ktime_get_real_ts64(&cur_time);
5628 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5629 
5630 	/* Update congestion statistics */
5631 	switch (dtag) {
5632 	case ELS_DTAG_LNK_INTEGRITY:
5633 		cnt = le32_to_cpu(cp->link_integ_notification);
5634 		cnt++;
5635 		cp->link_integ_notification = cpu_to_le32(cnt);
5636 
5637 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5638 		cp->cgn_stat_lnk_day = broken.tm_mday;
5639 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5640 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5641 		cp->cgn_stat_lnk_min = broken.tm_min;
5642 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5643 		break;
5644 	case ELS_DTAG_DELIVERY:
5645 		cnt = le32_to_cpu(cp->delivery_notification);
5646 		cnt++;
5647 		cp->delivery_notification = cpu_to_le32(cnt);
5648 
5649 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5650 		cp->cgn_stat_del_day = broken.tm_mday;
5651 		cp->cgn_stat_del_year = broken.tm_year - 100;
5652 		cp->cgn_stat_del_hour = broken.tm_hour;
5653 		cp->cgn_stat_del_min = broken.tm_min;
5654 		cp->cgn_stat_del_sec = broken.tm_sec;
5655 		break;
5656 	case ELS_DTAG_PEER_CONGEST:
5657 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5658 		cnt++;
5659 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5660 
5661 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5662 		cp->cgn_stat_peer_day = broken.tm_mday;
5663 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5664 		cp->cgn_stat_peer_hour = broken.tm_hour;
5665 		cp->cgn_stat_peer_min = broken.tm_min;
5666 		cp->cgn_stat_peer_sec = broken.tm_sec;
5667 		break;
5668 	case ELS_DTAG_CONGESTION:
5669 		cnt = le32_to_cpu(cp->cgn_notification);
5670 		cnt++;
5671 		cp->cgn_notification = cpu_to_le32(cnt);
5672 
5673 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5674 		cp->cgn_stat_cgn_day = broken.tm_mday;
5675 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5676 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5677 		cp->cgn_stat_cgn_min = broken.tm_min;
5678 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5679 	}
5680 	if (phba->cgn_fpin_frequency &&
5681 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5682 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5683 		cp->cgn_stat_npm = value;
5684 	}
5685 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5686 				    LPFC_CGN_CRC32_SEED);
5687 	cp->cgn_info_crc = cpu_to_le32(value);
5688 }
5689 
5690 /**
5691  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5692  * @phba: pointer to lpfc hba data structure.
5693  *
5694  * Save the congestion event data every minute.
5695  * On the hour collapse all the minute data into hour data. Every day
5696  * collapse all the hour data into daily data. Separate driver
5697  * and fabrc congestion event counters that will be saved out
5698  * to the registered congestion buffer every minute.
5699  */
5700 static void
5701 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5702 {
5703 	struct lpfc_cgn_info *cp;
5704 	struct tm broken;
5705 	struct timespec64 cur_time;
5706 	uint32_t i, index;
5707 	uint16_t value, mvalue;
5708 	uint64_t bps;
5709 	uint32_t mbps;
5710 	uint32_t dvalue, wvalue, lvalue, avalue;
5711 	uint64_t latsum;
5712 	__le16 *ptr;
5713 	__le32 *lptr;
5714 	__le16 *mptr;
5715 
5716 	/* Make sure we have a congestion info buffer */
5717 	if (!phba->cgn_i)
5718 		return;
5719 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5720 
5721 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5722 		return;
5723 	phba->cgn_evt_timestamp = jiffies +
5724 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5725 	phba->cgn_evt_minute++;
5726 
5727 	/* We should get to this point in the routine on 1 minute intervals */
5728 
5729 	ktime_get_real_ts64(&cur_time);
5730 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5731 
5732 	if (phba->cgn_fpin_frequency &&
5733 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5734 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5735 		cp->cgn_stat_npm = value;
5736 	}
5737 
5738 	/* Read and clear the latency counters for this minute */
5739 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5740 	latsum = atomic64_read(&phba->cgn_latency_evt);
5741 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5742 	atomic64_set(&phba->cgn_latency_evt, 0);
5743 
5744 	/* We need to store MB/sec bandwidth in the congestion information.
5745 	 * block_cnt is count of 512 byte blocks for the entire minute,
5746 	 * bps will get bytes per sec before finally converting to MB/sec.
5747 	 */
5748 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5749 	phba->rx_block_cnt = 0;
5750 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5751 
5752 	/* Every minute */
5753 	/* cgn parameters */
5754 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5755 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5756 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5757 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5758 
5759 	/* Fill in default LUN qdepth */
5760 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5761 	cp->cgn_lunq = cpu_to_le16(value);
5762 
5763 	/* Record congestion buffer info - every minute
5764 	 * cgn_driver_evt_cnt (Driver events)
5765 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5766 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5767 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5768 	 */
5769 	index = ++cp->cgn_index_minute;
5770 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5771 		cp->cgn_index_minute = 0;
5772 		index = 0;
5773 	}
5774 
5775 	/* Get the number of driver events in this sample and reset counter */
5776 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5777 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5778 
5779 	/* Get the number of warning events - FPIN and Signal for this minute */
5780 	wvalue = 0;
5781 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5782 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5783 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5784 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5785 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5786 
5787 	/* Get the number of alarm events - FPIN and Signal for this minute */
5788 	avalue = 0;
5789 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5790 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5791 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5792 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5793 
5794 	/* Collect the driver, warning, alarm and latency counts for this
5795 	 * minute into the driver congestion buffer.
5796 	 */
5797 	ptr = &cp->cgn_drvr_min[index];
5798 	value = (uint16_t)dvalue;
5799 	*ptr = cpu_to_le16(value);
5800 
5801 	ptr = &cp->cgn_warn_min[index];
5802 	value = (uint16_t)wvalue;
5803 	*ptr = cpu_to_le16(value);
5804 
5805 	ptr = &cp->cgn_alarm_min[index];
5806 	value = (uint16_t)avalue;
5807 	*ptr = cpu_to_le16(value);
5808 
5809 	lptr = &cp->cgn_latency_min[index];
5810 	if (lvalue) {
5811 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5812 		*lptr = cpu_to_le32(lvalue);
5813 	} else {
5814 		*lptr = 0;
5815 	}
5816 
5817 	/* Collect the bandwidth value into the driver's congesion buffer. */
5818 	mptr = &cp->cgn_bw_min[index];
5819 	*mptr = cpu_to_le16(mvalue);
5820 
5821 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5822 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5823 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5824 
5825 	/* Every hour */
5826 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5827 		/* Record congestion buffer info - every hour
5828 		 * Collapse all minutes into an hour
5829 		 */
5830 		index = ++cp->cgn_index_hour;
5831 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5832 			cp->cgn_index_hour = 0;
5833 			index = 0;
5834 		}
5835 
5836 		dvalue = 0;
5837 		wvalue = 0;
5838 		lvalue = 0;
5839 		avalue = 0;
5840 		mvalue = 0;
5841 		mbps = 0;
5842 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5843 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5844 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5845 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5846 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5847 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5848 		}
5849 		if (lvalue)		/* Avg of latency averages */
5850 			lvalue /= LPFC_MIN_HOUR;
5851 		if (mbps)		/* Avg of Bandwidth averages */
5852 			mvalue = mbps / LPFC_MIN_HOUR;
5853 
5854 		lptr = &cp->cgn_drvr_hr[index];
5855 		*lptr = cpu_to_le32(dvalue);
5856 		lptr = &cp->cgn_warn_hr[index];
5857 		*lptr = cpu_to_le32(wvalue);
5858 		lptr = &cp->cgn_latency_hr[index];
5859 		*lptr = cpu_to_le32(lvalue);
5860 		mptr = &cp->cgn_bw_hr[index];
5861 		*mptr = cpu_to_le16(mvalue);
5862 		lptr = &cp->cgn_alarm_hr[index];
5863 		*lptr = cpu_to_le32(avalue);
5864 
5865 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5866 				"2419 Congestion Info - hour "
5867 				"(%d): %d %d %d %d %d\n",
5868 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5869 	}
5870 
5871 	/* Every day */
5872 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5873 		/* Record congestion buffer info - every hour
5874 		 * Collapse all hours into a day. Rotate days
5875 		 * after LPFC_MAX_CGN_DAYS.
5876 		 */
5877 		index = ++cp->cgn_index_day;
5878 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5879 			cp->cgn_index_day = 0;
5880 			index = 0;
5881 		}
5882 
5883 		/* Anytime we overwrite daily index 0, after we wrap,
5884 		 * we will be overwriting the oldest day, so we must
5885 		 * update the congestion data start time for that day.
5886 		 * That start time should have previously been saved after
5887 		 * we wrote the last days worth of data.
5888 		 */
5889 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5890 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5891 
5892 			cp->cgn_info_month = broken.tm_mon + 1;
5893 			cp->cgn_info_day = broken.tm_mday;
5894 			cp->cgn_info_year = broken.tm_year - 100;
5895 			cp->cgn_info_hour = broken.tm_hour;
5896 			cp->cgn_info_minute = broken.tm_min;
5897 			cp->cgn_info_second = broken.tm_sec;
5898 
5899 			lpfc_printf_log
5900 				(phba, KERN_INFO, LOG_CGN_MGMT,
5901 				"2646 CGNInfo idx0 Start Time: "
5902 				"%d/%d/%d %d:%d:%d\n",
5903 				cp->cgn_info_day, cp->cgn_info_month,
5904 				cp->cgn_info_year, cp->cgn_info_hour,
5905 				cp->cgn_info_minute, cp->cgn_info_second);
5906 		}
5907 
5908 		dvalue = 0;
5909 		wvalue = 0;
5910 		lvalue = 0;
5911 		mvalue = 0;
5912 		mbps = 0;
5913 		avalue = 0;
5914 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5915 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5916 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5917 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5918 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5919 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5920 		}
5921 		if (lvalue)		/* Avg of latency averages */
5922 			lvalue /= LPFC_HOUR_DAY;
5923 		if (mbps)		/* Avg of Bandwidth averages */
5924 			mvalue = mbps / LPFC_HOUR_DAY;
5925 
5926 		lptr = &cp->cgn_drvr_day[index];
5927 		*lptr = cpu_to_le32(dvalue);
5928 		lptr = &cp->cgn_warn_day[index];
5929 		*lptr = cpu_to_le32(wvalue);
5930 		lptr = &cp->cgn_latency_day[index];
5931 		*lptr = cpu_to_le32(lvalue);
5932 		mptr = &cp->cgn_bw_day[index];
5933 		*mptr = cpu_to_le16(mvalue);
5934 		lptr = &cp->cgn_alarm_day[index];
5935 		*lptr = cpu_to_le32(avalue);
5936 
5937 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5938 				"2420 Congestion Info - daily (%d): "
5939 				"%d %d %d %d %d\n",
5940 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5941 
5942 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5943 		 * so we are wrapped on any data after this.
5944 		 * Save this as the start time for the next day.
5945 		 */
5946 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5947 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5948 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5949 		}
5950 	}
5951 
5952 	/* Use the frequency found in the last rcv'ed FPIN */
5953 	value = phba->cgn_fpin_frequency;
5954 	cp->cgn_warn_freq = cpu_to_le16(value);
5955 	cp->cgn_alarm_freq = cpu_to_le16(value);
5956 
5957 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5958 				     LPFC_CGN_CRC32_SEED);
5959 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5960 }
5961 
5962 /**
5963  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5964  * @phba: The Hba for which this call is being executed.
5965  *
5966  * The routine calculates the latency from the beginning of the CMF timer
5967  * interval to the current point in time. It is called from IO completion
5968  * when we exceed our Bandwidth limitation for the time interval.
5969  */
5970 uint32_t
5971 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5972 {
5973 	struct timespec64 cmpl_time;
5974 	uint32_t msec = 0;
5975 
5976 	ktime_get_real_ts64(&cmpl_time);
5977 
5978 	/* This routine works on a ms granularity so sec and usec are
5979 	 * converted accordingly.
5980 	 */
5981 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5982 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5983 			NSEC_PER_MSEC;
5984 	} else {
5985 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5986 			msec = (cmpl_time.tv_sec -
5987 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5988 			msec += ((cmpl_time.tv_nsec -
5989 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5990 		} else {
5991 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5992 				1) * MSEC_PER_SEC;
5993 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5994 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5995 		}
5996 	}
5997 	return msec;
5998 }
5999 
6000 /**
6001  * lpfc_cmf_timer -  This is the timer function for one congestion
6002  * rate interval.
6003  * @timer: Pointer to the high resolution timer that expired
6004  */
6005 static enum hrtimer_restart
6006 lpfc_cmf_timer(struct hrtimer *timer)
6007 {
6008 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
6009 					     cmf_timer);
6010 	struct rxtable_entry *entry;
6011 	uint32_t io_cnt;
6012 	uint32_t head, tail;
6013 	uint32_t busy, max_read;
6014 	uint64_t total, rcv, lat, mbpi, extra, cnt;
6015 	int timer_interval = LPFC_CMF_INTERVAL;
6016 	uint32_t ms;
6017 	struct lpfc_cgn_stat *cgs;
6018 	int cpu;
6019 
6020 	/* Only restart the timer if congestion mgmt is on */
6021 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
6022 	    !phba->cmf_latency.tv_sec) {
6023 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
6024 				"6224 CMF timer exit: %d %lld\n",
6025 				phba->cmf_active_mode,
6026 				(uint64_t)phba->cmf_latency.tv_sec);
6027 		return HRTIMER_NORESTART;
6028 	}
6029 
6030 	/* If pport is not ready yet, just exit and wait for
6031 	 * the next timer cycle to hit.
6032 	 */
6033 	if (!phba->pport)
6034 		goto skip;
6035 
6036 	/* Do not block SCSI IO while in the timer routine since
6037 	 * total_bytes will be cleared
6038 	 */
6039 	atomic_set(&phba->cmf_stop_io, 1);
6040 
6041 	/* First we need to calculate the actual ms between
6042 	 * the last timer interrupt and this one. We ask for
6043 	 * LPFC_CMF_INTERVAL, however the actual time may
6044 	 * vary depending on system overhead.
6045 	 */
6046 	ms = lpfc_calc_cmf_latency(phba);
6047 
6048 
6049 	/* Immediately after we calculate the time since the last
6050 	 * timer interrupt, set the start time for the next
6051 	 * interrupt
6052 	 */
6053 	ktime_get_real_ts64(&phba->cmf_latency);
6054 
6055 	phba->cmf_link_byte_count =
6056 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6057 
6058 	/* Collect all the stats from the prior timer interval */
6059 	total = 0;
6060 	io_cnt = 0;
6061 	lat = 0;
6062 	rcv = 0;
6063 	for_each_present_cpu(cpu) {
6064 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6065 		total += atomic64_xchg(&cgs->total_bytes, 0);
6066 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6067 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6068 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6069 	}
6070 
6071 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6072 	 * returned from the last CMF_SYNC_WQE issued, from
6073 	 * cmf_last_sync_bw. This will be the target BW for
6074 	 * this next timer interval.
6075 	 */
6076 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6077 	    phba->link_state != LPFC_LINK_DOWN &&
6078 	    phba->hba_flag & HBA_SETUP) {
6079 		mbpi = phba->cmf_last_sync_bw;
6080 		phba->cmf_last_sync_bw = 0;
6081 		extra = 0;
6082 
6083 		/* Calculate any extra bytes needed to account for the
6084 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6085 		 * calculate the adjustment needed for total to reflect
6086 		 * a full LPFC_CMF_INTERVAL.
6087 		 */
6088 		if (ms && ms < LPFC_CMF_INTERVAL) {
6089 			cnt = div_u64(total, ms); /* bytes per ms */
6090 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6091 
6092 			/* If the timeout is scheduled to be shorter,
6093 			 * this value may skew the data, so cap it at mbpi.
6094 			 */
6095 			if ((phba->hba_flag & HBA_SHORT_CMF) && cnt > mbpi)
6096 				cnt = mbpi;
6097 
6098 			extra = cnt - total;
6099 		}
6100 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6101 	} else {
6102 		/* For Monitor mode or link down we want mbpi
6103 		 * to be the full link speed
6104 		 */
6105 		mbpi = phba->cmf_link_byte_count;
6106 		extra = 0;
6107 	}
6108 	phba->cmf_timer_cnt++;
6109 
6110 	if (io_cnt) {
6111 		/* Update congestion info buffer latency in us */
6112 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6113 		atomic64_add(lat, &phba->cgn_latency_evt);
6114 	}
6115 	busy = atomic_xchg(&phba->cmf_busy, 0);
6116 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6117 
6118 	/* Calculate MBPI for the next timer interval */
6119 	if (mbpi) {
6120 		if (mbpi > phba->cmf_link_byte_count ||
6121 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6122 			mbpi = phba->cmf_link_byte_count;
6123 
6124 		/* Change max_bytes_per_interval to what the prior
6125 		 * CMF_SYNC_WQE cmpl indicated.
6126 		 */
6127 		if (mbpi != phba->cmf_max_bytes_per_interval)
6128 			phba->cmf_max_bytes_per_interval = mbpi;
6129 	}
6130 
6131 	/* Save rxmonitor information for debug */
6132 	if (phba->rxtable) {
6133 		head = atomic_xchg(&phba->rxtable_idx_head,
6134 				   LPFC_RXMONITOR_TABLE_IN_USE);
6135 		entry = &phba->rxtable[head];
6136 		entry->total_bytes = total;
6137 		entry->cmf_bytes = total + extra;
6138 		entry->rcv_bytes = rcv;
6139 		entry->cmf_busy = busy;
6140 		entry->cmf_info = phba->cmf_active_info;
6141 		if (io_cnt) {
6142 			entry->avg_io_latency = div_u64(lat, io_cnt);
6143 			entry->avg_io_size = div_u64(rcv, io_cnt);
6144 		} else {
6145 			entry->avg_io_latency = 0;
6146 			entry->avg_io_size = 0;
6147 		}
6148 		entry->max_read_cnt = max_read;
6149 		entry->io_cnt = io_cnt;
6150 		entry->max_bytes_per_interval = mbpi;
6151 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6152 			entry->timer_utilization = phba->cmf_last_ts;
6153 		else
6154 			entry->timer_utilization = ms;
6155 		entry->timer_interval = ms;
6156 		phba->cmf_last_ts = 0;
6157 
6158 		/* Increment rxtable index */
6159 		head = (head + 1) % LPFC_MAX_RXMONITOR_ENTRY;
6160 		tail = atomic_read(&phba->rxtable_idx_tail);
6161 		if (head == tail) {
6162 			tail = (tail + 1) % LPFC_MAX_RXMONITOR_ENTRY;
6163 			atomic_set(&phba->rxtable_idx_tail, tail);
6164 		}
6165 		atomic_set(&phba->rxtable_idx_head, head);
6166 	}
6167 
6168 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6169 		/* If Monitor mode, check if we are oversubscribed
6170 		 * against the full line rate.
6171 		 */
6172 		if (mbpi && total > mbpi)
6173 			atomic_inc(&phba->cgn_driver_evt_cnt);
6174 	}
6175 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6176 
6177 	/* Each minute save Fabric and Driver congestion information */
6178 	lpfc_cgn_save_evt_cnt(phba);
6179 
6180 	phba->hba_flag &= ~HBA_SHORT_CMF;
6181 
6182 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
6183 	 * minute, adjust our next timer interval, if needed, to ensure a
6184 	 * 1 minute granularity when we get the next timer interrupt.
6185 	 */
6186 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6187 		       phba->cgn_evt_timestamp)) {
6188 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6189 						  jiffies);
6190 		if (timer_interval <= 0)
6191 			timer_interval = LPFC_CMF_INTERVAL;
6192 		else
6193 			phba->hba_flag |= HBA_SHORT_CMF;
6194 
6195 		/* If we adjust timer_interval, max_bytes_per_interval
6196 		 * needs to be adjusted as well.
6197 		 */
6198 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6199 						    timer_interval, 1000);
6200 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6201 			phba->cmf_max_bytes_per_interval =
6202 				phba->cmf_link_byte_count;
6203 	}
6204 
6205 	/* Since total_bytes has already been zero'ed, its okay to unblock
6206 	 * after max_bytes_per_interval is setup.
6207 	 */
6208 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6209 		queue_work(phba->wq, &phba->unblock_request_work);
6210 
6211 	/* SCSI IO is now unblocked */
6212 	atomic_set(&phba->cmf_stop_io, 0);
6213 
6214 skip:
6215 	hrtimer_forward_now(timer,
6216 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6217 	return HRTIMER_RESTART;
6218 }
6219 
6220 #define trunk_link_status(__idx)\
6221 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6222 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6223 		"Link up" : "Link down") : "NA"
6224 /* Did port __idx reported an error */
6225 #define trunk_port_fault(__idx)\
6226 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6227 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6228 
6229 static void
6230 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6231 			      struct lpfc_acqe_fc_la *acqe_fc)
6232 {
6233 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6234 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6235 
6236 	phba->sli4_hba.link_state.speed =
6237 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6238 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6239 
6240 	phba->sli4_hba.link_state.logical_speed =
6241 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6242 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6243 	phba->fc_linkspeed =
6244 		 lpfc_async_link_speed_to_read_top(
6245 				phba,
6246 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6247 
6248 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6249 		phba->trunk_link.link0.state =
6250 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6251 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6252 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6253 	}
6254 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6255 		phba->trunk_link.link1.state =
6256 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6257 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6258 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6259 	}
6260 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6261 		phba->trunk_link.link2.state =
6262 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6263 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6264 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6265 	}
6266 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6267 		phba->trunk_link.link3.state =
6268 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6269 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6270 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6271 	}
6272 
6273 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6274 			"2910 Async FC Trunking Event - Speed:%d\n"
6275 			"\tLogical speed:%d "
6276 			"port0: %s port1: %s port2: %s port3: %s\n",
6277 			phba->sli4_hba.link_state.speed,
6278 			phba->sli4_hba.link_state.logical_speed,
6279 			trunk_link_status(0), trunk_link_status(1),
6280 			trunk_link_status(2), trunk_link_status(3));
6281 
6282 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6283 		lpfc_cmf_signal_init(phba);
6284 
6285 	if (port_fault)
6286 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6287 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6288 				/*
6289 				 * SLI-4: We have only 0xA error codes
6290 				 * defined as of now. print an appropriate
6291 				 * message in case driver needs to be updated.
6292 				 */
6293 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6294 				"UNDEFINED. update driver." : trunk_errmsg[err],
6295 				trunk_port_fault(0), trunk_port_fault(1),
6296 				trunk_port_fault(2), trunk_port_fault(3));
6297 }
6298 
6299 
6300 /**
6301  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6302  * @phba: pointer to lpfc hba data structure.
6303  * @acqe_fc: pointer to the async fc completion queue entry.
6304  *
6305  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6306  * that the event was received and then issue a read_topology mailbox command so
6307  * that the rest of the driver will treat it the same as SLI3.
6308  **/
6309 static void
6310 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6311 {
6312 	LPFC_MBOXQ_t *pmb;
6313 	MAILBOX_t *mb;
6314 	struct lpfc_mbx_read_top *la;
6315 	int rc;
6316 
6317 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6318 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6319 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6320 				"2895 Non FC link Event detected.(%d)\n",
6321 				bf_get(lpfc_trailer_type, acqe_fc));
6322 		return;
6323 	}
6324 
6325 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6326 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6327 		lpfc_update_trunk_link_status(phba, acqe_fc);
6328 		return;
6329 	}
6330 
6331 	/* Keep the link status for extra SLI4 state machine reference */
6332 	phba->sli4_hba.link_state.speed =
6333 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6334 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6335 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6336 	phba->sli4_hba.link_state.topology =
6337 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6338 	phba->sli4_hba.link_state.status =
6339 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6340 	phba->sli4_hba.link_state.type =
6341 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6342 	phba->sli4_hba.link_state.number =
6343 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6344 	phba->sli4_hba.link_state.fault =
6345 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6346 
6347 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6348 	    LPFC_FC_LA_TYPE_LINK_DOWN)
6349 		phba->sli4_hba.link_state.logical_speed = 0;
6350 	else if	(!phba->sli4_hba.conf_trunk)
6351 		phba->sli4_hba.link_state.logical_speed =
6352 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6353 
6354 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6355 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6356 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6357 			"%dMbps Fault:%d\n",
6358 			phba->sli4_hba.link_state.speed,
6359 			phba->sli4_hba.link_state.topology,
6360 			phba->sli4_hba.link_state.status,
6361 			phba->sli4_hba.link_state.type,
6362 			phba->sli4_hba.link_state.number,
6363 			phba->sli4_hba.link_state.logical_speed,
6364 			phba->sli4_hba.link_state.fault);
6365 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6366 	if (!pmb) {
6367 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6368 				"2897 The mboxq allocation failed\n");
6369 		return;
6370 	}
6371 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6372 	if (rc) {
6373 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6374 				"2898 The mboxq prep failed\n");
6375 		goto out_free_pmb;
6376 	}
6377 
6378 	/* Cleanup any outstanding ELS commands */
6379 	lpfc_els_flush_all_cmd(phba);
6380 
6381 	/* Block ELS IOCBs until we have done process link event */
6382 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6383 
6384 	/* Update link event statistics */
6385 	phba->sli.slistat.link_event++;
6386 
6387 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6388 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
6389 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6390 	pmb->vport = phba->pport;
6391 
6392 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6393 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6394 
6395 		switch (phba->sli4_hba.link_state.status) {
6396 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6397 			phba->link_flag |= LS_MDS_LINK_DOWN;
6398 			break;
6399 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6400 			phba->link_flag |= LS_MDS_LOOPBACK;
6401 			break;
6402 		default:
6403 			break;
6404 		}
6405 
6406 		/* Initialize completion status */
6407 		mb = &pmb->u.mb;
6408 		mb->mbxStatus = MBX_SUCCESS;
6409 
6410 		/* Parse port fault information field */
6411 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6412 
6413 		/* Parse and translate link attention fields */
6414 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6415 		la->eventTag = acqe_fc->event_tag;
6416 
6417 		if (phba->sli4_hba.link_state.status ==
6418 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6419 			bf_set(lpfc_mbx_read_top_att_type, la,
6420 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6421 		} else {
6422 			bf_set(lpfc_mbx_read_top_att_type, la,
6423 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6424 		}
6425 		/* Invoke the mailbox command callback function */
6426 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6427 
6428 		return;
6429 	}
6430 
6431 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6432 	if (rc == MBX_NOT_FINISHED)
6433 		goto out_free_pmb;
6434 	return;
6435 
6436 out_free_pmb:
6437 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6438 }
6439 
6440 /**
6441  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6442  * @phba: pointer to lpfc hba data structure.
6443  * @acqe_sli: pointer to the async SLI completion queue entry.
6444  *
6445  * This routine is to handle the SLI4 asynchronous SLI events.
6446  **/
6447 static void
6448 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6449 {
6450 	char port_name;
6451 	char message[128];
6452 	uint8_t status;
6453 	uint8_t evt_type;
6454 	uint8_t operational = 0;
6455 	struct temp_event temp_event_data;
6456 	struct lpfc_acqe_misconfigured_event *misconfigured;
6457 	struct lpfc_acqe_cgn_signal *cgn_signal;
6458 	struct Scsi_Host  *shost;
6459 	struct lpfc_vport **vports;
6460 	int rc, i, cnt;
6461 
6462 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6463 
6464 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6465 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6466 			"x%08x x%08x x%08x\n", evt_type,
6467 			acqe_sli->event_data1, acqe_sli->event_data2,
6468 			acqe_sli->reserved, acqe_sli->trailer);
6469 
6470 	port_name = phba->Port[0];
6471 	if (port_name == 0x00)
6472 		port_name = '?'; /* get port name is empty */
6473 
6474 	switch (evt_type) {
6475 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6476 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6477 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6478 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6479 
6480 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6481 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6482 				acqe_sli->event_data1, port_name);
6483 
6484 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6485 		shost = lpfc_shost_from_vport(phba->pport);
6486 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6487 					  sizeof(temp_event_data),
6488 					  (char *)&temp_event_data,
6489 					  SCSI_NL_VID_TYPE_PCI
6490 					  | PCI_VENDOR_ID_EMULEX);
6491 		break;
6492 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6493 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6494 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6495 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6496 
6497 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6498 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6499 				acqe_sli->event_data1, port_name);
6500 
6501 		shost = lpfc_shost_from_vport(phba->pport);
6502 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6503 					  sizeof(temp_event_data),
6504 					  (char *)&temp_event_data,
6505 					  SCSI_NL_VID_TYPE_PCI
6506 					  | PCI_VENDOR_ID_EMULEX);
6507 		break;
6508 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6509 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6510 					&acqe_sli->event_data1;
6511 
6512 		/* fetch the status for this port */
6513 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6514 		case LPFC_LINK_NUMBER_0:
6515 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6516 					&misconfigured->theEvent);
6517 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6518 					&misconfigured->theEvent);
6519 			break;
6520 		case LPFC_LINK_NUMBER_1:
6521 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6522 					&misconfigured->theEvent);
6523 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6524 					&misconfigured->theEvent);
6525 			break;
6526 		case LPFC_LINK_NUMBER_2:
6527 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6528 					&misconfigured->theEvent);
6529 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6530 					&misconfigured->theEvent);
6531 			break;
6532 		case LPFC_LINK_NUMBER_3:
6533 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6534 					&misconfigured->theEvent);
6535 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6536 					&misconfigured->theEvent);
6537 			break;
6538 		default:
6539 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6540 					"3296 "
6541 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6542 					"event: Invalid link %d",
6543 					phba->sli4_hba.lnk_info.lnk_no);
6544 			return;
6545 		}
6546 
6547 		/* Skip if optic state unchanged */
6548 		if (phba->sli4_hba.lnk_info.optic_state == status)
6549 			return;
6550 
6551 		switch (status) {
6552 		case LPFC_SLI_EVENT_STATUS_VALID:
6553 			sprintf(message, "Physical Link is functional");
6554 			break;
6555 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6556 			sprintf(message, "Optics faulted/incorrectly "
6557 				"installed/not installed - Reseat optics, "
6558 				"if issue not resolved, replace.");
6559 			break;
6560 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6561 			sprintf(message,
6562 				"Optics of two types installed - Remove one "
6563 				"optic or install matching pair of optics.");
6564 			break;
6565 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6566 			sprintf(message, "Incompatible optics - Replace with "
6567 				"compatible optics for card to function.");
6568 			break;
6569 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6570 			sprintf(message, "Unqualified optics - Replace with "
6571 				"Avago optics for Warranty and Technical "
6572 				"Support - Link is%s operational",
6573 				(operational) ? " not" : "");
6574 			break;
6575 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6576 			sprintf(message, "Uncertified optics - Replace with "
6577 				"Avago-certified optics to enable link "
6578 				"operation - Link is%s operational",
6579 				(operational) ? " not" : "");
6580 			break;
6581 		default:
6582 			/* firmware is reporting a status we don't know about */
6583 			sprintf(message, "Unknown event status x%02x", status);
6584 			break;
6585 		}
6586 
6587 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6588 		rc = lpfc_sli4_read_config(phba);
6589 		if (rc) {
6590 			phba->lmt = 0;
6591 			lpfc_printf_log(phba, KERN_ERR,
6592 					LOG_TRACE_EVENT,
6593 					"3194 Unable to retrieve supported "
6594 					"speeds, rc = 0x%x\n", rc);
6595 		}
6596 		rc = lpfc_sli4_refresh_params(phba);
6597 		if (rc) {
6598 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6599 					"3174 Unable to update pls support, "
6600 					"rc x%x\n", rc);
6601 		}
6602 		vports = lpfc_create_vport_work_array(phba);
6603 		if (vports != NULL) {
6604 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6605 					i++) {
6606 				shost = lpfc_shost_from_vport(vports[i]);
6607 				lpfc_host_supported_speeds_set(shost);
6608 			}
6609 		}
6610 		lpfc_destroy_vport_work_array(phba, vports);
6611 
6612 		phba->sli4_hba.lnk_info.optic_state = status;
6613 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6614 				"3176 Port Name %c %s\n", port_name, message);
6615 		break;
6616 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6617 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6618 				"3192 Remote DPort Test Initiated - "
6619 				"Event Data1:x%08x Event Data2: x%08x\n",
6620 				acqe_sli->event_data1, acqe_sli->event_data2);
6621 		break;
6622 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6623 		/* Call FW to obtain active parms */
6624 		lpfc_sli4_cgn_parm_chg_evt(phba);
6625 		break;
6626 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6627 		/* Misconfigured WWN. Reports that the SLI Port is configured
6628 		 * to use FA-WWN, but the attached device doesn’t support it.
6629 		 * Event Data1 - N.A, Event Data2 - N.A
6630 		 * This event only happens on the physical port.
6631 		 */
6632 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6633 			     "2699 Misconfigured FA-PWWN - Attached device "
6634 			     "does not support FA-PWWN\n");
6635 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6636 		memset(phba->pport->fc_portname.u.wwn, 0,
6637 		       sizeof(struct lpfc_name));
6638 		break;
6639 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6640 		/* EEPROM failure. No driver action is required */
6641 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6642 			     "2518 EEPROM failure - "
6643 			     "Event Data1: x%08x Event Data2: x%08x\n",
6644 			     acqe_sli->event_data1, acqe_sli->event_data2);
6645 		break;
6646 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6647 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6648 			break;
6649 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6650 					&acqe_sli->event_data1;
6651 		phba->cgn_acqe_cnt++;
6652 
6653 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6654 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6655 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6656 
6657 		/* no threshold for CMF, even 1 signal will trigger an event */
6658 
6659 		/* Alarm overrides warning, so check that first */
6660 		if (cgn_signal->alarm_cnt) {
6661 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6662 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6663 				atomic_add(cgn_signal->alarm_cnt,
6664 					   &phba->cgn_sync_alarm_cnt);
6665 			}
6666 		} else if (cnt) {
6667 			/* signal action needs to be taken */
6668 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6669 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6670 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6671 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6672 			}
6673 		}
6674 		break;
6675 	default:
6676 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6677 				"3193 Unrecognized SLI event, type: 0x%x",
6678 				evt_type);
6679 		break;
6680 	}
6681 }
6682 
6683 /**
6684  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6685  * @vport: pointer to vport data structure.
6686  *
6687  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6688  * response to a CVL event.
6689  *
6690  * Return the pointer to the ndlp with the vport if successful, otherwise
6691  * return NULL.
6692  **/
6693 static struct lpfc_nodelist *
6694 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6695 {
6696 	struct lpfc_nodelist *ndlp;
6697 	struct Scsi_Host *shost;
6698 	struct lpfc_hba *phba;
6699 
6700 	if (!vport)
6701 		return NULL;
6702 	phba = vport->phba;
6703 	if (!phba)
6704 		return NULL;
6705 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6706 	if (!ndlp) {
6707 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6708 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6709 		if (!ndlp)
6710 			return NULL;
6711 		/* Set the node type */
6712 		ndlp->nlp_type |= NLP_FABRIC;
6713 		/* Put ndlp onto node list */
6714 		lpfc_enqueue_node(vport, ndlp);
6715 	}
6716 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6717 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6718 		return NULL;
6719 	/* If virtual link is not yet instantiated ignore CVL */
6720 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6721 		&& (vport->port_state != LPFC_VPORT_FAILED))
6722 		return NULL;
6723 	shost = lpfc_shost_from_vport(vport);
6724 	if (!shost)
6725 		return NULL;
6726 	lpfc_linkdown_port(vport);
6727 	lpfc_cleanup_pending_mbox(vport);
6728 	spin_lock_irq(shost->host_lock);
6729 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6730 	spin_unlock_irq(shost->host_lock);
6731 
6732 	return ndlp;
6733 }
6734 
6735 /**
6736  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6737  * @phba: pointer to lpfc hba data structure.
6738  *
6739  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6740  * response to a FCF dead event.
6741  **/
6742 static void
6743 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6744 {
6745 	struct lpfc_vport **vports;
6746 	int i;
6747 
6748 	vports = lpfc_create_vport_work_array(phba);
6749 	if (vports)
6750 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6751 			lpfc_sli4_perform_vport_cvl(vports[i]);
6752 	lpfc_destroy_vport_work_array(phba, vports);
6753 }
6754 
6755 /**
6756  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6757  * @phba: pointer to lpfc hba data structure.
6758  * @acqe_fip: pointer to the async fcoe completion queue entry.
6759  *
6760  * This routine is to handle the SLI4 asynchronous fcoe event.
6761  **/
6762 static void
6763 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6764 			struct lpfc_acqe_fip *acqe_fip)
6765 {
6766 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6767 	int rc;
6768 	struct lpfc_vport *vport;
6769 	struct lpfc_nodelist *ndlp;
6770 	int active_vlink_present;
6771 	struct lpfc_vport **vports;
6772 	int i;
6773 
6774 	phba->fc_eventTag = acqe_fip->event_tag;
6775 	phba->fcoe_eventtag = acqe_fip->event_tag;
6776 	switch (event_type) {
6777 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6778 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6779 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6780 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6781 					"2546 New FCF event, evt_tag:x%x, "
6782 					"index:x%x\n",
6783 					acqe_fip->event_tag,
6784 					acqe_fip->index);
6785 		else
6786 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6787 					LOG_DISCOVERY,
6788 					"2788 FCF param modified event, "
6789 					"evt_tag:x%x, index:x%x\n",
6790 					acqe_fip->event_tag,
6791 					acqe_fip->index);
6792 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6793 			/*
6794 			 * During period of FCF discovery, read the FCF
6795 			 * table record indexed by the event to update
6796 			 * FCF roundrobin failover eligible FCF bmask.
6797 			 */
6798 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6799 					LOG_DISCOVERY,
6800 					"2779 Read FCF (x%x) for updating "
6801 					"roundrobin FCF failover bmask\n",
6802 					acqe_fip->index);
6803 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6804 		}
6805 
6806 		/* If the FCF discovery is in progress, do nothing. */
6807 		spin_lock_irq(&phba->hbalock);
6808 		if (phba->hba_flag & FCF_TS_INPROG) {
6809 			spin_unlock_irq(&phba->hbalock);
6810 			break;
6811 		}
6812 		/* If fast FCF failover rescan event is pending, do nothing */
6813 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6814 			spin_unlock_irq(&phba->hbalock);
6815 			break;
6816 		}
6817 
6818 		/* If the FCF has been in discovered state, do nothing. */
6819 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6820 			spin_unlock_irq(&phba->hbalock);
6821 			break;
6822 		}
6823 		spin_unlock_irq(&phba->hbalock);
6824 
6825 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6826 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6827 				"2770 Start FCF table scan per async FCF "
6828 				"event, evt_tag:x%x, index:x%x\n",
6829 				acqe_fip->event_tag, acqe_fip->index);
6830 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6831 						     LPFC_FCOE_FCF_GET_FIRST);
6832 		if (rc)
6833 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6834 					"2547 Issue FCF scan read FCF mailbox "
6835 					"command failed (x%x)\n", rc);
6836 		break;
6837 
6838 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6839 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6840 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6841 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6842 				acqe_fip->event_tag);
6843 		break;
6844 
6845 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6846 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6847 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6848 				"2549 FCF (x%x) disconnected from network, "
6849 				 "tag:x%x\n", acqe_fip->index,
6850 				 acqe_fip->event_tag);
6851 		/*
6852 		 * If we are in the middle of FCF failover process, clear
6853 		 * the corresponding FCF bit in the roundrobin bitmap.
6854 		 */
6855 		spin_lock_irq(&phba->hbalock);
6856 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6857 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6858 			spin_unlock_irq(&phba->hbalock);
6859 			/* Update FLOGI FCF failover eligible FCF bmask */
6860 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6861 			break;
6862 		}
6863 		spin_unlock_irq(&phba->hbalock);
6864 
6865 		/* If the event is not for currently used fcf do nothing */
6866 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6867 			break;
6868 
6869 		/*
6870 		 * Otherwise, request the port to rediscover the entire FCF
6871 		 * table for a fast recovery from case that the current FCF
6872 		 * is no longer valid as we are not in the middle of FCF
6873 		 * failover process already.
6874 		 */
6875 		spin_lock_irq(&phba->hbalock);
6876 		/* Mark the fast failover process in progress */
6877 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6878 		spin_unlock_irq(&phba->hbalock);
6879 
6880 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6881 				"2771 Start FCF fast failover process due to "
6882 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6883 				"\n", acqe_fip->event_tag, acqe_fip->index);
6884 		rc = lpfc_sli4_redisc_fcf_table(phba);
6885 		if (rc) {
6886 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6887 					LOG_TRACE_EVENT,
6888 					"2772 Issue FCF rediscover mailbox "
6889 					"command failed, fail through to FCF "
6890 					"dead event\n");
6891 			spin_lock_irq(&phba->hbalock);
6892 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6893 			spin_unlock_irq(&phba->hbalock);
6894 			/*
6895 			 * Last resort will fail over by treating this
6896 			 * as a link down to FCF registration.
6897 			 */
6898 			lpfc_sli4_fcf_dead_failthrough(phba);
6899 		} else {
6900 			/* Reset FCF roundrobin bmask for new discovery */
6901 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6902 			/*
6903 			 * Handling fast FCF failover to a DEAD FCF event is
6904 			 * considered equalivant to receiving CVL to all vports.
6905 			 */
6906 			lpfc_sli4_perform_all_vport_cvl(phba);
6907 		}
6908 		break;
6909 	case LPFC_FIP_EVENT_TYPE_CVL:
6910 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6911 		lpfc_printf_log(phba, KERN_ERR,
6912 				LOG_TRACE_EVENT,
6913 			"2718 Clear Virtual Link Received for VPI 0x%x"
6914 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6915 
6916 		vport = lpfc_find_vport_by_vpid(phba,
6917 						acqe_fip->index);
6918 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6919 		if (!ndlp)
6920 			break;
6921 		active_vlink_present = 0;
6922 
6923 		vports = lpfc_create_vport_work_array(phba);
6924 		if (vports) {
6925 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6926 					i++) {
6927 				if ((!(vports[i]->fc_flag &
6928 					FC_VPORT_CVL_RCVD)) &&
6929 					(vports[i]->port_state > LPFC_FDISC)) {
6930 					active_vlink_present = 1;
6931 					break;
6932 				}
6933 			}
6934 			lpfc_destroy_vport_work_array(phba, vports);
6935 		}
6936 
6937 		/*
6938 		 * Don't re-instantiate if vport is marked for deletion.
6939 		 * If we are here first then vport_delete is going to wait
6940 		 * for discovery to complete.
6941 		 */
6942 		if (!(vport->load_flag & FC_UNLOADING) &&
6943 					active_vlink_present) {
6944 			/*
6945 			 * If there are other active VLinks present,
6946 			 * re-instantiate the Vlink using FDISC.
6947 			 */
6948 			mod_timer(&ndlp->nlp_delayfunc,
6949 				  jiffies + msecs_to_jiffies(1000));
6950 			spin_lock_irq(&ndlp->lock);
6951 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6952 			spin_unlock_irq(&ndlp->lock);
6953 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6954 			vport->port_state = LPFC_FDISC;
6955 		} else {
6956 			/*
6957 			 * Otherwise, we request port to rediscover
6958 			 * the entire FCF table for a fast recovery
6959 			 * from possible case that the current FCF
6960 			 * is no longer valid if we are not already
6961 			 * in the FCF failover process.
6962 			 */
6963 			spin_lock_irq(&phba->hbalock);
6964 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6965 				spin_unlock_irq(&phba->hbalock);
6966 				break;
6967 			}
6968 			/* Mark the fast failover process in progress */
6969 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6970 			spin_unlock_irq(&phba->hbalock);
6971 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6972 					LOG_DISCOVERY,
6973 					"2773 Start FCF failover per CVL, "
6974 					"evt_tag:x%x\n", acqe_fip->event_tag);
6975 			rc = lpfc_sli4_redisc_fcf_table(phba);
6976 			if (rc) {
6977 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6978 						LOG_TRACE_EVENT,
6979 						"2774 Issue FCF rediscover "
6980 						"mailbox command failed, "
6981 						"through to CVL event\n");
6982 				spin_lock_irq(&phba->hbalock);
6983 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6984 				spin_unlock_irq(&phba->hbalock);
6985 				/*
6986 				 * Last resort will be re-try on the
6987 				 * the current registered FCF entry.
6988 				 */
6989 				lpfc_retry_pport_discovery(phba);
6990 			} else
6991 				/*
6992 				 * Reset FCF roundrobin bmask for new
6993 				 * discovery.
6994 				 */
6995 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6996 		}
6997 		break;
6998 	default:
6999 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7000 				"0288 Unknown FCoE event type 0x%x event tag "
7001 				"0x%x\n", event_type, acqe_fip->event_tag);
7002 		break;
7003 	}
7004 }
7005 
7006 /**
7007  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
7008  * @phba: pointer to lpfc hba data structure.
7009  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
7010  *
7011  * This routine is to handle the SLI4 asynchronous dcbx event.
7012  **/
7013 static void
7014 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
7015 			 struct lpfc_acqe_dcbx *acqe_dcbx)
7016 {
7017 	phba->fc_eventTag = acqe_dcbx->event_tag;
7018 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7019 			"0290 The SLI4 DCBX asynchronous event is not "
7020 			"handled yet\n");
7021 }
7022 
7023 /**
7024  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
7025  * @phba: pointer to lpfc hba data structure.
7026  * @acqe_grp5: pointer to the async grp5 completion queue entry.
7027  *
7028  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
7029  * is an asynchronous notified of a logical link speed change.  The Port
7030  * reports the logical link speed in units of 10Mbps.
7031  **/
7032 static void
7033 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
7034 			 struct lpfc_acqe_grp5 *acqe_grp5)
7035 {
7036 	uint16_t prev_ll_spd;
7037 
7038 	phba->fc_eventTag = acqe_grp5->event_tag;
7039 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7040 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7041 	phba->sli4_hba.link_state.logical_speed =
7042 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7043 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7044 			"2789 GRP5 Async Event: Updating logical link speed "
7045 			"from %dMbps to %dMbps\n", prev_ll_spd,
7046 			phba->sli4_hba.link_state.logical_speed);
7047 }
7048 
7049 /**
7050  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7051  * @phba: pointer to lpfc hba data structure.
7052  *
7053  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7054  * is an asynchronous notification of a request to reset CM stats.
7055  **/
7056 static void
7057 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7058 {
7059 	if (!phba->cgn_i)
7060 		return;
7061 	lpfc_init_congestion_stat(phba);
7062 }
7063 
7064 /**
7065  * lpfc_cgn_params_val - Validate FW congestion parameters.
7066  * @phba: pointer to lpfc hba data structure.
7067  * @p_cfg_param: pointer to FW provided congestion parameters.
7068  *
7069  * This routine validates the congestion parameters passed
7070  * by the FW to the driver via an ACQE event.
7071  **/
7072 static void
7073 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7074 {
7075 	spin_lock_irq(&phba->hbalock);
7076 
7077 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7078 			     LPFC_CFG_MONITOR)) {
7079 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7080 				"6225 CMF mode param out of range: %d\n",
7081 				 p_cfg_param->cgn_param_mode);
7082 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7083 	}
7084 
7085 	spin_unlock_irq(&phba->hbalock);
7086 }
7087 
7088 /**
7089  * lpfc_cgn_params_parse - Process a FW cong parm change event
7090  * @phba: pointer to lpfc hba data structure.
7091  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7092  * @len: the size of pdata in bytes.
7093  *
7094  * This routine validates the congestion management buffer signature
7095  * from the FW, validates the contents and makes corrections for
7096  * valid, in-range values.  If the signature magic is correct and
7097  * after parameter validation, the contents are copied to the driver's
7098  * @phba structure. If the magic is incorrect, an error message is
7099  * logged.
7100  **/
7101 static void
7102 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7103 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7104 {
7105 	struct lpfc_cgn_info *cp;
7106 	uint32_t crc, oldmode;
7107 
7108 	/* Make sure the FW has encoded the correct magic number to
7109 	 * validate the congestion parameter in FW memory.
7110 	 */
7111 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7112 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7113 				"4668 FW cgn parm buffer data: "
7114 				"magic 0x%x version %d mode %d "
7115 				"level0 %d level1 %d "
7116 				"level2 %d byte13 %d "
7117 				"byte14 %d byte15 %d "
7118 				"byte11 %d byte12 %d activeMode %d\n",
7119 				p_cgn_param->cgn_param_magic,
7120 				p_cgn_param->cgn_param_version,
7121 				p_cgn_param->cgn_param_mode,
7122 				p_cgn_param->cgn_param_level0,
7123 				p_cgn_param->cgn_param_level1,
7124 				p_cgn_param->cgn_param_level2,
7125 				p_cgn_param->byte13,
7126 				p_cgn_param->byte14,
7127 				p_cgn_param->byte15,
7128 				p_cgn_param->byte11,
7129 				p_cgn_param->byte12,
7130 				phba->cmf_active_mode);
7131 
7132 		oldmode = phba->cmf_active_mode;
7133 
7134 		/* Any parameters out of range are corrected to defaults
7135 		 * by this routine.  No need to fail.
7136 		 */
7137 		lpfc_cgn_params_val(phba, p_cgn_param);
7138 
7139 		/* Parameters are verified, move them into driver storage */
7140 		spin_lock_irq(&phba->hbalock);
7141 		memcpy(&phba->cgn_p, p_cgn_param,
7142 		       sizeof(struct lpfc_cgn_param));
7143 
7144 		/* Update parameters in congestion info buffer now */
7145 		if (phba->cgn_i) {
7146 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7147 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7148 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7149 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7150 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7151 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7152 						  LPFC_CGN_CRC32_SEED);
7153 			cp->cgn_info_crc = cpu_to_le32(crc);
7154 		}
7155 		spin_unlock_irq(&phba->hbalock);
7156 
7157 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7158 
7159 		switch (oldmode) {
7160 		case LPFC_CFG_OFF:
7161 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7162 				/* Turning CMF on */
7163 				lpfc_cmf_start(phba);
7164 
7165 				if (phba->link_state >= LPFC_LINK_UP) {
7166 					phba->cgn_reg_fpin =
7167 						phba->cgn_init_reg_fpin;
7168 					phba->cgn_reg_signal =
7169 						phba->cgn_init_reg_signal;
7170 					lpfc_issue_els_edc(phba->pport, 0);
7171 				}
7172 			}
7173 			break;
7174 		case LPFC_CFG_MANAGED:
7175 			switch (phba->cgn_p.cgn_param_mode) {
7176 			case LPFC_CFG_OFF:
7177 				/* Turning CMF off */
7178 				lpfc_cmf_stop(phba);
7179 				if (phba->link_state >= LPFC_LINK_UP)
7180 					lpfc_issue_els_edc(phba->pport, 0);
7181 				break;
7182 			case LPFC_CFG_MONITOR:
7183 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7184 						"4661 Switch from MANAGED to "
7185 						"`MONITOR mode\n");
7186 				phba->cmf_max_bytes_per_interval =
7187 					phba->cmf_link_byte_count;
7188 
7189 				/* Resume blocked IO - unblock on workqueue */
7190 				queue_work(phba->wq,
7191 					   &phba->unblock_request_work);
7192 				break;
7193 			}
7194 			break;
7195 		case LPFC_CFG_MONITOR:
7196 			switch (phba->cgn_p.cgn_param_mode) {
7197 			case LPFC_CFG_OFF:
7198 				/* Turning CMF off */
7199 				lpfc_cmf_stop(phba);
7200 				if (phba->link_state >= LPFC_LINK_UP)
7201 					lpfc_issue_els_edc(phba->pport, 0);
7202 				break;
7203 			case LPFC_CFG_MANAGED:
7204 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7205 						"4662 Switch from MONITOR to "
7206 						"MANAGED mode\n");
7207 				lpfc_cmf_signal_init(phba);
7208 				break;
7209 			}
7210 			break;
7211 		}
7212 	} else {
7213 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7214 				"4669 FW cgn parm buf wrong magic 0x%x "
7215 				"version %d\n", p_cgn_param->cgn_param_magic,
7216 				p_cgn_param->cgn_param_version);
7217 	}
7218 }
7219 
7220 /**
7221  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7222  * @phba: pointer to lpfc hba data structure.
7223  *
7224  * This routine issues a read_object mailbox command to
7225  * get the congestion management parameters from the FW
7226  * parses it and updates the driver maintained values.
7227  *
7228  * Returns
7229  *  0     if the object was empty
7230  *  -Eval if an error was encountered
7231  *  Count if bytes were read from object
7232  **/
7233 int
7234 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7235 {
7236 	int ret = 0;
7237 	struct lpfc_cgn_param *p_cgn_param = NULL;
7238 	u32 *pdata = NULL;
7239 	u32 len = 0;
7240 
7241 	/* Find out if the FW has a new set of congestion parameters. */
7242 	len = sizeof(struct lpfc_cgn_param);
7243 	pdata = kzalloc(len, GFP_KERNEL);
7244 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7245 			       pdata, len);
7246 
7247 	/* 0 means no data.  A negative means error.  A positive means
7248 	 * bytes were copied.
7249 	 */
7250 	if (!ret) {
7251 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7252 				"4670 CGN RD OBJ returns no data\n");
7253 		goto rd_obj_err;
7254 	} else if (ret < 0) {
7255 		/* Some error.  Just exit and return it to the caller.*/
7256 		goto rd_obj_err;
7257 	}
7258 
7259 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7260 			"6234 READ CGN PARAMS Successful %d\n", len);
7261 
7262 	/* Parse data pointer over len and update the phba congestion
7263 	 * parameters with values passed back.  The receive rate values
7264 	 * may have been altered in FW, but take no action here.
7265 	 */
7266 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7267 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7268 
7269  rd_obj_err:
7270 	kfree(pdata);
7271 	return ret;
7272 }
7273 
7274 /**
7275  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7276  * @phba: pointer to lpfc hba data structure.
7277  *
7278  * The FW generated Async ACQE SLI event calls this routine when
7279  * the event type is an SLI Internal Port Event and the Event Code
7280  * indicates a change to the FW maintained congestion parameters.
7281  *
7282  * This routine executes a Read_Object mailbox call to obtain the
7283  * current congestion parameters maintained in FW and corrects
7284  * the driver's active congestion parameters.
7285  *
7286  * The acqe event is not passed because there is no further data
7287  * required.
7288  *
7289  * Returns nonzero error if event processing encountered an error.
7290  * Zero otherwise for success.
7291  **/
7292 static int
7293 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7294 {
7295 	int ret = 0;
7296 
7297 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7298 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7299 				"4664 Cgn Evt when E2E off. Drop event\n");
7300 		return -EACCES;
7301 	}
7302 
7303 	/* If the event is claiming an empty object, it's ok.  A write
7304 	 * could have cleared it.  Only error is a negative return
7305 	 * status.
7306 	 */
7307 	ret = lpfc_sli4_cgn_params_read(phba);
7308 	if (ret < 0) {
7309 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7310 				"4667 Error reading Cgn Params (%d)\n",
7311 				ret);
7312 	} else if (!ret) {
7313 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7314 				"4673 CGN Event empty object.\n");
7315 	}
7316 	return ret;
7317 }
7318 
7319 /**
7320  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7321  * @phba: pointer to lpfc hba data structure.
7322  *
7323  * This routine is invoked by the worker thread to process all the pending
7324  * SLI4 asynchronous events.
7325  **/
7326 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7327 {
7328 	struct lpfc_cq_event *cq_event;
7329 	unsigned long iflags;
7330 
7331 	/* First, declare the async event has been handled */
7332 	spin_lock_irqsave(&phba->hbalock, iflags);
7333 	phba->hba_flag &= ~ASYNC_EVENT;
7334 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7335 
7336 	/* Now, handle all the async events */
7337 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7338 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7339 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7340 				 cq_event, struct lpfc_cq_event, list);
7341 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7342 				       iflags);
7343 
7344 		/* Process the asynchronous event */
7345 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7346 		case LPFC_TRAILER_CODE_LINK:
7347 			lpfc_sli4_async_link_evt(phba,
7348 						 &cq_event->cqe.acqe_link);
7349 			break;
7350 		case LPFC_TRAILER_CODE_FCOE:
7351 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7352 			break;
7353 		case LPFC_TRAILER_CODE_DCBX:
7354 			lpfc_sli4_async_dcbx_evt(phba,
7355 						 &cq_event->cqe.acqe_dcbx);
7356 			break;
7357 		case LPFC_TRAILER_CODE_GRP5:
7358 			lpfc_sli4_async_grp5_evt(phba,
7359 						 &cq_event->cqe.acqe_grp5);
7360 			break;
7361 		case LPFC_TRAILER_CODE_FC:
7362 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7363 			break;
7364 		case LPFC_TRAILER_CODE_SLI:
7365 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7366 			break;
7367 		case LPFC_TRAILER_CODE_CMSTAT:
7368 			lpfc_sli4_async_cmstat_evt(phba);
7369 			break;
7370 		default:
7371 			lpfc_printf_log(phba, KERN_ERR,
7372 					LOG_TRACE_EVENT,
7373 					"1804 Invalid asynchronous event code: "
7374 					"x%x\n", bf_get(lpfc_trailer_code,
7375 					&cq_event->cqe.mcqe_cmpl));
7376 			break;
7377 		}
7378 
7379 		/* Free the completion event processed to the free pool */
7380 		lpfc_sli4_cq_event_release(phba, cq_event);
7381 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7382 	}
7383 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7384 }
7385 
7386 /**
7387  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7388  * @phba: pointer to lpfc hba data structure.
7389  *
7390  * This routine is invoked by the worker thread to process FCF table
7391  * rediscovery pending completion event.
7392  **/
7393 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7394 {
7395 	int rc;
7396 
7397 	spin_lock_irq(&phba->hbalock);
7398 	/* Clear FCF rediscovery timeout event */
7399 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7400 	/* Clear driver fast failover FCF record flag */
7401 	phba->fcf.failover_rec.flag = 0;
7402 	/* Set state for FCF fast failover */
7403 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7404 	spin_unlock_irq(&phba->hbalock);
7405 
7406 	/* Scan FCF table from the first entry to re-discover SAN */
7407 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7408 			"2777 Start post-quiescent FCF table scan\n");
7409 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7410 	if (rc)
7411 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7412 				"2747 Issue FCF scan read FCF mailbox "
7413 				"command failed 0x%x\n", rc);
7414 }
7415 
7416 /**
7417  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7418  * @phba: pointer to lpfc hba data structure.
7419  * @dev_grp: The HBA PCI-Device group number.
7420  *
7421  * This routine is invoked to set up the per HBA PCI-Device group function
7422  * API jump table entries.
7423  *
7424  * Return: 0 if success, otherwise -ENODEV
7425  **/
7426 int
7427 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7428 {
7429 	int rc;
7430 
7431 	/* Set up lpfc PCI-device group */
7432 	phba->pci_dev_grp = dev_grp;
7433 
7434 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7435 	if (dev_grp == LPFC_PCI_DEV_OC)
7436 		phba->sli_rev = LPFC_SLI_REV4;
7437 
7438 	/* Set up device INIT API function jump table */
7439 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7440 	if (rc)
7441 		return -ENODEV;
7442 	/* Set up SCSI API function jump table */
7443 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7444 	if (rc)
7445 		return -ENODEV;
7446 	/* Set up SLI API function jump table */
7447 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7448 	if (rc)
7449 		return -ENODEV;
7450 	/* Set up MBOX API function jump table */
7451 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7452 	if (rc)
7453 		return -ENODEV;
7454 
7455 	return 0;
7456 }
7457 
7458 /**
7459  * lpfc_log_intr_mode - Log the active interrupt mode
7460  * @phba: pointer to lpfc hba data structure.
7461  * @intr_mode: active interrupt mode adopted.
7462  *
7463  * This routine it invoked to log the currently used active interrupt mode
7464  * to the device.
7465  **/
7466 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7467 {
7468 	switch (intr_mode) {
7469 	case 0:
7470 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7471 				"0470 Enable INTx interrupt mode.\n");
7472 		break;
7473 	case 1:
7474 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7475 				"0481 Enabled MSI interrupt mode.\n");
7476 		break;
7477 	case 2:
7478 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7479 				"0480 Enabled MSI-X interrupt mode.\n");
7480 		break;
7481 	default:
7482 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7483 				"0482 Illegal interrupt mode.\n");
7484 		break;
7485 	}
7486 	return;
7487 }
7488 
7489 /**
7490  * lpfc_enable_pci_dev - Enable a generic PCI device.
7491  * @phba: pointer to lpfc hba data structure.
7492  *
7493  * This routine is invoked to enable the PCI device that is common to all
7494  * PCI devices.
7495  *
7496  * Return codes
7497  * 	0 - successful
7498  * 	other values - error
7499  **/
7500 static int
7501 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7502 {
7503 	struct pci_dev *pdev;
7504 
7505 	/* Obtain PCI device reference */
7506 	if (!phba->pcidev)
7507 		goto out_error;
7508 	else
7509 		pdev = phba->pcidev;
7510 	/* Enable PCI device */
7511 	if (pci_enable_device_mem(pdev))
7512 		goto out_error;
7513 	/* Request PCI resource for the device */
7514 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7515 		goto out_disable_device;
7516 	/* Set up device as PCI master and save state for EEH */
7517 	pci_set_master(pdev);
7518 	pci_try_set_mwi(pdev);
7519 	pci_save_state(pdev);
7520 
7521 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7522 	if (pci_is_pcie(pdev))
7523 		pdev->needs_freset = 1;
7524 
7525 	return 0;
7526 
7527 out_disable_device:
7528 	pci_disable_device(pdev);
7529 out_error:
7530 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7531 			"1401 Failed to enable pci device\n");
7532 	return -ENODEV;
7533 }
7534 
7535 /**
7536  * lpfc_disable_pci_dev - Disable a generic PCI device.
7537  * @phba: pointer to lpfc hba data structure.
7538  *
7539  * This routine is invoked to disable the PCI device that is common to all
7540  * PCI devices.
7541  **/
7542 static void
7543 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7544 {
7545 	struct pci_dev *pdev;
7546 
7547 	/* Obtain PCI device reference */
7548 	if (!phba->pcidev)
7549 		return;
7550 	else
7551 		pdev = phba->pcidev;
7552 	/* Release PCI resource and disable PCI device */
7553 	pci_release_mem_regions(pdev);
7554 	pci_disable_device(pdev);
7555 
7556 	return;
7557 }
7558 
7559 /**
7560  * lpfc_reset_hba - Reset a hba
7561  * @phba: pointer to lpfc hba data structure.
7562  *
7563  * This routine is invoked to reset a hba device. It brings the HBA
7564  * offline, performs a board restart, and then brings the board back
7565  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7566  * on outstanding mailbox commands.
7567  **/
7568 void
7569 lpfc_reset_hba(struct lpfc_hba *phba)
7570 {
7571 	/* If resets are disabled then set error state and return. */
7572 	if (!phba->cfg_enable_hba_reset) {
7573 		phba->link_state = LPFC_HBA_ERROR;
7574 		return;
7575 	}
7576 
7577 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7578 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7579 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7580 	} else {
7581 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7582 		lpfc_sli_flush_io_rings(phba);
7583 	}
7584 	lpfc_offline(phba);
7585 	lpfc_sli_brdrestart(phba);
7586 	lpfc_online(phba);
7587 	lpfc_unblock_mgmt_io(phba);
7588 }
7589 
7590 /**
7591  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7592  * @phba: pointer to lpfc hba data structure.
7593  *
7594  * This function enables the PCI SR-IOV virtual functions to a physical
7595  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7596  * enable the number of virtual functions to the physical function. As
7597  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7598  * API call does not considered as an error condition for most of the device.
7599  **/
7600 uint16_t
7601 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7602 {
7603 	struct pci_dev *pdev = phba->pcidev;
7604 	uint16_t nr_virtfn;
7605 	int pos;
7606 
7607 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7608 	if (pos == 0)
7609 		return 0;
7610 
7611 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7612 	return nr_virtfn;
7613 }
7614 
7615 /**
7616  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7617  * @phba: pointer to lpfc hba data structure.
7618  * @nr_vfn: number of virtual functions to be enabled.
7619  *
7620  * This function enables the PCI SR-IOV virtual functions to a physical
7621  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7622  * enable the number of virtual functions to the physical function. As
7623  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7624  * API call does not considered as an error condition for most of the device.
7625  **/
7626 int
7627 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7628 {
7629 	struct pci_dev *pdev = phba->pcidev;
7630 	uint16_t max_nr_vfn;
7631 	int rc;
7632 
7633 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7634 	if (nr_vfn > max_nr_vfn) {
7635 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7636 				"3057 Requested vfs (%d) greater than "
7637 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7638 		return -EINVAL;
7639 	}
7640 
7641 	rc = pci_enable_sriov(pdev, nr_vfn);
7642 	if (rc) {
7643 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7644 				"2806 Failed to enable sriov on this device "
7645 				"with vfn number nr_vf:%d, rc:%d\n",
7646 				nr_vfn, rc);
7647 	} else
7648 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7649 				"2807 Successful enable sriov on this device "
7650 				"with vfn number nr_vf:%d\n", nr_vfn);
7651 	return rc;
7652 }
7653 
7654 static void
7655 lpfc_unblock_requests_work(struct work_struct *work)
7656 {
7657 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7658 					     unblock_request_work);
7659 
7660 	lpfc_unblock_requests(phba);
7661 }
7662 
7663 /**
7664  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7665  * @phba: pointer to lpfc hba data structure.
7666  *
7667  * This routine is invoked to set up the driver internal resources before the
7668  * device specific resource setup to support the HBA device it attached to.
7669  *
7670  * Return codes
7671  *	0 - successful
7672  *	other values - error
7673  **/
7674 static int
7675 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7676 {
7677 	struct lpfc_sli *psli = &phba->sli;
7678 
7679 	/*
7680 	 * Driver resources common to all SLI revisions
7681 	 */
7682 	atomic_set(&phba->fast_event_count, 0);
7683 	atomic_set(&phba->dbg_log_idx, 0);
7684 	atomic_set(&phba->dbg_log_cnt, 0);
7685 	atomic_set(&phba->dbg_log_dmping, 0);
7686 	spin_lock_init(&phba->hbalock);
7687 
7688 	/* Initialize port_list spinlock */
7689 	spin_lock_init(&phba->port_list_lock);
7690 	INIT_LIST_HEAD(&phba->port_list);
7691 
7692 	INIT_LIST_HEAD(&phba->work_list);
7693 
7694 	/* Initialize the wait queue head for the kernel thread */
7695 	init_waitqueue_head(&phba->work_waitq);
7696 
7697 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7698 			"1403 Protocols supported %s %s %s\n",
7699 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7700 				"SCSI" : " "),
7701 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7702 				"NVME" : " "),
7703 			(phba->nvmet_support ? "NVMET" : " "));
7704 
7705 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7706 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7707 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7708 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7709 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7710 
7711 	/* Initialize the fabric iocb list */
7712 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7713 
7714 	/* Initialize list to save ELS buffers */
7715 	INIT_LIST_HEAD(&phba->elsbuf);
7716 
7717 	/* Initialize FCF connection rec list */
7718 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7719 
7720 	/* Initialize OAS configuration list */
7721 	spin_lock_init(&phba->devicelock);
7722 	INIT_LIST_HEAD(&phba->luns);
7723 
7724 	/* MBOX heartbeat timer */
7725 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7726 	/* Fabric block timer */
7727 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7728 	/* EA polling mode timer */
7729 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7730 	/* Heartbeat timer */
7731 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7732 
7733 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7734 
7735 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7736 			  lpfc_idle_stat_delay_work);
7737 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7738 	return 0;
7739 }
7740 
7741 /**
7742  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7743  * @phba: pointer to lpfc hba data structure.
7744  *
7745  * This routine is invoked to set up the driver internal resources specific to
7746  * support the SLI-3 HBA device it attached to.
7747  *
7748  * Return codes
7749  * 0 - successful
7750  * other values - error
7751  **/
7752 static int
7753 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7754 {
7755 	int rc, entry_sz;
7756 
7757 	/*
7758 	 * Initialize timers used by driver
7759 	 */
7760 
7761 	/* FCP polling mode timer */
7762 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7763 
7764 	/* Host attention work mask setup */
7765 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7766 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7767 
7768 	/* Get all the module params for configuring this host */
7769 	lpfc_get_cfgparam(phba);
7770 	/* Set up phase-1 common device driver resources */
7771 
7772 	rc = lpfc_setup_driver_resource_phase1(phba);
7773 	if (rc)
7774 		return -ENODEV;
7775 
7776 	if (!phba->sli.sli3_ring)
7777 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7778 					      sizeof(struct lpfc_sli_ring),
7779 					      GFP_KERNEL);
7780 	if (!phba->sli.sli3_ring)
7781 		return -ENOMEM;
7782 
7783 	/*
7784 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7785 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7786 	 */
7787 
7788 	if (phba->sli_rev == LPFC_SLI_REV4)
7789 		entry_sz = sizeof(struct sli4_sge);
7790 	else
7791 		entry_sz = sizeof(struct ulp_bde64);
7792 
7793 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7794 	if (phba->cfg_enable_bg) {
7795 		/*
7796 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7797 		 * the FCP rsp, and a BDE for each. Sice we have no control
7798 		 * over how many protection data segments the SCSI Layer
7799 		 * will hand us (ie: there could be one for every block
7800 		 * in the IO), we just allocate enough BDEs to accomidate
7801 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7802 		 * minimize the risk of running out.
7803 		 */
7804 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7805 			sizeof(struct fcp_rsp) +
7806 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7807 
7808 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7809 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7810 
7811 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7812 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7813 	} else {
7814 		/*
7815 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7816 		 * the FCP rsp, a BDE for each, and a BDE for up to
7817 		 * cfg_sg_seg_cnt data segments.
7818 		 */
7819 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7820 			sizeof(struct fcp_rsp) +
7821 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7822 
7823 		/* Total BDEs in BPL for scsi_sg_list */
7824 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7825 	}
7826 
7827 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7828 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7829 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7830 			phba->cfg_total_seg_cnt);
7831 
7832 	phba->max_vpi = LPFC_MAX_VPI;
7833 	/* This will be set to correct value after config_port mbox */
7834 	phba->max_vports = 0;
7835 
7836 	/*
7837 	 * Initialize the SLI Layer to run with lpfc HBAs.
7838 	 */
7839 	lpfc_sli_setup(phba);
7840 	lpfc_sli_queue_init(phba);
7841 
7842 	/* Allocate device driver memory */
7843 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7844 		return -ENOMEM;
7845 
7846 	phba->lpfc_sg_dma_buf_pool =
7847 		dma_pool_create("lpfc_sg_dma_buf_pool",
7848 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7849 				BPL_ALIGN_SZ, 0);
7850 
7851 	if (!phba->lpfc_sg_dma_buf_pool)
7852 		goto fail_free_mem;
7853 
7854 	phba->lpfc_cmd_rsp_buf_pool =
7855 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7856 					&phba->pcidev->dev,
7857 					sizeof(struct fcp_cmnd) +
7858 					sizeof(struct fcp_rsp),
7859 					BPL_ALIGN_SZ, 0);
7860 
7861 	if (!phba->lpfc_cmd_rsp_buf_pool)
7862 		goto fail_free_dma_buf_pool;
7863 
7864 	/*
7865 	 * Enable sr-iov virtual functions if supported and configured
7866 	 * through the module parameter.
7867 	 */
7868 	if (phba->cfg_sriov_nr_virtfn > 0) {
7869 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7870 						 phba->cfg_sriov_nr_virtfn);
7871 		if (rc) {
7872 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7873 					"2808 Requested number of SR-IOV "
7874 					"virtual functions (%d) is not "
7875 					"supported\n",
7876 					phba->cfg_sriov_nr_virtfn);
7877 			phba->cfg_sriov_nr_virtfn = 0;
7878 		}
7879 	}
7880 
7881 	return 0;
7882 
7883 fail_free_dma_buf_pool:
7884 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7885 	phba->lpfc_sg_dma_buf_pool = NULL;
7886 fail_free_mem:
7887 	lpfc_mem_free(phba);
7888 	return -ENOMEM;
7889 }
7890 
7891 /**
7892  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7893  * @phba: pointer to lpfc hba data structure.
7894  *
7895  * This routine is invoked to unset the driver internal resources set up
7896  * specific for supporting the SLI-3 HBA device it attached to.
7897  **/
7898 static void
7899 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7900 {
7901 	/* Free device driver memory allocated */
7902 	lpfc_mem_free_all(phba);
7903 
7904 	return;
7905 }
7906 
7907 /**
7908  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7909  * @phba: pointer to lpfc hba data structure.
7910  *
7911  * This routine is invoked to set up the driver internal resources specific to
7912  * support the SLI-4 HBA device it attached to.
7913  *
7914  * Return codes
7915  * 	0 - successful
7916  * 	other values - error
7917  **/
7918 static int
7919 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7920 {
7921 	LPFC_MBOXQ_t *mboxq;
7922 	MAILBOX_t *mb;
7923 	int rc, i, max_buf_size;
7924 	int longs;
7925 	int extra;
7926 	uint64_t wwn;
7927 	u32 if_type;
7928 	u32 if_fam;
7929 
7930 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7931 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7932 	phba->sli4_hba.curr_disp_cpu = 0;
7933 
7934 	/* Get all the module params for configuring this host */
7935 	lpfc_get_cfgparam(phba);
7936 
7937 	/* Set up phase-1 common device driver resources */
7938 	rc = lpfc_setup_driver_resource_phase1(phba);
7939 	if (rc)
7940 		return -ENODEV;
7941 
7942 	/* Before proceed, wait for POST done and device ready */
7943 	rc = lpfc_sli4_post_status_check(phba);
7944 	if (rc)
7945 		return -ENODEV;
7946 
7947 	/* Allocate all driver workqueues here */
7948 
7949 	/* The lpfc_wq workqueue for deferred irq use */
7950 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7951 	if (!phba->wq)
7952 		return -ENOMEM;
7953 
7954 	/*
7955 	 * Initialize timers used by driver
7956 	 */
7957 
7958 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7959 
7960 	/* FCF rediscover timer */
7961 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7962 
7963 	/* CMF congestion timer */
7964 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7965 	phba->cmf_timer.function = lpfc_cmf_timer;
7966 
7967 	/*
7968 	 * Control structure for handling external multi-buffer mailbox
7969 	 * command pass-through.
7970 	 */
7971 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7972 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7973 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7974 
7975 	phba->max_vpi = LPFC_MAX_VPI;
7976 
7977 	/* This will be set to correct value after the read_config mbox */
7978 	phba->max_vports = 0;
7979 
7980 	/* Program the default value of vlan_id and fc_map */
7981 	phba->valid_vlan = 0;
7982 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7983 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7984 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7985 
7986 	/*
7987 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7988 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7989 	 * The WQ create will allocate the ring.
7990 	 */
7991 
7992 	/* Initialize buffer queue management fields */
7993 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7994 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7995 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7996 
7997 	/* for VMID idle timeout if VMID is enabled */
7998 	if (lpfc_is_vmid_enabled(phba))
7999 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
8000 
8001 	/*
8002 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
8003 	 */
8004 	/* Initialize the Abort buffer list used by driver */
8005 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8006 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8007 
8008 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8009 		/* Initialize the Abort nvme buffer list used by driver */
8010 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8011 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8012 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8013 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8014 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8015 	}
8016 
8017 	/* This abort list used by worker thread */
8018 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8019 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8020 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8021 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8022 
8023 	/*
8024 	 * Initialize driver internal slow-path work queues
8025 	 */
8026 
8027 	/* Driver internel slow-path CQ Event pool */
8028 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8029 	/* Response IOCB work queue list */
8030 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8031 	/* Asynchronous event CQ Event work queue list */
8032 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8033 	/* Slow-path XRI aborted CQ Event work queue list */
8034 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8035 	/* Receive queue CQ Event work queue list */
8036 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8037 
8038 	/* Initialize extent block lists. */
8039 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8040 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8041 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8042 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8043 
8044 	/* Initialize mboxq lists. If the early init routines fail
8045 	 * these lists need to be correctly initialized.
8046 	 */
8047 	INIT_LIST_HEAD(&phba->sli.mboxq);
8048 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8049 
8050 	/* initialize optic_state to 0xFF */
8051 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8052 
8053 	/* Allocate device driver memory */
8054 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8055 	if (rc)
8056 		return -ENOMEM;
8057 
8058 	/* IF Type 2 ports get initialized now. */
8059 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8060 	    LPFC_SLI_INTF_IF_TYPE_2) {
8061 		rc = lpfc_pci_function_reset(phba);
8062 		if (unlikely(rc)) {
8063 			rc = -ENODEV;
8064 			goto out_free_mem;
8065 		}
8066 		phba->temp_sensor_support = 1;
8067 	}
8068 
8069 	/* Create the bootstrap mailbox command */
8070 	rc = lpfc_create_bootstrap_mbox(phba);
8071 	if (unlikely(rc))
8072 		goto out_free_mem;
8073 
8074 	/* Set up the host's endian order with the device. */
8075 	rc = lpfc_setup_endian_order(phba);
8076 	if (unlikely(rc))
8077 		goto out_free_bsmbx;
8078 
8079 	/* Set up the hba's configuration parameters. */
8080 	rc = lpfc_sli4_read_config(phba);
8081 	if (unlikely(rc))
8082 		goto out_free_bsmbx;
8083 
8084 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8085 		/* Right now the link is down, if FA-PWWN is configured the
8086 		 * firmware will try FLOGI before the driver gets a link up.
8087 		 * If it fails, the driver should get a MISCONFIGURED async
8088 		 * event which will clear this flag. The only notification
8089 		 * the driver gets is if it fails, if it succeeds there is no
8090 		 * notification given. Assume success.
8091 		 */
8092 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8093 	}
8094 
8095 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8096 	if (unlikely(rc))
8097 		goto out_free_bsmbx;
8098 
8099 	/* IF Type 0 ports get initialized now. */
8100 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8101 	    LPFC_SLI_INTF_IF_TYPE_0) {
8102 		rc = lpfc_pci_function_reset(phba);
8103 		if (unlikely(rc))
8104 			goto out_free_bsmbx;
8105 	}
8106 
8107 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8108 						       GFP_KERNEL);
8109 	if (!mboxq) {
8110 		rc = -ENOMEM;
8111 		goto out_free_bsmbx;
8112 	}
8113 
8114 	/* Check for NVMET being configured */
8115 	phba->nvmet_support = 0;
8116 	if (lpfc_enable_nvmet_cnt) {
8117 
8118 		/* First get WWN of HBA instance */
8119 		lpfc_read_nv(phba, mboxq);
8120 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8121 		if (rc != MBX_SUCCESS) {
8122 			lpfc_printf_log(phba, KERN_ERR,
8123 					LOG_TRACE_EVENT,
8124 					"6016 Mailbox failed , mbxCmd x%x "
8125 					"READ_NV, mbxStatus x%x\n",
8126 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8127 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8128 			mempool_free(mboxq, phba->mbox_mem_pool);
8129 			rc = -EIO;
8130 			goto out_free_bsmbx;
8131 		}
8132 		mb = &mboxq->u.mb;
8133 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8134 		       sizeof(uint64_t));
8135 		wwn = cpu_to_be64(wwn);
8136 		phba->sli4_hba.wwnn.u.name = wwn;
8137 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8138 		       sizeof(uint64_t));
8139 		/* wwn is WWPN of HBA instance */
8140 		wwn = cpu_to_be64(wwn);
8141 		phba->sli4_hba.wwpn.u.name = wwn;
8142 
8143 		/* Check to see if it matches any module parameter */
8144 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8145 			if (wwn == lpfc_enable_nvmet[i]) {
8146 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8147 				if (lpfc_nvmet_mem_alloc(phba))
8148 					break;
8149 
8150 				phba->nvmet_support = 1; /* a match */
8151 
8152 				lpfc_printf_log(phba, KERN_ERR,
8153 						LOG_TRACE_EVENT,
8154 						"6017 NVME Target %016llx\n",
8155 						wwn);
8156 #else
8157 				lpfc_printf_log(phba, KERN_ERR,
8158 						LOG_TRACE_EVENT,
8159 						"6021 Can't enable NVME Target."
8160 						" NVME_TARGET_FC infrastructure"
8161 						" is not in kernel\n");
8162 #endif
8163 				/* Not supported for NVMET */
8164 				phba->cfg_xri_rebalancing = 0;
8165 				if (phba->irq_chann_mode == NHT_MODE) {
8166 					phba->cfg_irq_chann =
8167 						phba->sli4_hba.num_present_cpu;
8168 					phba->cfg_hdw_queue =
8169 						phba->sli4_hba.num_present_cpu;
8170 					phba->irq_chann_mode = NORMAL_MODE;
8171 				}
8172 				break;
8173 			}
8174 		}
8175 	}
8176 
8177 	lpfc_nvme_mod_param_dep(phba);
8178 
8179 	/*
8180 	 * Get sli4 parameters that override parameters from Port capabilities.
8181 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8182 	 * back in conflict.
8183 	 */
8184 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8185 	if (rc) {
8186 		if_type = bf_get(lpfc_sli_intf_if_type,
8187 				 &phba->sli4_hba.sli_intf);
8188 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8189 				&phba->sli4_hba.sli_intf);
8190 		if (phba->sli4_hba.extents_in_use &&
8191 		    phba->sli4_hba.rpi_hdrs_in_use) {
8192 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8193 					"2999 Unsupported SLI4 Parameters "
8194 					"Extents and RPI headers enabled.\n");
8195 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8196 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8197 				mempool_free(mboxq, phba->mbox_mem_pool);
8198 				rc = -EIO;
8199 				goto out_free_bsmbx;
8200 			}
8201 		}
8202 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8203 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8204 			mempool_free(mboxq, phba->mbox_mem_pool);
8205 			rc = -EIO;
8206 			goto out_free_bsmbx;
8207 		}
8208 	}
8209 
8210 	/*
8211 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8212 	 * for boundary conditions in its max_sgl_segment template.
8213 	 */
8214 	extra = 2;
8215 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8216 		extra++;
8217 
8218 	/*
8219 	 * It doesn't matter what family our adapter is in, we are
8220 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8221 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8222 	 */
8223 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8224 
8225 	/*
8226 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8227 	 * used to create the sg_dma_buf_pool must be calculated.
8228 	 */
8229 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8230 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8231 
8232 		/*
8233 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8234 		 * the FCP rsp, and a SGE. Sice we have no control
8235 		 * over how many protection segments the SCSI Layer
8236 		 * will hand us (ie: there could be one for every block
8237 		 * in the IO), just allocate enough SGEs to accomidate
8238 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8239 		 * to minimize the risk of running out.
8240 		 */
8241 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8242 				sizeof(struct fcp_rsp) + max_buf_size;
8243 
8244 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8245 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8246 
8247 		/*
8248 		 * If supporting DIF, reduce the seg count for scsi to
8249 		 * allow room for the DIF sges.
8250 		 */
8251 		if (phba->cfg_enable_bg &&
8252 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8253 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8254 		else
8255 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8256 
8257 	} else {
8258 		/*
8259 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8260 		 * the FCP rsp, a SGE for each, and a SGE for up to
8261 		 * cfg_sg_seg_cnt data segments.
8262 		 */
8263 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8264 				sizeof(struct fcp_rsp) +
8265 				((phba->cfg_sg_seg_cnt + extra) *
8266 				sizeof(struct sli4_sge));
8267 
8268 		/* Total SGEs for scsi_sg_list */
8269 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8270 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8271 
8272 		/*
8273 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8274 		 * need to post 1 page for the SGL.
8275 		 */
8276 	}
8277 
8278 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8279 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8280 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8281 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8282 	else
8283 		phba->cfg_sg_dma_buf_size =
8284 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8285 
8286 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8287 			       sizeof(struct sli4_sge);
8288 
8289 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8290 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8291 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8292 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8293 					"6300 Reducing NVME sg segment "
8294 					"cnt to %d\n",
8295 					LPFC_MAX_NVME_SEG_CNT);
8296 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8297 		} else
8298 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8299 	}
8300 
8301 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8302 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8303 			"total:%d scsi:%d nvme:%d\n",
8304 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8305 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8306 			phba->cfg_nvme_seg_cnt);
8307 
8308 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8309 		i = phba->cfg_sg_dma_buf_size;
8310 	else
8311 		i = SLI4_PAGE_SIZE;
8312 
8313 	phba->lpfc_sg_dma_buf_pool =
8314 			dma_pool_create("lpfc_sg_dma_buf_pool",
8315 					&phba->pcidev->dev,
8316 					phba->cfg_sg_dma_buf_size,
8317 					i, 0);
8318 	if (!phba->lpfc_sg_dma_buf_pool)
8319 		goto out_free_bsmbx;
8320 
8321 	phba->lpfc_cmd_rsp_buf_pool =
8322 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8323 					&phba->pcidev->dev,
8324 					sizeof(struct fcp_cmnd) +
8325 					sizeof(struct fcp_rsp),
8326 					i, 0);
8327 	if (!phba->lpfc_cmd_rsp_buf_pool)
8328 		goto out_free_sg_dma_buf;
8329 
8330 	mempool_free(mboxq, phba->mbox_mem_pool);
8331 
8332 	/* Verify OAS is supported */
8333 	lpfc_sli4_oas_verify(phba);
8334 
8335 	/* Verify RAS support on adapter */
8336 	lpfc_sli4_ras_init(phba);
8337 
8338 	/* Verify all the SLI4 queues */
8339 	rc = lpfc_sli4_queue_verify(phba);
8340 	if (rc)
8341 		goto out_free_cmd_rsp_buf;
8342 
8343 	/* Create driver internal CQE event pool */
8344 	rc = lpfc_sli4_cq_event_pool_create(phba);
8345 	if (rc)
8346 		goto out_free_cmd_rsp_buf;
8347 
8348 	/* Initialize sgl lists per host */
8349 	lpfc_init_sgl_list(phba);
8350 
8351 	/* Allocate and initialize active sgl array */
8352 	rc = lpfc_init_active_sgl_array(phba);
8353 	if (rc) {
8354 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8355 				"1430 Failed to initialize sgl list.\n");
8356 		goto out_destroy_cq_event_pool;
8357 	}
8358 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8359 	if (rc) {
8360 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8361 				"1432 Failed to initialize rpi headers.\n");
8362 		goto out_free_active_sgl;
8363 	}
8364 
8365 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8366 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8367 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8368 					 GFP_KERNEL);
8369 	if (!phba->fcf.fcf_rr_bmask) {
8370 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8371 				"2759 Failed allocate memory for FCF round "
8372 				"robin failover bmask\n");
8373 		rc = -ENOMEM;
8374 		goto out_remove_rpi_hdrs;
8375 	}
8376 
8377 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8378 					    sizeof(struct lpfc_hba_eq_hdl),
8379 					    GFP_KERNEL);
8380 	if (!phba->sli4_hba.hba_eq_hdl) {
8381 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8382 				"2572 Failed allocate memory for "
8383 				"fast-path per-EQ handle array\n");
8384 		rc = -ENOMEM;
8385 		goto out_free_fcf_rr_bmask;
8386 	}
8387 
8388 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8389 					sizeof(struct lpfc_vector_map_info),
8390 					GFP_KERNEL);
8391 	if (!phba->sli4_hba.cpu_map) {
8392 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8393 				"3327 Failed allocate memory for msi-x "
8394 				"interrupt vector mapping\n");
8395 		rc = -ENOMEM;
8396 		goto out_free_hba_eq_hdl;
8397 	}
8398 
8399 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8400 	if (!phba->sli4_hba.eq_info) {
8401 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8402 				"3321 Failed allocation for per_cpu stats\n");
8403 		rc = -ENOMEM;
8404 		goto out_free_hba_cpu_map;
8405 	}
8406 
8407 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8408 					   sizeof(*phba->sli4_hba.idle_stat),
8409 					   GFP_KERNEL);
8410 	if (!phba->sli4_hba.idle_stat) {
8411 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8412 				"3390 Failed allocation for idle_stat\n");
8413 		rc = -ENOMEM;
8414 		goto out_free_hba_eq_info;
8415 	}
8416 
8417 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8418 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8419 	if (!phba->sli4_hba.c_stat) {
8420 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8421 				"3332 Failed allocating per cpu hdwq stats\n");
8422 		rc = -ENOMEM;
8423 		goto out_free_hba_idle_stat;
8424 	}
8425 #endif
8426 
8427 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8428 	if (!phba->cmf_stat) {
8429 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8430 				"3331 Failed allocating per cpu cgn stats\n");
8431 		rc = -ENOMEM;
8432 		goto out_free_hba_hdwq_info;
8433 	}
8434 
8435 	/*
8436 	 * Enable sr-iov virtual functions if supported and configured
8437 	 * through the module parameter.
8438 	 */
8439 	if (phba->cfg_sriov_nr_virtfn > 0) {
8440 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8441 						 phba->cfg_sriov_nr_virtfn);
8442 		if (rc) {
8443 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8444 					"3020 Requested number of SR-IOV "
8445 					"virtual functions (%d) is not "
8446 					"supported\n",
8447 					phba->cfg_sriov_nr_virtfn);
8448 			phba->cfg_sriov_nr_virtfn = 0;
8449 		}
8450 	}
8451 
8452 	return 0;
8453 
8454 out_free_hba_hdwq_info:
8455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8456 	free_percpu(phba->sli4_hba.c_stat);
8457 out_free_hba_idle_stat:
8458 #endif
8459 	kfree(phba->sli4_hba.idle_stat);
8460 out_free_hba_eq_info:
8461 	free_percpu(phba->sli4_hba.eq_info);
8462 out_free_hba_cpu_map:
8463 	kfree(phba->sli4_hba.cpu_map);
8464 out_free_hba_eq_hdl:
8465 	kfree(phba->sli4_hba.hba_eq_hdl);
8466 out_free_fcf_rr_bmask:
8467 	kfree(phba->fcf.fcf_rr_bmask);
8468 out_remove_rpi_hdrs:
8469 	lpfc_sli4_remove_rpi_hdrs(phba);
8470 out_free_active_sgl:
8471 	lpfc_free_active_sgl(phba);
8472 out_destroy_cq_event_pool:
8473 	lpfc_sli4_cq_event_pool_destroy(phba);
8474 out_free_cmd_rsp_buf:
8475 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8476 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8477 out_free_sg_dma_buf:
8478 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8479 	phba->lpfc_sg_dma_buf_pool = NULL;
8480 out_free_bsmbx:
8481 	lpfc_destroy_bootstrap_mbox(phba);
8482 out_free_mem:
8483 	lpfc_mem_free(phba);
8484 	return rc;
8485 }
8486 
8487 /**
8488  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8489  * @phba: pointer to lpfc hba data structure.
8490  *
8491  * This routine is invoked to unset the driver internal resources set up
8492  * specific for supporting the SLI-4 HBA device it attached to.
8493  **/
8494 static void
8495 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8496 {
8497 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8498 
8499 	free_percpu(phba->sli4_hba.eq_info);
8500 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8501 	free_percpu(phba->sli4_hba.c_stat);
8502 #endif
8503 	free_percpu(phba->cmf_stat);
8504 	kfree(phba->sli4_hba.idle_stat);
8505 
8506 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8507 	kfree(phba->sli4_hba.cpu_map);
8508 	phba->sli4_hba.num_possible_cpu = 0;
8509 	phba->sli4_hba.num_present_cpu = 0;
8510 	phba->sli4_hba.curr_disp_cpu = 0;
8511 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8512 
8513 	/* Free memory allocated for fast-path work queue handles */
8514 	kfree(phba->sli4_hba.hba_eq_hdl);
8515 
8516 	/* Free the allocated rpi headers. */
8517 	lpfc_sli4_remove_rpi_hdrs(phba);
8518 	lpfc_sli4_remove_rpis(phba);
8519 
8520 	/* Free eligible FCF index bmask */
8521 	kfree(phba->fcf.fcf_rr_bmask);
8522 
8523 	/* Free the ELS sgl list */
8524 	lpfc_free_active_sgl(phba);
8525 	lpfc_free_els_sgl_list(phba);
8526 	lpfc_free_nvmet_sgl_list(phba);
8527 
8528 	/* Free the completion queue EQ event pool */
8529 	lpfc_sli4_cq_event_release_all(phba);
8530 	lpfc_sli4_cq_event_pool_destroy(phba);
8531 
8532 	/* Release resource identifiers. */
8533 	lpfc_sli4_dealloc_resource_identifiers(phba);
8534 
8535 	/* Free the bsmbx region. */
8536 	lpfc_destroy_bootstrap_mbox(phba);
8537 
8538 	/* Free the SLI Layer memory with SLI4 HBAs */
8539 	lpfc_mem_free_all(phba);
8540 
8541 	/* Free the current connect table */
8542 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8543 		&phba->fcf_conn_rec_list, list) {
8544 		list_del_init(&conn_entry->list);
8545 		kfree(conn_entry);
8546 	}
8547 
8548 	return;
8549 }
8550 
8551 /**
8552  * lpfc_init_api_table_setup - Set up init api function jump table
8553  * @phba: The hba struct for which this call is being executed.
8554  * @dev_grp: The HBA PCI-Device group number.
8555  *
8556  * This routine sets up the device INIT interface API function jump table
8557  * in @phba struct.
8558  *
8559  * Returns: 0 - success, -ENODEV - failure.
8560  **/
8561 int
8562 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8563 {
8564 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8565 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8566 	phba->lpfc_selective_reset = lpfc_selective_reset;
8567 	switch (dev_grp) {
8568 	case LPFC_PCI_DEV_LP:
8569 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8570 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8571 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8572 		break;
8573 	case LPFC_PCI_DEV_OC:
8574 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8575 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8576 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8577 		break;
8578 	default:
8579 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8580 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8581 				dev_grp);
8582 		return -ENODEV;
8583 	}
8584 	return 0;
8585 }
8586 
8587 /**
8588  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8589  * @phba: pointer to lpfc hba data structure.
8590  *
8591  * This routine is invoked to set up the driver internal resources after the
8592  * device specific resource setup to support the HBA device it attached to.
8593  *
8594  * Return codes
8595  * 	0 - successful
8596  * 	other values - error
8597  **/
8598 static int
8599 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8600 {
8601 	int error;
8602 
8603 	/* Startup the kernel thread for this host adapter. */
8604 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8605 					  "lpfc_worker_%d", phba->brd_no);
8606 	if (IS_ERR(phba->worker_thread)) {
8607 		error = PTR_ERR(phba->worker_thread);
8608 		return error;
8609 	}
8610 
8611 	return 0;
8612 }
8613 
8614 /**
8615  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8616  * @phba: pointer to lpfc hba data structure.
8617  *
8618  * This routine is invoked to unset the driver internal resources set up after
8619  * the device specific resource setup for supporting the HBA device it
8620  * attached to.
8621  **/
8622 static void
8623 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8624 {
8625 	if (phba->wq) {
8626 		destroy_workqueue(phba->wq);
8627 		phba->wq = NULL;
8628 	}
8629 
8630 	/* Stop kernel worker thread */
8631 	if (phba->worker_thread)
8632 		kthread_stop(phba->worker_thread);
8633 }
8634 
8635 /**
8636  * lpfc_free_iocb_list - Free iocb list.
8637  * @phba: pointer to lpfc hba data structure.
8638  *
8639  * This routine is invoked to free the driver's IOCB list and memory.
8640  **/
8641 void
8642 lpfc_free_iocb_list(struct lpfc_hba *phba)
8643 {
8644 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8645 
8646 	spin_lock_irq(&phba->hbalock);
8647 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8648 				 &phba->lpfc_iocb_list, list) {
8649 		list_del(&iocbq_entry->list);
8650 		kfree(iocbq_entry);
8651 		phba->total_iocbq_bufs--;
8652 	}
8653 	spin_unlock_irq(&phba->hbalock);
8654 
8655 	return;
8656 }
8657 
8658 /**
8659  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8660  * @phba: pointer to lpfc hba data structure.
8661  * @iocb_count: number of requested iocbs
8662  *
8663  * This routine is invoked to allocate and initizlize the driver's IOCB
8664  * list and set up the IOCB tag array accordingly.
8665  *
8666  * Return codes
8667  *	0 - successful
8668  *	other values - error
8669  **/
8670 int
8671 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8672 {
8673 	struct lpfc_iocbq *iocbq_entry = NULL;
8674 	uint16_t iotag;
8675 	int i;
8676 
8677 	/* Initialize and populate the iocb list per host.  */
8678 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8679 	for (i = 0; i < iocb_count; i++) {
8680 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8681 		if (iocbq_entry == NULL) {
8682 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8683 				"expected %d count. Unloading driver.\n",
8684 				__func__, i, iocb_count);
8685 			goto out_free_iocbq;
8686 		}
8687 
8688 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8689 		if (iotag == 0) {
8690 			kfree(iocbq_entry);
8691 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8692 				"Unloading driver.\n", __func__);
8693 			goto out_free_iocbq;
8694 		}
8695 		iocbq_entry->sli4_lxritag = NO_XRI;
8696 		iocbq_entry->sli4_xritag = NO_XRI;
8697 
8698 		spin_lock_irq(&phba->hbalock);
8699 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8700 		phba->total_iocbq_bufs++;
8701 		spin_unlock_irq(&phba->hbalock);
8702 	}
8703 
8704 	return 0;
8705 
8706 out_free_iocbq:
8707 	lpfc_free_iocb_list(phba);
8708 
8709 	return -ENOMEM;
8710 }
8711 
8712 /**
8713  * lpfc_free_sgl_list - Free a given sgl list.
8714  * @phba: pointer to lpfc hba data structure.
8715  * @sglq_list: pointer to the head of sgl list.
8716  *
8717  * This routine is invoked to free a give sgl list and memory.
8718  **/
8719 void
8720 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8721 {
8722 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8723 
8724 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8725 		list_del(&sglq_entry->list);
8726 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8727 		kfree(sglq_entry);
8728 	}
8729 }
8730 
8731 /**
8732  * lpfc_free_els_sgl_list - Free els sgl list.
8733  * @phba: pointer to lpfc hba data structure.
8734  *
8735  * This routine is invoked to free the driver's els sgl list and memory.
8736  **/
8737 static void
8738 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8739 {
8740 	LIST_HEAD(sglq_list);
8741 
8742 	/* Retrieve all els sgls from driver list */
8743 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8744 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8745 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8746 
8747 	/* Now free the sgl list */
8748 	lpfc_free_sgl_list(phba, &sglq_list);
8749 }
8750 
8751 /**
8752  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8753  * @phba: pointer to lpfc hba data structure.
8754  *
8755  * This routine is invoked to free the driver's nvmet sgl list and memory.
8756  **/
8757 static void
8758 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8759 {
8760 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8761 	LIST_HEAD(sglq_list);
8762 
8763 	/* Retrieve all nvmet sgls from driver list */
8764 	spin_lock_irq(&phba->hbalock);
8765 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8766 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8767 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8768 	spin_unlock_irq(&phba->hbalock);
8769 
8770 	/* Now free the sgl list */
8771 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8772 		list_del(&sglq_entry->list);
8773 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8774 		kfree(sglq_entry);
8775 	}
8776 
8777 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8778 	 * The next initialization cycle sets the count and allocates
8779 	 * the sgls over again.
8780 	 */
8781 	phba->sli4_hba.nvmet_xri_cnt = 0;
8782 }
8783 
8784 /**
8785  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8786  * @phba: pointer to lpfc hba data structure.
8787  *
8788  * This routine is invoked to allocate the driver's active sgl memory.
8789  * This array will hold the sglq_entry's for active IOs.
8790  **/
8791 static int
8792 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8793 {
8794 	int size;
8795 	size = sizeof(struct lpfc_sglq *);
8796 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8797 
8798 	phba->sli4_hba.lpfc_sglq_active_list =
8799 		kzalloc(size, GFP_KERNEL);
8800 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8801 		return -ENOMEM;
8802 	return 0;
8803 }
8804 
8805 /**
8806  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8807  * @phba: pointer to lpfc hba data structure.
8808  *
8809  * This routine is invoked to walk through the array of active sglq entries
8810  * and free all of the resources.
8811  * This is just a place holder for now.
8812  **/
8813 static void
8814 lpfc_free_active_sgl(struct lpfc_hba *phba)
8815 {
8816 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8817 }
8818 
8819 /**
8820  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8821  * @phba: pointer to lpfc hba data structure.
8822  *
8823  * This routine is invoked to allocate and initizlize the driver's sgl
8824  * list and set up the sgl xritag tag array accordingly.
8825  *
8826  **/
8827 static void
8828 lpfc_init_sgl_list(struct lpfc_hba *phba)
8829 {
8830 	/* Initialize and populate the sglq list per host/VF. */
8831 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8832 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8833 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8834 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8835 
8836 	/* els xri-sgl book keeping */
8837 	phba->sli4_hba.els_xri_cnt = 0;
8838 
8839 	/* nvme xri-buffer book keeping */
8840 	phba->sli4_hba.io_xri_cnt = 0;
8841 }
8842 
8843 /**
8844  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8845  * @phba: pointer to lpfc hba data structure.
8846  *
8847  * This routine is invoked to post rpi header templates to the
8848  * port for those SLI4 ports that do not support extents.  This routine
8849  * posts a PAGE_SIZE memory region to the port to hold up to
8850  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8851  * and should be called only when interrupts are disabled.
8852  *
8853  * Return codes
8854  * 	0 - successful
8855  *	-ERROR - otherwise.
8856  **/
8857 int
8858 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8859 {
8860 	int rc = 0;
8861 	struct lpfc_rpi_hdr *rpi_hdr;
8862 
8863 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8864 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8865 		return rc;
8866 	if (phba->sli4_hba.extents_in_use)
8867 		return -EIO;
8868 
8869 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8870 	if (!rpi_hdr) {
8871 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8872 				"0391 Error during rpi post operation\n");
8873 		lpfc_sli4_remove_rpis(phba);
8874 		rc = -ENODEV;
8875 	}
8876 
8877 	return rc;
8878 }
8879 
8880 /**
8881  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8882  * @phba: pointer to lpfc hba data structure.
8883  *
8884  * This routine is invoked to allocate a single 4KB memory region to
8885  * support rpis and stores them in the phba.  This single region
8886  * provides support for up to 64 rpis.  The region is used globally
8887  * by the device.
8888  *
8889  * Returns:
8890  *   A valid rpi hdr on success.
8891  *   A NULL pointer on any failure.
8892  **/
8893 struct lpfc_rpi_hdr *
8894 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8895 {
8896 	uint16_t rpi_limit, curr_rpi_range;
8897 	struct lpfc_dmabuf *dmabuf;
8898 	struct lpfc_rpi_hdr *rpi_hdr;
8899 
8900 	/*
8901 	 * If the SLI4 port supports extents, posting the rpi header isn't
8902 	 * required.  Set the expected maximum count and let the actual value
8903 	 * get set when extents are fully allocated.
8904 	 */
8905 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8906 		return NULL;
8907 	if (phba->sli4_hba.extents_in_use)
8908 		return NULL;
8909 
8910 	/* The limit on the logical index is just the max_rpi count. */
8911 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8912 
8913 	spin_lock_irq(&phba->hbalock);
8914 	/*
8915 	 * Establish the starting RPI in this header block.  The starting
8916 	 * rpi is normalized to a zero base because the physical rpi is
8917 	 * port based.
8918 	 */
8919 	curr_rpi_range = phba->sli4_hba.next_rpi;
8920 	spin_unlock_irq(&phba->hbalock);
8921 
8922 	/* Reached full RPI range */
8923 	if (curr_rpi_range == rpi_limit)
8924 		return NULL;
8925 
8926 	/*
8927 	 * First allocate the protocol header region for the port.  The
8928 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8929 	 */
8930 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8931 	if (!dmabuf)
8932 		return NULL;
8933 
8934 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8935 					  LPFC_HDR_TEMPLATE_SIZE,
8936 					  &dmabuf->phys, GFP_KERNEL);
8937 	if (!dmabuf->virt) {
8938 		rpi_hdr = NULL;
8939 		goto err_free_dmabuf;
8940 	}
8941 
8942 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8943 		rpi_hdr = NULL;
8944 		goto err_free_coherent;
8945 	}
8946 
8947 	/* Save the rpi header data for cleanup later. */
8948 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8949 	if (!rpi_hdr)
8950 		goto err_free_coherent;
8951 
8952 	rpi_hdr->dmabuf = dmabuf;
8953 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8954 	rpi_hdr->page_count = 1;
8955 	spin_lock_irq(&phba->hbalock);
8956 
8957 	/* The rpi_hdr stores the logical index only. */
8958 	rpi_hdr->start_rpi = curr_rpi_range;
8959 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8960 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8961 
8962 	spin_unlock_irq(&phba->hbalock);
8963 	return rpi_hdr;
8964 
8965  err_free_coherent:
8966 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8967 			  dmabuf->virt, dmabuf->phys);
8968  err_free_dmabuf:
8969 	kfree(dmabuf);
8970 	return NULL;
8971 }
8972 
8973 /**
8974  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8975  * @phba: pointer to lpfc hba data structure.
8976  *
8977  * This routine is invoked to remove all memory resources allocated
8978  * to support rpis for SLI4 ports not supporting extents. This routine
8979  * presumes the caller has released all rpis consumed by fabric or port
8980  * logins and is prepared to have the header pages removed.
8981  **/
8982 void
8983 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8984 {
8985 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8986 
8987 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8988 		goto exit;
8989 
8990 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8991 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8992 		list_del(&rpi_hdr->list);
8993 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8994 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8995 		kfree(rpi_hdr->dmabuf);
8996 		kfree(rpi_hdr);
8997 	}
8998  exit:
8999 	/* There are no rpis available to the port now. */
9000 	phba->sli4_hba.next_rpi = 0;
9001 }
9002 
9003 /**
9004  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9005  * @pdev: pointer to pci device data structure.
9006  *
9007  * This routine is invoked to allocate the driver hba data structure for an
9008  * HBA device. If the allocation is successful, the phba reference to the
9009  * PCI device data structure is set.
9010  *
9011  * Return codes
9012  *      pointer to @phba - successful
9013  *      NULL - error
9014  **/
9015 static struct lpfc_hba *
9016 lpfc_hba_alloc(struct pci_dev *pdev)
9017 {
9018 	struct lpfc_hba *phba;
9019 
9020 	/* Allocate memory for HBA structure */
9021 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9022 	if (!phba) {
9023 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9024 		return NULL;
9025 	}
9026 
9027 	/* Set reference to PCI device in HBA structure */
9028 	phba->pcidev = pdev;
9029 
9030 	/* Assign an unused board number */
9031 	phba->brd_no = lpfc_get_instance();
9032 	if (phba->brd_no < 0) {
9033 		kfree(phba);
9034 		return NULL;
9035 	}
9036 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9037 
9038 	spin_lock_init(&phba->ct_ev_lock);
9039 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9040 
9041 	return phba;
9042 }
9043 
9044 /**
9045  * lpfc_hba_free - Free driver hba data structure with a device.
9046  * @phba: pointer to lpfc hba data structure.
9047  *
9048  * This routine is invoked to free the driver hba data structure with an
9049  * HBA device.
9050  **/
9051 static void
9052 lpfc_hba_free(struct lpfc_hba *phba)
9053 {
9054 	if (phba->sli_rev == LPFC_SLI_REV4)
9055 		kfree(phba->sli4_hba.hdwq);
9056 
9057 	/* Release the driver assigned board number */
9058 	idr_remove(&lpfc_hba_index, phba->brd_no);
9059 
9060 	/* Free memory allocated with sli3 rings */
9061 	kfree(phba->sli.sli3_ring);
9062 	phba->sli.sli3_ring = NULL;
9063 
9064 	kfree(phba);
9065 	return;
9066 }
9067 
9068 /**
9069  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9070  * @vport: pointer to lpfc vport data structure.
9071  *
9072  * This routine is will setup initial FDMI attribute masks for
9073  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9074  * to get these attributes first before falling back, the attribute
9075  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9076  **/
9077 void
9078 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9079 {
9080 	struct lpfc_hba *phba = vport->phba;
9081 
9082 	vport->load_flag |= FC_ALLOW_FDMI;
9083 	if (phba->cfg_enable_SmartSAN ||
9084 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9085 		/* Setup appropriate attribute masks */
9086 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9087 		if (phba->cfg_enable_SmartSAN)
9088 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9089 		else
9090 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9091 	}
9092 
9093 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9094 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9095 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9096 }
9097 
9098 /**
9099  * lpfc_create_shost - Create hba physical port with associated scsi host.
9100  * @phba: pointer to lpfc hba data structure.
9101  *
9102  * This routine is invoked to create HBA physical port and associate a SCSI
9103  * host with it.
9104  *
9105  * Return codes
9106  *      0 - successful
9107  *      other values - error
9108  **/
9109 static int
9110 lpfc_create_shost(struct lpfc_hba *phba)
9111 {
9112 	struct lpfc_vport *vport;
9113 	struct Scsi_Host  *shost;
9114 
9115 	/* Initialize HBA FC structure */
9116 	phba->fc_edtov = FF_DEF_EDTOV;
9117 	phba->fc_ratov = FF_DEF_RATOV;
9118 	phba->fc_altov = FF_DEF_ALTOV;
9119 	phba->fc_arbtov = FF_DEF_ARBTOV;
9120 
9121 	atomic_set(&phba->sdev_cnt, 0);
9122 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9123 	if (!vport)
9124 		return -ENODEV;
9125 
9126 	shost = lpfc_shost_from_vport(vport);
9127 	phba->pport = vport;
9128 
9129 	if (phba->nvmet_support) {
9130 		/* Only 1 vport (pport) will support NVME target */
9131 		phba->targetport = NULL;
9132 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9133 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9134 				"6076 NVME Target Found\n");
9135 	}
9136 
9137 	lpfc_debugfs_initialize(vport);
9138 	/* Put reference to SCSI host to driver's device private data */
9139 	pci_set_drvdata(phba->pcidev, shost);
9140 
9141 	lpfc_setup_fdmi_mask(vport);
9142 
9143 	/*
9144 	 * At this point we are fully registered with PSA. In addition,
9145 	 * any initial discovery should be completed.
9146 	 */
9147 	return 0;
9148 }
9149 
9150 /**
9151  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9152  * @phba: pointer to lpfc hba data structure.
9153  *
9154  * This routine is invoked to destroy HBA physical port and the associated
9155  * SCSI host.
9156  **/
9157 static void
9158 lpfc_destroy_shost(struct lpfc_hba *phba)
9159 {
9160 	struct lpfc_vport *vport = phba->pport;
9161 
9162 	/* Destroy physical port that associated with the SCSI host */
9163 	destroy_port(vport);
9164 
9165 	return;
9166 }
9167 
9168 /**
9169  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9170  * @phba: pointer to lpfc hba data structure.
9171  * @shost: the shost to be used to detect Block guard settings.
9172  *
9173  * This routine sets up the local Block guard protocol settings for @shost.
9174  * This routine also allocates memory for debugging bg buffers.
9175  **/
9176 static void
9177 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9178 {
9179 	uint32_t old_mask;
9180 	uint32_t old_guard;
9181 
9182 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9183 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9184 				"1478 Registering BlockGuard with the "
9185 				"SCSI layer\n");
9186 
9187 		old_mask = phba->cfg_prot_mask;
9188 		old_guard = phba->cfg_prot_guard;
9189 
9190 		/* Only allow supported values */
9191 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9192 			SHOST_DIX_TYPE0_PROTECTION |
9193 			SHOST_DIX_TYPE1_PROTECTION);
9194 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9195 					 SHOST_DIX_GUARD_CRC);
9196 
9197 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9198 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9199 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9200 
9201 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9202 			if ((old_mask != phba->cfg_prot_mask) ||
9203 				(old_guard != phba->cfg_prot_guard))
9204 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9205 					"1475 Registering BlockGuard with the "
9206 					"SCSI layer: mask %d  guard %d\n",
9207 					phba->cfg_prot_mask,
9208 					phba->cfg_prot_guard);
9209 
9210 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9211 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9212 		} else
9213 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9214 				"1479 Not Registering BlockGuard with the SCSI "
9215 				"layer, Bad protection parameters: %d %d\n",
9216 				old_mask, old_guard);
9217 	}
9218 }
9219 
9220 /**
9221  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9222  * @phba: pointer to lpfc hba data structure.
9223  *
9224  * This routine is invoked to perform all the necessary post initialization
9225  * setup for the device.
9226  **/
9227 static void
9228 lpfc_post_init_setup(struct lpfc_hba *phba)
9229 {
9230 	struct Scsi_Host  *shost;
9231 	struct lpfc_adapter_event_header adapter_event;
9232 
9233 	/* Get the default values for Model Name and Description */
9234 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9235 
9236 	/*
9237 	 * hba setup may have changed the hba_queue_depth so we need to
9238 	 * adjust the value of can_queue.
9239 	 */
9240 	shost = pci_get_drvdata(phba->pcidev);
9241 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9242 
9243 	lpfc_host_attrib_init(shost);
9244 
9245 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9246 		spin_lock_irq(shost->host_lock);
9247 		lpfc_poll_start_timer(phba);
9248 		spin_unlock_irq(shost->host_lock);
9249 	}
9250 
9251 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9252 			"0428 Perform SCSI scan\n");
9253 	/* Send board arrival event to upper layer */
9254 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9255 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9256 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9257 				  sizeof(adapter_event),
9258 				  (char *) &adapter_event,
9259 				  LPFC_NL_VENDOR_ID);
9260 	return;
9261 }
9262 
9263 /**
9264  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9265  * @phba: pointer to lpfc hba data structure.
9266  *
9267  * This routine is invoked to set up the PCI device memory space for device
9268  * with SLI-3 interface spec.
9269  *
9270  * Return codes
9271  * 	0 - successful
9272  * 	other values - error
9273  **/
9274 static int
9275 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9276 {
9277 	struct pci_dev *pdev = phba->pcidev;
9278 	unsigned long bar0map_len, bar2map_len;
9279 	int i, hbq_count;
9280 	void *ptr;
9281 	int error;
9282 
9283 	if (!pdev)
9284 		return -ENODEV;
9285 
9286 	/* Set the device DMA mask size */
9287 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9288 	if (error)
9289 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9290 	if (error)
9291 		return error;
9292 	error = -ENODEV;
9293 
9294 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9295 	 * required by each mapping.
9296 	 */
9297 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9298 	bar0map_len = pci_resource_len(pdev, 0);
9299 
9300 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9301 	bar2map_len = pci_resource_len(pdev, 2);
9302 
9303 	/* Map HBA SLIM to a kernel virtual address. */
9304 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9305 	if (!phba->slim_memmap_p) {
9306 		dev_printk(KERN_ERR, &pdev->dev,
9307 			   "ioremap failed for SLIM memory.\n");
9308 		goto out;
9309 	}
9310 
9311 	/* Map HBA Control Registers to a kernel virtual address. */
9312 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9313 	if (!phba->ctrl_regs_memmap_p) {
9314 		dev_printk(KERN_ERR, &pdev->dev,
9315 			   "ioremap failed for HBA control registers.\n");
9316 		goto out_iounmap_slim;
9317 	}
9318 
9319 	/* Allocate memory for SLI-2 structures */
9320 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9321 					       &phba->slim2p.phys, GFP_KERNEL);
9322 	if (!phba->slim2p.virt)
9323 		goto out_iounmap;
9324 
9325 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9326 	phba->mbox_ext = (phba->slim2p.virt +
9327 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9328 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9329 	phba->IOCBs = (phba->slim2p.virt +
9330 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9331 
9332 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9333 						 lpfc_sli_hbq_size(),
9334 						 &phba->hbqslimp.phys,
9335 						 GFP_KERNEL);
9336 	if (!phba->hbqslimp.virt)
9337 		goto out_free_slim;
9338 
9339 	hbq_count = lpfc_sli_hbq_count();
9340 	ptr = phba->hbqslimp.virt;
9341 	for (i = 0; i < hbq_count; ++i) {
9342 		phba->hbqs[i].hbq_virt = ptr;
9343 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9344 		ptr += (lpfc_hbq_defs[i]->entry_count *
9345 			sizeof(struct lpfc_hbq_entry));
9346 	}
9347 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9348 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9349 
9350 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9351 
9352 	phba->MBslimaddr = phba->slim_memmap_p;
9353 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9354 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9355 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9356 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9357 
9358 	return 0;
9359 
9360 out_free_slim:
9361 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9362 			  phba->slim2p.virt, phba->slim2p.phys);
9363 out_iounmap:
9364 	iounmap(phba->ctrl_regs_memmap_p);
9365 out_iounmap_slim:
9366 	iounmap(phba->slim_memmap_p);
9367 out:
9368 	return error;
9369 }
9370 
9371 /**
9372  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9373  * @phba: pointer to lpfc hba data structure.
9374  *
9375  * This routine is invoked to unset the PCI device memory space for device
9376  * with SLI-3 interface spec.
9377  **/
9378 static void
9379 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9380 {
9381 	struct pci_dev *pdev;
9382 
9383 	/* Obtain PCI device reference */
9384 	if (!phba->pcidev)
9385 		return;
9386 	else
9387 		pdev = phba->pcidev;
9388 
9389 	/* Free coherent DMA memory allocated */
9390 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9391 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9392 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9393 			  phba->slim2p.virt, phba->slim2p.phys);
9394 
9395 	/* I/O memory unmap */
9396 	iounmap(phba->ctrl_regs_memmap_p);
9397 	iounmap(phba->slim_memmap_p);
9398 
9399 	return;
9400 }
9401 
9402 /**
9403  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9404  * @phba: pointer to lpfc hba data structure.
9405  *
9406  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9407  * done and check status.
9408  *
9409  * Return 0 if successful, otherwise -ENODEV.
9410  **/
9411 int
9412 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9413 {
9414 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9415 	struct lpfc_register reg_data;
9416 	int i, port_error = 0;
9417 	uint32_t if_type;
9418 
9419 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9420 	memset(&reg_data, 0, sizeof(reg_data));
9421 	if (!phba->sli4_hba.PSMPHRregaddr)
9422 		return -ENODEV;
9423 
9424 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9425 	for (i = 0; i < 3000; i++) {
9426 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9427 			&portsmphr_reg.word0) ||
9428 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9429 			/* Port has a fatal POST error, break out */
9430 			port_error = -ENODEV;
9431 			break;
9432 		}
9433 		if (LPFC_POST_STAGE_PORT_READY ==
9434 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9435 			break;
9436 		msleep(10);
9437 	}
9438 
9439 	/*
9440 	 * If there was a port error during POST, then don't proceed with
9441 	 * other register reads as the data may not be valid.  Just exit.
9442 	 */
9443 	if (port_error) {
9444 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9445 			"1408 Port Failed POST - portsmphr=0x%x, "
9446 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9447 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9448 			portsmphr_reg.word0,
9449 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9450 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9451 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9452 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9453 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9454 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9455 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9456 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9457 	} else {
9458 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9459 				"2534 Device Info: SLIFamily=0x%x, "
9460 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9461 				"SLIHint_2=0x%x, FT=0x%x\n",
9462 				bf_get(lpfc_sli_intf_sli_family,
9463 				       &phba->sli4_hba.sli_intf),
9464 				bf_get(lpfc_sli_intf_slirev,
9465 				       &phba->sli4_hba.sli_intf),
9466 				bf_get(lpfc_sli_intf_if_type,
9467 				       &phba->sli4_hba.sli_intf),
9468 				bf_get(lpfc_sli_intf_sli_hint1,
9469 				       &phba->sli4_hba.sli_intf),
9470 				bf_get(lpfc_sli_intf_sli_hint2,
9471 				       &phba->sli4_hba.sli_intf),
9472 				bf_get(lpfc_sli_intf_func_type,
9473 				       &phba->sli4_hba.sli_intf));
9474 		/*
9475 		 * Check for other Port errors during the initialization
9476 		 * process.  Fail the load if the port did not come up
9477 		 * correctly.
9478 		 */
9479 		if_type = bf_get(lpfc_sli_intf_if_type,
9480 				 &phba->sli4_hba.sli_intf);
9481 		switch (if_type) {
9482 		case LPFC_SLI_INTF_IF_TYPE_0:
9483 			phba->sli4_hba.ue_mask_lo =
9484 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9485 			phba->sli4_hba.ue_mask_hi =
9486 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9487 			uerrlo_reg.word0 =
9488 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9489 			uerrhi_reg.word0 =
9490 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9491 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9492 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9493 				lpfc_printf_log(phba, KERN_ERR,
9494 						LOG_TRACE_EVENT,
9495 						"1422 Unrecoverable Error "
9496 						"Detected during POST "
9497 						"uerr_lo_reg=0x%x, "
9498 						"uerr_hi_reg=0x%x, "
9499 						"ue_mask_lo_reg=0x%x, "
9500 						"ue_mask_hi_reg=0x%x\n",
9501 						uerrlo_reg.word0,
9502 						uerrhi_reg.word0,
9503 						phba->sli4_hba.ue_mask_lo,
9504 						phba->sli4_hba.ue_mask_hi);
9505 				port_error = -ENODEV;
9506 			}
9507 			break;
9508 		case LPFC_SLI_INTF_IF_TYPE_2:
9509 		case LPFC_SLI_INTF_IF_TYPE_6:
9510 			/* Final checks.  The port status should be clean. */
9511 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9512 				&reg_data.word0) ||
9513 				(bf_get(lpfc_sliport_status_err, &reg_data) &&
9514 				 !bf_get(lpfc_sliport_status_rn, &reg_data))) {
9515 				phba->work_status[0] =
9516 					readl(phba->sli4_hba.u.if_type2.
9517 					      ERR1regaddr);
9518 				phba->work_status[1] =
9519 					readl(phba->sli4_hba.u.if_type2.
9520 					      ERR2regaddr);
9521 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9522 					"2888 Unrecoverable port error "
9523 					"following POST: port status reg "
9524 					"0x%x, port_smphr reg 0x%x, "
9525 					"error 1=0x%x, error 2=0x%x\n",
9526 					reg_data.word0,
9527 					portsmphr_reg.word0,
9528 					phba->work_status[0],
9529 					phba->work_status[1]);
9530 				port_error = -ENODEV;
9531 				break;
9532 			}
9533 
9534 			if (lpfc_pldv_detect &&
9535 			    bf_get(lpfc_sli_intf_sli_family,
9536 				   &phba->sli4_hba.sli_intf) ==
9537 					LPFC_SLI_INTF_FAMILY_G6)
9538 				pci_write_config_byte(phba->pcidev,
9539 						      LPFC_SLI_INTF, CFG_PLD);
9540 			break;
9541 		case LPFC_SLI_INTF_IF_TYPE_1:
9542 		default:
9543 			break;
9544 		}
9545 	}
9546 	return port_error;
9547 }
9548 
9549 /**
9550  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9551  * @phba: pointer to lpfc hba data structure.
9552  * @if_type:  The SLI4 interface type getting configured.
9553  *
9554  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9555  * memory map.
9556  **/
9557 static void
9558 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9559 {
9560 	switch (if_type) {
9561 	case LPFC_SLI_INTF_IF_TYPE_0:
9562 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9563 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9564 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9565 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9566 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9567 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9568 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9569 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9570 		phba->sli4_hba.SLIINTFregaddr =
9571 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9572 		break;
9573 	case LPFC_SLI_INTF_IF_TYPE_2:
9574 		phba->sli4_hba.u.if_type2.EQDregaddr =
9575 			phba->sli4_hba.conf_regs_memmap_p +
9576 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9577 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9578 			phba->sli4_hba.conf_regs_memmap_p +
9579 						LPFC_CTL_PORT_ER1_OFFSET;
9580 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9581 			phba->sli4_hba.conf_regs_memmap_p +
9582 						LPFC_CTL_PORT_ER2_OFFSET;
9583 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9584 			phba->sli4_hba.conf_regs_memmap_p +
9585 						LPFC_CTL_PORT_CTL_OFFSET;
9586 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9587 			phba->sli4_hba.conf_regs_memmap_p +
9588 						LPFC_CTL_PORT_STA_OFFSET;
9589 		phba->sli4_hba.SLIINTFregaddr =
9590 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9591 		phba->sli4_hba.PSMPHRregaddr =
9592 			phba->sli4_hba.conf_regs_memmap_p +
9593 						LPFC_CTL_PORT_SEM_OFFSET;
9594 		phba->sli4_hba.RQDBregaddr =
9595 			phba->sli4_hba.conf_regs_memmap_p +
9596 						LPFC_ULP0_RQ_DOORBELL;
9597 		phba->sli4_hba.WQDBregaddr =
9598 			phba->sli4_hba.conf_regs_memmap_p +
9599 						LPFC_ULP0_WQ_DOORBELL;
9600 		phba->sli4_hba.CQDBregaddr =
9601 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9602 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9603 		phba->sli4_hba.MQDBregaddr =
9604 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9605 		phba->sli4_hba.BMBXregaddr =
9606 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9607 		break;
9608 	case LPFC_SLI_INTF_IF_TYPE_6:
9609 		phba->sli4_hba.u.if_type2.EQDregaddr =
9610 			phba->sli4_hba.conf_regs_memmap_p +
9611 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9612 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9613 			phba->sli4_hba.conf_regs_memmap_p +
9614 						LPFC_CTL_PORT_ER1_OFFSET;
9615 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9616 			phba->sli4_hba.conf_regs_memmap_p +
9617 						LPFC_CTL_PORT_ER2_OFFSET;
9618 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9619 			phba->sli4_hba.conf_regs_memmap_p +
9620 						LPFC_CTL_PORT_CTL_OFFSET;
9621 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9622 			phba->sli4_hba.conf_regs_memmap_p +
9623 						LPFC_CTL_PORT_STA_OFFSET;
9624 		phba->sli4_hba.PSMPHRregaddr =
9625 			phba->sli4_hba.conf_regs_memmap_p +
9626 						LPFC_CTL_PORT_SEM_OFFSET;
9627 		phba->sli4_hba.BMBXregaddr =
9628 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9629 		break;
9630 	case LPFC_SLI_INTF_IF_TYPE_1:
9631 	default:
9632 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9633 			   "FATAL - unsupported SLI4 interface type - %d\n",
9634 			   if_type);
9635 		break;
9636 	}
9637 }
9638 
9639 /**
9640  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9641  * @phba: pointer to lpfc hba data structure.
9642  * @if_type: sli if type to operate on.
9643  *
9644  * This routine is invoked to set up SLI4 BAR1 register memory map.
9645  **/
9646 static void
9647 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9648 {
9649 	switch (if_type) {
9650 	case LPFC_SLI_INTF_IF_TYPE_0:
9651 		phba->sli4_hba.PSMPHRregaddr =
9652 			phba->sli4_hba.ctrl_regs_memmap_p +
9653 			LPFC_SLIPORT_IF0_SMPHR;
9654 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9655 			LPFC_HST_ISR0;
9656 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9657 			LPFC_HST_IMR0;
9658 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9659 			LPFC_HST_ISCR0;
9660 		break;
9661 	case LPFC_SLI_INTF_IF_TYPE_6:
9662 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9663 			LPFC_IF6_RQ_DOORBELL;
9664 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9665 			LPFC_IF6_WQ_DOORBELL;
9666 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9667 			LPFC_IF6_CQ_DOORBELL;
9668 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9669 			LPFC_IF6_EQ_DOORBELL;
9670 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9671 			LPFC_IF6_MQ_DOORBELL;
9672 		break;
9673 	case LPFC_SLI_INTF_IF_TYPE_2:
9674 	case LPFC_SLI_INTF_IF_TYPE_1:
9675 	default:
9676 		dev_err(&phba->pcidev->dev,
9677 			   "FATAL - unsupported SLI4 interface type - %d\n",
9678 			   if_type);
9679 		break;
9680 	}
9681 }
9682 
9683 /**
9684  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9685  * @phba: pointer to lpfc hba data structure.
9686  * @vf: virtual function number
9687  *
9688  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9689  * based on the given viftual function number, @vf.
9690  *
9691  * Return 0 if successful, otherwise -ENODEV.
9692  **/
9693 static int
9694 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9695 {
9696 	if (vf > LPFC_VIR_FUNC_MAX)
9697 		return -ENODEV;
9698 
9699 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9700 				vf * LPFC_VFR_PAGE_SIZE +
9701 					LPFC_ULP0_RQ_DOORBELL);
9702 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9703 				vf * LPFC_VFR_PAGE_SIZE +
9704 					LPFC_ULP0_WQ_DOORBELL);
9705 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9706 				vf * LPFC_VFR_PAGE_SIZE +
9707 					LPFC_EQCQ_DOORBELL);
9708 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9709 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9710 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9711 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9712 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9713 	return 0;
9714 }
9715 
9716 /**
9717  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9718  * @phba: pointer to lpfc hba data structure.
9719  *
9720  * This routine is invoked to create the bootstrap mailbox
9721  * region consistent with the SLI-4 interface spec.  This
9722  * routine allocates all memory necessary to communicate
9723  * mailbox commands to the port and sets up all alignment
9724  * needs.  No locks are expected to be held when calling
9725  * this routine.
9726  *
9727  * Return codes
9728  * 	0 - successful
9729  * 	-ENOMEM - could not allocated memory.
9730  **/
9731 static int
9732 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9733 {
9734 	uint32_t bmbx_size;
9735 	struct lpfc_dmabuf *dmabuf;
9736 	struct dma_address *dma_address;
9737 	uint32_t pa_addr;
9738 	uint64_t phys_addr;
9739 
9740 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9741 	if (!dmabuf)
9742 		return -ENOMEM;
9743 
9744 	/*
9745 	 * The bootstrap mailbox region is comprised of 2 parts
9746 	 * plus an alignment restriction of 16 bytes.
9747 	 */
9748 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9749 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9750 					  &dmabuf->phys, GFP_KERNEL);
9751 	if (!dmabuf->virt) {
9752 		kfree(dmabuf);
9753 		return -ENOMEM;
9754 	}
9755 
9756 	/*
9757 	 * Initialize the bootstrap mailbox pointers now so that the register
9758 	 * operations are simple later.  The mailbox dma address is required
9759 	 * to be 16-byte aligned.  Also align the virtual memory as each
9760 	 * maibox is copied into the bmbx mailbox region before issuing the
9761 	 * command to the port.
9762 	 */
9763 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9764 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9765 
9766 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9767 					      LPFC_ALIGN_16_BYTE);
9768 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9769 					      LPFC_ALIGN_16_BYTE);
9770 
9771 	/*
9772 	 * Set the high and low physical addresses now.  The SLI4 alignment
9773 	 * requirement is 16 bytes and the mailbox is posted to the port
9774 	 * as two 30-bit addresses.  The other data is a bit marking whether
9775 	 * the 30-bit address is the high or low address.
9776 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9777 	 * clean on 32 bit machines.
9778 	 */
9779 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9780 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9781 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9782 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9783 					   LPFC_BMBX_BIT1_ADDR_HI);
9784 
9785 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9786 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9787 					   LPFC_BMBX_BIT1_ADDR_LO);
9788 	return 0;
9789 }
9790 
9791 /**
9792  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9793  * @phba: pointer to lpfc hba data structure.
9794  *
9795  * This routine is invoked to teardown the bootstrap mailbox
9796  * region and release all host resources. This routine requires
9797  * the caller to ensure all mailbox commands recovered, no
9798  * additional mailbox comands are sent, and interrupts are disabled
9799  * before calling this routine.
9800  *
9801  **/
9802 static void
9803 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9804 {
9805 	dma_free_coherent(&phba->pcidev->dev,
9806 			  phba->sli4_hba.bmbx.bmbx_size,
9807 			  phba->sli4_hba.bmbx.dmabuf->virt,
9808 			  phba->sli4_hba.bmbx.dmabuf->phys);
9809 
9810 	kfree(phba->sli4_hba.bmbx.dmabuf);
9811 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9812 }
9813 
9814 static const char * const lpfc_topo_to_str[] = {
9815 	"Loop then P2P",
9816 	"Loopback",
9817 	"P2P Only",
9818 	"Unsupported",
9819 	"Loop Only",
9820 	"Unsupported",
9821 	"P2P then Loop",
9822 };
9823 
9824 #define	LINK_FLAGS_DEF	0x0
9825 #define	LINK_FLAGS_P2P	0x1
9826 #define	LINK_FLAGS_LOOP	0x2
9827 /**
9828  * lpfc_map_topology - Map the topology read from READ_CONFIG
9829  * @phba: pointer to lpfc hba data structure.
9830  * @rd_config: pointer to read config data
9831  *
9832  * This routine is invoked to map the topology values as read
9833  * from the read config mailbox command. If the persistent
9834  * topology feature is supported, the firmware will provide the
9835  * saved topology information to be used in INIT_LINK
9836  **/
9837 static void
9838 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9839 {
9840 	u8 ptv, tf, pt;
9841 
9842 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9843 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9844 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9845 
9846 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9847 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9848 			 ptv, tf, pt);
9849 	if (!ptv) {
9850 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9851 				"2019 FW does not support persistent topology "
9852 				"Using driver parameter defined value [%s]",
9853 				lpfc_topo_to_str[phba->cfg_topology]);
9854 		return;
9855 	}
9856 	/* FW supports persistent topology - override module parameter value */
9857 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9858 
9859 	/* if ASIC_GEN_NUM >= 0xC) */
9860 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9861 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9862 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9863 		    LPFC_SLI_INTF_FAMILY_G6)) {
9864 		if (!tf) {
9865 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9866 					? FLAGS_TOPOLOGY_MODE_LOOP
9867 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9868 		} else {
9869 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9870 		}
9871 	} else { /* G5 */
9872 		if (tf) {
9873 			/* If topology failover set - pt is '0' or '1' */
9874 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9875 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9876 		} else {
9877 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9878 					? FLAGS_TOPOLOGY_MODE_PT_PT
9879 					: FLAGS_TOPOLOGY_MODE_LOOP);
9880 		}
9881 	}
9882 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9883 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9884 				"2020 Using persistent topology value [%s]",
9885 				lpfc_topo_to_str[phba->cfg_topology]);
9886 	} else {
9887 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9888 				"2021 Invalid topology values from FW "
9889 				"Using driver parameter defined value [%s]",
9890 				lpfc_topo_to_str[phba->cfg_topology]);
9891 	}
9892 }
9893 
9894 /**
9895  * lpfc_sli4_read_config - Get the config parameters.
9896  * @phba: pointer to lpfc hba data structure.
9897  *
9898  * This routine is invoked to read the configuration parameters from the HBA.
9899  * The configuration parameters are used to set the base and maximum values
9900  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9901  * allocation for the port.
9902  *
9903  * Return codes
9904  * 	0 - successful
9905  * 	-ENOMEM - No available memory
9906  *      -EIO - The mailbox failed to complete successfully.
9907  **/
9908 int
9909 lpfc_sli4_read_config(struct lpfc_hba *phba)
9910 {
9911 	LPFC_MBOXQ_t *pmb;
9912 	struct lpfc_mbx_read_config *rd_config;
9913 	union  lpfc_sli4_cfg_shdr *shdr;
9914 	uint32_t shdr_status, shdr_add_status;
9915 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9916 	struct lpfc_rsrc_desc_fcfcoe *desc;
9917 	char *pdesc_0;
9918 	uint16_t forced_link_speed;
9919 	uint32_t if_type, qmin, fawwpn;
9920 	int length, i, rc = 0, rc2;
9921 
9922 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9923 	if (!pmb) {
9924 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9925 				"2011 Unable to allocate memory for issuing "
9926 				"SLI_CONFIG_SPECIAL mailbox command\n");
9927 		return -ENOMEM;
9928 	}
9929 
9930 	lpfc_read_config(phba, pmb);
9931 
9932 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9933 	if (rc != MBX_SUCCESS) {
9934 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9935 				"2012 Mailbox failed , mbxCmd x%x "
9936 				"READ_CONFIG, mbxStatus x%x\n",
9937 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9938 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9939 		rc = -EIO;
9940 	} else {
9941 		rd_config = &pmb->u.mqe.un.rd_config;
9942 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9943 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9944 			phba->sli4_hba.lnk_info.lnk_tp =
9945 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9946 			phba->sli4_hba.lnk_info.lnk_no =
9947 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9948 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9949 					"3081 lnk_type:%d, lnk_numb:%d\n",
9950 					phba->sli4_hba.lnk_info.lnk_tp,
9951 					phba->sli4_hba.lnk_info.lnk_no);
9952 		} else
9953 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9954 					"3082 Mailbox (x%x) returned ldv:x0\n",
9955 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9956 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9957 			phba->bbcredit_support = 1;
9958 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9959 		}
9960 
9961 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9962 
9963 		if (fawwpn) {
9964 			lpfc_printf_log(phba, KERN_INFO,
9965 					LOG_INIT | LOG_DISCOVERY,
9966 					"2702 READ_CONFIG: FA-PWWN is "
9967 					"configured on\n");
9968 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9969 		} else {
9970 			/* Clear FW configured flag, preserve driver flag */
9971 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9972 		}
9973 
9974 		phba->sli4_hba.conf_trunk =
9975 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9976 		phba->sli4_hba.extents_in_use =
9977 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9978 
9979 		phba->sli4_hba.max_cfg_param.max_xri =
9980 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9981 		/* Reduce resource usage in kdump environment */
9982 		if (is_kdump_kernel() &&
9983 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9984 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9985 		phba->sli4_hba.max_cfg_param.xri_base =
9986 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9987 		phba->sli4_hba.max_cfg_param.max_vpi =
9988 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9989 		/* Limit the max we support */
9990 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9991 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9992 		phba->sli4_hba.max_cfg_param.vpi_base =
9993 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9994 		phba->sli4_hba.max_cfg_param.max_rpi =
9995 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9996 		phba->sli4_hba.max_cfg_param.rpi_base =
9997 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9998 		phba->sli4_hba.max_cfg_param.max_vfi =
9999 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10000 		phba->sli4_hba.max_cfg_param.vfi_base =
10001 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10002 		phba->sli4_hba.max_cfg_param.max_fcfi =
10003 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10004 		phba->sli4_hba.max_cfg_param.max_eq =
10005 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10006 		phba->sli4_hba.max_cfg_param.max_rq =
10007 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10008 		phba->sli4_hba.max_cfg_param.max_wq =
10009 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10010 		phba->sli4_hba.max_cfg_param.max_cq =
10011 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10012 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10013 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10014 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10015 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10016 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10017 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10018 		phba->max_vports = phba->max_vpi;
10019 
10020 		/* Next decide on FPIN or Signal E2E CGN support
10021 		 * For congestion alarms and warnings valid combination are:
10022 		 * 1. FPIN alarms / FPIN warnings
10023 		 * 2. Signal alarms / Signal warnings
10024 		 * 3. FPIN alarms / Signal warnings
10025 		 * 4. Signal alarms / FPIN warnings
10026 		 *
10027 		 * Initialize the adapter frequency to 100 mSecs
10028 		 */
10029 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10030 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10031 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10032 
10033 		if (lpfc_use_cgn_signal) {
10034 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10035 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10036 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10037 			}
10038 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10039 				/* MUST support both alarm and warning
10040 				 * because EDC does not support alarm alone.
10041 				 */
10042 				if (phba->cgn_reg_signal !=
10043 				    EDC_CG_SIG_WARN_ONLY) {
10044 					/* Must support both or none */
10045 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10046 					phba->cgn_reg_signal =
10047 						EDC_CG_SIG_NOTSUPPORTED;
10048 				} else {
10049 					phba->cgn_reg_signal =
10050 						EDC_CG_SIG_WARN_ALARM;
10051 					phba->cgn_reg_fpin =
10052 						LPFC_CGN_FPIN_NONE;
10053 				}
10054 			}
10055 		}
10056 
10057 		/* Set the congestion initial signal and fpin values. */
10058 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10059 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10060 
10061 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10062 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10063 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10064 
10065 		lpfc_map_topology(phba, rd_config);
10066 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10067 				"2003 cfg params Extents? %d "
10068 				"XRI(B:%d M:%d), "
10069 				"VPI(B:%d M:%d) "
10070 				"VFI(B:%d M:%d) "
10071 				"RPI(B:%d M:%d) "
10072 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10073 				phba->sli4_hba.extents_in_use,
10074 				phba->sli4_hba.max_cfg_param.xri_base,
10075 				phba->sli4_hba.max_cfg_param.max_xri,
10076 				phba->sli4_hba.max_cfg_param.vpi_base,
10077 				phba->sli4_hba.max_cfg_param.max_vpi,
10078 				phba->sli4_hba.max_cfg_param.vfi_base,
10079 				phba->sli4_hba.max_cfg_param.max_vfi,
10080 				phba->sli4_hba.max_cfg_param.rpi_base,
10081 				phba->sli4_hba.max_cfg_param.max_rpi,
10082 				phba->sli4_hba.max_cfg_param.max_fcfi,
10083 				phba->sli4_hba.max_cfg_param.max_eq,
10084 				phba->sli4_hba.max_cfg_param.max_cq,
10085 				phba->sli4_hba.max_cfg_param.max_wq,
10086 				phba->sli4_hba.max_cfg_param.max_rq,
10087 				phba->lmt);
10088 
10089 		/*
10090 		 * Calculate queue resources based on how
10091 		 * many WQ/CQ/EQs are available.
10092 		 */
10093 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10094 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10095 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10096 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10097 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10098 		/*
10099 		 * Whats left after this can go toward NVME / FCP.
10100 		 * The minus 4 accounts for ELS, NVME LS, MBOX
10101 		 * plus one extra. When configured for
10102 		 * NVMET, FCP io channel WQs are not created.
10103 		 */
10104 		qmin -= 4;
10105 
10106 		/* Check to see if there is enough for NVME */
10107 		if ((phba->cfg_irq_chann > qmin) ||
10108 		    (phba->cfg_hdw_queue > qmin)) {
10109 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10110 					"2005 Reducing Queues - "
10111 					"FW resource limitation: "
10112 					"WQ %d CQ %d EQ %d: min %d: "
10113 					"IRQ %d HDWQ %d\n",
10114 					phba->sli4_hba.max_cfg_param.max_wq,
10115 					phba->sli4_hba.max_cfg_param.max_cq,
10116 					phba->sli4_hba.max_cfg_param.max_eq,
10117 					qmin, phba->cfg_irq_chann,
10118 					phba->cfg_hdw_queue);
10119 
10120 			if (phba->cfg_irq_chann > qmin)
10121 				phba->cfg_irq_chann = qmin;
10122 			if (phba->cfg_hdw_queue > qmin)
10123 				phba->cfg_hdw_queue = qmin;
10124 		}
10125 	}
10126 
10127 	if (rc)
10128 		goto read_cfg_out;
10129 
10130 	/* Update link speed if forced link speed is supported */
10131 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10132 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10133 		forced_link_speed =
10134 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10135 		if (forced_link_speed) {
10136 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10137 
10138 			switch (forced_link_speed) {
10139 			case LINK_SPEED_1G:
10140 				phba->cfg_link_speed =
10141 					LPFC_USER_LINK_SPEED_1G;
10142 				break;
10143 			case LINK_SPEED_2G:
10144 				phba->cfg_link_speed =
10145 					LPFC_USER_LINK_SPEED_2G;
10146 				break;
10147 			case LINK_SPEED_4G:
10148 				phba->cfg_link_speed =
10149 					LPFC_USER_LINK_SPEED_4G;
10150 				break;
10151 			case LINK_SPEED_8G:
10152 				phba->cfg_link_speed =
10153 					LPFC_USER_LINK_SPEED_8G;
10154 				break;
10155 			case LINK_SPEED_10G:
10156 				phba->cfg_link_speed =
10157 					LPFC_USER_LINK_SPEED_10G;
10158 				break;
10159 			case LINK_SPEED_16G:
10160 				phba->cfg_link_speed =
10161 					LPFC_USER_LINK_SPEED_16G;
10162 				break;
10163 			case LINK_SPEED_32G:
10164 				phba->cfg_link_speed =
10165 					LPFC_USER_LINK_SPEED_32G;
10166 				break;
10167 			case LINK_SPEED_64G:
10168 				phba->cfg_link_speed =
10169 					LPFC_USER_LINK_SPEED_64G;
10170 				break;
10171 			case 0xffff:
10172 				phba->cfg_link_speed =
10173 					LPFC_USER_LINK_SPEED_AUTO;
10174 				break;
10175 			default:
10176 				lpfc_printf_log(phba, KERN_ERR,
10177 						LOG_TRACE_EVENT,
10178 						"0047 Unrecognized link "
10179 						"speed : %d\n",
10180 						forced_link_speed);
10181 				phba->cfg_link_speed =
10182 					LPFC_USER_LINK_SPEED_AUTO;
10183 			}
10184 		}
10185 	}
10186 
10187 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10188 	length = phba->sli4_hba.max_cfg_param.max_xri -
10189 			lpfc_sli4_get_els_iocb_cnt(phba);
10190 	if (phba->cfg_hba_queue_depth > length) {
10191 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10192 				"3361 HBA queue depth changed from %d to %d\n",
10193 				phba->cfg_hba_queue_depth, length);
10194 		phba->cfg_hba_queue_depth = length;
10195 	}
10196 
10197 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10198 	    LPFC_SLI_INTF_IF_TYPE_2)
10199 		goto read_cfg_out;
10200 
10201 	/* get the pf# and vf# for SLI4 if_type 2 port */
10202 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10203 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10204 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10205 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10206 			 length, LPFC_SLI4_MBX_EMBED);
10207 
10208 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10209 	shdr = (union lpfc_sli4_cfg_shdr *)
10210 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10211 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10212 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10213 	if (rc2 || shdr_status || shdr_add_status) {
10214 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10215 				"3026 Mailbox failed , mbxCmd x%x "
10216 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10217 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10218 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10219 		goto read_cfg_out;
10220 	}
10221 
10222 	/* search for fc_fcoe resrouce descriptor */
10223 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10224 
10225 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10226 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10227 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10228 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10229 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10230 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10231 		goto read_cfg_out;
10232 
10233 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10234 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10235 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10236 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10237 			phba->sli4_hba.iov.pf_number =
10238 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10239 			phba->sli4_hba.iov.vf_number =
10240 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10241 			break;
10242 		}
10243 	}
10244 
10245 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10246 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10247 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10248 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10249 				phba->sli4_hba.iov.vf_number);
10250 	else
10251 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10252 				"3028 GET_FUNCTION_CONFIG: failed to find "
10253 				"Resource Descriptor:x%x\n",
10254 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10255 
10256 read_cfg_out:
10257 	mempool_free(pmb, phba->mbox_mem_pool);
10258 	return rc;
10259 }
10260 
10261 /**
10262  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10263  * @phba: pointer to lpfc hba data structure.
10264  *
10265  * This routine is invoked to setup the port-side endian order when
10266  * the port if_type is 0.  This routine has no function for other
10267  * if_types.
10268  *
10269  * Return codes
10270  * 	0 - successful
10271  * 	-ENOMEM - No available memory
10272  *      -EIO - The mailbox failed to complete successfully.
10273  **/
10274 static int
10275 lpfc_setup_endian_order(struct lpfc_hba *phba)
10276 {
10277 	LPFC_MBOXQ_t *mboxq;
10278 	uint32_t if_type, rc = 0;
10279 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10280 				      HOST_ENDIAN_HIGH_WORD1};
10281 
10282 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10283 	switch (if_type) {
10284 	case LPFC_SLI_INTF_IF_TYPE_0:
10285 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10286 						       GFP_KERNEL);
10287 		if (!mboxq) {
10288 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10289 					"0492 Unable to allocate memory for "
10290 					"issuing SLI_CONFIG_SPECIAL mailbox "
10291 					"command\n");
10292 			return -ENOMEM;
10293 		}
10294 
10295 		/*
10296 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10297 		 * two words to contain special data values and no other data.
10298 		 */
10299 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10300 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10301 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10302 		if (rc != MBX_SUCCESS) {
10303 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10304 					"0493 SLI_CONFIG_SPECIAL mailbox "
10305 					"failed with status x%x\n",
10306 					rc);
10307 			rc = -EIO;
10308 		}
10309 		mempool_free(mboxq, phba->mbox_mem_pool);
10310 		break;
10311 	case LPFC_SLI_INTF_IF_TYPE_6:
10312 	case LPFC_SLI_INTF_IF_TYPE_2:
10313 	case LPFC_SLI_INTF_IF_TYPE_1:
10314 	default:
10315 		break;
10316 	}
10317 	return rc;
10318 }
10319 
10320 /**
10321  * lpfc_sli4_queue_verify - Verify and update EQ counts
10322  * @phba: pointer to lpfc hba data structure.
10323  *
10324  * This routine is invoked to check the user settable queue counts for EQs.
10325  * After this routine is called the counts will be set to valid values that
10326  * adhere to the constraints of the system's interrupt vectors and the port's
10327  * queue resources.
10328  *
10329  * Return codes
10330  *      0 - successful
10331  *      -ENOMEM - No available memory
10332  **/
10333 static int
10334 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10335 {
10336 	/*
10337 	 * Sanity check for configured queue parameters against the run-time
10338 	 * device parameters
10339 	 */
10340 
10341 	if (phba->nvmet_support) {
10342 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10343 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10344 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10345 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10346 	}
10347 
10348 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10349 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10350 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10351 			phba->cfg_nvmet_mrq);
10352 
10353 	/* Get EQ depth from module parameter, fake the default for now */
10354 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10355 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10356 
10357 	/* Get CQ depth from module parameter, fake the default for now */
10358 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10359 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10360 	return 0;
10361 }
10362 
10363 static int
10364 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10365 {
10366 	struct lpfc_queue *qdesc;
10367 	u32 wqesize;
10368 	int cpu;
10369 
10370 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10371 	/* Create Fast Path IO CQs */
10372 	if (phba->enab_exp_wqcq_pages)
10373 		/* Increase the CQ size when WQEs contain an embedded cdb */
10374 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10375 					      phba->sli4_hba.cq_esize,
10376 					      LPFC_CQE_EXP_COUNT, cpu);
10377 
10378 	else
10379 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10380 					      phba->sli4_hba.cq_esize,
10381 					      phba->sli4_hba.cq_ecount, cpu);
10382 	if (!qdesc) {
10383 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10384 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10385 				idx);
10386 		return 1;
10387 	}
10388 	qdesc->qe_valid = 1;
10389 	qdesc->hdwq = idx;
10390 	qdesc->chann = cpu;
10391 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10392 
10393 	/* Create Fast Path IO WQs */
10394 	if (phba->enab_exp_wqcq_pages) {
10395 		/* Increase the WQ size when WQEs contain an embedded cdb */
10396 		wqesize = (phba->fcp_embed_io) ?
10397 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10398 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10399 					      wqesize,
10400 					      LPFC_WQE_EXP_COUNT, cpu);
10401 	} else
10402 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10403 					      phba->sli4_hba.wq_esize,
10404 					      phba->sli4_hba.wq_ecount, cpu);
10405 
10406 	if (!qdesc) {
10407 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10408 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10409 				idx);
10410 		return 1;
10411 	}
10412 	qdesc->hdwq = idx;
10413 	qdesc->chann = cpu;
10414 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10415 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10416 	return 0;
10417 }
10418 
10419 /**
10420  * lpfc_sli4_queue_create - Create all the SLI4 queues
10421  * @phba: pointer to lpfc hba data structure.
10422  *
10423  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10424  * operation. For each SLI4 queue type, the parameters such as queue entry
10425  * count (queue depth) shall be taken from the module parameter. For now,
10426  * we just use some constant number as place holder.
10427  *
10428  * Return codes
10429  *      0 - successful
10430  *      -ENOMEM - No availble memory
10431  *      -EIO - The mailbox failed to complete successfully.
10432  **/
10433 int
10434 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10435 {
10436 	struct lpfc_queue *qdesc;
10437 	int idx, cpu, eqcpu;
10438 	struct lpfc_sli4_hdw_queue *qp;
10439 	struct lpfc_vector_map_info *cpup;
10440 	struct lpfc_vector_map_info *eqcpup;
10441 	struct lpfc_eq_intr_info *eqi;
10442 
10443 	/*
10444 	 * Create HBA Record arrays.
10445 	 * Both NVME and FCP will share that same vectors / EQs
10446 	 */
10447 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10448 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10449 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10450 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10451 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10452 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10453 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10454 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10455 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10456 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10457 
10458 	if (!phba->sli4_hba.hdwq) {
10459 		phba->sli4_hba.hdwq = kcalloc(
10460 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10461 			GFP_KERNEL);
10462 		if (!phba->sli4_hba.hdwq) {
10463 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10464 					"6427 Failed allocate memory for "
10465 					"fast-path Hardware Queue array\n");
10466 			goto out_error;
10467 		}
10468 		/* Prepare hardware queues to take IO buffers */
10469 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10470 			qp = &phba->sli4_hba.hdwq[idx];
10471 			spin_lock_init(&qp->io_buf_list_get_lock);
10472 			spin_lock_init(&qp->io_buf_list_put_lock);
10473 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10474 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10475 			qp->get_io_bufs = 0;
10476 			qp->put_io_bufs = 0;
10477 			qp->total_io_bufs = 0;
10478 			spin_lock_init(&qp->abts_io_buf_list_lock);
10479 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10480 			qp->abts_scsi_io_bufs = 0;
10481 			qp->abts_nvme_io_bufs = 0;
10482 			INIT_LIST_HEAD(&qp->sgl_list);
10483 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10484 			spin_lock_init(&qp->hdwq_lock);
10485 		}
10486 	}
10487 
10488 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10489 		if (phba->nvmet_support) {
10490 			phba->sli4_hba.nvmet_cqset = kcalloc(
10491 					phba->cfg_nvmet_mrq,
10492 					sizeof(struct lpfc_queue *),
10493 					GFP_KERNEL);
10494 			if (!phba->sli4_hba.nvmet_cqset) {
10495 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10496 					"3121 Fail allocate memory for "
10497 					"fast-path CQ set array\n");
10498 				goto out_error;
10499 			}
10500 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10501 					phba->cfg_nvmet_mrq,
10502 					sizeof(struct lpfc_queue *),
10503 					GFP_KERNEL);
10504 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10505 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10506 					"3122 Fail allocate memory for "
10507 					"fast-path RQ set hdr array\n");
10508 				goto out_error;
10509 			}
10510 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10511 					phba->cfg_nvmet_mrq,
10512 					sizeof(struct lpfc_queue *),
10513 					GFP_KERNEL);
10514 			if (!phba->sli4_hba.nvmet_mrq_data) {
10515 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10516 					"3124 Fail allocate memory for "
10517 					"fast-path RQ set data array\n");
10518 				goto out_error;
10519 			}
10520 		}
10521 	}
10522 
10523 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10524 
10525 	/* Create HBA Event Queues (EQs) */
10526 	for_each_present_cpu(cpu) {
10527 		/* We only want to create 1 EQ per vector, even though
10528 		 * multiple CPUs might be using that vector. so only
10529 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10530 		 */
10531 		cpup = &phba->sli4_hba.cpu_map[cpu];
10532 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10533 			continue;
10534 
10535 		/* Get a ptr to the Hardware Queue associated with this CPU */
10536 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10537 
10538 		/* Allocate an EQ */
10539 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10540 					      phba->sli4_hba.eq_esize,
10541 					      phba->sli4_hba.eq_ecount, cpu);
10542 		if (!qdesc) {
10543 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10544 					"0497 Failed allocate EQ (%d)\n",
10545 					cpup->hdwq);
10546 			goto out_error;
10547 		}
10548 		qdesc->qe_valid = 1;
10549 		qdesc->hdwq = cpup->hdwq;
10550 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10551 		qdesc->last_cpu = qdesc->chann;
10552 
10553 		/* Save the allocated EQ in the Hardware Queue */
10554 		qp->hba_eq = qdesc;
10555 
10556 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10557 		list_add(&qdesc->cpu_list, &eqi->list);
10558 	}
10559 
10560 	/* Now we need to populate the other Hardware Queues, that share
10561 	 * an IRQ vector, with the associated EQ ptr.
10562 	 */
10563 	for_each_present_cpu(cpu) {
10564 		cpup = &phba->sli4_hba.cpu_map[cpu];
10565 
10566 		/* Check for EQ already allocated in previous loop */
10567 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10568 			continue;
10569 
10570 		/* Check for multiple CPUs per hdwq */
10571 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10572 		if (qp->hba_eq)
10573 			continue;
10574 
10575 		/* We need to share an EQ for this hdwq */
10576 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10577 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10578 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10579 	}
10580 
10581 	/* Allocate IO Path SLI4 CQ/WQs */
10582 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10583 		if (lpfc_alloc_io_wq_cq(phba, idx))
10584 			goto out_error;
10585 	}
10586 
10587 	if (phba->nvmet_support) {
10588 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10589 			cpu = lpfc_find_cpu_handle(phba, idx,
10590 						   LPFC_FIND_BY_HDWQ);
10591 			qdesc = lpfc_sli4_queue_alloc(phba,
10592 						      LPFC_DEFAULT_PAGE_SIZE,
10593 						      phba->sli4_hba.cq_esize,
10594 						      phba->sli4_hba.cq_ecount,
10595 						      cpu);
10596 			if (!qdesc) {
10597 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10598 						"3142 Failed allocate NVME "
10599 						"CQ Set (%d)\n", idx);
10600 				goto out_error;
10601 			}
10602 			qdesc->qe_valid = 1;
10603 			qdesc->hdwq = idx;
10604 			qdesc->chann = cpu;
10605 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10606 		}
10607 	}
10608 
10609 	/*
10610 	 * Create Slow Path Completion Queues (CQs)
10611 	 */
10612 
10613 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10614 	/* Create slow-path Mailbox Command Complete Queue */
10615 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10616 				      phba->sli4_hba.cq_esize,
10617 				      phba->sli4_hba.cq_ecount, cpu);
10618 	if (!qdesc) {
10619 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10620 				"0500 Failed allocate slow-path mailbox CQ\n");
10621 		goto out_error;
10622 	}
10623 	qdesc->qe_valid = 1;
10624 	phba->sli4_hba.mbx_cq = qdesc;
10625 
10626 	/* Create slow-path ELS Complete Queue */
10627 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10628 				      phba->sli4_hba.cq_esize,
10629 				      phba->sli4_hba.cq_ecount, cpu);
10630 	if (!qdesc) {
10631 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10632 				"0501 Failed allocate slow-path ELS CQ\n");
10633 		goto out_error;
10634 	}
10635 	qdesc->qe_valid = 1;
10636 	qdesc->chann = cpu;
10637 	phba->sli4_hba.els_cq = qdesc;
10638 
10639 
10640 	/*
10641 	 * Create Slow Path Work Queues (WQs)
10642 	 */
10643 
10644 	/* Create Mailbox Command Queue */
10645 
10646 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10647 				      phba->sli4_hba.mq_esize,
10648 				      phba->sli4_hba.mq_ecount, cpu);
10649 	if (!qdesc) {
10650 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10651 				"0505 Failed allocate slow-path MQ\n");
10652 		goto out_error;
10653 	}
10654 	qdesc->chann = cpu;
10655 	phba->sli4_hba.mbx_wq = qdesc;
10656 
10657 	/*
10658 	 * Create ELS Work Queues
10659 	 */
10660 
10661 	/* Create slow-path ELS Work Queue */
10662 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10663 				      phba->sli4_hba.wq_esize,
10664 				      phba->sli4_hba.wq_ecount, cpu);
10665 	if (!qdesc) {
10666 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10667 				"0504 Failed allocate slow-path ELS WQ\n");
10668 		goto out_error;
10669 	}
10670 	qdesc->chann = cpu;
10671 	phba->sli4_hba.els_wq = qdesc;
10672 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10673 
10674 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10675 		/* Create NVME LS Complete Queue */
10676 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10677 					      phba->sli4_hba.cq_esize,
10678 					      phba->sli4_hba.cq_ecount, cpu);
10679 		if (!qdesc) {
10680 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10681 					"6079 Failed allocate NVME LS CQ\n");
10682 			goto out_error;
10683 		}
10684 		qdesc->chann = cpu;
10685 		qdesc->qe_valid = 1;
10686 		phba->sli4_hba.nvmels_cq = qdesc;
10687 
10688 		/* Create NVME LS Work Queue */
10689 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10690 					      phba->sli4_hba.wq_esize,
10691 					      phba->sli4_hba.wq_ecount, cpu);
10692 		if (!qdesc) {
10693 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10694 					"6080 Failed allocate NVME LS WQ\n");
10695 			goto out_error;
10696 		}
10697 		qdesc->chann = cpu;
10698 		phba->sli4_hba.nvmels_wq = qdesc;
10699 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10700 	}
10701 
10702 	/*
10703 	 * Create Receive Queue (RQ)
10704 	 */
10705 
10706 	/* Create Receive Queue for header */
10707 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10708 				      phba->sli4_hba.rq_esize,
10709 				      phba->sli4_hba.rq_ecount, cpu);
10710 	if (!qdesc) {
10711 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10712 				"0506 Failed allocate receive HRQ\n");
10713 		goto out_error;
10714 	}
10715 	phba->sli4_hba.hdr_rq = qdesc;
10716 
10717 	/* Create Receive Queue for data */
10718 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10719 				      phba->sli4_hba.rq_esize,
10720 				      phba->sli4_hba.rq_ecount, cpu);
10721 	if (!qdesc) {
10722 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10723 				"0507 Failed allocate receive DRQ\n");
10724 		goto out_error;
10725 	}
10726 	phba->sli4_hba.dat_rq = qdesc;
10727 
10728 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10729 	    phba->nvmet_support) {
10730 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10731 			cpu = lpfc_find_cpu_handle(phba, idx,
10732 						   LPFC_FIND_BY_HDWQ);
10733 			/* Create NVMET Receive Queue for header */
10734 			qdesc = lpfc_sli4_queue_alloc(phba,
10735 						      LPFC_DEFAULT_PAGE_SIZE,
10736 						      phba->sli4_hba.rq_esize,
10737 						      LPFC_NVMET_RQE_DEF_COUNT,
10738 						      cpu);
10739 			if (!qdesc) {
10740 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10741 						"3146 Failed allocate "
10742 						"receive HRQ\n");
10743 				goto out_error;
10744 			}
10745 			qdesc->hdwq = idx;
10746 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10747 
10748 			/* Only needed for header of RQ pair */
10749 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10750 						   GFP_KERNEL,
10751 						   cpu_to_node(cpu));
10752 			if (qdesc->rqbp == NULL) {
10753 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10754 						"6131 Failed allocate "
10755 						"Header RQBP\n");
10756 				goto out_error;
10757 			}
10758 
10759 			/* Put list in known state in case driver load fails. */
10760 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10761 
10762 			/* Create NVMET Receive Queue for data */
10763 			qdesc = lpfc_sli4_queue_alloc(phba,
10764 						      LPFC_DEFAULT_PAGE_SIZE,
10765 						      phba->sli4_hba.rq_esize,
10766 						      LPFC_NVMET_RQE_DEF_COUNT,
10767 						      cpu);
10768 			if (!qdesc) {
10769 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10770 						"3156 Failed allocate "
10771 						"receive DRQ\n");
10772 				goto out_error;
10773 			}
10774 			qdesc->hdwq = idx;
10775 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10776 		}
10777 	}
10778 
10779 	/* Clear NVME stats */
10780 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10781 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10782 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10783 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10784 		}
10785 	}
10786 
10787 	/* Clear SCSI stats */
10788 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10789 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10790 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10791 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10792 		}
10793 	}
10794 
10795 	return 0;
10796 
10797 out_error:
10798 	lpfc_sli4_queue_destroy(phba);
10799 	return -ENOMEM;
10800 }
10801 
10802 static inline void
10803 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10804 {
10805 	if (*qp != NULL) {
10806 		lpfc_sli4_queue_free(*qp);
10807 		*qp = NULL;
10808 	}
10809 }
10810 
10811 static inline void
10812 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10813 {
10814 	int idx;
10815 
10816 	if (*qs == NULL)
10817 		return;
10818 
10819 	for (idx = 0; idx < max; idx++)
10820 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10821 
10822 	kfree(*qs);
10823 	*qs = NULL;
10824 }
10825 
10826 static inline void
10827 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10828 {
10829 	struct lpfc_sli4_hdw_queue *hdwq;
10830 	struct lpfc_queue *eq;
10831 	uint32_t idx;
10832 
10833 	hdwq = phba->sli4_hba.hdwq;
10834 
10835 	/* Loop thru all Hardware Queues */
10836 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10837 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10838 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10839 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10840 		hdwq[idx].hba_eq = NULL;
10841 		hdwq[idx].io_cq = NULL;
10842 		hdwq[idx].io_wq = NULL;
10843 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10844 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10845 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10846 	}
10847 	/* Loop thru all IRQ vectors */
10848 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10849 		/* Free the EQ corresponding to the IRQ vector */
10850 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10851 		lpfc_sli4_queue_free(eq);
10852 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10853 	}
10854 }
10855 
10856 /**
10857  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10858  * @phba: pointer to lpfc hba data structure.
10859  *
10860  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10861  * operation.
10862  *
10863  * Return codes
10864  *      0 - successful
10865  *      -ENOMEM - No available memory
10866  *      -EIO - The mailbox failed to complete successfully.
10867  **/
10868 void
10869 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10870 {
10871 	/*
10872 	 * Set FREE_INIT before beginning to free the queues.
10873 	 * Wait until the users of queues to acknowledge to
10874 	 * release queues by clearing FREE_WAIT.
10875 	 */
10876 	spin_lock_irq(&phba->hbalock);
10877 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10878 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10879 		spin_unlock_irq(&phba->hbalock);
10880 		msleep(20);
10881 		spin_lock_irq(&phba->hbalock);
10882 	}
10883 	spin_unlock_irq(&phba->hbalock);
10884 
10885 	lpfc_sli4_cleanup_poll_list(phba);
10886 
10887 	/* Release HBA eqs */
10888 	if (phba->sli4_hba.hdwq)
10889 		lpfc_sli4_release_hdwq(phba);
10890 
10891 	if (phba->nvmet_support) {
10892 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10893 					 phba->cfg_nvmet_mrq);
10894 
10895 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10896 					 phba->cfg_nvmet_mrq);
10897 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10898 					 phba->cfg_nvmet_mrq);
10899 	}
10900 
10901 	/* Release mailbox command work queue */
10902 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10903 
10904 	/* Release ELS work queue */
10905 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10906 
10907 	/* Release ELS work queue */
10908 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10909 
10910 	/* Release unsolicited receive queue */
10911 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10912 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10913 
10914 	/* Release ELS complete queue */
10915 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10916 
10917 	/* Release NVME LS complete queue */
10918 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10919 
10920 	/* Release mailbox command complete queue */
10921 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10922 
10923 	/* Everything on this list has been freed */
10924 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10925 
10926 	/* Done with freeing the queues */
10927 	spin_lock_irq(&phba->hbalock);
10928 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10929 	spin_unlock_irq(&phba->hbalock);
10930 }
10931 
10932 int
10933 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10934 {
10935 	struct lpfc_rqb *rqbp;
10936 	struct lpfc_dmabuf *h_buf;
10937 	struct rqb_dmabuf *rqb_buffer;
10938 
10939 	rqbp = rq->rqbp;
10940 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10941 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10942 				 struct lpfc_dmabuf, list);
10943 
10944 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10945 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10946 		rqbp->buffer_count--;
10947 	}
10948 	return 1;
10949 }
10950 
10951 static int
10952 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10953 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10954 	int qidx, uint32_t qtype)
10955 {
10956 	struct lpfc_sli_ring *pring;
10957 	int rc;
10958 
10959 	if (!eq || !cq || !wq) {
10960 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10961 			"6085 Fast-path %s (%d) not allocated\n",
10962 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10963 		return -ENOMEM;
10964 	}
10965 
10966 	/* create the Cq first */
10967 	rc = lpfc_cq_create(phba, cq, eq,
10968 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10969 	if (rc) {
10970 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10971 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10972 				qidx, (uint32_t)rc);
10973 		return rc;
10974 	}
10975 
10976 	if (qtype != LPFC_MBOX) {
10977 		/* Setup cq_map for fast lookup */
10978 		if (cq_map)
10979 			*cq_map = cq->queue_id;
10980 
10981 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10982 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10983 			qidx, cq->queue_id, qidx, eq->queue_id);
10984 
10985 		/* create the wq */
10986 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10987 		if (rc) {
10988 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10989 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10990 				qidx, (uint32_t)rc);
10991 			/* no need to tear down cq - caller will do so */
10992 			return rc;
10993 		}
10994 
10995 		/* Bind this CQ/WQ to the NVME ring */
10996 		pring = wq->pring;
10997 		pring->sli.sli4.wqp = (void *)wq;
10998 		cq->pring = pring;
10999 
11000 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11001 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11002 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11003 	} else {
11004 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11005 		if (rc) {
11006 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11007 					"0539 Failed setup of slow-path MQ: "
11008 					"rc = 0x%x\n", rc);
11009 			/* no need to tear down cq - caller will do so */
11010 			return rc;
11011 		}
11012 
11013 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11014 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11015 			phba->sli4_hba.mbx_wq->queue_id,
11016 			phba->sli4_hba.mbx_cq->queue_id);
11017 	}
11018 
11019 	return 0;
11020 }
11021 
11022 /**
11023  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11024  * @phba: pointer to lpfc hba data structure.
11025  *
11026  * This routine will populate the cq_lookup table by all
11027  * available CQ queue_id's.
11028  **/
11029 static void
11030 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11031 {
11032 	struct lpfc_queue *eq, *childq;
11033 	int qidx;
11034 
11035 	memset(phba->sli4_hba.cq_lookup, 0,
11036 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11037 	/* Loop thru all IRQ vectors */
11038 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11039 		/* Get the EQ corresponding to the IRQ vector */
11040 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11041 		if (!eq)
11042 			continue;
11043 		/* Loop through all CQs associated with that EQ */
11044 		list_for_each_entry(childq, &eq->child_list, list) {
11045 			if (childq->queue_id > phba->sli4_hba.cq_max)
11046 				continue;
11047 			if (childq->subtype == LPFC_IO)
11048 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11049 					childq;
11050 		}
11051 	}
11052 }
11053 
11054 /**
11055  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11056  * @phba: pointer to lpfc hba data structure.
11057  *
11058  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11059  * operation.
11060  *
11061  * Return codes
11062  *      0 - successful
11063  *      -ENOMEM - No available memory
11064  *      -EIO - The mailbox failed to complete successfully.
11065  **/
11066 int
11067 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11068 {
11069 	uint32_t shdr_status, shdr_add_status;
11070 	union lpfc_sli4_cfg_shdr *shdr;
11071 	struct lpfc_vector_map_info *cpup;
11072 	struct lpfc_sli4_hdw_queue *qp;
11073 	LPFC_MBOXQ_t *mboxq;
11074 	int qidx, cpu;
11075 	uint32_t length, usdelay;
11076 	int rc = -ENOMEM;
11077 
11078 	/* Check for dual-ULP support */
11079 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11080 	if (!mboxq) {
11081 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11082 				"3249 Unable to allocate memory for "
11083 				"QUERY_FW_CFG mailbox command\n");
11084 		return -ENOMEM;
11085 	}
11086 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11087 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11088 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11089 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11090 			 length, LPFC_SLI4_MBX_EMBED);
11091 
11092 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11093 
11094 	shdr = (union lpfc_sli4_cfg_shdr *)
11095 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11096 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11097 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11098 	if (shdr_status || shdr_add_status || rc) {
11099 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11100 				"3250 QUERY_FW_CFG mailbox failed with status "
11101 				"x%x add_status x%x, mbx status x%x\n",
11102 				shdr_status, shdr_add_status, rc);
11103 		mempool_free(mboxq, phba->mbox_mem_pool);
11104 		rc = -ENXIO;
11105 		goto out_error;
11106 	}
11107 
11108 	phba->sli4_hba.fw_func_mode =
11109 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11110 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11111 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11112 	phba->sli4_hba.physical_port =
11113 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11114 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11115 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11116 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11117 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11118 
11119 	mempool_free(mboxq, phba->mbox_mem_pool);
11120 
11121 	/*
11122 	 * Set up HBA Event Queues (EQs)
11123 	 */
11124 	qp = phba->sli4_hba.hdwq;
11125 
11126 	/* Set up HBA event queue */
11127 	if (!qp) {
11128 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11129 				"3147 Fast-path EQs not allocated\n");
11130 		rc = -ENOMEM;
11131 		goto out_error;
11132 	}
11133 
11134 	/* Loop thru all IRQ vectors */
11135 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11136 		/* Create HBA Event Queues (EQs) in order */
11137 		for_each_present_cpu(cpu) {
11138 			cpup = &phba->sli4_hba.cpu_map[cpu];
11139 
11140 			/* Look for the CPU thats using that vector with
11141 			 * LPFC_CPU_FIRST_IRQ set.
11142 			 */
11143 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11144 				continue;
11145 			if (qidx != cpup->eq)
11146 				continue;
11147 
11148 			/* Create an EQ for that vector */
11149 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11150 					    phba->cfg_fcp_imax);
11151 			if (rc) {
11152 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11153 						"0523 Failed setup of fast-path"
11154 						" EQ (%d), rc = 0x%x\n",
11155 						cpup->eq, (uint32_t)rc);
11156 				goto out_destroy;
11157 			}
11158 
11159 			/* Save the EQ for that vector in the hba_eq_hdl */
11160 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11161 				qp[cpup->hdwq].hba_eq;
11162 
11163 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11164 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11165 					cpup->eq,
11166 					qp[cpup->hdwq].hba_eq->queue_id);
11167 		}
11168 	}
11169 
11170 	/* Loop thru all Hardware Queues */
11171 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11172 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11173 		cpup = &phba->sli4_hba.cpu_map[cpu];
11174 
11175 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11176 		rc = lpfc_create_wq_cq(phba,
11177 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11178 				       qp[qidx].io_cq,
11179 				       qp[qidx].io_wq,
11180 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11181 				       qidx,
11182 				       LPFC_IO);
11183 		if (rc) {
11184 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11185 					"0535 Failed to setup fastpath "
11186 					"IO WQ/CQ (%d), rc = 0x%x\n",
11187 					qidx, (uint32_t)rc);
11188 			goto out_destroy;
11189 		}
11190 	}
11191 
11192 	/*
11193 	 * Set up Slow Path Complete Queues (CQs)
11194 	 */
11195 
11196 	/* Set up slow-path MBOX CQ/MQ */
11197 
11198 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11199 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11200 				"0528 %s not allocated\n",
11201 				phba->sli4_hba.mbx_cq ?
11202 				"Mailbox WQ" : "Mailbox CQ");
11203 		rc = -ENOMEM;
11204 		goto out_destroy;
11205 	}
11206 
11207 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11208 			       phba->sli4_hba.mbx_cq,
11209 			       phba->sli4_hba.mbx_wq,
11210 			       NULL, 0, LPFC_MBOX);
11211 	if (rc) {
11212 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11213 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11214 			(uint32_t)rc);
11215 		goto out_destroy;
11216 	}
11217 	if (phba->nvmet_support) {
11218 		if (!phba->sli4_hba.nvmet_cqset) {
11219 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11220 					"3165 Fast-path NVME CQ Set "
11221 					"array not allocated\n");
11222 			rc = -ENOMEM;
11223 			goto out_destroy;
11224 		}
11225 		if (phba->cfg_nvmet_mrq > 1) {
11226 			rc = lpfc_cq_create_set(phba,
11227 					phba->sli4_hba.nvmet_cqset,
11228 					qp,
11229 					LPFC_WCQ, LPFC_NVMET);
11230 			if (rc) {
11231 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11232 						"3164 Failed setup of NVME CQ "
11233 						"Set, rc = 0x%x\n",
11234 						(uint32_t)rc);
11235 				goto out_destroy;
11236 			}
11237 		} else {
11238 			/* Set up NVMET Receive Complete Queue */
11239 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11240 					    qp[0].hba_eq,
11241 					    LPFC_WCQ, LPFC_NVMET);
11242 			if (rc) {
11243 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11244 						"6089 Failed setup NVMET CQ: "
11245 						"rc = 0x%x\n", (uint32_t)rc);
11246 				goto out_destroy;
11247 			}
11248 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11249 
11250 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11251 					"6090 NVMET CQ setup: cq-id=%d, "
11252 					"parent eq-id=%d\n",
11253 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11254 					qp[0].hba_eq->queue_id);
11255 		}
11256 	}
11257 
11258 	/* Set up slow-path ELS WQ/CQ */
11259 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11260 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11261 				"0530 ELS %s not allocated\n",
11262 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11263 		rc = -ENOMEM;
11264 		goto out_destroy;
11265 	}
11266 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11267 			       phba->sli4_hba.els_cq,
11268 			       phba->sli4_hba.els_wq,
11269 			       NULL, 0, LPFC_ELS);
11270 	if (rc) {
11271 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11272 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11273 				(uint32_t)rc);
11274 		goto out_destroy;
11275 	}
11276 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11277 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11278 			phba->sli4_hba.els_wq->queue_id,
11279 			phba->sli4_hba.els_cq->queue_id);
11280 
11281 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11282 		/* Set up NVME LS Complete Queue */
11283 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11284 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11285 					"6091 LS %s not allocated\n",
11286 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11287 			rc = -ENOMEM;
11288 			goto out_destroy;
11289 		}
11290 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11291 				       phba->sli4_hba.nvmels_cq,
11292 				       phba->sli4_hba.nvmels_wq,
11293 				       NULL, 0, LPFC_NVME_LS);
11294 		if (rc) {
11295 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11296 					"0526 Failed setup of NVVME LS WQ/CQ: "
11297 					"rc = 0x%x\n", (uint32_t)rc);
11298 			goto out_destroy;
11299 		}
11300 
11301 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11302 				"6096 ELS WQ setup: wq-id=%d, "
11303 				"parent cq-id=%d\n",
11304 				phba->sli4_hba.nvmels_wq->queue_id,
11305 				phba->sli4_hba.nvmels_cq->queue_id);
11306 	}
11307 
11308 	/*
11309 	 * Create NVMET Receive Queue (RQ)
11310 	 */
11311 	if (phba->nvmet_support) {
11312 		if ((!phba->sli4_hba.nvmet_cqset) ||
11313 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11314 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11315 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11316 					"6130 MRQ CQ Queues not "
11317 					"allocated\n");
11318 			rc = -ENOMEM;
11319 			goto out_destroy;
11320 		}
11321 		if (phba->cfg_nvmet_mrq > 1) {
11322 			rc = lpfc_mrq_create(phba,
11323 					     phba->sli4_hba.nvmet_mrq_hdr,
11324 					     phba->sli4_hba.nvmet_mrq_data,
11325 					     phba->sli4_hba.nvmet_cqset,
11326 					     LPFC_NVMET);
11327 			if (rc) {
11328 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11329 						"6098 Failed setup of NVMET "
11330 						"MRQ: rc = 0x%x\n",
11331 						(uint32_t)rc);
11332 				goto out_destroy;
11333 			}
11334 
11335 		} else {
11336 			rc = lpfc_rq_create(phba,
11337 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11338 					    phba->sli4_hba.nvmet_mrq_data[0],
11339 					    phba->sli4_hba.nvmet_cqset[0],
11340 					    LPFC_NVMET);
11341 			if (rc) {
11342 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11343 						"6057 Failed setup of NVMET "
11344 						"Receive Queue: rc = 0x%x\n",
11345 						(uint32_t)rc);
11346 				goto out_destroy;
11347 			}
11348 
11349 			lpfc_printf_log(
11350 				phba, KERN_INFO, LOG_INIT,
11351 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11352 				"dat-rq-id=%d parent cq-id=%d\n",
11353 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11354 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11355 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11356 
11357 		}
11358 	}
11359 
11360 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11361 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11362 				"0540 Receive Queue not allocated\n");
11363 		rc = -ENOMEM;
11364 		goto out_destroy;
11365 	}
11366 
11367 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11368 			    phba->sli4_hba.els_cq, LPFC_USOL);
11369 	if (rc) {
11370 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11371 				"0541 Failed setup of Receive Queue: "
11372 				"rc = 0x%x\n", (uint32_t)rc);
11373 		goto out_destroy;
11374 	}
11375 
11376 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11377 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11378 			"parent cq-id=%d\n",
11379 			phba->sli4_hba.hdr_rq->queue_id,
11380 			phba->sli4_hba.dat_rq->queue_id,
11381 			phba->sli4_hba.els_cq->queue_id);
11382 
11383 	if (phba->cfg_fcp_imax)
11384 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11385 	else
11386 		usdelay = 0;
11387 
11388 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11389 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11390 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11391 					 usdelay);
11392 
11393 	if (phba->sli4_hba.cq_max) {
11394 		kfree(phba->sli4_hba.cq_lookup);
11395 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11396 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11397 		if (!phba->sli4_hba.cq_lookup) {
11398 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11399 					"0549 Failed setup of CQ Lookup table: "
11400 					"size 0x%x\n", phba->sli4_hba.cq_max);
11401 			rc = -ENOMEM;
11402 			goto out_destroy;
11403 		}
11404 		lpfc_setup_cq_lookup(phba);
11405 	}
11406 	return 0;
11407 
11408 out_destroy:
11409 	lpfc_sli4_queue_unset(phba);
11410 out_error:
11411 	return rc;
11412 }
11413 
11414 /**
11415  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11416  * @phba: pointer to lpfc hba data structure.
11417  *
11418  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11419  * operation.
11420  *
11421  * Return codes
11422  *      0 - successful
11423  *      -ENOMEM - No available memory
11424  *      -EIO - The mailbox failed to complete successfully.
11425  **/
11426 void
11427 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11428 {
11429 	struct lpfc_sli4_hdw_queue *qp;
11430 	struct lpfc_queue *eq;
11431 	int qidx;
11432 
11433 	/* Unset mailbox command work queue */
11434 	if (phba->sli4_hba.mbx_wq)
11435 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11436 
11437 	/* Unset NVME LS work queue */
11438 	if (phba->sli4_hba.nvmels_wq)
11439 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11440 
11441 	/* Unset ELS work queue */
11442 	if (phba->sli4_hba.els_wq)
11443 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11444 
11445 	/* Unset unsolicited receive queue */
11446 	if (phba->sli4_hba.hdr_rq)
11447 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11448 				phba->sli4_hba.dat_rq);
11449 
11450 	/* Unset mailbox command complete queue */
11451 	if (phba->sli4_hba.mbx_cq)
11452 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11453 
11454 	/* Unset ELS complete queue */
11455 	if (phba->sli4_hba.els_cq)
11456 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11457 
11458 	/* Unset NVME LS complete queue */
11459 	if (phba->sli4_hba.nvmels_cq)
11460 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11461 
11462 	if (phba->nvmet_support) {
11463 		/* Unset NVMET MRQ queue */
11464 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11465 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11466 				lpfc_rq_destroy(
11467 					phba,
11468 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11469 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11470 		}
11471 
11472 		/* Unset NVMET CQ Set complete queue */
11473 		if (phba->sli4_hba.nvmet_cqset) {
11474 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11475 				lpfc_cq_destroy(
11476 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11477 		}
11478 	}
11479 
11480 	/* Unset fast-path SLI4 queues */
11481 	if (phba->sli4_hba.hdwq) {
11482 		/* Loop thru all Hardware Queues */
11483 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11484 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11485 			qp = &phba->sli4_hba.hdwq[qidx];
11486 			lpfc_wq_destroy(phba, qp->io_wq);
11487 			lpfc_cq_destroy(phba, qp->io_cq);
11488 		}
11489 		/* Loop thru all IRQ vectors */
11490 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11491 			/* Destroy the EQ corresponding to the IRQ vector */
11492 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11493 			lpfc_eq_destroy(phba, eq);
11494 		}
11495 	}
11496 
11497 	kfree(phba->sli4_hba.cq_lookup);
11498 	phba->sli4_hba.cq_lookup = NULL;
11499 	phba->sli4_hba.cq_max = 0;
11500 }
11501 
11502 /**
11503  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11504  * @phba: pointer to lpfc hba data structure.
11505  *
11506  * This routine is invoked to allocate and set up a pool of completion queue
11507  * events. The body of the completion queue event is a completion queue entry
11508  * CQE. For now, this pool is used for the interrupt service routine to queue
11509  * the following HBA completion queue events for the worker thread to process:
11510  *   - Mailbox asynchronous events
11511  *   - Receive queue completion unsolicited events
11512  * Later, this can be used for all the slow-path events.
11513  *
11514  * Return codes
11515  *      0 - successful
11516  *      -ENOMEM - No available memory
11517  **/
11518 static int
11519 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11520 {
11521 	struct lpfc_cq_event *cq_event;
11522 	int i;
11523 
11524 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11525 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11526 		if (!cq_event)
11527 			goto out_pool_create_fail;
11528 		list_add_tail(&cq_event->list,
11529 			      &phba->sli4_hba.sp_cqe_event_pool);
11530 	}
11531 	return 0;
11532 
11533 out_pool_create_fail:
11534 	lpfc_sli4_cq_event_pool_destroy(phba);
11535 	return -ENOMEM;
11536 }
11537 
11538 /**
11539  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11540  * @phba: pointer to lpfc hba data structure.
11541  *
11542  * This routine is invoked to free the pool of completion queue events at
11543  * driver unload time. Note that, it is the responsibility of the driver
11544  * cleanup routine to free all the outstanding completion-queue events
11545  * allocated from this pool back into the pool before invoking this routine
11546  * to destroy the pool.
11547  **/
11548 static void
11549 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11550 {
11551 	struct lpfc_cq_event *cq_event, *next_cq_event;
11552 
11553 	list_for_each_entry_safe(cq_event, next_cq_event,
11554 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11555 		list_del(&cq_event->list);
11556 		kfree(cq_event);
11557 	}
11558 }
11559 
11560 /**
11561  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11562  * @phba: pointer to lpfc hba data structure.
11563  *
11564  * This routine is the lock free version of the API invoked to allocate a
11565  * completion-queue event from the free pool.
11566  *
11567  * Return: Pointer to the newly allocated completion-queue event if successful
11568  *         NULL otherwise.
11569  **/
11570 struct lpfc_cq_event *
11571 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11572 {
11573 	struct lpfc_cq_event *cq_event = NULL;
11574 
11575 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11576 			 struct lpfc_cq_event, list);
11577 	return cq_event;
11578 }
11579 
11580 /**
11581  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11582  * @phba: pointer to lpfc hba data structure.
11583  *
11584  * This routine is the lock version of the API invoked to allocate a
11585  * completion-queue event from the free pool.
11586  *
11587  * Return: Pointer to the newly allocated completion-queue event if successful
11588  *         NULL otherwise.
11589  **/
11590 struct lpfc_cq_event *
11591 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11592 {
11593 	struct lpfc_cq_event *cq_event;
11594 	unsigned long iflags;
11595 
11596 	spin_lock_irqsave(&phba->hbalock, iflags);
11597 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11598 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11599 	return cq_event;
11600 }
11601 
11602 /**
11603  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11604  * @phba: pointer to lpfc hba data structure.
11605  * @cq_event: pointer to the completion queue event to be freed.
11606  *
11607  * This routine is the lock free version of the API invoked to release a
11608  * completion-queue event back into the free pool.
11609  **/
11610 void
11611 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11612 			     struct lpfc_cq_event *cq_event)
11613 {
11614 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11615 }
11616 
11617 /**
11618  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11619  * @phba: pointer to lpfc hba data structure.
11620  * @cq_event: pointer to the completion queue event to be freed.
11621  *
11622  * This routine is the lock version of the API invoked to release a
11623  * completion-queue event back into the free pool.
11624  **/
11625 void
11626 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11627 			   struct lpfc_cq_event *cq_event)
11628 {
11629 	unsigned long iflags;
11630 	spin_lock_irqsave(&phba->hbalock, iflags);
11631 	__lpfc_sli4_cq_event_release(phba, cq_event);
11632 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11633 }
11634 
11635 /**
11636  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11637  * @phba: pointer to lpfc hba data structure.
11638  *
11639  * This routine is to free all the pending completion-queue events to the
11640  * back into the free pool for device reset.
11641  **/
11642 static void
11643 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11644 {
11645 	LIST_HEAD(cq_event_list);
11646 	struct lpfc_cq_event *cq_event;
11647 	unsigned long iflags;
11648 
11649 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11650 
11651 	/* Pending ELS XRI abort events */
11652 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11653 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11654 			 &cq_event_list);
11655 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11656 
11657 	/* Pending asynnc events */
11658 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11659 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11660 			 &cq_event_list);
11661 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11662 
11663 	while (!list_empty(&cq_event_list)) {
11664 		list_remove_head(&cq_event_list, cq_event,
11665 				 struct lpfc_cq_event, list);
11666 		lpfc_sli4_cq_event_release(phba, cq_event);
11667 	}
11668 }
11669 
11670 /**
11671  * lpfc_pci_function_reset - Reset pci function.
11672  * @phba: pointer to lpfc hba data structure.
11673  *
11674  * This routine is invoked to request a PCI function reset. It will destroys
11675  * all resources assigned to the PCI function which originates this request.
11676  *
11677  * Return codes
11678  *      0 - successful
11679  *      -ENOMEM - No available memory
11680  *      -EIO - The mailbox failed to complete successfully.
11681  **/
11682 int
11683 lpfc_pci_function_reset(struct lpfc_hba *phba)
11684 {
11685 	LPFC_MBOXQ_t *mboxq;
11686 	uint32_t rc = 0, if_type;
11687 	uint32_t shdr_status, shdr_add_status;
11688 	uint32_t rdy_chk;
11689 	uint32_t port_reset = 0;
11690 	union lpfc_sli4_cfg_shdr *shdr;
11691 	struct lpfc_register reg_data;
11692 	uint16_t devid;
11693 
11694 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11695 	switch (if_type) {
11696 	case LPFC_SLI_INTF_IF_TYPE_0:
11697 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11698 						       GFP_KERNEL);
11699 		if (!mboxq) {
11700 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11701 					"0494 Unable to allocate memory for "
11702 					"issuing SLI_FUNCTION_RESET mailbox "
11703 					"command\n");
11704 			return -ENOMEM;
11705 		}
11706 
11707 		/* Setup PCI function reset mailbox-ioctl command */
11708 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11709 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11710 				 LPFC_SLI4_MBX_EMBED);
11711 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11712 		shdr = (union lpfc_sli4_cfg_shdr *)
11713 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11714 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11715 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11716 					 &shdr->response);
11717 		mempool_free(mboxq, phba->mbox_mem_pool);
11718 		if (shdr_status || shdr_add_status || rc) {
11719 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11720 					"0495 SLI_FUNCTION_RESET mailbox "
11721 					"failed with status x%x add_status x%x,"
11722 					" mbx status x%x\n",
11723 					shdr_status, shdr_add_status, rc);
11724 			rc = -ENXIO;
11725 		}
11726 		break;
11727 	case LPFC_SLI_INTF_IF_TYPE_2:
11728 	case LPFC_SLI_INTF_IF_TYPE_6:
11729 wait:
11730 		/*
11731 		 * Poll the Port Status Register and wait for RDY for
11732 		 * up to 30 seconds. If the port doesn't respond, treat
11733 		 * it as an error.
11734 		 */
11735 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11736 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11737 				STATUSregaddr, &reg_data.word0)) {
11738 				rc = -ENODEV;
11739 				goto out;
11740 			}
11741 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11742 				break;
11743 			msleep(20);
11744 		}
11745 
11746 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11747 			phba->work_status[0] = readl(
11748 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11749 			phba->work_status[1] = readl(
11750 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11751 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11752 					"2890 Port not ready, port status reg "
11753 					"0x%x error 1=0x%x, error 2=0x%x\n",
11754 					reg_data.word0,
11755 					phba->work_status[0],
11756 					phba->work_status[1]);
11757 			rc = -ENODEV;
11758 			goto out;
11759 		}
11760 
11761 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11762 			lpfc_pldv_detect = true;
11763 
11764 		if (!port_reset) {
11765 			/*
11766 			 * Reset the port now
11767 			 */
11768 			reg_data.word0 = 0;
11769 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11770 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11771 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11772 			       LPFC_SLIPORT_INIT_PORT);
11773 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11774 			       CTRLregaddr);
11775 			/* flush */
11776 			pci_read_config_word(phba->pcidev,
11777 					     PCI_DEVICE_ID, &devid);
11778 
11779 			port_reset = 1;
11780 			msleep(20);
11781 			goto wait;
11782 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11783 			rc = -ENODEV;
11784 			goto out;
11785 		}
11786 		break;
11787 
11788 	case LPFC_SLI_INTF_IF_TYPE_1:
11789 	default:
11790 		break;
11791 	}
11792 
11793 out:
11794 	/* Catch the not-ready port failure after a port reset. */
11795 	if (rc) {
11796 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11797 				"3317 HBA not functional: IP Reset Failed "
11798 				"try: echo fw_reset > board_mode\n");
11799 		rc = -ENODEV;
11800 	}
11801 
11802 	return rc;
11803 }
11804 
11805 /**
11806  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11807  * @phba: pointer to lpfc hba data structure.
11808  *
11809  * This routine is invoked to set up the PCI device memory space for device
11810  * with SLI-4 interface spec.
11811  *
11812  * Return codes
11813  * 	0 - successful
11814  * 	other values - error
11815  **/
11816 static int
11817 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11818 {
11819 	struct pci_dev *pdev = phba->pcidev;
11820 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11821 	int error;
11822 	uint32_t if_type;
11823 
11824 	if (!pdev)
11825 		return -ENODEV;
11826 
11827 	/* Set the device DMA mask size */
11828 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11829 	if (error)
11830 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11831 	if (error)
11832 		return error;
11833 
11834 	/*
11835 	 * The BARs and register set definitions and offset locations are
11836 	 * dependent on the if_type.
11837 	 */
11838 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11839 				  &phba->sli4_hba.sli_intf.word0)) {
11840 		return -ENODEV;
11841 	}
11842 
11843 	/* There is no SLI3 failback for SLI4 devices. */
11844 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11845 	    LPFC_SLI_INTF_VALID) {
11846 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11847 				"2894 SLI_INTF reg contents invalid "
11848 				"sli_intf reg 0x%x\n",
11849 				phba->sli4_hba.sli_intf.word0);
11850 		return -ENODEV;
11851 	}
11852 
11853 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11854 	/*
11855 	 * Get the bus address of SLI4 device Bar regions and the
11856 	 * number of bytes required by each mapping. The mapping of the
11857 	 * particular PCI BARs regions is dependent on the type of
11858 	 * SLI4 device.
11859 	 */
11860 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11861 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11862 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11863 
11864 		/*
11865 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11866 		 * addr
11867 		 */
11868 		phba->sli4_hba.conf_regs_memmap_p =
11869 			ioremap(phba->pci_bar0_map, bar0map_len);
11870 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11871 			dev_printk(KERN_ERR, &pdev->dev,
11872 				   "ioremap failed for SLI4 PCI config "
11873 				   "registers.\n");
11874 			return -ENODEV;
11875 		}
11876 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11877 		/* Set up BAR0 PCI config space register memory map */
11878 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11879 	} else {
11880 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11881 		bar0map_len = pci_resource_len(pdev, 1);
11882 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11883 			dev_printk(KERN_ERR, &pdev->dev,
11884 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11885 			return -ENODEV;
11886 		}
11887 		phba->sli4_hba.conf_regs_memmap_p =
11888 				ioremap(phba->pci_bar0_map, bar0map_len);
11889 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11890 			dev_printk(KERN_ERR, &pdev->dev,
11891 				"ioremap failed for SLI4 PCI config "
11892 				"registers.\n");
11893 			return -ENODEV;
11894 		}
11895 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11896 	}
11897 
11898 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11899 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11900 			/*
11901 			 * Map SLI4 if type 0 HBA Control Register base to a
11902 			 * kernel virtual address and setup the registers.
11903 			 */
11904 			phba->pci_bar1_map = pci_resource_start(pdev,
11905 								PCI_64BIT_BAR2);
11906 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11907 			phba->sli4_hba.ctrl_regs_memmap_p =
11908 					ioremap(phba->pci_bar1_map,
11909 						bar1map_len);
11910 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11911 				dev_err(&pdev->dev,
11912 					   "ioremap failed for SLI4 HBA "
11913 					    "control registers.\n");
11914 				error = -ENOMEM;
11915 				goto out_iounmap_conf;
11916 			}
11917 			phba->pci_bar2_memmap_p =
11918 					 phba->sli4_hba.ctrl_regs_memmap_p;
11919 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11920 		} else {
11921 			error = -ENOMEM;
11922 			goto out_iounmap_conf;
11923 		}
11924 	}
11925 
11926 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11927 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11928 		/*
11929 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11930 		 * virtual address and setup the registers.
11931 		 */
11932 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11933 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11934 		phba->sli4_hba.drbl_regs_memmap_p =
11935 				ioremap(phba->pci_bar1_map, bar1map_len);
11936 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11937 			dev_err(&pdev->dev,
11938 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11939 			error = -ENOMEM;
11940 			goto out_iounmap_conf;
11941 		}
11942 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11943 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11944 	}
11945 
11946 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11947 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11948 			/*
11949 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11950 			 * a kernel virtual address and setup the registers.
11951 			 */
11952 			phba->pci_bar2_map = pci_resource_start(pdev,
11953 								PCI_64BIT_BAR4);
11954 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11955 			phba->sli4_hba.drbl_regs_memmap_p =
11956 					ioremap(phba->pci_bar2_map,
11957 						bar2map_len);
11958 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11959 				dev_err(&pdev->dev,
11960 					   "ioremap failed for SLI4 HBA"
11961 					   " doorbell registers.\n");
11962 				error = -ENOMEM;
11963 				goto out_iounmap_ctrl;
11964 			}
11965 			phba->pci_bar4_memmap_p =
11966 					phba->sli4_hba.drbl_regs_memmap_p;
11967 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11968 			if (error)
11969 				goto out_iounmap_all;
11970 		} else {
11971 			error = -ENOMEM;
11972 			goto out_iounmap_all;
11973 		}
11974 	}
11975 
11976 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11977 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11978 		/*
11979 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11980 		 * virtual address and setup the registers.
11981 		 */
11982 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11983 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11984 		phba->sli4_hba.dpp_regs_memmap_p =
11985 				ioremap(phba->pci_bar2_map, bar2map_len);
11986 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11987 			dev_err(&pdev->dev,
11988 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11989 			error = -ENOMEM;
11990 			goto out_iounmap_ctrl;
11991 		}
11992 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11993 	}
11994 
11995 	/* Set up the EQ/CQ register handeling functions now */
11996 	switch (if_type) {
11997 	case LPFC_SLI_INTF_IF_TYPE_0:
11998 	case LPFC_SLI_INTF_IF_TYPE_2:
11999 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
12000 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12001 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12002 		break;
12003 	case LPFC_SLI_INTF_IF_TYPE_6:
12004 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12005 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12006 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12007 		break;
12008 	default:
12009 		break;
12010 	}
12011 
12012 	return 0;
12013 
12014 out_iounmap_all:
12015 	iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12016 out_iounmap_ctrl:
12017 	iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12018 out_iounmap_conf:
12019 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12020 
12021 	return error;
12022 }
12023 
12024 /**
12025  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12026  * @phba: pointer to lpfc hba data structure.
12027  *
12028  * This routine is invoked to unset the PCI device memory space for device
12029  * with SLI-4 interface spec.
12030  **/
12031 static void
12032 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12033 {
12034 	uint32_t if_type;
12035 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12036 
12037 	switch (if_type) {
12038 	case LPFC_SLI_INTF_IF_TYPE_0:
12039 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12040 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12041 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12042 		break;
12043 	case LPFC_SLI_INTF_IF_TYPE_2:
12044 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12045 		break;
12046 	case LPFC_SLI_INTF_IF_TYPE_6:
12047 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12048 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12049 		if (phba->sli4_hba.dpp_regs_memmap_p)
12050 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12051 		break;
12052 	case LPFC_SLI_INTF_IF_TYPE_1:
12053 	default:
12054 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12055 			   "FATAL - unsupported SLI4 interface type - %d\n",
12056 			   if_type);
12057 		break;
12058 	}
12059 }
12060 
12061 /**
12062  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12063  * @phba: pointer to lpfc hba data structure.
12064  *
12065  * This routine is invoked to enable the MSI-X interrupt vectors to device
12066  * with SLI-3 interface specs.
12067  *
12068  * Return codes
12069  *   0 - successful
12070  *   other values - error
12071  **/
12072 static int
12073 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12074 {
12075 	int rc;
12076 	LPFC_MBOXQ_t *pmb;
12077 
12078 	/* Set up MSI-X multi-message vectors */
12079 	rc = pci_alloc_irq_vectors(phba->pcidev,
12080 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12081 	if (rc < 0) {
12082 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12083 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12084 		goto vec_fail_out;
12085 	}
12086 
12087 	/*
12088 	 * Assign MSI-X vectors to interrupt handlers
12089 	 */
12090 
12091 	/* vector-0 is associated to slow-path handler */
12092 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12093 			 &lpfc_sli_sp_intr_handler, 0,
12094 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12095 	if (rc) {
12096 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12097 				"0421 MSI-X slow-path request_irq failed "
12098 				"(%d)\n", rc);
12099 		goto msi_fail_out;
12100 	}
12101 
12102 	/* vector-1 is associated to fast-path handler */
12103 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12104 			 &lpfc_sli_fp_intr_handler, 0,
12105 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12106 
12107 	if (rc) {
12108 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12109 				"0429 MSI-X fast-path request_irq failed "
12110 				"(%d)\n", rc);
12111 		goto irq_fail_out;
12112 	}
12113 
12114 	/*
12115 	 * Configure HBA MSI-X attention conditions to messages
12116 	 */
12117 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12118 
12119 	if (!pmb) {
12120 		rc = -ENOMEM;
12121 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12122 				"0474 Unable to allocate memory for issuing "
12123 				"MBOX_CONFIG_MSI command\n");
12124 		goto mem_fail_out;
12125 	}
12126 	rc = lpfc_config_msi(phba, pmb);
12127 	if (rc)
12128 		goto mbx_fail_out;
12129 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12130 	if (rc != MBX_SUCCESS) {
12131 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12132 				"0351 Config MSI mailbox command failed, "
12133 				"mbxCmd x%x, mbxStatus x%x\n",
12134 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12135 		goto mbx_fail_out;
12136 	}
12137 
12138 	/* Free memory allocated for mailbox command */
12139 	mempool_free(pmb, phba->mbox_mem_pool);
12140 	return rc;
12141 
12142 mbx_fail_out:
12143 	/* Free memory allocated for mailbox command */
12144 	mempool_free(pmb, phba->mbox_mem_pool);
12145 
12146 mem_fail_out:
12147 	/* free the irq already requested */
12148 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12149 
12150 irq_fail_out:
12151 	/* free the irq already requested */
12152 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12153 
12154 msi_fail_out:
12155 	/* Unconfigure MSI-X capability structure */
12156 	pci_free_irq_vectors(phba->pcidev);
12157 
12158 vec_fail_out:
12159 	return rc;
12160 }
12161 
12162 /**
12163  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12164  * @phba: pointer to lpfc hba data structure.
12165  *
12166  * This routine is invoked to enable the MSI interrupt mode to device with
12167  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12168  * enable the MSI vector. The device driver is responsible for calling the
12169  * request_irq() to register MSI vector with a interrupt the handler, which
12170  * is done in this function.
12171  *
12172  * Return codes
12173  * 	0 - successful
12174  * 	other values - error
12175  */
12176 static int
12177 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12178 {
12179 	int rc;
12180 
12181 	rc = pci_enable_msi(phba->pcidev);
12182 	if (!rc)
12183 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12184 				"0012 PCI enable MSI mode success.\n");
12185 	else {
12186 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12187 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12188 		return rc;
12189 	}
12190 
12191 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12192 			 0, LPFC_DRIVER_NAME, phba);
12193 	if (rc) {
12194 		pci_disable_msi(phba->pcidev);
12195 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12196 				"0478 MSI request_irq failed (%d)\n", rc);
12197 	}
12198 	return rc;
12199 }
12200 
12201 /**
12202  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12203  * @phba: pointer to lpfc hba data structure.
12204  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12205  *
12206  * This routine is invoked to enable device interrupt and associate driver's
12207  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12208  * spec. Depends on the interrupt mode configured to the driver, the driver
12209  * will try to fallback from the configured interrupt mode to an interrupt
12210  * mode which is supported by the platform, kernel, and device in the order
12211  * of:
12212  * MSI-X -> MSI -> IRQ.
12213  *
12214  * Return codes
12215  *   0 - successful
12216  *   other values - error
12217  **/
12218 static uint32_t
12219 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12220 {
12221 	uint32_t intr_mode = LPFC_INTR_ERROR;
12222 	int retval;
12223 
12224 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12225 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12226 	if (retval)
12227 		return intr_mode;
12228 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12229 
12230 	if (cfg_mode == 2) {
12231 		/* Now, try to enable MSI-X interrupt mode */
12232 		retval = lpfc_sli_enable_msix(phba);
12233 		if (!retval) {
12234 			/* Indicate initialization to MSI-X mode */
12235 			phba->intr_type = MSIX;
12236 			intr_mode = 2;
12237 		}
12238 	}
12239 
12240 	/* Fallback to MSI if MSI-X initialization failed */
12241 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12242 		retval = lpfc_sli_enable_msi(phba);
12243 		if (!retval) {
12244 			/* Indicate initialization to MSI mode */
12245 			phba->intr_type = MSI;
12246 			intr_mode = 1;
12247 		}
12248 	}
12249 
12250 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12251 	if (phba->intr_type == NONE) {
12252 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12253 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12254 		if (!retval) {
12255 			/* Indicate initialization to INTx mode */
12256 			phba->intr_type = INTx;
12257 			intr_mode = 0;
12258 		}
12259 	}
12260 	return intr_mode;
12261 }
12262 
12263 /**
12264  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12265  * @phba: pointer to lpfc hba data structure.
12266  *
12267  * This routine is invoked to disable device interrupt and disassociate the
12268  * driver's interrupt handler(s) from interrupt vector(s) to device with
12269  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12270  * release the interrupt vector(s) for the message signaled interrupt.
12271  **/
12272 static void
12273 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12274 {
12275 	int nr_irqs, i;
12276 
12277 	if (phba->intr_type == MSIX)
12278 		nr_irqs = LPFC_MSIX_VECTORS;
12279 	else
12280 		nr_irqs = 1;
12281 
12282 	for (i = 0; i < nr_irqs; i++)
12283 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12284 	pci_free_irq_vectors(phba->pcidev);
12285 
12286 	/* Reset interrupt management states */
12287 	phba->intr_type = NONE;
12288 	phba->sli.slistat.sli_intr = 0;
12289 }
12290 
12291 /**
12292  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12293  * @phba: pointer to lpfc hba data structure.
12294  * @id: EQ vector index or Hardware Queue index
12295  * @match: LPFC_FIND_BY_EQ = match by EQ
12296  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12297  * Return the CPU that matches the selection criteria
12298  */
12299 static uint16_t
12300 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12301 {
12302 	struct lpfc_vector_map_info *cpup;
12303 	int cpu;
12304 
12305 	/* Loop through all CPUs */
12306 	for_each_present_cpu(cpu) {
12307 		cpup = &phba->sli4_hba.cpu_map[cpu];
12308 
12309 		/* If we are matching by EQ, there may be multiple CPUs using
12310 		 * using the same vector, so select the one with
12311 		 * LPFC_CPU_FIRST_IRQ set.
12312 		 */
12313 		if ((match == LPFC_FIND_BY_EQ) &&
12314 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12315 		    (cpup->eq == id))
12316 			return cpu;
12317 
12318 		/* If matching by HDWQ, select the first CPU that matches */
12319 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12320 			return cpu;
12321 	}
12322 	return 0;
12323 }
12324 
12325 #ifdef CONFIG_X86
12326 /**
12327  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12328  * @phba: pointer to lpfc hba data structure.
12329  * @cpu: CPU map index
12330  * @phys_id: CPU package physical id
12331  * @core_id: CPU core id
12332  */
12333 static int
12334 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12335 		uint16_t phys_id, uint16_t core_id)
12336 {
12337 	struct lpfc_vector_map_info *cpup;
12338 	int idx;
12339 
12340 	for_each_present_cpu(idx) {
12341 		cpup = &phba->sli4_hba.cpu_map[idx];
12342 		/* Does the cpup match the one we are looking for */
12343 		if ((cpup->phys_id == phys_id) &&
12344 		    (cpup->core_id == core_id) &&
12345 		    (cpu != idx))
12346 			return 1;
12347 	}
12348 	return 0;
12349 }
12350 #endif
12351 
12352 /*
12353  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12354  * @phba: pointer to lpfc hba data structure.
12355  * @eqidx: index for eq and irq vector
12356  * @flag: flags to set for vector_map structure
12357  * @cpu: cpu used to index vector_map structure
12358  *
12359  * The routine assigns eq info into vector_map structure
12360  */
12361 static inline void
12362 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12363 			unsigned int cpu)
12364 {
12365 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12366 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12367 
12368 	cpup->eq = eqidx;
12369 	cpup->flag |= flag;
12370 
12371 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12372 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12373 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12374 }
12375 
12376 /**
12377  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12378  * @phba: pointer to lpfc hba data structure.
12379  *
12380  * The routine initializes the cpu_map array structure
12381  */
12382 static void
12383 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12384 {
12385 	struct lpfc_vector_map_info *cpup;
12386 	struct lpfc_eq_intr_info *eqi;
12387 	int cpu;
12388 
12389 	for_each_possible_cpu(cpu) {
12390 		cpup = &phba->sli4_hba.cpu_map[cpu];
12391 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12392 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12393 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12394 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12395 		cpup->flag = 0;
12396 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12397 		INIT_LIST_HEAD(&eqi->list);
12398 		eqi->icnt = 0;
12399 	}
12400 }
12401 
12402 /**
12403  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12404  * @phba: pointer to lpfc hba data structure.
12405  *
12406  * The routine initializes the hba_eq_hdl array structure
12407  */
12408 static void
12409 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12410 {
12411 	struct lpfc_hba_eq_hdl *eqhdl;
12412 	int i;
12413 
12414 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12415 		eqhdl = lpfc_get_eq_hdl(i);
12416 		eqhdl->irq = LPFC_VECTOR_MAP_EMPTY;
12417 		eqhdl->phba = phba;
12418 	}
12419 }
12420 
12421 /**
12422  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12423  * @phba: pointer to lpfc hba data structure.
12424  * @vectors: number of msix vectors allocated.
12425  *
12426  * The routine will figure out the CPU affinity assignment for every
12427  * MSI-X vector allocated for the HBA.
12428  * In addition, the CPU to IO channel mapping will be calculated
12429  * and the phba->sli4_hba.cpu_map array will reflect this.
12430  */
12431 static void
12432 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12433 {
12434 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12435 	int max_phys_id, min_phys_id;
12436 	int max_core_id, min_core_id;
12437 	struct lpfc_vector_map_info *cpup;
12438 	struct lpfc_vector_map_info *new_cpup;
12439 #ifdef CONFIG_X86
12440 	struct cpuinfo_x86 *cpuinfo;
12441 #endif
12442 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12443 	struct lpfc_hdwq_stat *c_stat;
12444 #endif
12445 
12446 	max_phys_id = 0;
12447 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12448 	max_core_id = 0;
12449 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12450 
12451 	/* Update CPU map with physical id and core id of each CPU */
12452 	for_each_present_cpu(cpu) {
12453 		cpup = &phba->sli4_hba.cpu_map[cpu];
12454 #ifdef CONFIG_X86
12455 		cpuinfo = &cpu_data(cpu);
12456 		cpup->phys_id = cpuinfo->phys_proc_id;
12457 		cpup->core_id = cpuinfo->cpu_core_id;
12458 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12459 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12460 #else
12461 		/* No distinction between CPUs for other platforms */
12462 		cpup->phys_id = 0;
12463 		cpup->core_id = cpu;
12464 #endif
12465 
12466 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12467 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12468 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12469 
12470 		if (cpup->phys_id > max_phys_id)
12471 			max_phys_id = cpup->phys_id;
12472 		if (cpup->phys_id < min_phys_id)
12473 			min_phys_id = cpup->phys_id;
12474 
12475 		if (cpup->core_id > max_core_id)
12476 			max_core_id = cpup->core_id;
12477 		if (cpup->core_id < min_core_id)
12478 			min_core_id = cpup->core_id;
12479 	}
12480 
12481 	/* After looking at each irq vector assigned to this pcidev, its
12482 	 * possible to see that not ALL CPUs have been accounted for.
12483 	 * Next we will set any unassigned (unaffinitized) cpu map
12484 	 * entries to a IRQ on the same phys_id.
12485 	 */
12486 	first_cpu = cpumask_first(cpu_present_mask);
12487 	start_cpu = first_cpu;
12488 
12489 	for_each_present_cpu(cpu) {
12490 		cpup = &phba->sli4_hba.cpu_map[cpu];
12491 
12492 		/* Is this CPU entry unassigned */
12493 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12494 			/* Mark CPU as IRQ not assigned by the kernel */
12495 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12496 
12497 			/* If so, find a new_cpup thats on the the SAME
12498 			 * phys_id as cpup. start_cpu will start where we
12499 			 * left off so all unassigned entries don't get assgined
12500 			 * the IRQ of the first entry.
12501 			 */
12502 			new_cpu = start_cpu;
12503 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12504 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12505 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12506 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12507 				    (new_cpup->phys_id == cpup->phys_id))
12508 					goto found_same;
12509 				new_cpu = cpumask_next(
12510 					new_cpu, cpu_present_mask);
12511 				if (new_cpu == nr_cpumask_bits)
12512 					new_cpu = first_cpu;
12513 			}
12514 			/* At this point, we leave the CPU as unassigned */
12515 			continue;
12516 found_same:
12517 			/* We found a matching phys_id, so copy the IRQ info */
12518 			cpup->eq = new_cpup->eq;
12519 
12520 			/* Bump start_cpu to the next slot to minmize the
12521 			 * chance of having multiple unassigned CPU entries
12522 			 * selecting the same IRQ.
12523 			 */
12524 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12525 			if (start_cpu == nr_cpumask_bits)
12526 				start_cpu = first_cpu;
12527 
12528 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12529 					"3337 Set Affinity: CPU %d "
12530 					"eq %d from peer cpu %d same "
12531 					"phys_id (%d)\n",
12532 					cpu, cpup->eq, new_cpu,
12533 					cpup->phys_id);
12534 		}
12535 	}
12536 
12537 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12538 	start_cpu = first_cpu;
12539 
12540 	for_each_present_cpu(cpu) {
12541 		cpup = &phba->sli4_hba.cpu_map[cpu];
12542 
12543 		/* Is this entry unassigned */
12544 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12545 			/* Mark it as IRQ not assigned by the kernel */
12546 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12547 
12548 			/* If so, find a new_cpup thats on ANY phys_id
12549 			 * as the cpup. start_cpu will start where we
12550 			 * left off so all unassigned entries don't get
12551 			 * assigned the IRQ of the first entry.
12552 			 */
12553 			new_cpu = start_cpu;
12554 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12555 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12556 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12557 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12558 					goto found_any;
12559 				new_cpu = cpumask_next(
12560 					new_cpu, cpu_present_mask);
12561 				if (new_cpu == nr_cpumask_bits)
12562 					new_cpu = first_cpu;
12563 			}
12564 			/* We should never leave an entry unassigned */
12565 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12566 					"3339 Set Affinity: CPU %d "
12567 					"eq %d UNASSIGNED\n",
12568 					cpup->hdwq, cpup->eq);
12569 			continue;
12570 found_any:
12571 			/* We found an available entry, copy the IRQ info */
12572 			cpup->eq = new_cpup->eq;
12573 
12574 			/* Bump start_cpu to the next slot to minmize the
12575 			 * chance of having multiple unassigned CPU entries
12576 			 * selecting the same IRQ.
12577 			 */
12578 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12579 			if (start_cpu == nr_cpumask_bits)
12580 				start_cpu = first_cpu;
12581 
12582 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12583 					"3338 Set Affinity: CPU %d "
12584 					"eq %d from peer cpu %d (%d/%d)\n",
12585 					cpu, cpup->eq, new_cpu,
12586 					new_cpup->phys_id, new_cpup->core_id);
12587 		}
12588 	}
12589 
12590 	/* Assign hdwq indices that are unique across all cpus in the map
12591 	 * that are also FIRST_CPUs.
12592 	 */
12593 	idx = 0;
12594 	for_each_present_cpu(cpu) {
12595 		cpup = &phba->sli4_hba.cpu_map[cpu];
12596 
12597 		/* Only FIRST IRQs get a hdwq index assignment. */
12598 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12599 			continue;
12600 
12601 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12602 		cpup->hdwq = idx;
12603 		idx++;
12604 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12605 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12606 				"hdwq %d eq %d flg x%x\n",
12607 				cpu, cpup->phys_id, cpup->core_id,
12608 				cpup->hdwq, cpup->eq, cpup->flag);
12609 	}
12610 	/* Associate a hdwq with each cpu_map entry
12611 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12612 	 * hardware queues then CPUs. For that case we will just round-robin
12613 	 * the available hardware queues as they get assigned to CPUs.
12614 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12615 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12616 	 * and needs to start at 0.
12617 	 */
12618 	next_idx = idx;
12619 	start_cpu = 0;
12620 	idx = 0;
12621 	for_each_present_cpu(cpu) {
12622 		cpup = &phba->sli4_hba.cpu_map[cpu];
12623 
12624 		/* FIRST cpus are already mapped. */
12625 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12626 			continue;
12627 
12628 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12629 		 * of the unassigned cpus to the next idx so that all
12630 		 * hdw queues are fully utilized.
12631 		 */
12632 		if (next_idx < phba->cfg_hdw_queue) {
12633 			cpup->hdwq = next_idx;
12634 			next_idx++;
12635 			continue;
12636 		}
12637 
12638 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12639 		 * Hardware Queue for another CPU, so be smart about it
12640 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12641 		 * (CPU package) and core_id.
12642 		 */
12643 		new_cpu = start_cpu;
12644 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12645 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12646 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12647 			    new_cpup->phys_id == cpup->phys_id &&
12648 			    new_cpup->core_id == cpup->core_id) {
12649 				goto found_hdwq;
12650 			}
12651 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12652 			if (new_cpu == nr_cpumask_bits)
12653 				new_cpu = first_cpu;
12654 		}
12655 
12656 		/* If we can't match both phys_id and core_id,
12657 		 * settle for just a phys_id match.
12658 		 */
12659 		new_cpu = start_cpu;
12660 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12661 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12662 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12663 			    new_cpup->phys_id == cpup->phys_id)
12664 				goto found_hdwq;
12665 
12666 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12667 			if (new_cpu == nr_cpumask_bits)
12668 				new_cpu = first_cpu;
12669 		}
12670 
12671 		/* Otherwise just round robin on cfg_hdw_queue */
12672 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12673 		idx++;
12674 		goto logit;
12675  found_hdwq:
12676 		/* We found an available entry, copy the IRQ info */
12677 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12678 		if (start_cpu == nr_cpumask_bits)
12679 			start_cpu = first_cpu;
12680 		cpup->hdwq = new_cpup->hdwq;
12681  logit:
12682 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12683 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12684 				"hdwq %d eq %d flg x%x\n",
12685 				cpu, cpup->phys_id, cpup->core_id,
12686 				cpup->hdwq, cpup->eq, cpup->flag);
12687 	}
12688 
12689 	/*
12690 	 * Initialize the cpu_map slots for not-present cpus in case
12691 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12692 	 */
12693 	idx = 0;
12694 	for_each_possible_cpu(cpu) {
12695 		cpup = &phba->sli4_hba.cpu_map[cpu];
12696 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12697 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12698 		c_stat->hdwq_no = cpup->hdwq;
12699 #endif
12700 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12701 			continue;
12702 
12703 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12704 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12705 		c_stat->hdwq_no = cpup->hdwq;
12706 #endif
12707 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12708 				"3340 Set Affinity: not present "
12709 				"CPU %d hdwq %d\n",
12710 				cpu, cpup->hdwq);
12711 	}
12712 
12713 	/* The cpu_map array will be used later during initialization
12714 	 * when EQ / CQ / WQs are allocated and configured.
12715 	 */
12716 	return;
12717 }
12718 
12719 /**
12720  * lpfc_cpuhp_get_eq
12721  *
12722  * @phba:   pointer to lpfc hba data structure.
12723  * @cpu:    cpu going offline
12724  * @eqlist: eq list to append to
12725  */
12726 static int
12727 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12728 		  struct list_head *eqlist)
12729 {
12730 	const struct cpumask *maskp;
12731 	struct lpfc_queue *eq;
12732 	struct cpumask *tmp;
12733 	u16 idx;
12734 
12735 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12736 	if (!tmp)
12737 		return -ENOMEM;
12738 
12739 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12740 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12741 		if (!maskp)
12742 			continue;
12743 		/*
12744 		 * if irq is not affinitized to the cpu going
12745 		 * then we don't need to poll the eq attached
12746 		 * to it.
12747 		 */
12748 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12749 			continue;
12750 		/* get the cpus that are online and are affini-
12751 		 * tized to this irq vector.  If the count is
12752 		 * more than 1 then cpuhp is not going to shut-
12753 		 * down this vector.  Since this cpu has not
12754 		 * gone offline yet, we need >1.
12755 		 */
12756 		cpumask_and(tmp, maskp, cpu_online_mask);
12757 		if (cpumask_weight(tmp) > 1)
12758 			continue;
12759 
12760 		/* Now that we have an irq to shutdown, get the eq
12761 		 * mapped to this irq.  Note: multiple hdwq's in
12762 		 * the software can share an eq, but eventually
12763 		 * only eq will be mapped to this vector
12764 		 */
12765 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12766 		list_add(&eq->_poll_list, eqlist);
12767 	}
12768 	kfree(tmp);
12769 	return 0;
12770 }
12771 
12772 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12773 {
12774 	if (phba->sli_rev != LPFC_SLI_REV4)
12775 		return;
12776 
12777 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12778 					    &phba->cpuhp);
12779 	/*
12780 	 * unregistering the instance doesn't stop the polling
12781 	 * timer. Wait for the poll timer to retire.
12782 	 */
12783 	synchronize_rcu();
12784 	del_timer_sync(&phba->cpuhp_poll_timer);
12785 }
12786 
12787 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12788 {
12789 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
12790 		return;
12791 
12792 	__lpfc_cpuhp_remove(phba);
12793 }
12794 
12795 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12796 {
12797 	if (phba->sli_rev != LPFC_SLI_REV4)
12798 		return;
12799 
12800 	rcu_read_lock();
12801 
12802 	if (!list_empty(&phba->poll_list))
12803 		mod_timer(&phba->cpuhp_poll_timer,
12804 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12805 
12806 	rcu_read_unlock();
12807 
12808 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12809 					 &phba->cpuhp);
12810 }
12811 
12812 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12813 {
12814 	if (phba->pport->load_flag & FC_UNLOADING) {
12815 		*retval = -EAGAIN;
12816 		return true;
12817 	}
12818 
12819 	if (phba->sli_rev != LPFC_SLI_REV4) {
12820 		*retval = 0;
12821 		return true;
12822 	}
12823 
12824 	/* proceed with the hotplug */
12825 	return false;
12826 }
12827 
12828 /**
12829  * lpfc_irq_set_aff - set IRQ affinity
12830  * @eqhdl: EQ handle
12831  * @cpu: cpu to set affinity
12832  *
12833  **/
12834 static inline void
12835 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12836 {
12837 	cpumask_clear(&eqhdl->aff_mask);
12838 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12839 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12840 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12841 }
12842 
12843 /**
12844  * lpfc_irq_clear_aff - clear IRQ affinity
12845  * @eqhdl: EQ handle
12846  *
12847  **/
12848 static inline void
12849 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12850 {
12851 	cpumask_clear(&eqhdl->aff_mask);
12852 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12853 }
12854 
12855 /**
12856  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12857  * @phba: pointer to HBA context object.
12858  * @cpu: cpu going offline/online
12859  * @offline: true, cpu is going offline. false, cpu is coming online.
12860  *
12861  * If cpu is going offline, we'll try our best effort to find the next
12862  * online cpu on the phba's original_mask and migrate all offlining IRQ
12863  * affinities.
12864  *
12865  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12866  *
12867  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12868  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12869  *
12870  **/
12871 static void
12872 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12873 {
12874 	struct lpfc_vector_map_info *cpup;
12875 	struct cpumask *aff_mask;
12876 	unsigned int cpu_select, cpu_next, idx;
12877 	const struct cpumask *orig_mask;
12878 
12879 	if (phba->irq_chann_mode == NORMAL_MODE)
12880 		return;
12881 
12882 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12883 
12884 	if (!cpumask_test_cpu(cpu, orig_mask))
12885 		return;
12886 
12887 	cpup = &phba->sli4_hba.cpu_map[cpu];
12888 
12889 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12890 		return;
12891 
12892 	if (offline) {
12893 		/* Find next online CPU on original mask */
12894 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12895 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12896 
12897 		/* Found a valid CPU */
12898 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12899 			/* Go through each eqhdl and ensure offlining
12900 			 * cpu aff_mask is migrated
12901 			 */
12902 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12903 				aff_mask = lpfc_get_aff_mask(idx);
12904 
12905 				/* Migrate affinity */
12906 				if (cpumask_test_cpu(cpu, aff_mask))
12907 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12908 							 cpu_select);
12909 			}
12910 		} else {
12911 			/* Rely on irqbalance if no online CPUs left on NUMA */
12912 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12913 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12914 		}
12915 	} else {
12916 		/* Migrate affinity back to this CPU */
12917 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12918 	}
12919 }
12920 
12921 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12922 {
12923 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12924 	struct lpfc_queue *eq, *next;
12925 	LIST_HEAD(eqlist);
12926 	int retval;
12927 
12928 	if (!phba) {
12929 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12930 		return 0;
12931 	}
12932 
12933 	if (__lpfc_cpuhp_checks(phba, &retval))
12934 		return retval;
12935 
12936 	lpfc_irq_rebalance(phba, cpu, true);
12937 
12938 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12939 	if (retval)
12940 		return retval;
12941 
12942 	/* start polling on these eq's */
12943 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12944 		list_del_init(&eq->_poll_list);
12945 		lpfc_sli4_start_polling(eq);
12946 	}
12947 
12948 	return 0;
12949 }
12950 
12951 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12952 {
12953 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12954 	struct lpfc_queue *eq, *next;
12955 	unsigned int n;
12956 	int retval;
12957 
12958 	if (!phba) {
12959 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12960 		return 0;
12961 	}
12962 
12963 	if (__lpfc_cpuhp_checks(phba, &retval))
12964 		return retval;
12965 
12966 	lpfc_irq_rebalance(phba, cpu, false);
12967 
12968 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12969 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12970 		if (n == cpu)
12971 			lpfc_sli4_stop_polling(eq);
12972 	}
12973 
12974 	return 0;
12975 }
12976 
12977 /**
12978  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12979  * @phba: pointer to lpfc hba data structure.
12980  *
12981  * This routine is invoked to enable the MSI-X interrupt vectors to device
12982  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12983  * to cpus on the system.
12984  *
12985  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12986  * the number of cpus on the same numa node as this adapter.  The vectors are
12987  * allocated without requesting OS affinity mapping.  A vector will be
12988  * allocated and assigned to each online and offline cpu.  If the cpu is
12989  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12990  * affinity will be set to the nearest peer cpu within the numa node that is
12991  * online.  If there are no online cpus within the numa node, affinity is not
12992  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12993  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12994  * configured.
12995  *
12996  * If numa mode is not enabled and there is more than 1 vector allocated, then
12997  * the driver relies on the managed irq interface where the OS assigns vector to
12998  * cpu affinity.  The driver will then use that affinity mapping to setup its
12999  * cpu mapping table.
13000  *
13001  * Return codes
13002  * 0 - successful
13003  * other values - error
13004  **/
13005 static int
13006 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
13007 {
13008 	int vectors, rc, index;
13009 	char *name;
13010 	const struct cpumask *aff_mask = NULL;
13011 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13012 	struct lpfc_vector_map_info *cpup;
13013 	struct lpfc_hba_eq_hdl *eqhdl;
13014 	const struct cpumask *maskp;
13015 	unsigned int flags = PCI_IRQ_MSIX;
13016 
13017 	/* Set up MSI-X multi-message vectors */
13018 	vectors = phba->cfg_irq_chann;
13019 
13020 	if (phba->irq_chann_mode != NORMAL_MODE)
13021 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13022 
13023 	if (aff_mask) {
13024 		cpu_cnt = cpumask_weight(aff_mask);
13025 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13026 
13027 		/* cpu: iterates over aff_mask including offline or online
13028 		 * cpu_select: iterates over online aff_mask to set affinity
13029 		 */
13030 		cpu = cpumask_first(aff_mask);
13031 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13032 	} else {
13033 		flags |= PCI_IRQ_AFFINITY;
13034 	}
13035 
13036 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13037 	if (rc < 0) {
13038 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13039 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13040 		goto vec_fail_out;
13041 	}
13042 	vectors = rc;
13043 
13044 	/* Assign MSI-X vectors to interrupt handlers */
13045 	for (index = 0; index < vectors; index++) {
13046 		eqhdl = lpfc_get_eq_hdl(index);
13047 		name = eqhdl->handler_name;
13048 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13049 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13050 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13051 
13052 		eqhdl->idx = index;
13053 		rc = request_irq(pci_irq_vector(phba->pcidev, index),
13054 			 &lpfc_sli4_hba_intr_handler, 0,
13055 			 name, eqhdl);
13056 		if (rc) {
13057 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13058 					"0486 MSI-X fast-path (%d) "
13059 					"request_irq failed (%d)\n", index, rc);
13060 			goto cfg_fail_out;
13061 		}
13062 
13063 		eqhdl->irq = pci_irq_vector(phba->pcidev, index);
13064 
13065 		if (aff_mask) {
13066 			/* If found a neighboring online cpu, set affinity */
13067 			if (cpu_select < nr_cpu_ids)
13068 				lpfc_irq_set_aff(eqhdl, cpu_select);
13069 
13070 			/* Assign EQ to cpu_map */
13071 			lpfc_assign_eq_map_info(phba, index,
13072 						LPFC_CPU_FIRST_IRQ,
13073 						cpu);
13074 
13075 			/* Iterate to next offline or online cpu in aff_mask */
13076 			cpu = cpumask_next(cpu, aff_mask);
13077 
13078 			/* Find next online cpu in aff_mask to set affinity */
13079 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13080 		} else if (vectors == 1) {
13081 			cpu = cpumask_first(cpu_present_mask);
13082 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13083 						cpu);
13084 		} else {
13085 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13086 
13087 			/* Loop through all CPUs associated with vector index */
13088 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13089 				cpup = &phba->sli4_hba.cpu_map[cpu];
13090 
13091 				/* If this is the first CPU thats assigned to
13092 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13093 				 *
13094 				 * With certain platforms its possible that irq
13095 				 * vectors are affinitized to all the cpu's.
13096 				 * This can result in each cpu_map.eq to be set
13097 				 * to the last vector, resulting in overwrite
13098 				 * of all the previous cpu_map.eq.  Ensure that
13099 				 * each vector receives a place in cpu_map.
13100 				 * Later call to lpfc_cpu_affinity_check will
13101 				 * ensure we are nicely balanced out.
13102 				 */
13103 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13104 					continue;
13105 				lpfc_assign_eq_map_info(phba, index,
13106 							LPFC_CPU_FIRST_IRQ,
13107 							cpu);
13108 				break;
13109 			}
13110 		}
13111 	}
13112 
13113 	if (vectors != phba->cfg_irq_chann) {
13114 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13115 				"3238 Reducing IO channels to match number of "
13116 				"MSI-X vectors, requested %d got %d\n",
13117 				phba->cfg_irq_chann, vectors);
13118 		if (phba->cfg_irq_chann > vectors)
13119 			phba->cfg_irq_chann = vectors;
13120 	}
13121 
13122 	return rc;
13123 
13124 cfg_fail_out:
13125 	/* free the irq already requested */
13126 	for (--index; index >= 0; index--) {
13127 		eqhdl = lpfc_get_eq_hdl(index);
13128 		lpfc_irq_clear_aff(eqhdl);
13129 		free_irq(eqhdl->irq, eqhdl);
13130 	}
13131 
13132 	/* Unconfigure MSI-X capability structure */
13133 	pci_free_irq_vectors(phba->pcidev);
13134 
13135 vec_fail_out:
13136 	return rc;
13137 }
13138 
13139 /**
13140  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13141  * @phba: pointer to lpfc hba data structure.
13142  *
13143  * This routine is invoked to enable the MSI interrupt mode to device with
13144  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13145  * called to enable the MSI vector. The device driver is responsible for
13146  * calling the request_irq() to register MSI vector with a interrupt the
13147  * handler, which is done in this function.
13148  *
13149  * Return codes
13150  * 	0 - successful
13151  * 	other values - error
13152  **/
13153 static int
13154 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13155 {
13156 	int rc, index;
13157 	unsigned int cpu;
13158 	struct lpfc_hba_eq_hdl *eqhdl;
13159 
13160 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13161 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13162 	if (rc > 0)
13163 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13164 				"0487 PCI enable MSI mode success.\n");
13165 	else {
13166 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13167 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13168 		return rc ? rc : -1;
13169 	}
13170 
13171 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13172 			 0, LPFC_DRIVER_NAME, phba);
13173 	if (rc) {
13174 		pci_free_irq_vectors(phba->pcidev);
13175 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13176 				"0490 MSI request_irq failed (%d)\n", rc);
13177 		return rc;
13178 	}
13179 
13180 	eqhdl = lpfc_get_eq_hdl(0);
13181 	eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13182 
13183 	cpu = cpumask_first(cpu_present_mask);
13184 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13185 
13186 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13187 		eqhdl = lpfc_get_eq_hdl(index);
13188 		eqhdl->idx = index;
13189 	}
13190 
13191 	return 0;
13192 }
13193 
13194 /**
13195  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13196  * @phba: pointer to lpfc hba data structure.
13197  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13198  *
13199  * This routine is invoked to enable device interrupt and associate driver's
13200  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13201  * interface spec. Depends on the interrupt mode configured to the driver,
13202  * the driver will try to fallback from the configured interrupt mode to an
13203  * interrupt mode which is supported by the platform, kernel, and device in
13204  * the order of:
13205  * MSI-X -> MSI -> IRQ.
13206  *
13207  * Return codes
13208  * 	0 - successful
13209  * 	other values - error
13210  **/
13211 static uint32_t
13212 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13213 {
13214 	uint32_t intr_mode = LPFC_INTR_ERROR;
13215 	int retval, idx;
13216 
13217 	if (cfg_mode == 2) {
13218 		/* Preparation before conf_msi mbox cmd */
13219 		retval = 0;
13220 		if (!retval) {
13221 			/* Now, try to enable MSI-X interrupt mode */
13222 			retval = lpfc_sli4_enable_msix(phba);
13223 			if (!retval) {
13224 				/* Indicate initialization to MSI-X mode */
13225 				phba->intr_type = MSIX;
13226 				intr_mode = 2;
13227 			}
13228 		}
13229 	}
13230 
13231 	/* Fallback to MSI if MSI-X initialization failed */
13232 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13233 		retval = lpfc_sli4_enable_msi(phba);
13234 		if (!retval) {
13235 			/* Indicate initialization to MSI mode */
13236 			phba->intr_type = MSI;
13237 			intr_mode = 1;
13238 		}
13239 	}
13240 
13241 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13242 	if (phba->intr_type == NONE) {
13243 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13244 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13245 		if (!retval) {
13246 			struct lpfc_hba_eq_hdl *eqhdl;
13247 			unsigned int cpu;
13248 
13249 			/* Indicate initialization to INTx mode */
13250 			phba->intr_type = INTx;
13251 			intr_mode = 0;
13252 
13253 			eqhdl = lpfc_get_eq_hdl(0);
13254 			eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13255 
13256 			cpu = cpumask_first(cpu_present_mask);
13257 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13258 						cpu);
13259 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13260 				eqhdl = lpfc_get_eq_hdl(idx);
13261 				eqhdl->idx = idx;
13262 			}
13263 		}
13264 	}
13265 	return intr_mode;
13266 }
13267 
13268 /**
13269  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13270  * @phba: pointer to lpfc hba data structure.
13271  *
13272  * This routine is invoked to disable device interrupt and disassociate
13273  * the driver's interrupt handler(s) from interrupt vector(s) to device
13274  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13275  * will release the interrupt vector(s) for the message signaled interrupt.
13276  **/
13277 static void
13278 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13279 {
13280 	/* Disable the currently initialized interrupt mode */
13281 	if (phba->intr_type == MSIX) {
13282 		int index;
13283 		struct lpfc_hba_eq_hdl *eqhdl;
13284 
13285 		/* Free up MSI-X multi-message vectors */
13286 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13287 			eqhdl = lpfc_get_eq_hdl(index);
13288 			lpfc_irq_clear_aff(eqhdl);
13289 			free_irq(eqhdl->irq, eqhdl);
13290 		}
13291 	} else {
13292 		free_irq(phba->pcidev->irq, phba);
13293 	}
13294 
13295 	pci_free_irq_vectors(phba->pcidev);
13296 
13297 	/* Reset interrupt management states */
13298 	phba->intr_type = NONE;
13299 	phba->sli.slistat.sli_intr = 0;
13300 }
13301 
13302 /**
13303  * lpfc_unset_hba - Unset SLI3 hba device initialization
13304  * @phba: pointer to lpfc hba data structure.
13305  *
13306  * This routine is invoked to unset the HBA device initialization steps to
13307  * a device with SLI-3 interface spec.
13308  **/
13309 static void
13310 lpfc_unset_hba(struct lpfc_hba *phba)
13311 {
13312 	struct lpfc_vport *vport = phba->pport;
13313 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13314 
13315 	spin_lock_irq(shost->host_lock);
13316 	vport->load_flag |= FC_UNLOADING;
13317 	spin_unlock_irq(shost->host_lock);
13318 
13319 	kfree(phba->vpi_bmask);
13320 	kfree(phba->vpi_ids);
13321 
13322 	lpfc_stop_hba_timers(phba);
13323 
13324 	phba->pport->work_port_events = 0;
13325 
13326 	lpfc_sli_hba_down(phba);
13327 
13328 	lpfc_sli_brdrestart(phba);
13329 
13330 	lpfc_sli_disable_intr(phba);
13331 
13332 	return;
13333 }
13334 
13335 /**
13336  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13337  * @phba: Pointer to HBA context object.
13338  *
13339  * This function is called in the SLI4 code path to wait for completion
13340  * of device's XRIs exchange busy. It will check the XRI exchange busy
13341  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13342  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13343  * I/Os every 30 seconds, log error message, and wait forever. Only when
13344  * all XRI exchange busy complete, the driver unload shall proceed with
13345  * invoking the function reset ioctl mailbox command to the CNA and the
13346  * the rest of the driver unload resource release.
13347  **/
13348 static void
13349 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13350 {
13351 	struct lpfc_sli4_hdw_queue *qp;
13352 	int idx, ccnt;
13353 	int wait_time = 0;
13354 	int io_xri_cmpl = 1;
13355 	int nvmet_xri_cmpl = 1;
13356 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13357 
13358 	/* Driver just aborted IOs during the hba_unset process.  Pause
13359 	 * here to give the HBA time to complete the IO and get entries
13360 	 * into the abts lists.
13361 	 */
13362 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13363 
13364 	/* Wait for NVME pending IO to flush back to transport. */
13365 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13366 		lpfc_nvme_wait_for_io_drain(phba);
13367 
13368 	ccnt = 0;
13369 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13370 		qp = &phba->sli4_hba.hdwq[idx];
13371 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13372 		if (!io_xri_cmpl) /* if list is NOT empty */
13373 			ccnt++;
13374 	}
13375 	if (ccnt)
13376 		io_xri_cmpl = 0;
13377 
13378 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13379 		nvmet_xri_cmpl =
13380 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13381 	}
13382 
13383 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13384 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13385 			if (!nvmet_xri_cmpl)
13386 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13387 						"6424 NVMET XRI exchange busy "
13388 						"wait time: %d seconds.\n",
13389 						wait_time/1000);
13390 			if (!io_xri_cmpl)
13391 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13392 						"6100 IO XRI exchange busy "
13393 						"wait time: %d seconds.\n",
13394 						wait_time/1000);
13395 			if (!els_xri_cmpl)
13396 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13397 						"2878 ELS XRI exchange busy "
13398 						"wait time: %d seconds.\n",
13399 						wait_time/1000);
13400 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13401 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13402 		} else {
13403 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13404 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13405 		}
13406 
13407 		ccnt = 0;
13408 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13409 			qp = &phba->sli4_hba.hdwq[idx];
13410 			io_xri_cmpl = list_empty(
13411 			    &qp->lpfc_abts_io_buf_list);
13412 			if (!io_xri_cmpl) /* if list is NOT empty */
13413 				ccnt++;
13414 		}
13415 		if (ccnt)
13416 			io_xri_cmpl = 0;
13417 
13418 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13419 			nvmet_xri_cmpl = list_empty(
13420 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13421 		}
13422 		els_xri_cmpl =
13423 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13424 
13425 	}
13426 }
13427 
13428 /**
13429  * lpfc_sli4_hba_unset - Unset the fcoe hba
13430  * @phba: Pointer to HBA context object.
13431  *
13432  * This function is called in the SLI4 code path to reset the HBA's FCoE
13433  * function. The caller is not required to hold any lock. This routine
13434  * issues PCI function reset mailbox command to reset the FCoE function.
13435  * At the end of the function, it calls lpfc_hba_down_post function to
13436  * free any pending commands.
13437  **/
13438 static void
13439 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13440 {
13441 	int wait_cnt = 0;
13442 	LPFC_MBOXQ_t *mboxq;
13443 	struct pci_dev *pdev = phba->pcidev;
13444 
13445 	lpfc_stop_hba_timers(phba);
13446 	hrtimer_cancel(&phba->cmf_timer);
13447 
13448 	if (phba->pport)
13449 		phba->sli4_hba.intr_enable = 0;
13450 
13451 	/*
13452 	 * Gracefully wait out the potential current outstanding asynchronous
13453 	 * mailbox command.
13454 	 */
13455 
13456 	/* First, block any pending async mailbox command from posted */
13457 	spin_lock_irq(&phba->hbalock);
13458 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13459 	spin_unlock_irq(&phba->hbalock);
13460 	/* Now, trying to wait it out if we can */
13461 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13462 		msleep(10);
13463 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13464 			break;
13465 	}
13466 	/* Forcefully release the outstanding mailbox command if timed out */
13467 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13468 		spin_lock_irq(&phba->hbalock);
13469 		mboxq = phba->sli.mbox_active;
13470 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13471 		__lpfc_mbox_cmpl_put(phba, mboxq);
13472 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13473 		phba->sli.mbox_active = NULL;
13474 		spin_unlock_irq(&phba->hbalock);
13475 	}
13476 
13477 	/* Abort all iocbs associated with the hba */
13478 	lpfc_sli_hba_iocb_abort(phba);
13479 
13480 	if (!pci_channel_offline(phba->pcidev))
13481 		/* Wait for completion of device XRI exchange busy */
13482 		lpfc_sli4_xri_exchange_busy_wait(phba);
13483 
13484 	/* per-phba callback de-registration for hotplug event */
13485 	if (phba->pport)
13486 		lpfc_cpuhp_remove(phba);
13487 
13488 	/* Disable PCI subsystem interrupt */
13489 	lpfc_sli4_disable_intr(phba);
13490 
13491 	/* Disable SR-IOV if enabled */
13492 	if (phba->cfg_sriov_nr_virtfn)
13493 		pci_disable_sriov(pdev);
13494 
13495 	/* Stop kthread signal shall trigger work_done one more time */
13496 	kthread_stop(phba->worker_thread);
13497 
13498 	/* Disable FW logging to host memory */
13499 	lpfc_ras_stop_fwlog(phba);
13500 
13501 	/* Reset SLI4 HBA FCoE function */
13502 	lpfc_pci_function_reset(phba);
13503 
13504 	/* release all queue allocated resources. */
13505 	lpfc_sli4_queue_destroy(phba);
13506 
13507 	/* Free RAS DMA memory */
13508 	if (phba->ras_fwlog.ras_enabled)
13509 		lpfc_sli4_ras_dma_free(phba);
13510 
13511 	/* Stop the SLI4 device port */
13512 	if (phba->pport)
13513 		phba->pport->work_port_events = 0;
13514 }
13515 
13516 static uint32_t
13517 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13518 {
13519 	uint32_t msb = 0;
13520 	uint32_t bit;
13521 
13522 	for (bit = 0; bit < 8; bit++) {
13523 		msb = (crc >> 31) & 1;
13524 		crc <<= 1;
13525 
13526 		if (msb ^ (byte & 1)) {
13527 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13528 			crc |= 1;
13529 		}
13530 		byte >>= 1;
13531 	}
13532 	return crc;
13533 }
13534 
13535 static uint32_t
13536 lpfc_cgn_reverse_bits(uint32_t wd)
13537 {
13538 	uint32_t result = 0;
13539 	uint32_t i;
13540 
13541 	for (i = 0; i < 32; i++) {
13542 		result <<= 1;
13543 		result |= (1 & (wd >> i));
13544 	}
13545 	return result;
13546 }
13547 
13548 /*
13549  * The routine corresponds with the algorithm the HBA firmware
13550  * uses to validate the data integrity.
13551  */
13552 uint32_t
13553 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13554 {
13555 	uint32_t  i;
13556 	uint32_t result;
13557 	uint8_t  *data = (uint8_t *)ptr;
13558 
13559 	for (i = 0; i < byteLen; ++i)
13560 		crc = lpfc_cgn_crc32(crc, data[i]);
13561 
13562 	result = ~lpfc_cgn_reverse_bits(crc);
13563 	return result;
13564 }
13565 
13566 void
13567 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13568 {
13569 	struct lpfc_cgn_info *cp;
13570 	struct timespec64 cmpl_time;
13571 	struct tm broken;
13572 	uint16_t size;
13573 	uint32_t crc;
13574 
13575 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13576 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13577 
13578 	if (!phba->cgn_i)
13579 		return;
13580 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13581 
13582 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13583 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13584 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13585 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13586 
13587 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13588 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13589 	atomic64_set(&phba->cgn_latency_evt, 0);
13590 	phba->cgn_evt_minute = 0;
13591 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13592 
13593 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13594 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13595 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13596 
13597 	/* cgn parameters */
13598 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13599 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13600 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13601 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13602 
13603 	ktime_get_real_ts64(&cmpl_time);
13604 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13605 
13606 	cp->cgn_info_month = broken.tm_mon + 1;
13607 	cp->cgn_info_day = broken.tm_mday;
13608 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13609 	cp->cgn_info_hour = broken.tm_hour;
13610 	cp->cgn_info_minute = broken.tm_min;
13611 	cp->cgn_info_second = broken.tm_sec;
13612 
13613 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13614 			"2643 CGNInfo Init: Start Time "
13615 			"%d/%d/%d %d:%d:%d\n",
13616 			cp->cgn_info_day, cp->cgn_info_month,
13617 			cp->cgn_info_year, cp->cgn_info_hour,
13618 			cp->cgn_info_minute, cp->cgn_info_second);
13619 
13620 	/* Fill in default LUN qdepth */
13621 	if (phba->pport) {
13622 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13623 		cp->cgn_lunq = cpu_to_le16(size);
13624 	}
13625 
13626 	/* last used Index initialized to 0xff already */
13627 
13628 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13629 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13630 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13631 	cp->cgn_info_crc = cpu_to_le32(crc);
13632 
13633 	phba->cgn_evt_timestamp = jiffies +
13634 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13635 }
13636 
13637 void
13638 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13639 {
13640 	struct lpfc_cgn_info *cp;
13641 	struct timespec64 cmpl_time;
13642 	struct tm broken;
13643 	uint32_t crc;
13644 
13645 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13646 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13647 
13648 	if (!phba->cgn_i)
13649 		return;
13650 
13651 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13652 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13653 
13654 	ktime_get_real_ts64(&cmpl_time);
13655 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13656 
13657 	cp->cgn_stat_month = broken.tm_mon + 1;
13658 	cp->cgn_stat_day = broken.tm_mday;
13659 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13660 	cp->cgn_stat_hour = broken.tm_hour;
13661 	cp->cgn_stat_minute = broken.tm_min;
13662 
13663 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13664 			"2647 CGNstat Init: Start Time "
13665 			"%d/%d/%d %d:%d\n",
13666 			cp->cgn_stat_day, cp->cgn_stat_month,
13667 			cp->cgn_stat_year, cp->cgn_stat_hour,
13668 			cp->cgn_stat_minute);
13669 
13670 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13671 	cp->cgn_info_crc = cpu_to_le32(crc);
13672 }
13673 
13674 /**
13675  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13676  * @phba: Pointer to hba context object.
13677  * @reg: flag to determine register or unregister.
13678  */
13679 static int
13680 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13681 {
13682 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13683 	union  lpfc_sli4_cfg_shdr *shdr;
13684 	uint32_t shdr_status, shdr_add_status;
13685 	LPFC_MBOXQ_t *mboxq;
13686 	int length, rc;
13687 
13688 	if (!phba->cgn_i)
13689 		return -ENXIO;
13690 
13691 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13692 	if (!mboxq) {
13693 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13694 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13695 				"HBA state x%x reg %d\n",
13696 				phba->pport->port_state, reg);
13697 		return -ENOMEM;
13698 	}
13699 
13700 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13701 		sizeof(struct lpfc_sli4_cfg_mhdr));
13702 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13703 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13704 			 LPFC_SLI4_MBX_EMBED);
13705 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13706 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13707 	if (reg > 0)
13708 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13709 	else
13710 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13711 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13712 	reg_congestion_buf->addr_lo =
13713 		putPaddrLow(phba->cgn_i->phys);
13714 	reg_congestion_buf->addr_hi =
13715 		putPaddrHigh(phba->cgn_i->phys);
13716 
13717 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13718 	shdr = (union lpfc_sli4_cfg_shdr *)
13719 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13720 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13721 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13722 				 &shdr->response);
13723 	mempool_free(mboxq, phba->mbox_mem_pool);
13724 	if (shdr_status || shdr_add_status || rc) {
13725 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13726 				"2642 REG_CONGESTION_BUF mailbox "
13727 				"failed with status x%x add_status x%x,"
13728 				" mbx status x%x reg %d\n",
13729 				shdr_status, shdr_add_status, rc, reg);
13730 		return -ENXIO;
13731 	}
13732 	return 0;
13733 }
13734 
13735 int
13736 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13737 {
13738 	lpfc_cmf_stop(phba);
13739 	return __lpfc_reg_congestion_buf(phba, 0);
13740 }
13741 
13742 int
13743 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13744 {
13745 	return __lpfc_reg_congestion_buf(phba, 1);
13746 }
13747 
13748 /**
13749  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13750  * @phba: Pointer to HBA context object.
13751  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13752  *
13753  * This function is called in the SLI4 code path to read the port's
13754  * sli4 capabilities.
13755  *
13756  * This function may be be called from any context that can block-wait
13757  * for the completion.  The expectation is that this routine is called
13758  * typically from probe_one or from the online routine.
13759  **/
13760 int
13761 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13762 {
13763 	int rc;
13764 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13765 	struct lpfc_pc_sli4_params *sli4_params;
13766 	uint32_t mbox_tmo;
13767 	int length;
13768 	bool exp_wqcq_pages = true;
13769 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13770 
13771 	/*
13772 	 * By default, the driver assumes the SLI4 port requires RPI
13773 	 * header postings.  The SLI4_PARAM response will correct this
13774 	 * assumption.
13775 	 */
13776 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13777 
13778 	/* Read the port's SLI4 Config Parameters */
13779 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13780 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13781 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13782 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13783 			 length, LPFC_SLI4_MBX_EMBED);
13784 	if (!phba->sli4_hba.intr_enable)
13785 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13786 	else {
13787 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13788 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13789 	}
13790 	if (unlikely(rc))
13791 		return rc;
13792 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13793 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13794 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13795 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13796 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13797 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13798 					     mbx_sli4_parameters);
13799 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13800 					     mbx_sli4_parameters);
13801 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13802 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13803 	else
13804 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13805 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13806 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13807 					   mbx_sli4_parameters);
13808 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13809 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13810 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13811 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13812 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13813 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13814 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13815 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13816 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13817 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13818 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13819 					    mbx_sli4_parameters);
13820 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13821 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13822 					   mbx_sli4_parameters);
13823 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13824 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13825 
13826 	/* Check for Extended Pre-Registered SGL support */
13827 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13828 
13829 	/* Check for firmware nvme support */
13830 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13831 		     bf_get(cfg_xib, mbx_sli4_parameters));
13832 
13833 	if (rc) {
13834 		/* Save this to indicate the Firmware supports NVME */
13835 		sli4_params->nvme = 1;
13836 
13837 		/* Firmware NVME support, check driver FC4 NVME support */
13838 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13839 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13840 					"6133 Disabling NVME support: "
13841 					"FC4 type not supported: x%x\n",
13842 					phba->cfg_enable_fc4_type);
13843 			goto fcponly;
13844 		}
13845 	} else {
13846 		/* No firmware NVME support, check driver FC4 NVME support */
13847 		sli4_params->nvme = 0;
13848 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13849 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13850 					"6101 Disabling NVME support: Not "
13851 					"supported by firmware (%d %d) x%x\n",
13852 					bf_get(cfg_nvme, mbx_sli4_parameters),
13853 					bf_get(cfg_xib, mbx_sli4_parameters),
13854 					phba->cfg_enable_fc4_type);
13855 fcponly:
13856 			phba->nvmet_support = 0;
13857 			phba->cfg_nvmet_mrq = 0;
13858 			phba->cfg_nvme_seg_cnt = 0;
13859 
13860 			/* If no FC4 type support, move to just SCSI support */
13861 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13862 				return -ENODEV;
13863 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13864 		}
13865 	}
13866 
13867 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13868 	 * accommodate 512K and 1M IOs in a single nvme buf.
13869 	 */
13870 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13871 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13872 
13873 	/* Enable embedded Payload BDE if support is indicated */
13874 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13875 		phba->cfg_enable_pbde = 1;
13876 	else
13877 		phba->cfg_enable_pbde = 0;
13878 
13879 	/*
13880 	 * To support Suppress Response feature we must satisfy 3 conditions.
13881 	 * lpfc_suppress_rsp module parameter must be set (default).
13882 	 * In SLI4-Parameters Descriptor:
13883 	 * Extended Inline Buffers (XIB) must be supported.
13884 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13885 	 * (double negative).
13886 	 */
13887 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13888 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13889 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13890 	else
13891 		phba->cfg_suppress_rsp = 0;
13892 
13893 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13894 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13895 
13896 	/* Make sure that sge_supp_len can be handled by the driver */
13897 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13898 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13899 
13900 	/*
13901 	 * Check whether the adapter supports an embedded copy of the
13902 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13903 	 * to use this option, 128-byte WQEs must be used.
13904 	 */
13905 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13906 		phba->fcp_embed_io = 1;
13907 	else
13908 		phba->fcp_embed_io = 0;
13909 
13910 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13911 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13912 			bf_get(cfg_xib, mbx_sli4_parameters),
13913 			phba->cfg_enable_pbde,
13914 			phba->fcp_embed_io, sli4_params->nvme,
13915 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13916 
13917 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13918 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13919 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13920 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13921 		exp_wqcq_pages = false;
13922 
13923 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13924 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13925 	    exp_wqcq_pages &&
13926 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13927 		phba->enab_exp_wqcq_pages = 1;
13928 	else
13929 		phba->enab_exp_wqcq_pages = 0;
13930 	/*
13931 	 * Check if the SLI port supports MDS Diagnostics
13932 	 */
13933 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13934 		phba->mds_diags_support = 1;
13935 	else
13936 		phba->mds_diags_support = 0;
13937 
13938 	/*
13939 	 * Check if the SLI port supports NSLER
13940 	 */
13941 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13942 		phba->nsler = 1;
13943 	else
13944 		phba->nsler = 0;
13945 
13946 	return 0;
13947 }
13948 
13949 /**
13950  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13951  * @pdev: pointer to PCI device
13952  * @pid: pointer to PCI device identifier
13953  *
13954  * This routine is to be called to attach a device with SLI-3 interface spec
13955  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13956  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13957  * information of the device and driver to see if the driver state that it can
13958  * support this kind of device. If the match is successful, the driver core
13959  * invokes this routine. If this routine determines it can claim the HBA, it
13960  * does all the initialization that it needs to do to handle the HBA properly.
13961  *
13962  * Return code
13963  * 	0 - driver can claim the device
13964  * 	negative value - driver can not claim the device
13965  **/
13966 static int
13967 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13968 {
13969 	struct lpfc_hba   *phba;
13970 	struct lpfc_vport *vport = NULL;
13971 	struct Scsi_Host  *shost = NULL;
13972 	int error;
13973 	uint32_t cfg_mode, intr_mode;
13974 
13975 	/* Allocate memory for HBA structure */
13976 	phba = lpfc_hba_alloc(pdev);
13977 	if (!phba)
13978 		return -ENOMEM;
13979 
13980 	/* Perform generic PCI device enabling operation */
13981 	error = lpfc_enable_pci_dev(phba);
13982 	if (error)
13983 		goto out_free_phba;
13984 
13985 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13986 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13987 	if (error)
13988 		goto out_disable_pci_dev;
13989 
13990 	/* Set up SLI-3 specific device PCI memory space */
13991 	error = lpfc_sli_pci_mem_setup(phba);
13992 	if (error) {
13993 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13994 				"1402 Failed to set up pci memory space.\n");
13995 		goto out_disable_pci_dev;
13996 	}
13997 
13998 	/* Set up SLI-3 specific device driver resources */
13999 	error = lpfc_sli_driver_resource_setup(phba);
14000 	if (error) {
14001 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14002 				"1404 Failed to set up driver resource.\n");
14003 		goto out_unset_pci_mem_s3;
14004 	}
14005 
14006 	/* Initialize and populate the iocb list per host */
14007 
14008 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
14009 	if (error) {
14010 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14011 				"1405 Failed to initialize iocb list.\n");
14012 		goto out_unset_driver_resource_s3;
14013 	}
14014 
14015 	/* Set up common device driver resources */
14016 	error = lpfc_setup_driver_resource_phase2(phba);
14017 	if (error) {
14018 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14019 				"1406 Failed to set up driver resource.\n");
14020 		goto out_free_iocb_list;
14021 	}
14022 
14023 	/* Get the default values for Model Name and Description */
14024 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14025 
14026 	/* Create SCSI host to the physical port */
14027 	error = lpfc_create_shost(phba);
14028 	if (error) {
14029 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14030 				"1407 Failed to create scsi host.\n");
14031 		goto out_unset_driver_resource;
14032 	}
14033 
14034 	/* Configure sysfs attributes */
14035 	vport = phba->pport;
14036 	error = lpfc_alloc_sysfs_attr(vport);
14037 	if (error) {
14038 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14039 				"1476 Failed to allocate sysfs attr\n");
14040 		goto out_destroy_shost;
14041 	}
14042 
14043 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14044 	/* Now, trying to enable interrupt and bring up the device */
14045 	cfg_mode = phba->cfg_use_msi;
14046 	while (true) {
14047 		/* Put device to a known state before enabling interrupt */
14048 		lpfc_stop_port(phba);
14049 		/* Configure and enable interrupt */
14050 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14051 		if (intr_mode == LPFC_INTR_ERROR) {
14052 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14053 					"0431 Failed to enable interrupt.\n");
14054 			error = -ENODEV;
14055 			goto out_free_sysfs_attr;
14056 		}
14057 		/* SLI-3 HBA setup */
14058 		if (lpfc_sli_hba_setup(phba)) {
14059 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14060 					"1477 Failed to set up hba\n");
14061 			error = -ENODEV;
14062 			goto out_remove_device;
14063 		}
14064 
14065 		/* Wait 50ms for the interrupts of previous mailbox commands */
14066 		msleep(50);
14067 		/* Check active interrupts on message signaled interrupts */
14068 		if (intr_mode == 0 ||
14069 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14070 			/* Log the current active interrupt mode */
14071 			phba->intr_mode = intr_mode;
14072 			lpfc_log_intr_mode(phba, intr_mode);
14073 			break;
14074 		} else {
14075 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14076 					"0447 Configure interrupt mode (%d) "
14077 					"failed active interrupt test.\n",
14078 					intr_mode);
14079 			/* Disable the current interrupt mode */
14080 			lpfc_sli_disable_intr(phba);
14081 			/* Try next level of interrupt mode */
14082 			cfg_mode = --intr_mode;
14083 		}
14084 	}
14085 
14086 	/* Perform post initialization setup */
14087 	lpfc_post_init_setup(phba);
14088 
14089 	/* Check if there are static vports to be created. */
14090 	lpfc_create_static_vport(phba);
14091 
14092 	return 0;
14093 
14094 out_remove_device:
14095 	lpfc_unset_hba(phba);
14096 out_free_sysfs_attr:
14097 	lpfc_free_sysfs_attr(vport);
14098 out_destroy_shost:
14099 	lpfc_destroy_shost(phba);
14100 out_unset_driver_resource:
14101 	lpfc_unset_driver_resource_phase2(phba);
14102 out_free_iocb_list:
14103 	lpfc_free_iocb_list(phba);
14104 out_unset_driver_resource_s3:
14105 	lpfc_sli_driver_resource_unset(phba);
14106 out_unset_pci_mem_s3:
14107 	lpfc_sli_pci_mem_unset(phba);
14108 out_disable_pci_dev:
14109 	lpfc_disable_pci_dev(phba);
14110 	if (shost)
14111 		scsi_host_put(shost);
14112 out_free_phba:
14113 	lpfc_hba_free(phba);
14114 	return error;
14115 }
14116 
14117 /**
14118  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14119  * @pdev: pointer to PCI device
14120  *
14121  * This routine is to be called to disattach a device with SLI-3 interface
14122  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14123  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14124  * device to be removed from the PCI subsystem properly.
14125  **/
14126 static void
14127 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14128 {
14129 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14130 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14131 	struct lpfc_vport **vports;
14132 	struct lpfc_hba   *phba = vport->phba;
14133 	int i;
14134 
14135 	spin_lock_irq(&phba->hbalock);
14136 	vport->load_flag |= FC_UNLOADING;
14137 	spin_unlock_irq(&phba->hbalock);
14138 
14139 	lpfc_free_sysfs_attr(vport);
14140 
14141 	/* Release all the vports against this physical port */
14142 	vports = lpfc_create_vport_work_array(phba);
14143 	if (vports != NULL)
14144 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14145 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14146 				continue;
14147 			fc_vport_terminate(vports[i]->fc_vport);
14148 		}
14149 	lpfc_destroy_vport_work_array(phba, vports);
14150 
14151 	/* Remove FC host with the physical port */
14152 	fc_remove_host(shost);
14153 	scsi_remove_host(shost);
14154 
14155 	/* Clean up all nodes, mailboxes and IOs. */
14156 	lpfc_cleanup(vport);
14157 
14158 	/*
14159 	 * Bring down the SLI Layer. This step disable all interrupts,
14160 	 * clears the rings, discards all mailbox commands, and resets
14161 	 * the HBA.
14162 	 */
14163 
14164 	/* HBA interrupt will be disabled after this call */
14165 	lpfc_sli_hba_down(phba);
14166 	/* Stop kthread signal shall trigger work_done one more time */
14167 	kthread_stop(phba->worker_thread);
14168 	/* Final cleanup of txcmplq and reset the HBA */
14169 	lpfc_sli_brdrestart(phba);
14170 
14171 	kfree(phba->vpi_bmask);
14172 	kfree(phba->vpi_ids);
14173 
14174 	lpfc_stop_hba_timers(phba);
14175 	spin_lock_irq(&phba->port_list_lock);
14176 	list_del_init(&vport->listentry);
14177 	spin_unlock_irq(&phba->port_list_lock);
14178 
14179 	lpfc_debugfs_terminate(vport);
14180 
14181 	/* Disable SR-IOV if enabled */
14182 	if (phba->cfg_sriov_nr_virtfn)
14183 		pci_disable_sriov(pdev);
14184 
14185 	/* Disable interrupt */
14186 	lpfc_sli_disable_intr(phba);
14187 
14188 	scsi_host_put(shost);
14189 
14190 	/*
14191 	 * Call scsi_free before mem_free since scsi bufs are released to their
14192 	 * corresponding pools here.
14193 	 */
14194 	lpfc_scsi_free(phba);
14195 	lpfc_free_iocb_list(phba);
14196 
14197 	lpfc_mem_free_all(phba);
14198 
14199 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14200 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14201 
14202 	/* Free resources associated with SLI2 interface */
14203 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14204 			  phba->slim2p.virt, phba->slim2p.phys);
14205 
14206 	/* unmap adapter SLIM and Control Registers */
14207 	iounmap(phba->ctrl_regs_memmap_p);
14208 	iounmap(phba->slim_memmap_p);
14209 
14210 	lpfc_hba_free(phba);
14211 
14212 	pci_release_mem_regions(pdev);
14213 	pci_disable_device(pdev);
14214 }
14215 
14216 /**
14217  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14218  * @dev_d: pointer to device
14219  *
14220  * This routine is to be called from the kernel's PCI subsystem to support
14221  * system Power Management (PM) to device with SLI-3 interface spec. When
14222  * PM invokes this method, it quiesces the device by stopping the driver's
14223  * worker thread for the device, turning off device's interrupt and DMA,
14224  * and bring the device offline. Note that as the driver implements the
14225  * minimum PM requirements to a power-aware driver's PM support for the
14226  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14227  * to the suspend() method call will be treated as SUSPEND and the driver will
14228  * fully reinitialize its device during resume() method call, the driver will
14229  * set device to PCI_D3hot state in PCI config space instead of setting it
14230  * according to the @msg provided by the PM.
14231  *
14232  * Return code
14233  * 	0 - driver suspended the device
14234  * 	Error otherwise
14235  **/
14236 static int __maybe_unused
14237 lpfc_pci_suspend_one_s3(struct device *dev_d)
14238 {
14239 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14240 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14241 
14242 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14243 			"0473 PCI device Power Management suspend.\n");
14244 
14245 	/* Bring down the device */
14246 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14247 	lpfc_offline(phba);
14248 	kthread_stop(phba->worker_thread);
14249 
14250 	/* Disable interrupt from device */
14251 	lpfc_sli_disable_intr(phba);
14252 
14253 	return 0;
14254 }
14255 
14256 /**
14257  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14258  * @dev_d: pointer to device
14259  *
14260  * This routine is to be called from the kernel's PCI subsystem to support
14261  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14262  * invokes this method, it restores the device's PCI config space state and
14263  * fully reinitializes the device and brings it online. Note that as the
14264  * driver implements the minimum PM requirements to a power-aware driver's
14265  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14266  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14267  * driver will fully reinitialize its device during resume() method call,
14268  * the device will be set to PCI_D0 directly in PCI config space before
14269  * restoring the state.
14270  *
14271  * Return code
14272  * 	0 - driver suspended the device
14273  * 	Error otherwise
14274  **/
14275 static int __maybe_unused
14276 lpfc_pci_resume_one_s3(struct device *dev_d)
14277 {
14278 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14279 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14280 	uint32_t intr_mode;
14281 	int error;
14282 
14283 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14284 			"0452 PCI device Power Management resume.\n");
14285 
14286 	/* Startup the kernel thread for this host adapter. */
14287 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14288 					"lpfc_worker_%d", phba->brd_no);
14289 	if (IS_ERR(phba->worker_thread)) {
14290 		error = PTR_ERR(phba->worker_thread);
14291 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14292 				"0434 PM resume failed to start worker "
14293 				"thread: error=x%x.\n", error);
14294 		return error;
14295 	}
14296 
14297 	/* Init cpu_map array */
14298 	lpfc_cpu_map_array_init(phba);
14299 	/* Init hba_eq_hdl array */
14300 	lpfc_hba_eq_hdl_array_init(phba);
14301 	/* Configure and enable interrupt */
14302 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14303 	if (intr_mode == LPFC_INTR_ERROR) {
14304 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14305 				"0430 PM resume Failed to enable interrupt\n");
14306 		return -EIO;
14307 	} else
14308 		phba->intr_mode = intr_mode;
14309 
14310 	/* Restart HBA and bring it online */
14311 	lpfc_sli_brdrestart(phba);
14312 	lpfc_online(phba);
14313 
14314 	/* Log the current active interrupt mode */
14315 	lpfc_log_intr_mode(phba, phba->intr_mode);
14316 
14317 	return 0;
14318 }
14319 
14320 /**
14321  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14322  * @phba: pointer to lpfc hba data structure.
14323  *
14324  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14325  * aborts all the outstanding SCSI I/Os to the pci device.
14326  **/
14327 static void
14328 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14329 {
14330 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14331 			"2723 PCI channel I/O abort preparing for recovery\n");
14332 
14333 	/*
14334 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14335 	 * and let the SCSI mid-layer to retry them to recover.
14336 	 */
14337 	lpfc_sli_abort_fcp_rings(phba);
14338 }
14339 
14340 /**
14341  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14342  * @phba: pointer to lpfc hba data structure.
14343  *
14344  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14345  * disables the device interrupt and pci device, and aborts the internal FCP
14346  * pending I/Os.
14347  **/
14348 static void
14349 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14350 {
14351 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14352 			"2710 PCI channel disable preparing for reset\n");
14353 
14354 	/* Block any management I/Os to the device */
14355 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14356 
14357 	/* Block all SCSI devices' I/Os on the host */
14358 	lpfc_scsi_dev_block(phba);
14359 
14360 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14361 	lpfc_sli_flush_io_rings(phba);
14362 
14363 	/* stop all timers */
14364 	lpfc_stop_hba_timers(phba);
14365 
14366 	/* Disable interrupt and pci device */
14367 	lpfc_sli_disable_intr(phba);
14368 	pci_disable_device(phba->pcidev);
14369 }
14370 
14371 /**
14372  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14373  * @phba: pointer to lpfc hba data structure.
14374  *
14375  * This routine is called to prepare the SLI3 device for PCI slot permanently
14376  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14377  * pending I/Os.
14378  **/
14379 static void
14380 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14381 {
14382 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14383 			"2711 PCI channel permanent disable for failure\n");
14384 	/* Block all SCSI devices' I/Os on the host */
14385 	lpfc_scsi_dev_block(phba);
14386 	lpfc_sli4_prep_dev_for_reset(phba);
14387 
14388 	/* stop all timers */
14389 	lpfc_stop_hba_timers(phba);
14390 
14391 	/* Clean up all driver's outstanding SCSI I/Os */
14392 	lpfc_sli_flush_io_rings(phba);
14393 }
14394 
14395 /**
14396  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14397  * @pdev: pointer to PCI device.
14398  * @state: the current PCI connection state.
14399  *
14400  * This routine is called from the PCI subsystem for I/O error handling to
14401  * device with SLI-3 interface spec. This function is called by the PCI
14402  * subsystem after a PCI bus error affecting this device has been detected.
14403  * When this function is invoked, it will need to stop all the I/Os and
14404  * interrupt(s) to the device. Once that is done, it will return
14405  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14406  * as desired.
14407  *
14408  * Return codes
14409  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14410  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14411  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14412  **/
14413 static pci_ers_result_t
14414 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14415 {
14416 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14417 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14418 
14419 	switch (state) {
14420 	case pci_channel_io_normal:
14421 		/* Non-fatal error, prepare for recovery */
14422 		lpfc_sli_prep_dev_for_recover(phba);
14423 		return PCI_ERS_RESULT_CAN_RECOVER;
14424 	case pci_channel_io_frozen:
14425 		/* Fatal error, prepare for slot reset */
14426 		lpfc_sli_prep_dev_for_reset(phba);
14427 		return PCI_ERS_RESULT_NEED_RESET;
14428 	case pci_channel_io_perm_failure:
14429 		/* Permanent failure, prepare for device down */
14430 		lpfc_sli_prep_dev_for_perm_failure(phba);
14431 		return PCI_ERS_RESULT_DISCONNECT;
14432 	default:
14433 		/* Unknown state, prepare and request slot reset */
14434 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14435 				"0472 Unknown PCI error state: x%x\n", state);
14436 		lpfc_sli_prep_dev_for_reset(phba);
14437 		return PCI_ERS_RESULT_NEED_RESET;
14438 	}
14439 }
14440 
14441 /**
14442  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14443  * @pdev: pointer to PCI device.
14444  *
14445  * This routine is called from the PCI subsystem for error handling to
14446  * device with SLI-3 interface spec. This is called after PCI bus has been
14447  * reset to restart the PCI card from scratch, as if from a cold-boot.
14448  * During the PCI subsystem error recovery, after driver returns
14449  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14450  * recovery and then call this routine before calling the .resume method
14451  * to recover the device. This function will initialize the HBA device,
14452  * enable the interrupt, but it will just put the HBA to offline state
14453  * without passing any I/O traffic.
14454  *
14455  * Return codes
14456  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14457  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14458  */
14459 static pci_ers_result_t
14460 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14461 {
14462 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14463 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14464 	struct lpfc_sli *psli = &phba->sli;
14465 	uint32_t intr_mode;
14466 
14467 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14468 	if (pci_enable_device_mem(pdev)) {
14469 		printk(KERN_ERR "lpfc: Cannot re-enable "
14470 			"PCI device after reset.\n");
14471 		return PCI_ERS_RESULT_DISCONNECT;
14472 	}
14473 
14474 	pci_restore_state(pdev);
14475 
14476 	/*
14477 	 * As the new kernel behavior of pci_restore_state() API call clears
14478 	 * device saved_state flag, need to save the restored state again.
14479 	 */
14480 	pci_save_state(pdev);
14481 
14482 	if (pdev->is_busmaster)
14483 		pci_set_master(pdev);
14484 
14485 	spin_lock_irq(&phba->hbalock);
14486 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14487 	spin_unlock_irq(&phba->hbalock);
14488 
14489 	/* Configure and enable interrupt */
14490 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14491 	if (intr_mode == LPFC_INTR_ERROR) {
14492 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14493 				"0427 Cannot re-enable interrupt after "
14494 				"slot reset.\n");
14495 		return PCI_ERS_RESULT_DISCONNECT;
14496 	} else
14497 		phba->intr_mode = intr_mode;
14498 
14499 	/* Take device offline, it will perform cleanup */
14500 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14501 	lpfc_offline(phba);
14502 	lpfc_sli_brdrestart(phba);
14503 
14504 	/* Log the current active interrupt mode */
14505 	lpfc_log_intr_mode(phba, phba->intr_mode);
14506 
14507 	return PCI_ERS_RESULT_RECOVERED;
14508 }
14509 
14510 /**
14511  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14512  * @pdev: pointer to PCI device
14513  *
14514  * This routine is called from the PCI subsystem for error handling to device
14515  * with SLI-3 interface spec. It is called when kernel error recovery tells
14516  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14517  * error recovery. After this call, traffic can start to flow from this device
14518  * again.
14519  */
14520 static void
14521 lpfc_io_resume_s3(struct pci_dev *pdev)
14522 {
14523 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14524 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14525 
14526 	/* Bring device online, it will be no-op for non-fatal error resume */
14527 	lpfc_online(phba);
14528 }
14529 
14530 /**
14531  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14532  * @phba: pointer to lpfc hba data structure.
14533  *
14534  * returns the number of ELS/CT IOCBs to reserve
14535  **/
14536 int
14537 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14538 {
14539 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14540 
14541 	if (phba->sli_rev == LPFC_SLI_REV4) {
14542 		if (max_xri <= 100)
14543 			return 10;
14544 		else if (max_xri <= 256)
14545 			return 25;
14546 		else if (max_xri <= 512)
14547 			return 50;
14548 		else if (max_xri <= 1024)
14549 			return 100;
14550 		else if (max_xri <= 1536)
14551 			return 150;
14552 		else if (max_xri <= 2048)
14553 			return 200;
14554 		else
14555 			return 250;
14556 	} else
14557 		return 0;
14558 }
14559 
14560 /**
14561  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14562  * @phba: pointer to lpfc hba data structure.
14563  *
14564  * returns the number of ELS/CT + NVMET IOCBs to reserve
14565  **/
14566 int
14567 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14568 {
14569 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14570 
14571 	if (phba->nvmet_support)
14572 		max_xri += LPFC_NVMET_BUF_POST;
14573 	return max_xri;
14574 }
14575 
14576 
14577 static int
14578 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14579 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14580 	const struct firmware *fw)
14581 {
14582 	int rc;
14583 	u8 sli_family;
14584 
14585 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14586 	/* Three cases:  (1) FW was not supported on the detected adapter.
14587 	 * (2) FW update has been locked out administratively.
14588 	 * (3) Some other error during FW update.
14589 	 * In each case, an unmaskable message is written to the console
14590 	 * for admin diagnosis.
14591 	 */
14592 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14593 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14594 	     magic_number != MAGIC_NUMBER_G6) ||
14595 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14596 	     magic_number != MAGIC_NUMBER_G7) ||
14597 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14598 	     magic_number != MAGIC_NUMBER_G7P)) {
14599 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14600 				"3030 This firmware version is not supported on"
14601 				" this HBA model. Device:%x Magic:%x Type:%x "
14602 				"ID:%x Size %d %zd\n",
14603 				phba->pcidev->device, magic_number, ftype, fid,
14604 				fsize, fw->size);
14605 		rc = -EINVAL;
14606 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14607 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14608 				"3021 Firmware downloads have been prohibited "
14609 				"by a system configuration setting on "
14610 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14611 				"%zd\n",
14612 				phba->pcidev->device, magic_number, ftype, fid,
14613 				fsize, fw->size);
14614 		rc = -EACCES;
14615 	} else {
14616 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14617 				"3022 FW Download failed. Add Status x%x "
14618 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14619 				"%zd\n",
14620 				offset, phba->pcidev->device, magic_number,
14621 				ftype, fid, fsize, fw->size);
14622 		rc = -EIO;
14623 	}
14624 	return rc;
14625 }
14626 
14627 /**
14628  * lpfc_write_firmware - attempt to write a firmware image to the port
14629  * @fw: pointer to firmware image returned from request_firmware.
14630  * @context: pointer to firmware image returned from request_firmware.
14631  *
14632  **/
14633 static void
14634 lpfc_write_firmware(const struct firmware *fw, void *context)
14635 {
14636 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14637 	char fwrev[FW_REV_STR_SIZE];
14638 	struct lpfc_grp_hdr *image;
14639 	struct list_head dma_buffer_list;
14640 	int i, rc = 0;
14641 	struct lpfc_dmabuf *dmabuf, *next;
14642 	uint32_t offset = 0, temp_offset = 0;
14643 	uint32_t magic_number, ftype, fid, fsize;
14644 
14645 	/* It can be null in no-wait mode, sanity check */
14646 	if (!fw) {
14647 		rc = -ENXIO;
14648 		goto out;
14649 	}
14650 	image = (struct lpfc_grp_hdr *)fw->data;
14651 
14652 	magic_number = be32_to_cpu(image->magic_number);
14653 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14654 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14655 	fsize = be32_to_cpu(image->size);
14656 
14657 	INIT_LIST_HEAD(&dma_buffer_list);
14658 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14659 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14660 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14661 				"3023 Updating Firmware, Current Version:%s "
14662 				"New Version:%s\n",
14663 				fwrev, image->revision);
14664 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14665 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14666 					 GFP_KERNEL);
14667 			if (!dmabuf) {
14668 				rc = -ENOMEM;
14669 				goto release_out;
14670 			}
14671 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14672 							  SLI4_PAGE_SIZE,
14673 							  &dmabuf->phys,
14674 							  GFP_KERNEL);
14675 			if (!dmabuf->virt) {
14676 				kfree(dmabuf);
14677 				rc = -ENOMEM;
14678 				goto release_out;
14679 			}
14680 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14681 		}
14682 		while (offset < fw->size) {
14683 			temp_offset = offset;
14684 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14685 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14686 					memcpy(dmabuf->virt,
14687 					       fw->data + temp_offset,
14688 					       fw->size - temp_offset);
14689 					temp_offset = fw->size;
14690 					break;
14691 				}
14692 				memcpy(dmabuf->virt, fw->data + temp_offset,
14693 				       SLI4_PAGE_SIZE);
14694 				temp_offset += SLI4_PAGE_SIZE;
14695 			}
14696 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14697 				    (fw->size - offset), &offset);
14698 			if (rc) {
14699 				rc = lpfc_log_write_firmware_error(phba, offset,
14700 								   magic_number,
14701 								   ftype,
14702 								   fid,
14703 								   fsize,
14704 								   fw);
14705 				goto release_out;
14706 			}
14707 		}
14708 		rc = offset;
14709 	} else
14710 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14711 				"3029 Skipped Firmware update, Current "
14712 				"Version:%s New Version:%s\n",
14713 				fwrev, image->revision);
14714 
14715 release_out:
14716 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14717 		list_del(&dmabuf->list);
14718 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14719 				  dmabuf->virt, dmabuf->phys);
14720 		kfree(dmabuf);
14721 	}
14722 	release_firmware(fw);
14723 out:
14724 	if (rc < 0)
14725 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14726 				"3062 Firmware update error, status %d.\n", rc);
14727 	else
14728 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14729 				"3024 Firmware update success: size %d.\n", rc);
14730 }
14731 
14732 /**
14733  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14734  * @phba: pointer to lpfc hba data structure.
14735  * @fw_upgrade: which firmware to update.
14736  *
14737  * This routine is called to perform Linux generic firmware upgrade on device
14738  * that supports such feature.
14739  **/
14740 int
14741 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14742 {
14743 	uint8_t file_name[ELX_MODEL_NAME_SIZE];
14744 	int ret;
14745 	const struct firmware *fw;
14746 
14747 	/* Only supported on SLI4 interface type 2 for now */
14748 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14749 	    LPFC_SLI_INTF_IF_TYPE_2)
14750 		return -EPERM;
14751 
14752 	snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
14753 
14754 	if (fw_upgrade == INT_FW_UPGRADE) {
14755 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14756 					file_name, &phba->pcidev->dev,
14757 					GFP_KERNEL, (void *)phba,
14758 					lpfc_write_firmware);
14759 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14760 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14761 		if (!ret)
14762 			lpfc_write_firmware(fw, (void *)phba);
14763 	} else {
14764 		ret = -EINVAL;
14765 	}
14766 
14767 	return ret;
14768 }
14769 
14770 /**
14771  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14772  * @pdev: pointer to PCI device
14773  * @pid: pointer to PCI device identifier
14774  *
14775  * This routine is called from the kernel's PCI subsystem to device with
14776  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14777  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14778  * information of the device and driver to see if the driver state that it
14779  * can support this kind of device. If the match is successful, the driver
14780  * core invokes this routine. If this routine determines it can claim the HBA,
14781  * it does all the initialization that it needs to do to handle the HBA
14782  * properly.
14783  *
14784  * Return code
14785  * 	0 - driver can claim the device
14786  * 	negative value - driver can not claim the device
14787  **/
14788 static int
14789 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14790 {
14791 	struct lpfc_hba   *phba;
14792 	struct lpfc_vport *vport = NULL;
14793 	struct Scsi_Host  *shost = NULL;
14794 	int error;
14795 	uint32_t cfg_mode, intr_mode;
14796 
14797 	/* Allocate memory for HBA structure */
14798 	phba = lpfc_hba_alloc(pdev);
14799 	if (!phba)
14800 		return -ENOMEM;
14801 
14802 	INIT_LIST_HEAD(&phba->poll_list);
14803 
14804 	/* Perform generic PCI device enabling operation */
14805 	error = lpfc_enable_pci_dev(phba);
14806 	if (error)
14807 		goto out_free_phba;
14808 
14809 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14810 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14811 	if (error)
14812 		goto out_disable_pci_dev;
14813 
14814 	/* Set up SLI-4 specific device PCI memory space */
14815 	error = lpfc_sli4_pci_mem_setup(phba);
14816 	if (error) {
14817 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14818 				"1410 Failed to set up pci memory space.\n");
14819 		goto out_disable_pci_dev;
14820 	}
14821 
14822 	/* Set up SLI-4 Specific device driver resources */
14823 	error = lpfc_sli4_driver_resource_setup(phba);
14824 	if (error) {
14825 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14826 				"1412 Failed to set up driver resource.\n");
14827 		goto out_unset_pci_mem_s4;
14828 	}
14829 
14830 	INIT_LIST_HEAD(&phba->active_rrq_list);
14831 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14832 
14833 	/* Set up common device driver resources */
14834 	error = lpfc_setup_driver_resource_phase2(phba);
14835 	if (error) {
14836 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14837 				"1414 Failed to set up driver resource.\n");
14838 		goto out_unset_driver_resource_s4;
14839 	}
14840 
14841 	/* Get the default values for Model Name and Description */
14842 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14843 
14844 	/* Now, trying to enable interrupt and bring up the device */
14845 	cfg_mode = phba->cfg_use_msi;
14846 
14847 	/* Put device to a known state before enabling interrupt */
14848 	phba->pport = NULL;
14849 	lpfc_stop_port(phba);
14850 
14851 	/* Init cpu_map array */
14852 	lpfc_cpu_map_array_init(phba);
14853 
14854 	/* Init hba_eq_hdl array */
14855 	lpfc_hba_eq_hdl_array_init(phba);
14856 
14857 	/* Configure and enable interrupt */
14858 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14859 	if (intr_mode == LPFC_INTR_ERROR) {
14860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14861 				"0426 Failed to enable interrupt.\n");
14862 		error = -ENODEV;
14863 		goto out_unset_driver_resource;
14864 	}
14865 	/* Default to single EQ for non-MSI-X */
14866 	if (phba->intr_type != MSIX) {
14867 		phba->cfg_irq_chann = 1;
14868 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14869 			if (phba->nvmet_support)
14870 				phba->cfg_nvmet_mrq = 1;
14871 		}
14872 	}
14873 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14874 
14875 	/* Create SCSI host to the physical port */
14876 	error = lpfc_create_shost(phba);
14877 	if (error) {
14878 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14879 				"1415 Failed to create scsi host.\n");
14880 		goto out_disable_intr;
14881 	}
14882 	vport = phba->pport;
14883 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14884 
14885 	/* Configure sysfs attributes */
14886 	error = lpfc_alloc_sysfs_attr(vport);
14887 	if (error) {
14888 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14889 				"1416 Failed to allocate sysfs attr\n");
14890 		goto out_destroy_shost;
14891 	}
14892 
14893 	/* Set up SLI-4 HBA */
14894 	if (lpfc_sli4_hba_setup(phba)) {
14895 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14896 				"1421 Failed to set up hba\n");
14897 		error = -ENODEV;
14898 		goto out_free_sysfs_attr;
14899 	}
14900 
14901 	/* Log the current active interrupt mode */
14902 	phba->intr_mode = intr_mode;
14903 	lpfc_log_intr_mode(phba, intr_mode);
14904 
14905 	/* Perform post initialization setup */
14906 	lpfc_post_init_setup(phba);
14907 
14908 	/* NVME support in FW earlier in the driver load corrects the
14909 	 * FC4 type making a check for nvme_support unnecessary.
14910 	 */
14911 	if (phba->nvmet_support == 0) {
14912 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14913 			/* Create NVME binding with nvme_fc_transport. This
14914 			 * ensures the vport is initialized.  If the localport
14915 			 * create fails, it should not unload the driver to
14916 			 * support field issues.
14917 			 */
14918 			error = lpfc_nvme_create_localport(vport);
14919 			if (error) {
14920 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14921 						"6004 NVME registration "
14922 						"failed, error x%x\n",
14923 						error);
14924 			}
14925 		}
14926 	}
14927 
14928 	/* check for firmware upgrade or downgrade */
14929 	if (phba->cfg_request_firmware_upgrade)
14930 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14931 
14932 	/* Check if there are static vports to be created. */
14933 	lpfc_create_static_vport(phba);
14934 
14935 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14936 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14937 
14938 	return 0;
14939 
14940 out_free_sysfs_attr:
14941 	lpfc_free_sysfs_attr(vport);
14942 out_destroy_shost:
14943 	lpfc_destroy_shost(phba);
14944 out_disable_intr:
14945 	lpfc_sli4_disable_intr(phba);
14946 out_unset_driver_resource:
14947 	lpfc_unset_driver_resource_phase2(phba);
14948 out_unset_driver_resource_s4:
14949 	lpfc_sli4_driver_resource_unset(phba);
14950 out_unset_pci_mem_s4:
14951 	lpfc_sli4_pci_mem_unset(phba);
14952 out_disable_pci_dev:
14953 	lpfc_disable_pci_dev(phba);
14954 	if (shost)
14955 		scsi_host_put(shost);
14956 out_free_phba:
14957 	lpfc_hba_free(phba);
14958 	return error;
14959 }
14960 
14961 /**
14962  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14963  * @pdev: pointer to PCI device
14964  *
14965  * This routine is called from the kernel's PCI subsystem to device with
14966  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14967  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14968  * device to be removed from the PCI subsystem properly.
14969  **/
14970 static void
14971 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14972 {
14973 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14974 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14975 	struct lpfc_vport **vports;
14976 	struct lpfc_hba *phba = vport->phba;
14977 	int i;
14978 
14979 	/* Mark the device unloading flag */
14980 	spin_lock_irq(&phba->hbalock);
14981 	vport->load_flag |= FC_UNLOADING;
14982 	spin_unlock_irq(&phba->hbalock);
14983 	if (phba->cgn_i)
14984 		lpfc_unreg_congestion_buf(phba);
14985 
14986 	lpfc_free_sysfs_attr(vport);
14987 
14988 	/* Release all the vports against this physical port */
14989 	vports = lpfc_create_vport_work_array(phba);
14990 	if (vports != NULL)
14991 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14992 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14993 				continue;
14994 			fc_vport_terminate(vports[i]->fc_vport);
14995 		}
14996 	lpfc_destroy_vport_work_array(phba, vports);
14997 
14998 	/* Remove FC host with the physical port */
14999 	fc_remove_host(shost);
15000 	scsi_remove_host(shost);
15001 
15002 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
15003 	 * localports are destroyed after to cleanup all transport memory.
15004 	 */
15005 	lpfc_cleanup(vport);
15006 	lpfc_nvmet_destroy_targetport(phba);
15007 	lpfc_nvme_destroy_localport(vport);
15008 
15009 	/* De-allocate multi-XRI pools */
15010 	if (phba->cfg_xri_rebalancing)
15011 		lpfc_destroy_multixri_pools(phba);
15012 
15013 	/*
15014 	 * Bring down the SLI Layer. This step disables all interrupts,
15015 	 * clears the rings, discards all mailbox commands, and resets
15016 	 * the HBA FCoE function.
15017 	 */
15018 	lpfc_debugfs_terminate(vport);
15019 
15020 	lpfc_stop_hba_timers(phba);
15021 	spin_lock_irq(&phba->port_list_lock);
15022 	list_del_init(&vport->listentry);
15023 	spin_unlock_irq(&phba->port_list_lock);
15024 
15025 	/* Perform scsi free before driver resource_unset since scsi
15026 	 * buffers are released to their corresponding pools here.
15027 	 */
15028 	lpfc_io_free(phba);
15029 	lpfc_free_iocb_list(phba);
15030 	lpfc_sli4_hba_unset(phba);
15031 
15032 	lpfc_unset_driver_resource_phase2(phba);
15033 	lpfc_sli4_driver_resource_unset(phba);
15034 
15035 	/* Unmap adapter Control and Doorbell registers */
15036 	lpfc_sli4_pci_mem_unset(phba);
15037 
15038 	/* Release PCI resources and disable device's PCI function */
15039 	scsi_host_put(shost);
15040 	lpfc_disable_pci_dev(phba);
15041 
15042 	/* Finally, free the driver's device data structure */
15043 	lpfc_hba_free(phba);
15044 
15045 	return;
15046 }
15047 
15048 /**
15049  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15050  * @dev_d: pointer to device
15051  *
15052  * This routine is called from the kernel's PCI subsystem to support system
15053  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15054  * this method, it quiesces the device by stopping the driver's worker
15055  * thread for the device, turning off device's interrupt and DMA, and bring
15056  * the device offline. Note that as the driver implements the minimum PM
15057  * requirements to a power-aware driver's PM support for suspend/resume -- all
15058  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15059  * method call will be treated as SUSPEND and the driver will fully
15060  * reinitialize its device during resume() method call, the driver will set
15061  * device to PCI_D3hot state in PCI config space instead of setting it
15062  * according to the @msg provided by the PM.
15063  *
15064  * Return code
15065  * 	0 - driver suspended the device
15066  * 	Error otherwise
15067  **/
15068 static int __maybe_unused
15069 lpfc_pci_suspend_one_s4(struct device *dev_d)
15070 {
15071 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15072 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15073 
15074 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15075 			"2843 PCI device Power Management suspend.\n");
15076 
15077 	/* Bring down the device */
15078 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15079 	lpfc_offline(phba);
15080 	kthread_stop(phba->worker_thread);
15081 
15082 	/* Disable interrupt from device */
15083 	lpfc_sli4_disable_intr(phba);
15084 	lpfc_sli4_queue_destroy(phba);
15085 
15086 	return 0;
15087 }
15088 
15089 /**
15090  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15091  * @dev_d: pointer to device
15092  *
15093  * This routine is called from the kernel's PCI subsystem to support system
15094  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15095  * this method, it restores the device's PCI config space state and fully
15096  * reinitializes the device and brings it online. Note that as the driver
15097  * implements the minimum PM requirements to a power-aware driver's PM for
15098  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15099  * to the suspend() method call will be treated as SUSPEND and the driver
15100  * will fully reinitialize its device during resume() method call, the device
15101  * will be set to PCI_D0 directly in PCI config space before restoring the
15102  * state.
15103  *
15104  * Return code
15105  * 	0 - driver suspended the device
15106  * 	Error otherwise
15107  **/
15108 static int __maybe_unused
15109 lpfc_pci_resume_one_s4(struct device *dev_d)
15110 {
15111 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15112 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15113 	uint32_t intr_mode;
15114 	int error;
15115 
15116 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15117 			"0292 PCI device Power Management resume.\n");
15118 
15119 	 /* Startup the kernel thread for this host adapter. */
15120 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15121 					"lpfc_worker_%d", phba->brd_no);
15122 	if (IS_ERR(phba->worker_thread)) {
15123 		error = PTR_ERR(phba->worker_thread);
15124 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15125 				"0293 PM resume failed to start worker "
15126 				"thread: error=x%x.\n", error);
15127 		return error;
15128 	}
15129 
15130 	/* Configure and enable interrupt */
15131 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15132 	if (intr_mode == LPFC_INTR_ERROR) {
15133 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15134 				"0294 PM resume Failed to enable interrupt\n");
15135 		return -EIO;
15136 	} else
15137 		phba->intr_mode = intr_mode;
15138 
15139 	/* Restart HBA and bring it online */
15140 	lpfc_sli_brdrestart(phba);
15141 	lpfc_online(phba);
15142 
15143 	/* Log the current active interrupt mode */
15144 	lpfc_log_intr_mode(phba, phba->intr_mode);
15145 
15146 	return 0;
15147 }
15148 
15149 /**
15150  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15151  * @phba: pointer to lpfc hba data structure.
15152  *
15153  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15154  * aborts all the outstanding SCSI I/Os to the pci device.
15155  **/
15156 static void
15157 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15158 {
15159 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15160 			"2828 PCI channel I/O abort preparing for recovery\n");
15161 	/*
15162 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15163 	 * and let the SCSI mid-layer to retry them to recover.
15164 	 */
15165 	lpfc_sli_abort_fcp_rings(phba);
15166 }
15167 
15168 /**
15169  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15170  * @phba: pointer to lpfc hba data structure.
15171  *
15172  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15173  * disables the device interrupt and pci device, and aborts the internal FCP
15174  * pending I/Os.
15175  **/
15176 static void
15177 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15178 {
15179 	int offline =  pci_channel_offline(phba->pcidev);
15180 
15181 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15182 			"2826 PCI channel disable preparing for reset offline"
15183 			" %d\n", offline);
15184 
15185 	/* Block any management I/Os to the device */
15186 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15187 
15188 
15189 	/* HBA_PCI_ERR was set in io_error_detect */
15190 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15191 	/* Flush all driver's outstanding I/Os as we are to reset */
15192 	lpfc_sli_flush_io_rings(phba);
15193 	lpfc_offline(phba);
15194 
15195 	/* stop all timers */
15196 	lpfc_stop_hba_timers(phba);
15197 
15198 	lpfc_sli4_queue_destroy(phba);
15199 	/* Disable interrupt and pci device */
15200 	lpfc_sli4_disable_intr(phba);
15201 	pci_disable_device(phba->pcidev);
15202 }
15203 
15204 /**
15205  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15206  * @phba: pointer to lpfc hba data structure.
15207  *
15208  * This routine is called to prepare the SLI4 device for PCI slot permanently
15209  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15210  * pending I/Os.
15211  **/
15212 static void
15213 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15214 {
15215 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15216 			"2827 PCI channel permanent disable for failure\n");
15217 
15218 	/* Block all SCSI devices' I/Os on the host */
15219 	lpfc_scsi_dev_block(phba);
15220 
15221 	/* stop all timers */
15222 	lpfc_stop_hba_timers(phba);
15223 
15224 	/* Clean up all driver's outstanding I/Os */
15225 	lpfc_sli_flush_io_rings(phba);
15226 }
15227 
15228 /**
15229  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15230  * @pdev: pointer to PCI device.
15231  * @state: the current PCI connection state.
15232  *
15233  * This routine is called from the PCI subsystem for error handling to device
15234  * with SLI-4 interface spec. This function is called by the PCI subsystem
15235  * after a PCI bus error affecting this device has been detected. When this
15236  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15237  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15238  * for the PCI subsystem to perform proper recovery as desired.
15239  *
15240  * Return codes
15241  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15242  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15243  **/
15244 static pci_ers_result_t
15245 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15246 {
15247 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15248 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15249 	bool hba_pci_err;
15250 
15251 	switch (state) {
15252 	case pci_channel_io_normal:
15253 		/* Non-fatal error, prepare for recovery */
15254 		lpfc_sli4_prep_dev_for_recover(phba);
15255 		return PCI_ERS_RESULT_CAN_RECOVER;
15256 	case pci_channel_io_frozen:
15257 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15258 		/* Fatal error, prepare for slot reset */
15259 		if (!hba_pci_err)
15260 			lpfc_sli4_prep_dev_for_reset(phba);
15261 		else
15262 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15263 					"2832  Already handling PCI error "
15264 					"state: x%x\n", state);
15265 		return PCI_ERS_RESULT_NEED_RESET;
15266 	case pci_channel_io_perm_failure:
15267 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15268 		/* Permanent failure, prepare for device down */
15269 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15270 		return PCI_ERS_RESULT_DISCONNECT;
15271 	default:
15272 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15273 		if (!hba_pci_err)
15274 			lpfc_sli4_prep_dev_for_reset(phba);
15275 		/* Unknown state, prepare and request slot reset */
15276 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15277 				"2825 Unknown PCI error state: x%x\n", state);
15278 		lpfc_sli4_prep_dev_for_reset(phba);
15279 		return PCI_ERS_RESULT_NEED_RESET;
15280 	}
15281 }
15282 
15283 /**
15284  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15285  * @pdev: pointer to PCI device.
15286  *
15287  * This routine is called from the PCI subsystem for error handling to device
15288  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15289  * restart the PCI card from scratch, as if from a cold-boot. During the
15290  * PCI subsystem error recovery, after the driver returns
15291  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15292  * recovery and then call this routine before calling the .resume method to
15293  * recover the device. This function will initialize the HBA device, enable
15294  * the interrupt, but it will just put the HBA to offline state without
15295  * passing any I/O traffic.
15296  *
15297  * Return codes
15298  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15299  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15300  */
15301 static pci_ers_result_t
15302 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15303 {
15304 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15305 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15306 	struct lpfc_sli *psli = &phba->sli;
15307 	uint32_t intr_mode;
15308 	bool hba_pci_err;
15309 
15310 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15311 	if (pci_enable_device_mem(pdev)) {
15312 		printk(KERN_ERR "lpfc: Cannot re-enable "
15313 		       "PCI device after reset.\n");
15314 		return PCI_ERS_RESULT_DISCONNECT;
15315 	}
15316 
15317 	pci_restore_state(pdev);
15318 
15319 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15320 	if (!hba_pci_err)
15321 		dev_info(&pdev->dev,
15322 			 "hba_pci_err was not set, recovering slot reset.\n");
15323 	/*
15324 	 * As the new kernel behavior of pci_restore_state() API call clears
15325 	 * device saved_state flag, need to save the restored state again.
15326 	 */
15327 	pci_save_state(pdev);
15328 
15329 	if (pdev->is_busmaster)
15330 		pci_set_master(pdev);
15331 
15332 	spin_lock_irq(&phba->hbalock);
15333 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15334 	spin_unlock_irq(&phba->hbalock);
15335 
15336 	/* Init cpu_map array */
15337 	lpfc_cpu_map_array_init(phba);
15338 	/* Configure and enable interrupt */
15339 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15340 	if (intr_mode == LPFC_INTR_ERROR) {
15341 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15342 				"2824 Cannot re-enable interrupt after "
15343 				"slot reset.\n");
15344 		return PCI_ERS_RESULT_DISCONNECT;
15345 	} else
15346 		phba->intr_mode = intr_mode;
15347 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15348 
15349 	/* Log the current active interrupt mode */
15350 	lpfc_log_intr_mode(phba, phba->intr_mode);
15351 
15352 	return PCI_ERS_RESULT_RECOVERED;
15353 }
15354 
15355 /**
15356  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15357  * @pdev: pointer to PCI device
15358  *
15359  * This routine is called from the PCI subsystem for error handling to device
15360  * with SLI-4 interface spec. It is called when kernel error recovery tells
15361  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15362  * error recovery. After this call, traffic can start to flow from this device
15363  * again.
15364  **/
15365 static void
15366 lpfc_io_resume_s4(struct pci_dev *pdev)
15367 {
15368 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15369 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15370 
15371 	/*
15372 	 * In case of slot reset, as function reset is performed through
15373 	 * mailbox command which needs DMA to be enabled, this operation
15374 	 * has to be moved to the io resume phase. Taking device offline
15375 	 * will perform the necessary cleanup.
15376 	 */
15377 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15378 		/* Perform device reset */
15379 		lpfc_sli_brdrestart(phba);
15380 		/* Bring the device back online */
15381 		lpfc_online(phba);
15382 	}
15383 }
15384 
15385 /**
15386  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15387  * @pdev: pointer to PCI device
15388  * @pid: pointer to PCI device identifier
15389  *
15390  * This routine is to be registered to the kernel's PCI subsystem. When an
15391  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15392  * at PCI device-specific information of the device and driver to see if the
15393  * driver state that it can support this kind of device. If the match is
15394  * successful, the driver core invokes this routine. This routine dispatches
15395  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15396  * do all the initialization that it needs to do to handle the HBA device
15397  * properly.
15398  *
15399  * Return code
15400  * 	0 - driver can claim the device
15401  * 	negative value - driver can not claim the device
15402  **/
15403 static int
15404 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15405 {
15406 	int rc;
15407 	struct lpfc_sli_intf intf;
15408 
15409 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15410 		return -ENODEV;
15411 
15412 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15413 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15414 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15415 	else
15416 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15417 
15418 	return rc;
15419 }
15420 
15421 /**
15422  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15423  * @pdev: pointer to PCI device
15424  *
15425  * This routine is to be registered to the kernel's PCI subsystem. When an
15426  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15427  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15428  * remove routine, which will perform all the necessary cleanup for the
15429  * device to be removed from the PCI subsystem properly.
15430  **/
15431 static void
15432 lpfc_pci_remove_one(struct pci_dev *pdev)
15433 {
15434 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15435 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15436 
15437 	switch (phba->pci_dev_grp) {
15438 	case LPFC_PCI_DEV_LP:
15439 		lpfc_pci_remove_one_s3(pdev);
15440 		break;
15441 	case LPFC_PCI_DEV_OC:
15442 		lpfc_pci_remove_one_s4(pdev);
15443 		break;
15444 	default:
15445 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15446 				"1424 Invalid PCI device group: 0x%x\n",
15447 				phba->pci_dev_grp);
15448 		break;
15449 	}
15450 	return;
15451 }
15452 
15453 /**
15454  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15455  * @dev: pointer to device
15456  *
15457  * This routine is to be registered to the kernel's PCI subsystem to support
15458  * system Power Management (PM). When PM invokes this method, it dispatches
15459  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15460  * suspend the device.
15461  *
15462  * Return code
15463  * 	0 - driver suspended the device
15464  * 	Error otherwise
15465  **/
15466 static int __maybe_unused
15467 lpfc_pci_suspend_one(struct device *dev)
15468 {
15469 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15470 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15471 	int rc = -ENODEV;
15472 
15473 	switch (phba->pci_dev_grp) {
15474 	case LPFC_PCI_DEV_LP:
15475 		rc = lpfc_pci_suspend_one_s3(dev);
15476 		break;
15477 	case LPFC_PCI_DEV_OC:
15478 		rc = lpfc_pci_suspend_one_s4(dev);
15479 		break;
15480 	default:
15481 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15482 				"1425 Invalid PCI device group: 0x%x\n",
15483 				phba->pci_dev_grp);
15484 		break;
15485 	}
15486 	return rc;
15487 }
15488 
15489 /**
15490  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15491  * @dev: pointer to device
15492  *
15493  * This routine is to be registered to the kernel's PCI subsystem to support
15494  * system Power Management (PM). When PM invokes this method, it dispatches
15495  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15496  * resume the device.
15497  *
15498  * Return code
15499  * 	0 - driver suspended the device
15500  * 	Error otherwise
15501  **/
15502 static int __maybe_unused
15503 lpfc_pci_resume_one(struct device *dev)
15504 {
15505 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15506 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15507 	int rc = -ENODEV;
15508 
15509 	switch (phba->pci_dev_grp) {
15510 	case LPFC_PCI_DEV_LP:
15511 		rc = lpfc_pci_resume_one_s3(dev);
15512 		break;
15513 	case LPFC_PCI_DEV_OC:
15514 		rc = lpfc_pci_resume_one_s4(dev);
15515 		break;
15516 	default:
15517 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15518 				"1426 Invalid PCI device group: 0x%x\n",
15519 				phba->pci_dev_grp);
15520 		break;
15521 	}
15522 	return rc;
15523 }
15524 
15525 /**
15526  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15527  * @pdev: pointer to PCI device.
15528  * @state: the current PCI connection state.
15529  *
15530  * This routine is registered to the PCI subsystem for error handling. This
15531  * function is called by the PCI subsystem after a PCI bus error affecting
15532  * this device has been detected. When this routine is invoked, it dispatches
15533  * the action to the proper SLI-3 or SLI-4 device error detected handling
15534  * routine, which will perform the proper error detected operation.
15535  *
15536  * Return codes
15537  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15538  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15539  **/
15540 static pci_ers_result_t
15541 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15542 {
15543 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15544 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15545 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15546 
15547 	if (phba->link_state == LPFC_HBA_ERROR &&
15548 	    phba->hba_flag & HBA_IOQ_FLUSH)
15549 		return PCI_ERS_RESULT_NEED_RESET;
15550 
15551 	switch (phba->pci_dev_grp) {
15552 	case LPFC_PCI_DEV_LP:
15553 		rc = lpfc_io_error_detected_s3(pdev, state);
15554 		break;
15555 	case LPFC_PCI_DEV_OC:
15556 		rc = lpfc_io_error_detected_s4(pdev, state);
15557 		break;
15558 	default:
15559 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15560 				"1427 Invalid PCI device group: 0x%x\n",
15561 				phba->pci_dev_grp);
15562 		break;
15563 	}
15564 	return rc;
15565 }
15566 
15567 /**
15568  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15569  * @pdev: pointer to PCI device.
15570  *
15571  * This routine is registered to the PCI subsystem for error handling. This
15572  * function is called after PCI bus has been reset to restart the PCI card
15573  * from scratch, as if from a cold-boot. When this routine is invoked, it
15574  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15575  * routine, which will perform the proper device reset.
15576  *
15577  * Return codes
15578  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15579  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15580  **/
15581 static pci_ers_result_t
15582 lpfc_io_slot_reset(struct pci_dev *pdev)
15583 {
15584 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15585 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15586 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15587 
15588 	switch (phba->pci_dev_grp) {
15589 	case LPFC_PCI_DEV_LP:
15590 		rc = lpfc_io_slot_reset_s3(pdev);
15591 		break;
15592 	case LPFC_PCI_DEV_OC:
15593 		rc = lpfc_io_slot_reset_s4(pdev);
15594 		break;
15595 	default:
15596 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15597 				"1428 Invalid PCI device group: 0x%x\n",
15598 				phba->pci_dev_grp);
15599 		break;
15600 	}
15601 	return rc;
15602 }
15603 
15604 /**
15605  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15606  * @pdev: pointer to PCI device
15607  *
15608  * This routine is registered to the PCI subsystem for error handling. It
15609  * is called when kernel error recovery tells the lpfc driver that it is
15610  * OK to resume normal PCI operation after PCI bus error recovery. When
15611  * this routine is invoked, it dispatches the action to the proper SLI-3
15612  * or SLI-4 device io_resume routine, which will resume the device operation.
15613  **/
15614 static void
15615 lpfc_io_resume(struct pci_dev *pdev)
15616 {
15617 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15618 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15619 
15620 	switch (phba->pci_dev_grp) {
15621 	case LPFC_PCI_DEV_LP:
15622 		lpfc_io_resume_s3(pdev);
15623 		break;
15624 	case LPFC_PCI_DEV_OC:
15625 		lpfc_io_resume_s4(pdev);
15626 		break;
15627 	default:
15628 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15629 				"1429 Invalid PCI device group: 0x%x\n",
15630 				phba->pci_dev_grp);
15631 		break;
15632 	}
15633 	return;
15634 }
15635 
15636 /**
15637  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15638  * @phba: pointer to lpfc hba data structure.
15639  *
15640  * This routine checks to see if OAS is supported for this adapter. If
15641  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15642  * the enable oas flag is cleared and the pool created for OAS device data
15643  * is destroyed.
15644  *
15645  **/
15646 static void
15647 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15648 {
15649 
15650 	if (!phba->cfg_EnableXLane)
15651 		return;
15652 
15653 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15654 		phba->cfg_fof = 1;
15655 	} else {
15656 		phba->cfg_fof = 0;
15657 		mempool_destroy(phba->device_data_mem_pool);
15658 		phba->device_data_mem_pool = NULL;
15659 	}
15660 
15661 	return;
15662 }
15663 
15664 /**
15665  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15666  * @phba: pointer to lpfc hba data structure.
15667  *
15668  * This routine checks to see if RAS is supported by the adapter. Check the
15669  * function through which RAS support enablement is to be done.
15670  **/
15671 void
15672 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15673 {
15674 	/* if ASIC_GEN_NUM >= 0xC) */
15675 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15676 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15677 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15678 		    LPFC_SLI_INTF_FAMILY_G6)) {
15679 		phba->ras_fwlog.ras_hwsupport = true;
15680 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15681 		    phba->cfg_ras_fwlog_buffsize)
15682 			phba->ras_fwlog.ras_enabled = true;
15683 		else
15684 			phba->ras_fwlog.ras_enabled = false;
15685 	} else {
15686 		phba->ras_fwlog.ras_hwsupport = false;
15687 	}
15688 }
15689 
15690 
15691 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15692 
15693 static const struct pci_error_handlers lpfc_err_handler = {
15694 	.error_detected = lpfc_io_error_detected,
15695 	.slot_reset = lpfc_io_slot_reset,
15696 	.resume = lpfc_io_resume,
15697 };
15698 
15699 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15700 			 lpfc_pci_suspend_one,
15701 			 lpfc_pci_resume_one);
15702 
15703 static struct pci_driver lpfc_driver = {
15704 	.name		= LPFC_DRIVER_NAME,
15705 	.id_table	= lpfc_id_table,
15706 	.probe		= lpfc_pci_probe_one,
15707 	.remove		= lpfc_pci_remove_one,
15708 	.shutdown	= lpfc_pci_remove_one,
15709 	.driver.pm	= &lpfc_pci_pm_ops_one,
15710 	.err_handler    = &lpfc_err_handler,
15711 };
15712 
15713 static const struct file_operations lpfc_mgmt_fop = {
15714 	.owner = THIS_MODULE,
15715 };
15716 
15717 static struct miscdevice lpfc_mgmt_dev = {
15718 	.minor = MISC_DYNAMIC_MINOR,
15719 	.name = "lpfcmgmt",
15720 	.fops = &lpfc_mgmt_fop,
15721 };
15722 
15723 /**
15724  * lpfc_init - lpfc module initialization routine
15725  *
15726  * This routine is to be invoked when the lpfc module is loaded into the
15727  * kernel. The special kernel macro module_init() is used to indicate the
15728  * role of this routine to the kernel as lpfc module entry point.
15729  *
15730  * Return codes
15731  *   0 - successful
15732  *   -ENOMEM - FC attach transport failed
15733  *   all others - failed
15734  */
15735 static int __init
15736 lpfc_init(void)
15737 {
15738 	int error = 0;
15739 
15740 	pr_info(LPFC_MODULE_DESC "\n");
15741 	pr_info(LPFC_COPYRIGHT "\n");
15742 
15743 	error = misc_register(&lpfc_mgmt_dev);
15744 	if (error)
15745 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15746 			"misc_register returned with status %d", error);
15747 
15748 	error = -ENOMEM;
15749 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15750 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15751 	lpfc_transport_template =
15752 				fc_attach_transport(&lpfc_transport_functions);
15753 	if (lpfc_transport_template == NULL)
15754 		goto unregister;
15755 	lpfc_vport_transport_template =
15756 		fc_attach_transport(&lpfc_vport_transport_functions);
15757 	if (lpfc_vport_transport_template == NULL) {
15758 		fc_release_transport(lpfc_transport_template);
15759 		goto unregister;
15760 	}
15761 	lpfc_wqe_cmd_template();
15762 	lpfc_nvmet_cmd_template();
15763 
15764 	/* Initialize in case vector mapping is needed */
15765 	lpfc_present_cpu = num_present_cpus();
15766 
15767 	lpfc_pldv_detect = false;
15768 
15769 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15770 					"lpfc/sli4:online",
15771 					lpfc_cpu_online, lpfc_cpu_offline);
15772 	if (error < 0)
15773 		goto cpuhp_failure;
15774 	lpfc_cpuhp_state = error;
15775 
15776 	error = pci_register_driver(&lpfc_driver);
15777 	if (error)
15778 		goto unwind;
15779 
15780 	return error;
15781 
15782 unwind:
15783 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15784 cpuhp_failure:
15785 	fc_release_transport(lpfc_transport_template);
15786 	fc_release_transport(lpfc_vport_transport_template);
15787 unregister:
15788 	misc_deregister(&lpfc_mgmt_dev);
15789 
15790 	return error;
15791 }
15792 
15793 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15794 {
15795 	unsigned int start_idx;
15796 	unsigned int dbg_cnt;
15797 	unsigned int temp_idx;
15798 	int i;
15799 	int j = 0;
15800 	unsigned long rem_nsec;
15801 
15802 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15803 		return;
15804 
15805 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15806 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15807 	if (!dbg_cnt)
15808 		goto out;
15809 	temp_idx = start_idx;
15810 	if (dbg_cnt >= DBG_LOG_SZ) {
15811 		dbg_cnt = DBG_LOG_SZ;
15812 		temp_idx -= 1;
15813 	} else {
15814 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15815 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15816 		} else {
15817 			if (start_idx < dbg_cnt)
15818 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15819 			else
15820 				start_idx -= dbg_cnt;
15821 		}
15822 	}
15823 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15824 		 start_idx, temp_idx, dbg_cnt);
15825 
15826 	for (i = 0; i < dbg_cnt; i++) {
15827 		if ((start_idx + i) < DBG_LOG_SZ)
15828 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15829 		else
15830 			temp_idx = j++;
15831 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15832 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15833 			 temp_idx,
15834 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15835 			 rem_nsec / 1000,
15836 			 phba->dbg_log[temp_idx].log);
15837 	}
15838 out:
15839 	atomic_set(&phba->dbg_log_cnt, 0);
15840 	atomic_set(&phba->dbg_log_dmping, 0);
15841 }
15842 
15843 __printf(2, 3)
15844 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15845 {
15846 	unsigned int idx;
15847 	va_list args;
15848 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15849 	struct va_format vaf;
15850 
15851 
15852 	va_start(args, fmt);
15853 	if (unlikely(dbg_dmping)) {
15854 		vaf.fmt = fmt;
15855 		vaf.va = &args;
15856 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15857 		va_end(args);
15858 		return;
15859 	}
15860 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15861 		DBG_LOG_SZ;
15862 
15863 	atomic_inc(&phba->dbg_log_cnt);
15864 
15865 	vscnprintf(phba->dbg_log[idx].log,
15866 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15867 	va_end(args);
15868 
15869 	phba->dbg_log[idx].t_ns = local_clock();
15870 }
15871 
15872 /**
15873  * lpfc_exit - lpfc module removal routine
15874  *
15875  * This routine is invoked when the lpfc module is removed from the kernel.
15876  * The special kernel macro module_exit() is used to indicate the role of
15877  * this routine to the kernel as lpfc module exit point.
15878  */
15879 static void __exit
15880 lpfc_exit(void)
15881 {
15882 	misc_deregister(&lpfc_mgmt_dev);
15883 	pci_unregister_driver(&lpfc_driver);
15884 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15885 	fc_release_transport(lpfc_transport_template);
15886 	fc_release_transport(lpfc_vport_transport_template);
15887 	idr_destroy(&lpfc_hba_index);
15888 }
15889 
15890 module_init(lpfc_init);
15891 module_exit(lpfc_exit);
15892 MODULE_LICENSE("GPL");
15893 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15894 MODULE_AUTHOR("Broadcom");
15895 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15896