1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/ctype.h> 34 #include <linux/aer.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/msi.h> 40 #include <linux/irq.h> 41 #include <linux/bitops.h> 42 #include <linux/crash_dump.h> 43 #include <linux/cpu.h> 44 #include <linux/cpuhotplug.h> 45 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_host.h> 49 #include <scsi/scsi_transport_fc.h> 50 #include <scsi/scsi_tcq.h> 51 #include <scsi/fc/fc_fs.h> 52 53 #include "lpfc_hw4.h" 54 #include "lpfc_hw.h" 55 #include "lpfc_sli.h" 56 #include "lpfc_sli4.h" 57 #include "lpfc_nl.h" 58 #include "lpfc_disc.h" 59 #include "lpfc.h" 60 #include "lpfc_scsi.h" 61 #include "lpfc_nvme.h" 62 #include "lpfc_logmsg.h" 63 #include "lpfc_crtn.h" 64 #include "lpfc_vport.h" 65 #include "lpfc_version.h" 66 #include "lpfc_ids.h" 67 68 static enum cpuhp_state lpfc_cpuhp_state; 69 /* Used when mapping IRQ vectors in a driver centric manner */ 70 static uint32_t lpfc_present_cpu; 71 72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 76 static int lpfc_post_rcv_buf(struct lpfc_hba *); 77 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 79 static int lpfc_setup_endian_order(struct lpfc_hba *); 80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 81 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 83 static void lpfc_init_sgl_list(struct lpfc_hba *); 84 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 85 static void lpfc_free_active_sgl(struct lpfc_hba *); 86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 91 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 96 97 static struct scsi_transport_template *lpfc_transport_template = NULL; 98 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 99 static DEFINE_IDR(lpfc_hba_index); 100 #define LPFC_NVMET_BUF_POST 254 101 102 /** 103 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 104 * @phba: pointer to lpfc hba data structure. 105 * 106 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 107 * mailbox command. It retrieves the revision information from the HBA and 108 * collects the Vital Product Data (VPD) about the HBA for preparing the 109 * configuration of the HBA. 110 * 111 * Return codes: 112 * 0 - success. 113 * -ERESTART - requests the SLI layer to reset the HBA and try again. 114 * Any other value - indicates an error. 115 **/ 116 int 117 lpfc_config_port_prep(struct lpfc_hba *phba) 118 { 119 lpfc_vpd_t *vp = &phba->vpd; 120 int i = 0, rc; 121 LPFC_MBOXQ_t *pmb; 122 MAILBOX_t *mb; 123 char *lpfc_vpd_data = NULL; 124 uint16_t offset = 0; 125 static char licensed[56] = 126 "key unlock for use with gnu public licensed code only\0"; 127 static int init_key = 1; 128 129 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 130 if (!pmb) { 131 phba->link_state = LPFC_HBA_ERROR; 132 return -ENOMEM; 133 } 134 135 mb = &pmb->u.mb; 136 phba->link_state = LPFC_INIT_MBX_CMDS; 137 138 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 139 if (init_key) { 140 uint32_t *ptext = (uint32_t *) licensed; 141 142 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 143 *ptext = cpu_to_be32(*ptext); 144 init_key = 0; 145 } 146 147 lpfc_read_nv(phba, pmb); 148 memset((char*)mb->un.varRDnvp.rsvd3, 0, 149 sizeof (mb->un.varRDnvp.rsvd3)); 150 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 151 sizeof (licensed)); 152 153 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 154 155 if (rc != MBX_SUCCESS) { 156 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 157 "0324 Config Port initialization " 158 "error, mbxCmd x%x READ_NVPARM, " 159 "mbxStatus x%x\n", 160 mb->mbxCommand, mb->mbxStatus); 161 mempool_free(pmb, phba->mbox_mem_pool); 162 return -ERESTART; 163 } 164 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 165 sizeof(phba->wwnn)); 166 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 167 sizeof(phba->wwpn)); 168 } 169 170 /* 171 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 172 * which was already set in lpfc_get_cfgparam() 173 */ 174 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 175 176 /* Setup and issue mailbox READ REV command */ 177 lpfc_read_rev(phba, pmb); 178 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 179 if (rc != MBX_SUCCESS) { 180 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 181 "0439 Adapter failed to init, mbxCmd x%x " 182 "READ_REV, mbxStatus x%x\n", 183 mb->mbxCommand, mb->mbxStatus); 184 mempool_free( pmb, phba->mbox_mem_pool); 185 return -ERESTART; 186 } 187 188 189 /* 190 * The value of rr must be 1 since the driver set the cv field to 1. 191 * This setting requires the FW to set all revision fields. 192 */ 193 if (mb->un.varRdRev.rr == 0) { 194 vp->rev.rBit = 0; 195 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 196 "0440 Adapter failed to init, READ_REV has " 197 "missing revision information.\n"); 198 mempool_free(pmb, phba->mbox_mem_pool); 199 return -ERESTART; 200 } 201 202 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 203 mempool_free(pmb, phba->mbox_mem_pool); 204 return -EINVAL; 205 } 206 207 /* Save information as VPD data */ 208 vp->rev.rBit = 1; 209 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 210 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 211 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 212 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 213 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 214 vp->rev.biuRev = mb->un.varRdRev.biuRev; 215 vp->rev.smRev = mb->un.varRdRev.smRev; 216 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 217 vp->rev.endecRev = mb->un.varRdRev.endecRev; 218 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 219 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 220 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 221 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 222 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 223 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 224 225 /* If the sli feature level is less then 9, we must 226 * tear down all RPIs and VPIs on link down if NPIV 227 * is enabled. 228 */ 229 if (vp->rev.feaLevelHigh < 9) 230 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 231 232 if (lpfc_is_LC_HBA(phba->pcidev->device)) 233 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 234 sizeof (phba->RandomData)); 235 236 /* Get adapter VPD information */ 237 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 238 if (!lpfc_vpd_data) 239 goto out_free_mbox; 240 do { 241 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 242 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 243 244 if (rc != MBX_SUCCESS) { 245 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 246 "0441 VPD not present on adapter, " 247 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 248 mb->mbxCommand, mb->mbxStatus); 249 mb->un.varDmp.word_cnt = 0; 250 } 251 /* dump mem may return a zero when finished or we got a 252 * mailbox error, either way we are done. 253 */ 254 if (mb->un.varDmp.word_cnt == 0) 255 break; 256 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) 257 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; 258 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 259 lpfc_vpd_data + offset, 260 mb->un.varDmp.word_cnt); 261 offset += mb->un.varDmp.word_cnt; 262 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); 263 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 264 265 kfree(lpfc_vpd_data); 266 out_free_mbox: 267 mempool_free(pmb, phba->mbox_mem_pool); 268 return 0; 269 } 270 271 /** 272 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 273 * @phba: pointer to lpfc hba data structure. 274 * @pmboxq: pointer to the driver internal queue element for mailbox command. 275 * 276 * This is the completion handler for driver's configuring asynchronous event 277 * mailbox command to the device. If the mailbox command returns successfully, 278 * it will set internal async event support flag to 1; otherwise, it will 279 * set internal async event support flag to 0. 280 **/ 281 static void 282 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 283 { 284 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 285 phba->temp_sensor_support = 1; 286 else 287 phba->temp_sensor_support = 0; 288 mempool_free(pmboxq, phba->mbox_mem_pool); 289 return; 290 } 291 292 /** 293 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 294 * @phba: pointer to lpfc hba data structure. 295 * @pmboxq: pointer to the driver internal queue element for mailbox command. 296 * 297 * This is the completion handler for dump mailbox command for getting 298 * wake up parameters. When this command complete, the response contain 299 * Option rom version of the HBA. This function translate the version number 300 * into a human readable string and store it in OptionROMVersion. 301 **/ 302 static void 303 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 304 { 305 struct prog_id *prg; 306 uint32_t prog_id_word; 307 char dist = ' '; 308 /* character array used for decoding dist type. */ 309 char dist_char[] = "nabx"; 310 311 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 312 mempool_free(pmboxq, phba->mbox_mem_pool); 313 return; 314 } 315 316 prg = (struct prog_id *) &prog_id_word; 317 318 /* word 7 contain option rom version */ 319 prog_id_word = pmboxq->u.mb.un.varWords[7]; 320 321 /* Decode the Option rom version word to a readable string */ 322 if (prg->dist < 4) 323 dist = dist_char[prg->dist]; 324 325 if ((prg->dist == 3) && (prg->num == 0)) 326 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 327 prg->ver, prg->rev, prg->lev); 328 else 329 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 330 prg->ver, prg->rev, prg->lev, 331 dist, prg->num); 332 mempool_free(pmboxq, phba->mbox_mem_pool); 333 return; 334 } 335 336 /** 337 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 338 * cfg_soft_wwnn, cfg_soft_wwpn 339 * @vport: pointer to lpfc vport data structure. 340 * 341 * 342 * Return codes 343 * None. 344 **/ 345 void 346 lpfc_update_vport_wwn(struct lpfc_vport *vport) 347 { 348 uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level; 349 u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0]; 350 351 /* If the soft name exists then update it using the service params */ 352 if (vport->phba->cfg_soft_wwnn) 353 u64_to_wwn(vport->phba->cfg_soft_wwnn, 354 vport->fc_sparam.nodeName.u.wwn); 355 if (vport->phba->cfg_soft_wwpn) 356 u64_to_wwn(vport->phba->cfg_soft_wwpn, 357 vport->fc_sparam.portName.u.wwn); 358 359 /* 360 * If the name is empty or there exists a soft name 361 * then copy the service params name, otherwise use the fc name 362 */ 363 if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn) 364 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 365 sizeof(struct lpfc_name)); 366 else 367 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 368 sizeof(struct lpfc_name)); 369 370 /* 371 * If the port name has changed, then set the Param changes flag 372 * to unreg the login 373 */ 374 if (vport->fc_portname.u.wwn[0] != 0 && 375 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 376 sizeof(struct lpfc_name))) 377 vport->vport_flag |= FAWWPN_PARAM_CHG; 378 379 if (vport->fc_portname.u.wwn[0] == 0 || 380 vport->phba->cfg_soft_wwpn || 381 (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) || 382 vport->vport_flag & FAWWPN_SET) { 383 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 384 sizeof(struct lpfc_name)); 385 vport->vport_flag &= ~FAWWPN_SET; 386 if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) 387 vport->vport_flag |= FAWWPN_SET; 388 } 389 else 390 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 391 sizeof(struct lpfc_name)); 392 } 393 394 /** 395 * lpfc_config_port_post - Perform lpfc initialization after config port 396 * @phba: pointer to lpfc hba data structure. 397 * 398 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 399 * command call. It performs all internal resource and state setups on the 400 * port: post IOCB buffers, enable appropriate host interrupt attentions, 401 * ELS ring timers, etc. 402 * 403 * Return codes 404 * 0 - success. 405 * Any other value - error. 406 **/ 407 int 408 lpfc_config_port_post(struct lpfc_hba *phba) 409 { 410 struct lpfc_vport *vport = phba->pport; 411 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 412 LPFC_MBOXQ_t *pmb; 413 MAILBOX_t *mb; 414 struct lpfc_dmabuf *mp; 415 struct lpfc_sli *psli = &phba->sli; 416 uint32_t status, timeout; 417 int i, j; 418 int rc; 419 420 spin_lock_irq(&phba->hbalock); 421 /* 422 * If the Config port completed correctly the HBA is not 423 * over heated any more. 424 */ 425 if (phba->over_temp_state == HBA_OVER_TEMP) 426 phba->over_temp_state = HBA_NORMAL_TEMP; 427 spin_unlock_irq(&phba->hbalock); 428 429 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 430 if (!pmb) { 431 phba->link_state = LPFC_HBA_ERROR; 432 return -ENOMEM; 433 } 434 mb = &pmb->u.mb; 435 436 /* Get login parameters for NID. */ 437 rc = lpfc_read_sparam(phba, pmb, 0); 438 if (rc) { 439 mempool_free(pmb, phba->mbox_mem_pool); 440 return -ENOMEM; 441 } 442 443 pmb->vport = vport; 444 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 445 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 446 "0448 Adapter failed init, mbxCmd x%x " 447 "READ_SPARM mbxStatus x%x\n", 448 mb->mbxCommand, mb->mbxStatus); 449 phba->link_state = LPFC_HBA_ERROR; 450 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 451 mempool_free(pmb, phba->mbox_mem_pool); 452 lpfc_mbuf_free(phba, mp->virt, mp->phys); 453 kfree(mp); 454 return -EIO; 455 } 456 457 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 458 459 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 460 lpfc_mbuf_free(phba, mp->virt, mp->phys); 461 kfree(mp); 462 pmb->ctx_buf = NULL; 463 lpfc_update_vport_wwn(vport); 464 465 /* Update the fc_host data structures with new wwn. */ 466 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 467 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 468 fc_host_max_npiv_vports(shost) = phba->max_vpi; 469 470 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 471 /* This should be consolidated into parse_vpd ? - mr */ 472 if (phba->SerialNumber[0] == 0) { 473 uint8_t *outptr; 474 475 outptr = &vport->fc_nodename.u.s.IEEE[0]; 476 for (i = 0; i < 12; i++) { 477 status = *outptr++; 478 j = ((status & 0xf0) >> 4); 479 if (j <= 9) 480 phba->SerialNumber[i] = 481 (char)((uint8_t) 0x30 + (uint8_t) j); 482 else 483 phba->SerialNumber[i] = 484 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 485 i++; 486 j = (status & 0xf); 487 if (j <= 9) 488 phba->SerialNumber[i] = 489 (char)((uint8_t) 0x30 + (uint8_t) j); 490 else 491 phba->SerialNumber[i] = 492 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 493 } 494 } 495 496 lpfc_read_config(phba, pmb); 497 pmb->vport = vport; 498 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 499 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 500 "0453 Adapter failed to init, mbxCmd x%x " 501 "READ_CONFIG, mbxStatus x%x\n", 502 mb->mbxCommand, mb->mbxStatus); 503 phba->link_state = LPFC_HBA_ERROR; 504 mempool_free( pmb, phba->mbox_mem_pool); 505 return -EIO; 506 } 507 508 /* Check if the port is disabled */ 509 lpfc_sli_read_link_ste(phba); 510 511 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 512 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 513 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 514 "3359 HBA queue depth changed from %d to %d\n", 515 phba->cfg_hba_queue_depth, 516 mb->un.varRdConfig.max_xri); 517 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 518 } 519 520 phba->lmt = mb->un.varRdConfig.lmt; 521 522 /* Get the default values for Model Name and Description */ 523 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 524 525 phba->link_state = LPFC_LINK_DOWN; 526 527 /* Only process IOCBs on ELS ring till hba_state is READY */ 528 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 529 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 530 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 531 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 532 533 /* Post receive buffers for desired rings */ 534 if (phba->sli_rev != 3) 535 lpfc_post_rcv_buf(phba); 536 537 /* 538 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 539 */ 540 if (phba->intr_type == MSIX) { 541 rc = lpfc_config_msi(phba, pmb); 542 if (rc) { 543 mempool_free(pmb, phba->mbox_mem_pool); 544 return -EIO; 545 } 546 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 547 if (rc != MBX_SUCCESS) { 548 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 549 "0352 Config MSI mailbox command " 550 "failed, mbxCmd x%x, mbxStatus x%x\n", 551 pmb->u.mb.mbxCommand, 552 pmb->u.mb.mbxStatus); 553 mempool_free(pmb, phba->mbox_mem_pool); 554 return -EIO; 555 } 556 } 557 558 spin_lock_irq(&phba->hbalock); 559 /* Initialize ERATT handling flag */ 560 phba->hba_flag &= ~HBA_ERATT_HANDLED; 561 562 /* Enable appropriate host interrupts */ 563 if (lpfc_readl(phba->HCregaddr, &status)) { 564 spin_unlock_irq(&phba->hbalock); 565 return -EIO; 566 } 567 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 568 if (psli->num_rings > 0) 569 status |= HC_R0INT_ENA; 570 if (psli->num_rings > 1) 571 status |= HC_R1INT_ENA; 572 if (psli->num_rings > 2) 573 status |= HC_R2INT_ENA; 574 if (psli->num_rings > 3) 575 status |= HC_R3INT_ENA; 576 577 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 578 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 579 status &= ~(HC_R0INT_ENA); 580 581 writel(status, phba->HCregaddr); 582 readl(phba->HCregaddr); /* flush */ 583 spin_unlock_irq(&phba->hbalock); 584 585 /* Set up ring-0 (ELS) timer */ 586 timeout = phba->fc_ratov * 2; 587 mod_timer(&vport->els_tmofunc, 588 jiffies + msecs_to_jiffies(1000 * timeout)); 589 /* Set up heart beat (HB) timer */ 590 mod_timer(&phba->hb_tmofunc, 591 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 592 phba->hb_outstanding = 0; 593 phba->last_completion_time = jiffies; 594 /* Set up error attention (ERATT) polling timer */ 595 mod_timer(&phba->eratt_poll, 596 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 597 598 if (phba->hba_flag & LINK_DISABLED) { 599 lpfc_printf_log(phba, 600 KERN_ERR, LOG_INIT, 601 "2598 Adapter Link is disabled.\n"); 602 lpfc_down_link(phba, pmb); 603 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 604 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 605 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 606 lpfc_printf_log(phba, 607 KERN_ERR, LOG_INIT, 608 "2599 Adapter failed to issue DOWN_LINK" 609 " mbox command rc 0x%x\n", rc); 610 611 mempool_free(pmb, phba->mbox_mem_pool); 612 return -EIO; 613 } 614 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 615 mempool_free(pmb, phba->mbox_mem_pool); 616 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 617 if (rc) 618 return rc; 619 } 620 /* MBOX buffer will be freed in mbox compl */ 621 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 622 if (!pmb) { 623 phba->link_state = LPFC_HBA_ERROR; 624 return -ENOMEM; 625 } 626 627 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 628 pmb->mbox_cmpl = lpfc_config_async_cmpl; 629 pmb->vport = phba->pport; 630 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 631 632 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 633 lpfc_printf_log(phba, 634 KERN_ERR, 635 LOG_INIT, 636 "0456 Adapter failed to issue " 637 "ASYNCEVT_ENABLE mbox status x%x\n", 638 rc); 639 mempool_free(pmb, phba->mbox_mem_pool); 640 } 641 642 /* Get Option rom version */ 643 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 644 if (!pmb) { 645 phba->link_state = LPFC_HBA_ERROR; 646 return -ENOMEM; 647 } 648 649 lpfc_dump_wakeup_param(phba, pmb); 650 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 651 pmb->vport = phba->pport; 652 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 653 654 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 655 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0435 Adapter failed " 656 "to get Option ROM version status x%x\n", rc); 657 mempool_free(pmb, phba->mbox_mem_pool); 658 } 659 660 return 0; 661 } 662 663 /** 664 * lpfc_hba_init_link - Initialize the FC link 665 * @phba: pointer to lpfc hba data structure. 666 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 667 * 668 * This routine will issue the INIT_LINK mailbox command call. 669 * It is available to other drivers through the lpfc_hba data 670 * structure for use as a delayed link up mechanism with the 671 * module parameter lpfc_suppress_link_up. 672 * 673 * Return code 674 * 0 - success 675 * Any other value - error 676 **/ 677 static int 678 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 679 { 680 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 681 } 682 683 /** 684 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 685 * @phba: pointer to lpfc hba data structure. 686 * @fc_topology: desired fc topology. 687 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 688 * 689 * This routine will issue the INIT_LINK mailbox command call. 690 * It is available to other drivers through the lpfc_hba data 691 * structure for use as a delayed link up mechanism with the 692 * module parameter lpfc_suppress_link_up. 693 * 694 * Return code 695 * 0 - success 696 * Any other value - error 697 **/ 698 int 699 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 700 uint32_t flag) 701 { 702 struct lpfc_vport *vport = phba->pport; 703 LPFC_MBOXQ_t *pmb; 704 MAILBOX_t *mb; 705 int rc; 706 707 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 708 if (!pmb) { 709 phba->link_state = LPFC_HBA_ERROR; 710 return -ENOMEM; 711 } 712 mb = &pmb->u.mb; 713 pmb->vport = vport; 714 715 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 716 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 717 !(phba->lmt & LMT_1Gb)) || 718 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 719 !(phba->lmt & LMT_2Gb)) || 720 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 721 !(phba->lmt & LMT_4Gb)) || 722 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 723 !(phba->lmt & LMT_8Gb)) || 724 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 725 !(phba->lmt & LMT_10Gb)) || 726 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 727 !(phba->lmt & LMT_16Gb)) || 728 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 729 !(phba->lmt & LMT_32Gb)) || 730 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 731 !(phba->lmt & LMT_64Gb))) { 732 /* Reset link speed to auto */ 733 lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT, 734 "1302 Invalid speed for this board:%d " 735 "Reset link speed to auto.\n", 736 phba->cfg_link_speed); 737 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 738 } 739 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 740 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 741 if (phba->sli_rev < LPFC_SLI_REV4) 742 lpfc_set_loopback_flag(phba); 743 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 744 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 745 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 746 "0498 Adapter failed to init, mbxCmd x%x " 747 "INIT_LINK, mbxStatus x%x\n", 748 mb->mbxCommand, mb->mbxStatus); 749 if (phba->sli_rev <= LPFC_SLI_REV3) { 750 /* Clear all interrupt enable conditions */ 751 writel(0, phba->HCregaddr); 752 readl(phba->HCregaddr); /* flush */ 753 /* Clear all pending interrupts */ 754 writel(0xffffffff, phba->HAregaddr); 755 readl(phba->HAregaddr); /* flush */ 756 } 757 phba->link_state = LPFC_HBA_ERROR; 758 if (rc != MBX_BUSY || flag == MBX_POLL) 759 mempool_free(pmb, phba->mbox_mem_pool); 760 return -EIO; 761 } 762 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 763 if (flag == MBX_POLL) 764 mempool_free(pmb, phba->mbox_mem_pool); 765 766 return 0; 767 } 768 769 /** 770 * lpfc_hba_down_link - this routine downs the FC link 771 * @phba: pointer to lpfc hba data structure. 772 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 773 * 774 * This routine will issue the DOWN_LINK mailbox command call. 775 * It is available to other drivers through the lpfc_hba data 776 * structure for use to stop the link. 777 * 778 * Return code 779 * 0 - success 780 * Any other value - error 781 **/ 782 static int 783 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 784 { 785 LPFC_MBOXQ_t *pmb; 786 int rc; 787 788 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 789 if (!pmb) { 790 phba->link_state = LPFC_HBA_ERROR; 791 return -ENOMEM; 792 } 793 794 lpfc_printf_log(phba, 795 KERN_ERR, LOG_INIT, 796 "0491 Adapter Link is disabled.\n"); 797 lpfc_down_link(phba, pmb); 798 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 799 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 800 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 801 lpfc_printf_log(phba, 802 KERN_ERR, LOG_INIT, 803 "2522 Adapter failed to issue DOWN_LINK" 804 " mbox command rc 0x%x\n", rc); 805 806 mempool_free(pmb, phba->mbox_mem_pool); 807 return -EIO; 808 } 809 if (flag == MBX_POLL) 810 mempool_free(pmb, phba->mbox_mem_pool); 811 812 return 0; 813 } 814 815 /** 816 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 817 * @phba: pointer to lpfc HBA data structure. 818 * 819 * This routine will do LPFC uninitialization before the HBA is reset when 820 * bringing down the SLI Layer. 821 * 822 * Return codes 823 * 0 - success. 824 * Any other value - error. 825 **/ 826 int 827 lpfc_hba_down_prep(struct lpfc_hba *phba) 828 { 829 struct lpfc_vport **vports; 830 int i; 831 832 if (phba->sli_rev <= LPFC_SLI_REV3) { 833 /* Disable interrupts */ 834 writel(0, phba->HCregaddr); 835 readl(phba->HCregaddr); /* flush */ 836 } 837 838 if (phba->pport->load_flag & FC_UNLOADING) 839 lpfc_cleanup_discovery_resources(phba->pport); 840 else { 841 vports = lpfc_create_vport_work_array(phba); 842 if (vports != NULL) 843 for (i = 0; i <= phba->max_vports && 844 vports[i] != NULL; i++) 845 lpfc_cleanup_discovery_resources(vports[i]); 846 lpfc_destroy_vport_work_array(phba, vports); 847 } 848 return 0; 849 } 850 851 /** 852 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 853 * rspiocb which got deferred 854 * 855 * @phba: pointer to lpfc HBA data structure. 856 * 857 * This routine will cleanup completed slow path events after HBA is reset 858 * when bringing down the SLI Layer. 859 * 860 * 861 * Return codes 862 * void. 863 **/ 864 static void 865 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 866 { 867 struct lpfc_iocbq *rspiocbq; 868 struct hbq_dmabuf *dmabuf; 869 struct lpfc_cq_event *cq_event; 870 871 spin_lock_irq(&phba->hbalock); 872 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 873 spin_unlock_irq(&phba->hbalock); 874 875 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 876 /* Get the response iocb from the head of work queue */ 877 spin_lock_irq(&phba->hbalock); 878 list_remove_head(&phba->sli4_hba.sp_queue_event, 879 cq_event, struct lpfc_cq_event, list); 880 spin_unlock_irq(&phba->hbalock); 881 882 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 883 case CQE_CODE_COMPL_WQE: 884 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 885 cq_event); 886 lpfc_sli_release_iocbq(phba, rspiocbq); 887 break; 888 case CQE_CODE_RECEIVE: 889 case CQE_CODE_RECEIVE_V1: 890 dmabuf = container_of(cq_event, struct hbq_dmabuf, 891 cq_event); 892 lpfc_in_buf_free(phba, &dmabuf->dbuf); 893 } 894 } 895 } 896 897 /** 898 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 899 * @phba: pointer to lpfc HBA data structure. 900 * 901 * This routine will cleanup posted ELS buffers after the HBA is reset 902 * when bringing down the SLI Layer. 903 * 904 * 905 * Return codes 906 * void. 907 **/ 908 static void 909 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 910 { 911 struct lpfc_sli *psli = &phba->sli; 912 struct lpfc_sli_ring *pring; 913 struct lpfc_dmabuf *mp, *next_mp; 914 LIST_HEAD(buflist); 915 int count; 916 917 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 918 lpfc_sli_hbqbuf_free_all(phba); 919 else { 920 /* Cleanup preposted buffers on the ELS ring */ 921 pring = &psli->sli3_ring[LPFC_ELS_RING]; 922 spin_lock_irq(&phba->hbalock); 923 list_splice_init(&pring->postbufq, &buflist); 924 spin_unlock_irq(&phba->hbalock); 925 926 count = 0; 927 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 928 list_del(&mp->list); 929 count++; 930 lpfc_mbuf_free(phba, mp->virt, mp->phys); 931 kfree(mp); 932 } 933 934 spin_lock_irq(&phba->hbalock); 935 pring->postbufq_cnt -= count; 936 spin_unlock_irq(&phba->hbalock); 937 } 938 } 939 940 /** 941 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 942 * @phba: pointer to lpfc HBA data structure. 943 * 944 * This routine will cleanup the txcmplq after the HBA is reset when bringing 945 * down the SLI Layer. 946 * 947 * Return codes 948 * void 949 **/ 950 static void 951 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 952 { 953 struct lpfc_sli *psli = &phba->sli; 954 struct lpfc_queue *qp = NULL; 955 struct lpfc_sli_ring *pring; 956 LIST_HEAD(completions); 957 int i; 958 struct lpfc_iocbq *piocb, *next_iocb; 959 960 if (phba->sli_rev != LPFC_SLI_REV4) { 961 for (i = 0; i < psli->num_rings; i++) { 962 pring = &psli->sli3_ring[i]; 963 spin_lock_irq(&phba->hbalock); 964 /* At this point in time the HBA is either reset or DOA 965 * Nothing should be on txcmplq as it will 966 * NEVER complete. 967 */ 968 list_splice_init(&pring->txcmplq, &completions); 969 pring->txcmplq_cnt = 0; 970 spin_unlock_irq(&phba->hbalock); 971 972 lpfc_sli_abort_iocb_ring(phba, pring); 973 } 974 /* Cancel all the IOCBs from the completions list */ 975 lpfc_sli_cancel_iocbs(phba, &completions, 976 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 977 return; 978 } 979 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 980 pring = qp->pring; 981 if (!pring) 982 continue; 983 spin_lock_irq(&pring->ring_lock); 984 list_for_each_entry_safe(piocb, next_iocb, 985 &pring->txcmplq, list) 986 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 987 list_splice_init(&pring->txcmplq, &completions); 988 pring->txcmplq_cnt = 0; 989 spin_unlock_irq(&pring->ring_lock); 990 lpfc_sli_abort_iocb_ring(phba, pring); 991 } 992 /* Cancel all the IOCBs from the completions list */ 993 lpfc_sli_cancel_iocbs(phba, &completions, 994 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 995 } 996 997 /** 998 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 999 int i; 1000 * @phba: pointer to lpfc HBA data structure. 1001 * 1002 * This routine will do uninitialization after the HBA is reset when bring 1003 * down the SLI Layer. 1004 * 1005 * Return codes 1006 * 0 - success. 1007 * Any other value - error. 1008 **/ 1009 static int 1010 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1011 { 1012 lpfc_hba_free_post_buf(phba); 1013 lpfc_hba_clean_txcmplq(phba); 1014 return 0; 1015 } 1016 1017 /** 1018 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1019 * @phba: pointer to lpfc HBA data structure. 1020 * 1021 * This routine will do uninitialization after the HBA is reset when bring 1022 * down the SLI Layer. 1023 * 1024 * Return codes 1025 * 0 - success. 1026 * Any other value - error. 1027 **/ 1028 static int 1029 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1030 { 1031 struct lpfc_io_buf *psb, *psb_next; 1032 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1033 struct lpfc_sli4_hdw_queue *qp; 1034 LIST_HEAD(aborts); 1035 LIST_HEAD(nvme_aborts); 1036 LIST_HEAD(nvmet_aborts); 1037 struct lpfc_sglq *sglq_entry = NULL; 1038 int cnt, idx; 1039 1040 1041 lpfc_sli_hbqbuf_free_all(phba); 1042 lpfc_hba_clean_txcmplq(phba); 1043 1044 /* At this point in time the HBA is either reset or DOA. Either 1045 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1046 * on the lpfc_els_sgl_list so that it can either be freed if the 1047 * driver is unloading or reposted if the driver is restarting 1048 * the port. 1049 */ 1050 spin_lock_irq(&phba->hbalock); /* required for lpfc_els_sgl_list and */ 1051 /* scsl_buf_list */ 1052 /* sgl_list_lock required because worker thread uses this 1053 * list. 1054 */ 1055 spin_lock(&phba->sli4_hba.sgl_list_lock); 1056 list_for_each_entry(sglq_entry, 1057 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1058 sglq_entry->state = SGL_FREED; 1059 1060 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1061 &phba->sli4_hba.lpfc_els_sgl_list); 1062 1063 1064 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1065 1066 /* abts_xxxx_buf_list_lock required because worker thread uses this 1067 * list. 1068 */ 1069 cnt = 0; 1070 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1071 qp = &phba->sli4_hba.hdwq[idx]; 1072 1073 spin_lock(&qp->abts_io_buf_list_lock); 1074 list_splice_init(&qp->lpfc_abts_io_buf_list, 1075 &aborts); 1076 1077 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1078 psb->pCmd = NULL; 1079 psb->status = IOSTAT_SUCCESS; 1080 cnt++; 1081 } 1082 spin_lock(&qp->io_buf_list_put_lock); 1083 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1084 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1085 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1086 qp->abts_scsi_io_bufs = 0; 1087 qp->abts_nvme_io_bufs = 0; 1088 spin_unlock(&qp->io_buf_list_put_lock); 1089 spin_unlock(&qp->abts_io_buf_list_lock); 1090 } 1091 spin_unlock_irq(&phba->hbalock); 1092 1093 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1094 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1095 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1096 &nvmet_aborts); 1097 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1098 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1099 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1100 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1101 } 1102 } 1103 1104 lpfc_sli4_free_sp_events(phba); 1105 return cnt; 1106 } 1107 1108 /** 1109 * lpfc_hba_down_post - Wrapper func for hba down post routine 1110 * @phba: pointer to lpfc HBA data structure. 1111 * 1112 * This routine wraps the actual SLI3 or SLI4 routine for performing 1113 * uninitialization after the HBA is reset when bring down the SLI Layer. 1114 * 1115 * Return codes 1116 * 0 - success. 1117 * Any other value - error. 1118 **/ 1119 int 1120 lpfc_hba_down_post(struct lpfc_hba *phba) 1121 { 1122 return (*phba->lpfc_hba_down_post)(phba); 1123 } 1124 1125 /** 1126 * lpfc_hb_timeout - The HBA-timer timeout handler 1127 * @ptr: unsigned long holds the pointer to lpfc hba data structure. 1128 * 1129 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1130 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1131 * work-port-events bitmap and the worker thread is notified. This timeout 1132 * event will be used by the worker thread to invoke the actual timeout 1133 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1134 * be performed in the timeout handler and the HBA timeout event bit shall 1135 * be cleared by the worker thread after it has taken the event bitmap out. 1136 **/ 1137 static void 1138 lpfc_hb_timeout(struct timer_list *t) 1139 { 1140 struct lpfc_hba *phba; 1141 uint32_t tmo_posted; 1142 unsigned long iflag; 1143 1144 phba = from_timer(phba, t, hb_tmofunc); 1145 1146 /* Check for heart beat timeout conditions */ 1147 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1148 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1149 if (!tmo_posted) 1150 phba->pport->work_port_events |= WORKER_HB_TMO; 1151 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1152 1153 /* Tell the worker thread there is work to do */ 1154 if (!tmo_posted) 1155 lpfc_worker_wake_up(phba); 1156 return; 1157 } 1158 1159 /** 1160 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1161 * @ptr: unsigned long holds the pointer to lpfc hba data structure. 1162 * 1163 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1164 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1165 * work-port-events bitmap and the worker thread is notified. This timeout 1166 * event will be used by the worker thread to invoke the actual timeout 1167 * handler routine, lpfc_rrq_handler. Any periodical operations will 1168 * be performed in the timeout handler and the RRQ timeout event bit shall 1169 * be cleared by the worker thread after it has taken the event bitmap out. 1170 **/ 1171 static void 1172 lpfc_rrq_timeout(struct timer_list *t) 1173 { 1174 struct lpfc_hba *phba; 1175 unsigned long iflag; 1176 1177 phba = from_timer(phba, t, rrq_tmr); 1178 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1179 if (!(phba->pport->load_flag & FC_UNLOADING)) 1180 phba->hba_flag |= HBA_RRQ_ACTIVE; 1181 else 1182 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1183 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1184 1185 if (!(phba->pport->load_flag & FC_UNLOADING)) 1186 lpfc_worker_wake_up(phba); 1187 } 1188 1189 /** 1190 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1191 * @phba: pointer to lpfc hba data structure. 1192 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1193 * 1194 * This is the callback function to the lpfc heart-beat mailbox command. 1195 * If configured, the lpfc driver issues the heart-beat mailbox command to 1196 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1197 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1198 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1199 * heart-beat outstanding state. Once the mailbox command comes back and 1200 * no error conditions detected, the heart-beat mailbox command timer is 1201 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1202 * state is cleared for the next heart-beat. If the timer expired with the 1203 * heart-beat outstanding state set, the driver will put the HBA offline. 1204 **/ 1205 static void 1206 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1207 { 1208 unsigned long drvr_flag; 1209 1210 spin_lock_irqsave(&phba->hbalock, drvr_flag); 1211 phba->hb_outstanding = 0; 1212 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 1213 1214 /* Check and reset heart-beat timer is necessary */ 1215 mempool_free(pmboxq, phba->mbox_mem_pool); 1216 if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) && 1217 !(phba->link_state == LPFC_HBA_ERROR) && 1218 !(phba->pport->load_flag & FC_UNLOADING)) 1219 mod_timer(&phba->hb_tmofunc, 1220 jiffies + 1221 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1222 return; 1223 } 1224 1225 static void 1226 lpfc_hb_eq_delay_work(struct work_struct *work) 1227 { 1228 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1229 struct lpfc_hba, eq_delay_work); 1230 struct lpfc_eq_intr_info *eqi, *eqi_new; 1231 struct lpfc_queue *eq, *eq_next; 1232 unsigned char *ena_delay = NULL; 1233 uint32_t usdelay; 1234 int i; 1235 1236 if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING) 1237 return; 1238 1239 if (phba->link_state == LPFC_HBA_ERROR || 1240 phba->pport->fc_flag & FC_OFFLINE_MODE) 1241 goto requeue; 1242 1243 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1244 GFP_KERNEL); 1245 if (!ena_delay) 1246 goto requeue; 1247 1248 for (i = 0; i < phba->cfg_irq_chann; i++) { 1249 /* Get the EQ corresponding to the IRQ vector */ 1250 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1251 if (!eq) 1252 continue; 1253 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1254 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1255 ena_delay[eq->last_cpu] = 1; 1256 } 1257 } 1258 1259 for_each_present_cpu(i) { 1260 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1261 if (ena_delay[i]) { 1262 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1263 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1264 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1265 } else { 1266 usdelay = 0; 1267 } 1268 1269 eqi->icnt = 0; 1270 1271 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1272 if (unlikely(eq->last_cpu != i)) { 1273 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1274 eq->last_cpu); 1275 list_move_tail(&eq->cpu_list, &eqi_new->list); 1276 continue; 1277 } 1278 if (usdelay != eq->q_mode) 1279 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1280 usdelay); 1281 } 1282 } 1283 1284 kfree(ena_delay); 1285 1286 requeue: 1287 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1288 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1289 } 1290 1291 /** 1292 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1293 * @phba: pointer to lpfc hba data structure. 1294 * 1295 * For each heartbeat, this routine does some heuristic methods to adjust 1296 * XRI distribution. The goal is to fully utilize free XRIs. 1297 **/ 1298 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1299 { 1300 u32 i; 1301 u32 hwq_count; 1302 1303 hwq_count = phba->cfg_hdw_queue; 1304 for (i = 0; i < hwq_count; i++) { 1305 /* Adjust XRIs in private pool */ 1306 lpfc_adjust_pvt_pool_count(phba, i); 1307 1308 /* Adjust high watermark */ 1309 lpfc_adjust_high_watermark(phba, i); 1310 1311 #ifdef LPFC_MXP_STAT 1312 /* Snapshot pbl, pvt and busy count */ 1313 lpfc_snapshot_mxp(phba, i); 1314 #endif 1315 } 1316 } 1317 1318 /** 1319 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1320 * @phba: pointer to lpfc hba data structure. 1321 * 1322 * This is the actual HBA-timer timeout handler to be invoked by the worker 1323 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1324 * handler performs any periodic operations needed for the device. If such 1325 * periodic event has already been attended to either in the interrupt handler 1326 * or by processing slow-ring or fast-ring events within the HBA-timer 1327 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1328 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1329 * is configured and there is no heart-beat mailbox command outstanding, a 1330 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1331 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1332 * to offline. 1333 **/ 1334 void 1335 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1336 { 1337 struct lpfc_vport **vports; 1338 LPFC_MBOXQ_t *pmboxq; 1339 struct lpfc_dmabuf *buf_ptr; 1340 int retval, i; 1341 struct lpfc_sli *psli = &phba->sli; 1342 LIST_HEAD(completions); 1343 1344 if (phba->cfg_xri_rebalancing) { 1345 /* Multi-XRI pools handler */ 1346 lpfc_hb_mxp_handler(phba); 1347 } 1348 1349 vports = lpfc_create_vport_work_array(phba); 1350 if (vports != NULL) 1351 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1352 lpfc_rcv_seq_check_edtov(vports[i]); 1353 lpfc_fdmi_change_check(vports[i]); 1354 } 1355 lpfc_destroy_vport_work_array(phba, vports); 1356 1357 if ((phba->link_state == LPFC_HBA_ERROR) || 1358 (phba->pport->load_flag & FC_UNLOADING) || 1359 (phba->pport->fc_flag & FC_OFFLINE_MODE)) 1360 return; 1361 1362 spin_lock_irq(&phba->pport->work_port_lock); 1363 1364 if (time_after(phba->last_completion_time + 1365 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL), 1366 jiffies)) { 1367 spin_unlock_irq(&phba->pport->work_port_lock); 1368 if (!phba->hb_outstanding) 1369 mod_timer(&phba->hb_tmofunc, 1370 jiffies + 1371 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1372 else 1373 mod_timer(&phba->hb_tmofunc, 1374 jiffies + 1375 msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT)); 1376 return; 1377 } 1378 spin_unlock_irq(&phba->pport->work_port_lock); 1379 1380 if (phba->elsbuf_cnt && 1381 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1382 spin_lock_irq(&phba->hbalock); 1383 list_splice_init(&phba->elsbuf, &completions); 1384 phba->elsbuf_cnt = 0; 1385 phba->elsbuf_prev_cnt = 0; 1386 spin_unlock_irq(&phba->hbalock); 1387 1388 while (!list_empty(&completions)) { 1389 list_remove_head(&completions, buf_ptr, 1390 struct lpfc_dmabuf, list); 1391 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1392 kfree(buf_ptr); 1393 } 1394 } 1395 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1396 1397 /* If there is no heart beat outstanding, issue a heartbeat command */ 1398 if (phba->cfg_enable_hba_heartbeat) { 1399 if (!phba->hb_outstanding) { 1400 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1401 (list_empty(&psli->mboxq))) { 1402 pmboxq = mempool_alloc(phba->mbox_mem_pool, 1403 GFP_KERNEL); 1404 if (!pmboxq) { 1405 mod_timer(&phba->hb_tmofunc, 1406 jiffies + 1407 msecs_to_jiffies(1000 * 1408 LPFC_HB_MBOX_INTERVAL)); 1409 return; 1410 } 1411 1412 lpfc_heart_beat(phba, pmboxq); 1413 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1414 pmboxq->vport = phba->pport; 1415 retval = lpfc_sli_issue_mbox(phba, pmboxq, 1416 MBX_NOWAIT); 1417 1418 if (retval != MBX_BUSY && 1419 retval != MBX_SUCCESS) { 1420 mempool_free(pmboxq, 1421 phba->mbox_mem_pool); 1422 mod_timer(&phba->hb_tmofunc, 1423 jiffies + 1424 msecs_to_jiffies(1000 * 1425 LPFC_HB_MBOX_INTERVAL)); 1426 return; 1427 } 1428 phba->skipped_hb = 0; 1429 phba->hb_outstanding = 1; 1430 } else if (time_before_eq(phba->last_completion_time, 1431 phba->skipped_hb)) { 1432 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1433 "2857 Last completion time not " 1434 " updated in %d ms\n", 1435 jiffies_to_msecs(jiffies 1436 - phba->last_completion_time)); 1437 } else 1438 phba->skipped_hb = jiffies; 1439 1440 mod_timer(&phba->hb_tmofunc, 1441 jiffies + 1442 msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT)); 1443 return; 1444 } else { 1445 /* 1446 * If heart beat timeout called with hb_outstanding set 1447 * we need to give the hb mailbox cmd a chance to 1448 * complete or TMO. 1449 */ 1450 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1451 "0459 Adapter heartbeat still out" 1452 "standing:last compl time was %d ms.\n", 1453 jiffies_to_msecs(jiffies 1454 - phba->last_completion_time)); 1455 mod_timer(&phba->hb_tmofunc, 1456 jiffies + 1457 msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT)); 1458 } 1459 } else { 1460 mod_timer(&phba->hb_tmofunc, 1461 jiffies + 1462 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1463 } 1464 } 1465 1466 /** 1467 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1468 * @phba: pointer to lpfc hba data structure. 1469 * 1470 * This routine is called to bring the HBA offline when HBA hardware error 1471 * other than Port Error 6 has been detected. 1472 **/ 1473 static void 1474 lpfc_offline_eratt(struct lpfc_hba *phba) 1475 { 1476 struct lpfc_sli *psli = &phba->sli; 1477 1478 spin_lock_irq(&phba->hbalock); 1479 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1480 spin_unlock_irq(&phba->hbalock); 1481 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1482 1483 lpfc_offline(phba); 1484 lpfc_reset_barrier(phba); 1485 spin_lock_irq(&phba->hbalock); 1486 lpfc_sli_brdreset(phba); 1487 spin_unlock_irq(&phba->hbalock); 1488 lpfc_hba_down_post(phba); 1489 lpfc_sli_brdready(phba, HS_MBRDY); 1490 lpfc_unblock_mgmt_io(phba); 1491 phba->link_state = LPFC_HBA_ERROR; 1492 return; 1493 } 1494 1495 /** 1496 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1497 * @phba: pointer to lpfc hba data structure. 1498 * 1499 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1500 * other than Port Error 6 has been detected. 1501 **/ 1502 void 1503 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1504 { 1505 spin_lock_irq(&phba->hbalock); 1506 phba->link_state = LPFC_HBA_ERROR; 1507 spin_unlock_irq(&phba->hbalock); 1508 1509 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1510 lpfc_sli_flush_io_rings(phba); 1511 lpfc_offline(phba); 1512 lpfc_hba_down_post(phba); 1513 lpfc_unblock_mgmt_io(phba); 1514 } 1515 1516 /** 1517 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1518 * @phba: pointer to lpfc hba data structure. 1519 * 1520 * This routine is invoked to handle the deferred HBA hardware error 1521 * conditions. This type of error is indicated by HBA by setting ER1 1522 * and another ER bit in the host status register. The driver will 1523 * wait until the ER1 bit clears before handling the error condition. 1524 **/ 1525 static void 1526 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1527 { 1528 uint32_t old_host_status = phba->work_hs; 1529 struct lpfc_sli *psli = &phba->sli; 1530 1531 /* If the pci channel is offline, ignore possible errors, 1532 * since we cannot communicate with the pci card anyway. 1533 */ 1534 if (pci_channel_offline(phba->pcidev)) { 1535 spin_lock_irq(&phba->hbalock); 1536 phba->hba_flag &= ~DEFER_ERATT; 1537 spin_unlock_irq(&phba->hbalock); 1538 return; 1539 } 1540 1541 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1542 "0479 Deferred Adapter Hardware Error " 1543 "Data: x%x x%x x%x\n", 1544 phba->work_hs, 1545 phba->work_status[0], phba->work_status[1]); 1546 1547 spin_lock_irq(&phba->hbalock); 1548 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1549 spin_unlock_irq(&phba->hbalock); 1550 1551 1552 /* 1553 * Firmware stops when it triggred erratt. That could cause the I/Os 1554 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1555 * SCSI layer retry it after re-establishing link. 1556 */ 1557 lpfc_sli_abort_fcp_rings(phba); 1558 1559 /* 1560 * There was a firmware error. Take the hba offline and then 1561 * attempt to restart it. 1562 */ 1563 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1564 lpfc_offline(phba); 1565 1566 /* Wait for the ER1 bit to clear.*/ 1567 while (phba->work_hs & HS_FFER1) { 1568 msleep(100); 1569 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1570 phba->work_hs = UNPLUG_ERR ; 1571 break; 1572 } 1573 /* If driver is unloading let the worker thread continue */ 1574 if (phba->pport->load_flag & FC_UNLOADING) { 1575 phba->work_hs = 0; 1576 break; 1577 } 1578 } 1579 1580 /* 1581 * This is to ptrotect against a race condition in which 1582 * first write to the host attention register clear the 1583 * host status register. 1584 */ 1585 if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING))) 1586 phba->work_hs = old_host_status & ~HS_FFER1; 1587 1588 spin_lock_irq(&phba->hbalock); 1589 phba->hba_flag &= ~DEFER_ERATT; 1590 spin_unlock_irq(&phba->hbalock); 1591 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1592 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1593 } 1594 1595 static void 1596 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1597 { 1598 struct lpfc_board_event_header board_event; 1599 struct Scsi_Host *shost; 1600 1601 board_event.event_type = FC_REG_BOARD_EVENT; 1602 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1603 shost = lpfc_shost_from_vport(phba->pport); 1604 fc_host_post_vendor_event(shost, fc_get_event_number(), 1605 sizeof(board_event), 1606 (char *) &board_event, 1607 LPFC_NL_VENDOR_ID); 1608 } 1609 1610 /** 1611 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1612 * @phba: pointer to lpfc hba data structure. 1613 * 1614 * This routine is invoked to handle the following HBA hardware error 1615 * conditions: 1616 * 1 - HBA error attention interrupt 1617 * 2 - DMA ring index out of range 1618 * 3 - Mailbox command came back as unknown 1619 **/ 1620 static void 1621 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1622 { 1623 struct lpfc_vport *vport = phba->pport; 1624 struct lpfc_sli *psli = &phba->sli; 1625 uint32_t event_data; 1626 unsigned long temperature; 1627 struct temp_event temp_event_data; 1628 struct Scsi_Host *shost; 1629 1630 /* If the pci channel is offline, ignore possible errors, 1631 * since we cannot communicate with the pci card anyway. 1632 */ 1633 if (pci_channel_offline(phba->pcidev)) { 1634 spin_lock_irq(&phba->hbalock); 1635 phba->hba_flag &= ~DEFER_ERATT; 1636 spin_unlock_irq(&phba->hbalock); 1637 return; 1638 } 1639 1640 /* If resets are disabled then leave the HBA alone and return */ 1641 if (!phba->cfg_enable_hba_reset) 1642 return; 1643 1644 /* Send an internal error event to mgmt application */ 1645 lpfc_board_errevt_to_mgmt(phba); 1646 1647 if (phba->hba_flag & DEFER_ERATT) 1648 lpfc_handle_deferred_eratt(phba); 1649 1650 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1651 if (phba->work_hs & HS_FFER6) 1652 /* Re-establishing Link */ 1653 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1654 "1301 Re-establishing Link " 1655 "Data: x%x x%x x%x\n", 1656 phba->work_hs, phba->work_status[0], 1657 phba->work_status[1]); 1658 if (phba->work_hs & HS_FFER8) 1659 /* Device Zeroization */ 1660 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1661 "2861 Host Authentication device " 1662 "zeroization Data:x%x x%x x%x\n", 1663 phba->work_hs, phba->work_status[0], 1664 phba->work_status[1]); 1665 1666 spin_lock_irq(&phba->hbalock); 1667 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1668 spin_unlock_irq(&phba->hbalock); 1669 1670 /* 1671 * Firmware stops when it triggled erratt with HS_FFER6. 1672 * That could cause the I/Os dropped by the firmware. 1673 * Error iocb (I/O) on txcmplq and let the SCSI layer 1674 * retry it after re-establishing link. 1675 */ 1676 lpfc_sli_abort_fcp_rings(phba); 1677 1678 /* 1679 * There was a firmware error. Take the hba offline and then 1680 * attempt to restart it. 1681 */ 1682 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1683 lpfc_offline(phba); 1684 lpfc_sli_brdrestart(phba); 1685 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1686 lpfc_unblock_mgmt_io(phba); 1687 return; 1688 } 1689 lpfc_unblock_mgmt_io(phba); 1690 } else if (phba->work_hs & HS_CRIT_TEMP) { 1691 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1692 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1693 temp_event_data.event_code = LPFC_CRIT_TEMP; 1694 temp_event_data.data = (uint32_t)temperature; 1695 1696 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1697 "0406 Adapter maximum temperature exceeded " 1698 "(%ld), taking this port offline " 1699 "Data: x%x x%x x%x\n", 1700 temperature, phba->work_hs, 1701 phba->work_status[0], phba->work_status[1]); 1702 1703 shost = lpfc_shost_from_vport(phba->pport); 1704 fc_host_post_vendor_event(shost, fc_get_event_number(), 1705 sizeof(temp_event_data), 1706 (char *) &temp_event_data, 1707 SCSI_NL_VID_TYPE_PCI 1708 | PCI_VENDOR_ID_EMULEX); 1709 1710 spin_lock_irq(&phba->hbalock); 1711 phba->over_temp_state = HBA_OVER_TEMP; 1712 spin_unlock_irq(&phba->hbalock); 1713 lpfc_offline_eratt(phba); 1714 1715 } else { 1716 /* The if clause above forces this code path when the status 1717 * failure is a value other than FFER6. Do not call the offline 1718 * twice. This is the adapter hardware error path. 1719 */ 1720 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1721 "0457 Adapter Hardware Error " 1722 "Data: x%x x%x x%x\n", 1723 phba->work_hs, 1724 phba->work_status[0], phba->work_status[1]); 1725 1726 event_data = FC_REG_DUMP_EVENT; 1727 shost = lpfc_shost_from_vport(vport); 1728 fc_host_post_vendor_event(shost, fc_get_event_number(), 1729 sizeof(event_data), (char *) &event_data, 1730 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1731 1732 lpfc_offline_eratt(phba); 1733 } 1734 return; 1735 } 1736 1737 /** 1738 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1739 * @phba: pointer to lpfc hba data structure. 1740 * @mbx_action: flag for mailbox shutdown action. 1741 * 1742 * This routine is invoked to perform an SLI4 port PCI function reset in 1743 * response to port status register polling attention. It waits for port 1744 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1745 * During this process, interrupt vectors are freed and later requested 1746 * for handling possible port resource change. 1747 **/ 1748 static int 1749 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1750 bool en_rn_msg) 1751 { 1752 int rc; 1753 uint32_t intr_mode; 1754 1755 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1756 LPFC_SLI_INTF_IF_TYPE_2) { 1757 /* 1758 * On error status condition, driver need to wait for port 1759 * ready before performing reset. 1760 */ 1761 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1762 if (rc) 1763 return rc; 1764 } 1765 1766 /* need reset: attempt for port recovery */ 1767 if (en_rn_msg) 1768 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1769 "2887 Reset Needed: Attempting Port " 1770 "Recovery...\n"); 1771 lpfc_offline_prep(phba, mbx_action); 1772 lpfc_sli_flush_io_rings(phba); 1773 lpfc_offline(phba); 1774 /* release interrupt for possible resource change */ 1775 lpfc_sli4_disable_intr(phba); 1776 rc = lpfc_sli_brdrestart(phba); 1777 if (rc) { 1778 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1779 "6309 Failed to restart board\n"); 1780 return rc; 1781 } 1782 /* request and enable interrupt */ 1783 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1784 if (intr_mode == LPFC_INTR_ERROR) { 1785 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1786 "3175 Failed to enable interrupt\n"); 1787 return -EIO; 1788 } 1789 phba->intr_mode = intr_mode; 1790 rc = lpfc_online(phba); 1791 if (rc == 0) 1792 lpfc_unblock_mgmt_io(phba); 1793 1794 return rc; 1795 } 1796 1797 /** 1798 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1799 * @phba: pointer to lpfc hba data structure. 1800 * 1801 * This routine is invoked to handle the SLI4 HBA hardware error attention 1802 * conditions. 1803 **/ 1804 static void 1805 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1806 { 1807 struct lpfc_vport *vport = phba->pport; 1808 uint32_t event_data; 1809 struct Scsi_Host *shost; 1810 uint32_t if_type; 1811 struct lpfc_register portstat_reg = {0}; 1812 uint32_t reg_err1, reg_err2; 1813 uint32_t uerrlo_reg, uemasklo_reg; 1814 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1815 bool en_rn_msg = true; 1816 struct temp_event temp_event_data; 1817 struct lpfc_register portsmphr_reg; 1818 int rc, i; 1819 1820 /* If the pci channel is offline, ignore possible errors, since 1821 * we cannot communicate with the pci card anyway. 1822 */ 1823 if (pci_channel_offline(phba->pcidev)) { 1824 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1825 "3166 pci channel is offline\n"); 1826 lpfc_sli4_offline_eratt(phba); 1827 return; 1828 } 1829 1830 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 1831 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 1832 switch (if_type) { 1833 case LPFC_SLI_INTF_IF_TYPE_0: 1834 pci_rd_rc1 = lpfc_readl( 1835 phba->sli4_hba.u.if_type0.UERRLOregaddr, 1836 &uerrlo_reg); 1837 pci_rd_rc2 = lpfc_readl( 1838 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 1839 &uemasklo_reg); 1840 /* consider PCI bus read error as pci_channel_offline */ 1841 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 1842 return; 1843 if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) { 1844 lpfc_sli4_offline_eratt(phba); 1845 return; 1846 } 1847 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1848 "7623 Checking UE recoverable"); 1849 1850 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 1851 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 1852 &portsmphr_reg.word0)) 1853 continue; 1854 1855 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 1856 &portsmphr_reg); 1857 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 1858 LPFC_PORT_SEM_UE_RECOVERABLE) 1859 break; 1860 /*Sleep for 1Sec, before checking SEMAPHORE */ 1861 msleep(1000); 1862 } 1863 1864 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1865 "4827 smphr_port_status x%x : Waited %dSec", 1866 smphr_port_status, i); 1867 1868 /* Recoverable UE, reset the HBA device */ 1869 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 1870 LPFC_PORT_SEM_UE_RECOVERABLE) { 1871 for (i = 0; i < 20; i++) { 1872 msleep(1000); 1873 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 1874 &portsmphr_reg.word0) && 1875 (LPFC_POST_STAGE_PORT_READY == 1876 bf_get(lpfc_port_smphr_port_status, 1877 &portsmphr_reg))) { 1878 rc = lpfc_sli4_port_sta_fn_reset(phba, 1879 LPFC_MBX_NO_WAIT, en_rn_msg); 1880 if (rc == 0) 1881 return; 1882 lpfc_printf_log(phba, 1883 KERN_ERR, LOG_INIT, 1884 "4215 Failed to recover UE"); 1885 break; 1886 } 1887 } 1888 } 1889 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1890 "7624 Firmware not ready: Failing UE recovery," 1891 " waited %dSec", i); 1892 phba->link_state = LPFC_HBA_ERROR; 1893 break; 1894 1895 case LPFC_SLI_INTF_IF_TYPE_2: 1896 case LPFC_SLI_INTF_IF_TYPE_6: 1897 pci_rd_rc1 = lpfc_readl( 1898 phba->sli4_hba.u.if_type2.STATUSregaddr, 1899 &portstat_reg.word0); 1900 /* consider PCI bus read error as pci_channel_offline */ 1901 if (pci_rd_rc1 == -EIO) { 1902 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1903 "3151 PCI bus read access failure: x%x\n", 1904 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 1905 lpfc_sli4_offline_eratt(phba); 1906 return; 1907 } 1908 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 1909 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 1910 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 1911 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1912 "2889 Port Overtemperature event, " 1913 "taking port offline Data: x%x x%x\n", 1914 reg_err1, reg_err2); 1915 1916 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 1917 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1918 temp_event_data.event_code = LPFC_CRIT_TEMP; 1919 temp_event_data.data = 0xFFFFFFFF; 1920 1921 shost = lpfc_shost_from_vport(phba->pport); 1922 fc_host_post_vendor_event(shost, fc_get_event_number(), 1923 sizeof(temp_event_data), 1924 (char *)&temp_event_data, 1925 SCSI_NL_VID_TYPE_PCI 1926 | PCI_VENDOR_ID_EMULEX); 1927 1928 spin_lock_irq(&phba->hbalock); 1929 phba->over_temp_state = HBA_OVER_TEMP; 1930 spin_unlock_irq(&phba->hbalock); 1931 lpfc_sli4_offline_eratt(phba); 1932 return; 1933 } 1934 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 1935 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 1936 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1937 "3143 Port Down: Firmware Update " 1938 "Detected\n"); 1939 en_rn_msg = false; 1940 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 1941 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 1942 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1943 "3144 Port Down: Debug Dump\n"); 1944 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 1945 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 1946 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1947 "3145 Port Down: Provisioning\n"); 1948 1949 /* If resets are disabled then leave the HBA alone and return */ 1950 if (!phba->cfg_enable_hba_reset) 1951 return; 1952 1953 /* Check port status register for function reset */ 1954 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 1955 en_rn_msg); 1956 if (rc == 0) { 1957 /* don't report event on forced debug dump */ 1958 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 1959 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 1960 return; 1961 else 1962 break; 1963 } 1964 /* fall through for not able to recover */ 1965 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1966 "3152 Unrecoverable error\n"); 1967 phba->link_state = LPFC_HBA_ERROR; 1968 break; 1969 case LPFC_SLI_INTF_IF_TYPE_1: 1970 default: 1971 break; 1972 } 1973 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1974 "3123 Report dump event to upper layer\n"); 1975 /* Send an internal error event to mgmt application */ 1976 lpfc_board_errevt_to_mgmt(phba); 1977 1978 event_data = FC_REG_DUMP_EVENT; 1979 shost = lpfc_shost_from_vport(vport); 1980 fc_host_post_vendor_event(shost, fc_get_event_number(), 1981 sizeof(event_data), (char *) &event_data, 1982 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1983 } 1984 1985 /** 1986 * lpfc_handle_eratt - Wrapper func for handling hba error attention 1987 * @phba: pointer to lpfc HBA data structure. 1988 * 1989 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 1990 * routine from the API jump table function pointer from the lpfc_hba struct. 1991 * 1992 * Return codes 1993 * 0 - success. 1994 * Any other value - error. 1995 **/ 1996 void 1997 lpfc_handle_eratt(struct lpfc_hba *phba) 1998 { 1999 (*phba->lpfc_handle_eratt)(phba); 2000 } 2001 2002 /** 2003 * lpfc_handle_latt - The HBA link event handler 2004 * @phba: pointer to lpfc hba data structure. 2005 * 2006 * This routine is invoked from the worker thread to handle a HBA host 2007 * attention link event. SLI3 only. 2008 **/ 2009 void 2010 lpfc_handle_latt(struct lpfc_hba *phba) 2011 { 2012 struct lpfc_vport *vport = phba->pport; 2013 struct lpfc_sli *psli = &phba->sli; 2014 LPFC_MBOXQ_t *pmb; 2015 volatile uint32_t control; 2016 struct lpfc_dmabuf *mp; 2017 int rc = 0; 2018 2019 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2020 if (!pmb) { 2021 rc = 1; 2022 goto lpfc_handle_latt_err_exit; 2023 } 2024 2025 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 2026 if (!mp) { 2027 rc = 2; 2028 goto lpfc_handle_latt_free_pmb; 2029 } 2030 2031 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 2032 if (!mp->virt) { 2033 rc = 3; 2034 goto lpfc_handle_latt_free_mp; 2035 } 2036 2037 /* Cleanup any outstanding ELS commands */ 2038 lpfc_els_flush_all_cmd(phba); 2039 2040 psli->slistat.link_event++; 2041 lpfc_read_topology(phba, pmb, mp); 2042 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2043 pmb->vport = vport; 2044 /* Block ELS IOCBs until we have processed this mbox command */ 2045 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2046 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2047 if (rc == MBX_NOT_FINISHED) { 2048 rc = 4; 2049 goto lpfc_handle_latt_free_mbuf; 2050 } 2051 2052 /* Clear Link Attention in HA REG */ 2053 spin_lock_irq(&phba->hbalock); 2054 writel(HA_LATT, phba->HAregaddr); 2055 readl(phba->HAregaddr); /* flush */ 2056 spin_unlock_irq(&phba->hbalock); 2057 2058 return; 2059 2060 lpfc_handle_latt_free_mbuf: 2061 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2062 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2063 lpfc_handle_latt_free_mp: 2064 kfree(mp); 2065 lpfc_handle_latt_free_pmb: 2066 mempool_free(pmb, phba->mbox_mem_pool); 2067 lpfc_handle_latt_err_exit: 2068 /* Enable Link attention interrupts */ 2069 spin_lock_irq(&phba->hbalock); 2070 psli->sli_flag |= LPFC_PROCESS_LA; 2071 control = readl(phba->HCregaddr); 2072 control |= HC_LAINT_ENA; 2073 writel(control, phba->HCregaddr); 2074 readl(phba->HCregaddr); /* flush */ 2075 2076 /* Clear Link Attention in HA REG */ 2077 writel(HA_LATT, phba->HAregaddr); 2078 readl(phba->HAregaddr); /* flush */ 2079 spin_unlock_irq(&phba->hbalock); 2080 lpfc_linkdown(phba); 2081 phba->link_state = LPFC_HBA_ERROR; 2082 2083 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 2084 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2085 2086 return; 2087 } 2088 2089 /** 2090 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2091 * @phba: pointer to lpfc hba data structure. 2092 * @vpd: pointer to the vital product data. 2093 * @len: length of the vital product data in bytes. 2094 * 2095 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2096 * an array of characters. In this routine, the ModelName, ProgramType, and 2097 * ModelDesc, etc. fields of the phba data structure will be populated. 2098 * 2099 * Return codes 2100 * 0 - pointer to the VPD passed in is NULL 2101 * 1 - success 2102 **/ 2103 int 2104 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2105 { 2106 uint8_t lenlo, lenhi; 2107 int Length; 2108 int i, j; 2109 int finished = 0; 2110 int index = 0; 2111 2112 if (!vpd) 2113 return 0; 2114 2115 /* Vital Product */ 2116 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2117 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2118 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2119 (uint32_t) vpd[3]); 2120 while (!finished && (index < (len - 4))) { 2121 switch (vpd[index]) { 2122 case 0x82: 2123 case 0x91: 2124 index += 1; 2125 lenlo = vpd[index]; 2126 index += 1; 2127 lenhi = vpd[index]; 2128 index += 1; 2129 i = ((((unsigned short)lenhi) << 8) + lenlo); 2130 index += i; 2131 break; 2132 case 0x90: 2133 index += 1; 2134 lenlo = vpd[index]; 2135 index += 1; 2136 lenhi = vpd[index]; 2137 index += 1; 2138 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2139 if (Length > len - index) 2140 Length = len - index; 2141 while (Length > 0) { 2142 /* Look for Serial Number */ 2143 if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) { 2144 index += 2; 2145 i = vpd[index]; 2146 index += 1; 2147 j = 0; 2148 Length -= (3+i); 2149 while(i--) { 2150 phba->SerialNumber[j++] = vpd[index++]; 2151 if (j == 31) 2152 break; 2153 } 2154 phba->SerialNumber[j] = 0; 2155 continue; 2156 } 2157 else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) { 2158 phba->vpd_flag |= VPD_MODEL_DESC; 2159 index += 2; 2160 i = vpd[index]; 2161 index += 1; 2162 j = 0; 2163 Length -= (3+i); 2164 while(i--) { 2165 phba->ModelDesc[j++] = vpd[index++]; 2166 if (j == 255) 2167 break; 2168 } 2169 phba->ModelDesc[j] = 0; 2170 continue; 2171 } 2172 else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) { 2173 phba->vpd_flag |= VPD_MODEL_NAME; 2174 index += 2; 2175 i = vpd[index]; 2176 index += 1; 2177 j = 0; 2178 Length -= (3+i); 2179 while(i--) { 2180 phba->ModelName[j++] = vpd[index++]; 2181 if (j == 79) 2182 break; 2183 } 2184 phba->ModelName[j] = 0; 2185 continue; 2186 } 2187 else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) { 2188 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2189 index += 2; 2190 i = vpd[index]; 2191 index += 1; 2192 j = 0; 2193 Length -= (3+i); 2194 while(i--) { 2195 phba->ProgramType[j++] = vpd[index++]; 2196 if (j == 255) 2197 break; 2198 } 2199 phba->ProgramType[j] = 0; 2200 continue; 2201 } 2202 else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) { 2203 phba->vpd_flag |= VPD_PORT; 2204 index += 2; 2205 i = vpd[index]; 2206 index += 1; 2207 j = 0; 2208 Length -= (3+i); 2209 while(i--) { 2210 if ((phba->sli_rev == LPFC_SLI_REV4) && 2211 (phba->sli4_hba.pport_name_sta == 2212 LPFC_SLI4_PPNAME_GET)) { 2213 j++; 2214 index++; 2215 } else 2216 phba->Port[j++] = vpd[index++]; 2217 if (j == 19) 2218 break; 2219 } 2220 if ((phba->sli_rev != LPFC_SLI_REV4) || 2221 (phba->sli4_hba.pport_name_sta == 2222 LPFC_SLI4_PPNAME_NON)) 2223 phba->Port[j] = 0; 2224 continue; 2225 } 2226 else { 2227 index += 2; 2228 i = vpd[index]; 2229 index += 1; 2230 index += i; 2231 Length -= (3 + i); 2232 } 2233 } 2234 finished = 0; 2235 break; 2236 case 0x78: 2237 finished = 1; 2238 break; 2239 default: 2240 index ++; 2241 break; 2242 } 2243 } 2244 2245 return(1); 2246 } 2247 2248 /** 2249 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2250 * @phba: pointer to lpfc hba data structure. 2251 * @mdp: pointer to the data structure to hold the derived model name. 2252 * @descp: pointer to the data structure to hold the derived description. 2253 * 2254 * This routine retrieves HBA's description based on its registered PCI device 2255 * ID. The @descp passed into this function points to an array of 256 chars. It 2256 * shall be returned with the model name, maximum speed, and the host bus type. 2257 * The @mdp passed into this function points to an array of 80 chars. When the 2258 * function returns, the @mdp will be filled with the model name. 2259 **/ 2260 static void 2261 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2262 { 2263 lpfc_vpd_t *vp; 2264 uint16_t dev_id = phba->pcidev->device; 2265 int max_speed; 2266 int GE = 0; 2267 int oneConnect = 0; /* default is not a oneConnect */ 2268 struct { 2269 char *name; 2270 char *bus; 2271 char *function; 2272 } m = {"<Unknown>", "", ""}; 2273 2274 if (mdp && mdp[0] != '\0' 2275 && descp && descp[0] != '\0') 2276 return; 2277 2278 if (phba->lmt & LMT_64Gb) 2279 max_speed = 64; 2280 else if (phba->lmt & LMT_32Gb) 2281 max_speed = 32; 2282 else if (phba->lmt & LMT_16Gb) 2283 max_speed = 16; 2284 else if (phba->lmt & LMT_10Gb) 2285 max_speed = 10; 2286 else if (phba->lmt & LMT_8Gb) 2287 max_speed = 8; 2288 else if (phba->lmt & LMT_4Gb) 2289 max_speed = 4; 2290 else if (phba->lmt & LMT_2Gb) 2291 max_speed = 2; 2292 else if (phba->lmt & LMT_1Gb) 2293 max_speed = 1; 2294 else 2295 max_speed = 0; 2296 2297 vp = &phba->vpd; 2298 2299 switch (dev_id) { 2300 case PCI_DEVICE_ID_FIREFLY: 2301 m = (typeof(m)){"LP6000", "PCI", 2302 "Obsolete, Unsupported Fibre Channel Adapter"}; 2303 break; 2304 case PCI_DEVICE_ID_SUPERFLY: 2305 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2306 m = (typeof(m)){"LP7000", "PCI", ""}; 2307 else 2308 m = (typeof(m)){"LP7000E", "PCI", ""}; 2309 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2310 break; 2311 case PCI_DEVICE_ID_DRAGONFLY: 2312 m = (typeof(m)){"LP8000", "PCI", 2313 "Obsolete, Unsupported Fibre Channel Adapter"}; 2314 break; 2315 case PCI_DEVICE_ID_CENTAUR: 2316 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2317 m = (typeof(m)){"LP9002", "PCI", ""}; 2318 else 2319 m = (typeof(m)){"LP9000", "PCI", ""}; 2320 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2321 break; 2322 case PCI_DEVICE_ID_RFLY: 2323 m = (typeof(m)){"LP952", "PCI", 2324 "Obsolete, Unsupported Fibre Channel Adapter"}; 2325 break; 2326 case PCI_DEVICE_ID_PEGASUS: 2327 m = (typeof(m)){"LP9802", "PCI-X", 2328 "Obsolete, Unsupported Fibre Channel Adapter"}; 2329 break; 2330 case PCI_DEVICE_ID_THOR: 2331 m = (typeof(m)){"LP10000", "PCI-X", 2332 "Obsolete, Unsupported Fibre Channel Adapter"}; 2333 break; 2334 case PCI_DEVICE_ID_VIPER: 2335 m = (typeof(m)){"LPX1000", "PCI-X", 2336 "Obsolete, Unsupported Fibre Channel Adapter"}; 2337 break; 2338 case PCI_DEVICE_ID_PFLY: 2339 m = (typeof(m)){"LP982", "PCI-X", 2340 "Obsolete, Unsupported Fibre Channel Adapter"}; 2341 break; 2342 case PCI_DEVICE_ID_TFLY: 2343 m = (typeof(m)){"LP1050", "PCI-X", 2344 "Obsolete, Unsupported Fibre Channel Adapter"}; 2345 break; 2346 case PCI_DEVICE_ID_HELIOS: 2347 m = (typeof(m)){"LP11000", "PCI-X2", 2348 "Obsolete, Unsupported Fibre Channel Adapter"}; 2349 break; 2350 case PCI_DEVICE_ID_HELIOS_SCSP: 2351 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2352 "Obsolete, Unsupported Fibre Channel Adapter"}; 2353 break; 2354 case PCI_DEVICE_ID_HELIOS_DCSP: 2355 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2356 "Obsolete, Unsupported Fibre Channel Adapter"}; 2357 break; 2358 case PCI_DEVICE_ID_NEPTUNE: 2359 m = (typeof(m)){"LPe1000", "PCIe", 2360 "Obsolete, Unsupported Fibre Channel Adapter"}; 2361 break; 2362 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2363 m = (typeof(m)){"LPe1000-SP", "PCIe", 2364 "Obsolete, Unsupported Fibre Channel Adapter"}; 2365 break; 2366 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2367 m = (typeof(m)){"LPe1002-SP", "PCIe", 2368 "Obsolete, Unsupported Fibre Channel Adapter"}; 2369 break; 2370 case PCI_DEVICE_ID_BMID: 2371 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; 2372 break; 2373 case PCI_DEVICE_ID_BSMB: 2374 m = (typeof(m)){"LP111", "PCI-X2", 2375 "Obsolete, Unsupported Fibre Channel Adapter"}; 2376 break; 2377 case PCI_DEVICE_ID_ZEPHYR: 2378 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2379 break; 2380 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2381 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2382 break; 2383 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2384 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; 2385 GE = 1; 2386 break; 2387 case PCI_DEVICE_ID_ZMID: 2388 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; 2389 break; 2390 case PCI_DEVICE_ID_ZSMB: 2391 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; 2392 break; 2393 case PCI_DEVICE_ID_LP101: 2394 m = (typeof(m)){"LP101", "PCI-X", 2395 "Obsolete, Unsupported Fibre Channel Adapter"}; 2396 break; 2397 case PCI_DEVICE_ID_LP10000S: 2398 m = (typeof(m)){"LP10000-S", "PCI", 2399 "Obsolete, Unsupported Fibre Channel Adapter"}; 2400 break; 2401 case PCI_DEVICE_ID_LP11000S: 2402 m = (typeof(m)){"LP11000-S", "PCI-X2", 2403 "Obsolete, Unsupported Fibre Channel Adapter"}; 2404 break; 2405 case PCI_DEVICE_ID_LPE11000S: 2406 m = (typeof(m)){"LPe11000-S", "PCIe", 2407 "Obsolete, Unsupported Fibre Channel Adapter"}; 2408 break; 2409 case PCI_DEVICE_ID_SAT: 2410 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; 2411 break; 2412 case PCI_DEVICE_ID_SAT_MID: 2413 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; 2414 break; 2415 case PCI_DEVICE_ID_SAT_SMB: 2416 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; 2417 break; 2418 case PCI_DEVICE_ID_SAT_DCSP: 2419 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; 2420 break; 2421 case PCI_DEVICE_ID_SAT_SCSP: 2422 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; 2423 break; 2424 case PCI_DEVICE_ID_SAT_S: 2425 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; 2426 break; 2427 case PCI_DEVICE_ID_HORNET: 2428 m = (typeof(m)){"LP21000", "PCIe", 2429 "Obsolete, Unsupported FCoE Adapter"}; 2430 GE = 1; 2431 break; 2432 case PCI_DEVICE_ID_PROTEUS_VF: 2433 m = (typeof(m)){"LPev12000", "PCIe IOV", 2434 "Obsolete, Unsupported Fibre Channel Adapter"}; 2435 break; 2436 case PCI_DEVICE_ID_PROTEUS_PF: 2437 m = (typeof(m)){"LPev12000", "PCIe IOV", 2438 "Obsolete, Unsupported Fibre Channel Adapter"}; 2439 break; 2440 case PCI_DEVICE_ID_PROTEUS_S: 2441 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2442 "Obsolete, Unsupported Fibre Channel Adapter"}; 2443 break; 2444 case PCI_DEVICE_ID_TIGERSHARK: 2445 oneConnect = 1; 2446 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; 2447 break; 2448 case PCI_DEVICE_ID_TOMCAT: 2449 oneConnect = 1; 2450 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; 2451 break; 2452 case PCI_DEVICE_ID_FALCON: 2453 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2454 "EmulexSecure Fibre"}; 2455 break; 2456 case PCI_DEVICE_ID_BALIUS: 2457 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2458 "Obsolete, Unsupported Fibre Channel Adapter"}; 2459 break; 2460 case PCI_DEVICE_ID_LANCER_FC: 2461 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; 2462 break; 2463 case PCI_DEVICE_ID_LANCER_FC_VF: 2464 m = (typeof(m)){"LPe16000", "PCIe", 2465 "Obsolete, Unsupported Fibre Channel Adapter"}; 2466 break; 2467 case PCI_DEVICE_ID_LANCER_FCOE: 2468 oneConnect = 1; 2469 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; 2470 break; 2471 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2472 oneConnect = 1; 2473 m = (typeof(m)){"OCe15100", "PCIe", 2474 "Obsolete, Unsupported FCoE"}; 2475 break; 2476 case PCI_DEVICE_ID_LANCER_G6_FC: 2477 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2478 break; 2479 case PCI_DEVICE_ID_LANCER_G7_FC: 2480 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2481 break; 2482 case PCI_DEVICE_ID_SKYHAWK: 2483 case PCI_DEVICE_ID_SKYHAWK_VF: 2484 oneConnect = 1; 2485 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; 2486 break; 2487 default: 2488 m = (typeof(m)){"Unknown", "", ""}; 2489 break; 2490 } 2491 2492 if (mdp && mdp[0] == '\0') 2493 snprintf(mdp, 79,"%s", m.name); 2494 /* 2495 * oneConnect hba requires special processing, they are all initiators 2496 * and we put the port number on the end 2497 */ 2498 if (descp && descp[0] == '\0') { 2499 if (oneConnect) 2500 snprintf(descp, 255, 2501 "Emulex OneConnect %s, %s Initiator %s", 2502 m.name, m.function, 2503 phba->Port); 2504 else if (max_speed == 0) 2505 snprintf(descp, 255, 2506 "Emulex %s %s %s", 2507 m.name, m.bus, m.function); 2508 else 2509 snprintf(descp, 255, 2510 "Emulex %s %d%s %s %s", 2511 m.name, max_speed, (GE) ? "GE" : "Gb", 2512 m.bus, m.function); 2513 } 2514 } 2515 2516 /** 2517 * lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2518 * @phba: pointer to lpfc hba data structure. 2519 * @pring: pointer to a IOCB ring. 2520 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2521 * 2522 * This routine posts a given number of IOCBs with the associated DMA buffer 2523 * descriptors specified by the cnt argument to the given IOCB ring. 2524 * 2525 * Return codes 2526 * The number of IOCBs NOT able to be posted to the IOCB ring. 2527 **/ 2528 int 2529 lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2530 { 2531 IOCB_t *icmd; 2532 struct lpfc_iocbq *iocb; 2533 struct lpfc_dmabuf *mp1, *mp2; 2534 2535 cnt += pring->missbufcnt; 2536 2537 /* While there are buffers to post */ 2538 while (cnt > 0) { 2539 /* Allocate buffer for command iocb */ 2540 iocb = lpfc_sli_get_iocbq(phba); 2541 if (iocb == NULL) { 2542 pring->missbufcnt = cnt; 2543 return cnt; 2544 } 2545 icmd = &iocb->iocb; 2546 2547 /* 2 buffers can be posted per command */ 2548 /* Allocate buffer to post */ 2549 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2550 if (mp1) 2551 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2552 if (!mp1 || !mp1->virt) { 2553 kfree(mp1); 2554 lpfc_sli_release_iocbq(phba, iocb); 2555 pring->missbufcnt = cnt; 2556 return cnt; 2557 } 2558 2559 INIT_LIST_HEAD(&mp1->list); 2560 /* Allocate buffer to post */ 2561 if (cnt > 1) { 2562 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2563 if (mp2) 2564 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2565 &mp2->phys); 2566 if (!mp2 || !mp2->virt) { 2567 kfree(mp2); 2568 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2569 kfree(mp1); 2570 lpfc_sli_release_iocbq(phba, iocb); 2571 pring->missbufcnt = cnt; 2572 return cnt; 2573 } 2574 2575 INIT_LIST_HEAD(&mp2->list); 2576 } else { 2577 mp2 = NULL; 2578 } 2579 2580 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2581 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2582 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2583 icmd->ulpBdeCount = 1; 2584 cnt--; 2585 if (mp2) { 2586 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2587 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2588 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2589 cnt--; 2590 icmd->ulpBdeCount = 2; 2591 } 2592 2593 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2594 icmd->ulpLe = 1; 2595 2596 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2597 IOCB_ERROR) { 2598 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2599 kfree(mp1); 2600 cnt++; 2601 if (mp2) { 2602 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2603 kfree(mp2); 2604 cnt++; 2605 } 2606 lpfc_sli_release_iocbq(phba, iocb); 2607 pring->missbufcnt = cnt; 2608 return cnt; 2609 } 2610 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2611 if (mp2) 2612 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2613 } 2614 pring->missbufcnt = 0; 2615 return 0; 2616 } 2617 2618 /** 2619 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2620 * @phba: pointer to lpfc hba data structure. 2621 * 2622 * This routine posts initial receive IOCB buffers to the ELS ring. The 2623 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2624 * set to 64 IOCBs. SLI3 only. 2625 * 2626 * Return codes 2627 * 0 - success (currently always success) 2628 **/ 2629 static int 2630 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2631 { 2632 struct lpfc_sli *psli = &phba->sli; 2633 2634 /* Ring 0, ELS / CT buffers */ 2635 lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2636 /* Ring 2 - FCP no buffers needed */ 2637 2638 return 0; 2639 } 2640 2641 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2642 2643 /** 2644 * lpfc_sha_init - Set up initial array of hash table entries 2645 * @HashResultPointer: pointer to an array as hash table. 2646 * 2647 * This routine sets up the initial values to the array of hash table entries 2648 * for the LC HBAs. 2649 **/ 2650 static void 2651 lpfc_sha_init(uint32_t * HashResultPointer) 2652 { 2653 HashResultPointer[0] = 0x67452301; 2654 HashResultPointer[1] = 0xEFCDAB89; 2655 HashResultPointer[2] = 0x98BADCFE; 2656 HashResultPointer[3] = 0x10325476; 2657 HashResultPointer[4] = 0xC3D2E1F0; 2658 } 2659 2660 /** 2661 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2662 * @HashResultPointer: pointer to an initial/result hash table. 2663 * @HashWorkingPointer: pointer to an working hash table. 2664 * 2665 * This routine iterates an initial hash table pointed by @HashResultPointer 2666 * with the values from the working hash table pointeed by @HashWorkingPointer. 2667 * The results are putting back to the initial hash table, returned through 2668 * the @HashResultPointer as the result hash table. 2669 **/ 2670 static void 2671 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2672 { 2673 int t; 2674 uint32_t TEMP; 2675 uint32_t A, B, C, D, E; 2676 t = 16; 2677 do { 2678 HashWorkingPointer[t] = 2679 S(1, 2680 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2681 8] ^ 2682 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2683 } while (++t <= 79); 2684 t = 0; 2685 A = HashResultPointer[0]; 2686 B = HashResultPointer[1]; 2687 C = HashResultPointer[2]; 2688 D = HashResultPointer[3]; 2689 E = HashResultPointer[4]; 2690 2691 do { 2692 if (t < 20) { 2693 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2694 } else if (t < 40) { 2695 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2696 } else if (t < 60) { 2697 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2698 } else { 2699 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2700 } 2701 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2702 E = D; 2703 D = C; 2704 C = S(30, B); 2705 B = A; 2706 A = TEMP; 2707 } while (++t <= 79); 2708 2709 HashResultPointer[0] += A; 2710 HashResultPointer[1] += B; 2711 HashResultPointer[2] += C; 2712 HashResultPointer[3] += D; 2713 HashResultPointer[4] += E; 2714 2715 } 2716 2717 /** 2718 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2719 * @RandomChallenge: pointer to the entry of host challenge random number array. 2720 * @HashWorking: pointer to the entry of the working hash array. 2721 * 2722 * This routine calculates the working hash array referred by @HashWorking 2723 * from the challenge random numbers associated with the host, referred by 2724 * @RandomChallenge. The result is put into the entry of the working hash 2725 * array and returned by reference through @HashWorking. 2726 **/ 2727 static void 2728 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 2729 { 2730 *HashWorking = (*RandomChallenge ^ *HashWorking); 2731 } 2732 2733 /** 2734 * lpfc_hba_init - Perform special handling for LC HBA initialization 2735 * @phba: pointer to lpfc hba data structure. 2736 * @hbainit: pointer to an array of unsigned 32-bit integers. 2737 * 2738 * This routine performs the special handling for LC HBA initialization. 2739 **/ 2740 void 2741 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 2742 { 2743 int t; 2744 uint32_t *HashWorking; 2745 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 2746 2747 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 2748 if (!HashWorking) 2749 return; 2750 2751 HashWorking[0] = HashWorking[78] = *pwwnn++; 2752 HashWorking[1] = HashWorking[79] = *pwwnn; 2753 2754 for (t = 0; t < 7; t++) 2755 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 2756 2757 lpfc_sha_init(hbainit); 2758 lpfc_sha_iterate(hbainit, HashWorking); 2759 kfree(HashWorking); 2760 } 2761 2762 /** 2763 * lpfc_cleanup - Performs vport cleanups before deleting a vport 2764 * @vport: pointer to a virtual N_Port data structure. 2765 * 2766 * This routine performs the necessary cleanups before deleting the @vport. 2767 * It invokes the discovery state machine to perform necessary state 2768 * transitions and to release the ndlps associated with the @vport. Note, 2769 * the physical port is treated as @vport 0. 2770 **/ 2771 void 2772 lpfc_cleanup(struct lpfc_vport *vport) 2773 { 2774 struct lpfc_hba *phba = vport->phba; 2775 struct lpfc_nodelist *ndlp, *next_ndlp; 2776 int i = 0; 2777 2778 if (phba->link_state > LPFC_LINK_DOWN) 2779 lpfc_port_link_failure(vport); 2780 2781 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 2782 if (!NLP_CHK_NODE_ACT(ndlp)) { 2783 ndlp = lpfc_enable_node(vport, ndlp, 2784 NLP_STE_UNUSED_NODE); 2785 if (!ndlp) 2786 continue; 2787 spin_lock_irq(&phba->ndlp_lock); 2788 NLP_SET_FREE_REQ(ndlp); 2789 spin_unlock_irq(&phba->ndlp_lock); 2790 /* Trigger the release of the ndlp memory */ 2791 lpfc_nlp_put(ndlp); 2792 continue; 2793 } 2794 spin_lock_irq(&phba->ndlp_lock); 2795 if (NLP_CHK_FREE_REQ(ndlp)) { 2796 /* The ndlp should not be in memory free mode already */ 2797 spin_unlock_irq(&phba->ndlp_lock); 2798 continue; 2799 } else 2800 /* Indicate request for freeing ndlp memory */ 2801 NLP_SET_FREE_REQ(ndlp); 2802 spin_unlock_irq(&phba->ndlp_lock); 2803 2804 if (vport->port_type != LPFC_PHYSICAL_PORT && 2805 ndlp->nlp_DID == Fabric_DID) { 2806 /* Just free up ndlp with Fabric_DID for vports */ 2807 lpfc_nlp_put(ndlp); 2808 continue; 2809 } 2810 2811 /* take care of nodes in unused state before the state 2812 * machine taking action. 2813 */ 2814 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 2815 lpfc_nlp_put(ndlp); 2816 continue; 2817 } 2818 2819 if (ndlp->nlp_type & NLP_FABRIC) 2820 lpfc_disc_state_machine(vport, ndlp, NULL, 2821 NLP_EVT_DEVICE_RECOVERY); 2822 2823 lpfc_disc_state_machine(vport, ndlp, NULL, 2824 NLP_EVT_DEVICE_RM); 2825 } 2826 2827 /* At this point, ALL ndlp's should be gone 2828 * because of the previous NLP_EVT_DEVICE_RM. 2829 * Lets wait for this to happen, if needed. 2830 */ 2831 while (!list_empty(&vport->fc_nodes)) { 2832 if (i++ > 3000) { 2833 lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY, 2834 "0233 Nodelist not empty\n"); 2835 list_for_each_entry_safe(ndlp, next_ndlp, 2836 &vport->fc_nodes, nlp_listp) { 2837 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 2838 LOG_NODE, 2839 "0282 did:x%x ndlp:x%px " 2840 "usgmap:x%x refcnt:%d\n", 2841 ndlp->nlp_DID, (void *)ndlp, 2842 ndlp->nlp_usg_map, 2843 kref_read(&ndlp->kref)); 2844 } 2845 break; 2846 } 2847 2848 /* Wait for any activity on ndlps to settle */ 2849 msleep(10); 2850 } 2851 lpfc_cleanup_vports_rrqs(vport, NULL); 2852 } 2853 2854 /** 2855 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 2856 * @vport: pointer to a virtual N_Port data structure. 2857 * 2858 * This routine stops all the timers associated with a @vport. This function 2859 * is invoked before disabling or deleting a @vport. Note that the physical 2860 * port is treated as @vport 0. 2861 **/ 2862 void 2863 lpfc_stop_vport_timers(struct lpfc_vport *vport) 2864 { 2865 del_timer_sync(&vport->els_tmofunc); 2866 del_timer_sync(&vport->delayed_disc_tmo); 2867 lpfc_can_disctmo(vport); 2868 return; 2869 } 2870 2871 /** 2872 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 2873 * @phba: pointer to lpfc hba data structure. 2874 * 2875 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 2876 * caller of this routine should already hold the host lock. 2877 **/ 2878 void 2879 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 2880 { 2881 /* Clear pending FCF rediscovery wait flag */ 2882 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 2883 2884 /* Now, try to stop the timer */ 2885 del_timer(&phba->fcf.redisc_wait); 2886 } 2887 2888 /** 2889 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 2890 * @phba: pointer to lpfc hba data structure. 2891 * 2892 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 2893 * checks whether the FCF rediscovery wait timer is pending with the host 2894 * lock held before proceeding with disabling the timer and clearing the 2895 * wait timer pendig flag. 2896 **/ 2897 void 2898 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 2899 { 2900 spin_lock_irq(&phba->hbalock); 2901 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 2902 /* FCF rediscovery timer already fired or stopped */ 2903 spin_unlock_irq(&phba->hbalock); 2904 return; 2905 } 2906 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 2907 /* Clear failover in progress flags */ 2908 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 2909 spin_unlock_irq(&phba->hbalock); 2910 } 2911 2912 /** 2913 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 2914 * @phba: pointer to lpfc hba data structure. 2915 * 2916 * This routine stops all the timers associated with a HBA. This function is 2917 * invoked before either putting a HBA offline or unloading the driver. 2918 **/ 2919 void 2920 lpfc_stop_hba_timers(struct lpfc_hba *phba) 2921 { 2922 if (phba->pport) 2923 lpfc_stop_vport_timers(phba->pport); 2924 cancel_delayed_work_sync(&phba->eq_delay_work); 2925 del_timer_sync(&phba->sli.mbox_tmo); 2926 del_timer_sync(&phba->fabric_block_timer); 2927 del_timer_sync(&phba->eratt_poll); 2928 del_timer_sync(&phba->hb_tmofunc); 2929 if (phba->sli_rev == LPFC_SLI_REV4) { 2930 del_timer_sync(&phba->rrq_tmr); 2931 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 2932 } 2933 phba->hb_outstanding = 0; 2934 2935 switch (phba->pci_dev_grp) { 2936 case LPFC_PCI_DEV_LP: 2937 /* Stop any LightPulse device specific driver timers */ 2938 del_timer_sync(&phba->fcp_poll_timer); 2939 break; 2940 case LPFC_PCI_DEV_OC: 2941 /* Stop any OneConnect device specific driver timers */ 2942 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 2943 break; 2944 default: 2945 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 2946 "0297 Invalid device group (x%x)\n", 2947 phba->pci_dev_grp); 2948 break; 2949 } 2950 return; 2951 } 2952 2953 /** 2954 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 2955 * @phba: pointer to lpfc hba data structure. 2956 * 2957 * This routine marks a HBA's management interface as blocked. Once the HBA's 2958 * management interface is marked as blocked, all the user space access to 2959 * the HBA, whether they are from sysfs interface or libdfc interface will 2960 * all be blocked. The HBA is set to block the management interface when the 2961 * driver prepares the HBA interface for online or offline. 2962 **/ 2963 static void 2964 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 2965 { 2966 unsigned long iflag; 2967 uint8_t actcmd = MBX_HEARTBEAT; 2968 unsigned long timeout; 2969 2970 spin_lock_irqsave(&phba->hbalock, iflag); 2971 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 2972 spin_unlock_irqrestore(&phba->hbalock, iflag); 2973 if (mbx_action == LPFC_MBX_NO_WAIT) 2974 return; 2975 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 2976 spin_lock_irqsave(&phba->hbalock, iflag); 2977 if (phba->sli.mbox_active) { 2978 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 2979 /* Determine how long we might wait for the active mailbox 2980 * command to be gracefully completed by firmware. 2981 */ 2982 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 2983 phba->sli.mbox_active) * 1000) + jiffies; 2984 } 2985 spin_unlock_irqrestore(&phba->hbalock, iflag); 2986 2987 /* Wait for the outstnading mailbox command to complete */ 2988 while (phba->sli.mbox_active) { 2989 /* Check active mailbox complete status every 2ms */ 2990 msleep(2); 2991 if (time_after(jiffies, timeout)) { 2992 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2993 "2813 Mgmt IO is Blocked %x " 2994 "- mbox cmd %x still active\n", 2995 phba->sli.sli_flag, actcmd); 2996 break; 2997 } 2998 } 2999 } 3000 3001 /** 3002 * lpfc_sli4_node_prep - Assign RPIs for active nodes. 3003 * @phba: pointer to lpfc hba data structure. 3004 * 3005 * Allocate RPIs for all active remote nodes. This is needed whenever 3006 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3007 * is to fixup the temporary rpi assignments. 3008 **/ 3009 void 3010 lpfc_sli4_node_prep(struct lpfc_hba *phba) 3011 { 3012 struct lpfc_nodelist *ndlp, *next_ndlp; 3013 struct lpfc_vport **vports; 3014 int i, rpi; 3015 unsigned long flags; 3016 3017 if (phba->sli_rev != LPFC_SLI_REV4) 3018 return; 3019 3020 vports = lpfc_create_vport_work_array(phba); 3021 if (vports == NULL) 3022 return; 3023 3024 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3025 if (vports[i]->load_flag & FC_UNLOADING) 3026 continue; 3027 3028 list_for_each_entry_safe(ndlp, next_ndlp, 3029 &vports[i]->fc_nodes, 3030 nlp_listp) { 3031 if (!NLP_CHK_NODE_ACT(ndlp)) 3032 continue; 3033 rpi = lpfc_sli4_alloc_rpi(phba); 3034 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3035 spin_lock_irqsave(&phba->ndlp_lock, flags); 3036 NLP_CLR_NODE_ACT(ndlp); 3037 spin_unlock_irqrestore(&phba->ndlp_lock, flags); 3038 continue; 3039 } 3040 ndlp->nlp_rpi = rpi; 3041 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3042 LOG_NODE | LOG_DISCOVERY, 3043 "0009 Assign RPI x%x to ndlp x%px " 3044 "DID:x%06x flg:x%x map:x%x\n", 3045 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3046 ndlp->nlp_flag, ndlp->nlp_usg_map); 3047 } 3048 } 3049 lpfc_destroy_vport_work_array(phba, vports); 3050 } 3051 3052 /** 3053 * lpfc_create_expedite_pool - create expedite pool 3054 * @phba: pointer to lpfc hba data structure. 3055 * 3056 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3057 * to expedite pool. Mark them as expedite. 3058 **/ 3059 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3060 { 3061 struct lpfc_sli4_hdw_queue *qp; 3062 struct lpfc_io_buf *lpfc_ncmd; 3063 struct lpfc_io_buf *lpfc_ncmd_next; 3064 struct lpfc_epd_pool *epd_pool; 3065 unsigned long iflag; 3066 3067 epd_pool = &phba->epd_pool; 3068 qp = &phba->sli4_hba.hdwq[0]; 3069 3070 spin_lock_init(&epd_pool->lock); 3071 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3072 spin_lock(&epd_pool->lock); 3073 INIT_LIST_HEAD(&epd_pool->list); 3074 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3075 &qp->lpfc_io_buf_list_put, list) { 3076 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3077 lpfc_ncmd->expedite = true; 3078 qp->put_io_bufs--; 3079 epd_pool->count++; 3080 if (epd_pool->count >= XRI_BATCH) 3081 break; 3082 } 3083 spin_unlock(&epd_pool->lock); 3084 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3085 } 3086 3087 /** 3088 * lpfc_destroy_expedite_pool - destroy expedite pool 3089 * @phba: pointer to lpfc hba data structure. 3090 * 3091 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3092 * of HWQ 0. Clear the mark. 3093 **/ 3094 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3095 { 3096 struct lpfc_sli4_hdw_queue *qp; 3097 struct lpfc_io_buf *lpfc_ncmd; 3098 struct lpfc_io_buf *lpfc_ncmd_next; 3099 struct lpfc_epd_pool *epd_pool; 3100 unsigned long iflag; 3101 3102 epd_pool = &phba->epd_pool; 3103 qp = &phba->sli4_hba.hdwq[0]; 3104 3105 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3106 spin_lock(&epd_pool->lock); 3107 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3108 &epd_pool->list, list) { 3109 list_move_tail(&lpfc_ncmd->list, 3110 &qp->lpfc_io_buf_list_put); 3111 lpfc_ncmd->flags = false; 3112 qp->put_io_bufs++; 3113 epd_pool->count--; 3114 } 3115 spin_unlock(&epd_pool->lock); 3116 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3117 } 3118 3119 /** 3120 * lpfc_create_multixri_pools - create multi-XRI pools 3121 * @phba: pointer to lpfc hba data structure. 3122 * 3123 * This routine initialize public, private per HWQ. Then, move XRIs from 3124 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3125 * Initialized. 3126 **/ 3127 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3128 { 3129 u32 i, j; 3130 u32 hwq_count; 3131 u32 count_per_hwq; 3132 struct lpfc_io_buf *lpfc_ncmd; 3133 struct lpfc_io_buf *lpfc_ncmd_next; 3134 unsigned long iflag; 3135 struct lpfc_sli4_hdw_queue *qp; 3136 struct lpfc_multixri_pool *multixri_pool; 3137 struct lpfc_pbl_pool *pbl_pool; 3138 struct lpfc_pvt_pool *pvt_pool; 3139 3140 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3141 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3142 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3143 phba->sli4_hba.io_xri_cnt); 3144 3145 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3146 lpfc_create_expedite_pool(phba); 3147 3148 hwq_count = phba->cfg_hdw_queue; 3149 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3150 3151 for (i = 0; i < hwq_count; i++) { 3152 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3153 3154 if (!multixri_pool) { 3155 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3156 "1238 Failed to allocate memory for " 3157 "multixri_pool\n"); 3158 3159 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3160 lpfc_destroy_expedite_pool(phba); 3161 3162 j = 0; 3163 while (j < i) { 3164 qp = &phba->sli4_hba.hdwq[j]; 3165 kfree(qp->p_multixri_pool); 3166 j++; 3167 } 3168 phba->cfg_xri_rebalancing = 0; 3169 return; 3170 } 3171 3172 qp = &phba->sli4_hba.hdwq[i]; 3173 qp->p_multixri_pool = multixri_pool; 3174 3175 multixri_pool->xri_limit = count_per_hwq; 3176 multixri_pool->rrb_next_hwqid = i; 3177 3178 /* Deal with public free xri pool */ 3179 pbl_pool = &multixri_pool->pbl_pool; 3180 spin_lock_init(&pbl_pool->lock); 3181 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3182 spin_lock(&pbl_pool->lock); 3183 INIT_LIST_HEAD(&pbl_pool->list); 3184 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3185 &qp->lpfc_io_buf_list_put, list) { 3186 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3187 qp->put_io_bufs--; 3188 pbl_pool->count++; 3189 } 3190 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3191 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3192 pbl_pool->count, i); 3193 spin_unlock(&pbl_pool->lock); 3194 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3195 3196 /* Deal with private free xri pool */ 3197 pvt_pool = &multixri_pool->pvt_pool; 3198 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3199 pvt_pool->low_watermark = XRI_BATCH; 3200 spin_lock_init(&pvt_pool->lock); 3201 spin_lock_irqsave(&pvt_pool->lock, iflag); 3202 INIT_LIST_HEAD(&pvt_pool->list); 3203 pvt_pool->count = 0; 3204 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3205 } 3206 } 3207 3208 /** 3209 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3210 * @phba: pointer to lpfc hba data structure. 3211 * 3212 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3213 **/ 3214 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3215 { 3216 u32 i; 3217 u32 hwq_count; 3218 struct lpfc_io_buf *lpfc_ncmd; 3219 struct lpfc_io_buf *lpfc_ncmd_next; 3220 unsigned long iflag; 3221 struct lpfc_sli4_hdw_queue *qp; 3222 struct lpfc_multixri_pool *multixri_pool; 3223 struct lpfc_pbl_pool *pbl_pool; 3224 struct lpfc_pvt_pool *pvt_pool; 3225 3226 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3227 lpfc_destroy_expedite_pool(phba); 3228 3229 if (!(phba->pport->load_flag & FC_UNLOADING)) 3230 lpfc_sli_flush_io_rings(phba); 3231 3232 hwq_count = phba->cfg_hdw_queue; 3233 3234 for (i = 0; i < hwq_count; i++) { 3235 qp = &phba->sli4_hba.hdwq[i]; 3236 multixri_pool = qp->p_multixri_pool; 3237 if (!multixri_pool) 3238 continue; 3239 3240 qp->p_multixri_pool = NULL; 3241 3242 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3243 3244 /* Deal with public free xri pool */ 3245 pbl_pool = &multixri_pool->pbl_pool; 3246 spin_lock(&pbl_pool->lock); 3247 3248 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3249 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3250 pbl_pool->count, i); 3251 3252 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3253 &pbl_pool->list, list) { 3254 list_move_tail(&lpfc_ncmd->list, 3255 &qp->lpfc_io_buf_list_put); 3256 qp->put_io_bufs++; 3257 pbl_pool->count--; 3258 } 3259 3260 INIT_LIST_HEAD(&pbl_pool->list); 3261 pbl_pool->count = 0; 3262 3263 spin_unlock(&pbl_pool->lock); 3264 3265 /* Deal with private free xri pool */ 3266 pvt_pool = &multixri_pool->pvt_pool; 3267 spin_lock(&pvt_pool->lock); 3268 3269 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3270 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3271 pvt_pool->count, i); 3272 3273 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3274 &pvt_pool->list, list) { 3275 list_move_tail(&lpfc_ncmd->list, 3276 &qp->lpfc_io_buf_list_put); 3277 qp->put_io_bufs++; 3278 pvt_pool->count--; 3279 } 3280 3281 INIT_LIST_HEAD(&pvt_pool->list); 3282 pvt_pool->count = 0; 3283 3284 spin_unlock(&pvt_pool->lock); 3285 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3286 3287 kfree(multixri_pool); 3288 } 3289 } 3290 3291 /** 3292 * lpfc_online - Initialize and bring a HBA online 3293 * @phba: pointer to lpfc hba data structure. 3294 * 3295 * This routine initializes the HBA and brings a HBA online. During this 3296 * process, the management interface is blocked to prevent user space access 3297 * to the HBA interfering with the driver initialization. 3298 * 3299 * Return codes 3300 * 0 - successful 3301 * 1 - failed 3302 **/ 3303 int 3304 lpfc_online(struct lpfc_hba *phba) 3305 { 3306 struct lpfc_vport *vport; 3307 struct lpfc_vport **vports; 3308 int i, error = 0; 3309 bool vpis_cleared = false; 3310 3311 if (!phba) 3312 return 0; 3313 vport = phba->pport; 3314 3315 if (!(vport->fc_flag & FC_OFFLINE_MODE)) 3316 return 0; 3317 3318 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3319 "0458 Bring Adapter online\n"); 3320 3321 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3322 3323 if (phba->sli_rev == LPFC_SLI_REV4) { 3324 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3325 lpfc_unblock_mgmt_io(phba); 3326 return 1; 3327 } 3328 spin_lock_irq(&phba->hbalock); 3329 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3330 vpis_cleared = true; 3331 spin_unlock_irq(&phba->hbalock); 3332 3333 /* Reestablish the local initiator port. 3334 * The offline process destroyed the previous lport. 3335 */ 3336 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3337 !phba->nvmet_support) { 3338 error = lpfc_nvme_create_localport(phba->pport); 3339 if (error) 3340 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3341 "6132 NVME restore reg failed " 3342 "on nvmei error x%x\n", error); 3343 } 3344 } else { 3345 lpfc_sli_queue_init(phba); 3346 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3347 lpfc_unblock_mgmt_io(phba); 3348 return 1; 3349 } 3350 } 3351 3352 vports = lpfc_create_vport_work_array(phba); 3353 if (vports != NULL) { 3354 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3355 struct Scsi_Host *shost; 3356 shost = lpfc_shost_from_vport(vports[i]); 3357 spin_lock_irq(shost->host_lock); 3358 vports[i]->fc_flag &= ~FC_OFFLINE_MODE; 3359 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3360 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3361 if (phba->sli_rev == LPFC_SLI_REV4) { 3362 vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI; 3363 if ((vpis_cleared) && 3364 (vports[i]->port_type != 3365 LPFC_PHYSICAL_PORT)) 3366 vports[i]->vpi = 0; 3367 } 3368 spin_unlock_irq(shost->host_lock); 3369 } 3370 } 3371 lpfc_destroy_vport_work_array(phba, vports); 3372 3373 if (phba->cfg_xri_rebalancing) 3374 lpfc_create_multixri_pools(phba); 3375 3376 lpfc_cpuhp_add(phba); 3377 3378 lpfc_unblock_mgmt_io(phba); 3379 return 0; 3380 } 3381 3382 /** 3383 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3384 * @phba: pointer to lpfc hba data structure. 3385 * 3386 * This routine marks a HBA's management interface as not blocked. Once the 3387 * HBA's management interface is marked as not blocked, all the user space 3388 * access to the HBA, whether they are from sysfs interface or libdfc 3389 * interface will be allowed. The HBA is set to block the management interface 3390 * when the driver prepares the HBA interface for online or offline and then 3391 * set to unblock the management interface afterwards. 3392 **/ 3393 void 3394 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3395 { 3396 unsigned long iflag; 3397 3398 spin_lock_irqsave(&phba->hbalock, iflag); 3399 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3400 spin_unlock_irqrestore(&phba->hbalock, iflag); 3401 } 3402 3403 /** 3404 * lpfc_offline_prep - Prepare a HBA to be brought offline 3405 * @phba: pointer to lpfc hba data structure. 3406 * 3407 * This routine is invoked to prepare a HBA to be brought offline. It performs 3408 * unregistration login to all the nodes on all vports and flushes the mailbox 3409 * queue to make it ready to be brought offline. 3410 **/ 3411 void 3412 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3413 { 3414 struct lpfc_vport *vport = phba->pport; 3415 struct lpfc_nodelist *ndlp, *next_ndlp; 3416 struct lpfc_vport **vports; 3417 struct Scsi_Host *shost; 3418 int i; 3419 3420 if (vport->fc_flag & FC_OFFLINE_MODE) 3421 return; 3422 3423 lpfc_block_mgmt_io(phba, mbx_action); 3424 3425 lpfc_linkdown(phba); 3426 3427 /* Issue an unreg_login to all nodes on all vports */ 3428 vports = lpfc_create_vport_work_array(phba); 3429 if (vports != NULL) { 3430 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3431 if (vports[i]->load_flag & FC_UNLOADING) 3432 continue; 3433 shost = lpfc_shost_from_vport(vports[i]); 3434 spin_lock_irq(shost->host_lock); 3435 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3436 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3437 vports[i]->fc_flag &= ~FC_VFI_REGISTERED; 3438 spin_unlock_irq(shost->host_lock); 3439 3440 shost = lpfc_shost_from_vport(vports[i]); 3441 list_for_each_entry_safe(ndlp, next_ndlp, 3442 &vports[i]->fc_nodes, 3443 nlp_listp) { 3444 if ((!NLP_CHK_NODE_ACT(ndlp)) || 3445 ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 3446 /* Driver must assume RPI is invalid for 3447 * any unused or inactive node. 3448 */ 3449 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3450 continue; 3451 } 3452 3453 if (ndlp->nlp_type & NLP_FABRIC) { 3454 lpfc_disc_state_machine(vports[i], ndlp, 3455 NULL, NLP_EVT_DEVICE_RECOVERY); 3456 lpfc_disc_state_machine(vports[i], ndlp, 3457 NULL, NLP_EVT_DEVICE_RM); 3458 } 3459 spin_lock_irq(shost->host_lock); 3460 ndlp->nlp_flag &= ~NLP_NPR_ADISC; 3461 spin_unlock_irq(shost->host_lock); 3462 /* 3463 * Whenever an SLI4 port goes offline, free the 3464 * RPI. Get a new RPI when the adapter port 3465 * comes back online. 3466 */ 3467 if (phba->sli_rev == LPFC_SLI_REV4) { 3468 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3469 LOG_NODE | LOG_DISCOVERY, 3470 "0011 Free RPI x%x on " 3471 "ndlp:x%px did x%x " 3472 "usgmap:x%x\n", 3473 ndlp->nlp_rpi, ndlp, 3474 ndlp->nlp_DID, 3475 ndlp->nlp_usg_map); 3476 lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); 3477 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3478 } 3479 lpfc_unreg_rpi(vports[i], ndlp); 3480 } 3481 } 3482 } 3483 lpfc_destroy_vport_work_array(phba, vports); 3484 3485 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3486 3487 if (phba->wq) 3488 flush_workqueue(phba->wq); 3489 } 3490 3491 /** 3492 * lpfc_offline - Bring a HBA offline 3493 * @phba: pointer to lpfc hba data structure. 3494 * 3495 * This routine actually brings a HBA offline. It stops all the timers 3496 * associated with the HBA, brings down the SLI layer, and eventually 3497 * marks the HBA as in offline state for the upper layer protocol. 3498 **/ 3499 void 3500 lpfc_offline(struct lpfc_hba *phba) 3501 { 3502 struct Scsi_Host *shost; 3503 struct lpfc_vport **vports; 3504 int i; 3505 3506 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3507 return; 3508 3509 /* stop port and all timers associated with this hba */ 3510 lpfc_stop_port(phba); 3511 3512 /* Tear down the local and target port registrations. The 3513 * nvme transports need to cleanup. 3514 */ 3515 lpfc_nvmet_destroy_targetport(phba); 3516 lpfc_nvme_destroy_localport(phba->pport); 3517 3518 vports = lpfc_create_vport_work_array(phba); 3519 if (vports != NULL) 3520 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3521 lpfc_stop_vport_timers(vports[i]); 3522 lpfc_destroy_vport_work_array(phba, vports); 3523 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3524 "0460 Bring Adapter offline\n"); 3525 /* Bring down the SLI Layer and cleanup. The HBA is offline 3526 now. */ 3527 lpfc_sli_hba_down(phba); 3528 spin_lock_irq(&phba->hbalock); 3529 phba->work_ha = 0; 3530 spin_unlock_irq(&phba->hbalock); 3531 vports = lpfc_create_vport_work_array(phba); 3532 if (vports != NULL) 3533 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3534 shost = lpfc_shost_from_vport(vports[i]); 3535 spin_lock_irq(shost->host_lock); 3536 vports[i]->work_port_events = 0; 3537 vports[i]->fc_flag |= FC_OFFLINE_MODE; 3538 spin_unlock_irq(shost->host_lock); 3539 } 3540 lpfc_destroy_vport_work_array(phba, vports); 3541 __lpfc_cpuhp_remove(phba); 3542 3543 if (phba->cfg_xri_rebalancing) 3544 lpfc_destroy_multixri_pools(phba); 3545 } 3546 3547 /** 3548 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3549 * @phba: pointer to lpfc hba data structure. 3550 * 3551 * This routine is to free all the SCSI buffers and IOCBs from the driver 3552 * list back to kernel. It is called from lpfc_pci_remove_one to free 3553 * the internal resources before the device is removed from the system. 3554 **/ 3555 static void 3556 lpfc_scsi_free(struct lpfc_hba *phba) 3557 { 3558 struct lpfc_io_buf *sb, *sb_next; 3559 3560 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3561 return; 3562 3563 spin_lock_irq(&phba->hbalock); 3564 3565 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3566 3567 spin_lock(&phba->scsi_buf_list_put_lock); 3568 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3569 list) { 3570 list_del(&sb->list); 3571 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3572 sb->dma_handle); 3573 kfree(sb); 3574 phba->total_scsi_bufs--; 3575 } 3576 spin_unlock(&phba->scsi_buf_list_put_lock); 3577 3578 spin_lock(&phba->scsi_buf_list_get_lock); 3579 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3580 list) { 3581 list_del(&sb->list); 3582 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3583 sb->dma_handle); 3584 kfree(sb); 3585 phba->total_scsi_bufs--; 3586 } 3587 spin_unlock(&phba->scsi_buf_list_get_lock); 3588 spin_unlock_irq(&phba->hbalock); 3589 } 3590 3591 /** 3592 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 3593 * @phba: pointer to lpfc hba data structure. 3594 * 3595 * This routine is to free all the IO buffers and IOCBs from the driver 3596 * list back to kernel. It is called from lpfc_pci_remove_one to free 3597 * the internal resources before the device is removed from the system. 3598 **/ 3599 void 3600 lpfc_io_free(struct lpfc_hba *phba) 3601 { 3602 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 3603 struct lpfc_sli4_hdw_queue *qp; 3604 int idx; 3605 3606 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3607 qp = &phba->sli4_hba.hdwq[idx]; 3608 /* Release all the lpfc_nvme_bufs maintained by this host. */ 3609 spin_lock(&qp->io_buf_list_put_lock); 3610 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3611 &qp->lpfc_io_buf_list_put, 3612 list) { 3613 list_del(&lpfc_ncmd->list); 3614 qp->put_io_bufs--; 3615 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3616 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3617 if (phba->cfg_xpsgl && !phba->nvmet_support) 3618 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3619 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3620 kfree(lpfc_ncmd); 3621 qp->total_io_bufs--; 3622 } 3623 spin_unlock(&qp->io_buf_list_put_lock); 3624 3625 spin_lock(&qp->io_buf_list_get_lock); 3626 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3627 &qp->lpfc_io_buf_list_get, 3628 list) { 3629 list_del(&lpfc_ncmd->list); 3630 qp->get_io_bufs--; 3631 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3632 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3633 if (phba->cfg_xpsgl && !phba->nvmet_support) 3634 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3635 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3636 kfree(lpfc_ncmd); 3637 qp->total_io_bufs--; 3638 } 3639 spin_unlock(&qp->io_buf_list_get_lock); 3640 } 3641 } 3642 3643 /** 3644 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 3645 * @phba: pointer to lpfc hba data structure. 3646 * 3647 * This routine first calculates the sizes of the current els and allocated 3648 * scsi sgl lists, and then goes through all sgls to updates the physical 3649 * XRIs assigned due to port function reset. During port initialization, the 3650 * current els and allocated scsi sgl lists are 0s. 3651 * 3652 * Return codes 3653 * 0 - successful (for now, it always returns 0) 3654 **/ 3655 int 3656 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 3657 { 3658 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 3659 uint16_t i, lxri, xri_cnt, els_xri_cnt; 3660 LIST_HEAD(els_sgl_list); 3661 int rc; 3662 3663 /* 3664 * update on pci function's els xri-sgl list 3665 */ 3666 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 3667 3668 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 3669 /* els xri-sgl expanded */ 3670 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 3671 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3672 "3157 ELS xri-sgl count increased from " 3673 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3674 els_xri_cnt); 3675 /* allocate the additional els sgls */ 3676 for (i = 0; i < xri_cnt; i++) { 3677 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 3678 GFP_KERNEL); 3679 if (sglq_entry == NULL) { 3680 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3681 "2562 Failure to allocate an " 3682 "ELS sgl entry:%d\n", i); 3683 rc = -ENOMEM; 3684 goto out_free_mem; 3685 } 3686 sglq_entry->buff_type = GEN_BUFF_TYPE; 3687 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 3688 &sglq_entry->phys); 3689 if (sglq_entry->virt == NULL) { 3690 kfree(sglq_entry); 3691 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3692 "2563 Failure to allocate an " 3693 "ELS mbuf:%d\n", i); 3694 rc = -ENOMEM; 3695 goto out_free_mem; 3696 } 3697 sglq_entry->sgl = sglq_entry->virt; 3698 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 3699 sglq_entry->state = SGL_FREED; 3700 list_add_tail(&sglq_entry->list, &els_sgl_list); 3701 } 3702 spin_lock_irq(&phba->hbalock); 3703 spin_lock(&phba->sli4_hba.sgl_list_lock); 3704 list_splice_init(&els_sgl_list, 3705 &phba->sli4_hba.lpfc_els_sgl_list); 3706 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3707 spin_unlock_irq(&phba->hbalock); 3708 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 3709 /* els xri-sgl shrinked */ 3710 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 3711 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3712 "3158 ELS xri-sgl count decreased from " 3713 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3714 els_xri_cnt); 3715 spin_lock_irq(&phba->hbalock); 3716 spin_lock(&phba->sli4_hba.sgl_list_lock); 3717 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 3718 &els_sgl_list); 3719 /* release extra els sgls from list */ 3720 for (i = 0; i < xri_cnt; i++) { 3721 list_remove_head(&els_sgl_list, 3722 sglq_entry, struct lpfc_sglq, list); 3723 if (sglq_entry) { 3724 __lpfc_mbuf_free(phba, sglq_entry->virt, 3725 sglq_entry->phys); 3726 kfree(sglq_entry); 3727 } 3728 } 3729 list_splice_init(&els_sgl_list, 3730 &phba->sli4_hba.lpfc_els_sgl_list); 3731 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3732 spin_unlock_irq(&phba->hbalock); 3733 } else 3734 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3735 "3163 ELS xri-sgl count unchanged: %d\n", 3736 els_xri_cnt); 3737 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 3738 3739 /* update xris to els sgls on the list */ 3740 sglq_entry = NULL; 3741 sglq_entry_next = NULL; 3742 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 3743 &phba->sli4_hba.lpfc_els_sgl_list, list) { 3744 lxri = lpfc_sli4_next_xritag(phba); 3745 if (lxri == NO_XRI) { 3746 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3747 "2400 Failed to allocate xri for " 3748 "ELS sgl\n"); 3749 rc = -ENOMEM; 3750 goto out_free_mem; 3751 } 3752 sglq_entry->sli4_lxritag = lxri; 3753 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 3754 } 3755 return 0; 3756 3757 out_free_mem: 3758 lpfc_free_els_sgl_list(phba); 3759 return rc; 3760 } 3761 3762 /** 3763 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 3764 * @phba: pointer to lpfc hba data structure. 3765 * 3766 * This routine first calculates the sizes of the current els and allocated 3767 * scsi sgl lists, and then goes through all sgls to updates the physical 3768 * XRIs assigned due to port function reset. During port initialization, the 3769 * current els and allocated scsi sgl lists are 0s. 3770 * 3771 * Return codes 3772 * 0 - successful (for now, it always returns 0) 3773 **/ 3774 int 3775 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 3776 { 3777 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 3778 uint16_t i, lxri, xri_cnt, els_xri_cnt; 3779 uint16_t nvmet_xri_cnt; 3780 LIST_HEAD(nvmet_sgl_list); 3781 int rc; 3782 3783 /* 3784 * update on pci function's nvmet xri-sgl list 3785 */ 3786 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 3787 3788 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 3789 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 3790 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 3791 /* els xri-sgl expanded */ 3792 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 3793 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3794 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 3795 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 3796 /* allocate the additional nvmet sgls */ 3797 for (i = 0; i < xri_cnt; i++) { 3798 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 3799 GFP_KERNEL); 3800 if (sglq_entry == NULL) { 3801 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3802 "6303 Failure to allocate an " 3803 "NVMET sgl entry:%d\n", i); 3804 rc = -ENOMEM; 3805 goto out_free_mem; 3806 } 3807 sglq_entry->buff_type = NVMET_BUFF_TYPE; 3808 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 3809 &sglq_entry->phys); 3810 if (sglq_entry->virt == NULL) { 3811 kfree(sglq_entry); 3812 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3813 "6304 Failure to allocate an " 3814 "NVMET buf:%d\n", i); 3815 rc = -ENOMEM; 3816 goto out_free_mem; 3817 } 3818 sglq_entry->sgl = sglq_entry->virt; 3819 memset(sglq_entry->sgl, 0, 3820 phba->cfg_sg_dma_buf_size); 3821 sglq_entry->state = SGL_FREED; 3822 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 3823 } 3824 spin_lock_irq(&phba->hbalock); 3825 spin_lock(&phba->sli4_hba.sgl_list_lock); 3826 list_splice_init(&nvmet_sgl_list, 3827 &phba->sli4_hba.lpfc_nvmet_sgl_list); 3828 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3829 spin_unlock_irq(&phba->hbalock); 3830 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 3831 /* nvmet xri-sgl shrunk */ 3832 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 3833 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3834 "6305 NVMET xri-sgl count decreased from " 3835 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 3836 nvmet_xri_cnt); 3837 spin_lock_irq(&phba->hbalock); 3838 spin_lock(&phba->sli4_hba.sgl_list_lock); 3839 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 3840 &nvmet_sgl_list); 3841 /* release extra nvmet sgls from list */ 3842 for (i = 0; i < xri_cnt; i++) { 3843 list_remove_head(&nvmet_sgl_list, 3844 sglq_entry, struct lpfc_sglq, list); 3845 if (sglq_entry) { 3846 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 3847 sglq_entry->phys); 3848 kfree(sglq_entry); 3849 } 3850 } 3851 list_splice_init(&nvmet_sgl_list, 3852 &phba->sli4_hba.lpfc_nvmet_sgl_list); 3853 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3854 spin_unlock_irq(&phba->hbalock); 3855 } else 3856 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3857 "6306 NVMET xri-sgl count unchanged: %d\n", 3858 nvmet_xri_cnt); 3859 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 3860 3861 /* update xris to nvmet sgls on the list */ 3862 sglq_entry = NULL; 3863 sglq_entry_next = NULL; 3864 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 3865 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 3866 lxri = lpfc_sli4_next_xritag(phba); 3867 if (lxri == NO_XRI) { 3868 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3869 "6307 Failed to allocate xri for " 3870 "NVMET sgl\n"); 3871 rc = -ENOMEM; 3872 goto out_free_mem; 3873 } 3874 sglq_entry->sli4_lxritag = lxri; 3875 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 3876 } 3877 return 0; 3878 3879 out_free_mem: 3880 lpfc_free_nvmet_sgl_list(phba); 3881 return rc; 3882 } 3883 3884 int 3885 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 3886 { 3887 LIST_HEAD(blist); 3888 struct lpfc_sli4_hdw_queue *qp; 3889 struct lpfc_io_buf *lpfc_cmd; 3890 struct lpfc_io_buf *iobufp, *prev_iobufp; 3891 int idx, cnt, xri, inserted; 3892 3893 cnt = 0; 3894 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3895 qp = &phba->sli4_hba.hdwq[idx]; 3896 spin_lock_irq(&qp->io_buf_list_get_lock); 3897 spin_lock(&qp->io_buf_list_put_lock); 3898 3899 /* Take everything off the get and put lists */ 3900 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 3901 list_splice(&qp->lpfc_io_buf_list_put, &blist); 3902 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 3903 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 3904 cnt += qp->get_io_bufs + qp->put_io_bufs; 3905 qp->get_io_bufs = 0; 3906 qp->put_io_bufs = 0; 3907 qp->total_io_bufs = 0; 3908 spin_unlock(&qp->io_buf_list_put_lock); 3909 spin_unlock_irq(&qp->io_buf_list_get_lock); 3910 } 3911 3912 /* 3913 * Take IO buffers off blist and put on cbuf sorted by XRI. 3914 * This is because POST_SGL takes a sequential range of XRIs 3915 * to post to the firmware. 3916 */ 3917 for (idx = 0; idx < cnt; idx++) { 3918 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 3919 if (!lpfc_cmd) 3920 return cnt; 3921 if (idx == 0) { 3922 list_add_tail(&lpfc_cmd->list, cbuf); 3923 continue; 3924 } 3925 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 3926 inserted = 0; 3927 prev_iobufp = NULL; 3928 list_for_each_entry(iobufp, cbuf, list) { 3929 if (xri < iobufp->cur_iocbq.sli4_xritag) { 3930 if (prev_iobufp) 3931 list_add(&lpfc_cmd->list, 3932 &prev_iobufp->list); 3933 else 3934 list_add(&lpfc_cmd->list, cbuf); 3935 inserted = 1; 3936 break; 3937 } 3938 prev_iobufp = iobufp; 3939 } 3940 if (!inserted) 3941 list_add_tail(&lpfc_cmd->list, cbuf); 3942 } 3943 return cnt; 3944 } 3945 3946 int 3947 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 3948 { 3949 struct lpfc_sli4_hdw_queue *qp; 3950 struct lpfc_io_buf *lpfc_cmd; 3951 int idx, cnt; 3952 3953 qp = phba->sli4_hba.hdwq; 3954 cnt = 0; 3955 while (!list_empty(cbuf)) { 3956 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3957 list_remove_head(cbuf, lpfc_cmd, 3958 struct lpfc_io_buf, list); 3959 if (!lpfc_cmd) 3960 return cnt; 3961 cnt++; 3962 qp = &phba->sli4_hba.hdwq[idx]; 3963 lpfc_cmd->hdwq_no = idx; 3964 lpfc_cmd->hdwq = qp; 3965 lpfc_cmd->cur_iocbq.wqe_cmpl = NULL; 3966 lpfc_cmd->cur_iocbq.iocb_cmpl = NULL; 3967 spin_lock(&qp->io_buf_list_put_lock); 3968 list_add_tail(&lpfc_cmd->list, 3969 &qp->lpfc_io_buf_list_put); 3970 qp->put_io_bufs++; 3971 qp->total_io_bufs++; 3972 spin_unlock(&qp->io_buf_list_put_lock); 3973 } 3974 } 3975 return cnt; 3976 } 3977 3978 /** 3979 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 3980 * @phba: pointer to lpfc hba data structure. 3981 * 3982 * This routine first calculates the sizes of the current els and allocated 3983 * scsi sgl lists, and then goes through all sgls to updates the physical 3984 * XRIs assigned due to port function reset. During port initialization, the 3985 * current els and allocated scsi sgl lists are 0s. 3986 * 3987 * Return codes 3988 * 0 - successful (for now, it always returns 0) 3989 **/ 3990 int 3991 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 3992 { 3993 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 3994 uint16_t i, lxri, els_xri_cnt; 3995 uint16_t io_xri_cnt, io_xri_max; 3996 LIST_HEAD(io_sgl_list); 3997 int rc, cnt; 3998 3999 /* 4000 * update on pci function's allocated nvme xri-sgl list 4001 */ 4002 4003 /* maximum number of xris available for nvme buffers */ 4004 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4005 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4006 phba->sli4_hba.io_xri_max = io_xri_max; 4007 4008 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4009 "6074 Current allocated XRI sgl count:%d, " 4010 "maximum XRI count:%d\n", 4011 phba->sli4_hba.io_xri_cnt, 4012 phba->sli4_hba.io_xri_max); 4013 4014 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4015 4016 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4017 /* max nvme xri shrunk below the allocated nvme buffers */ 4018 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4019 phba->sli4_hba.io_xri_max; 4020 /* release the extra allocated nvme buffers */ 4021 for (i = 0; i < io_xri_cnt; i++) { 4022 list_remove_head(&io_sgl_list, lpfc_ncmd, 4023 struct lpfc_io_buf, list); 4024 if (lpfc_ncmd) { 4025 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4026 lpfc_ncmd->data, 4027 lpfc_ncmd->dma_handle); 4028 kfree(lpfc_ncmd); 4029 } 4030 } 4031 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4032 } 4033 4034 /* update xris associated to remaining allocated nvme buffers */ 4035 lpfc_ncmd = NULL; 4036 lpfc_ncmd_next = NULL; 4037 phba->sli4_hba.io_xri_cnt = cnt; 4038 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4039 &io_sgl_list, list) { 4040 lxri = lpfc_sli4_next_xritag(phba); 4041 if (lxri == NO_XRI) { 4042 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4043 "6075 Failed to allocate xri for " 4044 "nvme buffer\n"); 4045 rc = -ENOMEM; 4046 goto out_free_mem; 4047 } 4048 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4049 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4050 } 4051 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4052 return 0; 4053 4054 out_free_mem: 4055 lpfc_io_free(phba); 4056 return rc; 4057 } 4058 4059 /** 4060 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4061 * @vport: The virtual port for which this call being executed. 4062 * @num_to_allocate: The requested number of buffers to allocate. 4063 * 4064 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4065 * the nvme buffer contains all the necessary information needed to initiate 4066 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4067 * them on a list, it post them to the port by using SGL block post. 4068 * 4069 * Return codes: 4070 * int - number of IO buffers that were allocated and posted. 4071 * 0 = failure, less than num_to_alloc is a partial failure. 4072 **/ 4073 int 4074 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4075 { 4076 struct lpfc_io_buf *lpfc_ncmd; 4077 struct lpfc_iocbq *pwqeq; 4078 uint16_t iotag, lxri = 0; 4079 int bcnt, num_posted; 4080 LIST_HEAD(prep_nblist); 4081 LIST_HEAD(post_nblist); 4082 LIST_HEAD(nvme_nblist); 4083 4084 phba->sli4_hba.io_xri_cnt = 0; 4085 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4086 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4087 if (!lpfc_ncmd) 4088 break; 4089 /* 4090 * Get memory from the pci pool to map the virt space to 4091 * pci bus space for an I/O. The DMA buffer includes the 4092 * number of SGE's necessary to support the sg_tablesize. 4093 */ 4094 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4095 GFP_KERNEL, 4096 &lpfc_ncmd->dma_handle); 4097 if (!lpfc_ncmd->data) { 4098 kfree(lpfc_ncmd); 4099 break; 4100 } 4101 4102 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4103 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4104 } else { 4105 /* 4106 * 4K Page alignment is CRITICAL to BlockGuard, double 4107 * check to be sure. 4108 */ 4109 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4110 (((unsigned long)(lpfc_ncmd->data) & 4111 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4112 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 4113 "3369 Memory alignment err: " 4114 "addr=%lx\n", 4115 (unsigned long)lpfc_ncmd->data); 4116 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4117 lpfc_ncmd->data, 4118 lpfc_ncmd->dma_handle); 4119 kfree(lpfc_ncmd); 4120 break; 4121 } 4122 } 4123 4124 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4125 4126 lxri = lpfc_sli4_next_xritag(phba); 4127 if (lxri == NO_XRI) { 4128 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4129 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4130 kfree(lpfc_ncmd); 4131 break; 4132 } 4133 pwqeq = &lpfc_ncmd->cur_iocbq; 4134 4135 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4136 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4137 if (iotag == 0) { 4138 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4139 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4140 kfree(lpfc_ncmd); 4141 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 4142 "6121 Failed to allocate IOTAG for" 4143 " XRI:0x%x\n", lxri); 4144 lpfc_sli4_free_xri(phba, lxri); 4145 break; 4146 } 4147 pwqeq->sli4_lxritag = lxri; 4148 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4149 pwqeq->context1 = lpfc_ncmd; 4150 4151 /* Initialize local short-hand pointers. */ 4152 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4153 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4154 lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd; 4155 spin_lock_init(&lpfc_ncmd->buf_lock); 4156 4157 /* add the nvme buffer to a post list */ 4158 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4159 phba->sli4_hba.io_xri_cnt++; 4160 } 4161 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4162 "6114 Allocate %d out of %d requested new NVME " 4163 "buffers\n", bcnt, num_to_alloc); 4164 4165 /* post the list of nvme buffer sgls to port if available */ 4166 if (!list_empty(&post_nblist)) 4167 num_posted = lpfc_sli4_post_io_sgl_list( 4168 phba, &post_nblist, bcnt); 4169 else 4170 num_posted = 0; 4171 4172 return num_posted; 4173 } 4174 4175 static uint64_t 4176 lpfc_get_wwpn(struct lpfc_hba *phba) 4177 { 4178 uint64_t wwn; 4179 int rc; 4180 LPFC_MBOXQ_t *mboxq; 4181 MAILBOX_t *mb; 4182 4183 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4184 GFP_KERNEL); 4185 if (!mboxq) 4186 return (uint64_t)-1; 4187 4188 /* First get WWN of HBA instance */ 4189 lpfc_read_nv(phba, mboxq); 4190 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4191 if (rc != MBX_SUCCESS) { 4192 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4193 "6019 Mailbox failed , mbxCmd x%x " 4194 "READ_NV, mbxStatus x%x\n", 4195 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4196 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4197 mempool_free(mboxq, phba->mbox_mem_pool); 4198 return (uint64_t) -1; 4199 } 4200 mb = &mboxq->u.mb; 4201 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4202 /* wwn is WWPN of HBA instance */ 4203 mempool_free(mboxq, phba->mbox_mem_pool); 4204 if (phba->sli_rev == LPFC_SLI_REV4) 4205 return be64_to_cpu(wwn); 4206 else 4207 return rol64(wwn, 32); 4208 } 4209 4210 /** 4211 * lpfc_create_port - Create an FC port 4212 * @phba: pointer to lpfc hba data structure. 4213 * @instance: a unique integer ID to this FC port. 4214 * @dev: pointer to the device data structure. 4215 * 4216 * This routine creates a FC port for the upper layer protocol. The FC port 4217 * can be created on top of either a physical port or a virtual port provided 4218 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4219 * and associates the FC port created before adding the shost into the SCSI 4220 * layer. 4221 * 4222 * Return codes 4223 * @vport - pointer to the virtual N_Port data structure. 4224 * NULL - port create failed. 4225 **/ 4226 struct lpfc_vport * 4227 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4228 { 4229 struct lpfc_vport *vport; 4230 struct Scsi_Host *shost = NULL; 4231 struct scsi_host_template *template; 4232 int error = 0; 4233 int i; 4234 uint64_t wwn; 4235 bool use_no_reset_hba = false; 4236 int rc; 4237 4238 if (lpfc_no_hba_reset_cnt) { 4239 if (phba->sli_rev < LPFC_SLI_REV4 && 4240 dev == &phba->pcidev->dev) { 4241 /* Reset the port first */ 4242 lpfc_sli_brdrestart(phba); 4243 rc = lpfc_sli_chipset_init(phba); 4244 if (rc) 4245 return NULL; 4246 } 4247 wwn = lpfc_get_wwpn(phba); 4248 } 4249 4250 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4251 if (wwn == lpfc_no_hba_reset[i]) { 4252 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4253 "6020 Setting use_no_reset port=%llx\n", 4254 wwn); 4255 use_no_reset_hba = true; 4256 break; 4257 } 4258 } 4259 4260 /* Seed template for SCSI host registration */ 4261 if (dev == &phba->pcidev->dev) { 4262 template = &phba->port_template; 4263 4264 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4265 /* Seed physical port template */ 4266 memcpy(template, &lpfc_template, sizeof(*template)); 4267 4268 if (use_no_reset_hba) { 4269 /* template is for a no reset SCSI Host */ 4270 template->max_sectors = 0xffff; 4271 template->eh_host_reset_handler = NULL; 4272 } 4273 4274 /* Template for all vports this physical port creates */ 4275 memcpy(&phba->vport_template, &lpfc_template, 4276 sizeof(*template)); 4277 phba->vport_template.max_sectors = 0xffff; 4278 phba->vport_template.shost_attrs = lpfc_vport_attrs; 4279 phba->vport_template.eh_bus_reset_handler = NULL; 4280 phba->vport_template.eh_host_reset_handler = NULL; 4281 phba->vport_template.vendor_id = 0; 4282 4283 /* Initialize the host templates with updated value */ 4284 if (phba->sli_rev == LPFC_SLI_REV4) { 4285 template->sg_tablesize = phba->cfg_scsi_seg_cnt; 4286 phba->vport_template.sg_tablesize = 4287 phba->cfg_scsi_seg_cnt; 4288 } else { 4289 template->sg_tablesize = phba->cfg_sg_seg_cnt; 4290 phba->vport_template.sg_tablesize = 4291 phba->cfg_sg_seg_cnt; 4292 } 4293 4294 } else { 4295 /* NVMET is for physical port only */ 4296 memcpy(template, &lpfc_template_nvme, 4297 sizeof(*template)); 4298 } 4299 } else { 4300 template = &phba->vport_template; 4301 } 4302 4303 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4304 if (!shost) 4305 goto out; 4306 4307 vport = (struct lpfc_vport *) shost->hostdata; 4308 vport->phba = phba; 4309 vport->load_flag |= FC_LOADING; 4310 vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 4311 vport->fc_rscn_flush = 0; 4312 lpfc_get_vport_cfgparam(vport); 4313 4314 /* Adjust value in vport */ 4315 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4316 4317 shost->unique_id = instance; 4318 shost->max_id = LPFC_MAX_TARGET; 4319 shost->max_lun = vport->cfg_max_luns; 4320 shost->this_id = -1; 4321 shost->max_cmd_len = 16; 4322 4323 if (phba->sli_rev == LPFC_SLI_REV4) { 4324 if (!phba->cfg_fcp_mq_threshold || 4325 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4326 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4327 4328 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4329 phba->cfg_fcp_mq_threshold); 4330 4331 shost->dma_boundary = 4332 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4333 4334 if (phba->cfg_xpsgl && !phba->nvmet_support) 4335 shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE; 4336 else 4337 shost->sg_tablesize = phba->cfg_scsi_seg_cnt; 4338 } else 4339 /* SLI-3 has a limited number of hardware queues (3), 4340 * thus there is only one for FCP processing. 4341 */ 4342 shost->nr_hw_queues = 1; 4343 4344 /* 4345 * Set initial can_queue value since 0 is no longer supported and 4346 * scsi_add_host will fail. This will be adjusted later based on the 4347 * max xri value determined in hba setup. 4348 */ 4349 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4350 if (dev != &phba->pcidev->dev) { 4351 shost->transportt = lpfc_vport_transport_template; 4352 vport->port_type = LPFC_NPIV_PORT; 4353 } else { 4354 shost->transportt = lpfc_transport_template; 4355 vport->port_type = LPFC_PHYSICAL_PORT; 4356 } 4357 4358 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4359 "9081 CreatePort TMPLATE type %x TBLsize %d " 4360 "SEGcnt %d/%d\n", 4361 vport->port_type, shost->sg_tablesize, 4362 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4363 4364 /* Initialize all internally managed lists. */ 4365 INIT_LIST_HEAD(&vport->fc_nodes); 4366 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4367 spin_lock_init(&vport->work_port_lock); 4368 4369 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4370 4371 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4372 4373 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4374 4375 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4376 lpfc_setup_bg(phba, shost); 4377 4378 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4379 if (error) 4380 goto out_put_shost; 4381 4382 spin_lock_irq(&phba->port_list_lock); 4383 list_add_tail(&vport->listentry, &phba->port_list); 4384 spin_unlock_irq(&phba->port_list_lock); 4385 return vport; 4386 4387 out_put_shost: 4388 scsi_host_put(shost); 4389 out: 4390 return NULL; 4391 } 4392 4393 /** 4394 * destroy_port - destroy an FC port 4395 * @vport: pointer to an lpfc virtual N_Port data structure. 4396 * 4397 * This routine destroys a FC port from the upper layer protocol. All the 4398 * resources associated with the port are released. 4399 **/ 4400 void 4401 destroy_port(struct lpfc_vport *vport) 4402 { 4403 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4404 struct lpfc_hba *phba = vport->phba; 4405 4406 lpfc_debugfs_terminate(vport); 4407 fc_remove_host(shost); 4408 scsi_remove_host(shost); 4409 4410 spin_lock_irq(&phba->port_list_lock); 4411 list_del_init(&vport->listentry); 4412 spin_unlock_irq(&phba->port_list_lock); 4413 4414 lpfc_cleanup(vport); 4415 return; 4416 } 4417 4418 /** 4419 * lpfc_get_instance - Get a unique integer ID 4420 * 4421 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4422 * uses the kernel idr facility to perform the task. 4423 * 4424 * Return codes: 4425 * instance - a unique integer ID allocated as the new instance. 4426 * -1 - lpfc get instance failed. 4427 **/ 4428 int 4429 lpfc_get_instance(void) 4430 { 4431 int ret; 4432 4433 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4434 return ret < 0 ? -1 : ret; 4435 } 4436 4437 /** 4438 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4439 * @shost: pointer to SCSI host data structure. 4440 * @time: elapsed time of the scan in jiffies. 4441 * 4442 * This routine is called by the SCSI layer with a SCSI host to determine 4443 * whether the scan host is finished. 4444 * 4445 * Note: there is no scan_start function as adapter initialization will have 4446 * asynchronously kicked off the link initialization. 4447 * 4448 * Return codes 4449 * 0 - SCSI host scan is not over yet. 4450 * 1 - SCSI host scan is over. 4451 **/ 4452 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4453 { 4454 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4455 struct lpfc_hba *phba = vport->phba; 4456 int stat = 0; 4457 4458 spin_lock_irq(shost->host_lock); 4459 4460 if (vport->load_flag & FC_UNLOADING) { 4461 stat = 1; 4462 goto finished; 4463 } 4464 if (time >= msecs_to_jiffies(30 * 1000)) { 4465 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4466 "0461 Scanning longer than 30 " 4467 "seconds. Continuing initialization\n"); 4468 stat = 1; 4469 goto finished; 4470 } 4471 if (time >= msecs_to_jiffies(15 * 1000) && 4472 phba->link_state <= LPFC_LINK_DOWN) { 4473 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4474 "0465 Link down longer than 15 " 4475 "seconds. Continuing initialization\n"); 4476 stat = 1; 4477 goto finished; 4478 } 4479 4480 if (vport->port_state != LPFC_VPORT_READY) 4481 goto finished; 4482 if (vport->num_disc_nodes || vport->fc_prli_sent) 4483 goto finished; 4484 if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000)) 4485 goto finished; 4486 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4487 goto finished; 4488 4489 stat = 1; 4490 4491 finished: 4492 spin_unlock_irq(shost->host_lock); 4493 return stat; 4494 } 4495 4496 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4497 { 4498 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4499 struct lpfc_hba *phba = vport->phba; 4500 4501 fc_host_supported_speeds(shost) = 0; 4502 if (phba->lmt & LMT_128Gb) 4503 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4504 if (phba->lmt & LMT_64Gb) 4505 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4506 if (phba->lmt & LMT_32Gb) 4507 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4508 if (phba->lmt & LMT_16Gb) 4509 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4510 if (phba->lmt & LMT_10Gb) 4511 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4512 if (phba->lmt & LMT_8Gb) 4513 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4514 if (phba->lmt & LMT_4Gb) 4515 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4516 if (phba->lmt & LMT_2Gb) 4517 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4518 if (phba->lmt & LMT_1Gb) 4519 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 4520 } 4521 4522 /** 4523 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 4524 * @shost: pointer to SCSI host data structure. 4525 * 4526 * This routine initializes a given SCSI host attributes on a FC port. The 4527 * SCSI host can be either on top of a physical port or a virtual port. 4528 **/ 4529 void lpfc_host_attrib_init(struct Scsi_Host *shost) 4530 { 4531 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4532 struct lpfc_hba *phba = vport->phba; 4533 /* 4534 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 4535 */ 4536 4537 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 4538 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 4539 fc_host_supported_classes(shost) = FC_COS_CLASS3; 4540 4541 memset(fc_host_supported_fc4s(shost), 0, 4542 sizeof(fc_host_supported_fc4s(shost))); 4543 fc_host_supported_fc4s(shost)[2] = 1; 4544 fc_host_supported_fc4s(shost)[7] = 1; 4545 4546 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 4547 sizeof fc_host_symbolic_name(shost)); 4548 4549 lpfc_host_supported_speeds_set(shost); 4550 4551 fc_host_maxframe_size(shost) = 4552 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 4553 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 4554 4555 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 4556 4557 /* This value is also unchanging */ 4558 memset(fc_host_active_fc4s(shost), 0, 4559 sizeof(fc_host_active_fc4s(shost))); 4560 fc_host_active_fc4s(shost)[2] = 1; 4561 fc_host_active_fc4s(shost)[7] = 1; 4562 4563 fc_host_max_npiv_vports(shost) = phba->max_vpi; 4564 spin_lock_irq(shost->host_lock); 4565 vport->load_flag &= ~FC_LOADING; 4566 spin_unlock_irq(shost->host_lock); 4567 } 4568 4569 /** 4570 * lpfc_stop_port_s3 - Stop SLI3 device port 4571 * @phba: pointer to lpfc hba data structure. 4572 * 4573 * This routine is invoked to stop an SLI3 device port, it stops the device 4574 * from generating interrupts and stops the device driver's timers for the 4575 * device. 4576 **/ 4577 static void 4578 lpfc_stop_port_s3(struct lpfc_hba *phba) 4579 { 4580 /* Clear all interrupt enable conditions */ 4581 writel(0, phba->HCregaddr); 4582 readl(phba->HCregaddr); /* flush */ 4583 /* Clear all pending interrupts */ 4584 writel(0xffffffff, phba->HAregaddr); 4585 readl(phba->HAregaddr); /* flush */ 4586 4587 /* Reset some HBA SLI setup states */ 4588 lpfc_stop_hba_timers(phba); 4589 phba->pport->work_port_events = 0; 4590 } 4591 4592 /** 4593 * lpfc_stop_port_s4 - Stop SLI4 device port 4594 * @phba: pointer to lpfc hba data structure. 4595 * 4596 * This routine is invoked to stop an SLI4 device port, it stops the device 4597 * from generating interrupts and stops the device driver's timers for the 4598 * device. 4599 **/ 4600 static void 4601 lpfc_stop_port_s4(struct lpfc_hba *phba) 4602 { 4603 /* Reset some HBA SLI4 setup states */ 4604 lpfc_stop_hba_timers(phba); 4605 if (phba->pport) 4606 phba->pport->work_port_events = 0; 4607 phba->sli4_hba.intr_enable = 0; 4608 } 4609 4610 /** 4611 * lpfc_stop_port - Wrapper function for stopping hba port 4612 * @phba: Pointer to HBA context object. 4613 * 4614 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 4615 * the API jump table function pointer from the lpfc_hba struct. 4616 **/ 4617 void 4618 lpfc_stop_port(struct lpfc_hba *phba) 4619 { 4620 phba->lpfc_stop_port(phba); 4621 4622 if (phba->wq) 4623 flush_workqueue(phba->wq); 4624 } 4625 4626 /** 4627 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 4628 * @phba: Pointer to hba for which this call is being executed. 4629 * 4630 * This routine starts the timer waiting for the FCF rediscovery to complete. 4631 **/ 4632 void 4633 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 4634 { 4635 unsigned long fcf_redisc_wait_tmo = 4636 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 4637 /* Start fcf rediscovery wait period timer */ 4638 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 4639 spin_lock_irq(&phba->hbalock); 4640 /* Allow action to new fcf asynchronous event */ 4641 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 4642 /* Mark the FCF rediscovery pending state */ 4643 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 4644 spin_unlock_irq(&phba->hbalock); 4645 } 4646 4647 /** 4648 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 4649 * @ptr: Map to lpfc_hba data structure pointer. 4650 * 4651 * This routine is invoked when waiting for FCF table rediscover has been 4652 * timed out. If new FCF record(s) has (have) been discovered during the 4653 * wait period, a new FCF event shall be added to the FCOE async event 4654 * list, and then worker thread shall be waked up for processing from the 4655 * worker thread context. 4656 **/ 4657 static void 4658 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 4659 { 4660 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); 4661 4662 /* Don't send FCF rediscovery event if timer cancelled */ 4663 spin_lock_irq(&phba->hbalock); 4664 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 4665 spin_unlock_irq(&phba->hbalock); 4666 return; 4667 } 4668 /* Clear FCF rediscovery timer pending flag */ 4669 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 4670 /* FCF rediscovery event to worker thread */ 4671 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 4672 spin_unlock_irq(&phba->hbalock); 4673 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 4674 "2776 FCF rediscover quiescent timer expired\n"); 4675 /* wake up worker thread */ 4676 lpfc_worker_wake_up(phba); 4677 } 4678 4679 /** 4680 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 4681 * @phba: pointer to lpfc hba data structure. 4682 * @acqe_link: pointer to the async link completion queue entry. 4683 * 4684 * This routine is to parse the SLI4 link-attention link fault code. 4685 **/ 4686 static void 4687 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 4688 struct lpfc_acqe_link *acqe_link) 4689 { 4690 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 4691 case LPFC_ASYNC_LINK_FAULT_NONE: 4692 case LPFC_ASYNC_LINK_FAULT_LOCAL: 4693 case LPFC_ASYNC_LINK_FAULT_REMOTE: 4694 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 4695 break; 4696 default: 4697 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4698 "0398 Unknown link fault code: x%x\n", 4699 bf_get(lpfc_acqe_link_fault, acqe_link)); 4700 break; 4701 } 4702 } 4703 4704 /** 4705 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 4706 * @phba: pointer to lpfc hba data structure. 4707 * @acqe_link: pointer to the async link completion queue entry. 4708 * 4709 * This routine is to parse the SLI4 link attention type and translate it 4710 * into the base driver's link attention type coding. 4711 * 4712 * Return: Link attention type in terms of base driver's coding. 4713 **/ 4714 static uint8_t 4715 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 4716 struct lpfc_acqe_link *acqe_link) 4717 { 4718 uint8_t att_type; 4719 4720 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 4721 case LPFC_ASYNC_LINK_STATUS_DOWN: 4722 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 4723 att_type = LPFC_ATT_LINK_DOWN; 4724 break; 4725 case LPFC_ASYNC_LINK_STATUS_UP: 4726 /* Ignore physical link up events - wait for logical link up */ 4727 att_type = LPFC_ATT_RESERVED; 4728 break; 4729 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 4730 att_type = LPFC_ATT_LINK_UP; 4731 break; 4732 default: 4733 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4734 "0399 Invalid link attention type: x%x\n", 4735 bf_get(lpfc_acqe_link_status, acqe_link)); 4736 att_type = LPFC_ATT_RESERVED; 4737 break; 4738 } 4739 return att_type; 4740 } 4741 4742 /** 4743 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 4744 * @phba: pointer to lpfc hba data structure. 4745 * 4746 * This routine is to get an SLI3 FC port's link speed in Mbps. 4747 * 4748 * Return: link speed in terms of Mbps. 4749 **/ 4750 uint32_t 4751 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 4752 { 4753 uint32_t link_speed; 4754 4755 if (!lpfc_is_link_up(phba)) 4756 return 0; 4757 4758 if (phba->sli_rev <= LPFC_SLI_REV3) { 4759 switch (phba->fc_linkspeed) { 4760 case LPFC_LINK_SPEED_1GHZ: 4761 link_speed = 1000; 4762 break; 4763 case LPFC_LINK_SPEED_2GHZ: 4764 link_speed = 2000; 4765 break; 4766 case LPFC_LINK_SPEED_4GHZ: 4767 link_speed = 4000; 4768 break; 4769 case LPFC_LINK_SPEED_8GHZ: 4770 link_speed = 8000; 4771 break; 4772 case LPFC_LINK_SPEED_10GHZ: 4773 link_speed = 10000; 4774 break; 4775 case LPFC_LINK_SPEED_16GHZ: 4776 link_speed = 16000; 4777 break; 4778 default: 4779 link_speed = 0; 4780 } 4781 } else { 4782 if (phba->sli4_hba.link_state.logical_speed) 4783 link_speed = 4784 phba->sli4_hba.link_state.logical_speed; 4785 else 4786 link_speed = phba->sli4_hba.link_state.speed; 4787 } 4788 return link_speed; 4789 } 4790 4791 /** 4792 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 4793 * @phba: pointer to lpfc hba data structure. 4794 * @evt_code: asynchronous event code. 4795 * @speed_code: asynchronous event link speed code. 4796 * 4797 * This routine is to parse the giving SLI4 async event link speed code into 4798 * value of Mbps for the link speed. 4799 * 4800 * Return: link speed in terms of Mbps. 4801 **/ 4802 static uint32_t 4803 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 4804 uint8_t speed_code) 4805 { 4806 uint32_t port_speed; 4807 4808 switch (evt_code) { 4809 case LPFC_TRAILER_CODE_LINK: 4810 switch (speed_code) { 4811 case LPFC_ASYNC_LINK_SPEED_ZERO: 4812 port_speed = 0; 4813 break; 4814 case LPFC_ASYNC_LINK_SPEED_10MBPS: 4815 port_speed = 10; 4816 break; 4817 case LPFC_ASYNC_LINK_SPEED_100MBPS: 4818 port_speed = 100; 4819 break; 4820 case LPFC_ASYNC_LINK_SPEED_1GBPS: 4821 port_speed = 1000; 4822 break; 4823 case LPFC_ASYNC_LINK_SPEED_10GBPS: 4824 port_speed = 10000; 4825 break; 4826 case LPFC_ASYNC_LINK_SPEED_20GBPS: 4827 port_speed = 20000; 4828 break; 4829 case LPFC_ASYNC_LINK_SPEED_25GBPS: 4830 port_speed = 25000; 4831 break; 4832 case LPFC_ASYNC_LINK_SPEED_40GBPS: 4833 port_speed = 40000; 4834 break; 4835 default: 4836 port_speed = 0; 4837 } 4838 break; 4839 case LPFC_TRAILER_CODE_FC: 4840 switch (speed_code) { 4841 case LPFC_FC_LA_SPEED_UNKNOWN: 4842 port_speed = 0; 4843 break; 4844 case LPFC_FC_LA_SPEED_1G: 4845 port_speed = 1000; 4846 break; 4847 case LPFC_FC_LA_SPEED_2G: 4848 port_speed = 2000; 4849 break; 4850 case LPFC_FC_LA_SPEED_4G: 4851 port_speed = 4000; 4852 break; 4853 case LPFC_FC_LA_SPEED_8G: 4854 port_speed = 8000; 4855 break; 4856 case LPFC_FC_LA_SPEED_10G: 4857 port_speed = 10000; 4858 break; 4859 case LPFC_FC_LA_SPEED_16G: 4860 port_speed = 16000; 4861 break; 4862 case LPFC_FC_LA_SPEED_32G: 4863 port_speed = 32000; 4864 break; 4865 case LPFC_FC_LA_SPEED_64G: 4866 port_speed = 64000; 4867 break; 4868 case LPFC_FC_LA_SPEED_128G: 4869 port_speed = 128000; 4870 break; 4871 default: 4872 port_speed = 0; 4873 } 4874 break; 4875 default: 4876 port_speed = 0; 4877 } 4878 return port_speed; 4879 } 4880 4881 /** 4882 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 4883 * @phba: pointer to lpfc hba data structure. 4884 * @acqe_link: pointer to the async link completion queue entry. 4885 * 4886 * This routine is to handle the SLI4 asynchronous FCoE link event. 4887 **/ 4888 static void 4889 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 4890 struct lpfc_acqe_link *acqe_link) 4891 { 4892 struct lpfc_dmabuf *mp; 4893 LPFC_MBOXQ_t *pmb; 4894 MAILBOX_t *mb; 4895 struct lpfc_mbx_read_top *la; 4896 uint8_t att_type; 4897 int rc; 4898 4899 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 4900 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 4901 return; 4902 phba->fcoe_eventtag = acqe_link->event_tag; 4903 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4904 if (!pmb) { 4905 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4906 "0395 The mboxq allocation failed\n"); 4907 return; 4908 } 4909 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 4910 if (!mp) { 4911 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4912 "0396 The lpfc_dmabuf allocation failed\n"); 4913 goto out_free_pmb; 4914 } 4915 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 4916 if (!mp->virt) { 4917 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4918 "0397 The mbuf allocation failed\n"); 4919 goto out_free_dmabuf; 4920 } 4921 4922 /* Cleanup any outstanding ELS commands */ 4923 lpfc_els_flush_all_cmd(phba); 4924 4925 /* Block ELS IOCBs until we have done process link event */ 4926 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 4927 4928 /* Update link event statistics */ 4929 phba->sli.slistat.link_event++; 4930 4931 /* Create lpfc_handle_latt mailbox command from link ACQE */ 4932 lpfc_read_topology(phba, pmb, mp); 4933 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 4934 pmb->vport = phba->pport; 4935 4936 /* Keep the link status for extra SLI4 state machine reference */ 4937 phba->sli4_hba.link_state.speed = 4938 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 4939 bf_get(lpfc_acqe_link_speed, acqe_link)); 4940 phba->sli4_hba.link_state.duplex = 4941 bf_get(lpfc_acqe_link_duplex, acqe_link); 4942 phba->sli4_hba.link_state.status = 4943 bf_get(lpfc_acqe_link_status, acqe_link); 4944 phba->sli4_hba.link_state.type = 4945 bf_get(lpfc_acqe_link_type, acqe_link); 4946 phba->sli4_hba.link_state.number = 4947 bf_get(lpfc_acqe_link_number, acqe_link); 4948 phba->sli4_hba.link_state.fault = 4949 bf_get(lpfc_acqe_link_fault, acqe_link); 4950 phba->sli4_hba.link_state.logical_speed = 4951 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 4952 4953 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4954 "2900 Async FC/FCoE Link event - Speed:%dGBit " 4955 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 4956 "Logical speed:%dMbps Fault:%d\n", 4957 phba->sli4_hba.link_state.speed, 4958 phba->sli4_hba.link_state.topology, 4959 phba->sli4_hba.link_state.status, 4960 phba->sli4_hba.link_state.type, 4961 phba->sli4_hba.link_state.number, 4962 phba->sli4_hba.link_state.logical_speed, 4963 phba->sli4_hba.link_state.fault); 4964 /* 4965 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 4966 * topology info. Note: Optional for non FC-AL ports. 4967 */ 4968 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 4969 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4970 if (rc == MBX_NOT_FINISHED) 4971 goto out_free_dmabuf; 4972 return; 4973 } 4974 /* 4975 * For FCoE Mode: fill in all the topology information we need and call 4976 * the READ_TOPOLOGY completion routine to continue without actually 4977 * sending the READ_TOPOLOGY mailbox command to the port. 4978 */ 4979 /* Initialize completion status */ 4980 mb = &pmb->u.mb; 4981 mb->mbxStatus = MBX_SUCCESS; 4982 4983 /* Parse port fault information field */ 4984 lpfc_sli4_parse_latt_fault(phba, acqe_link); 4985 4986 /* Parse and translate link attention fields */ 4987 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 4988 la->eventTag = acqe_link->event_tag; 4989 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 4990 bf_set(lpfc_mbx_read_top_link_spd, la, 4991 (bf_get(lpfc_acqe_link_speed, acqe_link))); 4992 4993 /* Fake the the following irrelvant fields */ 4994 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 4995 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 4996 bf_set(lpfc_mbx_read_top_il, la, 0); 4997 bf_set(lpfc_mbx_read_top_pb, la, 0); 4998 bf_set(lpfc_mbx_read_top_fa, la, 0); 4999 bf_set(lpfc_mbx_read_top_mm, la, 0); 5000 5001 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5002 lpfc_mbx_cmpl_read_topology(phba, pmb); 5003 5004 return; 5005 5006 out_free_dmabuf: 5007 kfree(mp); 5008 out_free_pmb: 5009 mempool_free(pmb, phba->mbox_mem_pool); 5010 } 5011 5012 /** 5013 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5014 * topology. 5015 * @phba: pointer to lpfc hba data structure. 5016 * @evt_code: asynchronous event code. 5017 * @speed_code: asynchronous event link speed code. 5018 * 5019 * This routine is to parse the giving SLI4 async event link speed code into 5020 * value of Read topology link speed. 5021 * 5022 * Return: link speed in terms of Read topology. 5023 **/ 5024 static uint8_t 5025 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5026 { 5027 uint8_t port_speed; 5028 5029 switch (speed_code) { 5030 case LPFC_FC_LA_SPEED_1G: 5031 port_speed = LPFC_LINK_SPEED_1GHZ; 5032 break; 5033 case LPFC_FC_LA_SPEED_2G: 5034 port_speed = LPFC_LINK_SPEED_2GHZ; 5035 break; 5036 case LPFC_FC_LA_SPEED_4G: 5037 port_speed = LPFC_LINK_SPEED_4GHZ; 5038 break; 5039 case LPFC_FC_LA_SPEED_8G: 5040 port_speed = LPFC_LINK_SPEED_8GHZ; 5041 break; 5042 case LPFC_FC_LA_SPEED_16G: 5043 port_speed = LPFC_LINK_SPEED_16GHZ; 5044 break; 5045 case LPFC_FC_LA_SPEED_32G: 5046 port_speed = LPFC_LINK_SPEED_32GHZ; 5047 break; 5048 case LPFC_FC_LA_SPEED_64G: 5049 port_speed = LPFC_LINK_SPEED_64GHZ; 5050 break; 5051 case LPFC_FC_LA_SPEED_128G: 5052 port_speed = LPFC_LINK_SPEED_128GHZ; 5053 break; 5054 case LPFC_FC_LA_SPEED_256G: 5055 port_speed = LPFC_LINK_SPEED_256GHZ; 5056 break; 5057 default: 5058 port_speed = 0; 5059 break; 5060 } 5061 5062 return port_speed; 5063 } 5064 5065 #define trunk_link_status(__idx)\ 5066 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 5067 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 5068 "Link up" : "Link down") : "NA" 5069 /* Did port __idx reported an error */ 5070 #define trunk_port_fault(__idx)\ 5071 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 5072 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 5073 5074 static void 5075 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 5076 struct lpfc_acqe_fc_la *acqe_fc) 5077 { 5078 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 5079 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 5080 5081 phba->sli4_hba.link_state.speed = 5082 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 5083 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5084 5085 phba->sli4_hba.link_state.logical_speed = 5086 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 5087 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 5088 phba->fc_linkspeed = 5089 lpfc_async_link_speed_to_read_top( 5090 phba, 5091 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5092 5093 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 5094 phba->trunk_link.link0.state = 5095 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 5096 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5097 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 5098 } 5099 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 5100 phba->trunk_link.link1.state = 5101 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 5102 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5103 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 5104 } 5105 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 5106 phba->trunk_link.link2.state = 5107 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 5108 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5109 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 5110 } 5111 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 5112 phba->trunk_link.link3.state = 5113 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 5114 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5115 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 5116 } 5117 5118 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5119 "2910 Async FC Trunking Event - Speed:%d\n" 5120 "\tLogical speed:%d " 5121 "port0: %s port1: %s port2: %s port3: %s\n", 5122 phba->sli4_hba.link_state.speed, 5123 phba->sli4_hba.link_state.logical_speed, 5124 trunk_link_status(0), trunk_link_status(1), 5125 trunk_link_status(2), trunk_link_status(3)); 5126 5127 if (port_fault) 5128 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5129 "3202 trunk error:0x%x (%s) seen on port0:%s " 5130 /* 5131 * SLI-4: We have only 0xA error codes 5132 * defined as of now. print an appropriate 5133 * message in case driver needs to be updated. 5134 */ 5135 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 5136 "UNDEFINED. update driver." : trunk_errmsg[err], 5137 trunk_port_fault(0), trunk_port_fault(1), 5138 trunk_port_fault(2), trunk_port_fault(3)); 5139 } 5140 5141 5142 /** 5143 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 5144 * @phba: pointer to lpfc hba data structure. 5145 * @acqe_fc: pointer to the async fc completion queue entry. 5146 * 5147 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 5148 * that the event was received and then issue a read_topology mailbox command so 5149 * that the rest of the driver will treat it the same as SLI3. 5150 **/ 5151 static void 5152 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 5153 { 5154 struct lpfc_dmabuf *mp; 5155 LPFC_MBOXQ_t *pmb; 5156 MAILBOX_t *mb; 5157 struct lpfc_mbx_read_top *la; 5158 int rc; 5159 5160 if (bf_get(lpfc_trailer_type, acqe_fc) != 5161 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 5162 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5163 "2895 Non FC link Event detected.(%d)\n", 5164 bf_get(lpfc_trailer_type, acqe_fc)); 5165 return; 5166 } 5167 5168 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 5169 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 5170 lpfc_update_trunk_link_status(phba, acqe_fc); 5171 return; 5172 } 5173 5174 /* Keep the link status for extra SLI4 state machine reference */ 5175 phba->sli4_hba.link_state.speed = 5176 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 5177 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5178 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 5179 phba->sli4_hba.link_state.topology = 5180 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 5181 phba->sli4_hba.link_state.status = 5182 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 5183 phba->sli4_hba.link_state.type = 5184 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 5185 phba->sli4_hba.link_state.number = 5186 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 5187 phba->sli4_hba.link_state.fault = 5188 bf_get(lpfc_acqe_link_fault, acqe_fc); 5189 5190 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 5191 LPFC_FC_LA_TYPE_LINK_DOWN) 5192 phba->sli4_hba.link_state.logical_speed = 0; 5193 else if (!phba->sli4_hba.conf_trunk) 5194 phba->sli4_hba.link_state.logical_speed = 5195 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 5196 5197 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5198 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 5199 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 5200 "%dMbps Fault:%d\n", 5201 phba->sli4_hba.link_state.speed, 5202 phba->sli4_hba.link_state.topology, 5203 phba->sli4_hba.link_state.status, 5204 phba->sli4_hba.link_state.type, 5205 phba->sli4_hba.link_state.number, 5206 phba->sli4_hba.link_state.logical_speed, 5207 phba->sli4_hba.link_state.fault); 5208 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5209 if (!pmb) { 5210 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5211 "2897 The mboxq allocation failed\n"); 5212 return; 5213 } 5214 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5215 if (!mp) { 5216 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5217 "2898 The lpfc_dmabuf allocation failed\n"); 5218 goto out_free_pmb; 5219 } 5220 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 5221 if (!mp->virt) { 5222 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5223 "2899 The mbuf allocation failed\n"); 5224 goto out_free_dmabuf; 5225 } 5226 5227 /* Cleanup any outstanding ELS commands */ 5228 lpfc_els_flush_all_cmd(phba); 5229 5230 /* Block ELS IOCBs until we have done process link event */ 5231 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5232 5233 /* Update link event statistics */ 5234 phba->sli.slistat.link_event++; 5235 5236 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5237 lpfc_read_topology(phba, pmb, mp); 5238 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5239 pmb->vport = phba->pport; 5240 5241 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 5242 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 5243 5244 switch (phba->sli4_hba.link_state.status) { 5245 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 5246 phba->link_flag |= LS_MDS_LINK_DOWN; 5247 break; 5248 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 5249 phba->link_flag |= LS_MDS_LOOPBACK; 5250 break; 5251 default: 5252 break; 5253 } 5254 5255 /* Initialize completion status */ 5256 mb = &pmb->u.mb; 5257 mb->mbxStatus = MBX_SUCCESS; 5258 5259 /* Parse port fault information field */ 5260 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 5261 5262 /* Parse and translate link attention fields */ 5263 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 5264 la->eventTag = acqe_fc->event_tag; 5265 5266 if (phba->sli4_hba.link_state.status == 5267 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 5268 bf_set(lpfc_mbx_read_top_att_type, la, 5269 LPFC_FC_LA_TYPE_UNEXP_WWPN); 5270 } else { 5271 bf_set(lpfc_mbx_read_top_att_type, la, 5272 LPFC_FC_LA_TYPE_LINK_DOWN); 5273 } 5274 /* Invoke the mailbox command callback function */ 5275 lpfc_mbx_cmpl_read_topology(phba, pmb); 5276 5277 return; 5278 } 5279 5280 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5281 if (rc == MBX_NOT_FINISHED) 5282 goto out_free_dmabuf; 5283 return; 5284 5285 out_free_dmabuf: 5286 kfree(mp); 5287 out_free_pmb: 5288 mempool_free(pmb, phba->mbox_mem_pool); 5289 } 5290 5291 /** 5292 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 5293 * @phba: pointer to lpfc hba data structure. 5294 * @acqe_fc: pointer to the async SLI completion queue entry. 5295 * 5296 * This routine is to handle the SLI4 asynchronous SLI events. 5297 **/ 5298 static void 5299 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 5300 { 5301 char port_name; 5302 char message[128]; 5303 uint8_t status; 5304 uint8_t evt_type; 5305 uint8_t operational = 0; 5306 struct temp_event temp_event_data; 5307 struct lpfc_acqe_misconfigured_event *misconfigured; 5308 struct Scsi_Host *shost; 5309 struct lpfc_vport **vports; 5310 int rc, i; 5311 5312 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 5313 5314 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5315 "2901 Async SLI event - Type:%d, Event Data: x%08x " 5316 "x%08x x%08x x%08x\n", evt_type, 5317 acqe_sli->event_data1, acqe_sli->event_data2, 5318 acqe_sli->reserved, acqe_sli->trailer); 5319 5320 port_name = phba->Port[0]; 5321 if (port_name == 0x00) 5322 port_name = '?'; /* get port name is empty */ 5323 5324 switch (evt_type) { 5325 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 5326 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 5327 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 5328 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 5329 5330 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5331 "3190 Over Temperature:%d Celsius- Port Name %c\n", 5332 acqe_sli->event_data1, port_name); 5333 5334 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 5335 shost = lpfc_shost_from_vport(phba->pport); 5336 fc_host_post_vendor_event(shost, fc_get_event_number(), 5337 sizeof(temp_event_data), 5338 (char *)&temp_event_data, 5339 SCSI_NL_VID_TYPE_PCI 5340 | PCI_VENDOR_ID_EMULEX); 5341 break; 5342 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 5343 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 5344 temp_event_data.event_code = LPFC_NORMAL_TEMP; 5345 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 5346 5347 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5348 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 5349 acqe_sli->event_data1, port_name); 5350 5351 shost = lpfc_shost_from_vport(phba->pport); 5352 fc_host_post_vendor_event(shost, fc_get_event_number(), 5353 sizeof(temp_event_data), 5354 (char *)&temp_event_data, 5355 SCSI_NL_VID_TYPE_PCI 5356 | PCI_VENDOR_ID_EMULEX); 5357 break; 5358 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 5359 misconfigured = (struct lpfc_acqe_misconfigured_event *) 5360 &acqe_sli->event_data1; 5361 5362 /* fetch the status for this port */ 5363 switch (phba->sli4_hba.lnk_info.lnk_no) { 5364 case LPFC_LINK_NUMBER_0: 5365 status = bf_get(lpfc_sli_misconfigured_port0_state, 5366 &misconfigured->theEvent); 5367 operational = bf_get(lpfc_sli_misconfigured_port0_op, 5368 &misconfigured->theEvent); 5369 break; 5370 case LPFC_LINK_NUMBER_1: 5371 status = bf_get(lpfc_sli_misconfigured_port1_state, 5372 &misconfigured->theEvent); 5373 operational = bf_get(lpfc_sli_misconfigured_port1_op, 5374 &misconfigured->theEvent); 5375 break; 5376 case LPFC_LINK_NUMBER_2: 5377 status = bf_get(lpfc_sli_misconfigured_port2_state, 5378 &misconfigured->theEvent); 5379 operational = bf_get(lpfc_sli_misconfigured_port2_op, 5380 &misconfigured->theEvent); 5381 break; 5382 case LPFC_LINK_NUMBER_3: 5383 status = bf_get(lpfc_sli_misconfigured_port3_state, 5384 &misconfigured->theEvent); 5385 operational = bf_get(lpfc_sli_misconfigured_port3_op, 5386 &misconfigured->theEvent); 5387 break; 5388 default: 5389 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5390 "3296 " 5391 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 5392 "event: Invalid link %d", 5393 phba->sli4_hba.lnk_info.lnk_no); 5394 return; 5395 } 5396 5397 /* Skip if optic state unchanged */ 5398 if (phba->sli4_hba.lnk_info.optic_state == status) 5399 return; 5400 5401 switch (status) { 5402 case LPFC_SLI_EVENT_STATUS_VALID: 5403 sprintf(message, "Physical Link is functional"); 5404 break; 5405 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 5406 sprintf(message, "Optics faulted/incorrectly " 5407 "installed/not installed - Reseat optics, " 5408 "if issue not resolved, replace."); 5409 break; 5410 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 5411 sprintf(message, 5412 "Optics of two types installed - Remove one " 5413 "optic or install matching pair of optics."); 5414 break; 5415 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 5416 sprintf(message, "Incompatible optics - Replace with " 5417 "compatible optics for card to function."); 5418 break; 5419 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 5420 sprintf(message, "Unqualified optics - Replace with " 5421 "Avago optics for Warranty and Technical " 5422 "Support - Link is%s operational", 5423 (operational) ? " not" : ""); 5424 break; 5425 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 5426 sprintf(message, "Uncertified optics - Replace with " 5427 "Avago-certified optics to enable link " 5428 "operation - Link is%s operational", 5429 (operational) ? " not" : ""); 5430 break; 5431 default: 5432 /* firmware is reporting a status we don't know about */ 5433 sprintf(message, "Unknown event status x%02x", status); 5434 break; 5435 } 5436 5437 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 5438 rc = lpfc_sli4_read_config(phba); 5439 if (rc) { 5440 phba->lmt = 0; 5441 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5442 "3194 Unable to retrieve supported " 5443 "speeds, rc = 0x%x\n", rc); 5444 } 5445 vports = lpfc_create_vport_work_array(phba); 5446 if (vports != NULL) { 5447 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 5448 i++) { 5449 shost = lpfc_shost_from_vport(vports[i]); 5450 lpfc_host_supported_speeds_set(shost); 5451 } 5452 } 5453 lpfc_destroy_vport_work_array(phba, vports); 5454 5455 phba->sli4_hba.lnk_info.optic_state = status; 5456 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5457 "3176 Port Name %c %s\n", port_name, message); 5458 break; 5459 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 5460 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5461 "3192 Remote DPort Test Initiated - " 5462 "Event Data1:x%08x Event Data2: x%08x\n", 5463 acqe_sli->event_data1, acqe_sli->event_data2); 5464 break; 5465 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 5466 /* Misconfigured WWN. Reports that the SLI Port is configured 5467 * to use FA-WWN, but the attached device doesn’t support it. 5468 * No driver action is required. 5469 * Event Data1 - N.A, Event Data2 - N.A 5470 */ 5471 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI, 5472 "2699 Misconfigured FA-WWN - Attached device does " 5473 "not support FA-WWN\n"); 5474 break; 5475 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 5476 /* EEPROM failure. No driver action is required */ 5477 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5478 "2518 EEPROM failure - " 5479 "Event Data1: x%08x Event Data2: x%08x\n", 5480 acqe_sli->event_data1, acqe_sli->event_data2); 5481 break; 5482 default: 5483 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5484 "3193 Unrecognized SLI event, type: 0x%x", 5485 evt_type); 5486 break; 5487 } 5488 } 5489 5490 /** 5491 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 5492 * @vport: pointer to vport data structure. 5493 * 5494 * This routine is to perform Clear Virtual Link (CVL) on a vport in 5495 * response to a CVL event. 5496 * 5497 * Return the pointer to the ndlp with the vport if successful, otherwise 5498 * return NULL. 5499 **/ 5500 static struct lpfc_nodelist * 5501 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 5502 { 5503 struct lpfc_nodelist *ndlp; 5504 struct Scsi_Host *shost; 5505 struct lpfc_hba *phba; 5506 5507 if (!vport) 5508 return NULL; 5509 phba = vport->phba; 5510 if (!phba) 5511 return NULL; 5512 ndlp = lpfc_findnode_did(vport, Fabric_DID); 5513 if (!ndlp) { 5514 /* Cannot find existing Fabric ndlp, so allocate a new one */ 5515 ndlp = lpfc_nlp_init(vport, Fabric_DID); 5516 if (!ndlp) 5517 return 0; 5518 /* Set the node type */ 5519 ndlp->nlp_type |= NLP_FABRIC; 5520 /* Put ndlp onto node list */ 5521 lpfc_enqueue_node(vport, ndlp); 5522 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 5523 /* re-setup ndlp without removing from node list */ 5524 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 5525 if (!ndlp) 5526 return 0; 5527 } 5528 if ((phba->pport->port_state < LPFC_FLOGI) && 5529 (phba->pport->port_state != LPFC_VPORT_FAILED)) 5530 return NULL; 5531 /* If virtual link is not yet instantiated ignore CVL */ 5532 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 5533 && (vport->port_state != LPFC_VPORT_FAILED)) 5534 return NULL; 5535 shost = lpfc_shost_from_vport(vport); 5536 if (!shost) 5537 return NULL; 5538 lpfc_linkdown_port(vport); 5539 lpfc_cleanup_pending_mbox(vport); 5540 spin_lock_irq(shost->host_lock); 5541 vport->fc_flag |= FC_VPORT_CVL_RCVD; 5542 spin_unlock_irq(shost->host_lock); 5543 5544 return ndlp; 5545 } 5546 5547 /** 5548 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 5549 * @vport: pointer to lpfc hba data structure. 5550 * 5551 * This routine is to perform Clear Virtual Link (CVL) on all vports in 5552 * response to a FCF dead event. 5553 **/ 5554 static void 5555 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 5556 { 5557 struct lpfc_vport **vports; 5558 int i; 5559 5560 vports = lpfc_create_vport_work_array(phba); 5561 if (vports) 5562 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 5563 lpfc_sli4_perform_vport_cvl(vports[i]); 5564 lpfc_destroy_vport_work_array(phba, vports); 5565 } 5566 5567 /** 5568 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 5569 * @phba: pointer to lpfc hba data structure. 5570 * @acqe_link: pointer to the async fcoe completion queue entry. 5571 * 5572 * This routine is to handle the SLI4 asynchronous fcoe event. 5573 **/ 5574 static void 5575 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 5576 struct lpfc_acqe_fip *acqe_fip) 5577 { 5578 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 5579 int rc; 5580 struct lpfc_vport *vport; 5581 struct lpfc_nodelist *ndlp; 5582 struct Scsi_Host *shost; 5583 int active_vlink_present; 5584 struct lpfc_vport **vports; 5585 int i; 5586 5587 phba->fc_eventTag = acqe_fip->event_tag; 5588 phba->fcoe_eventtag = acqe_fip->event_tag; 5589 switch (event_type) { 5590 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 5591 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 5592 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 5593 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 5594 LOG_DISCOVERY, 5595 "2546 New FCF event, evt_tag:x%x, " 5596 "index:x%x\n", 5597 acqe_fip->event_tag, 5598 acqe_fip->index); 5599 else 5600 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 5601 LOG_DISCOVERY, 5602 "2788 FCF param modified event, " 5603 "evt_tag:x%x, index:x%x\n", 5604 acqe_fip->event_tag, 5605 acqe_fip->index); 5606 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 5607 /* 5608 * During period of FCF discovery, read the FCF 5609 * table record indexed by the event to update 5610 * FCF roundrobin failover eligible FCF bmask. 5611 */ 5612 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 5613 LOG_DISCOVERY, 5614 "2779 Read FCF (x%x) for updating " 5615 "roundrobin FCF failover bmask\n", 5616 acqe_fip->index); 5617 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 5618 } 5619 5620 /* If the FCF discovery is in progress, do nothing. */ 5621 spin_lock_irq(&phba->hbalock); 5622 if (phba->hba_flag & FCF_TS_INPROG) { 5623 spin_unlock_irq(&phba->hbalock); 5624 break; 5625 } 5626 /* If fast FCF failover rescan event is pending, do nothing */ 5627 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 5628 spin_unlock_irq(&phba->hbalock); 5629 break; 5630 } 5631 5632 /* If the FCF has been in discovered state, do nothing. */ 5633 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 5634 spin_unlock_irq(&phba->hbalock); 5635 break; 5636 } 5637 spin_unlock_irq(&phba->hbalock); 5638 5639 /* Otherwise, scan the entire FCF table and re-discover SAN */ 5640 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 5641 "2770 Start FCF table scan per async FCF " 5642 "event, evt_tag:x%x, index:x%x\n", 5643 acqe_fip->event_tag, acqe_fip->index); 5644 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 5645 LPFC_FCOE_FCF_GET_FIRST); 5646 if (rc) 5647 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY, 5648 "2547 Issue FCF scan read FCF mailbox " 5649 "command failed (x%x)\n", rc); 5650 break; 5651 5652 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 5653 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5654 "2548 FCF Table full count 0x%x tag 0x%x\n", 5655 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 5656 acqe_fip->event_tag); 5657 break; 5658 5659 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 5660 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 5661 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY, 5662 "2549 FCF (x%x) disconnected from network, " 5663 "tag:x%x\n", acqe_fip->index, acqe_fip->event_tag); 5664 /* 5665 * If we are in the middle of FCF failover process, clear 5666 * the corresponding FCF bit in the roundrobin bitmap. 5667 */ 5668 spin_lock_irq(&phba->hbalock); 5669 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 5670 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 5671 spin_unlock_irq(&phba->hbalock); 5672 /* Update FLOGI FCF failover eligible FCF bmask */ 5673 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 5674 break; 5675 } 5676 spin_unlock_irq(&phba->hbalock); 5677 5678 /* If the event is not for currently used fcf do nothing */ 5679 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 5680 break; 5681 5682 /* 5683 * Otherwise, request the port to rediscover the entire FCF 5684 * table for a fast recovery from case that the current FCF 5685 * is no longer valid as we are not in the middle of FCF 5686 * failover process already. 5687 */ 5688 spin_lock_irq(&phba->hbalock); 5689 /* Mark the fast failover process in progress */ 5690 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 5691 spin_unlock_irq(&phba->hbalock); 5692 5693 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 5694 "2771 Start FCF fast failover process due to " 5695 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 5696 "\n", acqe_fip->event_tag, acqe_fip->index); 5697 rc = lpfc_sli4_redisc_fcf_table(phba); 5698 if (rc) { 5699 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 5700 LOG_DISCOVERY, 5701 "2772 Issue FCF rediscover mailbox " 5702 "command failed, fail through to FCF " 5703 "dead event\n"); 5704 spin_lock_irq(&phba->hbalock); 5705 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 5706 spin_unlock_irq(&phba->hbalock); 5707 /* 5708 * Last resort will fail over by treating this 5709 * as a link down to FCF registration. 5710 */ 5711 lpfc_sli4_fcf_dead_failthrough(phba); 5712 } else { 5713 /* Reset FCF roundrobin bmask for new discovery */ 5714 lpfc_sli4_clear_fcf_rr_bmask(phba); 5715 /* 5716 * Handling fast FCF failover to a DEAD FCF event is 5717 * considered equalivant to receiving CVL to all vports. 5718 */ 5719 lpfc_sli4_perform_all_vport_cvl(phba); 5720 } 5721 break; 5722 case LPFC_FIP_EVENT_TYPE_CVL: 5723 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 5724 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY, 5725 "2718 Clear Virtual Link Received for VPI 0x%x" 5726 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 5727 5728 vport = lpfc_find_vport_by_vpid(phba, 5729 acqe_fip->index); 5730 ndlp = lpfc_sli4_perform_vport_cvl(vport); 5731 if (!ndlp) 5732 break; 5733 active_vlink_present = 0; 5734 5735 vports = lpfc_create_vport_work_array(phba); 5736 if (vports) { 5737 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 5738 i++) { 5739 if ((!(vports[i]->fc_flag & 5740 FC_VPORT_CVL_RCVD)) && 5741 (vports[i]->port_state > LPFC_FDISC)) { 5742 active_vlink_present = 1; 5743 break; 5744 } 5745 } 5746 lpfc_destroy_vport_work_array(phba, vports); 5747 } 5748 5749 /* 5750 * Don't re-instantiate if vport is marked for deletion. 5751 * If we are here first then vport_delete is going to wait 5752 * for discovery to complete. 5753 */ 5754 if (!(vport->load_flag & FC_UNLOADING) && 5755 active_vlink_present) { 5756 /* 5757 * If there are other active VLinks present, 5758 * re-instantiate the Vlink using FDISC. 5759 */ 5760 mod_timer(&ndlp->nlp_delayfunc, 5761 jiffies + msecs_to_jiffies(1000)); 5762 shost = lpfc_shost_from_vport(vport); 5763 spin_lock_irq(shost->host_lock); 5764 ndlp->nlp_flag |= NLP_DELAY_TMO; 5765 spin_unlock_irq(shost->host_lock); 5766 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 5767 vport->port_state = LPFC_FDISC; 5768 } else { 5769 /* 5770 * Otherwise, we request port to rediscover 5771 * the entire FCF table for a fast recovery 5772 * from possible case that the current FCF 5773 * is no longer valid if we are not already 5774 * in the FCF failover process. 5775 */ 5776 spin_lock_irq(&phba->hbalock); 5777 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 5778 spin_unlock_irq(&phba->hbalock); 5779 break; 5780 } 5781 /* Mark the fast failover process in progress */ 5782 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 5783 spin_unlock_irq(&phba->hbalock); 5784 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 5785 LOG_DISCOVERY, 5786 "2773 Start FCF failover per CVL, " 5787 "evt_tag:x%x\n", acqe_fip->event_tag); 5788 rc = lpfc_sli4_redisc_fcf_table(phba); 5789 if (rc) { 5790 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 5791 LOG_DISCOVERY, 5792 "2774 Issue FCF rediscover " 5793 "mailbox command failed, " 5794 "through to CVL event\n"); 5795 spin_lock_irq(&phba->hbalock); 5796 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 5797 spin_unlock_irq(&phba->hbalock); 5798 /* 5799 * Last resort will be re-try on the 5800 * the current registered FCF entry. 5801 */ 5802 lpfc_retry_pport_discovery(phba); 5803 } else 5804 /* 5805 * Reset FCF roundrobin bmask for new 5806 * discovery. 5807 */ 5808 lpfc_sli4_clear_fcf_rr_bmask(phba); 5809 } 5810 break; 5811 default: 5812 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5813 "0288 Unknown FCoE event type 0x%x event tag " 5814 "0x%x\n", event_type, acqe_fip->event_tag); 5815 break; 5816 } 5817 } 5818 5819 /** 5820 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 5821 * @phba: pointer to lpfc hba data structure. 5822 * @acqe_link: pointer to the async dcbx completion queue entry. 5823 * 5824 * This routine is to handle the SLI4 asynchronous dcbx event. 5825 **/ 5826 static void 5827 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 5828 struct lpfc_acqe_dcbx *acqe_dcbx) 5829 { 5830 phba->fc_eventTag = acqe_dcbx->event_tag; 5831 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5832 "0290 The SLI4 DCBX asynchronous event is not " 5833 "handled yet\n"); 5834 } 5835 5836 /** 5837 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 5838 * @phba: pointer to lpfc hba data structure. 5839 * @acqe_link: pointer to the async grp5 completion queue entry. 5840 * 5841 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 5842 * is an asynchronous notified of a logical link speed change. The Port 5843 * reports the logical link speed in units of 10Mbps. 5844 **/ 5845 static void 5846 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 5847 struct lpfc_acqe_grp5 *acqe_grp5) 5848 { 5849 uint16_t prev_ll_spd; 5850 5851 phba->fc_eventTag = acqe_grp5->event_tag; 5852 phba->fcoe_eventtag = acqe_grp5->event_tag; 5853 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 5854 phba->sli4_hba.link_state.logical_speed = 5855 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 5856 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5857 "2789 GRP5 Async Event: Updating logical link speed " 5858 "from %dMbps to %dMbps\n", prev_ll_spd, 5859 phba->sli4_hba.link_state.logical_speed); 5860 } 5861 5862 /** 5863 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 5864 * @phba: pointer to lpfc hba data structure. 5865 * 5866 * This routine is invoked by the worker thread to process all the pending 5867 * SLI4 asynchronous events. 5868 **/ 5869 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 5870 { 5871 struct lpfc_cq_event *cq_event; 5872 5873 /* First, declare the async event has been handled */ 5874 spin_lock_irq(&phba->hbalock); 5875 phba->hba_flag &= ~ASYNC_EVENT; 5876 spin_unlock_irq(&phba->hbalock); 5877 /* Now, handle all the async events */ 5878 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 5879 /* Get the first event from the head of the event queue */ 5880 spin_lock_irq(&phba->hbalock); 5881 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 5882 cq_event, struct lpfc_cq_event, list); 5883 spin_unlock_irq(&phba->hbalock); 5884 /* Process the asynchronous event */ 5885 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 5886 case LPFC_TRAILER_CODE_LINK: 5887 lpfc_sli4_async_link_evt(phba, 5888 &cq_event->cqe.acqe_link); 5889 break; 5890 case LPFC_TRAILER_CODE_FCOE: 5891 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 5892 break; 5893 case LPFC_TRAILER_CODE_DCBX: 5894 lpfc_sli4_async_dcbx_evt(phba, 5895 &cq_event->cqe.acqe_dcbx); 5896 break; 5897 case LPFC_TRAILER_CODE_GRP5: 5898 lpfc_sli4_async_grp5_evt(phba, 5899 &cq_event->cqe.acqe_grp5); 5900 break; 5901 case LPFC_TRAILER_CODE_FC: 5902 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 5903 break; 5904 case LPFC_TRAILER_CODE_SLI: 5905 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 5906 break; 5907 default: 5908 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5909 "1804 Invalid asynchronous event code: " 5910 "x%x\n", bf_get(lpfc_trailer_code, 5911 &cq_event->cqe.mcqe_cmpl)); 5912 break; 5913 } 5914 /* Free the completion event processed to the free pool */ 5915 lpfc_sli4_cq_event_release(phba, cq_event); 5916 } 5917 } 5918 5919 /** 5920 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 5921 * @phba: pointer to lpfc hba data structure. 5922 * 5923 * This routine is invoked by the worker thread to process FCF table 5924 * rediscovery pending completion event. 5925 **/ 5926 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 5927 { 5928 int rc; 5929 5930 spin_lock_irq(&phba->hbalock); 5931 /* Clear FCF rediscovery timeout event */ 5932 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 5933 /* Clear driver fast failover FCF record flag */ 5934 phba->fcf.failover_rec.flag = 0; 5935 /* Set state for FCF fast failover */ 5936 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 5937 spin_unlock_irq(&phba->hbalock); 5938 5939 /* Scan FCF table from the first entry to re-discover SAN */ 5940 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 5941 "2777 Start post-quiescent FCF table scan\n"); 5942 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 5943 if (rc) 5944 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY, 5945 "2747 Issue FCF scan read FCF mailbox " 5946 "command failed 0x%x\n", rc); 5947 } 5948 5949 /** 5950 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 5951 * @phba: pointer to lpfc hba data structure. 5952 * @dev_grp: The HBA PCI-Device group number. 5953 * 5954 * This routine is invoked to set up the per HBA PCI-Device group function 5955 * API jump table entries. 5956 * 5957 * Return: 0 if success, otherwise -ENODEV 5958 **/ 5959 int 5960 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 5961 { 5962 int rc; 5963 5964 /* Set up lpfc PCI-device group */ 5965 phba->pci_dev_grp = dev_grp; 5966 5967 /* The LPFC_PCI_DEV_OC uses SLI4 */ 5968 if (dev_grp == LPFC_PCI_DEV_OC) 5969 phba->sli_rev = LPFC_SLI_REV4; 5970 5971 /* Set up device INIT API function jump table */ 5972 rc = lpfc_init_api_table_setup(phba, dev_grp); 5973 if (rc) 5974 return -ENODEV; 5975 /* Set up SCSI API function jump table */ 5976 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 5977 if (rc) 5978 return -ENODEV; 5979 /* Set up SLI API function jump table */ 5980 rc = lpfc_sli_api_table_setup(phba, dev_grp); 5981 if (rc) 5982 return -ENODEV; 5983 /* Set up MBOX API function jump table */ 5984 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 5985 if (rc) 5986 return -ENODEV; 5987 5988 return 0; 5989 } 5990 5991 /** 5992 * lpfc_log_intr_mode - Log the active interrupt mode 5993 * @phba: pointer to lpfc hba data structure. 5994 * @intr_mode: active interrupt mode adopted. 5995 * 5996 * This routine it invoked to log the currently used active interrupt mode 5997 * to the device. 5998 **/ 5999 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 6000 { 6001 switch (intr_mode) { 6002 case 0: 6003 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6004 "0470 Enable INTx interrupt mode.\n"); 6005 break; 6006 case 1: 6007 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6008 "0481 Enabled MSI interrupt mode.\n"); 6009 break; 6010 case 2: 6011 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6012 "0480 Enabled MSI-X interrupt mode.\n"); 6013 break; 6014 default: 6015 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6016 "0482 Illegal interrupt mode.\n"); 6017 break; 6018 } 6019 return; 6020 } 6021 6022 /** 6023 * lpfc_cpumask_of_node_init - initalizes cpumask of phba's NUMA node 6024 * @phba: Pointer to HBA context object. 6025 * 6026 **/ 6027 static void 6028 lpfc_cpumask_of_node_init(struct lpfc_hba *phba) 6029 { 6030 unsigned int cpu, numa_node; 6031 struct cpumask *numa_mask = &phba->sli4_hba.numa_mask; 6032 6033 cpumask_clear(numa_mask); 6034 6035 /* Check if we're a NUMA architecture */ 6036 numa_node = dev_to_node(&phba->pcidev->dev); 6037 if (numa_node == NUMA_NO_NODE) 6038 return; 6039 6040 for_each_possible_cpu(cpu) 6041 if (cpu_to_node(cpu) == numa_node) 6042 cpumask_set_cpu(cpu, numa_mask); 6043 } 6044 6045 /** 6046 * lpfc_enable_pci_dev - Enable a generic PCI device. 6047 * @phba: pointer to lpfc hba data structure. 6048 * 6049 * This routine is invoked to enable the PCI device that is common to all 6050 * PCI devices. 6051 * 6052 * Return codes 6053 * 0 - successful 6054 * other values - error 6055 **/ 6056 static int 6057 lpfc_enable_pci_dev(struct lpfc_hba *phba) 6058 { 6059 struct pci_dev *pdev; 6060 6061 /* Obtain PCI device reference */ 6062 if (!phba->pcidev) 6063 goto out_error; 6064 else 6065 pdev = phba->pcidev; 6066 /* Enable PCI device */ 6067 if (pci_enable_device_mem(pdev)) 6068 goto out_error; 6069 /* Request PCI resource for the device */ 6070 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 6071 goto out_disable_device; 6072 /* Set up device as PCI master and save state for EEH */ 6073 pci_set_master(pdev); 6074 pci_try_set_mwi(pdev); 6075 pci_save_state(pdev); 6076 6077 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6078 if (pci_is_pcie(pdev)) 6079 pdev->needs_freset = 1; 6080 6081 return 0; 6082 6083 out_disable_device: 6084 pci_disable_device(pdev); 6085 out_error: 6086 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6087 "1401 Failed to enable pci device\n"); 6088 return -ENODEV; 6089 } 6090 6091 /** 6092 * lpfc_disable_pci_dev - Disable a generic PCI device. 6093 * @phba: pointer to lpfc hba data structure. 6094 * 6095 * This routine is invoked to disable the PCI device that is common to all 6096 * PCI devices. 6097 **/ 6098 static void 6099 lpfc_disable_pci_dev(struct lpfc_hba *phba) 6100 { 6101 struct pci_dev *pdev; 6102 6103 /* Obtain PCI device reference */ 6104 if (!phba->pcidev) 6105 return; 6106 else 6107 pdev = phba->pcidev; 6108 /* Release PCI resource and disable PCI device */ 6109 pci_release_mem_regions(pdev); 6110 pci_disable_device(pdev); 6111 6112 return; 6113 } 6114 6115 /** 6116 * lpfc_reset_hba - Reset a hba 6117 * @phba: pointer to lpfc hba data structure. 6118 * 6119 * This routine is invoked to reset a hba device. It brings the HBA 6120 * offline, performs a board restart, and then brings the board back 6121 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 6122 * on outstanding mailbox commands. 6123 **/ 6124 void 6125 lpfc_reset_hba(struct lpfc_hba *phba) 6126 { 6127 /* If resets are disabled then set error state and return. */ 6128 if (!phba->cfg_enable_hba_reset) { 6129 phba->link_state = LPFC_HBA_ERROR; 6130 return; 6131 } 6132 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 6133 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 6134 else 6135 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 6136 lpfc_offline(phba); 6137 lpfc_sli_brdrestart(phba); 6138 lpfc_online(phba); 6139 lpfc_unblock_mgmt_io(phba); 6140 } 6141 6142 /** 6143 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 6144 * @phba: pointer to lpfc hba data structure. 6145 * 6146 * This function enables the PCI SR-IOV virtual functions to a physical 6147 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 6148 * enable the number of virtual functions to the physical function. As 6149 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 6150 * API call does not considered as an error condition for most of the device. 6151 **/ 6152 uint16_t 6153 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 6154 { 6155 struct pci_dev *pdev = phba->pcidev; 6156 uint16_t nr_virtfn; 6157 int pos; 6158 6159 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 6160 if (pos == 0) 6161 return 0; 6162 6163 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 6164 return nr_virtfn; 6165 } 6166 6167 /** 6168 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 6169 * @phba: pointer to lpfc hba data structure. 6170 * @nr_vfn: number of virtual functions to be enabled. 6171 * 6172 * This function enables the PCI SR-IOV virtual functions to a physical 6173 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 6174 * enable the number of virtual functions to the physical function. As 6175 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 6176 * API call does not considered as an error condition for most of the device. 6177 **/ 6178 int 6179 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 6180 { 6181 struct pci_dev *pdev = phba->pcidev; 6182 uint16_t max_nr_vfn; 6183 int rc; 6184 6185 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 6186 if (nr_vfn > max_nr_vfn) { 6187 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6188 "3057 Requested vfs (%d) greater than " 6189 "supported vfs (%d)", nr_vfn, max_nr_vfn); 6190 return -EINVAL; 6191 } 6192 6193 rc = pci_enable_sriov(pdev, nr_vfn); 6194 if (rc) { 6195 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6196 "2806 Failed to enable sriov on this device " 6197 "with vfn number nr_vf:%d, rc:%d\n", 6198 nr_vfn, rc); 6199 } else 6200 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6201 "2807 Successful enable sriov on this device " 6202 "with vfn number nr_vf:%d\n", nr_vfn); 6203 return rc; 6204 } 6205 6206 /** 6207 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 6208 * @phba: pointer to lpfc hba data structure. 6209 * 6210 * This routine is invoked to set up the driver internal resources before the 6211 * device specific resource setup to support the HBA device it attached to. 6212 * 6213 * Return codes 6214 * 0 - successful 6215 * other values - error 6216 **/ 6217 static int 6218 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 6219 { 6220 struct lpfc_sli *psli = &phba->sli; 6221 6222 /* 6223 * Driver resources common to all SLI revisions 6224 */ 6225 atomic_set(&phba->fast_event_count, 0); 6226 spin_lock_init(&phba->hbalock); 6227 6228 /* Initialize ndlp management spinlock */ 6229 spin_lock_init(&phba->ndlp_lock); 6230 6231 /* Initialize port_list spinlock */ 6232 spin_lock_init(&phba->port_list_lock); 6233 INIT_LIST_HEAD(&phba->port_list); 6234 6235 INIT_LIST_HEAD(&phba->work_list); 6236 init_waitqueue_head(&phba->wait_4_mlo_m_q); 6237 6238 /* Initialize the wait queue head for the kernel thread */ 6239 init_waitqueue_head(&phba->work_waitq); 6240 6241 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6242 "1403 Protocols supported %s %s %s\n", 6243 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 6244 "SCSI" : " "), 6245 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 6246 "NVME" : " "), 6247 (phba->nvmet_support ? "NVMET" : " ")); 6248 6249 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 6250 spin_lock_init(&phba->scsi_buf_list_get_lock); 6251 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 6252 spin_lock_init(&phba->scsi_buf_list_put_lock); 6253 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 6254 6255 /* Initialize the fabric iocb list */ 6256 INIT_LIST_HEAD(&phba->fabric_iocb_list); 6257 6258 /* Initialize list to save ELS buffers */ 6259 INIT_LIST_HEAD(&phba->elsbuf); 6260 6261 /* Initialize FCF connection rec list */ 6262 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 6263 6264 /* Initialize OAS configuration list */ 6265 spin_lock_init(&phba->devicelock); 6266 INIT_LIST_HEAD(&phba->luns); 6267 6268 /* MBOX heartbeat timer */ 6269 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 6270 /* Fabric block timer */ 6271 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 6272 /* EA polling mode timer */ 6273 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 6274 /* Heartbeat timer */ 6275 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 6276 6277 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 6278 6279 return 0; 6280 } 6281 6282 /** 6283 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 6284 * @phba: pointer to lpfc hba data structure. 6285 * 6286 * This routine is invoked to set up the driver internal resources specific to 6287 * support the SLI-3 HBA device it attached to. 6288 * 6289 * Return codes 6290 * 0 - successful 6291 * other values - error 6292 **/ 6293 static int 6294 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 6295 { 6296 int rc, entry_sz; 6297 6298 /* 6299 * Initialize timers used by driver 6300 */ 6301 6302 /* FCP polling mode timer */ 6303 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 6304 6305 /* Host attention work mask setup */ 6306 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 6307 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 6308 6309 /* Get all the module params for configuring this host */ 6310 lpfc_get_cfgparam(phba); 6311 /* Set up phase-1 common device driver resources */ 6312 6313 rc = lpfc_setup_driver_resource_phase1(phba); 6314 if (rc) 6315 return -ENODEV; 6316 6317 if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) { 6318 phba->menlo_flag |= HBA_MENLO_SUPPORT; 6319 /* check for menlo minimum sg count */ 6320 if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT) 6321 phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT; 6322 } 6323 6324 if (!phba->sli.sli3_ring) 6325 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 6326 sizeof(struct lpfc_sli_ring), 6327 GFP_KERNEL); 6328 if (!phba->sli.sli3_ring) 6329 return -ENOMEM; 6330 6331 /* 6332 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 6333 * used to create the sg_dma_buf_pool must be dynamically calculated. 6334 */ 6335 6336 if (phba->sli_rev == LPFC_SLI_REV4) 6337 entry_sz = sizeof(struct sli4_sge); 6338 else 6339 entry_sz = sizeof(struct ulp_bde64); 6340 6341 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 6342 if (phba->cfg_enable_bg) { 6343 /* 6344 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 6345 * the FCP rsp, and a BDE for each. Sice we have no control 6346 * over how many protection data segments the SCSI Layer 6347 * will hand us (ie: there could be one for every block 6348 * in the IO), we just allocate enough BDEs to accomidate 6349 * our max amount and we need to limit lpfc_sg_seg_cnt to 6350 * minimize the risk of running out. 6351 */ 6352 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6353 sizeof(struct fcp_rsp) + 6354 (LPFC_MAX_SG_SEG_CNT * entry_sz); 6355 6356 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 6357 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 6358 6359 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 6360 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 6361 } else { 6362 /* 6363 * The scsi_buf for a regular I/O will hold the FCP cmnd, 6364 * the FCP rsp, a BDE for each, and a BDE for up to 6365 * cfg_sg_seg_cnt data segments. 6366 */ 6367 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6368 sizeof(struct fcp_rsp) + 6369 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 6370 6371 /* Total BDEs in BPL for scsi_sg_list */ 6372 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 6373 } 6374 6375 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 6376 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 6377 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 6378 phba->cfg_total_seg_cnt); 6379 6380 phba->max_vpi = LPFC_MAX_VPI; 6381 /* This will be set to correct value after config_port mbox */ 6382 phba->max_vports = 0; 6383 6384 /* 6385 * Initialize the SLI Layer to run with lpfc HBAs. 6386 */ 6387 lpfc_sli_setup(phba); 6388 lpfc_sli_queue_init(phba); 6389 6390 /* Allocate device driver memory */ 6391 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 6392 return -ENOMEM; 6393 6394 phba->lpfc_sg_dma_buf_pool = 6395 dma_pool_create("lpfc_sg_dma_buf_pool", 6396 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 6397 BPL_ALIGN_SZ, 0); 6398 6399 if (!phba->lpfc_sg_dma_buf_pool) 6400 goto fail_free_mem; 6401 6402 phba->lpfc_cmd_rsp_buf_pool = 6403 dma_pool_create("lpfc_cmd_rsp_buf_pool", 6404 &phba->pcidev->dev, 6405 sizeof(struct fcp_cmnd) + 6406 sizeof(struct fcp_rsp), 6407 BPL_ALIGN_SZ, 0); 6408 6409 if (!phba->lpfc_cmd_rsp_buf_pool) 6410 goto fail_free_dma_buf_pool; 6411 6412 /* 6413 * Enable sr-iov virtual functions if supported and configured 6414 * through the module parameter. 6415 */ 6416 if (phba->cfg_sriov_nr_virtfn > 0) { 6417 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 6418 phba->cfg_sriov_nr_virtfn); 6419 if (rc) { 6420 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6421 "2808 Requested number of SR-IOV " 6422 "virtual functions (%d) is not " 6423 "supported\n", 6424 phba->cfg_sriov_nr_virtfn); 6425 phba->cfg_sriov_nr_virtfn = 0; 6426 } 6427 } 6428 6429 return 0; 6430 6431 fail_free_dma_buf_pool: 6432 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 6433 phba->lpfc_sg_dma_buf_pool = NULL; 6434 fail_free_mem: 6435 lpfc_mem_free(phba); 6436 return -ENOMEM; 6437 } 6438 6439 /** 6440 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 6441 * @phba: pointer to lpfc hba data structure. 6442 * 6443 * This routine is invoked to unset the driver internal resources set up 6444 * specific for supporting the SLI-3 HBA device it attached to. 6445 **/ 6446 static void 6447 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 6448 { 6449 /* Free device driver memory allocated */ 6450 lpfc_mem_free_all(phba); 6451 6452 return; 6453 } 6454 6455 /** 6456 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 6457 * @phba: pointer to lpfc hba data structure. 6458 * 6459 * This routine is invoked to set up the driver internal resources specific to 6460 * support the SLI-4 HBA device it attached to. 6461 * 6462 * Return codes 6463 * 0 - successful 6464 * other values - error 6465 **/ 6466 static int 6467 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 6468 { 6469 LPFC_MBOXQ_t *mboxq; 6470 MAILBOX_t *mb; 6471 int rc, i, max_buf_size; 6472 uint8_t pn_page[LPFC_MAX_SUPPORTED_PAGES] = {0}; 6473 struct lpfc_mqe *mqe; 6474 int longs; 6475 int extra; 6476 uint64_t wwn; 6477 u32 if_type; 6478 u32 if_fam; 6479 6480 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 6481 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 6482 phba->sli4_hba.curr_disp_cpu = 0; 6483 lpfc_cpumask_of_node_init(phba); 6484 6485 /* Get all the module params for configuring this host */ 6486 lpfc_get_cfgparam(phba); 6487 6488 /* Set up phase-1 common device driver resources */ 6489 rc = lpfc_setup_driver_resource_phase1(phba); 6490 if (rc) 6491 return -ENODEV; 6492 6493 /* Before proceed, wait for POST done and device ready */ 6494 rc = lpfc_sli4_post_status_check(phba); 6495 if (rc) 6496 return -ENODEV; 6497 6498 /* Allocate all driver workqueues here */ 6499 6500 /* The lpfc_wq workqueue for deferred irq use */ 6501 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); 6502 6503 /* 6504 * Initialize timers used by driver 6505 */ 6506 6507 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 6508 6509 /* FCF rediscover timer */ 6510 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 6511 6512 /* 6513 * Control structure for handling external multi-buffer mailbox 6514 * command pass-through. 6515 */ 6516 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 6517 sizeof(struct lpfc_mbox_ext_buf_ctx)); 6518 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 6519 6520 phba->max_vpi = LPFC_MAX_VPI; 6521 6522 /* This will be set to correct value after the read_config mbox */ 6523 phba->max_vports = 0; 6524 6525 /* Program the default value of vlan_id and fc_map */ 6526 phba->valid_vlan = 0; 6527 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 6528 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 6529 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 6530 6531 /* 6532 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 6533 * we will associate a new ring, for each EQ/CQ/WQ tuple. 6534 * The WQ create will allocate the ring. 6535 */ 6536 6537 /* Initialize buffer queue management fields */ 6538 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 6539 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 6540 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 6541 6542 /* 6543 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 6544 */ 6545 /* Initialize the Abort buffer list used by driver */ 6546 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 6547 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 6548 6549 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 6550 /* Initialize the Abort nvme buffer list used by driver */ 6551 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 6552 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 6553 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 6554 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 6555 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 6556 } 6557 6558 /* This abort list used by worker thread */ 6559 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 6560 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 6561 6562 /* 6563 * Initialize driver internal slow-path work queues 6564 */ 6565 6566 /* Driver internel slow-path CQ Event pool */ 6567 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 6568 /* Response IOCB work queue list */ 6569 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 6570 /* Asynchronous event CQ Event work queue list */ 6571 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 6572 /* Fast-path XRI aborted CQ Event work queue list */ 6573 INIT_LIST_HEAD(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 6574 /* Slow-path XRI aborted CQ Event work queue list */ 6575 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 6576 /* Receive queue CQ Event work queue list */ 6577 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 6578 6579 /* Initialize extent block lists. */ 6580 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 6581 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 6582 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 6583 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 6584 6585 /* Initialize mboxq lists. If the early init routines fail 6586 * these lists need to be correctly initialized. 6587 */ 6588 INIT_LIST_HEAD(&phba->sli.mboxq); 6589 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 6590 6591 /* initialize optic_state to 0xFF */ 6592 phba->sli4_hba.lnk_info.optic_state = 0xff; 6593 6594 /* Allocate device driver memory */ 6595 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 6596 if (rc) 6597 return -ENOMEM; 6598 6599 /* IF Type 2 ports get initialized now. */ 6600 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 6601 LPFC_SLI_INTF_IF_TYPE_2) { 6602 rc = lpfc_pci_function_reset(phba); 6603 if (unlikely(rc)) { 6604 rc = -ENODEV; 6605 goto out_free_mem; 6606 } 6607 phba->temp_sensor_support = 1; 6608 } 6609 6610 /* Create the bootstrap mailbox command */ 6611 rc = lpfc_create_bootstrap_mbox(phba); 6612 if (unlikely(rc)) 6613 goto out_free_mem; 6614 6615 /* Set up the host's endian order with the device. */ 6616 rc = lpfc_setup_endian_order(phba); 6617 if (unlikely(rc)) 6618 goto out_free_bsmbx; 6619 6620 /* Set up the hba's configuration parameters. */ 6621 rc = lpfc_sli4_read_config(phba); 6622 if (unlikely(rc)) 6623 goto out_free_bsmbx; 6624 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 6625 if (unlikely(rc)) 6626 goto out_free_bsmbx; 6627 6628 /* IF Type 0 ports get initialized now. */ 6629 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6630 LPFC_SLI_INTF_IF_TYPE_0) { 6631 rc = lpfc_pci_function_reset(phba); 6632 if (unlikely(rc)) 6633 goto out_free_bsmbx; 6634 } 6635 6636 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 6637 GFP_KERNEL); 6638 if (!mboxq) { 6639 rc = -ENOMEM; 6640 goto out_free_bsmbx; 6641 } 6642 6643 /* Check for NVMET being configured */ 6644 phba->nvmet_support = 0; 6645 if (lpfc_enable_nvmet_cnt) { 6646 6647 /* First get WWN of HBA instance */ 6648 lpfc_read_nv(phba, mboxq); 6649 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6650 if (rc != MBX_SUCCESS) { 6651 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6652 "6016 Mailbox failed , mbxCmd x%x " 6653 "READ_NV, mbxStatus x%x\n", 6654 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6655 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 6656 mempool_free(mboxq, phba->mbox_mem_pool); 6657 rc = -EIO; 6658 goto out_free_bsmbx; 6659 } 6660 mb = &mboxq->u.mb; 6661 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 6662 sizeof(uint64_t)); 6663 wwn = cpu_to_be64(wwn); 6664 phba->sli4_hba.wwnn.u.name = wwn; 6665 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 6666 sizeof(uint64_t)); 6667 /* wwn is WWPN of HBA instance */ 6668 wwn = cpu_to_be64(wwn); 6669 phba->sli4_hba.wwpn.u.name = wwn; 6670 6671 /* Check to see if it matches any module parameter */ 6672 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 6673 if (wwn == lpfc_enable_nvmet[i]) { 6674 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 6675 if (lpfc_nvmet_mem_alloc(phba)) 6676 break; 6677 6678 phba->nvmet_support = 1; /* a match */ 6679 6680 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6681 "6017 NVME Target %016llx\n", 6682 wwn); 6683 #else 6684 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6685 "6021 Can't enable NVME Target." 6686 " NVME_TARGET_FC infrastructure" 6687 " is not in kernel\n"); 6688 #endif 6689 /* Not supported for NVMET */ 6690 phba->cfg_xri_rebalancing = 0; 6691 break; 6692 } 6693 } 6694 } 6695 6696 lpfc_nvme_mod_param_dep(phba); 6697 6698 /* Get the Supported Pages if PORT_CAPABILITIES is supported by port. */ 6699 lpfc_supported_pages(mboxq); 6700 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6701 if (!rc) { 6702 mqe = &mboxq->u.mqe; 6703 memcpy(&pn_page[0], ((uint8_t *)&mqe->un.supp_pages.word3), 6704 LPFC_MAX_SUPPORTED_PAGES); 6705 for (i = 0; i < LPFC_MAX_SUPPORTED_PAGES; i++) { 6706 switch (pn_page[i]) { 6707 case LPFC_SLI4_PARAMETERS: 6708 phba->sli4_hba.pc_sli4_params.supported = 1; 6709 break; 6710 default: 6711 break; 6712 } 6713 } 6714 /* Read the port's SLI4 Parameters capabilities if supported. */ 6715 if (phba->sli4_hba.pc_sli4_params.supported) 6716 rc = lpfc_pc_sli4_params_get(phba, mboxq); 6717 if (rc) { 6718 mempool_free(mboxq, phba->mbox_mem_pool); 6719 rc = -EIO; 6720 goto out_free_bsmbx; 6721 } 6722 } 6723 6724 /* 6725 * Get sli4 parameters that override parameters from Port capabilities. 6726 * If this call fails, it isn't critical unless the SLI4 parameters come 6727 * back in conflict. 6728 */ 6729 rc = lpfc_get_sli4_parameters(phba, mboxq); 6730 if (rc) { 6731 if_type = bf_get(lpfc_sli_intf_if_type, 6732 &phba->sli4_hba.sli_intf); 6733 if_fam = bf_get(lpfc_sli_intf_sli_family, 6734 &phba->sli4_hba.sli_intf); 6735 if (phba->sli4_hba.extents_in_use && 6736 phba->sli4_hba.rpi_hdrs_in_use) { 6737 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6738 "2999 Unsupported SLI4 Parameters " 6739 "Extents and RPI headers enabled.\n"); 6740 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && 6741 if_fam == LPFC_SLI_INTF_FAMILY_BE2) { 6742 mempool_free(mboxq, phba->mbox_mem_pool); 6743 rc = -EIO; 6744 goto out_free_bsmbx; 6745 } 6746 } 6747 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && 6748 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { 6749 mempool_free(mboxq, phba->mbox_mem_pool); 6750 rc = -EIO; 6751 goto out_free_bsmbx; 6752 } 6753 } 6754 6755 /* 6756 * 1 for cmd, 1 for rsp, NVME adds an extra one 6757 * for boundary conditions in its max_sgl_segment template. 6758 */ 6759 extra = 2; 6760 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 6761 extra++; 6762 6763 /* 6764 * It doesn't matter what family our adapter is in, we are 6765 * limited to 2 Pages, 512 SGEs, for our SGL. 6766 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 6767 */ 6768 max_buf_size = (2 * SLI4_PAGE_SIZE); 6769 6770 /* 6771 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 6772 * used to create the sg_dma_buf_pool must be calculated. 6773 */ 6774 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 6775 /* Both cfg_enable_bg and cfg_external_dif code paths */ 6776 6777 /* 6778 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 6779 * the FCP rsp, and a SGE. Sice we have no control 6780 * over how many protection segments the SCSI Layer 6781 * will hand us (ie: there could be one for every block 6782 * in the IO), just allocate enough SGEs to accomidate 6783 * our max amount and we need to limit lpfc_sg_seg_cnt 6784 * to minimize the risk of running out. 6785 */ 6786 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6787 sizeof(struct fcp_rsp) + max_buf_size; 6788 6789 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 6790 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 6791 6792 /* 6793 * If supporting DIF, reduce the seg count for scsi to 6794 * allow room for the DIF sges. 6795 */ 6796 if (phba->cfg_enable_bg && 6797 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 6798 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 6799 else 6800 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 6801 6802 } else { 6803 /* 6804 * The scsi_buf for a regular I/O holds the FCP cmnd, 6805 * the FCP rsp, a SGE for each, and a SGE for up to 6806 * cfg_sg_seg_cnt data segments. 6807 */ 6808 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6809 sizeof(struct fcp_rsp) + 6810 ((phba->cfg_sg_seg_cnt + extra) * 6811 sizeof(struct sli4_sge)); 6812 6813 /* Total SGEs for scsi_sg_list */ 6814 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 6815 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 6816 6817 /* 6818 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 6819 * need to post 1 page for the SGL. 6820 */ 6821 } 6822 6823 if (phba->cfg_xpsgl && !phba->nvmet_support) 6824 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 6825 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 6826 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 6827 else 6828 phba->cfg_sg_dma_buf_size = 6829 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 6830 6831 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 6832 sizeof(struct sli4_sge); 6833 6834 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 6835 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 6836 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 6837 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 6838 "6300 Reducing NVME sg segment " 6839 "cnt to %d\n", 6840 LPFC_MAX_NVME_SEG_CNT); 6841 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 6842 } else 6843 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 6844 } 6845 6846 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 6847 "9087 sg_seg_cnt:%d dmabuf_size:%d " 6848 "total:%d scsi:%d nvme:%d\n", 6849 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 6850 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 6851 phba->cfg_nvme_seg_cnt); 6852 6853 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) 6854 i = phba->cfg_sg_dma_buf_size; 6855 else 6856 i = SLI4_PAGE_SIZE; 6857 6858 phba->lpfc_sg_dma_buf_pool = 6859 dma_pool_create("lpfc_sg_dma_buf_pool", 6860 &phba->pcidev->dev, 6861 phba->cfg_sg_dma_buf_size, 6862 i, 0); 6863 if (!phba->lpfc_sg_dma_buf_pool) 6864 goto out_free_bsmbx; 6865 6866 phba->lpfc_cmd_rsp_buf_pool = 6867 dma_pool_create("lpfc_cmd_rsp_buf_pool", 6868 &phba->pcidev->dev, 6869 sizeof(struct fcp_cmnd) + 6870 sizeof(struct fcp_rsp), 6871 i, 0); 6872 if (!phba->lpfc_cmd_rsp_buf_pool) 6873 goto out_free_sg_dma_buf; 6874 6875 mempool_free(mboxq, phba->mbox_mem_pool); 6876 6877 /* Verify OAS is supported */ 6878 lpfc_sli4_oas_verify(phba); 6879 6880 /* Verify RAS support on adapter */ 6881 lpfc_sli4_ras_init(phba); 6882 6883 /* Verify all the SLI4 queues */ 6884 rc = lpfc_sli4_queue_verify(phba); 6885 if (rc) 6886 goto out_free_cmd_rsp_buf; 6887 6888 /* Create driver internal CQE event pool */ 6889 rc = lpfc_sli4_cq_event_pool_create(phba); 6890 if (rc) 6891 goto out_free_cmd_rsp_buf; 6892 6893 /* Initialize sgl lists per host */ 6894 lpfc_init_sgl_list(phba); 6895 6896 /* Allocate and initialize active sgl array */ 6897 rc = lpfc_init_active_sgl_array(phba); 6898 if (rc) { 6899 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6900 "1430 Failed to initialize sgl list.\n"); 6901 goto out_destroy_cq_event_pool; 6902 } 6903 rc = lpfc_sli4_init_rpi_hdrs(phba); 6904 if (rc) { 6905 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6906 "1432 Failed to initialize rpi headers.\n"); 6907 goto out_free_active_sgl; 6908 } 6909 6910 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 6911 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 6912 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 6913 GFP_KERNEL); 6914 if (!phba->fcf.fcf_rr_bmask) { 6915 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6916 "2759 Failed allocate memory for FCF round " 6917 "robin failover bmask\n"); 6918 rc = -ENOMEM; 6919 goto out_remove_rpi_hdrs; 6920 } 6921 6922 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 6923 sizeof(struct lpfc_hba_eq_hdl), 6924 GFP_KERNEL); 6925 if (!phba->sli4_hba.hba_eq_hdl) { 6926 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6927 "2572 Failed allocate memory for " 6928 "fast-path per-EQ handle array\n"); 6929 rc = -ENOMEM; 6930 goto out_free_fcf_rr_bmask; 6931 } 6932 6933 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 6934 sizeof(struct lpfc_vector_map_info), 6935 GFP_KERNEL); 6936 if (!phba->sli4_hba.cpu_map) { 6937 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6938 "3327 Failed allocate memory for msi-x " 6939 "interrupt vector mapping\n"); 6940 rc = -ENOMEM; 6941 goto out_free_hba_eq_hdl; 6942 } 6943 6944 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 6945 if (!phba->sli4_hba.eq_info) { 6946 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6947 "3321 Failed allocation for per_cpu stats\n"); 6948 rc = -ENOMEM; 6949 goto out_free_hba_cpu_map; 6950 } 6951 6952 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 6953 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 6954 if (!phba->sli4_hba.c_stat) { 6955 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6956 "3332 Failed allocating per cpu hdwq stats\n"); 6957 rc = -ENOMEM; 6958 goto out_free_hba_eq_info; 6959 } 6960 #endif 6961 6962 /* 6963 * Enable sr-iov virtual functions if supported and configured 6964 * through the module parameter. 6965 */ 6966 if (phba->cfg_sriov_nr_virtfn > 0) { 6967 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 6968 phba->cfg_sriov_nr_virtfn); 6969 if (rc) { 6970 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6971 "3020 Requested number of SR-IOV " 6972 "virtual functions (%d) is not " 6973 "supported\n", 6974 phba->cfg_sriov_nr_virtfn); 6975 phba->cfg_sriov_nr_virtfn = 0; 6976 } 6977 } 6978 6979 return 0; 6980 6981 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 6982 out_free_hba_eq_info: 6983 free_percpu(phba->sli4_hba.eq_info); 6984 #endif 6985 out_free_hba_cpu_map: 6986 kfree(phba->sli4_hba.cpu_map); 6987 out_free_hba_eq_hdl: 6988 kfree(phba->sli4_hba.hba_eq_hdl); 6989 out_free_fcf_rr_bmask: 6990 kfree(phba->fcf.fcf_rr_bmask); 6991 out_remove_rpi_hdrs: 6992 lpfc_sli4_remove_rpi_hdrs(phba); 6993 out_free_active_sgl: 6994 lpfc_free_active_sgl(phba); 6995 out_destroy_cq_event_pool: 6996 lpfc_sli4_cq_event_pool_destroy(phba); 6997 out_free_cmd_rsp_buf: 6998 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 6999 phba->lpfc_cmd_rsp_buf_pool = NULL; 7000 out_free_sg_dma_buf: 7001 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 7002 phba->lpfc_sg_dma_buf_pool = NULL; 7003 out_free_bsmbx: 7004 lpfc_destroy_bootstrap_mbox(phba); 7005 out_free_mem: 7006 lpfc_mem_free(phba); 7007 return rc; 7008 } 7009 7010 /** 7011 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 7012 * @phba: pointer to lpfc hba data structure. 7013 * 7014 * This routine is invoked to unset the driver internal resources set up 7015 * specific for supporting the SLI-4 HBA device it attached to. 7016 **/ 7017 static void 7018 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 7019 { 7020 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 7021 7022 free_percpu(phba->sli4_hba.eq_info); 7023 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 7024 free_percpu(phba->sli4_hba.c_stat); 7025 #endif 7026 7027 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 7028 kfree(phba->sli4_hba.cpu_map); 7029 phba->sli4_hba.num_possible_cpu = 0; 7030 phba->sli4_hba.num_present_cpu = 0; 7031 phba->sli4_hba.curr_disp_cpu = 0; 7032 cpumask_clear(&phba->sli4_hba.numa_mask); 7033 7034 /* Free memory allocated for fast-path work queue handles */ 7035 kfree(phba->sli4_hba.hba_eq_hdl); 7036 7037 /* Free the allocated rpi headers. */ 7038 lpfc_sli4_remove_rpi_hdrs(phba); 7039 lpfc_sli4_remove_rpis(phba); 7040 7041 /* Free eligible FCF index bmask */ 7042 kfree(phba->fcf.fcf_rr_bmask); 7043 7044 /* Free the ELS sgl list */ 7045 lpfc_free_active_sgl(phba); 7046 lpfc_free_els_sgl_list(phba); 7047 lpfc_free_nvmet_sgl_list(phba); 7048 7049 /* Free the completion queue EQ event pool */ 7050 lpfc_sli4_cq_event_release_all(phba); 7051 lpfc_sli4_cq_event_pool_destroy(phba); 7052 7053 /* Release resource identifiers. */ 7054 lpfc_sli4_dealloc_resource_identifiers(phba); 7055 7056 /* Free the bsmbx region. */ 7057 lpfc_destroy_bootstrap_mbox(phba); 7058 7059 /* Free the SLI Layer memory with SLI4 HBAs */ 7060 lpfc_mem_free_all(phba); 7061 7062 /* Free the current connect table */ 7063 list_for_each_entry_safe(conn_entry, next_conn_entry, 7064 &phba->fcf_conn_rec_list, list) { 7065 list_del_init(&conn_entry->list); 7066 kfree(conn_entry); 7067 } 7068 7069 return; 7070 } 7071 7072 /** 7073 * lpfc_init_api_table_setup - Set up init api function jump table 7074 * @phba: The hba struct for which this call is being executed. 7075 * @dev_grp: The HBA PCI-Device group number. 7076 * 7077 * This routine sets up the device INIT interface API function jump table 7078 * in @phba struct. 7079 * 7080 * Returns: 0 - success, -ENODEV - failure. 7081 **/ 7082 int 7083 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7084 { 7085 phba->lpfc_hba_init_link = lpfc_hba_init_link; 7086 phba->lpfc_hba_down_link = lpfc_hba_down_link; 7087 phba->lpfc_selective_reset = lpfc_selective_reset; 7088 switch (dev_grp) { 7089 case LPFC_PCI_DEV_LP: 7090 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 7091 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 7092 phba->lpfc_stop_port = lpfc_stop_port_s3; 7093 break; 7094 case LPFC_PCI_DEV_OC: 7095 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 7096 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 7097 phba->lpfc_stop_port = lpfc_stop_port_s4; 7098 break; 7099 default: 7100 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7101 "1431 Invalid HBA PCI-device group: 0x%x\n", 7102 dev_grp); 7103 return -ENODEV; 7104 break; 7105 } 7106 return 0; 7107 } 7108 7109 /** 7110 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 7111 * @phba: pointer to lpfc hba data structure. 7112 * 7113 * This routine is invoked to set up the driver internal resources after the 7114 * device specific resource setup to support the HBA device it attached to. 7115 * 7116 * Return codes 7117 * 0 - successful 7118 * other values - error 7119 **/ 7120 static int 7121 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 7122 { 7123 int error; 7124 7125 /* Startup the kernel thread for this host adapter. */ 7126 phba->worker_thread = kthread_run(lpfc_do_work, phba, 7127 "lpfc_worker_%d", phba->brd_no); 7128 if (IS_ERR(phba->worker_thread)) { 7129 error = PTR_ERR(phba->worker_thread); 7130 return error; 7131 } 7132 7133 return 0; 7134 } 7135 7136 /** 7137 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 7138 * @phba: pointer to lpfc hba data structure. 7139 * 7140 * This routine is invoked to unset the driver internal resources set up after 7141 * the device specific resource setup for supporting the HBA device it 7142 * attached to. 7143 **/ 7144 static void 7145 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 7146 { 7147 if (phba->wq) { 7148 flush_workqueue(phba->wq); 7149 destroy_workqueue(phba->wq); 7150 phba->wq = NULL; 7151 } 7152 7153 /* Stop kernel worker thread */ 7154 if (phba->worker_thread) 7155 kthread_stop(phba->worker_thread); 7156 } 7157 7158 /** 7159 * lpfc_free_iocb_list - Free iocb list. 7160 * @phba: pointer to lpfc hba data structure. 7161 * 7162 * This routine is invoked to free the driver's IOCB list and memory. 7163 **/ 7164 void 7165 lpfc_free_iocb_list(struct lpfc_hba *phba) 7166 { 7167 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 7168 7169 spin_lock_irq(&phba->hbalock); 7170 list_for_each_entry_safe(iocbq_entry, iocbq_next, 7171 &phba->lpfc_iocb_list, list) { 7172 list_del(&iocbq_entry->list); 7173 kfree(iocbq_entry); 7174 phba->total_iocbq_bufs--; 7175 } 7176 spin_unlock_irq(&phba->hbalock); 7177 7178 return; 7179 } 7180 7181 /** 7182 * lpfc_init_iocb_list - Allocate and initialize iocb list. 7183 * @phba: pointer to lpfc hba data structure. 7184 * 7185 * This routine is invoked to allocate and initizlize the driver's IOCB 7186 * list and set up the IOCB tag array accordingly. 7187 * 7188 * Return codes 7189 * 0 - successful 7190 * other values - error 7191 **/ 7192 int 7193 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 7194 { 7195 struct lpfc_iocbq *iocbq_entry = NULL; 7196 uint16_t iotag; 7197 int i; 7198 7199 /* Initialize and populate the iocb list per host. */ 7200 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 7201 for (i = 0; i < iocb_count; i++) { 7202 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 7203 if (iocbq_entry == NULL) { 7204 printk(KERN_ERR "%s: only allocated %d iocbs of " 7205 "expected %d count. Unloading driver.\n", 7206 __func__, i, iocb_count); 7207 goto out_free_iocbq; 7208 } 7209 7210 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 7211 if (iotag == 0) { 7212 kfree(iocbq_entry); 7213 printk(KERN_ERR "%s: failed to allocate IOTAG. " 7214 "Unloading driver.\n", __func__); 7215 goto out_free_iocbq; 7216 } 7217 iocbq_entry->sli4_lxritag = NO_XRI; 7218 iocbq_entry->sli4_xritag = NO_XRI; 7219 7220 spin_lock_irq(&phba->hbalock); 7221 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 7222 phba->total_iocbq_bufs++; 7223 spin_unlock_irq(&phba->hbalock); 7224 } 7225 7226 return 0; 7227 7228 out_free_iocbq: 7229 lpfc_free_iocb_list(phba); 7230 7231 return -ENOMEM; 7232 } 7233 7234 /** 7235 * lpfc_free_sgl_list - Free a given sgl list. 7236 * @phba: pointer to lpfc hba data structure. 7237 * @sglq_list: pointer to the head of sgl list. 7238 * 7239 * This routine is invoked to free a give sgl list and memory. 7240 **/ 7241 void 7242 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 7243 { 7244 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 7245 7246 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 7247 list_del(&sglq_entry->list); 7248 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 7249 kfree(sglq_entry); 7250 } 7251 } 7252 7253 /** 7254 * lpfc_free_els_sgl_list - Free els sgl list. 7255 * @phba: pointer to lpfc hba data structure. 7256 * 7257 * This routine is invoked to free the driver's els sgl list and memory. 7258 **/ 7259 static void 7260 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 7261 { 7262 LIST_HEAD(sglq_list); 7263 7264 /* Retrieve all els sgls from driver list */ 7265 spin_lock_irq(&phba->hbalock); 7266 spin_lock(&phba->sli4_hba.sgl_list_lock); 7267 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 7268 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7269 spin_unlock_irq(&phba->hbalock); 7270 7271 /* Now free the sgl list */ 7272 lpfc_free_sgl_list(phba, &sglq_list); 7273 } 7274 7275 /** 7276 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 7277 * @phba: pointer to lpfc hba data structure. 7278 * 7279 * This routine is invoked to free the driver's nvmet sgl list and memory. 7280 **/ 7281 static void 7282 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 7283 { 7284 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 7285 LIST_HEAD(sglq_list); 7286 7287 /* Retrieve all nvmet sgls from driver list */ 7288 spin_lock_irq(&phba->hbalock); 7289 spin_lock(&phba->sli4_hba.sgl_list_lock); 7290 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 7291 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7292 spin_unlock_irq(&phba->hbalock); 7293 7294 /* Now free the sgl list */ 7295 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 7296 list_del(&sglq_entry->list); 7297 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 7298 kfree(sglq_entry); 7299 } 7300 7301 /* Update the nvmet_xri_cnt to reflect no current sgls. 7302 * The next initialization cycle sets the count and allocates 7303 * the sgls over again. 7304 */ 7305 phba->sli4_hba.nvmet_xri_cnt = 0; 7306 } 7307 7308 /** 7309 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 7310 * @phba: pointer to lpfc hba data structure. 7311 * 7312 * This routine is invoked to allocate the driver's active sgl memory. 7313 * This array will hold the sglq_entry's for active IOs. 7314 **/ 7315 static int 7316 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 7317 { 7318 int size; 7319 size = sizeof(struct lpfc_sglq *); 7320 size *= phba->sli4_hba.max_cfg_param.max_xri; 7321 7322 phba->sli4_hba.lpfc_sglq_active_list = 7323 kzalloc(size, GFP_KERNEL); 7324 if (!phba->sli4_hba.lpfc_sglq_active_list) 7325 return -ENOMEM; 7326 return 0; 7327 } 7328 7329 /** 7330 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 7331 * @phba: pointer to lpfc hba data structure. 7332 * 7333 * This routine is invoked to walk through the array of active sglq entries 7334 * and free all of the resources. 7335 * This is just a place holder for now. 7336 **/ 7337 static void 7338 lpfc_free_active_sgl(struct lpfc_hba *phba) 7339 { 7340 kfree(phba->sli4_hba.lpfc_sglq_active_list); 7341 } 7342 7343 /** 7344 * lpfc_init_sgl_list - Allocate and initialize sgl list. 7345 * @phba: pointer to lpfc hba data structure. 7346 * 7347 * This routine is invoked to allocate and initizlize the driver's sgl 7348 * list and set up the sgl xritag tag array accordingly. 7349 * 7350 **/ 7351 static void 7352 lpfc_init_sgl_list(struct lpfc_hba *phba) 7353 { 7354 /* Initialize and populate the sglq list per host/VF. */ 7355 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 7356 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 7357 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 7358 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 7359 7360 /* els xri-sgl book keeping */ 7361 phba->sli4_hba.els_xri_cnt = 0; 7362 7363 /* nvme xri-buffer book keeping */ 7364 phba->sli4_hba.io_xri_cnt = 0; 7365 } 7366 7367 /** 7368 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 7369 * @phba: pointer to lpfc hba data structure. 7370 * 7371 * This routine is invoked to post rpi header templates to the 7372 * port for those SLI4 ports that do not support extents. This routine 7373 * posts a PAGE_SIZE memory region to the port to hold up to 7374 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 7375 * and should be called only when interrupts are disabled. 7376 * 7377 * Return codes 7378 * 0 - successful 7379 * -ERROR - otherwise. 7380 **/ 7381 int 7382 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 7383 { 7384 int rc = 0; 7385 struct lpfc_rpi_hdr *rpi_hdr; 7386 7387 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 7388 if (!phba->sli4_hba.rpi_hdrs_in_use) 7389 return rc; 7390 if (phba->sli4_hba.extents_in_use) 7391 return -EIO; 7392 7393 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 7394 if (!rpi_hdr) { 7395 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7396 "0391 Error during rpi post operation\n"); 7397 lpfc_sli4_remove_rpis(phba); 7398 rc = -ENODEV; 7399 } 7400 7401 return rc; 7402 } 7403 7404 /** 7405 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 7406 * @phba: pointer to lpfc hba data structure. 7407 * 7408 * This routine is invoked to allocate a single 4KB memory region to 7409 * support rpis and stores them in the phba. This single region 7410 * provides support for up to 64 rpis. The region is used globally 7411 * by the device. 7412 * 7413 * Returns: 7414 * A valid rpi hdr on success. 7415 * A NULL pointer on any failure. 7416 **/ 7417 struct lpfc_rpi_hdr * 7418 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 7419 { 7420 uint16_t rpi_limit, curr_rpi_range; 7421 struct lpfc_dmabuf *dmabuf; 7422 struct lpfc_rpi_hdr *rpi_hdr; 7423 7424 /* 7425 * If the SLI4 port supports extents, posting the rpi header isn't 7426 * required. Set the expected maximum count and let the actual value 7427 * get set when extents are fully allocated. 7428 */ 7429 if (!phba->sli4_hba.rpi_hdrs_in_use) 7430 return NULL; 7431 if (phba->sli4_hba.extents_in_use) 7432 return NULL; 7433 7434 /* The limit on the logical index is just the max_rpi count. */ 7435 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 7436 7437 spin_lock_irq(&phba->hbalock); 7438 /* 7439 * Establish the starting RPI in this header block. The starting 7440 * rpi is normalized to a zero base because the physical rpi is 7441 * port based. 7442 */ 7443 curr_rpi_range = phba->sli4_hba.next_rpi; 7444 spin_unlock_irq(&phba->hbalock); 7445 7446 /* Reached full RPI range */ 7447 if (curr_rpi_range == rpi_limit) 7448 return NULL; 7449 7450 /* 7451 * First allocate the protocol header region for the port. The 7452 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 7453 */ 7454 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 7455 if (!dmabuf) 7456 return NULL; 7457 7458 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 7459 LPFC_HDR_TEMPLATE_SIZE, 7460 &dmabuf->phys, GFP_KERNEL); 7461 if (!dmabuf->virt) { 7462 rpi_hdr = NULL; 7463 goto err_free_dmabuf; 7464 } 7465 7466 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 7467 rpi_hdr = NULL; 7468 goto err_free_coherent; 7469 } 7470 7471 /* Save the rpi header data for cleanup later. */ 7472 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 7473 if (!rpi_hdr) 7474 goto err_free_coherent; 7475 7476 rpi_hdr->dmabuf = dmabuf; 7477 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 7478 rpi_hdr->page_count = 1; 7479 spin_lock_irq(&phba->hbalock); 7480 7481 /* The rpi_hdr stores the logical index only. */ 7482 rpi_hdr->start_rpi = curr_rpi_range; 7483 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 7484 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 7485 7486 spin_unlock_irq(&phba->hbalock); 7487 return rpi_hdr; 7488 7489 err_free_coherent: 7490 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 7491 dmabuf->virt, dmabuf->phys); 7492 err_free_dmabuf: 7493 kfree(dmabuf); 7494 return NULL; 7495 } 7496 7497 /** 7498 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 7499 * @phba: pointer to lpfc hba data structure. 7500 * 7501 * This routine is invoked to remove all memory resources allocated 7502 * to support rpis for SLI4 ports not supporting extents. This routine 7503 * presumes the caller has released all rpis consumed by fabric or port 7504 * logins and is prepared to have the header pages removed. 7505 **/ 7506 void 7507 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 7508 { 7509 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 7510 7511 if (!phba->sli4_hba.rpi_hdrs_in_use) 7512 goto exit; 7513 7514 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 7515 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 7516 list_del(&rpi_hdr->list); 7517 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 7518 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 7519 kfree(rpi_hdr->dmabuf); 7520 kfree(rpi_hdr); 7521 } 7522 exit: 7523 /* There are no rpis available to the port now. */ 7524 phba->sli4_hba.next_rpi = 0; 7525 } 7526 7527 /** 7528 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 7529 * @pdev: pointer to pci device data structure. 7530 * 7531 * This routine is invoked to allocate the driver hba data structure for an 7532 * HBA device. If the allocation is successful, the phba reference to the 7533 * PCI device data structure is set. 7534 * 7535 * Return codes 7536 * pointer to @phba - successful 7537 * NULL - error 7538 **/ 7539 static struct lpfc_hba * 7540 lpfc_hba_alloc(struct pci_dev *pdev) 7541 { 7542 struct lpfc_hba *phba; 7543 7544 /* Allocate memory for HBA structure */ 7545 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 7546 if (!phba) { 7547 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 7548 return NULL; 7549 } 7550 7551 /* Set reference to PCI device in HBA structure */ 7552 phba->pcidev = pdev; 7553 7554 /* Assign an unused board number */ 7555 phba->brd_no = lpfc_get_instance(); 7556 if (phba->brd_no < 0) { 7557 kfree(phba); 7558 return NULL; 7559 } 7560 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 7561 7562 spin_lock_init(&phba->ct_ev_lock); 7563 INIT_LIST_HEAD(&phba->ct_ev_waiters); 7564 7565 return phba; 7566 } 7567 7568 /** 7569 * lpfc_hba_free - Free driver hba data structure with a device. 7570 * @phba: pointer to lpfc hba data structure. 7571 * 7572 * This routine is invoked to free the driver hba data structure with an 7573 * HBA device. 7574 **/ 7575 static void 7576 lpfc_hba_free(struct lpfc_hba *phba) 7577 { 7578 if (phba->sli_rev == LPFC_SLI_REV4) 7579 kfree(phba->sli4_hba.hdwq); 7580 7581 /* Release the driver assigned board number */ 7582 idr_remove(&lpfc_hba_index, phba->brd_no); 7583 7584 /* Free memory allocated with sli3 rings */ 7585 kfree(phba->sli.sli3_ring); 7586 phba->sli.sli3_ring = NULL; 7587 7588 kfree(phba); 7589 return; 7590 } 7591 7592 /** 7593 * lpfc_create_shost - Create hba physical port with associated scsi host. 7594 * @phba: pointer to lpfc hba data structure. 7595 * 7596 * This routine is invoked to create HBA physical port and associate a SCSI 7597 * host with it. 7598 * 7599 * Return codes 7600 * 0 - successful 7601 * other values - error 7602 **/ 7603 static int 7604 lpfc_create_shost(struct lpfc_hba *phba) 7605 { 7606 struct lpfc_vport *vport; 7607 struct Scsi_Host *shost; 7608 7609 /* Initialize HBA FC structure */ 7610 phba->fc_edtov = FF_DEF_EDTOV; 7611 phba->fc_ratov = FF_DEF_RATOV; 7612 phba->fc_altov = FF_DEF_ALTOV; 7613 phba->fc_arbtov = FF_DEF_ARBTOV; 7614 7615 atomic_set(&phba->sdev_cnt, 0); 7616 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 7617 if (!vport) 7618 return -ENODEV; 7619 7620 shost = lpfc_shost_from_vport(vport); 7621 phba->pport = vport; 7622 7623 if (phba->nvmet_support) { 7624 /* Only 1 vport (pport) will support NVME target */ 7625 phba->targetport = NULL; 7626 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 7627 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 7628 "6076 NVME Target Found\n"); 7629 } 7630 7631 lpfc_debugfs_initialize(vport); 7632 /* Put reference to SCSI host to driver's device private data */ 7633 pci_set_drvdata(phba->pcidev, shost); 7634 7635 /* 7636 * At this point we are fully registered with PSA. In addition, 7637 * any initial discovery should be completed. 7638 */ 7639 vport->load_flag |= FC_ALLOW_FDMI; 7640 if (phba->cfg_enable_SmartSAN || 7641 (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) { 7642 7643 /* Setup appropriate attribute masks */ 7644 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 7645 if (phba->cfg_enable_SmartSAN) 7646 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 7647 else 7648 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 7649 } 7650 return 0; 7651 } 7652 7653 /** 7654 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 7655 * @phba: pointer to lpfc hba data structure. 7656 * 7657 * This routine is invoked to destroy HBA physical port and the associated 7658 * SCSI host. 7659 **/ 7660 static void 7661 lpfc_destroy_shost(struct lpfc_hba *phba) 7662 { 7663 struct lpfc_vport *vport = phba->pport; 7664 7665 /* Destroy physical port that associated with the SCSI host */ 7666 destroy_port(vport); 7667 7668 return; 7669 } 7670 7671 /** 7672 * lpfc_setup_bg - Setup Block guard structures and debug areas. 7673 * @phba: pointer to lpfc hba data structure. 7674 * @shost: the shost to be used to detect Block guard settings. 7675 * 7676 * This routine sets up the local Block guard protocol settings for @shost. 7677 * This routine also allocates memory for debugging bg buffers. 7678 **/ 7679 static void 7680 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 7681 { 7682 uint32_t old_mask; 7683 uint32_t old_guard; 7684 7685 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 7686 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7687 "1478 Registering BlockGuard with the " 7688 "SCSI layer\n"); 7689 7690 old_mask = phba->cfg_prot_mask; 7691 old_guard = phba->cfg_prot_guard; 7692 7693 /* Only allow supported values */ 7694 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 7695 SHOST_DIX_TYPE0_PROTECTION | 7696 SHOST_DIX_TYPE1_PROTECTION); 7697 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 7698 SHOST_DIX_GUARD_CRC); 7699 7700 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 7701 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 7702 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 7703 7704 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 7705 if ((old_mask != phba->cfg_prot_mask) || 7706 (old_guard != phba->cfg_prot_guard)) 7707 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7708 "1475 Registering BlockGuard with the " 7709 "SCSI layer: mask %d guard %d\n", 7710 phba->cfg_prot_mask, 7711 phba->cfg_prot_guard); 7712 7713 scsi_host_set_prot(shost, phba->cfg_prot_mask); 7714 scsi_host_set_guard(shost, phba->cfg_prot_guard); 7715 } else 7716 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7717 "1479 Not Registering BlockGuard with the SCSI " 7718 "layer, Bad protection parameters: %d %d\n", 7719 old_mask, old_guard); 7720 } 7721 } 7722 7723 /** 7724 * lpfc_post_init_setup - Perform necessary device post initialization setup. 7725 * @phba: pointer to lpfc hba data structure. 7726 * 7727 * This routine is invoked to perform all the necessary post initialization 7728 * setup for the device. 7729 **/ 7730 static void 7731 lpfc_post_init_setup(struct lpfc_hba *phba) 7732 { 7733 struct Scsi_Host *shost; 7734 struct lpfc_adapter_event_header adapter_event; 7735 7736 /* Get the default values for Model Name and Description */ 7737 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 7738 7739 /* 7740 * hba setup may have changed the hba_queue_depth so we need to 7741 * adjust the value of can_queue. 7742 */ 7743 shost = pci_get_drvdata(phba->pcidev); 7744 shost->can_queue = phba->cfg_hba_queue_depth - 10; 7745 7746 lpfc_host_attrib_init(shost); 7747 7748 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 7749 spin_lock_irq(shost->host_lock); 7750 lpfc_poll_start_timer(phba); 7751 spin_unlock_irq(shost->host_lock); 7752 } 7753 7754 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7755 "0428 Perform SCSI scan\n"); 7756 /* Send board arrival event to upper layer */ 7757 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 7758 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 7759 fc_host_post_vendor_event(shost, fc_get_event_number(), 7760 sizeof(adapter_event), 7761 (char *) &adapter_event, 7762 LPFC_NL_VENDOR_ID); 7763 return; 7764 } 7765 7766 /** 7767 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 7768 * @phba: pointer to lpfc hba data structure. 7769 * 7770 * This routine is invoked to set up the PCI device memory space for device 7771 * with SLI-3 interface spec. 7772 * 7773 * Return codes 7774 * 0 - successful 7775 * other values - error 7776 **/ 7777 static int 7778 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 7779 { 7780 struct pci_dev *pdev = phba->pcidev; 7781 unsigned long bar0map_len, bar2map_len; 7782 int i, hbq_count; 7783 void *ptr; 7784 int error; 7785 7786 if (!pdev) 7787 return -ENODEV; 7788 7789 /* Set the device DMA mask size */ 7790 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 7791 if (error) 7792 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 7793 if (error) 7794 return error; 7795 error = -ENODEV; 7796 7797 /* Get the bus address of Bar0 and Bar2 and the number of bytes 7798 * required by each mapping. 7799 */ 7800 phba->pci_bar0_map = pci_resource_start(pdev, 0); 7801 bar0map_len = pci_resource_len(pdev, 0); 7802 7803 phba->pci_bar2_map = pci_resource_start(pdev, 2); 7804 bar2map_len = pci_resource_len(pdev, 2); 7805 7806 /* Map HBA SLIM to a kernel virtual address. */ 7807 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 7808 if (!phba->slim_memmap_p) { 7809 dev_printk(KERN_ERR, &pdev->dev, 7810 "ioremap failed for SLIM memory.\n"); 7811 goto out; 7812 } 7813 7814 /* Map HBA Control Registers to a kernel virtual address. */ 7815 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 7816 if (!phba->ctrl_regs_memmap_p) { 7817 dev_printk(KERN_ERR, &pdev->dev, 7818 "ioremap failed for HBA control registers.\n"); 7819 goto out_iounmap_slim; 7820 } 7821 7822 /* Allocate memory for SLI-2 structures */ 7823 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7824 &phba->slim2p.phys, GFP_KERNEL); 7825 if (!phba->slim2p.virt) 7826 goto out_iounmap; 7827 7828 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 7829 phba->mbox_ext = (phba->slim2p.virt + 7830 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 7831 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 7832 phba->IOCBs = (phba->slim2p.virt + 7833 offsetof(struct lpfc_sli2_slim, IOCBs)); 7834 7835 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 7836 lpfc_sli_hbq_size(), 7837 &phba->hbqslimp.phys, 7838 GFP_KERNEL); 7839 if (!phba->hbqslimp.virt) 7840 goto out_free_slim; 7841 7842 hbq_count = lpfc_sli_hbq_count(); 7843 ptr = phba->hbqslimp.virt; 7844 for (i = 0; i < hbq_count; ++i) { 7845 phba->hbqs[i].hbq_virt = ptr; 7846 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 7847 ptr += (lpfc_hbq_defs[i]->entry_count * 7848 sizeof(struct lpfc_hbq_entry)); 7849 } 7850 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 7851 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 7852 7853 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 7854 7855 phba->MBslimaddr = phba->slim_memmap_p; 7856 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 7857 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 7858 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 7859 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 7860 7861 return 0; 7862 7863 out_free_slim: 7864 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7865 phba->slim2p.virt, phba->slim2p.phys); 7866 out_iounmap: 7867 iounmap(phba->ctrl_regs_memmap_p); 7868 out_iounmap_slim: 7869 iounmap(phba->slim_memmap_p); 7870 out: 7871 return error; 7872 } 7873 7874 /** 7875 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 7876 * @phba: pointer to lpfc hba data structure. 7877 * 7878 * This routine is invoked to unset the PCI device memory space for device 7879 * with SLI-3 interface spec. 7880 **/ 7881 static void 7882 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 7883 { 7884 struct pci_dev *pdev; 7885 7886 /* Obtain PCI device reference */ 7887 if (!phba->pcidev) 7888 return; 7889 else 7890 pdev = phba->pcidev; 7891 7892 /* Free coherent DMA memory allocated */ 7893 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 7894 phba->hbqslimp.virt, phba->hbqslimp.phys); 7895 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7896 phba->slim2p.virt, phba->slim2p.phys); 7897 7898 /* I/O memory unmap */ 7899 iounmap(phba->ctrl_regs_memmap_p); 7900 iounmap(phba->slim_memmap_p); 7901 7902 return; 7903 } 7904 7905 /** 7906 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 7907 * @phba: pointer to lpfc hba data structure. 7908 * 7909 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 7910 * done and check status. 7911 * 7912 * Return 0 if successful, otherwise -ENODEV. 7913 **/ 7914 int 7915 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 7916 { 7917 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 7918 struct lpfc_register reg_data; 7919 int i, port_error = 0; 7920 uint32_t if_type; 7921 7922 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 7923 memset(®_data, 0, sizeof(reg_data)); 7924 if (!phba->sli4_hba.PSMPHRregaddr) 7925 return -ENODEV; 7926 7927 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 7928 for (i = 0; i < 3000; i++) { 7929 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 7930 &portsmphr_reg.word0) || 7931 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 7932 /* Port has a fatal POST error, break out */ 7933 port_error = -ENODEV; 7934 break; 7935 } 7936 if (LPFC_POST_STAGE_PORT_READY == 7937 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 7938 break; 7939 msleep(10); 7940 } 7941 7942 /* 7943 * If there was a port error during POST, then don't proceed with 7944 * other register reads as the data may not be valid. Just exit. 7945 */ 7946 if (port_error) { 7947 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7948 "1408 Port Failed POST - portsmphr=0x%x, " 7949 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 7950 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 7951 portsmphr_reg.word0, 7952 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 7953 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 7954 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 7955 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 7956 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 7957 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 7958 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 7959 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 7960 } else { 7961 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7962 "2534 Device Info: SLIFamily=0x%x, " 7963 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 7964 "SLIHint_2=0x%x, FT=0x%x\n", 7965 bf_get(lpfc_sli_intf_sli_family, 7966 &phba->sli4_hba.sli_intf), 7967 bf_get(lpfc_sli_intf_slirev, 7968 &phba->sli4_hba.sli_intf), 7969 bf_get(lpfc_sli_intf_if_type, 7970 &phba->sli4_hba.sli_intf), 7971 bf_get(lpfc_sli_intf_sli_hint1, 7972 &phba->sli4_hba.sli_intf), 7973 bf_get(lpfc_sli_intf_sli_hint2, 7974 &phba->sli4_hba.sli_intf), 7975 bf_get(lpfc_sli_intf_func_type, 7976 &phba->sli4_hba.sli_intf)); 7977 /* 7978 * Check for other Port errors during the initialization 7979 * process. Fail the load if the port did not come up 7980 * correctly. 7981 */ 7982 if_type = bf_get(lpfc_sli_intf_if_type, 7983 &phba->sli4_hba.sli_intf); 7984 switch (if_type) { 7985 case LPFC_SLI_INTF_IF_TYPE_0: 7986 phba->sli4_hba.ue_mask_lo = 7987 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 7988 phba->sli4_hba.ue_mask_hi = 7989 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 7990 uerrlo_reg.word0 = 7991 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 7992 uerrhi_reg.word0 = 7993 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 7994 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 7995 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 7996 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7997 "1422 Unrecoverable Error " 7998 "Detected during POST " 7999 "uerr_lo_reg=0x%x, " 8000 "uerr_hi_reg=0x%x, " 8001 "ue_mask_lo_reg=0x%x, " 8002 "ue_mask_hi_reg=0x%x\n", 8003 uerrlo_reg.word0, 8004 uerrhi_reg.word0, 8005 phba->sli4_hba.ue_mask_lo, 8006 phba->sli4_hba.ue_mask_hi); 8007 port_error = -ENODEV; 8008 } 8009 break; 8010 case LPFC_SLI_INTF_IF_TYPE_2: 8011 case LPFC_SLI_INTF_IF_TYPE_6: 8012 /* Final checks. The port status should be clean. */ 8013 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8014 ®_data.word0) || 8015 (bf_get(lpfc_sliport_status_err, ®_data) && 8016 !bf_get(lpfc_sliport_status_rn, ®_data))) { 8017 phba->work_status[0] = 8018 readl(phba->sli4_hba.u.if_type2. 8019 ERR1regaddr); 8020 phba->work_status[1] = 8021 readl(phba->sli4_hba.u.if_type2. 8022 ERR2regaddr); 8023 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8024 "2888 Unrecoverable port error " 8025 "following POST: port status reg " 8026 "0x%x, port_smphr reg 0x%x, " 8027 "error 1=0x%x, error 2=0x%x\n", 8028 reg_data.word0, 8029 portsmphr_reg.word0, 8030 phba->work_status[0], 8031 phba->work_status[1]); 8032 port_error = -ENODEV; 8033 } 8034 break; 8035 case LPFC_SLI_INTF_IF_TYPE_1: 8036 default: 8037 break; 8038 } 8039 } 8040 return port_error; 8041 } 8042 8043 /** 8044 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 8045 * @phba: pointer to lpfc hba data structure. 8046 * @if_type: The SLI4 interface type getting configured. 8047 * 8048 * This routine is invoked to set up SLI4 BAR0 PCI config space register 8049 * memory map. 8050 **/ 8051 static void 8052 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 8053 { 8054 switch (if_type) { 8055 case LPFC_SLI_INTF_IF_TYPE_0: 8056 phba->sli4_hba.u.if_type0.UERRLOregaddr = 8057 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 8058 phba->sli4_hba.u.if_type0.UERRHIregaddr = 8059 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 8060 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 8061 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 8062 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 8063 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 8064 phba->sli4_hba.SLIINTFregaddr = 8065 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 8066 break; 8067 case LPFC_SLI_INTF_IF_TYPE_2: 8068 phba->sli4_hba.u.if_type2.EQDregaddr = 8069 phba->sli4_hba.conf_regs_memmap_p + 8070 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 8071 phba->sli4_hba.u.if_type2.ERR1regaddr = 8072 phba->sli4_hba.conf_regs_memmap_p + 8073 LPFC_CTL_PORT_ER1_OFFSET; 8074 phba->sli4_hba.u.if_type2.ERR2regaddr = 8075 phba->sli4_hba.conf_regs_memmap_p + 8076 LPFC_CTL_PORT_ER2_OFFSET; 8077 phba->sli4_hba.u.if_type2.CTRLregaddr = 8078 phba->sli4_hba.conf_regs_memmap_p + 8079 LPFC_CTL_PORT_CTL_OFFSET; 8080 phba->sli4_hba.u.if_type2.STATUSregaddr = 8081 phba->sli4_hba.conf_regs_memmap_p + 8082 LPFC_CTL_PORT_STA_OFFSET; 8083 phba->sli4_hba.SLIINTFregaddr = 8084 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 8085 phba->sli4_hba.PSMPHRregaddr = 8086 phba->sli4_hba.conf_regs_memmap_p + 8087 LPFC_CTL_PORT_SEM_OFFSET; 8088 phba->sli4_hba.RQDBregaddr = 8089 phba->sli4_hba.conf_regs_memmap_p + 8090 LPFC_ULP0_RQ_DOORBELL; 8091 phba->sli4_hba.WQDBregaddr = 8092 phba->sli4_hba.conf_regs_memmap_p + 8093 LPFC_ULP0_WQ_DOORBELL; 8094 phba->sli4_hba.CQDBregaddr = 8095 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 8096 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 8097 phba->sli4_hba.MQDBregaddr = 8098 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 8099 phba->sli4_hba.BMBXregaddr = 8100 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 8101 break; 8102 case LPFC_SLI_INTF_IF_TYPE_6: 8103 phba->sli4_hba.u.if_type2.EQDregaddr = 8104 phba->sli4_hba.conf_regs_memmap_p + 8105 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 8106 phba->sli4_hba.u.if_type2.ERR1regaddr = 8107 phba->sli4_hba.conf_regs_memmap_p + 8108 LPFC_CTL_PORT_ER1_OFFSET; 8109 phba->sli4_hba.u.if_type2.ERR2regaddr = 8110 phba->sli4_hba.conf_regs_memmap_p + 8111 LPFC_CTL_PORT_ER2_OFFSET; 8112 phba->sli4_hba.u.if_type2.CTRLregaddr = 8113 phba->sli4_hba.conf_regs_memmap_p + 8114 LPFC_CTL_PORT_CTL_OFFSET; 8115 phba->sli4_hba.u.if_type2.STATUSregaddr = 8116 phba->sli4_hba.conf_regs_memmap_p + 8117 LPFC_CTL_PORT_STA_OFFSET; 8118 phba->sli4_hba.PSMPHRregaddr = 8119 phba->sli4_hba.conf_regs_memmap_p + 8120 LPFC_CTL_PORT_SEM_OFFSET; 8121 phba->sli4_hba.BMBXregaddr = 8122 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 8123 break; 8124 case LPFC_SLI_INTF_IF_TYPE_1: 8125 default: 8126 dev_printk(KERN_ERR, &phba->pcidev->dev, 8127 "FATAL - unsupported SLI4 interface type - %d\n", 8128 if_type); 8129 break; 8130 } 8131 } 8132 8133 /** 8134 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 8135 * @phba: pointer to lpfc hba data structure. 8136 * 8137 * This routine is invoked to set up SLI4 BAR1 register memory map. 8138 **/ 8139 static void 8140 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 8141 { 8142 switch (if_type) { 8143 case LPFC_SLI_INTF_IF_TYPE_0: 8144 phba->sli4_hba.PSMPHRregaddr = 8145 phba->sli4_hba.ctrl_regs_memmap_p + 8146 LPFC_SLIPORT_IF0_SMPHR; 8147 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8148 LPFC_HST_ISR0; 8149 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8150 LPFC_HST_IMR0; 8151 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8152 LPFC_HST_ISCR0; 8153 break; 8154 case LPFC_SLI_INTF_IF_TYPE_6: 8155 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8156 LPFC_IF6_RQ_DOORBELL; 8157 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8158 LPFC_IF6_WQ_DOORBELL; 8159 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8160 LPFC_IF6_CQ_DOORBELL; 8161 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8162 LPFC_IF6_EQ_DOORBELL; 8163 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8164 LPFC_IF6_MQ_DOORBELL; 8165 break; 8166 case LPFC_SLI_INTF_IF_TYPE_2: 8167 case LPFC_SLI_INTF_IF_TYPE_1: 8168 default: 8169 dev_err(&phba->pcidev->dev, 8170 "FATAL - unsupported SLI4 interface type - %d\n", 8171 if_type); 8172 break; 8173 } 8174 } 8175 8176 /** 8177 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 8178 * @phba: pointer to lpfc hba data structure. 8179 * @vf: virtual function number 8180 * 8181 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 8182 * based on the given viftual function number, @vf. 8183 * 8184 * Return 0 if successful, otherwise -ENODEV. 8185 **/ 8186 static int 8187 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 8188 { 8189 if (vf > LPFC_VIR_FUNC_MAX) 8190 return -ENODEV; 8191 8192 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8193 vf * LPFC_VFR_PAGE_SIZE + 8194 LPFC_ULP0_RQ_DOORBELL); 8195 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8196 vf * LPFC_VFR_PAGE_SIZE + 8197 LPFC_ULP0_WQ_DOORBELL); 8198 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8199 vf * LPFC_VFR_PAGE_SIZE + 8200 LPFC_EQCQ_DOORBELL); 8201 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 8202 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8203 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 8204 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8205 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 8206 return 0; 8207 } 8208 8209 /** 8210 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 8211 * @phba: pointer to lpfc hba data structure. 8212 * 8213 * This routine is invoked to create the bootstrap mailbox 8214 * region consistent with the SLI-4 interface spec. This 8215 * routine allocates all memory necessary to communicate 8216 * mailbox commands to the port and sets up all alignment 8217 * needs. No locks are expected to be held when calling 8218 * this routine. 8219 * 8220 * Return codes 8221 * 0 - successful 8222 * -ENOMEM - could not allocated memory. 8223 **/ 8224 static int 8225 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 8226 { 8227 uint32_t bmbx_size; 8228 struct lpfc_dmabuf *dmabuf; 8229 struct dma_address *dma_address; 8230 uint32_t pa_addr; 8231 uint64_t phys_addr; 8232 8233 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8234 if (!dmabuf) 8235 return -ENOMEM; 8236 8237 /* 8238 * The bootstrap mailbox region is comprised of 2 parts 8239 * plus an alignment restriction of 16 bytes. 8240 */ 8241 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 8242 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 8243 &dmabuf->phys, GFP_KERNEL); 8244 if (!dmabuf->virt) { 8245 kfree(dmabuf); 8246 return -ENOMEM; 8247 } 8248 8249 /* 8250 * Initialize the bootstrap mailbox pointers now so that the register 8251 * operations are simple later. The mailbox dma address is required 8252 * to be 16-byte aligned. Also align the virtual memory as each 8253 * maibox is copied into the bmbx mailbox region before issuing the 8254 * command to the port. 8255 */ 8256 phba->sli4_hba.bmbx.dmabuf = dmabuf; 8257 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 8258 8259 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 8260 LPFC_ALIGN_16_BYTE); 8261 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 8262 LPFC_ALIGN_16_BYTE); 8263 8264 /* 8265 * Set the high and low physical addresses now. The SLI4 alignment 8266 * requirement is 16 bytes and the mailbox is posted to the port 8267 * as two 30-bit addresses. The other data is a bit marking whether 8268 * the 30-bit address is the high or low address. 8269 * Upcast bmbx aphys to 64bits so shift instruction compiles 8270 * clean on 32 bit machines. 8271 */ 8272 dma_address = &phba->sli4_hba.bmbx.dma_address; 8273 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 8274 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 8275 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 8276 LPFC_BMBX_BIT1_ADDR_HI); 8277 8278 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 8279 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 8280 LPFC_BMBX_BIT1_ADDR_LO); 8281 return 0; 8282 } 8283 8284 /** 8285 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 8286 * @phba: pointer to lpfc hba data structure. 8287 * 8288 * This routine is invoked to teardown the bootstrap mailbox 8289 * region and release all host resources. This routine requires 8290 * the caller to ensure all mailbox commands recovered, no 8291 * additional mailbox comands are sent, and interrupts are disabled 8292 * before calling this routine. 8293 * 8294 **/ 8295 static void 8296 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 8297 { 8298 dma_free_coherent(&phba->pcidev->dev, 8299 phba->sli4_hba.bmbx.bmbx_size, 8300 phba->sli4_hba.bmbx.dmabuf->virt, 8301 phba->sli4_hba.bmbx.dmabuf->phys); 8302 8303 kfree(phba->sli4_hba.bmbx.dmabuf); 8304 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 8305 } 8306 8307 static const char * const lpfc_topo_to_str[] = { 8308 "Loop then P2P", 8309 "Loopback", 8310 "P2P Only", 8311 "Unsupported", 8312 "Loop Only", 8313 "Unsupported", 8314 "P2P then Loop", 8315 }; 8316 8317 /** 8318 * lpfc_map_topology - Map the topology read from READ_CONFIG 8319 * @phba: pointer to lpfc hba data structure. 8320 * @rdconf: pointer to read config data 8321 * 8322 * This routine is invoked to map the topology values as read 8323 * from the read config mailbox command. If the persistent 8324 * topology feature is supported, the firmware will provide the 8325 * saved topology information to be used in INIT_LINK 8326 * 8327 **/ 8328 #define LINK_FLAGS_DEF 0x0 8329 #define LINK_FLAGS_P2P 0x1 8330 #define LINK_FLAGS_LOOP 0x2 8331 static void 8332 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 8333 { 8334 u8 ptv, tf, pt; 8335 8336 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 8337 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 8338 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 8339 8340 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8341 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 8342 ptv, tf, pt); 8343 if (!ptv) { 8344 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8345 "2019 FW does not support persistent topology " 8346 "Using driver parameter defined value [%s]", 8347 lpfc_topo_to_str[phba->cfg_topology]); 8348 return; 8349 } 8350 /* FW supports persistent topology - override module parameter value */ 8351 phba->hba_flag |= HBA_PERSISTENT_TOPO; 8352 switch (phba->pcidev->device) { 8353 case PCI_DEVICE_ID_LANCER_G7_FC: 8354 case PCI_DEVICE_ID_LANCER_G6_FC: 8355 if (!tf) { 8356 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 8357 ? FLAGS_TOPOLOGY_MODE_LOOP 8358 : FLAGS_TOPOLOGY_MODE_PT_PT); 8359 } else { 8360 phba->hba_flag &= ~HBA_PERSISTENT_TOPO; 8361 } 8362 break; 8363 default: /* G5 */ 8364 if (tf) { 8365 /* If topology failover set - pt is '0' or '1' */ 8366 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 8367 FLAGS_TOPOLOGY_MODE_LOOP_PT); 8368 } else { 8369 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 8370 ? FLAGS_TOPOLOGY_MODE_PT_PT 8371 : FLAGS_TOPOLOGY_MODE_LOOP); 8372 } 8373 break; 8374 } 8375 if (phba->hba_flag & HBA_PERSISTENT_TOPO) { 8376 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8377 "2020 Using persistent topology value [%s]", 8378 lpfc_topo_to_str[phba->cfg_topology]); 8379 } else { 8380 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8381 "2021 Invalid topology values from FW " 8382 "Using driver parameter defined value [%s]", 8383 lpfc_topo_to_str[phba->cfg_topology]); 8384 } 8385 } 8386 8387 /** 8388 * lpfc_sli4_read_config - Get the config parameters. 8389 * @phba: pointer to lpfc hba data structure. 8390 * 8391 * This routine is invoked to read the configuration parameters from the HBA. 8392 * The configuration parameters are used to set the base and maximum values 8393 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 8394 * allocation for the port. 8395 * 8396 * Return codes 8397 * 0 - successful 8398 * -ENOMEM - No available memory 8399 * -EIO - The mailbox failed to complete successfully. 8400 **/ 8401 int 8402 lpfc_sli4_read_config(struct lpfc_hba *phba) 8403 { 8404 LPFC_MBOXQ_t *pmb; 8405 struct lpfc_mbx_read_config *rd_config; 8406 union lpfc_sli4_cfg_shdr *shdr; 8407 uint32_t shdr_status, shdr_add_status; 8408 struct lpfc_mbx_get_func_cfg *get_func_cfg; 8409 struct lpfc_rsrc_desc_fcfcoe *desc; 8410 char *pdesc_0; 8411 uint16_t forced_link_speed; 8412 uint32_t if_type, qmin; 8413 int length, i, rc = 0, rc2; 8414 8415 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8416 if (!pmb) { 8417 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8418 "2011 Unable to allocate memory for issuing " 8419 "SLI_CONFIG_SPECIAL mailbox command\n"); 8420 return -ENOMEM; 8421 } 8422 8423 lpfc_read_config(phba, pmb); 8424 8425 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 8426 if (rc != MBX_SUCCESS) { 8427 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8428 "2012 Mailbox failed , mbxCmd x%x " 8429 "READ_CONFIG, mbxStatus x%x\n", 8430 bf_get(lpfc_mqe_command, &pmb->u.mqe), 8431 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 8432 rc = -EIO; 8433 } else { 8434 rd_config = &pmb->u.mqe.un.rd_config; 8435 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 8436 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 8437 phba->sli4_hba.lnk_info.lnk_tp = 8438 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 8439 phba->sli4_hba.lnk_info.lnk_no = 8440 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 8441 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8442 "3081 lnk_type:%d, lnk_numb:%d\n", 8443 phba->sli4_hba.lnk_info.lnk_tp, 8444 phba->sli4_hba.lnk_info.lnk_no); 8445 } else 8446 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8447 "3082 Mailbox (x%x) returned ldv:x0\n", 8448 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 8449 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 8450 phba->bbcredit_support = 1; 8451 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 8452 } 8453 8454 phba->sli4_hba.conf_trunk = 8455 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 8456 phba->sli4_hba.extents_in_use = 8457 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 8458 phba->sli4_hba.max_cfg_param.max_xri = 8459 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 8460 /* Reduce resource usage in kdump environment */ 8461 if (is_kdump_kernel() && 8462 phba->sli4_hba.max_cfg_param.max_xri > 512) 8463 phba->sli4_hba.max_cfg_param.max_xri = 512; 8464 phba->sli4_hba.max_cfg_param.xri_base = 8465 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 8466 phba->sli4_hba.max_cfg_param.max_vpi = 8467 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 8468 /* Limit the max we support */ 8469 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 8470 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 8471 phba->sli4_hba.max_cfg_param.vpi_base = 8472 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 8473 phba->sli4_hba.max_cfg_param.max_rpi = 8474 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 8475 phba->sli4_hba.max_cfg_param.rpi_base = 8476 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 8477 phba->sli4_hba.max_cfg_param.max_vfi = 8478 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 8479 phba->sli4_hba.max_cfg_param.vfi_base = 8480 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 8481 phba->sli4_hba.max_cfg_param.max_fcfi = 8482 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 8483 phba->sli4_hba.max_cfg_param.max_eq = 8484 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 8485 phba->sli4_hba.max_cfg_param.max_rq = 8486 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 8487 phba->sli4_hba.max_cfg_param.max_wq = 8488 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 8489 phba->sli4_hba.max_cfg_param.max_cq = 8490 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 8491 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 8492 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 8493 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 8494 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 8495 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 8496 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 8497 phba->max_vports = phba->max_vpi; 8498 lpfc_map_topology(phba, rd_config); 8499 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8500 "2003 cfg params Extents? %d " 8501 "XRI(B:%d M:%d), " 8502 "VPI(B:%d M:%d) " 8503 "VFI(B:%d M:%d) " 8504 "RPI(B:%d M:%d) " 8505 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d\n", 8506 phba->sli4_hba.extents_in_use, 8507 phba->sli4_hba.max_cfg_param.xri_base, 8508 phba->sli4_hba.max_cfg_param.max_xri, 8509 phba->sli4_hba.max_cfg_param.vpi_base, 8510 phba->sli4_hba.max_cfg_param.max_vpi, 8511 phba->sli4_hba.max_cfg_param.vfi_base, 8512 phba->sli4_hba.max_cfg_param.max_vfi, 8513 phba->sli4_hba.max_cfg_param.rpi_base, 8514 phba->sli4_hba.max_cfg_param.max_rpi, 8515 phba->sli4_hba.max_cfg_param.max_fcfi, 8516 phba->sli4_hba.max_cfg_param.max_eq, 8517 phba->sli4_hba.max_cfg_param.max_cq, 8518 phba->sli4_hba.max_cfg_param.max_wq, 8519 phba->sli4_hba.max_cfg_param.max_rq); 8520 8521 /* 8522 * Calculate queue resources based on how 8523 * many WQ/CQ/EQs are available. 8524 */ 8525 qmin = phba->sli4_hba.max_cfg_param.max_wq; 8526 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 8527 qmin = phba->sli4_hba.max_cfg_param.max_cq; 8528 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 8529 qmin = phba->sli4_hba.max_cfg_param.max_eq; 8530 /* 8531 * Whats left after this can go toward NVME / FCP. 8532 * The minus 4 accounts for ELS, NVME LS, MBOX 8533 * plus one extra. When configured for 8534 * NVMET, FCP io channel WQs are not created. 8535 */ 8536 qmin -= 4; 8537 8538 /* Check to see if there is enough for NVME */ 8539 if ((phba->cfg_irq_chann > qmin) || 8540 (phba->cfg_hdw_queue > qmin)) { 8541 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8542 "2005 Reducing Queues: " 8543 "WQ %d CQ %d EQ %d: min %d: " 8544 "IRQ %d HDWQ %d\n", 8545 phba->sli4_hba.max_cfg_param.max_wq, 8546 phba->sli4_hba.max_cfg_param.max_cq, 8547 phba->sli4_hba.max_cfg_param.max_eq, 8548 qmin, phba->cfg_irq_chann, 8549 phba->cfg_hdw_queue); 8550 8551 if (phba->cfg_irq_chann > qmin) 8552 phba->cfg_irq_chann = qmin; 8553 if (phba->cfg_hdw_queue > qmin) 8554 phba->cfg_hdw_queue = qmin; 8555 } 8556 } 8557 8558 if (rc) 8559 goto read_cfg_out; 8560 8561 /* Update link speed if forced link speed is supported */ 8562 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8563 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 8564 forced_link_speed = 8565 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 8566 if (forced_link_speed) { 8567 phba->hba_flag |= HBA_FORCED_LINK_SPEED; 8568 8569 switch (forced_link_speed) { 8570 case LINK_SPEED_1G: 8571 phba->cfg_link_speed = 8572 LPFC_USER_LINK_SPEED_1G; 8573 break; 8574 case LINK_SPEED_2G: 8575 phba->cfg_link_speed = 8576 LPFC_USER_LINK_SPEED_2G; 8577 break; 8578 case LINK_SPEED_4G: 8579 phba->cfg_link_speed = 8580 LPFC_USER_LINK_SPEED_4G; 8581 break; 8582 case LINK_SPEED_8G: 8583 phba->cfg_link_speed = 8584 LPFC_USER_LINK_SPEED_8G; 8585 break; 8586 case LINK_SPEED_10G: 8587 phba->cfg_link_speed = 8588 LPFC_USER_LINK_SPEED_10G; 8589 break; 8590 case LINK_SPEED_16G: 8591 phba->cfg_link_speed = 8592 LPFC_USER_LINK_SPEED_16G; 8593 break; 8594 case LINK_SPEED_32G: 8595 phba->cfg_link_speed = 8596 LPFC_USER_LINK_SPEED_32G; 8597 break; 8598 case LINK_SPEED_64G: 8599 phba->cfg_link_speed = 8600 LPFC_USER_LINK_SPEED_64G; 8601 break; 8602 case 0xffff: 8603 phba->cfg_link_speed = 8604 LPFC_USER_LINK_SPEED_AUTO; 8605 break; 8606 default: 8607 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8608 "0047 Unrecognized link " 8609 "speed : %d\n", 8610 forced_link_speed); 8611 phba->cfg_link_speed = 8612 LPFC_USER_LINK_SPEED_AUTO; 8613 } 8614 } 8615 } 8616 8617 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 8618 length = phba->sli4_hba.max_cfg_param.max_xri - 8619 lpfc_sli4_get_els_iocb_cnt(phba); 8620 if (phba->cfg_hba_queue_depth > length) { 8621 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8622 "3361 HBA queue depth changed from %d to %d\n", 8623 phba->cfg_hba_queue_depth, length); 8624 phba->cfg_hba_queue_depth = length; 8625 } 8626 8627 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 8628 LPFC_SLI_INTF_IF_TYPE_2) 8629 goto read_cfg_out; 8630 8631 /* get the pf# and vf# for SLI4 if_type 2 port */ 8632 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 8633 sizeof(struct lpfc_sli4_cfg_mhdr)); 8634 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 8635 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 8636 length, LPFC_SLI4_MBX_EMBED); 8637 8638 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 8639 shdr = (union lpfc_sli4_cfg_shdr *) 8640 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 8641 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 8642 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 8643 if (rc2 || shdr_status || shdr_add_status) { 8644 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8645 "3026 Mailbox failed , mbxCmd x%x " 8646 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 8647 bf_get(lpfc_mqe_command, &pmb->u.mqe), 8648 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 8649 goto read_cfg_out; 8650 } 8651 8652 /* search for fc_fcoe resrouce descriptor */ 8653 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 8654 8655 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 8656 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 8657 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 8658 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 8659 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 8660 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 8661 goto read_cfg_out; 8662 8663 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 8664 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 8665 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 8666 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 8667 phba->sli4_hba.iov.pf_number = 8668 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 8669 phba->sli4_hba.iov.vf_number = 8670 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 8671 break; 8672 } 8673 } 8674 8675 if (i < LPFC_RSRC_DESC_MAX_NUM) 8676 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8677 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 8678 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 8679 phba->sli4_hba.iov.vf_number); 8680 else 8681 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8682 "3028 GET_FUNCTION_CONFIG: failed to find " 8683 "Resource Descriptor:x%x\n", 8684 LPFC_RSRC_DESC_TYPE_FCFCOE); 8685 8686 read_cfg_out: 8687 mempool_free(pmb, phba->mbox_mem_pool); 8688 return rc; 8689 } 8690 8691 /** 8692 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 8693 * @phba: pointer to lpfc hba data structure. 8694 * 8695 * This routine is invoked to setup the port-side endian order when 8696 * the port if_type is 0. This routine has no function for other 8697 * if_types. 8698 * 8699 * Return codes 8700 * 0 - successful 8701 * -ENOMEM - No available memory 8702 * -EIO - The mailbox failed to complete successfully. 8703 **/ 8704 static int 8705 lpfc_setup_endian_order(struct lpfc_hba *phba) 8706 { 8707 LPFC_MBOXQ_t *mboxq; 8708 uint32_t if_type, rc = 0; 8709 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 8710 HOST_ENDIAN_HIGH_WORD1}; 8711 8712 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8713 switch (if_type) { 8714 case LPFC_SLI_INTF_IF_TYPE_0: 8715 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 8716 GFP_KERNEL); 8717 if (!mboxq) { 8718 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8719 "0492 Unable to allocate memory for " 8720 "issuing SLI_CONFIG_SPECIAL mailbox " 8721 "command\n"); 8722 return -ENOMEM; 8723 } 8724 8725 /* 8726 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 8727 * two words to contain special data values and no other data. 8728 */ 8729 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 8730 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 8731 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8732 if (rc != MBX_SUCCESS) { 8733 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8734 "0493 SLI_CONFIG_SPECIAL mailbox " 8735 "failed with status x%x\n", 8736 rc); 8737 rc = -EIO; 8738 } 8739 mempool_free(mboxq, phba->mbox_mem_pool); 8740 break; 8741 case LPFC_SLI_INTF_IF_TYPE_6: 8742 case LPFC_SLI_INTF_IF_TYPE_2: 8743 case LPFC_SLI_INTF_IF_TYPE_1: 8744 default: 8745 break; 8746 } 8747 return rc; 8748 } 8749 8750 /** 8751 * lpfc_sli4_queue_verify - Verify and update EQ counts 8752 * @phba: pointer to lpfc hba data structure. 8753 * 8754 * This routine is invoked to check the user settable queue counts for EQs. 8755 * After this routine is called the counts will be set to valid values that 8756 * adhere to the constraints of the system's interrupt vectors and the port's 8757 * queue resources. 8758 * 8759 * Return codes 8760 * 0 - successful 8761 * -ENOMEM - No available memory 8762 **/ 8763 static int 8764 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 8765 { 8766 /* 8767 * Sanity check for configured queue parameters against the run-time 8768 * device parameters 8769 */ 8770 8771 if (phba->nvmet_support) { 8772 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 8773 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 8774 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 8775 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 8776 } 8777 8778 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8779 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 8780 phba->cfg_hdw_queue, phba->cfg_irq_chann, 8781 phba->cfg_nvmet_mrq); 8782 8783 /* Get EQ depth from module parameter, fake the default for now */ 8784 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 8785 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 8786 8787 /* Get CQ depth from module parameter, fake the default for now */ 8788 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 8789 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 8790 return 0; 8791 } 8792 8793 static int 8794 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 8795 { 8796 struct lpfc_queue *qdesc; 8797 u32 wqesize; 8798 int cpu; 8799 8800 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 8801 /* Create Fast Path IO CQs */ 8802 if (phba->enab_exp_wqcq_pages) 8803 /* Increase the CQ size when WQEs contain an embedded cdb */ 8804 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 8805 phba->sli4_hba.cq_esize, 8806 LPFC_CQE_EXP_COUNT, cpu); 8807 8808 else 8809 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 8810 phba->sli4_hba.cq_esize, 8811 phba->sli4_hba.cq_ecount, cpu); 8812 if (!qdesc) { 8813 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8814 "0499 Failed allocate fast-path IO CQ (%d)\n", idx); 8815 return 1; 8816 } 8817 qdesc->qe_valid = 1; 8818 qdesc->hdwq = idx; 8819 qdesc->chann = cpu; 8820 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 8821 8822 /* Create Fast Path IO WQs */ 8823 if (phba->enab_exp_wqcq_pages) { 8824 /* Increase the WQ size when WQEs contain an embedded cdb */ 8825 wqesize = (phba->fcp_embed_io) ? 8826 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 8827 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 8828 wqesize, 8829 LPFC_WQE_EXP_COUNT, cpu); 8830 } else 8831 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 8832 phba->sli4_hba.wq_esize, 8833 phba->sli4_hba.wq_ecount, cpu); 8834 8835 if (!qdesc) { 8836 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8837 "0503 Failed allocate fast-path IO WQ (%d)\n", 8838 idx); 8839 return 1; 8840 } 8841 qdesc->hdwq = idx; 8842 qdesc->chann = cpu; 8843 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 8844 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 8845 return 0; 8846 } 8847 8848 /** 8849 * lpfc_sli4_queue_create - Create all the SLI4 queues 8850 * @phba: pointer to lpfc hba data structure. 8851 * 8852 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 8853 * operation. For each SLI4 queue type, the parameters such as queue entry 8854 * count (queue depth) shall be taken from the module parameter. For now, 8855 * we just use some constant number as place holder. 8856 * 8857 * Return codes 8858 * 0 - successful 8859 * -ENOMEM - No availble memory 8860 * -EIO - The mailbox failed to complete successfully. 8861 **/ 8862 int 8863 lpfc_sli4_queue_create(struct lpfc_hba *phba) 8864 { 8865 struct lpfc_queue *qdesc; 8866 int idx, cpu, eqcpu; 8867 struct lpfc_sli4_hdw_queue *qp; 8868 struct lpfc_vector_map_info *cpup; 8869 struct lpfc_vector_map_info *eqcpup; 8870 struct lpfc_eq_intr_info *eqi; 8871 8872 /* 8873 * Create HBA Record arrays. 8874 * Both NVME and FCP will share that same vectors / EQs 8875 */ 8876 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 8877 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 8878 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 8879 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 8880 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 8881 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 8882 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 8883 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 8884 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 8885 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 8886 8887 if (!phba->sli4_hba.hdwq) { 8888 phba->sli4_hba.hdwq = kcalloc( 8889 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 8890 GFP_KERNEL); 8891 if (!phba->sli4_hba.hdwq) { 8892 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8893 "6427 Failed allocate memory for " 8894 "fast-path Hardware Queue array\n"); 8895 goto out_error; 8896 } 8897 /* Prepare hardware queues to take IO buffers */ 8898 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 8899 qp = &phba->sli4_hba.hdwq[idx]; 8900 spin_lock_init(&qp->io_buf_list_get_lock); 8901 spin_lock_init(&qp->io_buf_list_put_lock); 8902 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 8903 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 8904 qp->get_io_bufs = 0; 8905 qp->put_io_bufs = 0; 8906 qp->total_io_bufs = 0; 8907 spin_lock_init(&qp->abts_io_buf_list_lock); 8908 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 8909 qp->abts_scsi_io_bufs = 0; 8910 qp->abts_nvme_io_bufs = 0; 8911 INIT_LIST_HEAD(&qp->sgl_list); 8912 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 8913 spin_lock_init(&qp->hdwq_lock); 8914 } 8915 } 8916 8917 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8918 if (phba->nvmet_support) { 8919 phba->sli4_hba.nvmet_cqset = kcalloc( 8920 phba->cfg_nvmet_mrq, 8921 sizeof(struct lpfc_queue *), 8922 GFP_KERNEL); 8923 if (!phba->sli4_hba.nvmet_cqset) { 8924 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8925 "3121 Fail allocate memory for " 8926 "fast-path CQ set array\n"); 8927 goto out_error; 8928 } 8929 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 8930 phba->cfg_nvmet_mrq, 8931 sizeof(struct lpfc_queue *), 8932 GFP_KERNEL); 8933 if (!phba->sli4_hba.nvmet_mrq_hdr) { 8934 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8935 "3122 Fail allocate memory for " 8936 "fast-path RQ set hdr array\n"); 8937 goto out_error; 8938 } 8939 phba->sli4_hba.nvmet_mrq_data = kcalloc( 8940 phba->cfg_nvmet_mrq, 8941 sizeof(struct lpfc_queue *), 8942 GFP_KERNEL); 8943 if (!phba->sli4_hba.nvmet_mrq_data) { 8944 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8945 "3124 Fail allocate memory for " 8946 "fast-path RQ set data array\n"); 8947 goto out_error; 8948 } 8949 } 8950 } 8951 8952 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 8953 8954 /* Create HBA Event Queues (EQs) */ 8955 for_each_present_cpu(cpu) { 8956 /* We only want to create 1 EQ per vector, even though 8957 * multiple CPUs might be using that vector. so only 8958 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 8959 */ 8960 cpup = &phba->sli4_hba.cpu_map[cpu]; 8961 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 8962 continue; 8963 8964 /* Get a ptr to the Hardware Queue associated with this CPU */ 8965 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 8966 8967 /* Allocate an EQ */ 8968 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 8969 phba->sli4_hba.eq_esize, 8970 phba->sli4_hba.eq_ecount, cpu); 8971 if (!qdesc) { 8972 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8973 "0497 Failed allocate EQ (%d)\n", 8974 cpup->hdwq); 8975 goto out_error; 8976 } 8977 qdesc->qe_valid = 1; 8978 qdesc->hdwq = cpup->hdwq; 8979 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 8980 qdesc->last_cpu = qdesc->chann; 8981 8982 /* Save the allocated EQ in the Hardware Queue */ 8983 qp->hba_eq = qdesc; 8984 8985 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 8986 list_add(&qdesc->cpu_list, &eqi->list); 8987 } 8988 8989 /* Now we need to populate the other Hardware Queues, that share 8990 * an IRQ vector, with the associated EQ ptr. 8991 */ 8992 for_each_present_cpu(cpu) { 8993 cpup = &phba->sli4_hba.cpu_map[cpu]; 8994 8995 /* Check for EQ already allocated in previous loop */ 8996 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 8997 continue; 8998 8999 /* Check for multiple CPUs per hdwq */ 9000 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 9001 if (qp->hba_eq) 9002 continue; 9003 9004 /* We need to share an EQ for this hdwq */ 9005 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 9006 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 9007 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 9008 } 9009 9010 /* Allocate IO Path SLI4 CQ/WQs */ 9011 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9012 if (lpfc_alloc_io_wq_cq(phba, idx)) 9013 goto out_error; 9014 } 9015 9016 if (phba->nvmet_support) { 9017 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 9018 cpu = lpfc_find_cpu_handle(phba, idx, 9019 LPFC_FIND_BY_HDWQ); 9020 qdesc = lpfc_sli4_queue_alloc(phba, 9021 LPFC_DEFAULT_PAGE_SIZE, 9022 phba->sli4_hba.cq_esize, 9023 phba->sli4_hba.cq_ecount, 9024 cpu); 9025 if (!qdesc) { 9026 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9027 "3142 Failed allocate NVME " 9028 "CQ Set (%d)\n", idx); 9029 goto out_error; 9030 } 9031 qdesc->qe_valid = 1; 9032 qdesc->hdwq = idx; 9033 qdesc->chann = cpu; 9034 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 9035 } 9036 } 9037 9038 /* 9039 * Create Slow Path Completion Queues (CQs) 9040 */ 9041 9042 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 9043 /* Create slow-path Mailbox Command Complete Queue */ 9044 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9045 phba->sli4_hba.cq_esize, 9046 phba->sli4_hba.cq_ecount, cpu); 9047 if (!qdesc) { 9048 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9049 "0500 Failed allocate slow-path mailbox CQ\n"); 9050 goto out_error; 9051 } 9052 qdesc->qe_valid = 1; 9053 phba->sli4_hba.mbx_cq = qdesc; 9054 9055 /* Create slow-path ELS Complete Queue */ 9056 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9057 phba->sli4_hba.cq_esize, 9058 phba->sli4_hba.cq_ecount, cpu); 9059 if (!qdesc) { 9060 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9061 "0501 Failed allocate slow-path ELS CQ\n"); 9062 goto out_error; 9063 } 9064 qdesc->qe_valid = 1; 9065 qdesc->chann = cpu; 9066 phba->sli4_hba.els_cq = qdesc; 9067 9068 9069 /* 9070 * Create Slow Path Work Queues (WQs) 9071 */ 9072 9073 /* Create Mailbox Command Queue */ 9074 9075 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9076 phba->sli4_hba.mq_esize, 9077 phba->sli4_hba.mq_ecount, cpu); 9078 if (!qdesc) { 9079 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9080 "0505 Failed allocate slow-path MQ\n"); 9081 goto out_error; 9082 } 9083 qdesc->chann = cpu; 9084 phba->sli4_hba.mbx_wq = qdesc; 9085 9086 /* 9087 * Create ELS Work Queues 9088 */ 9089 9090 /* Create slow-path ELS Work Queue */ 9091 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9092 phba->sli4_hba.wq_esize, 9093 phba->sli4_hba.wq_ecount, cpu); 9094 if (!qdesc) { 9095 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9096 "0504 Failed allocate slow-path ELS WQ\n"); 9097 goto out_error; 9098 } 9099 qdesc->chann = cpu; 9100 phba->sli4_hba.els_wq = qdesc; 9101 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 9102 9103 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9104 /* Create NVME LS Complete Queue */ 9105 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9106 phba->sli4_hba.cq_esize, 9107 phba->sli4_hba.cq_ecount, cpu); 9108 if (!qdesc) { 9109 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9110 "6079 Failed allocate NVME LS CQ\n"); 9111 goto out_error; 9112 } 9113 qdesc->chann = cpu; 9114 qdesc->qe_valid = 1; 9115 phba->sli4_hba.nvmels_cq = qdesc; 9116 9117 /* Create NVME LS Work Queue */ 9118 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9119 phba->sli4_hba.wq_esize, 9120 phba->sli4_hba.wq_ecount, cpu); 9121 if (!qdesc) { 9122 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9123 "6080 Failed allocate NVME LS WQ\n"); 9124 goto out_error; 9125 } 9126 qdesc->chann = cpu; 9127 phba->sli4_hba.nvmels_wq = qdesc; 9128 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 9129 } 9130 9131 /* 9132 * Create Receive Queue (RQ) 9133 */ 9134 9135 /* Create Receive Queue for header */ 9136 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9137 phba->sli4_hba.rq_esize, 9138 phba->sli4_hba.rq_ecount, cpu); 9139 if (!qdesc) { 9140 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9141 "0506 Failed allocate receive HRQ\n"); 9142 goto out_error; 9143 } 9144 phba->sli4_hba.hdr_rq = qdesc; 9145 9146 /* Create Receive Queue for data */ 9147 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9148 phba->sli4_hba.rq_esize, 9149 phba->sli4_hba.rq_ecount, cpu); 9150 if (!qdesc) { 9151 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9152 "0507 Failed allocate receive DRQ\n"); 9153 goto out_error; 9154 } 9155 phba->sli4_hba.dat_rq = qdesc; 9156 9157 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 9158 phba->nvmet_support) { 9159 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 9160 cpu = lpfc_find_cpu_handle(phba, idx, 9161 LPFC_FIND_BY_HDWQ); 9162 /* Create NVMET Receive Queue for header */ 9163 qdesc = lpfc_sli4_queue_alloc(phba, 9164 LPFC_DEFAULT_PAGE_SIZE, 9165 phba->sli4_hba.rq_esize, 9166 LPFC_NVMET_RQE_DEF_COUNT, 9167 cpu); 9168 if (!qdesc) { 9169 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9170 "3146 Failed allocate " 9171 "receive HRQ\n"); 9172 goto out_error; 9173 } 9174 qdesc->hdwq = idx; 9175 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 9176 9177 /* Only needed for header of RQ pair */ 9178 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 9179 GFP_KERNEL, 9180 cpu_to_node(cpu)); 9181 if (qdesc->rqbp == NULL) { 9182 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9183 "6131 Failed allocate " 9184 "Header RQBP\n"); 9185 goto out_error; 9186 } 9187 9188 /* Put list in known state in case driver load fails. */ 9189 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 9190 9191 /* Create NVMET Receive Queue for data */ 9192 qdesc = lpfc_sli4_queue_alloc(phba, 9193 LPFC_DEFAULT_PAGE_SIZE, 9194 phba->sli4_hba.rq_esize, 9195 LPFC_NVMET_RQE_DEF_COUNT, 9196 cpu); 9197 if (!qdesc) { 9198 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9199 "3156 Failed allocate " 9200 "receive DRQ\n"); 9201 goto out_error; 9202 } 9203 qdesc->hdwq = idx; 9204 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 9205 } 9206 } 9207 9208 /* Clear NVME stats */ 9209 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9210 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9211 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 9212 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 9213 } 9214 } 9215 9216 /* Clear SCSI stats */ 9217 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 9218 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9219 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 9220 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 9221 } 9222 } 9223 9224 return 0; 9225 9226 out_error: 9227 lpfc_sli4_queue_destroy(phba); 9228 return -ENOMEM; 9229 } 9230 9231 static inline void 9232 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 9233 { 9234 if (*qp != NULL) { 9235 lpfc_sli4_queue_free(*qp); 9236 *qp = NULL; 9237 } 9238 } 9239 9240 static inline void 9241 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 9242 { 9243 int idx; 9244 9245 if (*qs == NULL) 9246 return; 9247 9248 for (idx = 0; idx < max; idx++) 9249 __lpfc_sli4_release_queue(&(*qs)[idx]); 9250 9251 kfree(*qs); 9252 *qs = NULL; 9253 } 9254 9255 static inline void 9256 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 9257 { 9258 struct lpfc_sli4_hdw_queue *hdwq; 9259 struct lpfc_queue *eq; 9260 uint32_t idx; 9261 9262 hdwq = phba->sli4_hba.hdwq; 9263 9264 /* Loop thru all Hardware Queues */ 9265 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9266 /* Free the CQ/WQ corresponding to the Hardware Queue */ 9267 lpfc_sli4_queue_free(hdwq[idx].io_cq); 9268 lpfc_sli4_queue_free(hdwq[idx].io_wq); 9269 hdwq[idx].hba_eq = NULL; 9270 hdwq[idx].io_cq = NULL; 9271 hdwq[idx].io_wq = NULL; 9272 if (phba->cfg_xpsgl && !phba->nvmet_support) 9273 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 9274 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 9275 } 9276 /* Loop thru all IRQ vectors */ 9277 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 9278 /* Free the EQ corresponding to the IRQ vector */ 9279 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 9280 lpfc_sli4_queue_free(eq); 9281 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 9282 } 9283 } 9284 9285 /** 9286 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 9287 * @phba: pointer to lpfc hba data structure. 9288 * 9289 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 9290 * operation. 9291 * 9292 * Return codes 9293 * 0 - successful 9294 * -ENOMEM - No available memory 9295 * -EIO - The mailbox failed to complete successfully. 9296 **/ 9297 void 9298 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 9299 { 9300 /* 9301 * Set FREE_INIT before beginning to free the queues. 9302 * Wait until the users of queues to acknowledge to 9303 * release queues by clearing FREE_WAIT. 9304 */ 9305 spin_lock_irq(&phba->hbalock); 9306 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 9307 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 9308 spin_unlock_irq(&phba->hbalock); 9309 msleep(20); 9310 spin_lock_irq(&phba->hbalock); 9311 } 9312 spin_unlock_irq(&phba->hbalock); 9313 9314 lpfc_sli4_cleanup_poll_list(phba); 9315 9316 /* Release HBA eqs */ 9317 if (phba->sli4_hba.hdwq) 9318 lpfc_sli4_release_hdwq(phba); 9319 9320 if (phba->nvmet_support) { 9321 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 9322 phba->cfg_nvmet_mrq); 9323 9324 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 9325 phba->cfg_nvmet_mrq); 9326 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 9327 phba->cfg_nvmet_mrq); 9328 } 9329 9330 /* Release mailbox command work queue */ 9331 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 9332 9333 /* Release ELS work queue */ 9334 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 9335 9336 /* Release ELS work queue */ 9337 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 9338 9339 /* Release unsolicited receive queue */ 9340 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 9341 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 9342 9343 /* Release ELS complete queue */ 9344 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 9345 9346 /* Release NVME LS complete queue */ 9347 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 9348 9349 /* Release mailbox command complete queue */ 9350 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 9351 9352 /* Everything on this list has been freed */ 9353 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 9354 9355 /* Done with freeing the queues */ 9356 spin_lock_irq(&phba->hbalock); 9357 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 9358 spin_unlock_irq(&phba->hbalock); 9359 } 9360 9361 int 9362 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 9363 { 9364 struct lpfc_rqb *rqbp; 9365 struct lpfc_dmabuf *h_buf; 9366 struct rqb_dmabuf *rqb_buffer; 9367 9368 rqbp = rq->rqbp; 9369 while (!list_empty(&rqbp->rqb_buffer_list)) { 9370 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 9371 struct lpfc_dmabuf, list); 9372 9373 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 9374 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 9375 rqbp->buffer_count--; 9376 } 9377 return 1; 9378 } 9379 9380 static int 9381 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 9382 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 9383 int qidx, uint32_t qtype) 9384 { 9385 struct lpfc_sli_ring *pring; 9386 int rc; 9387 9388 if (!eq || !cq || !wq) { 9389 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9390 "6085 Fast-path %s (%d) not allocated\n", 9391 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 9392 return -ENOMEM; 9393 } 9394 9395 /* create the Cq first */ 9396 rc = lpfc_cq_create(phba, cq, eq, 9397 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 9398 if (rc) { 9399 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9400 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 9401 qidx, (uint32_t)rc); 9402 return rc; 9403 } 9404 9405 if (qtype != LPFC_MBOX) { 9406 /* Setup cq_map for fast lookup */ 9407 if (cq_map) 9408 *cq_map = cq->queue_id; 9409 9410 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9411 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 9412 qidx, cq->queue_id, qidx, eq->queue_id); 9413 9414 /* create the wq */ 9415 rc = lpfc_wq_create(phba, wq, cq, qtype); 9416 if (rc) { 9417 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9418 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 9419 qidx, (uint32_t)rc); 9420 /* no need to tear down cq - caller will do so */ 9421 return rc; 9422 } 9423 9424 /* Bind this CQ/WQ to the NVME ring */ 9425 pring = wq->pring; 9426 pring->sli.sli4.wqp = (void *)wq; 9427 cq->pring = pring; 9428 9429 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9430 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 9431 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 9432 } else { 9433 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 9434 if (rc) { 9435 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9436 "0539 Failed setup of slow-path MQ: " 9437 "rc = 0x%x\n", rc); 9438 /* no need to tear down cq - caller will do so */ 9439 return rc; 9440 } 9441 9442 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9443 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 9444 phba->sli4_hba.mbx_wq->queue_id, 9445 phba->sli4_hba.mbx_cq->queue_id); 9446 } 9447 9448 return 0; 9449 } 9450 9451 /** 9452 * lpfc_setup_cq_lookup - Setup the CQ lookup table 9453 * @phba: pointer to lpfc hba data structure. 9454 * 9455 * This routine will populate the cq_lookup table by all 9456 * available CQ queue_id's. 9457 **/ 9458 static void 9459 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 9460 { 9461 struct lpfc_queue *eq, *childq; 9462 int qidx; 9463 9464 memset(phba->sli4_hba.cq_lookup, 0, 9465 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 9466 /* Loop thru all IRQ vectors */ 9467 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 9468 /* Get the EQ corresponding to the IRQ vector */ 9469 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 9470 if (!eq) 9471 continue; 9472 /* Loop through all CQs associated with that EQ */ 9473 list_for_each_entry(childq, &eq->child_list, list) { 9474 if (childq->queue_id > phba->sli4_hba.cq_max) 9475 continue; 9476 if (childq->subtype == LPFC_IO) 9477 phba->sli4_hba.cq_lookup[childq->queue_id] = 9478 childq; 9479 } 9480 } 9481 } 9482 9483 /** 9484 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 9485 * @phba: pointer to lpfc hba data structure. 9486 * 9487 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 9488 * operation. 9489 * 9490 * Return codes 9491 * 0 - successful 9492 * -ENOMEM - No available memory 9493 * -EIO - The mailbox failed to complete successfully. 9494 **/ 9495 int 9496 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 9497 { 9498 uint32_t shdr_status, shdr_add_status; 9499 union lpfc_sli4_cfg_shdr *shdr; 9500 struct lpfc_vector_map_info *cpup; 9501 struct lpfc_sli4_hdw_queue *qp; 9502 LPFC_MBOXQ_t *mboxq; 9503 int qidx, cpu; 9504 uint32_t length, usdelay; 9505 int rc = -ENOMEM; 9506 9507 /* Check for dual-ULP support */ 9508 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9509 if (!mboxq) { 9510 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9511 "3249 Unable to allocate memory for " 9512 "QUERY_FW_CFG mailbox command\n"); 9513 return -ENOMEM; 9514 } 9515 length = (sizeof(struct lpfc_mbx_query_fw_config) - 9516 sizeof(struct lpfc_sli4_cfg_mhdr)); 9517 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 9518 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 9519 length, LPFC_SLI4_MBX_EMBED); 9520 9521 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9522 9523 shdr = (union lpfc_sli4_cfg_shdr *) 9524 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 9525 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 9526 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 9527 if (shdr_status || shdr_add_status || rc) { 9528 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9529 "3250 QUERY_FW_CFG mailbox failed with status " 9530 "x%x add_status x%x, mbx status x%x\n", 9531 shdr_status, shdr_add_status, rc); 9532 if (rc != MBX_TIMEOUT) 9533 mempool_free(mboxq, phba->mbox_mem_pool); 9534 rc = -ENXIO; 9535 goto out_error; 9536 } 9537 9538 phba->sli4_hba.fw_func_mode = 9539 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 9540 phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode; 9541 phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode; 9542 phba->sli4_hba.physical_port = 9543 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 9544 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9545 "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, " 9546 "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode, 9547 phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode); 9548 9549 if (rc != MBX_TIMEOUT) 9550 mempool_free(mboxq, phba->mbox_mem_pool); 9551 9552 /* 9553 * Set up HBA Event Queues (EQs) 9554 */ 9555 qp = phba->sli4_hba.hdwq; 9556 9557 /* Set up HBA event queue */ 9558 if (!qp) { 9559 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9560 "3147 Fast-path EQs not allocated\n"); 9561 rc = -ENOMEM; 9562 goto out_error; 9563 } 9564 9565 /* Loop thru all IRQ vectors */ 9566 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 9567 /* Create HBA Event Queues (EQs) in order */ 9568 for_each_present_cpu(cpu) { 9569 cpup = &phba->sli4_hba.cpu_map[cpu]; 9570 9571 /* Look for the CPU thats using that vector with 9572 * LPFC_CPU_FIRST_IRQ set. 9573 */ 9574 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 9575 continue; 9576 if (qidx != cpup->eq) 9577 continue; 9578 9579 /* Create an EQ for that vector */ 9580 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 9581 phba->cfg_fcp_imax); 9582 if (rc) { 9583 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9584 "0523 Failed setup of fast-path" 9585 " EQ (%d), rc = 0x%x\n", 9586 cpup->eq, (uint32_t)rc); 9587 goto out_destroy; 9588 } 9589 9590 /* Save the EQ for that vector in the hba_eq_hdl */ 9591 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 9592 qp[cpup->hdwq].hba_eq; 9593 9594 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9595 "2584 HBA EQ setup: queue[%d]-id=%d\n", 9596 cpup->eq, 9597 qp[cpup->hdwq].hba_eq->queue_id); 9598 } 9599 } 9600 9601 /* Loop thru all Hardware Queues */ 9602 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 9603 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 9604 cpup = &phba->sli4_hba.cpu_map[cpu]; 9605 9606 /* Create the CQ/WQ corresponding to the Hardware Queue */ 9607 rc = lpfc_create_wq_cq(phba, 9608 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 9609 qp[qidx].io_cq, 9610 qp[qidx].io_wq, 9611 &phba->sli4_hba.hdwq[qidx].io_cq_map, 9612 qidx, 9613 LPFC_IO); 9614 if (rc) { 9615 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9616 "0535 Failed to setup fastpath " 9617 "IO WQ/CQ (%d), rc = 0x%x\n", 9618 qidx, (uint32_t)rc); 9619 goto out_destroy; 9620 } 9621 } 9622 9623 /* 9624 * Set up Slow Path Complete Queues (CQs) 9625 */ 9626 9627 /* Set up slow-path MBOX CQ/MQ */ 9628 9629 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 9630 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9631 "0528 %s not allocated\n", 9632 phba->sli4_hba.mbx_cq ? 9633 "Mailbox WQ" : "Mailbox CQ"); 9634 rc = -ENOMEM; 9635 goto out_destroy; 9636 } 9637 9638 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9639 phba->sli4_hba.mbx_cq, 9640 phba->sli4_hba.mbx_wq, 9641 NULL, 0, LPFC_MBOX); 9642 if (rc) { 9643 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9644 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 9645 (uint32_t)rc); 9646 goto out_destroy; 9647 } 9648 if (phba->nvmet_support) { 9649 if (!phba->sli4_hba.nvmet_cqset) { 9650 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9651 "3165 Fast-path NVME CQ Set " 9652 "array not allocated\n"); 9653 rc = -ENOMEM; 9654 goto out_destroy; 9655 } 9656 if (phba->cfg_nvmet_mrq > 1) { 9657 rc = lpfc_cq_create_set(phba, 9658 phba->sli4_hba.nvmet_cqset, 9659 qp, 9660 LPFC_WCQ, LPFC_NVMET); 9661 if (rc) { 9662 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9663 "3164 Failed setup of NVME CQ " 9664 "Set, rc = 0x%x\n", 9665 (uint32_t)rc); 9666 goto out_destroy; 9667 } 9668 } else { 9669 /* Set up NVMET Receive Complete Queue */ 9670 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 9671 qp[0].hba_eq, 9672 LPFC_WCQ, LPFC_NVMET); 9673 if (rc) { 9674 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9675 "6089 Failed setup NVMET CQ: " 9676 "rc = 0x%x\n", (uint32_t)rc); 9677 goto out_destroy; 9678 } 9679 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 9680 9681 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9682 "6090 NVMET CQ setup: cq-id=%d, " 9683 "parent eq-id=%d\n", 9684 phba->sli4_hba.nvmet_cqset[0]->queue_id, 9685 qp[0].hba_eq->queue_id); 9686 } 9687 } 9688 9689 /* Set up slow-path ELS WQ/CQ */ 9690 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 9691 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9692 "0530 ELS %s not allocated\n", 9693 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 9694 rc = -ENOMEM; 9695 goto out_destroy; 9696 } 9697 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9698 phba->sli4_hba.els_cq, 9699 phba->sli4_hba.els_wq, 9700 NULL, 0, LPFC_ELS); 9701 if (rc) { 9702 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9703 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 9704 (uint32_t)rc); 9705 goto out_destroy; 9706 } 9707 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9708 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 9709 phba->sli4_hba.els_wq->queue_id, 9710 phba->sli4_hba.els_cq->queue_id); 9711 9712 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9713 /* Set up NVME LS Complete Queue */ 9714 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 9715 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9716 "6091 LS %s not allocated\n", 9717 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 9718 rc = -ENOMEM; 9719 goto out_destroy; 9720 } 9721 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9722 phba->sli4_hba.nvmels_cq, 9723 phba->sli4_hba.nvmels_wq, 9724 NULL, 0, LPFC_NVME_LS); 9725 if (rc) { 9726 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9727 "0526 Failed setup of NVVME LS WQ/CQ: " 9728 "rc = 0x%x\n", (uint32_t)rc); 9729 goto out_destroy; 9730 } 9731 9732 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9733 "6096 ELS WQ setup: wq-id=%d, " 9734 "parent cq-id=%d\n", 9735 phba->sli4_hba.nvmels_wq->queue_id, 9736 phba->sli4_hba.nvmels_cq->queue_id); 9737 } 9738 9739 /* 9740 * Create NVMET Receive Queue (RQ) 9741 */ 9742 if (phba->nvmet_support) { 9743 if ((!phba->sli4_hba.nvmet_cqset) || 9744 (!phba->sli4_hba.nvmet_mrq_hdr) || 9745 (!phba->sli4_hba.nvmet_mrq_data)) { 9746 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9747 "6130 MRQ CQ Queues not " 9748 "allocated\n"); 9749 rc = -ENOMEM; 9750 goto out_destroy; 9751 } 9752 if (phba->cfg_nvmet_mrq > 1) { 9753 rc = lpfc_mrq_create(phba, 9754 phba->sli4_hba.nvmet_mrq_hdr, 9755 phba->sli4_hba.nvmet_mrq_data, 9756 phba->sli4_hba.nvmet_cqset, 9757 LPFC_NVMET); 9758 if (rc) { 9759 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9760 "6098 Failed setup of NVMET " 9761 "MRQ: rc = 0x%x\n", 9762 (uint32_t)rc); 9763 goto out_destroy; 9764 } 9765 9766 } else { 9767 rc = lpfc_rq_create(phba, 9768 phba->sli4_hba.nvmet_mrq_hdr[0], 9769 phba->sli4_hba.nvmet_mrq_data[0], 9770 phba->sli4_hba.nvmet_cqset[0], 9771 LPFC_NVMET); 9772 if (rc) { 9773 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9774 "6057 Failed setup of NVMET " 9775 "Receive Queue: rc = 0x%x\n", 9776 (uint32_t)rc); 9777 goto out_destroy; 9778 } 9779 9780 lpfc_printf_log( 9781 phba, KERN_INFO, LOG_INIT, 9782 "6099 NVMET RQ setup: hdr-rq-id=%d, " 9783 "dat-rq-id=%d parent cq-id=%d\n", 9784 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 9785 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 9786 phba->sli4_hba.nvmet_cqset[0]->queue_id); 9787 9788 } 9789 } 9790 9791 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 9792 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9793 "0540 Receive Queue not allocated\n"); 9794 rc = -ENOMEM; 9795 goto out_destroy; 9796 } 9797 9798 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 9799 phba->sli4_hba.els_cq, LPFC_USOL); 9800 if (rc) { 9801 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9802 "0541 Failed setup of Receive Queue: " 9803 "rc = 0x%x\n", (uint32_t)rc); 9804 goto out_destroy; 9805 } 9806 9807 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9808 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 9809 "parent cq-id=%d\n", 9810 phba->sli4_hba.hdr_rq->queue_id, 9811 phba->sli4_hba.dat_rq->queue_id, 9812 phba->sli4_hba.els_cq->queue_id); 9813 9814 if (phba->cfg_fcp_imax) 9815 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 9816 else 9817 usdelay = 0; 9818 9819 for (qidx = 0; qidx < phba->cfg_irq_chann; 9820 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 9821 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 9822 usdelay); 9823 9824 if (phba->sli4_hba.cq_max) { 9825 kfree(phba->sli4_hba.cq_lookup); 9826 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 9827 sizeof(struct lpfc_queue *), GFP_KERNEL); 9828 if (!phba->sli4_hba.cq_lookup) { 9829 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9830 "0549 Failed setup of CQ Lookup table: " 9831 "size 0x%x\n", phba->sli4_hba.cq_max); 9832 rc = -ENOMEM; 9833 goto out_destroy; 9834 } 9835 lpfc_setup_cq_lookup(phba); 9836 } 9837 return 0; 9838 9839 out_destroy: 9840 lpfc_sli4_queue_unset(phba); 9841 out_error: 9842 return rc; 9843 } 9844 9845 /** 9846 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 9847 * @phba: pointer to lpfc hba data structure. 9848 * 9849 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 9850 * operation. 9851 * 9852 * Return codes 9853 * 0 - successful 9854 * -ENOMEM - No available memory 9855 * -EIO - The mailbox failed to complete successfully. 9856 **/ 9857 void 9858 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 9859 { 9860 struct lpfc_sli4_hdw_queue *qp; 9861 struct lpfc_queue *eq; 9862 int qidx; 9863 9864 /* Unset mailbox command work queue */ 9865 if (phba->sli4_hba.mbx_wq) 9866 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 9867 9868 /* Unset NVME LS work queue */ 9869 if (phba->sli4_hba.nvmels_wq) 9870 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 9871 9872 /* Unset ELS work queue */ 9873 if (phba->sli4_hba.els_wq) 9874 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 9875 9876 /* Unset unsolicited receive queue */ 9877 if (phba->sli4_hba.hdr_rq) 9878 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 9879 phba->sli4_hba.dat_rq); 9880 9881 /* Unset mailbox command complete queue */ 9882 if (phba->sli4_hba.mbx_cq) 9883 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 9884 9885 /* Unset ELS complete queue */ 9886 if (phba->sli4_hba.els_cq) 9887 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 9888 9889 /* Unset NVME LS complete queue */ 9890 if (phba->sli4_hba.nvmels_cq) 9891 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 9892 9893 if (phba->nvmet_support) { 9894 /* Unset NVMET MRQ queue */ 9895 if (phba->sli4_hba.nvmet_mrq_hdr) { 9896 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 9897 lpfc_rq_destroy( 9898 phba, 9899 phba->sli4_hba.nvmet_mrq_hdr[qidx], 9900 phba->sli4_hba.nvmet_mrq_data[qidx]); 9901 } 9902 9903 /* Unset NVMET CQ Set complete queue */ 9904 if (phba->sli4_hba.nvmet_cqset) { 9905 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 9906 lpfc_cq_destroy( 9907 phba, phba->sli4_hba.nvmet_cqset[qidx]); 9908 } 9909 } 9910 9911 /* Unset fast-path SLI4 queues */ 9912 if (phba->sli4_hba.hdwq) { 9913 /* Loop thru all Hardware Queues */ 9914 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 9915 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 9916 qp = &phba->sli4_hba.hdwq[qidx]; 9917 lpfc_wq_destroy(phba, qp->io_wq); 9918 lpfc_cq_destroy(phba, qp->io_cq); 9919 } 9920 /* Loop thru all IRQ vectors */ 9921 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 9922 /* Destroy the EQ corresponding to the IRQ vector */ 9923 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 9924 lpfc_eq_destroy(phba, eq); 9925 } 9926 } 9927 9928 kfree(phba->sli4_hba.cq_lookup); 9929 phba->sli4_hba.cq_lookup = NULL; 9930 phba->sli4_hba.cq_max = 0; 9931 } 9932 9933 /** 9934 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 9935 * @phba: pointer to lpfc hba data structure. 9936 * 9937 * This routine is invoked to allocate and set up a pool of completion queue 9938 * events. The body of the completion queue event is a completion queue entry 9939 * CQE. For now, this pool is used for the interrupt service routine to queue 9940 * the following HBA completion queue events for the worker thread to process: 9941 * - Mailbox asynchronous events 9942 * - Receive queue completion unsolicited events 9943 * Later, this can be used for all the slow-path events. 9944 * 9945 * Return codes 9946 * 0 - successful 9947 * -ENOMEM - No available memory 9948 **/ 9949 static int 9950 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 9951 { 9952 struct lpfc_cq_event *cq_event; 9953 int i; 9954 9955 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 9956 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 9957 if (!cq_event) 9958 goto out_pool_create_fail; 9959 list_add_tail(&cq_event->list, 9960 &phba->sli4_hba.sp_cqe_event_pool); 9961 } 9962 return 0; 9963 9964 out_pool_create_fail: 9965 lpfc_sli4_cq_event_pool_destroy(phba); 9966 return -ENOMEM; 9967 } 9968 9969 /** 9970 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 9971 * @phba: pointer to lpfc hba data structure. 9972 * 9973 * This routine is invoked to free the pool of completion queue events at 9974 * driver unload time. Note that, it is the responsibility of the driver 9975 * cleanup routine to free all the outstanding completion-queue events 9976 * allocated from this pool back into the pool before invoking this routine 9977 * to destroy the pool. 9978 **/ 9979 static void 9980 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 9981 { 9982 struct lpfc_cq_event *cq_event, *next_cq_event; 9983 9984 list_for_each_entry_safe(cq_event, next_cq_event, 9985 &phba->sli4_hba.sp_cqe_event_pool, list) { 9986 list_del(&cq_event->list); 9987 kfree(cq_event); 9988 } 9989 } 9990 9991 /** 9992 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 9993 * @phba: pointer to lpfc hba data structure. 9994 * 9995 * This routine is the lock free version of the API invoked to allocate a 9996 * completion-queue event from the free pool. 9997 * 9998 * Return: Pointer to the newly allocated completion-queue event if successful 9999 * NULL otherwise. 10000 **/ 10001 struct lpfc_cq_event * 10002 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 10003 { 10004 struct lpfc_cq_event *cq_event = NULL; 10005 10006 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 10007 struct lpfc_cq_event, list); 10008 return cq_event; 10009 } 10010 10011 /** 10012 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 10013 * @phba: pointer to lpfc hba data structure. 10014 * 10015 * This routine is the lock version of the API invoked to allocate a 10016 * completion-queue event from the free pool. 10017 * 10018 * Return: Pointer to the newly allocated completion-queue event if successful 10019 * NULL otherwise. 10020 **/ 10021 struct lpfc_cq_event * 10022 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 10023 { 10024 struct lpfc_cq_event *cq_event; 10025 unsigned long iflags; 10026 10027 spin_lock_irqsave(&phba->hbalock, iflags); 10028 cq_event = __lpfc_sli4_cq_event_alloc(phba); 10029 spin_unlock_irqrestore(&phba->hbalock, iflags); 10030 return cq_event; 10031 } 10032 10033 /** 10034 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 10035 * @phba: pointer to lpfc hba data structure. 10036 * @cq_event: pointer to the completion queue event to be freed. 10037 * 10038 * This routine is the lock free version of the API invoked to release a 10039 * completion-queue event back into the free pool. 10040 **/ 10041 void 10042 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 10043 struct lpfc_cq_event *cq_event) 10044 { 10045 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 10046 } 10047 10048 /** 10049 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 10050 * @phba: pointer to lpfc hba data structure. 10051 * @cq_event: pointer to the completion queue event to be freed. 10052 * 10053 * This routine is the lock version of the API invoked to release a 10054 * completion-queue event back into the free pool. 10055 **/ 10056 void 10057 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 10058 struct lpfc_cq_event *cq_event) 10059 { 10060 unsigned long iflags; 10061 spin_lock_irqsave(&phba->hbalock, iflags); 10062 __lpfc_sli4_cq_event_release(phba, cq_event); 10063 spin_unlock_irqrestore(&phba->hbalock, iflags); 10064 } 10065 10066 /** 10067 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 10068 * @phba: pointer to lpfc hba data structure. 10069 * 10070 * This routine is to free all the pending completion-queue events to the 10071 * back into the free pool for device reset. 10072 **/ 10073 static void 10074 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 10075 { 10076 LIST_HEAD(cqelist); 10077 struct lpfc_cq_event *cqe; 10078 unsigned long iflags; 10079 10080 /* Retrieve all the pending WCQEs from pending WCQE lists */ 10081 spin_lock_irqsave(&phba->hbalock, iflags); 10082 /* Pending FCP XRI abort events */ 10083 list_splice_init(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 10084 &cqelist); 10085 /* Pending ELS XRI abort events */ 10086 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 10087 &cqelist); 10088 /* Pending asynnc events */ 10089 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 10090 &cqelist); 10091 spin_unlock_irqrestore(&phba->hbalock, iflags); 10092 10093 while (!list_empty(&cqelist)) { 10094 list_remove_head(&cqelist, cqe, struct lpfc_cq_event, list); 10095 lpfc_sli4_cq_event_release(phba, cqe); 10096 } 10097 } 10098 10099 /** 10100 * lpfc_pci_function_reset - Reset pci function. 10101 * @phba: pointer to lpfc hba data structure. 10102 * 10103 * This routine is invoked to request a PCI function reset. It will destroys 10104 * all resources assigned to the PCI function which originates this request. 10105 * 10106 * Return codes 10107 * 0 - successful 10108 * -ENOMEM - No available memory 10109 * -EIO - The mailbox failed to complete successfully. 10110 **/ 10111 int 10112 lpfc_pci_function_reset(struct lpfc_hba *phba) 10113 { 10114 LPFC_MBOXQ_t *mboxq; 10115 uint32_t rc = 0, if_type; 10116 uint32_t shdr_status, shdr_add_status; 10117 uint32_t rdy_chk; 10118 uint32_t port_reset = 0; 10119 union lpfc_sli4_cfg_shdr *shdr; 10120 struct lpfc_register reg_data; 10121 uint16_t devid; 10122 10123 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10124 switch (if_type) { 10125 case LPFC_SLI_INTF_IF_TYPE_0: 10126 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10127 GFP_KERNEL); 10128 if (!mboxq) { 10129 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10130 "0494 Unable to allocate memory for " 10131 "issuing SLI_FUNCTION_RESET mailbox " 10132 "command\n"); 10133 return -ENOMEM; 10134 } 10135 10136 /* Setup PCI function reset mailbox-ioctl command */ 10137 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 10138 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 10139 LPFC_SLI4_MBX_EMBED); 10140 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10141 shdr = (union lpfc_sli4_cfg_shdr *) 10142 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 10143 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10144 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 10145 &shdr->response); 10146 if (rc != MBX_TIMEOUT) 10147 mempool_free(mboxq, phba->mbox_mem_pool); 10148 if (shdr_status || shdr_add_status || rc) { 10149 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10150 "0495 SLI_FUNCTION_RESET mailbox " 10151 "failed with status x%x add_status x%x," 10152 " mbx status x%x\n", 10153 shdr_status, shdr_add_status, rc); 10154 rc = -ENXIO; 10155 } 10156 break; 10157 case LPFC_SLI_INTF_IF_TYPE_2: 10158 case LPFC_SLI_INTF_IF_TYPE_6: 10159 wait: 10160 /* 10161 * Poll the Port Status Register and wait for RDY for 10162 * up to 30 seconds. If the port doesn't respond, treat 10163 * it as an error. 10164 */ 10165 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 10166 if (lpfc_readl(phba->sli4_hba.u.if_type2. 10167 STATUSregaddr, ®_data.word0)) { 10168 rc = -ENODEV; 10169 goto out; 10170 } 10171 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 10172 break; 10173 msleep(20); 10174 } 10175 10176 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 10177 phba->work_status[0] = readl( 10178 phba->sli4_hba.u.if_type2.ERR1regaddr); 10179 phba->work_status[1] = readl( 10180 phba->sli4_hba.u.if_type2.ERR2regaddr); 10181 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10182 "2890 Port not ready, port status reg " 10183 "0x%x error 1=0x%x, error 2=0x%x\n", 10184 reg_data.word0, 10185 phba->work_status[0], 10186 phba->work_status[1]); 10187 rc = -ENODEV; 10188 goto out; 10189 } 10190 10191 if (!port_reset) { 10192 /* 10193 * Reset the port now 10194 */ 10195 reg_data.word0 = 0; 10196 bf_set(lpfc_sliport_ctrl_end, ®_data, 10197 LPFC_SLIPORT_LITTLE_ENDIAN); 10198 bf_set(lpfc_sliport_ctrl_ip, ®_data, 10199 LPFC_SLIPORT_INIT_PORT); 10200 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 10201 CTRLregaddr); 10202 /* flush */ 10203 pci_read_config_word(phba->pcidev, 10204 PCI_DEVICE_ID, &devid); 10205 10206 port_reset = 1; 10207 msleep(20); 10208 goto wait; 10209 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 10210 rc = -ENODEV; 10211 goto out; 10212 } 10213 break; 10214 10215 case LPFC_SLI_INTF_IF_TYPE_1: 10216 default: 10217 break; 10218 } 10219 10220 out: 10221 /* Catch the not-ready port failure after a port reset. */ 10222 if (rc) { 10223 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10224 "3317 HBA not functional: IP Reset Failed " 10225 "try: echo fw_reset > board_mode\n"); 10226 rc = -ENODEV; 10227 } 10228 10229 return rc; 10230 } 10231 10232 /** 10233 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 10234 * @phba: pointer to lpfc hba data structure. 10235 * 10236 * This routine is invoked to set up the PCI device memory space for device 10237 * with SLI-4 interface spec. 10238 * 10239 * Return codes 10240 * 0 - successful 10241 * other values - error 10242 **/ 10243 static int 10244 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 10245 { 10246 struct pci_dev *pdev = phba->pcidev; 10247 unsigned long bar0map_len, bar1map_len, bar2map_len; 10248 int error; 10249 uint32_t if_type; 10250 10251 if (!pdev) 10252 return -ENODEV; 10253 10254 /* Set the device DMA mask size */ 10255 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 10256 if (error) 10257 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 10258 if (error) 10259 return error; 10260 10261 /* 10262 * The BARs and register set definitions and offset locations are 10263 * dependent on the if_type. 10264 */ 10265 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 10266 &phba->sli4_hba.sli_intf.word0)) { 10267 return -ENODEV; 10268 } 10269 10270 /* There is no SLI3 failback for SLI4 devices. */ 10271 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 10272 LPFC_SLI_INTF_VALID) { 10273 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10274 "2894 SLI_INTF reg contents invalid " 10275 "sli_intf reg 0x%x\n", 10276 phba->sli4_hba.sli_intf.word0); 10277 return -ENODEV; 10278 } 10279 10280 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10281 /* 10282 * Get the bus address of SLI4 device Bar regions and the 10283 * number of bytes required by each mapping. The mapping of the 10284 * particular PCI BARs regions is dependent on the type of 10285 * SLI4 device. 10286 */ 10287 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 10288 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 10289 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 10290 10291 /* 10292 * Map SLI4 PCI Config Space Register base to a kernel virtual 10293 * addr 10294 */ 10295 phba->sli4_hba.conf_regs_memmap_p = 10296 ioremap(phba->pci_bar0_map, bar0map_len); 10297 if (!phba->sli4_hba.conf_regs_memmap_p) { 10298 dev_printk(KERN_ERR, &pdev->dev, 10299 "ioremap failed for SLI4 PCI config " 10300 "registers.\n"); 10301 return -ENODEV; 10302 } 10303 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 10304 /* Set up BAR0 PCI config space register memory map */ 10305 lpfc_sli4_bar0_register_memmap(phba, if_type); 10306 } else { 10307 phba->pci_bar0_map = pci_resource_start(pdev, 1); 10308 bar0map_len = pci_resource_len(pdev, 1); 10309 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10310 dev_printk(KERN_ERR, &pdev->dev, 10311 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 10312 return -ENODEV; 10313 } 10314 phba->sli4_hba.conf_regs_memmap_p = 10315 ioremap(phba->pci_bar0_map, bar0map_len); 10316 if (!phba->sli4_hba.conf_regs_memmap_p) { 10317 dev_printk(KERN_ERR, &pdev->dev, 10318 "ioremap failed for SLI4 PCI config " 10319 "registers.\n"); 10320 return -ENODEV; 10321 } 10322 lpfc_sli4_bar0_register_memmap(phba, if_type); 10323 } 10324 10325 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 10326 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 10327 /* 10328 * Map SLI4 if type 0 HBA Control Register base to a 10329 * kernel virtual address and setup the registers. 10330 */ 10331 phba->pci_bar1_map = pci_resource_start(pdev, 10332 PCI_64BIT_BAR2); 10333 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 10334 phba->sli4_hba.ctrl_regs_memmap_p = 10335 ioremap(phba->pci_bar1_map, 10336 bar1map_len); 10337 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 10338 dev_err(&pdev->dev, 10339 "ioremap failed for SLI4 HBA " 10340 "control registers.\n"); 10341 error = -ENOMEM; 10342 goto out_iounmap_conf; 10343 } 10344 phba->pci_bar2_memmap_p = 10345 phba->sli4_hba.ctrl_regs_memmap_p; 10346 lpfc_sli4_bar1_register_memmap(phba, if_type); 10347 } else { 10348 error = -ENOMEM; 10349 goto out_iounmap_conf; 10350 } 10351 } 10352 10353 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 10354 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 10355 /* 10356 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 10357 * virtual address and setup the registers. 10358 */ 10359 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 10360 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 10361 phba->sli4_hba.drbl_regs_memmap_p = 10362 ioremap(phba->pci_bar1_map, bar1map_len); 10363 if (!phba->sli4_hba.drbl_regs_memmap_p) { 10364 dev_err(&pdev->dev, 10365 "ioremap failed for SLI4 HBA doorbell registers.\n"); 10366 error = -ENOMEM; 10367 goto out_iounmap_conf; 10368 } 10369 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 10370 lpfc_sli4_bar1_register_memmap(phba, if_type); 10371 } 10372 10373 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 10374 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 10375 /* 10376 * Map SLI4 if type 0 HBA Doorbell Register base to 10377 * a kernel virtual address and setup the registers. 10378 */ 10379 phba->pci_bar2_map = pci_resource_start(pdev, 10380 PCI_64BIT_BAR4); 10381 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 10382 phba->sli4_hba.drbl_regs_memmap_p = 10383 ioremap(phba->pci_bar2_map, 10384 bar2map_len); 10385 if (!phba->sli4_hba.drbl_regs_memmap_p) { 10386 dev_err(&pdev->dev, 10387 "ioremap failed for SLI4 HBA" 10388 " doorbell registers.\n"); 10389 error = -ENOMEM; 10390 goto out_iounmap_ctrl; 10391 } 10392 phba->pci_bar4_memmap_p = 10393 phba->sli4_hba.drbl_regs_memmap_p; 10394 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 10395 if (error) 10396 goto out_iounmap_all; 10397 } else { 10398 error = -ENOMEM; 10399 goto out_iounmap_all; 10400 } 10401 } 10402 10403 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 10404 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 10405 /* 10406 * Map SLI4 if type 6 HBA DPP Register base to a kernel 10407 * virtual address and setup the registers. 10408 */ 10409 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 10410 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 10411 phba->sli4_hba.dpp_regs_memmap_p = 10412 ioremap(phba->pci_bar2_map, bar2map_len); 10413 if (!phba->sli4_hba.dpp_regs_memmap_p) { 10414 dev_err(&pdev->dev, 10415 "ioremap failed for SLI4 HBA dpp registers.\n"); 10416 error = -ENOMEM; 10417 goto out_iounmap_ctrl; 10418 } 10419 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 10420 } 10421 10422 /* Set up the EQ/CQ register handeling functions now */ 10423 switch (if_type) { 10424 case LPFC_SLI_INTF_IF_TYPE_0: 10425 case LPFC_SLI_INTF_IF_TYPE_2: 10426 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 10427 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 10428 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 10429 break; 10430 case LPFC_SLI_INTF_IF_TYPE_6: 10431 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 10432 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 10433 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 10434 break; 10435 default: 10436 break; 10437 } 10438 10439 return 0; 10440 10441 out_iounmap_all: 10442 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10443 out_iounmap_ctrl: 10444 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 10445 out_iounmap_conf: 10446 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10447 10448 return error; 10449 } 10450 10451 /** 10452 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 10453 * @phba: pointer to lpfc hba data structure. 10454 * 10455 * This routine is invoked to unset the PCI device memory space for device 10456 * with SLI-4 interface spec. 10457 **/ 10458 static void 10459 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 10460 { 10461 uint32_t if_type; 10462 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10463 10464 switch (if_type) { 10465 case LPFC_SLI_INTF_IF_TYPE_0: 10466 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10467 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 10468 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10469 break; 10470 case LPFC_SLI_INTF_IF_TYPE_2: 10471 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10472 break; 10473 case LPFC_SLI_INTF_IF_TYPE_6: 10474 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10475 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10476 if (phba->sli4_hba.dpp_regs_memmap_p) 10477 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 10478 break; 10479 case LPFC_SLI_INTF_IF_TYPE_1: 10480 default: 10481 dev_printk(KERN_ERR, &phba->pcidev->dev, 10482 "FATAL - unsupported SLI4 interface type - %d\n", 10483 if_type); 10484 break; 10485 } 10486 } 10487 10488 /** 10489 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 10490 * @phba: pointer to lpfc hba data structure. 10491 * 10492 * This routine is invoked to enable the MSI-X interrupt vectors to device 10493 * with SLI-3 interface specs. 10494 * 10495 * Return codes 10496 * 0 - successful 10497 * other values - error 10498 **/ 10499 static int 10500 lpfc_sli_enable_msix(struct lpfc_hba *phba) 10501 { 10502 int rc; 10503 LPFC_MBOXQ_t *pmb; 10504 10505 /* Set up MSI-X multi-message vectors */ 10506 rc = pci_alloc_irq_vectors(phba->pcidev, 10507 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 10508 if (rc < 0) { 10509 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10510 "0420 PCI enable MSI-X failed (%d)\n", rc); 10511 goto vec_fail_out; 10512 } 10513 10514 /* 10515 * Assign MSI-X vectors to interrupt handlers 10516 */ 10517 10518 /* vector-0 is associated to slow-path handler */ 10519 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 10520 &lpfc_sli_sp_intr_handler, 0, 10521 LPFC_SP_DRIVER_HANDLER_NAME, phba); 10522 if (rc) { 10523 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10524 "0421 MSI-X slow-path request_irq failed " 10525 "(%d)\n", rc); 10526 goto msi_fail_out; 10527 } 10528 10529 /* vector-1 is associated to fast-path handler */ 10530 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 10531 &lpfc_sli_fp_intr_handler, 0, 10532 LPFC_FP_DRIVER_HANDLER_NAME, phba); 10533 10534 if (rc) { 10535 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10536 "0429 MSI-X fast-path request_irq failed " 10537 "(%d)\n", rc); 10538 goto irq_fail_out; 10539 } 10540 10541 /* 10542 * Configure HBA MSI-X attention conditions to messages 10543 */ 10544 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 10545 10546 if (!pmb) { 10547 rc = -ENOMEM; 10548 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10549 "0474 Unable to allocate memory for issuing " 10550 "MBOX_CONFIG_MSI command\n"); 10551 goto mem_fail_out; 10552 } 10553 rc = lpfc_config_msi(phba, pmb); 10554 if (rc) 10555 goto mbx_fail_out; 10556 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 10557 if (rc != MBX_SUCCESS) { 10558 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 10559 "0351 Config MSI mailbox command failed, " 10560 "mbxCmd x%x, mbxStatus x%x\n", 10561 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 10562 goto mbx_fail_out; 10563 } 10564 10565 /* Free memory allocated for mailbox command */ 10566 mempool_free(pmb, phba->mbox_mem_pool); 10567 return rc; 10568 10569 mbx_fail_out: 10570 /* Free memory allocated for mailbox command */ 10571 mempool_free(pmb, phba->mbox_mem_pool); 10572 10573 mem_fail_out: 10574 /* free the irq already requested */ 10575 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 10576 10577 irq_fail_out: 10578 /* free the irq already requested */ 10579 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 10580 10581 msi_fail_out: 10582 /* Unconfigure MSI-X capability structure */ 10583 pci_free_irq_vectors(phba->pcidev); 10584 10585 vec_fail_out: 10586 return rc; 10587 } 10588 10589 /** 10590 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 10591 * @phba: pointer to lpfc hba data structure. 10592 * 10593 * This routine is invoked to enable the MSI interrupt mode to device with 10594 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 10595 * enable the MSI vector. The device driver is responsible for calling the 10596 * request_irq() to register MSI vector with a interrupt the handler, which 10597 * is done in this function. 10598 * 10599 * Return codes 10600 * 0 - successful 10601 * other values - error 10602 */ 10603 static int 10604 lpfc_sli_enable_msi(struct lpfc_hba *phba) 10605 { 10606 int rc; 10607 10608 rc = pci_enable_msi(phba->pcidev); 10609 if (!rc) 10610 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10611 "0462 PCI enable MSI mode success.\n"); 10612 else { 10613 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10614 "0471 PCI enable MSI mode failed (%d)\n", rc); 10615 return rc; 10616 } 10617 10618 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 10619 0, LPFC_DRIVER_NAME, phba); 10620 if (rc) { 10621 pci_disable_msi(phba->pcidev); 10622 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10623 "0478 MSI request_irq failed (%d)\n", rc); 10624 } 10625 return rc; 10626 } 10627 10628 /** 10629 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 10630 * @phba: pointer to lpfc hba data structure. 10631 * 10632 * This routine is invoked to enable device interrupt and associate driver's 10633 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 10634 * spec. Depends on the interrupt mode configured to the driver, the driver 10635 * will try to fallback from the configured interrupt mode to an interrupt 10636 * mode which is supported by the platform, kernel, and device in the order 10637 * of: 10638 * MSI-X -> MSI -> IRQ. 10639 * 10640 * Return codes 10641 * 0 - successful 10642 * other values - error 10643 **/ 10644 static uint32_t 10645 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 10646 { 10647 uint32_t intr_mode = LPFC_INTR_ERROR; 10648 int retval; 10649 10650 if (cfg_mode == 2) { 10651 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 10652 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 10653 if (!retval) { 10654 /* Now, try to enable MSI-X interrupt mode */ 10655 retval = lpfc_sli_enable_msix(phba); 10656 if (!retval) { 10657 /* Indicate initialization to MSI-X mode */ 10658 phba->intr_type = MSIX; 10659 intr_mode = 2; 10660 } 10661 } 10662 } 10663 10664 /* Fallback to MSI if MSI-X initialization failed */ 10665 if (cfg_mode >= 1 && phba->intr_type == NONE) { 10666 retval = lpfc_sli_enable_msi(phba); 10667 if (!retval) { 10668 /* Indicate initialization to MSI mode */ 10669 phba->intr_type = MSI; 10670 intr_mode = 1; 10671 } 10672 } 10673 10674 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 10675 if (phba->intr_type == NONE) { 10676 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 10677 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 10678 if (!retval) { 10679 /* Indicate initialization to INTx mode */ 10680 phba->intr_type = INTx; 10681 intr_mode = 0; 10682 } 10683 } 10684 return intr_mode; 10685 } 10686 10687 /** 10688 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 10689 * @phba: pointer to lpfc hba data structure. 10690 * 10691 * This routine is invoked to disable device interrupt and disassociate the 10692 * driver's interrupt handler(s) from interrupt vector(s) to device with 10693 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 10694 * release the interrupt vector(s) for the message signaled interrupt. 10695 **/ 10696 static void 10697 lpfc_sli_disable_intr(struct lpfc_hba *phba) 10698 { 10699 int nr_irqs, i; 10700 10701 if (phba->intr_type == MSIX) 10702 nr_irqs = LPFC_MSIX_VECTORS; 10703 else 10704 nr_irqs = 1; 10705 10706 for (i = 0; i < nr_irqs; i++) 10707 free_irq(pci_irq_vector(phba->pcidev, i), phba); 10708 pci_free_irq_vectors(phba->pcidev); 10709 10710 /* Reset interrupt management states */ 10711 phba->intr_type = NONE; 10712 phba->sli.slistat.sli_intr = 0; 10713 } 10714 10715 /** 10716 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 10717 * @phba: pointer to lpfc hba data structure. 10718 * @id: EQ vector index or Hardware Queue index 10719 * @match: LPFC_FIND_BY_EQ = match by EQ 10720 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 10721 * Return the CPU that matches the selection criteria 10722 */ 10723 static uint16_t 10724 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 10725 { 10726 struct lpfc_vector_map_info *cpup; 10727 int cpu; 10728 10729 /* Loop through all CPUs */ 10730 for_each_present_cpu(cpu) { 10731 cpup = &phba->sli4_hba.cpu_map[cpu]; 10732 10733 /* If we are matching by EQ, there may be multiple CPUs using 10734 * using the same vector, so select the one with 10735 * LPFC_CPU_FIRST_IRQ set. 10736 */ 10737 if ((match == LPFC_FIND_BY_EQ) && 10738 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 10739 (cpup->eq == id)) 10740 return cpu; 10741 10742 /* If matching by HDWQ, select the first CPU that matches */ 10743 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 10744 return cpu; 10745 } 10746 return 0; 10747 } 10748 10749 #ifdef CONFIG_X86 10750 /** 10751 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 10752 * @phba: pointer to lpfc hba data structure. 10753 * @cpu: CPU map index 10754 * @phys_id: CPU package physical id 10755 * @core_id: CPU core id 10756 */ 10757 static int 10758 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 10759 uint16_t phys_id, uint16_t core_id) 10760 { 10761 struct lpfc_vector_map_info *cpup; 10762 int idx; 10763 10764 for_each_present_cpu(idx) { 10765 cpup = &phba->sli4_hba.cpu_map[idx]; 10766 /* Does the cpup match the one we are looking for */ 10767 if ((cpup->phys_id == phys_id) && 10768 (cpup->core_id == core_id) && 10769 (cpu != idx)) 10770 return 1; 10771 } 10772 return 0; 10773 } 10774 #endif 10775 10776 /* 10777 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 10778 * @phba: pointer to lpfc hba data structure. 10779 * @eqidx: index for eq and irq vector 10780 * @flag: flags to set for vector_map structure 10781 * @cpu: cpu used to index vector_map structure 10782 * 10783 * The routine assigns eq info into vector_map structure 10784 */ 10785 static inline void 10786 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 10787 unsigned int cpu) 10788 { 10789 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 10790 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 10791 10792 cpup->eq = eqidx; 10793 cpup->flag |= flag; 10794 10795 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10796 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 10797 cpu, eqhdl->irq, cpup->eq, cpup->flag); 10798 } 10799 10800 /** 10801 * lpfc_cpu_map_array_init - Initialize cpu_map structure 10802 * @phba: pointer to lpfc hba data structure. 10803 * 10804 * The routine initializes the cpu_map array structure 10805 */ 10806 static void 10807 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 10808 { 10809 struct lpfc_vector_map_info *cpup; 10810 struct lpfc_eq_intr_info *eqi; 10811 int cpu; 10812 10813 for_each_possible_cpu(cpu) { 10814 cpup = &phba->sli4_hba.cpu_map[cpu]; 10815 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 10816 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 10817 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 10818 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 10819 cpup->flag = 0; 10820 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 10821 INIT_LIST_HEAD(&eqi->list); 10822 eqi->icnt = 0; 10823 } 10824 } 10825 10826 /** 10827 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 10828 * @phba: pointer to lpfc hba data structure. 10829 * 10830 * The routine initializes the hba_eq_hdl array structure 10831 */ 10832 static void 10833 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 10834 { 10835 struct lpfc_hba_eq_hdl *eqhdl; 10836 int i; 10837 10838 for (i = 0; i < phba->cfg_irq_chann; i++) { 10839 eqhdl = lpfc_get_eq_hdl(i); 10840 eqhdl->irq = LPFC_VECTOR_MAP_EMPTY; 10841 eqhdl->phba = phba; 10842 } 10843 } 10844 10845 /** 10846 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 10847 * @phba: pointer to lpfc hba data structure. 10848 * @vectors: number of msix vectors allocated. 10849 * 10850 * The routine will figure out the CPU affinity assignment for every 10851 * MSI-X vector allocated for the HBA. 10852 * In addition, the CPU to IO channel mapping will be calculated 10853 * and the phba->sli4_hba.cpu_map array will reflect this. 10854 */ 10855 static void 10856 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 10857 { 10858 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 10859 int max_phys_id, min_phys_id; 10860 int max_core_id, min_core_id; 10861 struct lpfc_vector_map_info *cpup; 10862 struct lpfc_vector_map_info *new_cpup; 10863 #ifdef CONFIG_X86 10864 struct cpuinfo_x86 *cpuinfo; 10865 #endif 10866 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 10867 struct lpfc_hdwq_stat *c_stat; 10868 #endif 10869 10870 max_phys_id = 0; 10871 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 10872 max_core_id = 0; 10873 min_core_id = LPFC_VECTOR_MAP_EMPTY; 10874 10875 /* Update CPU map with physical id and core id of each CPU */ 10876 for_each_present_cpu(cpu) { 10877 cpup = &phba->sli4_hba.cpu_map[cpu]; 10878 #ifdef CONFIG_X86 10879 cpuinfo = &cpu_data(cpu); 10880 cpup->phys_id = cpuinfo->phys_proc_id; 10881 cpup->core_id = cpuinfo->cpu_core_id; 10882 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 10883 cpup->flag |= LPFC_CPU_MAP_HYPER; 10884 #else 10885 /* No distinction between CPUs for other platforms */ 10886 cpup->phys_id = 0; 10887 cpup->core_id = cpu; 10888 #endif 10889 10890 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10891 "3328 CPU %d physid %d coreid %d flag x%x\n", 10892 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 10893 10894 if (cpup->phys_id > max_phys_id) 10895 max_phys_id = cpup->phys_id; 10896 if (cpup->phys_id < min_phys_id) 10897 min_phys_id = cpup->phys_id; 10898 10899 if (cpup->core_id > max_core_id) 10900 max_core_id = cpup->core_id; 10901 if (cpup->core_id < min_core_id) 10902 min_core_id = cpup->core_id; 10903 } 10904 10905 /* After looking at each irq vector assigned to this pcidev, its 10906 * possible to see that not ALL CPUs have been accounted for. 10907 * Next we will set any unassigned (unaffinitized) cpu map 10908 * entries to a IRQ on the same phys_id. 10909 */ 10910 first_cpu = cpumask_first(cpu_present_mask); 10911 start_cpu = first_cpu; 10912 10913 for_each_present_cpu(cpu) { 10914 cpup = &phba->sli4_hba.cpu_map[cpu]; 10915 10916 /* Is this CPU entry unassigned */ 10917 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 10918 /* Mark CPU as IRQ not assigned by the kernel */ 10919 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 10920 10921 /* If so, find a new_cpup thats on the the SAME 10922 * phys_id as cpup. start_cpu will start where we 10923 * left off so all unassigned entries don't get assgined 10924 * the IRQ of the first entry. 10925 */ 10926 new_cpu = start_cpu; 10927 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 10928 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 10929 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 10930 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 10931 (new_cpup->phys_id == cpup->phys_id)) 10932 goto found_same; 10933 new_cpu = cpumask_next( 10934 new_cpu, cpu_present_mask); 10935 if (new_cpu == nr_cpumask_bits) 10936 new_cpu = first_cpu; 10937 } 10938 /* At this point, we leave the CPU as unassigned */ 10939 continue; 10940 found_same: 10941 /* We found a matching phys_id, so copy the IRQ info */ 10942 cpup->eq = new_cpup->eq; 10943 10944 /* Bump start_cpu to the next slot to minmize the 10945 * chance of having multiple unassigned CPU entries 10946 * selecting the same IRQ. 10947 */ 10948 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 10949 if (start_cpu == nr_cpumask_bits) 10950 start_cpu = first_cpu; 10951 10952 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10953 "3337 Set Affinity: CPU %d " 10954 "eq %d from peer cpu %d same " 10955 "phys_id (%d)\n", 10956 cpu, cpup->eq, new_cpu, 10957 cpup->phys_id); 10958 } 10959 } 10960 10961 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 10962 start_cpu = first_cpu; 10963 10964 for_each_present_cpu(cpu) { 10965 cpup = &phba->sli4_hba.cpu_map[cpu]; 10966 10967 /* Is this entry unassigned */ 10968 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 10969 /* Mark it as IRQ not assigned by the kernel */ 10970 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 10971 10972 /* If so, find a new_cpup thats on ANY phys_id 10973 * as the cpup. start_cpu will start where we 10974 * left off so all unassigned entries don't get 10975 * assigned the IRQ of the first entry. 10976 */ 10977 new_cpu = start_cpu; 10978 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 10979 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 10980 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 10981 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 10982 goto found_any; 10983 new_cpu = cpumask_next( 10984 new_cpu, cpu_present_mask); 10985 if (new_cpu == nr_cpumask_bits) 10986 new_cpu = first_cpu; 10987 } 10988 /* We should never leave an entry unassigned */ 10989 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10990 "3339 Set Affinity: CPU %d " 10991 "eq %d UNASSIGNED\n", 10992 cpup->hdwq, cpup->eq); 10993 continue; 10994 found_any: 10995 /* We found an available entry, copy the IRQ info */ 10996 cpup->eq = new_cpup->eq; 10997 10998 /* Bump start_cpu to the next slot to minmize the 10999 * chance of having multiple unassigned CPU entries 11000 * selecting the same IRQ. 11001 */ 11002 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 11003 if (start_cpu == nr_cpumask_bits) 11004 start_cpu = first_cpu; 11005 11006 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11007 "3338 Set Affinity: CPU %d " 11008 "eq %d from peer cpu %d (%d/%d)\n", 11009 cpu, cpup->eq, new_cpu, 11010 new_cpup->phys_id, new_cpup->core_id); 11011 } 11012 } 11013 11014 /* Assign hdwq indices that are unique across all cpus in the map 11015 * that are also FIRST_CPUs. 11016 */ 11017 idx = 0; 11018 for_each_present_cpu(cpu) { 11019 cpup = &phba->sli4_hba.cpu_map[cpu]; 11020 11021 /* Only FIRST IRQs get a hdwq index assignment. */ 11022 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11023 continue; 11024 11025 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 11026 cpup->hdwq = idx; 11027 idx++; 11028 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11029 "3333 Set Affinity: CPU %d (phys %d core %d): " 11030 "hdwq %d eq %d flg x%x\n", 11031 cpu, cpup->phys_id, cpup->core_id, 11032 cpup->hdwq, cpup->eq, cpup->flag); 11033 } 11034 /* Associate a hdwq with each cpu_map entry 11035 * This will be 1 to 1 - hdwq to cpu, unless there are less 11036 * hardware queues then CPUs. For that case we will just round-robin 11037 * the available hardware queues as they get assigned to CPUs. 11038 * The next_idx is the idx from the FIRST_CPU loop above to account 11039 * for irq_chann < hdwq. The idx is used for round-robin assignments 11040 * and needs to start at 0. 11041 */ 11042 next_idx = idx; 11043 start_cpu = 0; 11044 idx = 0; 11045 for_each_present_cpu(cpu) { 11046 cpup = &phba->sli4_hba.cpu_map[cpu]; 11047 11048 /* FIRST cpus are already mapped. */ 11049 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 11050 continue; 11051 11052 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 11053 * of the unassigned cpus to the next idx so that all 11054 * hdw queues are fully utilized. 11055 */ 11056 if (next_idx < phba->cfg_hdw_queue) { 11057 cpup->hdwq = next_idx; 11058 next_idx++; 11059 continue; 11060 } 11061 11062 /* Not a First CPU and all hdw_queues are used. Reuse a 11063 * Hardware Queue for another CPU, so be smart about it 11064 * and pick one that has its IRQ/EQ mapped to the same phys_id 11065 * (CPU package) and core_id. 11066 */ 11067 new_cpu = start_cpu; 11068 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11069 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11070 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 11071 new_cpup->phys_id == cpup->phys_id && 11072 new_cpup->core_id == cpup->core_id) { 11073 goto found_hdwq; 11074 } 11075 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 11076 if (new_cpu == nr_cpumask_bits) 11077 new_cpu = first_cpu; 11078 } 11079 11080 /* If we can't match both phys_id and core_id, 11081 * settle for just a phys_id match. 11082 */ 11083 new_cpu = start_cpu; 11084 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11085 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11086 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 11087 new_cpup->phys_id == cpup->phys_id) 11088 goto found_hdwq; 11089 11090 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 11091 if (new_cpu == nr_cpumask_bits) 11092 new_cpu = first_cpu; 11093 } 11094 11095 /* Otherwise just round robin on cfg_hdw_queue */ 11096 cpup->hdwq = idx % phba->cfg_hdw_queue; 11097 idx++; 11098 goto logit; 11099 found_hdwq: 11100 /* We found an available entry, copy the IRQ info */ 11101 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 11102 if (start_cpu == nr_cpumask_bits) 11103 start_cpu = first_cpu; 11104 cpup->hdwq = new_cpup->hdwq; 11105 logit: 11106 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11107 "3335 Set Affinity: CPU %d (phys %d core %d): " 11108 "hdwq %d eq %d flg x%x\n", 11109 cpu, cpup->phys_id, cpup->core_id, 11110 cpup->hdwq, cpup->eq, cpup->flag); 11111 } 11112 11113 /* 11114 * Initialize the cpu_map slots for not-present cpus in case 11115 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 11116 */ 11117 idx = 0; 11118 for_each_possible_cpu(cpu) { 11119 cpup = &phba->sli4_hba.cpu_map[cpu]; 11120 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 11121 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 11122 c_stat->hdwq_no = cpup->hdwq; 11123 #endif 11124 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 11125 continue; 11126 11127 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 11128 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 11129 c_stat->hdwq_no = cpup->hdwq; 11130 #endif 11131 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11132 "3340 Set Affinity: not present " 11133 "CPU %d hdwq %d\n", 11134 cpu, cpup->hdwq); 11135 } 11136 11137 /* The cpu_map array will be used later during initialization 11138 * when EQ / CQ / WQs are allocated and configured. 11139 */ 11140 return; 11141 } 11142 11143 /** 11144 * lpfc_cpuhp_get_eq 11145 * 11146 * @phba: pointer to lpfc hba data structure. 11147 * @cpu: cpu going offline 11148 * @eqlist: 11149 */ 11150 static int 11151 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 11152 struct list_head *eqlist) 11153 { 11154 const struct cpumask *maskp; 11155 struct lpfc_queue *eq; 11156 struct cpumask *tmp; 11157 u16 idx; 11158 11159 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 11160 if (!tmp) 11161 return -ENOMEM; 11162 11163 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11164 maskp = pci_irq_get_affinity(phba->pcidev, idx); 11165 if (!maskp) 11166 continue; 11167 /* 11168 * if irq is not affinitized to the cpu going 11169 * then we don't need to poll the eq attached 11170 * to it. 11171 */ 11172 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 11173 continue; 11174 /* get the cpus that are online and are affini- 11175 * tized to this irq vector. If the count is 11176 * more than 1 then cpuhp is not going to shut- 11177 * down this vector. Since this cpu has not 11178 * gone offline yet, we need >1. 11179 */ 11180 cpumask_and(tmp, maskp, cpu_online_mask); 11181 if (cpumask_weight(tmp) > 1) 11182 continue; 11183 11184 /* Now that we have an irq to shutdown, get the eq 11185 * mapped to this irq. Note: multiple hdwq's in 11186 * the software can share an eq, but eventually 11187 * only eq will be mapped to this vector 11188 */ 11189 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 11190 list_add(&eq->_poll_list, eqlist); 11191 } 11192 kfree(tmp); 11193 return 0; 11194 } 11195 11196 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 11197 { 11198 if (phba->sli_rev != LPFC_SLI_REV4) 11199 return; 11200 11201 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 11202 &phba->cpuhp); 11203 /* 11204 * unregistering the instance doesn't stop the polling 11205 * timer. Wait for the poll timer to retire. 11206 */ 11207 synchronize_rcu(); 11208 del_timer_sync(&phba->cpuhp_poll_timer); 11209 } 11210 11211 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 11212 { 11213 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 11214 return; 11215 11216 __lpfc_cpuhp_remove(phba); 11217 } 11218 11219 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 11220 { 11221 if (phba->sli_rev != LPFC_SLI_REV4) 11222 return; 11223 11224 rcu_read_lock(); 11225 11226 if (!list_empty(&phba->poll_list)) 11227 mod_timer(&phba->cpuhp_poll_timer, 11228 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 11229 11230 rcu_read_unlock(); 11231 11232 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 11233 &phba->cpuhp); 11234 } 11235 11236 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 11237 { 11238 if (phba->pport->load_flag & FC_UNLOADING) { 11239 *retval = -EAGAIN; 11240 return true; 11241 } 11242 11243 if (phba->sli_rev != LPFC_SLI_REV4) { 11244 *retval = 0; 11245 return true; 11246 } 11247 11248 /* proceed with the hotplug */ 11249 return false; 11250 } 11251 11252 /** 11253 * lpfc_irq_set_aff - set IRQ affinity 11254 * @eqhdl: EQ handle 11255 * @cpu: cpu to set affinity 11256 * 11257 **/ 11258 static inline void 11259 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 11260 { 11261 cpumask_clear(&eqhdl->aff_mask); 11262 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 11263 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 11264 irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask); 11265 } 11266 11267 /** 11268 * lpfc_irq_clear_aff - clear IRQ affinity 11269 * @eqhdl: EQ handle 11270 * 11271 **/ 11272 static inline void 11273 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 11274 { 11275 cpumask_clear(&eqhdl->aff_mask); 11276 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 11277 irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask); 11278 } 11279 11280 /** 11281 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 11282 * @phba: pointer to HBA context object. 11283 * @cpu: cpu going offline/online 11284 * @offline: true, cpu is going offline. false, cpu is coming online. 11285 * 11286 * If cpu is going offline, we'll try our best effort to find the next 11287 * online cpu on the phba's NUMA node and migrate all offlining IRQ affinities. 11288 * 11289 * If cpu is coming online, reaffinitize the IRQ back to the onlineng cpu. 11290 * 11291 * Note: Call only if cfg_irq_numa is enabled, otherwise rely on 11292 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 11293 * 11294 **/ 11295 static void 11296 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 11297 { 11298 struct lpfc_vector_map_info *cpup; 11299 struct cpumask *aff_mask; 11300 unsigned int cpu_select, cpu_next, idx; 11301 const struct cpumask *numa_mask; 11302 11303 if (!phba->cfg_irq_numa) 11304 return; 11305 11306 numa_mask = &phba->sli4_hba.numa_mask; 11307 11308 if (!cpumask_test_cpu(cpu, numa_mask)) 11309 return; 11310 11311 cpup = &phba->sli4_hba.cpu_map[cpu]; 11312 11313 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11314 return; 11315 11316 if (offline) { 11317 /* Find next online CPU on NUMA node */ 11318 cpu_next = cpumask_next_wrap(cpu, numa_mask, cpu, true); 11319 cpu_select = lpfc_next_online_numa_cpu(numa_mask, cpu_next); 11320 11321 /* Found a valid CPU */ 11322 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 11323 /* Go through each eqhdl and ensure offlining 11324 * cpu aff_mask is migrated 11325 */ 11326 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11327 aff_mask = lpfc_get_aff_mask(idx); 11328 11329 /* Migrate affinity */ 11330 if (cpumask_test_cpu(cpu, aff_mask)) 11331 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 11332 cpu_select); 11333 } 11334 } else { 11335 /* Rely on irqbalance if no online CPUs left on NUMA */ 11336 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 11337 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 11338 } 11339 } else { 11340 /* Migrate affinity back to this CPU */ 11341 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 11342 } 11343 } 11344 11345 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 11346 { 11347 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 11348 struct lpfc_queue *eq, *next; 11349 LIST_HEAD(eqlist); 11350 int retval; 11351 11352 if (!phba) { 11353 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 11354 return 0; 11355 } 11356 11357 if (__lpfc_cpuhp_checks(phba, &retval)) 11358 return retval; 11359 11360 lpfc_irq_rebalance(phba, cpu, true); 11361 11362 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 11363 if (retval) 11364 return retval; 11365 11366 /* start polling on these eq's */ 11367 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 11368 list_del_init(&eq->_poll_list); 11369 lpfc_sli4_start_polling(eq); 11370 } 11371 11372 return 0; 11373 } 11374 11375 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 11376 { 11377 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 11378 struct lpfc_queue *eq, *next; 11379 unsigned int n; 11380 int retval; 11381 11382 if (!phba) { 11383 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 11384 return 0; 11385 } 11386 11387 if (__lpfc_cpuhp_checks(phba, &retval)) 11388 return retval; 11389 11390 lpfc_irq_rebalance(phba, cpu, false); 11391 11392 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 11393 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 11394 if (n == cpu) 11395 lpfc_sli4_stop_polling(eq); 11396 } 11397 11398 return 0; 11399 } 11400 11401 /** 11402 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 11403 * @phba: pointer to lpfc hba data structure. 11404 * 11405 * This routine is invoked to enable the MSI-X interrupt vectors to device 11406 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 11407 * to cpus on the system. 11408 * 11409 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 11410 * the number of cpus on the same numa node as this adapter. The vectors are 11411 * allocated without requesting OS affinity mapping. A vector will be 11412 * allocated and assigned to each online and offline cpu. If the cpu is 11413 * online, then affinity will be set to that cpu. If the cpu is offline, then 11414 * affinity will be set to the nearest peer cpu within the numa node that is 11415 * online. If there are no online cpus within the numa node, affinity is not 11416 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 11417 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 11418 * configured. 11419 * 11420 * If numa mode is not enabled and there is more than 1 vector allocated, then 11421 * the driver relies on the managed irq interface where the OS assigns vector to 11422 * cpu affinity. The driver will then use that affinity mapping to setup its 11423 * cpu mapping table. 11424 * 11425 * Return codes 11426 * 0 - successful 11427 * other values - error 11428 **/ 11429 static int 11430 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 11431 { 11432 int vectors, rc, index; 11433 char *name; 11434 const struct cpumask *numa_mask = NULL; 11435 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 11436 struct lpfc_hba_eq_hdl *eqhdl; 11437 const struct cpumask *maskp; 11438 bool first; 11439 unsigned int flags = PCI_IRQ_MSIX; 11440 11441 /* Set up MSI-X multi-message vectors */ 11442 vectors = phba->cfg_irq_chann; 11443 11444 if (phba->cfg_irq_numa) { 11445 numa_mask = &phba->sli4_hba.numa_mask; 11446 cpu_cnt = cpumask_weight(numa_mask); 11447 vectors = min(phba->cfg_irq_chann, cpu_cnt); 11448 11449 /* cpu: iterates over numa_mask including offline or online 11450 * cpu_select: iterates over online numa_mask to set affinity 11451 */ 11452 cpu = cpumask_first(numa_mask); 11453 cpu_select = lpfc_next_online_numa_cpu(numa_mask, cpu); 11454 } else { 11455 flags |= PCI_IRQ_AFFINITY; 11456 } 11457 11458 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 11459 if (rc < 0) { 11460 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11461 "0484 PCI enable MSI-X failed (%d)\n", rc); 11462 goto vec_fail_out; 11463 } 11464 vectors = rc; 11465 11466 /* Assign MSI-X vectors to interrupt handlers */ 11467 for (index = 0; index < vectors; index++) { 11468 eqhdl = lpfc_get_eq_hdl(index); 11469 name = eqhdl->handler_name; 11470 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 11471 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 11472 LPFC_DRIVER_HANDLER_NAME"%d", index); 11473 11474 eqhdl->idx = index; 11475 rc = request_irq(pci_irq_vector(phba->pcidev, index), 11476 &lpfc_sli4_hba_intr_handler, 0, 11477 name, eqhdl); 11478 if (rc) { 11479 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11480 "0486 MSI-X fast-path (%d) " 11481 "request_irq failed (%d)\n", index, rc); 11482 goto cfg_fail_out; 11483 } 11484 11485 eqhdl->irq = pci_irq_vector(phba->pcidev, index); 11486 11487 if (phba->cfg_irq_numa) { 11488 /* If found a neighboring online cpu, set affinity */ 11489 if (cpu_select < nr_cpu_ids) 11490 lpfc_irq_set_aff(eqhdl, cpu_select); 11491 11492 /* Assign EQ to cpu_map */ 11493 lpfc_assign_eq_map_info(phba, index, 11494 LPFC_CPU_FIRST_IRQ, 11495 cpu); 11496 11497 /* Iterate to next offline or online cpu in numa_mask */ 11498 cpu = cpumask_next(cpu, numa_mask); 11499 11500 /* Find next online cpu in numa_mask to set affinity */ 11501 cpu_select = lpfc_next_online_numa_cpu(numa_mask, cpu); 11502 } else if (vectors == 1) { 11503 cpu = cpumask_first(cpu_present_mask); 11504 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 11505 cpu); 11506 } else { 11507 maskp = pci_irq_get_affinity(phba->pcidev, index); 11508 11509 first = true; 11510 /* Loop through all CPUs associated with vector index */ 11511 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 11512 /* If this is the first CPU thats assigned to 11513 * this vector, set LPFC_CPU_FIRST_IRQ. 11514 */ 11515 lpfc_assign_eq_map_info(phba, index, 11516 first ? 11517 LPFC_CPU_FIRST_IRQ : 0, 11518 cpu); 11519 if (first) 11520 first = false; 11521 } 11522 } 11523 } 11524 11525 if (vectors != phba->cfg_irq_chann) { 11526 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11527 "3238 Reducing IO channels to match number of " 11528 "MSI-X vectors, requested %d got %d\n", 11529 phba->cfg_irq_chann, vectors); 11530 if (phba->cfg_irq_chann > vectors) 11531 phba->cfg_irq_chann = vectors; 11532 } 11533 11534 return rc; 11535 11536 cfg_fail_out: 11537 /* free the irq already requested */ 11538 for (--index; index >= 0; index--) { 11539 eqhdl = lpfc_get_eq_hdl(index); 11540 lpfc_irq_clear_aff(eqhdl); 11541 irq_set_affinity_hint(eqhdl->irq, NULL); 11542 free_irq(eqhdl->irq, eqhdl); 11543 } 11544 11545 /* Unconfigure MSI-X capability structure */ 11546 pci_free_irq_vectors(phba->pcidev); 11547 11548 vec_fail_out: 11549 return rc; 11550 } 11551 11552 /** 11553 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 11554 * @phba: pointer to lpfc hba data structure. 11555 * 11556 * This routine is invoked to enable the MSI interrupt mode to device with 11557 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 11558 * called to enable the MSI vector. The device driver is responsible for 11559 * calling the request_irq() to register MSI vector with a interrupt the 11560 * handler, which is done in this function. 11561 * 11562 * Return codes 11563 * 0 - successful 11564 * other values - error 11565 **/ 11566 static int 11567 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 11568 { 11569 int rc, index; 11570 unsigned int cpu; 11571 struct lpfc_hba_eq_hdl *eqhdl; 11572 11573 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 11574 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 11575 if (rc > 0) 11576 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11577 "0487 PCI enable MSI mode success.\n"); 11578 else { 11579 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11580 "0488 PCI enable MSI mode failed (%d)\n", rc); 11581 return rc ? rc : -1; 11582 } 11583 11584 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 11585 0, LPFC_DRIVER_NAME, phba); 11586 if (rc) { 11587 pci_free_irq_vectors(phba->pcidev); 11588 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11589 "0490 MSI request_irq failed (%d)\n", rc); 11590 return rc; 11591 } 11592 11593 eqhdl = lpfc_get_eq_hdl(0); 11594 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 11595 11596 cpu = cpumask_first(cpu_present_mask); 11597 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 11598 11599 for (index = 0; index < phba->cfg_irq_chann; index++) { 11600 eqhdl = lpfc_get_eq_hdl(index); 11601 eqhdl->idx = index; 11602 } 11603 11604 return 0; 11605 } 11606 11607 /** 11608 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 11609 * @phba: pointer to lpfc hba data structure. 11610 * 11611 * This routine is invoked to enable device interrupt and associate driver's 11612 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 11613 * interface spec. Depends on the interrupt mode configured to the driver, 11614 * the driver will try to fallback from the configured interrupt mode to an 11615 * interrupt mode which is supported by the platform, kernel, and device in 11616 * the order of: 11617 * MSI-X -> MSI -> IRQ. 11618 * 11619 * Return codes 11620 * 0 - successful 11621 * other values - error 11622 **/ 11623 static uint32_t 11624 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 11625 { 11626 uint32_t intr_mode = LPFC_INTR_ERROR; 11627 int retval, idx; 11628 11629 if (cfg_mode == 2) { 11630 /* Preparation before conf_msi mbox cmd */ 11631 retval = 0; 11632 if (!retval) { 11633 /* Now, try to enable MSI-X interrupt mode */ 11634 retval = lpfc_sli4_enable_msix(phba); 11635 if (!retval) { 11636 /* Indicate initialization to MSI-X mode */ 11637 phba->intr_type = MSIX; 11638 intr_mode = 2; 11639 } 11640 } 11641 } 11642 11643 /* Fallback to MSI if MSI-X initialization failed */ 11644 if (cfg_mode >= 1 && phba->intr_type == NONE) { 11645 retval = lpfc_sli4_enable_msi(phba); 11646 if (!retval) { 11647 /* Indicate initialization to MSI mode */ 11648 phba->intr_type = MSI; 11649 intr_mode = 1; 11650 } 11651 } 11652 11653 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 11654 if (phba->intr_type == NONE) { 11655 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 11656 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 11657 if (!retval) { 11658 struct lpfc_hba_eq_hdl *eqhdl; 11659 unsigned int cpu; 11660 11661 /* Indicate initialization to INTx mode */ 11662 phba->intr_type = INTx; 11663 intr_mode = 0; 11664 11665 eqhdl = lpfc_get_eq_hdl(0); 11666 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 11667 11668 cpu = cpumask_first(cpu_present_mask); 11669 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 11670 cpu); 11671 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11672 eqhdl = lpfc_get_eq_hdl(idx); 11673 eqhdl->idx = idx; 11674 } 11675 } 11676 } 11677 return intr_mode; 11678 } 11679 11680 /** 11681 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 11682 * @phba: pointer to lpfc hba data structure. 11683 * 11684 * This routine is invoked to disable device interrupt and disassociate 11685 * the driver's interrupt handler(s) from interrupt vector(s) to device 11686 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 11687 * will release the interrupt vector(s) for the message signaled interrupt. 11688 **/ 11689 static void 11690 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 11691 { 11692 /* Disable the currently initialized interrupt mode */ 11693 if (phba->intr_type == MSIX) { 11694 int index; 11695 struct lpfc_hba_eq_hdl *eqhdl; 11696 11697 /* Free up MSI-X multi-message vectors */ 11698 for (index = 0; index < phba->cfg_irq_chann; index++) { 11699 eqhdl = lpfc_get_eq_hdl(index); 11700 lpfc_irq_clear_aff(eqhdl); 11701 irq_set_affinity_hint(eqhdl->irq, NULL); 11702 free_irq(eqhdl->irq, eqhdl); 11703 } 11704 } else { 11705 free_irq(phba->pcidev->irq, phba); 11706 } 11707 11708 pci_free_irq_vectors(phba->pcidev); 11709 11710 /* Reset interrupt management states */ 11711 phba->intr_type = NONE; 11712 phba->sli.slistat.sli_intr = 0; 11713 } 11714 11715 /** 11716 * lpfc_unset_hba - Unset SLI3 hba device initialization 11717 * @phba: pointer to lpfc hba data structure. 11718 * 11719 * This routine is invoked to unset the HBA device initialization steps to 11720 * a device with SLI-3 interface spec. 11721 **/ 11722 static void 11723 lpfc_unset_hba(struct lpfc_hba *phba) 11724 { 11725 struct lpfc_vport *vport = phba->pport; 11726 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 11727 11728 spin_lock_irq(shost->host_lock); 11729 vport->load_flag |= FC_UNLOADING; 11730 spin_unlock_irq(shost->host_lock); 11731 11732 kfree(phba->vpi_bmask); 11733 kfree(phba->vpi_ids); 11734 11735 lpfc_stop_hba_timers(phba); 11736 11737 phba->pport->work_port_events = 0; 11738 11739 lpfc_sli_hba_down(phba); 11740 11741 lpfc_sli_brdrestart(phba); 11742 11743 lpfc_sli_disable_intr(phba); 11744 11745 return; 11746 } 11747 11748 /** 11749 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 11750 * @phba: Pointer to HBA context object. 11751 * 11752 * This function is called in the SLI4 code path to wait for completion 11753 * of device's XRIs exchange busy. It will check the XRI exchange busy 11754 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 11755 * that, it will check the XRI exchange busy on outstanding FCP and ELS 11756 * I/Os every 30 seconds, log error message, and wait forever. Only when 11757 * all XRI exchange busy complete, the driver unload shall proceed with 11758 * invoking the function reset ioctl mailbox command to the CNA and the 11759 * the rest of the driver unload resource release. 11760 **/ 11761 static void 11762 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 11763 { 11764 struct lpfc_sli4_hdw_queue *qp; 11765 int idx, ccnt; 11766 int wait_time = 0; 11767 int io_xri_cmpl = 1; 11768 int nvmet_xri_cmpl = 1; 11769 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 11770 11771 /* Driver just aborted IOs during the hba_unset process. Pause 11772 * here to give the HBA time to complete the IO and get entries 11773 * into the abts lists. 11774 */ 11775 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 11776 11777 /* Wait for NVME pending IO to flush back to transport. */ 11778 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 11779 lpfc_nvme_wait_for_io_drain(phba); 11780 11781 ccnt = 0; 11782 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 11783 qp = &phba->sli4_hba.hdwq[idx]; 11784 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 11785 if (!io_xri_cmpl) /* if list is NOT empty */ 11786 ccnt++; 11787 } 11788 if (ccnt) 11789 io_xri_cmpl = 0; 11790 11791 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11792 nvmet_xri_cmpl = 11793 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 11794 } 11795 11796 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 11797 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 11798 if (!nvmet_xri_cmpl) 11799 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11800 "6424 NVMET XRI exchange busy " 11801 "wait time: %d seconds.\n", 11802 wait_time/1000); 11803 if (!io_xri_cmpl) 11804 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11805 "6100 IO XRI exchange busy " 11806 "wait time: %d seconds.\n", 11807 wait_time/1000); 11808 if (!els_xri_cmpl) 11809 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11810 "2878 ELS XRI exchange busy " 11811 "wait time: %d seconds.\n", 11812 wait_time/1000); 11813 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 11814 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 11815 } else { 11816 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 11817 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 11818 } 11819 11820 ccnt = 0; 11821 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 11822 qp = &phba->sli4_hba.hdwq[idx]; 11823 io_xri_cmpl = list_empty( 11824 &qp->lpfc_abts_io_buf_list); 11825 if (!io_xri_cmpl) /* if list is NOT empty */ 11826 ccnt++; 11827 } 11828 if (ccnt) 11829 io_xri_cmpl = 0; 11830 11831 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11832 nvmet_xri_cmpl = list_empty( 11833 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 11834 } 11835 els_xri_cmpl = 11836 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 11837 11838 } 11839 } 11840 11841 /** 11842 * lpfc_sli4_hba_unset - Unset the fcoe hba 11843 * @phba: Pointer to HBA context object. 11844 * 11845 * This function is called in the SLI4 code path to reset the HBA's FCoE 11846 * function. The caller is not required to hold any lock. This routine 11847 * issues PCI function reset mailbox command to reset the FCoE function. 11848 * At the end of the function, it calls lpfc_hba_down_post function to 11849 * free any pending commands. 11850 **/ 11851 static void 11852 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 11853 { 11854 int wait_cnt = 0; 11855 LPFC_MBOXQ_t *mboxq; 11856 struct pci_dev *pdev = phba->pcidev; 11857 11858 lpfc_stop_hba_timers(phba); 11859 if (phba->pport) 11860 phba->sli4_hba.intr_enable = 0; 11861 11862 /* 11863 * Gracefully wait out the potential current outstanding asynchronous 11864 * mailbox command. 11865 */ 11866 11867 /* First, block any pending async mailbox command from posted */ 11868 spin_lock_irq(&phba->hbalock); 11869 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11870 spin_unlock_irq(&phba->hbalock); 11871 /* Now, trying to wait it out if we can */ 11872 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 11873 msleep(10); 11874 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 11875 break; 11876 } 11877 /* Forcefully release the outstanding mailbox command if timed out */ 11878 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 11879 spin_lock_irq(&phba->hbalock); 11880 mboxq = phba->sli.mbox_active; 11881 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 11882 __lpfc_mbox_cmpl_put(phba, mboxq); 11883 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11884 phba->sli.mbox_active = NULL; 11885 spin_unlock_irq(&phba->hbalock); 11886 } 11887 11888 /* Abort all iocbs associated with the hba */ 11889 lpfc_sli_hba_iocb_abort(phba); 11890 11891 /* Wait for completion of device XRI exchange busy */ 11892 lpfc_sli4_xri_exchange_busy_wait(phba); 11893 11894 /* per-phba callback de-registration for hotplug event */ 11895 lpfc_cpuhp_remove(phba); 11896 11897 /* Disable PCI subsystem interrupt */ 11898 lpfc_sli4_disable_intr(phba); 11899 11900 /* Disable SR-IOV if enabled */ 11901 if (phba->cfg_sriov_nr_virtfn) 11902 pci_disable_sriov(pdev); 11903 11904 /* Stop kthread signal shall trigger work_done one more time */ 11905 kthread_stop(phba->worker_thread); 11906 11907 /* Disable FW logging to host memory */ 11908 lpfc_ras_stop_fwlog(phba); 11909 11910 /* Unset the queues shared with the hardware then release all 11911 * allocated resources. 11912 */ 11913 lpfc_sli4_queue_unset(phba); 11914 lpfc_sli4_queue_destroy(phba); 11915 11916 /* Reset SLI4 HBA FCoE function */ 11917 lpfc_pci_function_reset(phba); 11918 11919 /* Free RAS DMA memory */ 11920 if (phba->ras_fwlog.ras_enabled) 11921 lpfc_sli4_ras_dma_free(phba); 11922 11923 /* Stop the SLI4 device port */ 11924 if (phba->pport) 11925 phba->pport->work_port_events = 0; 11926 } 11927 11928 /** 11929 * lpfc_pc_sli4_params_get - Get the SLI4_PARAMS port capabilities. 11930 * @phba: Pointer to HBA context object. 11931 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 11932 * 11933 * This function is called in the SLI4 code path to read the port's 11934 * sli4 capabilities. 11935 * 11936 * This function may be be called from any context that can block-wait 11937 * for the completion. The expectation is that this routine is called 11938 * typically from probe_one or from the online routine. 11939 **/ 11940 int 11941 lpfc_pc_sli4_params_get(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 11942 { 11943 int rc; 11944 struct lpfc_mqe *mqe; 11945 struct lpfc_pc_sli4_params *sli4_params; 11946 uint32_t mbox_tmo; 11947 11948 rc = 0; 11949 mqe = &mboxq->u.mqe; 11950 11951 /* Read the port's SLI4 Parameters port capabilities */ 11952 lpfc_pc_sli4_params(mboxq); 11953 if (!phba->sli4_hba.intr_enable) 11954 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11955 else { 11956 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 11957 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 11958 } 11959 11960 if (unlikely(rc)) 11961 return 1; 11962 11963 sli4_params = &phba->sli4_hba.pc_sli4_params; 11964 sli4_params->if_type = bf_get(if_type, &mqe->un.sli4_params); 11965 sli4_params->sli_rev = bf_get(sli_rev, &mqe->un.sli4_params); 11966 sli4_params->sli_family = bf_get(sli_family, &mqe->un.sli4_params); 11967 sli4_params->featurelevel_1 = bf_get(featurelevel_1, 11968 &mqe->un.sli4_params); 11969 sli4_params->featurelevel_2 = bf_get(featurelevel_2, 11970 &mqe->un.sli4_params); 11971 sli4_params->proto_types = mqe->un.sli4_params.word3; 11972 sli4_params->sge_supp_len = mqe->un.sli4_params.sge_supp_len; 11973 sli4_params->if_page_sz = bf_get(if_page_sz, &mqe->un.sli4_params); 11974 sli4_params->rq_db_window = bf_get(rq_db_window, &mqe->un.sli4_params); 11975 sli4_params->loopbk_scope = bf_get(loopbk_scope, &mqe->un.sli4_params); 11976 sli4_params->eq_pages_max = bf_get(eq_pages, &mqe->un.sli4_params); 11977 sli4_params->eqe_size = bf_get(eqe_size, &mqe->un.sli4_params); 11978 sli4_params->cq_pages_max = bf_get(cq_pages, &mqe->un.sli4_params); 11979 sli4_params->cqe_size = bf_get(cqe_size, &mqe->un.sli4_params); 11980 sli4_params->mq_pages_max = bf_get(mq_pages, &mqe->un.sli4_params); 11981 sli4_params->mqe_size = bf_get(mqe_size, &mqe->un.sli4_params); 11982 sli4_params->mq_elem_cnt = bf_get(mq_elem_cnt, &mqe->un.sli4_params); 11983 sli4_params->wq_pages_max = bf_get(wq_pages, &mqe->un.sli4_params); 11984 sli4_params->wqe_size = bf_get(wqe_size, &mqe->un.sli4_params); 11985 sli4_params->rq_pages_max = bf_get(rq_pages, &mqe->un.sli4_params); 11986 sli4_params->rqe_size = bf_get(rqe_size, &mqe->un.sli4_params); 11987 sli4_params->hdr_pages_max = bf_get(hdr_pages, &mqe->un.sli4_params); 11988 sli4_params->hdr_size = bf_get(hdr_size, &mqe->un.sli4_params); 11989 sli4_params->hdr_pp_align = bf_get(hdr_pp_align, &mqe->un.sli4_params); 11990 sli4_params->sgl_pages_max = bf_get(sgl_pages, &mqe->un.sli4_params); 11991 sli4_params->sgl_pp_align = bf_get(sgl_pp_align, &mqe->un.sli4_params); 11992 11993 /* Make sure that sge_supp_len can be handled by the driver */ 11994 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 11995 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 11996 11997 return rc; 11998 } 11999 12000 /** 12001 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 12002 * @phba: Pointer to HBA context object. 12003 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 12004 * 12005 * This function is called in the SLI4 code path to read the port's 12006 * sli4 capabilities. 12007 * 12008 * This function may be be called from any context that can block-wait 12009 * for the completion. The expectation is that this routine is called 12010 * typically from probe_one or from the online routine. 12011 **/ 12012 int 12013 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 12014 { 12015 int rc; 12016 struct lpfc_mqe *mqe = &mboxq->u.mqe; 12017 struct lpfc_pc_sli4_params *sli4_params; 12018 uint32_t mbox_tmo; 12019 int length; 12020 bool exp_wqcq_pages = true; 12021 struct lpfc_sli4_parameters *mbx_sli4_parameters; 12022 12023 /* 12024 * By default, the driver assumes the SLI4 port requires RPI 12025 * header postings. The SLI4_PARAM response will correct this 12026 * assumption. 12027 */ 12028 phba->sli4_hba.rpi_hdrs_in_use = 1; 12029 12030 /* Read the port's SLI4 Config Parameters */ 12031 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 12032 sizeof(struct lpfc_sli4_cfg_mhdr)); 12033 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 12034 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 12035 length, LPFC_SLI4_MBX_EMBED); 12036 if (!phba->sli4_hba.intr_enable) 12037 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 12038 else { 12039 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 12040 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 12041 } 12042 if (unlikely(rc)) 12043 return rc; 12044 sli4_params = &phba->sli4_hba.pc_sli4_params; 12045 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 12046 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 12047 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 12048 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 12049 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 12050 mbx_sli4_parameters); 12051 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 12052 mbx_sli4_parameters); 12053 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 12054 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 12055 else 12056 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 12057 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 12058 sli4_params->loopbk_scope = bf_get(loopbk_scope, mbx_sli4_parameters); 12059 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 12060 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 12061 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 12062 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 12063 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 12064 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 12065 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 12066 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 12067 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 12068 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 12069 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 12070 mbx_sli4_parameters); 12071 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 12072 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 12073 mbx_sli4_parameters); 12074 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 12075 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 12076 12077 /* Check for Extended Pre-Registered SGL support */ 12078 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 12079 12080 /* Check for firmware nvme support */ 12081 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 12082 bf_get(cfg_xib, mbx_sli4_parameters)); 12083 12084 if (rc) { 12085 /* Save this to indicate the Firmware supports NVME */ 12086 sli4_params->nvme = 1; 12087 12088 /* Firmware NVME support, check driver FC4 NVME support */ 12089 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 12090 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 12091 "6133 Disabling NVME support: " 12092 "FC4 type not supported: x%x\n", 12093 phba->cfg_enable_fc4_type); 12094 goto fcponly; 12095 } 12096 } else { 12097 /* No firmware NVME support, check driver FC4 NVME support */ 12098 sli4_params->nvme = 0; 12099 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 12100 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 12101 "6101 Disabling NVME support: Not " 12102 "supported by firmware (%d %d) x%x\n", 12103 bf_get(cfg_nvme, mbx_sli4_parameters), 12104 bf_get(cfg_xib, mbx_sli4_parameters), 12105 phba->cfg_enable_fc4_type); 12106 fcponly: 12107 phba->nvme_support = 0; 12108 phba->nvmet_support = 0; 12109 phba->cfg_nvmet_mrq = 0; 12110 phba->cfg_nvme_seg_cnt = 0; 12111 12112 /* If no FC4 type support, move to just SCSI support */ 12113 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 12114 return -ENODEV; 12115 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 12116 } 12117 } 12118 12119 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 12120 * accommodate 512K and 1M IOs in a single nvme buf. 12121 */ 12122 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 12123 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 12124 12125 /* Only embed PBDE for if_type 6, PBDE support requires xib be set */ 12126 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) != 12127 LPFC_SLI_INTF_IF_TYPE_6) || (!bf_get(cfg_xib, mbx_sli4_parameters))) 12128 phba->cfg_enable_pbde = 0; 12129 12130 /* 12131 * To support Suppress Response feature we must satisfy 3 conditions. 12132 * lpfc_suppress_rsp module parameter must be set (default). 12133 * In SLI4-Parameters Descriptor: 12134 * Extended Inline Buffers (XIB) must be supported. 12135 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 12136 * (double negative). 12137 */ 12138 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 12139 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 12140 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 12141 else 12142 phba->cfg_suppress_rsp = 0; 12143 12144 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 12145 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 12146 12147 /* Make sure that sge_supp_len can be handled by the driver */ 12148 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 12149 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 12150 12151 /* 12152 * Check whether the adapter supports an embedded copy of the 12153 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 12154 * to use this option, 128-byte WQEs must be used. 12155 */ 12156 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 12157 phba->fcp_embed_io = 1; 12158 else 12159 phba->fcp_embed_io = 0; 12160 12161 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 12162 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 12163 bf_get(cfg_xib, mbx_sli4_parameters), 12164 phba->cfg_enable_pbde, 12165 phba->fcp_embed_io, phba->nvme_support, 12166 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 12167 12168 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 12169 LPFC_SLI_INTF_IF_TYPE_2) && 12170 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 12171 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 12172 exp_wqcq_pages = false; 12173 12174 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 12175 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 12176 exp_wqcq_pages && 12177 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 12178 phba->enab_exp_wqcq_pages = 1; 12179 else 12180 phba->enab_exp_wqcq_pages = 0; 12181 /* 12182 * Check if the SLI port supports MDS Diagnostics 12183 */ 12184 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 12185 phba->mds_diags_support = 1; 12186 else 12187 phba->mds_diags_support = 0; 12188 12189 /* 12190 * Check if the SLI port supports NSLER 12191 */ 12192 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 12193 phba->nsler = 1; 12194 else 12195 phba->nsler = 0; 12196 12197 return 0; 12198 } 12199 12200 /** 12201 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 12202 * @pdev: pointer to PCI device 12203 * @pid: pointer to PCI device identifier 12204 * 12205 * This routine is to be called to attach a device with SLI-3 interface spec 12206 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 12207 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 12208 * information of the device and driver to see if the driver state that it can 12209 * support this kind of device. If the match is successful, the driver core 12210 * invokes this routine. If this routine determines it can claim the HBA, it 12211 * does all the initialization that it needs to do to handle the HBA properly. 12212 * 12213 * Return code 12214 * 0 - driver can claim the device 12215 * negative value - driver can not claim the device 12216 **/ 12217 static int 12218 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 12219 { 12220 struct lpfc_hba *phba; 12221 struct lpfc_vport *vport = NULL; 12222 struct Scsi_Host *shost = NULL; 12223 int error; 12224 uint32_t cfg_mode, intr_mode; 12225 12226 /* Allocate memory for HBA structure */ 12227 phba = lpfc_hba_alloc(pdev); 12228 if (!phba) 12229 return -ENOMEM; 12230 12231 /* Perform generic PCI device enabling operation */ 12232 error = lpfc_enable_pci_dev(phba); 12233 if (error) 12234 goto out_free_phba; 12235 12236 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 12237 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 12238 if (error) 12239 goto out_disable_pci_dev; 12240 12241 /* Set up SLI-3 specific device PCI memory space */ 12242 error = lpfc_sli_pci_mem_setup(phba); 12243 if (error) { 12244 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12245 "1402 Failed to set up pci memory space.\n"); 12246 goto out_disable_pci_dev; 12247 } 12248 12249 /* Set up SLI-3 specific device driver resources */ 12250 error = lpfc_sli_driver_resource_setup(phba); 12251 if (error) { 12252 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12253 "1404 Failed to set up driver resource.\n"); 12254 goto out_unset_pci_mem_s3; 12255 } 12256 12257 /* Initialize and populate the iocb list per host */ 12258 12259 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 12260 if (error) { 12261 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12262 "1405 Failed to initialize iocb list.\n"); 12263 goto out_unset_driver_resource_s3; 12264 } 12265 12266 /* Set up common device driver resources */ 12267 error = lpfc_setup_driver_resource_phase2(phba); 12268 if (error) { 12269 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12270 "1406 Failed to set up driver resource.\n"); 12271 goto out_free_iocb_list; 12272 } 12273 12274 /* Get the default values for Model Name and Description */ 12275 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 12276 12277 /* Create SCSI host to the physical port */ 12278 error = lpfc_create_shost(phba); 12279 if (error) { 12280 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12281 "1407 Failed to create scsi host.\n"); 12282 goto out_unset_driver_resource; 12283 } 12284 12285 /* Configure sysfs attributes */ 12286 vport = phba->pport; 12287 error = lpfc_alloc_sysfs_attr(vport); 12288 if (error) { 12289 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12290 "1476 Failed to allocate sysfs attr\n"); 12291 goto out_destroy_shost; 12292 } 12293 12294 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 12295 /* Now, trying to enable interrupt and bring up the device */ 12296 cfg_mode = phba->cfg_use_msi; 12297 while (true) { 12298 /* Put device to a known state before enabling interrupt */ 12299 lpfc_stop_port(phba); 12300 /* Configure and enable interrupt */ 12301 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 12302 if (intr_mode == LPFC_INTR_ERROR) { 12303 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12304 "0431 Failed to enable interrupt.\n"); 12305 error = -ENODEV; 12306 goto out_free_sysfs_attr; 12307 } 12308 /* SLI-3 HBA setup */ 12309 if (lpfc_sli_hba_setup(phba)) { 12310 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12311 "1477 Failed to set up hba\n"); 12312 error = -ENODEV; 12313 goto out_remove_device; 12314 } 12315 12316 /* Wait 50ms for the interrupts of previous mailbox commands */ 12317 msleep(50); 12318 /* Check active interrupts on message signaled interrupts */ 12319 if (intr_mode == 0 || 12320 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 12321 /* Log the current active interrupt mode */ 12322 phba->intr_mode = intr_mode; 12323 lpfc_log_intr_mode(phba, intr_mode); 12324 break; 12325 } else { 12326 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12327 "0447 Configure interrupt mode (%d) " 12328 "failed active interrupt test.\n", 12329 intr_mode); 12330 /* Disable the current interrupt mode */ 12331 lpfc_sli_disable_intr(phba); 12332 /* Try next level of interrupt mode */ 12333 cfg_mode = --intr_mode; 12334 } 12335 } 12336 12337 /* Perform post initialization setup */ 12338 lpfc_post_init_setup(phba); 12339 12340 /* Check if there are static vports to be created. */ 12341 lpfc_create_static_vport(phba); 12342 12343 return 0; 12344 12345 out_remove_device: 12346 lpfc_unset_hba(phba); 12347 out_free_sysfs_attr: 12348 lpfc_free_sysfs_attr(vport); 12349 out_destroy_shost: 12350 lpfc_destroy_shost(phba); 12351 out_unset_driver_resource: 12352 lpfc_unset_driver_resource_phase2(phba); 12353 out_free_iocb_list: 12354 lpfc_free_iocb_list(phba); 12355 out_unset_driver_resource_s3: 12356 lpfc_sli_driver_resource_unset(phba); 12357 out_unset_pci_mem_s3: 12358 lpfc_sli_pci_mem_unset(phba); 12359 out_disable_pci_dev: 12360 lpfc_disable_pci_dev(phba); 12361 if (shost) 12362 scsi_host_put(shost); 12363 out_free_phba: 12364 lpfc_hba_free(phba); 12365 return error; 12366 } 12367 12368 /** 12369 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 12370 * @pdev: pointer to PCI device 12371 * 12372 * This routine is to be called to disattach a device with SLI-3 interface 12373 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 12374 * removed from PCI bus, it performs all the necessary cleanup for the HBA 12375 * device to be removed from the PCI subsystem properly. 12376 **/ 12377 static void 12378 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 12379 { 12380 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12381 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 12382 struct lpfc_vport **vports; 12383 struct lpfc_hba *phba = vport->phba; 12384 int i; 12385 12386 spin_lock_irq(&phba->hbalock); 12387 vport->load_flag |= FC_UNLOADING; 12388 spin_unlock_irq(&phba->hbalock); 12389 12390 lpfc_free_sysfs_attr(vport); 12391 12392 /* Release all the vports against this physical port */ 12393 vports = lpfc_create_vport_work_array(phba); 12394 if (vports != NULL) 12395 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 12396 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 12397 continue; 12398 fc_vport_terminate(vports[i]->fc_vport); 12399 } 12400 lpfc_destroy_vport_work_array(phba, vports); 12401 12402 /* Remove FC host and then SCSI host with the physical port */ 12403 fc_remove_host(shost); 12404 scsi_remove_host(shost); 12405 12406 lpfc_cleanup(vport); 12407 12408 /* 12409 * Bring down the SLI Layer. This step disable all interrupts, 12410 * clears the rings, discards all mailbox commands, and resets 12411 * the HBA. 12412 */ 12413 12414 /* HBA interrupt will be disabled after this call */ 12415 lpfc_sli_hba_down(phba); 12416 /* Stop kthread signal shall trigger work_done one more time */ 12417 kthread_stop(phba->worker_thread); 12418 /* Final cleanup of txcmplq and reset the HBA */ 12419 lpfc_sli_brdrestart(phba); 12420 12421 kfree(phba->vpi_bmask); 12422 kfree(phba->vpi_ids); 12423 12424 lpfc_stop_hba_timers(phba); 12425 spin_lock_irq(&phba->port_list_lock); 12426 list_del_init(&vport->listentry); 12427 spin_unlock_irq(&phba->port_list_lock); 12428 12429 lpfc_debugfs_terminate(vport); 12430 12431 /* Disable SR-IOV if enabled */ 12432 if (phba->cfg_sriov_nr_virtfn) 12433 pci_disable_sriov(pdev); 12434 12435 /* Disable interrupt */ 12436 lpfc_sli_disable_intr(phba); 12437 12438 scsi_host_put(shost); 12439 12440 /* 12441 * Call scsi_free before mem_free since scsi bufs are released to their 12442 * corresponding pools here. 12443 */ 12444 lpfc_scsi_free(phba); 12445 lpfc_free_iocb_list(phba); 12446 12447 lpfc_mem_free_all(phba); 12448 12449 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 12450 phba->hbqslimp.virt, phba->hbqslimp.phys); 12451 12452 /* Free resources associated with SLI2 interface */ 12453 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 12454 phba->slim2p.virt, phba->slim2p.phys); 12455 12456 /* unmap adapter SLIM and Control Registers */ 12457 iounmap(phba->ctrl_regs_memmap_p); 12458 iounmap(phba->slim_memmap_p); 12459 12460 lpfc_hba_free(phba); 12461 12462 pci_release_mem_regions(pdev); 12463 pci_disable_device(pdev); 12464 } 12465 12466 /** 12467 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 12468 * @pdev: pointer to PCI device 12469 * @msg: power management message 12470 * 12471 * This routine is to be called from the kernel's PCI subsystem to support 12472 * system Power Management (PM) to device with SLI-3 interface spec. When 12473 * PM invokes this method, it quiesces the device by stopping the driver's 12474 * worker thread for the device, turning off device's interrupt and DMA, 12475 * and bring the device offline. Note that as the driver implements the 12476 * minimum PM requirements to a power-aware driver's PM support for the 12477 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 12478 * to the suspend() method call will be treated as SUSPEND and the driver will 12479 * fully reinitialize its device during resume() method call, the driver will 12480 * set device to PCI_D3hot state in PCI config space instead of setting it 12481 * according to the @msg provided by the PM. 12482 * 12483 * Return code 12484 * 0 - driver suspended the device 12485 * Error otherwise 12486 **/ 12487 static int 12488 lpfc_pci_suspend_one_s3(struct pci_dev *pdev, pm_message_t msg) 12489 { 12490 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12491 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12492 12493 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12494 "0473 PCI device Power Management suspend.\n"); 12495 12496 /* Bring down the device */ 12497 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 12498 lpfc_offline(phba); 12499 kthread_stop(phba->worker_thread); 12500 12501 /* Disable interrupt from device */ 12502 lpfc_sli_disable_intr(phba); 12503 12504 /* Save device state to PCI config space */ 12505 pci_save_state(pdev); 12506 pci_set_power_state(pdev, PCI_D3hot); 12507 12508 return 0; 12509 } 12510 12511 /** 12512 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 12513 * @pdev: pointer to PCI device 12514 * 12515 * This routine is to be called from the kernel's PCI subsystem to support 12516 * system Power Management (PM) to device with SLI-3 interface spec. When PM 12517 * invokes this method, it restores the device's PCI config space state and 12518 * fully reinitializes the device and brings it online. Note that as the 12519 * driver implements the minimum PM requirements to a power-aware driver's 12520 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 12521 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 12522 * driver will fully reinitialize its device during resume() method call, 12523 * the device will be set to PCI_D0 directly in PCI config space before 12524 * restoring the state. 12525 * 12526 * Return code 12527 * 0 - driver suspended the device 12528 * Error otherwise 12529 **/ 12530 static int 12531 lpfc_pci_resume_one_s3(struct pci_dev *pdev) 12532 { 12533 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12534 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12535 uint32_t intr_mode; 12536 int error; 12537 12538 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12539 "0452 PCI device Power Management resume.\n"); 12540 12541 /* Restore device state from PCI config space */ 12542 pci_set_power_state(pdev, PCI_D0); 12543 pci_restore_state(pdev); 12544 12545 /* 12546 * As the new kernel behavior of pci_restore_state() API call clears 12547 * device saved_state flag, need to save the restored state again. 12548 */ 12549 pci_save_state(pdev); 12550 12551 if (pdev->is_busmaster) 12552 pci_set_master(pdev); 12553 12554 /* Startup the kernel thread for this host adapter. */ 12555 phba->worker_thread = kthread_run(lpfc_do_work, phba, 12556 "lpfc_worker_%d", phba->brd_no); 12557 if (IS_ERR(phba->worker_thread)) { 12558 error = PTR_ERR(phba->worker_thread); 12559 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12560 "0434 PM resume failed to start worker " 12561 "thread: error=x%x.\n", error); 12562 return error; 12563 } 12564 12565 /* Configure and enable interrupt */ 12566 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 12567 if (intr_mode == LPFC_INTR_ERROR) { 12568 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12569 "0430 PM resume Failed to enable interrupt\n"); 12570 return -EIO; 12571 } else 12572 phba->intr_mode = intr_mode; 12573 12574 /* Restart HBA and bring it online */ 12575 lpfc_sli_brdrestart(phba); 12576 lpfc_online(phba); 12577 12578 /* Log the current active interrupt mode */ 12579 lpfc_log_intr_mode(phba, phba->intr_mode); 12580 12581 return 0; 12582 } 12583 12584 /** 12585 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 12586 * @phba: pointer to lpfc hba data structure. 12587 * 12588 * This routine is called to prepare the SLI3 device for PCI slot recover. It 12589 * aborts all the outstanding SCSI I/Os to the pci device. 12590 **/ 12591 static void 12592 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 12593 { 12594 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12595 "2723 PCI channel I/O abort preparing for recovery\n"); 12596 12597 /* 12598 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 12599 * and let the SCSI mid-layer to retry them to recover. 12600 */ 12601 lpfc_sli_abort_fcp_rings(phba); 12602 } 12603 12604 /** 12605 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 12606 * @phba: pointer to lpfc hba data structure. 12607 * 12608 * This routine is called to prepare the SLI3 device for PCI slot reset. It 12609 * disables the device interrupt and pci device, and aborts the internal FCP 12610 * pending I/Os. 12611 **/ 12612 static void 12613 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 12614 { 12615 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12616 "2710 PCI channel disable preparing for reset\n"); 12617 12618 /* Block any management I/Os to the device */ 12619 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 12620 12621 /* Block all SCSI devices' I/Os on the host */ 12622 lpfc_scsi_dev_block(phba); 12623 12624 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 12625 lpfc_sli_flush_io_rings(phba); 12626 12627 /* stop all timers */ 12628 lpfc_stop_hba_timers(phba); 12629 12630 /* Disable interrupt and pci device */ 12631 lpfc_sli_disable_intr(phba); 12632 pci_disable_device(phba->pcidev); 12633 } 12634 12635 /** 12636 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 12637 * @phba: pointer to lpfc hba data structure. 12638 * 12639 * This routine is called to prepare the SLI3 device for PCI slot permanently 12640 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 12641 * pending I/Os. 12642 **/ 12643 static void 12644 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 12645 { 12646 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12647 "2711 PCI channel permanent disable for failure\n"); 12648 /* Block all SCSI devices' I/Os on the host */ 12649 lpfc_scsi_dev_block(phba); 12650 12651 /* stop all timers */ 12652 lpfc_stop_hba_timers(phba); 12653 12654 /* Clean up all driver's outstanding SCSI I/Os */ 12655 lpfc_sli_flush_io_rings(phba); 12656 } 12657 12658 /** 12659 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 12660 * @pdev: pointer to PCI device. 12661 * @state: the current PCI connection state. 12662 * 12663 * This routine is called from the PCI subsystem for I/O error handling to 12664 * device with SLI-3 interface spec. This function is called by the PCI 12665 * subsystem after a PCI bus error affecting this device has been detected. 12666 * When this function is invoked, it will need to stop all the I/Os and 12667 * interrupt(s) to the device. Once that is done, it will return 12668 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 12669 * as desired. 12670 * 12671 * Return codes 12672 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link 12673 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 12674 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 12675 **/ 12676 static pci_ers_result_t 12677 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 12678 { 12679 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12680 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12681 12682 switch (state) { 12683 case pci_channel_io_normal: 12684 /* Non-fatal error, prepare for recovery */ 12685 lpfc_sli_prep_dev_for_recover(phba); 12686 return PCI_ERS_RESULT_CAN_RECOVER; 12687 case pci_channel_io_frozen: 12688 /* Fatal error, prepare for slot reset */ 12689 lpfc_sli_prep_dev_for_reset(phba); 12690 return PCI_ERS_RESULT_NEED_RESET; 12691 case pci_channel_io_perm_failure: 12692 /* Permanent failure, prepare for device down */ 12693 lpfc_sli_prep_dev_for_perm_failure(phba); 12694 return PCI_ERS_RESULT_DISCONNECT; 12695 default: 12696 /* Unknown state, prepare and request slot reset */ 12697 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12698 "0472 Unknown PCI error state: x%x\n", state); 12699 lpfc_sli_prep_dev_for_reset(phba); 12700 return PCI_ERS_RESULT_NEED_RESET; 12701 } 12702 } 12703 12704 /** 12705 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 12706 * @pdev: pointer to PCI device. 12707 * 12708 * This routine is called from the PCI subsystem for error handling to 12709 * device with SLI-3 interface spec. This is called after PCI bus has been 12710 * reset to restart the PCI card from scratch, as if from a cold-boot. 12711 * During the PCI subsystem error recovery, after driver returns 12712 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 12713 * recovery and then call this routine before calling the .resume method 12714 * to recover the device. This function will initialize the HBA device, 12715 * enable the interrupt, but it will just put the HBA to offline state 12716 * without passing any I/O traffic. 12717 * 12718 * Return codes 12719 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 12720 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 12721 */ 12722 static pci_ers_result_t 12723 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 12724 { 12725 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12726 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12727 struct lpfc_sli *psli = &phba->sli; 12728 uint32_t intr_mode; 12729 12730 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 12731 if (pci_enable_device_mem(pdev)) { 12732 printk(KERN_ERR "lpfc: Cannot re-enable " 12733 "PCI device after reset.\n"); 12734 return PCI_ERS_RESULT_DISCONNECT; 12735 } 12736 12737 pci_restore_state(pdev); 12738 12739 /* 12740 * As the new kernel behavior of pci_restore_state() API call clears 12741 * device saved_state flag, need to save the restored state again. 12742 */ 12743 pci_save_state(pdev); 12744 12745 if (pdev->is_busmaster) 12746 pci_set_master(pdev); 12747 12748 spin_lock_irq(&phba->hbalock); 12749 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 12750 spin_unlock_irq(&phba->hbalock); 12751 12752 /* Configure and enable interrupt */ 12753 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 12754 if (intr_mode == LPFC_INTR_ERROR) { 12755 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12756 "0427 Cannot re-enable interrupt after " 12757 "slot reset.\n"); 12758 return PCI_ERS_RESULT_DISCONNECT; 12759 } else 12760 phba->intr_mode = intr_mode; 12761 12762 /* Take device offline, it will perform cleanup */ 12763 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 12764 lpfc_offline(phba); 12765 lpfc_sli_brdrestart(phba); 12766 12767 /* Log the current active interrupt mode */ 12768 lpfc_log_intr_mode(phba, phba->intr_mode); 12769 12770 return PCI_ERS_RESULT_RECOVERED; 12771 } 12772 12773 /** 12774 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 12775 * @pdev: pointer to PCI device 12776 * 12777 * This routine is called from the PCI subsystem for error handling to device 12778 * with SLI-3 interface spec. It is called when kernel error recovery tells 12779 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 12780 * error recovery. After this call, traffic can start to flow from this device 12781 * again. 12782 */ 12783 static void 12784 lpfc_io_resume_s3(struct pci_dev *pdev) 12785 { 12786 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12787 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12788 12789 /* Bring device online, it will be no-op for non-fatal error resume */ 12790 lpfc_online(phba); 12791 } 12792 12793 /** 12794 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 12795 * @phba: pointer to lpfc hba data structure. 12796 * 12797 * returns the number of ELS/CT IOCBs to reserve 12798 **/ 12799 int 12800 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 12801 { 12802 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 12803 12804 if (phba->sli_rev == LPFC_SLI_REV4) { 12805 if (max_xri <= 100) 12806 return 10; 12807 else if (max_xri <= 256) 12808 return 25; 12809 else if (max_xri <= 512) 12810 return 50; 12811 else if (max_xri <= 1024) 12812 return 100; 12813 else if (max_xri <= 1536) 12814 return 150; 12815 else if (max_xri <= 2048) 12816 return 200; 12817 else 12818 return 250; 12819 } else 12820 return 0; 12821 } 12822 12823 /** 12824 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 12825 * @phba: pointer to lpfc hba data structure. 12826 * 12827 * returns the number of ELS/CT + NVMET IOCBs to reserve 12828 **/ 12829 int 12830 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 12831 { 12832 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 12833 12834 if (phba->nvmet_support) 12835 max_xri += LPFC_NVMET_BUF_POST; 12836 return max_xri; 12837 } 12838 12839 12840 static int 12841 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 12842 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 12843 const struct firmware *fw) 12844 { 12845 int rc; 12846 12847 /* Three cases: (1) FW was not supported on the detected adapter. 12848 * (2) FW update has been locked out administratively. 12849 * (3) Some other error during FW update. 12850 * In each case, an unmaskable message is written to the console 12851 * for admin diagnosis. 12852 */ 12853 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 12854 (phba->pcidev->device == PCI_DEVICE_ID_LANCER_G6_FC && 12855 magic_number != MAGIC_NUMBER_G6) || 12856 (phba->pcidev->device == PCI_DEVICE_ID_LANCER_G7_FC && 12857 magic_number != MAGIC_NUMBER_G7)) { 12858 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12859 "3030 This firmware version is not supported on" 12860 " this HBA model. Device:%x Magic:%x Type:%x " 12861 "ID:%x Size %d %zd\n", 12862 phba->pcidev->device, magic_number, ftype, fid, 12863 fsize, fw->size); 12864 rc = -EINVAL; 12865 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 12866 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12867 "3021 Firmware downloads have been prohibited " 12868 "by a system configuration setting on " 12869 "Device:%x Magic:%x Type:%x ID:%x Size %d " 12870 "%zd\n", 12871 phba->pcidev->device, magic_number, ftype, fid, 12872 fsize, fw->size); 12873 rc = -EACCES; 12874 } else { 12875 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12876 "3022 FW Download failed. Add Status x%x " 12877 "Device:%x Magic:%x Type:%x ID:%x Size %d " 12878 "%zd\n", 12879 offset, phba->pcidev->device, magic_number, 12880 ftype, fid, fsize, fw->size); 12881 rc = -EIO; 12882 } 12883 return rc; 12884 } 12885 12886 /** 12887 * lpfc_write_firmware - attempt to write a firmware image to the port 12888 * @fw: pointer to firmware image returned from request_firmware. 12889 * @context: pointer to firmware image returned from request_firmware. 12890 * @ret: return value this routine provides to the caller. 12891 * 12892 **/ 12893 static void 12894 lpfc_write_firmware(const struct firmware *fw, void *context) 12895 { 12896 struct lpfc_hba *phba = (struct lpfc_hba *)context; 12897 char fwrev[FW_REV_STR_SIZE]; 12898 struct lpfc_grp_hdr *image; 12899 struct list_head dma_buffer_list; 12900 int i, rc = 0; 12901 struct lpfc_dmabuf *dmabuf, *next; 12902 uint32_t offset = 0, temp_offset = 0; 12903 uint32_t magic_number, ftype, fid, fsize; 12904 12905 /* It can be null in no-wait mode, sanity check */ 12906 if (!fw) { 12907 rc = -ENXIO; 12908 goto out; 12909 } 12910 image = (struct lpfc_grp_hdr *)fw->data; 12911 12912 magic_number = be32_to_cpu(image->magic_number); 12913 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 12914 fid = bf_get_be32(lpfc_grp_hdr_id, image); 12915 fsize = be32_to_cpu(image->size); 12916 12917 INIT_LIST_HEAD(&dma_buffer_list); 12918 lpfc_decode_firmware_rev(phba, fwrev, 1); 12919 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 12920 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12921 "3023 Updating Firmware, Current Version:%s " 12922 "New Version:%s\n", 12923 fwrev, image->revision); 12924 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 12925 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 12926 GFP_KERNEL); 12927 if (!dmabuf) { 12928 rc = -ENOMEM; 12929 goto release_out; 12930 } 12931 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 12932 SLI4_PAGE_SIZE, 12933 &dmabuf->phys, 12934 GFP_KERNEL); 12935 if (!dmabuf->virt) { 12936 kfree(dmabuf); 12937 rc = -ENOMEM; 12938 goto release_out; 12939 } 12940 list_add_tail(&dmabuf->list, &dma_buffer_list); 12941 } 12942 while (offset < fw->size) { 12943 temp_offset = offset; 12944 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 12945 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 12946 memcpy(dmabuf->virt, 12947 fw->data + temp_offset, 12948 fw->size - temp_offset); 12949 temp_offset = fw->size; 12950 break; 12951 } 12952 memcpy(dmabuf->virt, fw->data + temp_offset, 12953 SLI4_PAGE_SIZE); 12954 temp_offset += SLI4_PAGE_SIZE; 12955 } 12956 rc = lpfc_wr_object(phba, &dma_buffer_list, 12957 (fw->size - offset), &offset); 12958 if (rc) { 12959 rc = lpfc_log_write_firmware_error(phba, offset, 12960 magic_number, 12961 ftype, 12962 fid, 12963 fsize, 12964 fw); 12965 goto release_out; 12966 } 12967 } 12968 rc = offset; 12969 } else 12970 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12971 "3029 Skipped Firmware update, Current " 12972 "Version:%s New Version:%s\n", 12973 fwrev, image->revision); 12974 12975 release_out: 12976 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 12977 list_del(&dmabuf->list); 12978 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 12979 dmabuf->virt, dmabuf->phys); 12980 kfree(dmabuf); 12981 } 12982 release_firmware(fw); 12983 out: 12984 if (rc < 0) 12985 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12986 "3062 Firmware update error, status %d.\n", rc); 12987 else 12988 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12989 "3024 Firmware update success: size %d.\n", rc); 12990 } 12991 12992 /** 12993 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 12994 * @phba: pointer to lpfc hba data structure. 12995 * 12996 * This routine is called to perform Linux generic firmware upgrade on device 12997 * that supports such feature. 12998 **/ 12999 int 13000 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 13001 { 13002 uint8_t file_name[ELX_MODEL_NAME_SIZE]; 13003 int ret; 13004 const struct firmware *fw; 13005 13006 /* Only supported on SLI4 interface type 2 for now */ 13007 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 13008 LPFC_SLI_INTF_IF_TYPE_2) 13009 return -EPERM; 13010 13011 snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName); 13012 13013 if (fw_upgrade == INT_FW_UPGRADE) { 13014 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 13015 file_name, &phba->pcidev->dev, 13016 GFP_KERNEL, (void *)phba, 13017 lpfc_write_firmware); 13018 } else if (fw_upgrade == RUN_FW_UPGRADE) { 13019 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 13020 if (!ret) 13021 lpfc_write_firmware(fw, (void *)phba); 13022 } else { 13023 ret = -EINVAL; 13024 } 13025 13026 return ret; 13027 } 13028 13029 /** 13030 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 13031 * @pdev: pointer to PCI device 13032 * @pid: pointer to PCI device identifier 13033 * 13034 * This routine is called from the kernel's PCI subsystem to device with 13035 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 13036 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13037 * information of the device and driver to see if the driver state that it 13038 * can support this kind of device. If the match is successful, the driver 13039 * core invokes this routine. If this routine determines it can claim the HBA, 13040 * it does all the initialization that it needs to do to handle the HBA 13041 * properly. 13042 * 13043 * Return code 13044 * 0 - driver can claim the device 13045 * negative value - driver can not claim the device 13046 **/ 13047 static int 13048 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 13049 { 13050 struct lpfc_hba *phba; 13051 struct lpfc_vport *vport = NULL; 13052 struct Scsi_Host *shost = NULL; 13053 int error; 13054 uint32_t cfg_mode, intr_mode; 13055 13056 /* Allocate memory for HBA structure */ 13057 phba = lpfc_hba_alloc(pdev); 13058 if (!phba) 13059 return -ENOMEM; 13060 13061 /* Perform generic PCI device enabling operation */ 13062 error = lpfc_enable_pci_dev(phba); 13063 if (error) 13064 goto out_free_phba; 13065 13066 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 13067 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 13068 if (error) 13069 goto out_disable_pci_dev; 13070 13071 /* Set up SLI-4 specific device PCI memory space */ 13072 error = lpfc_sli4_pci_mem_setup(phba); 13073 if (error) { 13074 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13075 "1410 Failed to set up pci memory space.\n"); 13076 goto out_disable_pci_dev; 13077 } 13078 13079 /* Set up SLI-4 Specific device driver resources */ 13080 error = lpfc_sli4_driver_resource_setup(phba); 13081 if (error) { 13082 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13083 "1412 Failed to set up driver resource.\n"); 13084 goto out_unset_pci_mem_s4; 13085 } 13086 13087 INIT_LIST_HEAD(&phba->active_rrq_list); 13088 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 13089 13090 /* Set up common device driver resources */ 13091 error = lpfc_setup_driver_resource_phase2(phba); 13092 if (error) { 13093 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13094 "1414 Failed to set up driver resource.\n"); 13095 goto out_unset_driver_resource_s4; 13096 } 13097 13098 /* Get the default values for Model Name and Description */ 13099 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 13100 13101 /* Now, trying to enable interrupt and bring up the device */ 13102 cfg_mode = phba->cfg_use_msi; 13103 13104 /* Put device to a known state before enabling interrupt */ 13105 phba->pport = NULL; 13106 lpfc_stop_port(phba); 13107 13108 /* Init cpu_map array */ 13109 lpfc_cpu_map_array_init(phba); 13110 13111 /* Init hba_eq_hdl array */ 13112 lpfc_hba_eq_hdl_array_init(phba); 13113 13114 /* Configure and enable interrupt */ 13115 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 13116 if (intr_mode == LPFC_INTR_ERROR) { 13117 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13118 "0426 Failed to enable interrupt.\n"); 13119 error = -ENODEV; 13120 goto out_unset_driver_resource; 13121 } 13122 /* Default to single EQ for non-MSI-X */ 13123 if (phba->intr_type != MSIX) { 13124 phba->cfg_irq_chann = 1; 13125 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13126 if (phba->nvmet_support) 13127 phba->cfg_nvmet_mrq = 1; 13128 } 13129 } 13130 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 13131 13132 /* Create SCSI host to the physical port */ 13133 error = lpfc_create_shost(phba); 13134 if (error) { 13135 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13136 "1415 Failed to create scsi host.\n"); 13137 goto out_disable_intr; 13138 } 13139 vport = phba->pport; 13140 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 13141 13142 /* Configure sysfs attributes */ 13143 error = lpfc_alloc_sysfs_attr(vport); 13144 if (error) { 13145 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13146 "1416 Failed to allocate sysfs attr\n"); 13147 goto out_destroy_shost; 13148 } 13149 13150 /* Set up SLI-4 HBA */ 13151 if (lpfc_sli4_hba_setup(phba)) { 13152 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13153 "1421 Failed to set up hba\n"); 13154 error = -ENODEV; 13155 goto out_free_sysfs_attr; 13156 } 13157 13158 /* Log the current active interrupt mode */ 13159 phba->intr_mode = intr_mode; 13160 lpfc_log_intr_mode(phba, intr_mode); 13161 13162 /* Perform post initialization setup */ 13163 lpfc_post_init_setup(phba); 13164 13165 /* NVME support in FW earlier in the driver load corrects the 13166 * FC4 type making a check for nvme_support unnecessary. 13167 */ 13168 if (phba->nvmet_support == 0) { 13169 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13170 /* Create NVME binding with nvme_fc_transport. This 13171 * ensures the vport is initialized. If the localport 13172 * create fails, it should not unload the driver to 13173 * support field issues. 13174 */ 13175 error = lpfc_nvme_create_localport(vport); 13176 if (error) { 13177 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13178 "6004 NVME registration " 13179 "failed, error x%x\n", 13180 error); 13181 } 13182 } 13183 } 13184 13185 /* check for firmware upgrade or downgrade */ 13186 if (phba->cfg_request_firmware_upgrade) 13187 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 13188 13189 /* Check if there are static vports to be created. */ 13190 lpfc_create_static_vport(phba); 13191 13192 /* Enable RAS FW log support */ 13193 lpfc_sli4_ras_setup(phba); 13194 13195 INIT_LIST_HEAD(&phba->poll_list); 13196 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 13197 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 13198 13199 return 0; 13200 13201 out_free_sysfs_attr: 13202 lpfc_free_sysfs_attr(vport); 13203 out_destroy_shost: 13204 lpfc_destroy_shost(phba); 13205 out_disable_intr: 13206 lpfc_sli4_disable_intr(phba); 13207 out_unset_driver_resource: 13208 lpfc_unset_driver_resource_phase2(phba); 13209 out_unset_driver_resource_s4: 13210 lpfc_sli4_driver_resource_unset(phba); 13211 out_unset_pci_mem_s4: 13212 lpfc_sli4_pci_mem_unset(phba); 13213 out_disable_pci_dev: 13214 lpfc_disable_pci_dev(phba); 13215 if (shost) 13216 scsi_host_put(shost); 13217 out_free_phba: 13218 lpfc_hba_free(phba); 13219 return error; 13220 } 13221 13222 /** 13223 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 13224 * @pdev: pointer to PCI device 13225 * 13226 * This routine is called from the kernel's PCI subsystem to device with 13227 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 13228 * removed from PCI bus, it performs all the necessary cleanup for the HBA 13229 * device to be removed from the PCI subsystem properly. 13230 **/ 13231 static void 13232 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 13233 { 13234 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13235 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 13236 struct lpfc_vport **vports; 13237 struct lpfc_hba *phba = vport->phba; 13238 int i; 13239 13240 /* Mark the device unloading flag */ 13241 spin_lock_irq(&phba->hbalock); 13242 vport->load_flag |= FC_UNLOADING; 13243 spin_unlock_irq(&phba->hbalock); 13244 13245 /* Free the HBA sysfs attributes */ 13246 lpfc_free_sysfs_attr(vport); 13247 13248 /* Release all the vports against this physical port */ 13249 vports = lpfc_create_vport_work_array(phba); 13250 if (vports != NULL) 13251 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 13252 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 13253 continue; 13254 fc_vport_terminate(vports[i]->fc_vport); 13255 } 13256 lpfc_destroy_vport_work_array(phba, vports); 13257 13258 /* Remove FC host and then SCSI host with the physical port */ 13259 fc_remove_host(shost); 13260 scsi_remove_host(shost); 13261 13262 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 13263 * localports are destroyed after to cleanup all transport memory. 13264 */ 13265 lpfc_cleanup(vport); 13266 lpfc_nvmet_destroy_targetport(phba); 13267 lpfc_nvme_destroy_localport(vport); 13268 13269 /* De-allocate multi-XRI pools */ 13270 if (phba->cfg_xri_rebalancing) 13271 lpfc_destroy_multixri_pools(phba); 13272 13273 /* 13274 * Bring down the SLI Layer. This step disables all interrupts, 13275 * clears the rings, discards all mailbox commands, and resets 13276 * the HBA FCoE function. 13277 */ 13278 lpfc_debugfs_terminate(vport); 13279 13280 lpfc_stop_hba_timers(phba); 13281 spin_lock_irq(&phba->port_list_lock); 13282 list_del_init(&vport->listentry); 13283 spin_unlock_irq(&phba->port_list_lock); 13284 13285 /* Perform scsi free before driver resource_unset since scsi 13286 * buffers are released to their corresponding pools here. 13287 */ 13288 lpfc_io_free(phba); 13289 lpfc_free_iocb_list(phba); 13290 lpfc_sli4_hba_unset(phba); 13291 13292 lpfc_unset_driver_resource_phase2(phba); 13293 lpfc_sli4_driver_resource_unset(phba); 13294 13295 /* Unmap adapter Control and Doorbell registers */ 13296 lpfc_sli4_pci_mem_unset(phba); 13297 13298 /* Release PCI resources and disable device's PCI function */ 13299 scsi_host_put(shost); 13300 lpfc_disable_pci_dev(phba); 13301 13302 /* Finally, free the driver's device data structure */ 13303 lpfc_hba_free(phba); 13304 13305 return; 13306 } 13307 13308 /** 13309 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 13310 * @pdev: pointer to PCI device 13311 * @msg: power management message 13312 * 13313 * This routine is called from the kernel's PCI subsystem to support system 13314 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 13315 * this method, it quiesces the device by stopping the driver's worker 13316 * thread for the device, turning off device's interrupt and DMA, and bring 13317 * the device offline. Note that as the driver implements the minimum PM 13318 * requirements to a power-aware driver's PM support for suspend/resume -- all 13319 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 13320 * method call will be treated as SUSPEND and the driver will fully 13321 * reinitialize its device during resume() method call, the driver will set 13322 * device to PCI_D3hot state in PCI config space instead of setting it 13323 * according to the @msg provided by the PM. 13324 * 13325 * Return code 13326 * 0 - driver suspended the device 13327 * Error otherwise 13328 **/ 13329 static int 13330 lpfc_pci_suspend_one_s4(struct pci_dev *pdev, pm_message_t msg) 13331 { 13332 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13333 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13334 13335 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13336 "2843 PCI device Power Management suspend.\n"); 13337 13338 /* Bring down the device */ 13339 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 13340 lpfc_offline(phba); 13341 kthread_stop(phba->worker_thread); 13342 13343 /* Disable interrupt from device */ 13344 lpfc_sli4_disable_intr(phba); 13345 lpfc_sli4_queue_destroy(phba); 13346 13347 /* Save device state to PCI config space */ 13348 pci_save_state(pdev); 13349 pci_set_power_state(pdev, PCI_D3hot); 13350 13351 return 0; 13352 } 13353 13354 /** 13355 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 13356 * @pdev: pointer to PCI device 13357 * 13358 * This routine is called from the kernel's PCI subsystem to support system 13359 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 13360 * this method, it restores the device's PCI config space state and fully 13361 * reinitializes the device and brings it online. Note that as the driver 13362 * implements the minimum PM requirements to a power-aware driver's PM for 13363 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 13364 * to the suspend() method call will be treated as SUSPEND and the driver 13365 * will fully reinitialize its device during resume() method call, the device 13366 * will be set to PCI_D0 directly in PCI config space before restoring the 13367 * state. 13368 * 13369 * Return code 13370 * 0 - driver suspended the device 13371 * Error otherwise 13372 **/ 13373 static int 13374 lpfc_pci_resume_one_s4(struct pci_dev *pdev) 13375 { 13376 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13377 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13378 uint32_t intr_mode; 13379 int error; 13380 13381 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13382 "0292 PCI device Power Management resume.\n"); 13383 13384 /* Restore device state from PCI config space */ 13385 pci_set_power_state(pdev, PCI_D0); 13386 pci_restore_state(pdev); 13387 13388 /* 13389 * As the new kernel behavior of pci_restore_state() API call clears 13390 * device saved_state flag, need to save the restored state again. 13391 */ 13392 pci_save_state(pdev); 13393 13394 if (pdev->is_busmaster) 13395 pci_set_master(pdev); 13396 13397 /* Startup the kernel thread for this host adapter. */ 13398 phba->worker_thread = kthread_run(lpfc_do_work, phba, 13399 "lpfc_worker_%d", phba->brd_no); 13400 if (IS_ERR(phba->worker_thread)) { 13401 error = PTR_ERR(phba->worker_thread); 13402 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13403 "0293 PM resume failed to start worker " 13404 "thread: error=x%x.\n", error); 13405 return error; 13406 } 13407 13408 /* Configure and enable interrupt */ 13409 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 13410 if (intr_mode == LPFC_INTR_ERROR) { 13411 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13412 "0294 PM resume Failed to enable interrupt\n"); 13413 return -EIO; 13414 } else 13415 phba->intr_mode = intr_mode; 13416 13417 /* Restart HBA and bring it online */ 13418 lpfc_sli_brdrestart(phba); 13419 lpfc_online(phba); 13420 13421 /* Log the current active interrupt mode */ 13422 lpfc_log_intr_mode(phba, phba->intr_mode); 13423 13424 return 0; 13425 } 13426 13427 /** 13428 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 13429 * @phba: pointer to lpfc hba data structure. 13430 * 13431 * This routine is called to prepare the SLI4 device for PCI slot recover. It 13432 * aborts all the outstanding SCSI I/Os to the pci device. 13433 **/ 13434 static void 13435 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 13436 { 13437 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13438 "2828 PCI channel I/O abort preparing for recovery\n"); 13439 /* 13440 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 13441 * and let the SCSI mid-layer to retry them to recover. 13442 */ 13443 lpfc_sli_abort_fcp_rings(phba); 13444 } 13445 13446 /** 13447 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 13448 * @phba: pointer to lpfc hba data structure. 13449 * 13450 * This routine is called to prepare the SLI4 device for PCI slot reset. It 13451 * disables the device interrupt and pci device, and aborts the internal FCP 13452 * pending I/Os. 13453 **/ 13454 static void 13455 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 13456 { 13457 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13458 "2826 PCI channel disable preparing for reset\n"); 13459 13460 /* Block any management I/Os to the device */ 13461 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 13462 13463 /* Block all SCSI devices' I/Os on the host */ 13464 lpfc_scsi_dev_block(phba); 13465 13466 /* Flush all driver's outstanding I/Os as we are to reset */ 13467 lpfc_sli_flush_io_rings(phba); 13468 13469 /* stop all timers */ 13470 lpfc_stop_hba_timers(phba); 13471 13472 /* Disable interrupt and pci device */ 13473 lpfc_sli4_disable_intr(phba); 13474 lpfc_sli4_queue_destroy(phba); 13475 pci_disable_device(phba->pcidev); 13476 } 13477 13478 /** 13479 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 13480 * @phba: pointer to lpfc hba data structure. 13481 * 13482 * This routine is called to prepare the SLI4 device for PCI slot permanently 13483 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 13484 * pending I/Os. 13485 **/ 13486 static void 13487 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 13488 { 13489 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13490 "2827 PCI channel permanent disable for failure\n"); 13491 13492 /* Block all SCSI devices' I/Os on the host */ 13493 lpfc_scsi_dev_block(phba); 13494 13495 /* stop all timers */ 13496 lpfc_stop_hba_timers(phba); 13497 13498 /* Clean up all driver's outstanding I/Os */ 13499 lpfc_sli_flush_io_rings(phba); 13500 } 13501 13502 /** 13503 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 13504 * @pdev: pointer to PCI device. 13505 * @state: the current PCI connection state. 13506 * 13507 * This routine is called from the PCI subsystem for error handling to device 13508 * with SLI-4 interface spec. This function is called by the PCI subsystem 13509 * after a PCI bus error affecting this device has been detected. When this 13510 * function is invoked, it will need to stop all the I/Os and interrupt(s) 13511 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 13512 * for the PCI subsystem to perform proper recovery as desired. 13513 * 13514 * Return codes 13515 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 13516 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13517 **/ 13518 static pci_ers_result_t 13519 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 13520 { 13521 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13522 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13523 13524 switch (state) { 13525 case pci_channel_io_normal: 13526 /* Non-fatal error, prepare for recovery */ 13527 lpfc_sli4_prep_dev_for_recover(phba); 13528 return PCI_ERS_RESULT_CAN_RECOVER; 13529 case pci_channel_io_frozen: 13530 /* Fatal error, prepare for slot reset */ 13531 lpfc_sli4_prep_dev_for_reset(phba); 13532 return PCI_ERS_RESULT_NEED_RESET; 13533 case pci_channel_io_perm_failure: 13534 /* Permanent failure, prepare for device down */ 13535 lpfc_sli4_prep_dev_for_perm_failure(phba); 13536 return PCI_ERS_RESULT_DISCONNECT; 13537 default: 13538 /* Unknown state, prepare and request slot reset */ 13539 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13540 "2825 Unknown PCI error state: x%x\n", state); 13541 lpfc_sli4_prep_dev_for_reset(phba); 13542 return PCI_ERS_RESULT_NEED_RESET; 13543 } 13544 } 13545 13546 /** 13547 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 13548 * @pdev: pointer to PCI device. 13549 * 13550 * This routine is called from the PCI subsystem for error handling to device 13551 * with SLI-4 interface spec. It is called after PCI bus has been reset to 13552 * restart the PCI card from scratch, as if from a cold-boot. During the 13553 * PCI subsystem error recovery, after the driver returns 13554 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 13555 * recovery and then call this routine before calling the .resume method to 13556 * recover the device. This function will initialize the HBA device, enable 13557 * the interrupt, but it will just put the HBA to offline state without 13558 * passing any I/O traffic. 13559 * 13560 * Return codes 13561 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 13562 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13563 */ 13564 static pci_ers_result_t 13565 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 13566 { 13567 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13568 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13569 struct lpfc_sli *psli = &phba->sli; 13570 uint32_t intr_mode; 13571 13572 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 13573 if (pci_enable_device_mem(pdev)) { 13574 printk(KERN_ERR "lpfc: Cannot re-enable " 13575 "PCI device after reset.\n"); 13576 return PCI_ERS_RESULT_DISCONNECT; 13577 } 13578 13579 pci_restore_state(pdev); 13580 13581 /* 13582 * As the new kernel behavior of pci_restore_state() API call clears 13583 * device saved_state flag, need to save the restored state again. 13584 */ 13585 pci_save_state(pdev); 13586 13587 if (pdev->is_busmaster) 13588 pci_set_master(pdev); 13589 13590 spin_lock_irq(&phba->hbalock); 13591 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 13592 spin_unlock_irq(&phba->hbalock); 13593 13594 /* Configure and enable interrupt */ 13595 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 13596 if (intr_mode == LPFC_INTR_ERROR) { 13597 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13598 "2824 Cannot re-enable interrupt after " 13599 "slot reset.\n"); 13600 return PCI_ERS_RESULT_DISCONNECT; 13601 } else 13602 phba->intr_mode = intr_mode; 13603 13604 /* Log the current active interrupt mode */ 13605 lpfc_log_intr_mode(phba, phba->intr_mode); 13606 13607 return PCI_ERS_RESULT_RECOVERED; 13608 } 13609 13610 /** 13611 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 13612 * @pdev: pointer to PCI device 13613 * 13614 * This routine is called from the PCI subsystem for error handling to device 13615 * with SLI-4 interface spec. It is called when kernel error recovery tells 13616 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 13617 * error recovery. After this call, traffic can start to flow from this device 13618 * again. 13619 **/ 13620 static void 13621 lpfc_io_resume_s4(struct pci_dev *pdev) 13622 { 13623 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13624 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13625 13626 /* 13627 * In case of slot reset, as function reset is performed through 13628 * mailbox command which needs DMA to be enabled, this operation 13629 * has to be moved to the io resume phase. Taking device offline 13630 * will perform the necessary cleanup. 13631 */ 13632 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 13633 /* Perform device reset */ 13634 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 13635 lpfc_offline(phba); 13636 lpfc_sli_brdrestart(phba); 13637 /* Bring the device back online */ 13638 lpfc_online(phba); 13639 } 13640 } 13641 13642 /** 13643 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 13644 * @pdev: pointer to PCI device 13645 * @pid: pointer to PCI device identifier 13646 * 13647 * This routine is to be registered to the kernel's PCI subsystem. When an 13648 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 13649 * at PCI device-specific information of the device and driver to see if the 13650 * driver state that it can support this kind of device. If the match is 13651 * successful, the driver core invokes this routine. This routine dispatches 13652 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 13653 * do all the initialization that it needs to do to handle the HBA device 13654 * properly. 13655 * 13656 * Return code 13657 * 0 - driver can claim the device 13658 * negative value - driver can not claim the device 13659 **/ 13660 static int 13661 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 13662 { 13663 int rc; 13664 struct lpfc_sli_intf intf; 13665 13666 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 13667 return -ENODEV; 13668 13669 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 13670 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 13671 rc = lpfc_pci_probe_one_s4(pdev, pid); 13672 else 13673 rc = lpfc_pci_probe_one_s3(pdev, pid); 13674 13675 return rc; 13676 } 13677 13678 /** 13679 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 13680 * @pdev: pointer to PCI device 13681 * 13682 * This routine is to be registered to the kernel's PCI subsystem. When an 13683 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 13684 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 13685 * remove routine, which will perform all the necessary cleanup for the 13686 * device to be removed from the PCI subsystem properly. 13687 **/ 13688 static void 13689 lpfc_pci_remove_one(struct pci_dev *pdev) 13690 { 13691 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13692 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13693 13694 switch (phba->pci_dev_grp) { 13695 case LPFC_PCI_DEV_LP: 13696 lpfc_pci_remove_one_s3(pdev); 13697 break; 13698 case LPFC_PCI_DEV_OC: 13699 lpfc_pci_remove_one_s4(pdev); 13700 break; 13701 default: 13702 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13703 "1424 Invalid PCI device group: 0x%x\n", 13704 phba->pci_dev_grp); 13705 break; 13706 } 13707 return; 13708 } 13709 13710 /** 13711 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 13712 * @pdev: pointer to PCI device 13713 * @msg: power management message 13714 * 13715 * This routine is to be registered to the kernel's PCI subsystem to support 13716 * system Power Management (PM). When PM invokes this method, it dispatches 13717 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 13718 * suspend the device. 13719 * 13720 * Return code 13721 * 0 - driver suspended the device 13722 * Error otherwise 13723 **/ 13724 static int 13725 lpfc_pci_suspend_one(struct pci_dev *pdev, pm_message_t msg) 13726 { 13727 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13728 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13729 int rc = -ENODEV; 13730 13731 switch (phba->pci_dev_grp) { 13732 case LPFC_PCI_DEV_LP: 13733 rc = lpfc_pci_suspend_one_s3(pdev, msg); 13734 break; 13735 case LPFC_PCI_DEV_OC: 13736 rc = lpfc_pci_suspend_one_s4(pdev, msg); 13737 break; 13738 default: 13739 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13740 "1425 Invalid PCI device group: 0x%x\n", 13741 phba->pci_dev_grp); 13742 break; 13743 } 13744 return rc; 13745 } 13746 13747 /** 13748 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 13749 * @pdev: pointer to PCI device 13750 * 13751 * This routine is to be registered to the kernel's PCI subsystem to support 13752 * system Power Management (PM). When PM invokes this method, it dispatches 13753 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 13754 * resume the device. 13755 * 13756 * Return code 13757 * 0 - driver suspended the device 13758 * Error otherwise 13759 **/ 13760 static int 13761 lpfc_pci_resume_one(struct pci_dev *pdev) 13762 { 13763 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13764 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13765 int rc = -ENODEV; 13766 13767 switch (phba->pci_dev_grp) { 13768 case LPFC_PCI_DEV_LP: 13769 rc = lpfc_pci_resume_one_s3(pdev); 13770 break; 13771 case LPFC_PCI_DEV_OC: 13772 rc = lpfc_pci_resume_one_s4(pdev); 13773 break; 13774 default: 13775 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13776 "1426 Invalid PCI device group: 0x%x\n", 13777 phba->pci_dev_grp); 13778 break; 13779 } 13780 return rc; 13781 } 13782 13783 /** 13784 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 13785 * @pdev: pointer to PCI device. 13786 * @state: the current PCI connection state. 13787 * 13788 * This routine is registered to the PCI subsystem for error handling. This 13789 * function is called by the PCI subsystem after a PCI bus error affecting 13790 * this device has been detected. When this routine is invoked, it dispatches 13791 * the action to the proper SLI-3 or SLI-4 device error detected handling 13792 * routine, which will perform the proper error detected operation. 13793 * 13794 * Return codes 13795 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 13796 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13797 **/ 13798 static pci_ers_result_t 13799 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 13800 { 13801 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13802 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13803 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 13804 13805 switch (phba->pci_dev_grp) { 13806 case LPFC_PCI_DEV_LP: 13807 rc = lpfc_io_error_detected_s3(pdev, state); 13808 break; 13809 case LPFC_PCI_DEV_OC: 13810 rc = lpfc_io_error_detected_s4(pdev, state); 13811 break; 13812 default: 13813 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13814 "1427 Invalid PCI device group: 0x%x\n", 13815 phba->pci_dev_grp); 13816 break; 13817 } 13818 return rc; 13819 } 13820 13821 /** 13822 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 13823 * @pdev: pointer to PCI device. 13824 * 13825 * This routine is registered to the PCI subsystem for error handling. This 13826 * function is called after PCI bus has been reset to restart the PCI card 13827 * from scratch, as if from a cold-boot. When this routine is invoked, it 13828 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 13829 * routine, which will perform the proper device reset. 13830 * 13831 * Return codes 13832 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 13833 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13834 **/ 13835 static pci_ers_result_t 13836 lpfc_io_slot_reset(struct pci_dev *pdev) 13837 { 13838 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13839 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13840 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 13841 13842 switch (phba->pci_dev_grp) { 13843 case LPFC_PCI_DEV_LP: 13844 rc = lpfc_io_slot_reset_s3(pdev); 13845 break; 13846 case LPFC_PCI_DEV_OC: 13847 rc = lpfc_io_slot_reset_s4(pdev); 13848 break; 13849 default: 13850 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13851 "1428 Invalid PCI device group: 0x%x\n", 13852 phba->pci_dev_grp); 13853 break; 13854 } 13855 return rc; 13856 } 13857 13858 /** 13859 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 13860 * @pdev: pointer to PCI device 13861 * 13862 * This routine is registered to the PCI subsystem for error handling. It 13863 * is called when kernel error recovery tells the lpfc driver that it is 13864 * OK to resume normal PCI operation after PCI bus error recovery. When 13865 * this routine is invoked, it dispatches the action to the proper SLI-3 13866 * or SLI-4 device io_resume routine, which will resume the device operation. 13867 **/ 13868 static void 13869 lpfc_io_resume(struct pci_dev *pdev) 13870 { 13871 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13872 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13873 13874 switch (phba->pci_dev_grp) { 13875 case LPFC_PCI_DEV_LP: 13876 lpfc_io_resume_s3(pdev); 13877 break; 13878 case LPFC_PCI_DEV_OC: 13879 lpfc_io_resume_s4(pdev); 13880 break; 13881 default: 13882 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13883 "1429 Invalid PCI device group: 0x%x\n", 13884 phba->pci_dev_grp); 13885 break; 13886 } 13887 return; 13888 } 13889 13890 /** 13891 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 13892 * @phba: pointer to lpfc hba data structure. 13893 * 13894 * This routine checks to see if OAS is supported for this adapter. If 13895 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 13896 * the enable oas flag is cleared and the pool created for OAS device data 13897 * is destroyed. 13898 * 13899 **/ 13900 static void 13901 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 13902 { 13903 13904 if (!phba->cfg_EnableXLane) 13905 return; 13906 13907 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 13908 phba->cfg_fof = 1; 13909 } else { 13910 phba->cfg_fof = 0; 13911 mempool_destroy(phba->device_data_mem_pool); 13912 phba->device_data_mem_pool = NULL; 13913 } 13914 13915 return; 13916 } 13917 13918 /** 13919 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 13920 * @phba: pointer to lpfc hba data structure. 13921 * 13922 * This routine checks to see if RAS is supported by the adapter. Check the 13923 * function through which RAS support enablement is to be done. 13924 **/ 13925 void 13926 lpfc_sli4_ras_init(struct lpfc_hba *phba) 13927 { 13928 switch (phba->pcidev->device) { 13929 case PCI_DEVICE_ID_LANCER_G6_FC: 13930 case PCI_DEVICE_ID_LANCER_G7_FC: 13931 phba->ras_fwlog.ras_hwsupport = true; 13932 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 13933 phba->cfg_ras_fwlog_buffsize) 13934 phba->ras_fwlog.ras_enabled = true; 13935 else 13936 phba->ras_fwlog.ras_enabled = false; 13937 break; 13938 default: 13939 phba->ras_fwlog.ras_hwsupport = false; 13940 } 13941 } 13942 13943 13944 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 13945 13946 static const struct pci_error_handlers lpfc_err_handler = { 13947 .error_detected = lpfc_io_error_detected, 13948 .slot_reset = lpfc_io_slot_reset, 13949 .resume = lpfc_io_resume, 13950 }; 13951 13952 static struct pci_driver lpfc_driver = { 13953 .name = LPFC_DRIVER_NAME, 13954 .id_table = lpfc_id_table, 13955 .probe = lpfc_pci_probe_one, 13956 .remove = lpfc_pci_remove_one, 13957 .shutdown = lpfc_pci_remove_one, 13958 .suspend = lpfc_pci_suspend_one, 13959 .resume = lpfc_pci_resume_one, 13960 .err_handler = &lpfc_err_handler, 13961 }; 13962 13963 static const struct file_operations lpfc_mgmt_fop = { 13964 .owner = THIS_MODULE, 13965 }; 13966 13967 static struct miscdevice lpfc_mgmt_dev = { 13968 .minor = MISC_DYNAMIC_MINOR, 13969 .name = "lpfcmgmt", 13970 .fops = &lpfc_mgmt_fop, 13971 }; 13972 13973 /** 13974 * lpfc_init - lpfc module initialization routine 13975 * 13976 * This routine is to be invoked when the lpfc module is loaded into the 13977 * kernel. The special kernel macro module_init() is used to indicate the 13978 * role of this routine to the kernel as lpfc module entry point. 13979 * 13980 * Return codes 13981 * 0 - successful 13982 * -ENOMEM - FC attach transport failed 13983 * all others - failed 13984 */ 13985 static int __init 13986 lpfc_init(void) 13987 { 13988 int error = 0; 13989 13990 printk(LPFC_MODULE_DESC "\n"); 13991 printk(LPFC_COPYRIGHT "\n"); 13992 13993 error = misc_register(&lpfc_mgmt_dev); 13994 if (error) 13995 printk(KERN_ERR "Could not register lpfcmgmt device, " 13996 "misc_register returned with status %d", error); 13997 13998 lpfc_transport_functions.vport_create = lpfc_vport_create; 13999 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 14000 lpfc_transport_template = 14001 fc_attach_transport(&lpfc_transport_functions); 14002 if (lpfc_transport_template == NULL) 14003 return -ENOMEM; 14004 lpfc_vport_transport_template = 14005 fc_attach_transport(&lpfc_vport_transport_functions); 14006 if (lpfc_vport_transport_template == NULL) { 14007 fc_release_transport(lpfc_transport_template); 14008 return -ENOMEM; 14009 } 14010 lpfc_nvme_cmd_template(); 14011 lpfc_nvmet_cmd_template(); 14012 14013 /* Initialize in case vector mapping is needed */ 14014 lpfc_present_cpu = num_present_cpus(); 14015 14016 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 14017 "lpfc/sli4:online", 14018 lpfc_cpu_online, lpfc_cpu_offline); 14019 if (error < 0) 14020 goto cpuhp_failure; 14021 lpfc_cpuhp_state = error; 14022 14023 error = pci_register_driver(&lpfc_driver); 14024 if (error) 14025 goto unwind; 14026 14027 return error; 14028 14029 unwind: 14030 cpuhp_remove_multi_state(lpfc_cpuhp_state); 14031 cpuhp_failure: 14032 fc_release_transport(lpfc_transport_template); 14033 fc_release_transport(lpfc_vport_transport_template); 14034 14035 return error; 14036 } 14037 14038 /** 14039 * lpfc_exit - lpfc module removal routine 14040 * 14041 * This routine is invoked when the lpfc module is removed from the kernel. 14042 * The special kernel macro module_exit() is used to indicate the role of 14043 * this routine to the kernel as lpfc module exit point. 14044 */ 14045 static void __exit 14046 lpfc_exit(void) 14047 { 14048 misc_deregister(&lpfc_mgmt_dev); 14049 pci_unregister_driver(&lpfc_driver); 14050 cpuhp_remove_multi_state(lpfc_cpuhp_state); 14051 fc_release_transport(lpfc_transport_template); 14052 fc_release_transport(lpfc_vport_transport_template); 14053 idr_destroy(&lpfc_hba_index); 14054 } 14055 14056 module_init(lpfc_init); 14057 module_exit(lpfc_exit); 14058 MODULE_LICENSE("GPL"); 14059 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 14060 MODULE_AUTHOR("Broadcom"); 14061 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 14062